
DISSERTATION

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the

Ruprecht-Karls-Universität

Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

presented by

Dipl.-Phys. Stefan Philipp

born in Hannover, Germany

Date of oral examination: July 2, 2008

Design and Implementation of a

Multi-Class Network Architecture

for Hardware Neural Networks

Referees: Prof. Dr. Karlheinz Meier

Prof. Dr. Ulrich Rückert

Entwurf und Implementierung einer mehrklassigen

Netzwerkarchitektur für Neuronale Netze in Hardware

Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung einer Netzwerkarchitektur,
welche Techniken von leitungsvermittelnden und paketvermittelnden Netzwerken verbindet, um zwei
verschiedene Dienstgüten anzubieten: isochrone Verbindungen und paketbasierte Verbindungen mit
bestmöglicher Zustellung. Isochrone Verbindungen verwenden reservierte Netzwerkresourcen, um
eine verlustfreie Übertragung sowie eine niedrige Ende-zu-Ende Verzögerung mit begrenzter Varianz
zu garantieren. Die Synchronisierung aller Netzwerkknoten sowie die Berechnung einer kompakten
Reservierungsbelegung werden durch e�ziente Algorithmen gelöst. Paketbasierte Übertragungen
verwenden die verbleibende Bandbreite. Das Multiplexen beider Verkehrsklassen wird von einem
neuartigen Bypass-Switch geleistet, der skalierbar ist in der Anzahl der Schnittstellen sowie in der
externen Bandbreite und ohne eine interne Beschleunigung auskommt. Die Netzwerkarchitektur
kommt in der Forschung innerhalb des FACETS Projektes mit groÿskaligen künstlichen neuronalen
Netzen in Hardware zum Einsatz, für die Vernetzung eines verteilten Systems aus VLSI neuronalen
Netzen. Axonale Verbindungen zwischen Neuronen werden mit Hilfe von isochronen Verbindungen
modelliert, wohingegen paketbasierte Übertragung die Grundlage für eine systemweite gemeinsame
Speicherarchitektur bildet. Der zur Laufzeit ausgeführte Teil des Netzwerkes ist in programmier-
barer Logik implementiert und arbeitet mit einer externen Übertragungsrate von 3.125Gbit/s. Die
Arbeit diskutiert die anwendungsbezogenen Anforderungen an das Netzwerk, sowie dessen Entwurf
und Referenzimplementierung in programmierbarer Logik und Software. Theoretische Überlegun-
gen über die Leistungsfähigkeit werden durch Messungen und Simulationen veri�ziert. Obwohl die
Netzwerkarchitektur für die spezielle Anwendung mit neuronalen Netzen entworfen wurde, stellt
sie eine generelle Lösung für alle Netzwerkumgebungen dar, welche isochrone Verbindungen und
Paketvermittlung mit niedriger Komplexität benötigen. Die Architektur ist insbesondere für den
Einsatz in der nächsten Stufe der Hardwareentwicklung des FACETS Projektes zur Vernetzung
künstlicher neuronaler Netze auf Wafer-Ebene geeignet.

Design and Implementation of a

Multi-Class Network Architecture for Hardware Neural Networks

This thesis describes the design and implementation of a network architecture that combines
techniques from circuit switching and packet switching to provide two di�erent service classes:
isochronous connections and best-e�ort packet transfers. Isochronous connections use reserved re-
sources to provide loss-less transmissions as well as a low end-to-end delay with bounded jitter.
Synchronization of all network nodes as well as computation of a compact reservation scheme is
achieved by means of e�cient algorithms. Best-e�ort packet transfers use the remaining band-
width. Both tra�c classes are multiplexed by a novel Bypass-Switch architecture, which is scalable
in terms of port numbers and line speed and does not require internal speedup. The network
architecture is employed within the experimental framework of the FACETS project for research
into large-scale hardware neural networks, for which it interconnects a distributed set of VLSI neu-
ral networks. Isochronous connections model axonal inter-neuron connections whereas best-e�ort
packet transfers are the basis for a framework-wide shared memory subsystem. The online part
of the network architecture is implemented within programmable logic and operates at external
line rates of 3.125Gbit/s. The thesis discusses the service requirements of this kind of application,
the design and the reference implementation of the network architecture in programmable logic and
software. Theoretical results about the provided services are veri�ed by means of measurements and
simulations. Although implemented for a speci�c application, the developed network architecture
is a general solution for all network environments that require isochronous connections and packet
processing with low online complexity. It is particularly suitable for use within the next stage of
the hardware development within the FACETS project for waver-scale interconnection of hardware
neural networks.

Contents

Introduction 1

Chapter 1 - Computer Networks 5

1.1 Network Topologies . 5

1.2 Reference Models . 6

1.2.1 The OSI Reference Model . 7

1.2.2 Alternative Models . 10

1.2.3 Encapsulation of Data Formats 10

1.3 Circuit Switching and Packet Switching 11

1.4 Quality of Service . 12

1.4.1 Services Guaranteed by the Network 13

1.4.2 Techniques to Provide QoS 14

1.5 Packet Switching Architectures . 16

1.5.1 General Architecture of a Packet Switch 16

1.5.2 Output-Queued Crossbar Switches 17

1.5.3 Input-Queued Crossbar Switches 18

1.5.4 Combined Input-Output Queued Switches 19

1.5.5 Further Switch Architectures 20

1.6 Queuing Schedulers . 20

1.6.1 Schedulers to Access a Single Resource 21

1.6.2 Crossbar Schedulers . 23

1.7 Summary . 27

Chapter 2 - Framework Description 29

2.1 Arti�cial Neural Network ASICs . 29

2.1.1 The HAGEN Chip . 30

2.1.2 The Spikey Chip . 34

2.2 The FACETS Stage 1 Framework . 39

2.2.1 Nathan Network Module . 39

2.2.2 Backplane and Control PC 42

2.2.3 Connectivity . 42

2.2.4 SlowControl and PowerPC Operation 44

2.3 Neural Network Experiments . 46

2.3.1 Experimental Setups . 46

2.3.2 Interconnecting Multiple ANN Chips 48

2.3.3 Neuron Mapping . 49

I

II CONTENTS

2.4 The Transport Network . 54
2.4.1 Design Considerations . 54
2.4.2 Transport of Neural Network Data 55
2.4.3 Transport of Non-Neural Network Data 59
2.4.4 Summary of the Service Requirements 60
2.4.5 Existing Solutions . 61
2.4.6 Concept of the Transport Network 62

2.5 Summary . 63

Chapter 3 - The Multi-Class Gigabit Network Architecture 65

3.1 Overview . 68
3.1.1 Merging of Tra�c Classes . 68
3.1.2 Network Protocol Stack . 69

3.2 Framing Strategy . 70
3.2.1 Network Topology . 70
3.2.2 Formal Description . 71
3.2.3 Framing of Bandwidth . 72

3.3 Network Initialization Phase . 73
3.3.1 Parameter Selection . 74

3.4 Service for Isochronous Connections 75
3.4.1 Model of the Isochronous Switch 76
3.4.2 Contention Resolution . 76
3.4.3 Synchronization . 79
3.4.4 Resource Reservation and Connection Mapping 80
3.4.5 Online Forwarding Process 81
3.4.6 Local Port Interface . 82

3.5 Global Synchronization . 83
3.5.1 Services Provided . 83
3.5.2 Setup Process . 84
3.5.3 Overview . 85
3.5.4 Timing Scheme of the Switch 87
3.5.5 Time Counter Adjustment . 88
3.5.6 Frame Alignment and Frame Size 90
3.5.7 Synchronization Result . 98
3.5.8 Upper-Layer Synchronization Service 98

3.6 Connection Mapping . 101
3.6.1 Algorithm Overview . 102
3.6.2 Bandwidth Quantization . 104
3.6.3 Connection Routing . 104
3.6.4 Slot Assignment . 105
3.6.5 Overall Algorithm Result . 110
3.6.6 Further Remarks . 110

3.7 QoS Results for Isochronous Connections 111
3.7.1 Throughput and Drop Rate 111
3.7.2 Reliability . 111
3.7.3 Delay . 112
3.7.4 Jitter . 114

CONTENTS III

3.7.5 Summary . 119
3.8 Service for Packet-Based Transports 120

3.8.1 Packet Embedding . 120
3.8.2 Packet Format . 121
3.8.3 The Bypass-Switch . 122
3.8.4 Interface to Upper Layers . 126
3.8.5 Packet Routing . 128

3.9 Scalability and Complexity . 130
3.9.1 Space Complexity . 130
3.9.2 Time Complexity . 130

3.10 Summary . 131
3.10.1 Future Work . 132

Chapter 4 - Implementation of the Transport Network 135

4.1 Overview . 136
4.2 Framing and Packet Encoding . 138

4.2.1 Format of a Data Frame . 138
4.2.2 Format of a Best-E�ort Packet 139
4.2.3 Noti�cation of the Slot Usage 140

4.3 The Physical Layer . 141
4.3.1 Network Topology . 141
4.3.2 Distribution of the Global Reference Clock 142
4.3.3 The Multi-Gigabit Transceiver 144
4.3.4 Con�guration of the MGTs 144

4.4 The Synchronization Sublayer . 147
4.4.1 Timing of the Network Node 148
4.4.2 Reception of Data . 149
4.4.3 Transmission of Data . 150
4.4.4 Selection of the Synchronization Parameters 151
4.4.5 Global Synchronous Signals 155

4.5 Implementation of the Bypass-Switch 156
4.5.1 Characterization . 157
4.5.2 Overview of the Switch . 158
4.5.3 Implementation of the Input Bu�ers 160
4.5.4 Implementation of the Switch Core 161
4.5.5 Implementation of the Central Crossbar 163
4.5.6 Interface to the Best-E�ort Scheduler 165
4.5.7 Interface to Upper Network Layers 165

4.6 Implementation of the Best-E�ort Scheduler 166
4.6.1 Implementation of the iSLIP Scheduler 167
4.6.2 Implementation of Two-Dimensional Schedulers 171
4.6.3 Summary . 174

4.7 Routing of Best-E�ort Packets . 175
4.7.1 Description of the Implemented Algorithm 176
4.7.2 Summary . 177

4.8 Transport of Neural Network Data 178
4.8.1 Provided Transport Service for Neural Network Data 178

IV CONTENTS

4.8.2 Demonstrator Application for Isochronous Transfers 181

4.9 Distributed Shared Memory . 183

4.9.1 Overview . 184

4.9.2 Functional Description . 185

4.9.3 The Client Process and the User Interface 187

4.9.4 The Server Process . 188

4.9.5 The DSM Packet Adaptation Layer 189

4.9.6 Transport Control Protocol 190

4.9.7 DSM Performance . 193

4.9.8 Summary . 197

4.10 Software Development . 197

4.10.1 Synchronization . 198

4.10.2 Connection Mapping . 200

4.10.3 Con�guration of the Routing Tables 203

4.10.4 Generation of Pseudo-Random Networks 204

4.10.5 High-Level Simulation of the Packet-Switch incl. Scheduler . 205

4.11 Summary . 208

Chapter 5 - Evaluation 211

5.1 Evaluation of the Physical Layer . 211

5.1.1 Measurement of the Data Reliability 211

5.2 Evaluation of the Synchronization Sublayer 213

5.2.1 Measurement of the Transmission Delays 213

5.2.2 Establishment of the Synchronization 214

5.3 Veri�cation of the Transport of Isochronous Data 216

5.3.1 Measurement of Application-Layer Delays 216

5.3.2 Veri�cation of Isochronous Transfers 218

5.4 Discussion of the Neural Network Topologies 220

5.4.1 Characterization of Neural Network Topologies 221

5.4.2 Calculations for Neural Networks on the Backplane 223

5.4.3 Homogeneous Pseudo-Random Networks 224

5.4.4 Modi�ed Pseudo-Random Networks 226

5.4.5 Summary of the Evaluated Network Topologies 233

5.5 Evaluation of the Connection Mapping Algorithm 233

5.5.1 Evaluated Quali�ers . 234

5.5.2 Mapping Results of Pseudo-Random Networks 236

5.5.3 Mapping Results of Networks with non-Intrinsic Hop Ratios . 237

5.5.4 Mapping Results of Alternative Hardware Topologies 239

5.5.5 Summary . 243

5.6 High-Level Simulation of the Neural Data Transport 243

5.7 Performance of the Best-E�ort Schedulers 246

5.8 Summary . 250

Conclusion and Outlook 253

List of Acronyms 259

CONTENTS V

List of Symbols 263

List of Figures 267

List of Tables 270

Appendix 1 - Resource Consumption of FPGA Implementation 271

Bibliography 284

VI CONTENTS

Introduction

The human brain is one of the most complex and powerful information processing
systems. It is able to solve computational tasks that are far beyond the possibil-
ities of arti�cial computational systems and still consumes only about 20Watts of
power. Better understanding of this highly e�cient system has been a research
goal since ancient times. Although the basic principles of its functionality are being
researched intensively, a comprehensive understanding of its operation is still not
existent. Moreover, no arti�cial system built by humans has ever reached a level of
complexity that is comparable to that of the human brain.

The study of the brain has been an inspiration for the development of compu-
tational neuron models and arti�cial neural networks (ANNs). A �rst important
but rather simple model that uses a threshold function over the sum of binary input
values has been developed in 1943 by W.McCulloch and W.Pitts [83]. An important
step forward has been made by Rosenblatt in 1958 [119], who introduced the percep-
tron network that consists of neurons that use continuous input and output values
and a continuous transfer function. Both models are rather abstract and computa-
tional than a correct image of a biological neural network. One of the most important
progresses has been made in 1952 by A. L.Hodgkin and A.F.Huxley, who developed
a neuron model closer to biology [52]. It is oriented along the physiological processes
within the cells and includes the generation and propagation of action potentials,
or spikes between the neurons. The model of Hodgkin and Huxley formulates the
in�uence of voltage-gated ion channels, leak channels and ion pumps through the
cell membrane on the electric potential with di�erential equations.

To get a better understanding of neural information processing, it is required to
combine a larger number of neurons to an ANN. Doing so, the computing time to
solve the di�erential equations becomes the limiting factor for the size of the modeled
networks. Especially if plasticity, diversity and temporal development are part of
the model, the available computing power will be quickly insu�cient to explore the
timescales involved [124]. In contrast to the human nervous system, where 100
billions of neurons and about 1016 synapses operate in parallel in continuous time,
a software simulation reaches complexities in the order of 103 neurons in real-time
with a simple Hodgkin-Huxley-based integrate-and-�re model on the fastest available
microprocessors [97]. One solution to overcome this issue is to use a powerful parallel
computer [80].

Progress in microelectronics makes it possible to implement physical neuron mod-
els using very large scale integration (VLSI) circuits with complementary metal oxide
semiconductor (CMOS) technology to exploit the parallel nature of a neural network.
In a physical model, important physiological quantities like the membrane potential

1

2 Introduction

are assigned an equivalent physical quantity. The variables of the di�erential equa-
tions of the neuron models are represented by electrical counterparts like voltages,
currents and capacitances. The implementation of spiking neuron models in VLSI
hardware has been done by several scienti�c groups. The work in [34] implemented
Hodgkin-Huxley neurons in hardware. The group in [50] implemented spiking neu-
rons with a time-dependent learning rule. Both designs are limited to a small number
of neurons per chip due to the complexity of the model.

A di�erent approach has been taken by the Electronic Vision(s) research group
in Heidelberg in the course of the European projects SenseMaker [128] and its suc-
cessor FACETS [89]. Two chips have been developed, whose VLSI designs use a less
complex neuron model, with the bene�t of several hundreds of arti�cial neurons per
chip in a power-e�cient design. The chip HAGEN [123] provides 256 perceptron-
based neurons and the more recent chip Spikey [124, 122, 47] comprises 384 leaky
integrate-and-�re neurons at an average acceleration factor of about 104 compared to
biology. The synaptic interconnections of the neurons are established on-chip within
con�gurable matrices, allowing a wide range of network topologies to be investi-
gated on a single device. The Spikey chip provides plasticity as spike time dependent
plasticity (STDP) within each individual synapse. Although both chips use di�erent
neuron models, they follow the same key idea: combining the advantages of analog
VLSI techniques for the implementation of the neural circuits with the advantages
of digital communication between the chips. The HAGEN chip has been used for
a wide range of experiments including pattern recognition [39, 38], classi�cation ex-
periments based on evolutionary algorithms [55, 54, 53, 125] and the adaptation of
liquid computing [127].

The pure digital interface of the developed chips makes it possible to extend the
implemented networks beyond chip boundaries. Multiple chips can be interconnected
to large-scale neural networks with several thousands of neurons. Connections be-
tween neurons on di�erent chips then correspond to axonal connections of biological
neurons. The physical infrastructure for this setup is provided by Stage 1 of the
FACETS project, which consists of backplanes equipped with network modules each
hosting an ANN chip [46, 39]. The framework requires a transport network to es-
tablish the neural interconnects, for which it provides programmable logic. Since
the data to be transferred is digital, the transport network may use techniques and
protocols of existing computer networks to perform this task.

The challenge in designing the transport network is not only a required low online
complexity, but also the large number of inter-neuron connections with strict service
requirements on the timing and on the throughput of the transmitted neural data.
Or to keep to the terms of computer networks: A large-scale ANN requires certain
guarantees of quality of service (QoS). In particular, the operation of the chips relies
on isochronous connections with a low and nearly constant connection delay and a
guaranteed throughput due to the biological nature of the connections.

Besides the pure neural data, the experiments to be carried out require additional
on-demand transfers for con�guration data like synapse parameters, neuron param-
eters or the transport of network stimuli and monitored neural behavior. These data
cannot be transferred within isochronous connections due to the latency and the
complexity of their setup. Since a pre-reservation of permanent connections would
lead to a bandwidth waste, a packet-based approach is more suitable.

Introduction 3

Although a wide range of network architectures have been published, only few
of them provide isochronous connections combined with best-e�ort packet transfers
and have only low online complexity. Well-established network architectures like
asynchronous transfer mode (ATM) [143] are far too complex to be implemented
within the limited space of the programmable logic of the framework. Packet switch-
ing approaches seem to be more suitable, but there is currently no switch design or
scheduler design that provides a small enough end-to-end delay and jitter for a neu-
ral network application combined with low online complexity. Isochronous network
architectures have been proposed [159, 40], but do not guarantee the throughput of
the reserved bandwidth in all cases. Combined architectures using slotted timing
have been presented for networks-on-chips (NoCs) in [35, 117], but the �rst design is
based on asynchronous logic and does not scale, whereas the latter does not provide
the required synchronization and slot allocation algorithms for a distributed setup
like the Stage 1 framework.

This thesis proposes a network architecture that combines techniques of circuit
switching and packet switching to ful�ll these requirements. A reference implemen-
tation of the architecture operates as the transport network of the FACETS Stage 1
framework for research into large-scale ANNs. Moreover, the network architecture is
scalable to be used in the succeeding Stage 2 hardware of the FACETS project [121]
for wafer-scale integration of hardware neural networks. Finally, the application of
the network architecture is not limited to hardware neural networks, but is a gen-
eral solution for all environments with demands for isochronous connections and
packet-based transfers for which a compact implementation in programmable logic
is needed.

Thesis Overview

The thesis is organized as follows: The �rst chapter gives a brief survey of the basic
principles of computer networks with focus on the provision of end-to-end QoS in
packet switching networks. The second chapter presents the Stage 1 framework of the
Electronic Vision(s) research group in Heidelberg. It concludes with a list of service
requirements on the transport network according to the ANN application. Chapter
three introduces the novel network architecture multi-class gigabit network (MCGN)
and describes the framing strategy, the synchronization concept, the resource reser-
vation algorithm as well as the tra�c class multiplexing in detail. Chapter four
describes the implementation of the transport network within the Stage 1 frame-
work, which uses the reference implementation of MCGN for its lower network layers.
Chapter �ve covers the evaluation and the veri�cation of the implemented services by
means of simulations and measurements. It is further discussed how the properties
of di�erent neural network topologies in�uence the possible average spike frequencies
of the arti�cial neurons according to the bandwidth provided.

4 Introduction

Chapter 1

Computer Networks

The network architecture presented in this thesis has been developed to
operate within a distributed setup of hardware neural networks in an em-
bedded environment. However, its design techniques are borrowed from
computer networks. This chapter introduces the basic terms, concepts
and protocols of computer networks. The description starts with network
topologies and reference models and introduces the concept of network
layers. The switching techniques circuit switching and packet switch-
ing are described. Since the transport of neural network data requires
guaranteed throughput and a low and constant transmission delay, the
chapter continues with the description of QoS. The provision of QoS is
described with focus on the design of packet switches and scheduling poli-
cies. The limited size of the thesis does not allow a detailed discussion
of the complex matter. The descriptions are therefore given brie�y and
the interested reader may refer to [143, 110].

1.1 Network Topologies

The nodes of a network can be divided into end-nodes and interconnecting nodes.
The end-nodes are called hosts, whereas the interconnected nodes are called routers
or switches (see below). Each node of a network is individually addressable via its
dedicated network address. The network to be considered can be divided into several
subnets. Subnets that contain multiple hosts are called local area networks (LANs).
The LANs can be of a di�erent network type and may have their own addressing
format for the hosts. Figure 1.1 shows a network of 16 hosts, which are interconnected
via a single subnet.

Di�erent network topologies are conceivable: ring, bus, star, cubic, tree, mesh
etc. The particular topologies require di�erent methods for the access of the medium

5

6 Introduction

switch /
router

host

bus

tree

star

ring

subnet

Figure 1.1: Example network of 16 hosts organized in 4 local area networks of di�erent
topology. The hosts are interconnected via switches and routers.

and have di�erent trade-o�s for the access latency, the throughput per host or the
medium costs.

1.2 Reference Models

The di�erent functionalities of networks are usually organized into several networknetwork layers
and
nomenclature

layers to reduce the design complexity. The layers are ordered by abstraction. The
lowest network layer performs the access to the physical transmission medium. Each
network layer contains a certain set of processes, which provide a set of services to
the layer above and use the services from the layer below. The services de�ne the
functionalities the network layer provides and not how they are implemented. The
communication between two stacked layers is performed via the corresponding inter-
face between it. The interface de�nes the the basic operations to use the provided
services. The communication between processes at di�erent locations on the same
layer is called a protocol. The entities at the di�erent locations that communicate via
a protocol are called peers. Figure 1.2 shows a schematic of a network layer protocol.

layer n processes

service provided by layer n via interface

layer n protocol

layer n+1 layer n+1

layer n-1 layer n-1

layer n processes

Figure 1.2: A network layer protocol provides a service to its layer above.

1.2. REFERENCE MODELS 7

physical

data link

network

transport

application

presentation

session

transport protocol

session protocol

presentation protocol

application protocol

e
n

d
-t

o
-e

n
d

 p
ro

to
c
o

l

physical

data link

network

transport

application

presentation

session

physical

data link

network

host A host Bintermediate hub, switch or router

Figure 1.3: The seven-layer OSI reference model

Di�erent reference models exist that de�ne the purpose of the protocols and
their basic functionalities within the layers. However, the implementation of certain
functionalities is often not strictly limited to a particular layer. As an example, the
tasks �ow control, error detection or encryption are useful within both lower and
higher network layers.

1.2.1 The OSI Reference Model

An important and general model to be discussed is the open systems interconnection
(OSI) reference model [163], which is shown in �gure 1.3. It consists of seven layers
with the physical layer being the lowest layer and the application layer on top.

The Physical Layer

The physical layer accesses the physical medium to perform the transmissions be- electrical and
mechanical
de�nitions

tween adjacent network nodes. The physical medium is conceptually located below
the physical layer. The physical layer therefore de�nes mechanical and electrical
standards, e.g. how the bits of the data streams are encoded, the pinouts of con-
nectors, the voltage levels of electrical signals or the used transmission frequencies.
Example processes of the physical layer are the data encoding and the data decoding.

Repeaters or hubs can be used to extent the size of a physical medium. Both network
extensionsdevices operate basically within the physical layer. Repeaters refresh incoming sig-

nals on their way to the destination to enhance the transmission distance, whereas
hubs are basically multi-port repeaters and re�ect the frames between all ports to
interconnect multiple nodes.

8 Introduction

The Data Link Layer

The purpose of the data link layer is to ensure a reliable communication betweennode-to-node
frame delivery adjacent network nodes within the local subnet. For this reason, the data link layer

groups the bits that are transmitted via the physical layer to frames. The data
link layer ensures that the particular frames are unambiguously detectable within
the physical bit stream and adds functionalities for the error detection or also error
correction. The provided service of the data link layer therefore is to transmit or to
receive single frames to adjacent network nodes. Furthermore, the data link layer
ensures that a fast node is not �ooding a slow node with data. This is called �ow
control.

Another important task is the arbitration of the access to the physical mediummedia access
control in the case that it is shared with other network nodes e.g. via a single cable, a ring

or simply the radio frequencies in the case of wireless networks. This task is located
within the media access control (MAC) sublayer, which is part of the data link layer.
Example MAC sublayer protocols are Ethernet [92] or Token Ring [145].

The interconnection of subnets on the data link layer is done with bridges thatframe
forwarding,
switching

also convert the frame formats. Network nodes that interconnect multiple other
nodes or subnets are called switches. Switches have a larger number of physical
ports and forward the frames between the ports according to their data link layer
address. The main tasks of switches are multiplexing, queuing and scheduling. The
design of packet switches is discussed in more detail in section 1.5.

The Network Layer

The network layer provides a topology-independent view of the network to the layersnetwork-wide
packet delivery above. It provides a network-wide communication between network nodes that are

not necessarily directly connected and may even be located in interconnected subnets
of di�erent types. The data formats of the network layer are called packets. Packets
contain network layer addresses.

The most important task of the network layer is the routing, which is to determinerouting of packets

a path (or route) of consecutive adjacent network nodes from the source of a packet
to its destination. One issue of this is to avoid live-locks and dead-locks, which means
that packets are ensured to reach their destinations without circling or being blocked.
The network nodes that perform this task are called routers. Routers operate with
network layer addresses and are aware of (at least parts of) the network topology.
This is in contrast to switches, which perform rather the forwarding of frames between
adjacent nodes according to local addresses.

Besides the routing, further processes of the network layer are the fragmentationprocesses of the
network layer of packets into smaller ones to keep to the maximum packet size of the several

subnets, as well as the re-assembly of the fragments to packets. An example network
layer protocol is the internet protocol (IP) protocol [114] of the internet. Another
task is the conversion between the network address and the data link layer addresses
of the local subnets. An example protocol is the address resolution protocol (ARP)
protocol [112], which is mostly used to translate addresses between IP and Ethernet.

1.2. REFERENCE MODELS 9

The Transport Layer

The transport layer provides multiple and independent end-to-end communication end-to-end
communicationchannels to the layers above. This end-to-communication can be either packets (now

called datagrams) or connections. The mostly used transport layer protocols of the
internet are user datagram protocol (UDP) [113] for datagrams and transmission
control protocol/internet protocol (TCP/IP) [11] for connections.

Concerning TCP/IP connections, the protocol hides the packet-based nature of TCP/IP
connectionsthe network layer to the layers above and provides reliable connections. The main

tasks are the fragmentation of the data streams to packets and its reassembly at
the destinations. Furthermore, the transport layer re-requests erroneous packets or
lost packets and also ensures the correct packet order in the case that packets get
out-of order due to di�erent routes. The connections of TCP/IP have a client-server
architecture. One process (the server) is awaiting connections on a dedicated port
and another process (the client) may initiate a connection to that port. Usually,
connections require a setup-phase and a take-down phase. This is handled by an
internal state-machine which can be of signi�cant complexity.

Another important task is to control the amount of packets sent into the network
to avoid an overload of its resources (congestion control). This can be detected by
the occurrence of packet drops even if the two peers of a connection feature su�cient
resources. The transport layer protocol reduces the packet rates in that case.

The Session Layer

The purpose of the session layer is to manage and coordinate multiple connections coordination of
multiple
connections

between di�erent users or applications. The appearance of the session layer depends
on the application, it can even be nonexistent. Its tasks are authentication (password
checks), synchronization (e.g. the synchronization of audio streams and video steams
within a video conference) or token management (preventing two users of using the
same critical resource), but also the checkpointing and the restoration of data streams
to resume a session after a crash.

The Presentation Layer

The presentation layer de�nes the semantics and the syntax of the data formates to de�nition of
transmitted data
formats

be exchanged. This is useful to allow machines with di�erent encoding techniques to
communicate via a common protocol. The services of the presentation layer perform
the conversion of data formats and structures on a higher abstract level and de�ne
the bit-patterns that are send via the lower layers. Other presentation layer issues
are the encryption or the compression of the transmitted data.

The Application Layer

The application layer �nally contains the application-speci�c protocols and data user de�ned

formats. Examples for a application-layer protocols are hypertext transfer protocol
(HTTP) to fetch web-sides or post o�ce protocol version 3 (POP3) to get emails
from the servers.

10 Introduction

1.2.2 Alternative Models

The described OSI reference model is not the only existing model. As an advantage,
it is well suited to understand the basic principles of networking. The model has
been deviced before the corresponding protocols have been invented [143].

In fact, the TCP/IP reference model of [11] describes the requirements for in-TCP/IP
reference model ternet hosts and its protocols are widely used. The protocol is not formally de�ned

in any publication, but its layered architecture can be extracted from [11]. The
TCP/IP model groups the lower layers in a single general network access layer and
the upper three layers in a general application layer. The intermediate network and
the transport layer use the protocols IP respectively UDP and TCP/IP.

For the remainder of this theses, the discussion of the network functionality keepsmodel used for
the thesis to the layered organization of networks and to the concept of interfaces, services and

protocols. The discussion does not use a strict model, but follows the presentation
in [143] and uses a hybrid model of the described two for simplicity. It uses the lower
levels of the OSI model to describe the physical transmissions and the switching
technology in conjunction with the simpli�cations of the TCP/IP model to group
the top three layers to a single abstract application layer. This used hybrid model is
illustrated in �gure 1.4.

physical

data link

network

transport

application

1

2

3

4

5

Figure 1.4: The hybrid network model used throughout this thesis.

1.2.3 Encapsulation of Data Formats

Most protocols require to transmit a certain amount of data together with the userheaders and
trailers data from the layer above. This data is added as a header or a trailer to the user

data at the source node and is removed at the destination. The user data from the
layers above is called the payload for the lower layer protocol. This results in the
fact that the data from the lower layer protocols is placed at the beginning and at
the end of the frame, whereas the user data is enclosed by its lower layer protocols
"within". Figure 1.5 illustrates a typical example of a data frame on an Ethernet
LAN that belongs to TCP/IP session.

The encapsulation of the protocols is an important aspect since it makes thetransparent
transportation
process

implementation of the lower layer transport processes completely transparent to the
layers above. As an example, a transport layer protocol that communicates via
datagrams does not have to care about how exactly the datagrams arrive at the
destination. A switching architecture that provides general packet transports can
therefore be used by all higher-layer protocols that require this kind of service. Nev-
ertheless, the way packet transports are implemented clearly determines the service

1.3. CIRCUIT SWITCHING AND PACKET SWITCHING 11

Ethernet Header IP header TCP header payload
Ethernet

checksum

user data

14 byte 20 byte 20 byte 4 byte

Ethernet frame IP packet TCP packet

6 - 1460 byte

Figure 1.5: Example of an Ethernet data frame that contains a TCP/IP packet.

guarantees that are mad by the lower layers for the transportation process. This is
investigated in the succeeding sections.

1.3 Circuit Switching and Packet Switching

Most computer networks are not fully connected, but the hosts are interconnected via
intermediate switches using a switching technology. Switching reduces the number
of physical lines and simpli�es the interfacing of single hosts to the network. A
fundamental design aspect of each network architecture is the question whether the
network provides connection-oriented transport services or connection-less transport
services to the layers above. The basic two alternatives are called circuit switching
and packet switching.

Circuit Switching Networks

In circuit switching networks, the communication is performed along dedicated paths functional
description(or circuits) between the source node and the destination node of a connection. The

circuit uses exclusively reserved resources and features a certain guaranteed through-
put (or bit rate). A once established circuit remains active for the duration of its
connection. The circuits have to be set up in a signaling phase or call setup before a
communication can take place and have to be taken down after the communication
completes. The forwarding decision for the data is easy, since the routing deci-
sions have already been made during the signaling phase. This reduces the required
amount of bu�ering within the routers and switches. Examples for circuit switched
networks are the old-style telephone networks with the protocol integrated services
digital network (ISDN) [9].

The advantages of circuit switching is that it allows to reserve network bandwidth properties

to the communicating hosts and that it reduces the complexity of the forwarding
task of the data to be transmitted. The reservation of resources further results in
a low overall end-to-end delay for the transmitted data. The drawbacks are that
the required signaling phase is of high complexity and results in a latency before the
transmissions of data starts. Furthermore, reserved but unused bandwidth is wasted,
which makes circuit switching more useful in the case that the required bandwidth
can be estimated. Circuit switching networks are also less robust, since a failure of
a router results in a failure of all of its managed circuits.

12 Introduction

Packet Switching Networks

In packet switching networks, the data to be transported is split into �ows of multiplefunctional
description packets, which are transported independently. The path or route of the packets is

not pre-determined, so its up to each packet to �nd its way through the network.
Packed switching networks therefore require a routing decision to be made for each
packet at each intermediate network node. For this reason, each packet contains an
additional header with the destinations address and usually further administrative
information. Since the bandwidth of the packets is not pre-reserved, the network
may be required to bu�er the packets at the routers and switches before the output
lines became free (store-and-forward packet switching). An example for a packet
switching network is an IP network that connects multiple Ethernet LANs.

The advantage of packet switching networks is that they require less administra-properties

tive overhead by the network, since no connections between end-nodes have to be set
up or taken down. Furthermore, packet switching networks feature increased robust-
ness, since the packets can be routed around a failed router along di�erent routes
and are also better designed to handle unpredictable tra�c. The drawback of packet
switching networks is that the packet headers can lead to a waste of bandwidth espe-
cially for small payloads. Furthermore, they require a higher administrative overhead
by the end-nodes, e.g. for the re-ordering of packets that arrive out-of-order due to
di�erent routes. As another drawback, the non-deterministic forwarding of pack-
ets in packet switching networks makes it harder to provide deterministic service
guarantees.

Combined Switching Techniques

The terms circuit switching and packet switching concern the operations within thetransparent to
user lower network layers. The layered protocol stack makes the switching architecture

of the network transparent to the user and allows to provide both, connections-
oriented services as well as connection-less (datagram) services to upper network
layers. Packet �ows that belong to higher-layer connections can be transported via
both switching techniques. As an example, an ATM [143] network uses �xed-sized
packets (or cells) that are transmitted along virtual circuits (VCs) to provide both,
connection-oriented services and also datagram services. Another example is the
transport of IP packets over the telephone system or making telephone calls over the
internet.

1.4 Quality of Service

The term QoSs denotes the provision of tra�c characteristics or priorities by thede�nition

network for di�erent levels of performance to the transported data �ows. The pro-
vided services are usually guaranteed according to a request by the application and
thus di�er from the general methods to improve the network performance such as
�ow control or congestion control. Example requirements are:

• A guaranteed reliability of the transmitted data.

• A guaranteed throughput or more speci�cally, a bit rate.

1.4. QUALITY OF SERVICE 13

• Guaranteed bounds for the transmission delay.

• Guaranteed bounds for the delay variation (the jitter).

• A guaranteed maximum cell loss ratio.

QoS requests from applications may vary in a wide range. For some applications, a
low latency of the tra�c is more important than the data reliability. For others, the
data reliability is essential and a high throughput is desired etc. Table 1.1 shows an
example list of applications and its requirements of QoS [143].

application reliability delay jitter bandwidth

email high low low low

�le transfer high low low medium

web access high medium low medium

remote login high medium medium low

audio on demand low low high medium

video on demand low low high high

telephony low high high low

videoconferencing low high high high

Table 1.1: Example applications and how stringent its QoS requirements are [143].

1.4.1 Services Guaranteed by the Network

A network does usually not support detailed and �ne-grained requests for all com-
binations of the above variables. In most cases, the network provides a set of tra�c
classes or service classes to the application. Some networks provide hard guarantees
to certain parameters and others provide only soft QoS services. Example end-to-end
QoS service classes are:

• Guaranteed services, also known as hard QoS. This can be guaranteed band- guarantees
serviceswidth or guaranteed end-to-end delay or jitter. The network guarantees these

services to particular �ows independent on the behavior of other �ows. This
usually requires the absolute reservation of network resources. Examples for
guaranteed services are:

� A guaranteed throughput. This can be achieved using a WFQ scheduling
algorithm within the switches (see below).

� A constant bit rate (CBR) service. This is required e.g. for telephony,
audio, video or other real-time applications, where not the absolute band-
width, but the smoothness of the tra�c is important to avoid gaps. It is
e.g. provided by ATM networks [143].

� Isochronous connections. The term isochronous refers to a constant delay
between the transmission of the data at the sender and its reception at the
receiver. A constant delay ideally equals no jitter. In fact, isochronous

14 Introduction

connections are practically achieved with CBR services and the isochronic-
ity of the connections depends on the remaining jitter. Isochronous con-
nections are useful for real-time applications. Example networks that
provide isochronous connections are [137, 40].

• Best-e�ort services. No QoS is guaranteed and the packets of a best-e�ort �owbest-e�ort
services simply use the remaining resources not reserved or not used by other tra�c

classes. This is best characterized by �rst-in �rst-out (FIFO) queues, which
have no di�erentiation between �ows. The network usually tries to schedule
best-e�ort tra�c in a fair way, such that no �ow is starved out completely by
other best-e�ort �ows.

• Integrated services is a technique to provide �ne-grained QoS on IP networks.integrated
services The QoS guarantees are made per �ow. The management of the several �ows

is done by the network with the resource reservation protocol (RSVP) proto-
col [12, 151]. The applications have to describe the requested �ow with a set of
given QoS parameters. A request may be accepted or rejected. The drawbacks
are that the complex RSVP protocol has to be implemented within each router
of the network, and the required setup phase for each �ow.

• Di�erentiated services is a technique to provide coarse-grained QoS on IP net-di�erentiated
services works [101, 7]. The QoS guarantees are class-based with pre-de�ned classes by

the network. The guarantees are made statistically and no hard guarantees are
made for individual �ows. As an advantages to integrated services, this greatly
simpli�es the network organization and does not require a �ow setup phase.
Example tra�c classes are expedited forwarding [27] for prioritized, low-loss
or low-latency tra�c, assured forwarding [51] with 12 sub-classes of di�erent
priority and discard probability, and best-e�ort tra�c.

It is an important design factor whether the network itself de�nes the available
QoS features or the application may demand a �ne-grained QoS with a complex
parameter set. Furthermore, the number of service classes is important since it
may require the routers and switches of the network to manage multiple queues. A
simple implementation to provide QoS is the de�nition of few priority classes which
are served in ascending order.

1.4.2 Techniques to Provide QoS

The di�erent tra�c classes for QoS are provided with di�erent techniques. Practical
solutions often combining several of them:

• The data reliability is guaranteed by error detection and/or error correctionerror handling

mechanisms. Often used methods are checksums, e.g. the cyclic redundancy
check (CRC), which are used in a wide range of protocols on nearly all network
layers. Packets (or data in general) that arrive with wrong checksums are
simply dropped and re-transmitted. The detection of lost packets and the
re-transmissions are usually implemented within the data link layer or the
transport layer. Other mechanisms are the usage of redundant data in the case
that re-transmissions are too costly.

1.4. QUALITY OF SERVICE 15

• A simple possibility to meet throughput requests is the overprovisioning of overprovisioning

bandwidth and bu�er space. In many cases, its more easy to buy additional
capacities than to change an existing network architecture to increase the per-
formance. As an example, the telephone system is overprovisioned, since a
phone call is rarely rejected. As another example, the development of the
dense wavelength division multiplexing (DWDM) technique leads to enormous
capacities in �ber-optics communication [110] for wide area networks (WANs).

• To reduce the jitter of a packet �ow, its is possible to bu�er the data streams. bu�ering

This can be done either at the receiver of a �ow (by using a jitter or playback
bu�er), at the sender or at intermediate nodes (then called tra�c shaping).
Techniques for tra�c shaping are e.g. the leaky bucket algorithm or the token
bucket algorithm [143]. A tra�c shaping algorithm controls the average rate
of a data stream. It has the advantage that it reduces the burstiness of the
tra�c, which results in smaller bu�er requirements and reduced congestion and
packet drop probability at intermediate nodes.

• In the case that a strict guaranteed QoS is required for a particular �ow, the resource
reservationnetwork has to use resource reservation. The resources like bandwidth, bu�er

space or central processing unit (CPU) cycles are exclusively reserved for the re-
questing �ow and can be provided independently of the network tra�c of other
resources. Resource reservation can be achieved more easily in circuit switching
networks, simply by establishing a circuit between the end-points of the �ow
with the guaranteed properties. The exclusive reservation of bandwidth can
be achieved by a time division multiplexing (TDM) technique, which is a peri-
odic division of the time into time slots. The reservation of time slots further
requires a certain synchronization to keep to the correct slot position when
passing data from one link to the next. Other possible reservation techniques
are the assignment of wavelengths in optical networks or radio frequencies in
wireless networks.

• In packet switching networks, each packet is assigned to a certain �ow, which is packet scheduling

denoted within the packet header. The �ow delimiters are respected by the in-
termediate packet switches of the network. Incoming packets are stored within
the queues of the switches. The switches contain packet schedulers, which cal-
culate the queues to be served next according to the �ows the packets belong
to. This is useful to implement di�erent priorities or to balance the forwarding
process of unreserved �ows. Packet switches and scheduling algorithms are
discussed in more detail in sections 1.5 and 1.6, respectively.

• A network that provides QoS in any case must be able to decide whether it admission control

can accept a new request for a QoS �ow according to its available resources.
This process is called admission control. The network has to take care to only
accept new �ows such that the currently accepted �ows remain una�ected.
For that reason, a request for a new �ow has to be speci�ed by the calling
process in a �ow speci�cation. An example �ow speci�cation is used with
RSVP [12, 151] and contains the token bucket rate, the token bucket size, the
peak data rate and the minimum and the maximum packet size [143]. The

16 Introduction

maximum packet size may be limited for particular network protocols. As an
example, an Ethernet frame is limited to 1500 byte payload.

The next sections considers a more practical view of how QoS can be implemented
within the network.

1.5 Packet Switching Architectures

In circuit switching networks, the information of how to forward incoming data has
been pre-determined during the signaling phase of the circuits and is available at the
switches at the time the data arrives. Clearly, QoS can easily by provided in circuit
switching networks by using the pre-reserved resources for bandwidth or bu�ering
space. In contrast to that, the provision of QoS in packet switching networks is more
complicated. This section describes the basic design principles of packet switches in
packet switching networks.

The purpose of the switches is to forward the incoming packets to their destina-purpose

tions, which can be determined out of the destination address of the packets. The
problem is that the switches may have no information in advance about the arriving
packets, neither of their destination nor of their number. Besides the pure packet
forwarding, a switch design has to respect the following aspects:

• The main goal is to achieve 100% throughput. That is, no packet should be
dropped due to overcrowded queues or contenting ports.

• The packet average delay, i.e. the average time the packet stays within the
switch, should be minimized.

• No packet �ow should be starved out. This has to be independent of the
behavior of other �ows.

• The design should be scalable in terms of area and line speed.

• The switch may provide to multicast packets from a single input to multiple
outputs.

• The switch may provide deterministic QoS. As stated in section 1.4, QoS
guarantees can be provided in terms of guaranteed bounds for the packet delay
and throughput, but also by the provision of di�erent service classes such that
the packet �ows are forwarded with di�erent tra�c characteristics (e.g. at
di�erent priorities).

1.5.1 General Architecture of a Packet Switch

The following discussion considers switches with the same number N of input andbasic operation

output ports, for simplicity. During the operation of the network, packets arrive
sequentially at the input ports and leave the switch sequentially at its output ports.
The purpose of the switch is to forward the incoming packets internally from the
inputs to the outputs. To handle the packet �ows, switches usually consist of the
following components:

1.5. PACKET SWITCHING ARCHITECTURES 17

• A multiplexer functionality. Possible architectures are a central bus, a central
ring, a shared memory or a crossbar with N2 crosspoints [148]. Multiple stages
are possible.

• A set of bu�ers (or queues) to store the packets that cannot immediately be
forwarded. One possibility is the usage of FIFO queues.

• A scheduling algorithm that decides the time each packet is served. This can be
implemented with a centralized scheduler and also with multiple independent
schedulers at each port.

Figure 1.6 illustrates basic switch architectures. The control of switches that limited scalability
of shared
architectures

use shared resources like a shared bus (a), a shared ring (b) or a shared memory
(c) is less complex then switches that use crossbars (d) [148]. The drawback of
the shared architectures is that the bandwidth of the shared medium has to be
higher than the bandwidth of the external line. As an example, the central memory
of a shared memory switch requires 2N times the bandwidth of the external line
rate. Furthermore, the memory requires 2N independent ports, which increases
its complexity. At higher port numbers and higher line rates, shared architectures
have only limited scalability. The following discussion therefore focuses on crossbar
switches only.

arbiter

(a) shared bus (b) shared ring

multi
port

memory

(c) shared memory (d) crossbar

Figure 1.6: Schematic overview of basic switch architectures. The input ports are shown on
the left, the output ports on the right.

The fully-connected crossbar is non-blocking and bu�er-less and transfers multi- crossbar
architectureple packets in parallel while still operating at the external line rate. The crossbar

and the queues may operate at higher rates than the external line rate for increased
performance. This is denoted as an internal speedup s > 1. Di�erent switch archi-
tectures of crossbar switches exist, which are mainly distinguished according to the
locations of their queuing stages and the scheduling algorithm used.

Crossbar switches have to solve the problem of contention. That is, each input contention

port can forward data only to a single output port at a time and also each output
port can take data only from up to a single input port. The switches have to solve
this problem by using queuing stages at the input or output ports or by using a
speedup to avoid data losses.

1.5.2 Output-Queued Crossbar Switches

Figure 1.7(a) shows the basic design of an output-queued crossbar switch. At this basic architecture

18 Introduction

type of switch, incoming packets are directly forwarded to the crossbar and stored in
the queues, which are located in front of the output ports. The queuing stage at each
output can be a single FIFO queue or also multiple queues to sort the packet �ows.
It is also easy to implement multicasts by simply copying the incoming packets.

Output queued switches have been investigated in the earlier times due to itslimited scalability

conceptual simplicity. Several scheduling algorithms can be used to provide QoS in
such a switch (for an overview see e.g. [161]). The main drawback of output-queued
switches is the required speedup of N to handle contention at the output ports in
the case that multiple packets that arrive at the same time at the input ports have
to be forwarded to the same output port. Output-queues switches are therefore not
scalable to higher line rates and larger port numbers.

crossbarinput ports output portsqueues

schedulerincoming packet

1

2

3

4

1

2

3

4 1

1

1

1 11

2

33

444

(a) output-queued switch

crossbarinput ports output portsqueues

scheduler

1

2

3

4

1

2

3

4

1

1

1

12

4

4

(b) input-queued switch

Figure 1.7: Simpli�ed schematic of an input-queued and an output-queued switch. (a)
Output-queued switches require N times the memory bandwidth at the queues to handle
worst-case packet arrivals. (b) Input-queued switches require a centralized scheduler for an
optimal usage of the crossbar.

1.5.3 Input-Queued Crossbar Switches

Figure 1.7(b) shows the basic design of an input-queued packet switch. Incomingbasic architecture

packets are immediately stored within the queues and thus a speedup is not nec-
essarily required. Since the queues of a single input may have packets for di�erent
outputs, contention occurs at both, the input ports and the output ports. Without
an internal speedup, each output port can take data from only a single input at a
time. For that reason, a separate and independent scheduler at each output port
is not possible, since multiple output schedulers could select the same input. The
operation of the crossbar is therefore controlled by a single scheduler. This is usually
achieved with a slotted time and by the use of �xed sized packets (e.g. ATM cells).
The crossbar then multiplexes up to N packets in parallel from the input ports to
the output ports within a single time slot. However, a stable scheduling of variable
sized packets can achieved by modifying existing cell-based algorithms [81, 42].

The problem of input-queued switches is that the architecture su�ers from theHOL blocking
problem head-of-line (HOL) blocking e�ect in the case that simple FIFO queues are used for

the packet storage. The HOL e�ect is illustrated in �gure 1.8(a). The e�ect occurs
in the case that a single packet at the head of a FIFO queue cannot be forwarded to

1.5. PACKET SWITCHING ARCHITECTURES 19

its dedicated output due to other packets that are taken for this output, �rst. Due
to the FIFO queuing policy, the packet at the head of the queue blocks the other
packets even if packets behind the head could be transferred to other, currently
unused, outputs. The work in [69] showed that this e�ect limits the throughput
of such a switch to 2 −

√
2 = 58.6% for incoming uniform independent, identically

distributed (i.i.d.) Bernoulli arrival patterns 1.

blocking HOL packet

schedulerserved packet

1

2

3

4

1

2

3

4

12 3 3

11

blocked packets

(a) head-of-line blocking

crossbarinput ports output portsqueues

scheduler

1

2

3

4

1

2

3

4

(b) virtual-output queuing

Figure 1.8: Illustration of the head-of-line locking problem.

One opportunity to solve the problem of HOL blocking is to use virtual output virtual-output
queuingqueues (VOQs), which contain a separate FIFO queue for each output at each input.

The work in [142] presents di�erent architectures for statically and dynamically al-
located queues. The queues can have a single write port for incoming packets and a
single read port to the crossbar and implement the multiple queues internally. The
usage of VOQs requires incoming packets to be pre-routed at the time of their arrival
to determine their output port and thus their corresponding VOQ. Since each in-
ternal queue can be scheduled individually, the HOL blocking problematic has been
removed (cf. �gure 1.8(b)).

As a drawback, this technique signi�cantly complicates the central scheduler, complex
scheduler, QoS
di�cult

which now has to calculate a scheduling out of N ×N requests from the queues for
the N output ports. In particular, it is di�cult to implement guaranteed services
for an input-queued switch. This shows that it has to be made a trade-o� between
scalability and the provision of QoS. The output queued switch can provide QoS, but
is not scalable. The input-queued switch architecture is scalable, but the provision
of QoS is di�cult. Example schedulers for input-queued switches with VOQs are
described below in section 1.6.2.

1.5.4 Combined Input-Output Queued Switches

Switches with queues at both, the input ports and the outputs are called combined OQ emulation
with speedup of
two

input-output queuing (CIOQ) switches. They combine the e�ects of the two previous

1Uniform i.i.d. Bernoulli tra�c comprises an arrival pattern such that in any given time slot, the
probability that a packet arrives at a particular input is p. Each packet has the equal probability
of 1/N of being addressed to any given output, and successive packets are independent.

20 Introduction

architectures by accepting an increased amount of queuing space and an increased
complexity of the scheduler. It has been shown in [25, 138] that a CIOQ switch with
a speedup of two can emulate the behavior of an output-queued switch and thus
provide guaranteed QoS.

1.5.5 Further Switch Architectures

There are many variations besides the described switch architectures. Variants fea-
ture additional bu�ers, multiple stages or distributed schedulers in contrast to cen-
tralized ones. Newer approaches for designs for high-speed switches are:

• Load-balanced switches use an additional, unbu�ered load-balancing stage withload-balanced

an additional crossbar before the switching stage [20, 21, 72]. The load-
balancing stage distributes incoming tra�c periodically over the central bu�ers.
This results in a uniform arrival pattern at the second stage. For uniform ar-
rivals, the second stage can be scheduled in a periodic manner of O(1) com-
plexity and results in 100% throughput, which e�ectively removes the need of
a scheduler. As a drawback, this type of switche su�ers from packet disorder-
ing [74, 22, 160] and requires an increased space for the second stage. This
promising switch type is discussed further below.

• A parallel packet switch also uses multiple stages, but placed in parallel suchparallel switches

that each packet experiences only a single stage of bu�ering. It consists of
multiple packet switches in parallel that operate independently and at a lower
rate compared to the external line rate [64]. It can be shown that such a switch
can achieve 100% throughput and can emulate an output queued switch with
FCFS scheduling (see below), but it is di�cult to implement QoS.

The above sections gave an intention of how the multiplexers and the queues are
arranged in di�erent switch architectures. Most of the architectures require a queuing
scheduler to decide which packet to be served next. The next sections discusses how
this scheduling task can be implemented.

1.6 Queuing Schedulers

The purpose of the queuing schedulers is to decide at which time the packets thatscheduling of
queued packets are stored in the various queues are forwarded to the output ports of the switch

for transmission. Concerning packet switches, the scheduling task can be discussed
either with reference to the single queues or also with reference to the various packet
�ows that are stored within the queues. In general, the scheduler gets repeatedly
requests from the queues (or the packet �ows) and selects one of them. The generalrequirements

requirements for a queuing scheduler are (see e.g. [4]):

• To maximize the throughput.

• To minimize the average delay (the queuing wait time) of the packets.

• To feature fairness and protection. This means that all queues should be served
fair under equal tra�c conditions and also that no service for a queue should
be in�uenced or even starved out by others.

1.6. QUEUING SCHEDULERS 21

• To be of limited complexity, i.e. to be simple and fast for an implementation
in hardware at high line rates.

Further requirements concern requests to guaranteed services depending on the
switch type or application and may include:

• The provision of guaranteed, deterministic QoS.

• A simple admission control to request the guaranteed services.

• To still maintain the fairness for non-prioritized �ows.

A wide range of queuing schedulers exist for di�erent switch architectures and
also purposes. The next sections give a brief overview of schedulers often used and
discuss their advantages and disadvantages.

1.6.1 Schedulers to Access a Single Resource

Schedulers for an arbitration of a single resource can be used in output-queued select 1 out of N

switches, where the packets are stored in queues directly at the outputs after having
already been transferred over the crossbar. The schedulers can therefore be imple-
mented separately and independently at each queue. The purpose of this type of
scheduler is to repeatedly select a single queue or packet �ow out of N requesting
queues (i.e. non-empty queues) to transmit a packet. Two simple scheduling policies
are:

• One of the simplest schedulers uses the �rst-come �rst-served (FCFS) schedul- �rst-come
�rst-serveing policy. All packet �ows are stored within a single queue and are served

within the order in which they arrived. It is simple to implement.

• A commonly used scheduler is a round-robin scheduler (cf. �gure 1.9). For round-robin

each selection, all queues have di�erent priorities in a cyclic order. The queue
to be served next is selected out of the non-empties according to the current
priorities. The priorities are then rotated such that the selected queue gets the
least priority next. Round-robin is fair since no queue has to wait longer than
N − 1 selections and can be starved out by other queues. It performs well for
comparable service requests from all queues.

A drawback of the above schedulers is that no service guarantees are made for
particular queues (or packet �ows). In contrast to that, the following schedulers can
be used to provide guaranteed services. Most of them provide guaranteed rates [161,
4].

• The simplest way to guarantee the service for a particular queue is using a static priority

static priority, which serves each queue with a di�erent priority. A particular
queue is served only if all higher-priority queues are empty. The unfairness
is obvious since only the top-priority queue receives a guaranteed service and
packets in lower-prioritized queues can encounter signi�cant delays.

• A TDM scheduler selects each queue every N time slots in a periodic manner. TDM

This guarantees each queue the fraction 1/N of service time. The drawback
of this method is that a particular queue cannot get increased service times

22 Introduction

1

3

4

2

A

A

C

D

B

(a)

1

3

4

2

A

C

D

B

B

(b)

Figure 1.9: Illustration of the operation of a round-robin scheduler. The queues A,C,D have
packets and request the scheduler. The current high-priority queue is denoted within the
scheduler, depicted as a circle. (a) Since queue A has the highest priority, it gets the grant
and transmits a packet. (b) Queue B now has the highest priority and queue C transmits a
packet. For the next arbitration, queue D will have the highest priority.

even if all other queues will not request the scheduler. Nevertheless, for equal
service request times, the TDM scheduler performs well.

• The generalized processor sharing (GPS) scheduler is a theoretical approachGPS

to provide �ne-grained control for packet �ows [104, 105]. With GPS it is
possible to reserve bandwidth to several queues and to guarantee end-to-end
delay bounds. Each packet �ow has its own queue and an ill-behaving queue is
not drowning others. Unfortunately, GPS is not implementable as it assumes
in�nitesimal service times.

• The weighted round-robin (WRR) scheduler is a simple approximation of GPS.WRR

The scheduler requires per-�ow queuing. It visits each queue in a turn and the
weighting impacts the number of packets released from each queue when it
is visited. For equal weights, WRR operates like round robin. The number
of packets to be transmitted from each queue is determined by dividing the
weight of each queue by its average packet size. The problem is that this
average weight has to be known in advance and which may lead to unfairness.
WRR can provide guaranteed rates by setting the weight values accordingly.
A hierarchical version of WRR is hierarchical round robin (HRR) (see e.g. [68,
58]).

• A comparable scheduler, the de�cit round-robin (DRR) scheduler [131], uses aDRR

counter for each queue to regulate the �ow. It does not need to know the mean
packet sizes for each �ow in advance. DRR serves a packet if its counter is
greater than its size. Otherwise the counter is increased by some given value.
The counter is decreased by the size of the packet being served. As a drawback,
this scheduler does not allot fair bandwidth at short time scales.

• The weighted fair queuing (WFQ) scheduler is a close approximation of theWFQ

GPS [104, 30] scheme. The packets are queued according to their �ows and
scheduled with a weight. WFQ serves excess tra�c in a fair manner according
to the amount of bandwidth that has been reserved. The scheduler calculates
�nishing times to the packet �ows that are weighed with the priority of the
�ows. The prioritized queues are then serviced in a bit-to-bit round-robin
manner. The problem of this scheduler is its complexity.

1.6. QUEUING SCHEDULERS 23

• The earliest deadline �rst (EDF) scheduler uses a dynamic priority [36, 133]. A EDF

deadline is calculated individually for each packet at each switch according to
its total delay and the required bandwidth. The priority of a packet increases
during the time it waits in the queues. The scheduler selects the packet with
the smallest deadline for transmission. This allows both, strict priorities but
also a good performance for packets with loose service requirements. EDF
performs better than GPS but has a high complexity.

• The work in [44] proposed a general scheme, the stop-and-go queuing, to provide stop-and-go
queuingguaranteed throughput and bounded delay and jitter to packet �ows. The

technique is used for �xed-sized packets (cells), which are transmitted within
equally-sized time frames of an integer multiple of a cell time in analog to
TDM. An admission control policy at the source node limits the number of
injected cells per �ow. The queuing policy at each switch is to postpone the
transmission of incoming cells to the next frame, which e�ectively hinders the
generation of bursts (cf. �gure 1.10). It is possible to implement multiple
hierarchies with di�erent frame sizes for di�erent QoS guarantees.

input port

output port

A

A

B

B

C

C

time

frame 1 frame 2 frame 3

Figure 1.10: Illustration of the stop-and-go queuing discipline for a particular �ow. Each
incoming cell is postponed until the next frame time before transmission.

1.6.2 Crossbar Schedulers

In input queued-switches with VOQs, the scheduling problem is more complex. This bipartite graph
matchingis since input-queued switches do not necessarily have to use a speedup so that the

queues and the crossbar can operate with the external line rate. The packets have
to be transferred in parallel via the crossbar. The scheduler gets N × N requests
from the N input queues to the N output queues. The problem equals the bipartite
matching problem from graph theory. The scheduler has to �nd a matching between
the sets of input ports and output ports. Each port has to be assigned at most one
counterpart. The achieved throughput computes out of the number of matched port
pairs (cf. �gure 1.11(a)).

A matching with the highest number of matched ports is called a maximum maximum size
matchingsize matching (MSM) (cf. �gure 1.11(b)). The scheduling algorithm that �nds

the maximum matching is stable (and achieves 100% throughput) for uniform i.i.d
tra�c but could lead to starvation (and instability) if the arrival patterns are not
uniform [87, 85, 75] or to reduced throughput [91]. Furhemore, the algorithm is to
complex to be implemented in hardware. The best known algorithm has O(N2.5)
complexity [56].

Variations of MSM are maximum weight matching (MWM), which assigns a maximum weight
matchingweight to each input queue, and further variations of it, e.g. longest queue �rst

24 Introduction

1 1

2 2

3 3

4 4

(a) the matching problem

1 1

2 2

3 3

4 4

(b) maximum matching

1 1

2 2

3 3

4 4

(c) maximal matching

Figure 1.11: Illustration of the bipartite graph matching problem: (a) Requests from inputs
on the left to outputs on the right are denoted with lines. Each port can only be connected
once. (b) A maximum matching comprises the maximum possible number of matches. (c)
A maximal matching cannot be improved without removing existing matches.

(LQF) [87], oldest cell �st (OCF) [90] and longest port �rst (LPF) [91] (for an
overview see also [126]). The problem of these algorithms is their high complex-
ity for an implementation in hardware and that they cannot provide deterministic
guaranteed services for particular �ows.

Crossbar Schedulers with Parallel Matching

An intensively studied class of algorithms is based on a parallel matching [85]. Theparallel matching

main idea is to use 2N independent single-output schedulers (or arbiters), one for
each input and output port (cf. �gure 1.12). The arbiters at the input ports are called
accept arbiters, whereas the arbiters at the output ports are called grant arbiters.
The scheduling is made in three steps: request, grant, accept.

1. Request. All input queues that have packets request all their corresponding
grant arbiters at the outputs.

2. Grant. The grant arbiters select one out of the requesting inputs.

3. Accept. Since multiple inputs can be selected by the grant arbiters in the second
step, the accept arbiters at the inputs select one of them.

The resulting matching consists of the input/output port combinations that have
been accepted within the last step. The parallel matching can also easily be imple-
mented with multiple iterations in which the currently unselected ports are matched
successively. The schedulers �nd a maximal matching instead of a maximum one.
A maximal matching is de�ned such that it cannot be improved without removing
existing matches, which are made in earlier iterations (cf. �gure 1.11(c)).

A crucial point of this algorithm is how the single grant and accept arbiters are
implemented [85, 84]:

• A randomized selection is called parallel iterative match (PIM). It �nds a max-PIM

imal matching in O(log(N)) iterations, but can lead to unfairness for certain
�ows.

• The algorithm that uses a round-robin selection is called round robin matchingRRM

(RRM). The round-robin scheme introduces fairness. As a drawback, this
leads to a synchronization of the several grant arbiters at the outputs such

1.6. QUEUING SCHEDULERS 25

grant arbiters accept arbiters

N * N requests
from input ports

granted inputs

N * log N
accepted
outputs

Figure 1.12: Illustration of a crossbar scheduler that performs a parallel matching. The
inputs ports denote N2 requests to the grant arbiters. The accept arbiters take the granted
inputs and accept an output port for each input.

that di�erent arbiters select the same input. Since the selected input can
select only a single output, many possible connections are left unused.

• A very famous algorithm is named iSLIP [84, 86, 48]. It also uses round iSLIP

robin arbiters but with a modi�ed update rule for the internal priorities of the
grant arbiters: The priority of a grant arbiter is only updated if the granted
input on his part accepts the granted output in the third step. This has a
signi�cant impact on the performance. The key is that the modi�ed update
rule results in a de-synchronization of the several arbiters such that a higher
number of independent input/output pairs are matched with few iterations.
Unfortunately, the iSLIP algorithm cannot achieve 100% throughput when
the tra�c is non-uniform, or when arrivals are correlated. The algorithm has
been implemented in hardware for high-speed switches [86]

• A lot of improved versions of the iSLIP algorithm have been proposed in the further variants

literature. Some examples are prioritized iSLIP, weighted iSLIP (because the
strict priority may lead to starvation of low priority �ows), FIRM [129] with
slightly improved performance, static round robin (SRR) [66], dual round-robin
matching (DRRM) which is simpler and faster, or centralized multicast con-
tention resolution (CMCR) [24] with multicast support.

Crossbar Schedulers with 2-Dimensional Cell Arrays

A di�erent approach to implement a crossbar scheduler without requiring multiple principle

iterations uses a 2-dimensional arrangement of elementary arbiter cells [141]. Each
cell represents a possible input/output pair and gets a dedicated request signal for
this pair for which it can denote a grant. To hinder the same input port or output port
to be interconnected multiple times, each arbiter cells receives information whether
its input or output port has already been selected by a di�erent cell and forwards
this information to other cells. As an advantage, this arbitration scheme �nds a
maximal matching within a single step.

Multiple types of this scheduler have been published which di�er in the type of
the basic arbiter cells, in the 2-dimensional arrangement, in the number of required
cells and in its performance:

26 Introduction

• The work in [141] published the wave front arbiter (WFA) and the wrapped
wave front arbiter (WWFA) arbiters. The problem with this type of scheduler
is that it requires the use of cyclic combinational logic and does not provide
service guarantees. A VLSI implementation has been published in [141, 29].

• The work in [59] overcomes the logic loop by using an increased number ofRPA, DPA

arbiters to extend the 2-dimensional arrangement. Fairness is introduced by
enabling only parts of the cells, which results in di�erent priorities for the
particular input/output port combinations. The set of enabled cells is moved
each scheduling in a periodic manner. The two presented arbiters rectilinear
propagation arbiter (RPA) and diagonal propagation arbiter (DPA) di�er in
the number of required arbitration cells and the performance of the scheduler.

• The recent work in [103] parallelizes the operation of the WWFA scheduler forPWWFA

a faster execution time by accepting an increased amount of logic. The parallel
wrapped wave front arbiter (PWWFA) scheduler has the same throughput and
fairness properties as WWFA.

The above schedulers are examples of how to implement fairness between the
particular port pairs when scheduling an input-queued crossbar switch. However,
the main problem with such a switch is to limit the complexity of a scheduler that
provides guaranteed QoS for particular packet �ows, especially bounded end-to-end
delay. This is discussed in the next section.

Crossbar Schedulers with Service Guarantees

Since output-queued switches do not scale, a key issue is how to provide deterministic
QoS guaranteed with other switch architectures. CIOQ switches can emulate an
output-bu�ered switch but with the drawback of an increased switch size and a
required speedup of two. For purely input-queued switches with VOQs, the situation
is more di�cult. The provision of deterministic QoS guarantees is indeed a key issue
for this switch type:

The work in [130] applies the above stop-and-go queuing strategy to input-framing strategies

bu�ered switches with VOQs. The queues have to store full frames at each port.
It is shown that under the condition that the incoming tra�c does not overbook the
available line rate of the input ports or the output ports, it is possible to re-sort all
incoming frames such that all cells can be forwarded without contention at the input
ports or at the output ports within the next frame time. The calculation of the
sorting has to be done in advance such that the tra�c matrix between the ports has
to be known. As an advantage, this design provides guaranteed rates with bounded
delay and jitter with a low online complexity. As a drawback, the cells are required
to be hold a frame time per switch, which increases the absolute delay. Furthermore,
the framing forces a trade-o� to be made between the reservation granularity and
the packet delay. A similar work based on framing using idling HRR scheduling has
been presented in [58].

Another approach has been presented in [18, 19]. The scheduler provides guaran-Birkho�-von
Neumann
scheduling

teed QoS by not requiring a speedup nor the framing of the tra�c. The scheduler uses
a decomposition approach based on the work of Birkho� [6] and von Neumann [99]
to decompose the tra�c matrix between the input and output ports into a series

1.7. SUMMARY 27

of permutation matrices. The permutation matrices are then used to schedule the
incoming tra�c (e.g. by using a WFQ scheduler) without contention between the
switch ports. The problem of this scheduler is the required pre-known arrival rates.
Furthermore, the scheduler has a scalability problem since it requires N2 permuta-
tion matrices and thus the sorting of their �nishing times at runtime and the storage
capacity. The decomposition has been improved later in [78, 73].

The work in [20] proposes an input-queued switch that uses the above Birkho�- load-balanced
BvN switchvon Neumann scheduling, but adds an additional load-balancing stage before the

switch. The load balancing stage periodically distributes incoming packets to the
center queuing stage. This results in a uniform arrival pattern for the second stage
for which the same simple set of scheduling matrices can be used. The Switch has
an online complexity of O(1) and higher stability against bursts, but loses the rate
guarantee feature and also packets may get out of sequence, which requires increased
complexity for re-ordering [22, 74].

By adding additional queuing stages before and after the switch for per-�ow multi-stage
load-balanced
BvN

queuing and re-sequencing, the switch keeps the packet order and is able to emulate
the ideal FCFS output-bu�ered switch, but requires a high complexity [21]. By using
a framing strategy, such a switch provides guaranteed rates and bounded end-to-end
delays with O(1) online complexity without speedup and con�ict resolution [23].
However, this again results in a comparably large delay of multiple frame times.

To conclude, there is currently no packet switch architecture that provides guar-
anteed rates with low delay, low jitter and in-order arrivals with low online complexity
and without requiring an internal speedup.

1.7 Summary

The chapter introduced the basic concepts of computer networks. Since the motiva-
tion of this thesis addresses the transport of neural network data with requirements
for the throughput, the delay and the jitter, the focus has been on the provision of
these service guarantees. The two basic switching techniques have been presented:

• Circuit switching features guaranteed throughput and constant bit rates by
means of exclusively reserved paths between the network nodes. However,
circuits require a complex call setup and control to be done by the network.

• Packet switching is more �exible but requires additional headers for the rout-
ing process. Moreover, providing guaranteed services like bounded end-to-end
delay or in-order delivery is di�cult and leads to large or complex designs.

The succeeding chapter �rst introduces the FACETS Stage 1 framework. The discus-
sion of the available neural network chips HAGEN and Spikey leads to more speci�c
service requirements for the data transport within the framework. The proposed
network architecture of this thesis is presented in chapter 3.

28 Introduction

Chapter 2

Framework Description

This chapter describes the framework of the Electronic Vision(s) group
that is used for the research with VLSI ANNs. The �rst section introduces
the two neural network application speci�c integrated circuits (ASICs)
HAGEN and Spikey. It discusses the technical data of the chips as well as
their underlying neural network models. The chapter continues with the
description of a Stage 1 framework, with focus on the Nathan network
module, which hosts the ANN chips, and the backplane, which provides
the physical interconnects. The following section discusses considerations
for the interconnection of multiple ANN chips to a large-scale hardware
neural network. The chapter closes with the formulation of requirements
to a network protocol implemented in programmable logic that provides
the necessary transport services.

The following section �rst describes the two ANN chips HAGEN and Spikey. It
is shown that besides their internal connectivity, both chips provide the possibility
to be interconnected with others of their kind for the creation of large-scale neural
networks that are physically distributed over multiple chips. This motivates the
de�nition of requirements to the underlying interconnection network that transports
the neural data between the chips. Although both chips require isochronous external
connections for a deterministic operation of their network, the timing requirements
of the Spikey chip are much stronger.

2.1 Arti�cial Neural Network ASICs

The ANN chips HAGEN and Spikey are the central part of the Stage 1 framework
of the Electronic Vision(s) group. Both chips implement a number of neurons and
synapses organized in multiple network blocks. The chips combine internal analog
computation with external digital communication in mixed-signal VLSI designs.

29

30 Introduction

process features 0.35µm, 1 poly, 3 metal

die/core size 4.1 × 3mm2 / 3.6 × 2.5mm2

synapse size 8.7 × 12 µm2

blocks/neurons/synapses 4 / 256 / 32768

supply voltage 3.3V

network frequency fnet 50MHz typ.

connections/s 1.64 Teracps max.

weight update rate 400 Megaweights/s max.

weight resolution 10 bit (nominal) + sign

LVDS bus data transfer rate 11.4 Gigabit/s max.

Table 2.1: Nominal speci�cations of the HAGEN chip [123].

The analog computation exploits the characteristics of the substrate of the chipsanalog
computation for a highly integrated, fast and also power-e�cient design. Both chips implement

several hundreds of neurons and 32 thousand to 98 thousand individual synapses
on a single die. The current-based neural computation allows an execution of their
neural network models with a speedup of multiple orders of magnitude compared
to biology while consuming only a few watts of power. The programmable synaptic
connections provide the �exibility to investigate di�erent neural network topologies
within the same chip.

The external digital communication of both chips allows for the usage of estab-digital
communication lished digital communication techniques for a high-performance interface. Further-

more, digital external communication is less sensitive to noise and crosstalk than
analog transmissions. The con�nement of the input and output ports of the network
blocks to binary values is therefore a key aspect for the scalability of the chips, which
support the interconnection of multiple units to form a large-scale neural network
in hardware. For that reason, each chip that is operated within the framework is
interfaced exclusively by a commercial �eld programmable gate array (FPGA) that
provides the inter-chip connections via a transport network. Since both neuron mod-
els and thus the resulting network models are di�erent, both chips demand di�erent
QoS guarantees from the underlying transport network.

2.1.1 The HAGEN Chip

The Heidelberg AnaloG Evolvable Neural network (HAGEN) chip has been devel-
oped by Dr. Johannes Schemmel and Dr. Felix Schürmann of the Electronic Vision(s)
group. The chip has been fabricated in a 0.35 µm CMOS technology. Figure 2.1
shows a micro photograph of the chip. Table 2.1 lists nominal values concerning the
VLSI implementation. For a more detailed description of its VLSI implementation
see [123]. For scienti�c research based on the HAGEN chip refer to [53, 127, 38, 125].
The following paragraphs give a short summary and focus on the details that are
relevant for this thesis.

The HAGEN chip features 256 neurons and 32768 synapses organized in fouroverview

equally-sized network blocks. A network block comprises a synaptic array of 128 × 64

2.1. ARTIFICIAL NEURAL NETWORK ASICS 31

digital control logic 8 digital / analog converters 128 network block inputs

64 output neurons analog weight storage bidirectional LVDS Io cell

one network block

128 x 64 synapses

Figure 2.1: Photograph of the HAGEN chip

individual synapses, thus each output neuron takes data from up to 128 synaptic in-
puts. The analog signals are completely con�ned within the network blocks such
that the communication between the blocks is purely digital. The external interface
is required to transport data o�-chip and on-chip, to con�gure the synaptic weights
as well as to control the network operation of the chip. It features low voltage
di�erential signaling (LVDS) cells [144] to support a data rate of up to 11.4Gbit/s.

Neuron Model

The neural functionality of the HAGEN chip is based on the Perceptron weighted perceptron

threshold neuron model [119]. The inputs and the output of such a neuron are
reduced to binary values. The synaptic weights can have positive or negative real
values. The neuron output is activated by a threshold function over the sum of
its weighted inputs. By denoting the input vector I, the output vector O and the
synaptic weights ωij of input j and output i, the output function of the neuron can
be formulated as:

Oi = Θ

∑
j

ωijIj

 with Ij , Oi ∈ {0, 1}, (2.1)

where Θ is the Heavyside function.

The binary inputs and outputs of the neuron model facilitate the implementation synaptic weights

of equation 2.1: The synaptic weights are stored within current memory cells with

32 Introduction

a current proportional to their weight value. The weight value is set digitally and is
written to the memory cell by a digital-to-analog converter (DAC) with a precision of
10 bit. The usage of analog design techniques allows a space-e�cient implementation
of the summation as an addition of currents. Excitatory as well as inhibitory synapses
are modeled by an additional sign bit stored at each synapse. The synaptic currents
are internally connected to one of two di�erent neuron input lines according to the
value of the sign bit.

The 10-bit precision of the synapse weights requires to refresh their values pe-temporal behavior

riodically to cope with parasitic leakage currents. Since no neuron operations can
be made during the weight update, each two neighbored network blocks share eight
DACs for a parallel update process (cf. again, �gure 2.1). A modi�cation of the
synaptic weight values during runtime changes the connectivity of the network and
thus its network answer to input patterns. The modi�cation process has to be done
by the experimenter, since the chip does not implement synaptic plasticity for an
unsupervised modi�cation of its weights. The update process requires to transfer the
modi�ed values via the external interface of the chip.

Large-Scale Neural Networks

The design of the HAGEN chip explicitly supports the creation of multi-layered Per-network topology

ceptrons. The binary output data of a certain network block can be fed to the inputs
of the same or other network blocks. On-chip connections are made by using ded-
icated local connections between the network blocks [123]. Furthermore, multiple
chips can be interconnected by transporting the binary data via the digital interface.
The topology of the resulting network depends on the values of its synaptic weights
and its connectivity. Synaptic connections within a network block are deactivated
by setting its appropriate weight to zero (cf. �gure 2.2). In the more general case,
recurrent networks are created by feeding the outputs of particular neurons to the
inputs of neurons of the same or other network layers. In this case, the network out-
put has to be calculated with respect to the neuron outputs of multiple intermediate
layers.

A such created network needs a certain time ∆t for the propagation of the dataclocked operation

from its inputs to the neurons of its �rst layer or between the neurons of interme-
diate layers. This introduces a spatio-temporal behavior to the network operation
according to its layered topology. The time ∆t is denoted as a network cycle in the
following. The network cycle includes the time for the simultaneous analog operation
of the neurons as well as for the transport of the neuron output data to the neuron
inputs of the succeeding network layers. The duration of the network cycle imposes
an upper bound for the maximum frequency

fnet :=
1

∆t
(2.2)

of the operation of the network. The static dependency of the neural outputs from
their input values allows a clocked operation of the HAGEN chip with the clock fre-
quency fnet in time-discrete, deterministic steps. The value of fnet is determined by
∆t and thus by the duration of the transportation process. The network operation
can even be halted by not updating the input data of the neurons. Since the state of

2.1. ARTIFICIAL NEURAL NETWORK ASICS 33

0

1

2

3

0 1 2 3

network block

analog
synapse
weight array

binary
output
neurons

binary inputs

63

local feedbacks

network inputs

network
outputs

O

I

0

network inputs

I

network outputs

O

first layer

second layer

1

2 3

2 3

Figure 2.2: Creation of multi-layered feed-forward networks using local feedbacks. Blue
synapses are deactivated by setting their weights to zero. Red synapses are activated.
Recurrent networks are created accordingly.

the network can be described by the collective digital input and output values of the
neurons, this allows to completely read-out the state or to set or modify the state
before the execution of the network continues.

