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Abstract
This thesis investigates the influences of shear stress, saturation-dependent changes in surface reactivity,
and thrombus growth on platelet deposition to reactive materials, which is of paramount interest
in bioengineering and clinical practice. For this purpose, two mathematical models based on the
Navier-Stokes equations and on particle conservation are developed. The first model is formulated on a
fixed domain (“FD-model”) and describes the initial phase of platelet adhesion, whereas the second
one is a free boundary problem capturing long-term thrombus growth. Several vessel geometries are
considered: Stagnation point flow, tubular expansion, and t-junction. Model parameters are optimized
to fit the data and their so obtained values are justified on the basis of experimental observations.

The FD-model does not match the experimental data at all, when platelet adhesion is assumed
independent of shear stress. In contrast, when adhesion is assumed shear-dependent, at least qualitative
agreement is achieved. Solely by consideration of both shear stress and saturation-dependent changes
in surface reactivity, good quantitative agreement of FD-model and data is obtainable. Such changes in
surface reactivity are taken into account by coupling platelet flux conditions to ordinary differential
equations (ODEs) for the evolution of surface-bound platelets. The free boundary problem is simulated
by the level set method. Like the FD-model, it shows good qualitative agreement with the experimental
evidence when shear stress is taken into account, whereas negligence of shear leads to completely false
predictions.

Regarding mathematical well-posedness of the FD-model, existence of weak solutions is shown for
generalized parabolic systems having ODE-coupled flux conditions. Uniqueness and positivity of
solutions are also investigated. Regarding the free boundary problem, a detailed proof of classical
solvability in terms of Hölder spaces is presented.

Zusammenfassung
Diese Arbeit untersucht die Einflüsse von Scherkräften, sättigungsbedingten Änderungen der Oberflä-
chenreaktivität und die Auswirkungen des Thrombenwachstums auf die Adhäsion von Blutplättchen
an reaktiven Materialien, was von großem Interesse in Biotechnik und klinischer Praxis ist. Zu diesem
Zweck werden zwei mathematische Modelle basierend auf den Navier-Stokes Gleichungen und der
Teilchenerhaltung entwickelt. Das erste Modell beschreibt die Anfangsphase der Plättchenadhäsion und
nimmt daher ein festes Gebiet an („FD-Modell“), wohingegen das zweite ein freies Randwertproblem
zur Beschreibung des längerfristigen Thrombenwachstums darstellt. Es werden mehrere Gefäßgeometri-
en betrachtet: Staupunkt, Gefäßerweiterung und T-Kreuzung. Die Modellparameter werden anhand
der experimentellen Daten gefittet und ihre so erhaltenen Werte mit experimentellen Beobachtungen
gerechtfertigt.

Beim FD-Modell stellt sich bei Annahme scherkraftunabhängiger Plättchenadhäsion keine Übereinstim-
mung mit den experimentellen Daten ein. Bei scherkraftabhängiger Adhäsion wird immerhin qualitative
Übereinstimmung erzielt. Gute quantitative Übereinstimmung mit den Daten zeigt das FD-Modell
dagegen nur bei gleichzeitiger Berücksichtigung von Scherkräften und sättigungsbedingten Änderungen
der Oberflächenreaktivität. Letzteres wird über eine Kopplung des Plättchenflusses mit gewöhnlichen
Differenzialgleichungen für die zeitliche Entwicklung der Konzentration gebundener Plättchen realisiert.
Das freie Randwertproblem wird mit Hilfe der Level Set Methode numerisch simuliert. Ebenso wie das
FD-Modell zeigt es bei Berücksichtigung der Scherkräfte gute qualitative Übereinstimmung mit dem
Experiment, wohingegen die Vernachlässigung der Scherkräfte zu völlig falschen Voraussagen führt.

