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Kurzfassung
Fragmentation von Molekülionen in Kollisionen langsamer Elektronen

Die Fragmentation positiver Wasserstoff Molekülionen durch den Einfang langsamer Elektro-

nen, die sogenannte Dissoziative Rekombination (DR), wurde in Speicherring-Experimenten

am TSR, Heidelberg, durch gleichzeitige Überlagerung zweier unabhängiger Elektronenstrahlen

und mit hochauflösenden Fragmentationsabbildungsdetektoren untersucht. Die Framentations-

kinematik konnte mit Hilfe kalter Elektronen bis in den Bereich einiger meV Kollisionsenergie

bestimmt werden, wo ausgeprägte Rotations- und Vibrationsresonanzen im DR Wirkungsquer-

schnitt auftreten. Für thermisch angeregtes HD+ wurden Fragmentationswinkel als auch die frei-

werdende kinetisch Energie auf einem feinmaschigen Gitter zwischen ca. 10 und 80 meV präziser

eingestellter Kollisionsenergie bestimmt. Die beobachtete Anisotropie, erstmals beschrieben

durch Legendre-Polynome grösser zweiter Ordnung, als auch die Rotationsbeiträge variieren

dabei vergleichbar mit dem rotations-gemittelten DR Ratenkoeffizienten. Rotations- und vibra-

tionsaufgelöste DR Experimente an H+
2 wurden durch eine neu entwickelte Ionenqelle ermöglicht.

Sowohl der DR Ratenkoeffizient als auch die Fragmentationsdynamik bei ausgewählten Reso-

nanzen niedriger Kollisionsenergie konnten selektiv in den untersten beiden Vibrations- und den

ersten drei angeregten Rotationszuständen untersucht werden. Zustandsabhängige DR Raten

und Winkelverteilungen werden vorgestellt.

Abstract
Fragmentation of molecular ions in slow electron collisions

The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons,

the so called dissociative recombination (DR), has been investigated in storage ring experiments

at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with

high resolution fragment imaging detection. Provided with well directed cold electrons the

fragmentation kinematics were measured down to meV collision energies where pronounced ro-

vibrational Feshbach resonances appear in the DR cross section. For thermally excited HD+ the

fragmentation angle and the kinetic energy release were studied at variable precisely controlled

electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described

for the first time by Legendre polynomials higher 2nd order and the extracted rotational state

contributions were found to vary on a likewise narrow energy scale as the rotationally averaged

DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H+
2 produced

in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as

the fragmentation dynamics at selected resonances were measured individually in the lowest

two vibrational and first three excited rotational states. State-specific DR rates and angular

dependences are reported.





Contents

1 Introduction 1

2 Dynamics in molecular fragmentation 5

2.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Potential energy surfaces and molecular states . . . . . . . . . . . . 5

2.1.2 Fragmentation processes of molecules . . . . . . . . . . . . . . . . . 7

2.1.3 Fragmentation by dissociative recombination . . . . . . . . . . . . . 9

2.2 Fragment angular dependences . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Angular distributions in the axial-recoil limit . . . . . . . . . . . . . 14

2.2.2 Anisotropies in electron-neutral molecule fragmentation . . . . . . . 15

2.2.3 Angular dependence in dissociative recombination . . . . . . . . . . 17

2.3 Dissociative recombination of the hydrogen cation . . . . . . . . . . . . . . 19

2.3.1 Low-energy DR resonances of the hydrogen cation . . . . . . . . . . 20

3 Fast beam fragment imaging 25

3.1 The ion storage ring technique . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Neutral fragment imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 2-body fragmentation kinematics . . . . . . . . . . . . . . . . . . . 27

3.2.2 Transverse distance information . . . . . . . . . . . . . . . . . . . . 29

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 The twin-merged beam facility at the TSR . . . . . . . . . . . . . . 33

3.3.2 The multi-hit 2D and 3D fragment imaging detector . . . . . . . . . 36

4 Product kinematics at resonances of HD+ DR 51

4.1 Controlled ion beam experiments . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Rotational state contributions to the DR rate . . . . . . . . . . . . 57

4.2.2 Fragment angular distributions . . . . . . . . . . . . . . . . . . . . 66

4.3 Angular distribution models . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Partial wave approach . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 MQDT description of the angular dependence . . . . . . . . . . . . 81

4.3.3 Beyond the axial-recoil description . . . . . . . . . . . . . . . . . . 84

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

I



CONTENTS

5 State-selective DR of H+
2 93

5.1 Production of H+
2 ions in defined states . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Electron impact ion beam production . . . . . . . . . . . . . . . . . 94

5.1.2 The laser ion source (LISE) . . . . . . . . . . . . . . . . . . . . . . 98

5.2 State selective measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 DR rate coefficients of selected ro-vibrational states . . . . . . . . . 106

5.2.2 Angular distributions of selected ro-vibrational states . . . . . . . . 112

5.2.3 Comparison to model angular distributions . . . . . . . . . . . . . . 120

5.2.4 Comparison to HD+ fragmentation dynamics . . . . . . . . . . . . . 125

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Summary & Outlook 129

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Future goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix 133

A Transverse distance distribution . . . . . . . . . . . . . . . . . . . . . . . . 135

B Electron energy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References 139

II



1
Introduction

Collisions of molecules are the starting point for chemical and physical changes of matter

in a variety of environments ranging from low density plasmas in interstellar space to

living tissue of a human body. They can be associated with a transfer of energy between

the reactants, cause a rearrangement of the molecular geometry or simply give rise that

the molecule falls apart thereafter. In fundamental processes the molecule interacts with a

photon or an elementary particle, such as an electron or a proton, but the complexity of the

collision is not limited and can comprise reactions with abundant molecular constituents

as well. This rises large interest and opens up a wide range for molecular physics research.

The largest effect on the environment and its subsequent development will result from a

fragmentation of the molecule following the collision, that is breaking the chemical bonds.

The basic phenomenon initiating the breakup of a molecule is the resonant creation of

an excited, unstable state in the collision. The molecule, finding itself in this new state,

will start separating and proceeds upon a potential energy surface from an initial bound

system at short internuclear distances to fragments well separated on the macroscopic

scale. The evolving fragments carry the information on the reaction pathway and hence

their study provides direct access to the fundamental fragmentation mechanisms.

From the experimental side, the investigation of the kinetic energy distributed among the

products yields a ”rough” picture of the fragmentation process as the energy balance will

allow to infer the final product states. Further insights, revealing the distinct reaction

path, can be obtained by comprising in addition the study of directional properties. For

instance, the dependence of the reaction cross section on the orientation of the molecule

can be related to the electronic symmetry characterizing the participating potential energy

surface. Consequently, the study of molecular fragmentation processes will require highest

control on the reaction parameters and aims at a full energy and momentum resolved

picture of the escaping fragments. Particularly sensitive experiments in this respect are

1



CHAPTER 1. INTRODUCTION

those utilizing the high energy resolution of photon induced interactions [1] or applying

electrons to study the creation of charged fragments in resonant collisions with neutral

molecules [2].

The present work focuses on the fragmentation dynamics in binary collisions of positively

charged diatomic molecular ions with electrons. Caused by the capture of the electron,

the molecular cation by resonant energy transfer forms an excited neutral compound

state which is unstable against dissociation into neutral atomic fragments. The excess

energy released in the destruction process is distributed over internal excitations of the

fragments, as far as possible, and over the kinetic degrees of freedom of the final products.

The initiated neutralization process, generally referred to as dissociative recombination

(DR) [3] (Chapter 2.1.3), attracts strong interest in modeling low-density ionized media

such as atmospheric layers [4] or astrophysical environments [5, 6], but presents also an

important process in various laboratory plasmas [7].

In view of the importance of the DR process, both theoretical and experimental interest

has continuously risen over the past decades addressing mainly the molecular fragmen-

tation by electrons through rate measurements in event-by-event counting experiments.

Recently, in particular the experimental studies have benefited greatly from the storage

ring technique becoming available to the field of molecular physics [8]. Within this setup

both electrons and molecular ions can be brought together at well defined kinematics

down to small relative collision energies in the sub-eV range. Compared to the fast ion

beam (reaching energies of up to a few MeV/nucleon) the kinetic energy released among

the escaping fragments is small (in the range of eV) so that the trajectories of all neutral

products are constraint to a narrow cone in forward direction. This greatly simplifies the

detection setup which is required to efficiently collect the neutral recombination products.

Taking advantage of these technical developments, experiments focusing on the DR-

induced fragmentation dynamics are now becoming possible. They combine the storage

ring setup with a fragment imaging detection system to perform measurements with unidi-

rectional monochromatic electron impact under stable ion beam conditions. In the present

experiments a multi-hit 2D and 3D imaging detector has been utilized to determine both

the information on the kinetic energy release as well as the fragmentation direction from

the simultaneous measurement of the relative fragment impact positions. The details on

the fragment imaging technique are described in Chapter 3.

The hydrogen molecular ion H+
2 and the deuterated relative HD+ have found much atten-

tion in numerous experiments investigating the electron-ion interaction in merged beam

setups at storage rings (e.g. [9, 10, 11, 12, 13]). Their simple structure favors the study

also from the theoretical side [14, 15, 16] so that the molecular system has become a
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benchmark system in DR research. At low electron collision energies the capture of the

electron by an initial bound electronic state of the ion leads through resonant energy

transfer to the formation of rotationally and vibrationally excited neutral Rydberg states.

Their fragmentation by predissociation causes interference effects with the second, direct

dissociation route, creating a rich resonant modulation in the DR cross section at low

electron collision energies. For vibrationally cold HD+ with only a few rotational levels

populated these patterns have been observed in high resolution measurements of the DR

rate coefficient [13, 17]. While the principal underlying mechanism is theoretically un-

derstood, the assignment of the observed patterns is still missing. This has motivated

the experimental investigation of additional aspects of the DR process which become

accessible through the fragmentation dynamics in slow electron collisions.

First, for vibrationally relaxed HD+ ions the product kinematics were analyzed in the

vicinity of low-energy DR resonances below about 100 meV. Both the kinetic energy dis-

tributed among the fragments as well as the fragmentation directions were obtained in

these experiments. The sensitivity on the electron energy required highest energy resolu-

tion of well directed colliding electrons which was made possible by a newly introduced,

unique twin-electron beam arrangement at the TSR storage ring. The results obtained

on a dense measurement grid are presented in Chapter 4 [18, 19].

In a second experimental series the low energy range was revisited, now using H+
2 ions

in selected initial states. Applying the same experimental setup measurements on the

DR rate coefficient and the fragmentation dynamics were now performed in combination

with an ion source which allowed the production of H+
2 ions in distinct vibrationally and

rotationally excited states. The results of these experiments are discussed in Chapter 5.

Finally, the thesis is concluded by a summary of the experimental findings and gives an

outlook on remaining open questions and possible future studies.
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2
Dynamics in molecular fragmentation

The molecular dynamics in fragmentation processes are often described in the picture of

potential energy surfaces. This chapter will start with an overview of this general concept,

before it will focus on the fragmentation reaction studied in this work, the dissociative

recombination process.

Determined by the participating potential energy surfaces the emitted fragments reveal

through their emission directions the properties of these states, which allows to uniquely

select the dissociation pathway. In comparison to other molecular fragmentation pro-

cesses, the study of angular dependences in dissociative recombination found less atten-

tion, both experimentally and theoretically. The hydrogen molecular cations, H+
2 and

HD+, can serve as an ideal system to investigate detailed aspects of the dissociative re-

combination induced fragmentation dynamics at low electron collision energies, as will be

discussed in the final section.

2.1 General concepts

2.1.1 Potential energy surfaces and molecular states

The structure and the dynamics involved in processes of molecular systems are commonly

approached considering the large mass difference between the electrons and nuclei. This

gives rise to the assumption that as a result of similar forces the nuclear motion is much

slower so that electrons react instantaneously to their movement. Consequently the elec-

tronic motion can be treated separately from the nuclear motion which simplifies the

problem of solving the Schrödinger equation characterized by the molecular system.

In this concept, known as the Born-Oppenheimer (BO) approximation [20], the electronic

wave functions are determined for a potential with fixed positions of the nuclei, that

5



CHAPTER 2. DYNAMICS IN MOLECULAR FRAGMENTATION

is the nuclear configurations enter the calculation only as a parameter. The resulting

electronic eigenenergies define for each nuclear arrangement together with the mutual

Coulomb interaction of the nuclei the total potential energy function acting on the nuclei.

This potential energy function is also called potential energy surface (PES). It is included

in the nuclear Schrödinger equation which is subsequently solved in order to describe the

nuclear motion (see, e.g. [21]).

Hence, the nuclear dynamics are closely related to the PES. Due to the nuclear-nuclear

electrostatic repulsion the PES goes to infinity the closer the nuclei approach each other.

In contrast, at large internuclear separation the potential tends to an asymptotic value and

the PES determines the fragmentation process as well as the evolving atomic and possible

molecular species. At intermediate internuclear separations stable, bound molecular states

exhibit a local minimum in the PES which corresponds to a configuration of an equilibrium

nuclear arrangement. Thereby vibrations can cause an oscillatory motion of the nuclei

around the equilibrium position.

The dimension of the coordinate space describing the nuclear configuration and thus the

PES depends on the number of atoms involved in the molecular system. For instance,

in case of diatomic molecules treated here, the system reduces to a description in one

dimension and hence the potential energy surface is actually more accurately termed a

potential energy curve which depends only on the internuclear distance.

Besides the energy dependence, the electronic states corresponding to the PES are char-

acterized by molecular term symbols which reflect symmetry properties of the electronic

wave function as well as the orbital angular momenta and spins of the electrons and their

couplings [21, 22]. Thereby the symmetry properties are defined by operations, such as

rotations or reflections, which leave the nuclear configuration unchanged. For example

for a homonuclear1 diatomic molecule the inversion in the center of charge presents a

symmetry operation described by the parity of the electronic wave function.

For most calculations where the potential energy surfaces of electronic states are ener-

getically well separated the BO approximation yields sufficient accuracy. However, in

situations where two PES energetically approach each other at the same nuclear config-

uration, i.e. the energy eigenvalues of the electronic states become degenerate, couplings

between the electronic and the nuclear motion start to play a role, which are not consid-

ered in the BO approximation. In fact, for states of the same symmetry this results in

a breakdown of the BO approximation. At these nuclear configurations the degeneracy

of the respective electronic states is lifted and avoided crossings will occur equivalent to

1
Homonuclear is referred here to the nuclear charges, i.e. both atoms have the same charge but can

be different isotopes, e.g. HD+.
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2.1. GENERAL CONCEPTS

a nuclear motion not defined by the PES of a single electronic state only. On the other

hand, electronic states of different symmetry can possess degenerate energy eigenvalues

and hence the corresponding PES are allowed to cross each other.

2.1.2 Fragmentation processes of molecules

The fragmentation of molecules can be initiated by a variety of processes, mostly in colli-

sions with electrons or atomic and molecular species but also by the absorption of photons.

Commonly these reactions are associated with a change of the nuclear configuration from

an at least temporarily bound molecular state to individual fragments exhibiting onto

each other only a negligible force at sufficient internuclear separation.

For the description of these dynamical processes the picture of a system moving along

a potential energy surface is particularly suited. In doing so, either only one PES is

involved, that is the system stays in the same electronic eigenstate, but stabilizes into

separate fragments at a large internuclear distance. On the other hand, the reaction

may include a transition to a different PES and induce a change of the electronic state.

Nevertheless, the products which evolve from fragmentation processes are determined by

the PES and their asymptotic limit. Depending on the components of the fragmentation

process they can consist of atomic or molecular species in different charge states and with

possible internal excitations.

In Fig. 2.1 the initial bound state configuration of a diatomic molecule is found at the local

minimum of a PES, corresponding for instance to the electronic ground state. Depending

on the depth of the potential minimum, numerous vibrational and rotational states of the

bound molecule give rise to a distinct level structure resulting from the eigenvalues of the

nuclear Hamiltonian (only the vibrational states being indicated in the figure).

Starting from the vibrational ground state, which is indicated by the square of the nuclear

wave function in Fig. 2.1, the molecule can in the current example leave the equilibrium

arrangement only by gaining sufficient energy through a collision or the absorption of a

photon. In the case that a transition to a vibrational continuum state (A), which is repre-

sented by the dashed line, becomes energetically possible, the molecule is no longer bound

and the fragments can exhibit an arbitrary separation into the final channel α. Below the

dissociation threshold, on the other hand, the absorbed energy dissipates into internal ro-

tational and vibrational (ro-vibrational) excitations of the bound molecule which in turn

has the possibility to subsequently cool down through radiative emission.

While in the above case the fragmentation involves only one PES, a breakup of the

molecule can also be initiated by a change of the electronic state (B, C). The required

7



CHAPTER 2. DYNAMICS IN MOLECULAR FRAGMENTATION
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Figure 2.1: The schematic drawing of

electronic PES as function of the in-

ternuclear distance illustrates possible

fragmentation pathways for an initial

bound diatomic molecule. Dissocia-

tion from a vibrational level (red lines)

of the bound molecule can proceed

through vibrational excitation into the

continuum (A), electronic excitation

(B) or via predissociation or tunnel-

ing out of an intermediate bound res-

onant state (C) leading to fragment

channels α, β and γ, respectively.

Thereby electronic transitions are lim-

ited to the Franck-Condon overlap (ver-

tical shaded bar).

energy for the transition into a new electronic eigenstate has to be provided again by a

collisional process or the absorption of a photon. With respect to the slow nuclear motion,

this electronic transition occurs fast, that is the nuclei do not change their internuclear

distance and hence are promoted vertically in the potential energy surface diagram which

is also known as the Franck-Condon principle. In other words, the initial nuclear wave

function Ψv(R) is projected vertically into the vibrational eigenfunctions Ψ̃v′(R) of the

new electronic state, a process which is particularly favored for a large overlap of the wave

functions represented by the Franck-Condon factor (shaded bar in Fig. 2.1):

f(v, v′) =

∣

∣

∣

∣

∫

Ψv(R)Ψ̃v′(R)dR

∣

∣

∣

∣

2

. (2.1)

Consequently, the movement of the nuclei is now governed by the new PES. For instance,

nuclei which find themselves after electronic excitation on a repulsive PES (B) above the

asymptotic energy level, proceed directly to large internuclear separations while dissoci-

ating into the corresponding fragments (channel β). Alternatively, the electronic transi-

tion can also first prepare the molecule in an intermediate quasi-bound state (C). From

there the system can dissociate, non-radiatively, via predissociation or tunneling into the

fragment channel γ. The two latter examples, as presented in Fig. 2.1, turn out to be

particularly sensitive on the excitation energy which is added to the molecular system
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2.1. GENERAL CONCEPTS

during the transition, i.e. the fragmentation describes here a resonant process.

These processes are frequently realized in nature where they present an essential part in

reaction chains. They can be induced by a variety of collisions, multiphoton absorption,

high laser fields, short wave length photons (X-ray), etc. (see, e.g. [1, 2, 23]). Therefore

they have initiated large interest in the study of their underlying mechanisms and to learn

about their dynamics.

2.1.3 Fragmentation by dissociative recombination

Considering the specific case of electron induced fragmentation of a positively charged

molecular ion, several dissociation processes can be initiated, differing in the charge state

of the final products: Dissociative excitation describes the reaction where the electron

escapes after the collision, leaving behind neutral and positively charged fragments of the

molecule. In case the electron remains bound to the dissociating molecule the fragmen-

tation process is called dissociative recombination. Moreover, ion-pair formation [24, 25]

also becomes possible but which will not be followed further in this work.

Dissociative recombination (DR), producing only neutrals from a positively charged bound

molecule after the capture of an electron, has first been suggested by Bates [3, 26] to

explain an effective electron sink in the earth’s ionosphere. Later the process was also

recognized as a fast neutralization path for positively charged molecular ions in various

plasmas, including for instance interstellar clouds [5, 6].

For diatomic molecular cations AB+ provided in an initial vibrational v+ and rotational

J+ state and electrons colliding with an energy E this fragmentation process can be

summarized as follows

AB+(v+, J+) + e−(E) → A(n, l) + B(n′, l′) + EKER . (2.2)

where the final atomic products are distinguished by their principal and orbital angular

momentum quantum numbers n (n′) and l (l′) and separate with kinetic energy EKER.

The explicit reaction path leading to the neutral atomic species is not specified in the

above schematic equation. It depends sensitively both on the molecular system as well as

the initial collision parameters. Describing the process in the picture of potential energy

surfaces (see, e.g. Fig. 2.1), the capture of an electron promotes the molecular system

onto a repulsive electronic state either directly or via an intermediate temporarily bound

system, generally referred to as the direct and the indirect reaction path, respectively.

In the direct DR process the electron is captured into a doubly excited neutral state

AB∗∗ of the molecular system, that is the kinetic energy E of the incident electron is

9
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Figure 2.2: Illustration of (a) the direct dissociative recombination (DR) and (b) the

indirect DR process. The potential energy curve of a diatomic molecular cation AB+

in the ro-vibrational state (v+, J+) is represented by the black line in each inlet. The

electron with energy E is captured in (a) directly into the repulsive state AB∗∗ (red line),

whereas in (b) first the ro-vibrational level (v′, J ′) of an excited Rydberg state (dashed

blue line) is formed before dissociation of the molecular system continues upon AB∗∗(red

line). The final atomic fragments A and B are emitted with a kinetic energy EKER.

transformed through a rearrangement of the whole electronic cloud to an excitation of a

second electron:

AB+(v+, J+) + e−(E) → AB∗∗ → A(n, l) + B(n′, l′) + EKER . (2.3)

Once the molecular system has reached the neutral, doubly excited state AB∗∗, the elec-

tron capture is stabilized by rapid dissociation into fragments. The direct DR process

(Fig. 2.2(a)) is purely electronic and has a resonant character since it works most effi-

ciently if the electron energy E matches the one of the transition from the ionic state AB+

to the repulsive state AB∗∗ at a given internuclear distance R within the Franck-Condon

Region (also similar to process B in Fig. 2.1). Clearly, at low electron energies E a cross-

ing of the bound ion and the repulsive neutral potential curves near the ro-vibrational

level (v+, J+) will be required.

Formally, the transition in the direct DR pathway is described by the elec-

tronic coupling matrix element Vel(R) in the total interaction matrix VAB+,AB∗∗ =

〈ΨAB∗∗(R)|Vel(R)|ΨAB+(R)〉 between the nuclear wave functions of the bound molecu-

lar ion ΨAB+ and the neutral dissociative state ΨAB∗∗ . Therein Vel(R) is given by

Vel(R) = 〈Φd(qe, R)|He(qe, R)|Φr(qe, R)〉 (2.4)

10



2.1. GENERAL CONCEPTS

with the electronic Hamiltonian He and the electronic wave functions Φr and Φd of the

reactants, including target ion and continuum electron, and the dissociative state AB∗∗

(qe describe the electron coordinates). Assuming that the electronic coupling Vel(R) varies

only slowly in the overlap region, the direct DR cross section σdirect for a single dissociative

curve is governed by the Franck-Condon factor |〈ΨAB∗∗(R)|ΨAB+(R)〉|2 (Eq.(2.1)) and is

inverse proportional to the electron energy E [27]:

σdirect ∝
1

E
|〈ΨAB∗∗(R)|ΨAB+(R)〉|2 · V 2

el · S . (2.5)

As long as the system has not reached a critical internuclear separation RC , the excited

compound state has sufficient energy to autoionize back to the reactants, i.e. the system

emits an electron and returns to the bound ionic state. This possibility is included in

the description of the direct DR cross section (Eq.(2.5)) by the survival factor S, the

complement of the autoionization probability.

In contrast, in the indirect DR process [28] the kinetic energy of the incident electron is

transformed into nuclear motion of the molecule. The capture of the electron proceeds

through non-adiabatic couplings by the breakdown of the Born-Oppenheimer approxi-

mation and forms a rotationally and vibrationally (ro-vibrationally) excited molecular

Rydberg state (Fig. 2.2(b)):

AB+(v+, J+) + e−(E) → AB∗
Ryd(v

′, J ′, nRyd, lRyd) → AB∗∗ → A(n, l) + B(n′, l′) + EKER .

(2.6)

In these molecular Rydberg states the captured electron is orbiting far from the essentially

undistorted ionic core in states labeled by the principal and orbital angular momentum

quantum numbers nRyd and lRyd. Their vibrational v′ and rotational J ′ excitation is

defined by the ionic core.

This first step is followed by a second radiationless transition (predissociation) where

the excited Rydberg state couples to the repulsive state AB∗∗ upon which the system

then continues towards dissociation. Due to the discrete ro-vibrational energy levels of

the neutral Rydberg states converging to the ionic limit, the indirect DR is regarded as a

resonant process which is expected to sensitively depend on the ionic internal excitation at

low electron collision energy. In addition, often the same doubly excited state is accessed

by predissociation as by the direct DR mechanism, leading to interference between these

dissociation routes of comparable strength. The hydrogen molecular cation presents an

example which features at low electron energies both possible pathways, resulting in a

rich structure of the DR cross section as will be discussed in Sec. 2.3.

In experiments various aspects of the DR process are typically addressed (e.g. [8]): The

measurement of the DR rate coefficient as a function of the electron collision energy can be
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related to the reaction cross section, whereas studies of the branching ratio into different

final fragment states and species can yield information on the fragmentation pathways. In

latter, the internal excitation of final atomic products is inferred using energy conservation

from the measurement of the kinetic energy release EKER by assuming a well known initial

molecular ion state. However, in order to achieve a complete picture of the fragmentation

dynamics which, for example, includes identifying the symmetry quantum numbers of

the states AB∗
Ryd and AB∗∗ participating in the fragmentation process, information on

a possible dependence on the angle between the molecular orientation and the captured

electron will be needed.

2.2 Fragment angular dependences

The dissociation properties of the evolving fragments carry information on the partic-

ipating electronic states and their couplings in the process and thus on the molecular

dynamics at short internuclear distances, which are governed by the potential energy sur-

faces. Numerous repulsive states of different electronic symmetry are often energetically

accessible at short internuclear distances. While they can asymptotically lead through

possible couplings to the same final product state configuration, their electronic symmetry

properties do influence fragment properties such as their angular distribution. In partic-

ular the electronic symmetries influence the partial reaction cross section as a function

of the molecular orientation at the time of the collision which enables to infer the state

information from the fragmentation directions. Within the axial-recoil limit, which is

introduced in the following section, the measurement of the angular distribution of frag-

ments can thus be regarded as a sensitive probe of the electronic state symmetries and

allows a distinct selection of the responsible PES.

For instance, thanks to the high control of the reaction conditions, molecular fragmenta-

tion induced by photon absorption has contributed detailed aspects of the inner molecular

dynamics in recent decades (an overview is found e.g. in [1, 29]). The high energy resolu-

tion of photon beams in laser light sources as well as their large energy range meanwhile

achievable, has enabled to scan various molecular systems, both neutral and ionic [23, 30],

for the specific reaction pathways. Thereby through the angular distribution of photofrag-

ments [31, 32, 33], participating electronic states in the dissociation dynamics could be

identified [23, 30] and pushed further ahead the theoretical understanding of these pro-

cesses.

While photon induced fragmentation is limited by selection rules primarily determined by

dipole interactions, electron-driven dissociation processes can access additional electronic
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states in the wealth of PESs. As only a single additional, structureless particle of negative

charge is involved in these reactions, they appeal particularly to both experimental and

theoretical studies. However, simultaneously the number of pathways resulting in different

final products rises and leads to a competition between the channels in the total collision

process. A few examples of inelastic scattering processes with neutral diatomic molecules

are listed here :

A− + B (2.7)

e− + AB ⇋ (AB−)
∗ → A + B + e− (2.8)

e− + AB∗ (2.9)

...

Similar reaction types also apply for positively charged diatomic molecules, for instance

the process of dissociative recombination introduced in the previous section. In these

processes the formation of molecular resonances (e.g. [34, 35]), i.e. intermediate com-

pound states (AB−)∗ (temporary negative ion (TNI) state) or AB∗ (reaction 2.6) of the

electron-molecule system, has been found to crucially influence the molecular dynamics,

particularly in low-energy collisions (. 10 eV) (e.g. [2] and Sec. 2.3). Depending on the

involved electronic states, resonance lifetimes are expected between 10−15 s to 10−10 s

but can in principle also extend to the micro- and millisecond range as recently observed

in studies on the H−
2 ion [36]. While the molecular system spends an extended time in

the resonant state, possibly propagating upon a repulsive state towards large internuclear

distances, different reaction channels can compete with each other. One possibility is the

reverse process, autodetachment or autoionization of an electron, which returns the initial

reactants often in ro-vibrationally excited states.

The importance of resonances reaches beyond the reaction dynamics of diatomic molecules

and was also shown to cause profound effects in polyatomic molecules, clusters and even

biomolecules as summarized for the process of dissociative electron attachment (DEA;

reaction 2.7) in a recent review article [2]. For instance, in experiments exposing DNA

in thin films to low-energy electrons ( 0 - 4 eV) the production of single strand breaks

could be observed [37, 38]. Therein the authors suggested a destruction mechanism which

is caused through DEA via the formation of intermediate resonant anion states by slow

free-electron capture.

For a complete understanding of the fragmentation process the identification of the par-

ticipating electronic states will be required. In the past, this has inspired in particular for

DEA numerous experimental and theoretical studies of the fragment angular distributions

13
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Figure 2.3: Schematic drawing of the electron in-

duced fragmentation of a diatomic molecule. The

molecular axis orientation R̂ is directed under an

angle Ω = (θ, φ) relative to the incident electron

momentum vector ~ke.

(Sec. 2.2.2). Stimulated by these ideas together with the similarities to DEA shared by the

DR process first theoretical calculations on the angular distribution were also performed

for the latter process. The present work makes detailed comparisons of such theoretical

predictions with experimental results possible for the first time.