For multi-layered feed-forward networks, the propagation delay of a certain input multi-cycle
connectionspattern to the output of the network equals n · ∆t, where n equals the number of

layers. A synchronous and deterministic operation of multiple interconnected HAGEN

chips at the frequency fnet does not necessarily require the output data of all network
blocks to be transported to their corresponding inputs within the duration of a single
network cycle. The model allows a delay of multiple network cycles for the transport
of the neural data as long as the number of cycles remains constant during the
network operation. This can be used for a fast operation of the network in the
case that the transmission delay between two chips would limit fnet otherwise. To
calculate the output of a network block a in a network built from multiple, recurrent
network blocks, the following equation can be used:

O(t+ ∆t)a
i = Θ

(∑
j

ωijI(t)a
j +

∑
k

ω′ikO(t)a
k (2.3)

+
∑

l

ω′′ilO(t− n∆t)b
l . . .

)

The �rst argument of the activation function corresponds to the external network
inputs at the block a itself. The second term models the local feedback from the
outputs of block a to its inputs. The last term models an exemplary connection from
the outputs of a second network block b with a delay of n network cycles in the signal
path (cf. �gure 2.3).

34 Introduction

0

1

2

3

0 1 2 3

network block a

analog
synapse
weight array

binary
output
neurons

binary inputs

63

local feedbacks

4 5 127

network inputs

network
outputs

from other network blocks

0

63

0 127

network block b

O
a

O
b

I
b

I
a

Δt

Δt

Δt

Q

D
f =1/net Δt

Δt

transport delays
n=2

1

Figure 2.3: Di�erent input sources of a network block (adapted from [123])

Transport Network Requirements

The interconnection of multiple HAGEN chips requires a transport network for thetransport network
requirements delivery of the neural data. Since the HAGEN chip features 256 neurons, the under-

lying transport network has to deliver up to 256 bit or 32 byte of neural data per
chip within each network cycle. A deterministic operation of the neural network
is possible even for a delivery within multiple network cycles, but only if the num-
ber of network cycles between each output/input pair remains constant over time
as described above. In other words, the external transport network that performs
the delivery has to guarantee a constant throughput at a transmission delay with
a bounded jitter in the range of a network cycle for the neural data, i.e. a deliv-
ery within isochronous connections. The constraints for the transport process are
relaxed due to the opportunity to halt the operation of the chips.

2.1.2 The Spikey Chip

The arti�cial neural network ASIC Spikey is the latest chip developed by the Elec-
tronic Visions(s) group for the research with arti�cial neural networks. It has been
achieved within the projects SenseMaker [128] and FACETS [89], both supported
by the European Union.

An intention for the development of the chip has been to implement a biologicallymotivation

plausible neuron model within custom-made integrated circuits. The chip features
384 arti�cial leaky integrate-and-�re [43] neurons with 256 synaptic inputs each. The
array of 98304 synapses is organized within two distinct network blocks. Due to the
acceleration factor of the implemented model of up to 105 compared to biology, the
chip allows to explore long-term biological behavior as well as exhaustive parameter
sweeps of the implemented neuron model in reasonable time. Furthermore, the net-
work model of the chip supports the coupling of multiple units to create a large-scale
neural network.

Although the chip itself is an interesting research object, this thesis focuses on
the networking demands of the inter-chip transfers of its neural data and gives an

2.1. ARTIFICIAL NEURAL NETWORK ASICS 35

5
m

m

analog output buffers,
analog power supply,

direct event inputs

LVDS receivers

synapse drivers

LVDS transmitters

neurons and STDP
circuitry

parameter SRAM

event buffer SRAM

core power supply,
digital I/O: clock, reset,

configuration, etc.

synapse array

DAC
DTC/TDC Vparam

analog part

digital part

Figure 2.4: Photograph of the Spikey die. The top side analog part contains the two network
blocks with the 384 neurons and about 100 000 synapses. The digital part below has control
functions and contains neural event queues as well as the external interface (picture taken
from [47]).

overview of its basic properties. The internals of the chip have been described in
more detail in [124, 122, 47].

Overview

The Spikey chip has been fabricated in a 180 nm CMOS technology. The mixed-
signal implementation uses both, analog as well as digital design techniques. Fig-
ure 2.4 shows a photograph of the chip whereas table 2.2 lists nominal speci�cations.

The chip is basically divided into two parts: an analog part and a digital part. network blocks

The analog part of the chip is divided into two network blocks, which occupy roughly
the top two thirds of the chip's space and contain the neurons and synapses organized
within an array of 192 neurons and 256 synaptic inputs. The synapse array of a block
allows to connect each neuron independently to each input. Each synapse provides
an individual synaptic weight.

The neuron circuits are located at the bottom edge of a network block. The use neuron circuits

of analog design techniques allows for a biologically relevant model within a space
e�cient implementation. The division of the neurons and synapses into two network
blocks has advantages for the analog implementation and also allows for a more
�exible mapping of existing neural network topologies onto the chip's resources.

The lower third of the chip is occupied by the digital control part. Its main digital control

task is to control the clocking and the data processing of the neural events through
the chip. The data �ow is organized in three network layers (application, data link,
physical), which are clocked at two di�erent clock frequencies of nominal 200MHz

36 Introduction

process features 0.18µm, 1 poly, 6 metal

die/core size 5 × 5mm2/ 4.25 × 4.32mm2

synapse size 10.3 × 10.5µm2

neurons/synapses 384 / 98304

supply voltage (digital and analog) 1.8V

digital core clock frequency 200MHz / 400MHz (nominal)

adjustable analog parameters 2969

parameter resolution 10 bit (nominal)

event time resolution 156 ps (nominal, 1/16 clock)

event input FIFOs 16 channels, 64 entries each

event output FIFOs 6 channels, 128 entries each

LVDS bus data transfer rate 2.6GByte/s (e�ective)

Table 2.2: Nominal speci�cations of the Spikey chip [122].

and 400MHz. The digital part further contains the external interface, which is kept
purely digital as well.

Neuron Model

The neurons of the Spikey chip are designed according to a biologically inspiredspiking neurons

neuron model, which is supposed to represent a major part of the neurons present
in the human cortex [28]. As the name indicates, the chip models spiking neurons,
more precisely of the leaky integrate-and-�re neuron model [43]. The interaction
between di�erent neurons is based on the transmission of neural events, or simply
spikes. Compared to the HAGEN chip described in the previous section, the neuron
model of the Spikey chip can be assumed to be closer to biology.

The implementation in VLSI technology represents elements of the biologicalVLSI
implementation neuron such as the membrane potential or the synapses by electronic counterparts. A

neuron receives incoming spikes at its synaptic inputs and sends out spikes according
to the state of its membrane potential. The e�ect of incoming spikes on the membrane
potential V of a neuron is modeled by the following di�erential equation (for a more
detailed description see [122]):

cm
dV

dt
= gm(V − El) +

∑
k

pk(t)gk(t)(V − Ex) +
∑

l

pl(t)gl(t)(V − Ei) (2.4)

The three parts of the sum describe the in�uence of leakage currents of ion chan-current based
model nels and the e�ect of excitatory and inhibitory conductance-based synapses on the

membrane capacitance. The leakage reversal potential El and the synaptic reversal
potentials Ex and Ei can be set for groups of neurons internally. The e�ect of in-
coming spikes is described by the parameters pk(t) for the excitatory synapses and
pl(t) for the inhibitory synapses. Although the synapses are implemented analog,
their individual synaptic weights are stored digitally for the 4-bit digital parameters
gk and gl. Plasticity is introduced by changing the values of the weights.

2.1. ARTIFICIAL NEURAL NETWORK ASICS 37

The implementation of the synapses features long-term plasticity, or more precise synaptic
plasticitySTDP [136, 5]. The learning rule implies that the individual synaptic weights are

modi�ed depending on the timing correlation of the pre-synaptic spike and the post-
synaptic spike. This feature is important since STDP de�nes a rule to modify the
synaptic weights (i.e. the model of plasticity) locally and internally at the synapses
without the need of an external supervisor.

The diversity in the synapse and the neuron behavior is achieved by introducing diversity

about 3000 freely programmable analog parameters. Some parameters can be set
for each neuron individually, whereas others a�ect groups of neurons. This allows
to experiment with networks consisting of a large diversity of neuron properties, but
also to test the neuron model by varying parameters for single neurons.

The implementation of equation 2.4 in VLSI technology automatically leads to speedup

small time constants of the neuron behavior compared to the biological neuron. The
timing acceleration or speedup of the chip can be controlled by the adjustment of
analog parameters such as the time constants of the membrane potential in the range
of roughly 104 to 105 compared to biology. Lower values result in very small currents
within the neuron and synapse circuits and may a�ect the quality of the model. At
the value of 105, 1ms of biological time equals 10 ns of chip time. This speedup not
only allows to simulate long term biological behavior in reasonable time, but also to
do exhaustive parameter sweeps of the implemented neuron model.

Large-Scale Neural Networks

The Spikey chip features interconnection capabilities to build large-scale arti�cial connectivity

neural networks. This can be done by forwarding the spike events from dedicated
neurons to the synaptic inputs of others depending on the synaptic weights gl,k.
Due to the matrix topology of the synapse array, even a single chip allows to create
networks of 384 neurons with 256 inputs each by using all of the about 100 000
synapses. Even more important, the digital interface allows to extend the neural
network beyond chip boundaries by interconnecting multiple chips to a large-scale
neural network.

Due to the limited input count of a single neuron of 256 synaptic inputs, a limitations

neuron cannot get spikes from more than 256 neurons, i.e., fully connected networks
are possible up to the size of 256 neurons. Fully connected networks that use only
on-chip feedbacks are further limited to 192 neurons. The input count limitation and
its consequences are further discussed in section 2.3.3.

Although the neuron implementation uses analog design techniques, the spike interconnecting
chipsevents are encoded as digital pulses but in continuous time. Spikes forwarded to

synaptic inputs on the same die (to the original or the adjacent network block) stay
within the continuous time domain of the analog part of the chip. If multiple chips are
to be connected, spike events leaving the die are encoded with address information
and time-stamps of a resolution of 156 ps (i.e. 1/16 of the clock period) before being
sent via the external interface. After being transported to the destination chip, the
incoming spikes are resynchronized to the local clock according to their time stamps
within the digital part of the chip before being forwarded to the synaptic inputs [47].

38 Introduction

Transport Network Requirements

The spike transmissions between multiple chips require an underlying network to
transport the digital events while ensuring speci�c timing requirements. These re-
quirements are mainly determined by the analog implementation and the selected
speedup of the chip:

1. The analog neuron circuits have no clock, but operate in continuous time withcontinuous time
operation their timing determined by reference potentials and current values. This leads

to the fact that the network operation cannot be halted as in digital systems,
where a halt and a restart of the clock signal allows the system to be paused.
During an experiment, the neurons continuously produce spike events depend-
ing on the membrane's state. This produces a more or less continuous load on
the network being utilized for the transportation process.

2. Since the inter-neuron connections model biological axons and dendrites, thelow jitter

delay of the connections has to be within speci�c values according to the pro-
grammed neuron acceleration factor of 104 to 105. To be more precise, the
STDP functionality implemented at the synapses is based on the arrival times
of the incoming events. The digital control logic of the ANN is therefore able to
re-synchronize incoming events with a precision of 156 ps according to the time
stamp of the event. The re-synchronization process requires the events to be
transmitted within the correct clock cycle. Delay variation (jitter) in the spike
delivery has to be canceled out by the usage of bu�ers, which again increases
the �nal connection delay. Therefore, jitter has to be avoided as much as pos-
sible. The Spikey chip thus requires isochronous connections for its external
data transport.

3. The data rates arising for the inter-chip transfer of spike events are not con-variable
bandwidth stant, since the generation of a spike at a neuron is based on the timing of

the arrival of incoming spikes. The data rate required to transport the spikes
of multiple neurons between two chips is therefore non-deterministic. Further-
more, the implemented neuron model has only limited coverage with a biologi-
cal neuron. Due to this, the resulting spike frequencies can hardly be predicted.
As a rough estimation, a mean �ring rate of 10Hz for a biological neuron [1]
approximately results in the spike rate of 1MHz for its chip's counterpart at
a speedup of 105. In the case of bursting of a single neuron or a synchronized
behavior of multiple neurons, this value can be exceeded signi�cantly.

The reader will notice that the transport requirements of the Spikey chip resem-
ble the requirements of the HAGEN chip. Both chips require isochronous connections
for the transmission of their neural data. However, the requirements of the Spikey

chip are more strict than the requirements of the HAGEN chip, which is operated in a
clocked network with a deterministic network load (cf. section 2.1.1).

External Interface

The Spikey chip has been designed to operate within the Stage 1 framework of thephysical interface

Electronic Vision(s) group and is physically interfaced by the Virtex-II Pro FPGA (cf.
section 2.2.1). The external interface is implemented within the digital part of the

2.2. THE FACETS STAGE 1 FRAMEWORK 39

chip. The physical layer complies to the HyperTransport [60] I/O link speci�cation.
It consists of two bidirectional 8-bit source synchronous links operating at nominal
400MHz double data rate (800Mbit) allowing a total transfer rate of 1.6GByte/s for
both input and output. The chip also supports daisy chaining of multiple units on a
custom-made board, but this indeed reduces the total bandwidth of the interface to
a fraction usable for each chip.

The ANN-FPGA interface transfers packets of 64 bit in size and combines up to interface rate

three spike events into a single packet. The interface data rate given in table 2.5
denotes the optimal case that three events can be combined within a single interface
packet, which is not always possible especially for low data rates. After passing
the interface, the spike events are encoded separately by the ANN control logic
within the programmable logic. This process adds additional timing and address
information, which enlarges the encoding to 21 bit per single event (cf. chapter 4.3
of [47]). Therefore, the isochronous connections between two distinct ANN chips
have to deliver multiples of 21 bit.

The operation of the chip (the queuing of events, the interconnection to the net- operation control

work etc.) is managed by an ANN controller implemented within the programmable
logic of the FPGA. The high-level control is handled in software running on the
control PC of the framework. The description of the interface of the chip, of the
internal event transport, as well as of the controller implemented within the FPGA
is beyond the scope of this thesis. A detailed description can be found in [47].

2.2 The FACETS Stage 1 Framework

The FACETS Stage 1 framework has been developed within the Electronic Vision(s) overview

working group in Heidelberg [46, 39]. It consists of one or multiple backplanes,
which can be equipped with network modules for which they provide the intercon-
nections and power supplies. The backplanes are connected to a control PC with
the Linux [79] operating system, on which a high-level software provides a graphical
user interface [38, 53]. Its primary intention is to host and to interconnect multiple
ANN ASICs for the research on large-scale hardware neural networks. Besides of
this, the framework is a general tool for the operation and the interconnection of
custom-made ASICs within a distributed environment.

The scope of the following description is reduced to the main aspects of the scope

framework relevant for this thesis, i.e., the operation of the ANN chips HAGEN and
Spikey and the development of a transport network for their neural data. For a
more detailed technical description see [46]. A schematic overview of the framework
is shown in �gure 2.5.

2.2.1 Nathan Network Module

The Nathan network module is the core component of the framework. The purpose
of the module is to host a single ANN chip, which is plugged onto the module via
two surface mount technology (SMT) connectors (Spikey) or into a dedicated socket
(HAGEN). A single module features all parts that are necessary for the operation of
its ANN. Figure 2.6 shows a photograph of the network module.

The central part of the module is a programmable logic FPGA device, which is parts

40 Introduction

Control
PC

FPGA

SRAM

DDR-SDRAM

HAGEN

Clocking

Slow Control

Network
Module 1

Local Clock
Generation Power Supplies

FPGA

Virtex II-Pro
SRAM

DDR-SDRAM

ANN
ASIC

DAC12

MGT

M
G

T

BACKPLANE

Module 16

Diff. conn.

Diff. conn.

S
M

T
c
o
n
n
.

Figure 2.5: Schematic of the FACETS Stage 1 framework. Multiple network modules are
plugged into a backplane, which provides the interconnects and the power supply. The
control PC hosts the user interface (taken from [46]).

placed directly next to the ANN chip. The usage of programmable logic allows to
implement a high-performance and �exible interface to the local ANN. The FPGA
is further connected to all other components on the network module and contains
the interface logic to the parts within separate functional entities implemented in
the programmable logic:

• Two independent ZBT SRAM modules [63] of 512KByte each are mounted
directly onto the Nathan printed circuit board (PCB). The modules have two
clock cycles delay for a low-latency access via a 2 × 32 bit bus that operates
at frequencies of up to 200MHz.

• An additional DDR SDRAM socket on the module can be equipped with com-
mercial memory modules used on laptop computers to provide larger amounts
of local memory of up to 2GByte. The interface to the controller within the
FPGA operates at transfer rates of up to 150MHz DDR via a 64 bit wide
bus [125].

• A temperature sensor is placed directly between the two ANN connectors. It
measures the temperatures of the ANN as well as of the FPGA and is able to
alert the system if maximum values are exceeded.

• A four-channel DAC with a resolution of 10-bit in the range of 0V to 3.3V [82].
The speed of the DAC is about 1MHz and it is used to provide bias voltages
to the ANN device.

Each backplane can be equipped with up to 16 modules at the same time. Theconnectivity

modules are plugged into the PCB in parallel using di�erential connectors. The
connectors do not only provide the necessary power supply to the module, but are
also used for the framework-wide interconnections of multiple network modules.

2.2. THE FACETS STAGE 1 FRAMEWORK 41

FPGA
under

heat sink

DDR-SDRAM
(bottom)

Recha, mounted on two
daughter card SMT connectors

power
supplies

analog MUX ADC DAC

high-speed
differential connector

Spikey, directly
bonded

plexiglass
cover

LEMO
connectors

CQFP208
footprint

Figure 2.6: Photograph of the Nathan network module. The module is equipped with the
carrier board that hosts the ANN ASIC Spikey (taken from [47]).

Virtex-II Pro FPGA

The central part of the Nathan module is a commercially available Xilinx Virtex-II
Pro FPGA of the type xc2vp7 [154]. It provides programmable logic organized in
11.088 4-input look-up table (LUT) logic cells and 4928 slices of 2 �ip-�ops each.
The presence of programmable logic is a main aspect for the high �exibility and the
universality of the whole network module. This allows to implement the ANN control
algorithms directly next to the ANN device. Consequently, a transport network that
interconnects multiple ANN chips can be implemented directly within the FPGAs
to achieve a low-latency transport of the neural data.

To aid the development of complex and high performance functionality, the
FPGA furthermore features several integrated cores, which are embedded as ASICs
within the programmable logic:

• A single 350MHz 32 bit IBM PowerPC 405 CPU core.

• Eight multi-gigabit serial links for high-speed communication.

• Four digital clock managers (DCMs) for clock de-skewing and frequency syn-
thesis.

• 44 dual-port block RAM (DPBRAM) elements programmable from 16K × 1
bit to 512 × 36 bit with a total of 792Kbit per FPGA.

• 44 embedded 18 × 18 bit multiplier blocks.

The main part of a digital design is usually implemented within the universal 4-
input LUT (LUT4) elements of the FPGA. The listed cores can be accessed by
internal routing resources for improved performance of particular algorithms and to
save LUT4 elements for more general tasks.

42 Introduction

PowerPC 405 The embedded 32 bit IBM PowerPC 405 [152] is connected to thehardware /
software
co-design

surrounding programmable logic with multiple standardized bus interfaces. The
FPGA manufacturer provides software tools, libraries and intellectual property (IP)
cores for a hardware/software co-design that allows for a convenient programming
of the PowerPC using the C/C++ language. The co-existence of high-level software
and programmable hardware on the same substrate close to the ANN ASIC allows
to execute the chips's training algorithms completely locally on the network module
or at least to perform time-critical, calculation intensive operations in parallel within
the programmable logic [125].

To facilitate the execution of existing ANN control software directly on the net-Linux on the
network module work module, the Linux [79] operating system has successfully been ported to the

Nathan network module during this thesis. The connection between the Linux sys-
tem on the network module and the Linux system on the control PC is performed
via the IP protocol (cf. section 2.2.4).

Multi-Gigabit Transceivers The multi-gigabit transceivers (MGTs) are duplexmulti-gigabit
transceivers serial links that operate at speeds of up to 3.125Gbit/s. The MGTs can be con�g-

ured to comply to a couple of industrial transmission standards like In�niBand [62],
Gigabit Ethernet and 10-Gigabit Ethernet (XAUI) [92], FibreChannel [37], Serial
ATA [120] etc. If all transceivers are used, the FPGA features a total amount of
on-chip and o�-chip bandwidth of up to 5GByte/s. The MGTs are interconnected
externally via impedance-controlled LVDS transmission lines. The transmission lines
of four of the MGTs are routed to the di�erential connector on the bottom of the
network module and further to other network modules via the backplane. The lines
of the four remaining MGTs are routed to the di�erential connector at the top of
the module. This can be used to extend the topology of the pre-de�ned connections
of the backplane or to interconnect multiple backplanes. The connections are added
by hand using standard serial ATA cables.

2.2.2 Backplane and Control PC

A single backplane hosts up to 16 Nathan network modules and supplies the modulespurpose

with the required power and connectivity. The following description refers to the
updated version designed by Dan Husmann in 2007. Besides the hosting of the
Nathan modules, the backplane provides a separate FPGA of the same type as on the
network modules with many of its package pins routed to additional connectors (not
shown in �gure 2.5). The FPGA on the backplane supports direct and independent
connections to each network module for con�guration and control of its FPGA. The
power is provided by a commercial ATX power supply. For details refer to [46].
Figure 2.7 shows a photograph of the new version of the backplane equipped with
three modules.

2.2.3 Connectivity

An important purpose of the backplane is to provide the necessary connectivity of
the Nathan modules to each other and to the control PC. Multiple interconnections
are provided:

2.2. THE FACETS STAGE 1 FRAMEWORK 43

network module
FPGA

Spikey
ANN

Backpane FPGA

Figure 2.7: Photograph of the backplane with three network modules. The connection
between the backplane and the control PC can be seen at the right hand side.

1. The main connectivity is provided by the transmission lines between the MGTs gigabit network

for transmissions at data rates of up to 3.125Gbit/s. These physical intercon-
nects are denoted as the gigabit network in the following. The implementation
of the transport network of this thesis uses the gigabit network for its data
transports.

2. The SlowControl network interconnects the control PC with each network mod- SlowControl

ules via the backplane FPGA. The SlowControl is designed to commit control
commands and read back status information with moderate speed to minimize
the consumption of programmable logic within the FPGAs. The connection to
the control PC uses a commercial small computer system interface (SCSI) con-
nector to the custom-made Peripheral Component Interconnect (PCI)-board
Darkwing [3], which is plugged into the PC. The PC can take multiple boards
to control multiple backplanes at the same time.

3. It is possible to attach a commercial Gigabit Ethernet PHY [49] to the back- gigabit ethernet

plane for a high-performance connection to the control PC. The PHY is directly
connected to the backplane FPGA. By using an appropriate network switch, a
single Gigabit Ethernet card plugged into the control PC is su�cient to access
multiple backplanes.

4. Since the MGTs of the backplane FPGA supports multiple di�erent high-speed hyper transport

standards, it is further possible to attach the backplane to the control PC using
modern high-speed interconnection standards. An interesting opportunity is
the connection to the HyperTransport [60] interface of a modern CPU by us-
ing appropriate interface cards [57]. This enables a high-speed and low-latency

44 Introduction

access to the programmable logic within the FPGA by high-level software ex-
ecuted on the PC.

The last two options are to enhance the connectivity of the backplane to the control
PC compared to the existing SlowControl network and are not yet available. The
�rst two options are usable for a communication between the network modules.
The purpose of the gigabit network is to transport large amounts of data, whereas
the SlowControl is better adopted to transfer control and status information. The
gigabit network and the SlowControl are explained in more detail in the succeeding
paragraphs.

Gigabit Network

The backplane interconnects the MGTs on the network modules to create a giga-physical topology

bit network between all modules. The connections between the MGTs are physical
transmission lines that are routed directly point-to-point between the di�erential
connectors of the modules. Each network modules is bidirectionally connected to
four others, with an independent unidirectional connection in each direction. The
topology of the resulting 64 di�erential connections equals a 2-dimensional toroidal
structure or a 4-dimensional binary cube, both with bi-directional edges. It is illus-
trated in �gure 2.8. Since the external pins of four additional MGTs are routed to
the top connector of the network modules, the topology can be extended by adding
up to four arbitrary connections between the modules.

0 1

23

4 5

67 89

10 11

12

14

13

15

(a)

0 1

23

4 5

67 8 9

1011

12

14

13

15

(b)

Figure 2.8: Hardwired topology of the backplane. Each network module is interconnected
to four others. (a) Illustration as a 2-dimensional toroidal structure. (b) Illustration as a
4-dimensional binary cube. The fourth coordinate switches between the two 3-dimensional
cubes.

2.2.4 SlowControl and PowerPC Operation

A distributed setup like the Stage 1 framework requires a convenient control mech-high-level control

anism and programming model for higher level software. Two main functionalities
have been implemented for this purpose within the scope of this thesis:

2.2. THE FACETS STAGE 1 FRAMEWORK 45

• The development of the SlowControl network.

• The installation of the Linux operation system on the PowerPCs [152], which
are embedded within the FPGAs on the network modules.

Since the high-level control of the setup is not the main objective of this thesis, both
mechanisms are only brie�y described in the following.

SlowControl

The purpose of the SlowControl is to provide a simple framework-wide access and purpose

control of all functional elements of the framework, as e.g. the ANN chips, the
SDRAM memory on the network modules or the PowerPCs. Since all these elements
are interfaced by FPGAs, the SlowControl accesses the corresponding modules within
the programmable logic. For this reason, the SlowControl provides a set of basic I/O
commands (e.g. FPGA con�guration, read data, write data) usable from higher-level
software. The services of the SlowControl are accessible from both, the control PC
and also the PowerPCs.

The physical interconnects of the SlowControl are illustrated in �gure 2.5. The connectivity

interconnects are serial lines for the data transfers with a clock signal in parallel
and operate at speeds of up to 100MHz. The connection to the FPGA is made via
the di�erential backplane connector of the modules. It is stated here again that the
SlowControl network and the gigabit network are separate and independent networks
that share no physical interconnection resources. The SlowControl has been initially
designed for the �rst version of the backplane, at which it uses a ring topology to
interconnect the FPGAs on all network modules with the control PC. The MAC layer
of the SlowControl operates similar to the IEEE 802.5 Token Ring standard [145].
The new version of the backplane replaces this by a parallel access to all network
modules via the single backplane FPGA. The present implementation uses the above
mentioned SCSI connection between the backplane and the control PC.

The functional parts of the SlowControl are distributed across several parts of functional parts

the system. The local access of the programmable logic as well as the MAC layer
of the network are implemented within the several FPGAs of the framework (on the
network modules, on the backplane and on the PCI card within the PC). Higher-level
functions are implemented in software on the control PC and feature a multi-user
access to the hardware via a simple and generic software interface. The high-level
control of the ANN chips is implemented on top of the SlowControl (see e.g. [53, 38]).

PowerPC Operation

The embedded PowerPC within each FPGA is powerful enough to host a conventional Linux
installationLinux [79] system. The Linux system has been installed by con�guring and compiling

a kernel variant that is dedicated for embedded CPUs [95]. The PowerPC core is
connected to the programmable logic via its processor local bus (PLB) [61] and thus
has access to the SDRAM memory on the network modules. To start the system,
the kernel and a ramdisk with basic executables are written into the memory. The
CPU starts the execution of the kernel at a speci�c address and requires parameters
to be set within its processor registers. The ramdisk allows to automatically execute
pre-compiled software after the operation system has booted.

46 Introduction

The access of the programmable logic by the software on the PowerPC is per-interfaces

formed via the several buses of the CPU. The SlowControl network and thus the
functional modules within the programmable logic are accessible via its device con-
trol registers (DCR) bus. The exchange of data with the control PC can be achieved
via the SDRAM, which is accessible from both systems. Since the PowerPC and the
control PC use a di�erent alignment of its data (endianess), the exchange of data has
been facilitated by a modi�cation in the memory handler of the Linux system. The
software on the PowerPC uses this to allocate a memory mapping with the alignment
of the PC.

Finally, a convenient high-level connection between a PowerPC and the controlhigh-level
connection to PC PC has been established by means of an IP network. Within both systems, a virtual

network card has been programmed whose data is physically transported via the
SlowControl and the memory modules as described. An IP network is installed on
top of this virtual network card and can be used for general purpose TCP/IP connec-
tions between software processes on both systems. This technique enables high-level
software on both systems to communicate with standard network protocols. This
not only facilitates the execution of distributed software [39], but also the debugging
during the development phase on standard PCs.

2.3 Neural Network Experiments

The previous sections described the existing Stage 1 framework and the two analogoverview

neural network chips HAGEN and Spikey built by the Electronic Visions(s) group.
Although the framework allows to investigate single neural network chips, its strength
lies in the adequate hardware interconnection of multiple chips to create and operate
large-scale distributed neural networks. This section now leads to the formulation of
the special interconnection demands of neural network applications. The demands
arise out of the multiple di�erent tasks to be solved during the execution of the
experiments.

2.3.1 Experimental Setups

The execution of hardware neural network experiments requires di�erent tasks to be
performed prior and during an experiment. As an example, the following tasks are
considerable:

• The transfer of a biological network model to the hardware of the framework.

• The con�guration of the distributed ANN chips.

• The inter-chip transport of neural data.

• The inter-module communication of the training algorithms.

• The transport of training data, network stimuli or experimental results.

• The execution of the high-level user interface.

The complexity of the framework allows to implement these di�erent tasks in
di�erent ways, which are more or less adopted to the corresponding problems. Two
main aspects have to be taken into account:

2.3. NEURAL NETWORK EXPERIMENTS 47

ANN
control

local SDRAM memory

high level software
+user Interface

gigabit connection
to other modules

serial slow control network
between all modules + control PC

memory controller

transport network

FPGA

low-level
training

algorithms

PowerPC
high-level
software

Nathan network module

ANN
Chip

Figure 2.9: Schematic view of the FACETS Stage 1 framework with focus on the substrates,
where algorithmic parts could be implemented. The FPGA used provides programmable
hardware as well as a PowerPC CPU close to the ANN chip. High-level software can be
executed on the control PC. The substrates have di�erent interconnection probabilities and
di�erent complexity limitations.

• The distributed nature of the system: The framework can be seen as a collection distributed
systemof equal calculation units, the Nathan network modules. A single backplane

takes up to 16 modules, but the system can be extended by combining multiple
backplanes. For an optimal usage of the given resources, not only the neural
network itself, but also the training and evaluation algorithmic tasks have to
be parallelized and distributed. The communication bandwidth between the
several Nathan network modules may limit the speed of the algorithms used.

• The existence of multiple substrates: In contrast to a computer cluster that multiple
substratesrepresents a parallel system in software, the Stage 1 framework consists of

ANN hardware, programmable hardware, a local embedded PowerPC and the
control PC. Although the complexity of the system can be hidden from the
user interface on the control PC, it has to be decided on which substrate to
implement the algorithmic parts of the experiment.

Figure 2.9 shows a schematic view of the framework. The focus lies on the di�erent
substrates on which algorithms could be implemented. The decision where to imple-
ment algorithmic parts depends on the required computational power, the level of
parallelism and the required inter-module communication.

Programmable Logic

Programmable logic is executed in parallel and has a high computing power close parallel, fast,
limited spaceto the ANN chip. The main drawback for the usage of programmable logic are the

limited logic resources of the FPGA. Furthermore, programmable logic commonly
requires a comparably high e�ort for development and debugging. Parts that have to
be executed within the programmable logic are the ANN controller, which interfaces
the ANN chip, the implementation of the transport network as well as the SlowCon-
trol (cf. section 2.2.4). It is further possible to implement local low-level training

48 Introduction

algorithms within programmable logic to exploit the possible high data rate to the
local ANN chip [125].

PowerPC Software

From the software view, the Nathan network module combines a complete embeddedhigh-level, limited
complexity and
connectivity

computing system around the PowerPC CPU close to the local ANN chip. The buses
of the PowerPC are directly connected to the surrounding programmable logic.The
support of the Linux operating system on the CPU and its operating frequency of
up to 350MHz makes it possible to implement higher-level training algorithms in
software and to port existing algorithms formerly executed on standard PC systems
on the network module. Due to the distributed nature of the setup, the PowerPC is
more feasible to implement training algorithms with only few need of inter-module
communication to not to reduce the performance advantage of local software.

Control PC Software

The single control PC mainly hosts the user interface and schedules the di�erenthigh-level,
complex, low
connectivity

experimental tasks executed on the network modules. The single control PC is a
standard PC system, but has only limited connectivity to the network modules via
the SlowControl. In a �rst step, already existing software algorithms can be used
immediately and be executed on the control PC. A transfer of the algorithms to the
PowerPC on the network modules or a later implementation in programmable logic
is possible to speedup the experiment.

Example Setups

As an example, in [38, 39, 125] is described how experiments are carried out on
the framework using the HAGEN chip. The chip is used for pattern recognition and
classi�cation experiments. The software PyNN [115] is used for high-level control on
the control PC. In [125] it is described how an experimental setup using the HAGEN

chip interfaced by and FPGA directly connected to the control PC via the Darkwing
card [3] is transferred to the Stage 1 framework. In [14], �rst experiments with the
Spikey chip are described.

2.3.2 Interconnecting Multiple ANN Chips

The current development of the setup comprises that each ANN chip is interfaced
exclusively by the FPGA on the Nathan network modules. A fully equipped back-
plane therefore supports the distributed operation of up to 16 ANN chips. Later
developments will introduce the interconnection of multiple ANN chips that are di-
rectly connected to a single FPGA [67]. It has been stated in sections 2.1.1 and 2.1.2
that the two chips HAGEN and Spikey both require a transport network that provides
isochronous connections for its interconnection.

The two chips are not directly connected to the network by are interfaced byANN controller

special ANN-controllers implemented within the programmable logic. Both chips
have di�erent controllers. The controllers manage the con�guration of the chips,
the feeding of the chip with neural input stimuli as well as the recording of neural

2.3. NEURAL NETWORK EXPERIMENTS 49

output data for evaluation. Furthermore, the ANN controllers are interfaced to the
transport network for the network-wide interconnection of the chips. The controller
are therefore required to implement bu�ering techniques for the transmit and the
receipt of neural data, as well as a re-synchronization logic to provide incoming
neural data to the chip at the correct time (cf. section 3.2 of [47]).

ANN
control

gigabit connections
between the modules

transport network

Nathan network module

ANN
Chip

SDRAM memory

ANN
control

transport network

ANN
Chip

SDRAM memory

Figure 2.10: Large-scale interconnection of multiple ANN chips. The transport network
provides isochronous connections via the multi-gigabit links of the framework. Each chip is
interfaced by a dedicated ANN controller that is itself connected to the network.

The resulting networks can be implemented with di�erent levels of interconnec- levels of
connectivitytivity (cf. �gure 2.10):

• Local feedback connections on the same ANN chip.

• Local feedback connections provided by the ANN controller.

• Connections between di�erent ANN chips connected to the same FPGA.

• ANN chips interconnected by the transport network.

Note that the di�erent types of interconnects result in di�erent connection delays.
Large connection delays either result in the long duration of a network cycle (in case
of the HAGEN chip) or reduce the possible speedup of the chip or the even quality of
the neuron modeling (in case of the Spikey chip). The requirements to the transport
network are discussed in section 2.4. The considerations to be made when mapping
existing neural network netlists to multiple ANN chips is considered �rst in the
succeeding section.

2.3.3 Neuron Mapping

The execution of neural network experiments requires a con�guration of the synapses motivation

and the neurons of the ANN chips. The con�guration of the synapses equals the def-
inition of the topology of the neural network to be investigated. A possible scenario
might be to model existing neural network topologies on the framework that have
been previously simulated in software to compare the results [14]. The neural net-
work topologies can be represented as a list of interconnected neurons, the netlist.

Since the present ANN chips model neural networks on the neuron level, a map- mapping process

ping process has to be executed prior to the experiment, which assigns each neuron

50 Introduction

of the netlist to be modeled a physical counterpart on an ANN chip. The result
of this mapping operation is an assignment table de�ning the hardware position at
which each modeled neuron has to be placed. The table is then used to con�gure
the ANN hardware accordingly (cf. �gure 2.11). The resulting mapping can also
be represented as an adjacency matrix of the hardware neurons with the synaptic
connections of the ANN chips as the matrix elements.

netlist with
hardware

parameters

neuron mapping
(placing)

neuron
assignment

table

hardware
configuration

ANN
hardware

evaluation

biolocical model

experiment

inter-chip
bandwidth
demands

()

Figure 2.11: Schematic view of the pre-experimental mapping process. The netlist of the
neural network topology has to be mapped on the available hardware. Thin arrows represent
the usage of hardware information or hardware interactions.

It has been shown in the sections 2.1.1 and 2.1.2 that the topology of the possibleconnectivity
limitations networks is limited by the interconnection properties of the chips. When placing

the neurons, the mapping process has the limited hardware resources to take into
account: on-chip connectivity and inter-chip connectivity. On-chip connectivity is
limited by the number of local feedbacks as well as the maximum number of synapse
drivers per neuron (the input count). Limitations may hinder particular neurons
to be connected or may require the neurons to be removed from the network such
that the given netlist cannot be mapped. Inter-chip connectivity is limited by the
interface of the chip and by the available bandwidth of the physical links between
the chips.

The following paragraphs discuss the hardware constraints, a mapping algorithmconstraints

has to consider. Hard constraints of the mapping process include the physical prop-
erties as the limited input count of the neurons or the number of available ANN
chips. This either hinders to exactly map particular biological network models on
the hardware or results on drops of neurons or synapses. Besides of this, the mapping
algorithm has to perform optimizations like to minimize the number of chips used,to
minimize the inter-chip bandwidth needed for communication as well as to minimize
the connection delay. The quality of the algorithm and the di�culty of the mapping
task for a given netlist and hardware setup determine the resulting congruence of
the mapped network to the original netlist.

2.3. NEURAL NETWORK EXPERIMENTS 51

Network Blocks

The two ANN chips HAGEN and SPIKEY consist of groups of neurons within multiple
network blocks with the identical number of neurons, synaptic inputs and synapses
for each block. A HAGEN network block contains 64 neurons with 128 inputs, whereas
a Spikey network block contains 192 neurons with 256 inputs each. Each network
block can be fully connected, i.e. each synaptic input can independently be connected
to each neuron with an individual synaptic weight.

The resulting hardware topology can be viewed as an accumulation of intercon- hierarchical level

nected network blocks, or in other words, the network blocks introduce an additional
level of hierarchic between the single neurons and the whole network. Note that this
hierarchic level does usually not exist in the initial biological model that is to be
mapped. In the case of using multiple blocks, the mapping algorithm has to clus-
ter the modeled network into several subnetworks, which are then assigned to the
network blocks of the ANN chips (cf. �gure 2.12).

neural network model clustering

A

B

C

D

A B

C D

hardware assignment
(two blocks per chip)

Figure 2.12: Networks occupying multiple hardware blocks have to be partitioned into clus-
ters and to be mapped one by one. The clustering process has to minimize inter-block
communication. The example uses a maximum neuron count of four per network block for
simpli�cation.

Input Count Limitation

On both presented ANN chips, the number of synaptic inputs (the input count) to limited number of
synaptic inputsa hardware neuron is limited. Due to the analog implementation of the neuron,

this limitation cannot be exceeded by interconnecting multiple chips. As a result,
fully connected networks are possible only up to the size of 128 neurons (HAGEN)
or 256 neurons (Spikey). Network models including single neurons with higher
input count cannot be implemented on the chips. Fully connected networks that
use only on-chip feedbacks are further limited to 192 neurons. This is since the on-
chip connections feed the output of each neuron to only a single dedicated input at
each network block, which corresponds to its own block position (0 . . . 191). This
limitation has consequences for the randomness when creating networks consisting
of multiple Spikey chips. If the total number of chips is high, only a fraction of
neurons from each chip can be used as inputs at any other chip. Note also that

52 Introduction

this limitation holds for a whole network block, thus the inputs of all neurons of
a network block are limited to the same 256 neuron outputs that feed the synapse
drivers of the block. Consequently, the input count limitation also a�ects networks
being only sparsely connected.

Consider a network of 1000 neurons randomly connected with an interconnectionexample
calculation probability of 5% between any two neurons to be mapped on several Spikey chips.

Each neuron will have about 50 other neurons from which it receives input. Imagine
that the 1000 neurons are clustered into 4 chips with 8 blocks of 125 neurons. Al-
though each individual neuron of a block receives input from only a mean of 50 other
neurons, all neurons of a block have their inputs independently assigned out of the
total number of 1000. To calculate the required input count of a network block, note
that the output of a particular neuron is requested as input by each of the neurons of
the network block with a probability of p = 0.05. The probability that this neuron
is requested by at least any of the 125 neurons as input is then

Pany = 1− Pnone = 1− 0.95125 = 99.84 % (2.5)

for each block. Each block therefore requires the mean number of

Pany · 1000 = 998 (2.6)

neurons as input. Since a network block has a limited number of 256 inputs, this
network cannot be achieved using only four ANN chips.

According to the input count of 256 synaptic inputs, the mapping algorithm could
avoid to exceed the input count by placing only �ve neurons onto each network block.
Although possible to map, this solution, would require a total number of 200 network
blocks or 100 ANN chips. This would not only result in a low hardware e�ciency,
but also in a required high interconnectivity as well as in a high resulting connection
delay since 100 chips can hardly be fully connected.

Bandwidth and Delay

The limited input count of a neuron or network block is a hard constraint for the
mapping algorithm and may force to drop neurons and synapses of the netlist to be
mapped. In contrast to that, the mapping algorithm has to minimize the required
bandwidth as well as the delay of the connections between the placed neurons as an
additional side condition.

The physical topology of the gigabit network of the Stage 1 framework is notinter-chip
bandwidth fully connected, but represents a 2-dimensional toroidal structure that can also bee

seen as a 4-dimensional binary cube (cf. �gure 2.8). The placement calculated by
the mapping process will require multiple synaptic connections between neurons on
di�erent chips to share the same physical links. Neuron connections between distant
chips occupy the bandwidth of all links on the route between the source and the
destination chip. Since the link capacity is limited, the mapping algorithm should
optimize the placement for a minimum and balanced bandwidth by combining groups
of highly connected neurons and placing the group on the same chip.

Furthermore, the transmission delays between di�erent chips will be much higherinter-chip delays

than the local feedback connections on the ANN chips itself. In the case of the

2.3. NEURAL NETWORK EXPERIMENTS 53

Stage 1 framework, internal delays of the Spikey chip require about 2 ns [47] whereas
the FPGA-embedded gigabit transceivers introduce a delay of about >200 ns per
network hop without further modi�cations (cf. section 4.3.4). This results in sig-
ni�cant gaps in the transmission delays depending on the number of intermediate
network hops between the source chip and the destination chip. Very large delays
may not be acceptable for an adequate modeling of the given netlist. In analog to
the bandwidth optimizations, the mapping algorithm has to optimize the connection
delays by combining clusters of highly interconnected neurons to local groups.

Implementation of the Mapping Process

A detailed discussion of the mapping process or the presentation of a reference algo-
rithm is beyond the scope of this thesis. The following describes some considerations
to be made for the implementation. The description of an example algorithm based
on a graph model can be found in [149]. A simple algorithm of the mapping process
would enumerate and map the modeled neurons one by one to the existing hardware
neurons of the framework in incremental order. This clearly does not respect the
given structure and topology of the hardware.

The clustering of neurons is possible only for a subset of netlists. Concerning the clustering process

representation of the mapping result as an adjacency matrix, the clustering process
equals a modi�cation of the matrix to accumulate enabled synapses near the diago-
nal by exchanging the corresponding lines and columns accordingly.1 Clearly, fully
connected networks cannot be optimized, since all synapses are enabled. Sparsely,
but randomly connected networks are also hard to be optimized as the calculation
example of equation 2.6 showed. The di�culty of the clustering process is caused
by the random character of the network and the resulting low probability that two
neurons share the same inputs. The neuron placement can be optimized best for
feed-forward or recurrent networks with a (multi-)layered structure, in which the
clustering process can be oriented at the layers.

To take these topics into account, more sophisticated algorithms have to be used. keep statistics

One option is to modify the initial netlist of the network model (e.g. to inter-
change synaptic connections, to remove neurons completely or to reduce the number
of synaptic inputs) by keeping important statistical parameters of the network, as
e.g. the average number of synaptic inputs per neuron. As an example, long-range
synaptic connections can be interchanged by short-range connections to relax the
link usage.

In the case that the mapping process results in signi�cant losses of connectiv- network
generationity, it is also conceivable to characterize the neural network to be investigated by

its statistical properties in terms of diversity, randomness and interconnectivity in
contrast to a de�nition with an exact netlist. In this case, another approach is to
generate networks that ful�ll the hardware constraints automatically by the design
of the generation mechanism. The mapping of such networks to the hardware can
then be accomplished without any losses of neurons or synaptic connections. This
strategy has been used in this thesis to generate a set of representative networks

1In fact, the process is more complex due to the block structure of the ANN chips and the
multi-dimensional topology of the physical network.

54 Introduction

with di�erent bandwidth requirements to test the performance of the transport net-
work. The generated networks have pseudo-random character and use all neurons
and synapses available of a backplane (cf. section 4.10.4).

2.4 The Transport Network

It has been shown in section 2.3.1 that many of the tasks to be done during anmotivation

experiment rely on a framework-wide transport network with high data rates and a
connectivity with low latency between the several Nathan modules. The network is
required during the setup of an experiment (e.g. to transport network stimuli to the
local SDRAM memory chips) as well as during its execution (e.g. to transfer neural
network data) and after (e.g. to transfer network outputs for further evaluation).
The SlowControl network, which exists anyhow for con�guration and control, cannot
be used for these purposes, since its physical layer provides serial transmissions of
up to 200Mbit/s only. In contrast to that, the gigabit network between the Nathan
modules features speeds of multiple magnitudes higher.

The remainder of this thesis discusses the design, the implementation and thepurpose

evaluation of the gigabit transport network. Its main characteristics are the provision
of QoS transfers combined with a compact design well suited for an implementation
within the limited space of programmable logic. The transport network has initially
been developed for the speci�c requirements that arise at the research with hard-
ware neural network experiments. Although many design decisions of the reference
implementation have been optimized for this kind of application, the network ar-
chitecture features a universal character and can be used with other applications
on the Stage 1 framework or even within other environments as well. This section
discusses the requirements for the operation within the Stage 1 framework. The
following chapter 3 describes the general architecture of the network. The reference
implementation within programmable logic is presented in chapter 4.

2.4.1 Design Considerations

According to the operations necessary during the execution of a neural networkpayload data

experiment on the Stage 1 framework, the transport network between the Nathan

network modules has to deliver multiple di�erent types of payload data:

• Data concerning the neural network operation: neural network data (neuron
outputs), training data (network stimuli), network answers to stimuli, synaptic
weights etc.

• Other higher-level communication data: data required for the coordination of
distributed algorithms, for high-level control functions or for the transfer of
status and monitoring information.

Another distinction of the data to be transported is better adopted to the prob-tra�c classes

lem from the network point of view: the question if the data type to be transported
has demands for QoS guarantees or not. In sections 2.1.1 and 2.1.2, it has been
shown that the transport of ANN neural network data between the chips has strong
timing demands to the underlying network to keep to the network model of the chips.

2.4. THE TRANSPORT NETWORK 55

Although the Perceptron-based chip HAGEN and the spiking chip Spikey model dif-
ferent types of neurons and thus have di�erent network models, both require QoS
guarantees for the neural data transport: both network models require nearly con-
stant delay and a certain guaranteed throughput or, in other words, require the
neural data to be transported within isochronous connections. All other data types
mentioned above are expected to not to have such strong delay, throughput or jitter
demands. The following discussion of the data types therefore distinguishes between
neural network data and non-neural network data.

ANN
controller

gigabit connection to other modules

memory
controller

transport network

ANN
Chip

SDRAM
memory

process
with memory

access

packet-based
interface

network stimuli
& readout

connection-based
interface

neural data memory data

FPGA

Nathan network module

Figure 2.13: Simpli�ed schematic of the transport network. Neural network data as well
as memory data is transported between the neural network modules via the same physical
gigabit links. The network provides separate interfaces to upper layer processes.

2.4.2 Transport of Neural Network Data

The requirement for isochronous inter-chip connections lead to a connection-based �xed connection
topologyapproach for the transport of neural network data similar to the use of circuits

in circuit switching networks (cf. section 1.3). Although the transport of neural
network data has stronger timing demands, the transport process can exploit the
pre-knowledge of the particular network nodes that communicate and the estimation
of the expected data rates: during the execution of experiments, the synaptic weights
of the neural connections change, but the overall topology of the neural network
itself typically remains �xed. Furthermore, the data rates can roughly be estimated
since the number of neuron outputs to be transmitted between the chips depends
on the pre-known network topology. Consequently, this allows to move the setup
of the isochronous connections to the setup time of the experiment and keep the
connections throughout its execution.

The service requirements for the transport network in terms of throughput, delay QoS
Requirementsand jitter arise out of the neuron models and its network dynamics. The require-

ments depend on the implemented models of the chips and the desired speed of the
experiment. Table 2.3 compares the neuron models of both chips. The QoS demands
to the transport network are discussed separately for each chip in the following.

An important aspect concerns the fault tolerance of the neural connections. Due data integrity

56 Introduction

speci�cation HAGEN Spikey

neuron model Perceptron leaky integrate & �re

neurons 256 in 4 blocks 384 in 2 blocks

synapse weights 10 bit+ 1 bit sign 4 bit + 1 bit sign

weight stability periodic update required stable

synapse plasticity external modi�cation STDP

network timing clocked operation continuous time

network halt possible not possible

speed fnet ≤ 50MHz speedup 104 to 105 to biology

data rate deterministic statistical

data / neuron 1 bit / cycle 21 bit / event

Table 2.3: Comparison of HAGEN and Spikey with focus on the network activity.

to the parallel nature of the neural network experiments, the gigabit network has
to serve the data of a large number of neural connections in parallel. If hardware
errors occur, the network cannot re-request the correct data, especially in the case
that the error occurred at the end point of a connection after a signi�cant amount
of time after its generation. Since the two ANN chips HAGEN and Spikey both use
analog computation for the summation of the synapse currents, it is not possible to
re-generate the exact neural output data.

This leads to the fact, that the network implementation either has to be able tofault tolerance

bu�er and retransmit erroneous data by itself or to introduce su�cient redundancy,
which would reduce the overall bandwidth available. Since the nature of neural
networks implies some kind of fault tolerance, the design of the transport network
can trade the error handling against a compact and e�cient implementation, at
which the appearance of rare errors is accepted. Although the acceptance of errors is
unusual, the isochronicity of the connections is more important for the application.

QoS Requirements of the HAGEN Chip

The network of the HAGEN chip operates at a clocked operation with the network fre-deterministic
behavior quency fnet. Each network cycle, each neuron transmits a single bit into the network

according to its stimuli and synaptic weights. Although the bit can be interpreted as
an indicator for the occurrence of spikes within a certain biological time, the neuron
model is not very close to biology such that a mapping of biological time to ANN
time can hardly be de�ned. As an advantage, the deterministic data rate as well
as the fact that inter-chip connection remain �xed during an experiment allows to
exactly calculate the required bandwidth between the chips prior to the execution
of an experiment depending on the neural network topology to be investigated. The
maximum possible execution speed is then determined by the bandwidth usage of
the physical links.

Table 2.4 lists the bandwidth requirements depending on the selected networkdata rates

frequency fnet of 10MHz to 50MHz for a di�erent fraction of neuron outputs to
be transported o�-chip. It can be seen that th transmission of all neuron outputs

2.4. THE TRANSPORT NETWORK 57

o�-chip at the maximum possible network frequency of 50MHz exceeds the transfer
rate of the interface of 11.4 Gbit/s (cf. table 2.1). This limits the connectivity of the
neural networks to be investigated independently of the data rate of the inter-chip
transport network.

The available data rate at the link further decreases if not only neural input and synaptic weights

output data are to be transferred, but also the synaptic weights should be modi�ed
during an experiment. This is the case during the training phase of a neural network
experiments. It is therefore considerable to train the neural network with a moderate
speed and increase the network frequency at the time the synaptic weights remain
�xed.

fnet ∆t fraction o�-chip

[MHz] [ns] single 10% 20% 50% 100%

10 100 1.25MB/s 32MB/s 64MB/s 160MB/s 320MB/s

20 50 2.5MB/s 64MB/s 128MB/s 320MB/s 640MB/s

50 20 6.25MB/s 160MB/s 320MB/s 800MB/s (1600MB/s)

Table 2.4: Estimated data rates for the HAGEN chip

Concerning the connection delay and jitter, the clocked operation requires the delay, jitter

data to be transported with the precision of a network cycle ∆t. On the one hand,
this requires a carefully designed transport, since the clock cycles are in the range
of few tenth of nanoseconds at the highest possible network frequencies. On the
other hand, the clocked operation also allows the HAGEN chips to be halted until
the transport network completes the transfer of neuron data for the current cycle.
Since the network operation of the HAGEN chip does not introduce further timing
requirements, the network operation can be slowed down to a frequency at which the
transport network is capable to ful�ll the QoS demands. To conclude, the required
QoS bandwidth, delay and jitter depends on the (arbitrary) selected speed of the
chips.

QoS Requirements of the Spikey Chip

The leaky integrate-and-�re neurons of the Spikey chip are generating spike events, continuous time
operationwhich are transmitted between the chips as digital event packets (cf. section 2.1.2).

The fact that the Spikey network of the chip cannot be halted and continued with-
out a�ecting the model results in more speci�c demands for QoS guarantees to the
transport network that the operation of the HAGEN chip.

Since the analog neuron and synapse circuits operate in continuous time, not a speedup

dedicated network frequency but the con�guration of neuron and synapse param-
eters determines the spike event rate of the chip. The more biologically plausible
neuron model of the Spikey chip allows to de�ne an acceleration factor (or speedup)
that roughly compares the timing behavior of the implemented neurons to its bi-
ological counterpart. According to the con�guration of the chip, the speedup can
be adjusted between the values 104 and 105 [124, 122]. The following discussion of

58 Introduction

biological ANN neuron ANN chip

neuron 104 105 104 105

spike rate avg. 10Hz 100 kHz 1MHz 38MHz 384MHz

peak 40Hz 400 kHz 4MHz 154MHz 1536MHz

interface avg. - 0.27MB/s 2.7MB/s 100KB/s 1GB/s

data rate peak - 1.07MB/s 10.7MB/s 400KB/s (4GB/s)

inter-chip avg. - 0.4MB/s 4MB/s 150MB/s 1.5GB/s

connections peak - 1.6MB/s 16MB/s 610MB/s (6.1GB/s)

axonal delay 0.5�10ms 50-1000 ns 5�100 ns - -

Table 2.5: Expected data rates and delay requirements of the Spikey chip. The data rates
are calculated for speedups of 104 and 105 and a biological mean �ring rate of 10Hz and
40Hz. The limited ANN-FPGA interface data rate of 1.6 GByte/s inhibits the data of all
neurons to be transferred o�-chip at the highest possible speedup.

timing requirements ignores the existence of multiple parameters for simpli�cation,
but assumes a single speedup

104 ≤ µ ≤ 105 (2.7)

of the Spikey chip that results out of the con�guration of the neuron and synapse pa-
rameters. The timing requirements are compared to the timing of biological neurons
according to the selected speedup of the chip. A mean �ring rate of

νbio = 10 Hz (2.8)

is assumed [1]. The e�ect of synchronized behavior or bursting is modeled by as-
suming a short-time mean frequency of a set of neurons of up to 40Hz. Table 2.5
shows an overview of the expected throughput and delay requirements to the trans-
port network depending on the selected speedups. The table also contains delay
requirements. A biological transmission delay of 1ms results in a required physical
transmission delay of 100 ns to 10 ns at the possible speedups.

An important aspect of the Spikey chip is the fact that its neural spike events aredata rates

generated statistically, i.e. non-deterministic. If the required bandwidth to transport
the neural events exceeds the physical resources, this will not necessarily prevent the
execution of the experiment, but will lead to high drop rates at the a�ected links.
The physical bandwidth that is assigned for its inter-chip connections has therefore
to be over-provisioned to minimize event losses in the case of synchronized neuron
behavior. The peak values of table 2.5 denote an activity of four times the mean
value. The interface rate of the chip has been calculated for the case that three events
are packet into a single 64-bit interface packet. The external event contains 21 bits
for address and time-stamp information. The resulting data rate for the physical
links has been estimated by considering the internal 16-bit data path of the physical
transceivers of the gigabit network (the MGTs within the FPGAs on the network
modules). A single event therefore requires 32 bit for transmission to not to merge
multiple events beyond data word boundaries. The limitation of the ANN-FPGA
interface to 1.6GB/s in single direction does only allow a simultaneous bursting of
about 150 neurons or 39% at the speedup of 105. Therefore, the maximal bandwidth

2.4. THE TRANSPORT NETWORK 59

requirement for neuron data of a single chip to be transported within isochronous
connections sums up to 2.4GByte/s.

The calculated transfer times for the modeled axonal delay between two neurons delay

is in the range of few 100 ns for the overall inter-neuron transport of spike events that
has to be provided by the network. On-chip local feedback connections introduce only
a physical delay of about ≤ 2 ns, but o�-chip connections require multiple processes
for encoding and decoding. Furthermore, the backplane-based topology is not fully-
connected but equals a 4-dimensional binary cube. The transport network therefore
requires multiple physical hops to interconnect distinct ANN chips. This shows that
the transport network has to be optimized for low-delay connections in any case for
a biological relevant modeling of the inter-neuron connections.

Due to the continuous-time operation of the chip, the delay has furthermore to delay variation

be as constant as possible. Any delay variation introduced by the transport network
is required to be canceled out by additional bu�ers within the controller of the
chip according to the time-stamp within the events. The bu�ers not only consume
programmable logic, but also increase the overall delay. Consequently, the low delay
requirement to the transport network also implies the requirement for a low delay
variation.

2.4.3 Transport of Non-Neural Network Data

As described in the previous section, the execution of neural network experiments best-e�ort tra�c
classdoes not only require the transport of neural network data, but also several additional

payload data to be transported over the framework. This includes training data as
neural input stimuli or recorded output activity, as well as communication data for
low-level training algorithms in programmable logic or for the software running on
the distributed embedded PowerPCs. Depending on the payload type, the data to
be transported can be large data blocks or small packets within continuous data
streams. Unlike the transport of neural network data, the payload of this kind has
no strict QoS requirements, but simply the throughput has to be maximized. Data
of this kind can be combined within an additional single tra�c class, whose data is
transported as best-e�ort tra�c using the remaining network bandwidth not needed
by neural network data.

In contrast to neural network data, the bandwidth requirements of non-neural packet switching
approachnetwork data are not likely to be known prior to the experiments. The transport

requests are non-deterministic and arise during the execution of an experiment de-
pending on its current state. A connection-based approach would need to implement
the complex connection handling (call, setup, shut down) completely within the
FPGAs. The signi�cant delay that is introduced in the signaling phase of connec-
tions is not acceptable, particularly for small amounts of data like e.g. software mes-
sages. Therefore, a packet-based approach as it is used in packet switching networks
is more feasible (cf. section 1.3).

The support of di�erent payloads requires a convenient and easy-to-use interface based on memory
data transportand addressing scheme, which allows a compact implementation within the pro-

grammable logic of the FPGAs. Most processes operating on data structures store
their data into the local SDRAM memory of the network module, which suggests to
implement the transport of this data type based on an exchange mechanism between

60 Introduction

the local memory modules. The implementation of a general packet transportation
mechanism also allows to de�ne higher-level data structures within the transported
data and to transport di�erent payload types without any adaptation of the packet
transport network.

Concerning the required QoS, the packet-based part of the transport networkerror-free
delivery should indeed try to maximize the throughput and to minimize the delay of the

delivery, but more important is the error handling. Since all best-e�ort data is
combined into this tra�c class, the network has to guarantee the error-free delivery
in any case. In contrast to neural network data, the network has to re-request packets
that get lost due to network congestion or physical link distortions. Furthermore, all
packets have to be delivered in order.

2.4.4 Summary of the Service Requirements

The above discussion showed that the execution of experiments with large-scale ar-
ti�cial neural networks within the FACETS Stage 1 framework has requirements for
two fundamentally di�erent tra�c classes to an interconnecting transport network:

• Network data with QoS requirements for throughput, delay and jitter. Thispriority tra�c

tra�c class is needed for the transport of data from the outputs of the arti�cial
neurons to the synaptic inputs on distant ANN chips. The network models of
the chips require isochronous connections, which implies throughput guarantees
as well as guarantees in the timing of delivery. The connections can be set up
early during the network startup. Data losses are acceptable to ensure a correct
timing. Data of this tra�c class has to be transported as priority tra�c.

• Network data with QoS requirements for the data integrity. This typically in-best-e�ort tra�c

cludes the transport of large blocks of data. Examples for this tra�c class are
experimental input patterns (e.g. training data), output patterns (recorded
experimental results), synaptic weights, parameter sets as well as communica-
tion data of the PowerPC software. A packet-based implementation is needed
to reduce the implementation e�ort and to optimize the delay. Data of this
kind uses remaining bandwidth and is transported as best-e�ort tra�c.

Both tra�c classes are required to be transported in parallel via the same physical
links. Note that the acceptance of erroneous data to be delivered within isochronous
connections is no hard constraint. If an error-free delivery is required, the protocols
located in upper network layers can implement data redundancy or error correction
functionality on their own.

Besides the two tra�c classes, there are further aspects to be considered for theapplication
speci�c demands implementation of the transport network:

• A compact implementation within programmable logic of the existing Virtex-II
Pro FPGA. This includes the usage of the existing embedded MGTs for the
physical layer.

• A scalable approach. This is needed to interconnect multiple backplanes to a
large system.

2.4. THE TRANSPORT NETWORK 61

• A general architecture usable with di�erent payload types. The complexity of
programmable logic limits the adaptation of the network to upcoming applica-
tions if this feature is not included by design.

2.4.5 Existing Solutions

The following paragraphs discuss existing solutions according their ability to pro-
vide combined services with low online complexity. The provision of QoS has been
discussed in chapter 1 for the two basic switching technologies circuit switching and
packet switching within the scope of computer networks. It has been shown that
established architectures or protocols for computer networks cannot be used: basic switching

technologies

• Circuit switching features guaranteed throughput and constant bit rates by
reserving �xed paths between the network nodes. The problem is that the
required call setup and control is complex and causes a latency, which is not
acceptable for on-demand transfers of best-e�ort data.

• Packet switching is more �exible but requires additional headers for the rout-
ing process within each packet. Moreover, providing guaranteed services like
bounded end-to-end delay is di�cult and leads to large or complex designs.

However, several network architectures exist for computer networks that feature
combined services:

• ATM [143] networks are well-established and currently widely used (although ATM

being more and more displaced by Gigabit Ethernet and multiprotocol label
switching (MPLS) [118]). The network uses �xed-sized cells of 53 byte and pro-
vides di�erent levels of QoS. However, it is far too complex to be implemented
within the limited space of the programmable logic of the framework.

• The work in [159, 40, 41] proposes a mixed architecture between circuit switch- Isochronets

ing and packet switching to provide isochronous connections. Packets are
routed along routing trees. A routing tree covers up to all nodes of the net-
work and determines the pre-calculated routing decision to reach the single
destination node at its root. To be able to send packets to all network nodes,
multiple routing trees are periodically scheduled in green bands in parallel by
the synchronized network nodes. If a routing tree becomes active, the net-
work resources are reserved solely for packets to the corresponding destination.
Although the architecture uses reserved resources, it is not possible to pro-
vide guaranteed rates for certain �ows since contention can still occur between
packets within the same tree on their way to the same destination.

Concerning embedded systems or NoCs, these designs are developed and optimized
for low online computational complexity and a compact, space e�cient design. Two
approaches are considered here that have been proposed in the literature to imple-
ment QoS within such networks:

• The work in [35] presents a router for NoCs that uses asynchronous logic to asynchronous
routerprovide di�erent levels of QoS. The design uses a �xed priority scheduler,

which reserves bu�er space for a particular connection using virtual channels.

62 Introduction

Dynamic allocation of bandwidth enables the router to accommodate bursty
tra�c with lower end-to-end latency. The drawback is that the complexity of
the design increases rapidly with the number of virtual channels. The �xed
priority further may starve out �ows of lower priority completely. Concerning
the implementation, the router requires a speedup of two for the crossbar and
is designed using asynchronous logic, which is di�cult to handle with standard
FPGA design �ows.

• In [117, 45], a NoC design developed for multimedia applications is presented.Æthernet

It features a combined architecture that uses circuit switching with TDM to
divide the time periodically into frames of 256 time slots. The data is trans-
mitted deterministically between synchronized network nodes. Guaranteed ser-
vices can be provided by reserving single time slots. Best-e�ort data uses the
remaining bandwidth. The switches are input-queued switches with separate
bu�ers for guaranteed and best-e�ort tra�c. However the di�culty of this
approach is the synchronization technique and the requirement for an e�cient
slot allocation mechanism, which are both not proposed. Furthermore, the
�xed frame size of 256 data slots is in�exible and leads to either a high jitter
or to a waste of bandwidth for connections with low bandwidth requirements.

2.4.6 Concept of the Transport Network

The main issue for the transport process is the provision of isochronous connectionsguaranteed
services for the neural data, which are set up at the beginning of experiments and remain

�xed during its operation. Guaranteed throughput can be provided with low online
complexity by the use of TDM and the periodic framing of bandwidth as in [58, 130,
23]. Framing also results in a bounded jitter and thus in the isochronicity of the
connections.

A second issue for the transport network is the required low delay. Delay isbu�er-less design

introduced by bu�ering, which is itself required to avoid data losses in the case
of contention at the switch ports. The framing techniques mentioned above that
use bu�ering introduce one to multiple frame times of delay per switch for the re-
ordering process. This is not acceptable for neural data since even a frame time
of e.g. 20 neural network events of each 32 bit would result in an additional delay
of 256 ns at the physical clock speed of the framework (cf. section 4.3.1). The
solution for the transport network therefore has been to consequently avoiding all
bu�ering for isochronous data (except for the basic input and output functions of
the switches). This requires a contention-free arrival pattern of the tra�c as well as
a global synchronization of all network nodes as in [117].

The proposed network architecture explicitly proposes a synchronization tech-algorithms for
synchronization
and resource
reservation

nique usable with arbitrary topologies and arbitrary frame sizes. Bu�ering is only
required for the �ne adjusting of delay elements in the time scale of a single time
slot. Furthermore, part of the proposed switching technology is an e�cient resource
reservation algorithm to calculate contention-free tra�c patterns that occupy up to
100% of the available bandwidth.

The combined transfer of the two fundamental tra�c classes via the same physicalbypass-switch
architecture medium is performed by a novel switch architecture, the bypass-switch. The switch

implements queues only for best-e�ort tra�c for which it equals an input-bu�ered

2.5. SUMMARY 63

switch with VOQs. The switch further doubles the inputs of the crossbar to remove
contention between reserved tra�c and best-e�ort tra�c at the input ports. This
signi�cantly increases the performance for the latter at the presence of both classes
and does not require internal speedup.

2.5 Summary

The chapter discussed the speci�c interconnection demands that arise from the re-
search with hardware neural networks within the FACETS Stage 1 framework. It
has been shown that the operation of the used ANN chips HAGEN and Spikey relies
on a transport network that is capable to ful�ll strict timing requirements. The main
challenge for the design of the transport network is to handle the di�erent types of
data to be transported by considering their individual QoS requirements: isochronous
connections for neural data and best-e�ort packet transfers for additional on-demand
data transfers. The complexity of the transport network is bounded by the limited
space of the available programmable logic.

The discussion of these requirements resulted in the concept for a network archi-
tecture that is able to ful�ll these needs. The following chapter presents the speci-
�cation of the developed network architecture, the multi-class gigabit network. The
succeeding chapter 4 describes its reference implementation within programmable
logic as part of the transport network.

64 Introduction

Chapter 3

The Multi-Class Gigabit Network
Architecture

This chapter speci�es the MCGN architecture and de�nes its protocols for
operation. The �rst section presents an overview of the main concepts.
The network architecture is able to transport guaranteed tra�c as well as
best-e�ort tra�c by combining techniques of circuit switching and packet
switching. The next section describes in detail how MCGN guarantees
QoS for isochronous connections between network nodes by the use of
three mechanisms: the network-wide synchronization, the reservation of
resources and a compact and e�cient online forwarding algorithm. It is
further described how the novel bypass-switch architecture is able to merge
packet-based transports in between the connection-based data �ow. A ref-
erence implementation of MCGN is presented in the succeeding chapter.

The design of the MCGN architecture has been motivated by the research with motivation

ANNs within the FACETS Stage 1 framework developed at the Electronic Vision(s)
group as described in the previous chapter. It has been shown that the interconnec-
tion of multiple ANN chips to a large-scale neural network relies on a global network
that transports di�erent data types with di�erent needs of QoS. Global in this con-
text means network-wide, concerning the data transfer between all network modules
that are connected within the gigabit network of the framework. The requirements
to the network are the support of isochronous connections with low delay and jitter
as well as the support of packet-based tra�c. The network is designed for a low on-
line complexity for a usage especially within the limited space of the programmable
logic of the FPGAs on the network modules.

The MCGN architecture has been designed to re�ect the �exible and universal universal
architecturestructure of the Stage 1 framework, whose application is not limited to ANN research.

Consequently, the developed network architecture features a universal character as
well. It can be used with other applications within the presented framework and

65

66 Introduction

is also a general solution for other networking environments, that require multiple
tra�c classes to be served.

Characteristic Features

The characteristic features of the MCGN architecture are:

1. The support of multiple tra�c classes with di�erent levels of QoS. Prioritycombination of
tra�c classes tra�c is supported as well as best-e�ort tra�c. The combination of techniques

of circuit switching and packet switching ensures an optimal service for each
class.

2. The transport of QoS tra�c within isochronous connections. Isochronous con-QoS guarantees

nections feature nearly constant throughput and very low variations of its trans-
mission delay. MCGN achieves good QoS results for connection-based tra�c
due to the avoidance of internal bu�ers. This makes the network architecture
feasible to be used in real-time environments.

3. The minimization of internal header processing. This allows to support multi-multi-protocol

ple higher-level protocols within each class and without the need of adaptation
to the protocol stack. Multiple protocols can be used in parallel.

4. The service of global (network-wide) synchronization for the upper layer pro-application layer
synchronization cesses up to the application layer with the precision of a cycle of a global

reference clock.

5. A scalable approach in terms of physical line speed, the network size and thescalability

number of ports (depending on the selected scheduler, see below). The archi-
tecture can therefore be used in large networks at multi-gigabit speeds.

6. A wide range of con�guration parameters. Frame sizes for synchronizationcon�gurability

and bandwidth reservation can be optimized for the speci�c working network
environment. The opportunity to use the architecture with very tiny reser-
vation unit makes it ideal for the use in embedded computer environments or
systems-on-chip.

7. A modular design oriented along the network layers. This allows a convenientmodularity

adaptation or selection of particular parts like the routing algorithm or the
scheduling policy.

8. MCGN makes only slight requirements to the physical network layer. Thisuniversality

allows to use the architecture on a wide range of networks.

9. A design optimized for the implementation in programmable logic able to becompact online
design used with commercial FPGAs.

As a consequence of the features, MCGN is well-suited to integrate multipleapplication �elds

protocols with di�erent QoS demands in an embedded environment. Furthermore,
the resulting low delay and jitter for connection-based tra�c as well as the support
of small data chunks makes the MCGN architecture most feasible for applications
with strong real-time requirements. Possible application �elds of MCGN are NoCs
respect. system-on-chips (SoCs) in embedded environments with QoS requirements,
like multi-processor environments, integrated systems or even consumer electronic

2.5. SUMMARY 67

devices. Although the techniques of MCGN can be applied to computer networks as
well, the administrative overhead and the requirement of its switching technology to
be implemented in every node of the network may hinder its application on business
or home computing areas. The reference implementation presented in chapter 4 has
initially been developed for the research with hardware neural networks.

Functional Parts

An MCGN network consists of the following parts: parts

1. A framing strategy combined with a novel switch type. Its switching function-
ality is implemented in each network node of MCGN, including the end-nodes.
The switch integrates the two tra�c classes - isochronous connections and
packets - on the same transport medium.

2. A switching functionality to be implemented within each network node.

3. A synchronization sublayer. A global synchronization of all network nodes is
required since the forwarding process of connection-based data is deterministic.

4. A connection mapping algorithm. The mapping algorithm pre-calculates the
routes of all isochronous connections and calculates a reservation pattern with-
out contention between the switch ports.1

5. A speci�cation of the interface to upper network layers for the exchange of data
to be transported within isochronous connections or packets. The transmission
of connection-based data is limited by an admission policy.

The processes of MCGN are located within the lower network layers, namely the organization

data link layer as well as the network layer. The requirements to the physical layer
are discussed below. The global synchronization, the connection mapping as well as
the con�guration of the switch is calculated o�-line during a network initialization
phase.

The integration of packet-based transports and connections-based transports is multi-class
bypass-switchperformed by a novel switch type, the multi-class bypass-switch. It is part of the

data link layer and the core component of the presented architecture. The operation
of the bypass-switch has only few requirements to the physical layer and thus can be
operated in a wide range of networks. The switch provides separate interfaces to the
upper network layers for connection-based transports and packet-based transports.
Due to that, multiple existing protocols using either of the two transport techniques
can be operated in parallel on the network without further adaptation.

The description of MCGN continues with an overview of its architecture. The organization of
the chaptertransport of payload data within isochronous connections or packets is described

separately in the succeeding sections. The description has been oriented on the usual
discussion of protocols along the network layer stack, but not strictly: since QoS is an
aspect naturally a�ecting multiple network layers, the description of the isochronous
connections focuses more on the principles and design techniques used. Furthermore,
the MCGN architecture is speci�ed by the functionality of its protocols and not by

1The mapping of connections to physical bandwidth should not be confused with the mapping
of neurons from netlists to the physical neurons within the ANN chips as described in section 2.3.3.

68 Introduction

the exact numeric de�nition of data structures or timing diagrams. Chapter 4 may
be consulted for the reference implementation concerning the research with hardware
neural networks.

3.1 Overview

This section introduces the MCGN architecture and its protocol stack. The section
summarizes the basic concepts of the architecture and gives a �rst impression of the
overall functionality.

3.1.1 Merging of Tra�c Classes

The basic concept of the MCGN architecture concerns the assignment of bandwidthtra�c classes

to transfers of the two tra�c classes, which are:

1. Network tra�c with QoS requirements. This tra�c is transported as priority
tra�c within reserved bandwidth. The network guarantees QoS by implement-
ing isochronous connections between network nodes.

2. Network tra�c without QoS requirements. This tra�c is transported as best-
e�ort tra�c within packets comparably to packet switched networks. Best-
e�ort packets use remaining bandwidth not reserved or not used by QoS con-
nections.

The design of the network architecture has been focused on an optimal transportdesign focus on
priority tra�c of connection-based priority tra�c. The transport of packets is expected for data,

for which not the exact timing, but the overall throughput and the reliability are
the transport quali�ers of interest. At some points, the design of the architecture
required to balance and trade-o� between the design of both tra�c classes. In this
cases, an optimum transport of priority tra�c has been given advantage.

The network architecture uses a hierarchical approach for the combination ofbandwidth
reservation the two tra�c classes. The bandwidth reservation for priority tra�c uses TDM

reservation scheme. The scheme reserves the bandwidth of each physical link by
dividing the time axis into succeeding time slots of the same duration. A �xed
number of time slots is then aggregated to a time frame. The framing scheme is
applied on every physical link in a periodic manner. Priority tra�c is implemented
by reserving time slots for dedicated connections along global routes between the end-
nodes of the connections. Best-e�ort packets are not only placed into unreserved
slots, but also in slots currently unused by priority tra�c to enhance the overall
bandwidth e�ciency.

The bandwidth reservation is based on a synchronization of all network nodes,deterministic
tra�c quali�ers which is both performed during a network initialization phase prior to the network

operation. The periodic framing and slotting scheme introduces a deterministic com-
ponent to the tra�c management and simpli�es the administration of the reserved
bandwidth. The throughput of the connections between its end-nodes is guaran-
teed due to the bandwidth reservation. The connection delay and jitter values are
calculated out of the deterministic assignment. The slotted assignment scheme also
allows an e�cient and compact implementation of the online switching and routing

3.1. OVERVIEW 69

packet-based
transfers

adaptive
routing

static
routing

network layer

bypass switch

physical links, data encoding / decoding

data link layer

physical layer

connection-based
transfers

configuration

global
synchronization

offlineonline

synchronization

upper layers

packet
interface

connection
interface connection

mapping

network initialization
phase

sync.
service

connection
requests

Figure 3.1: The network protocol stack of the MCGN architecture. Processes marked as
o�ine are executed prior to network operation (without user data to be transferred). The
central switch serves packet-based transfers as well as isochronous connections. Upper-layer
processes may implement any network protocol using either connection-based or packet-
based transfers.

algorithms as it deals with periodic tra�c patterns. This results in the fact that the
end-to-end delay itself is nearly constant as well, resulting in the isochronicity of the
connections.

3.1.2 Network Protocol Stack

Figure 3.1 shows the network protocol stack of the MCGN architecture. It consists
of �ve layers. The protocols of MCGN mainly belong to the data link layer, which
implements external framing, timing and global synchronization.

The core component of the data link layer is the novel switch type, the bypass- bypass-switch

switch. It integrates the transport of both tra�c classes, connections and packets,
by combining techniques from circuit switching and packet switching. The switch
has a hierarchic design. Connection-oriented priority tra�c bypasses all bu�ering
to establish isochronous connections with minimum possible delay. Best-e�ort pack-
ets use remaining bandwidth and are handled comparably as in common packet
switching networks: Concerning this tra�c class, the bypass-switch behaves like an
input-bu�ered packet switch with VOQs, a crossbar and a multi-port packet sched-
uler. The bypass-switch o�ers separate interfaces for the service of each tra�c class
to protocols in upper network layers.

Lower Network Layers

The global synchronization, the external framing and the local timing are imple- synchronization
sub-layermented within a lower sub-layer of the data link layer. This is required since the

operation of the bypass-switch relies on a proper timing of the arrival pattern of the
network tra�c. Global synchronization ensures a deterministic timing of all network

70 Introduction

nodes as well as of the transmitted frames. This is a key feature of the network, since
it allows the avoidance of bu�ers for connection-based tra�c for good QoS results.