Zur Sicherstellung der mathematischen Wohlgestelltheit des FD-Modells wird die Existenz schwacher
Lösungen für allgemeinere parabolische Systeme, die solch gekoppelten Randbedingungen unterworfen
sind, gezeigt. Darüberhinaus wird die Eindeutigkeit und Positivität der Lösung untersucht. Für das
freie Randwertproblem wird dessen klassische Lösbarkeit in Hölderräumen umfassend bewiesen.
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1 Introduction

Hemostasis is responsible to stem blood loss after injury by platelet plug formation. Although
being life essential, a major part of deaths in the western society is due to thrombotic events
provoked by disorders of the hemostatic system. Therefore, a better understanding of the
underlying mechanisms is needed. It is known that the overall process is governed by Virchow’s
triad [94] which comprises composition of blood, surface reactivity, and flow. Nevertheless,
previous mathematical models, such as [5, 24, 37, 49, 82, 83], concentrated mainly on kinetics
and, if at all, accounted for the in vivo flow situation only in simple terms of transport.
But, since the end of the 1970s there is experimental evidence that shear stress strongly
influences the activation of platelets and their adhesion to injured tissue [88, 95]—both crucial
steps in plug formation. However, there is still confusion about the exact physical quantities
that determine spatial platelet distribution and give rise to the well known fact that sites of
disturbed flow are prone to platelet deposition [32, 90].

This thesis investigates the influences of shear stress, saturation-dependent changes in surface
reactivity, and thrombus growth on the adhesion and aggregation of platelets to reactive
materials. For this purpose, two mathematical models based on fluid dynamic and species
conservation equations are developed and their ability to match given in vitro experimental
data is studied—dependent on whether the above mentioned effects are taken into account
or not. The first model describes the initial phase of platelet deposition, when thrombus
growth can be neglected. Therefore, this model is formulated on a fixed domain and henceforth
referred to as “Fixed Domain model” (FD-model). It accounts for shear stress and changes
in surface reactivity. Such changes are due to bound platelets that cover the surface and
express platelet-binding sites which are different from those provided by the uncovered surface.
The second model captures the long-term behavior of platelet deposition, when changes in
surface reactivity can be neglected. Instead, the growth of platelet aggregates (thrombi), which
disturb the blood flow and hence alter the shear-field, becomes important. Taking thrombus
growth into account results in a free boundary problem with fully coupled fluid dynamic and
species conservation equations. Activation of platelets in the bulk flow and subsequent agonist
production were suppressed in the below considered experiments and therefore not included in
the models derived in this work. However, these effects were subject of previous investigations
of the author [97] which allow straightforward extension of the here presented approaches.

The FD-model considers shear stress according to David et al. [20], who showed that the
distribution of bound platelets observed by Affeld et al. [1] in stagnation point flow cannot be
explained using a shear-independent adhesion rate. However, the use of a shear-dependent
adhesion rate at least improved their model predictions in some parts of the flow chamber,
whereas notable discrepancies remained in the other parts. That is why the FD-model
presented here also accounts for changes in surface reactivity by coupling boundary conditions
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1 Introduction

on platelet flux to ordinary differential equations (ODEs) describing the evolution of surface-
bound platelets, as proposed by Sorensen et al. [82]. The FD-model permits the use of a
rather elementary optimization strategy to fit parameters to experimental data. Numerical
simulations show that the combination of a shear-dependent adhesion rate with changes
in surface reactivity remarkably improves model predictions in stagnation point flow. The
FD-model is then applied and optimized to experiments concerned with platelet deposition in
other vessel geometries, such as tubular expansion [45] and t-junction [56]. As in stagnation
point flow, when adhesion is assumed to depend on both shear stress and surface-bound
platelets, the model shows good quantitative agreement with the respective experimental
data. In contrast to that, when a shear-independent adhesion rate is used, the numerical
results are not at all satisfactory. Differences found between the optimized parameters are
explained on the basis of the observations of Brash et al. [13] and the hypothesis is put forward
that the impact of changing surface reactivity on platelet adhesion depends on hematocrit.
Well-posedness (from a mathematical point of view) of parabolic problems with ODE-coupled
flux conditions is investigated: Existence of weak solutions is shown for a generalized class
of parabolic systems, whereas uniqueness and positivity of solutions require some tighter
conditions which are fulfilled by the presented FD-model.