2.2.1 Angular distributions in the axial-recoil limit

The angular dependence of a fragmentation process is defined as the functional relation

of the differential reaction cross section dσ(Ω)/dΩ to the orientation of the molecule and

is thus linked to the involved electronic symmetries. The orientation of the molecule

is typically denoted by an angle Ω (e.g. =(θ, φ)) with respect to a fixed direction, for

instance the momentum of the incident electron ~ke. For electron induced fragmentation

of diatomic molecules the orientation of the molecular axis with respect to the incident

electron is described by the angles (θ, φ), which are schematically displayed in Fig. 2.3.

Although the molecules are randomly oriented before the collision, the angular dependence

of the reaction induces fragmentation only for those with a preferred orientation. Thus,

the resulting fragment angular distribution, which describes the angular characteristics of

the emitted fragments at the detector, reflects the angular dependence and can reveal an

anisotropic electron capture probability. Note, that in most cases, that is for unpolarized

electrons and random orientation of diatomic molecules, one can generally assume axial

symmetry of the reaction cross section along ~ke, i.e. dσ(θ, φ)/dΩ = dσ(θ)/dΩ.

However, the observed fragment positions reflect the initial orientation of the molecule

only if the direction of the molecular axis does not change significantly during the fragmen-

tation process. This implies that the molecular rotation is slow in comparison to the time

required for dissociation, in particular compared to long-living resonances. In the picture

of the potential energy surface diagram these conditions translate to a steep repulsive
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dissociation curve as well as small rotational level spacings of the initial bound molecule.

Under these assumptions the dissociating products will be traveling in the direction along

the molecular axis and the non-rotational or axial-recoil approximation (e.g. [39, 40, 41])

is justified. In other words, the angular dependence of the initial collision probability

is preserved in the fragment angular distribution. In particular heavy molecules can be

expected to exhibit long rotational periods2 due to their small rotational constant (see

also Sec. 4.3.3).

On the other hand, if the molecule rotates significantly during the fragmentation and the

subsequent dissociation process, the fragment angular distribution will be smeared with

respect to the angular dependence of the reaction. In fact, the reduction of the fragmen-

tation anisotropies will result in a more isotropic emission characteristic. The breakdown

of the axial-recoil approximation has been addressed in numerous publications which were

particularly driven by the possible loss of anisotropy influencing photodissociation exper-

iments [43, 44, 45, 46, 47]. Therein the effect on the measurement is partly treated in a

semiclassical model [43, 44] independent of the actual fragmentation process which makes

an application to the current experiment possible (see Sec. 4.3.3).

2.2.2 Anisotropies in electron-neutral molecule fragmentation

Based on symmetry arguments and the axial-recoil approximation Dunn [39] has first

shown that the differential cross section for the production of negative ions by dissociative

electron attachment (DEA) (reaction 2.7) [48] should have an angular dependence which

is determined by the symmetries of the initial (AB) and intermediate ((AB−)∗) molecular

state. The derived selection rules consider the cases of parallel or perpendicular alignment

of the molecule with respect to the incoming electron ~ke (see Table I and II in [39]).

A more detailed relationship between the angular dependence of the DEA reaction cross

section of diatomic molecules and the electronic symmetry of a resonant state has been

suggested by O’ Malley and Taylor [41]. They expand their earlier theoretical treatment

of the DEA process [48] by the explicit angular dependence and employ the Born Op-

penheimer approximation to separate the electronic (Φ) and nuclear (Ψ) parts of the

total wave function. The coupling between the initial and final state is then treated in

a pure electronic way, i.e. the electronic transition is described by the matrix element

Vel = 〈Φd|He|Φr〉 of the electronic interaction Vel. While the electronic wave function

Φd corresponds to the electronic state of the intermediate molecular complex formed,

2For molecules in the lowest excited rotational state (J+= 1) the classical rotational periods are found

in the range of ∼ 10−11 s for O2 and ∼ 10−13 s for H2 (using the rotational constants from [42]).
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the initial state wave function Φr contains a plane wave ei~ke~re representing the incident

electron.

The angular dependence of the fragmentation process essentially comes from the incident

electron plane wave which is inserted in the electronic matrix element after an expansion

in partial waves:

ei~ke~re = 4π
∞
∑

L=0

L
∑

m=−L

(i)L jL(ke re) Y ∗
L,m(k̂e) YL,m(r̂e) (2.10)

where jL and YL,m are the Bessel function and spherical harmonic, respectively, while k̂e is

the unit vector in the incident direction and r̂e describes the incident electron coordinates,

both with respect to the molecular axis R̂. After integration over the electron coordinates

in the electronic matrix element, conservation of the axial orbital angular momentum

between the target ΛT and resonant Λr state restricts the summation over m and L to

satisfy m = Λr − ΛT [41].

In the subsequent part of their calculations it is assumed that the rotation of the molecular

axis is fixed during the propagation of the system upon the repulsive PES, i.e. applying

the axial-recoil approximation, so that the angular dependence of the differential DEA

cross section with respect to the direction of the incoming electron k̂e follows from:

dσDEA(θ, φ)

dΩ
∝

∣

∣

∣

∣

∣

∣

∞
∑

L=|m|

aL,|m| YL,m(θ, φ)

∣

∣

∣

∣

∣

∣

2

(2.11)

where aL,|m| are expansion coefficients defined in [41]. The initial Y ∗
L,m(k̂e) in Eq.(2.10)

with polar axis R̂ and coordinates (θR, φR) is expressed here in terms of YL,m(R̂) with

polar axis k̂e and coordinates (θ, φ) [41] thus, the electron direction is chosen as reference

and (θ, φ) describe the angle of the molecular axis. O’Malley and Taylor argue further

that Eq.(2.11) can be simplified to only one term (L0,m0) for a dominating partial wave

of the incident electron.

Under practical aspects these results emphasize that the measurement of angular dis-

tributions enables one to infer the participating partial waves of the captured electron.

Subsequently, considering the symmetry conservation rules, this information allows one

to determine the possible electronic symmetries of resonant states involved in the frag-

mentation process. The validity of the theory for DEA has been confirmed extensively by

several experimental studies at higher electron impact energies mostly in the 1970s and

1980s, for instance on H2 [49] scanning the resonant production of H−. Measurements

of the H− angular emission were performed here between 4 eV and ∼12 eV, limited on
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the low energy side by the small kinetic energy release of the H− fragments. Later, the

theoretical treatment was extended to the angular distribution of negative ions formed in

the DEA induced two-body breakup of three-atomic molecular systems such as H2O [50]

and H2S [51]. For latter cases recent studies have stressed the possible importance of the

nuclear dynamics in the final products and obtained in fact a dependence of the angular

distribution on the vibrational state of the fragment HS from DEA of H2S [52].

Most of these experiments have suffered from the limited finite angular range of the

detection devices, often consisting of turn-table arrangements which in particular do not

cover the forward and backward directions. This has prompted the setup of a true 2π

detector (in θ) utilizing the velocity map imaging technique in recent measurements on

the DEA of O2 [53]. The increased sensitivity in the forward and backward direction

enabled the presence of the 4Σ−
u resonant state to be identified at electron energies above

∼ 9 eV which has not been traced in previous experiments [54] and so far neglected in

theoretical calculations.

2.2.3 Angular dependence in dissociative recombination

In contrast to photon induced molecular fragmentation or DEA, involving neutral parent

molecules, studies on DR have addressed the role of the molecular orientation with respect

to the incident electron in the dissociation process only in recent years. On the experi-

mental side, this can mainly be attributed to the difficulty generally encountered in the

efficient detection of all emitted neutral particles yielding the information on their relative

positions. Significant progress could thus be achieved once ion storage rings were utilized

in order to merge electrons and molecular ions in experiments studying the fragmenta-

tion dynamics. In this experimental arrangement, which will be introduced in detail in

Ch. 3, the high velocity of the molecular ion is conserved in the subsequent center-of-mass

movement of the emitted neutral products, so that they stay in a narrow cone around the

initial ion’s flight direction.

The angular distribution of the DR fragments is then obtained from their relative positions

measured by imaging detectors (see Sec. 3.2). Previous results were mostly discussed

on the basis of the symmetry selection rules proposed by Dunn [39] and allowed only

a qualitative assignment of the electronic state symmetries involved in the dissociation

process (e.g. [55, 56, 57, 58]).

A more detailed theoretical description has become available, which is based on a first

explicit treatment of the angular dependence in DR reactions and was performed recently

by Guberman [59, 60]. Therein, the differential DR cross section dσ(θ)/dΩ reveals a
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functional dependence on the orientation of the molecular axis, which is determined by

the dominantly contributing partial wave of the incident electron. The main steps arriving

at this dependence will be summarized here.

The derivation of the DR angular dependence closely follows the one for DEA [41] as well

as the scattering theory treatments of DR by Bardsley [28] and Giusti-Suzor [14]. It relies

on the axial-recoil approximation, i.e. assumes that only a slow rotation of the molecule

during the fragmentation process is applicable so that the product angular distribution

directly reflects the angular dependence of the reaction cross section. The process is

described in a coordinate frame whose origin lies in the center of charge of the molecule

and whose space fixed z-axis is directed parallel to the incident electron momentum vector
~ke (as shown previously in Fig. 2.3 in Sec. 2.2.1).

The source of the angular dependence is identified in [59] as the electronic coupling matrix

element Vel(~ke, R) which drives the DR process (both in the direct and indirect mecha-

nism):

Vel(~ke, R) = 〈Φd(qe, R)|Hel(qe, R)|Φr(qe, ~ke, R)〉 (2.12)

(equivalent to Eq.(2.4) in Sec. 2.1.3). The initial electronic wave function Φr(qe, ~ke, R)

represents both the target ion Φion as well as the continuum electron Φ~ke
in the ion

Coulomb field which allows to expand latter wave function into Coulomb partial waves

(e.g. [61]):

Φ~ke
(~re) = 4π

∞
∑

l=0

l
∑

m=−l

(i)leiσl
1

ke re

Fl(ke re) Yl,m(r̂e) Y ∗
l,m(k̂e) (2.13)

where ~re denotes the incident electron position with respect to the center of charge of

the diatomic ion, Fl is a confluent hypergeometric function, Yl are spherical harmonics

and σl is the Coulomb partial wave phase shift. Introduced into Eq.(2.12) this yields

the electronic coupling matrix element after integration over all electron coordinates and

transformation of Y ∗
l,m(k̂e) to spherical harmonics Yl,m(R̂) with ~ke as the polar axis [41]

(see previous Sec. 2.2.2):

Vel(ke, ~R) =
∞
∑

l=0

l
∑

m=−l

Vl,m(ke, R) Yl,m(R̂) =
∞
∑

l=|m|

Vl,|m|(ke, R) Yl,|m|(R̂) . (2.14)

The last step in Eq.(2.14) simplifies the summation due to the restriction of m once the

ion and dissociative states are specified by their axial orbital angular momentum Λion and

Λd, respectively, so that Λd = Λion + m and considers that Vl,m and Vl,−m are identical

(factor of 2 is included in Vl,|m|). For a dominant partial wave of the incoming electron,

the sum in Eq.(2.14) reduces to a single term only. The angular dependence of the DR
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cross section, which is approximately proportional to the square of the transition matrix

element, is then shown [59] to be expressed for both the direct and indirect DR mechanism

by

dσDR(R̂)

dΩ
∝
∥

∥

∥
Yl,|m|(R̂)

∥

∥

∥

2

. (2.15)

Consequently, similar to the expression derived for DEA (Eq.(2.11)) the angular depen-

dence in DR is given by the square of the absolute value of the dominating partial wave

spherical harmonic and mirrors the electronic symmetries of the participating states.

Considering this recent description of DR angular dependences, previous experimental

studies can be re-interpreted. So far, mostly molecular systems have been studied, where a

number of dissociation pathways are accessed at high impact energies (&1 eV), measuring

several superimposed final product channels [55, 56, 57]. An independent analysis of

the individual fragment angular distributions is limited in those cases by the detection

technique and hinders the detailed comparison to theoretical predictions. In turn only

the appropriate angular distributions will allow to infer correctly the branching ratios

between the different product channels from these measurements.

At low electron energies (∼10 meV) the electrons mostly no longer approach the molecule

from a single direction due to their finite velocity distribution. Consequently the su-

perposition of incident electron directions has to be taken into account accordingly in

the comparison of the measured fragment angular distributions to the predicted angu-

lar dependence calculated for a fixed electron impact direction. First studies on the

DR fragment angular distributions of O+
2 in slow electron collisions have been presented

recently [62]. They observed at electron energies E . 300 meV up to four closely super-

imposed final product channels. Within the accuracy of the measurement they found each

channel to be compatible with an isotropic angular distribution. This is in contradiction

to theory [59] which has predicted for the O+
2 system different anisotropies depending on

the electronic symmetry of the dissociative state.

These previous experiments have shown that a detailed study of the DR angular depen-

dence, in particular at low electron collision energies, will require (a) the use of unidirec-

tional electrons and (b) a molecular system with only one final product channel such as

the hydrogen molecular cation discussed in the subsequent section.

2.3 Dissociative recombination of the hydrogen cation

The hydrogen molecular cation, H+
2 , has been the object of numerous experimental and

theoretical studies. Its simple structure allows accurate theoretical calculations so that it
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has become a benchmark molecule for detailed comparisons between theory and experi-

ments.

The H+
2 ion shares the electronic structure with its deuterated relative HD+, but is often

favored in theoretical calculations due to its additional symmetry of equal masses. On the

other hand, the masses of the nuclei not only affect the level spacing of the bound system

but provide HD+ with a permanent dipole moment, which enables radiative interaction.

Many experiments aiming at defined initial conditions thus prefer the HD+ ion as its

vibrational excitations arrive within ∼ 100 ms at an equilibrium level population with

the ambient background radiation; mainly in the vibrational ground state with only a few

rotational states excited3 [63] (see also Sec. 4.1).

These considerations also hold for studies on dissociative recombination of this diatomic

molecular system. In recent years, its reaction process was predominantly addressed by

experiments at heavy-ion storage ring facilities. Thereby, comparisons of the HD+ DR

rate coefficient measured as a function of the electron collision energy in independent

experiments performed at ASTRID in Aarhus, CRYRING in Stockholm and TSR in

Heidelberg [13] have revealed an almost perfect agreement considering the various experi-

mental electron energy spreads (see Fig. 2.4). Together with advancements in theoretical

treatment the key processes are meanwhile identified, whereas detailed aspects still remain

unsettled.

2.3.1 Low-energy DR resonances of the hydrogen cation

The dissociative recombination of the hydrogen cation from the ground electronic state

of (1sσg)
2Σ+

g symmetry is driven by both the direct and the indirect mechanism (see

Sec. 2.1.3), depending sensitively on the electron collision energy. Since the indirect

pathway is limited by the availability of neutral bound Rydberg states to energies below

the dissociation threshold of the ground ionic state4, DR at higher electron energies relies

on the existence of repulsive states which serve as the doubly excited states in the direct

mechanism. Two series of anti-bonding Rydberg states converging to the first and second

electronically excited ionic state of (2pσu)
2Σ+

u and (2pπu)
2Πu symmetry, respectively, have

been identified as possible dissociation pathways in the energy range up to ∼20 eV and

are generally referred to as Q1 and Q2 series [66] (see Fig. 2.5). Their energetic ranges

3Assuming Boltzmann distributed rotational states of the ions at 300 K the largest J
+-state contri-

bution is given by J
+ = 2 (∼25%) , whereas J

+ ≥ 5 are populated less than 10%.
4Dissociation energies differ between E

d,H
+

2

≈ 2.650 eV [64] and Ed,HD+ ≈ 2.669 eV [65] of the H+

2

and HD+ ion, respectively.
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Figure 2.4: Comparison of the DR cross section of HD+ measured at three different storage

rings until 2001 (blue: TSR, red: CRYRING, green: ASTRID) [13] as a function of the

electron energy. The cross sections of the TSR and CRYRING have been shifted by a

factor of 10 or 100, respectively, for clarity. The smooth lines represent a model cross

section σ(E) = A/E which has been folded by the electron temperature of ASTRID and

to the ASTRID data at low energy.

coincide with two broad resonant peaks observed above E ≈3 eV already in first HD+

DR rate measurements at the TSR [67].

At low collision energies the electrons can interact only with one doubly excited dissocia-

tive state, the PES of (2pσu)
2 1Σ+

g symmetry, which crosses the electronic ground state

of the hydrogen cation between the v+ = 0 and v+ = 1 vibrational levels.

Alternatively, the indirect DR process becomes possible, when the electron forms through

non-adiabatic couplings a temporarily bound, ro-vibrationally excited neutral Rydberg

state which predissociates upon the same doubly excited state (2pσu)
2 1Σ+

g . The formation

of the intermediate Rydberg states sensitively depend on the electron energy as well as

the initial ionic excitation and hence ro-vibrational Feshbach resonances appear in the

electron-molecular ion scattering process. Both reactions, the direct and indirect, cannot

be treated independently as they interfere at low electron collision energies as pathways

of compatible strength and result in a complex structure of the DR cross section. The

calculated interferences are mainly destructive compared to a pure direct dissociation,
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Figure 2.5: Potential energy curves of H+
2 and H2 [68]. Solid red curves: adiabatic curves

of the lowest two ionic states. Dashed red curve: second excited ionic curve. Dashed

black curves: adiabatic curves of the lowest excited bound Rydberg states of H2, showing

avoided crossing with the lowest Q1 curve (solid blue curve). Solid black lines: Q1 and Q2

series of doubly excited states converging to the ionic limit. The final atomic fragment

states are shown on the right.

leading to dips in the cross section beside small peaks. The form depends on the nature

of the involved interactions and reflects the relative magnitude of the generally fast direct

DR compared to the weak ro-vibrational coupling in the indirect mechanism [27, 69, 70].

Experimentally, rather large energy variations are found [13], with the cross section mostly

(Fig. 2.4) remaining below the one calculated for the direct process.

Although in case of HD+ only a few ionic rotational states in the vibrational ground

state are typically populated in experiments, numerous intermediate Rydberg states re-

main energetically accessible. The nuclear rotational levels J+, J ′ of the initial and the

intermediate HD+ ion core are only restricted through conservation of total angular mo-

mentum by ∆J = |J ′ − J+| ≤ 2lRyd [16] (for labels see also Eq.(2.6)). This still leaves a

large number of reaction channels for the calculation of the indirect DR process which

could later be accounted for in the ro-vibrational expansion of the Multichannel Quantum

Defect Theory (MQDT) [15, 16].

In low-energy DR of the hydrogen molecular cation, where only the dissociative state of
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1Σ+
g symmetry is reached either directly or through predissociation, the angular momen-

tum quantum number l of the incident electron partial wave is limited to even values

only. Rydberg series (1sσg)(nlRydσg)
1Σ+

g converging to the ionic state (1sσg)
2Σ+

g with

odd angular momentum lRyd (= l) of the outer electron will not be able to couple to the

dissociative state 1Σ+
g due to symmetry reasons (parity conservation). Furthermore high-l

partial waves are found with negligible reaction amplitudes only (e.g. [16, 71]) so that they

are unlikely to provide an efficient reaction path. This leaves s and d partial-waves with

symmetry σg. While latter is considered to be dominant in the DR process through the

strongest electronic coupling [14], the s-wave has been found to play an important role

in the resonant structure of the DR cross section, especially at low energies [72]. Latest

MQDT calculations have thus taken into account both Rydberg series, sσ and dσ, in a

ro-vibrational approach [16] finding good agreement with high resolution HD+ DR rate

measurements [17].

Coming back to the angular dependence of the reaction, a dominant d partial-wave in

the HD+, or H+
2 , DR process will imply an anisotropic fragmentation described by the

Y2,0 spherical harmonic according to Eq.(2.15). The hydrogen molecular cation presents

an ideal system to verify these theoretical predictions experimentally. In fact, with only

one final atomic product configuration (e.g. HD+: [H(n) + D(n′)] or [H(n′) + D(n)] with

n= 1 and n′= 2 [55]), which is accessed at low electron impact and low internal ionic

excitations (E < 1.14 eV and vibrational state v+ <5) through dissociation upon (2pσu)
2

1Σ+
g (Fig. 2.5), the observed fragment angular distributions can precisely be analyzed

with respect to the role of molecular orientation in the electron capture. Furthermore, the

defined final fragment states confine the kinetic energy release of the escaping fragments.

Varying amounts of the kinetic energy distributed among the products will directly allow

to infer the ro-vibrational ionic states contributing in the DR process.
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3
Fast beam fragment imaging

Studying the dynamics in molecular fragmentation processes involves a good control both

on the collision partners and products. In fast ion beam setups combined with heavy-ion

storage rings molecular beams of high quality can be prepared in multi-turn circulation by

merged collinear electrons. The fast ions thereby enable high resolution electron collision

studies at low relative energy. In addition an effective 4π neutral fragment detection

becomes possible for the complete reconstruction of the product kinematics

In the following sections both the general concept of storage ring experiments and the

fragment velocity measurement will be introduced as a powerful tool for molecular physics.

The realization of these general ideas at the facility of the Max-Planck-Institut für Kern-

physik in Heidelberg, Germany, has opened up the feasibility of the experiments described

here, so that the chapter concludes with the details of the heavy-ion Test Storage Ring

(TSR) as well as the multi-hit fragment imaging detection system.

3.1 The ion storage ring technique

Heavy-ion storage rings have successfully been used for numerous experiments in molecular

physics by now for almost 20 years [8, 73]. Produced by an ion source and accelerated to

the desired energy of up to a few MeV per nucleon, the molecular ion beam is injected

into the storage ring and stored by means of magnetic fields on a closed orbit.

From the high beam velocities the neutral fragment detection benefits particularly. As

the kinetic energy released in the molecular fragmentation process is typically small with

respect to the molecular ion momentum, all neutral fragments will stay within a narrow

cone pointing in forward direction. This allows an effective 4π neutral fragment detection

on a small detector surface downstream of the interaction region.

Besides the advantage of having fast molecular ion beams the experiments also profit from
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storing them. Typical storage times of up to tens of seconds for molecular beams can be

reached, only limited by the probability of destructive residual gas collisions which are

generally mostly suppressed in the ambient ultra high vacuum of the storage ring. The

hardly disturbed circulation thus gives superior advantages of the multi-pass arrangement

over single-pass experiments.

For example, the long storage times allow to prepare the molecular ions both passively

and actively. Coming from standard molecular ion sources the ions are usually internally

excited when entering the storage ring. Those which are infrared active can then radia-

tively cool vibrations and rotations to the surrounding thermal equilibrium temperature

levels (≈ 300 K). In most cases the vibrational ground state is reached within milliseconds,

whereas the lowest rotational state equilibrium distribution is achieved on a timescale of

seconds. Then again this cooling process can also be studied simultaneously by tracing

the individual molecular state populations as functions of storage time.

In a dedicated section of the storage ring, the electron cooler, continuously regenerated

electrons can be merged. They provide the possibility to manipulate actively the ion

beam quality and countervail heating effects such as intra-beam scattering. Electrons of

low energy spread and matched to the velocity of the ion beam interact over Coulomb

forces with the molecular ions. Through this process of phase-space cooling the molecular

ions’ kinetic energy spread is rapidly reduced and approaches the thermal electron energy

distribution within less than one second for certain light molecules. The molecular ions

are then accumulated within a high density beam of small divergence and diameter.

Subsequently, electron collision experiments, such as dissociative recombination, profit

from the defined fast ion beam velocities as small relative electron collision energies can

be realized with highest resolution for precise studies down to the meV range. On the

other hand, in non-destructive inelastic electron scattering, the electrons can also absorb

part of the internal energy, cooling actively the internal excitations of the molecular ions

and leaving behind stored molecules in lower rotational and vibrational (ro-vibrational)

states.

Beneficial for electron collision experiments, such as dissociative recombination, is also

the possibility of continuously recycling the molecular ion beam through circulation on a

closed orbit. Thereby the number of reactions for each injection and thus the efficiency

of collision studies at low reaction rates or ion currents can be increased by a multiple.

Summarized, the fast ion storage ring technique brings together electrons and molecular

ions at well defined conditions. This is a crucial requirement for controlled studies of the

various aspects of the electron induced molecular fragmentation process addressed in this

work.
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3.2 Neutral fragment imaging

Combining the ion storage ring technique with fragment imaging detection creates a

powerful tool aiming at the reconstruction of the molecular fragmentation kinematics

through the determination of the relative fragment velocities [74]. For the dissociative

recombination process studied here this opens up the possibility to focus on such aspects

as the kinetic energy release, internal excitation and angular distribution of the escaping

neutral fragments.

In the imaging technique the relative fragment velocities are reconstructed from the

recorded particles’ impact positions and arrival times at the detector. Simple imaging

systems are usually restricted to the measurement of the fragment distances projected

onto a surface perpendicular to the flight direction; i.e. only yield transverse velocities.

Thus not the full reaction kinematics is observed and information on the kinetic energy re-

lease and the angular distribution have to be obtained indirectly. The imaging technique

is then referred to as 2D-Imaging. For a full kinematic picture the complete fragment

distance is needed which has to be obtained for instance from both the relative positions

transverse to the flight direction as well as the time differences of all fragments. The ex-

perimental technique which comprises a simultaneous measurement of these properties is

called 3D-Imaging. Both types of fragment imaging methods have found numerous appli-

cations in molecular physics research where fragmentation processes induced, for example,

by photons or electrons [75, 76, 77] are studied.

For dissociative recombination the imaging technique yields the fragmentation kinematics

directly from the complete measurement of the neutral fragment velocities. This requires

the detection of all emitted neutral particles and is possible at fast ion beam storage rings

where the fragment trajectories, due to the small kinetic energy release, describe a narrow

cone in forward direction and are thus projected onto a small detector surface.

However, the deduction of the relative fragment velocities becomes complicated with an

increasing number of emitted fragments. Since this work is focused on diatomic systems

only, the following description of the fragment kinematics is restricted to the 2-body

breakup. A detailed treatment of the polyatomic case can be found e.g. in [78].

3.2.1 2-body fragmentation kinematics

In Fig. 3.1 the principle of the imaging technique is illustrated for the fragment trajectories

of a diatomic dissociative recombination event. Here, the diatomic molecular ion AB+

dissociates after the capture of an electron into two neutral fragments A and B. At
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Figure 3.1: Trajectories of the neutral fragments A and B stemming from a 2-body

breakup event at a distance s from the detector.

the point of dissociation, the temporarily formed neutral compound AB travels at the

ion beam velocity ~vbeam and its molecular axis orientation is directed with an angle θ to

the ion beam direction. The energy set free in the dissociation process is transferred to

kinetic energy Ekin,i (i = A,B) and possible internal excitation of the fragments, resulting

in asymptotic fragment velocities ~ui in the co-moving center-of-mass (c.m.) frame of the

molecule. The total kinetic energy release

EKER = Ekin,A + Ekin,B =
1

2
µ v2

rel (3.1)

can then be expressed in terms of the relative velocity ~vrel = ~uA − ~uB and the reduced

mass µ = mAmB

mA+mB
of the fragment masses mi. Under conservation of the total momentum

the directions of the velocity vectors ~ui are determined from the initial orientation of the

molecule and the dissociation dynamics.

In the laboratory frame the fragments move at the total velocity ~vi = ~vbeam + ~ui until they

reach the detector after a flight distance s. At the point the first particle hits the detector

the distance between the fragments has grown to a macroscopic value D3d

D3d =
vrel

vbeam

s (3.2)

depending through ~vrel on the kinetic energy release and by assuming vbeam ≈ vi. The

impact positions at the detector can then be described by the projected fragment dis-
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tances D transverse to the beam direction as well as the time difference ∆t between the

fragment arrivals. For the current experiments the flight distances are much larger than

the fragment distances (s≫ D3d), which allows to relate both the transverse distance D

and the time difference ∆t through orthogonal projections to D3d :

D = D3d sin θ (3.3)

∆t = D3d cos θ/vbeam . (3.4)

This results for the molecular systems and experimental conditions discussed in this work

in typical transverse distances of a few centimeters and time differences of few nanosec-

onds.

From the determination of both the impact positions and times of the fragments one can

directly obtain the properties of the fragmentation kinematics such as the kinetic energy

release. Here one should keep in mind that the fragmentation angle θ measured at the

detector can reflect the initial molecular axis orientation at the start of the fragmentation

process if the axial-recoil approximation (see Sec. 2.2.1) is valid for the specific case.

3.2.2 Transverse distance information

In 2D-Imaging experiments only the transverse fragment distance D of a diatomic breakup

is recorded, whereas the information on the relative fragment impact times is missing.

Therefore it is impossible to reconstruct the kinetic energy release EKER and the fragmen-

tation geometry from the measured distance D on an event-by-event basis. Nevertheless,

this information can still be extracted from 2D-Imaging measurements by comparing an

accumulated distribution of distances D to a transverse distance probability distribution

F (D) expected for specific fragmentation kinematics [56].

For a single event the transverse distance D between the two fragments of a diatomic

breakup can be rewritten in terms of the flight distance s, the maximum fragment emission

angle δ in the laboratory frame and the fragmentation angle θ in the co-moving reference

frame:

D = s δ sin θ . (3.5)

The angle δ is proportional to the ratio of the kinetic energy release as well as the ion

beam energy Ebeam and follows from Eqs.(3.1, 3.2) :

δ =
mA + mB√

mAmB

√

EKER

Ebeam

. (3.6)

Collecting the transverse distances for a number of events dissociating at a defined distance

s from the detector yields a probability distribution Fs(D) which is directly related to the
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angular distribution W (θ) of the emitted fragments [79]

Fs(D) =
D

δ2s
√

s2 − (D/δ)
W (θ) . (3.7)

In the next step, this description has to be adopted to the non-point-like electron-ion

interaction region of length L experienced in the electron target section during experi-

ments (see Sec. 3.3). The transverse distance distribution Fs(D) is thus integrated over

all possible flight distances (s2 ≥ s ≥ s1 with s2 − s1 = L), assuming equal dissoci-

ation probability along the overlap with electrons, in order to yield the total expected

distribution F (D). Hence, the resulting functional dependence of F (D) is influenced by

two essential properties of the fragmentation process: the kinetic energy release and the

fragment angular distribution.