Concerning the physical layer, the MCGN architecture does not make strongphysical layer

requirements to the network it is used with. The physical layer merely has to provide
point-to-point bidirectional links with constant data rates and the opportunity to
transmit special control characters for framing purposes. This holds true for most
network hardware. As an example, networks using 8b/10b encoding schemes [150]
or similar techniques can be used.

Upper Network layers

Concerning the transport of connection-oriented tra�c, the MCGN architecture re-connection-
oriented
tra�c

quires an admission policy to be observed by upper layer protocols to control the
tra�c rate of data slots sent to the network. Despite of this, the usage of certain
protocols or data formats is not constrained. Since the content of connection-based
data is not evaluated during the switching process, arbitrary and multiple protocols
that require real-time data transmissions are operated with MCGN in parallel.

Processes requiring packet-based transfers are implemented comparably. Sincepacket-based
tra�c the bypass-switch uses an internal packet format, the architecture is able to serve the

requests of arbitrary existing packet-based protocols as e.g. the IP protocol. As a
minimum requirement, packet-based applications need to provide a small adaptation
layer for the conversion of global addresses to the internal address format of the
switch. No strict restrictions on the packet size or header format is made.

3.2 Framing Strategy

The MCGN architecture reserves network resources by applying a framing strategy
on each physical link. The following paragraphs �rst introduce the formal description
of the network topology. The description continues with the de�nition of the framing
parameters and the discussion of an optimal selection of the parameters according
to the protocols to be served on the network.

3.2.1 Network Topology

The network topology is described as a set of network nodes interconnected withde�nition of
network nodes independent links. The usual description of networks in the literature distinguishes

the network nodes being either hosts or switches2. Hosts represent user end-points
of the network hosting the application's functionality and are usually connected to
a single switch, whereas switches interconnect multiple hosts or subnets [143, 110].

The description used in the following makes a slight modi�cation without loss ofMCGN network
model generality, but to simplify the discussion. The MCGN architecture uses a synchro-

nization and switching functionality that is required to be implemented within every
node of the network: intermediate switches as well as end-nodes hosting the user ap-
plications. Furthermore, switches are allowed to implement application functionality
as well, hence the di�erence of switches and hosts is inexistent within MCGN.

The network topology is modeled with the use of two parts for a single physicaltwo logical nodes
per host

2the following discussion does not require to further distinguish between switches and routers

3.2. FRAMING STRATEGY 71

host or switch, a separate node to represent the upper layer processes and to represent
the switching functionality, respectively. Interconnections between switching nodes
model external physical links whereas interconnections between switching nodes and
upper layer processes model internal local links, i.e. internal interfaces between the
data link layer and processes within upper network layers of the same host (cf.
�gure 3.2 as well as �gure 3.3). Classical end-nodes are modeled simply by the use
of a single external link.

The model also allows to construct networks without any pure switches. Instead,
a network may consist of multiple interconnected hosts, each itself represented by a
separate node for the switching process as well as for the local application. The topol-
ogy of distributed applications interconnected by localized switches is well adopted
to represent e.g. interconnected processes of NoCs or multiple interconnected FPGA
devices.

host B
host A

switch C

switch D
network

(a)

host B
host A

host C

host D

a

A

b

B

(b)

Figure 3.2: (a) Classical illustration of networks with nodes being either switches or hosts.
(b) The same network in the model used for discussion. The proposed network requires
each host to implement the MCGN switching functionality. The implementation of upper
layer functionality is optional. Switch ports are either global physical links or local internal
interfaces. All interconnections are bidirectional.

upper
network layers

local link,
(network interface)

lower
network layers

global link
(physical line)

switch

user process

Figure 3.3: The network node of MCGN combines switching functionality and also local
application processes within upper network layers.

3.2.2 Formal Description

The network topology is formally described as a directed graph G = (V,E), with graph
formulationthe network nodes as a set of graph vertices v ∈ V and the interconnection links as

72 Introduction

time

time frame 1

1 2 3 4 50

time slot

T 2T 3T

76 1 2 3 4 50 76 1 2 3 4 50 76

S

reservation
period 1

time frame 2 time frame 3

inter-frame gap

G

reserved slot
reservation

period 2

Figure 3.4: The framing strategy of MCGN uses a time division into succeeding time frames
of size T . Each frame contains f = m · n time slots of size S and the �nal frame gap of size
G. The example parameter set equals m = 4 and n = 2. Slot 1 is reserved for priority data,
which includes a reservation of slot 5 due to the size of m.

a set E of graph edges e. Each edge e ∈ E is denoted as an ordered pair e = (vs, vd)
where vs ∈ V is the source node and vd ∈ V is the destination node. All connections
between any two network nodes are assumed to be bidirectional, that is G holds
G = (V,E) : ∀e = (vs, vd) ∈ E ⇒ ∃(vd, vs) ∈ E.

According to the network layer stack, the set of network nodes is divided intoglobal and local
connections two disjoint subsets Vg of global and Vl of local nodes that hold V = Vg ∪ Vl and

Vg ∩ Vl = ∅. The set Vg represents the switching processes or switches of the data
link layer, whereas the set Vl represents the upper layer processes implementing the
user application functionality. In analog to this, the set of edges E is divided into
two disjoint subsets Eg and El that hold E = Eg ∪ El and Eg ∩ El = ∅. The set Eg

represents global physical links, whereas the set El represents local internal interfaces
between the data link layer and upper network layers. A valid graph G(V,E) must
hold the relations: ∀e = (vs, vd) ∈ Eg ⇒ vs, vd ∈ Vg and @e = (vs, vd) ∈ El :
vs, vd ∈ Vl that is, all communication between di�erent upper layer processes uses
intermediate switching processes. Since the description does not enforce the set of
all global nodes Vg to be fully interconnected, the routing of data along intermediate
nodes may be required. As an example, the network of �gure 3.2(b) is formally
described by:

Vl = (a, b)
Vg = (A,B,C,D)
El = ((a,A), (A, a), (b, B), (B, b))
Eg = ((A,B), (B,A), (B,C), (C,B), (C,D), (D,C))

It is assumed for simpli�cation that each link between any two nodes transportsbandwidth

the same amount of data per time, i.e. provides the same bandwidth w. This is
no hard restriction, since physical links with di�erent bandwidth can be modeled
using multiple links of the same common bandwidth in parallel. In analog to that,
the connectivity of a network application to its local switch can be modeled using
multiple local links.

3.2.3 Framing of Bandwidth

The framing of bandwidth used in MCGN is based on a periodic and continuoustime frames

division comparable to a TDM scheme. It is illustrated in �gure 3.4. The time is

3.3. NETWORK INITIALIZATION PHASE 73

divided into periodic time frames of the same duration T . Since each link is assumed
to have the same physical bandwidth, the time division equals a bandwidth division.
The time frame T is divided into a data part as well as an inter-frame gap of duration
G. The frame gap is part of the frame itself such that the time frames follow back-to-
back on each other in time. The gap takes respect to the fact that the physical layer
of a network may require to insert special characters into the data stream, e.g. to
detect the start of a frame as well as to store a checksum at its end. The particular
data transmitted during the gap is not speci�ed. During the data part, each frame
transports the same amount of user data F = (T − G) · w within the fraction of
bandwidth usable for data

wf = w · T −G
T

. (3.1)

The data part of the frame is divided into f time slots of duration S such that time slots,
reservation
periodsT = f · S +G. (3.2)

The periodic reservation of data for connection-based tra�c is made by grouping
each m time slots to a reservation period of duration M . The number of reservation
periods of a frame is denoted as n such that

f =
T −G
S

= m · n. (3.3)

The reservation of time slots is done with reference to a single reservation period.
That is, each reservation period of a dedicated physical link gets the same reservation
pattern. A connection with a single data slot s ∈ {0 . . .m − 1} reserved for the
transport of its data therefore transports the bandwidth

ws =
wf

m
=
w

m
· T −G

T
= w · n · S

T
(3.4)

The reservation mechanism comprises that the maximum number of connections to
be transported on a physical link at a time equals the number m of time slots per
reservation period.

3.3 Network Initialization Phase

An MCGN network needs to be prepared before it can be used by applications. These preparation of
network
functionality

preparations are denoted as the network initialization phase in the following. It is
required for the transport of connection-based tra�c only. The transport of packet-
based tra�c is performed purely at runtime. The initialization phase is illustrated
in the �gures 3.1 and 3.5. It consists of the following steps:

1. The selection of the global parameters for the framing of external bandwidth.

2. The global synchronization of all network nodes.

3. The execution of a connection mapping algorithm. The mapping algorithm
reserves the required bandwidth according to the connection requests. It calcu-
lates an exclusive slot assignment pattern for each connection and each physical
link of the network.

74 Introduction

connection requests

selection of
mapping parameters

framing,
synchronization

connection mapping

user initialization processes hardware

routing tables

QoS guarantees

end-nodes,
bandwidth

selection of
framing parameters

T,S,f

failure

slot shift se

m,n

success

failure

success

network topology

transmission delays

configuration

synchronization
timer + delay elements

Figure 3.5: Illustration of the network initialization phase. It is executed o�ine and consists
of synchronization and connection mapping according to user-requested constraints and
hardware constraints. As a result, the routing tables of the switches are calculated (see
text).

4. The con�guration of the local routing tables within the switch with the calcu-
lated reservation patterns. The tables are read during the network operation
by the forwarding algorithm of the switch.

Note that the synchronization and the con�guration of the routing tables indeeduser level view

require the network hardware to operate during the initialization phase, but the net-
work is o�ine for the user during this time. To execute the initialization phase, the
above tasks require a list of connection-requests in terms of end-points and band-
width requirements by the user. After the network initialization phase is completed,
the network is ready to operate. All established connections then remain unchanged
throughout the operation of the network. A modi�cation of the bandwidth reser-
vation due to changing connection requests requires to repeat the steps three and
four of the above list. Since no data can be transferred during the recon�guration
process, this equals a restart of the network. The transport of packets is performed
purely online without pre-knowledge of its tra�c patterns.

The network initialization phase allows to solve the global optimization problemcomplex
algorithms in software using complex algorithms. This not only increases the optimization result,

but also reduces the complexity of the online algorithms and increases the scalability
of the whole network. This is an important aspect for the implementation of the
proposed architecture in programmable logic or the usage within SoCs.

3.3.1 Parameter Selection

The size S of the time slot and thus the number f of time slots per frame are inslot size

principle arbitrary and can be optimized for the application. Small values for the slot
size allow for a �ne reservation of bandwidth and a large number of connections to be
transported via a single physical link. MCGN allows to select small slot sizes, since

3.4. SERVICE FOR ISOCHRONOUS CONNECTIONS 75

it does not investigate the content of the transmitted data and uses a low-complex
forwarding process.

Large values for f minimize the waste of bandwidth caused by the frame gap, frame size

but the size of the frame may be bounded by the physical network layer (e.g. by the
requirement to insert error detection codes after a �nite time). The size m of the
reservation period depends on the complexity of the bandwidth reservation. Small
values for m minimize the resulting connection jitter, but may not allow to reserve
data slots for all requested connections during the connection mapping process. The
optimal selection will therefore tend to large frame sizes f and the smallest possible
values for m that lead to a successful connection mapping. The in�uence of the
framing parameters on the mapping and reservation process as well as on the resulting
connection jitter is further discussed in detail in section 3.7.

The initialization phase requires to �x the framing parameters. The values are parameter
updatesthe same on all network nodes and remain throughout the execution of the network.

A change in the set of the connection requests requires di�erent interactions:

• The new connection requests require to halt the network operation during the
new con�guration of the routing tables. No data can be transferred during the
update process.

• A valid mapping of the new requests that keeps m or a required change in m
that keeps f = mn does not require a new synchronization of the network.

• If f , S or T are to be changed, the network needs to be re-synchronized.

3.4 Service for Isochronous Connections

MCGN provides isochronous connections, or just connections in the following, to de�nition

serve user requests for connection-oriented data transports with guaranteed QoS.
The connections are isochronous in terms of the fact that a constant throughput
is guaranteed and the overall transmission time (the delay) is kept as constant as
possible (the delay jitter is minimized). The network model does not make any
assumptions about the type of payload to be transported.

After the network operation started, the transport of payload data along the deterministic
online behaviorconnections is controlled by two techniques:

• A fast, scalable and bu�er-less forwarding process. It transports connection
data throughout the network within the reserved data slots.

• A slot admission policy, which is to be observed at the transmit interface at the
source node of each connection. It regulates the tra�c sent into the network and
ensures that the reserved bandwidth is not exceeded by the user application.

The preliminary calculations e�ectively move the switching complexity from on-
line to o�ine. The online forwarding process is therefore of low complexity and
well-suited for a compact implementation in programmable logic. The reservation
scheme ensures that no physical link nor local link is congested with data.

76 Introduction

crossbar

forwarding algorithm

input ports output ports

3

2 2

3

1

0

1

0

global transmit

local receive

global receive

local transmit

configuration time reference

Figure 3.6: Schematic of a four-port isochronous switch with two local ports and two global
ports. The input ports receive local transmit-data or global receive-data. The data at the
output ports is globally transmitted or locally received. No internal bu�ering is performed.

3.4.1 Model of the Isochronous Switch

It has been stated above that the MCGN architecture uses the bypass-switch withinreduction to
connection-based
parts

the data link layer to merge the two tra�c classes (connections and packets). This
section concerns only the connection-based tra�c class. The hierarchic design of
the bypass-switch as well as the fact that connection-based tra�c is transported
with priority within MCGN allows to reduce the following discussion of the switch
model to the functional parts responsible for the forwarding of connection data. A
switch implementing only the connection-based parts of the bypass-switch is called
an isochronous switch. To simplify the following discussion, the term switch always
corresponds to such an isochronous switch.

An N -port isochronous switch features N input ports as well as N output ports.topology

In analog to the above de�nition of network edges, each port can be either a global
port or a local port. The number of global ports Ng as well as the number of
local ports Nl equals for input ports and output ports, respectively. The input
ports and the output ports are interconnected via a central crossbar. The crossbar
is scheduled by the online forwarding process. The switch operates without any
bu�ering. According to this, this is achieved without requiring internal speedup and
the crossbar directly interconnects the ports. Figure 3.6 illustrates an isochronous
switch with N = 4 and Ng = Nl = 2.

The particular interface of the switch ports may be designed di�erently for globalinterfaces

and local ports depending on the network environment. All data ports feature a
common and continuous data rate. Besides of the data ports, the switch receives
synchronization information about the timing of the incoming frames from the un-
derlying synchronization sublayer during runtime. Furthermore, the forwarding pro-
cess of the switch is con�gurable to store the reservation pattern calculated during
the initialization phase.

3.4.2 Contention Resolution

It has already been stated that MCGN guarantees QoS for connection-oriented tra�ccontention at
switch ports by the framing of bandwidth and a reservation on a time slot basis. During each

time slot, the same amount of a data (a data slot) is transported on all physical

3.4. SERVICE FOR ISOCHRONOUS CONNECTIONS 77

links, local links and switch ports. However, section 1.5 showed that data losses not
only occur due to the limited bandwidth of overcrowded links, but also during the
internal data forwarding process of the switches in the case that data from multiple
inputs has to be forwarded to the same output, which can accept data only of a single
input at the same time. If this contention is not resolved, this results in collisions
and therefore data losses.

Proposed Solution

MCGN exploits the pre-reserved determinism of the tra�c arrival pattern to not deterministic
arrivalsonly guarantee the throughput and to reduce the delay variation, but also to reduce

the absolute value of the delay to a minimum. Comparable to the work mentioned
above, it relies on the synchronization of all incoming and outgoing frames up to the
accuracy of the duration of a time slot S. To be more precise, the slot numbers of
all incoming frames as well as the slot numbers of all outgoing frames are transferred
according to an alignment strategy (see below). This alignment is established dur-
ing the synchronization process within the network initialization phase and remains
stable throughout the network operation.

The data slot reservation pattern of every link is chosen in a way that at each contention-free
assignmentswitch and within each time slot, only at most one input port has to be assigned to

an output port. In other words, no two input ports have data slots to be forwarded
to the same output at the same time. Therefore, every data slot entering a switch
at an input port is forwarded to its dedicated output port immediately without
any bu�ering. This principle is called contention-free assignment or contention-free
forwarding in the following.

crossbar

forwarding algorithm

input frames output frames

a a a

d d d

e e ef f

bb bcc

1

2

3

4

1

2

3

4

a a a

b b b

f f

e e e

d d dcc

Figure 3.7: Contention resolution for reserved tra�c. Example of a 4-port switch with 6
time slots per frame and a single reservation period (N = 4, f = 6, m = 1). Reserved slots
belong to connections a-f . Con�icts at output ports are removed by the slot reservation
pattern to allow the forwarding of incoming data without bu�ering.

Figure 3.7 shows an example reservation pattern to illustrate the contention-free example

forwarding process. The time frames enter the switch at the input ports shown on
the left. The data slots of the frames are assigned exclusively to multiple connec-
tions named from a to f . The reservation has been made such that no physical link
has been overbooked with data, i.e. each slot is assigned to at most one connec-
tion. Furthermore, the slot assignment removed port contentions completely and the
forwarding process is achieved by a look-up of the pre-calculated forwarding table.

78 Introduction

Advantages

The contention-free assignment of bandwidth has the following advantages:

1. It consequently moves all possible calculations to the connection setup processlow time
complexity at the network initialization phase. This not only allows to use calculation-

intensive algorithms to achieve the best reservation pattern possible, but also
minimizes the online forwarding process to a simple table look-up. To be
more precise, the online forwarding process is of constant time, that is O(1)
complexity. The low online complexity further allows for the selection of small
slot durations S for a �ne-grained reservation pattern.

2. The forwarding process totally avoids the need of local queuing. A low spacelow space
complexity requirement of the forwarding process is an important aspect, especially if

the network is to be implemented in programmable logic. Since no memory
elements for bu�ers or queues are needed at all, the main part of the logic is
reduced to the implementation of the central crossbar.

3. The determinism of the tra�c pattern automatically guarantees the QoS forgood QoS results

the connections. It obviously guarantees the connection throughput as it to-
tally avoids data losses due to collisions. The omit of bu�ers greatly reduces
the overall connection delay mainly to the time the data slots need to traverse
the crossbar. Since the delay introduced by the forwarding process is constant,
this makes the overall connection jitter independent from the number of in-
termediate network hops, which results in the scalability of the network (cf.
section 3.7).

4. Since the forwarding process does not require the look-up of headers, it oper-multi protocol
support ates independently of incoming data contents, which allows to transport data

of multiple protocols without any adaptation to upper network layers. This
greatly simpli�es the installation of the switching technique within existing
networks to supply users with isochronous connection services.

5. The reservation of slots for connections facilitates the combined transport of
additional unreserved best-e�ort tra�c within unreserved or unused slots on
the same physical resources. The switching task for best-e�ort tra�c can be
implemented hierarchically after the reserved slots have been processed.

The proposed design relies on an initial calculation of the contention-free reser-calculation
intensive vation pattern by the connection mapping process. The complexity of the switching

process is therefore moved from online to o�ine. Concerning the implementation,
the local reordering algorithm of [130] cannot be used, since it requires the storage
of all input data for the duration of a whole time frame. Although this decouples
the input and the output assignment and is thus done at each node independently,
it also introduces the delay of a reservation periodM as stated above. In contrast to
that, MCGN couples the slot assignment at the input ports to the assignment at the
output ports and therefore leads to a global assignment problem of all global links.

The isochronicity of the connections is achieved by the guaranteed throughputQoS results

due to the slot reservation, which avoids data losses in case the reserved bandwidth
is not exceeded. Furthermore, the transmission delay is kept nearly constant due

3.4. SERVICE FOR ISOCHRONOUS CONNECTIONS 79

to the deterministic, bu�er-less forwarding process. Concerning the data reliability,
error detection can be performed, but error correction cannot be provided due to the
implementation of the switching process. This is no hard restriction since this can
be also be implemented in the upper network layers.

3.4.3 Synchronization

The global synchronization of all network nodes is established separately by the deterministic
timingsynchronization sub-layer during the network initialization phase. Its task is to

synchronize the timing of the switches and thus to control the timing of the data
slots transmitted between the switches. Doing so, the arrival times of incoming data
slots at each switch are known in advance at runtime.

The global synchronization requires a globally unique clock source that is taken as global clock
referencea reference clock on all network nodes. The signal of the reference clock is distributed

throughout the network either with separate dedicated signal lines or encoded within
the data streams depending on its data reliability. Local clocks at each network node
are derived from the global clock reference to avoid phase shifting e�ects at the timing
between the network nodes. Each switch contains a separate timer, which is driven
by the local clock. The timer is also provided for upper network layers to support
the synchronization of upper-layer network processes with the precision of the global
clock cycle. The synchronization layer further provides a global synchronous signaling
service for upper network layers to facilitates the exchange of synchronized data
between applications (cf. section 3.5.8). Figure 3.8 illustrates the synchronized
timing of an MCGN network.

isochronous
switch

synchronization sublayer
(incl. framing)

frame
timing

local ports

global ports

physical layer

bidirectional
links

reference clock

user process

global reference clock

reference
clock

MCGN network
global synchronous
signalling

Figure 3.8: Example network of four physical nodes. The global reference clock is distributed
via separate dedicated connections. The left side shows an exemplary node with four global
ports and two local ports. The timing and framing is performed within the synchronization
sublayer. The frame timing is provided to the isochronous switch to support its bu�er-less
operation.

To establish the synchronization of all network nodes, two tasks are required: establishment

80 Introduction

• The adjustment of the local timers such that the timers of all switches of the
network run synchronously during operation. The value of the timer can then
be taken to identify the data slot that currently arrives at the switch ports.

• The grouping of data slots to a data frame at the switch outputs. This is further
adjusted according to the synchronization condition: The frame boundaries are
selected such that the �rst data slot of all incoming frames at all switch input
ports arrive at the local times zero. This implies a shift in the logical positions
of reserved data when traveling the links of the network.

Using the two adjustments, the synchronization can be established independently
of the network topology and of the selected frame size. No additional bu�ers are
required within the synchronization sublayer except an adjustable delay element
with the duration of up to the frame gap G.

The complexity to establish a global synchronization of all network nodes stronglycomplexity

depends on the physical layer of the network. In networking environments already
synchronous, the synchronization sublayer can be far more easily implemented than
in unsynchronized distributed systems, in which the synchronization is a major task.
Due to this, the synchronization sublayer is described separately in section 3.5.

3.4.4 Resource Reservation and Connection Mapping

The resource reservation of MCGN is performed by the connection mapping pro-inputs

cess. The process maps the user connection requests to the physical connection
resources of the network. The input to the process is the set C of connection re-
quests c = (vs, vd, wc) as well as the de�nition of the selected framing parameters,
most important, the number m of time slots per reservation period. Furthermore,
the mapping process requires a description of the network topology including the
local ports at each network node as described in section 3.2.2.

The mapping process calculates the global routes for each connection from itsalgorithmic steps

source node to its destination node via intermediate switches if necessary. For each
connection, the process assigns one or multiple data slots of every link on the global
path between the source and destination node exclusively for the connection accord-
ing to its bandwidth demands. Since the number of time slots in a reservation period
is limited by m, the mapping algorithm takes care not to overbook the links. The
process performs the following steps:

• The quantization of bandwidth according to the connection requests.

• The routing of the connections.

• The calculation of the contention-free slot assignment for each a�ected link.

• The generation of the corresponding routing tables to con�gure the switches.

The most complex step is the calculation of the contention-free slot assignment. It
can be shown that this problem equals the common vertex-color [13] problem from
graph theory, which is known to be NP -hard [70].

After the connection mapping process succeeds, the requests are granted orresults

rejected depending on its particular bandwidth requirements and the network re-
sources available. Each granted connection is assigned its route between the network

3.4. SERVICE FOR ISOCHRONOUS CONNECTIONS 81

nodes as a set Ec ⊂ E of consecutive physical links between the source node and
the destination node. The reservation pattern is denoted as a set of slot numbers
si ∈ {0 . . .m − 1} of reserved slots. The set denotes the reserved time slots at the
source interface of the connection at which data can be injected into the network
with respect to the �rst reservation period (succeeding reservation periods use the
slot numbers m ≤ si + N · m < f). The forwarding tables for the switches are
generated according to the calculated reservation patterns of each link. Due to its
complexity, the mapping process is described in detail in section 3.6.

3.4.5 Online Forwarding Process

The division of bandwidth into frames and slots allows to describe the forwarding timing

process of each switch accordingly. The timing of the forwarding is based on a slot
basis with the time reference from the underlying synchronization sublayer. Since the
synchronization sublayer also performs the framing, it signals the arrival of the data
slots and the appearance of the frame gap to the isochronous switch. The forwarding
process of the switch can therefore be implemented without any knowledge about
the framing parameters f , m etc.

The forwarding is performed in the same way for global and local ports (cf. again, merging of data
slots�gure 3.6). The process periodically controls the crossbar to match pairs of input

ports and output ports. During each time slot, N data slots arrive at the input ports
and also N data slots leave the switch at its output ports. Concerning a particular
output port, the switch merges outgoing data slots of frames at di�erent input ports
successively into a new frame. Note that the transmission delay of data slots that
traverse the switch equals for all input/output port combinations.

Since the switch calculates a new port mapping each time slot, its duration S low complex
forwarding
algorithm

imposes an upper bound on the complexity of the implemented algorithm. Due to
the resource reservation process, the forwarding of priority tra�c is reduced to a
table look-up of the relative slot positions within the frame, which can be done with
only O(1) time complexity. Furthermore, the periodic assignment allows to look up
the local output port of incoming data in advance, so that the result is known at the
time the data arrives. As an advantage, the low complexity of the forwarding process
allows the selection of small data slot sizes S for a �ne bandwidth granulation as
well as it ensures the scalability of the switch for larger port numbers N .

As a second advantage, the transport of connection-based data is performed headerless,
protocol
independent
operation

without the need of headers to mark the connection to which a time slots belongs.
This does not only improve the bandwidth e�ciency, but also allows the usage of
small slot sizes S. Due to the resulting protocol-independence of the transport
service, MCGN can not only serve multiple protocols independently and in parallel
within a single connection, but also allows to change the protocol during the network
operation without further administration.

Note that MCGN does not require to pass the connection data to the network switching and
routinglayer at intermediate switches to perform the forwarding process. The routing in-

formation of all granted connections is already stored into the network, i.e. in the
routing table of the switches. Since this completely reduces the online process to the
switching task, an online network layer is e�ectively not existing within a MCGN
network segment.

82 Introduction

upper-layer process

isochronous switch

transmit
data

slot
information

global output ports

data
valid

data link layer

upper layers

synchronization sublayer

receive
data

data
valid

global input ports

configuration of
forwarding table

local
time

time reference

slot
information

local output portlocal input port

Figure 3.9: Illustration of the interface between upper network layers and the isochronous
switch for connection-based tra�c. The slot admission policy controls the transmission of
data into the network at the source node of an isochronous connection.

3.4.6 Local Port Interface

The local port of an isochronous switch is connected to the upper-layer networkslot admission
policy protocols via a dedicated interface. To regulate the transmission of local data into

the network, MCGN requires a slot admission policy to be respected at the interface
at the source node of the connection. The policy ensures that the reserved resources
are not exceeded. The switch denotes the upper layer process for each connection,
when its corresponding data slots are available. The deterministic forwarding scheme
ensures that the data arrives at the destination automatically. The speci�c signals of
the interface depend on the implementation. It can use a single interface for all local
ports or a separate interface for each port according to the type of the upper-layer
protocols. An example implementation of an interface is illustrated in �gure 3.9.

Tra�c Control

To transmit connection data, the switch denotes the upper-layer process of datatransmission

slots that have been reserved for its connections. The reservation scheme implies
that the achievable data rate is indeed guaranteed, but can also not be exceeded.
The interface protocol therefore requires the upper layer process to keep to tra�c
smoothness conditions as e.g. the (r, T) tra�c model of [44]. Since excess data
results in losses, the upper-layer processes may use internal FIFO queues to store
transmit data to balance the network load in the case of peak rates or bursts. A
tra�c shaping algorithm like leaky bucket [143] is feasible to be used. This releases
the user process from an over-reservation of bandwidth and results in a better overall
bandwidth usage.

At the destination node of a connection, the switch denotes valid receive datareceipt

for the appropriate connections. The upper-layer process cannot delay the receipt of
the data, such that bu�ering has to be implemented solely within the upper network
layers. The transmission delay between the time the data is sent via the transmit
interface and the receipt of the data depends on the synchronization mechanism as
well as on the slot reservation pattern. In the worst case, its transmission delay is
constant with a variation of the duration of the frame gap (c.f, section 3.7).

3.5. GLOBAL SYNCHRONIZATION 83

Interface Jitter

The admission policy is the main origin for the resulting QoS delay variation of wait time

connection-based data. This is due to the wait time of data to be transmitted
until an appropriate data slot becomes available. The time to wait depends on the
number of slots reserved for the corresponding connection and the slot allocation
pattern within the reservation period of size M = m · S. The exact calculation of
the wait time further has to add the duration of the frame gap G.

In the best case, the wait time equals zero. The maximum value of M − S + G jitter

occurs if only a single slot is reserved and the transmit data becomes valid just after
the data slot passed by within the last reservation period of a frame. If transmit
data is expected to appear randomly at the interface, this results in an unpredictable
delay variation of J = M − S +G.

The amount of delay variation is a measure for the isochronicity of the connection. improvements

It is improved for a dense and periodic reservation scheme, i.e. for a small number
m of time slots per reservation period and a short duration of the time slot S. To
cancel the jitter completely, a user process can implement further bu�ering and re-
synchronization to the exact clock cycle at the receive interface at the destination
network node. This requires additional timing information to be submitted within
the data stream of the connections.

An exact calculation of the QoS delay and jitter results is given in section 3.7.
Since this requires a better understanding of the synchronization process and the
connection mapping process, both tasks are described �rst in more detail in the two
following sections.

3.5 Global Synchronization

Section 3.4 showed how MCGN uses a slotting and framing strategy as well as a motivation

contention-free bandwidth reservation scheme to guarantee QoS for isochronous con-
nections. This further reduces the complexity of the online forwarding algorithm at
the switches. The forwarding is done without the need of investigating the connec-
tion data, but depends only on the frame slot number the data arrives. A bu�er-less
implementation of this process requires that the slot numbers of data arriving at
the input ports are deterministic at all times. This must hold for all nodes on an
connections's route. MCGN uses a global synchronization of all network nodes to
satisfy this requirement.

3.5.1 Services Provided

As shown in �gure 3.1, the synchronization sublayer is achieved below the switching
process on the top of the physical layer. The timing of the processes within the layers
above adapt to the timing of the synchronized network. In particular, the sublayer
provides the following services:

• The framing of data slots to continuous data frames according to the parame-
ters T , f and S.

• The alignment of the frames in time at the input ports of the switches to ease
the switching process.

84 Introduction

• A global synchronization service usable for processes in upper network layers.

The latter service is to support applications in embedded environments or ap-synchronous
signaling service plications with real-time requirements. For that reason, MCGN provides global syn-

chronous signals (GSS) to be used by upper-layer processes to transport synchronized
events with the time precision of the synchronization itself (i.e. a cycle of the global
reference clock). The signals can be transmitted to all nodes of the network and also
between the two end-nodes of an isochronous connection only. The synchronization
service is designed to be an orthogonal extension to the protocol stack. It can be
added to any upper-layer protocol used with the MCGN architecture.

3.5.2 Setup Process

The di�culty of establishing a global synchronization depends on the physical layer
of the application environment. This thesis proposes a general solution requiring therequirements

following conditions:

• The presence of a global time reference. At NoCs or within embedded systems,
a single global oscillator is applicable. On larger networks, a clock distribution
strategy is required.

• A constant delay of the physical layer for data encoding, decoding and trans-
mission during operation at any link. Both directions of a bidirectional link
must have equal delay values. Delays of di�erent links may have di�erent,
but constant, values (e.g. di�erent length or physical media). This includes a
constant data rate of the transmissions.

• The ability of the network to verify the synchronization state, e.g. by detecting
the arrival time of a data frame or the ability to transfer out-of-band synchro-
nization characters. This task is delegated to the physical layer as it depends
on the speci�c encoding and decoding mechanisms used.

The synchronization is established once during the network initialization phaseinitialization
phase (cf. section 3.3). The execution of the process is not time critical and independent of

the network speed. Prior to synchronization, the user has to de�ne the global frame
size T . Due to equation 3.2, this also �xes the number f of time slots per frame in the
case that the data slot size S is �xed. Furthermore, only discrete values for T may be
possible depending on the selected framing strategy and the network topology (see
below). As a result of the synchronization process, the physical transmission delays
D0 as well as the logical slot shifts se ∈ N at each link e ∈ E of reserved data are
de�ned. The latter is used as an input to the connection mapping algorithm, which
is afterward executed during the initialization phase.

Note that the logical subdivision of a frame into reservation periods (parametersinterference with
reservation
period

m, n) is not necessarily a synchronization issue. A change in the values of m and n
does not require a new synchronization so far as f = m·n still holds. A re-mapping of
the connections that leads to a value m not ful�lling this relationship indeed requires
a new synchronization. However, the following discussion within this section reduces
the description of the frame structure to the time frame T or the number f of data
slots per frame without a loss of generality.

3.5. GLOBAL SYNCHRONIZATION 85

3.5.3 Overview

The proposed solution uses a local periodic time counter at each switch, which is local time
counterscounting modulo3 the duration of a time frame T . The counter does not count on

incoming frame data, but runs continuously. The value of the time counter is used as
a look-up index into the switches forwarding table to serve input ports and output
ports accordingly. This forwarding technique requires an alignment such that the
slot positions of receiving frames match the value of the counter at any time slot.
To avoid variations and time shifts between the clocks of di�erent switches during
the network operation, all counters are driven by the single globally unique time
reference. The global reference clock ensures that the synchronization state lasts the
whole operating time of the network (cf. again, �gure 3.8).

The de�nition of a network being in synchronization state is based on the align- input alignment

ment of incoming frame data at the switch input ports. The physical data is usually
enframed by additional delimiters encoded into the data stream to mark the start of
a frame and to store a checksum at its end. The process of framing requires addi-
tional bandwidth that results in an inter-frame gap not usable for data transports.
The frame gap is therefore de�ned as the periodic part of the physically transmitted
data that does not contain data slots. The gap is located between the last slot of a
frame and the �rst slot of the succeeding frame. Since the switch forwards the data
slots of incoming frames in parallel to the output ports, this requires an alignment
of the frames such that the frame gaps and the data slots are not intermixed (cf.
�gure 3.10).

input ports

1

2

3

4

switch

inter-frame gap data slot

4 35 2 1 0

4 35 2 1 0

4 35 2 1 0

4 35 2 1 0

data frame 1

4 35 2 1 0

4 35 2 1 0

4 35 2 1 0

4 35 2 1 0

data frame 2

Figure 3.10: Schematic illustration of the required frame alignment at the input ports of a
switch with N = 4 ports and f = 6 slots per frame. The data slots are numbered from right
to left to illustrate the arrival times at the switch. The frames are aligned with respect to
the frame gap for a parallel forwarding process.

This leads to the following de�nition for a globally synchronized network:

De�nition 3.5.1 (synchronization) Consider a network operating according to
the proposed framing and reservation scheme. All data frames transmitted are of
the same global frame size F = f · S · w, with w as the common link bandwidth
and the number f of time slots of duration S. All local periodic time counters count
modulo the same time period T .

3The modulo function a mod b is implemented di�erently in various programming languages and
o�ce tools for negative arguments a. This discussion uses the periodic version of mod for which
(a+ b) mod b = a mod b for all values a ∈ Z, b ∈ N.

86 Introduction

This network is in synchronization state, if the �rst data slot of each incoming
frame at each switch input arrives at the local times 0 mod T (input alignment).

It is important to understand that this de�nition does not necessarily require the
timers of the particular switches to be strictly synchronized to each other according
to the usual meaning of synchronization. De�nition 3.5.1 only requires to adjust
the timing of the arriving data streams at the input ports to the time counters of
the corresponding switches. It is shown throughout this section that it is indeed
possible to achieve both, a synchronization according to de�nition 3.5.1 as well as
a synchronization of all time counters in terms of equal timer values. Furthermore,
this can be achieved with arbitrary frame sizes and arbitrary network topologies.

To �ne-tune the synchronization process, each switch features adjustable delayadjustable delays

elements placed into the data path before each output port (c.f, �gure 3.11). An
adjustment of the time counter at a certain switch can be compensated by a shift
of the delay elements at all links ending at the switch, but also requires a time
shift of all delay elements located at the switch itself to the opposite direction. The
delay elements are required to align incoming data on frame slot boundaries and to
compensate for di�erent link delays. The synchronization process therefore includessynchronization

process two steps:

1. The adjustment of the local periodic counters.

2. The adjustment of the local delay elements.

Two framing strategies are applicable at the switch outputs: �xed framing and shifted
framing. The latter allows a fully synchronous operation of all local counters as
well as a minimum value for all delay elements independent of the physical network
topology (cf. section 3.5.6 below).

A B

Figure 3.11: Illustration of the adjustable elements at each network node. The time counter
is illustrated as a single central circle, the adjustable delay elements are illustrated as small
boxes located at each link output.

The following section �rst revises the timing of the switch according to the syn-further
presentation chronization process. The next section discusses how the time counters of adjacent

switches can be synchronized and the physical delays can be calculated. The suc-
ceeding section discusses to which values the time counters and delay elements are
adjusted depending on the output frame alignment strategy. It is shown that the net-
work can be operated fully synchronous and also use arbitrary values for the global
time frame T by shifting the frame boundaries at the switch outputs to match the
required synchronization alignment at the switch inputs. The last section describes
the GSS service to upper network layers.

3.5. GLOBAL SYNCHRONIZATION 87

dCBdRX dSY

DAB

physical decode crossbar

dTX

upper layer TX upper layer RX

RX

RX TX

TX

delay

data link
layer

link

link

lAB

RX

RX

node A node B

crossbar

dPH

dRX

dDL

physical encode

link

link

time
counter

static
routing
table

reference
clock

adjustment

physical layer

delay

framing

framing

Figure 3.12: Timing scheme of connection-based tra�c transported between two switches A
and B (B shown only partly). The local time counter and the delay elements are adjusted
during the synchronization process.

3.5.4 Timing Scheme of the Switch

The timing scheme of the switch is illustrated in �gure 3.12. Data slots traversing the transmission
time Dnetwork are forwarded only within the physical layer and the data link layer. Online

routing decisions are not necessary. The transmission delay or transmission time D
is de�ned as the total time between the switch inputs of two adjacent switches. To
be more precise, it is denoted as De or DAB for the transmission time of the link
e ∈ E from the switch A to the switch B. The values of D can di�er between the
various links, but are constant. The transmission delay can be separated into two
parts:

DAB = dDL + dPH (3.5)

The delay dDL of the data link layer is caused by the switching process plus the
synchronization logic dSY . The delay dSY includes the variable delay ε of the ad-
justable delay element plus the delay of the framing logic, which are both placed
at the output ports of the switch. The delay introduced by the forwarding process
simply equals the time dCR needed to traverse the crossbar. It is the same for all
data slots, independent of its input port, output port or the connection it belongs
to. The time dPH of the physical layer includes the delay caused by the serial data
encoding and decoding (dRX and dTX in Figure 3.12) as well as the transmission
time l of the physical links. Since the individual parts of dPH are assumed to be
constant, dPH is constant over time as well. The global distribution of the absolute
values of DAB is mainly determined by the distribution of the link delays l, i.e. the
physical network topology.

A deterministic arrival pattern over time requires that determinism

DAB = dDL + dPH = dCB + dSY + dRX + dTX + lAB = const (3.6)

88 Introduction

for the whole operation time of the network. Due to the constant values of dPH and
dCB, the only variable part is dSY which includes the delay element. Its value is �xed
during synchronization or is at least varied only by the duration of the frame gap G
depending on the selected framing strategy (see below). The transmission time that
corresponds to the smallest possible value of the element is denoted as

D0 = D(ε = 0). (3.7)

Concerning the synchronization de�nition 3.5.1, a constant value of the transmission
delay D over time results in the fact that the alignment of frames between the input
ports of A and B is constantly shifted by this value.

3.5.5 Time Counter Adjustment

It has been stated that the establishment of a global synchronization requires tothe problem

adjust the time counters and the delay elements at the switches to achieve an align-
ment at the switch inputs according to de�nition 3.5.1. The particular values of the
counters required for proper synchronization depend on the transmission times D
between the input ports of two adjacent switches as well as on the selected framing
strategy at the output ports of the switches (cf. section 3.5.6).

The following description �rst concerns the problem of how to adjust the counters.
In contrast to the internal delay elements (which contain static values and can be
set simply by writing the required value in it), the internal time counters change its
values with every cycle of the global reference clock. An adjustment of the counters
therefore requires either one of two methods:

1. The synchronous start of the counters on all network nodes after adjustment.

2. The synchronous set of the counters to dedicated values at runtime.

The di�culty of these two possibilities depends on the physical environment, the
substrate and the size of the network. The �rst method can be achieved easily in
embedded environments or NoCs by using a dedicated clock-enable signal with a
known transmission time to all network nodes. In contrast to that, larger networks
like e.g. WANs do not provide that possibility.

Timer Adjustment at Runtime

The following presents a more general solution for the timer adjustment at runtime.three-step
algorithm It is based on the correction of an unwanted o�set of the timers of two adjacent

switches. For that reason, it is assumed that a time counter can be shifted during
runtime by a dedicated value. The adjustment consists of three steps:

1. Measurement of the transmission times of all links.

2. Measurement of the clock shifts between adjacent switches.

3. Adjustment of the counters according to the selected output framing strategy.

The �rst two steps use a bidirectional measurement between two adjacent switches.
Both steps are �rst repeated for any pair of adjacent switches of the network until

3.5. GLOBAL SYNCHRONIZATION 89

the algorithm proceeds with step three. The measurement of the transmission times
has to be executed only once for a given network, whereas step two is required at
each synchronization. The time precision reached equals the precision of the global
reference clock. The following paragraphs describe each step in more detail.

Measurement of Transmission Times The bidirectional measurements are per- bidirectional
measurementformed on the physical links of two adjacent switches. The adjustable delay elements

on both switches are set zero at the beginning (D = D0). Since the switches can be
assumed to use similar encoding and decoding techniques on the bidirectional link,
the values D0 of both directions can assumed to be equal except for a small error.
The local time counters on A and B are started using the same value for the time
period T . Both switches A and B transmit frames with the frame size T at each
local time tA = 0 and tB = 0, respectively. Let

δAB = (tA − tB) mod T (3.8)

be the time shift of the local time counters of A and B. The exact value of δAB is
unknown in the beginning.

time

t =0A

t =0B

D0

t =AA F

t =BB F

dAB

D0

dAB

local time A

local time B

Figure 3.13: Adjustment of the local time counters and measurement of the transmission
times. The initial time axes at A and B are shifted by δAB . Time shift and transmission
time D0 are calculated using two bidirectional frame delay measurements.

Figure 3.13 illustrates the timing of the measurement. The local time of A is
noted above the time axis whereas the time of B is noted below. The arrival times
of the frames sent from A and B are measured at the switches B and A at the local
times tB = BF and tA = AF , respectively. The frame sent out at A arrives at local
B-time BF which corresponds to (BF + δAB) mod T local A-time. Therefore,

BF = (D0 − δAB) mod T (3.9)

holds for the frame transmitted at A, as well as

AF = (D0 + δAB) mod T (3.10)

for the frame transmitted at B and measured at A. Since δAB is unknown, AF and
BF can take all values 0 ≤ {AF , BF } < T . If the counters on both switches run
synchronized, δAB = 0 and thus AF and BF are measured to the same value D0.

Evaluation To calculate the transmission times, the frame size T is set to T > 2D0 calculation of
transmission
times

of the (expected) transmission timesD0 to avoid ambiguous values due to the modulo

90 Introduction

function. Doing so, the transmission time can be calculated by adding equations 3.9
and 3.10 to:

D0 =
1
2
· ((AF +BF) mod T) (3.11)

which is the mean delay measured. If D0 calculates to a non-integer number, the
transmission time in terms of clock cycles is asymmetric in both directions. In this
case, one of the two delay elements has to be increased by a single clock cycle. This
measurement of D0 is then similarly executed on all remaining links of the network,
resulting in a value D0,e of each link e ∈ E of the network.

In the next step, the frame size T is set to the values requested by the user. Thecalculation of
time counter
shifts

measurement described above is repeated. The arrival times AF and BF can again
take all values modulo the requested frame size T . The transmission times D0,e are
independent of the selected frame size T and thus known from the �rst step for each
link. Therefore, the time shifts of the time counters between two adjacent switches
A and B can be computed to:

δAB = (AF −D0,AB) mod T (3.12)

In analog to the �rst step, the measurement is repeated for each pair of adjacent
switches, resulting in the values δAB for any adjacent switches A and B of the net-
work.

Final Adjustment In the last step, the counters as well as the delay elementsadjusting the
time counters of all switches are set to its �nal values. Synchronization is established by shifting

the counters until the required value of δAB between adjacent switches has been
reached. Again, the required value of δAB depends on the framing strategy at the
output ports of the switches as well as on the network topology. Particularly, δAB

does not necessarily have to be zero. The selection of δAB is discussed in the next
section.

Since data in the network is transported within time slots, the local delay elementsadjusting the
delay elements ε at each output port of the switches are �nally set to �ne-tune the alignment of

incoming data to time slot boundaries to ful�ll the synchronization condition of
section 3.5.3. This requires an individual adjustment in the range of 0 ≤ ε < S.
The delay elements can also be used to equal the link delays in case of di�erences in
the bidirectional transmission times. The correct adjustment is ensured by verifying
the alignment of incoming frames at the input ports of the switches according to
de�nition 3.5.1. Due to the usage of the global reference clock, the synchronization
state lasts for the remaining operation time of the network.

3.5.6 Frame Alignment and Frame Size

The frame size T , the size of a time slot S and thus the number of slots f per frameframe size
selection are globally constant during the operation of the network. The values are �xed by

the user prior to the synchronization process. On the one hand, a large value of
T is generally desired as it allows a �ne grained QoS reservation pattern for the
connections and also reduces the bandwidth waste caused by the frame gap. On the
other hand, large values for T are problematic on erroneous links, since large amounts

3.5. GLOBAL SYNCHRONIZATION 91

of data have to be considered as being invalid after frame errors are detected within
the physical layer.

The user selects the optimal framing constants T , S and f according to the
number of connections required for the application. After T has been selected, the
selection of the slot size S and thus the number of time slots f per frame is inde-
pendent for the synchronization and not further discussed here. Both values can
be chosen freely by the user so far as equation 3.2 is ful�lled according to the re-
quired bandwidth granulation. The selection of T is also constrained by the physical
transmission times D of the network, i.e. the physical network topology, which is
discussed in the following.

The constrains for the framing constants result out of the method of contention- globally coupled
timingfree bu�er-less forwarding of synchronized frames. An important focus on the de-

velopment of the switching process has been to reduce the overall connection delay.
Bu�ers within the switch have been avoided in front of as well as after the central
crossbar. This not only requires incoming frames to be aligned according to the
synchronization de�nition 3.5.1, but also determines the timing at the output ports.
Since the total internal forwarding delay of the switch is constant, this e�ectively
couples the input port timing to the output port timing (which is the input port
timing at the next node). Concerning the whole network, this results in a globally
coupled timing of all network nodes.

T

time frame

t =0A

t =0B

dAB

local time A

local time B

DAB

t =0A

DBA

dBA

t =0B

synchronized
arrival at A

Figure 3.14: Dependency of frame size T , transmission time D and time shift δ between two
adjacent switches A and B for the case T = 2D = 2δ. A frame sent from A to B and back
to A arrives at both switches properly aligned according to the synchronization de�nition.

Consider �gure 3.14 that illustrates the timing of the synchronization of two di- alignment
constraintsrectly connected switches. The forwarding process requires an alignment of frames

at the input ports of both switches according to de�nition 3.5.1. This results in a
dependence of the shifts of the local time counters of both switches and the transmis-
sion times D in between. Since this condition has to be met for frames transmitted
in both directions, this reduces the possible values for T as well as for the shifts δ
between the two time counters to discrete values according to:

δAB = DAB mod T. (3.13)

The following paragraphs discuss the synchronization process with focus on the
selection of the frame size T as well as the selection of the time counter shifts δ

92 Introduction

in dependence of the physical transmission times D. Two framing strategies areframing strategies

considered:

• When using �xed framing, the grouping of data slots to a frame is preserved.
Data entering the switch at a particular slot number leaves the switch within
the same number. Fixed framing does only allow discrete values for the framing
parameters T (or f , S) depending on the network topology.

• To increase the framing �exibility, the grouping of data slots to a frame can be
changed at the output ports of the switch. In this case, data slots of two parts
of succeeding frames are aggregated to a new frame, which shifts the frame
boundaries, but allows arbitrary values for T (f , S). This method is referred
to as shifted framing in the following. It has the e�ect that the positions of the
reserved time slots change when traversing the switch. The number of shifted
positions is denoted with se for each link e.

Both framing strategies are considered in the following. The discussion starts with
the more simple case of keeping the frame boundaries.

Fixed Framing

Fixed framing keeps the frame boundaries during the forwarding process. In this case,
a proper synchronization between two switches A and B according to de�nition 3.5.1
requires equation 3.13 to hold. In principle, the transmission time DAB can be tuned
by modifying the value ε of the local delay element to allow for larger frame times
T . However, additional delay in the data path is generally unwanted and purpose of
the elements is to �ne-tune the synchronization.

The bidirectional nature of the network requires equation 3.13 to hold not only fortime counter shift

the link from A to B, but also for the link from B to A. On this link, δAB = (−δBA)
mod T . Since 0 ≤ δ < T , the allowed values of the time shifts between two adjacent
switches reduce to

δ ∈
{

0,
T

2

}
. (3.14)

The transmission times in both directions can be assumed to be the same, thusframe size
constraint DAB = DBA (inequalities in the transmission times are to be equalized using the

adjustable delay element ε). Let D = DAB = DBA be the common transmission
time in both directions, then the constraint for T can be written as:

2D mod T = 0 (3.15)

or

T =
2D
n
, n ∈ N. (3.16)

Synchronization requires equation 3.16 to hold globally, which limits the (global)frame size
selection frame size T depending on the (local) transmission times D between two adjacent

switches. The �xed framing method has the disadvantage that the value of D may
be rather small depending on the physical layer, especially in NoCs or embedded
systems. On networks with large values of D, this is not an issue. A limited value
of T limits the number of possible time slots f of size S aggregated to a frame and

3.5. GLOBAL SYNCHRONIZATION 93

results in a low granularity for the QoS reservation pattern. Large values of T require
both, DAB and DBA to be arti�cially increased via the delay elements ε, but this
reduces the proposed framing and bu�er-less forwarding scheme to absurdity.

Example 1: Figure 3.15 shows the synchronization case for a network with regular simple setting
using �xed
framing

2-dimensional meshed topology, D = T and δ = 0 for all switches. In this case, all
periodic counters run strictly synchronous and the same slot number appears at all
inputs of all switches at the same time. All switches belong to the same timing
diagram of Figure 3.15(b). Since T is a globally unique number, this also enforces D
to be globally of the same value. In the case of di�erent physical link delays DAB,
the delay elements have to be adjusted such that D is set to the globally same value
of D = max(DAB) that is the worst case transmission time of the whole network.

A

DC

B

(a)

A

B

D

T

D

time frame

time

D

t =0A,B,D

(b)

Figure 3.15: (a) Regular network topology with similar transmission times D. The route
of a forwarded frame is shown. (b) Timing diagram of the forwarding process. The network
is synchronized with the global frame size T = D and δ = 0. All nodes operate strictly
synchronous.

Example 2: A di�erent setup usable with the same 2-dimensional meshed network largest frame size
with �xed
framing

is shown in Figure 3.16. The network nodes are separated into two disjoint classes
A and B such that not two switches of the same class are directly connected. The
example uses a time shift of δ = D and a frame size T = 2D, which is the largest
usable value. As a disadvantage, the network nodes are not all globally strictly
synchronized, i.e. the time counters run only synchronous within the same class A
or B of network nodes. Large frame sizes T are better implemented using the shifted
framing technique that is described below.

Shifted Framing

Equation 3.16 limits the selection of the frame size T to discrete values if the frame synchronization
conditionboundaries are preserved. The constraint arises out of the synchronization condition

that has to be ful�lled on all network nodes according to de�nition 3.5.1. The
timing at a certain switch input is determined by the synchronization condition at
the local network node, whereas the timing at the switch output is determined by the
synchronization condition at the destination node. The synchronization conditions

94 Introduction

A B

AB

(a)

A

B

A

T

D

time frame

time

t =0A t =0B

D

t =0A t =0At =0B

(b)

Figure 3.16: (a) Division of the regular network topology into 2 disjoint classes A and B
of nodes. (b) Synchronization using the largest possible frame size T = 2D. The switch
internal time counters of nodes A and B are shifted by δ = D.

could therefore not be met on both switches with a simple forwarding of the received
frames values for arbitrary values of T .

To overcome these constraints, shifted framing moves the frame boundaries of twomoving the frame
boundaries succeeding frames such that the same number of time slots is grouped to a frame,

but the slot positions shift. This can be done since the grouping of slots to frames is
an administrative issue only required for the physical transmission, but not required
for the application. In fact, the user application does not have to be informed about
the certain slot positions in which the data is transported. Concerning the online
switching process, the time slots of frames at di�erent input ports are even merged
into new frames at the the switches output ports (c.f, section 3.4.5). For that reason,
the framing process at the output ports can also aggregate data slots of parts of
succeeding frames at the same output port to a new frame. The shifting process
keeps the order of the data slots as well as the globally constant frame size T . It is
illustrated in �gure 3.17.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

frame gap moves

after shift

before shift

at destination

0 1 2 3 4 5 6 7 0 1 2

back part of frame delays by gap

4 5 6 7

local numbering according to frame position

3

valid data

Figure 3.17: Schematic of the shifted framing technique. (top) To cope to the synchroniza-
tion condition, the gap is moved three slot positions to front. The back part of the frame
has to be delayed. (middle) Moving the gap has shifted the frame boundaries. (bottom)
After having arrived at the destination, the frame slots are numbered by its position, thus
she logical slot position of the transmitted data has been shifted by three slots modulo the
frame size.

3.5. GLOBAL SYNCHRONIZATION 95

To give a formal description, let sAB ∈ N, 0 ≤ sAB < f be the logical slot position formal
descriptionshift for the frame transmission on the link from switch A to B. This means that

data placed in data slots i = (0, .., f − 1) when entering switch A leaves the switch
placed in the slots (i+ sAB) mod f = (sAB, .., (f − 1 + sAB) mod f).

Note that moving the frame gap results in the fact that the absolute value for the e�ect on
transmission
time

transmission times DAB di�ers between the slot positions of the two frame parts.
Data slots that enter the switch at slot positions i ≥ f − sAB get an additional
delay of the gap time G in contrast to data slots entering the switch at slot positions
i < f − sAB. The two transmission times are denoted as D< for the �rst frame
part and D> for the latter frame part with D> = D< +G. Both transmission times
D< and D> are still constant over time. Figure 3.18 illustrates the shifted framing
process for a slot shift sAB of 2.

T

time

0 1 32 54 0 1 32 54
switch A input

switch A output
0 1 32 54 0 1 32 54 0

0 1 2

frame gap

54

T

switch B input

d

D<

local time A

local time B

framing delay

physical delay

synchronization at switch B

d +dCB SY<

dPH

S*sAB

0 1 32 540 1 32 54 054

X

X

X

Y

Y

Y

Figure 3.18: Example of shifted framing between two switches A and B with f = 6 data slots
per frame and a logical slot shift of sAB = 2. The output framing of switch A has adjusted
such that the frames arrive at switch B correctly aligned according to the synchronization
condition without any additional bu�ering. The numbers denote the logical slot number at
each switch according to its local time. The slot number (frame position) of reserved data
slots is shifted by sAB while traveling from A to B. The frames arrive correctly aligned at
the switches although its local times are shifted by δ 6= 0. The two data units X and Y
experience the same transmission delay.

Comparable to equation 3.13, the following condition is required to hold for the
timing of any two directly connected switches A and B:

δAB = (DAB,< − sAB · S) mod T (3.17)

Since the value of sAB can be chosen freely and independently for each switch output,
shifting the frame boundaries e�ectively decouples the local switch timings from the
global frame size. This results in the fact that the shift δ between the two local time
counters is not longer dependent of the transmission time, but can be selected freely.
As a result of this, shifting the frame boundaries results in two advantages: selection of T

and δ
1. The selection of an arbitrary frame size T independent of the network topology.

96 Introduction

T

time

0 1 32 54 0 1 32 54
switch A input

switch A output
0 1 32 54 0 1 32 54 0

0 1 2

frame gap

54

T

switch B input

d=0

D<

local time A

local time B

framing delay

physical delay

synchronization at switch B

d +dCB SY<

dPH

S*sAB

X

X

X0 1 32 54 0 1 32 54 0 1 2

Y

Y

Y

Figure 3.19: The same two switches of �gure 3.18. Since the local time counters of both
switches have been synchronized to each other (δ = 0), the logical slot shift sAB = 5 is
required to keep to the synchronization condition of the framing scheme. The back part of
the frame experiences an additional transmission time of the duration of the frame gap.

2. The switches can operate strictly synchronized, i.e. δ = 0 between all switches.

The second point can be ful�lled by setting sAB according to:

sAB =
DAB,< mod T

S
(3.18)

In this case, the two switches are operating synchronized with δ = 0 independent
of the selection of T . The delay element at the a�ected output can be reduced to
the minimum possible value such that DAB is an integer number of a time slot S.
Figure 3.19 shows the selection of the slot shift sAB of 5 for the two switches A and B
from �gure 3.18 when using the same frame time T but with synchronized switches
δ = 0.

Example 3: Consider Figure 3.20. The input data at node A is aligned at inputsexample using
shifted framing according to the synchronization condition. Slots 0 and 3 are reserved for isochronous

connections (port a). Both slots are forwarded on di�erent paths. Slot 0 is forwarded
via node B (ports b, d). On this path, D = T and shifted framing is not necessary.
Therefore, the data belonging to this connection occupies slot 0 also at node C (port
e). The connection for which slot 3 at node A is reserved is routed directly to node
C (port c). Since the physical delay between A and C is larger, shifted framing is
necessary to keep the delay element small, which results in a shifted logical slot at
the arrival at node C (port f). Both connections arrive properly aligned at node C
according to de�nition 3.5.1. The relative slot numbers have been changed due to
the di�erent transmission times.

3.5. GLOBAL SYNCHRONIZATION 97

A B

C

a b

c

f e

d

g

(a)

C

T

DBC

time

0

1 3

0 1 2 3

A

B

0 1 2 3

tA, t t =0B, C

0 2 1

0 12 3

1

2

DAB

DAC

0

3

0 12 3

3

a

b

c

d

e

f

g

dCR

dCR

2 0 1 32

0 1

0 1 32

(b)

Figure 3.20: (a) Network topology example. The di�erent transmission times require shifted
framing on the path AC but not on AB and BC. Only links in single directions are shown.
(b) All nodes are strictly synchronized. Although the slot numbers are shifted at output
port c, no additional physical delay is introduced. Node C receives data from nodes A and
B properly aligned. Frames are shown only partly for a better understanding.

Framing Summary

The bu�er-less forwarding of the switches requires the correct alignment of incoming
frames at the input port of the switches according to de�nition 3.5.1. It has been
shown that this alignment can be established independent of the network topology.
The coupling of the timing between the input ports and the output ports of the
switches can be solved by a shifted framing strategy at the switch outputs. The
advantages are the following: advantages

1. The selection of arbitrary frame sizes T and thus the number of time slots per
frame f , which allows to select an optimized slot reservation granularity S.

2. A globally strict synchronized adjustment of all local time counters (δ = 0)
independent of the network topology and physical transmission times. This
is important for the provision of a synchronization service to upper network
layers (see below).

3. The value of the adjustable delay elements that are required in the data path
to cope with di�erent link delays can be reduced to the duration of less a time
slot S compared to values up to T at the use of �xed framing. This ensures
the minimum possible overall end-to-end delay of the connections.

The shifted framing process involves also two slight disadvantages: disadvantages

1. The process requires additional logic in the data path at each output port. This
has to be considered if an implementation within programmable logic requires
limited complexity.

2. The process results in di�erent transmission times D< and D> for the two
frame parts with the slot positions i < f − sAB and i ≥ f − sAB, respectively.
This may result in additional connection jitter up to the size of the frame gap
if the data frame is further divided into multiple reservation periods with a

98 Introduction

periodic reservation pattern or in the case that multiple time slots are reserved
for a connection (cf. section 3.7).

On networks with regular topology and comparable physical link delays, shifted
framing is not necessarily needed since T can be chosen to be D = max(DAB)
according to example 1.

3.5.7 Synchronization Result

The global synchronization requires the selection of the slot shifts se of each link eslot shifts

that denote the shift in the logical slot number as described in the previous section.
If �xed framing is used, the shifts equal se = 0 on all links. In this case, connection
data placed into a speci�c data slot at the source node stays within this slot position
on the whole route. If shifted framing is used, the slot shifts se are �xed during
the synchronization process to values di�erent from zero depending on the network
topology and the selected frame size T . The values se are further required in the
next stage within the network initialization phase, which is the global connection
mapping process. The connection mapping process uses the shifts to keep track of
the data slot positions that are occupied by the connections to compute a global
contention-free slot assignment for all connections (cf. section 3.6).

To give a formal description, the vector representing each link e ∈ E is extendedformal
description by the slot shift se required for synchronization: e = (vs, vd, se). If shifted framing

is used, the values se are de�ned according to the following rule:

• If vs ∈ Vl → se = 0 (at the connection source node)

• If vs ∈ Vg → se is de�ned as the slot shift between the input ports and the
output ports of the switch at vs after synchronization (at intermediate nodes).

If shifted framing is not used (�xed framing), se = 0 for all edges e as stated above.

3.5.8 Upper-Layer Synchronization Service

The previous sections proposed methods to establish a global synchronization of thesynchronization
sublayer network nodes. Due to the fact that the local time counters are driven by the same

global reference clock, the synchronization accuracy can be reached to the precision
of a single cycle of the clock. Concerning the layered description of the network, the
synchronization layer is implemented in the lower sublayer of the data link layer and
executes framing and timing mainly for the switching process above and particularly
transparent for upper-layer processes (cf. �gure 3.1).

However, upper-layer processes may also require global synchronization informa-motivation

tion. The establishment of synchronization between upper-layer processes without
an explicit synchronization layer below is di�cult to implement and relies strongly on
the physical environment. In embedded environments or SoCs, local electronic signals
can be used, whereas in large scale networks, a common way to synchronize network
peers is the usage of a high-level protocol like the network time protocol (NTP) [93],
which provides only limited precision to about a few microseconds. For networks
already synchronized, it is feasible to use the existing timing information for a gen-
eral service to processes within upper network layers (compare e.g. the synchronous
protocol stack (SPS) of [159]).

3.5. GLOBAL SYNCHRONIZATION 99

This section proposes a method to provide such a general synchronization service generic
synchronization
service

to upper-layer processes based on the MCGN network synchronization. It exploits
the inherent timing of the network and releases the applications from implementing
complex timing protocols for its own. The interface is kept simple, but allows to
control globally timed signals up to the precision of the synchronization itself, which
is the global clock cycle. The service can be used in multiple ways, e.g. to initialize
local clocks or to synchronize upper-layer operations.

Synchronous Signal Events

The synchronization service is based on the transmission of timed signals that pass types of signals

the network. Depending on the purpose, two di�erent types of signals can be used:
connection synchronous signals (CSS) and global synchronous signals (GSS). CSS
are used to synchronize the timing between the user processes at the two end-nodes
of a connection. GSS are used for synchronization between all nodes of a network.
Signals are raised locally and forwarded through the synchronized network. After the
signal has been passed the network, a signal event is triggered locally at all a�ected
destinations.

Each signal (either of CSS or GSS) is passed with a pre-de�ned signal identi�ca-
tion number (ID) to mark its purpose. The IDs of all signals are application-speci�c
and have to be de�ned prior to network operation. A possible usage may be the syn-
chronous initialization of common (non-periodic) timers at di�erent network nodes.
Further operations can later be scheduled with respect to the timer values.

Signal Transport

The signal transport exploits the deterministic timing of the synchronized network. deterministic
timingAlthough the local timers count with the global frame period T and thus the local

time is known only modulo T , section 3.5.6 showed that synchronization also �xes
the transmission time DAB between two directly connected switches to the precision
of the global clock cycle. Since a synchronized network follows de�nition 3.5.1, the
forwarding of signals can also be based on the time slots of the external data frames.
Independently whether shifted framing is used at the output ports or not, data placed
in certain time slots s at an output link e arrives at the time slot (s+ se) mod f at
the destination switch input (se = 0 if frame boundaries are �xed). To not a�ect the
guaranteed rate of the isochronous connections, the signal is encoded as side-band
data within a small reserved part of the frame gap.

The signal transport works as follows: After a signal of a speci�c ID is raised, a signal transport

local down-timer is initialized with a time value larger than the transmission time of
the farthest global path between any two nodes of the network. This value can be
computed easily during the network initialization phase after all directly connected
transmission times are known. The signal is distributed throughout the network by
the following rules:

1. Each signal is sent together with its signal ID and the value of the time counter.

2. Each node receiving a CSS or GSS forwards the signal accordingly. A CSS is
forwarded within the pre-reserved slots belonging to the connection. A GSS is
forwarded to all outgoing ports except the receiving one.

100 Introduction

A

50

A

40 40

40

40

40

Figure 3.21: Example forwarding of a GSS along a 2-dimensional meshed topology. Node
A raises the signal that is forwarded via multiple hops through the network while the timer
decreases in time and space. After having arrived at all nodes, the signal event is triggered
at all nodes at the same time.

3. The received time value is used to initialize a local down-counter corresponding
to the received signal ID. For each output port, the counting value is reduced
before the signal is forwarded by subtracting the transmission time DAB of the
actual node A and the target node B corresponding to that output port.

4. Arriving signals for which the corresponding down-counter is already initialized
have taken a roundabout way to the switch and are ignored.

5. After the local down-counter �nishes, the signal event is triggered locally, i.e.
the event and its ID are denoted to the upper-layer process.

The reduction of the count value e�ectively computes the signal event time in the
time domain of the next node before forwarding the signal to that node. In other
words, the signal timer decreases in time and space during the forwarding process. A
node may receive the same signal from multiple adjacent nodes from which it arrived
after traveling di�erent paths. This is not a problem as both signals may indeed
arrive at di�erent times, but denote the same absolute event time, such that further
signals can safely be ignored. Figure 3.21 illustrated the forwarding process for a
GSS.

Upper-Layer Interface

The interface to upper-layer processes is kept simple for a generic usage with softwaregeneric interface

or hardware implementations. A user process raises a signal of a certain ID and waits
until the synchronization layer denotes its local trigger time. Local event triggering
does not have to distinguish between signals initially raised at far nodes or at the
local node itself.

An example implementation is described in the following: A GSS or CSS is
raised via the raise signal together with its appropriate ID. The synchronization
service answers the request with an acknowledge or error signal depending on the
synchronization state and the signal ID. At the time, the GSS or CSS arrives, the
local event signal is triggered together with the signal ID. The interface is illustrated
in �gure 3.22.

3.6. CONNECTION MAPPING 101

upper network layers

synchronization sublayer

raise ID acknowledge

event ID

error

Figure 3.22: Illustration of the proposed GSS or CSS interface. The synchronization ser-
vice is an orthogonal extension to the existing protocol stack that exploits the inherent
synchronization of an MCGN network segment.

Accuracy and Error Handling

Since the signal forwarding relies on the global synchronization, the accuracy of the event time
accuracytriggered events depends on the synchronization accuracy itself (cf. section 3.5.5).

Depending on the network topology, a node can receive the same signal event multiple
times, transported on di�erent paths. The signal received earlier can be expected to
have crossed a fewer number of intermediated network nodes and thus to be more
reliable, such that signals arriving later are simply ignored. However, as the timing
error of two adjacent nodes is in the range of the global clock cycle, the overall error
will be less than a frame time T or even less than a slot time S. Exact values depend
on the physical accuracy of the timing of bidirectional links as well as the global
clock cycle frequency of the network and the selected slot time.

Multiple events with the same ID raised at di�erent nodes at small di�erent con�icting raises

times result in misleading network-wide information about when the event has to be
triggered. In that case, the synchronization logic denotes the requesting processes
that the desired event ID has already been raised by another process and asserts the
local error signal. However, race conditions, at which two nodes raise the same event
ID at a time di�erence smaller than the link transmission time cannot be avoided
by the current design. On the one hand, this can easily be avoided by a global
administration and exclusive reservation mechanism for signal IDs, e.g. due to an
individual assignment of IDs to each network node. On the other hand, this expands
the simple and compact design with further complexity. The GSS or CSS signaling
feature is primarily designed to add simple synchronization features to application
processes without a�ecting other existing protocols. Synchronization mechanisms
more sophisticated can be implemented on top of the proposed service if needed.

3.6 Connection Mapping

The connection mapping process reserves network bandwidth resources by mapping reservation of
network
bandwidth

connections to physical network links. For each connection, the process assigns a
certain number of data slots at �xed positions on all intermediate links of the route
between its end points exclusively for this connection according to its end-to-end
QoS requirements.

Section 3.4.2 showed that the forwarding process requires a correct ordering of global problem

the reserved data slots to simplify the online switching and routing process. The

102 Introduction

quantization

connection routing

slot assignment

connection
requests

hardware
description

framing &
synchronization

routing table
configuration

isochronous virtual
connection mapping

application layer

data link layer

physical layer

network layer

Figure 3.23: The connection mapping process consists of three steps executed o�ine during
the network initialization phase. It computes the routing information needed at runtime.
Information from di�erent network layers are required.

reservation scheme ensures that data slots arriving at switch inputs can be forwarded
immediately to the local outputs. Since no intermediate bu�ers are needed, this
greatly reduces the transport time or connection delay. Furthermore, this reduces
the delay variation of the connections for a better isochronicity. Section 3.5.6 also
showed that the bu�er-less forwarding results in a global coupling of the data slot
timing of all network links, which leads to a complex global assignment problem to
be solved. A weak mapping may leave many data slots unused or may fail to route
some connections at all, whereas a good mapping results in low delay and jitter
values. This section proposes an algorithm to solve the global mapping problem and
to generate an appropriate reservation scheme.

3.6.1 Algorithm Overview

Since the QoS requests are assumed to be known for all connections prior to networko�ine
computation execution, the connection mapping process is executed during the network initial-

ization phase.It computes the network routes of the connections, the reservation
pattern of each link as well as the local routing tables of the switches. The online
forwarding process is simpli�ed to table look-ups of the pre-calculated routes. In
fact, online routing and switching are merged to the same process of low complexity.
Once assigned, data slot positions reserved for connections remain �xed during the
operation of the network. O�ine computation also allows to implement more com-
plex algorithms in software independent of a software or hardware implementation
of the runtime network part.

Figure 3.23 illustrates the connection mapping process in the network layer view.input parameters

Information from di�erent layers are required to generate the online routing infor-
mation:

1. A hardware description of the network topology. The graph G = (V,E) repre-
sents the network with network nodes v ∈ V and edges e ∈ E. For the mapping
process, its is not necessary to distinguish between physical links or local links

3.6. CONNECTION MAPPING 103

to upper-layer processes. All links are bidirectional with the same bandwidth
w and �xed physical delay values (cf. section 3.2.1).

2. Information of the selected framing parameters, most important, the number
m of time slots per reservation period that equals the maximum number inde-
pendent data slots that is available per link.

3. Data link layer synchronization information. The slot shift se ∈ N0 is assigned
to each link e ∈ E and denotes the shift of the data slots introduced by the
switching process between the input port assignment and the output port as-
signment at the edges source node (cf. section 3.5.6). The number f of time
slots per frame that results out of the synchronization constraints the selection
of m according to equation 3.3.

4. A set C of upper-layer connection requests c ∈ C. For each c = (vs, vd, wc),
vs, vd ∈ V denotes the source and destination nodes and 0 < wc < w the
bandwidth requirement. A change in the connection requests therefore enforces
a new mapping.

The proposed mapping algorithm consists of three main stages executed one by algorithmic steps

one:

1. Quantization of the connection bandwidth requests to time slots.

2. Routing of the connections.

3. Calculation of a proper data slot assignment without connection con�icts at
intermediate network links.

The result of the mapping process is a bandwidth assignment of all connections in
terms of a slot reservation of all network links (positions of data slots belonging to
physical links or local links to upper-layer interfaces). This information is used to
con�gure the online routing tables of the switches.

The QoS results for the connections directly depend on the mapping result, but QoS results

are determined in di�erent stages of the algorithm: The throughput is guaranteed
simply by the reservation of an appropriate number of slots per connection according
to the bandwidth demands. This is performed in step one of the algorithm. In
contrast to the throughput, the transport delay and jitter bounds are a result of
the connection mapping algorithm and cannot be requested in advance. The route
selection in step two determines the absolute value of the connection delay. The
isochronicity of the connections is determined by the jitter, which depends on the
distribution of the reserved slots within the time frames, which are calculated in step
three. For a detailed discussion of the QoS results, refer section 3.7.

The connection mapping process can be compared to the signaling phase of a rejection of
requestssingle connection in circuit-switching networks (cf. section 1.3 or also [143]). As a

di�erence, the mapping process of MCGN handles the requests of all connections
at a time. If the mapping process fails in �nding a valid reservation pattern, it
can simply be repeated with di�erent framing parameters. The network user has
to decide whether to leave connections out, to reduce the bandwidth requirements
of connections or to modify the number f of time slots per frame to allow for a
larger number m of time slots per reservation period. This would result in a �ner

104 Introduction

bandwidth granularity and simplify the mapping algorithm, but also may result in
increased jitter results for connections already routed. The best QoS results are
achieved for the smallest possible number m that leads to a valid mapping.

3.6.2 Bandwidth Quantization

The bandwidth quantization is the �rst step of the mapping process. As discussedglobal framing

in section 3.2.3, the global framing strategy divides the time axis into consecutive
time frames. Each reservation period consists of m time slots of the same size. The
bandwidth ws that is transported within a single time slot of a reservation period is
denoted by equation 3.4.

During the quantization process, each connection is assigned a number of dataproposed
algorithm slots according to its QoS throughput (i.e. bandwidth) request using the following

algorithm:

Algorithm 3.6.1 Given the number m of time slots per reservation period, the total
bandwidth wf that is usable for data per link and the set C of connection requests
c ∈ C, c = (vs, vd, wc) with vs, vd ∈ V and wc ≤ wf the amount of bandwidth requested
by the connection.

For each connection request c ∈ C, calculate the number of data slots mc ∈ N to
be reserved as the smallest integer number that holds:

wc

wf
≤ mc

m
≤ 1 (3.19)

Algorithm 3.6.1 rounds the requested bandwidth up to the next possible value
according to the time slot granularity imposed by the global framing scheme. Note
that no connection can request 100% of the physical bandwidth w since a small
amount is wasted by the inter-frame gap. The algorithm does not calculate the
exact positions of the reserved slots, but only the number of slots to be reserved
within each reservation period exclusively for that connection on the whole route
from the connections source node to its destination.

3.6.3 Connection Routing

The second step is the routing of the connections, i.e. the �nding of valid paths be-routing using
shortest path tween their end points through the network. The routing task can be solved with the

following algorithm. It is based on the algorithm from Dijkstra [143] that calculates
the shortest path between two network nodes. The Dijkstra algorithm itself requires
a set of edge weights to calculate a pseudo-distance between two network nodes. It
then �nds the global route using the lowest total amount of weights. For that rea-
son, the algorithm proposed below generates a set of edge weights that supports an
even distribution of the routes among the global links. The edge weights are �rst
initialized with the same number di�erent from zero such that the Dijkstra algorithm
returns the shortest path with reference to the number of intermediate hops.

Algorithm 3.6.2 Given the numberm of time slots per reservation period, the graph
G = (V,E) of the network topology, the set C of connection requests and the numbers
mc of reserved slots calculated by algorithm 3.6.1.

3.6. CONNECTION MAPPING 105

1. For each link e ∈ E, extend the description of e by assigning a number le
denoting the load of the link such that e = (vs, vd, le). Initialize all numbers le
with the value 1.

2. For each connection c ∈ C, do the following:

(a) Calculate the sub-graph Gc = (V,Ec) with the set of edges Ec ⊆ E that
contains all links e ∈ E for which le +mc ≤ m+1. The graph Ec contains
all links that have at least mc slots remaining.

(b) Calculate the shortest path rc = (e1, e2, ..., en), ei ∈ Ec, e1 = (vs, vi, li),
en = (vj , vd, lj), between source node vs and destination node vd on the
graph Gc using the algorithm from Dijkstra. Use le as the edge weights.

(c) If the algorithm from Dijkstra fails, the request for connection c is rejected.
Otherwise, for all edges ei ∈ rc, increase the corresponding edge weight le
by mc

During the processing of the algorithm, edge weights increase and paths for con- avoid overbooking

nections to be routed depend on the routing of previous connections. Succeeding
connections are routed around heavily loaded edges and use free edges �rst. Step 2a
ensures that only edges are considered for the routing process that o�er su�cient
remaining bandwidth to avoid an overbooking of links. Doing so, the algorithm en-
sures that each reservation period is booked with not more than m time slots. Note
that the same principle can be used to bound the number of slots reserved per link.
This is useful to ensure a su�cient amount of unreserved slots to be occupied by
packet-based tra�c in the case of highly loaded connections.

The result of algorithm 3.6.2 is the set R of all routes rc computed for each result

connection c ∈ C. The resulting end-to-end delay of a successfully routed particular
connection is basically the sum of the transmission times De of its links along the
computed route (cf. section 3.7). The ability to request certain delay values by the
user is not supported since the delay directly depends on the calculated route. If a
particular connection cannot be routed, the connection request is rejected.