Using the optimized parameters of the FD-model, numerical simulations of the free boundary
problem are performed by the level set method, which has been implemented in the Finite
Element toolkit Gascoigne [10]. As in the initial phase of platelet deposition, negligence of
shear stress leads to completely false predictions, whereas the inclusion of shear yields good
qualitative agreement with the experimental evidence. Finally, a detailed proof of classical
solvability of the free boundary problem is presented. The proof consists of several steps:
First, the original problem is transformed to an equivalent formulation on the fixed initial
domain. Then, the flow field is fixed and the corresponding linear problem for the platelets is
investigated. Starting in half space, this coupled linear problem is split up in several auxiliary
problems which are treated by Fourier-Laplace transform techniques and pseudodifferential
operator theory. After that, the full linear problem is solved in half space by Banach’s fixed
point theorem. By means of a regularizer, the results for the half space are used to solve the
linear problem in the original domain. The theory for the linear case is then applied to the
nonlinear problem for the platelets when the flow field is still fixed. Estimates of the nonlinear
terms show applicability of Banach’s theorem, provided that the time and the initial data
for the platelets are sufficiently small. Eventually, the full coupling of flow and platelets is
investigated. Based on the here developed theory for fixed flow and on a result of Solonnikov
[80], the Schauder theorem yields a classical solution of the free boundary problem.

One purpose of this thesis is to emphasize the need to consider the combined effects of shear
stress, changes in surface reactivity, and aggregate growth in modeling approaches addressing
hemostasis and thrombosis. These insights shall contribute to minimize thrombus formation
in vascular prostheses without the use of strong anticoagulants. This is an important task in
bioengineering, which does not only call for materials science to improve surface properties,
but also for (mathematical) shape optimization techniques to optimize blood flow conditions
with regard to the correlation of platelet deposition and shear. Due to its rather fundamental
character, the presented FD-model could be used as starting point for such an optimization
problem covering initial platelet adhesion. However, the influence of shear stress, which is
further confirmed in this work, demands to include the full coupling of flow and thrombus
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growth in models intended to capture the long-term behavior of platelet deposition. By
comparison with experimental data and by establishing its classical solvability, the presented
free boundary problem is proven to be a valuable approach to this subject, with the potential
to enlighten mechanisms in further kinds of adhesion processes.

This work is structured as follows: Chapter 2 provides a biological review of the processes during
hemostasis. In Chapter 3, the equations of the FD-model are developed. Then the numerical
methods used to simulate this model and to fit its parameters are stated and the considered
experiments are described. The numerical results are compared with the experimental data and
the optimized parameter values are justified on the basis of experimental evidence. After that,
the mathematical well-posedness of the FD-model is investigated. For this purpose, generalized
parabolic systems with mixed boundary conditions coupled to ODEs are analyzed and detailed
proofs of existence, uniqueness, and positivity of solutions are provided. The results presented
in Chapter 3 are subject for publication in [98]. Chapter 4 derives the equations of the
free boundary problem. After describing the level set method and its implementation, the
numerical results concerning the free boundary model are presented and compared with the
above mentioned experiments. Chapter 5 provides a detailed proof of classical solvability of
the free boundary problem. Chapter 6 draws conclusions and provides an outlook on future
problems.
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2 Biological background