Comparing the initial internal excitation of the molecular ion above ground state, which

is given by vibrations v+ and rotations J+, to the excitations of the final fragment states

(nA, nB), yields together with the electron collision energy the kinetic energy available

to the emitted particles. In experiments usually a number of initial and final states can

contribute, so that the measured transverse distance distribution F (D) is described by a

sum of expected distributions Fv+,J+,nA,nB
(D), each for a different kinetic energy EKER,

F (D) =
∑

v+,J+,nA,nB

bv+,J+,nA,nB
Fv+,J+,nA,nB

(D) (3.8)

and with relative contributions bv+,J+,nA,nB
to the total recorded spectrum [80].

The general angular distribution W (θ) in the co-moving frame relative to the beam direc-

tion can be expressed thanks to the axial symmetry of the emitted particles with respect

to the beam axis in terms of Legendre polynomials Pl(cos θ)

W (θ) =
∑

l

alPl(cos θ) (3.9)

with Legendre coefficients al of order l. Due to the properties of the Legendre polynomials,

even order contributions are symmetric in θ and θ−π in contrast to the odd contributions.

The latter type translates for a diatomic breakup to a difference of the angular distribution

rotating any fragment direction by θ = π, corresponding to a so called forward-backward

asymmetry. In measurements of the transverse distance D alone, θ and θ − π are not

distinguishable so that odd Legendre polynomials are not recognized. In fact, an odd-

type contribution in W (θ) will be averaged out to an isotropic shape F (D). Consequently,

transverse distance distributions enable the determination of W (θ) represented by even

Legendre polynomials only [56].
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The total distribution W (θ) is normalized such that a0 = 1. Each even order polynomial

Pl(cos θ) and initial-to-final-state channel (v+, J+, nA, nB) is then converted to a trans-

verse distance distribution Fl;v+,J+,nA,nB
(D) so that one finally arrives after the summation

over all contributions at the total function F (D)

F (D) =
∑

v+,J+,nA,nB

∑

l

bv+,J+,nA,nB
al;v+,J+,nA,nB

Fl;v+,J+,nA,nB
(D) . (3.10)

Note that in this general form also the Legendre coefficients depend on the reaction

channel, i.e. each initial-to-final-state channel can contribute to the total distribution

with different weighting factors and angular dependences. The parameters bv+,J+,nA,nB

and al;v+,J+,nA,nB
are then extracted from a least-square fit to the measured transverse

distance distribution.

Earlier fragment imaging experiments studying the DR initiated breakup of diatomic

molecules have identified contributions of Legendre polynomials of l ≤ 2 only (see

e.g. [55, 56, 57]). In contrast, the experiments presented here are found to require angular

distributions also of type l = 4 as will be discussed later (Sec. 4.2.2). Contributions from

higher orders were found to be insignificant and therefore set to zero in the final analysis.

The parameter range for the Legendre coefficients al (l = 2, 4) of the angular distribution

W (θ) is thereby restricted through

W (θ) = P0(cos θ) + a2 · P2(cos θ) + a4 · P4(cos θ) ≥ 0 (3.11)

requiring only non-negative values of W (θ) ([0 ≤ cos θ ≤ 1]) and is represented by the

white area (including its surrounding black edge) in Fig. 3.2(a). The remaining insets

(b,c,d) of Fig. 3.2 show sample line shapes of expected transverse distance functions F (D)

computed for selected (a2, a4)-coefficients (marked by color-coded dots in (a)) of a single

reaction channel (v+, J+, nA, nB). The explicit functional dependences Fl(D) associated

with the 0th, 2nd and 4th order Legendre polynomials can be found in Appendix A. Window

(b) also illustrates for an isotropic angular dependence the sensitivity of the distribution,

in particular of its right edge, on the kinetic energy release. Here the single-channel

Fl=0(D) is compared to a sum of reaction channels differing by the kinetic energy release

of Boltzmann distributed ionic rotational states (for the case of HD+ ions at 300 K). This

has been employed to trace rotational state contributions in the experiments as will be

described in Sec. 4.2.1.
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Figure 3.2: (a) The allowed (a2, a4) parameter range (white area including the black

edge) for the 2nd and 4th order Legendre polynomials yielding W (θ) ≥ 0 is displayed.

The windows (b,c,d) show the transverse distance line shapes for single reaction channels

and selected (a2, a4) combinations (marked by color coded dots in (a)). The purple line

(10/7, 18/7) in window (d) reflects the angular distribution for a pure d partial-wave

coupling (see Sec. 4.3.1). In (b) the single-channel distribution is compared to the one

expected for a sum of Boltzmann distributed rotational state contributions (300 K HD+

ions). Note the shift of the right edge towards larger distances.

3.3 Experimental setup

All experiments presented in this work were performed at the heavy-ion Test Storage

Ring (TSR) of the Max-Planck-Institut für Kernphysik in Heidelberg, Germany [81]. The

facility provides a variety of ion sources and two accelerators for the production of a wide

range of molecular ion beams which can then be injected and stored in the TSR at energies
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of the order 1 MeV per nucleon.

The tandem Van-de-Graaff accelerator is designed in particular for the production of heavy

and highly charged atomic ion beams, such as Sc18+ [82], and well suited to yield heavier

molecular ions of type CH+
2 [83] and CF+ [84]. The HSI (Hoch-Strom-Injektor, High

Current Injector) on the other hand, is a modular accelerator system which can deliver

high currents of light, singly charged molecular ions with a minimum charge to mass ratio

q/m = 1/9 [85]. Therefore latter device has been used to accelerate the HD+ and H+
2

molecular ions subject to the research in this work. The HSI system basically consists

of an exchangeable ion source, two Radio Frequency Quadrupole (RFQ) resonators [86]

for acceleration of slow beams and eight 7-gap resonators [87] for additional acceleration.

Depending on the number of accelerator structures used, molecular ion beam energies

between 0.24 and 1.7 MeV per nucleon can be achieved. For the H+
2 and HD+ ion beam

acceleration two RFQ units were applied, reaching final total beam energies of 0.96 MeV

or 1.44 MeV, respectively.

At the HSI numerous ion sources are available taking in also the possibility to mount

externally developed and built devices which may yield specific ion beam conditions.

The HD+ molecule is produced here as a standard ion beam through electron impact

ionization of neutral HD gas in a Penning ion source. In the H+
2 measurements a high

emphasis was put on the state selectivity of the experiment. Hence a specific laser ion

source (LISE), developed at the University of Louvain-la-Neuve, Belgium, was utilized to

produce ro-vibrationally selected molecular ions [88].

After production and acceleration to the desired energy the molecular ions are injected

into the TSR using a multiturn injection scheme and stored on a closed orbit confined

by bending and focusing magnets. In the 55.4 m circumference storage ring, outlined

in Fig. 3.3, the vacuum pressure is generally kept in the order of 10−11 mbar to reduce

destructive residual gas collisions and allow experiments even after several tens of seconds

after beam injection.

3.3.1 The twin-merged beam facility at the TSR

At the TSR two electron beams can be merged simultaneously in independent straight

sections with the circulating molecular ion beam, turning the facility into a twin-merged

beam setup. Combined with an electron beam of ultimately low energy spread this setup

enables collision experiments at highest resolution.

The purpose of overlapping the molecular ions with electrons is twofold for the experiments

described here. Firstly, the continuously renewed single-pass electrons can co-propagate
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Figure 3.3: The twin-merged beam setup at the TSR consisting of the electron-cooler and

electron-target section (ETS). Neutral fragments are recorded downstream of the ETS by

counting detectors or the multi-hit 3D fragment imaging system (see Sec. 3.3.2) which

can interchangeably be operated at the neutral particle beamline BAMBI (Beamline for

Advanced Molecular Breakup Investigations).

velocity matched with the ions. Through elastic collisions the electrons absorb part of

the molecule’s kinetic energy and achieve phase-space cooling [89, 90] of the ion beam

velocity distribution within a short storage time. The molecules’ velocity spread is then

determined by the electron beam thermal velocities ~ve =
(

v⊥ , v‖
)

which are described by

an anisotropic flattened double Maxwellian distribution [91]

f(~ve, vd) =
me

2πkT⊥

(

me

2πkT‖

)1/2

e

(

−mev
2
⊥

2kT⊥

− me(v‖ − vd)
2

2kT‖

)

(3.12)

at a given detuning velocity vd with respect to the ion beam velocity and defined by

the transverse T⊥ and longitudinal T‖ (parallel to the ion beam) temperature in the co-

moving frame (me is the electron mass and k the Boltzmann constant). In addition, the

geometrical dimensions of the continuously circulating ion beam obtain a low divergence

and a diameter < 1 mm (standard deviation) for HD+.
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Secondly, the electrons can also be used for electron-ion collision experiments. Depending

on the aim of the experiment electrons from velocity matching to defined detuning values

vd can be provided with an accuracy limited mainly by the electron thermal velocity

spread.

Consequently, distributing both tasks among two independent electron beams has the

advantage to perform collision experiments under stable ion beam conditions and for

variable electron energies. This has become possible at the TSR where the option of

using two electron beam devices became operational in recent years (see Fig. 3.3). For

the present experiments the electron cooler was assigned to constantly define the ion beam

energy with electrons accelerated to the velocity matching value. Independently from the

electron cooler the electrons generated in the electron target [92, 93] were tuned to well

defined energies to study the collision process.

The thermal electron energy spread, mainly limiting the measurement’s energy resolu-

tion, depends critically on the electron beam production. At the electron target there

are optionally two types of electron emitters available [94]: a thermal cathode and a

liquid nitrogen cooled GaAs-photocathode [95, 96]. Latter electron source emits elec-

trons by laser illumination at a low initial temperature of Tcath. ≈ 100 K. The slow ac-

celeration to the ion beam velocity reduces the initial temperature in the longitudinal

component to kT‖ ≈ 0.03 meV, whereas an adiabatic expansion in a decreasing mag-

netic guiding field is responsible for achieving a sub-meV transverse electron temperature

(kT⊥ ≈ 0.5 meV). For the present experiments (HD+) an electron beam with a typical

current of Ie ≈ 0.35 mA and a density in the range of ne ≈ 1× 106 cm−3 was used (more

details in Chapters 4 and 5). The electron temperatures were derived from the sharpest

structures in earlier energy dependent DR rate measurements [97]. In comparison the

thermal cathode principally yields higher electron currents and densities, but at the cost

of increased electron temperatures due to the higher initial temperature Tcath. ≈ 1000 K

(kT‖ ≈ 0.045 meV and kT⊥ ≈ 2.0 meV).

The second electron beam device, the electron cooler, is only equipped with a thermal

cathode which emits an electron beam with a density of 1.6× 107 cm−3 at thermal electron

temperatures of kT⊥ ≈ 10.0 meV and kT‖ ≈ 0.1 meV transverse and parallel to the beam

direction, respectively.

The superior performance of the photocathode electron beam in the electron target thus

explains the preference of the electron-target section (ETS) for the study of electron-

molecule collisions down to the low-meV energy range. Various detectors have been

installed downstream of the electron target awaiting charged and neutral fragments origi-

nating from the interaction region. Positive and negative ion detection takes place already
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in the first dipole succeeding the electron target. While positively charged ions are mainly

studied in dielectronic recombination measurements of atomic ions [94], the negative ions

give insights on the ion-pair formation in the DR process. Both types of product charged

particles and the neutral fragments arising from DR events in the ETS are separated

from each other and from the circulating ion beam by the storage ring dipole directly

downstream of the electron target. The neutral particles enter the newly created particle

beamline BAMBI (Beamline for Advanced Molecular Breakup Investigations) [17]. Here,

currently three detectors can interchangeably be brought in to identify DR events through

the quasi-simultaneous arrival of neutral fragments. At a distance of about 12 m from

the electron target center two energy sensitive surface barrier detectors of different sizes

are used for event-by-event counting experiments in DR rate measurements [17]. For the

study of the fragmentation kinematics a multi-hit 3D fragment imaging detector has been

set up within the present experimental project [98, 99], which will be discussed in the

following section.

3.3.2 The multi-hit 2D and 3D fragment imaging detector

In order to reconstruct the complete kinematics in molecular fragmentation, the determi-

nation of the relative fragment velocities is necessary. The 3D fragment imaging technique

outlined in the previous Section 3.2 offers the possibility to obtain the kinematics through

the determination of the relative fragment positions, i.e. the transverse impact distances

and their impact times at the detector. Of these, the time measurement on the nanosecond

scale sets the main challenge to achieve highest resolution, whereas transverse fragment

distances of a few centimeters can usually be determined within about 100µm accuracy.

The fragment imaging system used in the experiments comprises both the possibility

of 2D and 3D imaging. The detection principle [100] is independent of the number of

fragments and can thus easily be extended to the study of multi-fragment dissociation

stemming from polyatomic molecules. The following introduction to the detection system

gives a brief overview on the detector’s operational principle, with emphasize on latest

developments in the subsequent paragraphs.

Simultaneous time and position measurement

The fragment imaging detector awaiting the particles at the end of the BAMBI beamline

(1224(2) cm from the electron target center) is schematically drawn in the inset of Fig. 3.3.

The setup basically consists of two detection stages: First, the impact of a fragment on a

78 mm diameter micro channel plate (MCP; Chevron type, Hamamatsu c©) [101] creates
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Figure 3.4: (a) The exponential decay of the light intensity is shown, which is emitted

following the particle impact (t1, t2) and integrated by the gated camera until the optical

shutter is closed at the gating time tg. The comparison of the integrated intensities of each

particle yields the impact time difference ∆t. In (b) the light is delayed by the additional

optical setup before it reaches the gated camera. This effectively shortens the gating time

and improves the time resolution.

an electron cloud at its backside which is then further accelerated to the attached phosphor

screen anode (P-47, (Y2SiO5:Ce) [102], Hamamatsu c©) where it causes fluorescence light

emission. The light intensity decays with a fast characteristic time constant (τ ≈ 52 ns)

and is recorded by a two-camera system located outside the vacuum system. One of

the CCD (Charge-Coupled Device) cameras facing the phosphor screen is equipped with

a light-intensifier acting as a fast optical shutter. This camera is also called the gated

camera in contrast to the second non-gated camera without the fast optical shutter.

The relative fragment distances at the detector are derived as follows. The transverse

fragment distance is obtained from the relative positions of the particles’ light spots

observed by the non-gated camera. This is a common procedure for 2D imaging detectors

and achieves a high spatial accuracy down to the sub-mm range depending on the camera

setup and resolution. In the current experiment the transverse fragment distance was

extracted from the light spot positions with a resolution of < 100µm.

The CCD averaging time interval of the camera enables the temporal integration over

the complete exponential decay of the fluorescence light emitted following the particle

impact at an arrival time ti on the phosphor screen. However, at the gated camera the

light integration of each light spot i is stopped already during the exponential decay by

the closing of the optical shutter at a fixed gating time tg (tg > ti) triggered by the first

fragment on the MCP (Fig. 3.4(a)). Therefore, in the case that the gating time tg − ti is
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short compared to the decay constant τ , the integrated light intensity Ig,i measured for

each light spot i (i = 1, 2 for a two-fragment-breakup) by the gated camera depends on

the arrival time of the fragment. Normalized by the corresponding, completely integrated

light intensity of the non-gated camera In,i, the intensity ratio Ωi for each light spot,

Ωi =
1

k(x, y)
· Ig,i

In,i

= 1− e−(tg−ti)/τ , (3.13)

[where k(x, y) is a position dependent calibration (normalization) factor (see later para-

graph)] yields the impact time difference ∆ti of particle i > 1 with respect to the first

one,

∆ti = ti − t1 = τ ln
1− Ωi

1− Ω1

. (3.14)

Both the time and position measurement are independent of the number of particles and

can easily be extended to the multi-particle fragmentation of polyatomic molecules as

long as the fragments do not hit the same spot on the detector. Further details to the

detector principle and the derivation of Eq.(3.14) can be found in [98, 99, 100].

Through the logarithmic dependence of the time difference ∆t on the measured intensity

ratio Ω, the time resolution is determined both by the interval of the gating time tg − ti

and the various noise contributions of the camera system, such as read out-, dark current-

and shot noise.

An improvement of the resolution requires a suppression of the latter noise source by

cooling of the camera system and diminishing the shot noise through an increase of the

initial light input. Also a reduction of the gating time by the earlier closure of the optical

shutter can achieve a better time resolution. However, since in DR studies at storage

rings the arrival of an event is not known beforehand, the closure of the optical shutter

can only be initiated by the impact of the first fragment at the earliest. Thus in practice

the electronic processing and delay of the impact signal limits the earliest shutter closing,

currently optimized for the 3D imaging detector to ≈ 20 ns. This corresponds to a time

resolution of σ∆t ≈ 1 ns (standard deviation) [99].

For a further shortening of the gating time the camera setup was modified by adding an

optical light path [99] for the images viewed by the gated camera (Fig. 3.5). While the

closing time tg of the shutter with respect to the impact of the first fragment on the MCP

remains as before, the emitted light reaching the gated camera was delayed by the light

path extension, yielding effectively shorter gated integration periods (Fig. 3.4(b)).

The requirements of a sufficient light delay at good image quality, which still allows to

distinguish light spots from each other, resulted in an approximately 4 m long extension

path with a parabolic mirror (ø = 203 mm; f = 1016 mm) as the main optical element.
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Figure 3.5: Schematic drawing of the light-path extension of the 3D imaging detector [99].

The main optical elements are a parabolic mirror, a lens and the camera’s objective.

Together they focus the image of the phosphor screen onto the CCD chip of the gated

camera, while the non-gated camera faces directly the phosphor screen. To achieve a

compact setup the light-path is folded by two flat mirrors.

Thereby the gated camera is kept close by the MCP and a lens is located at the image

distance from the parabolic mirror to collect the reflected light onto the gated camera’s

objective. Finally two flat mirrors fold the light path in order to fit the whole setup in

a 180 cm × 80 cm light-proof box. The variable distance of the parabolic mirror to the

phosphor screen defines the magnification and consequently the fraction of the phosphor

screen seen by the gated camera. Through the light path extension the effective gated

integration period can be reduced by up to ≈ 13 ns, closing the optical shutter as soon as

≈ 7 ns after light of the first fragment has reached the gated camera. This has improved

the time resolution by a factor of two, down to σ∆t ≈ 0.5 ns (standard deviation). In

order to retain the good transverse distance resolution, the non-gated camera still views

straightly the emitted light from fragment impacts.
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Data acquisition

In DR fragment imaging experiments the experimental procedure for the TSR, i.e. the

injection of the ion beam and the setting and changing of the electron beam velocities,

is controlled independently of the imaging system (see e.g. [17, 94]). For the operation

of the 3D fragment imaging detector a separate data acquisition software DaVis (Data

acquisition by LaVision c© [103]) is responsible, which controls the camera frame taking

rate, the camera readout and the identification of light spots on the camera image. It

has been mainly developed and provided by the camera manufacturer LaVision c© but the

C-type command language allows the user to modify and extend it to the specific needs.

Typically, particles at a rate of up to 1 kHz hit the detector and produce light spots on the

phosphor screen. In contrast, camera frames are only acquired at a rate of about 30 s−1;

i.e. 10 ms exposure and ≈ 20 ms readout and processing. Consequently, since the particle

beam cannot be interrupted, the light emission of any subsequent unwanted particle has

to be prevented in order to ensure only fragments stemming from a single DR event in

each camera frame. This is realized most efficiently by switching the phosphor screen

voltage. Lowering the phosphor screen to the MCP potential is achieved within ≈ 2 µs

and thus inhibits any light emission until the next camera frame. Typically the voltage

of the MCP backside is set to 2.0 kV (front-side is set to ground potential) whereas the

phosphor screen anode is operated at 5.2 kV.

The readout of the frames acquired simultaneously by both cameras is followed by an

image-processing procedure searching for light spots above a minimum intensity thresh-

old on the camera images. This fast peak finding routine determines the average light

intensity within a rectangle of fixed size as well as the position of each identified light

spot. Thereby the rectangle size has to cover the entire intensity distribution of the light

spot. However, its size can be defined independently for each camera to adapt for the in-

dividual image quality which differs mainly due to the optical intensifier and the cameras’

positions, and yields generally larger spot sizes in the gated camera. The individual ad-

justment of the rectangle size thus avoids that nearby fragments in the non-gated camera

fall undistinguishable into one rectangle and enables the observation of smaller trans-

verse distances in the non-gated camera of which in particular 2D imaging measurements

benefit. The average intensities in each camera, normalized to correspond to the same

rectangle area, are then used in the later analysis to calculate the impact time differences

(Eq.(3.14)). From the intensity distribution of the camera pixel within the rectangle the

exact fragment impact position is determined by the intensity weighted center-of-mass.

Finally the raw data of each camera, regardless of the number of identified light spots, are
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stored together with possible additional frame information (elapsed time since injection,

flag for cooling or detuning electron energy set at the electron target, CCD chip temper-

ature, ...) in separate data files as functions of the camera frame number. Compared

to the storage of the complete camera frames these initial online processing steps reduce

efficiently the required disc space without loosing the essential information. The subse-

quent offline analysis of the raw data files is then performed with data analysis software,

developed in ROOT c© [104] or MATLAB c©. The principle procedure is briefly outlined

in the following paragraphs.

Background elimination for 2-body breakups

At the beginning of the analysis of imaging data the recorded fragments from DR events,

here mainly focusing on the breakup of diatomic molecules (for polyatomic molecules see

e.g. [78]), have to be separated from background contributions. Background events can

originate from various reactions of the stored ion beam in the ETS and may imitate a real

breakup event on the phosphor screen. For example, collisions of the molecular ions with

residual gas molecules are possible which mostly result in neutral and positively charged

fragments. Similar products also evolve from electron induced dissociative excitation,

where compared to DR the electron is set free after the breakup of the molecular ion. On

the other hand, it is also possible that part of the DR fragments simply miss the detector

or are not detected due to the limited MCP efficiency.

Mostly these false events can be sorted out easily by the number of particles recorded in

each camera frame. For example, for the diatomic cases studied here only frames with two

particles will pass, whereas all others are neglected. These conditions are even enhanced

in 3D imaging measurements, since the same particle number is required in both cameras

and the fast optical shutter suppresses more efficiently background events which may

arrive within the ≈ 2 µs required for closing of the phosphor screen.

Nevertheless the restriction on the particle number alone may not be a sufficient criterion

to eliminate all background events. Two background particles arriving in coincidence can

imitate a diatomic breakup. Similarly, but even more unlikely, there is the chance of

event mixing, i.e. at the simultaneous arrival of two or more dissociating molecules not

all fragments are detected. This can produce two-, but even more likely three-particle

events.

Further constraints are thus necessary to single out these background events arriving in

coincidence from ”good” events, where all fragments stem from the DR induced breakup

of the same molecule. Partly this can be achieved in 3D imaging experiments by confining
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the time difference between fragment impacts, which will be deduced from the measured

intensities in the later part of the analysis. For example, the breakup kinematics of the

hydrogen molecules studied under the present conditions do not separate the fragments

by more than ≈ 3− 4 ns so that fragments & 5 ns apart must originate from background

events.

Another efficient procedure, applicable both in 2D and 3D Imaging, is the restriction

on the transversal center-of-mass (c.m.) of the observed fragments. This has become

possible due to the high quality ion beam preparation at the TSR. Within a short period

of phase-space cooling the circulating ion beam reaches a low divergence (≤ 0.1 mrad

root-mean-square (rms)) with small spatial extension projecting the c.m. positions of the

individual events onto a small area of the detector (see Fig. 3.6(a)).

For the breakup of diatomic molecules with nuclei of identical masses (e.g. H+
2 ) the

c.m. is simply given by the center between the two fragment impact positions and is

scattered statistically in a narrow range of the mean c.m., depending on the divergence

and transversal extension of the ion beam. In contrast, for two particles of coincident

background events the center position is distributed over the whole detector surface and

can thus be distinguished from ”good” events by the individual distance to the mean c.m..

As a measure of the quality of the individual c.m. location the transverse deviation

∆DEV compares in horizontal and vertical direction the distance between the individual

c.m. positions and the mean value (δx−x; δy−y) to the width of the total c.m. distribution

(σx; σy). It describes an ellipse in the plane transverse to the beam direction :

|∆DEV | =

√

(

δx−x

σx

)2

+

(

δy−y

σy

)2

. (3.15)

Due to the normalization to the width of the c.m. distribution any restriction on ∆DEV

is independent of possible temporal variations of the ion beam’s spatial extension which

might occur in long time measurements. Coincident background events can thus be sup-

pressed evenly and independent of the camera setup and the actual c.m. position through

their transversal c.m. position by confining ∆DEV .

From the c.m. distribution the relative background contribution can be evaluated (an

example for the vertical direction is shown in Fig. 3.6(a)). Within a good approximation

the shape is resembled by a double-Gaussian distribution (green line in Fig. 3.6(a)); a

narrow Gaussian caused by the ”good” events and a broad Gaussian offset originating

from the background (red line). The relative background contribution is then computed

by the ratio of the integrated offset in the limits defined by ∆DEV and the sum over the

total distribution in these limits. The data processed for the present work in the final
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Figure 3.6: (a) The measured vertical c.m. distribution (black) is well described by a

double Gaussian distribution (green line) of which one Gaussian represents the data and

the second, broad Gaussian (red line) takes the background events into account. The

inset shows an enlarged section of the total distribution, demonstrating the in general low

background contribution in experiments with light molecular ions (HD+, H+
2 ). In (b) an

accumulated image of the fragment impact positions of HD+ DR events is shown. The

fragment masses have been identified through their impact positions with respect to the

c.m. (color code).

analysis generally comprised no more than 1 % ”false” events at a transverse deviation

limit of |∆DEV | ≤ 1.

Similarly for molecules with nuclei of different masses (e.g. HD+) the transverse devi-

ation may also serve as a constraint to sort out background events. However, the c.m.

determination becomes less straightforward compared to the case with identical atomic

constituents since the fragment masses cannot be assigned easily for a single event. Mo-

mentum conservation implies, on the other hand, that the heavier fragment is located

closer to the c.m. proportional to the inverse mass ratio. For an ensemble of dissociating

molecules the mean c.m. position can serve as a reference point compared to which masses

of individual events are appointed and their c.m. determined. Since the mass identifica-

tion depends both on the total c.m. distribution as well as on the single event the process

runs iteratively, permuting if necessary the mass candidates until a stable condition of

the mean c.m. is reached. In Fig. 3.6(b) the impact positions have been assigned to the

fragments stemming from HD+ DR events. Note, due to the doubled mass the circular

impact area of the deuterium has roughly only half the radius compared to the one of the
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hydrogen fragments.

Mapping of camera frames

In the next step of the analysis it has to be ensured that the corresponding fragments are

recognized correctly in each camera and assigned to each other. This is essential for the

time measurement which is based on the intensity ratio of a fragment’s light spot recorded

in the gated and non-gated camera. In practice, both cameras cannot be adjusted by hand

with the required accuracy and focused onto the same part of the phosphor screen in order

to automatically yield the correct assignment. Therefore the view of each camera has to

be matched by a coordinate transformation which assigns the image of the gated camera

to the same position seen by the non-gated camera. Considering not only horizontal or

vertical shifts of the cameras with respect to each other, but also higher order relative

image distortions, a single point on the gated camera (xg, yg) is related through a set of

linear parameters (~a,~b) to the position on the non-gated camera (xn, yn):

xn = a0 + a1 · xg + a2 · yg + a3 · x2
g + a4 · y2

g + a5 · xg · yg ...

yn = b0 + b1 · xg + b2 · yg + b3 · x2
g + b4 · y2

g + b5 · xg · yg ... (3.16)

Limiting the relation to a six-parameter description in ~a and ~b, respectively, an ensemble

of positions (~x, ~y) is then described by two independent overdetermined sets of linear

equations

~xn = Ag · ~a
~yn = Ag ·~b (3.17)

where Ag is a matrix defined by the positions in the gated camera

Ag =
[

~1, ~xg, ~yg, ~xg · ~xg, ~yg · ~yg, ~xg · ~yg

]

(3.18)

and which can be solved by an appropriate numerical method (see e.g. [105]) to yield the

transformation parameters (~a,~b). Typically, single event frames are used to determine

(~a,~b) before the transformation is applied to the data and particle positions in both

cameras are compared to each other. In the case that a particle of a multi-fragment event

in the gated camera cannot be mapped within a certain distance limit with any particle

in the non-gated camera after permutation, the event is discarded. This might occur for

example if the view of each camera only overlaps partly on the phosphor screen.

Finally, in order to obtain the relative fragment positions from the previously selected and

processed data and study the fragmentation kinematics, it is necessary to transform and
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calibrate the raw information. Therefore the transverse fragment positions are converted

from pixel to meter and the measured intensity ratio is calibrated to deduce impact time

differences in seconds. For the discussion of the details of the various procedures the

following paragraph has been reserved.

Detector calibration

The detector calibration is an essential part in the analysis procedure and thus treated

independently in this paragraph. It contains both the transformation of the recorded frag-

ment positions into physical standard units as well as the position dependent calibration

of the measured intensity ratios. The transformation parameters required for the various

calibration processes are mostly retrieved in independent measurements either involving

fragments stemming from an ion beam or an alpha source that has been mounted for that

purpose about one meter in front of the MCP detector in the vacuum chamber.

In the so called pixel-to-meter calibration the fragment impact positions on the camera

image (pixel) are transformed to the position on the detector (meter). Since the non-gated

camera faces directly the phosphor screen it yields impact positions at higher resolution

than the gated camera and is thus used to determine the transverse fragment distances.