Algorithm 3.6.2 proposes a basic algorithm. Conceivable optimizations can ex- optimizations

ploit symmetries, physical delays or pre-known optimal routings of certain connec-
tions. A crucial point of the algorithm is the calculation of the edge weights le, for
which the proposed solution uses the current load, as well as the selection of the
initial distance value, e.g. by using a value dependent of the physical delay. Other
optimizations are to modify the processing order of the requests to start with delay-
intensive long-range connections or to route direct neighbored connections �rst.

3.6.4 Slot Assignment

The last step of the connection mapping algorithm assigns the dedicated slot po- global assignment
problemsitions within the mapping periods at each network link. It has been discussed in

section 3.4.2 that the forwarding scheme of MCGN imposes a slot assignment scheme
with the following constraints:

• Each data slot on a link can be used by a single connection only.

• No internal bu�ers are used. Data slots at input ports of switches are forwarded
to their dedicated output ports with constant delay.

106 Introduction

The avoidance of bu�ers couples the timing of data slots arriving at the input ports
to the timing at the output ports. The assignment of data slots to connections is
therefore a global problem.

The assignment problem can be transformed to the vertex color [13] problemvertex color
problem from graph theory, which is introduced �rst:

De�nition 3.6.1 Vertex color problem. Given a graph G = (V,E). Each node
v ∈ V is to be assigned a number (or color) nv ∈ N, 0 ≤ nv < k such that no two
adjacent vertices (that share the same edge) are assigned the same number.

The vertex color problem is a common graph problem and many assignment or
scheduling problems can be reduced to the problem of coloring a graph (e.g. schedul-
ing problems like time tables as well as the famous puzzle Sudoku). The problem
of �nding the least number of colors k required for a proper coloring according to
de�nition 3.6.1 is found to be NP -hard [70]. However, there exist many algorithms
to solve or approximate this problem [13, 88, 146]. To see the equivalence of the slot
assignment to the vertex color problem, the following observations are stated:

• Without loss of generality, it can be assumed that each connection occupiessingle slot

a single time slot at each link of its route, i.e. mc = 1. Connections that
have been assigned multiple slots in algorithm 3.6.1 can be divided into mc

independent connections that use the same route in parallel each with a single
slot. At the end of the slot assignment algorithm, these connections can be
re-merged back to the original one.

• Since the forwarding at each switch is done with constant transmission timeconstant delay

and all switches are synchronized to the same time period, the positions of the
data slots at intermediate links along the route of a connection are determined
just by the position of the data slot at the �rst link at the source node of the
connection.

• The constraints of assigning data slots to a certain connection result out of theinter-connection
con�icts previous assignment of slots to other connections along the network route.

According to the network topology used for discussion, all connections start atassignment
reduced to start
slot

upper-layer processes, i.e. the �rst link of a route is the local link from the upper-
layer process to the switch port at the source node (cf. section 3.2.1) The data slot
at the �rst link of a connection c is named its start slot qc ∈ N, 0 ≤ qc < m in
the following. The task of the slot assignment algorithm is therefore to assign an
appropriate start slot qc for each connection c.

The algorithm that solves the assignment problem depends on the framing strat-
egy at the output ports of the switch that is determined during the synchronization
(cf. section 3.5.6). If the synchronization uses �xed framing, the slot position of the
connection is the same number qc on all links of its route. If shifted framing is used,
the slot positions are shifted by se on each link e along its route. The problem is
�rst discussed in the more simple case of �xed framing.

3.6. CONNECTION MAPPING 107

Slot Assignment with Fixed Framing

The usage of �xed framing keeps the slot positions on the route of a connection. assign di�erent
start slotsSince all slots of a connection are determined by its start slot, it can be stated that

a connection contents with all other connections for the same start slot that have at
least one link in common along their routes. The algorithmic problem therefore is
to assign di�erent start slots to connections that share a link. It is easy to see that
this equals the vertex coloring problem with a graph that contains the connections
as its vertices and has edges between connections that share a physical link.

As an example, �gure 3.24 shows a network of four hosts. Each host contains a
logical network node for its switching process within the data link layer as well as for
its upper-layer process. The logical network topology used for discussion therefore
consists of eight network nodes for global switches and local upper-layer processes.
Figure 3.25 shows the list of the connection requests to the network as well as the
corresponding collision graph to be colored.

a

A c5

c1 c3
c2

c4

b c d

B C D

data link layer +

upper layers

physical layer

Figure 3.24: Example network consisting of four network hosts named A to D with the
corresponding local upper-layer processes named a to d. Five connection requests c1 to c5
are routed between the nodes. Physical links and local interfaces both have to be shared by
the connections.

Connection Route

c1 (a,A) (A,B) (B,b)

c2 (c,C) (C,B) (B,b)

c3 (d,D) (D,C) (C,c)

c4 (a,A) (A,B) (B,C) (C,c)

c5 (a,A) (A,D) (D,d)

c1

c2

c3

c4

c5

Figure 3.25: (left) The connection set of �gure 3.24. Routes are represented as a set of
successive network links. (right) The connection collision graph of the example network.
Connections sharing a link are connected with graph edges. A vertex coloring of the graph
assigns di�erent colors to adjacent vertices and thus di�erent time slots of network bandwidth
to con�icting connections. Three di�erent colors are required.

After these observations, the following algorithm can be de�ned to solve the
assignment problem if synchronization is established with �xed framing:

108 Introduction

Algorithm 3.6.3 Given the graph G = (V,E) of the network topology, the number
m of time slots per reservation period, the set C of connection requests c ∈ C, c =
(vs, vd), vs, vd ∈ V and the set R of connection routes rc ∈ R, rc = (e1, e2, ...), ei ∈ E.

1. Create a connection collision graph Gcc = (Vcc, Ecc) with vertices Vcc, |Vcc| =
|C| and edges Ecc by using the following rules:

(a) Create the graph vertices vc ∈ Vcc by assigning a vertex vc for each con-
nection c ∈ C.

(b) Create a graph edge e ∈ Ecc, e = (v1, v2) between the vertices v1, v2 ∈ Vcc

of connections c1 and c2, if and only if it exists an edge el ∈ r1 ∩ r2 in the
routes of both connections c1 and c2.

2. Carry out a graph coloring algorithm for the graph Gcc. The graph coloring
assigns each vc ∈ Vcc a color qc ∈ N, 0 ≤ qc < k. The algorithm tries to
minimize k.

3. If the computed number k holds k ≤ m, the algorithm succeeds and the calcu-
lated numbers qc are the start slots of the connections. Otherwise, the algorithm
fails without generating a proper assignment.

The results of the proposed algorithm are the start slots qc for the connections.algorithm result

The algorithm fails in the case that the number of time slots needed for a proper
coloring exceeds the number of available time slots m per reservation period, espe-
cially for small values m. In this case, the slot assignment process can be repeated
with modi�ed connection requests with fewer bandwidth requests and thus a smaller
number of required time slots per connection. Furthermore, the framing and syn-
chronization can be changed to a larger frame size T = mnS + G and thus a �ner
bandwidth division.

Slot Assignment with Shifted Framing

Section 3.5.6 showed that using shifted framing at the switch outputs during theshifted slot
positions synchronization causes the frame slot positions to shift on successive links such that

data placed into the start slot qc at the source node appears at di�erent slot positions
at the links along the route. The shift se at each edge e depends on the network
topology, on the transmission time D and on the selected frame size T .

The constraint that two di�erent connections cannot use the same time slot on aavoid certain
start slot
di�erences

certain link results in a constraint for a forbidden di�erence in the start slots of both
connections according to the sum of the slot shifts of both connections up to that
link. This condition is illustrated for an example network of six hosts in �gure 3.26.

The further calculation of the appropriate collision condition requires the slotcollision
condition shifts se for each link e = (vs, vd, se), e ∈ E that result out of the synchronization

process (cf. section 3.5.7). The accumulated slot shift ac,e of a connection c from its
start node up to the colliding link e can then be computed as

ac,e =
∑

e′∈rc,e

se′ (3.20)

3.6. CONNECTION MAPPING 109

da

b

A D

C

c

B

e

E

f

F

c1

c2
0 1 2 3 0 1 2 3

0 1
2

3

0 1 2 3
0 1 2 3

2

s =0AB

s =1BC

s =1EB

s =0CD

s =1CF

s =1Ff

s =1Dd

s =0eE

s =0aA

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

forbidden
difference of 1

collision at
intermediate link

Figure 3.26: Example of colliding connections c1 and c2 sharing an intermediate link. Syn-
chronization uses shifted framing that causes slot positions to shift di�erently along the
routes. The example collision requires to avoid a start slot di�erence of one during the slot
assignment process.

along the intermediate links e′ of the partial route rc,e from the source node up to
e. The appropriate slot assignment algorithm resembles algorithm 3.6.3, but uses a
modi�ed version of the vertex color algorithm:

Algorithm 3.6.4 Given the graph G = (V,E) of the network topology, the number
m of time slots per reservation period, the set C of connection requests c ∈ C, c =
(vs, vd), vs, vd ∈ V and the set R of connection routes rc ∈ R, rc = (e1, e2, ...), with
the edges ei ∈ E extended by the relative local slot shifts se as described above. The
algorithm works similar as algorithm 3.6.3 with two modi�cations:

1. (b) Create a directed graph edge e ∈ Ecc, e = (v1, v2, d) between the vertices
v1, v2 ∈ Vcc of connections c1 and c2, if and only if it exists an edge el ∈
r1∩r2 in the routes of both connections c1 and c2. Compute the edge weight
d ∈ N0 as the di�erence of the accumulated slot shifts d = (ac1,el

− ac2,el
)

mod m of both connections.

2. Carry out a modi�ed graph coloring algorithm for the graph Gcc. The graph
coloring assigns each vc ∈ Vcc a color qc ∈ N, 0 ≤ qc < k such that the colors
of any two adjacent vertices c1 and c2 do not di�er by the value of its directed
edge modulo m.

Algorithm 3.6.4 computes the start time slots qc of all connections such that no
collisions at intermediate links occur. Figure 3.27 shows the corresponding connec-
tion collision graph of the network of �gure 3.26. Since only two connections have
to be routed, only two vertices exist in the graph connected with a single directed
edge.

110 Introduction

c1 c2

d=3
a =1c1,BC a =2c2,BC

Figure 3.27: The connection collision graph that corresponds to �gure 3.26. The network
uses m = 4 slots per reservation period. The forbidden distance between the start slots q1
and q2 of both connections calculates to d = (1− 2) mod m = 3.

3.6.5 Overall Algorithm Result

The two algorithms 3.6.3 and 3.6.4 result either in the calculation of the appropriate�nd best mapping

start slots qc for all connections or fail to map the connection requests. Since the
QoS jitter results depend on the mapping process, it can be repeated for di�erent
reservation periods (m, n) or even a di�erent synchronization (parameters f , T , S)
for the same set of connection requests. The best jitter values are achieved for the
smallest possible value of m that results in a successful mapping (cf. section 3.7).

After the optimal mapping has been found, the calculated start slots are takengeneration of
routing tables to generate the routing tables of the switches:

• In the case that the frame is divided into multiple reservation periods (n > 1),
the calculated slot assignment of the start slots 0 ≤ qc < m is used for all
remaining periods with the slot numbers m ≤ i < f . The connection c may
therefore insert its data at the slot times {qc, qc+m, qc+2m. . .} at the interface
at its source node.

• The positions of data slots reserved at intermediate links are computed by tak-
ing the accumulated slot shifts into account: The reserved slots of connection
c at a link e equal {qc + ac,e, qc + ac,e +m, qc + ac,e + 2m, . . .}.

• Connections that have been assigned multiple slots in algorithm 3.6.1 have
been split into mc single-slot connections for the slot assignment. After its
execution, the connection features the appropriate number of di�erent start
slots 0 ≤ qc1, qc2, . . . < m and also the corresponding slots in further reservation
periods as well as on all links of its route.

• The local routing tables are calculated for each output and each frame time
by denoting the input ports that belong to the connections of the appropriate
reserved slots.

The routing tables calculated in the last step are used to con�gure the switches.
After that, the network initialization phase is completed and the network is ready
to operate.

3.6.6 Further Remarks

It has been shown that the proposed algorithms 3.6.1 to 3.6.4 are suitable to solveoptimizations

the connection mapping problem. Since the steps two and three of the algorithm
solve problems of network-wide complexity, it strongly depends on the connection
requests of the user whether a successful mapping can be found. Again, since the
number of requests or the requested bandwidth are not limited in advance, a perfect
algorithm solving arbitrary requests cannot exist. Conceivable improvements of the
presented algorithms are:

3.7. QOS RESULTS FOR ISOCHRONOUS CONNECTIONS 111

• The grouping of connections in the case of multiple connections share the same grouping

source and destination endpoints. This requires additional e�ort by the upper-
layer processes to multiplex and demultiplex the individual data streams, but
may lead to a more e�cient usage of bandwidth.

• The sorting of connections by bandwidth requirements or by hop distance to sorting

solve the algorithmic problems �rst for the more simple sub-cases and thus to
reduce the complexity for the remaining problems.

• The introduction of randomness to select the best out of multiple tries. randomness

• An iterative solution alternating through steps two and three to re-route prob-
iterating

lematic connections for a minimization of vertex color con�icts.

The algorithms can further be optimized for speci�c applications according to the reference
implementationnetwork topologies, symmetries or pre-known connection requests. As an example,

the reference implementation presented in the succeeding chapter has been optimized
for a large number of connections for the research with VLSI arti�cial neural networks
within a regular topology.

3.7 QoS Results for Isochronous Connections

This section summarizes the QoS guarantees made by the MCGN architecture for
the transfer of data within isochronous connections. As a general remark, it can
be stated that the exclusive reservation of time slots to connections avoids tra�c
interactions in the global path. The discussion of QoS guarantees can therefore
be reduced to the tra�c characteristics of a single isolated connection only. The
following calculations are given for a framing according to section 3.2.3: The time
frame and the frame gap have durations T and G. The frame consists of f data
slots, divided into n equal reservation periods of m slots each. The bandwidth of mc

time slots is reserved for the connection and the connections route rc consists of hc

physical links to the destination.

3.7.1 Throughput and Drop Rate

The throughput is guaranteed by the reservation of mc time slots per reservation reserved
bandwidthperiod exclusively to the connection c. This results in the reserved bandwidth of

wc = ws ·mc (cf. equation 3.4). The slot admission policy at the transmit interface
at the source node of a connection ensures that this bandwidth is not exceeded as
discussed in section 3.4.6.

Since connection-oriented tra�c is transported as priority tra�c, the reserved no drops

bandwidth equals the guaranteed throughput. For the same reason, no data slots at
intermediate switches are dropped. Therefore, the total drop rate is zero after data
has been sent at the source interface by not exceeding the reserved bandwidth.

3.7.2 Reliability

The reservation guarantees that no data slots will be lost due to tra�c interactions. error forwarding

However, external errors in the physical layers of the network (e.g. due to electrical

112 Introduction

distortions) can indeed lead to slot losses. Physical layers that implement sophisti-
cated encoding mechanisms (e.g. the usage of symbols or 8b/10b-encoding) are able
to detect such errors directly [150]. In most cases, the data link layer also stores
checksums like CRC around the frame data to ensure the data integrity. This is
modeled by the inter-frame-gap, which is not available for user data.

Within MCGN, the forwarding of this error information to the upper networkerror forwarding

layers at the destination node is hindered by the following reasons:

• The switches forward incoming data slots without bu�ering to the output ports.

• The switching process merges data slots from di�erent frames of di�erent input
ports to new frames at the output ports.

• Error information via checksums are available not earlier as the incoming frame
�nishes.

• A detected checksum error marks the whole frame as erroneous.

• The error information cannot be forwarded until all data slots of the received
frame have already been forwarded

To handle frame errors, an error property has to be stored at the frame end after the
valid data (i.e. within the frame gap). Two alternative strategies are conceivable:

• The storage of an error-property for the whole frame.

• The storage of an error-property for each individual time slot.

The �rst alternative would require to mark all frames sent to output ports asimplementation

faulty, as long as at least a single data slot of the erroneous frame is sent to that
output. This would be repeated by each downside switch at any output port of the
switch that initially detects the checksum error. Consequently, this would cause to
distribute the failure property of the frames over the network and would therefore
a�ect multiples connections, although its data has been transmitted correctly. The
second alternative would set all bits in case of an error and forward the bit according
to the slot assignments. This storage of the bits would cause a reduction in the
available bandwidth and would increase the administrative overhead. Furthermore,
the calculation of the forwarded error-bits would be a time-critical task.

For that reason, transmitted data within isochronous connections is not speci�edunreliable
connections to be reliable for the sake of optimized connection delay and jitter. It is proposed

to implement additional error detection and error handling algorithms within upper-
layer processes. Note that this is no strong limitation, since most existing upper-layer
protocols implement further error detection algorithms for its own. Error detection
information from the physical layer or from the data link layer can still be evaluated
to monitor the reliability of the physical links.

3.7.3 Delay

The connection delay equals the overall end-to-end transmission time of a data slot.deterministic
delay As discussed in detail in section 3.5, the synchronization avoids the bu�ering within

the switches of the network. As a result of this, the forwarding of data slots through

3.7. QOS RESULTS FOR ISOCHRONOUS CONNECTIONS 113

the network is performed with a constant transmission time between the switches,
which results in a deterministic overall connection delay.

Connection data to be sent is placed into available time slots according to the constant
intermediate
delays

admission policy at the transmit interface described in section 3.4.6. The data path of
the interface is connected directly to an input port of the local switch (cf. �gure 3.6).
Starting at the �rst switch, the global route has previously been calculated during the
mapping process and is �xed for each connection. Section 3.5.4 showed that the delay
between the input ports of two adjacent switches connected via the edge e is given
by the transmission time De. The value of De can be split into separate parts for
the time needed for switching, synchronization and the physical layer transmission:

De = dCB + dSY + dPH . (3.21)

The value of De is constant only for each individual data slot of a frame, but may
di�er between the slot positions by the duration of the frame gap, depending on the
framing strategy at the output ports (cf. section 3.5.6). The end-to-end delay Dc of
a connection c equals a summation of the individual transmission times De of the
links e along its route rc:

Dc = (
∑
e∈rc

De) + dCB = const (3.22)

The last term corresponds to the time required to traverse the central crossbar at
the last switch to the local receive interface. According to the particular values of
De, Dc is also constant for each individual time slot.

The distribution of the transmission times De depends on the network topology. regular topology

If the network has a regular topology with similar transmission times, all synchro-
nization delay elements can be adjusted such that De equals the same value D on
all links e with D = maxDe. In this case, equation 3.22 can be simpli�ed to

Dc = hc ·D + dCB (3.23)

with hc = ‖rc‖ as the number of network hops (in terms of physical links) between
the source node and the destination node.

Concerning the absolute value of the delay, the switching component dCB can delay bounds

supposed to be small in the range of a clock cycle, since this includes mainly the
traversal of the crossbar. The synchronization delay depends on the framing strat-
egy at the output ports of the switch. In the general case, synchronization uses
the shifted framing method to best adopt to the network topology. For this case,
section 3.5.6 showed that the delay dSY is bounded by the duration of a time slot S.
The proportions between the duration of a time slot S and the delay of the physical
layer dPH depend on the network structure as well as on the selected framing pa-
rameters. To reach a �ne bandwidth division, it can be assumed that most networks
use a comparably small slot size S such that S � dPH .

This leads to the conclusion that the total overall delay value is mainly determined conclusion

by the physical layer of the network for encoding, decoding and physical transmis-
sion. In other words, the forwarding technique of MCGN, which avoids bu�ering by
reservation and synchronization, reduces the internal processing time of the switches
to the very minimum such that the resulting overall connection delay mainly consists
of the time for the physical transmission between the network hops.

114 Introduction

3.7.4 Jitter

The above calculation of the connection delay considers the transmission time be-jitter sources

tween the transmit interface at the source node of the connection and the receive
interface at the destination. Data that has been placed into a speci�c time slot in-
deed arrives after a �xed number of global slot cycles. However, this holds true only
for each individual time slot of the whole time frame.

Variations in the end-to-end connection delay, or connection jitter, are caused by
the following sources:

1. The jitter of the local clock with respect to the global clock reference.

2. The time to wait for an appropriate time slot at the transmit interface.

3. The framing structure that requires an inter-frame gap every f data slots.

4. The shifted framing technique required for synchronization.

Clearly, a connection jitter as small as possible is generally desired as it corresponds
to good isochronicity. If a very small jitter is required by the application, the jitter
can be reduced further by using a jitter bu�er at the destination node, but this also
increases the total transmission delay. The e�ects (2-4) rely on the distribution of
the time slots, which is calculated by the connection mapping during the network
initialization phase. Since all e�ects are deterministic, the jitter for each connection
can be calculated exactly prior to the network operation. Due to the exclusive
reservation of data slots, this can be done separately for each connection.

To calculate the jitter, a mathematical de�nition is required. Unfortunately, thede�nition

term jitter is de�ned di�erently by the community. Some publications avoid the
term completely and stay to the expression delay variation [31]. This thesis uses
the common de�nition of jitter Jc as the di�erence of worst-case delay and best-case
delay:

Jc = max(Dc)−min(Dc) (3.24)

The jitter sources mentioned above a�ect di�erent parts of the transmission pro-calcus

cess. The clock jitter (1) is independent of the other three sources (2-4), which depend
on each other since all are correlated with the selected frame structure. Therefore,
the jitter is divided into the two independent parts:

Jc = Jclock + Jcon = Jclock + max(Dcon)−min(Dcon) (3.25)

The �rst part denotes the clock variation whereas the latter part denotes the con-
nection jitter between the upper-layer user processes measured in multiples of clock
cycles.

To calculate the connection jitter, the transmission process of connection dataconnection jitter

is split into the process of waiting for an appropriate time slot and the process of
transmitting the slot data to the destination.

Dcon = Dwait +Dtrans (3.26)

In a next step, the connection delay is calculated for the transport of data within
the time slot i by considering the above jitter sources (2-4). The frame structure

3.7. QOS RESULTS FOR ISOCHRONOUS CONNECTIONS 115

requires to consider all time slots 0 ≤ i < f of a frame and cannot be reduced to a
single reservation period.

An exact calculation of the wait delay requires to consider each clock cycle within accuracy

a time frame at which data may become valid at the local interface. This is nec-
essary to include the inter-frame gap in the calculation. Depending on the framing
parameters, the size of the frame gap may be ignored for G � S, but since MCGN
supports very tiny slot sizes S, the general discussion has to include it.

The following paragraphs describe each jitter source and give upper boundaries
for the several e�ects. The description closes with the discussion of an example
calculation.

Clock Jitter

The clock jitter is caused by the physical distribution of the reference clock to each clock distribution

network node, which is required for the synchronization as described in section 3.5.2.
The time period of the reference clock is denoted by γ. For a proper operation, the
jitter of the clock can be assumed to be:

Jclock � γ. (3.27)

Since the size of a time slot is at least a clock cycle and the network architecture
can assumed to be a digital system, the e�ect of the clock jitter is ignored in the
following (Jclock = 0).

Interface Wait Time

Interface delay is caused at the source interface, at the time an upper-layer process wait time

waits until a free time slot becomes available for its connection (cf. section 3.4.6).
The value of the jitter depends on the distribution of reserved data slots for the
connection within the reservation period of the frame. An even slot distribution
allows a continuous injection of data and thus results in low connection jitter, whereas
a rare or cumulated placement of the slots forces data to be held causing unwanted
delays. The distribution within the reservation period depends on the mapping
result. The number of slots reserved depends on the bandwidth requirement for a
dedicated connection. The frame gap has to be considered for the case that data
becomes valid at the interface at the time the last reserved slot just passed by.

Figure 3.28 shows an example reservation pattern with a single reservation period worst case
exampleper frame and a single slot reserved for the connection. The minimum wait occurs,

when the data becomes valid at the time of the reserved time slot (indicated by an
arrow in the �gure):

min(Dwait) = 0 (3.28)

The maximum number of cycles to wait occurs if the data becomes valid a cycle
later:

max(Dwait) = T − γ (3.29)

This con�guration also results in the maximum jitter possible. The jitter value does
not depend on the slot assignment algorithm, but only on the selected frame size T .

If multiple slots are reserved for the connection, this reduces the worst-case delay multi-slot
connection

116 Introduction

f=8
T

reserved slot inter-frame gap

start of transfer

1 2 3 4 50 76

(a)

0

D=T/2

delay

T

occurences

1

2

3

(b)

Figure 3.28: Calculation of connection jitter caused by the waiting process for an appropriate
time slot. (a) Example reservation pattern for a single-slot occupancy. (b) Distribution of
the wait times depending on the relative cycle, the data becomes valid at the transmission
interface.

by the duration S of a time slot for each additional reserved slot. The worst-case
wait-time occurs in case the slots are reserved at successive slot positions and data
becomes valid just after the last reserved slot passed by:

max(Dwait) = T − (mc − 1) · S − γ (3.30)

Clearly, the individual maximum wait-time depends on the particular distribution
and may be smaller.

E�ect of Reservation Periods

The reservation scheme allows to split the data frame of f time slots into n equalframing e�ect

reservation periods with m time slots each. Each reservation period gets the same
reservation pattern calculated by the slot assignment algorithm of the connection
mapping process. The usage of multiple reservation periods supports large frame
sizes to waste only a small amount of bandwidth for the inter-frame gap, but also
achieves a small connection jitter.

Since each reservation period of a particular link gets the same reservation pat-
tern, at least n data slots are reserved at each link along the route of each connection.
The interface wait time is therefore bounded by the duration of a single reservation
period (T −G)/n = mS extended by the gap time G:

max(Dwait) = m · S +G− γ (3.31)

The usage of n reservation periods also results in the fact that the frame gap has
to be considerered only in every n-th reservation period during the calculation of
the wait time at the transmit interface. As an example, consider �gure 3.29. The
mapping process reserved a single slot within each reservation period. Although the
slots are distributed evenly among the frame, the inter-frame gap causes the distance
between the slots to vary between 4 and 5 time slots.

E�ect of Synchronization

Section 3.5.6 showed that the synchronization can be performed using two di�erent�xed framing

3.7. QOS RESULTS FOR ISOCHRONOUS CONNECTIONS 117

1 2 3 4 50

T

76 9 10 118

data period inter-frame gap

10

Figure 3.29: Multiple reservation periods cause di�erent wait times even on periodic reser-
vation pattterns

framing techniques. With �xed framing, dSY is constant in time and each data slot
has the same transmission time, which can be calculated according to equation 3.22:

min(Dtrans) = max(Dtrans) = Dc (3.32)

Shifted framing can be used to synchronize a network of arbitrary topology with �xed framing

arbitrary frame sizes T by introducing a logical slot shift se. The drawback of this
technique is that this results in two di�erent transmission delays. The slot shift
causes the frame to be split into two parts at the position f − se. The transmission
times of the slot numbers i with 0 ≤ i < f−se and of the slot numbers f−se ≤ i < f
di�er by the duration of the frame gap G:

min(Dtrans) = Dc,< (3.33)

max(Dtrans) = Dc,> = Dc,< +G (3.34)

If shifted framing is used on multiple links along the route of a connection, the slot multi-hop
connectionsposition changes multiple times and the particular transmission times can alternate

between D< and D>. In case of a regular topology that requires the same shift on all
links, the slot numbers indeed shift on the whole route such that both transmission
times occur, but the constant shift causes the di�erences in the total delay to be
the same as on single-hop connections: The frame is split into two parts, the latter
part experiences a delay that is increased by the duration of the frame gap.4 In
contrast to that, network topologies that require multiple di�erent slot shifts result
in a di�erence of the transmission times of the data slots of up to a gap for each
network hop:

max(Dtrans) ≤ Dc,< + h ·G (3.35)

A transmission using a dedicated (start) slot still has a constant transmission
delay, but only the transmission delays of di�erent slot positions di�er. In case the
framing is implemented with a single reservation period (m = 1) and only a single
slot is reserved for a connection (mc = 1), only a single slot is available per frame,
such that the transmission time is constant (Dtrans = const) and synchronization
has no e�ect on the connection jitter.

Example Calculation Consider �gure 3.30(a). The framing uses a single reser- example setup

vation period with f = m = 8 data slots. The data slot S as well as the frame gap
G are of the same size of S = G = 2 cycles. The total time frame T is of the size

4The proof is left out here for readability.

118 Introduction

f=8
T

1 2 3 4 50 76

22 24

end-to-end transmission time

A B

22 22 22 24 24 24

(a)

delay
[cycles]

occurences

20 25 30

1

2

3

(b)

Figure 3.30: Jitter calculation example for a multi-slot reservation pattern (a) The slot
reservation pattern. Transmission delays for each slot are noted below the frame. Each slot
as well as the frame gap comprises two clock cycles. (b) Distribution of the total connection
delays including the wait time and the transmission delay.

T = 18 clock cycles. The connection for which the jitter is to be calculated occu-
pies three slots (mc = 3). The transmission times for each slot position are written
below the slots in multiples of clock cycles. The connection has a single hop. The
synchronization has been made using a slot shift of se = 4, which causes the slots of
the back part of the frame to be transmitted with an increased delay of the duration
of the gap.

To calculate the connection jitter, it is required to compute the total connectioncalculation

delay for data becoming valid at each cycle t = (0, .., 17) within the time frame T .
Data can be sent to the network only at the cycles (0, S, 2S, . . . = 0, 2γ, 4γ, ...).
As an example, data that becomes valid at the �rst two cycles undergoes a total
connection delay of 22 or 23 cycles, respectively. Figure 3.30(b) shows the resulting
delay distribution. The minimum delay of 22 cycles results for data that becomes
valid within the cycles 1 and 3 (position 1 has been marked with an A in the �gure).
The maximum delay of 31 cycles (7 wait + 24 transmission) results for data that
becomes valid at cycle 4 (marked with a B). The total jitter calculates to:

Jc = max(Dc)−min(Dc) = 31γ − 22γ = 9γ = 4.5 · S (3.36)

Note that the calculated connection jitter is independent of the number of network
hops. It can further be reduced by a more even distribution of the reserved slots
within the frame.

Overall Jitter Results

By using equations 3.24, 3.25 and 3.26 and by considering the four jitter sources
discussed above, the connection jitter is bounded by the following equations:

The maximum jitter computes for a single-slot connection (mc = 1) transportedsingle-slot
connections within a single reservation period (n = 1):

Jc = T − γ (3.37)

The jitter of a single-slot connection that is transported using a framing with multiple
reservation periods (n > 1) equals:

Jc ≤ m · S + (1 + h) ·G− γ (3.38)

3.7. QOS RESULTS FOR ISOCHRONOUS CONNECTIONS 119

The term h·G of the above equation depends on the synchronization, i.e. the network
topology. The equation can be formulated stronger in the case that shifted framing
is used with the same shift on each link: The longest wait-time (via the frame gap G)
then corresponds to the slot in the �rst period. This is either in the back part of the
frame (resulting in Dc,> for all slots of c) or corresponds to the smaller transmission
time Dc,< (which cancels the additional gap wait). In this case, Dtrans=const. The
usage of �xed framing or shifted framing with the same shift at each link therefore
results in:

Jc = m · S +G− γ (3.39)

for all single-slot connections. Note in particular that the jitter is independent of
the number of network hops!

For the most general case of a multi-slot connection (mc > 1) transported within general case

multiple reservation periods (n > 1), the jitter is bounded by:

Jc ≤ m · S +G− (mc − 1) · S + h ·G− γ
= (m−mc − 1) · S + (h+ 1) ·G− γ (3.40)

Again, the h-term depends on the global synchronization and may be zero. The �rst
term results out of the distribution of the mc slots within the reservation period.
Since the gap can assumed to be small compared to the whole frame, it can be seen
that even for this general case, the dependence on the number of network hops is
only very small.

3.7.5 Summary

It has been shown that the connection jitter is determined completely by the global
synchronization and the connection mapping process. Its values can be calculated
for each connection prior to the network operation. The above equations are worst-
case values. The worst-case values imagine the worst-case mapping result, i.e. a slot
reservation pattern with large slot distances. The actual values will be smaller in
most cases.

To conclude the discussion, it can be stated that the connection jitter (i.e. the recommended
settingsisochronicity of the connections) for a given set of connection requests is determined

by the following factors:

• The physical layer of the network (the required synchronization settings).

• The selected frame structure (parameters f , S, m).

• The slot assignment result (the performance of the mapping process)

The physical layer of the network cannot be assumed to change. It determines physical
propertiesthe size of the frame gap G, which is required for synchronization and error detection.

Furthermore, it determines the network topology and thus the global synchronization
settings in terms of the slot shifts se on each physical link. Regular network topologies
can be con�gured by using the same slot shift on all links. This reduces the in�uence
of the frame gap to the connection jitter according to equation 3.39.

The framing parameter should be selected to large values f to support multiple framing

reservation periods for an even distribution of data slots. This ensures good jitter

120 Introduction

results even on di�cult connection requests that require a large value for the size of
the reservation period m.

Most important, the network should be con�gured for the use of small data slotsslot size

S. Small data slots allow to reserve a larger number for each connection, which can
more evenly be distributed among the reservation period. MCGN explicitly supports
the usage of tiny slot sizes due to its protocol-invariant and low-complex forwarding
process. The data slot size can be tiny down to a single clock cycle.

3.8 Service for Packet-Based Transports

This section describes the transport of packet-based tra�c by the MCGN archi-unreserved or
unused slots tecture. Packet-based tra�c is transported as best-e�ort tra�c, i.e. it uses the

remaining bandwidth not used by priority tra�c. The usage of unused priority slots
for packet data allows the reservation of links completely for priority tra�c while
still having the opportunity to transmit packet data over this link depending on the
actual bandwidth requirements of connection-oriented tra�c.

In contrast to priority-tra�c, no assumptions about the tra�c matrix are madetra�c matrix not
known in advance prior to the network operation. The user does not have to provide information

about the amount and the rate of packets to be sent between the network nodes.
Consequently, no bandwidth resources are reserved prior to network operation. The
network initialization phase does not concern packet-based transfers. Packet routing
is performed at runtime. MCGN uses bu�ers (or queues) within the bypass-switch
to handle bursts and collisions in the packet �ow.

QoS for Packet-Based Transports

The architecture of MCGN de�nes how isochronous connections and packets can beimplementation-
speci�c merged to use both tra�c types in a hybrid network. The bypass-switch presented

in this section is the central component that achieves this task. The design of the
switch is rather a universal architecture concerning the placement and arrangement
of bu�ers and schedulers than a detailed speci�cation.

Because of that, no strict QoS guarantees can be made in general concerning
the transport of packet-based tra�c. However, the packet-based part of the bypass-
switch equals the design of an input-queued crossbar switch. It is possible to choose
a particular packet scheduler or bu�ering technique that o�ers QoS for this type of
switch. Concerning the packet-based nature of the tra�c, the QoS services provided
will be more likely statistical than guaranteed.

3.8.1 Packet Embedding

Each data slot is used either by connection data or packet data. Unreserved slots canslot occupancy

be directly equipped with packet-based data. in contrast to that, the usage of data
slots that are reserved but not used by priority tra�c requires an additional single
bit of each reserved slot for this purpose, which slightly reduces the available rate of
the connection. The bit denotes whether the slot is occupied by connection-data or
not.

3.8. SERVICE FOR PACKET-BASED TRANSPORTS 121

The slot organization is illustrated in �gure 3.31. The start of the packet is
marked by a start-of-packet (SOP) character. The packet data is then placed con-
secutively within all available slots. Note that packet data is not merged between
di�erent packets as it is the case for connection-based tra�c. Note further, that
packets can be extended across a large number of slots and even across several time
frames. This depends on the packet size, the selected framing parameters for the
transport of connection-based tra�c as well as on the actual amount of bandwidth
required by the connections.

time

time frame 1

1 2 3

0

50

T 2T 3T

21

1

4 5 6

5

3 87

1 2 3 4 5

9

76

time frame 2 time frame 3

reserved slotsempty slots start of packet end of packet

4 6 7 0 2 3 4 6 7 0

10 11

reserved, but
unused slot

Figure 3.31: Embedding a best-e�ort packet into the slotted framing scheme. Slots one
and �ve are reserved for priority connections. The start-slot and end-slot of the packet are
marked by special characters. The relative slot numbers of the packet are written above the
framing scheme. The packet occupies time slots not used by priority tra�c to improve the
overall bandwidth e�ciency.

The purpose of the SOP character is to explicitly mark the packet start within physical layer
requirementthe unreserved slotted data stream. The usage of a dedicated framing character

ensures a robust detection of a packet and the transmission of packets of di�erent
sizes within the same network. The character does not have to occupy the full
data slot, but must be unambiguously detectable. Since the network architecture
requires the physical layer to provide special characters distinguishable from data
for synchronization purposes (cf. section 3.5.6), the same technique is feasible for
this case.

The hierarchic priority of both classes results in an in�uence from the actual interaction
between classesbandwidth used by connections to the bandwidth available for packet-based trans-

fers. Clearly, this depends on the amount of data slots reserved per frame compared
to the amount of unreserved slots. In principle, it is possible to reserve all data
slots of a time frame solely for priority tra�c, such that best-e�ort data can only
be transported within unused slots. However, this hinders the transport of pack-
ets and starves out the whole tra�c class completely in the case of heavily loaded
connections. The proposed reservation process for connections-based data therefore
can be con�gured to keep a certain amount of slots free for packet-based data (cf.
section 3.6.3).

3.8.2 Packet Format

A best-e�ort packet of MCGN consists of a routing header, the user packet as payload
data as well as control characters required for the online transportation process. Since
the size of a time frame as well as the size of a data slot are selected by the user
for an optimal con�guration of connection-based tra�c, it is not de�ned how much

122 Introduction

fraction of a time slot a data �eld occupies. The SOP character and the header may
be completely located in the �rst data slot or distributed across a couple of slots.

SOP dest srctype

payload

CRC

transport header

user packet

trailer

size

Figure 3.32: Data format of a best-e�ort packet. The user packet is transported as payload.

Figure 3.32 shows the resulting format of a best-e�ort packet. The SOP characterpacket header

is part of the transport header. The header further contains the type of service, the
destination address and the source address of the packet, as well as the payload size
stored in separate �elds. This information is required to route the packet to the
correct network node and to deliver it to the correct protocol interface (see below).
The protocol type and destination address are placed �rst to support a fast routing
decision at the arrival of the packet at an intermediate switch.

The header is followed by the payload data, i.e. the user-packet to be transported.user data

Its data content depends on the protocols implemented within the upper network
layers. The transportation process of MCGN is independent on the packet payload.
It is neither de�ned nor investigated during network operation, which is part of the
multi-protocol support of MCGN. Existing packet-based protocols like IP or ATM
can be transported via MCGN without further adaptation. As the only constraint,
the user has to de�ne its maximum size. This is required to facilitate the packet
bu�ering process within the switches as well as the detection of erroneous data. The
packet trailer consists of the CRC checksum, which ensures the data integrity and is
calculated over the header and the payload.

Implementation

The speci�cation of a MCGN packet is rather qualitative than quantitative. MCGNapplication-
speci�c de�nes the data �elds and its meanings, but not the exact size and bit-representations

(as e.g. the endianess) of each �eld. This is since the required size of the data �elds
depends on the actual application as well as on the physical layer of the network.
In small NoCs, it could be su�cient to use only a few bits for the whole transport
header to avoid bandwidth waste and to reduce the packet latency. In contrast to
this, in larger networks, every address �eld could required to be a few bytes in size
to serve a large number of hosts or to ensure the uniqueness of the addresses.

As an example, the common IEEE 802.3 Ethernet [92] protocol is a data link layerexample

protocol for LANs and WANs. A common variant uses 14 bytes for a comparable
header. The reference implementation of MCGN described in the succeeding chapter
uses only 4 bytes for the complete packet header.

3.8.3 The Bypass-Switch

The bypass-switch is the core component of the MCGN architecture. Most of the
properties of MCGN result directly out of the properties of the switch. The switch
performs the integration of the two tra�c classes on the physical links. Its main
features are :main features

3.8. SERVICE FOR PACKET-BASED TRANSPORTS 123

• A hierarchical design. The switch can be split into separate parts responsible
for the transfer of connections and for packets, respectively. The connection-
based part is executed with priority and equals the isochronous switch discussed
in section 3.4.1. The packet-based part equals an input-queued crossbar switch
with VOQs.

• The avoidance of internal bu�ers for connection-based tra�c. This is the key
aspect to ensure good QoS delay and jitter results as described in section 3.4.

• Separate crossbar inputs for packet-based tra�c from the queuing stages. This
is a signi�cant improvement in the performance of best-e�ort data at the pres-
ence of priority data without reducing the service guarantees for the latter (cf.
section 5.7).

• A generic and modular design concerning the switching of packets. The im-
plementation of the queuing stages and the central scheduler can be optimized
for the application.

• A scalable design in terms of port numbers and line speed. The switch does
not require internal speedup. The complexity is bounded by the implemented
scheduler and the duration of a time slot.

• A compact design feasible for the implementation in programmable logic.

The bypass-switch provides separate interfaces for connection-based tra�c and for
packet-based tra�c to the local upper network layers for a feasible usage.

Switch Overview

The design of the switch is based on an input-queued crossbar switch with VOQs general remarks

and a centralized scheduler, but with additional queuing-bypasses for priority data.
An N -port switch has N bidirectional ports of the same line rate. Ports can be
either global ports connected to other switches via the physical layer or local ports
connected to upper-layer processes via local interfaces. Local ports implement only
either of the two tra�c classes. The switch operates according to the framing scheme
of external data discussed in section 3.2.3 that divides the time and thus the band-
width into frames and slots. It is illustrated in �gure 3.33.

Data slots arriving at a global switch input port are �rst separated according to demultiplexing of
tra�c classesits tra�c class. The membership to a class is de�ned by the reservation pattern stored

within the priority scheduler as well as by the single bit of reserved slots denoting
the actual occupancy. The hierarchical design of the switch allows to discuss the
switching process for both data types separately.

Data slots belonging to priority connections are handled the same way as within priority tra�c

the isochronous switch described in section 3.4.1. The slots are forwarded immedi-
ately to the crossbar and are switched to its corresponding output port without any
bu�ering. The reservation pattern and the local time counter are contained in the
priority scheduler in �gure 3.33.

Best-e�ort packets are stored within the input queues and are pre-sorted to its best-e�ort
packetsdestination output ports (VOQ). The switch implements conventional store-and-

forward packet switching [71], i.e. each packet is stored completely before the cross-
bar is requested. This is required due to the fact that the arrival time of the last

124 Introduction

best-effort packet queues

priority bypass

priority
scheduler

best-effort
scheduler

crossbar

input
ports

output
ports

pre-routing

requests

control

grants

sync delays

reservation
pattern

bypass-switch

request
generation

Figure 3.33: Schematic of a four-port bypass switch with only global ports for both classes.
The hierarchic design provides bu�er-less forwarding of priority data by also serving best-
e�ort packet transports comparably to an input-queued switch with VOQs. The doubling of
the crossbar inputs avoids contention between both tra�c classes at the inputs completely.

data slot cannot be predicted as it depends on the current priority tra�c. The early
forwarding of data slots (wormhole switching, cut-through switching) could block the
corresponding links for an unreasonably long time in the case the last slot is delayed.
The request generation logic evaluates the N2 requests from the queuing stages and
extracts valid request that do not interfere with pre-reserved port-matchings from
the priority scheduler. The central best-e�ort scheduler selects the remaining queues
and the crossbar is con�gured accordingly.

Virtual Output Queuing

Best-e�ort packets are stored in VOQs that is, the switch uses di�erent queues for
each output at each input. Although each queue stores full best-e�ort packets only,
the writing and reading of the queues is performed according to the slotted timing
of the switch. Figure 3.34 shows a schematic of a single VOQ located at a switch
input.

Data slots belonging to best-e�ort packets are demultiplexed out of the packetqueue input

stream and re-assembled into packets. At the time a packet arrives, the destination
address of the header is investigated to calculate the local output port the packet
has to be forwarded to. This requires the routing decision to be made at the time
the packet arrives at the switch. The packet is then stored in the appropriate queue.
The CRC checksum is veri�ed to ensure the data integrity of the queue content.

Each VOQ generates N request signals to denote the existence of packets to bequeue output

forwarded to the outputs. The central scheduler returns select signals to denote the
queue to be served next as well as the appearance of free data slots at the actual
output. The selected packet is then read from its queue slot by slot and multiplexed
into the slotted data stream according to the external reservation pattern. Packets

3.8. SERVICE FOR PACKET-BASED TRANSPORTS 125

de-
multiplex

multiplex

pre-
routing

requests

best-effort packet

output
data
(slots)

input
data
(slots)

per-output queuing

dual-port
memory cell

reservation
pattern grants

Figure 3.34: A virtual output queue

are not merged, i.e. the multiplexer serves no packet until the previous packet has
been transmitted completely.

The timing scheme implies that only one queue is written and read at the same
time. Therefore, all N2 queues required for an N -port switch can be implemented
with N dual-port memory elements and N2 FIFO controllers.

Best-E�ort Packet Scheduler

The timing of reserved tra�c is based on the duration of a time slot, which causes slot-based
schedulingthe scheduling process and the crossbar arbitration to operate accordingly. The

operation of the best-e�ort scheduler is controlled by the request generation logic:
In each time slot, the scheduler gets up to N ×N request signals from all currently
unmatched VOQs for which inputs and outputs are not used by priority tra�c in
the following time slot. The scheduler then calculates a bipartite matching of inputs
and outputs within the duration of a time slot. At the time the scheduler completes,
the output multiplexer of each VOQ is informed of the scheduling result by asserting
the select signals. To ensure that the data slots of di�erent packets are not merged
to the same output port, the scheduling result for a dedicated output is hold until a
packet has been transmitted completely.

Section 1.5 discussed the guarantee of QoS for packet-based tra�c, which is scheduler type

di�cult to achieve in input-queued switches due to the HOL blocking problem and
the preliminary unknown tra�c pattern. The HOL problematic has been solved by
implementing VOQs. The modular and hierarchic design of the bypass-switch allows
to select a couple of existing algorithms for the online scheduling. The implemented
algorithm can in principle be any scheduler that is usable with VOQs, i.e. that
calculates a bipartite matching out of N × N requests. This concerns all crossbar
schedulers presented in section 1.6, e.g. iSlip [84, 86], RPA [59] or DPA [59] etc.

Since the scheduler for best-e�ort packets is interfaced to the request generation generic design

logic, the respect of pre-reserved slots is transparent to the scheduler. As an ad-
vantage, the implemented scheduler can be any packet scheduler that handles N2

requests and asserts N select signals as used in input-bu�ered switches. No special
adaption of existing scheduling algorithms of that type to the bypass-switch is re-
quired. This allows to select the algorithm best adopted to the application in terms
of complexity and QoS results.

126 Introduction

Central Crossbar

Data slots belonging to connection-based tra�c as well as packet-based tra�c ismultiplexing of
data slots fed to the crossbar via separate inputs. The crossbar has 2N × N input ports

and multiplexes the data slots independent of its tra�c class. There is no internal
speedup. Each time slot, the crossbar transfers at most one data slot from each
input port to the output ports. Comparably, each output ports receives data from
at most one input port. The crossbar is controlled by the the request generation logic
by denoting the actual input port to each output port according to the reservation
pattern and the scheduling result of the best-e�ort scheduler. No further control
logic is required.

3.8.4 Interface to Upper Layers

It has been discussed in section 3.4 that the framing scheme and the synchronizationlocal ports

of a MCGN network requires all nodes to cope to the special switching technology of
the network. This requires to implement at least parts of the bypass-switch even at
network nodes used only as end-nodes for best-e�ort packets, depending on the tra�c
classes used by the upper-layer processes. Clearly, local ports for connection-based
tra�c and best-e�ort packets do implement its single tra�c class only. Furthermore,
each port requires �ow additional control signals that are not shown in �gure 3.33.

Local Interface for Connection-Based Tra�c

The isochronous switch has already been described in section 3.4.1 as the connection-corresponds to
isochronous
switch interface

based part of the bypass-switch. Consequently, the interface to connection-based
tra�c of the bypass-switch equals the interface described in section 3.4.6. The in-
terface is again illustrated in �gure 3.35 with respect to the bypass switch. The
�gure shows the transmit and the receive parts together with the relevant parts of
the switch. The local port is implemented with a direct connection to the crossbar.
The data �ow is controlled by the priority scheduler, which corresponds to the for-
warding algorithm of �gure 3.6. The control signals equal the signals described in
section 3.4.6.

crossbar

bypass-switch

local RXlocal TX
data

control

data

control

priority scheduler

Figure 3.35: The local port interface for connection-based tra�c equals the upper-layer
interface of the isochronous switch. The interface consists of a direct connection to the
crossbar. The data �ow is controlled by the priority scheduler that contains the routing
tables.

3.8. SERVICE FOR PACKET-BASED TRANSPORTS 127

Packet Adaptation Layer

Figure 3.36 shows the packet interface of the bypass-switch to upper-layer processes. fragmentation to
slotsSince the timing of the switch is based on time slots, the transmission requires the

packets to be split into single slots as well as the reception requires the reassembly of
the received slots back to packets. This tasks are performed by an additional layer
located between the switch and the upper-layer processes. The layer is denoted as
the packet adaptation layer (PAL) in the following.

The PAL supports multiple di�erent upper-layer protocols. Each packet protocol multi-protocol
supportis assigned a unique type-identi�er for this purpose. Data exchange between the

several layers is controlled by valid and accept signals. The multiplexing of the
protocols requires a separate set of the control signals for each interface. It is also
possible to support only a general packet protocol like IP [114] and carry further
transport protocols within to reduce the complexity of the interface.

packet adaptation layer

bypass - switch

transmit
data slot

accept
slot

global output ports

slot
valid

synchronization sublayer

receive
slot

slot
valid

global input ports

application

transmit
packet

packet
accept

packet
valid

data link layer

network layer

receive
packet

packet
valid

data slots

packets

routing

global
dest

output port,
addrs

input port,
addrs

output port,
addrs

input port,
addrs

Figure 3.36: The upper-layer interface for the transmission of best-e�ort packets. The PAL
converts user packets into data slots and vice-versa. The routing process calculates the
output port number for the packets. Multiple protocols are supported.

Packet Transmission

In contrast to the transmission of connection-based data, the transmission of packets
is not limited by an admission policy, but by the actual load of the network. Further-
more, the maximum packet size has to be obeyed. The adaptation layer performs
the following tasks to transmit a packet:

1. The conversion of the global destination address and source address from the
user format to the MCGN format of the network stored in the packet header.
This is required since the network layer may use its own addressing scheme,
which is di�erent from the scheme used in the actual MCGN network segment.5

5This can be compared to the conversion of IP [114] addresses to Ethernet MAC addresses [92]
by the ARP [112] protocol

128 Introduction

2. The compilation of the best-e�ort packet by adding the required header and
trailer to the user data. The type of the packet depends on the upper-layer
protocol transmitting the packet.

3. The split of the best-e�ort packets into single data slots

4. The transmission of the data slots to the switch according to its slotted timing.

Since the switch �rst demultiplexes the data slots back to packets for the storage in
the VOQs, the last two tasks can be left out if the implementation allows to merge
the switch and the adaptation layer in a single process.

Packet Reception

The reception of best-e�ort packets is performed similar:

1. The data slots are received by the PAL according to the actual network tra�c.

2. The PAL reassembles the slots back to the best-e�ort packet.

3. The packet type stored in the packet header is investigated.

4. The packet is forwarding to the protocol that corresponds to the type.

As an additional requirement, each network layer protocol must provide a routingrouting process

process for its own address format. The routing process receives global destination
addresses in the format of the protocol and calculates the route to the destination.
It then returns the corresponding number of the output port. The routing process
is also required to calculate the local output port for best-e�ort packets arriving at
the switch to place the packet into the correct VOQ.

3.8.5 Packet Routing

Routing is commonly an issue of the network layer. Although MCGN is mainly auniversal routing
support switching architecture, it provides a general and �exible routing support to facili-

tate the usage of multiple di�erent network protocols. The advantage of the MCGN
architecture lies in the facts that �rst, the packets do not necessarily have to be
forwarded to the local upper layers for a routing decision and second, that di�er-
ent routing strategies can be implemented for individual protocols within the same
MCGN network segment.

The forwarding decision is required for each individual packet that enters theformal
description switch to calculate the VOQ that corresponds to the correct output port (cf. again,

�gure 3.34 and �gure 3.36). The bypass-switch therefore investigates the header of
incoming packets and reads the protocol type φ as well as the destination address
DA and the source address SA. The forwarding decision to be made for a packet
entering via an input port I can be formally de�ned as a routing function

ΩΦ(DA) = O (3.41)

that calculates the output port number. A more general de�nition is given by

ΩΦ(I, SA,DA) = (O,SA′, DA′) (3.42)

3.8. SERVICE FOR PACKET-BASED TRANSPORTS 129

that additionally calculates the new addresses SA′ and DA′ (which will be kept to
SA′ = SA and DA′ = DA for most protocols). The output port can either be a
local port (to the receive interface of the corresponding protocol) or a global port.

To support multiple protocols, the function Ω can be implemented di�erently multi-protocol
supportfor each protocol type Φ. Since each network protocol itself controls the content

of the packet header, the implemented routing protocols are completely transpar-
ent to the operation of the switch. This allows to operate conventional routing
protocols like open shortest path �rst (OSPF) [96] for IP [114] packets as well as
label-switched protocols like MPLS [118] or connection-based packet forwarding like
used in ATM [143] networks in parallel within the same physical MCGN segment.
To give some examples, the following routing strategies are feasible to be used within
MCGN:

1. The switch operates protocol-independent. No knowledge about upper-layer protocol-
independent
packet switch

protocols is required. Packets are switched only between global ports. The
address �elds are of the same format for all protocols. The output port is
assigned according to the previous arrivals of packets at the input ports. For
that reason, the switch administrates a list of known source addresses at each
port. The packets are forwarded according to its destination address either
to the corresponding port at which that address previously appeared or to all
ports in the case the address has never been seen. This behavior resembles the
operation of an Ethernet switch.

2. All incoming packets are forwarded to the upper-layer processes according to conventional
routerits protocol type. Routing decisions are made in the following. Packets are then

re-transmitted to the calculated destination. As an advantage, the complexity
of the routing algorithm is not bounded by the switch timing but however, the
packet delay is increased. In this case, the switch operates like a conventional
router.

3. MCGN supports a fast variant that performs the routing decisions early at the early routing

time the packet enters the switch. The packet data is not investigated, but
only the destination address of the packet is evaluated. The packet is stored
into the VOQ of the calculated global output port and does not have to be
forwarded to upper layers for the routing decision, which drastically reduces
the forwarding time. This requires a fast routing decision, since the complexity
of the routing algorithm is bounded by the packet arrival rate.

4. The MCGN switch can also be used to implement label-switched routing for label-switching
routercertain protocols as it is used in e.g. MPLS [118] networks. The addresses equal

local labels that are valid only on the local links between the switches. The
routing algorithm changes the two addresses (labels) SA and DA according to
the label-switched path of the network. A detailed discussion of this technique
is beyond the scope of this thesis.

The routing functionality �nally selected depends on the application but is indeed
limited by the complexity of the routing decision. Note that sophisticated routing
algorithms commonly require the knowledge of the network topology and thus intro-
duce further administrative overhead. As a �nal remark, it is stated that the second

130 Introduction

variant allows to transfer the packets to other networks using a di�erent switch-
ing technique than MCGN. Such an edge router implements both technologies and
is part of both network segments. This makes it possible to interconnect MCGN
networks to other existing transport technologies.

3.9 Scalability and Complexity

This section summarizes the space and time complexity of the MCGN architecture
with respect to both tra�c classes.

3.9.1 Space Complexity

Concerning the space complexity, the MCGN architecture has been developed for a
compact implementation within programmable logic. The synchronization sublayer
mainly consists of the variable delay elements and the framing logic at each output
port. Its logic consumption is minimal. The local interfaces for the connection-based
tra�c consists only of few handshaking logic as well as the packet interface, which
mainly converts the data slots to packets and vice versa.

The space complexity is therefore determined by the central bypass-switch. Sincecomplexity of the
bypass-switch the VOQs can be implemented within a single memory element, the central crossbar

determines its space complexity. By doubling the amount of input ports, the switch
removes con�icts between priority and best-e�ort tra�c at the input ports with
moderate additional costs. Although the size of the crossbar is doubled to 2N ×N ,
its space requirement is still of

O(N2) (space complexity) (3.43)

complexity. A compact implementation of the switch therefore has to ensure an
e�cient implementation of the central crossbar.

3.9.2 Time Complexity

Concerning the time complexity, it has to be distinguished between connection-based
tra�c and packet-based tra�c. It has been described in detail in section 3.4 howconnection-based

tra�c MCGN establishes isochronous connections by moving the forwarding complexity
from online to o�ine. The remaining online process is reduced to the look-up of
pre-calculated routing tables. The online complexity is therefore of

O(1) (online time complexity) (3.44)

complexity. Furthermore, the look-up can be done in advance for each slot such that
incoming data slots are forwarded immediately. Since also the data of isochronous
connections is transported header-less and its content does not have to be investi-
gated, this supports very tiny data slot sizes down to single clock cycles in conjunction
with high line rates. The time complexity of the online forwarding process is in par-
ticular independent of the number of switch ports N as well as on the number of
network hops.

3.10. SUMMARY 131

Concerning packet-based transports, the modular design of MCGN requires to
select an online scheduling algorithm as well as a routing algorithm. It is therefore
not possible to present exact complexity results, but the following paragraphs point
out the possible complexity issues that have to be taken into account for the selection
process.

The scheduling algorithm can be any algorithm that calculates a bipartite match- packet scheduler

ing out of N×N requests. Its time complexity is therefore bounded by the number of
switch ports N . A new scheduling is required each time slot, which directly bounds
the time complexity of the scheduler by the duration of a time slot S. Other setups
are conceivable that calculate a scheduling only each n ∈ N time slots, but is not fur-
ther discussed here. Since the transport of connection-based tra�c is best for small
time slots, the size of the time slot can either be selected as the smallest duration
usable with the selected best-e�ort scheduler - or to select the best-e�ort scheduler
according to the time slot duration.

The second time-critical task concerning packet-based transfers is the execution packet routing

of the routing decision. Depending on the implemented routing model, an incoming
packet may have to be delayed until the routing algorithm completes before to be
stored into the VOQs. In the case of the fast routing model of MCGN, a routing
algorithm with low complexity should be selected, e.g. that uses pre-calculated tables
or a simple routing concept. In the case that all incoming packets are �rst routed to
upper layers, the time complexity of the routing decision is bounded by the packet
arrival rate. The selection of the routing algorithm further has to consider a possible
dependence on the number of network hops.

3.10 Summary

This chapter described the novel MCGN switching architecture, which combines novel switching
architecturetransport techniques from circuit switching and packet switching. The architecture

provides an end-to-end transport of multi-protocol data within both, isochronous
connections as well as packet-based transports. It has been shown how MCGN
uses a framing and synchronization technique prior to the network operation to ex-
ploit the deterministic behavior by a low-complex forwarding algorithm at runtime.
Connection-based tra�c is transported within reserved time slots, whereas pack-
ets are transported within unreserved or unused slots and are scheduled purely at
runtime. MCGN provides a network-wide synchronization service to upper-layer pro-
tocols. Initial algorithms for the synchronization and the reservation processes have
been presented. The resulting QoS bounds in terms of delay and jitter are given
according to the selected framing parameters. MCGN guarantees 100% throughput
for connectio-based tra�c.

The merging of the tra�c classes is performed by a novel switch-type, the bypass- novel switch type

switch. The switch features a hierarchic design with respect to the tra�c classes.
Its modular approach allows to select the routing algorithm and the packet sched-
uler best adopted to the application. Its upper-layer interface provides protocol-
independent transport services separately for each tra�c class. The multi-protocol
property of MCGN allows to transport existing protocols like IP, ATM etc. via
MCGN without further adaptation.

132 Introduction

The main features of MCGN are: (1) guaranteed QoS for connection-based tra�cmain features

with very low delay and jitter due to the avoidance of bu�ering within the data path,
(2) a low online complexity for isochronous data, (3) a hierarchic and modular design,
(4) scalability in terms of port numbers, line speed and the number of network hops
(depending on the selected routing and scheduling algorithm), (5) multi-protocol
support and (6) a compact design to be implemented within programmable logic.

3.10.1 Future Work

The modular design allows to add a large amount of additional features to the ar-
chitecture. The following extensions are conceivable:

• The support of multicast connections and packets. Concerning connections,support of
multicasts this does not require a change of the isochronous switch speci�cation, since

the routing tables have simply to be con�gured to denote the same input for
multiple outputs at a certain time. The connection mapping algorithms for
the bandwidth reservation and the generation of the appropriate connection-
collision graph have to be modi�ed. The vertex-coloring of the graph can be
preserved (cf. section 3.6). For packet-based transfers, multicast requires the
duplication of incoming packets during the writing or the reading of the VOQ
bu�ers.

• The dividing of the time frame into reservation periods could be enhanced toenhanced frame
division a more sophisticated technique. A hierarchic division of the frame is possible

with a di�erent amount of bandwidth to be reserved per data slot according to
the level of hierarchy. Furthermore, the reservation pattern itself can be time-
multiplexed such that the assignment of a particular slot changes from frame
to frame periodically. The isochronous switch would use multiple hierarchic
routing tables that are periodically looked up. This would not only allow
a �ne-grained reservation of bandwidth, but also to provide di�erent kinds of
QoS jitter guarantees. Nevertheless, this also allows larger data slots to support
more complex best-e�ort scheduling algorithms.

• The introduction of a small re-ordering bu�er at each switch within the dataslight bu�ering
and re-ordering path of the isochronous connections. Although this would increase the de-

lay slightly, this also would reduce the complexity of the connection mapping
signi�cantly. The resulting forwarding technique would be a mixture of the
bu�er-less forwarding of MCGN and the stop-and-go queuing presented in [44]
or comparably in [58, 130].

• The grouping of connections with the same end-points to a single connection.improve
connection
handling

This would require further administration of the di�erent data �ows within
upper network layers, but would reduce the mapping complexity. This tech-
nique is used in the reference implementation of MCGN presented in the next
chapter.

• It is further possible to add or remove connections within a MCGN networkonline
re-con�guration by calculating a new slot assignment and by re-con�guring the routing tables

at runtime without denoting the non-a�ected upper-layer processes. Since this
will also a�ect connections that persist, is requires a detachment of the upper
layers by preventing the injection of data during the re-con�guration process.

3.10. SUMMARY 133

Since the presented speci�cation of MCGN discussed the design concepts and ar- application-
speci�c
implementation

rangements of processing instances instead to de�ne exact signals and bit-meanings,
a �nal implementation requires the �x of the several parameters to application-
speci�c values. The succeeding chapter presents the reference implementation of an
MCGN network developed for the research of hardware neural networks. The im-
plementation uses nearly all of the speci�ed features and has been implemented in
programmable logic.

134 Introduction

Chapter 4

Implementation of the Transport
Network

In the previous chapter, the speci�cation of the MCGN architecture has
been introduced. This chapter describes the reference implementation of
the MCGN architecture within programmable logic and software. The
chapter shows how the design principles of MCGN in terms of framing,
synchronization, mapping and packet transports are put into practice.
The reference implementation of the bypass-switch is presented in detail.
MCGN is used for the lower network layers of the transport network for
neural network experiments within the hardware framework of chapter 2.
The chapter also presents the implementation of the higher layers of the
transport network, namely a demonstrator application for isochronous
connections as well as a distributed shared memory subsystem. The
implementation within commercial programmable logic demonstrates the
compact and scalable design of the network architecture. The evaluation
of the implemented network is presented in the subsequent chapter.

The transport network consists of two parts: its lower layers are a reference MCGN for
hardware neural
network
experiments

implementation of the MCGN switching technology, whereas its higher layers contain
the application-speci�c functionalities for neural network experiments within the
Stage 1 framework. As the most important point, the reference implementation of
MCGN ful�lls the QoS requirements of the two ANN chips HAGEN and Spikey for
the transport of the neural data as discussed in section 2.4. To be more precise, the
transport requirements of the neural network experiments are satis�ed by the two
di�erent tra�c classes of MCGN:

• Isochronous connections are used for the transport of neural network data of the
ANN chips. The synchronization and the reservation of time slots guarantee
the throughput as well as bounded delay and jitter.

135

136 Introduction

• Packet-based transports are used for an on-demand transport of the memory
content of the di�erent SDRAM chips. Packets are placed in unreserved or
unused slots.

The implementation and operation of the transport network requires to �x certaindesign focus

con�gurable parameters as e.g. the slot size S or the selected type of best-e�ort
scheduler. Since the focus of the framework is the transport of neural data, the
priority tra�c class has been given advantage in case of interferences between both
classes. An example is the size of the time slot S, which is selected to be two clock
cycles, which limits the complexity of the best-e�ort scheduler to this duration. The
digital design to be executed within the FPGA has been further optimized for a low
consumption of programmable logic due to the limited size of the xc2vp7 FPGA
used. Appendix A lists resource consumptions for main design entities implemented
with di�erent parameters.

Due to the modular design of the network architecture, the reference implemen-con�gurability

tation can be used for di�erent applications with only minor modi�cations. This
does not only include applications within the Stage 1 framework, but also other
network environments that require multiple tra�c classes to be served. As an ex-
ample, the network can be used within the follow-up Stage 2 of the research project
FACETS [89, 121] for wafers-scale integration of neural networks.

4.1 Overview

A block-level schematic of the transport network is shown in �gure 4.1. It consists
of two di�erent parts:

• A digital design to be synthesized within programmable logic. The designprogrammable
logic consists of multiple modules, which are organized in a hierarchical way. The

two main modules are phys_sync, which provides the physical transmissions via
delay-reduced synchronized links, and the module switch, which contains the
bypass-switch. Both modules can be instantiated and parameterized similar to
intellectual property (IP) cores. The digital design has been developed using
the hardware description language VHDL [32].

• Software to be executed on the control PC. The programs mgtsync, mappingsoftware

and mgtroute perform the three steps of the network initialization phase of
MCGN, namely the synchronization of the network, the calculation of the
slot assignment and the con�guration of the routing tables. The executable
switchtest is a software simulator for a switch and generates testbench traf-
�c pattern to verify the implemented design. The software has been devel-
oped using the C/C++ programming language [139]. The python [116] script
generate_network.py creates test neural network topologies for evaluation.

The digital design is embedded within the top-level design of the FPGA of theoperating
environment Nathan network modules. Only this part is executed during the operation of the

network. The software is executed during the network initialization phase. The
hardware/software interface is accomplished by the SlowControl of the framework
(cf. section 2.2.4). The top-level design of the FPGA contains additional parts like

4.1. OVERVIEW 137

shared memory

dimensional
routing (XOR)network layer

bypass-switch

data link layer

physical layer

demonstrator application /
ANN Controller

configuration
(mgtroute)

global
synchronization

(mgtsync)

software on control PC

synchronization

transport layer

packet
transfers

isochronous
transfers

Aconnection
mapping

(mapping)

network initialization
phase

GSS

connection
requests,
mapping
params.

MGT MGT MGT MGT

global reference clock

SDRAM manager

framing
params.

SDRAM memory module

gigabit network interconnects

network
moduleFPGA

config.,
execution

S
lo

w
C

o
n

tr
o

l

user process

clientserver

application layer

MCGN
reference
implementation

switch

phys_sync

simulation &
traffic pattern generation

(switchtest)

network
generation

(generate_network.py)

te
s
tb

e
n

c
h

s
ti
m

u
li

Figure 4.1: Block-level overview of the transport network. The implementation comprises a
digital design within the programmable logic as well as three software programs, which are
executed on the control PC. The reference implementation of MCGN is denoted by a dotted
line. The software/hardware interface is accomplished by the SlowControl of the framework.

the ANN controller, the synchronous dynamic RAM (SDRAM) memory manager
or the global clocking, which are not further described here, the reader may refer
to [125, 47].

Upper Network Layers of the Transport Network

Since MCGN is merely a switching technology, its speci�cation comprises only the upper-layer
functionalitieslower network layers. The transport network for hardware neural network experi-

ments requires further functionalities within upper network layers. For this reason,
two upper-layer processes have been implemented:

• The transport of neural network data within isochronous connections is demon-
strated by an application that transmits its data within single time slots. The
probability to transmit data within a slot can be tuned for di�erent data rates
to model the Bernoulli statistics of events from spiking neurons.

• The transmission of packets is demonstrated by a distributed shared memory
(DSM) system, which comprises the SDRAM chips of all Nathan network mod-
ules. The access to memory on a distinct network module is provided by read
and write operations to global DSM addresses.

This thesis is part of a larger scienti�c project. At its present stage, the developed limitations

138 Introduction

transport network is not �nally connected to the controller of either of the two
ANN chips [47, 125]. This is due to the fact that such a connection requires major
modi�cations of the present implementation of the controllers. The development of
the ANN chips and also the controllers is not part of this thesis. This work will
be done in near future. The mentioned demonstrator application for isochronous
transfers can be used as a starting point. In contrast to that, the shared memory
subsystem is operating successfully.

The following sections describe each part of the implementation of the transportorganization of
the chapter network. First, the framing of bandwidth to time frames and the embedding of best-

e�ort packets is described. The succeeding sections describe the implementation of
the digital part of MCGN, namely the physical layer, the synchronization sublayer,
the bypass-switch as well as the corresponding software part to be executed during
the network initialization phase. The last two sections concern the transmission of
connection-based data and packets over MCGN, which is required for the neural
network application.

The level of detail is limited to the basic ideas and solutions. Due to the com-level of detail

plexity of the implementation, a listing of the source code of either hardware or
software is not presented. The description refers to the source code stored within
the SVN [140] repository fpgasystem of the Electronic Vision(s) group.

4.2 Framing and Packet Encoding

This section describes the framing of the physical bandwidth and the embedding
of packets. It is repeated here for comprehensibility that the data of isochronous
connections is transported within periodically reserved slots at �xed frame positions,
whereas the data of a best-e�ort packet is placed in free data slots and can be
distributed over multiple frames.

4.2.1 Format of a Data Frame

The frame format equals the MCGN scheme, which is illustrated in �gure 3.4: Thegeneral remarks

bandwidth is divided into periodic data frames of the same (con�gurable) frame size
T at all links. Each frame consists of a frame gap of duration G and f consec-
utive data slots of the same size S. The selection of T depends on the required
reservation pattern of the application and results in achievable QoS delay and jitter
results for connection-oriented tra�c as shown in section 3.7. All data within the
transport network is transmitted within 16 bit-wide data paths at a clock frequency
of 156.25MHz. The implemented frame format is shown in �gure 4.2.

The frame starts with the synchronization header of 16 bit. The header containssynchronization
header the start-of-frame character SOF as well as the 8-bit �eld GSS for the implementation

of the global synchronous signals. The SOF is encoded as the 8b/10b character
K28.11 of the MGT to unambiguously detect the frame start.

The header is followed by the data part of the frame consisting of the data slots.data slots

All frames are of the same size and contain f data slots. Section 3.7 discussed that

1Synchronization characters can be transmitted due to the 8b/10b encoding of the used MGT,
which provides 12 extra K-characters distinguishable from data bytes. [157]

4.2. FRAMING AND PACKET ENCODING 139

inter-frame gap

SOF

GSS

EOF

CRCbits 0..7

bits 8..15 SOF

GSS

32 bit data slot

periodic frame structure of frame size T

synchronization-header trailer

IDLE

unused slot

datadatadata data data data data

0 1 2 3 f-2 f-1 0 1

Figure 4.2: Format of a data frame. The granulation of the data slots has been reduced
to 32 bit to achieve optimal QoS results. Unused slots are marked with IDLE symbols (K -
characters of the MGTs) without the need of extra bits. The reservation pattern that assigns
the tra�c class to each slot is stored within the forwarding table of the switch.

the QoS results for delay and jitter for connection-based tra�c are best for small
data slot values S. Consequently, the size of a data slot has been selected to be 32 bit
(S = 12.8 ns) to carry a single neural network-event of 21 bits (cf. section 2.1.2). In
other words, a single data slot is reserved for each neural network spike event.

The design of MCGN proposes the de�nition of n reservation periods of m time reservation
periodsslots each that contain the same periodic reservation pattern such that f = n ·m.

To save programmable logic, these reservation periods have not been implemented
in hardware. However, the same e�ect can be reached by simply assigning periodic
reservation patterns to all f time slots resulting in the same QoS results. The
optimum number of time slots f per frame depends on the speci�c requests for
isochronous connections and thus on the neural netlist and the con�guration of the
experiment to be carried out. For this reason, the value of f has been implemented to
be con�gurable at runtime for a generic hardware design. The present con�guration
allows a maximum selectable f of f = 128 data slots.

The frame ends with the trailer, which contains the CRC checksum computed trailer and gap

over the data part of the frame. The CRC replaces the internal CRC of the MGT
that has been deactivated to improve the data path delay. Since the checksum has to
be calculated independently for all MGTs for transmit and receive, the size can be
con�gured between 8 bit and 4 bit to trade the logic consumption against the data
integrity. The frame-gap is de�ned as the non-data part of the frame. It therefore
contains the trailer of the frame plus the synchronization header of the succeeding
frame and is 32 bit large (12.8 ns).

4.2.2 Format of a Best-E�ort Packet

The format of an embedded best-e�ort packet has been de�ned according to sec- shared memory
transportstion 3.8.2. Although the speci�cation supports variable-sized packets, the present

implementation uses a �xed size of 44 byte (11 data slots) for all packets. This sim-
pli�es the packet bu�ering within all layers, but can be changed easily if required
later. The packet header is de�ned within the VHDL module packet_pkg. It is
shown in �gure 4.3.

The packet header consists of the SOP-character and the routing information, packet header

the protocol quali�er and the packet size (currently �xed). All information required
for the local routing and forwarding processes are stored within the �rst 16 bit of
the packet. That is, the destination node in terms of its backplane number and

140 Introduction

SOP

protocol type

dest backplane

dest node
0

3

4
5

6
7

8

15

source service

payload size

0

5
6
7

dest service

source backpl.

source node
8

11
12
13
14
15

0

7
8

15

(unused)

CRC

shared memory packet (38 byte)

header trailerpayload

Figure 4.3: Data format of a best-e�ort packet.

its Nathan module number and the local protocol type identi�er. This allows to
calculate the local output port for an incoming packet within a single clock cycle
to reduce the packet delay. The current implementation allows to address up to 4
backplanes, which results in the total of 64 usable Nathan network modules.

The header is followed by the payload starting at the second slot with the headerpayload

of the transported protocol. The current implementation only de�nes the shared
memory protocol as payload using the protocol type identi�er of 0. The best-e�ort
packet size of 44 byte has been chosen to support up to two shared memory data
units of 16 bytes each (cf. section 4.9.2).

The packet ends with the CRC checksum. Comparably to the checksum of thepacket trailer

data frame, the size of the packet checksum is also con�gurable to up to 8 bit to
trade the logic consumption against the data reliability.

4.2.3 Noti�cation of the Slot Usage

The data of best-e�ort packets is embedded within data slots that are unreserved
or unused by isochronous connections. The actual tra�c class of the data within
reserved slots has therefore to be detected by the switch at runtime. The noti�cation
whether a slot is reserved or used for data is stored di�erently:

The reservation pattern of the data slots is stored within the routing table of thereserved slots

switch and not within the data slot itself. At runtime, reserved data slots that do not
contain valid data are occupied with the IDLE symbol, which is a special symbol of
the MGT encoded with the 8b/10b characters K28.5 and D21.4 for both clock cycles.
By verifying the content of the reserved slots for the presence if the IDLE character,
the switch detects valid data without additional bits or the usage of headers within
the slots.

The equipment of reserved but unused slots with packet-based data, is marked inreserved, but
unused slots bit 15 of the �rst cycle. The transport of neural network data is not a�ected since a

neural network event occupies only 21 bit and this bit is unused. Packet-based data
is then placed into the second remaining cycle of the data slot. The equipment of
unused reserved slot with packet-based data therefore requires to investigate the �rst
cycle of each reserved slot to detect its actual tra�c class. Without this feature, only
the presence of the IDLE character has to be checked and neither connection-based
data nor packet-based data has to be further investigated. Table 4.1 summarizes the
detection of the tra�c class membership.

4.3. THE PHYSICAL LAYER 141

reservation, usage storage location

tra�c class (reservation) switch-internal routing table

usage of reserved slots presence of IDLE character

usage of unreserved slots presence of IDLE character

tra�c class of reserved slots bit 15 of �rst slot cycle

Table 4.1: Detection of the tra�c class of the data slots. The usage of slots for packet-based
tra�c that are reserved but unused by connection-based tra�c requires an additional bit
within each reserved slot.

4.3 The Physical Layer

The physical layer of the framework consists of the physical interconnections between parts

the Nathan network modules in terms of transmission lines, connectors and the ba-
sic bit-encoding and decoding processes. This also includes the distribution of the
reference clock that is required for the global synchronization of all network nodes.
The hardware of the physical layer is provided by the backplane of the framework as
well as by the MGTs of the FPGAs on the 16 network modules per backplane (cf.
section 2.2). The programmable part of the physical layer is implemented within
the VHDL module phys_sync. The module provides multiple parallel interfaces for
synchronous transmission of data between the programmable logic on the di�erent
network modules.

The speci�cation of the MCGN architecture requires a physical layer with a MCGN
requirementsconstant data rate, a constant transmission delay and the possibility to transmit

synchronization characters. Constant data rate and constant transmission delays
are guaranteed due to the usage of a common clock source for all network nodes.
Synchronization characters can be transmitted due to the 8b/10b encoding of the
used MGT, which provides 12 extra K-characters distinguishable from data bytes.
The usage of the FPGA-embedded MGTs therefore reduces the implementation of
the physical layer to the careful distribution of the global reference clock and to the
appropriate con�guration of the MGTs.

4.3.1 Network Topology

Each FPGA of the setup provides eight bidirectional links according to the eight network topology

MGTs. The links use a separate di�erential track for each direction. Each FPGA
can therefore be connected to eight others. The resulting network topology consists
of multiple parts:

1. Four links are routed via the di�erential backplane connector to FPGAs on
other network modules. The backplane provides hardwired transmission lines
for this case.

2. The remaining four links are routed to the second di�erential connector on
the top of the network module. Connections between network modules can be
added with commercial serial advanced technology attachment (SATA) cables.