2.1 Primary hemostasis

In vivo, the hemostatic system is initiated by disruption of endothelial cells separating blood
and reactive tissue in the vessel’s wall. Initiation is desired in case of injury, but can also
occur in atherosclerotically narrowed vessels, where ruptured plaques and elevated shear
rates may induce the formation of platelet-rich thrombi that can become life-threatening
occluding the vascular lumen [28, 29]. Platelets—small anucleated blood cells derived from
megakaryocytes in the bone marrow—adhere to the reactive tissue and form an aggregate
responsible to stem blood loss (primary hemostasis) [73]. In an elevated shear environment
this is a multistep process which requires the synergistic interaction of several receptors on the
platelets’ membrane as well as several ligands [18]. It proceeds from an initial phase mediated
by interactions of GPIb receptors and von Willebrand factor (vWf) immobilized onto fibrillar
collagen, which slow down the platelet and keep it rolling close to the surface [78]. This permits
stable attachment by GPIa/IIa receptors binding to collagen [76] and platelet activation via
interactions of collagen and, respectively, GPIa/IIa and GPVI receptors [77]. Upon activation,
platelets change their shape from discoid to spherical, release their granule content and increase
their stickiness by expression of long pseudopodia (Figure 2.1) and GPIIb/IIIa receptors [31].
These activated GPIIb/IIIa receptors then promote platelet aggregation via fibrinogen and
vWf, respectively, dependent on whether shear stress levels are low or increased [39].

Figure 2.1: Scanning electron micrographs of a resting platelet (left, ×20,000) and two
activated platelets (right, ×10,000). Inactive platelets are disc shaped, whereas
the activated ones are more spherical and express long pseudopodia. Electron
micrographs taken by J. G. White and M. Krumwiede, University of Minnesota.
Reproduced with permission from [30]
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2 Biological background

When the level of shear exceeds a certain threshold, platelet aggregation occurs even in the
absence of any chemical agonist and without any modification of ligands such as vWf [39, 65],
whereas in a static suspension mixing vWf with platelets alone does not evoke any response
[48]. The reason for this behavior is still unclear. Up for discussion are a shear enhanced
exposure or an alteration in structure of GPIb receptors on the platelets’ membrane, which
increases the efficiency of collisions [48]. In addition, particle migration is known to rise
with shear and hematocrit (Ht) up to three orders of magnitude above the Brownian value
[34, 89] due to elevated collision frequency, primarily between platelets and red blood cells
(RBCs). Furthermore, RBCs are known to potentiate shear-induced platelet adherence not
only mechanically, but also chemically by the release of platelet agonist ADP [71]. Besides
this, the question whether an uncoiling of bound globular vWf at elevated shear (or related
morphologic and conformational changes) is jointly responsible for increased platelet deposition
is still controversial. While Siedlecki et al. [79] reported such an uncoiling in the case of vWf
bound to an artificial hydrophobic surface, Novak et al. [63] did not observe such an effect in
the more physiological situation of vWf bound to collagen.

Upon platelet activation, the release reaction feedback amplifies the hemostatic system. This
is due to the fact that platelet granules contain, among others, ADP which activates further
platelets in the vicinity, ligands such as vWf and fibrinogen that promote platelet adhesion and
aggregation, as well as coagulation factors needed for the processes in secondary hemostasis
[31]. The latter refers to a multitude of reactions leading to the production of thrombin, which
is a key enzyme in the hemostatic process as well as a strong platelet agonist. In the course of
hemostasis, thrombin produces fibrin fibers which surround the platelet aggregate and stabilize
it against the shear forces in the flowing blood.

2.2 Secondary hemostasis

Table 2.1 lists the main reactions leading to the conversion of prothrombin (factor II) to
thrombin (factor IIa) in vivo (subsequent fibrin production is omitted). A scheme of these
processes is provided by Figure 2.2. This review does not consider the possibility to trigger
hemostasis via the contact pathway comprising factor XII and XI, since this pathway turned
out to be unimportant in trauma-initiated coagulation [19]. The here presented chemical
system was investigated by Mann et al.—both by in vitro laboratory experiments [14, 55] and
by numerical simulation of two ODE-systems [37, 41]. Based on their results, the cascade of
reactions can be subdivided into three phases: initiation via the extrinsic system (green color in
Figure 2.2), amplification and propagation by multiple feedback loops in the common pathway
(yellow color), and termination (red color) by the stoichiometric inhibitors antithrombin III
(ATIII) and tissue factor pathway inhibitor (TFPI).