Therefore the pixel-to-meter calibration is only applied to the position information of the

non-gated camera.

The pixel-to-meter transformation function is extracted in an independent measurement,

where neutral particles from the ion beam impinge on the MCP detector. For that purpose

a metal plate with 2 mm diameter holes is aligned parallel a few millimeter in front of

the MCP, where its position selectively prevents the impact of the particles. The holes

are arranged on a rectangular grid, horizontally and vertically 10 mm apart. Averaging

over a large number of events the center position of each hole is projected onto the MCP

detector and observed on the camera image. The recorded positions can then be related

through a transformation to the known relative location on the phosphor screen. Thereby

the functional dependence is similarly described as the mapping of the gated and non-

gated camera images in Eq.(3.17), considering also higher order effects due to the tilting

angle and image distortion of the non-gated camera. Estimations have shown that by far

the transformation gives the largest error contribution to the spatial resolution, yielding

≈ 40 µm (FWHM) for the transformation of a single position; in contrast the position

determination of a light spot from its intensity distribution can be neglected at typical

spot sizes of 5× 5 pixel2.

The calibration of the measured intensity ratio is twofold: on the one hand it is essential
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for the time measurement that the normalization constant k(x, y) (see Eq.(3.13)) is de-

termined as a function of the position (x, y) on the phosphor screen, on the other hand

the impact time difference yields from the intensity ratios only if the light decay constant

τ is known accurately.

The decay constant τ is characteristic for the MCP-phosphor screen assembly and is

determined in an independent measurement. In this process alpha particles from a 210Po

emitter (185 MBq; Eα=5.3 MeV) initiate the closing of the optical shutter with variable

delay so that the intensity ratio is recorded as a function of the gating time and the decay

constant τ (=52.0 ± 0.5 ns) can be retrieved from the functional dependence. For the

details of the measurement the reader is referred to [98].

The position dependent calibration of the intensity ratio aims at the compensation of

variations in the measured intensities due to the cameras’ sensitivity and setup. Thus a

detailed procedure has been prepared which comprises several calibration steps applied

between the acquisition of the camera image and the subsequent analysis of the raw data:

1. Dark image subtraction and flat-field correction of the raw images.

2. Matching the light sensitivity of each camera to one another.

3. Correcting variations of the intensity ratio correlated to the particle impact rate.

The calibration procedure starts directly after the readout of the raw images. Here, the

pixel dependent thermal dark current is first corrected by the subtraction of a dark image.

This is an average image of several (50) exposures taken before the measurement with a

closed optical input, i.e. the phosphor screen remains dark, but the same exposure time

(10 ms). In addition, the influence of time-dependent thermal changes on the dark current

is taken into account by subtracting an intensity value, which is sampled in a dark part of

each image. This also compensates an offset that was artificially added to the raw image

intensity to avoid negative intensity values.

The light sensitivity of each pixel in the CCD camera and the possible disturbance of the

light path through impurities on the objective is taken care of by a flat-field correction.

The flat-field correction image is acquired by illuminating each camera equally to about

50-75 % of the saturation value (details can be found in [99]). In the actual correction step

the intensity of the current frame is divided pixelwise after the dark current subtraction

by the corresponding intensity value of the flat-field image and multiplied by the average

intensity of the flat-field.

For the current camera setup the flat-field correction image can practically only be ac-

quired independently for the individual cameras and thus not be used to match the sen-
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Figure 3.7: The position dependent correction factor k(x, y) used to adjust the relative

camera sensitivities is shown in (a). The distribution in (b) represents the calibrated

intensity ratio Ω̃s of single particle frames stemming from background events. Note, that

the intensity ratio still possesses a position dependence which is closely correlated to the

local particle rate on the phosphor screen (compare with Fig. 3.6(b)).

sitivity between the cameras on a pixel-wise scale. Therefore in the next calibration step

the light intensity emitted from the phosphor screen and observed by each camera is

compared. Since the phosphor screen cannot be illuminated completely, light spots from

particle impacts are analyzed. Preferentially one uses single particles from residual gas

collisions of the ion beam while the electron beam in the ETS is switched off to achieve

equally distributed events. During these measurements the optical shutter remains open

to integrate the complete light emission also by the gated camera. The relative camera

sensitivity is then reflected by the deviation of the intensity ratio from a value of 1 and

yields a position dependent correction factor k(x, y) [98]:

k(x, y) =
Ig(tg →∞)

In

. (3.19)

The properly smoothed factor k(x, y) avoids statistical artifacts and is shown for one of

the performed measurements in Fig. 3.7(a). This correction factor is applied in Eq.(3.13)

for a fragment impact at a specific position (x, y) to finally match the sensitivities between

both cameras.

In the last step a position dependence of the intensity ratio has to be compensated which

appears during DR measurements despite the previously described and applied calibra-

tion procedures and is thereby closely correlated to the local particle impact rate. In

particular, measurements are affected where due to momentum conservation the breakup

of a heteronuclear molecule leads to non-equally distributed fragments on the phosphor
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screen. This effect is also observed for the calibrated intensity ratio of single particle

frames which are labeled as background events along DR measurements. Their intensity

ratios deviate from a flat position distribution in regions coinciding with the preferred

particle impact locations (compare Fig. 3.7(b) and Fig. 3.6(b)). Consequently, the de-

duced time information can be distorted and the data may suggest strong, anisotropic

and non-physical fragmentation geometries when omitting the compensation.

Currently the reason for this effect is not known. Since both the measured intensity

ratio of single and multi-fragment events are influenced, a possible physical explanation

due to the breakup dynamics of the molecule is excluded. The most probable reason

must thus be a detector property which is revealed by the local increase of the particle

impact rate and leads to a position dependent effect. Good candidates are a long decay

constant of the emitted light intensity, influencing the recorded intensity of subsequent

events at overlapping positions, or a position dependent change of the phosphor emission

characteristics due to the higher particle rate. Conceivable might also be that the impact

energy of the heavier fragments changes the properties of the phosphor screen through

the number of emitted electrons from the MCP, as these fragments are generally confined

due to momentum conservation on a smaller area of the detector.

However, a long decay constant of the order of ≈ 5−10 ms, which was proposed above to

explain this effect, is so far neither known to literature nor identified in first preliminary

tests for both the P47 screen and the P43 screen located in the image intensifier (for

details of the image intensifier see [98]). Most other reasons can also be argued to drop

out or have been followed in independent studies where they appeared to be negligible.

For example, a position dependence of the electronic trigger initiating the closing of the

optical shutter will always affect all fragments in the same frame and cancels in the

determination of the impact time differences. Also, the closing of the light path through

the optical shutter was found to vary as a function of the position only by . 30 ps, which

is not enough to explain the observed effects. Therefore only the local change of the light

emission properties due to the particle impact rate or energy remain as possible causes

but have so far not been studied specifically.

Nevertheless, the induced variations of the intensity ratio can efficiently be compensated.

This is achieved by using the information on the intensity ratio of single particle frames

labeled as background events during the two-fragment breakup measurements. Thereby

one assumes that these events exhibit the same effects on the intensity ratio as the two-

particle frames neglecting any position dependent fluctuations of the shutter closing signal.

The intensity ratio of the single particle frames Ω̃s(x, y), calibrated according to the

previously described procedures and smoothed to avoid statistical artifacts, is shown as
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a function of the position on the gated camera image in Fig. 3.7(b). Averaged by their

mean value 〈Ω̃s〉, they can be applied as an additional position dependent correction

factor on the calibrated intensity ratios Ωcal,i of the individual fragments stemming from

DR breakup events:

Ωi(x, y) =
Ωcal,i(x, y)

Ω̃s(x, y)
· 〈Ω̃s〉 . (3.20)

A similar correction method, based on the idea of using the information from the recorded

single particle, was developed in parallel [83]. Therein the calibrated intensity ratio Ω1 of

a single particle can be transformed according to Eq.(3.13) to the gating time

tg(x, y) = −τ ln (1− Ω1) . (3.21)

as the particle impact itself initiates the closing of the shutter, i.e. t1 = 0. After smooth-

ing, the position dependent value tg(x, y) is used to correct the time difference between

two fragment impacts:

∆t = t2 − t1 = τ ln
1− Ω2

1− Ω1

+ tg(x, y)1 − tg(x, y)2 . (3.22)

Both methods have shown to successfully compensate the effects on the measured intensity

ratio correlated to the particle rate. Here, the first procedure is chosen and has been

applied to the data.
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4
Product kinematics at resonances of HD+ DR

The hydrogen molecular ion has been favored due to its simple structure in numerous

experimental and theoretical studies on DR research and offers in particular at low electron

collision energies a unique possibility to focus on its fragmentation kinematics as depicted

earlier in Sec. 2.3.

In this chapter experiments on the deuterated species HD+ using the twin-merged-beam

setup (Sec. 3.3.1) combined with the fragment imaging technique (Sec. 3.2) are presented,

whereas the infrared inactive relative H+
2 is treated in the subsequent chapter 5. Provided

by the high experimental resolution rotational state contributions from initial HD+ rota-

tional levels in the recorded DR events could be followed by probing the DR process at

selected low collision energies between ∼10 meV and ∼80 meV (Sec. 4.2.1). On the same

narrow energy grid also the fragment angular distributions are studied (Sec. 4.2.2). They

are compared to current theoretical models in the final section of this chapter (Sec. 4.3)

in order to extract information on the electronic symmetries participating in the fragmen-

tation process.

4.1 Controlled ion beam experiments

The studies of the fragmentation dynamics at low electron collision energies in the range

of only a few tens of meV set high demands on the preparation of the ion beam prior to

the induced breakup and require well directed electrons at stabilized collision energies.

Therein, the main limitations on the energy resolution are generally the thermal electron

velocity spread and sustaining the stability of the ion beam energy after completion of the

phase-space cooling. In particular at low electron detuning velocities vd, close to the ion

beam velocity vi, electrons can effectively accelerate or decelerate the ions through drag-

ging forces and thus shifting the actual detuning energy Ed away from the one adjusted.
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In the case that only one electron beam is available this effect can partly be compen-

sated by setting the electron beam velocities for tens of ms from the detuning back to

the velocity matching value in order to maintain the ion beam energy stabilized through

intermediate phase-space cooling. This is a common procedure applied in event-by-event

counting experiments at storage rings. In fragment imaging experiments, on the other

hand, this method is generally less preferred as it reduces the effective data taking rate

on top of the slower event acquisition of the detection system. A second merged electron

beam can be used here in order to define constantly the ion beam velocity and to realize

fragment imaging down to low detuning energies for long continuous time periods of the

order of several seconds.

At the TSR the twin-merged-beam setup (Sec. 3.3.1) offers the possibility to co-propagate

independently two electron beams with the stored ions; i.e. utilizing the electron cooler

to define precisely through the constant acceleration voltage the ion beam velocity while

simultaneously the electrons produced either by a thermal- or photocathode source in the

electron target are set to selected detuning energies Ed probing the DR process. Possible

effects due to beam dragging have been thoroughly studied for this twin-electron-beam

arrangement in experiments with highly charged ions (19F 6+) described in [92]. Therein

the competition of the dragging forces induced by either electron beam was found to be

mostly suppressed by increasing the relative strength of the electron beam defining the ion

velocity, i.e. through a higher electron density. For the experiments involving electrons

emitted from the photocathode this is automatically satisfied since here electron beams

are typically generated with a density reduced by a factor of∼ 10 compared to the electron

cooler. In the current measurements the change of the ion velocity due to dragging forces

are thus expected to be reduced to a negligible level (∼ 0.3 meV) once the detuning energy

exceeds Ed ≥ 0.5 meV as discussed by [17].

Besides a good control of the ion beam and the electron collision energies, the storage-ring

experiments largely profit from the availability of molecular ions in well known initial
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Table 4.1: The electron beam conditions for the HD+ measurements at 1.44 MeV ion

beam energy. Listed are the electron densities ne and currents Ie for given expansion

ratios αtarget and electron sources as well as the electron cooler beam density ne,cooler.

Label Electron source ne,target (cm−3) Ie,target (µA) αtarget ne,cooler (cm−3)

PCL photocathode (0.62±0.02)×106 203±6 30 1.6×107

PCH photocathode (1.27±0.02)×106 415±7 30 1.6×107

TC thermal cathode (2.86±0.03)×106 353±4 40 1.6×107

internal states. The HD+ ions produced for the experiments through electron impact

ionization of neutral HD gas in a standard Penning ion source generally exhibit high

initial ro-vibrational excitations (see also Sec. 5.1.1), impeding state selective experiments

and thus direct comparisons to theory. However, possessing a permanent dipole moment

the HD+ ion is infrared active and thus cools down radiatively. Within only hundreds

of milliseconds the ions arrive through radiative interaction in the vibrational ground

state [10, 80] with only negligible population in excited states and reach an equilibrium

rotational state distribution mainly determined by the surrounding room temperature

after a few seconds [63]. Thus, by the time the phase-space cooling process of the stored

ions is completed (∼ 1 s) only a handful of rotational states (J+ . 6) in the ground

vibrational state are populated, simplifying the analysis and the later comparison to

theory. Figure 4.1 illustrates that for a Boltzmann distribution at 300 K, only rotational

states J+ ≤ 4 are populated by more than 10 %.

These considerations have been taken into account to set up the measurement scheme

scanning the fragmentation kinematics of DR induced HD+ breakup events at selected

detuning energies (see also [18, 19]). After each injection the molecular ions are stored

for ∼ 20 s. During the initial 7 s of the total storage time period electrons at velocity-

matching values are merged in both the electron cooler and the electron target to phase-

space cool the circulating ion beam. The electron-ion collision energies thereby amount to

the electron beam thermal energies. The electron beam emitted by the photocathode in

the electron target is then detuned to the desired electron collision energies for 7-17 s from

injection before it returns to the velocity matching value in the final 3 s. Taking advantage

of the twin-merged-beam arrangement the electron cooler beam remains at cooling velocity

throughout the whole storage time, thereby constantly defining and stabilizing the ion

beam energy.

The initial 7 s precooling period is, on the one hand, sufficient to complete phase-space
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cooling of the ion beam and, on the other hand, allows the internal excitations to reach

an equilibrium distribution (discussed in Sec. 4.2.1). Common conditions can thus be

ensured before the measurements at detuning energies are started. Moreover reference

imaging measurements at the end of the initial 7 s and during the last 3 s are acquired,

probing the rotational state distribution of the ions through DR at zero detuning energy.

The first rotational probe is used to confirm that the same equilibrium state distribution

for all measurements is reached before the electron target is detuned, whereas the final

reference measurement determines possible rotational excitations by electrons at non-zero

collision energy (Sec. 4.2.1).

Some measurements have been performed with an electron beam generated by the thermal

cathode in the electron target (see also [106]). In those cases the total storage time was

15 s and the electron target could be operated continuously at detuning energies without

affecting the ion beam quality. It should be noted here, that for comparisons to the data

acquired with the photocathode, only events after 7 s storage time were used. A summary

of the measurement conditions is given in Table 4.1.

4.2 Experimental results

The DR events observed on the detector are determined at a selected electron detuning

energy Ed by the total DR rate αDR(Ed) comprising all accessible initial-to-final-state

DR channels. For studies on HD+, where the vibrational cooling to the ground state is

completed by the time the measurement starts, only initial rotational state contributions

have to be considered, which access at low electron energies (Ed . 1.14 eV) one final

fragment state configuration [55] ([H(n) + D(n′)] or [H(n′) + D(n)] with n= 1 and n′= 2

only; see Sec. 2.3). Therefore the observed total DR rate αDR(Ed, t) represents a super-

position of the rotational contributions according to their relative populations pJ+(t) in

the stored ions at a certain time t after the injection and the respective state specific DR

rates α
(v+=0,J+,n=1,n′=2)
DR (Ed)

αDR(Ed, t) =
∑

J+

pJ+(t) α
(v+=0,J+,n=1,n′=2)
DR (Ed) . (4.1)

The rotationally averaged DR rate coefficient αDR(Ed) has been measured previously

with high resolution in independent event-by-event counting experiments [13, 17] and

consistently reported large variations at low electron collision energies superimposed on

the general inverse energy dependence (αDR ∝ E
−1/2
d ) of the direct DR process (see

Fig. 2.4 in Sec 2.3).
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Measurement of DR rate coefficient

The DR rate coefficient αDR(Ed) has also been obtained under the current experimental

conditions (corresponding to those listed under PCH in Table 4.1), utilizing the energy-

sensitive solid state detector downstream of the electron target and following the general

scheme common in DR rate measurements at the TSR. The measurement scheme com-

prises fast switching of the electron velocity between the selected detuning, a defined

reference and possibly the velocity-matching value in order to enforce continuous phase-

space cooling of the stored ions. Each consecutive step typically lasts for only a few tens

of milliseconds depending on the aim of the experiment. While the count rate recorded

at the detuning energy yields the DR rate, the count rate associated with the reference

electron collision energy is used for a relative normalization to the number of stored ions.

This is usually necessary since the typical ion currents are too low to be simultaneously

measured accurately by the diagnostic tools in the TSR. The measured rate coefficient is

finally corrected for possible background events as well as contributions stemming from

the toroidal part of the electron target. Latter events arise from the merging of the elec-

tron beam with the ion beam, which impose electron-ion collision energies deviating from

the adjusted detuning energy Ed in the collinear section. Depending on the DR cross sec-

tion they can lead to additional count rates at the adjusted detuning energy Ed and have

to be corrected in an iterative analysis procedure [107]. Further details of the complete

analysis procedure can be found in the PhD thesis by H. Buhr [17].

The obtained DR rate coefficient αDR(Ed) is shown for incident electron energies

Ed ≤ 80 meV in Fig. 4.2 and resolves a rich narrow structure down to meV electron col-

lision energies, consistent with previous measurements (compare to Fig. 2.4 in Sec 2.3).

The patterns, associated with the formation of ro-vibrational Rydberg resonances through

non-adiabatic couplings between the initial HD+ ion state and the colliding electron, are

found to mostly reduce the total DR rate, remaining below the one calculated for the di-

rect process (dashed line in the figure). Scaling the measured DR rate coefficient αDR(Ed)

by the square root of the electron collision energy Ed, avoids the representation of the

superimposed 1/
√

Ed-dependence attributed to the direct process. In fact, the scaled DR

rate α̃DR(Ed) (= αDR(Ed) ·
√

Ed) particularly pronounces the narrow resonant structures

and is thus favored in the following.

The present studies approach the low-energy range from a different observational point

of view, focusing on the fragmentation kinematics. In measurements using fragment

imaging the initial ionic HD+ states associated with the resonances can be inferred from

the obtained kinetic energy release (KER). Moreover, this technique enables to analyze
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Figure 4.2: (a) The rotationally averaged DR rate coefficient αDR(Ed) and (b) the scaled,

rotationally averaged DR rate coefficient α̃DR(Ed) (= αDR(Ed) ·
√

Ed) are plotted as func-

tions of the electron detuning energy Ed. The data were acquired with the photocathode

electron source and the parameters listed under PCH in Table 4.1. The dotted lines

correspond to the direct DR rate coefficient.
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the fragment angular distributions at the selected energies and provide insights to the

coupled electronic symmetries necessary to yield the complete picture on the ongoing

dynamics of the resonant electron capture process.

Both the KER as well as the fragment angular distributions are obtained on a narrow grid

of collision energies in the vicinity of the resonant patterns reaching up to ∼80 meV. For

the quantitative analysis of the fragment imaging data the transverse distance information

is preferred instead of the complete 3D data which would determine directly the KER and

the fragment angular distribution. However, at the applied high ion beam velocities the

impact time differences are too small compared to the time resolution to yield information

at similar quality as the transverse distance spectra.

4.2.1 Rotational state contributions to the DR rate

Within the first second after injection the internal excitations of the stored ions decay to

rotational levels mainly of the vibrational ground state and determine together with the

precisely known relative electron collision energy and the single final fragment excitations

the KER available to the escaping neutral DR products.

Consequently, for the different amounts of the measured KER only rotational state contri-

butions can be responsible and thus have to be considered. The total normalized distance

distribution F (D) (Eq.(3.10)) is then described by

F (D) =
∑

J+

bJ+

∑

l

al Fl,J+(D) (4.2)

with a0 = 1 and relative rotational state contributions bJ+ (= b(v+=0,J+,n=1,n′=2)),

bJ+ =
pJ+ · α(J+)

DR
∑

J+ pJ+ · α(J+)
DR

(4.3)

which are proportional to the relative population pJ+ as well as the state specific DR

rate coefficient α
(J+)
DR of the initial HD+ ion rotational state J+. The small rotational

energy differences resulting from the rotational constant Bv+=0 = 2.72 meV [108] restrict

the analysis to obtain only rotationally averaged angular distributions, that is Legendre

coefficients al of order l (see Eq.(3.9)) independent of the rotational state J+. Both

parameters bJ+ and al are deduced from a least-squares fit to the transverse distance data

after the normalized distance distribution F (D) has been scaled to the number of counts

N0 of the data set, yielding F̃ (D) = N0 · F (D).

In the first analysis step, following the ideas presented in [80], constant, J+-independent

DR rate coefficients are assumed (α
(J+)
DR = 1) and the rotational populations are related
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Table 4.2: The kinetic energy release (KER) for Ed = 0 eV DR of HD+ is listed for ions

in the first 8 rotational levels of the vibrational ground state. They are compared to the

associated maximum transverse fragment distance of a dissociation event from the center

of the electron target (Ebeam = 1.44 MeV).

Rotational state Kinetic energy release Maximum distance D

J+ (eV) (mm)

0 0.730 18.49

1 0.735 18.56

2 0.746 19.69

3 0.763 18.90

4 0.784 19.16

5 0.812 19.49

6 0.844 19.88

7 0.882 20.33

to each other through a Boltzmann distribution

pJ+ = (2J+ + 1) e
−J+(J+ + 1)Bv+=0

k T (4.4)

where k represents the Boltzmann constant. Consequently the number of free parameters

reduces and only an effective rotational temperature T is extracted from the fit as a

measure of the rotational weighting factors bJ+ .

In the second step, the rotational contributions bJ+ are fitted independently with the ex-

ception of those of the lowest two levels, J+ = 0 and 1. Their individual contributions to

the transverse distance distribution are due to the small energy difference undistinguish-

able at the present transverse distance resolution of ≈ 100 µm (compare in Table 4.2)

and therefore forced in the fit to b0 = b1 = b01/2. For the recorded DR events this yields

rotational weighting factors b01 characterizing the lowest two rotational state fractions.

Limitations in the rotational state analysis

The computation of the model functions Fl,J+(D) used in F (D) (see Eqs.(3.10) and (4.2)

as well Appendix A) assumes the probability for dissociation events to be independent of

the position in the electron target as well as the electron detuning energy given by Ed.

58



4.2. EXPERIMENTAL RESULTS

0.5 0.55 0.6 0.65 0.7 0.75
10-4

10 -3

10-2

10 -1

100

Distance from electron target center   (m)

E
n
er

g
y
 s

h
if

t 
 E

(e
V

)
to

ro
id

10 -3

10-2

10 -1
E

le
ct

ro
n
 c

o
ll

is
io

n
 a

n
g
le

(r
ad

)

Figure 4.3: (a) The elec-

tron collision angle in the

toroidal magnetic field is

plotted as a function of the

distance to the center of

the electron target interac-

tion section [92]. Here,

the merging of the electron

beam adds an energy shift

Etoroid to the electron de-

tuning energy Ed as shown

in (b).

However, the merging of the electrons in the toroids at each end of the straight interaction

section in the electron target causes deviations from this ideal assumption [92]. The non-

vanishing angle under which the electrons approach the ion beam (Fig. 4.3(a)) in these

parts results in an increased effective electron collision energy Ed + Etoroid, which devi-

ates by Etoroid from the adjusted detuning energy Ed in the straight section (Fig. 4.3(b)).

Hence, within the thermal electron velocity spread the implied parallel overlap is only

valid in the collinear, central interaction section yielding DR events at detuning energy

Ed. Events stemming from the toroidal sections are induced by an electron with collision

energy Ed + Etoroid and contribute according to the DR cross section. Their total KER

exceeds the one expected from the adjusted detuning energy Ed and can thus be mis-

interpreted in the rotational state analysis. These effects are taken into account in the

computed model functions by considering an effective overlap length L, greater than the

nominal length of the straight interaction section.

In the analysis of the measurements on HD+ the effective overlap length L is set to

L = 1.30± 0.05 m which imposes an additional systematic error on the deduced rotational

state fractions. The uncertainty on the deduced temperature T is estimated to be ± 30 K

and requires according consideration in the extraction of the individual rotational state
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fractions bJ+ . The deduced fragment angular distributions, on the other hand, depend

less sensitive on the actual electron beam overlap as they are obtained from the total

shape of the transverse distance distribution (see Sec. 4.2.2).

Rotational cooling and probing by zero energy electron collisions

Employing the high energy resolution of the experimental setup, the rotational state pop-

ulation of stored ions can be monitored through DR induced breakup events in fragment

imaging measurements. Although the rotational state fractions inferred from the trans-

verse distance distribution are proportional to both the rotational population and the

J+-dependent DR rate coefficients (Eq.(4.3)), measurements at the same electron detun-

ing energy Ed can only differ by the J+-distribution of the stored ions. Rotational state

populations can thus be compared which enables to follow the time dependence of rota-

tional cooling towards an equilibrium distribution. In the present work this tool has been

utilized for reference measurements probing the J+-contributions with velocity-matched

electrons.

In Fig. 4.4 the measured effective temperatures T are shown as a function of the storage

time. They were obtained from the transverse distance distributions by operating both

electron cooler and target at zero detuning energy. Within the first ∼ 7 s T decreases

and approaches a nearly constant value, indicating that the stored ions have reached an

equilibrium excitation. The time dependence as well as the asymptotic temperature level

strongly depend on the electron beam density and are thus not consistent with a model

based on radiative internal transitions only.

A complete description of the observed rotational time dependence requires destructive

and non-destructive interactions with electrons besides radiative transitions. These addi-
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tional processes have recently been reported to play an important role in the rotational

decay of stored HD+ ions merged with an electron beam at the TSR [109]. In the mod-

eling described in [109] non-destructive inelastic and super-elastic collisions (SEC) which

increase or decrease, respectively, the internal ro-vibrational excitations (v+, J+)

HD+(v+, J+) + e−(E) → HD+(v′, J ′) + e−(E ′) (4.5)

were required apart from depletion of selected rotational states through J+-dependent

DR rate coefficients. Inelastic collisions (E ′ < E) thereby impose an heating process onto

the circulating ions once the electrons are detuned from the velocity matching value, that

is in DR measurements at non-zero collision energies or in the toroidal sections of the

electron cooler and target where the electron beam is merged. Super-elastic collisions

(E ′ > E), on the other hand, cool the internal excitations of the molecular ions and

have so far only been reported to efficiently decrease the vibrational quantum numbers

(e.g. [11, 110, 111, 112]). The studies presented in [109] give first experimental evidence

for rotational SEC and are supported by the electron density dependent rotational cooling

observed in the current experiments.

A detailed model is not computed at this point for the presented data in Fig. 4.4 since

the purpose of these measurements is mainly to demonstrate the ability to probe the

rotational state populations which allows to determine the required time in order to reach

an equilibrium internal excitation.

Energy dependent rotational state contributions

DR events from collisions with velocity-matched electrons, as presented in the previous

paragraph, allow to trace the rotational excitation of the stored ions towards an equilib-

rium distribution. In the current experiments this has ensured that scans of the fragmen-

tation kinematics at non-zero detuning energies can be performed starting from the same

initial rotational population of the ions.

The effective rotational temperatures T are deduced from the transverse distance distri-

butions between 7 s and 17 s and displayed in Fig. 4.5(b) as a function of the detuning

energy below ∼ 80 meV [19]. They are found to vary strongly with energy on a similarly

narrow scale as the scaled DR rate coefficient α̃(Ed) (Fig. 4.5(a)) and mostly deviate from

the average effective temperature T probed in reference measurements at zero electron

energy between 6.5 s and 7 s (shaded bars in Fig. 4.5(b) for the measurements at low and

high electron density, respectively), i.e. at the end of the combined electron cooling and

before the electron velocity is detuned.
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Figure 4.5: (a) Scaled, rotationally averaged DR rate coefficient α̃(Ed) and (b,c) effective

rotational temperature as functions of the detuning energy Ed for the different measure-

ments performed (see Table 4.1, lines to guide the eye). The two shaded bars extending

over the full energy range mark the effective rotational temperature probed at zero de-

tuning energy between 6.5 s and 7 s (b) [19] and between 17.0 s and 18.0 s (c), i.e. before

and after the measurements at the detuning energy Ed.

Furthermore one observes that the effective rotational temperatures neither depend on

the different electron densities employed in the measurements at detuning energies above

8 meV nor on the initial rotational state population reached after pre-conditioning the

circulating ions with zero energy electrons. In fact, the measurements obtained with elec-

trons generated by the thermal cathode show that although the electron target beam was

detuned during the complete storage time period, their effective rotational temperatures

are comparable to those which experience the initial combined cooling of the ion beam.

In contrast, at zero detuning energy super-elastic collisions cause electron density depen-

dent changes in the effective rotational temperatures (see also Fig. 4.4 and [109]). Both

the equilibrium temperatures obtained at the end of the cooling period as well as the

effective temperatures measured between 7 s and 17 s without the electron cooler beam

at Ed = 0 eV reflect differences between low and high electron densities attributed to

rotational SEC.