142 Introduction

3. The single FPGA on the backplane is not included into the hardwired back-
plane topology. Its eight links are routed to separate connectors on the back-
plane.

The topology of the hardwired backplane network is illustrated in �gure 2.8(a) and
�gure 2.8(b). It can be interpreted as a 2-dimensional toroidal structure, but also as
a 4-dimensional binary hypercube. The four user links of each FPGA as well as the
eight links of the backplane FPGA can be used to extend the hardwired topology,
to increase dedicated links between network modules or to interconnect multiple
backplanes. This single backplane FPGA can be used as a central network gateway
to save programmable logic of the network modules or to interconnect the backplane
to the control PC.

Delays of Transmission Lines

The length of the transmission lines on the modules are 3 cm to 10 cm, whereas theless that half a
clock cycle length of the transmission lines on the backplane are 3 cm to 40 cm. The longest

lines on the network modules are connected to short connections on the backplane
to even the di�erent transmission delays. The total delays of the di�erent lines is
about 10 cm to 50 cm. With an expected signal speed of 20 cm/ns on the used FR4
material, this results in 500 ps to 2.5 ns of physical delay. Compared to the frequency
of the global reference clock of 156.25MHz, it can be stated that the delay of the
physical transmission lines is less than half a clock cycle of 6.4 ns.

This is important for the framework-wide synchronization as is results in the factcomparable
transmission
delays

that the synchronization of the network modules can be established with the same
transmission delay (in terms of clock cycles) between all modules. Variations in the
transmission delays due to the sampling of the clock or the data can be canceled
by an appropriate adjustment of the internal delay elements with only few cycles of
delay.

4.3.2 Distribution of the Global Reference Clock

The reference implementation of MCGN on the Stage 1 framework uses a unique
global clock source, whose signal is distributed to all network modules and to the
FPGA on the backplane. This is for the following reasons:

1. The switching technology within the data link layer of MCGN is based on
the global synchronization of all network nodes. To keep the synchronization
stable, this requires a unique global clock reference, whose signal is distributed
to all nodes (cf. section 3.5).

2. The MGTs require a reference clock signal for its proper operation. It is used for
the serialization of network data to be transmitted and for the de-serialization
of the data received. The usage of the same clock source avoids frequency
discrepancies and thus removes the need for the clock correction logic, which
results in a smaller overall transmission delay.

3. The user logic implemented within the FPGA requires a reference clock for the
generation of further synchronous clock signals of di�erent frequencies. These

4.3. THE PHYSICAL LAYER 143

100 MHz oscillator

156.25 MHz oscillator

SATA uplink

Lemo uplink

solder

jumper

LVDS clock
distribution

LVDS clock
distribution

backplane
FPGA

to network modules as 'ext_clk2'

SATA uplink

SATA uplink
backplane custom connector

LVDS clock
distribution

brefclk pins

brefclk pins

Figure 4.4: Global clock distribution on the 2nd version of the backplane. All transition lines
are point-to-point di�erential with controlled impedance. The uplinks allow to distribute a
unique reference clock to multiple cascaded backplanes.

clocks are needed for e.g. the SlowControl, the memory access or the operation
of the PowerPC.

All three requirements are satis�ed by using a single unique global clock source. The data rates

frequency of the clock is determined by the gigabit transceivers, since the frequency of
the clock rate directly determines the usable data rate. The reference implementation
uses an oscillator with a frequency of 156.25MHz, which is the highest possible rate
to be used with the MGTs. This equals an external data rate of 3.125Gbit/s and
a usable data rate of 312.5MByte/s per link in each direction due to the 8b/10b
encoding scheme. The data is presented in parallel with 16 bit at a rate of 156.25MHz
to the programmable logic at the internal MGT interface.

The unique oscillator is located on one of the backplanes used. The comparably global
distributionsmall size of the setup allows to distribute the global reference clock electrically to

all network nodes on all backplanes. Each backplane provides extra connectors for
a clock up-link and down-link that can be con�gured with jumpers to cascade the
clock distribution. To keep the jitter as small as possible, the clock is distributed
with dedicated chips such that only point-to-point di�erential transmission lines with
controlled impedance are traversed within the clock tree.

The reference clock signal enters the FPGA at its bottom-side brefclk pin internal
distribution(AD14/AE14) under the name ext_clk2_p/n, which allows to use dedicated routing

resources and improves the clock jitter for the bottom-side MGTs. The top-side
brefclk pins are assigned otherwise and thus unavailable such that the refclk con-
�guration has to be used instead for the MGTs located on the top of the FPGA fabric
(for more details, consult section clocking in [157]). The clock signal is further for-
warded to the system DCM2 [154], which generates synchronous derived clocks for
the other parts within the programmable logic.

2The digital clock manager (DCM) is embedded within the FPGA. Its is basically a delay-locked
loop (DLL) circuit that performs frequency synthesis, clock de-skew and phase shifting.

144 Introduction

4.3.3 The Multi-Gigabit Transceiver

The MGTs of the FPGAs are serial transceivers embedded as ASICs within theembedded serial
transceivers programmable logic. It consist of two parts, the physical media attachment (PMA)

and the physical coding sublayer (PCS). The MGT is described in detail in [157].
The PMA contains a serializer deserializer (SERDES) circuitry, transmit and receive
bu�ers, clock generators and a clock recovery circuitry. The PCS contains an 8b/10b
encoder and decoder, an elastic bu�er supporting channel bonding, a clock correction
logic and handles the CRC checksum. The external serial transmission lines between
the FPGAs are routed to the external pins of the MGTs. Internally, the MGT
provides a convenient synchronous, digital and parallel interface to the programmable
logic. A Schematic of a single MGT is shown in �gure 4.5.

UG024_09_031203

TX+

TX−

RX+

RX−

Channel Bonding

and

Clock Correction

TX Clock Generator

RX Clock Recovery

REFCLK

Deserializer

Comma Detect

Serializer
Transmit

Buffer

Transmitter

Receiver

Transceiver Module

32/16/8 bits

32/16/8 bits

50 – 156.3 MHz

8B/10B

Encode

Elastic

Buffer

Receive

Buffer

20X Multiplier

Physical Coding Sublayer Physical Media Attachment

Mindspeed IP

CRC

C
R
C

F
I
F
O

8B/10B

Decode
RXDATA

L
o
o
p
-b

a
c
k

L
o
o
p
-b

a
c
k
 (p

a
ra

lle
l)

TXDATA

Figure 4.5: Block diagram of the multi-gigabit transceiver embedded into the FPGA of the
network module. The MGT contains the PMA and the PSC of the physical layer. The
physical serial transmission lines are routed to the TX/RX+/- pins, the internal interface
to the programmable logic is synchronous and parallel. Diagram taken from [157].

The MGTs use the 8b/10b technique to encode the external data [150]. Thedata encoding
and clocking clock to sample the data is encoded into the data stream and recovered back at the

destination. The MGT requires a reference clock for proper operation. The reference
clock can be selected freely in the range of 30MHz to 156.25MHz with a resulting
transmission rate of 600Mbit/s to 3.125Gbit/s. Since the frequency of the reference
clock is multiplied internally by a factor of 20, the clock should have a frequency
stability of +/- 100 ppm and the clock jitter is limited to about 40 ps at the highest
possible data rate [157]. The jitter tolerance is higher for lower data rates, e.g. 330 ps
at 800MHz [16].

4.3.4 Con�guration of the MGTs

Since the MGTs already contain the PMA and the PCS, the development of the
physical layer is reduced to the con�guration of the MGTs (cf. �gure 4.6). The

4.3. THE PHYSICAL LAYER 145

global clock
reference
(ext_clk2)

RX

TX

external
connections

physical layer
(FPGA-internal)

min-delay

RX elastic
buffer

TX FIFO

PMA

SERDES

CRC

PCS

DCM

usrclk

fdr

reset

alignment

rxrecclk
rxdata

txdata

global clocking

(b)refclk

deserializer

serializer

slow control

rxcharisk

txcharisk

MGT

clock buffer

synchronization
sublayer

Figure 4.6: Block diagram of the physical layer within the programmable logic. The VHDL
module phys_sync implements the MGT and con�guration logic to reduce the delay of its
data path. The upper part of the schematic shows the global clocking. The interface to the
synchronization sublayer provides parallel transfers of 16 bit at 156.25MHz.

con�gurable parameters concern all parts of the PMA and the PCS. Concerning the
external transmission, the MGT can be con�gured for various di�erential standards
such as PCI Express [108], Fibre Channel [37], In�niband [62] and also SATA [120].
The reference implementation uses the GT_CUSTOM operation mode to allow a more
speci�c con�guration. The MGT con�guration is summarized in table 4.2. A detailed
description of all parameters can be found in [157].

To reduce the delay of the data path, the receive bu�er is modi�ed and the delay reduction

internal CRC logic is disabled (see below). This reduces the data path delay from
40 cycles to only 20 cycles (128 ns), measured from the TXDATA interface at the
transmitting MGT to the the RXDATA interface at the receiving MGT. The electrical
con�guration parameters (voltage swing, pre-emphasis and clock selection) have been
set for an optimal quality of the resulting signal (cf. section 5.1.1).

parameter value feature con�guration

reference clock 156.25 MHz coding instance GT_CUSTOM

external data rate 3.125 Gbit/s top MGT clocking refclk

interface data path 2 byte bottom MGT clocking brefclk

interface rate 156.25 MHz receive bu�er minimum delay

voltage level 700 mV transmit bu�er enabled

pre-emphasis 33 % CRC logic disabled

Table 4.2: Con�guration of the multi-gigabit transceivers on the Nathan network modules

146 Introduction

receive elastic buffer (FIFO)

RXRECCLK
recovered from incoming data

RXDATA

programmable logicPCS

write
pointer

read
pointer

valid user data

USRCLK

data from
deserializer

unknown
routing
delay

Figure 4.7: The MGT-internal receive bu�er. Due to the unknown routing delay between
the read and write clocks, the bu�er cannot be disabled. Its delay is reduced by minimizing
the distance between the write pointer and the read pointer.

Delay Reduction

The application �eld of the reference implementation requires the transfer of neuraldelay reduction

network data within isochronous connections. Section 2.4.2 showed that this requires
a transmission delay as small as possible for biologically relevant experiments at a
certain acceleration factor compared to biology. Under normal conditions, the trans-
mission delay of the MGT is in the range of about 40 clock cycles (256 ns) between the
TXDATA signal at the transmitter and the RXDATA signal at the receiver [157]. There-
fore, some modi�cations to the standard usage of the MGT are applied to reduce
the overall delay. The MGT delay can be in�uenced by the following parameters:

• The bypass of the receive elastic bu�er.

• The bypass of the transmit bu�er.

• The deactivation of the transmit CRC logic.

The e�ects of these modi�cations are described in the following.

Adjustment of the MGT Receive Bu�er The receive elastic bu�er of the MGTbu�er description

is a FIFO, which is located within the receive path of the PCS of the transceiver.
Figure 4.7 shows a schematic of the bu�er. The bu�er stores 32 × 2 data bytes and
features two pointers for writing and reading of data, respectively. The write pointer
is moved on incoming data that is written to the bu�er. This data arrives with the
frequency of RXRECCLK, which is the clock recovered from the received bit stream.
The read pointer is moved in the case data is read from the bu�er, i.e. every cycle
of the internal USERCLK.

The bu�er is commonly used for three purposes:bu�er usage

1. The crossing of the clock domains from RXRECCLK to USRCLK.

2. The support for clock corrections if both clocks have di�erent frequencies.

3. The support of channel bonding to group the transmissions of multiple MGTs.

Clock corrections concern the insertion and deletion of special IDLE characters
within the data stream to compensate for di�erent clock frequencies. The correc-
tions are not needed since the Stage 1 framework distributes a unique clock source

4.4. THE SYNCHRONIZATION SUBLAYER 147

to all network modules. Channel bonding is also not used with the setup. Since
the frequencies of the recovered clock and the internal user clock are equal, the two
pointers move with the same speed during operation. Therefore, the bu�er remains
always in its initial state (half-full), which introduces an unnecessary large average
delay of about 18 clock cycles (115.2 ns) [155, 157].

Although the frequencies of both clocks are equal, the phase relationship between bypassing the
bu�erit is still unknown. A complete bypass of the bu�er would require to sample the

received data with the RXRECCLK, but this solution is limited to 125MHz [33]. To
use the maximum possible frequency of 156.25MHz, the bu�er cannot be completely
deactivated [156, 157].

However, the delay of the bu�er can be reduced by initially modifying the bu�er pointer
adjustmentpointers such that the write pointer is placed just before the read pointer and both

pointers move in parallel. This is achieved by disabling the USERCLK and thus stop-
ping the read pointer for about 18 cycles, while the RXCECCLK is continuously moving
the write pointer until it is placed zero or one cycle before the read pointer. The
USRCLK is then turned on and the two pointers continue to move with that close dis-
tance at the same speed. The described procedure reduces the delay of the receiver
14 clock cycles or 89.6 ns. The manufacturer of the FPGA provides a VHDL design
that does the described work [77]. It has been integrated into the module of the
physical layer (cf. again, �gure 4.6).

Bypass of the Transmit Bu�er The transmit bu�er acts as a FIFO and is used transmit bu�er
not bypassedto cross the clock domain of the internal USRCLK to the reference clock (B)REFCLK.

Both clocks always have the same origin, but an unknown phase shift since both
clocks are distributed via di�erent paths to the transceiver. The USRCLK is dis-
tributed with global clocking resources, whereas the REFCLK uses dedicated routing
to reduce the jitter. Since the transmit bu�er is used only to cross the clock domain
between these two clocks, it is therefore of small size. The bypass of the bu�er is not
recommended [156, 157], hence the bu�er is enabled for the reference implementation.

Disabling of the CRC Generation The MGT supports the automatic genera- CRC deactivated

tion of a 32 bit CRC checksum into the data stream, which is used by the protocols
In�niBand, Fibre Channel and Gigabit Ethernet. The generation of the CRC in-
troduces 6 clock cycles (38.4 ns) of delay. The receive data path is not a�ected by
the decoding process. Since a CRC checksum can be calculated easily within the
programmable logic [8, 65] and since the overall delay has to be reduced as far as
possible, the CRC is deactivated for the reference implementation.

4.4 The Synchronization Sublayer

This section describes the synchronization sublayer, which is speci�ed by MCGN
to be implemented on top of the physical layer. It uses the synchronous parallel
interface provided by the physical layer to transmit data between directly connected
nodes of the Stage 1 framework. The synchronization sublayer provides the following provided services

services:

148 Introduction

• The framing of the bandwidth according to the selected number f of time slots
per frame and the selected slot shift se per frame on each link e.

• A synchronization of the timing of the network nodes and thus a deterministic
transmission of the frame data.

• The provision of a synchronization service for upper-layer proceses to synchro-
nize high-level events.

Since the framework-wide synchronization is established during the network ini-
tialization phase, the implementation of the sublayer is split into hardware and soft-
ware parts. The hardware part has been implemented within the VHDL module
phys_sync. The software program mgtsync accesses the module via the SlowControl
and performs the measurement and the algorithms for the delay and timer adjust-
ments that have been described in section 3.5.5. The software is described separately
in section 4.10.1.

A block-level overview of the synchronization module can be seen in �gure 4.8.hardware
overview The module contains the local time counter and the adjustable delay elements as

well as the framing logic. The framing logic implements the two framing strategies
of MCGN, namely �xed framing and shifted framing (cf. section 3.5.6). The two
data paths for transmission and reception are independent of each other and have
been implemented separately. The synchronization layer also implements the GSS
functionality of MCGN. The signals can be used by the neural network application
to synchronously start an experiment on all network nodes.

Section 3.5.6 showed that the usage of large frame sizes requires the shifting oftiming and
framing the frame boundaries during the framing process. This enforces the framing logic to

be implemented in conjunction with the timing and synchronization logic. Therefore,
the logic implemented within the phys_sync module contains the time counters and
the delay elements, but also the compilation of the frame header and trailer, the
calculation of the CRC checksum and the multiplexing and demultiplexing of user
data into the frame slots.

Concerning the data content, it it important to understand that the user dataabsence of tra�c
classes within the data slots is transmitted and received without investigating its content.

The synchronization layer is neither aware of the reservation pattern nor of the ex-
istence of tra�c classes. The multiplexing of connections and packets into the data
stream is performed purely by the bypass-switch in the layer above. The synchro-
nization sublayer solely provides the service of transmitting the data slots within
synchronized frames between the nodes.

4.4.1 Timing of the Network Node

To synchronize the network, the timing of each network node has to be adjustedsynchronization
condition according to the synchronization de�nition 3.5.1. For that reason, each network

node contains a local periodic time counter with the period of the globally constant
duration of the time frame T = 2f + 2 clock cycles. A network node is in synchro-
nization state, if all frames arrive properly aligned at all MGTs such that the �rst
data slot of each frame is received at the local time 0 (modulo T).

The local timer of a synchronized network node controls the transmission and thetime distribution
to upper layers reception of all data frames. Since the switching of the reserved slots of isochronous

4.4. THE SYNCHRONIZATION SUBLAYER 149

connections is done without bu�ering, the timing of the synchronization sublayer is
distributed to all layers above the synchronization sublayer that handle connection-
based data. The bypass-switch provides the timing of the two data paths at the
user interface for connection-based data (cf. again, �gure 4.8). Concerning packet-
based transfers, the packets are bu�ered at di�erent locations within the switch.
Its transmission and reception depends on the bu�er spaces and not on the switch
timing.

physical layer

time counter

bypass-switch

MGT RX MGT TX

synchronization sublayer

switching sublayer

upper layer interface
for connection-based
traffic

transmit data path

receive data path

GSS

Figure 4.8: Distribution of the local time. The periodic time counter controls the synchro-
nization of the network node to the network. This requires to control the timing of all
transmit and receive processes with respect to the local time.

4.4.2 Reception of Data

Figure 4.9 shows a schematic view of the receive data path of the synchronization extraction of
tra�c quali�erssublayer. The logic is implemented separately for each MGT. The data arrives at

the rxdata and rxcharisk outputs of the physical layer. There is no need to bu�er
the data within the synchronization sublayer, but its content has to be investigated
for the following reasons:

• The de-framing logic detects used or unused slots by checking the presence of
an IDLE symbol. The result is denoted via the rxvalid signal.

• The synchronization logic monitors the correct appearance of the synchroniza-
tion character SOF to verify the correct synchronization. The time of appear-
ance is stored to be read by the synchronization software part to measure the
synchronization state.

• The CRC checksum is veri�ed.

• The GSS logic checks for incoming GSS signals (see below).

Since the data is only evaluated but not modi�ed, the delay of the receive data zero delay

path of the synchronization sublayer is zero. The data is simply forwarded from the
physical layer to the switching layer above.

150 Introduction

physical layer

rxdata

sync
detect

rxlink

rxvalid

rx CRC
check

rx
GSS

time counter

rxcharisk
de-framing

GSS

synchronization sublayer

rxtiming

SlowControl access

switch

MGT

Figure 4.9: Schematic of the receiver data path of the synchronization sublayer. The thick
line denotes the data �ow from the physical layer through the synchronization sublayer to
the switch. The circles denote logic that investigates the data content to extract runtime
information. The delay of the data path is zero.

4.4.3 Transmission of Data

Figure 4.10 shows the transmit data path of the synchronization sublayer. Data tocompilation of
the frame be transmitted by the switch �rst enters the adjustable delay element. The element

is implemented using the compact realization within a SRL16 element of the FPGA,
which is a shift register implemented in a single LUT for each data bit. The shift
register allows to change the delay value at runtime in the range of 1 to 16 clock
cycles. The data is then forwarded to the framing logic, which adds the header,
the trailer, the calculated CRC checksum and the GSS content. The framing logic
generates IDLE symbols to occupy the space of unused data slots depending on the
txvalid signal.

If the shifted framing technique is used, the framing logic also controls the delayvariable delay

element to insert and to remove the frame gap at the correct position (see below).
The delay of the transmit data path of the physical layer calculates to 2 + ε clock
cycles, where ε is the value of the delay element.

physical layer

txdata

tx CRC

time counter

txcharisk

GSS

synchronization sublayer

SlowControl access

txlink

txvalid

txtiming

switch

adjustable delay 1..16

SRL16 framing FDR

shifted framing
+GAP

set delay value

MGT

force
CRC
error

Figure 4.10: Schematic of the transmit data path of the synchronization sublayer. The
circles denote asynchronous logic, whereas the boxes denote data bu�ers (digital registers).
Data to be transmitted is delayed by a con�gurable amount of clock cycles. The framing
logic compiles the frame and controls the insertion of the frame gaps to implement the
shifted framing technique of MCGN.

4.4. THE SYNCHRONIZATION SUBLAYER 151

Realization of the Shifted Framing Technique

The shifted framing technique of MCGN moves the frame boundaries and thus the motivation

frame gap (i.e. the trailer and the header) between the data slots by a certain number
of slots. The technique has three advantages:

• To use arbitrary frame sizes T independent of the network topology.

• To strictly synchronize the time counters of all network nodes.

• To reduce the delay in the data path that is required for the synchronization
to a minimum.

The shifted framing technique is described in detail in section 3.5.6.
The shifted framing technique is implemented within the transmit data path of implementation

the synchronization sublayer. The feature can also be disabled to save programmable
logic in the case it is not required. Shifted framing is implemented by controlling the
adjustable delay element. The delay value is changed by the duration of the frame
gap (2 cycles) such that the data slots are grouped according to the required frame
timing at the destination node. The header and the trailer are written afterward into
the frame gap. This solution omits the bu�ering of the transmit data and reduces
the logic consumption.

Figure 4.11 shows a simulation of the transmit timing path that illustrates the simulation
exampleimplementation of shifted framing. The switch transmits data within the data

slots 0 and 1, which is denoted by the txvalid signal. The data slot 2 is unused
(txvalid=0). The time period T has been selected to 30 clock cycles (192 ns), which
implicates 14 usable data slots within the positions 0 to 13. The network topology
requires to move the frame gap by 2 data slots backwards (se = 12). The data
received from the switch within the �rst two slots 0 and 1 is thus sent within the last
two data slots 12 and 13 to the destination. The delay element is switched between
the delay of 1 and 3 cycles according to the size of the gap of two cycles.

After the timing of the data slots has been corrected, the framing is made, i.e.
the trailer and the header are written into the frame gap. The unused data slot that
has originally been at position 2 is now at the position of the �rst data slot 0. Its
data is marked unused with the IDLE character K28.5 and D21.4 (encoded as BC95).
Note that the shifted framing technique does only vary the delay of the data slots by
the (comparably small) size of the frame gap to cope to the timing at the destination
node. The order of the transmitted data slots is preserved.

4.4.4 Selection of the Synchronization Parameters

The synchronization software has to program the correct synchronization parameters
to the synchronization sublayer within the FPGA during the network initialization
phase. The following paragraphs discuss the valid values for the synchronization
parameters, namely the possible values for the number f of time slots per frame and
the slot shift se as well as the required adjustments of the delay elements ε in the
data path and the resulting transmission delays D between the inputs of adjacent
switches. The numbers are calculated for the Stage 1 framework. The timing of the
MCGN network between the Nathan network modules is determined by the following
factors (cf. also, �gure 3.12):

152 Introduction

Nathan 0 - MGT 0

00 01 02 03 04 05

0000 E4F0 DFAC C9E0 BF59 0000

00000 1E4F0 1DFAC 1C9E0 1BF59 00000

{3} {1} {3}

00000 1E4F0 1DFAC 1C9E0 1BF59 1C9E0 1BF59 00000

2BC95 0E4F0 0DFAC 0C9E0 0BF59 2FDF2 23C66 2BC95

2 0 2

BC95 E4F0 DFAC C9E0 BF59 FDF2 3C66 BC95

Nathan 0 - MGT 0

usrclk

txenable

txslot 00 01 02 03 04 05

txvalid

txdata 0000 E4F0 DFAC C9E0 BF59 0000

txout 00000 1E4F0 1DFAC 1C9E0 1BF59 00000

delay {3} {1} {3}

txout_delayed 00000 1E4F0 1DFAC 1C9E0 1BF59 1C9E0 1BF59 00000

txout_framed 2BC95 0E4F0 0DFAC 0C9E0 0BF59 2FDF2 23C66 2BC95

MGT/txcharisk 2 0 2

MGT/txdata BC95 E4F0 DFAC C9E0 BF59 FDF2 3C66 BC95

frame gap data slot 0 data slot 1

frame gap data slot 0data slot 12 data slot 13

data slot 2

Figure 4.11: Simulated timing of the shifted framing implementation within the transmit
data path. The re-framing introduces only the small delay of the frame gap.

• The physical delays of the transmission lines between the FPGAs on the Nathantiming
constraints network modules. The delays are less than half a clock cycle of 6.4 ns.

• The delay of the physical layer, i.e. the PMA and the PCS of the delay-
reduced MGT. The delay from the txdata interface to the rxdata interface at
the destination has been simulated using the provided SWIFT models of the
FPGA manufacturer to be 20 cycles. Measurements result in 20 to 21 cycles
depending on the a�ected network nodes (cf. section 5.2.1). The value may
di�er even for the same MGT in both directions due to data and clock sampling
e�ects.

• The delay of the synchronization sublayer. The receive data path introduces
no delay whereas the transmit data path introduces 2 cycles plus the value of
the adjustable delay element.

• The internal delay of the switch between its global input and output ports. The
present implementation of the switch introduces only a single cycle of delay for
the traversal of the internal crossbar.

The total transmission delay D between the inputs of two adjacent switches de-resulting
transmission
delay

pends on the value of the delay element. It has to be adjusted to cancel asymmetries
in the bidirectional physical transmission delays of the links. Due to the regular
topology of the network, the following discussion assumes a delay of the physical
layer of 20 clock cycles as stated above. The actual adjustment of the delay element
may require modi�cations to the calculated values of up to two additional cycles. Ac-
cording to the mentioned internal delays, the value of D calculates to 23 + ε cycles,
which implicates an delay of the programmable logic of only 3 cycles in the case the
delay element is set to zero. The delay of the programmable logic is therefore only
13% of the overall transmission delay between the switches. The remaining delay of
87 % is introduced by the (�xed) delay of the MGTs, even after its delay-reductions.

The implemented neural network application uses an inter-frame gap G as wellnumber of slots
per frame as a data slot size S both of 2 clock cycles. Since the gap cannot be used for data,

the number f of data slots calculates to:

f =
T −G
S

=
T − 2γ

2γ
(4.1)

4.4. THE SYNCHRONIZATION SUBLAYER 153

for values of T, S and G to be measured in multiples of clock cycles γ = 6.4ns. The
possible values for T depend on the synchronization mechanism used. The next two
sections describe the possible framing parameters for both framing techniques.

Parameter Selection using Fixed Framing

The �rst framing technique to be discussed is �xed framing (cf. section 3.5.6). With possible frame
sizes T�xed framing, the frame boundaries are kept constant (se = 0 on all links e) and

the selection of the frame size T is directly constrained by the transmission delay D
between the switch inputs. The synchronization condition requires equation 3.16 to
hold on all global links, which leads to discrete values for T and f . Fixed framing
requires to adjust the delay elements ε such that D is equal on all network nodes of
the backplane according to ε = D−23. Possible con�gurations are listed in table 4.3.
To illustrate the timing of the �xed framing technique, �gure 4.12 shows a timing
diagram for a selected frame size of T = 24.

set number of frame size delay element transmission delay

time slots f T [cycles] ε [cycles] D [cycles]

T=D 11 24 1 24

12 26 3 26

13 28 5 28

..

18 38 15 38

T=2D 23 48 1 24

24 50 2 25

25 52 3 26

..

37 76 15 38

Table 4.3: [Theoretical values for the synchronization parameters of the backplane using
�xed. The calculations assumes a physical layer delay of 20 cycles for the delay-reduces
MGT. The two sets of numbers refer to examples 1 (upper) and example 2 (lower) of
section 3.5.6.

Due to the regular topology of the backplane, �xed framing can indeed be used disadvantage

to implement large frame sizes with T = 2D according to example 2, but with the
disadvantage that the network nodes are split into two disjoint sets, whose timers
are constantly shifted between each other.

Parameter Selection using Shifted Framing

Shifted framing allows arbitrary values for f and T on all network topologies with
only minimum required values of the delay elements (cf. section 3.5.6). The synchro-
nization condition for shifted framing is described by equation 3.18. All timers can
be strictly synchronized, i.e. δ = 0 for all adjacent network nodes. As a drawback,
there are two disadvantages: a slightly higher consumption of programmable logic

154 Introduction

switch A output 0 1 2

d , physical layer delayPH

9 G

MGT A txdata

4 5 6 73 8

MGT B rxdata

switch B input

10 G 0 1 2 94 5 6 73 8

0 1 2 9 G 04 5 6 73 8

0 1 2 9 G 04 5 6 73 8

dCB

dSY

usrclk

10

10

10

10

Figure 4.12: Timing scheme between two synchronized network modules A and B with a
time frame size of T = 24 cycles and 11 usable data slots. Due to the avoidance of bu�ering,
the internal delay of the programmable logic is only 4 cycles. 20 cycles are consumed by the
physical layer (i.e., the MGTs).

and a di�erence in the delay of certain data slots of di�erent positions. The trans-
mission time D is split into two parts D< and D> concerning the �rst and the latter
part of the frame slots with the slot positions i < f − se and i ≥ f − se, respectively.

The delay element ε can be reduced to the smallest value such that equation 3.18arbitrary frame
sizes T with
minimum delay

results in integer values for D. Since S = 2 cycles, this results in ε = 1 with D< = 24
cycles and D> = 26 cycles. Furthermore, this results in

se = 12 mod f. (4.2)

This is the shift value for the Stage 1 framework that results in the smallest trans-
mission delays (24 cycles and 26 cycles for the two frame parts) between the inputs
of two adjacent network nodes depending on the selected number of time slots f .
The number f can therefore be selected only according to the value that results in
the optimal QoS delay and jitter depending on the isochronous connection requests
of the neural network experiment to be executed.

switch A output 0 1

dPH

G

MGT A txdata

MGT B rxdata

switch B input

dCB

dSY

usrclk

96 7 8 18 19

0 1 G96 7 8

0 1 G 96 7 8

0 1 G 96 7 8

98 ... 0 1 G6 7... 98

98 ... 0 1 G6 7... 98

0

0 1

s =12 slotse

18 19

18 19

18 19

delay element

18 19

18 19

18 19

framing

Figure 4.13: Example timing scheme between two synchronized network modules A and B
with a time frame size of T = 42 cycles and f = 20 slots per frame. A slot shift se of 12
ensures proper synchronization with a minimum adjustable delay of 1 resp. 3 cycles. The
gap is inserted after f − se = 8 slots.

4.4. THE SYNCHRONIZATION SUBLAYER 155

number of frame size slot shift delay element transmission delays

time slots f T [cycles] se [slots] ε [cycles] D</D> [cycles]

9 20 2 1/3 24/26

9 20 3 3/5 26/28

10 22 1 1/3 24/26

10 22 2 3/5 26/28

11 24 0 1 24

11 24 1 3/5 26/28

11 24 2 5/7 28/30

12 26 0 3 26

12 26 1 5/7 28/30

12 26 2 7/9 30/32

13 28 1 7/9 30/32

13 28 0 5 28

13 28 12 1/3 24/26

14 30 12 1/3 24/26

14 30 13 3/5 26/28

14 30 0 7 30

20 42 12 1/3 24/26

30 62 12 1/3 24/26

60 122 12 1/3 24/26

60 122 13 3/5 26/28

Table 4.4: Theoretical values for the synchronization parameters of the backplane using
shifted framing. The framing scheme allows arbitrary frame sizes T for an optimal setting of
the number of time slots f . The transmission delays D< an D> denote the constant values
for time slots of both parts of the frame. The calculation assumes a physical layer delay of
20 cycles.

Table 4.4 lists valid synchronization parameters and resulting transmission de-
lays for the shifted framing technique. Slightly larger values for ε may be necessary
to compensate for di�erent physical delays or data and clock sampling shifts. Fig-
ure 4.13 illustrates an example timing for a selected frame size of T = 42 with f = 20
time slots and a frame shift of se = 12 slots.

4.4.5 Global Synchronous Signals

MCGN de�nes the support of global synchronous signals (GSS) and CSS for the motivation

globally synchronous execution of local events at all network nodes at the same
global time (cf. section 3.5.8). The events are triggered with the precision of the
synchronization, which is a cycle of the global reference clock. An example usage is
the synchronous start of neural network experiments on all network nodes.

The support for GSS has been implemented within the sync_signals VHDL embedding

156 Introduction

module according to the description of section 3.5.8. The present implementation of
the module only implements the transmission of synchronized signals to all network
nodes (GSS) and not between the two end-points of a connection only (CSS). The
module is connected to the receive and transmit path of the synchronization logic
according to �gures 4.9 and 4.10. The signals are transmitted within the reserved
GSS �eld of the synchronization header of �gure 4.2. The meanings of the 8 bit of the
GSS �eld are shown in �gure 4.14. Two di�erent signal-IDs are supported: GSS#0
and GSS#1.

valid

counter

7

6
5
4

3

2
1
0

valid

counter

GSS#1

GSS#0

Figure 4.14: Bit meanings of the 8-bit GSS �eld within the frame header. Two di�erent
signals can be raised independently to synchronously trigger global events.

Each network node can raise a GSS by asserting its corresponding raise signaloperation

at the local GSS interface. The corresponding counting value is then initialized and
distributed over the network. The counting value decrements in time and space with
the time period T . At the time the counter reaches zero, the GSS is executed, i.e.
the corresponding event signal is triggered locally at all network nodes at the same
time.

A schematic of the implemented VHDL module is shown in �gure 4.15. Eachimplementation

GSS signal-ID has its own module. The internal counter is set at the time a valid
signal is detected within the receive data path of the synchronization sublayer or
the signal is raised locally via the GSS user interface. The value of the counter is
decremented and forwarded to each MGT via the transmit data path. After the
internal counter reaches the value zero, the corresponding GSS event is denoted to
the local user logic.

The high-level user interface has been implemented according to section 3.5.8.high-level usage

The meaning of each GSS is not pre-de�ned but depends on the application. The
signal distribution requires a delay of about several time frames T until it reaches all
nodes. A generic usage would be to use a GSS to initially synchronize local timers
within the applications on all network nodes. The timer value can then be referenced
in further faster (unsynchronized) communications. As an example, the GSS can be
used to synchronously start the neural network experiments on all nodes.

4.5 Implementation of the Bypass-Switch

The bypass-switch performs the integration of the two tra�c classes: isochronous
connections and best-e�ort packets (cf. section 3.8.3). The switch uses the services
provided by the synchronization sublayer to transmit and receive its data. The
followings paragraphs describe the implementation of its main functionalities without
going into the very details.

Due to the motivation of this thesis, the implementation of the switch is opti-universal design

4.5. IMPLEMENTATION OF THE BYPASS-SWITCH 157

MGT RX

MGT RX

MGT RX

MGT RX

GSS
deframe MGT TX

MGT TX

MGT TX

MGT TX

GSS
deframe

GSS
deframe

GSS
frame

GSS
frame

GSS
frame

GSS
frame

GSS
deframe

select MGT

received GSS

-1

internal
counter

interface to upper layer

synchronization RX data path synchronization TX data pathsync_signals module

decrement
counting value

encode signal
into frame

extract signal
from frame

raise GSS
to network

forward
to all MGTs

Figure 4.15: Schematic view of the GSS implementation for a single signal-ID. Received sig-
nals are forwarded to all adjacent network nodes. The signals are extracted out of incoming
frames or raised locally. The down-counter decrements in time and space with the period
T . The signal is triggered locally on all network nodes at the same time.

mized for the transport network for ANN experiments on the Stage 1 framework.
Most of the design considerations have been made to guarantee good QoS-results for
connection-based tra�c and to reduce the required amount of programmable logic
as far as possible. However, the implemented switch is also a reference implemen-
tation of the MCGN bypass-switch in general. Due to the con�gurable design, the
implementation can well be used for other applications on the Stage 1 framework,
and furthermore within di�erent frameworks that allow synchronized transmissions.

4.5.1 Characterization

The implemented bypass-switch provides the following services: provided services

1. The in-order transport of priority tra�c within isochronous connections with
guaranteed QoS. The switch uses an optimized data path for connection-based
tra�c to reduce the inter-switch delay and jitter to the minimum possible. The
injection of data slots to the network is controlled by the slot admission policy
to control the data �ow.

2. The transport of best-e�ort data within packets. QoS for packets is provided
statistically. Internal bu�ering of packets allows to cope with variable packet
rates. Packet forwarding is controlled by a central packet scheduler. The data
integrity of packets is controlled with CRC checksums.

3. Multiple protocols are supported with only minor adaptation for both tra�c
classes. The packet payload is not investigated, which allows the usage of a
wide range of protocols and applications.

Besides this, the implemented switch o�ers the following features: main features

1. A modular and hierarchic design. The implemented bu�ering technique, cross-
bar and packet scheduler are parts of standardized functionality. They can be

158 Introduction

priority scheduler
(static routing table)

config

reservation pattern

priority bypass

priority connections

best-effort packets

global TX

requests

bypass- switch

input
demux

routing

reservation
pattern

slow control timing from synchronization sublayer

RX valid

global data
to synchronization
sublayer

core

grants

priority bypass

output ports

priority connections

valid local RX

best-effort packets

global RX

local TX

input ports

valid

global data
from synchronization
sublayer

requests
grants

input buffers
(virtual output queues)

crossbar

request
generation

best-effort
scheduler

TX valid

IPP OPP

routing

IPP OPP
input buffers

(virtual output queues)

Figure 4.16: Top-level view of the implemented bypass-switch. The data is passing the
switch from left (input ports) to right (output ports). The data paths are denoted by thick
lines. Priority tra�c is forwarded without any bu�ering, packets are stored in virtual-output
queues.

replaced by di�erent implementations easily by preserving the main feature of
tra�c class integration of the switch.

2. The compact and scalable design is optimized for the usage within the limited
space of programmable logic.

3. A rich set of con�guration parameters allows to �nd the best trade-o� between
the supported features and the amount of programmable logic needed.

The switch requires a synchronized physical layer for operation. Concerningprerequisites

the transport network, the switch operates on top of the synchronization sublayer
that has been described in the previous section. The synchronization sublayer also
provides the necessary timing information to reference the data slots within the
periodic framing scheme. Prior to the network operation, the static routing tables
for the isochronous connections are con�gured. The tables are accessed via the
con�guration software mgtroute (cf. section 4.10.3).

4.5.2 Overview of the Switch

The bypass-switch is implemented within the VHDL module switch. Figure 4.16digital design

shows the top-level view of the switch. It consists of several sub-modules for bu�ering,
multiplexing, switching, scheduling and packet processing. Most of the modules
belong either to the transport of priority tra�c or to the transport of packet-based
tra�c. The central module core integrates both tra�c classes. It contains the
crossbar multiplexer, the request logic and the multi-port scheduler.

The scheduling of the tra�c classes is done hierarchically: The priority schedulerpriority and
best-e�ort tra�c

4.5. IMPLEMENTATION OF THE BYPASS-SWITCH 159

reads the static routing table that contains the reservation pattern of the connec-
tions. Reserved data slots are forwarded through the switch according to the external
frame timing provided by the synchronization sublayer. The remaining unreserved
or unused data slots are scheduled by the best-e�ort packet scheduler within the core
according to the requests of the input-queues.

Global and Local Ports

The MCGN speci�cation of section 2.2.3 de�nes that a network node may implement hybrid network
nodeboth, the forwarding functionality of an intermediate switch (via global ports) as well

as the application functionality that acts as sources or destinations of data transfers
(local ports). This has been implemented accordingly for the bypass-switch. Each
FPGA on a Nathan network module may implement the forwarding of transit data
between other modules as well as the application that interfaces its local ANN chip
or the shared memory.

The switch can be con�gured with a variable number of ports. An N -port switch port con�guration

features N bidirectional ports, separated into N input ports and N output ports.
Input ports are shown on the left side of �gure 4.16 and output ports on the right
side. The top-level view of the switch is divided into a local part and a global
part. Global ports (Ng) are connected to the synchronization sublayer and thus to
other network nodes. Local ports are connected to upper layer processes and can
be distinguished as priority ports and best-e�ort ports. Local priority ports (Np)
implement the isochronous interface to upper-layer processes whereas local best-
e�ort ports (Nb) are connected to the packet adaptation layer (PAL). The total
number of ports therefore calculates to

N = Ng +Np +Nb. (4.3)

The example illustration of �gure 4.16 shows the case for Ng = Np = Nb = 1.
Concerning the Stage 1 framework, a usual con�guration of the switch would be
to implement a single local best-e�ort port for shared-memory transfers (Nb = 1),
few local priority ports (Np = 1..4) and four global ports to use the full hardwired
connectivity of the backplane (Ng = 4).

To reduce the logic consumption of the switch, the input queue that is connected logic reduction

to local best-e�ort ports to transmit packets can be omitted such that the port is
blocked until the crossbar is available. Further logic can be saved by con�guring the
switch to reject (drop) transmissions between the same port numbers (internal or
external loop-backs).

Data Path of Tra�c Classes

Both tra�c classes have to be multiplexed and demultiplexed at the global switch multiplexing and
demultiplexingports. The demultiplexing of the tra�c classes takes place at the time global data

slots enter the switch. The multiplexing is performed by the central crossbar located
in the switch core. Data slots of priority connections or of best-e�ort packets enter
the core at di�erent inputs and leave the core multiplexed to the global output port
of the switch. The crossbar is controlled by the request generation logic according to

160 Introduction

the actual scheduling of the best-e�ort packet scheduler and the priority reservation
pattern.

Priority data slots arriving at global switch inputs are forwarded directly to thedata paths

central crossbar with only few cycles of delay, depending on the con�gured switch
timing (see below). Best-e�ort data slots are re-assembled by the input packet
processor (IPP) to packets and stored into the appropriate local VOQ that is cal-
culated by the routing process according to the packet destination. Erroneous best-
e�ort packets with an invalid CRC or packets arriving at full queues are dropped
without further noti�cations.

The switch implements store-and-forward packet switching at the VOQs. Thisstore-and-forward
packet switching is enforced by the method used by MCGN to embed best-e�ort packets in between

reserved slots. It results in the fact that the exact arrival time of the last slot of the
packet is unknown. Especially in the case that only reserved but unused slots are
available for packet transports, the last data slot may arrive a signi�cant time after
the one before. An early request of the scheduler as used with wormhole switching
or cut-through switching would block the data path for an unreasonable time, since
best-e�ort packets are not intermixed. As a drawback, this forces the switch to
completely store incoming packets before the central scheduler can be requested,
which introduces a latency of a full packet-time at the VOQ.

4.5.3 Implementation of the Input Bu�ers

The input-bu�ers for best-e�ort packets have been implemented as VOQs as de-
scribed in section 3.8.3. The queues are implemented together with the IPP and
parts of the request generation logic within the VHDL module voq.

The IPP gathers the slots belonging to the current best-e�ort packet out of theinput packet
processor slotted data stream by observing the reservation pattern. The calculation of the

destination (output) queue is performed by the routing algorithm after the �rst
cycle of the packet has been received. This is possible due to the organization of the
packet header (cf. �gure 4.3). In the case the queue has enough space and the CRC
of the packet is valid, the packet is written into the queue.

The implementation of the VOQs exploits the fact that only a single packetqueuing stage

arrives and departs at a time. This allows to use a single FPGA-internal DPBRAM
to implement all the queues required for the packet-outputs at a certain switch input
(Ng + Nb queues). The functionality is implemented within the general-purpose
VHDL module multi_fifo. Figure 4.17 shows a schematic of the VOQ organization.

A single DPBRAM features 18 kbit of memory, which allows to store 2 kByte ofqueue size

usable data. As an example, a switch with Ng + Nb = 8 o�ers bu�ering space for
256 bytes or 8 packets of 32 bytes each. The current implementation of 44-byte best-
e�ort packets allows to store up to 4 packets within each queue. Multiple memory
elements per input port can be used to increase the bu�ering space.

The �xed size of each packet simpli�es the calculation of the storage addressstorage e�ciency

and thus saves programmable logic. In the case the larger logic consumption is
acceptable, the storage e�ciency can be increased by changing the FIFO algorithm
to a dense storage of variable-sized packets or to support variable-sized queues (an
example implementation of dynamic FIFO queues using linked lists can be found
in [76]). It has to be stated that large bu�er sizes indeed reduce the loss-rate, but

4.5. IMPLEMENTATION OF THE BYPASS-SWITCH 161

write

FIFO control 0

FIFO control 1

FIFO control 2

FIFO control 3

DPBRAM (2 KByte)

fulls

wrdata rddata

read

empties

request generation
logic

wrfifo

routing
logic

addr

wrofs

addr

rdfifo

rdofs

multi_fifo

scheduler
grants

OPP

rdaddrwraddr

crossbar

IPP

input data

input valid

Figure 4.17: Input bu�er implementation with VOQs for a switch with Nb +Ng = 4. Four
independent FIFO queues are implemented within a single DPBRAM element.

however increase the queuing delay of the packets such that very large bu�ers are
often contra productive. Section 5.7 discusses simulations concerning this topic.

Each queue containing a packet requests the central crossbar located in the core. output packet
processorSince requests are only raised for packets fully stored, this decouples the input-

port timing from the timing of the core-input. The scheduler receives (Ng + Nb)2

requests for the Ng +Nb output ports available for packet transports. The requests
are evaluated by the best-e�ort scheduler that returns select signals. The output
packet processor (OPP) reads the packet from the queue and injects its data slots
to the crossbar by observing the slot reservation and usage patterns. The request
generation logic ensures that the current packet is transmitted completely by isolating
the requests of its queue for that time.

4.5.4 Implementation of the Switch Core

The switch core is the central element of the switch. It contains the request gener- parts

ation logic for the best-e�ort scheduler, the scheduler itself as well as the crossbar
fabric that multiplexes connection data or packet data from the input ports to the
output ports. The core is implemented within the VHDL module core. Figure 4.18
shows a block diagram of the core.

The operation and the timing of the switch core is completely based on time operation

slots. The core is not aware of best-e�ort packets nor of isochronous connections.
Each time slot, the core transfers data slots in parallel from the cores input ports
via the central crossbar to its output ports. The content of the data slots is not
investigated. Each input ports transmits at most one data slot and each output port
receives at most one data slot. There is no internal speedup. The decision of which
ports to connect is based hierarchically in two steps:

In a �rst step, all port assignments to be made as its data slots belong to priority priority tra�c

connections are calculated. These data slots are indicated by the reservation pattern
stored within the static routing table for reserved connections as well as by the
current slot usage according to the globally received data. This information is used

162 Introduction

priority reservation pattern

best-effort requests
(global RX, local TX)

request
generation

logic

best-effort
scheduler

requests selects

mask
before

priority data (global RX, local TX)

best-effort data (global RX, local TX)

(delay)

slot usage

crossbar

mask
unused

local priority RX data

local best-effort RX data

global TX data

best-effort selects

mask
after

OR
reserved

ports

(delay)

Figure 4.18: The central switch core. Example con�guration for Ng = 4, Np = 1 and Nb = 1.
The timing and functionality is based on data slots. Ports currently belonging to reserved
slots are masked out and are unavailable for best-e�ort transfers. This is done either before
or after the scheduling process.

to control the crossbar as well as to denote the best-e�ort scheduler of the remaining
slots available for best-e�ort packet transfers.

In a second step, the remaining (unreserved or unused) ports are assigned to best-best-e�ort tra�c

e�ort transfers by the best-e�ort scheduler. For that reason, a request-generation
logic ensures that input-output port combinations that currently transmit packets
are continued until the packet is completed. The remaining requests are fed to the
scheduler that calculates a bipartite matching between the available input ports and
output ports. The scheduler implements a fair scheduling without static priorities.
The priority assignment can be con�gured to be respected before or after the schedul-
ing process by masking out the appropriate request or select signals. The resulting
assignment is combined with the priority assignment and controls the crossbar.

The feature to re-use reserved but unused priority data slots with best-e�orttiming

data requires to investigate the data content of globally arriving data slots. The
masking of the requests to the best-e�ort scheduler requires the priority data to be
delayed for three additional cycles until the scheduler completes and the crossbar
assignment has been calculated. Since this additional delay may be unacceptable,
the switch features two con�guration parameters (VHDL generics) for this case:
the parameters BE_USE_UNUSED_PRI and PRIORITY_LOW_DELAY control the usage of
reserved but unused priority slots with best-e�ort data slots. The �rst parameter
controls the re-usage of the slots and the latter controls the activation of the delay
elements. Without the additional delay, the switch cannot occupy reserved and
unused priority slots with best-e�ort slots since this information is not available at
the time of the scheduling process.

The complexity of the central core is an important aspect and limits the com-space and time
complexity plexity of the whole switch and thus the number of usable ports. This can be seen

since the core implements all parts that cannot be implemented individually for each

4.5. IMPLEMENTATION OF THE BYPASS-SWITCH 163

input or output port, but require inter-port calculations or data transfers: the re-
quest generation logic, the scheduling of all requests and the transfer of the data slots
between all input ports and output ports within the crossbar. The space complexity
(the number of logic elements required) of these parts grows super-linear depending
on the number of ports con�gured. The time complexity of the implemented logic is
bounded by the internal data path. All data paths within the core operate with the
rate of the MGTs, i.e. 16 bit at 156.25 MHz.

The most time-critical part of the core and thus the switch is the request gen- critical path

eration logic whose resulting requests are fed into the best-e�ort scheduler. The
scheduler has to calculate the resulting selects within the duration of a data slot of
2 clock cycles (2 ∗ 6.4 ns). The number of ports signi�cantly increases the schedul-
ing complexity since the scheduler is required to implement a minimum of fairness
between all ports. Concerning the reference implementation, the synthesized mod-
ule of the scheduler is placed to a small area within the FPGA during the positive
acknowledgment with retransmission (PAR) process to keep the signal delays of the
internal logic small.

4.5.5 Implementation of the Central Crossbar

The crossbar is the central part of the core and thus of the whole switch. It performs
the physical interconnects between the input ports and output ports. The data is
transferred via the crossbar within a single cycle. Each port is 16 bit wide. Since
the space complexity of the crossbar is of O(N2) with the number N of ports of the
switch, a space-e�cient implementation is important. The crossbar is implemented
within the VHDL module crossbar. The crossbar of the bypass-switch features sep-
arate inputs for reserved tra�c and best-e�ort tra�c. It is shown in section 5.7 that
this signi�cantly increases the performance for best-e�ort tra�c without reducing
the service guarantees for priority tra�c.

Since local ports implement only its single tra�c class, the crossbar does not logic reduction

have to interconnect all combinations of input ports and output ports. Typically,
global ports are fully interconnected, whereas local ports are connected only to global
ones to save logic. Possible interconnects are controlled with the VHDL parameter
connectivity. Figure 4.19 shows the schematic of the crossbar module.

local priority
local priority

global

local best-effort

global priority

global best-effort

local best-effort

inputs outputs

selects

Np

Ng

Ng

Ng

Np

Nb

Nb

Figure 4.19: Schematic of the crossbar implementation with multiplexers at the output
ports.

164 Introduction

According to the multiplexer functionality of the crossbar, its operation can beimplementation

separated for each output port, which equals a single multiplexer for all its possible
input ports. Furthermore, all bits are multiplexed in parallel such that a compact
implementation for a n× 1 multiplexer has to be used.

Implementation of the Multiplexer

The multiplexers are the building blocks of the crossbar. The implementation hasdi�erent
techniques
possible

been made within the VHDL module mux. The used FPGA provides di�erent design
techniques to create multiplexers that consume di�erent types of resources. Although
the designer can let the synthesis tool to select the most e�ective technique, the mod-
ule o�ers the parameter mux_arch to enforce a particular technique. The selection
depends on the required speed and the amount of free resources of this type. The
following techniques are provided by the programmable logic of the FPGA for the
creation of a fully-connected crossbar that operates within a single clock cycle (for
details see [154]):

• A hierarchic multiplexer consisting of LUT4 and MUXF5 to MUXF8 elements.

• The sum-of-product logic that calculates an OR over AND-ed input signals.
The �nal OR can be implemented in a chain over multiple logic slices by using
MUXCY and ORCY elements.

• The usage of tri-states.

• The (mis-)usage of the embedded multiplier blocks. Although this is somehow
unusual, each multiplier can be programmed as a shift register to implement a
n×1 multiplexer for 18/n bit in parallel. The speed of such a multiplier blocks
is su�cient for this case.

A synthesis tools usually chooses the �rst implementation, which consumes LUT4availability

logic elements. Since LUT4 elements are the basic logic elements of the FPGA and
are required for most logic, it is worth to consider the usage of di�erent techniques.
Tri-states and multipliers are often unused and its usage allows to save LUT4 ele-
ments for other purposes. The embedded multiplier blocks allow for a compact im-
plementation, but use the same routing resources as the DPBRAM elements, which
has to be taken into account. Table 4.5 lists the consumed resources of its particular
type for two example con�gurations of crossbars.

type control 9 × 1 4 × 4

multiplexers integer 80 LUT4 1% 128 LUT4 1%
sum-of-products one-hot 144 + 32 LUT4 1% 256 + 64 LUT4 3%
tri-states one-hot 144 BUFT 5% 256 BUFT 10%
multipliers one-hot 8 MULT18 18% 16 MULT18 36%

Table 4.5: Logic consumption of di�erent multiplexer implementations. The port width is
16 bit. The percentage values are calculated for the used xc2vp7 FPGA type.

The �rst multiplexer implementation requires an integer control signal, i.e. fewselection

bits that denote the number of the selected input. The other techniques require a
one-hot encoded control signal. The optimal multiplexer implementation therefore

4.5. IMPLEMENTATION OF THE BYPASS-SWITCH 165

depends on the logic within the control path, e.g. if the AND of the sum-of-product
logic can be absorbed within other LUT4 elements. For the implementation of the
bypass-switch, the �rst technique results in the smallest design. A further reduc-
tion of the crossbar size can be reached by using multi-stage layouts like Clos net-
works [17], but this increases the transmission delay and is worth only for large port
numbers.

4.5.6 Interface to the Best-E�ort Scheduler

The purpose of the best-e�ort scheduler is to decide which of the non-reserved ports purpose

of the crossbar are used for packet-based transfers. For that reason, the scheduler
calculates the bipartite matching between the two subsets of n = Ng + Nb input
ports and n output ports used for best-e�ort packet transfers and not reserved for
priority tra�c in the next cycle. Since the request generation logic within the core
module of the switch already performs the masking of available ports as well as the
bu�ering of intermediate results, the implementation of the scheduler is reduced to
the pure scheduling task without any reference to the slotted timing or the presence
of priority.

To allow a trade-o� between logic consumption and performance, the type of modular approach

scheduler used for synthesis can be selected to the one most practical for a given
application. For this reason, the switch uses a generic interface for the scheduler
module: Requesting ports are denoted as n2 one-hot encoded signals, the selected
ports are presented registered in multiple versions: as one-hot encoded array of n2

signals over all ports, as a set of integer values that denote the selected input for each
output and additionally, as an one-hot encoded array of the input and the output
ports, respectively. This is useful since the signals that denote the scheduling result
are heavily loaded and also time-critical. Due to its complexity, the implementation
of two di�erent scheduler types is described separately in section 4.6.

4.5.7 Interface to Upper Network Layers

This section describes the interfaces at the local ports of the switch to upper network
layers. The bypass-switch features two di�erent interface types: for connection-
based transports and for packet-based transports. The interfaces control the data
�ow between an application and the switch, i.e. the transmission of data into the
network and the reception of data from the network. Both types of local ports feature
the same data rate of 16 bit at 156.25MHz. The interfaces are described brie�y in
the following.

Handshake Signals for Isochronous Connections

The bypass-switch has Np local ports to connection-based priority tra�c. The in- timing

terface comprises the receive data path and the transmit data path for each port
as well as separate timing information for both directions (cf. section 3.4.6). The
timing information provided by the switch denotes the start and the end of frames
as well as the slot positions. The timing between both directions is shifted by two
cycles. This is since the data paths of both port directions are directly connected to

166 Introduction

the crossbar and since the timing of the transmit path is provided a cycle earlier (cf.
�gure 4.16). Figure 4.20 shows the timing diagram of the interface.

The transmission of data is controlled with two handshake signals in both direc-handshake signals

tions: data accept and data valid. The data is transferred when both, accept and
valid are set to logic 1. At the transmission interface, the switch asserts the accept
signal a cycle earlier such that the application can register the data to be sent, which
is sampled in the succeeding cycle. To receive data, the switch denotes valid data
by asserting the valid signal. The data has to be sampled by the application in
the same cycle. Since the switch does not implement bu�ers, an application cannot
delay the reception. In fact, the application-side accept signal is not evaluated by
the switch.

0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05

{0 0 550A} {0 0 550B} {0 0 0000} {1 0 0000} {0 0 0000} {1 0 0000} {0 0 0000}

550A 550B 5500 1234 0000

09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04

{1 0 BC95} {1 0 BC95} {1 0 BC95} {1 0 BC95}

BC95 FD08 3C66 BC95 FD08 3C66 BC95 FD08 3C66 1234 0000 BC95

15100 ns 15200 ns 15300 ns 15400 ns 15500 ns

usr/usrclk

usr/usr_tx_timing

.sync

.last

.enable

.slot 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05

.sofs

.sfirst

usr/usr_tx_links(0) {0 0 550A} {0 0 550B} {0 0 0000} {1 0 0000} {0 0 0000} {1 0 0000} {0 0 0000}

.accept

.valid

.data 550A 550B 5500 1234 0000

usr/usr_rx_timing

.sync

.last

.enable

.slot 09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04 05 06 07 08 09 0A 0B 00 01 02 03 04

.sofs

.sfirst

usr/usr_rx_links(0) {1 0 BC95} {1 0 BC95} {1 0 BC95} {1 0 BC95}

.accept

.valid

.data BC95 FD08 3C66 BC95 FD08 3C66 BC95 FD08 3C66 1234 0000 BC95

TX timing

RX timing

TX data

TX data

transmission of single data slot

reception of single data slot

Figure 4.20: Timing diagram of the switch interface of the transmit data path and the
receive data path for connections-oriented tra�c. The handshake signals are shown for the
transmission and the reception of a single slot. The timing information is provided separately
for each direction. The framing parameters are f = 12 time slots and S = G = 2 cycles per
slot.

Handshake Signals for Best-E�ort Packets

The transmission and the reception of packet-based data is handled by a separate
PAL for each protocol type (cf. section 3.8.4). Since the timing of the switch is
based on time-slots, the PAL transforms packets into multiple slots and vice versa.
The reference implementation of this chapter uses only shared memory packets as
the single packet-based protocol. The interface to the user therefore merely concerns
the transmission and the reception of shared memory packets, which is described
in section 4.9.3. A description of the interface between the PAL and the switch is
therefore omitted.

4.6 Implementation of the Best-E�ort Scheduler

The purpose of the best-e�ort scheduler is to decide which of the non-reserved ports ofexample
implementation

4.6. IMPLEMENTATION OF THE BEST-EFFORT SCHEDULER 167

the crossbar are used for packet-based transfers. This decision is made each time slot
according to the slotted data path of the switch. The MCGN speci�cation does not
request a dedicated type of scheduler to be used. The implementation of the switch
therefore uses a modular design in which the optimal scheduler for the application
can be selected for synthesis (cf. section 4.5.6). This section presents two example
implementations of best-e�ort schedulers. Both schedulers can be used for the packet
scheduling within the transport network. The type of scheduler to be chosen depends
on the required performance and on the available amount of programmable logic.

During the operation of the switch, the best-e�ort scheduler takes a set of n× n task

requests signals. Each signal corresponds to a particular input/output port combi-
nation. A signal that is set to logic 1 denotes a request for the transfer of data slots
of packets between the corresponding input/output pair. The task of the scheduler
is to calculate the bipartite matching between the ports, i.e. to select or to grant

a particular set of input/output pairs such that each port is assigned to only at most
one other (cf. section 1.6). The number of selected pairs has to be maximized. As
a second requirement, the scheduler should be fair and not prefer or discriminate a
certain port pair. The complexity of the scheduling process is limited by the duration
of a time slot of 2 clock cycles (12.8 ns).

Section 1.6 discussed the issues and possible solutions for the calculation of such implemented
scheduler typesa bipartite matching. For the implementation of the transport network, the following

schedulers have been investigated: static priority, TDM, MSM [56], iSLIP with and
without multiple iterations [84, 86, 85, 48], the simple 2-dimensional ripple-carry
arbiter [59], RPA [59] and DPA [59]. All schedulers have bee implemented within
VHDL and have been veri�ed in software (cf. section 5.7). Although MSM has very
good results, it has only been implemented in software due to its high complexity of
O(N2.5).

The following sections exemplarily describe the implementation of iSLIP and the
2-dimensional schedulers including DPA. iSlip and DPA both are fair multi-port
schedulers with medium complexity and good performance.

4.6.1 Implementation of the iSLIP Scheduler

The operation of the iSLIP scheduler has already been described in section 1.6.2. A
more detailed functional descriptions can be found in [84, 86, 85, 48]. The scheduler
is implemented within the VHDL module scheduler_multi. A schematic of the
implemented scheduler is shown in �gure 4.21.

The n×n-port iSLIP scheduler consists of n grant arbiters each belonging to an operation

output port and n accept arbiters each belonging to an input port. Grant arbiters
and accept arbiters are itself n-port round-robin arbiters (cf. section 1.6.1). The
overall operation is controlled by a simple state-machine (not shown in the �gure).
The implemented scheduler operates in two steps:

1. Each grant arbiter takes n request signals denoting the requests from the inputs
to that output. The grant arbiter selects (grants) a single input according to
its current internal priority.

2. Each accept arbiter takes n grant signals denoting the grants from the outputs
to that input. The accept arbiter selects (accepts) a single output according to

168 Introduction

grant
arbiter

accept
arbiter

requests

for each 1..n output for each 1..n input

grants accepts

for each 1..n output

update

n
store

selects

n

selects

OR

keep iterative result

n

ANDn

register registerregister

Figure 4.21: Schematic of the implemented iSLIP scheduler. The grant and accept arbiters
are instantiated for each input or output port. A state-machine (not shown) triggers the
operation of the arbiters and their update process. The iSLIP scheduler calculates a bipartite
matching for all n × n input/output port pairs in parallel within 2 clock cycles. Multiple
iterations require additional cycles. Calculated selects are stored temporarily during the
iterations.

its current internal priority. The second cycle also contains the update process
of the grant arbiter according to the accepts to cope to the de-synchronization
updating rule of iSLIP.

The original de�nition of iSLIP contains three steps, the �rst step (request) is
basically the forwarding of the request signals to the grant arbiters.

The implemented scheduler requires two clock cycles for a single iteration. Thetime and space
complexity register stages for the logic signals are denoted by the register markings within

�gure 4.21. The �gure also shows that the main amount of logic is consumed by
the 2n round-robin arbiters that calculate the grant and accept signals. The further
logic basically consists of single AND and OR gates. This results in the fact that the
time complexity (critical path) as well as the space complexity (logic consumption)
is both determined by the complexity of a single n-port round-robin arbiter. For
that reason, a fast and space-e�cient round-robin arbiter has been developed, which
best �ts to the FPGA used (see below).

The scheduler supports multiple iterations for a better scheduling result. It there-multi-iterative
support fore stores the selects-signals of intermediate iterations. The total scheduling pro-

cess for i iterations requires 2i cycles. Although the scheduling time is limited to the
2 cycles of the time slot S, multiple iterations can be used with other applications
that allow larger time slots and thus an increased scheduling time.

The Tiny Tree Arbiter

This section presents an e�cient implementation of a round-robin arbiter to be usedround-robin
implementation for the iSLIP scheduler. A round-robin arbiter can be implemented using a pro-

grammable priority encoder (PPE), whose top-priority input is changed according
to the scheduling result. A common implementation for a PPE uses two static-
priority arbiters together with a thermometer-encoded mask [48]. In this thesis, a
di�erent implementation of a PPE has been developed, the tiny tree arbiter (TTA).
It exploits the LUT4 architecture of the given FPGA [154] in a very compact, ef-
�cient and scalable design. A comparable result has been independently published
in [162].

4.6. IMPLEMENTATION OF THE BEST-EFFORT SCHEDULER 169

A PPE takes n request signals together with n priority signals as input. The re- programmable
priority encoderquests can be set arbitrarily, whereas the priorities are one-hot encoded denoting the

input with the currently highest priority. The priority of the other inputs descends
with increasing input positions and wraps around from the last input to the �rst.
The output of the PPE can be the set of log2 n signals as the binary representation
of the selected input number or a one-hot encoded set of n select signals.

The PPE created for the TTA arbiter arbiter consists of small building blocks, TTA element

the TTA elements. Each element has four inputs and combines the requests and
priorities of two inputs and calculates a single request, priority and select signal.
The logic table of the TTA element is such that multiple elements can be stacked
to a large tree without further logic in between. Each element is very tiny and
requires only three LUT4 elements of the given FPGA type. Figure 4.22 shows a
block diagram of the TTA element and its truth table.

r0

r1

p0

p1

requests

priorities

r'
p'

s'

3 x
LUT4 select

p0 p1 r0 r1 p′ r′ s′

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 1 0 1
0 1 0 1 1 1 1
0 1 1 0 1 0 * 0
0 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 0 1 1 1 1
1 0 1 0 1 1 0
1 0 1 1 1 1 0

Figure 4.22: (left) Schematic of the developed TTA element. (right) truth table of the
TTA element. The hierarchical design allows to stack multiple elements to create a large
scheduling tree without further logic in between. Since each element is very tiny, a round-
robin arbiter based on a TTA is fast and compact.

The scheduling decision is calculated as follows: The priority output p′ is the TTA tree
calculationOR-ed value of both p-inputs such that the priority property of the prioritized input

is percolating to the top-most element. The request r0 has priority over the request
r1 in the case that neither has explicit priority. In the case of p0 = 1, the request r1

has second highest priority, whereas in the case of p1 = 1, r0 has the least priority out
of all inputs. A request r′ is forwarded upwards in the case that any or both of the
two inputs are requesting. The select output s′ denotes which input to select in the
case that one of the two inputs of the element is �nally selected. The situation for the
case marked with an asterisk in the table of �gure 4.22 is special, since the element
has priority but the least prioritized input out of all inputs is solely requesting.
Forwarding the request would select this element (and thus r0) independently from
all other input requests due to its priority. By using the encoding of the table,
the element is selected only in the case that no other input is requesting, which
corresponds to its least priority. If no request is set at all, the currently top-priority
input is selected.

170 Introduction

The selected input is calculated only out of the s′ outputs of the tree elements.calculation of
selects Its is denoted by the binary representations of the values of the intermediate s′

outputs, starting from the top-most element and going back the tree according to
each intermediate s′ value. The output of the binary select representation requires
log2 n calculations with increasing complexity (the most signi�cant bit equals the s′

output of the three, whereas the least signi�cant bit has to be calculated out of all s′

outputs). The one-hot encoded selects are calculated independently for each output.
The calculation requires only log2 n inputs of intermediate s′ to be considered for
each select output.

A round-robin arbiter can be build easily around the TTA by registering the one-creating a TTA
round robin
arbiter

hot representation of the selects and feeding the correct next priority to the TTA
input. Since both, the selects and the priorities are one-hot encoded, the priorities
equal the shifted selects output of the schedule and can thus simply be feed back
without further logic. The shift ensures that the element currently selected gets the
least priority next. Figure 4.23 shows an example implementation of a TTA-based
round-robin arbiter with n = 83.

r0

r1

p0

p1

r2

r3

p2

p3

r4

r5

p4

p5

r6

r7

p6

p7

s01

s23

s45

s67

s03

s47

s07

LUT4

LUT4

TTA tree select calculation

TTA
element

s0

s1

s2

s3

s4

s5

s6

s7

schedule

FFD

8

update priority

requests

selects

p01

r01

p23

r23

p45

r45

p67

r67

p47

r47

p03

r03

p07

r07

TTA
element

TTA
element

TTA
element

TTA
element

TTA
element

TTA
element

Figure 4.23: Example of a 8-port round-robin arbiter based on the TTA tree with one-hot
encoded select outputs. The whole arbiter requires only 27 LUT4 elements within 4 stages of
logic and 8 �nal select �ip �ops. Only two of the eight select calculation LUT4s are shown.

Although the operation of the TTA element is easy to understand, the function-veri�cation

ality has been tested with di�erent tree sizes by systematically verifying the selects
for all possible input request and priority patterns. However, a theoretical proof of
its correct operation is not given here for readability. This can easily be done using
induction starting from a single TTA element.

The space and time complexity of a TTA arbiter clearly depends on the numberspace and time
complexity of tree elements. A tree of input-size n = 2d, d ∈ N requires d stages of elements.

The �rst stage has n/2 elements and the succeeding stages half the number with
every stage. The total tree has thus

en =
d−1∑
k=0

2k =
1− 2d

1− 2
= 2d − 1 = n− 1 (4.4)

3Extra registers to store the internal priority bits are required to control the priority update
process like it is required for the iSLIP scheduler.

4.6. IMPLEMENTATION OF THE BEST-EFFORT SCHEDULER 171

TTA elements. Each element requires three LUT4 elements except the last, which
requires only a single one (its outputs p′ and r′ are unused). Additional logic is
required for the calculation of the select outputs. For n ≤ 16, the one-hot select
calculation requires only a single LUT4 for each select output. The total number of
LUT4s therefore calculates to:

sn = 3 · en − 2 + n = 4n− 5. (4.5)

The space complexity of an TTA round-robin arbiter with n inputs is therefore O(n)
only.

The time complexity is given by the number of LUT4 elements within the critical
path from the request and priority input to the select outputs. It is clear from the
design that the critical path includes d + 1 = log2 n + 1 LUT4s, resulting in a time
complexity of the arbiter of only O(log(n)).

For sizes of n > 16, the linearity in the number of LUTs depends on the number larger sizes

of LUTs required to calculate the select output, i.e. to compare the d intermediate
s′ signals of the tree with the binary representation of the position of the given select
output. For this sizes, the �nal amount of logic required depends on the synthesis
tool. As an example, a round-robin arbiter with n = 64 can by synthesized in a total
of 267 LUT4, thus 80 LUT4 are needed to calculate the 64 select outputs.4

The size of the TTA tree and thus the arbiter is not limited to input numbers n of arbitrary port
numbersn = 2d. Di�erent input numbers can be used easily by �rst taking the smallest tree

of size n′ > n that holds n′ = 2d and simply disabling unused requests and priorities,
which will e�ectively reduce the �nal logic consumption. The priority assignment for
the round-robin arbiter has to shift the select outputs and wrap at the input n− 1.
Since only requested inputs are selected and since the top-priority input is selected
in the case of no requests, only valid outputs in the range 0..n− 1 are still selected.
This has also been veri�ed by simulating all possible input patterns for di�erent sizes
of n.

It has �nally to be stated that the TTA design can also be extended to upcoming future work

FPGA technologies based on a 6-input LUT logic [153]. Each element then takes 3
request and priority inputs and has two bits for the s′ signal, thus requiring a total
of four LUT6 elements.

4.6.2 Implementation of Two-Dimensional Schedulers

The second type of scheduler that has been exemplarily implemented as the best-
e�ort packet scheduler for the bypass-switch is based on a 2-dimensional arrangement
of small and fast arbiter cells [141, 59].

The scheduling task of selecting input/output port pairs is implemented by as-
signing each arbiter cell to a particular port pair. The selection of port pairs is
thus transformed to the "selection" of cells. During the scheduling process, each cell
whose port pair requests the scheduler gets a dedicated request signal. The requests
are forwarded - or rippled - through the 2-dimensional arrangement of the cells until

4The results have been achieved by using the synthesis tools Xilinx XST 6.3.3 [158] and
MAP 6.3.3 [158], which have been optimized for small area and targeted to the Virtex-II Pro [154]
technology of the FPGA of the framework

172 Introduction

a scheduling has been found. To avoid multiple selections of a particular port, each
cell forwards is selection status to adjacent cells.

Three di�erent schedulers of this kind are implemented, namely the simple 2-three di�erent
types dimensional ripple-carry arbiter, RPA and DPA [59]. The schedulers di�er in the ar-

rangement of the basic arbiter cells and thus have di�erent complexity and scheduling
results. The latter is the only scheduler that ensures fairness, has a good scheduling
result and an acceptable space and time complexity for the usage as the best-e�ort
scheduler of the transport network. All schedulers are implemented within the VHDL
module scheduler_multi_2d. The implementation is described brie�y in the follow-
ing.

The Simple 2-Dimensional Ripple-Carry Arbiter

The arbiter cell of the two-dimensional ripple-carry arbiter consists of two inputsarbiter cell

(denoted as north and west), two outputs (south, east), a request and a grant
signal for its corresponding port. The north and west inputs denote a present
arbitrations for inputs or outputs with higher priority, whereas the cell itself ripples
the arbitration status to cells with lower priority via its south and east outputs.
Figure 4.24 shows a schematic and the corresponding logic of the cell.

north

west east

south

request

grant

(a)

north

request

west

south

grant

east

(b)

Figure 4.24: Arbiter cell of the 2-dimensional ripple carry arbiter. (a) Schematic (b) Logic.
(after [59])

Figure 4.25 shows the cell arrangement in a N×N matrix, where N is the numberarrangement

of input and output ports. The rows correspond to the inputs and the columns
correspond to the outputs. The lines between the cells denote the forwarding of
the requests and not to the data of the ports. For the highest row and the left-most
column, the north and west inputs are set to logic 1, respectively. The arbiter matrix
ripples requests from the top-left cell (corresponding to the input/output pair with
the highest priority) to the bottom-right cell (with lowest priority).

The two-dimensional ripple-carry arbiter can be implemented very e�ciently andcomplexity and
performance performs well. Its space complexity is clearly O(N2). The time complexity corre-

sponds to the time to ripple the requests from the top-left cell to the bottom-right
and is thus O(2N −1) = O(N). Its main drawback is the unfairness due to its static
priority that prefers the input/output pair assigned to the top-left cell.

Improvements of the 2-Dimensional Arbiter

To ensure fairness, the top-priority cell has to be moved between successive arbitra-introduction of
fairness tions such that each cell has the opportunity to get the highest priority. The work

4.6. IMPLEMENTATION OF THE BEST-EFFORT SCHEDULER 173

1 1

2 2

3 3

4 4

(a)

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

1

1

1

1

1

0

1

1

1

0

0

1

0

0

0

1

1 1 0 1

0 1 0 1

0 0 0 1

1 1 1 1

(b)

Figure 4.25: Schematic of the simple 2-dimensional ripple-carry arbiter of 4 ports. (a)
The corresponding requests from input ports (left) to output ports (right). (b) The cell
arrangement of the arbiter. Cells of requesting input/output pairs have thick borders, cells
of granted pairs are shaded.

in [141] proposed an extension of the 2-dimensional matrix to a close toroid by using
a cyclic feedback of the outputs from right and bottom to the inputs at the left
and top, respectively. Since this requires a logic loop for a single-cycle operation, the
work in [59] changes the arrangement of the cells to introduce fairness and also allows
a single-cycle operation without logical feedback loops. The resulting designs are the
rectilinear propagation arbiter (RPA) and the diagonal propagation arbiter (DPA).
Both design are exemplary shown in �gure 4.26 for a 4-port scheduler.

The improved designs solve the feedback problem by a duplication of logic beyond duplicated
mask-able logicthe boundaries of the initial design. Furthermore, the single arbiter cell is extended

by a mask input, which is used to enable and disable the cell. Enabled cells operate
as described, whereas disabled cells never grant and forward a logic 1 to the east

and south outputs to give priority to the succeeding cells at the right and bottom
side. During the arbiter operation, N2 cells are enabled. Fairness is introduced by
changing the top-priority cell, which is done by cycling the group of currently enabled
cells.

The RPA arbiter uses a duplication of logic beyond the right and bottom side rectilinear
propagation
arbiter

of the initial ripple-carry layout. The subset of enabled cells consists of a squared
region of N2 cells, i.e. all N2 cells can have the top-priority. RPA calculates the same
scheduling result as the initial design with cyclic feedbacks. As a drawback, it requires
(2N − 1)2 cells and thus su�ers from an increased amount of logic. Concerning the
propagation delay, the worst-case logic path is extended to the delay of 4N − 3 cells.
By considering that only the delay of the functional part within the enabled square
is of interest, this can further be optimized by denoting the logic synthesis tool of
the required partial transmission delays between groups of cells.

The DPA arbiter arranges each N independent arbiters (which have no input diagonal
propagation
arbiter

and no output in common) in diagonal rows. The area of enabled cells comprises
N diagonals. A cycling of the priority is done by a vertical shift of the area that
contains the enabled cells. Consequently, the DPA arbiter has N di�erent priority
states in contrast to the RPA arbiter. Although the DPA arbiter calculates a di�erent

174 Introduction

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

(a)

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

1,1 1,2 1,3

2,1 2,2

3,1

2,4

3,3 3,4

4,2 4,3 4,4

to 2,1

to 3,1

to 4,1

to 1,1

to 2,1from 2,4

from 3,4

from 4,4

from 1,4

from 2,4

from 3,4

(b)

Figure 4.26: RPA and DPA arbiters for a 4-port scheduler. (a) RPA arbiter with highest-
priority cell at (2.3) (b) DPA arbiter with highest priority diagonal rooted at (3,1) (after [59])

arbitration, its performance is comparable to the RPA arbiter [59]. As the advantage,
its space complexity is reduced to (2N − 1)N arbiter cells. The propagation delay
is also reduced to about N cell-delays. This can be seen comparably to the RPA
arbiter, when it is assumed that only the delay within the enabled subset of cell
arbiters is of interest. The DPA arbiter is therefore more space-e�cient as well as
faster as the RPA arbiter.

4.6.3 Summary

Two scheduler architectures have been presented: the iSLIP scheduler and a setimplementation

of 2-dimensional schedulers. All schedulers have been implemented as described.
Simulation results of the performance of the schedulers are given in section 5.7. The
con�gurable design allows the user to choose the appropriate scheduler according to
the required performance and the complexity of the resulting digital design:

• The iSLIP scheduler is fair and relatively compact. It requires 2N round-robin
arbiters, which can be implemented space-e�cient using the TTA design. Its
drawback is the medium performance for single iterations. Multiple iterations
would require to increase the slot size to more than two cycles.

4.7. ROUTING OF BEST-EFFORT PACKETS 175

• The simple 2-dimensional ripple carry arbiter has a compact design and a good
performance. Its drawback is the missing fairness, which might starve out the
least-priority port-pair completely during operation.

• The RPA and the DPA designs are fair and perform well. The space complexity
of the DPA arbiter is much smaller.

The type of scheduler to be synthesized can be selected within the VHDL description
of the switch core. Since the limited amount of programmable logic is a main design
issue, the iSLIP scheduler or the DPA scheduler are suggested to be selected in most
cases.

4.7 Routing of Best-E�ort Packets

Routing is the task of selecting the global route for a packet between its source node general de�nition

and its destinations node in the case that both nodes are not directly connected.
The knowledge of the selected route is required at each node to forward a packet to
the correct output port of the switch. The routing algorithm can be performed at
the time the packet is transmitted into the network, statically during the network
initialization or dynamically and independently at each network node.

The speci�cation of MCGN does not denote a particular routing algorithm for MCGN routing

best-e�ort packets. The routing decision can be performed at two di�erent stages: at
the reception of the packet within the data link layer or within upper network layers
to support a more general routing algorithm (cf. section 3.8.5). The latter variant
requires to move all incoming packets locally to upper layers before the forwarding,
which introduces a signi�cant delay. This method has not yet been implemented.
The �rst method has been implemented and is discussed in the following.

According to section 3.8.5, the routing process can be de�ned as a function or routing function

algorithm Ω, that assigns the local output port depending on its arguments like the
position of the destination node, the position of the local node, the protocol type
of the packet or certain network status information. The function is called at each
network node for every packet that enters the switch at a global port as well as for
all packets that are transmitted at a local port into the network.

The topology of the backplane, the implementation of the bypass-switch and the implementation
constraintsDSM constrain the implementation of such a routing algorithm in the following ways:

• The regular topology of the network allows to implement a simple routing
algorithm.

• The implementation of the bypass-switch requires a routing decision to be made
within a single cycle at the time a best-e�ort packet arrives at the switch. The
header of the packet provides all necessary information within the �rst cycle
of the packet.

• The simple stop-and-wait automatic repeat request (ARQ) protocol of the DSM
implementation requires a routing algorithm that keeps the packet order to
perform best (cf. section 4.9.6).

176 Introduction

4.7.1 Description of the Implemented Algorithm

The implemented routing algorithm calculates the correct output port for an in-online algorithm

coming packet according to the content of the packet header. It performs a routing
decision within a single cycle to forward the packet after the �rst data cycle has
been received. In the case a packet arrives at a global input port, the result of the
function is used to determine the correct place within the input queue - which is
in fact a virtual output queue and thus sorts the packet according to its output.
In the case the packet is transmitted locally, the queue may be bypassed and the
corresponding output port is requested directly (cf. �gure 3.34 and �gure 4.16). The
routing algorithm is implemented within the VHDL module routing_dynamic as a
VHDL function.

The implemented algorithm performs two main tasks: the routing within a singleinter-backplane
routing support backplane and the routing between multiple backplanes. A routing decision is made

only according to the position of the local network node and the position of the
destination network node. The position of the local network node is known since
all network nodes are initialized via the SlowControl at the very �rst start of the
framework operation.

The implemented routing algorithm exploits the regular arrangement of the 16cubic coordinate
system Nathan modules within the backplane. Figure 2.8 shows that the network topology

can be illustrated as a 2-dimensional toroidal structure or a 4-dimensional binary
cube. The routing algorithm uses the cubic representation of the topology to perform
dimensional routing [100]. The position of each network node can be represented by
a 4-dimensional coordinate, which is simply a tuple of 4 bit being each 0 or 1 and
denoting the position within its dedicated dimension. The topology of the network
allows to change (invert) the actual position of the packet within a dimension simply
by forwarding the packet to one of the four output ports that correspond to the
hardwired physical backplane links. Table 4.6 lists the cubic backplane-coordinate
of each network node. The coordinates belong to the MGT instances (x1y0, x2y0,
x1y1, x2y1) of the used xc2vp7 FPGA type.

network node cubic coordinate network node cubic coordinate

0 (0,0,0,0) 8 (0,1,0,1)

1 (1,0,0,0) 9 (1,1,0,1)

2 (1,0,1,0) 10 (1,1,1,1)

3 (0,0,1,0) 11 (0,1,1,1)

4 (0,0,1,1) 12 (0,1,1,0)

5 (1,0,1,1) 13 (1,1,1,0)

6 (1,0,0,1) 14 (1,1,0,0)

7 (0,0,0,1) 15 (0,1,0,0)

Table 4.6: List of the backplane coordinates of the Nathan network modules according to
the cubic coordinate system of �gure 2.8 used for the routing of best-e�ort packets. The
change of a certain coordinate requires to use the same hardwired MGT link on all network
modules.

To perform the routing task, the routing algorithm �rst converts the logicalonline routing
process

4.7. ROUTING OF BEST-EFFORT PACKETS 177

position of its network node as well as the position of the destination both to its
cubic coordinates. Each bit that di�ers between the two coordinates corresponds
to a coordinate that has to be changed to reach the destination. This process is
simpli�ed by the fact that a certain coordinate corresponds to the same MGT on
each network module, which allows to use the same algorithm on each module without
further con�gurations. The number of di�ering bits equals the number of hops to be
passed.

The routing algorithm could in principle select any of the di�ering dimensions to in order delivery

change next, i.e. to forward the current packet to one of the appropriate output ports.
This would also allow to adapt to the amount of packets that are currently stored
in the various VOQs and thus to support a little congestion control. This feature is
currently not used since it may lead to out-of-order delivery of the packets, which
would reduce the performance of the implemented stop-and-wait algorithm within
the transport control logic of the DSM (cf. section 4.9.6). The routing algorithm
therefore selects the dimensions in ascending order.

To interconnect multiple backplanes, the routing algorithm supports the usage interconnection
of backplanesof the four additional MGTs of each FPGA (cf. section 2.2.3). The backplanes are

switched by using dedicated gateway nodes. In the case the local backplane number
and the backplane number of the destination node di�ers, the routing algorithm �rst
forwards the packet to the gateway node using the above process. The gateway node
then uses one of the extra output ports to reach the destination backplane, where
the packet is forwarded to its destination node as described above.

4.7.2 Summary

The implemented routing algorithm transforms the linear coordinates of the network advantages

modules into a cubic coordinate system to simplify the routing task to dimensional
routing. It has the following advantages:

1. It is fast and simple to implement and thus consumes only few logic.

2. It keeps the packet order.

3. The dimensional routing avoids live-locks and dead-locks. This means that the
packet is ensured to reach its destination without circling or being blocked.

4. It allows to support adaptive routing in the case the implemented ARQ algo-
rithm handles out-of-order packets with only minor performance reduction.

5. The same logic can be implemented within all network nodes. No further
con�guration or routing table de�nitions are required.

Future development may use an additional link out of the four arbitrary usable future
developmentlinks at each network node to increase the coordinate by a �fth dimension instead of

using a gateway node. This indeed would lead to better performance, but however,
this would also increase the required amount of logic within each network node. Since
the routing algorithm is implemented within a single �le, it is easy to exchange the
algorithm in the case that other, even irregular topologies, are used in the future.

178 Introduction

4.8 Transport of Neural Network Data

The last sections presented the reference implementation of the MCGN switchingpurpose

architecture for the lower network layers of the transport network. The purpose of
the upper layers is to use the isochronous connections provided by MCGN for the
delivery of neural network data between the ANN chips HAGEN and Spikey, which
are distributed on several Nathan network modules (cf. �gure 2.13). This requires to
connect the interface of MCGN for isochronous connections to the ANN controllers
of the two chips. However, it has already been stated that the development of the
network interface of the controllers is not complete.

To demonstrate the feasibility of the implemented transport network for thedemonstration of
features transmission of neural data, the following section �rst summarizes the features of

the isochronous transport service provided by the network with respect to the neural
data of the chips. The succeeding section describes a demonstrator application for
the usage of the isochronous connections. The demonstrator application has been
implemented within programmable logic and can be used as a reference for the further
development of the ANN controllers.

4.8.1 Provided Transport Service for Neural Network Data

The transport requirements of the two ANN chips HAGEN and Spikey have beenbandwidth
requirement described in section 2.4.2. The tables 2.4 and 2.5 list the estimations for the amount

of neural network data to be transported within isochronous connections during the
experiments. The HAGEN chip requires a constant data rate.

In contrast to that, the mean and peak frequencies of integrate-and-�re neuronsunknown spike
event rates within a neural network may di�er drastically (see e.g. [15]). Consequently, the

Spikey chip produces a statistical event rate, which is in�uenced by the following
factors:

1. The topology of the investigated neural network. This results in certain inter-
chip connections.

2. The timing parameters (speedup) of the synapses and neuron circuits of the
ANN chip according to the implemented neuron model.

3. The strength of the external excitatory network stimulation as well as the
internal excitatory feedback.

4. Statistical �uctuations in the data rate caused by physical properties such as
the temperature of the chip.

These topics depend on the particular experiment. All topics may be �xed or change-
able according to the intention of the experimenter. The resulting spike frequencies
can hardly be predicted for a given con�guration. To evaluate the performance of
the transport network, the following paragraph calculates possible physical spike
frequencies (event rates) according to the throughput provided by the network.

Characterization of the Connection-Based Transport Service

The implementation of the transport service provides the following features for theprovided features

transport of data within isochronous connections:

4.8. TRANSPORT OF NEURAL NETWORK DATA 179

• A con�gurable number Np of local ports. The ports are bi-directional with
independent interfaces for transmit and receive. The interface is 16 bit at
156.25MHz and provides a usable bandwidth of up to 312.5 MByte/s (minus
the waste by the frame gap).

• A transport within multiples of data slots of 2 clock cycles (32 bit).

• A delivery with guarantees QoS. The data rate is limited according to the
number of slots, the throughput is guaranteed. The mean delay mainly depends
on the number of network hops, the jitter depends on the slot order within the
frames (cf. section 3.7).

• The possible number of connections per node is limited by the number of time
slots per reservation period (the framing parameter m, cf. section 3.6).

To improve the performance, all inter-neuron connections between the same two grouping of
neuronsend-points can be aggregated within a single inter-node connection. The has two

advantages: First, it reduces the amount of connections and thus the jitter due to
the lower amount of required slots per reservation period. Second, it can be assumed
that the grouping of neurons improves the bandwidth usage of the Spikey chip. This
is since the events are generated statistically and the combination of statistical data
rates results in a closer Gaussian deviation of the total data rate (law of the large
numbers).

Guaranteed Throughput

The most important value is the guaranteed throughput of the network. This depends throughput
dependencieson the following factors:

• The topology of the hardware framework. The backplane topology can be
extended by using the four additional MGTs connects of each FPGA. The
physical bandwidth w equals on all links.

• The framing parameters of the MCGN data frame, e.g. the number f of time
slots per frame. This determines the fraction of usable bandwidth wf .

• The fraction of bandwidth to be reserved for isochronous connections. Al-
though reserved data slots may be used for best-e�ort tra�c, it is possible to
limit the number of reserved slots to improve the shared memory performance.

• The e�ciency of the connection mapping algorithm. The mapping algorithm
succeeds or fails according to the bandwidth requests and the selected framing
parameters and thus determines its possible values.

To give some numerical values, the framing parameter f has to be �xed. The available
bandwidth wf can then be calculated by equation 3.1 and equation 3.2. A typical
value for the framing parameter f is 60 data slots per frame, since it is dividable
in di�erent reservation periods and also results in a small waste by the frame gap.
The available bandwidth wc per inter-chip connection c depends on its number mc

of reserved slots and calculates to wc = ws ·mc (cf. equation 3.4).

180 Introduction

Example Calculation for the Spikey Chip Concerning the Spikey chip, acalculation of
spike rates spike event is encoded into a single data slot of 4 byte. The maximum rate νf of

spike events to be transported on each physical link is thus:

νf =
wf

4 byte
. (4.6)

By using f = 60, w = 312.5 MByte/s and S = G = 2 cycles = 12.8 ns, the
maximum event rate per physical link ν60 results to:

ν60 = 76.84 MHz. (4.7)

This leads to the maximum number of neurons, whose spike events can be transported
per physical link depending on the actual average spike frequency ν of the single
neurons. Table 4.7 lists typical values for the neuron numbers according to di�erent
mean spike frequencies in the case that the mapping algorithm succeeds to occupy
100% of the slots. The table also lists the possible number of neurons per slot in the
case that 5 reservation periods of m = 12 slots per period are con�gured.

mean physical number of neurons number of neurons per slot
event rate ν per physical link of reserv. period, m = 12
1 · 105 Hz 768.4 64.0
2 · 105 Hz 384.2 32.0
3 · 105 Hz 256.1 21.3
5 · 105 Hz 153.7 12.8
1 · 106 Hz 76.8 6.4

Table 4.7: Possible number of neurons whose spike events can be transported via a single
physical link depending on the mean spike frequency ν of the single neurons. The calculation
use a framing parameter of f=60 slots per frame divided into 5 reservation periods ofm = 12
slots each.

The calculations show that only the events of parts of the 384 neurons of a Spikey
chip can be transmitted to other chips. In the case that inter-chip connections require
to cross multiple links, the total amount of bandwidth usable for a single connection is
further reduced. The results to calculate the available physical event rates depending
on the neural network topology and on the resulting connection mapping onto the
physical topology. The in�uence of the possible network topologies on the available
bandwidth for isochronous connections is continued in more detail in section 5.4.

Guaranteed Bounded End-to-End Jitter

The jitter of the isochronous connections calculates according to section 3.7.4. Thehop-independent
for single-slot
connections

implementation uses S = G = 2 clock cycles. Furthermore, the regular topology
results in comparable transmission delays and the same slot shift se on all links (cf.
section 4.4.4). The jitter therefore calculates according to equation 3.39 to

Jc ≤ 2 ·m+ 1 (4.8)

clock cycles, wherem is the size of the reservation period. The maximum value arises
for single-slot connections (mc=1) and is independent on the number of network hops.

4.8. TRANSPORT OF NEURAL NETWORK DATA 181

If multiple slots are assigned for a single connection, the jitter is reduced and depends
on the slot distribution within the reservation period. The minimum possible jitter
Jc is three clock cycles.

4.8.2 Demonstrator Application for Isochronous Transfers

This section describes the demonstrator application for connection-based tra�c,
which is part of the digital design. Its purpose is to demonstrate the usage of the
isochronous connections provided by the transport network. It can be used as a
starting point for future developments. It is implemented within the VHDL mod-
ule reference_app. An overview of the demonstrator application can be seen in
�gure 4.27. It provides the following features: features

• The application is connected to the transport network via the connection-
based interface of the bypass-switch. The number of ports can be con�gured.
Separate data paths for the transmission and the reception of isochronous data
are used.

• The application measures the delay of the isochronous connections in multiples
of clock cycles.

• Independent memory blocks for each local port store data to be transmitted
and data received to verify the reliability of the transport.

• A pseudo-random logic generates tra�c patterns with a con�gurable proba-
bility for each data slot to simulate neural-network events from the Spikey

chip.

• The global synchronous signals (GSS) of the synchronization sublayer controls
the synchronous start of the transmissions on multiple nodes.

The application is controlled via the SlowControl. The several functionalities are
demonstrated with the software mgtroute of section 4.10.3 after the network has been
properly synchronized and the routing tables of the switches have been con�gured.
The following section is reduced to a brief description of the functionalities of the
digital design. The evaluation of the measurements is presented in section 5.3.2.

Measurement of Application-Layer Delays

The application is able to measure the delays of the isochronous connections at the re�ection of test
dataapplication layer between di�erent network modules with the precision of a single

cycle. To do so, the application transmits a dedicated value to the network within
a single time slot. At the same time, a timer is started, which counts clock cycles
of 156.25MHz. The data is returned to the application either within the data link
layer (by con�guring the routing tables) or at the application layer (by con�guring
the application at the end-point of the connection to re�ect all received data directly
to the transmit interface). At the time the data value arrives back at the initially
sending application, the timer is stopped. The test requires an appropriate route
to be con�gured, either a round-trip through the network or a bi-directional route
between the sending application and the re�ecting application. This can be done with
the program mgtroute. The measurement and the re�ection logic is implemented
for the local port 0 only.

182 Introduction

RXBUF
(DPBRAM)

reflector

delay
measure

SDRAM interface

receive data transmit data

pseudo-event
generation

(LFSR)

TXBUF
(DPBRAM)

(per local port)

64 bit parallel

transmission
mode

timer

reception
mode

GSS

synchronous
start of all
TX and RX
processestest data

(port 0 only) mailbox
data

(port 0 only)

Figure 4.27: The demonstrator application for isochronous connections can be used as a
starting point for the development of an interface between the transport-network and the
ANN controllers. It features separate dual-port block-rams for data receipt and transmit at
each port, it measures the delays of the isochronous connections, supports a synchronous
distributed operation and a con�gurable data rate. All functionalities are accessed via the
SlowControl of the framework (not shown).

Tra�c Generation

The application features two di�erent methods to generate tra�c:

• The periodic transmission of a dedicated data word (mailbox data) to verify
the forwarding process of the switches.

• The playback of a con�gurable data block.

• The tra�c generation with a pseudo-random probability for each time slot.

The �rst method allows to write a dedicated value into a mailbox-register of thetransmission of
dedicated values application. The value is transmitted within each possible time slot. The forwarding

of the data through the network can be veri�ed by checking the appearance of the
data word on the a�ected network nodes. This is done by con�guring the transport
network to sample the received frames periodically into a DPBRAM of the FPGA
(not shown in the �gure). This has been used for low-level debugging during the
development of the network.

The playback functionality uses the DPBRAM blocks of the FPGA. Each portmemory playback

contains its own transmit bu�er (TXBUF in �gure 4.27) of 2KByte. At the time the
transmission is started, the design sends the content of the bu�er slot by slot until
all content has been sent.

The pseudo-random transmission of data can be used to simulate an ANN con-pseudo-random
events troller of the Spikey chip as the data source. The transmission probability per slot

can be con�gured in 16 steps to up to 100% slot usage. The numbers are generated
using a linear feedback shift register (LFSR) [109], which allows a compact imple-
mentation within the programmable logic. Each port contains a separate LFSR,
which can be initialized individually.

4.9. DISTRIBUTED SHARED MEMORY 183

The start of the transfer is performed synchronously on all network nodes with synchronous start
of transmissionthe precision of a cycle of the global reference clock. This is done by using the GSS

service of the synchronization sublayer. The GSS#0 is used for this case.

Tra�c Reception and Data Sampling

The received tra�c can be sampled to two di�erent locations for a veri�cation: two sample
locations

• In a separate DPBRAM block of the FPGA for each port.

• To the local SDRAM chip of the Nathan network modules for all local ports in
parallel.

Both storage types have di�erent advantages. A single DPBRAM is fast enough to
store the data of a single port, even if data is constantly received in each cycle. As
a drawback, a DPBRAM is only 2KByte in size.

In contrast to that, the SDRAM chip features 512MByte of memory, but cannot SDRAM
limitationfast enough be independently accessed by each port. The reason is that the storage

of the received data of multiple ports to di�erent address blocks of the SDRAM
requires to switch its internal banks, which causes multiple cycles of delays each. For
that reason, the sampling of the received data is implemented by the consecutive
storage of the data of all ports in parallel. As an example, the usage of four local
ports of 16 bit requires to store 64 bit at a rate of 156.25MHz. The data is only
written in the case that at least a single port receives valid data. The probability
of the pseudo-random data generator can be reduced to keep to the speed of the
SDRAM.

4.9 Distributed Shared Memory

The distributed shared memory (DSM) subsystem is the packet-based transport ser- motivation

vice of the implemented transport network. Its purpose is the on-demand exchange
of larger amounts of non-neural data (cf. section 2.4). Example data includes the
neuron plasticity values (weights), neural con�guration data as well as communica-
tion data for the processes running on the local PowerPCs. The memory transfers
are executed between the SDRAM chips on the Nathan network modules and also the
single FPGA on the backplane. Although developed for this application, the DSM is
a general high-level transport mechanism feasible to be used with other applications
as well.

The DSM provides a convenient interface for processes within the programmable characterization

logic. Data transfers within the DSM are initiated by accessing a global, virtual
and linear address space in which all possible destinations are included. The DSM
protocol implements a client-server architecture with reliable end-to-end connections
between the requesting process and the destination memory module. The protocol
handles network layer issues and transport layer issues such as fragmentation, �ow
control and in-order delivery. Since the interface of the DSM to the programmable
logic equals the access of the local SDRAM chips, existing algorithms can be extended
to operate on global data instead of local memory with minimum programming e�ort.

The DSM subsystem is designed for on-demand data transfers, for which the time tra�c class

184 Introduction

of the transmitted requests cannot be predicted and for which not the transmission
delay and jitter, but the data reliability is the main QoS quali�er of interest. Conse-
quently, DSM data is transported within best-e�ort packets of the underlying MCGN
implementation and not within isochronous connections.5 Best-e�ort packet trans-
fers have higher delay and jitter than isochronous connections but do not require the
reservation of physical bandwidth in advance.

4.9.1 Overview

Figure 4.28 shows a block schematic of the DSM subsystem. It consists of multiple
processes implemented in di�erent network layers:

DSM packet adaptation layer

client process server process

local SDRAM

user process
(PowerPC, training

algorithm, etc.)

transport
control protocol

routing logic

application layer

transport layer

bypass-switchdata link layer

local best-effort port

DSM packets

memory data

DSM

protocol

network layer

Figure 4.28: Overview of the distributed shared memory subsystem. The client-server design
provides reliable exchange of SDRAM contents using global best-e�ort packet transfers.

1. The DSM protocol uses a high-level client-server design. User processes are
connected to the DSM client process. The SDRAM memory module is accessed
by the DSM server process. Each network node may implement a server process
and multiple client processes independently.

2. The user interface supports data transfers of up to 4 KByte with a single
request. The DSM client can be accessed via the SlowControl, via a ramclient-
interface [125] or by the local PowerPC via its PLB [152].

3. The transport layer is implemented asymmetrically within the client process
only. It ensures reliable end-to-end communication by using an ARQ algo-
rithm [143]. Lost packets are repeated transparently to the user process.

4. The PAL interconnects the DSM subsystem to a local best-e�ort port of the
bypass-switch. It multiplexes and demultiplexes outgoing and incoming packets
for the client and server processes within the layers above.

5. The routing of the best-e�ort packets is performed by a compact and e�cient
routing algorithm, which supports multiple backplanes (cf. section 4.7).

5The third global transfer mechanism of the framework, the SlowControl, is designed merely for
con�guration purposes.

4.9. DISTRIBUTED SHARED MEMORY 185

All parts of the DSM subsystem have been implemented within the programmable
logic of the FPGAs on the Nathan network modules and on the backplane. The
latter may contain a client only since the backplane does not provide local SDRAM
memory.

The following sections describe all parts of the DSM subsystem. First, an overall
functional description is given including the memory model and the packet format.
The succeeding sections describe the client process, the user interface, the server
process and the implemented transport control protocol in more detail.

4.9.2 Functional Description

The DSM protocol operates as follows: A user process signals the memory read and client-side

write requests to the client it is interfaced. The global destination of the memory
transfer is included in the address of the request. The client compiles a DSM packet
header with the appropriate command and sends the packet to the server using
best-e�ort packet transfers of the MCGN implementation. Since packets may be
dropped on its global route due to erroneous links or full VOQs, the transport process
within the client ensures that dropped packets are re-transmitted to provide a reliable
service. It also respects the maximum packet size of the network and divides larger
memory transfers in multiple smaller packets that �t into the VOQ bu�ers of the
switches. The packet forwarding is performed according the routing algorithm that
calculates the intermediate path between the network nodes (cf. section 4.7).

After the arrival of the packet at the server, the memory operation is exe- server-side

cuted at the local SDRAM. The server process then compiles and transmits an
acknowledgment (ACK) packet back to the client. The ACK packet also contains
the read data in the case of a memory read command. The server process has been
developed to be of small size to save programmable logic. It does not implement any
transport layer functionality except the return of the ACK. The server handles all
incoming packets independently from each other.

Memory Model

The reader may notice that the implemented DSM subsystem misses an impor- memory
consistency
model

tant characteristic aspect of a general DSM architecture: a memory consistency
model [107]. Such a model is required to handle the problem of multiple write and
read operations by di�erent client processes to the same global address, e.g. to
update local caches after global writes.

A memory consistency model is usually implemented using a coherency protocol coherency
protocolthat speci�es extra transmissions between the network nodes [107]. The coherency

protocol speci�es how to inform processes on other network nodes of changed data
or how to implement a central global directory of data changes. Another solution is
to lock speci�c addresses to ensure the exclusive access to the corresponding memory
location (see e.g. [147]).

The alternative memory model provided by the implemented DSM protocol has implemented
modelthe following features:

• There is no memory consistency model. The user of the framework has to be
aware of this while designing algorithms that use DSM data transfers.

186 Introduction

rwb

ack

service

dofs

size128
8

9

10

11

12

13

14

15

data

service

addr
page hi

0

4

5

6

7

addr
page lo

8

15

addr
offs

0

7

reserved
(unused)

15

0

shared memory header (6 bytes) first shared memory data unit (16 bytes)

data 0

data 1

data 14

data 15

8

15

0

7

8

15

0

7

Figure 4.29: Data format of a shared memory packet.

• All addresses within the DSM are globally unique, i.e. a request to a speci�c
address is executed at the same physical memory location independently of the
location of the requesting process.

• The global address space is divided between all participants. The current
packet header allows to assign a window of 16 Mbyte of each physical memory
to be accessible by the DSM. The position of the window within the local
memory module is con�gurable at the server.

• Memory transfers are addressed and executed with the granularity of data units
of 128 bit (16 byte), which is the minimum amount of data to be read or written
to the double data rate (DDR)-SDRAM chips. A PowerPC cache line transfer
of 32 byte therefore requires two data units to be transported.

• The address space is further divided into multiple memory pages of 4096 bytes
each (256 data units). Memory transfers are executed only within a single
page. This is to reduce the amount of programmable logic required for address
comparators and counters.

Even having these limitations, the DSM provides a convenient and reliable serviceconsistency
model by user to globally move large-scale amounts of data. The user has to de�ne the meaning,

the reading processes and the writing processes for each memory location used with
the DSM in advance. This enforces a clear intention of the timing and the logical
behavior of the application. The software executed on the PowerPCs is able to
explicitly invalidate cache lines to enforce the updates of read data or to �ush write
data by using dedicated CPU commands.

Packet Format

DSM packets are the payload of best-e�ort packets and are identi�ed with a protocol
type of 0 within the best-e�ort header (cf. section 4.2.2). Since the best-e�ort header
occupies a single data slot, the DSM packet starts at the second slot of a best-e�ort
packet. The header is a result of the �rst development of the simple ARQ algorithm
of the transport layer (see below). It is de�ned within the VHDL module shm_pck.
Figure 4.29 illustrates the DSM packet format and table 4.8 describes the meanings
of the several �elds.

4.9. DISTRIBUTED SHARED MEMORY 187

�eld meaning

rwb denotes a read (1) or write (0) transfer

ack the frame is a server ACK

service service id of packet source (client n, server)

dofs o�set of �rst data word to support PLB target word �rst

size128 number of valid data units in packet

data denotes the frame contains valid (read or write) data

seq sequence number of packet

addr page page address (in data units)

addr o�s o�set address within page (in data units)

Table 4.8: Description of the �elds of the shared memory packet header.

Most header �elds are self-explaining and are not further discussed here. The header �eld

�elds rwb, ack and data denote whether the frame contains read data, write data or
is an ACK of the server. The dofs �eld is reserved to support the target word �rst
functionality of the PLB of the PowerPC [152, 61]. This functionality is currently not
implemented. The header further contains a 16-bit �eld that is reserved but currently
unused. It can be used for later improvements of the ARQ algorithm to store larger
sequence numbers or to support a larger address space. The current address �eld
of 20 bit allows to access an address range of 16 Mbyte on each destination. The
global source and destination nodes are not included into the DSM header, since this
information is already stored into the best-e�ort packet header.

The DSM transfers data only in multiples of data units of 128 bit (16 byte). data �eld

The present reference implementation uses a �xed size for best-e�ort packets of 44
byte. Since 6 bytes are used for the best-e�ort packet header and trailer, one or two
DSM data units can be transported per packet, which allows to transfer a complete
PowerPC cache line within a single packet. The packet size can be con�gured to
match upcoming applications.

4.9.3 The Client Process and the User Interface

The DSM client is interfaced by the user process and contains the transport control purpose

functionality. It is connected to the underlying MCGN network via the PAL for the
DSM protocol type. The client has been implemented within the VHDL module
shm_client. A schematic of the client is shown in �gure 4.30.

To execute a DSM transfers, the user process denotes a request by asserting the user requests

req signal together with the quali�ers address, rwb and size. The client answers
the user process via the ack signal at the time the request has been taken over. The
user process may set a new request immediately.

The data is transferred via the wr_data and rd_data signals at the time the data transfers

client asserts the wr_strobe and rd_strobe signals, respectively. The timing of the
read path and write path is not correlated with the req and ack signals. The user
process has to consider that no further bu�ering is performed within the switch. The
user process cannot delay or inhibit data transfers. Figure 4.31 shows a simulation

188 Introduction

user interface

transp_ctrl

PAL

ARQ protocol

dsm client

dsm
packet

dsm
packet

sent packet

compare ACK

req

rwb

addr

size

wr_data
wr_strobe

rd_data

rd_strobe

ackrequest
qualifier

data
transfer

transp_inout

add header

strip header

Figure 4.30: Schematic of the DSM client process containing the transport control function-
ality.

of two example transfers. A read request for a single data unit is followed by a write
request for three units. The corresponding data is transferred accordingly.

read data (1 unit)

read request
write request

write data (2 units)

SHM Client 0

{0 0 A0100003 0 04 0 641D 0 0000} {0 0 A0100002 1 01 0 8294 0 0000} {1 0 A0100003 0 03 0 8969 0 0000} {1 0 A0100003 0 03 0 8979 0 0000} {0 0 A0100003 0 03 0 8981 0 0000}

A0100003 A0100002 A0100003

04 01 03

641D 8294 8969 8979 8981

0000 DEAD 0000 641C 0000 641C 0000

39600 40 us 40400 40800

SHM Client 0

client/clk

client/shm {0 0 A0100003 0 04 0 641D 0 0000} {0 0 A0100002 1 01 0 8294 0 0000} {1 0 A0100003 0 03 0 8969 0 0000} {1 0 A0100003 0 03 0 8979 0 0000} {0 0 A0100003 0 03 0 8981 0 0000}

.req

.ack

.addr A0100003 A0100002 A0100003

.rwb

.size 04 01 03

.wr_strobe

.wr_data 641D 8294 8969 8979 8981

.rd_strobe

.rd_data 0000 DEAD 0000 641C 0000 641C 0000

write data (1 unit)

Figure 4.31: Timing diagram of the user interface to the DSM client process. The user
process requests a read and a write transfer. The data is transferred accordingly.

To demonstrate the access to the DSM, multiple modules have been implementedimplemented user
modules in VHDL. The DSM can be accessed via the SlowControl (cm_shm_cache) and with

a dedicated test module that writes and veri�es the written data (cm_shm_test).
To facilitate the usage of the DSM subsystem, the VHDL module ramclient_shm

has further been developed. Its purpose is to seamlessly add framework-wide high-
level communication to existing processes within the programmable logic. For that
reason, it provides the same interface used to access the local SDRAM memory
chip [125], but converts the requests to the DSM interface of the client process. The
module contains the necessary bu�ers and aggregates multiple requests to subsequent
addresses into a single DSM request.

4.9.4 The Server Process

The DSM server process is connected to the local memory chip and processes thepurpose

memory operations which it receives from the client via the network. The server
executes a memory operation independently for each incoming packet. The address
of the packet header is mapped into a local window of 16 MByte. The position of

4.9. DISTRIBUTED SHARED MEMORY 189

the window within the local memory can be con�gured freely. After the memory
operation has been �nished, the server transmits an ACK packet back to the client.
The server process is implemented within the VHDL module shm_server.

As already stated above, the server does not implement a transport control pro- no transport
controltocol. It uses the module tranp_inout only to compile and to strip the DSM header

to and from the packet. Packets or ACKs that get lost are detected by the transport
protocol implemented within the client that re-requests the memory operation.

A schematic of the server process is shown in �gure 4.32. Incoming write data is functional
descriptionsent to the local SDRAM immediately. The packet quali�ers (address, size etc.) are

stored for the transmission of the ACK packet. The server process uses two FIFO
queues. The request FIFO stores multiple requests for the case that di�erent clients
are requesting DSM operations at the same time. The read data FIFO is necessary
since the server has to wait until all read data from the SDRAM is available. Each
received packet is �nally acknowledged with an ACK packet.

local SDRAM
(via ramclient)

transp_inout

PAL

add header

strip header

dsm server

dsm
packet

read data FIFO

request FIFO
(store packet qualifiers)

write data

read data

read/write request
process
requests

wait for rdata,
return ACK

Figure 4.32: Schematic of the DSM server process. Write data is sent to the memory
immediately, read data is collected in a FIFO until the requested amount is available. Each
received packet is independently acknowledged.

4.9.5 The DSM Packet Adaptation Layer

The DSM packet adaptation layer (PAL) is the interface between the DSM client or purpose

server processes and the local-best-e�ort port of the bypass-switch. Its purpose is
to hide the slotted timing of the switch before the higher-level processes to simplify
their design. The PAL performs basically three tasks:

1. It performs the conversion between data slots and packets. The packets are
exchanged with the client and the server via a 16 bit bus at 156.25 MHz with
additional strobe-signals and header information.

2. It multiplexes a single best-e�ort port of the switch to multiple clients and
to the server. This is used to reduce the complexity of the switch. It is also
possible to use a single PAL for each DSM process.

3. It adds and removes the best-e�ort packet header to and from the DSM packet.

The implementation consists of two separate and independent data paths for implementation

transmission and reception of DSM packets. Each data path features a small state
machine to extract header information and to control the data �ow. No bu�ering
of packets is performed. The PAL has been implemented within the VHDL module
packet_io. Figure 4.33 shows a block schematic of the PAL.

190 Introduction

bypass-
switch

packet adaptation layer

data
slots

re-assembly

dsm
packet

strip best-effort
header

add best-effort
header

transmit packet

receive packet

transmit
state-machine

receive
state-machine

arbiter

split to slots

request

client0

client1

server

client0

client1

server

Figure 4.33: Block schematic of the DSM packet adaptation layer.

4.9.6 Transport Control Protocol

The purpose of the transport control protocol is to hide the packet-based (and thus
unreliable) nature of the underlying data link layer to ensure a reliable end-to-end
communication between the client process and the server process. The functionality
of the transport control protocol is located within the transport network layer. The
main part is implemented within the client process only (cf. �gure 4.28). The error
handling and the necessary re-transmissions due to lost packets are done transpar-
ently to the DSM user process. The functionality is implemented within the two
VHDL modules transp_inout and transp_ctrl. The development has been done
in cooperation with Christian Gutmann.

Provided Services

The transport control process of the DSM implements an ARQ or PAR [143, 110]
protocol with the following functionality:

1. Larger memory transfers are fragmented into multiple packets of each up to
the maximum size of a best-e�ort packet.

2. All packets are delivered in the correct order.

3. Lost packets are automatically re-transmitted. Packets can get lost at the
input queues of the switches due to invalid CRC checksums or full queues.

4. A simple �ow control mechanism between the two end-points adapts to the
packet loss rate to avoid bu�er over�ows at the server or congestion within the
network.

The implementation of the ARQ algorithm performs a modi�ed version of thelimited
complexity common stop-and-wait algorithm, which is a small and simple protocol for the above

tasks [143, 110]. The transport process does not implement a complex algorithm as
used by the protocols TCP/IP [11] or X.25 [143]. The central implementation allows
a seamless update to more complex protocols later. However, the correct implemen-
tation of a protocol like TCP/IP is far to complex to �t into the programmable logic
of the given FPGA.

The Implemented Stop-And-Wait Algorithm

The intention of the development has been to follow the rule smart sender / dumbsmart sender /
dumb receiver

4.9. DISTRIBUTED SHARED MEMORY 191

receiver [110], which concerns an asymmetric implementation that minimizes the
complexity of the receiver. This can be done since the provision of the above features
requires only the sending side or the initiator of a request (the DSM client) to handle
the complex part of the protocol. The listener (the DSM server) only reacts on
incoming packets with the sending of a packet of its own and never sends a packets
initially.

The algorithm can be described with a state-machine: At the beginning, the client algorithm
descriptionprocess and the server process are in the idle state. At the time a user requests a

DSM transfer, the client sends the appropriate command packet to the server and
enters the waitack state. After the packet arrives at the server process, the server
leaves the idle state and executes the requested memory operation. The server then
sends a positive ACK packet back to the client process and re-enters the idle state.
Data to be written or being read is send together with the command packet or the
acknowledge packet, respectively. At the time the ACK packet arrives at the client,
the client reports an acknowledgment to the user and re-enters the idle state. The
client process further transmits a sequence number together with each command.
The sequence number is changed with every succeeding command and returned by
the server process to unambiguously identify the original packet, the ACK belongs
to. The algorithm is illustrated in �gure 4.34.

time

client process server process

idle

execute memory operation

idle

ack (+ read data)

idle

wait ack

user request

idle

user ack

command (+ write data)

Figure 4.34: Illustration of the the implemented stop-and-wait algorithm.

After the client has transmitted its command packet, it starts a local timer count- error detection

ing down from a certain initial value. In the case that the command packet or the
ACK packet gets lost, the timer reaches zero, which causes the client to retransmit
the command packet. This process is illustrated in �gure 4.35. As a di�erence to
the commonly known stop-and-wait algorithm, the implemented version adapts the
initial values of the timers to the packet loss rate of the network. Timers that are re-
started are initialized with increasing values to implement a minimum of �ow control
and congestion control.

Stability

Although being quite simple, the implemented version of the stop-and-wait algorithm
ensures reliable end-to-end packet transports. It succeeds to handle the following
tasks:

1. Packets dropped due to invalid CRC checksums or full bu�ers of the VOQs packet loss

or of the server process are re-requested automatically after the client timer
reaches zero.

192 Introduction

time

client process server process

idle

execute memory operation

idle

command (+ write data)

ack (+ read data)

idle

wait ack

user request

timeout

wait ack

execute memory operation

packet lost

command (+ write data)

Figure 4.35: The stop-and-wait algorithm automatically re-sends a packet if the positive
acknowledge is timed out.

2. Packet order is preserved since the sequence number identi�es the ACK forpacket order

each packet. The implemented algorithm accepts only the single currently
outstanding packet. Packets that are delayed and out of order are rejected
(dropped).

3. Flow control is performed since the client requests the next packet not earlier�ow control

the current packet is acknowledged. This protects the server from being �ooded
by a single client.

4. Congestion control is performed only very basically by the adaptive timer valuecongestion
control that is adjusted according to the loss rate of the network.

5. The implemented algorithm ignores duplicate acknowledges for packets alreadyduplicate ACKs
acknowledged to avoid the sorcerer's apprentice syndrome [10, 143]6.

The small size of the sequence number furthermore requires a deterministic rout-requirement to
the routing
algorithm

ing algorithm that selects the same route for all packets to be routed between the
same source and destination nodes. Non-deterministic or adaptive routing algorithms
require larger sequence numbers to ensure a correct identi�cation of a received packet
and to avoid ambiguities, since di�erent routes could cause large delay di�erences.
Furthermore, the implemented algorithm requires a routing algorithm that provides
in-order delivery. Although the out-of-order delivery of packets does not smash the
transport protocol, is results in very low performance due to the resulting packet
drops.

Implementation of the Transport Control Protocol

The transport control protocol of the DSM subsystem has been implemented in twofragmentation

di�erent VHDL modules that are part of the DSM client and server processes. The
module transp_inout interfaces the user process, compiles the DSM packet header
and performs the fragmentation of requests for large amounts of data into multiple
independent requests to keep the server process simple.

The ARQ algorithm stop-and-wait is embedded within the client process withinARQ algorithm

6The sorcerer's apprentice syndrome is an e�ect caused by a �aw in the implementation of
the stop-and-wait protocol within the TFTP [134, 135] network protocol. It leads to the in�nite
transmissions of duplicate packets.

4.9. DISTRIBUTED SHARED MEMORY 193

the module transp_ctrl. The module consists of two state machines that write
and read packets from the central packet bu�er. Since the present implementation
supports only a single outstanding ACK, the bu�er stores only a single packet. The
module also contains the timeout counter, which is controlled by the state machine
that reads the packets from the bu�er. The data of received packets is accepted only
if its sequence number matches the currently outstanding packet. Figure 4.36 shows
a block schematic of the module.

transp_ctrl

packet transmit

packet receive packet data

packet
buffer

(DPBRAM)

transport
state

machine stop-and
wait

algorithm

timer

delay

ack

packet receivepacket data

packet transmit

Figure 4.36: Schematic of the implemented stop-and-wait algorithm. A single outstand-
ing ACK packet is supported, which requires to bu�er the current packet for possible re-
transmissions.

4.9.7 DSM Performance

In contrast to the QoS calculation of connection-based priority tra�c, the trans- statistical QoS
resultsmission of DSM data within best-e�ort packets does not allow to give exact QoS

guarantees for the delay and for the achievable throughput, but provides QoS in a
statistical manner: The values for the packet delay and the throughput di�er be-
tween multiple transfers on the same route and also between di�erent routes and
network nodes. This is caused by two main factors: First, by the external framing
of priority data that periodically inserts gaps of two cycles between the data slots.
Second, by the interaction with other DSM transfers due to the occupancy of in-
termediate bu�ers and the resulting fraction of bandwidth that is granted by the
best-e�ort schedulers.

The following paragraphs discuss the resulting DSM performance in terms of cycle-accurate
simulationsthe latency at the user interface and the achievable transfer rate. The results have

been achieved with a cycle-accurate simulation of the digital design. The discussion
makes the following assumptions: all intermediate bu�ers are empty, no reservations
for priority data have been made and all packets use the maximum possible size of
up to two data units (32 byte).

Simulation of the Latency

The latency of a DSM request is the time a user process has to wait for a DSM sources of latency

read or write operation to complete. This is an important factor especially for small
transfers of e.g. control or status data. Although this is not the main intention of
the DSM, it is worth to consider. The latency of a DSM operation is determined by
the round-trip time (RTT) of a single DSM command and its succeeding ACK. To
estimate the RTT, several delays have to be considered:

194 Introduction

1. The main delay is caused by the transport logic within the client for the bu�er-
ing of the packet, the read-out and the delay for the veri�cation of the ACK.

2. The server requires time to store the header of the incoming packets into its
local FIFO queue to be able to send the corresponding ACK packet. The server
further has to wait for the arrival of the read data from the SDRAM in the
case of read operations.

3. The physical layer introduces a �xed amount of delay for the synchronization
and the physical transmission. The exact number of cycles depends on the
selected framing parameters (cf. section 4.4.4).

4. A signi�cant amount of delay is introduced by the VOQs since the switch is
forced to use store-and-forward packet switching. Incoming packets are com-
pletely stored before the scheduler is requested and the packet is forwarded.

5. Few additional clock cycles are required to traverse network layers, the crossbar
or the multiplexer within the PAL.

The delays of the physical layer and of the data link layer (i.e. the bypass-delay values

switch) have to be considered multiple times according to the number of intermediate
switches between the network nodes of the client process and the server process. It
has been stated above that exact delay values cannot be predicted. Table 4.9 lists
typical delay values for the round-trip of a 32-byte DSM packet.

location tasks typical delay

DSM client transport logic, bu�er packet, 17 cycles

verify ACK

DSM server store header in FIFO, 16 cycles

retransmit ACK

bypass-switch storage and read-out of VOQs, 30 cycles

best-e�ort scheduler

synchronization sublayer synchronization 5 cycles

physical layer physical coding & transmission 20 cycles

Table 4.9: Typical delay values of DSM transfers. The delays of the data link layer and of
the physical layer have to be considered at each network node of the round-trip route of the
packet. The exact values di�er by few cycles between between di�erent packets and network
nodes (see text). All intermediate bu�ers are expected to be empty.

The resulting latency for a single operation depends on the number of intermedi-latency for single
reads ate network hops. Table 4.10 lists typical latency values for read transfers of a single

data unit of 16 byte. The values are acquired with a cycle-accurate simulation of the
digital design and denote the time at the user interface between the initial request
and the arrival of the �rst read data. Write requests have comparable latencies. The
interface acknowledges write requests at the time the write data is taken over by the
client.

Note that the main latency is caused by the lower network layers for the bu�ering
within the VOQs and by the internal data paths of the MGTs. These delays can
hardly be improved and do not belong to the DSM subsystem.

4.9. DISTRIBUTED SHARED MEMORY 195

number of typical latency

intermediate hops

single-hop 181 ± 8 cycles 1.16 ± 0.05 us

2 hops 289 ± 8 cycles 1.85 ± 0.05 us

3 hops 396 ± 9 cycles 2.53 ± 0.06 us

Table 4.10: Simulated typical latency values for read transfers of a single data unit of 16
byte. The values are measured at the user interface of the client and denote the time between
the request and the arrival of the �rst read data.

Simulation of the Transfer Rate

The throughput or transfer rate is mainly determined by the implemented stop-and- calculation of
transfer ratewait algorithm, which operates with a single outstanding packet. Most of the time,

the algorithm is waiting for the returning ACK. Since the succeeding packet is sent
immediately at the time the ACK arrives, the overall transfer rate of the algorithm
depends on three factors:

1. The RTT of the packet and its ACK packet.

2. The amount of valid data units that are transferred within a packet.

3. The fraction of data slots that is available for best-e�ort transfers.

Taking these factors into account, the transfer rate calculates to:

transfer rate =
valid data per packet

RTT
· fraction of slots available (4.9)

The RTT to be taken into account for the measurement of the throughput is the
time between the transmission of a DSM command packet and its returning ACK,
both measured at the transport control process (and not at the user interface). The
resulting values are smaller than the RTT values measured at the user interface of
table 4.10. Due to the �xed packet size, it can be assumed that two data units (32
bytes) are transmitted per packet to maximize the transfer rate.

Table 4.11 lists simulated values for the RTT and the resulting DSM transfer rate throughput for
successive writesfor typical synchronization parameters of the framework. The data slots have been

estimated to be all available for best-e�ort transfers. The e�ciency is calculated
according to the maximum physical bandwidth of 312.5 MByte/s.

The values show that the transfer rate of the simple stop-and-wait algorithm is improvement of
the ARQ
algorithm

far below the physical bandwidth. The transfer rate can be increased signi�cantly
by a more complex version of the ARQ algorithm. Since the ARQ algorithm is
implemented solely within the VHDL module transp_ctrl, it can be updated easily
in future. However, a commonly used variant like TCP/IP [11, 143, 110] is far to
complex to be implemented within the limited amount of the programmable logic of
the given FPGA, which enforces a more simple version to be used.

Future Development

An improved ARQ algorithm is required to constantly transmit packets and to allow sliding window
protocol

196 Introduction

number of typical RTT typical delay- stop-and-wait e�ciency

intermediate hops bw. product transfer rate

single-hop 146 cycles 292 byte 34.3 MByte/s 11.0 %

2 hops 255 cycles 510 byte 19.6 MByte/s 6.2 %

3 hops 364 cycles 728 byte 13.7 MByte/s 4.3 %

4 hops 473 cycles 946 byte 10.6 MByte/s 3.3 %

Table 4.11: Simulated typical RTTs and resulting transfer rates for single-hop and multi-hop
distributed shared memory transfers. The simulations have been performed for successive
write transfers with 32 byte of memory data per packet.

for a larger amount of outstanding non-acknowledged packets. The necessary amount
of bu�ering space for such a sliding window algorithm is determined by the delay-
bandwidth product of the client-server connection. The delay-bandwidth product
equals the amount of data 'on the line' that has to be sent by the client until the
�rst ACK packet arrives. This is the minimum amount of packet data that has to
be stored by a sliding window protocol for the most e�ective usage of bandwidth.
Table 4.11 also shows the delay-bandwidth products for the di�erent number of hops
(two byte are transfered per cycle).

The implementation of the protocol may keep to the central packet bu�er withinimplementation

the transport logic of the client of the stop-and-wait implementation, but requires
an independent access to lost packets for re-transmissions (no FIFO logic). Each
packet gets its own independent counter for the timeout detection. Incoming ac-
knowledgments have to be assumed to arrive out of order to consider lost packets.
An acknowledgment removes its dedicated packet from the bu�er. Example algo-
rithms are the go back n algorithm or the selective repeat algorithm, which are both
explained in detail in [143].

The maximum possible transfer rate of an optimal ARQ algorithm that is con-theoretical
maximum stantly transmitting packets depends on the packet size. This is since the unusable

part of each packet is 6 cycles (12 byte) for the best-e�ort header, the trailer and the
DSM header. Table 4.12 shows the theoretical maximum transfer rates depending on
the packet size. The amount of bandwidth wasted by the frame gap of the synchro-
nization has not been considered, such that the full bandwidth is the 312.5 MByte/s
of the MGTs.

shared memory data best-e�ort e�ciency maximum theoretical

per packet packet size transfer rate

16 byte 28 byte 57 % 179 MByte/s

32 byte 44 byte 73 % 227 MByte/s

48 byte 60 byte 80 % 250 MByte/s

112 byte 124 byte 90 % 282 MByte/s

Table 4.12: Theoretical optimal transfer rates of an ARQ algorithm that is continuously
transmitting data packets. The values are calculated for the case that all data slots are
available for best-e�ort packets. The synchronization frame gap has been ignored.

4.10. SOFTWARE DEVELOPMENT 197

4.9.8 Summary

The section described the implementation of the distributed shared memory (DSM)
subsystem of the transport network. The DSM uses the best-e�ort packet trans-
fers of the underlying MCGN network to provide on-demand remote access of the
distributed SDRAM chips on the Nathan network modules to processes within the
programmable logic of the FPGAs. The DSM basically consists of a client process
and a server process. The client process implements the user interface and contains
the transport control protocol. It has been shown that the implemented DSM fea-
tures reliable end-to-end communication. The QoS performance in terms of latency
and transfer rates have been discussed. The latency is mainly determined by the
lower network layers and can hardly be improved.

The resulting transfer rate is presently sub-optimal, but can be improved easily improvements of
the transfer ratedue to the modular design with the following modi�cations:

1. The usage of the sliding-window algorithm as the ARQ protocol. Although not
very complex to implement, this requires multiple packet bu�ers and a larger
amount of programmable logic.

2. The enlargement of the packet size. This improves the fraction of usable data
compared to the total data to be transferred. However, a large packet size
requires larger bu�ers at the VOQs and thus results in larger RTTs due to the
store-and-forward packet switching mode of the switch.

3. A variable packet size. The present implementation uses a �xed packet size for
all packets. A variable size for best-e�ort packets reduces the size of the ACK
and thus improves the RTTs.

The main improvement can be reached by replacing the stop-and-wait algorithm
with a sliding window protocol in the case that the additional consumption of logic
is acceptable.

4.10 Software Development

Most of the software components that have been implemented for the transport
network are executed during the initialization phase of the MCGN network and are
responsible for the network's synchronization, mapping and con�guration. Further
functionalities are implemented to demonstrate the features of the transport network
at runtime. The software is executed on the control PC and accesses the hardware via
the SlowControl (cf. section 2.2.4). The software consists of the following programs:

1. The executable mgtsync is used to control the synchronization process, to verify synchronization

the synchronization state and to measure and list the transmission delays D
between the switches of the network nodes.

2. The executable mapping performs the connection mapping process, which in- mapping

cludes the quantization of bandwidth, the routing of the connections and the
calculation of the contention-free slot assignment. The program further gener-
ates the content of the routing tables of the switches and the high-level software
simulation (cf. section 5.6).

198 Introduction

3. The executable mgtroute is used to con�gure the routing tables of the switches,routing table
access e.g. to list its content, to write the mapping result or to modify particular

routes by hand. It further controls the module of the demonstrator application
for connection-based tra�c to verify the transmissions within the reserved slots
of the isochronous connections.

4. The executable generate_network.py is used to generate pseudo-random net-network
generation works. The networks can use up to all neurons and synapses of the hardware.

The generated test-networks are used to evaluate the performance of the con-
nection mapping algorithm.

5. The executable switchtest is a software simulator for a general input-queuedpacket switch
simulator packet switch with VOQs including the bypass-switch. It is used to evaluate the

performance of di�erent best-e�ort schedulers under various tra�c conditions.
Another purpose is the veri�cation of the digital design against the simulator.

The programs mgtsync and mgtroute access the programmable logic. The program
mapping performs the connection mapping algorithms described in section 3.6. It
further contains �le-IO functionality to read the neural netlists, to read the network
topology and to write the routing tables. Since the central tasks and algorithms
of the network initialization phase (synchronization and mapping) are already de-
scribed in chapter 3, the following description is reduced to the basic functionalities.
The interested reader may consult the source code or the command-line help of the
programs for further details.

4.10.1 Synchronization

The program mgtsync is part of the synchronization sublayer and accesses the mod-
ule phys_sync. The program is controlled via command-line parameters and does
not require further input. It purely operates on the hardware or dumps control
information to the screen. Mgtsync performs the following tasks:

• The control of basic MGT functions like the serial alignment or the reset.

• It writes the framing parameters to the hardware, e.g. the number f of time
slots per frame, the delay ε of the delay elements and the logical slot shift se.
Note that the slot duration S and the frame gap G are presently hard-coded
into the VHDL design, such that mgtsync is not aware of slot sizes. The frame
size T is controlled via the number of slots f . The values of f and se are both
denoted in multiples of clock cycles.

• The control of the minimum-delay logic, which reduces the delay of the receive
bu�er of the MGTs.

• The measurement of the transmission delays D between the inputs of adjacent
switches.

• The establishment of the framework-wide synchronization and the check of the
synchronization state.

Most functions simply equal the setting or reading of status bits within the hardware
design. In the following, the two main functions are described in more detail: the

4.10. SOFTWARE DEVELOPMENT 199

measurement of the transmission delays and the synchronization of the network
modules. The results of these operations are discussed in section 5.2.

Measurement of the Transmission Delays

The transmission delays D between the inputs of two adjacent switches are measured process

as described in section 3.5.5. To do this, the number f of slots per frame is set to a
large number. The value D0 is measured by additionally setting the delay elements
ε to 0. After the synchronization logic is con�gured, the arrival times of incoming
frames are measured in multiples of clock cycles according to the local time counters.
The transmission delays are then calculated according to equation 3.11.

Synchronization of the Network

To synchronize the network, the synchronization sublayer contains a single periodic general
synchronization
process

timer at each network node as well as an adjustable delay element within the trans-
mit data path of each MGT. The global synchronization is established by adjusting
the timers and the delay elements until the synchronization condition is met at each
node, i.e. all frames arrive at all MGT inputs properly aligned to frame boundaries.
The synchronization condition is detected by the phys_sync module within the pro-
grammable logic by verifying the arrival times of the SYNC characters of the data
frames (cf. section 4.4.1). It has been shown that the synchronization can be estab-
lished such that all timers at all network nodes are strictly synchronized by using
the shifted framing method. The network is synchronized by synchronizing currently
unsynchronized switches one by one via already synchronized adjacent switches to
the network. A node is synchronized to an adjacent node by adjusting its timer and
the delay elements on the corresponding link and by keeping the timer of the syn-
chronized node. If all timers have been set, the remaining delay elements between
the switches are set.

The synchronization process has to take care for the order in which the switches timers and delay
adjustmentare synchronized. The reason is that two timers might not be able to be adjusted

such that the delays at both switches are measured to the same value. This is caused
by the necessary sampling process of the distributed reference clock at each network
node, which can cause the measured delays to di�er by a single cycle. In this case, the
adjustment enforces to increase one of the two delay elements on the bidirectional link
for an even timer adjustment. The problem is that the bidirectional measurement
does not allow to decide which of the two timers to modify. In this case, the timers
of both switches are therefore not physically synchronized, but rather logically.

If multiple adjacent switches are synchronized to each other within the same accumulation of
time shiftsnetwork segment, these errors can accumulate. The problem is illustrated in �g-

ure 4.37(a). The �gure shows four switches, which are synchronized in clockwise
order. The numbers written at the switches denote the absolute shifts in their local
timers caused by asymmetric samplings of the links. The switches A to C are already
synchronized and D has been synchronized to C. Finally D has to be synchronized to
A. The timer shift between A and D is three cycles due to the selected order. Since
all timers are adjusted, this last step is done purely by adjusting the delay elements.

200 Introduction

Although this e�ect does not hinder the establishment of the synchronization, this is
generally unwanted since the transmission delay should be kept as small as possible.

0 +1

+3 +2

A B

CD

(a)

0 +1

+1 +2

A B

CD

(b)

Figure 4.37: Synchronization order of adjacent network nodes. Each node features a single
timer and a separate delay element at each link output: (a) Accumulation of timer shifts of
adjacent network nodes due to a non-optimal synchronization order; (b) An improved order
reduces the timer shifts.

As a general solution for all network topologies, this e�ect is reduced by a carefulmulti-pass
synchronization selection of the order of the nodes such that long topological circles are avoided.

This can be done by executing the synchronization in multiples passes. It starts
at a particular node and is extended node by node via all adjacent nodes to the
boundaries of the network. Multiple nodes are selected in each pass. The selection
comprises all network nodes with the largest number of adjacent nodes that have
already been synchronized in previous passes (cf. �gure 4.37(b)). The described
process is implemented within the executable mgtsync.

4.10.2 Connection Mapping

The program mapping calculates the contention-free slot assignment to con�gure thefunctionality

routing tables of the switches according to the required connections from given neural
netlists. The connection mapping is the second step of the initialization phase after
the synchronization has been performed. The important algorithms of the connection
mapping process have been described in section 3.6. The data �ow of the mapping
program is illustrated in �gure 4.38.

The program mapping takes the following information as input:input data

1. The neural netlist, organized as an adjacency list of the synaptic connections
of each neuron to other neurons. The neurons are simply numbered.

2. The neuron placement, which is a location assignment for each neuron of the
netlist to its physical counterpart within an ANN chip. The placement is
calculated previously and is part of the information to be provided by the
user. This neuron mapping should minimize the resulting inter-chip bandwidth
requests for isochronous connections (cf. �gure 2.11 of section 2.3.3).

3. Command-line parameters, which control the synchronization setting, the di-
vision of the frames into mapping periods as well as the number of local ports

4.10. SOFTWARE DEVELOPMENT 201

of the digital design to adjust the amount of programmable logic. The number
of slots per connection can be increased for heavily loaded connections.

4. A hardware description of the network topology in terms of backplanes, network
modules and its interconnecting MGTs. The parts are organized in text�les.

The netlist, the neuron mapping information and the description of the hardware
topology are provided as text-�les. The mapping program tries to �nd a valid map-
ping without further control by the user. The algorithm may succeed or fail during
its execution. Besides the given netlist or the hardware topology, the success mainly
depends on the con�gured number of usable time slots per reservation period. After
the program completes, the following information are calculated:

1. A neuron-interconnectivity matrix that illustrates the connectivity of the given
neural netlist.

2. Statistical information about the neural network: the distribution of the num-
ber of outputs or inputs per neuron, the distribution of the number of neurons
per connection etc.

3. The routing tables for the switches.

4. Detailed routing information of single inter-neuron connections for the ANN
controllers. This is required for the cycle-accurate simulation for large-scale
neural networks on the framework (cf. section 5.6).

Functional Description

The mapping program executes several stages. No further user interaction is required. data �ow

In particular, mapping performs the following tasks:

1. The program converts the netlist information of inter-neuron connections and generation of
connection
requests

the physical positions of the placed neurons into requests for isochronous con-
nections between the chips. To reduce the number of isochronous connections,
all synaptic connections between neurons on the same source and destination
chips are grouped to a single connection. The maximum number of connections
is therefore n(n− 1) with n being the number of chips. The number of synap-
tic connections that are transported within the same isochronous connection
determines its bandwidth requirement. The bandwidth requirement depends
solely on the number of source neurons and is independent of the number of
the used synaptic inputs on the destination chip.

2. Algorithm 3.6.1 of section 3.6.2 is executed to assign an appropriate number bandwidth
quantizationof time slots to each connection according to its bandwidth demands. The

user can control the maximum number of neuron data transported within a
single slot with a command-line parameter. Without setting this parameter,
the program assigns a single slot for each connection.

3. The connections are routed using algorithm 3.6.2. The algorithm selects a set of routing

consecutive physical links between the end-points of each connection. Mapping
uses the shortest-path algorithm from Dijkstra [143] for this as discussed in
section 3.6.3. The algorithm uses link weights to calculate a cost for each

202 Introduction

neuron placement
mapping.txt

neural network netlist
netlist.txt

network topology
hardware.txt

grouping of neurons, generation of
connectionsinter-chip

connection requests with
individual bandwidth requirements

bandwidth quantization,
assignment of slot count

global routing

calculation of contention-free assignment

network statistics:

logical slot shift per link: s

calculation of
QoS results

routing tables
table<n>.txt

hardware assignment
of modeled neurons

synaptic
interconnections

connectivity matrix:
neurons / connection:
distrib. of neuron outputs:
distrib. of neuron inputs:

neuron_plotfile
connection_loads.txt
neuron_outputs.txt
neuron_inputs.txt

collisions at intermediate links

maximum number of

neurons per data slot: l

number of time slots

per data period: m

number of local ports: p

list of assigned connections:
connection_slotloads.txt

genration of
routing tables

number of slots per frame: f

ANN controller config
ctrlr<n>.txt

Figure 4.38: Schematic of the data �ow of the program mapping. The dotted rectangle
contains the three main algorithms of the connection mapping process: quantization, routing
and contention resolution. The parameters m, l, s and p are denoted via command line.

possible route. After a route has been selected for a connection, the weights of
the used links are increased by its number of time slots to balance the routing of
succeeding connections. Short-range connections are routed before long-range
connections.

4. The program calculates the contention-free assignment of the slot positionscalculation of
contention-free
assignment

of each connection at each link. The used algorithm does not di�er between
�xed framing and shifted framing. Fixed framing is implemented simply by
setting the slot shift se = 0 at all links. The assignment problem is solved
by a conversion into the problem of �nding a vertex-coloring of a directed
graph as described in algorithm 3.6.4 of section 3.6.4. The vertex coloring is
implemented with the selection rule from Brelaz [13, 146]. The rule denotes
the next vertex to color. It is selected as the vertex with the largest number of
di�erent colors of colored adjacent vertices. The maximum number of colors
equals the number of time slots per reservation period.

5. The result of the vertex coloring is transformed back to the initial slot assign-generation of
routing tables ment problem. The calculated colors of the vertices represent slot positions at

the start nodes of the connections. The slot positions denote the times when

4.10. SOFTWARE DEVELOPMENT 203

the corresponding application is allowed to transmit data to the network. The
slot positions at intermediate links result out of the slot shifts se as described
in section 3.6.4. The assignment is used to generate the routing tables, a list
of connections and a table that assigns single inter-neuron connections to lo-
cal switch ports. The latter information is required for the high-level software
simulation of the setup (cf. section 5.6).

6. The program calculates the resulting QoS delay and jitter values for each con- calculation of
statistical resultsnection as well as statistic results about the performance of the slot assignment.

This implies the mean values for delay, jitter and the available physical band-
width calculated over all connections.

The results of the mapping process are printed to screen and also stored in text-
�les. The performance of the connection mapping program mainly depends on the
performance of the vertex color algorithm. The algorithm mail fail during the steps
3 or 4. In this case, the user can restart the program with two modi�cations: First,
larger reservation periods for a �ner division of the bandwidth into time slots. Second,
an increased amount of local ports to reduces contentions at the local ports. The
latter requires to synthesize the hardware design with a larger number of local ports.
The results for di�erent neural networks are evaluated in section 5.5.

4.10.3 Con�guration of the Routing Tables

The program mgtroute controls two di�erent parts of the digital design: the routing features

tables within the switches and the functionalities of the demonstrator application
for connection-based tra�c (cf. section 4.8.2). The routing tables store the input
port numbers and output port numbers that have to be connected for each slot
0 . . . f−1. The routing tables are generated by the mapping program described in the
previous section. The program mgtroute is controlled by command-line parameters.
In particular, the program can be used for the following tasks:

1. To modify and list single table entries.

2. To modify and list whole routes between distant switches.

3. To load the complete set of routing tables generated by the mapping program.

4. To access the demonstrator application for connection-based tra�c, e.g. to
start synchronous transfers by using the GSS and to verify the content of the
transmitted data within the receive bu�ers.

After the routing tables have been con�gured, mgtroute can be used to verify the
transmission of data within isochronous connections. The program writes random
test-data into the transmit bu�ers of the demonstrator application and initiates the
synchronous transfer of data within all connections by raising a GSS at the node 0.
It veri�es the appearance of the transmitted data at the correct addresses within the
receive-bu�ers at the destination nodes. The test checks the correct transfer with the
precision of a global clock cycle of 6.4 ns. The program �nally prints the calculated
error rates for the physical transmissions.

204 Introduction

4.10.4 Generation of Pseudo-Random Networks

The performance of the connection mapping algorithm has been evaluated using a setgeneration of
test-networks of pseudo-random neural networks. The networks have been created with the script

generate_networks.py written by Dr. Johannes Fieres. The script is able to use
all available physical neurons and synapses for the generation of neural networks of
di�erent topologies. The term pseudo-random means that the available connectivity-
resources of the chips (e.g. the available inputs of the network blocks) are divided
at random over the neurons.

The script has the following con�gurable features:features

1. A con�gurable number of chips, neurons per chips, synapses and inputs per
network block.

2. A con�gurable physical topology. This also allows the creation of feed-forward
networks in the case that the available inter-chip connections are denoted to
the script accordingly.

3. An option to control the synaptic connectivity between the neurons depending
on the physical hop-distance of the transport network between the chips. This
is used to model a distance-dependent connectivity and to reduce the network
load.

The generated networks are stored into two �les that specify the resulting netlist
(netlist.txt) together with a valid neuron mapping of the netlist to the ANN
hardware (mapping.txt).

Description of the Generation Algorithm

As discussed in section 2.3.3, the limited input count (the number of synapse drivers)input-count
limitation of the network blocks of the ANN chips hinders arbitrary networks to be mapped to

the hardware without losses of neurons or synapses. In particular, fully connected
networks or randomly connected networks can be implemented only within a single
network block. The algorithm of the script therefore keeps to the limited input count
and generates networks with a reduced connectivity that can be mapped to the given
ANN hardware without losses.

The algorithm is illustrated in �gure 4.39. It divides the available inputs of eachdistribution of
inputs block in multiple groups. Each group belongs to a particular chip. The number of

groups and their size depend on the selected network topology. The inter-neuron
connections between the ANN chips are generated with respect to the groups: For
each input, a neuron of the corresponding ANN chip is selected at random as its
source neuron. The destination neurons of the input can be all neurons of the
corresponding network block. Inter-neuron connections between the source neuron
of the input and local neurons of the chip are established by enabling the synapses
of the corresponding synapse driver. The number of synapses to be enabled (i.e.
the number of destination neurons) depends on the desired hardware e�ciency and
connectivity.

The resulting networks have a pseudo-random character, since the source neuronsrandomness
against hardware
e�ciency

and the destination neurons are selected at random out of the possible ones. Fur-
thermore, the grouping of inputs is done equally among the possible chips. Although

4.10. SOFTWARE DEVELOPMENT 205

0 1 2 3 4 5

0

1

2

3

network block

synapse
array

destination neurons

inputs
(synapse
drivers)

source neurons

transport
network transport network

ANN B

nb3 nb4

ANN A

na3 na4

group A

group B

nb1 nb2

na1 na2

Figure 4.39: Generation of pseudo-random networks. The inputs are divided into groups
and assigned to the ANN chips. The particular neurons at the source ANN and at the
destination ANN are selected at random. All source neurons of a block share its local
destination neurons depending on the fraction of the local synapses to be used.

the algorithm allows to use up to 100% of all neurons and all synapses, the user
has to trade the resulting randomness against the hardware e�ciency: The usage of
all available synapses results in the fact that all neurons that transmit data to the
same network block share the same destination neurons. Furthermore, the possible
numbers of destination neurons is reduced to multiples of the neurons per network
block.

Example Consider a backplane fully equipped with 16 Spikey ANN chips. The pseudo-random,
16 Spikeysbackplane provides the total of 6144 neurons and 1572864 synapses within 32 network

blocks. To use all available hardware resources, the 256 inputs of each network block
are divided into 16 groups according to the 16 ANN chips. Each group is assigned
256/16 = 16 source neurons from its corresponding ANN. Since all synapses are
activated, the data from each input is forwarded to all local neurons. The resulting
network requires 16 · 15 = 240 inter-chip connections to be implemented within
isochronous connections. Each connection transports the data of ≤ 2 · 16 neurons
to the two network blocks on the destination chip (the probability that any source
neuron is selected at random for both network blocks on the destination chip is small).
The inter-neuron connectivity matrix of the resulting network is shown in �gure 4.40.

4.10.5 High-Level Simulation of the Packet-Switch incl. Scheduler

The software switchtest simulates an input-queued packet-switch. It has been
developed in conjunction with the digital design of the bypass-switch. The switch
simulator features a large set of con�guration parameters and can be used as a
universal tool to model input-bu�ered packet switches with VOQs. Although there
exist a number of software simulators for computer networks and switches (see e.g.
[2, 132, 102]), the switching technology developed in this thesis required an individual
solution.

The switch simulator has been used for two di�erent purposes during the devel- purpose

206 Introduction

chip 0

chip 1

chip 2

source neuron

destination neuron

chip 2chip 1chip 0

synaptic connections
chip 1 to chip 2

256 inputs
per network block

Figure 4.40: Extract of the inter-neuron connectivity matrix of a generated pseudo-random
network of 16 Spikey ANN chips with the maximum possible number of synaptic connec-
tions. Each inter-chip connection transports the data of up to 32 neurons.

opment of the transport network:

• The simulation of the performance of the bypass-switch under di�erent tra�c
conditions, di�erent schedulers and di�erent con�gurations with focus on the
result of the best-e�ort packet scheduler and the required sizes of the input-
queues. This helped to select the scheduler to be implemented in the digital
design that is best adopted to the problem.

• The veri�cation of the correctness of the implemented digital design during its
development against the existing software implementations.

The software is written in the object-oriented language C++. An overview of the
simulated switch is shown in �gure 4.41. The simulator has the following features:

• The architecture of the modeled switch is the bypass-switch described in sec-input-queued
switch tion 3.8.3. The modeled parts of the switch have been reduced to the parts

necessary to evaluate the performance of the best-e�ort scheduler. That is, the
software models the arrival process of the packets, the storing of the packets
into the VOQs, the appearance of reserved slots, the queuing bypasses and the
central scheduler.

• The timing of the simulation is based on consecutive time slots to model theslot-based timing

MCGN framing scheme. The grouping of slots to time frames is not modeled
since this is invisible to the best-e�ort scheduler of the bypass-switch. Packets
can be placed in a single slot or also be extended over multiple slots. Packets
from di�erent inputs are not merged within consecutive time slots according
to the MCGN speci�cation.

4.10. SOFTWARE DEVELOPMENT 207

• The packet are transported as best-e�ort tra�c in unreserved slots. The ar- reserved and
best-e�ort tra�crival patterns of both tra�c classes can be con�gured: best-e�ort packets are

generated with uniform Bernoulli i.i.d. arrivals. Reserved tra�c can be con-
�gured with di�erent periodic reservation patterns. The interaction between
both classes is controlled by enabling or disabling the queuing bypass.

• The software description of the evaluated best-e�ort scheduler is accessed via object-oriented
scheduler
interface

a universal object-oriented interface. This allows to easily investigate further
scheduler types and also queuing policies for their feasibility for the digital
design.

• A large set of parameters allows a detailed modeling of the incoming tra�c large set of
parameters(packet sizes, burst modes), the architecture of the switch (queue sizes, port

numbers, enabling of the queuing bypass) or the behavior of the schedulers
(types, iterations, duration of the calculation). The same architecture-speci�c
parameters are also available to con�gure the digital design.

The advantage of the developed simulator compared to other simulators is its rich
set of con�guration parameters. The bypass-switch is only a sub-case of the possible
con�gurations. As an example, a common (slot-based) input-bu�ered packet-switch
with VOQs is modeled by the simulator by disabling reserved tra�c and by reducing
the packet-size to a single slot.

reservation
pattern

scheduler
requests packet scheduler

(crossbar)

departure
processes

arrival
processes

hold
scheduling
result

request generation

input queues
(virtual-output queues)

scheduler
under test

reservation pattern

denote
selected
queues

Figure 4.41: Block-level schematic of the developed software for the simulation of the behav-
ior of an input-queued packet-witch. The data path is reduced to the storing of the packets
into the queues and its removal from the queues (thick lines). Dotted parts illustrate the
functionality of the bypass-switch, but are not existent within the simulation. Thin lines
denote control signals (requests, selects, etc.). Crossed lines demote a bus of multiple signals.

Functional Description

The switch simulator models the number of packets within the queues over time modeled parts

208 Introduction

according to the scheduler results. Since no data is transferred, the crossbar and the
output ports of the switch are e�ectively not modeled. The result of the scheduler is
taken to denote the a�ected queues which packets are to be taken out. The simulator
does not distinct the ports between local ports or global ports, but handles each port
identically.

The switch operates in a slotted timing. Incoming tra�c is generated by andata �ow

independent arrival process at each port. The arrival process creates packets with
the con�gured number of slots with a given network load (arrival probability per
time slot). The packets are then stored into the queues or dropped depending on
the queue occupation. Queues that contain packets request the central best-e�ort
scheduler. The scheduling is executed each time slot. Ports that are marked as
reserved in the following slot are excluded from the scheduling. The scheduling
result is denoted to the departure processes, which remove the packets from selected
queues slot by slot. According to the framing scheme of the bypass-switch, the
requests to the scheduler from the queues keep to the currently departing packet
until it is transmitted completely. To evaluate the performance of the scheduler,
the simulator collects statistical information like the number of stored or dropped
packages or the average packet delay during runtime.

Usage

The switch simulator is controlled via command-line parameters. After been exe-command-line
usage cuted, it simulates the operation of the switch for a given number of time slots and

logs the number of stored and dropped packets. It �nally calculates statistical re-
sults, namely the mean packet delay, the delay deviation and the throughput. The
results are printed to screen and logged to a �le.

To verify the digital design of the switch against the software simulator, theveri�cation of the
digital design simulator can be con�gured to log the packet arrival patterns and the calculated

departure patterns in a text-�le. This �le is then interpreted by the testbench of
the digital design.The performance results of the di�erent simulated schedulers are
discussed in detail in section 5.7.

4.11 Summary

This chapter presented the implementation of the transport network for the researchimplemented
parts with hardware neural networks on the Stage 1 framework. The implementation con-

sists of functional block of a digital design described in VHDL as well as of C/C++
software. The transport network uses the MCGN network architecture for its lower
network layers to provide isochronous connections and packets, both transmitted via
the gigabit network of the framework. It has been shown, how the FPGA-internal
MGTs are used together with a global reference clock to establish a framework-wide
synchronization. The reference implementation of the bypass-switch has been de-
scribed. Two schedulers have been exemplarily implemented: The iSLIP scheduler
and variations of 2-dimensional crossbar schedulers. The network initialization phase
is executed with additional control software: to control the synchronization, to cal-
culate the contention-free slot assignment and to access the routing tables of the
switches.

4.11. SUMMARY 209

Since the network interface of the ANN controllers is not yet �nished, a demon- isochronous
connections and
packets

strator application has been developed to evaluate the suitability of the provided
isochronous connections. The application performs the synchronized transmission of
pseudo-events via isochronous connections and can be used as a starting point for
further development. The implementation of a DSM has been presented. The DSM
uses the best-e�ort packets of the underlying MCGN network for a framework-wide
transport of SDRAM-memory data. A simple ARQ protocol has been implemented
to ensure stability and data reliability.

The implementation of the transport network has been made towards a low con- universality

sumption of programmable logic. This is further eased due to the MCGN concept,
which moves the complexity of the contention-free routing from online to o�ine.
Both parts, the digital design and the software, are modular and hierarchic. The
communication between both parts use a standardized interface, the SlowControl
of the framework. Due to this, the transport network is a general tool. It is as-
sumed that the developed network can be applied to other applications that feature
programmable logic and software with only minor modi�cations.

210 Introduction

Chapter 5

Evaluation

This chapter describes the evaluation of the implemented transport net-
work, including the reference implementation of the MCGN architecture
for its lower network layers. It is shown that the implemented network
is well suited for the research with hardware neural networks within the
FACETS Stage 1 framework of the Electronic Vision(s) group. The chap-
ter �rst evaluates the performance of the lower network layers, namely
the reliability of the physical data, the transmission delays and the stabil-
ity of the global synchronization. The suitability of the transport network
for the interconnection of ANN chips is shown by the evaluation of the
provided bandwidth depending on di�erent neural network topologies. The
isochronicity of the provided connections is veri�ed by cycle-accurate on-
line measurements. Finally, simulation results are shown to discuss the
performance of the implemented best-e�ort schedulers.

5.1 Evaluation of the Physical Layer

The physical layer of the transport network consists of the backplane hardware and
the MGTs, which are embedded within the FPGAs. Concerning the digital design,
the implementation of the physical layer is reduced to the con�guration of the MGTs.
The con�guration is required to maximize the reliability of the transmitted data.

5.1.1 Measurement of the Data Reliability

The data reliability of the MGT transmissions depends on the qualities of the ex- physical
dependenciesternal signals, which itself depends on the physical environment such as the jitter

quality of the oscillator of the global reference clock, the power stability, the type
of the connectors or the routing of the di�erential signal traces (see e.g. chapter 3
of [157]). The physical properties of the backplane and the Nathan network modules
are described in [46].