After the detuning step, the electron target beam is set back to zero collision energy. This
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allows to trace possible rotational excitations by non-zero electron collisions surviving the

constant cooling effect induced by the electron cooler beam. The average effective tem-

peratures extracted from reference measurements between 17 s and 18 s are compared

in Fig. 4.5(c) (shaded bars for low and high electron density measurements, respectively)

and indicate only at high electron densities possible preceding rotational excitations in

contrast to the initial reference measurement between 6.5 s and 7 s (Fig. 4.5(b)). How-

ever, a general enhancement of ∼ 70 K related to the increased electron density cannot

explain the distinct variations in T . In addition, at low electron densities the final refer-

ence measurements convincingly reveal an unchanged J+-distribution of the stored ions.

Therefore, rotational heating by non-zero electrons is found to be mostly compensated

by the continuous cooling imposed by the electron cooler beam and remains at an in-

significant level not able to explain the observed large variations in T at non-zero collision

energies.

One can thus conclude that the energy dependence of T has to result from varying low

and high rotational state contributions to the DR rate, which confirms the sensitivity of

the HD+ DR cross section below 80 meV on the initial rotational ion state, i.e. indicates

state specific reaction rates.

In the second analysis step the rotational states participating to the total DR rate are

obtained by treating their weighting factors bJ+ individually. For the results presented

in the following, the two lowest rotational states are combined in the fit to yield b01 and

independent level contributions bJ+ up to J+ = 7 are included as free parameters as

described above and in [18, 19].

Figure 4.6 gives an example for the transverse distance distribution measured at two

selected detuning energies and thereby illustrates its sensitivity on the rotational state

contributions at higher projected distances. Represented by the b01-fraction the low-J+

contributions dominate the recorded DR events at 21 meV (Fig. 4.6(a)) inducing a sharp

edge limited by the maximum possible distance for J+ = 1 (left arrow in (a) and (b)).

Changing the detuning energy by only a few meV the (J+ = 0 and 1)-fraction reduces

rapidly and the overtaking high-J+ signal smears out the right edge by an additional shift

to larger distances (Fig. 4.6(b)). Influences caused by the different electron collision ener-

gies are negligible for these examples since the proportionality of the transverse distance

to
√

EKER results in an increase by less than 0.1 mm for the added energy (compare the

positions of the arrows in Fig. 4.6(a) relative to the ones in (b)).

The J+-fractions obtained from all measurements on the energy grid are displayed in

Fig. 4.7. They vary distinctly as a function of energy. Mostly, the lowest two rotational
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Figure 4.6: Transverse distance distributions at (a) 21 meV and (b) 25 meV are shown

together with the total fit using individual J+-contributions in Eq.(4.2) (solid lines, green).

The relative low-J+ (b01, dotted blue line) and high-J+ (b>1, dashed red line) contributions

are compared to the total fit result. The right figures enlarge the signal at large distances,

respectively. The two arrows indicate the maximum distance expected for ions in J+ = 1

and 5 (v+ = 0).

state contributions b01 represent the dominant part of the recorded DR events, exceeding

at certain energies more than 80%. The J+ = 7 fraction, although formally included as

a free parameter in the fit, is not shown in Fig. 4.7 as it was found to contribute even

less to the total events than the J+ = 6 fraction and thus does not yield any additional

information.

In general, the J+-fractions resemble an energy dependence which is found to be on a

similarly narrow scale as the scaled, rotationally averaged DR rate coefficient α̃(Ed). Even

most structures of the reaction rate are represented by the variations of the rotational state

contributions. Note that certain energies are more pronounced by the b01-contributions

than one would expect from the variations of the DR rate coefficient. For example,

between ∼25 meV and ∼ 33 meV only a slight increase in the total reaction rate is

observed, which in contrast coincides with a strong change of the b01-fraction. This

indicates a DR resonance for ions in the J+ = 0 and 1 state which is less pronounced and

64



4.2. EXPERIMENTAL RESULTS

0.5

8.0

0.5

0.5

0.5

0.5

0.5

1.0

12.0

1.0

0.0

1.0

1.0

1.0

1.0

0.0

4.0

0.0

0.0

0.0

0.0

0.0

0 10 20 30 50 60 70 80

Electron energy   (meV)

R
el

at
iv

e 
ro

ta
ti

o
n

al
 s

ta
te

 c
o

n
tr

ib
u

ti
o

n
  

b
J+

b01

b2

b3

b4

b5

b6

(1
0

c
m

s
m

e
V

)
-8

3
-1

1
/2

S
c
a

le
d

 r
a

te
c
o

e
ff
ic

ie
n

t (a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.7: (a) The scaled rotationally averaged DR rate coefficient α̃(Ed) is compared

(b - g) to the individual rotational state fractions bJ+ deduced from fragment imaging

measurements as function of the electron collision energy Ed. The different measurement

conditions are distinguished by symbols (black circle: photocathode (PC), gray square:

thermal cathode (TC) (see Table 4.1)). The zero eV result (black circle) corresponds to

the PCL condition.
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hardly visible in the measured DR rate coefficient.

At the most dominant DR peak visible in the measured energy range (∼19 meV) the max-

imum b01-weighting factor is shifted by about 2-3 meV from the position of the maximum

DR rate. The lowest rotational states are in fact mostly responsible for the decreasing

right edge while at the energy of the maximum DR rate the next higher levels, J+ = 2

and 3, give significant contributions.

On the other hand, the most pronounced high-J+ contribution below 40 meV is associated

with a dip in the DR rate coefficient. Here, the b01-contribution drops within a few meV

down to 20% and in turn J+-fractions representing levels up to J+ = 5 are observed.

At energies above 50 meV the fragmentation kinematics have been studied less dense and

thus cannot be discussed on a similar narrow energy scale. In addition the DR rate drops

quickly with increasing electron collision energy which imposes difficulties on collecting

a comparable amount of DR events sufficient to reveal the rotational state contributions

within small errors. Nevertheless, a general trend can be observed which indicates that

the two lowest rotational states become increasingly important when changing the elec-

tron collision energy from ∼54 meV to ∼75 meV.

Summarized, these results experimentally reveal for the first time directly the dependence

of the low-energy HD+ DR process on the initial ionic state. Considering the common,

initial rotational state population varying amounts of low, here mostly J+ = 0 and 1,

and high ionic rotational state fractions contribute to the total DR rate through resonant

formation of intermediate ro-vibrational Rydberg states.

4.2.2 Fragment angular distributions

The fragment angular distributions are deduced from the transverse distance spectra

by comparison with computed model functions expressed by Eq.(4.2). In doing so, the

rotationally averaged anisotropy parameters al describe the contribution of the Legendre

polynomial Pl(cos θ) to the total angular distribution W (θ) (see detailed description in

Sec. 3.2.2) and indicate through non-zero higher order coefficients increasingly fine angular

emission patterns.

The measured transverse distance distributions lack the information on the fragment ar-

rival times which accounts for their sensitivity on angular fragmentation patterns reflected

by even order Legendre polynomials only. Possible asymmetric emissions differing between

θ and θ−π (”forward-backward asymmetry”) are represented by odd Legendre orders but

are not observable in measurements restricted to the projected distance as discussed al-
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Figure 4.8: Measured fragment angular distribution at (a) 9.5 meV and (b) 19.1 meV.

The solid black line describes the angular emission pattern for events where the deuterium

arrives before the hydrogen fragment, whereas the dashed red line presents the opposite

case.

ready in Sec. 3.2.2. In fact, odd-type angular distributions express the dependence of the

electron capture on the component of the molecule directed along the beam axis towards

the approaching electron, i.e. either the H or D fragment is arriving first at the detec-

tor. Consequently the observation of a forward-backward asymmetry requires the emitted

fragments to be distinguishable and their impact time differences to be measured, i.e. full

3D detection.

In order to examine the HD+ angular distributions for possible contributions stemming

from odd Legendre polynomials, the 3D data are used in the analysis after the fragments

have been identified according to the procedure described in Sec. 3.3.2. The obtained

angular emission patterns, sorted for events with either the hydrogen (tH < tD) or deu-

terium (tH > tD) fragment arriving first at the detector, are found to show no significant

difference between θ and θ − π. Two examples at different detuning energies have been

depicted in Fig. 4.8. The observed forward-backward symmetry suggests that the mass

of electronically identical atomic components does not influence the capture probability

of an electron in low-energy HD+ fragmentation. In contrast, for electronically different

atomic components the electron capture has been observed to be indeed sensitive on the

fragment which is directed towards the approaching electron [113]. In these recent, precise

3D imaging measurements on the DR induced breakup of CF+ at detuning energies in

the range of ∼ 1.5 eV, the forward-backward asymmetry has been demonstrated finding

a preference for the dissociation when the carbon atom is directed towards the incoming
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Figure 4.9: Measured transverse distance distributions (black line) for (a) 23.0 meV and

(b) 29.0 meV detuning energy are shown together with the best fit results restricted to

angular distributions of type l = 0 (red, dotted line), l ≤ 2 (blue, dashed line), l ≤ 4

(green, solid line) and l ≤ 6 (yellow, solid line). Below the difference between the fitted

line shape associated with l ≤ 4 and the recorded transverse distance distribution as well

as the higher and lower order fit results are displayed.

electron.

Back to the present analysis on HD+, this implies that the angular distributions are suffi-

ciently described by even order Legendre polynomials and the fragment angular emission

properties can entirely be deduced from the measured transverse distance spectra, so that

the high resolution of the 2D measurement can be exploit.

So far, experiments on angular emission patterns of DR induced breakup events have

exclusively obtained non-zero Legendre coefficients al with a maximum order l = 2 (see,

e.g. [55, 56, 57]). In contrast, the measurements presented here, represented by two exam-

ples in Fig. 4.9, point out the importance of higher order contributions. Neither transverse

distance distribution shown in Fig. 4.9 can be associated with an isotropic fragment emis-

sion (l = 0) and also including the two lowest even order Legendre polynomials (l ≤ 2)

does not resemble the complete projected distance line shape. Instead, the necessity of
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the l = 4 order is stressed by the comparison to the lower order fit results. On the other

hand, the next higher even order (l = 6) is found to give only an insignificant additional

contribution. Therefore in the final analysis anisotropy coefficients of even order up to

l ≤ 4 are considered, whereas higher orders are forced equal to zero.

Energy sensitive fragment angular characteristics

The angular distributions of the emitted neutral particles are obtained together with

the rotational state contributions (Sec. 4.2.1) of the recorded DR events on the same

low-energy grid. Thereby the deduced rotationally averaged anisotropy coefficients a2

and a4 (a0 = 1 for normalization) yield within the errors the same results independent

whether the rotational state contributions are extracted through an effective rotational

temperature T or represented by individual parameters bJ+ in the fit. Hence, subsequently

only the results obtained from the latter fitting procedure are presented, i.e. considering

individual rotational state fractions bJ+ .

Already the two examples displayed in Fig. 4.9 have indicated an anisotropic fragment

emission at the applied low electron collision energies and revealed significant contribu-

tions of Legendre polynomials of 2nd and 4th order in the fitting procedure. Furthermore,

similar to the extracted rotational state fractions in Sec. 4.2.1 the angular emission pattern

is found to vary within only a few meV. The enhancement of events with low transverse

distances D (.15 mm) suggests in either example of Fig. 4.9 a preferential dissociation

parallel to the beam direction, whereas the probability for perpendicular fragment emis-

sion (D ≥15 mm) is reduced compared to a normalized isotropic angular distribution.

In order to accentuate the changes of the fragment angular distributions described by the

deduced anisotropy parameters (a2,a4), they are compared for selected detuning energies

in the polar diagram representation in Fig. 4.10. Therein the total fit results are contrasted

for increasing electron collision energies to the respective contribution from the lowest two

Legendre polynomials as well as to the case of isotropic emission. Note, that the deduced

angular fragmentation properties are repeated in each quarter due to the axial as well as

the forward-backward symmetries exhibited in the measurement.

For vanishing contributions of the 4th order Legendre polynomial and positive anisotropy

coefficients a2, reflecting the example in Fig. 4.10(a) at 14.9 meV, the fragment angu-

lar distribution approaches a nearly dipole-type emission pattern directed parallel to the

beam axis (θ = 0◦). Together with the increase of the detuning energy the measured

angular distributions in Fig. 4.10 are more and more associated with a simultaneously

elevated a4 coefficient, while the a2 anisotropy parameter is remaining at an almost con-
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Figure 4.10: The total fit results (solid green line) are compared to the contributions

of the two lowest Legendre polynomials (dashed, blue line) and the isotropic distribu-

tion (dashed, red line) in the polar diagram representation at different detuning energies

between 14.9 meV and 33.1 meV. The deduced anisotropy coefficients (a2,a4) for the

respective total fits are given for each measured energy.
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stant value. This corresponds to an enhanced fraction of fragments directed into both

extreme directions, i.e. perpendicular (θ = 90◦) and parallel to the beam axis, resulting

in a quadrupole type emission characteristic.

All anisotropy coefficients deduced from the transverse distance distributions are pre-

sented in Fig. 4.11 as function of the electron collision energy Ed [18, 106]. The Legendre

parameters clearly deviate from a value equal to zero, i.e. an isotropic fragmentation, and

feature structures on a similarly narrow energy scale as the scaled DR rate α̃(Ed). Even

for certain conditions at zero detuning energy a small but significant anisotropic fragmen-

tation is observed [19] (see next paragraph). Enhanced anisotropic emission patterns are

generally found to coincide with peaks in the low-J+ fraction b01. The 4th order Legendre

contribution, observed for the first time in DR induced fragmentation patterns, turns out

to be particularly sensitive on the detuning energy Ed and decreases for Ed approaching

0 eV as recognized already above. In contrast, the a2 parameter oscillates slightly around

a value of 0.8 for energies above 8 meV.

The largest change associated with the a4 coefficient occurs between ∼24 meV and

∼30 meV, where in fact no distinct structure is found in the measured DR rate. The

same energy range is also accentuated by a pronounced increase of the b01-fraction dis-

cussed in the previous section, thus presenting an example where the measurement of the

fragmentation kinematics can yield additional information on the DR process.

On the other hand, large fractions of highly rotating molecules, i.e. small low-J+ contri-

butions, seem to correlate with minima in the anisotropy parameters. This can hint at a

loss of the anisotropy due to sizable rotation of the molecular axis before the dissociation

and thus possibly indicates a breakdown of the non-rotation assumption of the axial-recoil

approximation.

The partial correlation of the variations found in the anisotropy parameters and the ex-

tracted rotational state fractions may also allude to J+-dependent fragment anisotropies,

which are not accessible through the rotationally averaged anisotropy coefficients. In fact,

due to the small energy difference between the rotational levels of the hydrogen molecule,

the J+-dependence of the angular distributions can only be disentangled by full initial

ro-vibrational state selectivity of the provided ions in the experiments. This is difficult to

attain for the HD+ molecular ion. Although it radiatively cools to the ground vibrational

state, the radiative coupling to the background radiation may still populate several ro-

tational levels. For the H+
2 molecular ion, on the other hand, state-selective experiments

become feasible once selected ro-vibrational states can be produced initially. This has

enabled the experiments discussed in Ch. 5.

71



CHAPTER 4. PRODUCT KINEMATICS AT RESONANCES OF HD+ DR

(1
0

cm
s

m
eV

)
-8

3
-1

1
/2

a
4

a
2

Electron energy   (meV)

(a)

(c)

(d)

0.0

4.0

8.0

12.0

0 10 20 30 50 60 70 80

0.0

0.4

0.8

1.2

0.4

0.8

0.0

0.0

0.5

1.0

S
ca

le
d
 r

at
e

co
ef

fi
ci

en
t

L
o
w

 -
fr

ac
ti

o
nJ
+

(b)

Figure 4.11: (a) Scaled, rotationally averaged DR rate coefficient α̃(Ed), (b) low-J+

fraction b01 (symbols connected to guide the eye), and (c, d) Legendre coefficients a2 and

a4 as functions of the detuning energy Ed [18]. The photocathode was used except for the

gray symbols indicating use of the thermionic cathode.
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Angular fragmentation at near-zero energy

The measured fragment angular distribution is determined both by the velocity distribu-

tion of the electrons as well as the angular dependence of the electron-ion interaction. This

yields for electrons featuring a spherical symmetric energy distribution centered around

the detuning energy and approaching randomly oriented molecules, a fragment angular

distribution which has to be isotropic due to symmetry reasons if the detuning energy is

set to zero. In that case the incoming electrons exhibit no preferred direction to probe

the angular dependence of the DR process so that only an isotropic angular distribution

of the recorded fragments can be the result.

However, the flattened Maxwellian velocity distribution of the electron beam breaks the

spherical symmetry in the experiments and thus anisotropic fragment emissions are even

possible at Ed = 0 eV. In the measurements presented here this could be demonstrated

for the first time in DR induced molecular breakup [19]. As expected the effect is sensitive

on the electron temperatures, in particular on the transverse temperature as T⊥ ≫ T||.

They determine the electron velocity distribution and can be controlled in the current

experimental setup at the TSR mainly by the choice of the electron beam production.

In fact, an anisotropic fragmentation characterized by a small but statistically significant

negative a2 coefficient (Fig. 4.11) is only observed applying electrons generated in the

thermal cathode at an estimated transversal temperature of kT⊥ ∼ 2.0 meV, while the

fragment distribution obtained with the colder photocathode electron beam, which is

characterized by kT⊥ ∼ 0.5 meV, is still compatible with an isotropic emission. Both

transverse distance distributions are compared in Fig. 4.12(a) and (b) with the fit result

and an isotropic fragmentation line shape.

In contrast to the angular distribution results at non-zero detuning energies the anisotropic

angular emission at zero detuning energy prefers fragment directions perpendicular to

the beam direction, expressed by the deduced negative a2 parameter. Note, that the

negative a2 coefficient qualitatively agrees with the anisotropy coefficients at non-zero

detuning energies considering for the small thermal electron velocity spread a change of

electrons predominantly approaching from the longitudinal direction at the applied non-

zero collision energies to the case of electrons exhibiting mainly a perpendicular approach

caused by the transverse electron temperature. This can be pictured as a rotation of the

c.m. frame by θ = 90◦ and hence explains the observed change of the a2 sign.
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Figure 4.12: Transverse distance distributions measured at zero detuning energy with

either electrons emitted by (a) the thermal cathode (TC, see Table 4.1) or (b) the photo-

cathode (PCL). The data are compared to an isotropic line shape (red dotted line) and

the fit result including Legendre contributions of order l ≤ 4 (blue solid line). In the lower

graphs the angular distribution deduced from the fit (blue shaded area) is compared to

the isotropic emission (red dotted line) as a function of cos θ.

4.3 Angular distribution models

The observed fragmentation kinematics, which are described by the obtained rotational

state contributions and the angular emission of fragments, suggest an extremely energy

sensitive dynamical picture associated with the low-energy DR of HD+. Additional as-

pects of the ro-vibrational Feshbach resonances become attainable reflecting through the

J+-contributions their sensitivity on the initial ro-vibrational state of the ion whereas the

fragment angular distribution can be linked to the angular dependence of the electron

capture process.

The DR angular dependence is determined by the electronic symmetries involved in the

process. Theoretical descriptions of electron-molecule collisions have traced the source of

the dependence on the molecule’s orientation to the electronic coupling matrix element

74



4.3. ANGULAR DISTRIBUTION MODELS

Vel(θ) as introduced in Secs. 2.2.2 and 2.2.3 for DEA and DR, respectively. Measured

fragment angular distributions W (θ) can thus be compared as W (θ) ∝ |Vel(θ)|2 and give

experimental access to the electronic symmetries participating in the reaction.

For the results presented here on the low-energy range only one dissociative state is re-

sponsible, which anticipates that the observed variations of the angular fragmentation

characteristics cannot be explained by the symmetries of the involved molecular configu-

rations alone, as initially suggested by Dunn [39]. In fact, also the electronic symmetries

of the incoming electron’s partial waves have to be considered once they couple to the ionic

molecular state in the process. For HD+ the importance of the d partial-wave has long

been predicted by theory [14, 71] which encourages the expectation of an anisotropic dis-

sociation pattern even at low electron collision energies. In addition, some s-wave (l = 0)

contribution possibly has to be taken into account as calculations of the electronic cou-

plings have shown and its importance for the resonant structure of the DR cross section

has been revealed [16, 72].

In the following the measured angular fragmentation characteristics are contrasted via the

deduced Legendre coefficients with two theoretical approaches. First, the measured frag-

ment angular directions are compared to model distributions that are based on a partial

wave description of the angular dependence in the DR process [59] (see also Sec. 2.2.3).

Subsequently, recently performed Multichannel-Quantum-Defect-Theory (MQDT) calcu-

lations which implicitly include calculated electronic couplings of the participating partial

waves are contrasted with the results [114]. Both theoretical approaches are based on the

assumption of a molecule rotating slow compared to the time required for dissociation,

i.e. are only valid in the axial-recoil approximation. In particular for the fast rotations,

which the hydrogen ion exhibits already for low rotational quantum numbers, the validity

of this assumption is questionable and requires the discussion of possible consequences in

the end.

4.3.1 Partial wave approach

In this section the measured fragment angular distributions are compared to those ex-

pected for the DR of HD+ from theoretical calculations based on the configuration-

interaction approach [59]. This concept has already been introduced in Sec. 2.2.3. Accord-

ingly the product angular distributions are expected to be determined by the electronic

symmetry of the molecular configuration as well as the one of the incoming electron rep-

resented by the coupled partial wave. In fact, the predicted fragment angular distribution

is proportional to the squared absolute value of the dominating partial wave’s spherical
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harmonic for a slow rotating molecule (Eq.(2.15)).

First, a pure d-wave induced DR angular dependence is considered within the axial-

recoil approximation. For a molecule which is aligned under an angle δ with respect to

the incident electron direction R̂e (see Fig. 4.13) the angular dependence dσ(δ)/dΩ is

determined according to Table I. in [59] by the Y2,0-spherical harmonic:

dσ(δ)

dΩ
= ‖Vel(δ)‖2 (4.6)

= ‖Y2,0(cos δ)‖2

=
5

4
(3 cos2 δ − 1)2

= 1 +
10

7
P2(cos δ) +

18

7
P4(cos δ) (4.7)

with cos δ = R̂e · R̂. The expected angular distribution is normalized so that
∫ 2π

0
dφ
∫ π

0
‖Vel(δ)‖2 sin δ dδ = 1. For unidirectional electrons pointing along the ion beam

direction (β = 0 → δ = θ), the description converts to a fragment angular distribution

expressed by even order Legendre polynomials Pl(cos δ) (= Pl(cos θ)) with l ≤ 4, as indeed

found in the experimentally obtained angular emission characteristics in the DR of HD+.

However, in order to compare the experimental results to the explicitly predicted coeffi-

cients ã2 = 10/7 and ã4 = 18/7 of a pure d-wave capture (Eq.(4.7)), the influence of the

finite electron velocity spread has to be taken into account. This becomes particularly

important at low electron collision energies approaching the electron energy spread de-

termined by T‖ and T⊥. At these energies the electron velocity distribution is no longer

compatible with an unidirectional approach so that the different incident electron direc-

tions yield a superposition of fragment angular distributions. Hence, since not all electrons

approach the molecule parallel to the ion beam direction R̂beam, that is β 6= 0, the product

angular distribution dσ(δ)/dΩ has to be transformed to a R̂beam-centered frame in order

to enable the comparison to the measured fragment angular distributions.

The coordinate transformation utilizes the Wigner formulas [115] for the rotation of spher-

ical harmonics Yl,m through angles represented by the Euler angles (α, β, γ):

Yl,m(cos δ) =
+l
∑

m′ =−l

Yl,m′(cos θ) R
(l)
m,m′(α, β) (4.8)

where due to symmetry reasons the angle γ is set equal to zero. Assuming axial symmetry

with respect to R̂e integration over the Euler angle α transforms an angular dependence

dσ(δ)/dΩ of type 1 + ã2P2(cos δ) + ã4P4(cos δ) into

dσ(x, u)

dΩ
= 2π [1 + ã2P2(x)P2(u) + ã4P4(x)P4(u)] (4.9)
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Figure 4.13: Geometric correlation

of the electron direction R̂e and the

molecular orientation R̂ with respect to

the ion beam R̂beam.

where x and u are defined by x = cos β and u = cos θ. The expected fragment angular

distribution W (θ, Ed) at a defined detuning energy Ed is then obtained after convolution

of dσ(x, u)/dΩ over all electron velocities and directions:

W (θ, Ed) =
1

me

∞
∫

0

dE

1
∫

−1

dx σ(E)
dσ(x, u)

dΩ
f(E,Ed, x)

=
2πA

me

∞
∫

0

dE σ(E) e
−E − Ed/ξ

k T⊥

·
1
∫

−1

dx [1 + ã2P2(x)P2(u) + ã4P4(x)P4(u)] · e
−(ξ x

√
E −

√
Ed)

2

ξ k T‖ .

(4.10)

Therein σ(E) denotes the energy dependent, but angle independent, part of the DR

cross section, E the electron energy, me the electron mass, ξ = 1 − T‖

T⊥
and the constant

A is defined by Eq.(12) in Appendix B. Note, that in Eq.(4.10) the electron velocity

distribution f(~ve, vd) (Eq.(3.12)) is represented in energy space f(E,Ed, x) according to

Eq.(14) derived independently in Appendix B.

The initial Legendre coefficients ãl are thus related to the measured anisotropy coefficients
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(a) and (b)) [18]. (for symbols see caption of Fig. 4.11)

al = χl(Ed)ãl through attenuation factors χl(Ed) ≤ 1 (l = 2, 4; χ0 = 1):

χl(Ed) =

∞
∫

0

dE σ(E) e
−E − Ed/ξ

k T⊥

1
∫

−1

dxPl(x) · e
−(ξ x

√
E −

√
Ed)

2

ξ k T‖

∞
∫

0

dE σ(E) e
−E − Ed/ξ

k T⊥

1
∫

−1

dx e
−(ξ x

√
E −

√
Ed)

2

ξ k T‖

(4.11)

which deviate for the present low transverse electron temperatures by only less than 20%

from unity for detuning energies above 8 meV [18].

In Fig. 4.14 the deduced Legendre coefficients al are compared to the values al = χl(Ed)ãl

characterizing a pure d-wave induced angular dependence1, i.e. ã2 = 10/7 and ã4 = 18/7,

using σ(E) ∝ 1/E in Eq.(4.11) [18]. The experimental results confirm the predicted

role of the d-wave in the DR of HD+ through the significant contribution of the 4th

1The corresponding expected transverse distance distribution is illustrated in Fig. 3.2 of Sec. 3.2.2 for

unidirectional electrons.
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order Legendre polynomial obtained from the measured fragment emission anisotropies.

Nevertheless, in particular the a4 coefficients are found to strongly deviate from a pure d-

wave description, contrary to the predicted dominance of the partial wave in the electron

capture. Also, this model fails to reproduce the energy dependent narrow variations and

instead predicts almost constant emission patterns independent of the electron detuning

energy. The overall reduction of the measured anisotropies expresses a more isotropic

distribution which may indicate significant contributions from the s partial-wave.

Therefore, in the next step, the more general case of interfering s and d partial-waves is

considered [18]. Assuming that the theoretical approach [59] can simply be extended to

the case of a coherent sum of two partial waves, i.e. their contribution to the angular

dependence is still separable from the total expression of the DR cross section σ, the

angular dependence may be expressed by

σ(δ)

dΩ
= ‖cs Y0,0 + cd Y2,0‖2 . (4.12)

Here, the parameters cs and cd denote the complex s and d-wave amplitudes, respectively,

and are related to each other through the normalization condition cs =
√

1− |cd|2. They

are associated to the measured Legendre coefficients al through the relations :

a2 = χ2(Ed)
{

2 |cd|
√

5(1− |cd|2) cos ǫ + (10/7) |cd|2
}

(4.13)

a4 = χ4(Ed) (18/7) |cd|2 (4.14)

which are simply derived from Eq.(4.12) by expressing Y0,0 and Y2,0 through Legendre

polynomials of order l ≤ 4. In Eq.(4.13) the parameter ǫ describes the s and d relative

phase. The parameter range for ã2 and ã4 (= al/χl(Ed)), restricted by 0 ≤ |cd|2 ≤ 1

and −1 ≤ cos ǫ ≤ 1, is illustrated in Fig. 4.15. Hence, the relative d-amplitude |cd|2 is
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Figure 4.16: Assuming a coherent superposition of s and d partial-waves (a) the relative

d-wave amplitude |cd|2, (b) the s and d relative phase represented by cos ǫ and (c) the

ratio a4/a2 are given for the measured results. The a4/a2 ratio is compared to the case

of incoherent superposition of both symmetries reflected by ã4/ã2 = 9/5 after considering

the flattened Maxwellian velocity distribution of the electron beam (dashed line). (for

symbols see caption of Fig. 4.11)

proportional to the a4 anisotropy coefficient and can directly be read off from the values in

Fig. 4.11(d), considering χ4(Ed). Presuming that the axial-recoil approximation applies,

the deduced d-wave amplitudes |cd|2 shown in Fig. 4.16(a) are small in accordance to

the earlier conclusion finding a pure d-wave contribution not supported by the measured

anisotropy coefficients. In fact, the maximum value of |cd|2 does not exceed 0.5 and in

addition rapidly decrease towards Ed = 0 eV.

In addition, both the a2 and a4 values jointly yield the s and d relative phase ǫ displayed

in Fig. 4.16(b). At low detuning energies the relative phase ǫ reveals near-zero values
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while a trend towards π/2 for increasing energy can be observed. The compliance of an

incoherent superposition of both partial waves is reflected by cos ǫ = 0 or, can in fact

directly be traced by the a4/a2 ratio in Fig. 4.16(c). Here an incoherent superposition

is represented by ã4/ã2 = 18/10 which corresponds to the dashed line after applying

the convolution factors χl(Ed). The results are mostly consistent with interfering s and

d-waves, i.e. significantly deviate from the dashed line in Fig. 4.16(c), whereas only the

measurements close to Ed = 70 meV possibly indicate an underlying incoherent process.