211

212 Introduction

The MGTs can be adjusted to the physical environment with two parameters: themeasurement

pre-emphasis (10% to 33%) and the di�erential voltage swing (400mV to 800mV)
of the transmitter circuit. The in�uence of both parameters has been tested with a
digital design that contains a plug-able module for the dynamic re-con�guration of
the MGT parameters at runtime [26]. The test-design constantly transmits packets
of 64 byte at all MGT outputs. Each packets contains pseudo-random patterns
generated with a LFSR [109] plus the MGT-internal 32-bit CRC checksum. The
data integrity of the transmissions is monitored at the destination by verifying the
CRCs and counting the transmission errors.

The results of the measurements are illustrated in the �gures 5.1 and 5.2. Theillustration of
results measured values denote error-rates per 64-byte packet. Each diagram has four pa-

rameters: the Nathan locations, MGT location as well as the selected voltage level
and pre-emphasis. The MGT locations SW,SE,NW,NE correspond to the center bottom
and top MGTs of the xc2vp7 FPGA, whose external pins are routed to the backplane
connector (cf. section 4.3.2 or [46]).

10 % 20 % 25 % 33 %

400 mV

500 mV

600 mV

700 mV

800 mV

selected setting

Nathan location: 0..15 pre-emphasis

MGT
location: SW .. NE

Figure 5.1: Measurement of the MGT error rates for packets of 64 byte sorted by electrical
parameters. The parameters 700mV and 25% pre-emphasis have been selected for all MGTs.

It can be seen from the diagrams that the two MGTs at the bottom of theresulting error
rates FPGA feature lower error rates. This is since the bottom MGTs are clocked by the

brefclk with lower jitter and have shorter trace lines on the Nathan modules. There
is no set of parameters that results in error-free transmissions. The best results are
achieved for the parameters 700mV and 25% pre-emphasis. This values have been
set for all MGTs as the standard con�guration parameters for all digital designs (cf.
also, table 4.2). For this setting, the packet error probabilities are 10−5 to 10−9,
which correspond to a slot error probability of 6.3 · 10−7 to 6.3 · 10−11 and bit error

5.2. EVALUATION OF THE SYNCHRONIZATION SUBLAYER 213

MGT SW

MGT SE

MGT NW

MGT NW

MGT error N13 N14

pre-emphasis: 10% .. 33%

diff swing
400mV..800mV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.2: Measurement of the MGT error rates for packets of 64 byte sorted by physical
locations. The two MGTs at the bottom of the network modules feature lower error rates.
The lower MGTs use the brefclk with lower jitter and have shorter signal traces on the
Nathan network modules.

probabilities1 of 2 · 10−8 to 2 · 10−12. The mean-times between errors result in 16ms
to 163 s at the selected line rate of 3.125Gbit/s.

5.2 Evaluation of the Synchronization Sublayer

The purpose of the synchronization sublayer is to ensure a deterministic timing of
the framework. During the synchronization process, the internal time counters of
each node are synchronized and the number f of slots per frame, the logical slot
shift se of each link e and the resulting transmission delays De between the inputs
of adjacent switches are �xed. Due to the regular topology of the backplane, the
synchronization is established with the same values se = s and De = D on all links.
The following sections evaluate the resulting values for s and D and measure the
synchronization stability.

The tests haven been performed with a fully equipped backplane with 16 Nathan

modules. The digital design within the FPGAs comprises the synchronization mod-
ule phys_sync, a single isochronous switch (without best-e�ort support) and the
demonstrator application for isochronous connections of section 4.8.2.

5.2.1 Measurement of the Transmission Delays

In a �rst step, the minimum possible values D0 of the physical transmission delays setup

between adjacent switches are measured and compared to the simulated values. This

1In fact, the exact bit error rate (BER) is unknown do to the 8b/10b encoding of the transceivers.
The denoted error rates correspond to the user data.

214 Introduction

is done with the software mgtsync of section 4.10.1. The measurement is done by
monitoring the local arrival times of incoming frames with the setting ε=0, se=0
and by applying the minimum-delay-patch for the MGTs. The resulting delays are
calculated by using equation 3.11.

Table 5.1 shows the measured results. It can be seen that the measured transmis-delay results

sion delays vary between 22 and 23 clock cycles. Non-integer values denote measured
delays of an even and also an uneven number of cycles in both directions of a bidi-
rectional link. The synchronization sublayer features an internal delay of three clock
cycles. The measured delays of the physical layer (the data path from MGT to
MGT) are therefore

D0 = 19 . . . 20 cycles. (5.1)

The simulation of the digital design with the Modelsim [94] simulator resulted in
20 cycles for the delay-reduced MGTs (cf. 4.4.4). Both values are in very good
accordance.

Nathan MGT_SW MGT_SE MGT_NW MGT_NE
module AF /BF D0 AF /BF D0 AF /BF D0 AF /BF D0

0 22/ 22 22.0 23/ 22 22.5 23/ 23 23.0 11/ 35 23.0
1 22/ 22 22.0 22/ 22 22.0 23/ 23 23.0 17/ 29 23.0
2 22/ 22 22.0 29/ 17 23.0 23/ 23 23.0 23/ 22 22.5
3 22/ 22 22.0 29/ 16 22.5 23/ 23 23.0 23/ 23 23.0
4 22/ 22 22.0 29/ 16 22.5 11/ 34 22.5 23/ 23 23.0
5 22/ 22 22.0 11/ 35 23.0 17/ 28 22.5 22/ 23 22.5
6 16/ 29 22.5 17/ 28 22.5 28/ 17 22.5 29/ 17 23.0
7 29/ 16 22.5 23/ 22 22.5 34/ 11 22.5 35/ 11 23.0
8 24/ 22 23.0 22/ 23 22.5 41/ 5 23.0 35/ 10 22.5
9 22/ 24 23.0 28/ 17 22.5 21/ 24 22.5 33/ 11 22.0
10 40/ 4 22.0 35/ 11 23.0 24/ 21 22.5 41/ 4 22.5
11 4/ 40 22.0 16/ 29 22.5 5/ 41 23.0 23/ 22 22.5
12 22/ 23 22.5 16/ 29 22.5 17/ 29 23.0 22/ 23 22.5
13 23/ 22 22.5 17/ 29 23.0 HWERR 4/ 41 22.5
14 23/ 21 22.0 22/ 22 22.0 HWERR 11/ 33 22.0
15 21/ 23 22.0 22/ 23 22.5 29/ 17 23.0 10/ 35 22.5

Table 5.1: Example measurement of the minimum transmission delays D0 of all 64 links of a
fully connected backplane. The delays vary due to the external sampling of the distributed
reference clock and the data alignment of the serial transceivers. One link between the
modules 13 and 14 is measured to be defect.

5.2.2 Establishment of the Synchronization

The synchronization is established with the software mgtsync of section 4.10.1. This
has been tested for multiple di�erent combinations of frame sizes f and the corre-
sponding slot shifts se. Since the measured values of D0 correspond to the simulated
values ofD0, the possible combinations of f and se equal the values listed in table 4.4.

The synchronization has been established successfully. Table 5.2 exemplarily listssuccessful
synchronization the output of the program mgtsync after a synchronization with f=11 slots per frame

5.2. EVALUATION OF THE SYNCHRONIZATION SUBLAYER 215

(22 cycles) and se=0. An output with similar values is achieved with the settings
f=60 slots and se=12 slots (with the command-line parameters f=120 cycles and
s=24 cycles), which results in the same values for the delay elements. It can be seen
that most of the delay elements are set to the value 1 as expected from table 4.4.
Since the synchronization �xes the transmission delays D on all links to the same
value, a repeated measurement of the transmission delays (with the same number f
and unchanged delay elements ε) after the synchronization results in measured timer
values of 2 · f + 2 cycles and a calculated time shift of 0 on all links as expected (cf.
table 5.3).

Nathan MGT_SW MGT_SE MGT_NW MGT_NE
module A B: state ε B: state ε B: state ε B: state ε

0 1: sync 1 15: sync 1 3: sync 1 7: sync 1
1 0: sync 1 14: sync 1 2: sync 1 6: sync 1
2 3: sync 2 13: sync 1 1: sync 2 5: sync 1
3 2: sync 0 12: sync 1 0: sync 1 4: sync 1
4 5: sync 0 11: sync 1 7: sync 1 3: sync 1
5 4: sync 2 10: sync 1 6: sync 2 2: sync 1
6 7: sync 1 9: sync 1 5: sync 0 1: sync 1
7 6: sync 2 8: sync 2 4: sync 1 0: sync 1
8 9: sync 1 7: sync 2 11: sync 2 15: sync 1
9 8: sync 2 6: sync 1 10: sync 1 14: sync 1
10 11: sync 3 5: sync 1 9: sync 2 13: sync 1
11 10: sync 0 4: sync 1 8: sync 1 12: sync 1
12 13: sync 1 3: sync 2 15: sync 1 11: sync 1
13 12: sync 2 2: sync 1 14: sync 2 10: sync 2
14 15: sync 1 1: sync 2 13: HWERR 0 9: sync 2
15 14: sync 2 0: sync 1 12: sync 1 8: sync 1

Table 5.2: Synchronization of 16 network modules on a single backplane with f = 11 slots per
frame. All modules are synchronized to a single clock cycle of 156.25 MHz. The adjustable
delay elements in the data path are set to values of 0 to 3 cycles. The forwarding of the
data slots is deterministic between the nodes to the precision of the synchronization. The
link failure from of 13 to node 14 is ignored during the synchronization.

Synchronization Stability

The stability of the synchronization is constantly checked within the phys_sync days to weeks

module of the digital design by monitoring the time of the appearance of the SYNC

character. Due to the usage of the unique global clock reference, the synchronization
remained stable for several days up to weeks (until the test has been aborted). Since
the duration of single neural network experiments is typically in the range of seconds
up to minutes, the stability of the synchronization is assumed to be su�cient.

216 Introduction

Nathan MGT_SW MGT_SE MGT_NW MGT_NE
module AF /BF D0 AF /BF D0 AF /BF D0 AF /BF D0

0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
1 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
2 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
3 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
4 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
5 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
6 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
7 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
8 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
9 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
10 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
11 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
12 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0
13 24/ 24 0.0 24/ 24 0.0 HWERR 24/ 24 0.0
14 24/ 24 0.0 24/ 24 0.0 HWERR 24/ 24 0.0
15 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0 24/ 24 0.0

Table 5.3: Repeated measurement of the transmission delays D after synchronization. All
nodes of the backplane have been synchronized and the delay is exactly 24 clock cycles
between all adjacent nodes.

5.3 Veri�cation of the Transport of Isochronous Data

Neural network data between ANN chips is transported via isochronous connections.
The characteristic feature of the isochronous connections is the guaranteed QoS.
It has already been shown that the QoS features in terms of throughput, delay and
jitter are guaranteed by design, i.e. by the deterministic timing of the synchronization
sublayer and the reservation of slots. The particular values depend on the framing
parameters and on the e�ciency of the mapping algorithm.

The following paragraphs evaluate the performance of the isochronous connec-
tions from the application layer. Since the throughput, the delay and the jitter rely
on the deterministic timing of the network, the investigated aspects are the correct
timing and the data reliability. The tests have been made with a digital design that
contains the demonstrator application for isochronous connections. The measure-
ments use the software mgtroute of section 4.10.3.

5.3.1 Measurement of Application-Layer Delays

The measurement of the transmission delays has been done using a bi-directionalprinciple of the
measurement route between two network nodes as illustrated in �gure 5.3. The application at one

network node (A) is selected to be the sending application, the second end-point
(B) is con�gured as a re�ector. The re�ection can be implemented either on the
data link layer (by con�guring the routing tables) or at the application layer (by
con�guring the application at node B to re�ect all incoming data). The application
A transmits a dedicated data value at the connection interface and counts the delay

5.3. VERIFICATION OF THE TRANSPORT OF ISOCHRONOUS DATA 217

until its arrival in multiples of clock cycles. The measurement is not a�ected by
the wait-jitter at the interface since the counter is started at the time the data is
transmitted into the connection.

b

B

a

A

demonstrator application

reflection at
application layer

reflection at
data link layer

Figure 5.3: Measurement of the delays of isochronous connections. Re�ections can be im-
plemented at the data link layer (by con�guring the forwarding tables) or at the application
layer (by re�ecting the incoming data). The illustrated example examines a bi-directional
connection of three hops.

The theoretical value for the transmission delays Dc of a connection c calculates theoretical values

out of the transmission delays D between the switches according to equation 3.22.
This delay is increased due to the implementation within the programmable logic for
the registered transmission and the registered reception of the data at the connection
interface of the switch, which requires a single cycle each. By denoting h as the
intermediate number of network hops, the theoretical delay therefore calculates to:

Dc = 2 · h ·D + 4 cycles (5.2)

for the re�ection at the application layer and

Dc = 2 · h ·D + 2 cycles (5.3)

for the re�ection at the data link layer.
The values for D slightly depend on the framing technique. For �xed framing e�ect of

synchronization
technique

(s=0), the values D are constant at all links and for all time slots. For shifted
framing, the values depend on the position i of the slot at the link: The delay D<

for 0 < i ≤ f − s and the delay D> for f − s < i ≤ f di�er by the size of the gap
(cf. section 3.7.3). If multiple hops are passed, the slot position i is shifted by s at
each link such that the particular hop delays may be D< and also D> on di�erent
hops. Connections that occupy a single slot therefore have a constant transmission
delay (by ignoring the wait time at the interface).

The connection delays have been measured for di�erent round-trips in the network
with a di�erent number of network hops. The measurements have been performed
with a synchronized network for three sets of framing parameters f , s and D. All
transmissions use the start slot qc = 0. Table 5.4 lists the measured round-trip de- measured results

lays. The measured values match exactly the theoretical ones from the equations 5.2
and 5.3 (at the last set of parameters, both values D< and D> have to be consid-
ered). Furthermore, the same values have also been veri�ed within the cycle-accurate
simulation of the digital design with the Modelsim [94] simulator. This shows that
the transport network has successfully been implemented to provide isochronous
connections with a deterministic timing to the application layer.

218 Introduction

f s D route hops re�ection cycles time per hop

11 0 24 (0) 0 data link 2 12.8 ns -

11 0 24 (0,1,0) 2 data link 50 320.0 ns 160.0 ns

11 0 24 (0,1,1,0) 2 application 52 332.8 ns 166.4 ns

11 0 24 (0,1,2,2,1,0) 4 application 100 640.0 ns 160.0 ns

11 0 24 (0,..,3,3,..,0) 6 application 148 947.2 ns 157.9 ns

11 0 24 (0,..,4,4,..,0) 8 application 196 1254.4 ns 156.8 ns

12 0 26 (0,1,0) 2 data link 54 345.6 ns 172.8 ns

12 0 26 (0,1,1,0) 2 application 56 358.4 ns 179.2 ns

12 0 26 (0,1,2,2,1,0) 4 application 108 691.2 ns 172.8 ns

12 0 26 (0,..,3,3,..,0) 6 application 160 1024.0 ns 170.7 ns

12 0 26 (0,..,4,4,..,0) 8 application 212 1356.8 ns 169.6 ns

60 12 24/26 (0,1,0) 2 data link 50 320.0 ns 160.0 ns

60 12 24/26 (0,1,1,0) 2 application 52 332.8 ns 166.4 ns

60 12 24/26 (0,1,2,2,1,0) 4 application 100 640.0 ns 160.0 ns

60 12 24/26 (0,..,3,3,..,0) 6 application 150 960.0 ns 160.0 ns

60 12 24/26 (0,..,4,4,..,0) 8 application 198 1267.2 ns 158.4 ns

Table 5.4: Measurement of the round-trip delays of isochronous connections for three di�er-
ent sets of framing parameters. All transmissions use the start slot 0. The measured values
match exactly the calculated and the simulated values.

Single-Hop Delay

The last column of table 5.4 also lists the mean per-hop delays for each connection.
The values show that the typical per-hop delay between the applications of two
adjacent network nodes that transmit data within isochronous connections results
to:

Dtypical = 160 ns . . . 180 ns. (5.4)

It is worth to mention that 20 clock cycles (128 ns ≈ 75%) of this value are caused
by the MGTs of the FPGAs, even after the reduction of its internal delays. The
delay of the remaining parts of the transport network (including the switches, the
synchronization logic and the interfaces at both network nodes) has been reduced to
only 5 to 7 clock cycles per hop!

5.3.2 Veri�cation of Isochronous Transfers

A next step is to simulate the execution of a neural network experiment to verify the
parallel transmissions of the isochronous data between all network modules. The part
of the ANN controller is performed by the demonstrator application for isochronous
connections. The test veri�es the following features:

• The synchronous start of the transmissions.

• The correct timing of the arrival of the isochronous data.

5.3. VERIFICATION OF THE TRANSPORT OF ISOCHRONOUS DATA 219

• The data integrity.

Table 5.5 summarizes the con�guration of the experiment. The network is �rst
synchronized using the program mgtsync. After that, a neural netlist is generated
that covers all 16 Nathan network modules. The network is mapped to the hardware
and the routing tables of the switches are con�gured accordingly (the single broken
link from node 13 to node 14 is left unused). The high-level control of the test is
performed with the program mgtroute.

The program �rst �lls the transmit bu�ers of all local ports on all network mod- test procedure

ules with random data. It then initiates the synchronous start of the transmissions
within the isochronous connections by raising a GSS at the network node 0. The
data is transferred to the destination nodes and stored within the receive bu�ers at
addresses according to the current local times (in terms of cycles). After the data
has been transferred, the appearance of all data at the correct addresses is veri�ed
by the software. This checks the data reliability as well as the correct timing of the
transmissions with the precision of a single clock cycle. Due to the storage according
to the timing and the small size of the DPBRAMs, only about 40 data slots per
connection are transferred within a single experiment. The described experiment is
therefore repeated in 50,000 runs by the software.

number of network nodes 16

framing parameters 12 slots, no shift

mapped network 240 connections, pseudo-random

mapping result 81.6% slot e�ciency (MGT 13-14 left out)

experimental runs 50,000 experiments, 12 h time

transmitted data 488,750,000 data slots (1.8 GByte)

erroneous slots 12

error rate (32 bit) 2.5 · 10−8

lost synchronization 0

Table 5.5: Experimental results for transmissions within isochronous connections. 50,000
Experiments have been run. The synchronization has shown to be absolutely stable. The
resulting error rate shows that far most of the transmissions have been performed with a
cycle-accurate timing without data errors.

As a result, all experiments have been successfully executed. The total amount of successful
operationabout 2 GByte of data has been transmitted. The execution time for the experiment

was about 12 h. For the main part of the time, the network was not transferring data,
but the software was clearing and verifying the contents of the receive bu�ers via the
SlowControl. The synchronization remained stable and no re-synchronization has
been necessary between single runs. The veri�cation of the received data resulted in
12 data errors, each within di�erent runs. The remaining 99.98% of all runs have
been executed without any error. This leads to the following conclusions:

• The timing of the isochronous transmissions has been veri�ed to be cycle-
accurate and deterministic.

220 Introduction

• It has been shown that the synchronization is stable over 12 h with random
data to be transferred in 50,000 runs.

• The synchronous start of transmissions using a GSS has been successfully ex-
ecuted 50,000 times without failure.

The number of the received errors further allows to calculate the mean error ratecalculation of
error probability for the parallel transfer of data within isochronous connections with the used slot

e�ciency of about 80%. The 12 errors result in a mean per-slot error probability of:

(2.5± 0.7) · 10−8 (mean slot error probability) (5.5)

This number can be seen as a mean value that corresponds to the transmissions over
all links of the backplane (expect the erroneous one from slot 13 to slot 14). The
calculated error value is in accordance with the error rates that are measured with
the CRC function of the MGTs of 6.3 · 10−7 to 6.3 · 10−11 for the particular links.
It has further been shown that the data errors a�ect certain links more often than
others, which are completely error-free. This also corresponds to the measurements
of section 5.1.1.

5.4 Discussion of the Neural Network Topologies

The previous sections veri�ed the physical properties of the transport network and
proved its ability to establish isochronous connections on the Stage 1 framework.
This section now quanti�es the provided services to give an intention of which neural
network topologies (i.e. netlists) can be operated on the hardware. The possible
networks are limited basically by three factors:

• The input count of the ANN chips limits the netlists that can be mapped onto
the hardware without a loss of neurons during the neuron mapping process.

• The available physical bandwidth of the framework limits the amount of neuron
data to be transported between the chips at runtime

• The e�ciency of the connection mapping process limits the fraction of the
physical bandwidth, which is available for neuron data.

The following discussion is reduced to netlists that can be mapped to the hard-generated
pseudo-random
netlists

ware without any loss of neurons. The netlists and its corresponding neuron map-
ping are created with the network generator script of section 4.10.4, which generates
pseudo-random networks optimized for the hardware of the Stage 1 framework.

In a next step, the created networks are taken as input for the implementedconnection
mapping of the
netlists

connection mapping software, which maps the bandwidth between the neurons to the
physical bandwidth and calculates the contention-free slot assignment. The resulting
assignment is analyzed to calculate the mean QoS values of throughput, delay and
jitter. Each network topology can therefore be assigned a maximum physical mean
rate for its neural data. This section therefore is both, a performance evaluation
of the connection mapping process and also a discussion of the possible networks,
which can be operated on the Stage 1 framework.

Concerning the HAGEN chip, the required amount of data to be transported is de-di�erence
between HAGEN
and Spikey

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 221

terministic and constant and can be directly calculated out of the network topology.
It is therefore possible to calculate a maximum frequency fnet for the clocked oper-
ation of its network. Concerning the Spikey chip, the calculated available physical
bandwidth corresponds to a physical mean spike frequency ν of its single neurons.
In contrast to the HAGEN chip, the spike frequencies of the neurons of the Spikey

chip di�er in a wide range depending on a number of parameters like the con�gured
synaptic timing parameters, the neuron timing parameters, the network topology or
the network stimulation. The resulting values are therefore only an indication about
the amount of expected event losses or for the possible speedup µ at which the ANN
chip can be operated.

5.4.1 Characterization of Neural Network Topologies

The characterization of di�erent neural network topologies is made by de�ning a set presumptions

of classi�ers. The calculation of the described classi�ers is implemented within the
connection mapping software of section 4.10.2.

Classi�er 1: Number of Isochronous Connections

The �rst step of the mapping software is the extraction of the inter-chip connections group
inter-neuron
connections

out of the synaptic inter-neuron connections that are de�ned by the netlist. An
inter-chip connection cAB ∈ C is created for each combination of two chips A and
B for which A has one or multiple neurons that transmit neural data to synaptic
inputs of neurons on chip B. The connection cAB transports the aggregated network
data of all of the corresponding neurons on A to B.

The grouping of multiple neurons reduces the administrative overhead for the improved
bandwidth
e�ciency

transport network. Concerning the Spikey ANN, its neural data is generated sta-
tistically by the spike events of single neurons. It is expected that the grouping of
multiple synaptic connections to a single inter-chip connections evens the required
data rate by the law of large numbers and thus results in a more e�cient band-
width usage. The optimum bandwidth e�ciency is achieved further if all inter-chip
connections have to transport roughly the data of the same amounts of neurons.

The total number ‖C‖ of inter-chip connections and the distance between the example

ANN chips to be connected are critical parameters for the connection mapping algo-
rithm. This is because each connection requires at least a single slot to be reserved
exclusively for it along the links of its route. As an example, the maximum number
of inter-chip connections of a network with n chips is required in the case that each
chip receives neural data from at least a single neuron of all other chips.

‖C‖max = n(n− 1) = O(n2) (5.6)

This is the case for fully connected networks or for the typical pseudo-random net-
works, which are created by the generator script without further optimizations. To
reduce the computational task of the connection mapping algorithm, the number of
connections can be reduced by an optimized placing of given netlists or by generating
the networks accordingly.

222 Introduction

Classi�er 2: Hop Ratios

The hop ratios are a notation to denote the distribution and the ratios of the numberde�nition

of network hops of the inter-chip connections. This is worth to be considered since the
number of network hops of the connections a�ects the performance of the mapping
algorithm and the resulting transmission delay and is also a general classi�er of the
connectivity of the network. To be more precise, the hop ratios are denoted as a set of
numbers separated by colons that correspond to the relative amount of neuron data
that has to be transported within connections of a number of hops that correspond
to the position of the numbers within the notation. The �rst number corresponds
to 0 hops, the second number to 1-hop connections etc. The fraction of neurons
which is interconnected on-chip compared to the number that is connected o�-chip
(between the chips) equals the �rst value divided by the sum of the remaining ones.

As an example, the hop ratiosexample

1 : 1 : 0 : 0 : 0 (5.7)

correspond to a network of which 50% of the neuron data is transferred on-chip (0
hops) and 50% of the neuron data is transferred to adjacent nodes (1 hop). No
connections with a larger number of hops exist (the last three numbers are all 0).
The hop ratios

1 : 2 : 1 : 0 : 0 (5.8)

corresponds to a network with 25% of the connections on-chip, 50% to adjacent
nodes and 25% of the neuron data is transferred over two hops.

The hop ratios are an indication about the required amount of bandwidth for
a given (placed) network. The important aspect is that it is possible to generate
networks with di�erent topologies that all use 100% of the neurons and the synapses,
but which have di�erent hop ratios and thus a di�erent bandwidth requirement.

Classi�er 3: Network Load

The bandwidth requirement of a netlist that has been mapped to the hardware cande�nition

be measured by the network load L, which is de�ned as the number of neurons that
transmit data from or via a physical instance:

• The network load of a connection c between the two ANN chips A and B isnetwork load of a
connection de�ned as the number ‖Nc‖ of neurons within the set Nc of source neurons of

c on A.
Lc = ‖Nc‖ (5.9)

Since each connection is assigned a dedicated number of data slots by the
connection mapping algorithm, the value of Lc determines the mean bandwidth
that is available for a single neuron and thus the event drop ratio depending
on its mean physical spike frequency.

• The network load Le of a physical link e is de�ned as the number of neuronsnetwork load of a
physical link that transmit data via that link:

Le =
∑

c:e∈rc

Lc, (5.10)

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 223

where rc = {e1, e2, ... : ei ∈ E} denotes the route of connection c. The partic-
ular values for the links Le can be compared to get a measure of how even the
network has been mapped onto the physical hardware.

• Using these de�nitions, the total network load Ltot of a con�gured neural net- total network
loadwork that has been mapped to the physical ANN hardware can be de�ned:

Ltot =
∑

e

Le =
∑

c

Lc · hc (5.11)

where hc = ‖rc‖ denotes the number of physical links on the global route
of connections c between its source ANN chip and its destination ANN chip.
The total network load respects the number of network hops of the particular
connections. It is thus a measure for how much physical bandwidth a given
neural network topology requires and allows to compare the di�erent topologies
in terms of their total bandwidth usage. In the case that the neural network
topology consists only of chip-internal feedbacks, C = ∅ and Ltot = 0. The
equality can be seen by∑

e

Le =
∑

e

∑
c:e∈rc

Lc =
∑

c

∑
e:e∈rc

Lc =
∑

c

Lc · hc (5.12)

Care has to be taken in the case that the netlist has been placed to the hardware pre-mapping
valuesbut the routing of the connections has not yet been performed by the connection

mapping algorithm. In this case, the routes rc of the inter-chip connections c ∈ C
are unde�ned and such are the above de�nitions of Le and Ltot. To have a preliminary
characterization of unrouted networks, the total network load can be provisionally
de�ned as L′tot in analog to the above formula using the routes r′AB that equal the
shortest path from A to B. Since the mapping algorithm may be forced to select
longer routes during the routing process, Ltot ≥ L′tot. The preliminary mean load of
the physical links e ∈ E can then be estimated by

L
′
e =

L′tot

‖E‖
(5.13)

5.4.2 Calculations for Neural Networks on the Backplane

The network classi�ers presented above allow to quantify di�erent network topolo-
gies. The following paragraphs use these quali�ers on neural networks that are
mapped onto the hardware of the backplane. The considerations are made for highly
interconnected networks at which each ANN has at least a single neuron of any ANN
as input. The number of inter-chip connections of such a network with n chips is
‖C‖ = n(n − 1) as stated above. Note that this does not require a similar load Lc

for the particular connections.
It has been shown in section 2.2.3 that the topology of the backplane equals a 4- cubic topology

dimensional binary cube, which can be extended to higher dimensions d > 4 by using
the additional links on top of the Nathan network modules. This knowledge and the
above de�nitions allow pre-calculations to be made for highly interconnected net-
works without knowing the exact con�guration of the neural network to be mapped,
which is done next.

224 Introduction

The Hop Ratios for the Cubic Backplane Topology A d-dimensional binary
cube contains n = 2d nodes as well as ‖E‖ = d · n unidirectional links. Since not all
nodes are physically connected, the shortest path between two nodes varies between
h = 1 . . . d. The number nh of network nodes in distance h within the d-dimensional
binary cubic topology equals:

nh =
(
d

h

)
(number of chips in distance h) (5.14)

For highly interconnected networks, the number of connections with a certain amount
of hops equals the number of ANN chips at this hop distance, which are described
by equation 5.14. The numbers are therefore denoted as the intrinsic hop ratios
of the binary cube in the following. As an example, the intrinsic hop ratios of
a homogeneous 16-chip pseudo-random network are 1:4:6:4:1. A highly connected
network has far more connections of medium hop-distance than of close-distance or
far distance. The fraction of inter-neuron connections that are routed between the
chips is 93.8%.

The Network Loads for the Cubic Backplane Topology The knowledgetotal network
load of the intrinsic hop ratios allows to estimate the total network load for a highly

connected network by assuming a routing of the connections along the shortest path
between its source node and its destination node. The mean load per connection is
abbreviated as Lc = l.

L′tot =
∑

c

l · hc = ln
d∑

h=1

(
d

h

)
h

= ln
d∑

h=1

d!h
h!(d− h)!

= lnd
d∑

h=1

(
d− 1
h− 1

)

= ln

d−1∑
h′=0

(
d− 1
h′

)
= ln2d−1 =

1
2
ldn2 = O(n2) (5.15)

The estimated mean load per link therefore equalsmean link load

L
′
e =

L′tot

dn
=

1
2
ln = O(n). (5.16)

Since the available bandwidth of the links is limited, an increased number of network
nodes therefore forces either to reduce the mean load per inter-chip connection ac-
cording to equation 5.16 or to reduce the number of connections between the chips.
To avoid a connection from a dedicated chip A to a chip B, no neuron on A is allowed
to be connected to any neuron on chip B.

5.4.3 Homogeneous Pseudo-Random Networks

The above results are now used to discuss the values for pseudo-random networks
that are mapped on the backplane, i.e. for which the physical locations of the
modeled neurons have been assigned. The networks are generated with the network

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 225

generator script from section 4.10.4. The script generates map-able networks by
dividing the available inputs of a particular network block in equally-sized groups
among the inter-chip connections that have the network block as their destination.
The considered topologies are binary sub-cubes of the dimension d mapped on the
backplane.

Without any modi�cation, the script generates homogeneous pseudo-random net- de�nition and
generationworks. That is, the inter-neuron connections are generated with the same probability

between all available chips. A homogeneous pseudo-random network of n = 2d chips
therefore has n(n− 1) connections, each of a similar network load Lc. The inputs I
of each network block are evenly divided into n groups of the same size, according to
the n chips. The fraction of (n− 1)/n of the synaptic inputs belongs to connections
from distant chips, the fraction 1/n of the inputs is connected on-chip.

Theoretical Values

The deterministic generation process allows to calculate theoretical values for the network loads for
homogeneous
networks

preliminary network quali�ers for the homogeneous networks of the script before
the connections mapping (the routing) has been performed. Since each Spikey chip
features two network blocks, the mean load per connections Lc = l equals

Lc ≤ 2I/n. (5.17)

The given value is only a maximum value since the generation process may select the
same neuron for the inputs of both networks blocks of the same chip, so that only
the data of this single neuron has to be transported to the chip. The equations 5.15
and 5.16 result in

L′tot ≤ Idn, (5.18)

L
′
e ≤ I. (5.19)

In particular, the mean number L
′
e of neurons, whose data has to be transported via

a single physical link converges against the number I of inputs per network block
and is independent of the number of chips n or the number of neurons per chip.

The physical mean frequency ν of the single neurons results out of the physical values for the
mean neuron
spike frequency

bandwidth w, which is divided by the number of neurons, which require 4 byte for
its event encoding2:

ν ≤ w

L
′
e ·

4 Byte
neuron

. (5.20)

Using I = 256 neurons and w = 312.5 MByte/s, the maximum mean event frequency
for a single ANN neuron equals

ν ≤ 305 kHz. (5.21)

This is the maximum physical mean frequency for single neurons of homogeneous
pseudo-random networks, which the network can handle before dropping data. The

2The frame gap is ignored since the framing parameters can be set to large frame sizes. The
reader may also refer table 4.7 of section 4.8.1 for the exact calculations for di�erent numbers of
neurons.

226 Introduction

value is calculated for the case that the connection mapping algorithm succeeds to
route all connections along the shortest path and that it succeeds to reserve 100%
of the physical bandwidth for the neural data.

The important aspect is that the calculated number ν is only a mean value,discussion of the
value calculated for connections with comparably loads Lc. The allowed spike frequency

of a particular physical neuron also depends on the actual spike frequencies of the
other neurons of its connection. Since the transport network reserves the bandwidth
exclusively for the connections, excess data cannot be transported and is dropped
at the connection interface at the source node. This may require to even limit the
physical mean bandwidth to lower rates to keep with bursts of single neurons or a
correlated spike behavior of multiple neurons. Again, since the event rate of the
neurons of the Spikey ANN chips depends on multiple factors, it is hardly possible
to give assumptions for its allowable speedup µ.

Example Values for Generated Networks

Table 5.6 shows the values of the preliminary classi�ers for the generated pseudo-experimental
values random networks. The networks all have a homogeneous d-dimensional binary cubic

topology and include 2d Spikey ANN chips each. All networks have 100% hardware
e�ciency, thus all available neurons, synapse drivers and synapses of the chips are
enabled. The number of inter-chip connections equals n(n− 1) as stated above. The
values of the network loads L′tot, Lc and Le are preliminary and are assumed for
a shortest-path routing between the source chips and the destination chips of the
inter-chip connections.

chip neuron synapse link intrinsic

num num num num hop ratios ‖C‖ L′tot Lc L
′
e

2 768 196608 2 1:1 2 430 215.0 215.0

4 1536 393216 8 1:2:1 12 1869 116.8 233.6

8 3072 786432 24 1:3:3:1 56 5933 61.7 247.2

16 6144 1572864 64 1:4:6:4:1 240 16046 31.3 250.7

32 12288 3145728 160 1:5:10:10:5:1 992 40498 15.8 253.1

Table 5.6: Properties of homogeneous pseudo-random neural networks to be mapped on
Spikey ANN chips within the multi-dimensional binary cubic topology of the backplane.
All hardware resources of the ANN chips are used. Synaptic connections between all ANN

chips are assumed. The load-values L′
tot and L

′
e are preliminary and assume a shortest-path

routing for all inter-chip connections.

As expected by equations 5.17 and 5.19, the mean load Lc of the connectionsconsequences

decreases with an increasing number of chips, while the mean load Le of the physical
links converges against the value of I = 256 neurons. The value of Le therefore limits
the mean spike frequency of a single neuron according to equation 5.21.

5.4.4 Modi�ed Pseudo-Random Networks

To reduce the values of L′tot, Lc and Le and to allow for a larger value of the neuron
spike frequency ν, the parameters for the network generation process of homogeneous

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 227

networks (hop ratios, input count and synaptic e�ciency) can be modi�ed. It is
shown in the following, how each modi�cation a�ects the expected QoS results of
the inter-chip connections during the connection mapping process of the transport
network.

Modi�cation of the Hop Ratios

A modi�cation of the hop ratios can be used to decrease the required network load main idea

and to improve the guaranteed QoS values for throughput, delay and jitter. This is
since the hop ratios denote the relative number of neurons to be taken as synaptic
inputs for a dedicated network block depending on its shortest-path hop distance.
Networks with modi�ed hop ratios still use all available inputs, neurons and synapses
of the ANN chips, but the inter-chip connections have a limited number of hops. Note
that a modi�cation of the hop ratios does primarily a�ect the number of neurons Lc

of the connections and not the number of the connections itself. In fact, the number
of connections is reduced only in the case that a particular hop ratio is set to zero.

Table 5.7 shows the resulting network loads for various pseudo-random networks example hop
ratioswith modi�ed hop ratios, whereas �gure 5.4 exemplarily shows the neuron connec-

tivity matrix for a 16-chip network with the modi�ed hop ratios 10:4:6:0:0. In this
case, each chip takes about 50% of its synaptic inputs from o�-chip and 50% is
connected on-chip3. Due to the intrinsic hop ratios of 1:4:6:4:1 of the backplane
topology, the ratios 10:4:6:0:0 result in similar values for the number Lc of neurons
of the inter-chip connections.

chips hop ratios inputs from inter-chip

0..4 hops o�-chip connect. L′tot Lc L
′
e

16 1:4:6:4:1 93.8% 240 16055 31.3 ± 0.8 250.9

16 1:1:1:1:1 79.4% 240 15805 26.3 ± 20.0 247.0

16 15:4:6:4:1 48.4% 240 8358 16.3 ± 0.8 130.6

16 4:3:2:1:0 59.1% 224 7880 21.3 ± 10.8 123.1

16 10:4:6:0:0 48.4% 160 6233 24.3 ± 1.0 97.4

16 3:2:1:0:0 49.7% 160 5337 24.9 ± 13.5 83.4

16 1:1:0:0:0 50.0% 64 3936 61.5 ± 1.5 61.5

Table 5.7: Reduction of the total network load L′
tot and the mean load per physical link

L
′
e by modifying the hop ratios for networks of a fully equipped backplane with 16 Spikey

chips. All networks use 100% of the available neurons and synapses.

QoS E�ects The reduction of L′tot and L
′
e increases the available bandwidth per throughput and

loss rateneuron and thus reduces the expected loss rate of spike events. As a drawback, the
usage of hop ratios that di�er from the intrinsic ratios of the d-dimensional cubic
topology of equation 5.14 leads to signi�cant deviations in the particular connections
loads Lc from its mean values as it can be seen in �gure 5.4.

Concerning the connection mapping process, this requires to assign a di�erent unbalanced
connection load

3The value is not exactly 50%, since the number of available synapse drivers cannot be equally
divided among the connections.

228 Introduction

destination neuron

source neuron

Figure 5.4: The inter-neuron connectivity matrix of a pseudo-random 16-chip network with
the modi�ed hop ratios of 10:4:6:0:0. Although all available neurons and synapses of the
ANN chips are used, the total network load is reduced signi�cantly. About 50% of the
synaptic inputs are taken from o�-chip.

number of time slots to the di�erent connections according to the values of Lc. This
may lead to an unbalanced usage of time slots and thus to an increased drop rate
for particular connections. This e�ect is illustrated in the �gures 5.5 and 5.6, which
show the distribution of Lc for the networks of table 5.7. It can be seen that the hop
ratios that correspond to the intrinsic ratio of the cubic topology result in smaller
deviations from the mean value of Lc.

Consider a 16-chip network with selected hop ratios of 3:2:1:0:0. About 50%calculation
example for
3:2:1:0:0

of the synaptic inputs of the two network blocks are to be selected from o�-chip (2
× 128 inputs). Two thirds of these inputs (171) are to be taken from neurons on
chips at a single hop distance, resulting in 4 connections with an Lc of about 43
neurons each. One third of the inputs (85) is to be taken from the 6 chips being
two hops distant, resulting in 6 connectinos with an Lc of about 14 neurons. The
loads of the required inter-chip connections therefore di�er by a factor of three, which
requires three times the number of time slots to get a balanced link usage (cf. again
�gure 5.6).

The delays of the connections mainly depend on its number of network hops (cf.delay

e.g. table 5.4 of section 5.3.1). A modi�cation of the ratios can therefore be used to
limit the delays of the synaptic connections to be modeled. By setting hop numbers
to zero, synaptic connections to the corresponding distances are not generated. As
an example, the setting 1:1:0:0:0 of a 16-chip network generates only connections to
adjacent chips (about 50%), by still using all hardare resources.

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 229

The jitter of the connections depends on the assignment of time slots within the jitter

reservation periods of the physical links during the reservation process. Since the hop
ratios can be used to reduce the number of connections by setting particular ratios
to zero, this reduces the number of connections per physical link and thus increases
the number of time slots for the remaining connection and results in a more dense
assignment with better jitter results.

Modi�cation of the Input Count

The reduction of the input count I results in a reduction of the required physical method

bandwidth of the neural network. The input count can be reduced by using only
a fraction of the available inputs during the network generation process. Although
the limited input count is a main limitation of the ANN chips, its reduction has the
advantage that it increases the possible spike frequencies of the single neurons by
keeping to the basic topology of the network in terms of its number of used chips
or its hop ratios. The exact topology is indeed changed since the leaving inputs
unused equals a reduced connectivity. As a drawback, this also decreases the general
hardware e�ciency since the synapses that correspond to the a�ected inputs cannot
be used with other inputs.

QoS E�ects Concerning the required bandwidth, equations 5.17 to 5.19 show that reduced
bandwidth
requirement

a reduction of the input count corresponds to a linear reduction of the number of
neurons per connection Lc and thus to a linear reduction of the total amount of
neural network data Ltot as well as to a reduction of the link loads Le. The reduced
Lc allows higher spike frequencies for the single neurons and reduces the probability
for event drops at the interface of the connections.

Since the absolute amount of inter-chip connections as well as the hop ratios unchanged delay,
jitterremain unchanged, the network topology and the routes of the connections are un-

changed, too. The connection mapping algorithm therefore has the same result and
there is no e�ect on the resulting QoS delay or jitter.

Modi�cation of the Synaptic E�ciency

The example networks presented so far feature a synaptic e�ciency of 100%, i.e. all
synapses within the ANN chips are enabled for a high connectivity of the generated
network. However, this leads to the e�ect that neuron destinations are correlated:
each neuron that sends its spike events to a synapse driver on a certain network block
has all its destination neurons in common with other neurons that send data to the
same block.

To investigate the bandwidth requirement of sparsely connected networks, the method

synaptic e�ciency can be reduced to a given probability. A very low probability may
even result in the case that two synapse drivers on the same chip are connected to a
disjoint subset of the local neurons. A modi�cation of the synaptic e�ciency therefore
allows to trade the diversity or randomness of the generated network against its
connectivity and hardware e�ciency. Note that the total number of the used synapse
drivers and neurons remains unchanged. Figure 5.7 exemplarily illustrates a subset
of the connectivity matrix of a network with 10% synapse e�ciency.

230 Introduction

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

0 10 20 30 40 50 60 70 80 90 100 110 120

15:4:6:4:1
10:4:6:0:0
1:4:6:4:1
1:1:0:0:0

connection load

number of connections

Figure 5.5: Distribution of the connection loads Lc for hop ratios of a 16-chip network that
correspond to the cubic topology. The low deviations of Lc result in a balanced assignment
of time slots to all connections.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100 110 120

4:3:2:1:0
3:2:1:0:0
1:1:1:1:1

4 hops

connection load

number of connections

2 hops

1, 3 hops

1 hop

2 hops

1 hop

1, 3 hops

Figure 5.6: Distribution of the connection loads Lc for a 16-chip network with hop ratios
that are not oriented at the intrinsic cubic topology of the backplane. The resulting values
for Lc depend on the hop distances and require a di�erent number of time slots to balance
the link usages.

5.4. DISCUSSION OF THE NEURAL NETWORK TOPOLOGIES 231

0

384

768

1152

0 384 768 1152 1536
destination neuron

source neuron

Figure 5.7: The neuron connectivity matrix of a 16-chip network with 10% synaptic ef-
�ciency. The reduction of the probability for the synapses to be activated increases the
diversity or randomness of the generated networks. The resulting network load remains
una�ected except for very low probabilities.

The statistical activation of synapses also leads to a more diverse distribution number of
destination
neurons

of the number of destination neurons for a single source neuron. In networks with
a synapse e�ciency of 100%, the number of destination neurons is a multiple of
the 192 neurons of a network block. A sparse connectiviy distributes the number of
destinations neurons, which can be interpreted as a higher diversity or randomness of
the generated networks. The di�erence is plotted exemplarly for a network of 16 chips
in �gure 5.8 and �gure 5.9 for synapse e�ciencies of 100% and 50%, respectively.

QoS E�ects The activation or deactivation of synapses is a modi�cation within no QoS e�ects

the ANN chips. The number of used neurons or input synapse drivers remains
unchanged. Since the amount of data to be transported between two ANN chips de-
pends on the number of the neuron outputs on one chip, which has to be transported
to input synapse drivers of the other chip, a reduction of the synapse e�ciency can-
not be used to reduce the network load. The reduction in the synapse e�ciency has
therefore no primary e�ect on the QoS loss rate, delay or jitter. To indeed reduce
the network load, the synaptic e�ciency has to be reduced to very low e�ciencies
in the range of few percents such that certain synapse drivers are deactivated at all.
Table 5.8 shows example calculations for di�erent e�ciencies.

232 Introduction

0

500

1000

1500

2000

2500

0 192 384 576 768 960 1152 1344

number of source neurons

number of destination neurons

1 synapse driver

2 synapse drivers

3 synapse drivers

4 synapse drivers

output
stubs

Figure 5.8: Distribution of the number of destination neurons of a pseudo-random network
of 16 Spikey chips with 100% of the available synapses used. Each inter-chip connection
from a neuron output to a synapse driver results in 192 destination neurons.

output stubs
1543

1 synapse driver

2 synapse drivers

3 synapse drivers 4 synapse drivers

number of destination neurons

number of source neurons

0

50

100

150

200

0 192 384 576

Figure 5.9: Distribution of the number of destination neurons of a pseudo-random network
of 16 Spikey chips with 50% synaptic e�ciency. The chip-internal synapses are enabled
statistically, which enhances the randomness of the network con�guration. The number of
output stubs of the network remains unchanged.

5.5. EVALUATION OF THE CONNECTION MAPPING ALGORITHM 233

chips synapse synapse conn. inputs from

num e�ciency num o�-chip L′tot Lc Le

16 1179461 75.0% 240 93.8% 16046 31.3 250.7

16 787245 50.1% 240 93.8% 16046 31.3 250.7

16 393721 25.0% 240 93.8% 16046 31.3 250.7

16 157435 10.0% 240 93.8% 16046 31.3 250.7

16 78809 5.0% 240 93.7% 16044 31.3 250.7

16 15761 1.0% 240 93.9% 13793 26.9 215.5

Table 5.8: Pseudo-random networks of 16 Spikey chips with di�erent reduced synaptic
e�ciencies. A reduced e�ciency does not lower the network load signi�cantly.

5.4.5 Summary of the Evaluated Network Topologies

Two types of network topologies have been investigated: homogeneous pseudo- limited physical
spike frequenciesrandom networks and modi�ed pseudo-random networks. It has been shown that

the estimated required link load Le of homogeneously connected networks converges
against the input count I of the network blocks and limits the maximum mean spike
frequencies for the single neurons to about 305 kHz.

The possible spike frequencies can be increased by a reduction of the link load. possible
enhancementsThree modi�cations of the homogeneous network topology are conceivable:

1. A modi�cation of the hop ratios changes the number of neuron outputs that are
transported via connections of a certain number of hops. This does not only
allow to control the on-chip to o�-chip ratio of the inter-neuron connections, but
also to avoid connections with a large physical delay completely. Hop ratios not
oriented on the intrinsic topology of the backplane result in a deviation within
the connection load Lc and thus in a di�erent number of slots per connection
and may cause unbalanced link usages.

2. A reduction of the input count results in a linear reduction of the required
bandwidth. The drawback is the reduced connectivity and hardware e�ciency.

3. A reduction of the synapse e�ciency (while keeping the input count and the
neuron number per chip) does not reduce the bandwidth requirement, but
enhances the diversity and the randomness of the network.

The listed values for Ltot and Le are preliminary mean values and have been preliminary
valuescalculated according to the distribution of the inputs during the generation process.

To use the networks for experiments, the connections have to be quantized, routed
and the collision-free reservation pattern has to be assigned. This is done by the
connection mapping process, which is evaluated in the next section.

5.5 Evaluation of the Connection Mapping Algorithm

The connection mapping algorithm is executed during the network initialization purpose

phase of the transport network. Its purpose is to route the inter-chip connections of
the placed networks and to calculate the contention-free reservation pattern of the

234 Introduction

physical links, which are stored into the routing tables of the switches. The software
implementation of the algorithm has been described in section 4.10.2. The follow-
ing paragraphs evaluate the performance of the connection mapping algorithm. The
discussion focuses on neural networks using the Spikey chip, but the results can
be transferred comparably to the HAGEN chip with deterministic bandwidth require-
ments.

5.5.1 Evaluated Quali�ers

The performance of the algorithm has been evaluated by calculating the networkpresentation of
the results quali�ers of the previous section of the routed networks. Since not all quali�ers

depend on the route of the connections, but on the netlist and the neuron placement,
the values of the number of used chips, block inputs I (synapse drivers), neurons per
chip or the connection loads Lc remain unchanged. The former preliminary values
for the total network load Ltot and the loads of the physical links Le become �xed
during the calculation of the routes. The following tables also list the slot usage
(occupancy) of the network. This denotes the fraction of time slots that have been
reserved for neural connections and thus the remaining bandwidth that is available
for best-e�ort packet transfers. The calculation of the routes and thus the routing
tables determines the �nal QoS guarantees of the isochronous inter-chip connections
of the transport network:

1. The throughput of the isochronous connections depends on the reserved band-throughput

width in terms of time slots mc. The grouping of inter-neuron connections
to inter-chip connections then determines the available average bandwidth wn

for a single neuron of the Spikey chip. The value wn is calculated over all
connections.

2. The end-to-end connection delay Dc mainly depends on the number of networkdelay

hops of the selected routes. In the case that the mapping algorithm succeeds to
route all connections along their shortest paths, the distribution of the delays
corresponds to the hop ratios H of the mapped networks. The resulting delays
for various hop distances have already been discussed in section 5.3.1.

3. The end-to-end connection jitter Jc is calculated out of the interface wait timejitter

and the transmission delays according to equation 3.24. It mainly depends on
the number mc of time slots per connection out of the available number m
of time slots per reservation period. According to equation 4.8, the jitter is
bounded by Jc ≤ (2m + 1) · 6.4 ns for all connections. The maximum value
calculates for mc = 1. The minimum possible jitter is Jc = 19.2 ns.

Test Cases

The connection mapping algorithm has been evaluated with di�erent sets of homo-parameter sets

geneous and modi�ed pseudo-random networks consisting of 2 to 32 ANN chips.
The networks and their neuron placements have been generated with the network
generator script. The evaluation has been done for di�erent sets of the following
parameters:

5.5. EVALUATION OF THE CONNECTION MAPPING ALGORITHM 235

1. The number p=Np of local switch ports for connection-oriented tra�c. Large
values allow a high o�-chip event rate and simplify the assignment problem of
the time slots, but result in an increased consumption of programmable logic.

2. The number m of time slots per reservation period. It determines the granu-
larity of the division of the physical bandwidth into time slots and is the key
parameter for the algorithm. Low values ofm lead to low jitter, but may hinder
a successful mapping.

3. The number f of time slots per frame. The value of f must be an integer
multiple of m. Large values reduce the bandwidth waste caused by the frame
gap.

4. The maximum number l of neurons, whose data are be transported within the
same reserved time slot of a connection. Low values lead to a higher number of
reserved slots per connection and reduce the drop rates as well as the jitter, but
require a higher granularity and signi�cantly complicate the global assignment
problem.

The mapping results are given in tabular form arranged in three parts. The �rst presentation

set of columns denote the network to be mapped according to its input count I and
the hop ratios H. The second set of columns denote the mapping parameters p, m,
f and l if used. The last set lists the QoS results in terms of jitter, the provided
bandwidth and the possible physical mean frequencies of the neurons. The mapping
parameters have been selected such that the lowest possible number of mapping slots
m has been used for a given number of ports p such that a successful mapping could
be achieved. This equals the trade-o� of the available amount of logic within the
FPGA against the network performance.

Interpretation of the Results

The interpretation of the resulting values for the available throughput, the delay and interpretation of
QoS resultsthe jitter has to be made with respect to the neuron model. The required values

Spikey ANN to the transport network have been discussed in section 2.4.2. Since
the Spikey chip is only the implementation of the leaky integrate-and-�re model in
hardware, these values are no strict requirements, but merely a degree of the quality
of the modeling. In particular, the speedup µ of the chip denotes the con�guration
of the timing parameters of the membrane potential of the neuron.

The delay of the isochronous connections should therefore be in accordance with interpretation of
delay and jitterthe delay of the corresponding biological axonal connections with respect to the

selected speedup. This basically enforces the delay to be as small as possible. The
same can be stated for the jitter. Although a jitter di�erent from zero can be
eliminated using a jitter bu�er at the destination of the connection, this clearly
increases the delay and should be reduced.

The interpretation of the available throughput has to consider that the number interpretation of
throughputof spikes to be generated by the Spikey chip at runtime depends on a number of

conditions (like the input stimuli) and can hardly be predicted from the network
topology or from the con�gured speedup of the chip. The following evaluation there-
fore denotes only the maximum physical mean frequency ν of a single neuron, which

236 Introduction

is calculated over all connections out of their mean bandwidth wc and their connec-
tion load Lc. The value ν denotes the average frequency of the single neurons which
the network can handle without dropping events at the interface. It can be used to
compare the bandwidth requirements of di�erent network topologies or to compare
the mapping results of di�erent parameter sets.

5.5.2 Mapping Results of Pseudo-Random Networks

The pseudo-random networks have been mapped on backplane topologies of 2, 4, 8selected networks

and 16 nodes, as well as on two backplanes with 32 nodes by using an additional
MGT connection between the network modules at the same same positions on the
two backplanes. For each number of chips, the connection mapping has �rst been
executed for the unmodi�ed homogeneous pseudo-random networks of table 5.6.
Further mappings have been made for an increased number of ports, a reduced input
count and for modi�ed hop ratios to increase the available mean neuron frequencies
ν.

The mapping results are shown in the tables 5.9 to 5.13. It can be seen that theresults

mapping algorithm succeeds to occupy 100% of all available slots in most cases if the
parameter p of the used local ports is large enough to provide su�cient bandwidth.
Furthermore, the mappings with large frame sizes result in the mean frequency for a
single neuron of 0.31MHz as calculated in equation 5.21 (for the two-chip network,
the value is slightly higher due to the increased probability, that the outputs of two
neurons have to be fed to both network blocks on the same chip, which saves routing
resources). In addition, a reduction of the input count does not improve the jitter
as expected (the number of connections is the same), but indeed results in a nearly
linearly increased mean bandwidth per neuron. To improve the jitter and to further
increase wn, the hop ratios can be modi�ed to leave the farthest connections with
the largest delays out.

2-Chip Networks Table 5.9 lists example parameters for two-chip networks. The
mapping simply uses a single connection in each direction and a single local port.
Since all time slots can be used, the throughput equals the usable bandwidth of the
physical links. The jitter is minimal.

4-Chip Networks The selected mapping results of four-chip network are shown
in table 5.10. Two local ports and two time slots per reservation period are needed to
provide the required o�-chip data rate. The modi�cation of the hop ratios simpli�es
the mapping task such that only connections between adjacent chips remain, which
only a single required time slot and lower jitter.

8-Chip Networks A pseudo-random network of eight chips of table 5.11 requires
three local ports and four slots per reservation period to occupy 100% of the net-
work's resources. A slight modi�cation of the hop ratios that avoids the eight farthest
connections allows to reduce the port number and the slot number both to three for
a reduced jitter by still using the full network bandwidth.

5.5. EVALUATION OF THE CONNECTION MAPPING ALGORITHM 237

16-Chip Networks The 16-chip networks of table 5.12 occupy a full backplane
and require four global ports. A granularity of eight slots per reservation period is
required to achieve 100% bandwidth usage. Since this requires eight local ports and
thus a large amount of programmable logic, a 16 chip network has to be implemented
either non-homogeneous or with less slot occupancy. The last table entries list exam-
ple mapping parameters for modi�ed hop ratios that us only adjacent connections
or also two-hop connections and require only few local ports.

32-Chip Networks Table 5.13 lists the results for homogeneous networks with
32 chips. The high number of 992 di�erent connections requires a �ne bandwidth
granularity and thus large reservation periods and a large jitter. It is notable that the
mapping algorithm succeeds even for networks of this complexity and reaches a slot
occupancy of 80.1%. Since large reservation periods result in a high jitter, table 5.13
also lists networks with reduced hop ratios to only up to two hops distance.

H I ‖C‖ p m f Jc slot Le wn ν

[ns] usage [MB/s] [MHz]

1:1 256 2 1 1 12 19.2 100% 215.0 1.34 ± 0.02 0.34

1:1 256 2 1 1 60 19.2 100% 215.0 1.43 ± 0.02 0.36

1:1 128 2 1 1 60 19.2 100% 118.5 2.59 ± 0.01 0.65

2:1 256 2 1 1 60 19.2 100% 151.0 2.04 ± 0.06 0.51

Table 5.9: Mapping results of two-chip networks. The connections use one link in each
direction and occupy all time slots.

H I ‖C‖ p m f Jc slot Le wn ν

[ns] usage [MB/s] [MHz]

1:2:1 256 12 1 3 12 44.8 66.7% 233.6 0.82 ± 0.02 0.21

1:2:1 256 12 2 2 12 32.0 100.0% 233.6 1.23 ± 0.03 0.31

1:2:1 256 12 2 2 60 32.0 100.0% 233.6 1.32 ± 0.03 0.33

1:2:1 128 12 2 2 60 32.0 100.0% 123.3 2.50 ± 0.06 0.63

2:2:0 256 8 2 1 60 19.2 100.0% 116.3 2.65 ± 0.06 0.66

Table 5.10: Mapping results of 4-chip networks. 100% capacity of the physical links can be
used with minimum jitter.

5.5.3 Mapping Results of Networks with non-Intrinsic Hop Ratios

Networks with non-intrinsic hop ratios can feature a signi�cantly di�erent connection deviation in
bandwidth
requirements

load as described in section 5.4.4. Without further control, this e�ect causes di�erent
wn values and thus di�erent maximum frequencies between the neurons of highly
loaded and lightly loaded connections (cf. �gure 5.6). To limit the overall drop rate,
the network is then forced to consider the connection with the lowest bandwidth as
the reference. The e�ect can be handled with the mapping parameter l to enhance
the number of time slots for highly booked connections.

238 Introduction

H I ‖C‖ p m f Jc reserved Le wn ν

[ns] slots [MB/s] [MHz]

1:3:3:1 256 56 1 8 8 108.8 50.0% 247.2 0.56 ± 0.01 0.14

1:3:3:1 256 56 2 5 5 70.4 80.0% 247.2 0.84 ± 0.02 0.21

1:3:3:1 256 56 3 4 4 57.6 100.0% 247.2 1.01 ± 0.02 0.25

1:3:3:1 256 56 3 4 60 57.6 100.0% 247.2 1.25 ± 0.03 0.31

1:3:3:1 128 56 2 5 60 70.4 80.0% 125.7 1.96 ± 0.04 0.49

1:3:3:1 128 56 3 4 60 57.6 100.0% 125.7 2.45 ± 0.06 0.61

4:3:3:0 256 48 2 4 60 57.6 75.0% 148.3 1.56 ± 0.04 0.39

4:3:3:0 256 48 3 3 60 44.8 100.0% 148.3 2.07 ± 0.06 0.52

Table 5.11: Mapping results of eight-chip networks. By modifying the hop ratios to avoid
the eight farthest connections, 100% of the network's resources can be used with three local
ports and three slots per reservation period.

H I ‖C‖ p m f Jc used Le wn ν

[ns] slots [MB/s] [MHz]

1:4:6:4:1 256 240 1 17 51 224.0 47.1% 250.7 0.58 ± 0.01 0.15

1:4:6:4:1 256 240 2 11 55 147.2 72.7% 250.7 0.89 ± 0.02 0.22

1:4:6:4:1 256 240 3 10 60 134.4 80.0% 250.7 0.98 ± 0.02 0.25

1:4:6:4:1 256 240 4 9 63 121.6 88.9% 250.7 1.09 ± 0.03 0.27

1:4:6:4:1 256 240 8 8 64 108.8 100.0% 250.7 1.23 ± 0.03 0.31

1:4:6:4:1 192 240 2 11 55 147.2 72.7% 188.9 1.18 ± 0.03 0.30

1:4:6:4:1 192 240 3 10 60 134.4 80.0% 188.9 1.30 ± 0.03 0.33

1:4:6:4:1 192 240 4 9 63 121.6 88.9% 188.9 1.45 ± 0.04 0.36

1:4:6:4:1 128 240 2 11 55 147.2 72.7% 126.8 1.76 ± 0.04 0.44

1:4:6:4:1 128 240 3 10 60 134.4 80.0% 126.8 1.94 ± 0.05 0.49

1:4:6:4:1 128 240 4 9 63 121.6 88.9% 126.8 2.16 ± 0.05 0.54

10:4:6:0:0 256 160 2 6 60 83.2 66.7% 97.5 2.10 ± 0.09 0.53

10:4:6:0:0 256 160 3 5 60 70.4 80.0% 97.5 2.52 ± 0.10 0.63

1:1:0:0:0 256 64 1 4 60 57.6 25.0% 61.5 1.25 ± 0.03 0.31

1:1:0:0:0 256 64 2 2 60 32.0 50.0% 61.5 2.50 ± 0.06 0.63

1:1:0:0:0 256 64 3 2 60 32.0 50.0% 61.5 2.50 ± 0.06 0.63

1:1:0:0:0 256 64 4 1 60 19.2 100.0% 61.5 5.00 ± 0.12 1.25

Table 5.12: Mapping results of 16-chip networks. The large number of 240 inter-chip con-
nections requires to omit long-range connections or to reduce the used input-count of the
chips to achieve a high possible neuron spike frequency.

5.5. EVALUATION OF THE CONNECTION MAPPING ALGORITHM 239

H I ‖C‖ p m f Jc used Le wn ν

[ns] slots [MB/s] [MHz]

1:5:10:10:5:1 256 992 2 23 69 300.8 69.6% 253.3 0.85 ± 0.02 0.21

1:5:10:10:5:1 256 992 3 20 60 262.4 80.1% 253.3 0.97 ± 0.03 0.24

1:5:10:0:0:0 256 480 2 10 60 134.4 50.0% 156.5 0.98 ± 0.02 0.25

1:5:10:0:0:0 256 480 3 8 64 108.8 62.5% 156.5 1.23 ± 0.03 0.31

1:5:10:0:0:0 256 480 4 7 63 96.0 71.4% 156.5 1.40 ± 0.03 0.35

1:5:10:0:0:0 192 480 2 10 60 134.4 50.0% 118.4 1.30 ± 0.03 0.33

1:5:10:0:0:0 192 480 3 8 64 108.8 62.5% 118.4 1.62 ± 0.04 0.41

1:5:10:0:0:0 192 480 4 7 63 96.0 71.4% 118.4 1.86 ± 0.04 0.46

Table 5.13: Mapping results of 32-chip networks distributed over two backplanes. The setup
operates 12288 neurons and 3.1 million synapses.

Table 5.14 lists example networks with non-intrinsic hop-ratios. The jitter is examples

denoted as the mean jitter Jc of all connections. It can be seen that a limitation
of the slot load requires multiple time slots to be reserved for the high-bandwidth
connections and thus evens the available bandwidth per neuron. Although this indeed
requires a larger reservation period in some cases, it also evens the maximum average
frequency of all neurons. Figure 5.10 illustrates the case for the 16-chip network with
the hop ratios 3:2:1:0:0.

H I ‖C‖ p m f l Jc used Le wn ν

[ns] slots [MB/s] [MHz]

1:1:1:1:1 256 64 3 10 60 - 134.4 80.0% 247.2 1.44 ± 0.43 0.36

1:1:1:1:1 256 64 3 10 60 40 137.0 84.1% 250.2 1.23 ± 0.28 0.31

4:3:2:1:0 256 224 3 9 63 - 121.6 77.8% 122.6 1.98 ± 0.75 0.50

4:3:2:1:0 256 224 3 11 66 30 137.6 72.7% 122.6 1.83 ± 0.34 0.46

3:2:1:0:0 256 160 3 5 60 - 70.4 80.0% 83.0 3.24 ± 1.44 0.81

3:2:1:0:0 256 160 3 7 63 30 87.0 71.4% 83.0 2.75 ± 0.51 0.69

3:2:1:0:0 256 160 3 9 63 18 103.0 66.7% 83.0 2.47 ± 0.10 0.62

Table 5.14: Mapping results of 16-chip networks with non-intrinsic hop ratios. The number
of time slots for highly booked connections can be increased to even the available mean
bandwidth for the a�ected neurons.

5.5.4 Mapping Results of Alternative Hardware Topologies

To demonstrate the �exibility of the mapping algorithm, the algorithm has been adding and
removing
backplane links

tested on hardware topologies that di�er from the cubic regular topology of the
backplane. The hardware topologies have been selected out of the possible extensions
that can be achieved with the four additional MGT connectors on top of each Nathan

module (cf. section 2.2.3) and also by leaving existing physical connections unused.
As an example, the following physical topologies are conceivable: examples

• A feed-forward topology, i.e. a sequential arrangement.

240 Introduction

number of connections number of connections

0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30
0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30

connection load per slotconnection load per slot

max 30 n / slot max 18 n / slot

Figure 5.10: Resulting distribution of neurons per slot of the connections of the 16-chip
pseudo-random network with the hop ratios 3:2:1:0:0. Connections with a higher load get
multiple slots to even the usage of the physical bandwidth. Left: using a maximum neuron
number of 30 per slot. Right: using a maximum number of 18 neurons per slot. (cf.
�gure 5.6).

• Two network nodes with 5 times the standard link capacity.

• A fully connected network of four nodes.

• A fully, doubly connected network of four nodes.

• A fully connected networks of eight nodes.

• A doubly connected backplane of 16 nodes.

• Modi�cations of the cubic topology: the folded and twisted hypercubes.

• Broken physical links.

The mapping program has been informed about the physical topology via its hard-
ware con�guration �le. The appropriate netlists and mappings have been created
with the network generator script with a modi�ed con�guration �le. All networks use
100% of the ANN resources, i.e. all available input drivers, neurons and synapses.
The next paragraphs brie�y present mapping results for four examples.

Feed-Forward Networks Each network node within a feed-forward network hassimple mapping
task, good results only one successor. Recursions within the neural network to be modeled can be

implemented only on-chip. Clearly, the mapping task is simple since only a single
connection is routed from each chip to its successor and all time slots on the corre-
sponding physical link can be used for it. Only two global ports and a single local
port are required to use all neurons and synapses of the backplane. Table 5.15 shows
mapping results for feed-forward networks of four and 16 chips with and without
on-chip loops. The possible physical mean frequencies for the single neurons can be
tuned by further reducing the fraction of neurons that transmit data o�-chip.

5.5. EVALUATION OF THE CONNECTION MAPPING ALGORITHM 241

n H I ‖C‖ p m f Jc used Le wn ν

[ns] slots [MB/s] [MHz]

4 0:1:0 256 4 1 1 60 19.2 100% 341.5 0.90 ± 0.01 0.23

4 1:1:0 256 4 1 1 60 19.2 100% 213.3 1.44 ± 0.04 0.36

16 0:1:0:0:0 256 16 1 1 60 19.2 100% 341.3 0.90 ± 0.02 0.23

16 1:1:0:0:0 256 16 1 1 60 19.2 100% 213.4 1.44 ± 0.03 0.36

Table 5.15: Mapping results of four-chip and 16-chip feed-forward networks. Only the
physical links to the successor chip have been available for the mapping algorithm.

4-Node Fully Connected Topology The upper part of table 5.16 shows mapping enhanced
bandwidthresults of homogeneous pseudo-random four-chip networks. It can be seen that an

extension of the cubic topology to a fully connected topology enhances the external
bandwidth, which can be used by increasing the internal ports from two to three.
As a result of this, the available bandwidth per single neuron doubles.

n hardware H ‖C‖ p m f Jc reserved Le wn ν

topology [ns] slots [MB/s] [MHz]

4 cubic 1:2:1 12 2 2 60 32.0 100.0% 233.6 1.32 ± 0.03 0.33

4 fully 1:2:1 12 2 2 60 32.0 50.0% 116.8 1.32 ± 0.03 0.33

4 fully 1:2:1 12 3 1 60 19.2 100.0% 116.8 2.63 ± 0.05 0.66

8 cubic 1:3:3:1 56 3 4 60 57.6 100.0% 247.2 1.24 ± 0.03 0.31

8 twisted 1:3:3:1 56 3 4 60 57.6 95.8% 236.8 1.24 ± 0.03 0.31

8 folded 1:3:3:1 56 2 4 60 57.6 62.5% 154.3 1.24 ± 0.03 0.31

Table 5.16: Mapping results of homogeneous pseudo-random networks on the hardware
topologies of the binary cube and its modi�cations. The additional connections can be
achieved with the four top-connectors of the network modules.

The Folded and the Twisted Hypercube The last three mappings of ta- modi�cations of
the cubic topologyble 5.16 concern mapping results of 8-chip homogeneous pseudo-random networks

on modi�ed cubic topologies, namely the twisted hypercube (THC) and the folded
hypercube (FHC) (for an overview see e.g. [106]). The THC features the same num-
ber of links, but has selected edges exchanged and features a lower diameter. The
FHC adds an additional link between the farthest nodes of the cubic topology. Fig-
ure 5.11 illustrates the two topologies. Table 5.17 compares the hop distribution of
the modi�cations against the regular cube.

Compared to the cubic topology, the THC does not allow a fewer number of time results

slots per reservation period and does not improve the connection jitter or the average
neuron frequency. However, it requires the same amount of physical links and keeps
a few slots free for best-e�ort tra�c. The mapping on the FHC achieves the same
QoS results by using only two third of the bandwidth and with a local port less, but
indeed requires an additional global port at each node.

242 Introduction

0 1

23

4 5

67

(a) the twisted hypercube

0 1

23

4 5

67

(b) the folded hypercube

Figure 5.11: Modi�cations of the 8-node cubic topology, illustrated as dotted lines.

n connect. global ports internal 1 hop 2 hops 3 hops

4 cubic 2 4 8 4 0

4 fully connected 3 4 12 0 0

8 cubic 3 8 24 24 8

8 twisted 3 8 24 28 4

8 folded 4 8 32 24 0

Table 5.17: Comparison of the hop distribution of regular, twisted and folded hypercubes.
The values denote the number of inter-chip connections with di�erent hop distances.

Mapping Robustness against Single Link Failures The last topic concernssimulation of link
failures the robustness of the mapping algorithm against single broken links or against net-

work asymmetries in general. The mapping tests have been made with the homoge-
neous pseudo-random 16-chip network with all inputs, neurons and synapses used.
The selected mapping parameters leave a remaining physical bandwidth of 20% at
an intact cubic topology. The network has been mapped to the backplane topology,
at which single links in di�erent cube-dimensions have successively been deactivated.

The results are shown in table 5.18 and proof that the implemented mappingresults

algorithm is robust against multiple link failures. Even in the case that three links
have been removed completely, the mapping results are not a�ected signi�cantly
compared to the original mapping on the intact cubic topology.

n hardware H p m f Jc reserved Le wn ν

topology [ns] slots [MB/s] [MHz]

16 cubic 1:4:6:4:1 3 10 10 134.4 80.0% 250.7 0.91 ± 0.02 0.23

16 1 fail 1:4:6:4:1 3 10 10 134.4 81.6% 255.7 0.91 ± 0.02 0.23

16 2 fail 1:4:6:4:1 3 10 10 134.4 83.2% 260.7 0.91 ± 0.02 0.23

16 3 fail 1:4:6:4:1 3 10 10 134.4 84.9% 266.0 0.91 ± 0.02 0.23

Table 5.18: Demonstration of the robustness of the mapping algorithm. Even after three
links have been removed, the mapping algorithm �nds a valid mapping with nearly the same
QoS results compared to the intact regular cubic topology.

5.6. HIGH-LEVEL SIMULATION OF THE NEURAL DATA TRANSPORT 243

5.5.5 Summary
main features of
the mapping
algorithm

The investigation of the performance of the connection mapping algorithm for dif-
ferent neural networks (netlists) and di�erent hardware topologies can be concluded
to the following main results:

• The mapping algorithm is able to map arbitrary netlists on arbitrary hardware
topologies.

• The mapping algorithm achieves 100% slot usage and thus 100% bandwidth ef-
�ciency for all homogeneous pseudo-random networks up to 16 chips if mapped
on d-dimensional cubic topologies. 32-chip networks can be mapped with 80%
e�ciency.

• The mapping algorithm can by widely parameterized. An example is to trade
the number of local ports (the logic consumption) against the bandwidth e�-
ciency.

• The mapping algorithm is stable and robust to map networks that di�er from
the regular cubic topology of the backplane. This has been demonstrated with
mappings on feed-forward topologies, extended backplane topologies, modi�ed
cubic topologies and also cubic topologies with up to three missing links.

Concerning the resulting mean frequencies ν of the single neurons, it has been resulting neuron
frequenciesshown that the mapping algorithm is able to achieve the calculated theoretical max-

imum of 305 kHz of section 5.4.3 for the networks for which it occupies all slots. The
algorithm therefore succeeds to route all connections along the shortest possible path
through the network. Higher values for ν require to reduce the input count I or to
modify the hop ratios of the several networks.

5.6 High-Level Simulation of the Neural Data Transport

The previous sections discussed the performance of the connection mapping process
for pseudo-random networks and their modi�cations. The performance of the algo-
rithm has been measured according to the mean bandwidth wn that is available for
single neurons and its resulting possible mean spike frequencies ν. The values for wn

and ν can be calculated due to the deterministic behavior of the transport network
that guarantees the throughput as long as the slot admission policy at the source
node of the isochronous connections is observed.

This section veri�es the calculations of the previous sections with a high-level e�ect of ANN
controllersimulation of the transport network that further includes the application function-

ality, namely a simulation model of the ANN chip Spikey and of its controller with
an interface to the transport network. Drops of neural spike events can occur at
both controller interfaces: to the ANN chip and also to the transport network. The
possible frequencies of the single neurons therefore depend on the bandwidth of
both interfaces and on the implemented queuing and scheduling policies within the
controller (cf. �gure 5.12). The e�ect of the ANN controller is discussed here ex-
emplarily with a single simulation. The results can be transferred to other networks
and hardware topologies as well.

The simulation is performed with the C++ software from [47]. The software cycle-accurate
high-level
simulation

244 Introduction

ANN controller

ANN

transport network
(isochronous connections)

network interface
(local switch ports)

ANN
interface

event queues

playback
memory

(SDRAM)

source events

target events

Figure 5.12: Data path of the neural spike events. Drops can occur at both controller
interfaces.

hardware topology full backplane, 16 chips, 4-dim. binary cube
neural netlist 16-chip, pseudo-random
neural elements Spikey chip, 6144 neurons, 1572864 synapses
input count per block 256
hop ratios 10:4:6:0:0, ca. 50% o�-chip connections
mapping parameters 3 local ports, 5 slots/rsv. period, 60 slots/frame
slot usage 80%
mean bandwidth/neuron wn = 2.52 ± 0.10 MByte/s
max. mean neuron frequency ν = 0.63 ± 0.03 MHz

Table 5.19: Parameters of the simulated neural network experiment.

generates spike events for the modeled neurons independently for each neuron with
a certain probability P within each simulated clock cycle. The simulation is cycle-
accurate and uses the routing tables that have been generated by the connection
mapping algorithm software and which are also used to con�gure the switches of
the transport network during the network initialization phase (cf. section 4.10.2).
The parameters of the used hardware topology, netlist and mapping are listed in
table 5.19

The simulation sweeps the parameter of the spike probability P for single neuronsdescription of the
simulation per chip cycle from 0 to 1%. For each value of P , the simulation executes 10000

cycles in which the generated spike evens are transferred via the transport network
between the chips. Since the source events of some neurons have to be transported to
multiple destinations within multiple connections, the ANN controller at each chip
generates a separate target spike event for each connection and transmits it via the
network.

The spike probability per chip cycle at which the reserved bandwidth is exceededcalculation of
expected spike
rates

can be calculated as follows: Table 5.19 shows that the reserved slots are fully oc-
cupied with a mean spike frequency of 0.63MHz. Higher frequencies cause drops at
the network interface at the source nodes of the connections. The value is calculated
by the mapping program as an average over all connections. The event generation
of the Spikey chip uses a 312.5MHz clock (the 400MHz clock from [47]). The event
probability per neuron within a chip cycle therefore calculates to:

P =
ν

312.5 MHz
= 0.0020 = 0.2 %. (5.22)

5.6. HIGH-LEVEL SIMULATION OF THE NEURAL DATA TRANSPORT 245

Note that this value is calculated initially by considering the load of all connections.
The e�ect that the controller generates multiple target events for single source events
from particular neurons is already included in the number. This also means that the
e�ective number of spikes that is transferred via the ANN interface to the controller
is smaller. Since roughly 50% = 192 of the neurons transmit data o�-chip, the
interface has to transfer

N � P · 192 = 0.384
events

chip cycle
. (5.23)

This is less than the available physical transfer rate of the ANN interface of 1.5
events per chip cycle at maximum [47]. The event rate of the single neurons of this
setup is therefore limited by the physical capacity of the transport network and not
by the ANN interface of the controller.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

2.5

d
ro

p
 r

a
te

,
lin

k
 u

ti
liz

a
ti
o
n

s
p
ik

e
y
 e

v
e
n
t
ra

te
 [
e
v
/c

lk
]

neural spike event rate [ev/clk/neuron]

network interface drop rate

spikey drop rate

spikey event rate

link utilization

Figure 5.13: Simulation results of the event drop rates at both interfaces. The reserved
bandwidth of the transport network is reached at the neuron spike probability of about
0.002 per chip cycle.

The result of the simulation is illustrated in �gure 5.13. It can be seen that an results

increase of the spike probability P per neuron �rst results in a linearly increased
spike rate and an increased bandwidth usage as expected. The reserved bandwidth
is reached at a probability of 0.002 events per chip cycle, which exactly matches
the above calculation. Further spikes result in drops at the network interface. The
slot usage of the network does not exceed the reserved value of 80%. The drops
at the ANN interface start at higher probabilities. The exact value depends on the

246 Introduction

probability that the ANN can put three spikes into a single 64 bit packet. This issue
is not further discussed here. The iterested reader may refer to [47].