Overall the contributions from 4th order Legendre polynomials deduced in the present

fragment angular distribution studies comply with the expected d-wave coupling in the

HD+ DR process. In fact, according to the applied theoretical approach the highest order

Legendre coefficient can only be induced by a d-wave coupling and thus directly reflects its

relative amplitude. However, the analysis within the axial-recoil approximation has also

revealed that the d-wave is not dominant and cannot alone explain the variations in the

anisotropy coefficients which are observed when passing over the ro-vibrational Feshbach

resonances at low electron collision energies. At least equally large s-wave contributions

are suggested to interfere coherently with the d-wave in most part of the studied energy

range. The s and d-wave mixing thereby seems extremely energy sensitive and varies as

represented by the relative phase ǫ or the a4/a2 ratio in Figs. 4.16(b) and (c) on a similarly

narrow scale as the DR rate coefficient (Fig. 4.11(a)).

The applicability of the axial-recoil approximation is required for the comparisons stated

above. This implies long rotational periods compared to the dissociation time. Any delay

in the dissociation process of the fragments and a simultaneous considerable rotation

of the molecule might smear out the angular dependence towards the observation of an

isotropic distribution which would be undistinguishable from an enhancement of the s-

wave contribution.

4.3.2 MQDT description of the angular dependence

The previous comparison of the obtained angular distributions with the theoretical frame-

work proposed by Guberman has stressed the importance of both s and d partial-wave

couplings to the ionic ground state 2Σ+
g in the description of the HD+ DR product an-

gular dependences. Utilizing this theoretical framework and relying on the axial-recoil

approximation, the s and d-wave relative amplitudes and phases can be deduced from the

experimental results.

On the other hand, a prediction of the expected angular dependences requires the in-

81



CHAPTER 4. PRODUCT KINEMATICS AT RESONANCES OF HD+ DR

(a) (b)
W

(c
o
s

)
q

W
(c

o
s

)
q

cos q cos q

0 00.2 0.20.4 0.40.6 0.60.8 0.81 1
0 0

1 1

2 2

3 3
measured W( )cos q
MQDT-calculation
isotropic

measured W( )cos q
MQDT-calculation
isotropic

Figure 4.17: The angular emission characteristics predicted by MQDT-calculations in

the axial-recoil approximation [114] (green line) are compared to the measured fragment

angular distributions (blue line; dashed lines give error margin) at (a) 8.0 meV and (b)

69.4 meV. For comparison also the isotropic case is shown (red line).

formation on the electronic couplings of the s and d partial-waves. Within a recent first

attempt, MQDT-calculations on the DR angular dependence of HD+ were performed [114]

computing electronic couplings of both partial waves. Since the implemented electronic

couplings itself do not exhibit an explicit angular dependence, the angular dependence

is included by multiplying the couplings with the spherical harmonics of the respective

partial waves, i.e. Y0,0(cos θ) and Y2,0(cos θ), before the MQDT-calculation is initiated.

Rotational couplings, on the other hand, are currently not yet regarded in these cal-

culations, although they have successfully been employed in previous treatments of the

HD+ angle-independent DR cross section [15, 16, 116] reproducing the rich structure in

the measured DR rate coefficient [17, 117]. The ionic rotational excitation (assuming

the vibrational ground state) is insofar only accounted for in the calculation of the an-

gular dependence by the corresponding centrifugal distortion of the molecular potential

curves [118], that is in the description of an effective potential which determines the

vibrational wave functions.

The calculated angular dependences for each ionic rotational state are convoluted over

the electron energy distribution and properly normalized [114]. Subsequently, the exper-

imentally deduced relative rotational state contributions are used to determine the final

rotationally averaged result at a selected electron detuning energy. Two examples are

shown in Fig. 4.17.

Overall the theoretical results [114] support the sensitivity of the angular dependence
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Figure 4.18: The measured fragment angular distribution (thick, blue line) is compared

to the result of the MQDT calculation in the axial-recoil approximation [114] (solid green

line) at 31 meV. The individually normalized J+-contributions of the total MQDT-result

are shown separately (dotted lines) as well as the angular dependence expected for a pure

d partial-wave induced fragmentation (dashed, gray line).

on the electron collision energy observed in the experiments. The obtained theoretical

emission patterns find within the axial-recoil approximation reasonable agreement with

the data at selected energies (Fig. 4.17(b)), but partly predict too large anisotropies

(Fig. 4.17(a)) which are not reproduced by the measurement. This can again indicate the

need to expand the treatment beyond the axial-recoil approximation in order to properly

account for fast rotations of the molecular ion or the neutral intermediate resonant state

compared to the dissociation or resonance lifetime.

A decomposition of the calculated angular distributions into the individual rotational state

components reveals a strong variation of the individual fragment angular distributions. In

Fig. 4.18 the normalized J+-state angular distributions are compared to the rotationally

averaged fragment angular distribution as well as the measurement at 31 meV electron

collision energy. The lowest two rotational states, found most abundant in the measure-

ment, are closely associated with an isotropic emission indicating a strong s-wave coupling

to the J+ = 0 and 1 states of the HD+ ion at 31 meV electron collision energy. In contrast,

for high rotational quantum numbers the anisotropy increases towards a pure d-wave in-

duced interaction, clearly overestimating the measured angular distribution. Generally,

the rotationally averaged MQDT-result resembles a more isotropic dependence and is less
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influenced by the computed large anisotropies associated with fast rotating molecular ions

when considering the experimentally obtained J+-state fractions.

4.3.3 Beyond the axial-recoil description

The previously presented theoretical studies on the fragment angular distributions rely

on the validity of the axial-recoil approximation. This assumption is required in order

to reveal directly from the experimental results the electronic symmetries of the molecu-

lar states as well as those of the coupled electron partial waves involved in the electron

induced breakup process. In general, the applicability of the axial-recoil approximation

in molecular dissociation processes implies either steep dissociative potential surfaces or

long rotational periods compared to the lifetime against dissociation [40, 41] (see also

Sec. 2.2.1). Studies of fragment angular distributions induced by photodissociation or

dissociative electron attachment [32, 43, 44, 45, 119] have shown that the necessary con-

ditions are not always satisfied and can result in a considerable reduction of the observed

anisotropies. Thus the validity of the slow-rotation approximation in the current case,

the DR of HD+, should carefully be verified at this point.

Comparing the deduced anisotropy coefficients al with the rotational state fractions bJ+

one finds that high contributions of fast rotating molecules, i.e. low J+ = 0 and 1 fractions

b01, seem to correlate with reduced anisotropy coefficients al approaching isotropic values

(see Fig. 4.11). This possibly gives a first indication for a breakdown of the axial-recoil

conditions. In addition, the deduced large s-wave amplitudes contrary to the predictions,

on the one hand, and the generally exaggerated anisotropies found by the MQDT cal-

culations compared to the measurements, on the other hand, might also be explained in

view of a possible violation of the slow-rotation assumption in the present studies on the

HD+ ion.

The low-energy DR of HD+ is dominated by interference effects between the two dissoci-

ation pathways, the direct and the indirect process. While dissociation along the direct

route is expected to be fast, the resonant formation of an intermediate ro-vibrationally

excited Rydberg state in the indirect reaction path can impose a delay in the dissociation

process.

Typical dissociation times along the direct path are roughly estimated from the vibrational

frequency (∼ 10 × 10−15 s) and found considerably faster than the classical rotational

period TJ+

TJ+ =
1

2 c Bv+=0

√

J+(J+ + 1)
∼ 0.8× 10−12 s
√

J+(J+ + 1)
(4.15)
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of the HD+ ion in the lowest rotational levels J+ (c - speed of light; Bv+=0 - rotational con-

stant of the HD+ vibrational ground state). This has been estimated from the rotational

energy given by [22]
1

2
Iω2 = J+(J+ + 1)hcBv+=0 (4.16)

which yields after replacing the moment of inertia I by h/(8π2cBv+=0) the classical rota-

tional frequency ω

ω2 = J+(J+ + 1)16π2c2B2
v+=0 (4.17)

with the Planck constant h. Hence, reductions of the obtained anisotropy are less likely

to be expected for the direct DR.

It is thus in particular the indirect dissociation pathway where the conditions for the axial-

recoil approximation are possibly violated depending on the lifetime of the resonance τr

compared to the rotational period TJ+ . From the observed narrow structures in the

DR rate coefficient (Fig. 4.11(a)) a typical natural resonance width Γr ∼ 3 meV can be

estimated corresponding to a mean resonance lifetime of τr ∼ 0.2 ps (τr = ~/Γr) [21]. This

has to be contrasted to the rotational period TJ ′ of the rotational state J ′ characterizing

the intermediate HD+ ion core of the resonantly formed Rydberg state. Approximated by

the rotational period in Eq.(4.15), the molecular axis is indeed found to exhibit even for

the lowest rotationally excited Rydberg resonances a considerable change in orientation

before the molecular compound dissociates.

The range of rotational states accessible in the formation of the resonance is limited

through conservation of the total angular momentum to |J ′ − J+| ≤ 2l [16] for a coupled

partial wave l of the incoming electron and an initial ionic state J+ (see also Sec. 2.3).

Hence, the deduced HD+ J+-level contributions bJ+ allow a rough estimate on the range

of rotational quantum numbers which determine the rotational period of the resonance.

While s-wave coupling will preserve the ionic rotational period in the resonance, fast ro-

tating intermediate states may become accessible even for slow rotating HD+ ions once the

d-wave coupling is strong (|J ′ − J+| ≤ 4). Consequently, the conditions for the axial-recoil

approximation also have to be checked for DR resonances associated with predominant

J+ = 0 and 1 initial HD+ ion states.

An estimate for the expected attenuation of the anisotropy in the breakdown of the

axial-recoil approximation can be given utilizing a semiclassical model [43] initially intro-

duced to describe higher-order effects in the fragment angular emission of photodissociated

molecules. The comparable dissociation dynamics allow to apply the approach also here

in order to yield correction factors for predicted angular distributions, following also the

ideas given in [44].
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In this model [43], a Poisson distribution is used to describe the dissociation probability of

the molecule after a time t from the capture of the electron. Depending on the molecular

rotation frequency ω and the lifetime τ against dissociation, the probability D(θ0) for

fragments dissociating at an angle θ0 relative to the initial axis orientation is given by [43]:

D(θ0)dθ0 =
dθ0

ωτ

[

e−θ0/ωτ + e(θ0 − 2π)/ωτ

1− e−2π/ωτ

]

. (4.18)

Any subsequent rotation of the emission direction is neglected as it is assumed that the

rotation ceases due to the large kinetic energy of the fragments and the simultaneous fast

separation [43]. The angular dependence for instantaneous fragmentation, expressed here

by even Legendre polynomials, is then modified by the dissociation probability D(θ0) at

rotation angles θ0 and yields the attenuated fragment distribution W (θ) [44]:

W (θ, ω, τ) = K(ω, τ)
∑

l even

χl(Ed)ãlPl(cos θ) ·
π
∫

0

[

e−θ0/ωτ + e(θ0 − 2π)/ωτ
]

·Pl(cos θ0)dθ0

(4.19)

where K(ω, τ) = [ωτ(1 − e−2π/ωτ )]−1, ãl are the Legendre coefficients and χl(Ed) the

convolution factors taking the electron velocity distribution into account (Eq.(4.11)). The

integration over the angle θ0 is evaluated term by term in closed form for the 0th, 2nd and

4th order Legendre polynomials and determines the attenuation factors γl(ω, τ):

γ0(ω, τ) = 1

γ2(ω, τ) =
1 + (ωτ)2

1 + 4(ωτ)2
(4.20)

γ4(ω, τ) =
1 + 10(ωτ)2 + 9(ωτ)4

1 + 20(ωτ)2 + 64(ωτ)4
. (4.21)

The fragment angular distribution W (θ, ω, τ) is thus expressed by

W (θ, ω, τ) =
∑

l=0,2,4

γl(ω, τ)χl(Ed)ãlPl(cos θ) (4.22)

so that the measured anisotropy coefficients (a2, a4) are related to those for instantaneous

fragmentation through

a2 = γ2(ω, τ) · χ2(Ed) · ã2 (4.23)

a4 = γ4(ω, τ) · χ4(Ed) · ã4 . (4.24)
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Figure 4.19: (a) The angular attenuation factors γl are given as a function of the product

ωτ between the rotational period ω and the lifetime against dissociation τ . In windows (b,

c, d) the attenuation factors are applied as a function of ωτ to the anisotropy coefficients

al = γl(ωτ)ãl of fragment angular distributions corresponding to a (b) pure d-wave (ã2 =

10/7 and ã4 = 18/7), (c) 90% relative d-wave amplitude (with 10% s-wave) and (c) 50%

relative d-wave amplitude (with 50% s-wave). The a2 coefficients are given in (c, d) for

relative s and d phases of cos ǫ = 0 (solid green line) and 1 (dotted green line). Assuming

τ = 0.2 ps, the vertical dotted lines mark the values ωJ ′τ corresponding to rotation of a

molecular system in state J ′ = 1 and 2 (HD+ ion core). The dashed line corresponds to

a H+
2 ion core in the v+ = 0 and J ′ = 1 state.

As a function of the product ωτ , which represents different delay times of the dissociation

with respect to the rotational frequency, the attenuation factors γl(ω, τ) are displayed in

Fig. 4.19(a). The anisotropy is found to be reduced rapidly and represents already for

ωτ = 1 only ∼ 40 % (a2) and ∼ 20 % (a4) of the initial value. Interestingly, in case of

ωτ → ∞ the attenuation factors γl approach a constant, non-zero value which implies

that even for fast rotating molecules the anisotropy is not completely smeared towards
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an isotropic distribution as recognized also in [44].

Utilizing this semiclassical model, the effects of molecular rotation during the fragmenta-

tion process can be studied on different initially undisturbed angular dependences. Three

cases of s and d partial-wave couplings are compared in Fig. 4.19 (b, c, d) by applying

the attenuation factor γl(ωτ) as a function of ωτ to the initially undisturbed Legendre

coefficients ã2 and ã4: the pure d-wave coupling in inset (b), 90% relative d-wave ampli-

tude in (c) and 50% relative d-wave amplitude in (d), latter two cases for relative s and

d phase angles cos ǫ = 0 and 1. The Legendre coefficients a2 and a4 corresponding to

the ones measured (use Eqs.(4.13, 4.23) and (4.14, 4.24) without the convolution factor

χl(Ed)) rapidly decrease within ωτ . 1 and approach a nearly constant value. In fact,

one finds in case of a pure d-wave as well as in case of an incoherent superposition of both

partial waves (cos ǫ = 0) nearly matching asymptotic values a2 and a4 for ωτ →∞. Any

coherently interfering partial wave coupling, on the other hand, can be recognized by the

measured 2nd order Legendre coefficient exceeding the value of a4.

Assuming the resonant formation of an intermediate Rydberg state with a lifetime against

dissociation of τr ∼ 0.2 ps (see above), one finds already for molecular compounds in the

first rotationally excited state J ′ = 1 that at the corresponding value of ωτ ≈ 2.34

the observed anisotropy coefficients are expected to be reduced by a factor of nearly

∼3.5 (a2) and ∼6.2 (a4) with respect to the initial dependence. In fact, the respective

attenuation factors γl almost reach the asymptotic level so that additional effects for faster

rotating molecules can be regarded as negligible. Consequently, the influence of rotational

excitation on the reduction of the anisotropy can be treated in first order with the same

attenuation factors γl, independent of the rotational state of the resonance for J ′ > 0.

The coefficients representing instantaneous fragmentation and thus the angular depen-

dence of the dissociation process can then be inferred from the measured anisotropy

coefficients a2 and a4 considering the attenuation factor γl. For the above suggested value

γ4 = 0.16 the relative d-wave amplitudes |cd|2 in the s and d partial-wave description are

directly reflected by the measured a4 values as a function of the detuning energy and are

determined by 7a4/(18γ4 · χ4). The accordingly deduced relative d-wave amplitudes are

shown in Fig. 4.20(a). Their values are significantly enhanced compared to those deter-

mined under the axial-recoil approximation in Fig. 4.16(a). At some electron collision

energies they even exceed the maximum possible value of unity, whereas in particular at

low electron energies Ed . 14 meV the relative amplitudes partly remain below ∼50%.

Relative d-wave amplitudes exceeding a value of one are artificial and result from the

applied attenuation factor γ4. They do not make sense from a physics point of view, but

they indicate that the assumed attenuation is too large. This can either be attributed to
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Figure 4.20: (a) The corrected relative d-wave amplitudes |cd|2 deduced from the measured

a4 coefficients according to Eqs.(4.14) and (4.24) are presented, associating the attenuation

γ4(ωJ ′=1τ) with rotation of the molecule in a J ′ = 1 intermediate state (τ = 0.2 ps; see

Fig. 4.19(a)). Note, values of |cd|2 > 1 (gray shaded area) are artificial and indicate

that the applied γ4 is too small (attenuation is estimated too strong). In window (b) the

accordingly corrected a2 coefficient is given, that is ã2 = a2/(γ2 · χ2). The dashed line

represents the expected coefficient ã2 = 10/7 for a pure d-wave. (for symbols see caption

of Fig. 4.11)

the neglected participating ground rotational state (which cannot be described at all by

the semiclassical model; note that a strong J+ = 0, 1 contribution is observed just in the

range of 25 - 30 meV, see Fig. 4.11(b)), or to significantly faster dissociation times due to

a smaller resonance lifetime or dissociation upon the direct DR pathway. Considering that

the applied attenuation correction appears too strong, a pure d-wave coupling even seems

in view of a breakdown of the axial-recoil approximation not likely. This is in particular

underlined when regarding simultaneously the accordingly corrected a2 coefficients in

Fig. 4.20(b) which generally deviate from ã2 = 10/7 (dashed line), i.e. a pure d-wave

coupling. Instead the measured a2 and a4 values rather comply with interfering s and d

partial-waves (cos ǫ > 0), which is also stressed by the larger a2 values compared to those

found for a4 in the measurements (compare the measured values in Fig. 4.14 with those

expected according to the model in Fig. 4.19 (c,d)).

One can conclude that the effect of molecular rotation together with the concept of res-
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onance delays can induce a significant reduction of the observed anisotropy and thus in-

fluence the deduced participating electronic symmetries. In particular the relative d-wave

amplitudes can find in the treatment beyond the axial-recoil approximation an enhance-

ment towards its predicted role in the DR of HD+ [14]. Nevertheless, these results also

stress the importance of the s partial-wave and find it to interfere with the d partial-wave

in the DR process. Future theoretical models should thus incorporate the possibility to

expand the treatment beyond the assumptions of the axial-recoil approximation, in par-

ticular for systems where the rotational period is of the same order as the typical lifetime

against dissociation. This applies mostly to small molecular systems such as HD+ where

due to strong rotational coupling the indirect DR process plays an important role [120]

and the dissociation can thus be considerably delayed.

4.4 Conclusions

On a dense energy grid reaching up to ∼75 meV electron collision energies the fragmen-

tation kinematics of HD+ ions have been studied through 2D and 3D fragment imaging

in twin merged beam experiments at the TSR.

First, from the different amounts of kinetic energy release identified in the transverse

distance distributions, the relative rotational state fractions were deduced as a function

of the electron collision energy. In particular the lowest two rotational ionic states, J+ ≤ 1,

revealed a strong energy sensitivity on a similar narrow scale as the rotationally averaged

DR rate coefficient αDR(Ed). These findings underline the importance of the ionic ro-

vibrational state in the resonant electron capture.

Second, the obtained fragment angular distributions reflect within the axial-recoil limit

the electronic symmetries involved in the electron capture process. Described by a sum

of even Legendre polynomials (l ≤ 4), anisotropies of 4th order were observed for the first

time in DR experiments and are in fact in accordance with the predicted role of the d

partial-wave in the electron capture. Both deduced anisotropy coefficients, a2 and a4,

are found to be in general strongly different from zero and exhibit strong variations as a

function of energy, again similar as the DR rate coefficient. However, within the axial-

recoil approximation their amplitudes remain significantly smaller compared to the one

expected for a pure d-wave and in addition rather large interfering s-wave fractions were

deduced from a simple model, contrary to the predicted dominance of the d partial-wave.

Indications for a possible breakdown of the assumed axial-recoil approximation are given

and were in fact shown to possibly significantly reduce the initial anisotropies already

for the first rotational excited resonant state, affecting the analysis of the partial wave
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contributions.

At zero detuning energy the influence of the flattened Maxwellian electron velocity distri-

bution on the fragment emission characteristics was studied. For electrons generated by

the thermal cathode the slightly larger transversal electron velocity spread there in con-

trast to the electron beam emitted by the photocathode was sufficient to observe a small

anisotropy in the fragmentation process as expected for an anisotropic electron velocity

distribution even at a zero average velocity difference between the colliding particles.
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5
State-selective DR of H+

2

The process of dissociative recombination is found to be particularly sensitive on the

internal excitation of the molecular ion. This has direct influence in environments where

DR dominates the destruction of molecular ions, for instance in interstellar space [5, 6], but

also often hinders the detailed comparison of theoretical and experimental studies since

the internal excitations of the participating ions in the measurements remain unknown.

Therefore, experiments are desired where molecular ions can be prepared in distinct ro-

vibrationally selected states. In this chapter results are presented on the DR of H+
2 ions

which were produced in defined states by resonantly enhanced multiphoton ionization

(REMPI). The focus will be on the fragmentation kinematics but also state-selective

DR rate coefficients are discussed at low electron collision energies, where the strongest

sensitivity on the ionic ro-vibrational state is expected.

5.1 Production of H+
2 ions in defined states

State selective experiments have been driven in the past years by the aim to be able

to yield through distinct comparisons with theory a better, if not even a complete un-

derstanding of the DR process. In particular, the unknown internal population of the

investigated molecular ions often hindered a decomposition of the results into the re-

spective contributions. The required independent probe of the ions’ excitation state is

not always available at experimental setups. One possible tool is the Coulomb-Explosion

Imaging (CEI) technique [121], which enables in-situ measurements to infer the vibra-

tional population of circulating ions in storage rings. It has been applied inter alia to

deduce the absolute DR rate coefficients for H+
2 and D+

2 ions in the first six vibrational

levels during earlier experiments at the TSR [68].

Other methods focus on influencing the population of the stored molecular ions, either
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before injection or even during the storage period. For instance, the ro-vibrational dis-

tribution of the stored H+
2 ions has been modified through depletion of high vibrational

states in photodissociation, nevertheless still remaining with an ion ensemble in unknown

excitation levels [9]. A different approach focuses on the development of ion sources in

order to provide molecular ions in distinct excitations before injection, mostly providing

rotationally cold molecular ions at temperatures below ∼50 K. In these experiments ei-

ther a supersonic expansion source [122, 123] or buffer gas cooling in a radiofrequency

multipole ion trap [124] have so far been employed to produce H+
2 [123] and H+

3 molecular

ions in the lowest rotational states. While the infrared active H+
3 ions reached in addition

the vibrational ground state already by the time of injection into the storage ring, the

vibrational population of H+
2 could only be influenced through the subsequent interaction

with electrons by super-elastic collisions (SEC; Eq.(4.5)).

The study of selected excited ion states, on the other hand, is generally impossible with

molecules exhibiting a permanent dipole moment, such as H+
3 or HD+ ions. Their cou-

pling to the ambient thermal background radiation will impede long observation times

as the internal excitation will change. Instead ions lacking a permanent dipole moment

are preferred. Once they can be produced in defined states already in the ion source

experiments with ions in distinct, but arbitrarily excited states will become possible.

As will be discussed in the following, in standard ion sources molecular ions are generally

created through electron impact ionization of a parent neutral molecule in a broad ro-

vibrational state distribution and will thus not be suitable for state selective experiments

if the population cannot be probed in-situ. To overcome this problem an ion source has

been developed by a research group at the University of Louvain-La-Neuve which is based

on the idea of resonantly enhanced multiphoton ionization (REMPI). It yields H+
2 ions

in selected vibrationally and rotationally excited states for storage ring experiments on

DR. The concept of the ion source will briefly be described here but the reader is referred

to [88] for more details.

5.1.1 Electron impact ion beam production

A common production method for molecular ions is electron impact ionization of the par-

ent neutral molecule. Within the Born-Oppenheimer approximation the ionization pro-

cess is described as an electronic transition which takes place instantaneously compared

to the timescale of vibrations; complying with the Franck-Condon principle introduced

in Sec. 2.1.2 (see also Fig. 5.1(a)). Accordingly, the transition amplitude from an initial

neutral molecule in the vibrational state v to a vibrational state v+ of the respective ion
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Figure 5.1: (a) Schematic drawing of the potential energy surfaces involved in the H+
2

ion production from electron impact ionization of neutral H2. The orange area reflects

the vertical transition from the ground state of H2 as expected from the Franck-Condon

principle. (b) Typical broad vibrational state distribution of H+
2 ions generated by electron

impact ionization [125].

is proportional to the Franck-Condon factor (Eq.(2.1)). In case the potential energy sur-

faces exhibit their minima at the same internuclear distance R, transitions with ∆v = 0

are favored. On the other hand, a displacement of the potential energy surfaces along

the internuclear axis will induce large changes in the vibrational quantum number, as for

instance expected for the hydrogen molecule. The initial vibrational population of the H2

molecule is thus not reflected by the ion’s excitation after ionization. Figure 5.1(b) illus-

trates an example of a measured vibrational state distribution of H+
2 ions after electron

impact ionization [125]. The range of vibrational states reaches with significant contribu-

tions up to at least v+ = 10 and exhibits a maximum between v+ = 1 and 2; clearly not

suitable for state selective experiments.

In contrast to the deuterated hydrogen molecular ion HD+, the H+
2 ion lacks a permanent

dipole moment so that long lifetimes (≈ 106 s [126]) of individual vibrational states are

expected and radiative cooling is practically inhibited. Experiments at storage rings

exhibit the possibility to merge cold electrons with the circulating molecular ions, which

allows to induce vibrational cooling through super-elastic collisions (SEC). Through this

method the initial broad vibrational distribution can efficiently be reduced to only a few

vibrational states (v+ . 4) within storage times of a few seconds (see, e.g. [11, 68]).
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This cooling mechanism was also investigated under the current experimental conditions.

Provided with an H+
2 ion beam, which was produced in a standard Penning ion source

and subsequently accelerated to a beam energy of Ebeam = 0.96 MeV, SEC was em-

ployed by merging a velocity matched cold electron beam from the photocathode in the

electron target section (Ie ≈ 0.481 mA and ne ≈ 1.5 × 106 cm−3). The vibrational

cooling was monitored through DR measurements at near-zero electron collision energies

(Ed = 0 eV) with the fragment imaging detector. From the recorded transverse distance

distributions the relative contributions bv+,1s,n of each initial-to-final-state DR channel

(H+
2 (v+ ≤ 8, J+) + e− → H(1s) + H(n) ; n ≥ 2) were identified as a function of the

storage time t by fitting Eq.(3.10) to the data. While assuming an isotropic dissociation

(al>0 = 0), contributions from initial rotational excitations of the ion were related through

a Boltzmann distribution pJ+ (Eq.(4.4)) with free (for t < 5 s) temperature parameter T

to each other (T was fixed after storage times t > 5 s to 250 K , the last unconstrained

fitted value of T ).

The results of the relative vibrational state fractions are summarized in Fig. 5.2 together

with depicted examples of the measured transverse distance distribution. Within the first

second after injection the initial vibrational excitation of the stored ions (v+ ≥ 5) is even

sufficient to populate the next higher state of the final atomic products (n = 3), which is

energetically not accessible at zero detuning energy from low (v+ < 5) ionic vibrational

states. The deduced ground state fractions at t < 5 s are most likely misinterpreted, even

higher vibrational state contribution (v+ > 8) which were not included as initial-to-final-

state DR channels in the fitting routine. Moreover, the vibrational ground state fraction

is not expected to be resolved at early storage times due to the low state specific rate

coefficient [68]. Note also, that vibrational states v+ ≥ 5 populate predominantly the

final state configuration with n = 3, which corresponds to the DR channel with the lower

kinetic energy release. The high excitations reduce quickly so that after about 10 s the

observed vibrational state fractions comprise only the lowest four states (v+ ≤ 3).

The current findings are in agreement with earlier experiments carried out at the TSR [68].

For those experiments the H+
2 ion beam was produced by the single-ended Van-de-Graaff

accelerator and injected at comparable ion beam energies (≈ 1 MeV) into the TSR. Using

electrons from the electron cooler at slightly higher densities (ne ≈ 6.1× 106 cm−3) they

utilized the fragment imaging technique to extract the relative vibrational state fractions

from recorded DR events as functions of the storage time. They report a similar time

dependence of the deduced vibrational state fractions. In addition, they also studied the

vibrational fractions of D+
2 ions at long (> 60s) storage times, revealing almost complete

relaxation to the vibrational ground state.
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Figure 5.2: (a) The relative fractions bv+,1s,n of H+
2 DR channels from an ionic vibrational

state v+ into H(1s) + H(n) ([n,v+], n ≥ 2; color code see inset (b)) are compared as a

function of storage time (t = 0− 20 s) at Ed = 0 eV. The bv+,1s,n were deduced from a fit to

the measured transverse distance distributions. The H+
2 ions were produced in a Penning

ion source. (b) Depicted examples of the measured transverse distance distribution are

shown for data within t < 1 s, 4.5 < t < 5.5 s and 13.0 < t < 15.0 s after injection. The

line shapes for the v+ = 0 (blue line), v+ = 1 (green line) and v+ = 2 (red line) channel

are compared to the total fit result (black line) and the data (gray line).
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5.1.2 The laser ion source (LISE)

The production of selected ro-vibrational states of H+
2 ions is realized in a new type of ion

source (named Laser Ion Source (LISE)) [88] which utilizes the technique of resonantly

enhanced multiphoton ionization (REMPI).

Already more than 20 years ago the REMPI process has been suggested to afford the

production of particular ion states through the selection of a specific ionization path (see

e.g. [127, 128]). Briefly, the resonant multiphoton ionization process can be described

by first promoting a molecule to an intermediate Rydberg state through the absorption

of m photons before in the final step a single additional photon ionizes the molecule.

Choosing an intermediate Rydberg state with a similar potential energy surface as the

ionic state, the Franck-Condon factors (Eq.(2.1)) favor the preservation of the vibrational

level v′ of the Rydberg state, i.e. ∆v = v+ − v′ = 0. In addition, rotational selection rules

restrict in an (m+1) REMPI process the production of diatomic ions to defined rotational

levels [129].

H+
2 ion production through (3 + 1) REMPI

The photoionization of the H2 molecule in a (3+1) REMPI process via the C1Πu Rydberg

state has been proposed by S.T. Pratt and co-workers [127, 128, 130] (see Fig. 5.3):

H2(v
′′, J) + 3hν → H2(v

′, J ; C1Πu) (5.1)

H2(v
′, J ; C1Πu) + 1hν → H2(v

+, J+) + e−(l)
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They demonstrated in measurements of photoelectron spectra from excited C1Πu,

v′ = 0− 4, J = 1 [127] levels that H+
2 ions can be prepared in vibrationally selected states

through multiphoton ionization. Depending on the vibrational level v′ of the intermediate

Rydberg state, ions are dominantly created in ∆v = v+ − v′ = 0 transitions. Significant

deviations from the Franck-Condon predicted populations were observed at increasing v′

due to the dependence of the electronic transition matrix element on the internuclear

distance, whereas for the lowest vibrational states, v+ ≤ 1, level populations with ∆v 6= 0

did not exceed a few percent [127].

In these studies also the sensitivity of the ionization process on the rotational level was

pointed out. From selection rules for three-photon excitation Π
3 hν← Σ+ seven rotational

transitions are in principal allowed, labeled as N, O, P, Q, R, S, T and which correspond

to ∆J = −3 through +3. Three of those were observed in the experiments: the P, Q and

R branches (∆J = −1, 0, +1).

Further detailed studies [128, 130] were able to resolve the rotational structure of these

transitions in photoelectron spectra, paving the way for the production of rotationally

and vibrationally selected H+
2 ions. The underlying rotational selection rules for a (3 + 1)

ionization of H2
1Σ+

g via the C1Πu can be understood when the ion plus the continuum

electron are treated in Hund’s case (d) coupling [22]; i.e. the photoelectron is completely

decoupled from the molecular axis. The selection rules are thoroughly discussed in the

respective articles [128, 129, 130], giving thus only a short summary at this point:

The schematic diagram in Fig. 5.4(a), which has been presented in [128, 130], illustrates

the allowed ionization pathways following excitation through the R(0) and Q(1) transi-

tions, i.e. the initial neutral molecule is in the J = 0 or 1 rotational state, respectively.

Note, that in Fig. 5.4(a) J describes the total angular momentum.

Based on parity considerations the continuum electronic partial wave l must be even. In

fact, only s and d partial-waves are taken into account, as higher orders are expected

to yield a negligible contribution. The excitation by the absorption of three photons

promotes the ground state molecule into the Π− component for the Q-branch, and into

the Π+ component of the C1Πu state for the R (or P)-branch transition. Subsequently,

single-photon selection rules [22] apply to the ionization of the Π− and Π+ states:

• ∆J = 0,±1

• total parity +↔ −, + 6↔ + and − 6↔ −

• nuclear spin symmetry s↔ s, a↔ a and s 6↔ a

• electronic parity u↔ g, g 6↔ g and u 6↔ u
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a) b)

Figure 5.4: (a) Schematic diagram [128] of the allowed ionization transitions for (3 + 1)

REMPI of H2 via the C1Πu state. (b) Photoelectron spectrum measured for a three-

photon resonant H2 C1Πu, v′ ← X1Σ+
g , v′′ = 0, Q(1) transition [128].

yielding for the respective transitions different sets of rotational states in the H+
2 ions.

For the two cases presented here, only even ionic rotational levels are accessed from

photoionization via R(0), whereas odd rotational levels are populated in the ion through

the Q(1) path [129, 130].

Figure 5.4(b) shows a measured photoelectron spectrum for H+
2 ions produced through

the Q(1) transition from neutral molecules in the vibrational ground state [128]. The

spectra convincingly demonstrate that molecular ions are only produced in the N+ = 1

and 3 rotational states1, in agreement with the selection rules. Furthermore, it can be

noticed that the N+ = 1 ionic rotations are predominantly created from low vibrational

levels v′ of the C1Πu state. This opens up the possibility of selective H+
2 ion production in

distinct rotational and vibrational states. For the experiments presented in the following

mainly Q-transitions via different vibrational levels v′ of the C1Πu state were chosen.

Unfortunately, for the production of vibrational ground state ions the R(0) transition

1The ionic rotational state is labeled here by N
+ in contrast to the J

+ notation used throughout this

chapter.
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wavelength overlaps with the one corresponding to the R(1) transition [127]. Therefore,

it was not possible to create ions both in the vibrational and rotational ground state

through the (3 + 1) REMPI process at the high laser intensities applied in the current

setup [131].

LISE setup and preliminary experiments

In the collaboration of the present experiment the H+
2 ion production by LISE is realized

through the above described (3 + 1) REMPI technique with an intense Nd:YAG laser,

which is tuned to the selected transition (operating with ∼30 mJ close to ∼300 nm; the

detailed properties depend on the selected ionization path [88]). The laser beam is focused

below a nozzle for the H2 gas inlet and the created ions can then be extracted through a

series of electrodes [88]. Typically on the order of 1×106 ions are produced, yielding an ion

current of ≤5 pA. Alternatively, ionization can be achieved by a filament through electron

impact ionization which produces higher ion currents (∼100 nA) and is thus favored for the

adjustment of the extraction as well as the first acceleration stages. LISE was developed

and optimized to yield an efficient ion production at the University of Louvain-La-Neuve,

Belgium. Independent measurements utilizing dissociative charge exchange of H+
2 ions

with a Potassium jet thereby convincingly confirmed the dominant (∼90%) creation of

ions in a single vibrational state, in agreement with the photoelectron spectra in Fig. 5.4.

A measurement resolving the ionic rotational excitations of the produced ions was not yet

performed. In Table 5.1 the measured vibrational state populations of the H+
2 ions are

compared for the Q(1) transition via the v′ = 0 or 1 vibrational state of H2 C1Πu. Further

details to these measurements together with additional wavelength dependent results can

be found in [88].

In order to perform DR experiments at the TSR, LISE was temporarily installed at the

HSI accelerator. The ions created in LISE are extracted and subsequently accelerated

to 0.96 MeV in the RFQ accelerator before injection into the TSR. There they were

optionally overlapped with electrons both in the electron cooler as well as the electron

target (photocathode). At typical electron currents of Itarget = 0.92 − 0.98 mA (ne ∼
2.9 × 106 cm−3) fragment imaging and DR rate measurements could thus be performed

at selected detuning energies with an energy resolution similar to the one stated for the

HD+ measurements, i.e. characterized by kT‖ ≈ 0.03 meV and kT⊥ ≈ 0.5 meV.

The ro-vibrational population of the injected and circulating ions were monitored through

DR induced breakup events by the fragment imaging setup as a function of storage time.

For this purpose the electron beam in the electron target section was accelerated to the
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Table 5.1: The measured vibrational state (v+) populations of H+
2 ions produced through

Q(1) transitions via the v’= 0 or v’= 1 vibrational state of H2 C1Πu [88].

Ionization path Vibrational state v+ Measured population (%)

302.35 nm 0 91.0 ± 1.2

(Q(1),v’=0) 1 8.6 ± 0.9

2 0.4 ± 0.9

295.85 nm 0 8.4 ± 1.5

(Q(1),v’=1) 1 85.9 ± 1.9

2 5.7 ± 1.5

velocity, which matches the one of the circulating ions, i.e. tuned to Ed = 0 eV. From

the obtained transverse distance distributions the different amounts of kinetic energy

release could be identified to yield the relative contributions bv+,J+,1s,2 of initial-to-final-

state DR channels (Eq.(3.10)). Since the ion production in LISE was restricted to low

vibrational states (v+ < 3), the final atomic product state configuration was limited

to H(1s) + H(2). Therefore, the obtained transverse distance distributions can only differ

by the ro-vibrational state distribution of the stored ions and allow direct comparison

between different ionization pathways and storage times. In particular, the high spatial

resolution of the detection system enables the identification of contributions down to the

rotational level.

The vibrational populations of H+
2 ions produced through the Q(1) (v’= 1) transition,

were monitored accordingly as a function of storage time. The results are presented in

Fig. 5.5. In this storage time period the time dependence of the vibrational state fractions

is markedly different to the one for ions from a standard ion source, as presented in Fig. 5.2

earlier.

Within the first two seconds after injection, the recorded data comply with the dominant

vibrational and rotational ionic state contribution as the close-up view of Fig. 5.5(b) in

Fig. 5.6 reveals. In Fig. 5.6 the obtained distribution is compared at large transverse

distances to different model functions Fv+=1,J+=1,3(D), which correspond to J+ = 1 and

3 ionic rotational states in v+ = 1, respectively. Although, based on the selection rules,

the ionization can yield both J+ = 1 and 3 ionic excitation levels, the data comply with a

dominant (v+ = 1, J+ = 1) - fraction shortly after injection. This agrees with the results

of the photoelectron spectra [128] shown in Fig. 5.4.
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Figure 5.5: (a) As function of storage time the ionic ro-vibrational state contributions

(v+, J+) are extracted from the recorded transverse distance distributions of H+
2 ions

produced in a Q(1) transition from the v′ = 1 C1Πu Rydberg state. Samples of measured

transverse distance distributions are taken at three different storage times (see marks in

(a)) and are displayed in windows b, c and d. The data are shown together with fitted

model functions of the respective ionic state contributions (color code resembles the one

in inlet (a)).

Applying the velocity matched electron beam over an extended period to the circulating

ions, induces vibrational cooling through SEC. This affects the state populations and

is reflected by the rapidly enhancing ground vibrational state fraction in the transverse

distance distributions (Fig. 5.5). After ∼18 s the lowest two v+ state contributions have

reached an equal level in the recorded DR events.

Also note the nearly constant number of events associated with large transverse distances

exceeding the expected kinetic energy release (KER) of (v+ = 1, J+ = 1)-ions. Their
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Figure 5.6: The measured fragment distance
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KER resembles closely the one for v+ = 2 ions, which in fact exhibit a small initial

population in the ion source (Table 5.1). Considering a similar SEC cooling time as for

the v+ = 1 ions [68], fractions originating from v+ = 2 ions should rapidly approach a

negligible amount within the first seconds after injection, contrary to the observation. On

the other hand, coincident background events are excluded to cause these events due to

the good beam quality, so that they probably originate from ions exposed to an efficient

ro-vibrational heating process or from DR induced molecular breakups in the toroidal

sections of the electron target. Despite of their origin, their relative contribution hardly

exceeds a few percent and is thus treated as an v+ = 2 ionic fraction in the following

analysis. Since explicit measurements on v+ = 2 ions were not performed, the angular

distribution of the v+ = 2 fraction is taken to be isotropic although a possible anisotropy

cannot be excluded at non-zero collision energies.

The here presented vibrational state contributions reflect both the population of the

stored ions as well as the state specific DR rate coefficients. Earlier measurements [68]

have shown that in particular the v+ = 1 rate is ∼10 times larger than the one for v+ = 0

ions at near-zero electron collision energies, thus severely influencing the measured state

fractions of DR events.

Consequently, DR measurements with ions produced via the v′ = 0 C1Πu Rydberg state

will yield only a restricted state selectivity; small v+ = 1 populations from the ion source

will significantly contribute to the recorded DR events. Figure 5.7 illustrates an exam-

ple for a measurement employing the Q(1) (v′ = 0) ionization pathway. Although the

independent measurements on dissociative charge exchange (see Table 5.1) as well as the

photoelectron spectra in Fig. 5.4 have found a dominant v+ = 0 population, almost equal

level fractions are deduced from the recorded DR events. Employing vibrational cooling
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Figure 5.7: (a) As function of storage time the ionic ro-vibrational state contributions

(v+, J+) are extracted from the recorded transverse distance distributions of H+
2 ions

produced in a Q(1)(v′ = 0) transition. The measured transverse distance distribution

averaged over the events recorded between 0.5 s and 1.5 s after injection is displayed in

(b) together with fitted model functions of the respective ionic state contributions (color

code resembles the one in inset (a)).

through SEC will enhance the v+ = 0 population. Nevertheless, the v+ = 1 contribution

will have to be taken into account accordingly in the analysis, in particular in vibrationally

averaged DR rate measurements, where the vibrational state fractions are not identified.

5.2 State selective measurements

Taking advantage of the ro-vibrational state selectivity provided by the H+
2 ion production

in LISE, this opens up the possibility to study both the DR rate and the fragmentation

kinematics of distinct ionic state configurations. Hence, a range of REMPI ionization

pathways has been scanned providing ions in the lowest two vibrational states (v+ = 0, 1)

and their first three excited rotational levels (J+ = 1, 2, 3) for the present experiments.

The configurations are summarized in Table 5.2. The present work will concentrate on

the results obtained on the fragmentation dynamics but will start out by presenting the

measured DR rate coefficients.
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Table 5.2: Summary of the REMPI transitions employed to yield selected ionic ro-

vibrational state configurations for DR rate (marked by ◦) and fragment imaging (marked

by ×) experiments.

Transition vibrational state

(dominant J+) v′ = 0 v′ = 1

Q(1) (J+ = 1) (◦;×) (◦;×)

Q(2) (J+ = 2) (◦) (◦;×)

Q(3) (J+ = 3) (◦) (◦;×)

5.2.1 DR rate coefficients of selected ro-vibrational states

The DR rate coefficient αDR(Ed) was measured as a function of the electron detuning

energy Ed independently for H+
2 ions produced via the lowest two vibrational (v′ = 0, 1)

C1Πu Rydberg states in Q(1), Q(2) and Q(3) transitions, i.e. expecting to dominantly

find J+ = 1, 2 and 3 ionic states, respectively. After combined phase-space cooling of the

ion beam by electrons generated both in the electron cooler and the electron target the

measurements were restricted to storage time cycles of . 5 s. Thereby the data acquisition

followed the general procedure common in DR rate measurements at the TSR [17] as

briefly also introduced in Sec. 4.2, i.e. implied fast switching of the electron velocity within

consecutive steps lasting ∼ 50 ms between the measurement and the reference value used

for a relative normalization. The final analysis comprises, among others, corrections for

event contributions stemming from electron-ion collisions in the toroidal section of the

electron target. The analysis then yields the DR rate characterizing ions created through

the selected ionization path.

Preparing H+
2 ions through the REMPI ionization process via v′ = 0 C1Πu causes in

addition to the dominant v+ = 0 also a small v+ = 1 (8.6 %) ionic state population of

the stored ions; accordingly the v′ = 1 ionization path prepares also v+ = 0 ions (8.4 %;

see Table 5.1), whereas the v+ = 2 contribution is neglected in the following. Additional

minor rotational state fractions populated in the ion production will also be neglected.

The measured DR rate

α
(v,J+)
DR (Ed) =

∑

v+

pv+ α
(v+,J+)
DR (Ed) (5.2)

thus reflects a superposition of vibrational states, instead of a pure v+ rate coefficient

(indicated by v). Therefore α
(v,J+)
DR has to be decomposed according to the vibrational
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Figure 5.8: Decomposed DR rate coefficients α
(v+,J+=1)
DR for v+ = 0 (red solid line) and

v+ = 1 (black solid line) ions in the J+ = 1 rotational state [88].

populations pv+ in order to yield the individual components α
(v+,J+)
DR (Ed) as a function

of the detuning energy Ed. Knowing the vibrational state populations pv+ of the stored

ions (assume the ones from Table 5.1) and the relative vibrational state contributions

of the DR events ((pv+ · α(v+,J+)
DR )/α

(v,J+)
DR ) deduced by fragment imaging measurements,

the individual rates can be decomposed from the recorded total signals α
(v,J+)
DR at a fixed

detuning energy Ed. Subsequently this allows to extract α
(v+,J+)
DR (Ed) from the measured

total signals α
(v,J+)
DR (Ed) as a function of the detuning energy as described in [88].

This procedure has been applied for each rotational state J+ in order to yield the indi-

vidual ro-vibrational DR rates α
(v+,J+)
DR (Ed). The absolute DR rate cannot be determined

since the ion current of the stored ions was too low for the diagnostic tools at the TSR.

Instead the decomposed DR rate coefficients were scaled to α
(v+=0,J+)
DR which itself was

normalized to the well measured v+ = 0 HD+ DR rate at 9 eV [10]. The resulting de-

composed DR rates for H+
2 ions in the rotationally first excited state (J+ = 1) of v+ = 0

and 1 are compared in Fig. 5.8.
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Low-energy H+
2 DR resonances for selected ionic states

Focusing on the low-energy range where the strongest influence of initial ionic rotational

states is expected, the decomposed scaled DR rates (α̃DR = α
(v+,J+)
DR

√
Ed), of the v+ = 0

and 1 ionic vibrational and the first three excited rotational states (J+ = 1, 2, 3) are

presented in Figs. 5.9 and 5.10, respectively. Thereby, the low-energy resonant structures

are particularly accentuated by this representation which reduces their comparison to a

discussion independent from the general inverse proportionality on the detuning energy

associated with the cross section of the direct DR process.

The decomposed DR rates find in agreement with earlier measurements and theoreti-

cal predictions [11, 123] an enhancement of the v+ = 1 rate coefficient at low detun-

ing energies compared to the one associated with the ground vibrational state (see also

Fig. 5.8). Moreover, these measurements reveal pronounced energy dependent structures

which characterize the DR rate of a distinct ro-vibrational state of the H+
2 ion. Note

that the resonant character not only change for different vibrational states, but also show

distinct features connected to the ionic rotational level. These appear both as a local

reduction but also as an enhancement of the DR rate at specific electron energies. Only

at selected electron collision energies similar features can be pointed out for different ionic

channels. For instance, in the vicinity of Ed ∼7 meV the vibrational ground state ions

exhibit a peak-like structure which coincides with a local reduction of the v+ = 1 DR

rates for all three rotational states.

The variations of the DR rate coefficients are associated with the formation of intermediate

Rydberg states through resonant electron capture by the ion. They are observed with

comparable strength and frequency for both the v+ = 0 and 1 ions, suggesting a similar

importance of the indirect DR mechanism for both initial ionic states.

Below the electronic ground state 2Σ+
g of the H+

2 ion an infinite series of Rydberg states

converges to the ionization limit. The capture of an electron into one of these Rydberg

states is limited by total angular momentum conservation between the continuum and

resonant state. This imposes selection rules for the formation of resonances which are

determined by |∆J | = |J ′ − J+| ≤ 2l [16], where J ′ is the rotational excitation of the

Rydberg state and l the partial wave of the incident electron. For H+
2 the contributing

partial waves are s and d, i.e. l = 0, 2 (see also Sec. 4.3.1), so that the change of the

rotational quantum number by the electron capture is restricted to |∆J | ≤ 4 and ∆J even

due to the symmetry, still remaining with a large number of accessible states.

Hence, in Figs. 5.9 and 5.10 only the limits of Rydberg series associated with ∆J = 2, 4

and ∆v = |v′ − v+| = 0 are marked by the lines. There are more Rydberg series corre-
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Figure 5.9: The scaled DR rate coefficients α̃DR are presented for vibrational ground state

(v+ = 0) H+
2 ions with rotational excitation J+ = 1, 2, 3, respectively, after decomposition

from the (v+ = 1)-fraction (Fig. 5.10) as described in [88]. The vertical lines indicate the

limit of Rydberg series with ∆v = 0 and ∆J = 2 (red) or 4 (green).
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sponding to changes in the vibrational state, but the limits are out of the plotted range.

The ones shown here indicate the energy range where the electron capture can resonantly

form a mono-excited Rydberg state by a change of the rotational quantum number by a

value of 2 or 4. They roughly coincide with the most pronounced measured structures in

the DR rate coefficient, but for their complete assignment to a distinct Rydberg state the

energetic positions of individual intermediate states will have to be considered. Although

the initial ionic state is already known this is beyond the scope of this work but can

provide in particular in future theoretical calculations a first indication for the energetic

location of resonances.

However, it should be noted that the decomposition of the measured DR rates into the

individual ro-vibrational contributions is achieved only down to the vibrational level,

i.e. in particular the influence of additional rotational states which are partly populated

by the selected ionization path cannot be disentangled in the final result. Especially

for the Q(1) ionization path also a small J+ = 3 ionic population is created besides

J+ = 1 ions, which influences the measurement once α
(v+,J+=3)
DR becomes large. Indeed,

fragment imaging measurements at 10 meV indicate a possible J+ = 3 ionic contribution

in the recorded DR events from ions produced through the Q(1) (v′ = 1) transition. In

Fig. 5.11 the corresponding data at large transverse distances are compared to model

functions associated with a kinetic energy release from either J+ = 1 or 3 ionic states.

The comparison suggests a significant J+ = 3 fraction. Its relative contribution cannot

be quantified as it will require to include unknown state specific angular distributions in

the analysis procedure.

A further detailed comparison to present theoretical calculations as well as to recent ex-

periments at CRYRING [123], which employed a supersonic expansion source together
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with vibrational SEC in the storage ring in order to study the H+
2 DR rates in the low-

est ro-vibrational levels, can be found in [88]. Here, the studies will continue on the

fragmentation dynamics associated with the electron capture process and focus in par-

ticular on the role of selected ro-vibrational states at defined electron collision energies.

These will give access to the involved electronic symmetries through the fragment angular

distributions towards a complete picture of the resonant electron-ion interaction.

5.2.2 Angular distributions of selected ro-vibrational states

Taking advantage of the selective ion production in LISE the fragmentation dynamics

are studied in the following. Similar to the experiments on HD+, the studies employ

the fragment imaging technique and focus mainly on the fragment angular distributions

associated with the resonant range of the DR cross section at low relative electron collision

energies, i.e. below ∼ 130 meV. The aim is to explore on the one hand at a particular

collision energy the electronic symmetry associated with a DR resonance and on the other

hand compare explicitly the influence of the initial ionic state on the fragment angular

distribution. While the fragment angular emission is quantitatively deduced from the

transverse distance distribution, additional information on the ionic state contributions

are extracted from the measured kinetic energy release, accessible by the complete 3D

data. This will allow the identification of small vibrational state fractions in the recorded

data which might not be distinguishable from the transverse distance information alone.

In fact, at the applied electron collision energies only one final atomic product state

configuration is accessible (H(1s) + H(2)) so that varying amounts of kinetic energy

release can only be caused by ro-vibrational excitations of the H+
2 ion.

The measurement scheme is adapted to the one employed in the HD+ experiments except

that the electron target acceleration voltage is already detuned as soon as the combined

phase-space cooling of the molecular ion beam has been completed, i.e. typically after

0.5 s. H+
2 ions are prepared through four different REMPI ionization pathways in distinct

ro-vibrational ionic state configurations for these experiments (see Table 5.2). Therefore

the measurement grid covers a less dense energy range compared to the HD+ measurement

series. The selected electron collision energies focus on pronounced resonant structures

appearing in the state specific DR rates at Ed ∼ 11 meV, 23 meV, 50 meV, 130 meV as

well as at zero detuning energy (compare to measured DR rate in Figs. 5.9 and 5.10).
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Identification of the ionic states and angular emission analysis

The ro-vibrational ionic state distribution of the stored ions is determined, on the one

hand, by the initial population prepared in the REMPI process but can, on the other

hand, also be influenced by elastic collisions, mainly with electrons, during the storage of

the H+
2 ions in the TSR. This requires the identification of possible ro-vibrational state

contributions through their kinetic energy release in the first analysis step of fragment

imaging measurements. Subsequently, an appropriate restriction on the storage time can

reduce the influence of minor ro-vibrational state fractions and enhance the focus on the

dominant level contribution. For instance, in case of the example presented in Fig. 5.5 at

zero detuning energy, the data acquired within the first ∼ 2 s agrees with a single state

contribution, whereas at larger storage times a significant influence of the v = 0 level

population induced through vibrational cooling by SEC becomes visible.

With a nearly isotropic angular emission at zero detuning energy the ro-vibrational state

contributions can still precisely be inferred from the transverse distance distribution alone.

However, at low detuning energies possible additional anisotropic emission interferes with

the identification of level contributions. In particular the energetically close vibrational

ground state fraction might remain hidden under an anisotropic transverse distance dis-

tribution attributed to the first vibrationally excited state. Hence, only the full 3D mea-

surement can disentangle the various contributions through their kinetic energy release,

i.e. the measurement of both the transverse distance as well as the fragment impact time

differences are required.

At the current fast ion beam velocities the fragment impact time differences at the de-

tector are too short compared to the time resolution. Thus a complete separation of

the vibrational state contributions based on the determination of the kinetic energy re-

lease cannot be achieved for the analysis of the fragment angular distributions. But the

additional time information is used here to identify the contributing ionic state fractions.

Employing a restriction on events with short impact time differences, i.e. nearly perpen-

dicular fragmentation to the beam direction, will reduce the influence both of the limited

time resolution as well as the angular emission characteristics on the remaining spectra. In

this case the transverse distance D approximately reflects the 3D fragment distance D3d,

which is proportional to the kinetic energy release (Eq.(3.2)). Thus, exploiting the high

transverse distance resolution, even small vibrational state contributions can be identified

at distinct transverse distances D. The remaining data are only smeared by the finite

overlap positions of the electrons in the electron target, i.e. by the possible different flight

distances.
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Figure 5.12: The recorded DR events of H+
2 ions (Q(1) (v′ = 1) ionization path) at

Ed = 50 meV are compared between early (A; t < 1 s) and late storage times t (A;

t > 8 s). The data are represented both by the 2D information, i.e. the transverse dis-

tance distribution (a), and the complete 3D information (b). In window (a) the black

solid line represents the total fit result using Eq.(3.10), which is decomposed into the

individual ionic fractions (v+, J+). In (c) the data are restricted to nearly perpendicular

fragmentation events (∆z < 3 mm).
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An example is given in Fig. 5.12 for the measurement of the fragmentation kinematics at 50

meV electron detuning energy with ions produced through a Q(1)(v′ = 1) transition. The

kinetic energy release of these events can be read from the radius in the central graph

where the fragment impact time differences ∆t (corresponding to ∆z after conversion

into a length scale) are plotted versus the simultaneously measured transverse distances

D. After storage times of about 8 s (Fig. 5.12 B), the ions initially created with a

dominant population in the v+ = 1 state are partly cooled to the vibrational ground

state through SEC. These events are characterized by their lower kinetic energy release

and hence recognized in Fig. 5.12 B(b) by their smaller radius. In the transverse distance

distribution they are found at shorter distances (Fig. 5.12 B(a) and (c)). Immediately after

the injection (. 1 s), on the other hand, only the complete 3D information convincingly

reveals that the v+ = 0 contribution is still at a negligible level (Fig. 5.12 A) which

allows to attribute the angular dependence fully to ions in the first vibrationally and

rotationally excited state; the rotational excitation being inferred from the transverse

distance distribution.

As mentioned earlier (p. 103), events at higher transverse distance D, whose energy release

exceeds the one for v+ = 1 ions, most likely originate either from the toroidal section or

ro-vibrationally excited ions. Their relative contribution remains small and is thus treated

as v+ = 2 ionic fractions with a fixed isotropic emission pattern in the analysis.

The outlined procedure allows to trace even small vibrational state fractions and to re-

strict the data by selection of the storage time period to yield their least influence. The

fragment angular emission characteristics can then be determined from the transverse dis-

tance distribution of the remaining data, following accordingly the analysis described for

HD+ (Secs. 3.2.2 and 4.2.2). Also here the angular distribution of the H+
2 fragmentation

is represented by Legendre polynomials of even order l. The maximum order is again

recognized as l = 4 while even higher orders remain on a negligible level and hence set to

zero in the final analysis.

In case more than one ionic state fraction have to be considered, the analysis procedure

becomes less straight forward since either one can exhibit a distinct angular emission pat-

tern. Then the angular distribution associated with the individual ionic state fractions

can only be uniquely disentangled from a step-wise analysis procedure if one of them has

been analyzed independently. For instance, in Fig. 5.12 the v+ = 0 fragmentation prop-

erties are deduced from the total transverse distance distribution (storage times > 8 s)

by treating the v+ = 1 ionic fraction with a fixed angular dependence, which has been

obtained independently at earlier storage times. This procedure was generally required

to extract the v+ = 0 angular distributions since even small populations of v+ = 1 ions
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caused a significant influence due to the larger state specific DR rate (see Fig. 5.8). The

v+ = 0 Legendre coefficients could thus often only be deduced by the expense of a larger

uncertainty.

Angular emission properties

Utilizing the analysis procedures outlined above, the fragmentation kinematics at specific

resonances in the DR cross section of H+
2 have been studied. The obtained Legendre coef-

ficients characterizing the fragment angular distribution of ions in selected ro-vibrational

states are presented in Figs. 5.13 (v+ = 1) and 5.15 (v+ = 0) in comparison with the state

specific scaled DR rates α̃
(v+,J+)
DR .

They point out a strong anisotropy with varying contributions from both the 2nd and 4th

order Legendre polynomials. Note, that the a2 coefficients are on average slightly higher

than those describing the HD+ fragmentation in Sec. 4.2.2 while the range of a4 values

mostly comprises the one extracted for HD+. The deduced Legendre coefficients not only

deviate from zero but also exhibit a dependence on the electron detuning energy which

they express through a slight increase towards larger energies. Variations on a similar

narrow energy scale, which have been found for the HD+ fragmentation, are not observed

but might display by increasing the density of the measurement points.