It is �nally noted that the neurons of a real experiment do not spike with �xedbursting and
synchronized
behavior

probabilities, but the networks experience a bursting of single neurons and also a
synchronized behavior of multiple ones [14]. The values calculated above are only
mean values calculated over all connections each with multiple neurons. The required
bandwidth depends on the experimental setup and the network stimuli at runtime.
The upcoming implementation of the ANN controller in programmable logic should
monitor the drop rates to give feedback to the experimenter. Further experiments
using the simulation software including bursts can be found in [47, 111].

5.7 Performance of the Best-E�ort Schedulers

The implemented transport network serves packet-based data as best-e�ort data in amotivation

non-deterministic process. In contrast to connection-based data, which is forwarded
within reserved time slots, the packets are �rst stored in the VOQs of each intermedi-
ate switch. The forwarding decision which packet to be served is made at runtime by
the central best-e�ort scheduler that calculates the matching for the central crossbar
of the switch (cf. section 4.6). The development of the transport network required to
select a certain queuing policy, scheduler type and further parameters like the packet
sizing for the implementation of the transport network within programmable logic.

For that reason, the simulator software switchtest has been developed. Is haspacket switch
simulator already described in section 4.10.5. This section addresses only the simulation fea-

ture of the software. The purpose of the software is to simulate an input-queued
packet switch with VOQs and to investigate the performance of di�erent schedulers
under various tra�c conditions. The bypass-switch of the transport network is a
sub-type of the supported switch architectures. The following sections discuss the
simulation results to motivate the designs decision for the implemented schedulers.
The investigated schedulers are all crossbar schedulers, i.e. they calculate a bipartite
matching out of the N ×N requests from the queues and select up to N of them:simulated

schedulers

1. Parallel matching schedulers: PIM, RRM and iSLIP with one and multiple
iterations.

2. 2-dimensional schedulers: the ripple-carry, RPA and DPA.

3. The MSM scheduler as the reference with almost optimal performance.

The schedulers that have been implemented in programmable logic are iSLIP, RPA
and DPA due to its comparably good performance, the fair scheduling and the limited
online complexity (cf. section 4.6).

General Performance of the Schedulers

The �rst simulation has been made to compare the general performance betweencomparison to
literature the di�erent schedulers and to verify the results with the literature. The simulation

uses a slotted timing with a single packet per time slot and no reserved tra�c. The
queue-size has been set to 1000 packets to eliminate packet drops. Figure 5.14 shows
the resulting average packet delays and the overall throughput depending on the

5.7. PERFORMANCE OF THE BEST-EFFORT SCHEDULERS 247

tra�c load for a 16-port switch with Bernoulli i.i.d. arrivals with 100000 simulated
time slots (the number of iterations of the iSLIP scheduler are noted behind the term
iSLIP in the �gure). The resulting values match the values from the literature, e.g.
as published in [84].

It can be seen in the �gure that the values for the average packet delay increase average delays

signi�cantly with loads close to 100%. Since the iSLIP scheduler is an iterative
matching scheduler, its performance clearly depends on the number of iterations.
Using two iterations, the average delay is signi�cantly lower for higher loads by
approximately a factor of 10 compared to the single iteration. Using four iterations,
the performance is comparable to that of RPA and DPA, which both perform well.
The MSM scheduler performs best, but has the far highest complexity and can hardly
be implemented in programmable logic. In contrast to the average delays, the overall
throughput is near the optimum of 100% for loads up to 100% for all schedulers.

The following discussion considers only the three schedulers that are available three schedulers
available in
hardware

within the programmable logic: this is iSLIP with a single iteration, RPA and DPA.
Multiple iterations for iSLIP are unavailable in the present design due to the small
duration of a time slot S of only two clock cycles. The ripple-carry arbiter cannot be
used due to its unfairness and MSM is to complex to be implemented in hardware.

Performance within the Transport Network

The bypass-switch without reserved tra�c is e�ectively an input-queued switch with parameter set for
the transport
network

VOQs. The above simulations have been repeated with typical values within the
transport network for the number of ports, the queue size and the packet length.
The number of ports has been set to �ve to simulate four global ports and a single
local port of the switch. The queue sizes have been set to four, which allows to use a
single DPBRAM element at each VOQ (cf. section 4.5.3). The packet size has been
set to 11 slots per packet according to the present DSM implementation. Figure 5.15
shows the simulation results.

It can be seen from the �gure that the schedulers perform similar to each other, results

but worse than in the �rst simulation. The reason is that the switch architecture
does not merge packets from di�erent inputs sequentially to the same output. As
long as a packet is transferred via the crossbar, the corresponding input as well as the
output are blocked for the scheduling for other ports within each time slot. In the
case that many ports are blocked, the complexity of the scheduling task is reduced
such that the remaining ports are scheduled similar by the di�erent schedulers. The
average delays are at least 11 slots according to the selected packet size.

In�uence of the Queue Sizes

The switch design allows to adjust the number of DPBRAM to be used for a single
VOQ. Since the used FPGA provides only 44 of the memory blocks, a trade-o� has
to be made between the performance of the best-e�ort packet transfers and the logic
consumption. Figure 5.16 shows simulation results for the average delays and the
throughput for queue sizes of 16 packets per each input/output port combination of
the VOQs. The values have to be compared to �gure 5.15.

It can be seen that for high loads, the average delay is much better for smaller trade delay
against loss rate

248 Introduction

1

10

100

1000

20 30 40 50 60 70 80 90 100

islip-1
islip-2
islip-4

ripple2d
rpa
dpa

msm

load (%)

average delay (slots)

(a) average delay

95

96

97

98

99

100

20 30 40 50 60 70 80 90 100

islip-1
islip-2
islip-4

ripple2d
rpa
dpa

msm

load (%)

throughput (%)

(b) throughput

Figure 5.14: Simulations of the average delay and the overall throughput for di�erent sched-
ulers for a 16-port switch with uniform i.i.d. Bernoulli arrivals. The simulation comprises
100000 time slots and a queue size of 1000 packets. A single packet is transmitted per slot.

0.1

1

10

100

1000

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

average delay (slots)

(a) average delay

90

92

94

96

98

100

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

throughput (%)

(b) throughput

Figure 5.15: Simulation of the schedulers with typical parameters of the transport network.
The simulation uses 5 ports per switch, 4 packets per queue and 11 slots per packet.

5.7. PERFORMANCE OF THE BEST-EFFORT SCHEDULERS 249

queue sizes in contrast to large queues. This is because packets that are stored in
large queues may have already been be dropped by smaller queues and thus do not
increase the average delay. Smaller queues therefore feature a higher drop rate and
thus a reduced throughput for higher data rates. Since the avoidance of drops leads
to delays in the order of several hundred of slots, it can be stated that large queues
to not necessarily lead to an improved performance, which is in accordance with the
observations from [98]. Furthermore, this shows that the ARQ algorithm within the
transport layer has to cope with delays in the range of hundred and more time slots
under heavy tra�c for switches at the given parameters (cf. section 4.9.6).

0.1

1

10

100

1000

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

average delay (slots)

(a) average delay

90

92

94

96

98

100

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

throughput (%)

(b) throughput

Figure 5.16: Simulation of the schedulers with typical parameters of the reference imple-
mentation, but with increased bu�er sizes of 16 packets per queue.

Interaction with reserved Tra�c

In the case that guaranteed tra�c as well as reserved tra�c is used, the arrival of the 40% background
reservationpacket data is periodically modulated with the reservation patterns. To study this

e�ect, the simulation has been performed with 40% of the time slots periodically
occupied by reserved tra�c. The previous parameters have been kept to �ve ports,
four packets per queue and 11 slots per packet. This means that two input ports and
two output ports of the switch are not available for best-e�ort tra�c at each time
slot. The results are shown in �gure 5.18

It can be seen that the performance of the di�erent schedulers converges to the
same values for the average delay and the throughput. This is since the tra�c
constraints introduced by the unreserved slots are such strict that the scheduling task
for the remaining slots is simple and is handled similarly by each of the schedulers.

250 Introduction

Consequently, a switch design with a high amount of reserved slots does not require
a complicated scheduler. A low-complex scheduler is also feasible as long as the
fairness is preserved.

E�ect of the Bypass and the Crossbar Inputs

The last topic to be investigated is the in�uence of the bypass in conjunction withseparate crossbar
inputs for both
tra�c classes

the doubled number of inputs of the crossbar, which is one of the key ideas of the
novel switch design. Since reserved tra�c as well as best-e�ort tra�c use a separate
set of inputs to the crossbar, contention at the crossbar inputs between the two
classes are completely removed. This feature is di�erent compared to other network
architectures that also service combined QoS classes with slotted bandwidth, but use
a conventional N×N crossbar as e.g. [45]. The di�erence between both architectures
is again illustrated in �gure 5.17.

be queue

be queue

crossbar

bypass

bypass

(a) conventional N ×N crossbar

be queue

be queue

crossbar

bypass

bypass

(b) 2N ×N crossbar of the bypass switch

Figure 5.17: The bypass-switch avoids queuing of priority tra�c and features separated
inputs to the crossbar for each tra�c class. The example shows a two-port switch.

Figure 5.19 shows the results. It can be seen that the performance of the bypass-signi�cant
improvement switch with separate crossbar inputs signi�cantly outperforms the conventional de-

sign with multiplexers before the crossbar inputs. This holds true for both, the
average delay as well as the throughput. Note that a doubling of the number of
inputs does only increase the size of the crossbar by the factor of 2 and not quadrat-
ically. Furthermore, the performance improvement for best-e�ort tra�c does not
reduce the guarantees made for priority tra�c.

5.8 Summary

In this chapter, the implementation of the transport network for the FACETS Stage 1
framework has been evaluated. The discussions showed that the implemented net-
work is suitable for the execution of experiments with hardware neural networks.

Since neither experimental networks nor a network-compatible ANN controllerisochronous
connections has been available, the suitability of the network for the desired experiments has

been discussed according to the mapping results for di�erent generated neural net-
work topologies. The mapping of the test-networks to the hardware proved the
e�ciency of the proposed bandwidth reservation algorithm. The evaluation of ded-
icated quali�ers for the generated network topologies allowed to predict maximum
physical mean frequencies for the single physical neurons that can be handled by the

5.8. SUMMARY 251

0.1

1

10

100

1000

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

average delay (slots)

(a) average delay

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100

islip-1
rpa
dpa

load (%)

throughput (%)

(b) throughput

Figure 5.18: Average delay and throughput for 40% of the bandwidth reserved for priority
tra�c (5 ports, 4 packets per queue, 11 slots per packet)

0.1

1

10

100

1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

normal crossbar
doubled crossbar

(a) average delay

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

normal crossbar
doubled crossbar

(b) throughput

Figure 5.19: Comparison of the scheduling results for switch designs with and without
separate crossbar inputs for the service classes. It can be seen that the novel bypass-switch
architecture outperforms the standard design.

252 Introduction

transport network. The calculated values have been veri�ed with a cycle-accurate
software simulation of spike transmissions via isochronous connections within a 16-
chip network. The transport network is able to provide a stable framework-wide
synchronization of all network nodes. The deterministic transport of isochronous
test-data has been veri�ed by means of several hundred millions of cycle-accurate
transfers.

The last section discussed the bypass switch and the performance of the imple-best-e�ort
transfers mented scheduling algorithms. A software simulation of the switch showed that a

low-complex scheduler and small bu�ers are not necessarily a drawback in the given
environment, which allows to save programmable logic. It has further been shown,
that the usage of separate crossbar inputs for the two service classes as done within
the bypass-switch outperforms conventional switch architectures that also provide
di�erent service classes.

Conclusion and Outlook

This thesis addressed the design and implementation of the novel MCGN network main challenges

architecture that manages the provision of two fundamentally di�erent levels of QoS
within an embedded environment: isochronous connections and best-e�ort packet
transfers. The network has been implemented on the FACETS Stage 1 framework as
the transport network for hardware ANNs. The main challenges of the development main challenges

have been:

1. The end-to-end delay of the isochronous connections should not only be nearly
constant, but even more important, also the absolute value of the delay should
be as low as possible to keep to the timing requirements of the used neuron
models and the speedup of the ANN chips.

2. Requests for on-demand transfers of high-level data during the experiments
require additional best-e�ort packet transfers. Isochronous connections cannot
be used since connections cannot be set up at runtime due to their complexity
and the latency of the setup.

3. The online part of the network has to be implemented within the limited space
of the programmable logic of the FPGAs on the network modules.

The proposed switching architecture ful�lls these requirements with basically four
techniques: a slotted TDM framing scheme of the bandwidth, a global cycle-accurate
synchronization, an e�cient bandwidth reservation algorithm and the novel bypass-
switch architecture for the multiplexing and demultiplexing of the two tra�c classes.
The main features of MCGN are: main features

1. The provision of services for two di�erent tra�c classes: isochronous connec-
tions and best-e�ort packets multiplexed on the same physical medium.

2. Isochronous data is served in-order with guaranteed throughput, bounded delay
and bounded jitter.

3. The avoidance of queuing of isochronous data results in a minimum end-to-end
delay of only a few clock cycles plus the physical layer delay per network node.

4. The bypass-switch has a hierarchical and modular design to select the best-
e�ort packet queuing discipline and the crossbar scheduler best adopted to the
problem.

5. Both tra�c classes support multiple protocols as payload within the same
network.

253

254 Introduction

6. The global synchronization strategy allows arbitrary frame sizes and thus band-
width granularities even on distributed setups with di�erent physical link de-
lays.

7. The bandwidth reservation algorithm achieves up to 100% slot usage even for
several hundreds of isochronous connections.

8. The low online complexity of O(1) for isochronous data supports tiny slot sizes
for a �ne-grained bandwidth division.

9. The design is scalable in terms of line speed (no internal speedup) and the
number of network hops (bounded delay). The scalability in the number of
ports solely depends on the complexity of the selected best-e�ort scheduler.

10. The compact design is suitable for an implementation within the limited space
of programmable logic.

A reference implementation of the proposed architecture has been presentedreference
implementation
in hardware and
software

within the programmable logic of the Stage 1 framework. The algorithmic parts
of the network initialization phase are implemented in software. The implemented
VHDL design of the switch is parameterizable for di�erent packet sizes, port num-
bers, best-e�ort schedulers and also slot sizes.

QoS Results for Isochronous Connections

Since isochronous connections use reserved bandwidth, the throughput is strictlydeterministic
forwarding guaranteed as long as the reserved bandwidth is not exceeded at the source node of

a connection. It has been shown that delay and jitter can be calculated in advance
due to the deterministic forwarding process.

The end-to-end delay is bounded and has been reduced to the near minimum byminimum
end-to-end delay totally avoiding the queuing of isochronous data. The problem of contention between

the switch ports has been solved without introducing additional delays. The proposed
solution uses a contention-free reservation strategy during the network initialization
phase. The resulting delay is only a few clock cycles due to the synchronization
adjustment. Concerning the reference application, it has been shown that the main
part (about 80%) of the delay is caused by the already delay-reduced MGTs of the
FPGAs. A further delay reduction would therefore require a di�erent physical layer.
The calculated delay values have been exactly reproduced by measurements of the
reference implementation.

The connection jitter is bounded by at maximum a single frame time. The jitterbounded and
small end-to-end
jitter

mainly depends on the waiting process for reserved slots at the source interface. It is
possibly slightly enlarged by intermediate network nodes by the size of the frame gap.
It has been shown that for regular network topologies with comparable transmission
times and a single slot per connection, the end-to-end jitter is independent of the
number of network nodes. The best possible jitter that has been achieved for various
neural network topologies is only 19.2 ns.

Since the network interface of the ANN controller has currently not been �nished,demonstrator
application the isochronous transfers have been veri�ed using a demonstrator application in

programmable logic. The calculated delay values for the isochronous connections
have been reproduced exactly. Long-term transfer tests showed a mean 32 bit error
rate of 2.5·10−8 due to sub-optimal electrical properties of the physical transmissions.

5.8. SUMMARY 255

Global Synchronization

The forwarding scheme of MCGN relies on the global synchronization of all network synchronization
precisionnodes. The developed technique is suitable for synchronizing a distributed setup of

network nodes to the precision of a single clock cycle. A synchronization service has
been developed that allows applications to communicate via globally synchronized
signals with this precision.

Since queuing stages are avoided, synchronization would usually constrain the arbitrary frame
sizes possibleselectable frame sizes according to the physical network topology. This problem has

been solved by the development of the shifted framing technique, which allows arbi-
trary frame sizes independent of physical transmission times. This is of importance
since it allows a �ne-grained bandwidth division to be selected that is best adopted
to the application (e.g. the neural network topology to be investigated) and thus
leads to optimal bandwidth usage.

The global synchronization of all network nodes has been successfully established stability

within the Stage 1 framework down to the precision of a single clock cycle of 6.4 ns.
The synchronization state has been measured as being stable during experiments
with a duration of at least 12 h. This is su�cient for the application since single
neural network experiments are expected to run only fractions of seconds.

Bandwidth Reservation

The developed MCGN architecture reserves bandwidth resources by means of a con- transformation to
vertex color
problem

nection mapping algorithm. It is executed in software during the network initializa-
tion phase prior to the network operation. This reduces the online complexity of the
forwarding of the isochronous data to a simple table look-up. The main algorithmic
problem to be solved is the contention at the switch outputs during the forward-
ing process. It has been shown that this problem equals the common vertex color
problem from graph theory, which is well studied.

The performance of the implemented connection mapping algorithm has been 100% slot
occupancy in
many cases

evaluated on a number of reference topologies. It has been demonstrated that the
algorithm achieves 100% slot usage for all tested network topologies for up to 16
chips, which equals a near-optimum usage of the available bandwidth (except the
frame gap). The algorithm even scales with higher chip numbers: a pseudo-random
network of 32 chips and 992 isochronous connections has been successfully reserved
with 80.1% slot occupancy. The developed solution can therefore be expected to
outperform other approaches that use a greedy algorithm as e.g. proposed in [117] for
the run-time slot allocation. It has further been shown that the developed algorithm
does not rely on symmetric topologies. Tests with up to three missing links or twisted
links showed that performance deceases only slightly.

Best-E�ort Packet Transfers

The proposed network architecture provides packet-based transports as best-e�ort development of a
novel switch
architecture

services. Packets occupy unreserved or unused slots. The multiplexing of reserved
tra�c from isochronous connections and best-e�ort tra�c is performed by the novel
bypass-switch architecture. The switch allows a separate processing of isochronous
data and best-e�ort packets in a hierarchical design. Contentions at the crossbar

256 Introduction

inputs between both classes are removed by using separate inputs. Simulations
showed that this signi�cantly improves the performance of best-e�ort transfers in
the presence of reserved tra�c.

The packet-based part of the bypass-switch equals an input-queued switch withdevelopment of a
shared memory
system

VOQs and a centralized crossbar scheduler. Due to its modularity, it is possible to
trade the logic consumption against the switch performance in terms of bu�ering size
or the scheduler complexity. The suitability of di�erent schedulers has been investi-
gated by a slot-based simulation of the proposed switch architecture. The scheduling
algorithms iSLIP, RPA and DPA have exemplarily been implemented in hardware.
The simulation results have been used to verify the hardware implementation for
correctness.

The packet-based transfers are the basis for a global DSM subsystem. Al-simulation and
veri�cation of the
packet schedulers

though the DSM currently lacks a cache coherency protocol, it provides a convenient
method for the global on-demand data exchange usable by all clients within the pro-
grammable logic. The implemented routing logic exploits the 4-dimensional cubic
topology of the backplane and performs a simple and e�cient dimensional routing
algorithm.

Analysis of Applicable Neural Network Topologies

The performance of the mapping algorithm has been evaluated with customizedde�ned quali�ers
on generate
topologies

generated neural network topologies, which are mappable to the network blocks of the
Spikey ANN chips without losses of synapses or neurons. The evaluation has been
done with a set of de�ned network quali�ers to analyze the resource consumption
and connectivity of the generated neural network topologies.

The investigated networks feature a pseudo-random topology with the inputs ofcalculation of
mean link load the ANN network blocks evenly connected to neurons from all chips. As a remarkable

result, it has been calculated that for homogeneous pseudo-random networks and for
a larger number of chips, the mean number of neurons Le, whose data have to be
transported via a single physical link converges against the input count I of the ANN
chips and is particularly independent of the total number of neurons or the number
of chips used.

It has further been calculated that the mean physical spike frequency for a sin-calculation of
max. mean
neuron frequency

gle neuron, which can be handled by the network without dropping data equals
ν=0.31MHz in the case of optimal mapping. Although this value does not necessar-
ily allow to predict a possible speedup to be adjusted for the Spikey chips, it can
be used as a reference when planning large-scale experiments with multiple chips on
the Stage 1 framework.

If has �nally been demonstrated how a change in the input count or a changevalues for
modi�ed
topologies

in the network hop ratios a�ects the neural network topologies and the �nally pos-
sible physical mean frequencies ν of the single neurons. The avoidance of inter-chip
connections with a large number of hops allows networks of 32 chips to be mapped
on the Stage 1 framework by using all available neurons and synapses with a mean
frequency for a single neuron of ν=0.35MHz.

5.8. SUMMARY 257

Future Work and Outlook

The presented calculations, measurements and simulations demonstrated the suit-
ability of the MCGN architecture to serve as a transport network for the application
of large-scale neural networks on the FACETS Stage 1 framework. The developed
network supports multiple backplanes of ANN chips to experiment with thousands
of neurons and millions of synapses. Future work on the implemented design within future work

the programmable logic addresses basically two items:

• The connections of the existing ANN controller to the transport network. This
requires a re-design of the controller with a bu�ering strategy that is scalable
for a large number of neuron connections with low online complexity. An initial
approach has been published in [47].

• The improvement of the ARQ algorithm within the transport layer of the
DSM subsystem. The present implementation is a �rst step. Although fully
operational, it provides only limited performance.

A high-performance DSM system further allows the individual network modules of
the framework to be interconnected to the control PC of the Stage 1 setup at higher
speeds. One option is to transmit DSM packets via a gigabit Ethernet adapter,
which is accessed by the FPGA on the backplane [67]. Further work on the MCGN
speci�cation has been suggested in section 3.10.1.

The proposed solution is not limited to ANN research, but is rather a general application �elds

network architecture to provide di�erent classes of QoS in an embedded environ-
ment. Customization for di�erent applications is supported by the modular VHDL
design and its number of parameters like slot duration, packet size etc. Possible ap-
plications that require isochronous connections are embedded systems with real-time
requirements or integrated multi-media devices.

In particular, the network architecture is also suitable for the upcoming Stage 2 next steps in the
FACETS projecthardware of the FACETS project, which uses wafer-scale integration of neural net-

works [121]. A single 20 cm wafer then comprises about 60 million synapses. The
Stage 2 framework also requires a transport network for the interconnection of the
wafers to be implemented within FPGAs. Its demands on the FPGA network are
comparable to the �rst stage of the project. Due to the low online complexity of the
presented network architecture, and due to its scalability in terms of line speed and
the number of network hops, the proposed network architecture can be scaled to this
application without major changes and is best suited to interconnect a wafer-scale
setup of neural networks. This system will be a further step towards the �nal goal
of understanding the functionalities of the human brain.

258 Introduction

List of Acronyms

ACK acknowledgment
ANN arti�cial neural network
ARP address resolution protocol
ARQ automatic repeat request
ASIC application speci�c integrated circuit
ATA advanced technology attachment
ATM asynchronous transfer mode
ATX advanced technology extended
BER bit error rate
CBR constant bit rate
CIOQ combined input-output queuing
CMCR centralized multicast contention resolution
CMOS complementary metal oxide semiconductor
CPU central processing unit
CRC cyclic redundancy check
CSS connection synchronous signals
DAC digital-to-analog converter
DCM digital clock manager
DCR device control registers
DDR double data rate
DRRM dual round-robin matching
DLL delay-locked loop
DPA diagonal propagation arbiter
DPBRAM dual-port block RAM
DRR de�cit round-robin
DSM distributed shared memory
DWDM dense wavelength division multiplexing
EDF earliest deadline �rst
FCFS �rst-come �rst-served
FHC folded hypercube
FIFO �rst-in �rst-out
FPGA �eld programmable gate array
GPS generalized processor sharing
GSS global synchronous signals
HAGEN Heidelberg AnaloG Evolvable Neural network
HOL head-of-line
HRR hierarchical round robin

259

260 Introduction

HTTP hypertext transfer protocol
IEEE institute of electrical and electronics engineers
i.i.d. independent, identically distributed
IP internet protocol
IPP input packet processor
ISDN integrated services digital network
LAN local area network
LFSR linear feedback shift register
LPF longest port �rst
LQF longest queue �rst
LUT look-up table
LUT4 4-input LUT
LVDS low voltage di�erential signaling
MCGN multi-class gigabit network
MGT multi-gigabit transceiver
MPLS multiprotocol label switching
MSM maximum size matching
MWM maximum weight matching
NoC networks-on-chip
MAC media access control
NTP network time protocol
OCF oldest cell �st
OPP output packet processor
OSI open systems interconnection
OSPF open shortest path �rst
PAL packet adaptation layer
PAR positive acknowledgment with retransmission
PCB printed circuit board
PCS physical coding sublayer
PCI Peripheral Component Interconnect
PIM parallel iterative match
PLB processor local bus
PMA physical media attachment
POP3 post o�ce protocol version 3
PPE programmable priority encoder
PWWFA parallel wrapped wave front arbiter
QoS quality of service
RAM random access memory
RPA rectilinear propagation arbiter
RRM round robin matching
RSVP resource reservation protocol
RTT round-trip time
SATA serial advanced technology attachment
SCSI small computer system interface
SDRAM synchronous dynamic RAM
SERDES serializer deserializer
SMT surface mount technology

5.8. SUMMARY 261

SoC system-on-chip
SPS synchronous protocol stack
SRAM static random access memory (RAM)
SRR static round robin
STDP spike time dependent plasticity
SOF start-of-frame
SOP start-of-packet
TCP/IP transmission control protocol/internet protocol
TDM time division multiplexing
TFTP trivial �le transfer protocol
THC twisted hypercube
TTA tiny tree arbiter
UDP user datagram protocol
VC virtual circuit
VHDL VHSIC hardware description language
VHSIC very high speed integrated circuit
VLSI very large scale integration
VOQ virtual output queue
WAN wide area network
WFA wave front arbiter
WFQ weighted fair queuing
WRR weighted round-robin
WWFA wrapped wave front arbiter
ZBT zero bus turnaround

262 Introduction

List of Symbols

Framing

T s time frame duration
S s time slot duration
G s frame gap duration
f integer time slots per frame
n integer reservation periods per frame
m integer time slots per reservation period
w bit/s physical bandwidth of the links
wc bit/s bandwidth for connection c
ws bit/s bandwidth per time slot

Synchronization, Timing

D s transmission delay between inputs of adjacent switches
D< s transmission delay of the front part of the frame
D> s transmission delay of the back part of the frame
De s transmission delay of link e
Dc s transmission delay of connection c
Jc s jitter of connection c
s integer logical slot shift between adjacent switches, s ≥ 0
se integer logical slot shift at link e
ε s value of the adjustable delay element, ε ≥ 0

Mapping Parameters

f integer time slots per frame
p integer number of local ports
m integer time slots per reservation period
l integer maximum number of neurons per time slot of connection

263

264 Introduction

Neural Network Topologies

L integer network load, number of neuron outputs via instance
Le integer network load of physical link e
Lc integer network load of connection c
Ltot integer total network load

Spikey Chip

I integer number of used inputs, 0 < I ≤ 256
ν integer event rate of a single physical neuron
νf integer maximum event rate at each physical link

List of Figures

1.1 Example network of 16 hosts and four subnets of di�erent topologies 6

1.2 Illustration of the layered network architecture 6

1.3 The seven-layer OSI reference model 7

1.4 The hybrid network model used in this thesis 10

1.5 Example of an Ethernet data frame that contains a TCP/IP packet . 11

1.6 Basic switch architectures . 17

1.7 Simpli�ed schematic of an input-queued and an output-queued switch 18

1.8 Illustration of the head-of-line locking problem 19

1.9 Operation of a round robin scheduler 22

1.10 Illustration of the stop-and-go queuing discipline 23

1.11 Illustration of the bipartite graph matching problem 24

1.12 Crossbar schedulers with a parallel matching 25

2.1 Photograph of the HAGEN chip . 31

2.2 Creation of multi-layered feed-forward networks using local feedbacks 33

2.3 Input sources of a HAGEN network block 34

2.4 Photograph of Spikey die . 35

2.5 Schematic of the FACETS Stage 1 framework 40

2.6 Photograph of the Nathan network module 41

2.7 Photograph of the backplane . 43

2.8 Backplane topology . 44

2.9 Neural network experimental setup 47

2.10 Large-scale interconnection of multiple ANN chips 49

2.11 Pre-Experimental mapping process 50

2.12 Clustering of netlists into network blocks 51

2.13 Simpli�ed schematic of the transport network 55

3.1 MCGN protocol stack . 69

3.2 Network topology model . 71

3.3 Schematic of a general MCGN network node 71

3.4 Illustration of the framing strategy of MCGN 72

3.5 Illustration of the network initialization phase 74

3.6 Schematic of the isochronous switch. 76

3.7 Contention resolution for reserved tra�c 77

3.8 Schematic of the global synchronization 79

3.9 Upper-layer interface for connection-based tra�c. 82

265

266 LIST OF FIGURES

3.10 Synchronization condition at the switch inputs 85
3.11 Illustration of a network node with time counter and delay elements 86
3.12 Switch timing scheme . 87
3.13 Synchronization . 89
3.14 Synchronization Constraints . 91
3.15 Synchronization with �xed framing 93
3.16 Synchronization with �xed framing maximum frame size 94
3.17 Shifted framing schematic . 94
3.18 Synchronization with shifted framing (unsynchronized local clocks) . 95
3.19 Synchronization with shifted framing (synchronized local clocks) . . 96
3.20 Synchronization with shifted framing at switch outputs 97
3.21 Global synchronous signal example 100
3.22 Illustration of the proposed GSS interface 101
3.23 Connection mapping process �ow . 102
3.24 Connection mapping example . 107
3.25 Slot assignment with �xed framing, connection collision graph 107
3.26 Slot assignment with shifted framing, illustration of collision 109
3.27 Slot assignment with shifted framing, connection collision graph . . . 110
3.28 Calculation of connection jitter at the interface 116
3.29 In�uence of multiple reservation periods on the jitter calculation . . 117
3.30 Jitter calculation for a multi-slot reservation pattern 118
3.31 Embedding a best-e�ort packet . 121
3.32 Best-e�ort packet format . 122
3.33 The bypass switch . 124
3.34 A virtual output queue . 125
3.35 Local connection-based interface of the bypass switch 126
3.36 Upper-layer interface for best-e�ort packets 127

4.1 Schematic overview of the reference implementation 137
4.2 Frame Format . 139
4.3 Best e�ort packet format . 140
4.4 Global clock distribution . 143
4.5 Block diagram of the MGT . 144
4.6 Block diagram of the physical layer implementation 145
4.7 Schematic of the MGT receive elastic bu�er 146
4.8 Local time distribution . 149
4.9 Synchronization sublayer: receive data path 150
4.10 Synchronization sublayer: transmit data path 150
4.11 Timing simulation of the shifted framing implementation 152
4.12 Timing scheme of �xed framing synchronization 154
4.13 Timing scheme of shifted framing synchronization 154
4.14 Bit-meanings of the GSS header �eld 156
4.15 Schematic of the GSS implementation 157
4.16 Top-level block schematic of the implemented bypass-switch 158
4.17 Implementation of the virtual-output queue 161
4.18 Schematic of the switch core . 162
4.19 Schematic of the crossbar . 163

LIST OF FIGURES 267

4.20 Timing diagram of the switch interface for isochronous tra�c 166
4.21 Schematic of the implemented iSLIP scheduler 168
4.22 Truth table of the TTA Element . 169
4.23 Implementation of the round-robin TTA scheduler 170
4.24 Schematic of the 2-Dimensional Ripple Arbiter Cell 172
4.25 Schematic of the Simple 2-Dimensional Ripple Carry Arbiter 173
4.26 Schematic of the 2-Dimensional RPA and DPA Arbiters. 174
4.27 Schematic of the demonstrator application for isochronous transfers . 182
4.28 Overview of the distributed shared memory subsystem 184
4.29 Data format of a shared memory packet. 186
4.30 Schematic of the DSM client process 188
4.31 Timing diagram of the user interface to the DSM client process . . . 188
4.32 Schematic of the DSM server process 189
4.33 Block schematic of the DSM packet adaptation layer. 190
4.34 Illustration of the the stop-and-wait algorithm 191
4.35 Illustration of the the stop-and-wait algorithm with timeout 192
4.36 Schematic of the implementation of the stop-and-wait algorithm. . . 193
4.37 Synchronization order of adjacent network nodes 200
4.38 Data �ow of the mapping software 202
4.39 Illustration of the generation of pseudo-random networks 205
4.40 Inter-connectivity matrix of a 16-chip pseudo-random network 206
4.41 Block-level schematic of the high-level packet switch simulator 207

5.1 MGT error rates, sorted by parameters 212
5.2 MGT error rates, sorted by physical units 213
5.3 Measurement of the delays of isochronous connections 217
5.4 Connectivity matrix of a 16-chip network with modi�es hop ratios . 228
5.5 Distribution of connection loads for networks w. cubic hop ratios . . 230
5.6 Distribution of connection loads for networks w. non-cubic hop ratios 230
5.7 Connectivity matrix of a 16-chip network w. 10% synaptic e�ciency 231
5.8 Distribution of the number of dest. neurons, 100% synapse e�ciency 232
5.9 Distribution of the number of dest. neurons, 50% synapse e�ciency 232
5.10 Distribution of neurons/slot for di�erent quantization limits 240
5.11 Illustration of the twisted hypercube and the folded hypercube . . . 242
5.12 Data path of the neural spike events within the high-level simulation 244
5.13 High-level simulation results of event drop rates 245
5.14 Delay and throughput for di�erent best-e�ort schedulers 248
5.15 Delay and throughput for the schedulers within the transport network 248
5.16 Delay and throughput for the schedulers with increased bu�er size . 249
5.17 The bypass-switch and switches with conventional crossbar inputs . . 250
5.18 Scheduler results for 40% bandwidth occupied for priority tra�c . . 251
5.19 Scheduling results for switches with single or separate crossbar inputs 251

268 LIST OF FIGURES

List of Tables

1.1 QoS requirements for example applications 13

2.1 Nominal speci�cations of the HAGEN chip 30

2.2 Nominal speci�cations of the Spikey chip 36

2.3 Comparison of the chips HAGEN and Spikey 56

2.4 Data rates and network speed of the HAGEN 57

2.5 Expected data rates and delay requirements for the Spikey chip . . . 58

4.1 Notation of the tra�c class of the data slots within frames 141

4.2 Con�guration parameters of the MGT 145

4.3 Theoretical values for the synchronization parameters, �xed framing 153

4.4 Theoretical values for the synchronization parameters, shifted framing 155

4.5 Logic consumption of di�erent multiplexer implementations 164

4.6 Implemented routing table for dimensional routing 176

4.7 Dependency of neuron data per link and mean spike frequencies . . . 180

4.8 Description of the �elds of the shared memory packet header. 187

4.9 Typical delay values of DSM transfers 194

4.10 Latencies for DSM read requests . 195

4.11 Shared memory delay-bandwidth products for di�erent hop counts . 196

4.12 Theoretical transfer rates of an optimal ARQ algorithm 196

5.1 Measurement of the transmission delays D0 before synchronization . 214

5.2 Measurement of the transmission delays after global synchronization 215

5.3 Measurement of the transmission delays D after synchronization . . 216

5.4 Measurement of the delays of isochronous connections 218

5.5 Experimental results for transmissions within isochronous connections 219

5.6 Properties of homogeneous pseudo-random networks on the backplane 226

5.7 Pseudo-random networks with modi�ed hop ratios 227

5.8 Pseudo-random networks with modi�ed synaptic e�ciency 233

5.9 Mapping results of two-chip networks 237

5.10 Mapping results of four-chip networks 237

5.11 Mapping results of eight-chip networks 238

5.12 Mapping results of 16-chip networks 238

5.13 Mapping results of 32-chip networks 239

5.14 Mapping results of non-intrinsic hop ratios with slot-load limitation . 239

5.15 Mapping results of feed-forward networks 241

269

270 LIST OF TABLES

5.16 Mapping results for extended hardware topologies 241
5.17 Hop distribution of regular, twisted and folded hypercubes 242
5.18 Robustness of the mapping algorithm 242
5.19 Network parameters of the high-level simulation 244

A.1 Resource consumption of the Bypass-Switch 271
A.2 Resource consumption of the synchronization sublayer 272
A.3 Resource consumption of the shared memory subsystem 272
A.4 Resource consumption of the demonstrator application 272

Appendix 1

Resource Consumption of FPGA
Implementation

The results have been achieved by using the synthesis tools Xilinx XST 6.3.3 and
MAP 6.3.3 [158], which have been optimized for small area and targeted to the
Virtex-II Pro [154] technology of the FPGA of the Stage 1 framework.

Resource Consumption of the Bypass-Switch

The resource consumption of the switch is determined mainly by the number of global
ports (g), the number of local ports for priority tra�c (p) as well as the scheduling
algorithm used. The number of best-e�ort ports has been set to 1 since there is only
the DSM subsystem using this packet class.

g p sched. registers LUT4 elements slices DPBRAMs

2 4 iSLIP 702 7% 1,169 11% 677 13% 3 6%

2 4 DPA 687 6% 1,167 11% 672 13% 3 6%

2 4 RPA 717 7% 1,224 12% 701 14% 3 6%

4 1 iSLIP 965 9% 1,739 17% 954 19% 5 11%

4 1 DPA 922 9% 1,711 17% 932 18% 5 11%

4 1 RPA 1,012 10% 1,910 19% 1,032 20% 5 11%

4 4 iSLIP 1,254 12% 2,488 25% 1,346 27% 5 11%

4 4 DPA 1,211 12% 2,461 24% 1,333 27% 5 11%

4 4 RPA 1,301 13% 2,659 26% 1,434 29% 5 11%

5 4 iSLIP 1,579 16% 3,747 38% 1,983 40% 6 13%

5 4 DPA 1,516 15% 3,708 37% 1,962 39% 6 13%

5 4 RPA 1,648 16% 4,007 40% 2,112 42% 6 13%

Table A.1: Resource consumption of the Bypass-Switch.

Resource Consumption of the Synchronization Sublayer

The resource consumption of the synchronization sublayer is determined mainly by
the number of global ports (g) that determine the number of interfaced MGTs, as

271

272 LIST OF TABLES

well as by the used CRC quality, since the checksum has to be calculated for each
port within both the receive and the transmit data paths.

g CRC bits registers LUT4 elements slices

4 4 287 2% 404 4% 381 7%

4 8 302 3% 477 4% 425 8%

6 4 381 3% 558 5% 524 10%

6 8 404 4% 672 6% 587 11%

Table A.2: Resource consumption of the synchronization sublayer.

Resource Consumption of the Shared Memory Subsystem

The implemented DSM contains the DSM PAL, the routing logic, a single server
that interfaces the SDRAM memory as well as a con�gurable number of clients.

clients registers LUT4 elements slices DPBRAMs

1 693 7% 863 8% 759 15% 4 9%

2 967 9% 1,352 13% 1,112 22% 5 11%

Table A.3: Resource consumption of the shared memory subsystem

Resource Consumption of the Demonstrator Application

The demonstrator application for isochronous transfers is mainly using bu�ers (DP-
BRAM elements) to store data received or to be transmitted. The SDRAM access
can be disabled to save logic.

ports SDRAM access registers LUT4 elements slices DPBRAMs

2 - 316 3% 444 4% 280 5% 4 9%

4 - 462 4% 767 7% 473 9% 8 18%

2 + 345 3% 459 4% 307 6% 4 9%

4 + 491 4% 782 7% 492 9% 8 18%

Table A.4: Resource consumption of the demonstrator application

Bibliography

[1] Baddeley, R., L. Abbott, M. Booth, F. Sengpiel, T. Freeman, E. Wakeman
and E. Rolls. �Responses of neurons in primary and inferior temporal visual
cortices to natural scenes�. In: Proceedings of the Royal Society B: Biological
Sciences, volume 264(1389), page 1775�1783. dec 1997.

[2] Banovic, D. and I. Radusinov. �VOQ Simulator -Software Tool for Performance
Analysis of VOQ Switches�. In: International Conference on Internet and Web
Applications and Services, Advanced International Conference on Telecommu-
nications, page 71. February 2006.

[3] Becker, J. Ein FPGA-basiertes Testsystem für gemischt analog/digitale ASICs.
Diploma thesis, Universität Heidelberg, Germany, 2001.

[4] Bhatti, S. N. and J. Crowcroft. �QoS-Sensitive Flows: Issues in IP Packet
Handling�. In: IEEE Internet Computing, 4(4):48�57, 2000.

[5] Bi, G.-Q. and M.-M. Poo. �Synaptic modi�cations in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type�. In: Journal of Neuroscience, 18(24):10464�10472, December 1998.

[6] Birkho�, G. D. �Tres observaciones sobre el algebra lineal�. In: Universidad
Nacional de Tucumán Revista, A(5):147�151, 1946.

[7] Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss.
�An Architecture for Di�erentiated Services�. RFC 2475, December 1998.
Http://www.ietf.org/.

[8] Borrelli, C. Xilinx Application Note 209: IEEE 802.3 Cyclic Redundancy
Check. Xilinx, Inc., www.xilinx.com, 2001.

[9] Brad Dunsmore and Toby Skandier. Telecommunications Technologies Refer-
ence. Cisco Press, sep 2002.

[10] Braden, R. �Requirements for Internet Hosts - Application and Support�. RFC
1123, October 1989. Http://www.ietf.org/.

[11] Braden, R. �Requirements for Internet Hosts - Communication Layers�. RFC
1122, October 1989. Http://www.ietf.org/.

[12] Braden, R., L. Zhang, S. Berson, S. Herzog and S. Jamin. �Resource ReSer-
Vation Protocol (RSVP) - Version 1 Functional Speci�cation�. RFC 2205,
September 1997. Http://www.ietf.org/.

273

274 BIBLIOGRAPHY

[13] Brélaz, D. �New methods to color the vertices of a graph�. In: Commun ACM,
22(4):251�256, 1979.

[14] Brüderle, D., A. Grübl, K. Meier, E. Mueller and J. Schemmel. �A Software
Framework for Tuning the Dynamics of Neuromorphic Silicon Towards Biol-
ogy�. In: Proceedings of the 9th International Work-Conference on Arti�cial
Neural Networks (IWANN), volume 4507, pages 479�486. San Sebastián, Spain,
September 2007.

[15] Brunel, N. �Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons�. In: Journal of Computational Neuroscience,
8(3):183�208, May 2000.

[16] Busson, P., L. Dobrzynski, A. Karar, T. Romanteau, J. de Papp and J. Macé.
�A solution to reduce the latency of a multi gigabit transceiver (Virtex-II Pro).
E�ect of clock jitter on the bit error rate�. In: 9th Workshop on Electronics
for LHC Experiments, 2003.

[17] C. Clos. �A study of non-blocking switching networks�, 1953. Bell System
Technical Journal' 32 (5): 406�424.

[18] Chang, C.-S., W.-J. Chen and H.-Y. Huang. �On service guarantees for input-
bu�ered crossbar switches: acapacity decomposition approach by Birkho� and
von Neumann�. In: Seventh International Workshop on Quality of Service
1999, pages 79�86. 1999.

[19] Chang, C.-S., W.-J. Chen and H.-Y. Huang. �Birkho�-von Neumann Input
Bu�ered Crossbar Switches�. In: Proceedings of the IEEE INFOCOM 2000,
pages 1614�1623. Tel Aviv, Israel, March 2000.

[20] Chang, C.-S., D.-S. Lee and Y.-S. Jou. �Load balanced Birkho�-von Neu-
mann switches, part I: one-stage bu�ering�. In: Computer Communications,
25(6):611�622, April 2002.

[21] Chang, C.-S., D.-S. Lee and C.-M. Lien. �Load balanced Birkho�-von Neu-
mann switches, part II: multi-stage bu�ering�. In: Computer Communications,
25(6):623�634, April 2002.

[22] Chang, C.-S., D.-S. Lee and Y.-J. Shih. �Mailbox switch: a scalable two-stage
switch architecture for con�ict resolution of ordered packets�. In: Proceedings
of IEEE INFOCOM 2004, volume 3, pages 1995�2006. April 2004.

[23] Chang, C.-S., D.-S. Lee and C.-Y. Yue. �Providing guaranteed rate services in
the load balanced Birkho�-von Neumann switches�. In: Proceedings of IEEE
INFOCOM 2003, volume 3, pages 1622�1632. April 2003.

[24] Chao, H. J. and J.-S. Park. �Centralized contention resolution schemes for a
large-capacityoptical ATM switch�. In: Proceedings of IEEE ATM Workshop
1998, pages 11�16. Fairfax, VA, May 1998.

BIBLIOGRAPHY 275

[25] Chuang, S.-T., A. Goel, N. McKeown and B. Prabhakar. �Matching Output
Queueing with a Combined Input Output Queued Switch�. In: Proceedings of
the IEEE INFOCOM '99, pages 1169�1178. New York, NY, March 1999.

[26] Curd, D. R. Xilinx Application Note 660: Dynamic Recon�guration of Rocke-
tIO MGT Attributes. Xilinx, Inc., www.xilinx.com, 2004.

[27] Davie, B., A. Charny, J. C. R. Bennet, K. Benson, J. Y. Le Boudec, W. Court-
ney, S. Davari, V. Firoiu and D. Stiliadis. �An Expedited Forwarding PHB
(Per-Hop Behavior)�. RFC 3246, March 2002. Http://www.ietf.org/.

[28] Dayan, P. and L. F. Abbott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, Massachusetts, MIT
Press, 2001.

[29] Delgado-Frias, J. and G. B. Ratanpal. �A VLSI crossbar switch with wrapped
wave front arbitration�. In: IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 50(1):135�141, January 2003.

[30] Demers, A., S. Keshav and S. Shenker. �Analysis and simulation of a fair
queueing algorithm�. In: SIGCOMM '89: Symposium proceedings on Commu-
nications architectures & protocols, pages 1�12. Austin, Texas, 1989.

[31] Demichelis, C. �IP Packet Delay Variation Metric for IP Performance Metrics
(IPPM)�. RFC 3393, November 2002. Http://www.ietf.org/.

[32] Design Automation Standards Committee of the IEEE Computer Society, New
York. VHDL Language Reference Manual, IEEE Std. 1076.1, 1997.

[33] Dipaolo, M. and L. Lewis. Xilinx Application Note 763: Local Clocking for
MGT RXRECCLK in Virtex-II Pro Devices. Xilinx, Inc., www.xilinx.com,
2004.

[34] Douence, V., A. La�aquiere, S. L. Masson, T. Bal and G. L. Masson. �Ana-
log Electronic System for Simulating Biological Neurons�. In: Proceedings of
the International Work-Conference on Arti�cial and Natural Neural Networks
(IWANN) 1999, pages 188�197. 1999.

[35] Felicijan, T. Quality-of-Service (QoS) for Asynchronous On-Chip Networks.
Ph.D. thesis, University of Manchester, Dept. of Computer Science, 2004.

[36] Ferrari, D. and D. C. Verma. �A Scheme for Real-Time Channel Establishment
in Wide-Area Networks�. In: IEEE Journal on Selected Areas in Communica-
tions, 8(3):368�379, April 1990.

[37] Fibre Channel Speci�cation. �Fibre Channel Industry Association�, 2008.
www.�brechannel.org.

[38] Fieres, J. A Method for Image Classi�cation Using Low-Precision Analog Com-
puting Arrays. Ph.D. thesis, Universität Heidelberg, 2005.

276 BIBLIOGRAPHY

[39] Fieres, J., A. Grübl, S. Philipp, K. Meier, J. Schemmel and F. Schürmann.
�A Platform for Parallel Operation of VLSI Neural Networks�. In: L. Smith,
A. Hussain and I. Aleksander, editors, Proceedings of the Brain Inspired Cog-
nitive Systems (BICS), 2004.

[40] Florissi, D. Isochronets: a high-speed network switching architecture. Ph.D.
thesis, Columbia University, January 1995.

[41] Florissi, D. and Y. Yemini. �The Gigabit per Second Isochronet Switch�.
Technical report, Distributed Computing and Communications (DCC) Lab,
Columbia University, June 1995.

[42] Ganjali, Y., A. Keshavarzian and D. Shah. �Cell switching versus packet switch-
ing in input-queued switches�. In: IEEE/ACM Transactions on Networking,
13(4):782�789, August 2005.

[43] Gerstner, W. and W. Kistler. Spiking Neuron Models: Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, 2002.

[44] Golestani, S. J. �A Stop-and-Go Queuing Framework for Congestion Man-
agement�. In: Proceedings of ACM SIGCOMM Computer Communications
Review, volume 20, pages 8�18. September 1990.

[45] Goossens, K., J. Dielissen and A. Radulescu. �Æthereal Network on
Chip:Concepts, Architectures, and Implementations�. In: IEEE Design and
Test of Computers, 22(5):414�421, 2005. ISSN 0740-7475.

[46] Grübl, A. Eine FPGA-basierte Plattform für neuronale Netze. Diploma thesis,
Universität Heidelberg, Germany, 2003.

[47] Grübl, A. VLSI Implementation of a Spiking Neural Network. Ph.D. thesis,
Universität Heidelberg, 2007.

[48] Gupta, P. and N. McKeown. �Designing and Implementing a Fast Crossbar
Scheduler�. In: IEEE Micro, 19(1):20�28, 1999.

[49] Gutmann, C. Implementation einer Gigabit-Ethernet-Schnittstelle zum Betrieb
eines Künstlichen Neuronalen Netzwerkes. Diploma thesis, Universität Heidel-
berg, Germany, 2007.

[50] Hä�inger, P., M. Mahowald and L. Watts. �A Spike Based Learning Neuron
in Analog VLSI�. In: Advances in neural information processing systems, 9,
1996.

[51] Heinanen, J., F. Baker, W. Weiss and J. Wroclawski. �Assured Forwarding
PHB Group�. RFC 2597, June 1999. Http://www.ietf.org/.

[52] Hodgkin, A. L. and A. F. Huxley. �A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation in Nerve�. In: Jour-
nal of Physiology, 117(4):500�544, 1952.

BIBLIOGRAPHY 277

[53] Hohmann, S. Stepwise Evolutionary Training Strategies for Hardware Neural
Networks. Ph.D. thesis, Universität Heidelberg, 2005.

[54] Hohmann, S., J. Fieres, K. Meier, J. Schemmel, T. Schmitz and F. Schürmann.
�Training Fast Mixed-Signal Neural Networks for Data Classi�cation�. In:
Proceedings of the 2004 International Joint Conference on Neural Networks
IJCNN'04, volume 4, pages 2647�2652. IEEE Press, Budapest, Hungray, July
2004.

[55] Hohmann, S. G., J. Schemmel, F. Schürmann and K. Meier. �Predicting Pro-
tein Cellular Localization Sites with a Hardware Analog Neural Network�. In:
Proceedings of the Int. Joint Conf. on Neural Networks, pages 381�386. IEEE
Press, Portland, Oregon, jul 2003.

[56] Hopcroft, J. E. and R. M. Karp. �An n
5
2 algorithm for maximum matching in

bipartite graphs�. In: Society for Industrial and Applied Mathematics, Journal
of Computing, 2(4):225�231, December 1973.

[57] HTX Board. �a universal HTX test platform�, 2008.
http://www.ra.informatik.uni-mannheim.de/.

[58] Hung, A., G. Kesidis and N. McKeown. �ATM input-bu�ered switches with
the guaranteed-rate property�. In: Proceedings of the IEEE: Third IEEE Sym-
posium on Computers and Communications, ISCC '98, pages 331�335. July
1998.

[59] Hurt, J., A. May, X. Zhu and B. Lin. �Design and implementation of high-
speed symmetric crossbar schedulers�. In: IEEE International Conference on
Communications, volume 3, pages 1478�1483. June 1999.

[60] HyperTransport Technology Consortium. HyperTransport I/O Link Speci�ca-
tion, revision 3.0a edition, November 2006. Document No. HTC20051222-0046-
0017.

[61] IBM corp., www.ibm.com. 64-Bit Processor Local Bus, Architecture Speci�ca-
tions Version 3.5, may 2001. SA-14-2534-01.

[62] In�niband Speci�cation. �In�niband Trade Association�, 2008.
http://www.in�nibandta.org.

[63] Integrated Device Technology, Inc., www.idt.com. IDT71V2556 Datasheet:
128K x 36, 256K x 18, 3.3V, Synchronous ZBT SRAMs, 2.5V I/O, Burst
Counter, Pipelined Outputs, 2004.

[64] Iyer, S. and N. McKeown. �Analysis of the Parallel Packet Switch Architec-
ture�. In: IEEE/ACM Transactions on Networking, 11(2):314�324, April 2003.

[65] Jayarajan, N. Xilinx Application Note 562: Con�gurable LocalLink CRC Ref-
erence Design. Xilinx, Inc., www.xilinx.com, 2007.

278 BIBLIOGRAPHY

[66] Jiang, Y. and M. Hamdi. �A fully desynchronized round-robin matching sched-
uler for a VOQpacket switch architecture�. In: IEEE Workshop on High Per-
formance Switching and Routing, pages 407�411. Dallas, TX, May 2001.

[67] Olivier Jolly, PhD Thesis, in preparation, Heidelberg, 2008.

[68] Kalmanek, C., H. Kanakia and S. Keshav. �Rate controlled servers for very
high-speed networks�. In: Proceedings of the IEEE GLOBECOM '90, volume 1,
pages 12�20. San Diego, CA, USA, December 1990.

[69] Karol, M. J., M. G. Hluchyj and S. P. Morgan. �Input Versus Output Queueing
on a Space-Division Packet Switch�. In: IEEE Transactions on Communica-
tions, 35:1347�1356, December 1987.

[70] Karp, R. M. �Reducibility among combinatorial problems�. In: R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85�103. Plenum Press, 1972.

[71] Kermani, P. and L. Kleinrock. �Dynamic Flow Control in Store-and-Forward
Computer Networks�. In: IEEE Transactions on Communications, 28:263�271,
February 1980.

[72] Keslassy, I., C.-S. Chang, N. McKeown and D.-S. Lee. �Optimal load-
balancing�. In: Proceedings of the IEEE INFOCOM 2005, volume 3, pages
1712�1722. Miami, FL, March 2005.

[73] Keslassy, I., M. Kodialam, T. V. Lakshman and D. Stiliadis. �On guaranteed
smooth scheduling for input-queued switches�. In: IEEE/ACM Transactions
on Networking, 13:1364�1375, December 2005.

[74] Keslassy, I. and N. McKeown. �Maintaining Packet Order in Two-Stage
Switches�. In: Proceedings of the IEEE INFOCOM 2002, volume 2, pages
1032�1041. New York, NY, June 2002.

[75] Keslassy, I., R. Zhang-Shen and N. McKeown. �Maximum size matching is
unstable for any packet switch�. In: IEEE Communications Letters, 7(10):496�
498, October 2003.

[76] Keyvani, M. VHDL Implementation of a High-Speed Symmetric Crossbar
Switch. Ph.D. thesis, University of Tehran, August 2001.

[77] Kowalczyk, J. Xilinx Application Note 670: Minimizing Receiver Elastic Bu�er
Delay in the Virtex-II Pro RocketIO Transceiver. Xilinx, Inc., www.xilinx.com,
2003.

[78] Li, J. and N. Ansari. �QoS guaranteed input queued scheduling algorithms
with low delay�. In: Proceeding of the IEEE Workshop on High Performance
Switching and Routing, pages 412�414. May 2001.

[79] Linux. �Linux Online�, 2008. www.linux.org.

BIBLIOGRAPHY 279

[80] Markram, H. �The Blue Brain Project�. In: Nature Reviews Neuroscience,
7(2):153�160, February 2006.

[81] Marsan, M. A., A. Bianco, P. Giaccone, E. Leonardi and E. Neri. �Packet
Scheduling in Input-Queued Cell-Based Switches�. In: Proceedings of the IEEE
INFOCOM 2001, volume 2, pages 1085�1094. Anchorage, AK, USA, April
2001.

[82] Maxim Integrated Products, www.maxim.com. MAX5253 Datasheet: +3V,
Quad, 12-Bit Voltage-Output DAC with Serial Interface, 2002.

[83] McCulloch, W. S. and W. H. Pitts. �A logical calculus of the ideas immanent
in nervous activity�. In: Bulletin of Mathematical Biophysics, 5(4):115�133,
1943.

[84] McKeown, N. �The iSLIP scheduling algorithm for input-queued switches�. In:
IEEE/ACM Transactions on Networking, 7(2):188�201, 1999.

[85] McKeown, N. and T. E. Anderson. �A quantitative comparison of iterative
scheduling algorithms for input-queued switches�. In: Computer Networks and
ISDN Systems, 30(24):2309�2326, 1998.

[86] McKeown, N., M. Izzard, A. Mekkittikul, W. Ellersick and M. Horowitz. �Tiny
Tera: A Packet Switch Core � Using new scheduling algorithms to build a
1-terabits packet switch with a central hub no larger than a can of soda�. In:
IEEE Micro, 17(1):26�33, February 1997.

[87] McKeown, N., A. Mekkittikul, V. Anantharam and J. Walrand. �Achieving
100% throughput in an input-queued switch�. In: IEEE Transactions on Com-
munications, 47:1260�1267, August 1999.

[88] Mehrotra, A. and M. A. Trick. �A column generation approach for graph
coloring�. In: INFORMS Journal on Computing, 8:344�354, 1996.

[89] Meier et al., K. �The FACETS Project: Fast Analog Computing with Emerging
Transient States�, 2005. EU FP6-2004-IST-FETPI, contract no. 15879.

[90] Mekkittikul, A. and N. McKeown. �A Starvation-free Algorithm for Achieving
100% Throughput in an Input-Queued Switch�. In: Proceedings of the Interna-
tional Conference on Computer Communications and Networks (ICCCN'96),
pages 226�231. Rockville, October 1996.

[91] Mekkittikul, A. and N. McKeown. �A practical scheduling algorithm to achieve
100% throughput in input-queued switches�. In: Proceedings of the IEEE
INFOCOM '98, volume 2, pages 792�799. April 1998.

[92] Metcalfe, R. M. and D. R. Boggs. �Ethernet: distributed packet switching for
local computer networks�. In: Commun ACM, 19(7):395�404, jul 1976.

[93] Mills, D. L. �Network Time Protocol (NTP)�. RFC 958, September 1985.
Http://www.ietf.org/.

280 BIBLIOGRAPHY

[94] ModelSim Simulator. �a comprehensive simulation and debug environment for
complex ASIC and FPGA designs�, 2008. http://www.model.com/.

[95] Monatvista Linux. �Embedded Linux Software and development tools for in-
telligent devices and embedded systems�, 2008. http://www.mvista.com/.

[96] Moy, J. �OSPF Version 2�. RFC 2328, April 1998. Http://www.ietf.org/.

[97] Mueller, E. Simulation of High-Conductance States in Cortical Neural Net-
works. Master's thesis, Universität Heidelberg, Germany, 2003.

[98] Nagle, J. �On packet switches with in�nite storage�. RFC 970, December 1985.
Http://www.ietf.org/.

[99] von Neumann, J. �A certain zero-sum two-person game equivalent to the
optimal assignment problem�. In: H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games, Vol. II, pages 5�12. Prinston University
Press, 1953.

[100] Ni, L. M. and P. McKinley. �A survey of wormhole routing techniques in direct
networks�. In: IEEE Computer, 26(2):62�76, February 1993.

[101] Nichols, K., S. Blake, F. Baker and D. Black. �De�nition of the Di�erentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers�. RFC 2474, December
1998. Http://www.ietf.org/.

[102] NS2. �The Network Simulator�, 2008. http://www.isi.edu/nsnam/ns/.

[103] Olesinski, W., H. Eberle and N. Gura. �PWWFA: The Parallel Wrapped
Wave Front Arbiter for Large Switches�. In: Workshop on High Performance
Switching and Routing Conference (HPSR'07), pages 1�6. Brooklyn, New York,
May 2007.

[104] Parekh, A. K. and R. G. Gallager. �A generalized processor sharing approach
to �ow control in integrated services networks: the single-node case�. In:
IEEE/ACM Transactions on Networking, 1(3):344�357, June 1993.

[105] Parekh, A. K. and R. G. Gallager. �A generalized processor sharing approach
to �ow control in integrated services networks: the multiple node case�. In:
IEEE/ACM Transactions on Networking, 2(2):137�150, April 1994.

[106] Park, J. S. The Folded Hypercube ATM Switches. Ph.D. thesis, Virginia Poly-
technic Institute and State University, September 2001.

[107] Patterson, D. and J. L. Hennessy. Computer Organization and Design. Morgan
Kaufmann, third edition, August 2007. ISBN 0123706068.

[108] PCI Express. �PCI Express Speci�cation�, 2008. www.pcisig.com.

[109] Peter Alfke. �E�cient Shift Registers, LFSR Counters, and Long Pseudo-
Random Sequence Generators�, 1996. Xilinx application note, www.xilinx.com.

BIBLIOGRAPHY 281

[110] Peterson, L. L. and B. S. Davie. Computer Networks, A Systems Approach.
Morgan Kaufmann, 3th edition, May 2003.

[111] Philipp, S., A. Grübl, K. Meier and J. Schemmel. �Interconnecting VLSI
Spiking Neural Networks Using Isochronous Connections�. In: Proceed-
ings of the 9th International Work-Conference on Arti�cial Neural Networks
(IWANN'2007), volume 4507, pages 471�478. San Sebastián, Spain, September
2007.

[112] Plummer, D. C. �Ethernet Address Resolution Protocol: Or Converting Net-
work Protocol Addresses to 48.bit Ethernet Address for Transmission on Eth-
ernet Hardware�. RFC 826, November 1982. Http://www.ietf.org/.

[113] Postel, J. �User Datagram Protocol�. RFC 768, August 1980.
Http://www.ietf.org/.

[114] Postel, J. �Internet Protocol, DARPA Internet Program Protocol Speci�ca-
tion�. RFC 791, September 1981. Http://www.ietf.org/.

[115] PyNN. �a Python package for simulator-independent speci�cation of neuronal
network models�, 2008. www.neuralensemble.org.

[116] Python. �The Python Programming Language - O�cial Website�, 2008.
www.python.org.

[117] Rijpkema, E., K. Goossens, A. adulescu, J. van Meerbergen, P. Wielage and
E. Waterlander. �Trade o�s in the Design of a Router with Both Guaranteed
and Best-E�ort Services for Networks on Chip�. In: In Proceedings of the
conference on Design, Automation and Test in Europe, March 2003.

[118] Rosen, E., A. Viswanathan and R. Callon. �Multiprotocol Label Switching
Architecture�. RFC 3031, January 2001. Http://www.ietf.org/.

[119] Rosenblatt, F. �The perception: a probabilistic model for information storage
and organization in the brain�. In: Psychological Review, 65(6):386�408, May
1958.

[120] SATA. �Serial ATA International Organization (SATA-IO)�, 2008. www.sata-
io.org.

[121] Schemmel, J., J. Fieres and K. Meier. �Wafer-Scale Integration of Analog
Neural Networks�. In: submitted for publication to the 2008 International Joint
Conference on Neural Networks IJCNN'08, April 2008.

[122] Schemmel, J., A. Grübl, K. Meier and E. Mueller. �Implementing Synaptic
Plasticity in a VLSI Spiking Neural Network Model�. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, IEEE Press (2006).

[123] Schemmel, J., S. Hohmann, K. Meier and F. Schürmann. �A Mixed-Mode Ana-
log Neural Network Using Current-Steering Synapses�. In: Analog Integrated
Circuits and Signal Processing, 38(2-3):233�244, 2004.

282 BIBLIOGRAPHY

[124] Schemmel, J., K. Meier and E. Mueller. �A new VLSI model of neural mi-
crocircuits including spike time dependent plasticity�. In: IEEE International
Joint Conference on Neural Networks, volume 3, pages 1711�1716. July 2004.

[125] Schmitz, T. Evolution in Hardware - Eine Experimentalplattform zum paralle-
len Training analoger neuronaler Netzwerke. Ph.D. thesis, Universität Heidel-
berg, 2005.

[126] Schoenen, R., G. Post and G. Sander. �Weighted Arbitration Algorithms with
Priorities for Input-Queued Switches with 100% Throughput�. In: Proceedings
of the IEEE International Workshop on Broadband Switching Systems, 1999.

[127] Schürmann, F. Exploring Liquid Computing in a Hardware Adaptation: Con-
struction and Operation of a Neural Network Experiment. Ph.D. thesis, Uni-
versität Heidelberg, 2005.

[128] �SenseMaker: A Multi-sensory, Task-speci�c, Adaptable perception System�.
IST-2001-34712.

[129] Serpanos, D. N. and P. Antoniadis. �FIRM: A Class of Distributed Scheduling
Algorithms for High-Speed ATM Switches with Multiple Input Queues�. In:
Proceedings of the IEEE INFOCOM 2000, volume 2, pages 548�555. 2000.

[130] Shizhao, L. and N. Ansari. �Input-queued switching with QoS guarantees�. In:
Proceedings of the IEEE INFOCOM '99, volume 3, pages 1152�1159. March
1999.

[131] Shreedhar, M. and G. Varghese. �E�cient fair queueing using de�cit round
robin�. In: ACM SIGCOMM Comput Commun Rev, 25(4):231�242, October
1995.

[132] SIM. �A Fixed Length Packet Simulator�, 2008.
http://klamath.stanford.edu/tools/SIM/.

[133] Sivaraman, V., F. M. Chiussi and M. Gerla. �End-to-End Statistical Delay
Service under GPS and EDF Scheduling: A Comparison Study�. In: Proceed-
ings of the IEEE INFOCOM 2001, volume 2, pages 1113�1122. Anchorage,
AK, USA, April 2001.

[134] Sollins, K. R. �The TFTP protocol (revision 2)�. RFC 783, June 1981.
Http://www.ietf.org/.

[135] Sollins, K. R. �The TFTP protocol (revision 2)�. RFC 1350, July 1992.
Http://www.ietf.org/.

[136] Song, S., K. D. Miller and L. F. Abbott. �Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity�. In: Nature Neuroscience,
3(9):919�926, 2000.

[137] Spratt, M. �The architecture of IEEE 802.6 MANs�. In: IEE Colloquium on
Fast Packet Switching, 28(4):4/1�1/5, January 1991.

BIBLIOGRAPHY 283

[138] Stoica, I. and H. Zhang. �Exact emulation of an output queueing switch by a
combined inputoutput queueing switch�. In: Sixth International Workshop on
Quality of Service (IWQoS '98), pages 218�224. Napa, CA, May 1998.

[139] Stroustrup, B. The C++ Programming Language, 1997.

[140] SVN. �Subversion - Version Control System�, 2008. subversion.tigris.org.

[141] Tamir, Y. and H. C. Chi. �Symmetric Crossbar Arbiters for VLSI Communi-
cation Switches�. In: IEEE Transactions on Parallel and Distributed Systems,
04(1):13�27, 1993.

[142] Tamir, Y. and G. L. Frazier. �Dynamically-Allocated Multi-Queue Bu�ers
for VLSI Communication Switches�. In: IEEE Transactions on Computers,
41(6):725�737, June 1992.

[143] Tannenbaum, A. S. Computer Networks. Pearson Education, 4th edition, 2004.

[144] Telecommunications Industry Association. TIA TIA/EIA-644-A: Electrical
Characteristics of Low Voltage Di�erential Signaling (LVDS) Interface Cir-
cuits, February 2001.

[145] �Token ring access method and Physical Layer speci�cations, ANSI/IEEE Std
802.5-1998E(R2003), standards.ieee.org, 2008�.

[146] Tomazic, A. Graphenfärbung mit Hilfe linearer Programmierung. Diploma
thesis, Universität Augsburg, Germany, 2005.

[147] Trynosky, S. Xilinx Application Note 648: Serial Backplane Interface to a
Shared Memory. Xilinx, Inc., www.xilinx.com, 2004.

[148] Turner, J. and N. Yamanaka. �Architectural Choices in Large Scale ATM
Switches�. In: IEICE Transactions on Communications, 81(2):120�137, 1998.

[149] Wendt, K. Mapping- und Kon�gurationstool fü das FACETS-Design-
Framework. Diploma thesis, TU Dresden, Germany, May 2007.

[150] Widmer, A. X. and P. A. Franaszek. �A DC-Balanced, Partitioned-Block,
8B/10B Transmission Code�. In: IBM Journal of Research and Development,
27(5):440�451, 1983.

[151] Wroclawski, J. �The Use of RSVP with IETF Integrated Services�. RFC 2210,
September 1997. Http://www.ietf.org/.

[152] Xilinx, www.xilinx.com. PPC405 Processor Block Reference Guide V2.2, June
2007.

[153] �Virtex-5 Multi-Platform FPGA�. www.xilinx.com, 2007.

[154] Xilinx, Inc., www.xilinx.com. Virtex-II Pro Platform FPGA Handbook, 2002.

[155] Xilinx, Inc., www.xilinx.com. Xilinx Answer Record 13962: What are the laten-
cies from TXDATA to TXN/TXP and from RXN/RXP to RXDATA?, 2002.

284 BIBLIOGRAPHY

[156] Xilinx, Inc., www.xilinx.com. Xilinx Answer Record 14669: Why are
TX_BUFFER_USE and RX_BUFFER_USE always set to TRUE? Can I
change them?, 2002.

[157] Xilinx, Inc., www.xilinx.com. RocketIO(TM) Transceiver User Guide, 2004.

[158] Xilinx, Inc., www.xilinx.com. Xilinx ISE 6 Software Manuals and Help - PDF
Collection, 2004.

[159] Yemini, Y. and D. Florissi. �Isochronets: a high-speed network switching
architecture�. In: Proceedings of the IEEE INFOCOM '93, volume 2, pages
740�747. March 1993.

[160] Yu, C.-L., C.-S. Chang and D.-S. Lee. �CR Switch: A Load-Balanced Switch
with Contention and Reservation�. In: Proceedings of the IEEE INFOCOM
2007, pages 1361�1369. Anchorage, AK, May 2007.

[161] Zhang, H. �Service disciplines for guaranteed performance service inpacket-
switching networks�. In: Proceedings of IEEE, 83(10):1374�1396, October 1995.

[162] Zheng, S. Q. and M. Yang. �Algorithm-Hardware Codesign of Fast Parallel
Round-Robin Arbiters�. In: IEEE Transactions on Parallel and Distributed
Systems, 18(1):84�95, January 2007.

[163] Zimmermann, H. �OSI Reference model - The ISO model of architecture for
open systems intercommunications�. In: IEEE Transactions on Communica-
tions, 28(4):425�432, April 1980.

Danksagung
(Acknowledgements)

Mein herzlicher Dank gilt allen, die zum Gelingen dieser Arbeit beigetragen haben.
Insbesondere möchte ich mich an dieser Stelle bedanken bei:

• Herrn Prof. Dr. Karlheinz Meier für die freundliche Aufnahme in die Electronic
Vision(s) Arbeitsgruppe und die Möglichkeit, in einem so interessanten Projekt
mitarbeiten zu können.

• Herrn Prof. Dr. Ulrich Rückert, der sich freundlicherweise bereit erklärt hat
das Zweitgutachten zu übernehmen.

• Dr. Johannes Schemmel, der immer ein kompetenter und scharfsinniger Ge-
sprächspartner war, für die vielen interessanten Diskussionen über das Projekt
und für seine bestätigende wie auch kritische Art, die mir in vielen fachlichen
Diskussionen weitergeholfen hat.

• Meinen Kollegen vom "Hardwarezimmer", insbesondere: Andi, Tillman und
Dan. Für die schöne gemeinsame Zeit, für die fachlichen Diskussionen über
Hardware-Design und dafür, dass eigentlich immer gute Stimmung war.

• Meinen Diplomanden Christian Gutmann und Alexander Sinsel, deren Ar-
beiten das Projekt mit voran gebracht haben. Christian ein ganz besonderer
Dank für die Hilfe bei den Messungen in der Schlussphase der Arbeit.

• Allen aktuellen und ehemaligen Freunden und Kollegen aus der Electronic Vi-
sion(s) Gruppe. Es sind zu viele sie hier alle aufzuzählen. Danke für die
angenehme Atmosphäre.

• Nochmals einen ganz herzlichen Dank an Dr. Andreas Grübl und Dr. Martin
Philipp für das unermüdliche Korrekturlesen des Manuskripts und die vielen
nützlichen Hinweise, Lob und Kritik.

• Meinem langjährigen Freund Paul Starzetz, der mein Interesse an Netzwerken
mit geweckt hat und der immer für interessante Diskussionen in diesem Bereich
gut ist.

• Meinen lieben Eltern für ihre moralische und nicht zuletzt auch für ihre �-
nanzielle Unterstützung, ohne die mein Studium wohl so nicht möglich gewesen
wäre.

• Meiner lieben Mahsa für die vielen schönen Momente, die wir zusammen ver-
bringen können.

285

	Introduction
	Chapter 1 - Computer Networks
	Network Topologies
	Reference Models
	The OSI Reference Model
	Alternative Models
	Encapsulation of Data Formats

	Circuit Switching and Packet Switching
	Quality of Service
	Services Guaranteed by the Network
	Techniques to Provide QoS

	Packet Switching Architectures
	General Architecture of a Packet Switch
	Output-Queued Crossbar Switches
	Input-Queued Crossbar Switches
	Combined Input-Output Queued Switches
	Further Switch Architectures

	Queuing Schedulers
	Schedulers to Access a Single Resource
	Crossbar Schedulers

	Summary

	Chapter 2 - Framework Description
	Artificial Neural Network ASICs
	The HAGEN Chip
	The Spikey Chip

	The FACETS Stage 1 Framework
	Nathan Network Module
	Backplane and Control PC
	Connectivity
	SlowControl and PowerPC Operation

	Neural Network Experiments
	Experimental Setups
	Interconnecting Multiple ANN Chips
	Neuron Mapping

	The Transport Network
	Design Considerations
	Transport of Neural Network Data
	Transport of Non-Neural Network Data
	Summary of the Service Requirements
	Existing Solutions
	Concept of the Transport Network

	Summary

	Chapter 3 - The Multi-Class Gigabit Network Architecture
	Overview
	Merging of Traffic Classes
	Network Protocol Stack

	Framing Strategy
	Network Topology
	Formal Description
	Framing of Bandwidth

	Network Initialization Phase
	Parameter Selection

	Service for Isochronous Connections
	Model of the Isochronous Switch
	Contention Resolution
	Synchronization
	Resource Reservation and Connection Mapping
	Online Forwarding Process
	Local Port Interface

	Global Synchronization
	Services Provided
	Setup Process
	Overview
	Timing Scheme of the Switch
	Time Counter Adjustment
	Frame Alignment and Frame Size
	Synchronization Result
	Upper-Layer Synchronization Service

	Connection Mapping
	Algorithm Overview
	Bandwidth Quantization
	Connection Routing
	Slot Assignment
	Overall Algorithm Result
	Further Remarks

	QoS Results for Isochronous Connections
	Throughput and Drop Rate
	Reliability
	Delay
	Jitter
	Summary

	Service for Packet-Based Transports
	Packet Embedding
	Packet Format
	The Bypass-Switch
	Interface to Upper Layers
	Packet Routing

	Scalability and Complexity
	Space Complexity
	Time Complexity

	Summary
	Future Work

	Chapter 4 - Implementation of the Transport Network
	Overview
	Framing and Packet Encoding
	Format of a Data Frame
	Format of a Best-Effort Packet
	Notification of the Slot Usage

	The Physical Layer
	Network Topology
	Distribution of the Global Reference Clock
	The Multi-Gigabit Transceiver
	Configuration of the MGTs

	The Synchronization Sublayer
	Timing of the Network Node
	Reception of Data
	Transmission of Data
	Selection of the Synchronization Parameters
	Global Synchronous Signals

	Implementation of the Bypass-Switch
	Characterization
	Overview of the Switch
	Implementation of the Input Buffers
	Implementation of the Switch Core
	Implementation of the Central Crossbar
	Interface to the Best-Effort Scheduler
	Interface to Upper Network Layers

	Implementation of the Best-Effort Scheduler
	Implementation of the iSLIP Scheduler
	Implementation of Two-Dimensional Schedulers
	Summary

	Routing of Best-Effort Packets
	Description of the Implemented Algorithm
	Summary

	Transport of Neural Network Data
	Provided Transport Service for Neural Network Data
	Demonstrator Application for Isochronous Transfers

	Distributed Shared Memory
	Overview
	Functional Description
	The Client Process and the User Interface
	The Server Process
	The DSM Packet Adaptation Layer
	Transport Control Protocol
	DSM Performance
	Summary

	Software Development
	Synchronization
	Connection Mapping
	Configuration of the Routing Tables
	Generation of Pseudo-Random Networks
	High-Level Simulation of the Packet-Switch incl. Scheduler

	Summary

	Chapter 5 - Evaluation
	Evaluation of the Physical Layer
	Measurement of the Data Reliability

	Evaluation of the Synchronization Sublayer
	Measurement of the Transmission Delays
	Establishment of the Synchronization

	Verification of the Transport of Isochronous Data
	Measurement of Application-Layer Delays
	Verification of Isochronous Transfers

	Discussion of the Neural Network Topologies
	Characterization of Neural Network Topologies
	Calculations for Neural Networks on the Backplane
	Homogeneous Pseudo-Random Networks
	Modified Pseudo-Random Networks
	Summary of the Evaluated Network Topologies

	Evaluation of the Connection Mapping Algorithm
	Evaluated Qualifiers
	Mapping Results of Pseudo-Random Networks
	Mapping Results of Networks with non-Intrinsic Hop Ratios
	Mapping Results of Alternative Hardware Topologies
	Summary

	High-Level Simulation of the Neural Data Transport
	Performance of the Best-Effort Schedulers
	Summary

	Conclusion and Outlook
	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Appendix 1 - Resource Consumption of FPGA Implementation
	Bibliography