Moreover, the present data indicate a dependence of the observed angular distribution

on the ro-vibrational ionic state. For measurements at the same detuning energy Ed the

extracted anisotropy coefficients a2 and a4 vary for different vibrational and partly even

rotational states of the H+
2 ions.

Focusing first on the anisotropy results associated with (v+ = 1) - H+
2 ions (Fig. 5.13), one

finds that a dependence on the ionic rotational states is less accentuated at the lowest two

measured electron collision energies, i.e. below ∼23 meV. In contrast, the state specific

Legendre coefficients a2 and a4 notably differ from each other in the measurement series at

∼50 meV, which is recognizable already in the recorded transverse distance distributions.

They are presented separately in Fig. 5.14 together with the fitted model functions. The

data obviously comply with the kinetic energy release from the expected dominant vibra-

tional and rotational level population, and are neither noticeably influenced by v+ = 0 nor

v+ = 2 contributions. The most distinct anisotropy can be associated with J+ = 2 ions,

which exhibits Legendre coefficients at least 1.5 times larger as obtained for the angular

dependence from the J+ = 3 ionic state. Especially the fragmentation into the forward

direction is preferred, suggested by the enhanced number of events recorded at distances

below ∼20 mm.
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Figure 5.13: (a) The scaled DR rate coefficient α̃
(v+=1,J+)
DR (Fig. 5.10) and the obtained

Legendre coefficients a2 (b) and a4 (c) as functions of the electron detuning energy for the

different rotational states J+ of v+ = 1 ions. The results are compared to the expected

angular dependence of a pure incident d partial-wave in the axial-recoil approximation

after convolution with the flattened Maxwellian velocity distribution of the electron beam

(dashed lines in (a) and (b); more details in Sec. 5.2.3).
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Figure 5.14: The measured transverse distance distributions from DR events at 50 meV

are given for different ionic rotational J+ states in the v+ = 1 vibrational excitation.

The green solid lines represent the result of fitted model functions (Eq.(3.10)) for the

respective ion state contributions: (a) [v+ = 1,J+ = 1] ([v+ = 2,J+ = 1] - background

contribution; red), (b) [v+ = 1,J+ = 2] and (c) [v+ = 1,J+ = 3].
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Figure 5.15: (a) The scaled DR rate coefficient α̃
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DR (Fig. 5.9) and the obtained

Legendre coefficients a2 (b) and a4 (c) as functions of the electron detuning energy for the

different rotational states J+ of v+ = 0 ions. The results are compared to the expected

angular dependence of a pure incident d partial-wave in the axial-recoil approximation

after convolution with the flattened Maxwellian velocity distribution of the electron beam

(dashed lines in (a) and (b); more details in Sec. 5.2.3).
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The analysis of v+ = 1 ionic dissociation properties is assisted by the enhanced state

specific DR rates in addition to the dominant production in the Q(J)(v′ = 1) ionization

path, facilitating their study unaffected from other vibrational contributions. In contrast,

v+ = 0 fragment angular distributions are only accessible by properly considering the

v+ = 1 fraction in the recorded DR events since the higher v+ = 1 DR rate causes the

enhancement of even small v+ = 1 ionic populations.

Except for the measurement at ∼ 23 meV, which studied ions produced through Q(1)(v′ =

0) transitions dominantly in (v+ = 0) - states, all results presented in Fig. 5.15 were

obtained with stored H+
2 ions initially created in Q(J)(v′ = 1) transitions, i.e. starting

with a dominant v+ = 1 ionic population. Consequently, vibrational cooling through SEC

had to be employed in order to enhance the v+ = 0 population. Nevertheless, the resulting

v+ = 0 contribution to the recorded DR events remains small within the applied storage

times compared to the dominant v+ = 1 fraction in the transverse distance distributions.

Accordingly the uncertainty on the fitted anisotropy coefficients a2 and a4 in Fig. 5.15 are

larger. In particular the anisotropy at 50 meV (J+ = 2) is deduced from low statistics of

the (v+ = 0) - fraction and gives an estimate only. The data point is shown for the sake

of completeness and should not take part in a detailed discussion.

By comparing the extracted v+ = 0 anisotropy coefficients to the ones for v+ = 1 the

angular distributions partly reveal a dependence on the vibrational ionic state, for instance

compare at 23 meV and 50 meV the values for J+ = 1 ions. A possible rotational

state dependence cannot be recognized for the v+ = 0 results and will require smaller

uncertainties of the deduced coefficients.

Apart from the state specific differences characterizing the extracted anisotropy co-

efficients at certain detuning energies, no general trend can be depicted for the ro-

vibrationally resolved fragment angular distributions. For instance, slow rotating ions

do not show a higher anisotropy. Also the comparison with the scaled DR rate coef-

ficients does not reveal similar correlations as found in the measurements on HD+. A

comparable detailed analysis will require a higher density of the measurement points.

5.2.3 Comparison to model angular distributions

Currently, there are no explicit theoretical calculations available or being performed which

yield, similar to the MQDT-results for HD+, predictions on the H+
2 angular distributions

by taking into account the specific ro-vibrational ionic states at the applied electron

collision energies. Therefore the discussion of the obtained anisotropies will focus on

a comparison to model distributions based on the dominant partial wave treatment by
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Guberman [59], both in and beyond the axial-recoil approximation. The same possible

electronic symmetries of the captured electron will have to be considered therein as in the

case of the deuterated hydrogen molecule HD+ in Sec. 4.3.1, that is expecting a dominant

d partial-wave [14] with possible s-wave influence [16, 72]. The discussion will thus follow

the one outlined for HD+ in Secs. 4.3.1 and 4.3.3.

First, the electronic symmetry of the incoming electron is treated in the dominant partial

wave model [59] with a pure d-wave and assuming the validity of the axial-recoil approx-

imation. The expected angular dependence associated with the Y2,0-spherical harmonic

(Eq.(4.7)) is contrasted with the measured anisotropy coefficients in Figs. 5.13 and 5.15

(see previous section) for v+ = 1 and v+ = 0 ions, respectively, after proper convolution

over the electron velocity distribution (Eq.(4.10)).

The obtained 4th order Legendre contributions in the H+
2 angular distributions sup-

port the predicted d-wave influence in the DR process of H+
2 . However, their ampli-

tudes significantly deviate from the one expected in case of a pure d-wave treatment

(a4,d = χ4(Ed)18/7), whereas simultaneously the a2 coefficients are close to the one pre-

dicted (a2,d = χ2(Ed)10/7), both in case of v+ = 1 and v+ = 0 ions (not regarding the

value at 50 meV for (v+ = 0, J+ = 2) ions because of the large uncertainty of this partic-

ular measurement as discussed on page 120 ). Furthermore the variations of the observed

angular distributions as a function of the electron collision energy as well as for different

ionic excitations cannot be explained by this model.

Consequently, in the next step the possible contribution of the incident electron’s s partial-

wave is considered, closely following the analysis of the HD+ results within the axial-recoil

approximation. Taking into account a superposition ‖cs Y0,0 + cd Y2,0‖2 of s and d partial-

waves (Eqs.(4.12)-(4.14)) yields both the relative d-wave amplitudes |cd|2 as well as the

s and d partial-wave phase shifts cos ǫ presented in Figs. 5.16 and 5.17 for H+
2 ions in

v+ = 1 and v+ = 0, respectively.

The results for H+
2 ions in the first excited vibrational state (Fig. 5.16) imply low relative

d-wave amplitudes |cd|2 at the selected electron detuning energies, reaching at maximum

a value of ∼30%, supporting the above conclusions from the pure d-wave approach. The

relative phase ǫ between the s and d partial-waves is deduced from both a2 and a4 values

and displayed in Fig. 5.16(b). Both partial waves are found to contribute to the DR process

through a coherent sum with a nearly constant relative phase of ǫ = π/3 at the studied

energies, i.e. suggest interfering s and d partial-waves. This is also corroborated by the

ratio a4/a2, which deviates from an incoherent superposition (ã4/ã2 = 18/10) reflected

by the dashed line in Fig. 5.16(c). The possible dependence of the ionic rotational state

121



CHAPTER 5. STATE-SELECTIVE DR OF H+
2

a
4

/ a
2

Electron energy   (meV)

(a)

(b)

(c)

|c |d
2

cos e

1.0

0.5

0.0

2.0

1.0

0.0

-1.0
2.0

1.5

1.0

0.5

0.0

0 10 20 30 40 50 130 140

v =1, J = 1+ +

v =1, J = 2+ +

v =1, J = 3+ +

Figure 5.16: Similarly to Fig. 5.17, the (a) squared d-wave contribution |cd|2, (b) the s and

d relative phase represented by cos ǫ and (c) the ratio a4/a2 are given for the measured

results of v+ = 1 H+
2 ions assuming interfering s and d partial-waves. The a4/a2 ratio is

compared to the case of incoherent superposition of both symmetries after convolution

with the flattened Maxwellian velocity distribution of the electron beam (dashed line).

in the angular distribution can mainly be attributed to variations in the relative d-wave

amplitude |cd|2. However, J+-state dependent differences are only found on the level of

±0.15 in the relative d-wave amplitude.

Despite the large uncertainty, which hinders a rotationally resolved discussion, the v+ = 0

results (Figs. 5.17) exhibit similar to v+ = 1 ionic states mostly low relative d-wave

amplitudes |cd|2. The relative phase shift ǫ, on the other hand, approaches π/2 and

suggests a possible incoherent superposition at higher detuning energies, in fact similar

to the results on (v+ = 0)- HD+ (Fig. 4.16).
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Figure 5.17: For interfering s and d partial-waves (a) the squared d-wave contribution

|cd|2, (b) the s and d relative phase represented by cos ǫ and (c) the ratio a4/a2 are given

for the measured results of H+
2 ions in the vibrational ground state (v+ = 0). The a4/a2

ratio is compared to the case of incoherent superposition of both symmetries reflected by

ã4/ã2 = 9/5 after considering the anisotropic velocity distribution of the electron beam

(dashed line).

Relying on the validity of the axial-recoil approximation, these results do not support the

predicted dominant role of the d-wave in the electron capture process and find instead

rather large relative s-wave amplitudes. However, the observed reduction of the anisotropy

attributed to an isotropic s-wave contribution can also hint, similarly as for HD+, at the

breakdown of the axial-recoil approximation. Estimations from a semiclassical model

in Sec. 4.3.3 have suggested already for HD+ that even intermediate resonances in the

first rotationally excited state can exhibit a rotational frequency sufficient to significantly
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Figure 5.18: The relative d-wave amplitudes |cd|2 deduced from the measured a4 co-

efficients according to Eqs.(4.14) and (4.24) are presented, considering the attenuation

γ4(ωJ ′=1τ) to be caused by rotation of the molecule in a J ′ = 1 intermediate state (see

Fig. 4.19(a)). Note, values of |cd|2 > 1 (gray shaded area) are artificial and indicate that

the applied γ4 is too small (attenuation is estimated too strong).

influence the observed angular distributions. Similarly strong attenuation factors γl are

also found for H+
2 at a (J ′ = 1)-resonance lifetime of τr ≈ 0.2 ps (see dashed line in

Fig. 4.19(a) (Sec. 4.3.3)). In fact, a reduction of the initial angular dependence by a factor

of ∼3.7 and ∼6.5 can be expected according to this model and is nearly independent of

the rotational excitation of the intermediate resonance for the a2 and the a4 coefficients,

respectively (negligible difference between v+ = 0 and 1). Applied to a pure d-wave

induced fragmentation this will imply that both initial Legendre coefficients (ã2 = 10/7

and ã4 = 18/7) reduce to almost the same value of ≈ 0.4 as illustrated in Fig. 4.19(b)

(Sec. 4.3.3). This is contrary to the experimentally deduced values shown in Figs. 5.13

and 5.15 reasoning that the measured anisotropy coefficients do not comply with a pure

d-wave influence, even in a breakdown of the axial-recoil approximation according to this

model.

On the other hand, applying the suggested attenuation factors γl will yield corrected

relative d-wave amplitudes |cd|2 from the measured a4 anisotropy coefficients through

7a4/(18γ4 · χ4) (use Eqs.(4.14) and (4.24)). The results are presented in Fig. 5.18 for

v+ = 1 ions and suggest in some cases pure d-wave couplings. This is in contradiction

to the just drawn conclusion since one also has to consider the according attenuation

factor on the obtained a2 coefficients, yielding in fact too large a2 values (> 10/7) which

are not in agreement with a pure d-wave (multiply the results shown in Fig. 5.13(b)

by ∼3.7 and compare to the dashed line). In fact, the corrected a2 data even exceed
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the maximum allowed value of ≈ 3 expected for interfering s and d partial-waves (see

Fig. 4.15 in Sec. 4.3.1). Moreover, relative d-wave amplitudes exceeding unity in Fig. 5.18

due to the applied factor γ4 do not make sense from a physics point of view (note that

also for HD+ the corrected d-wave amplitude yielded values larger than one). These

findings suggest instead that the applied attenuation factor γl overestimates the effects of

a rotating molecule on the fragment angular distribution, pointing either at the possible

formation of resonances in the rotational ground state, which cannot be treated at all

by the semiclassical model, or at shorter resonance lifetimes than assumed, for instance

caused by dissociation upon the direct DR pathway.

Nevertheless, one can conclude that a pure d-wave coupling is excluded from the obtained

anisotropy coefficients, even extending the theoretical approach beyond the axial-recoil

approximation. The in general larger measured a2 coefficients compared to a4 suggest

instead interfering d and s partial-waves with a relative phase cos ǫ > 0. In view of this

theoretical treatment, ionic state dependent partial wave couplings might thus be respon-

sible for the observed (v+, J+)-dependent fragment angular distributions but one cannot

exclude additional influences originating from a breakdown of the axial-recoil approxima-

tion because of molecular rotation or different lifetimes of intermediate resonances. Latter

effects will only be disentangled in a full theoretical treatment, but is probably responsible

only for at most part of the observed state dependence.

5.2.4 Comparison to HD+ fragmentation dynamics

The dynamics of DR induced fragmentation have been studied both for the hydrogen

molecular ion H+
2 and its deuterated relative HD+ in the vicinity of low-energy ro-

vibrational Feshbach resonances. The fragment angular distributions observed for ro-

tationally averaged HD+ ions revealed significant variations as a function of energy (com-

pare Fig. 4.11 in Sec. 4.2.2). Here the role of the initial ro-vibrational ionic state in the

fragment angular distribution of the DR process was not individually accessible, but the

simultaneously obtained likewise varying rotational state contributions raised the question

of possible influences by the ionic state.

Utilizing the ro-vibrational state selectivity in the experiments on H+
2 the obtained frag-

ment angular distributions indeed find J+ dependent anisotropies, in particular at ∼50

meV. They are described by contributions from Legendre polynomials both of 2nd and

4th order. On average, the deduced a2 coefficients are slightly larger compared to those

for HD+, whereas the a4 values remain within a similar parameter range as summarized

in Figs. 5.19 and 5.20. However, the individual fragment angular distributions change
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Figure 5.19: The obtained Legendre coefficients a2 are compared as a function of energy

between the results of (a) the rotationally averaged (v+ = 0) HD+ ions and the rotationally

selected (b) (v+ = 1) and (c) (v+ = 0) H+
2 ions.

only slowly between neighboring rotational states. To yield variations in the rotationally

averaged fragment angular distributions as observed for HD+ will require, among other

possibilities, an energy-dependent enhancement of a single state-specific DR rate, or pos-

sibly the preferred d partial-wave coupling of all contributing ionic states in the resonant

electron capture process at a defined energy.

Studying the partial wave couplings through the fragment angular distributions has gen-

erally indicated only a small relative d-wave amplitude, both for the rotationally averaged

HD+ as well as the ro-vibrationally resolved H+
2 DR experiments. This contrasts with the

predicted dominance of the d-wave in the DR process. Rather, the measurement results

stress the importance of an interference between both s and d partial-waves, even in case

of a breakdown of the assumed axial-recoil approximation. However, in order to derive the
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Figure 5.20: The obtained Legendre coefficients a4 are compared as a function of energy

between the results of (a) the rotationally averaged (v+ = 0) HD+ ions and the rotationally

selected (b) (v+ = 1) and (c) (v+ = 0)- H+
2 ions.

explicit superposition of the partial waves, one will need to consider a treatment beyond

the axial-recoil approximation including a good knowledge on the resonance lifetimes.

5.3 Conclusions

Utilizing the state selective H+
2 ion production in LISE, for the first time the role of

ro-vibrationally excited ionic states in the DR process has been individually studied in

high resolution twin-electron-beam experiments at the TSR. Focusing on the low-energy

electron collision energy range, where ro-vibrational Feshbach resonances dominate the

DR cross section, both event-by-event counting and fragment imaging experiments were
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carried out.

The obtained state-specific DR rate coefficients of H+
2 ions in the lowest two vibrational

(v+ = 0 and 1) and their first three excited rotational states (J+ = 1, 2 and 3) were found

to be characterized by unique resonant structures.

The fragmentation dynamics at selected resonances of distinct ionic states were addressed

independently in 2D and 3D fragment imaging experiments. These measurements deduced

fragmentation anisotropies of 2nd and 4th order, consistently with the rotationally averaged

HD+ results and suggesting interfering s and d partial-waves of the incident electron.

Furthermore, at selected energies small but significant changes of the anisotropy indicate

a state-specific angular dependence in the DR process.
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6
Summary & Outlook

6.1 Summary

In the presented work, the fragmentation of positively charged molecular hydrogen ions

was investigated in resonant slow electron collisions in the process denoted as dissociative

recombination. Provided either with vibrationally cold HD+ molecules or with H+
2 ions in

selected vibrational and even rotational excitations, the experimental studies could for the

first time particularly focus on the product kinematics of this electron induced fragmen-

tation reaction with well-directed incident electrons at energies below ∼100 meV. These

measurements became possible by combining 2D and 3D fragment imaging with a newly

introduced twin-electron-beam arrangement at the heavy-ion storage ring TSR. Together

with a photocathode electron source, which created nearly unidirectional, cold electron

beams, the product kinematics could be studied from the measured fragment distances

at high resolution and stable ion beam conditions, probing the DR process down to a few

meV incident electron energy.

The DR process of the hydrogen molecular ion is characterized at low electron collision en-

ergies by pronounced ro-vibrational Feshbach resonances which arise from a competition

of dissociation routes following the resonant energy exchange with the nuclear motion in

contrast to the one with the electronic system alone. With only one final state accessed at

these energies, the hydrogen molecular system is particularly suited for the study of the

associated fragmentation dynamics. From the obtained fragment distance distributions

both the energy release as well as the product angular distributions could precisely be

inferred. These determine the contributing initial ro-vibrational ionic levels and directly

reflect the electronic symmetries involved in the resonance formation as long as the frag-

mentation can be assumed to occur fast enough compared to the rotation (axial-recoil
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approximation).

Applying the twin-merged beam technique, the DR product kinematics for the deuterated

hydrogen molecular ion HD+ were measured on a dense grid of energies between 10 and

80 meV in the vicinity of these resonances. As a function of the incident electron energy,

fractions of the recombination signal stemming from fast and slow rotating molecular ions

were identified from the energy release of the recorded DR events, revealing variations of

their amplitudes on a similarly narrow energy scale as the rotationally averaged HD+ DR

rate coefficient. These variations emphasize the sensitivity of the HD+ DR process on the

initial ro-vibrational state.

On the same measurement grid significant anisotropies were found in the observed frag-

ment angular distributions. Described by a superposition of even-order Legendre polyno-

mials they required contributions up to the order of 4, which, in fact, was observed for

the first time in DR experiments. Reflecting these anisotropies, the a2 and a4 Legendre

coefficients change in size even within small energy steps of only 2 meV and vary on a

likewise narrow energy scale in partial correlation with the DR rate coefficient. While

4th order anisotropies are expected from the role of the incident electron’s d partial-wave

in the entrance channel leading to DR, their amplitudes were considerably smaller com-

pared to those for the predicted large dominance of this d-wave coupling. Instead a rather

large contribution of the interfering s partial-wave was deduced from the measurements

by comparing the results to model distributions based on the axial-recoil approximation.

A possible breakdown of the axial-recoil approximation assumed in this step was consid-

ered, with estimates indicating that even for slowly rotating resonant states this approx-

imation, applied so far in theoretical treatments of DR product angular dependences, is

not necessarily satisfied. In fact, deviations from its underlying requirements can cause

significant reductions of the observed anisotropies influencing the partial-wave analysis.

The individual roles of the initial ro-vibrational states in the electron-molecule interaction

of the DR process became accessible for the first time with H+
2 ions in defined excita-

tions. In a collaborative experimental effort applying the new experimental technique,

H+
2 molecules in selected vibrationally and rotationally excited states were produced by

a state selective laser ion source (LISE) recently developed at the University of Louvain-

La-Neuve, Belgium. The measurements mainly focused on the low-energy ro-vibrational

Feshbach resonances, where the strongest influence from the initial ionic state is expected.

Taking advantage of the high resolution in the twin-merged beam setup the state-specific

DR rates were obtained for ions in the lowest two vibrational and first three excited rota-

tional states independently. Each set revealed narrow characteristic patterns down to the
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limit of the energy resolution, which reflect the resonant electron capture by ions in de-

fined initial states. Selecting from the state-specific structures particular resonances, the

associated fragmentation dynamics were studied. At energies between 10 and 130 meV

the deduced anisotropies were characterized by 2nd and 4th order Legendre polynomials

with contributions varying as a function of energy. They additionally reflected a small but

significant change of the fragment angular distributions for different initial ro-vibrational

ionic excitations. The size of the anisotropy is comparable to the one deduced for ro-

tationally averaged HD+ and likewise suggests the interference of s and d partial-waves

instead of a pure d-wave coupling of the incident electron.

The results revealed a much more detailed dynamical picture of the interplay between

electrons and molecular ions in low-energy DR processes than previously obtained. They

open up a new observational window on the low-energy ro-vibrational Feshbach resonances

and for future theoretical approaches provide a wide range of additional aspects to be

considered on the way towards a complete picture of molecular fragmentation by cold

electrons.

6.2 Future goals

Having demonstrated that the combination of high resolution fragment imaging with

the twin-merged-beam storage ring technique presents a versatile experimental tool in

molecular fragmentation studies, the doorway to elucidate neutral product kinematics

also of other molecular systems at low impact energies has been opened up. Several

improvements can still be considered on the experimental side to promote this method to

become a more frequently applied observational window in DR research.

For instance, the frame-taking rate of the camera system is currently the main factor

limiting the collection of high statistics within a short measurement time. Dynamical

aspects of the fragmentation process can thus currently be scanned over only a small

energy range, restricted by the number of measurement points that can be realized under

practical aspects within an experimental period. However, state-of-the-art 2D fragment

imaging systems with ∼10 - 20 times higher acquisition rates have become available

meanwhile and provide new possibilities.

The present detector has the advantage of recording also 3D fragmentation patterns. Im-

provements of the system, in particular by lowering the noise level and understanding the

limiting detector properties discussed as ”rate effects” on page 47, are currently planned

so that future experiments can benefit from better time resolution in the recorded 3D
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information.

In the electron target the effective overlap length of the electrons can be shortened through

changes of the electron beam guiding scheme so that not only the uncertainty in the

analysis procedure reduces, but also the sensitivity on the kinetic energy release increases.

These improvements will make it possible to revisit the fragmentation dynamics in low-

energy DR of the hydrogen molecule. For instance, employing a denser measurement grid

for the DR of state-selected H+
2 ions can elucidate the energy and ionic-state dependent

role of the participating electronic symmetries, which in the current experiments could

be sampled only at distinct electron energies. Furthermore, utilizing a buffer gas cooled

radio-frequency multipole ion trap [124] for the HD+ production can, at least within a

short storage-time window, provide ions dominantly in the ro-vibrational ground state

which were not yet available in the present experiments.

Gaining a good control over the collision processes of these ”simplest” molecular ions

will certainly encourage the extension of the studies towards heavier (multi-electron) as

well as polyatomic molecules. 3D fragment imaging will then be an indispensable tool in

order to uniquely determine relative fragment positions for the study of the fragmentation

dynamics. In fact, the present detection system has been developed to measure impact

time differences and positions for an in principle unlimited number of fragments, thus

well suited for the study of polyatomic molecules. Supplementary information can even

be expected from a presently installed new detection system at the BAMBI beamline, an

energy sensitive multi-stripe detector (EMU), which will yield event-by-event access to

the individual fragment masses and thus the final branching channels in DR reactions.

Together with new ion sources and acceleration schemes currently investigated at the

facility of the Max-Planck-Institut für Kernphysik in Heidelberg, the path towards the

study of complex molecules such as H3O
+, HCO+, HCNH+ or NH+

4 has been paved and

promises to provide new insights to their fragmentation processes.
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A. TRANSVERSE DISTANCE DISTRIBUTION

A Transverse distance distribution

Assuming the dissociation of a DR event at a distinct distance s from the detector, the

probability distribution Fs(D) for the expected transverse distances D is described by

(Eq.(3.7) [79])

Fs(D) =
D

δ2
ns
√

s2 − (D/δn)
W (θ) (1)

with the maximum laboratory emission angle δn for a defined initial-to-final-state

channel n (Eq.(3.6)) and the angular distribution W (θ) expressed through a sum of Leg-

endre polynomials Pl(cos θ) with coefficients al of order l:

W (θ) =
∑

l

alPl(cos θ) . (2)

The finite overlap of the electron beam in the electron target requires to integrate Fs(D)

over the interaction length L, assuming an equal dissociation probability between the min-

imum s1 and maximum s2 flight distance (L = s2− s1). This is done for each polynomial

Pl(cos θ) (here only even orders) and initial-to-final-state channel n = (v+, J+, nA, nB)

and yields the total model function of the transverse distance distribution applied in the

fitting procedures:

F (D) =
∑

v+,J+,nA,nB

∑

l

bv+,J+,nA,nB
al;v+,J+,nA,nB

Fl;v+,J+,nA,nB
(D) (3)

(equivalent to Eq.(3.10)) with bv+,J+,nA,nB
describing the relative contribution of the DR

channel (v+, J+, nA, nB). In this appendix the computed terms Fl;n(D) used in the anal-

ysis for the 0th, 2nd and 4th order Legendre polynomial are given (Γi (i = 1, 2) - defined

as
√

s2
i − (D/δn)2):

Expected distribution F0,n for isotropic angular dependence (l = 0; P0(cos θ) = 1):
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
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(4)
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Expected distribution F2,n for 2nd order Legendre polynomial

(l = 2; P2(cos2 θ) = 1
2
· (3 cos2 θ − 1)):

F2,n (D) =
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Expected distribution F4,n for 4th order Legendre polynomial

(l = 4; P4(cos θ) = 1
8
· (35 cos4 θ − 30 cos2 θ + 3)):
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B. ELECTRON ENERGY DISTRIBUTION

B Electron energy distribution

The convolution of the DR angular dependence over the electron velocity distribution is

performed in Sec. 4.3.1 in energy space, that is as a function of the electron energy E and

the angle β between the incident electron and the ion beam direction (Fig. 4.13). The

transformation of the generally given electron velocity distribution into a dependence on

E and β is outlined in the following:

The flattened double Maxwellian electron velocity distribution f(~ve, vd) at a given detun-

ing electron velocity vd is described by:

f(~ve, vd) =
me

2πkT⊥

(

me

2πkT‖

)1/2

e

(

−mev
2
⊥

2kT⊥

− me(v‖ − vd)
2

2kT‖

)

(7)

with

~ve =
(

v⊥ , v‖
)

(8)

and longitudinal T‖ as well as transversal T⊥ electron temperatures (me - electron mass;

k - Boltzman constant). In the first step, expression (7) is rephrased into:

f(~ve, vd) =
1

(2π)3/2σ2
⊥ · σ‖

e

(

− v2
⊥

2σ2
⊥

− (v‖ − vd)
2

2σ2
‖

)

(9)

with

σi =

√

k · Ti

me

. (10)

Defining

ve ≡ ‖~ve‖ and

v‖ = ve · cos β = ve · x ; v⊥ = ve

√
1− x2

subsequently yields

f(~ve, vd) = A · e

(

−v2
e · (1− x2)

2σ2
⊥

− (x · ve − vd)
2

2σ2
‖

)

(11)

with the parameter

A ≡ 1

(2π)3/2σ2
⊥ · σ‖

=
m

3/2
e

(2 π)3/2 k · T⊥

√

k T‖

. (12)
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Finally, after introducing the parameter ξ which describes the ratio between the longitu-

dinal and transversal electron temperatures

ξ = 1 − T‖

T⊥

= 1 −
σ2
‖

σ2
⊥

and v =

√

2E

me

(13)

one arrives at the expression for the electron energy distribution used in Eq.(4.10) :

⇒ f(E, x) = A · e
−E − (Ed/ξ)

k · T⊥ · e
−(x ξ

√
E −

√
Ed)

2

ξ · k · T‖ . (14)
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A. Orlov, M. H. Berg, A. S. Jaroshevich, B. Jordon-Thaden, C. Krantz, M. Lange,

M. Lestinsky, A. Petrignani, I. F. Schneider, D. Shafir, F. O. Waffeu Tamo, D. Zajf-

man, D. Schwalm and A. Wolf, Anisotropic fragmentation in low-energy dissociative

recombination, J. Phys.: Conf. Ser., submitted.

140



[20] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik

389 (1927), 457.

[21] B. H. Bransden and C. J. Joachain, Physics of atoms and molecules, 2nd edition,

Prentice Hall, 2003.

[22] G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic

Molecules, Van Nostrand Reinhold, New York, 1950.

[23] H. B. Pedersen, S. Altevogt, B. Jordon-Thaden, O. Heber, M. L. Rappaport,

D. Schwalm, J. Ullrich, D. Zajfman, R. Treusch, N. Guerassimova, M. Martins,
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