Initiation Clotting starts upon exposure of (ordinarily hidden) tissue factor (TF) to flowing
blood, as a consequence of injury or as a consequence of inflammatory cytokine activation
of either vascular cells or monocytes [59]. However, the combined action of TFPI and ATIII
prevents initiation of hemostasis unless TF concentration exceeds a certain threshold [37].
By assembly with activated factor VIIa (≈ 1–2% of factor VII is activated in plasma), the
extrinsic tenase complex (TF=VIIa) is formed on the surface of the tissue factor bearing cell
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2.2 Secondary hemostasis

Table 2.1: From the extrinsic system to thrombin generation

Line Chemical reaction
1 TF + VII 
 TF=VII
2 TF + VIIa 
 TF=VIIa
3 TF=VIIa + VII → TF=VIIa + VIIa
4 Xa + VII → Xa + VIIa
5 IIa + VII → IIa + VIIa
6 TF=VIIa + X 
 TF=VIIa=X → TF=VIIa=Xa
7 TF=VIIa=Xa 
 TF=VIIa + Xa
8 TF=VIIa + IX 
 TF=VIIa=IX → TF=VIIa + IXa
9 Xa + II → Xa + IIa

10 IIa + VIII → IIa + VIIIa
11 VIIIa + IXa 
 IXa=VIIIa
12 IXa=VIIIa + X 
 IXa=VIIIa=X → IXa=VIIIa + Xa
13 VIIIa 
 VIIIa1 · L+ VIIIa2
14 IXa=VIIIa=X → VIIIa1 · L+ VIIIa2 + X + IXa
15 IXa=VIIIa → VIIIa1 · L+ VIIIa2 + IXa
16 IIa + V → IIa + Va
17 Xa + Va 
 Xa=Va
18 Xa=Va + II 
 Xa=Va=II → Xa=Va + mIIa
19 mIIa + Xa=Va → IIa + Xa=Va
20 TF=VIIa=Xa + TFPI 
 TF=VIIa=Xa=TFPI
21 Xa + TFPI 
 Xa=TFPI
22 TF=VIIa + Xa=TFPI → TF=VIIa=Xa=TFPI
23 Xa + ATIII → Xa=ATIII
24 mIIa + ATIII → mIIa=ATIII
25 IXa + ATIII → IXa=ATIII
26 IIa + ATIII → IIa=ATIII
27 TF=VIIa + ATIII → TF=VIIa=ATIII

(Table 2.1, line 2). The extrinsic tenase activates factor X (Table 2.1, lines 6-7) and factor
IX (Table 2.1, line 8). Factor VII was shown to impair thrombin production [93] due to its
competition with factor VIIa for TF (Table 2.1, line 1). However, in self-propagating loops,
factor VII is activated by TF=VIIa (Table 2.1, line 3) and factor Xa (Table 2.1, line 4). Factor
Xa can independently generate thrombin (Table 2.1, line 9), but this reaction is extremely
inefficient [37].

Propagation The residual amount of initially produced thrombin amplifies the system through
several feedback loops: Besides acting on factor VII (Table 2.1, line 5) and XI (contact pathway;
not shown), thrombin activates small quantities of factor V (Table 2.1, line 16) and factor VIII
(Table 2.1, line 10), which is crucial for the formation of the membrane bound enzyme-cofactor
complexes intrinsic tenase (IXa=VIIIa; Table 2.1, line 11) and prothrombinase (Xa=Va; Table
2.1, line 17). The intrinsic tenase activates factor X (Table 2.1, line 12), which is approximately
50-fold more efficient than factor X activation by the extrinsic tenase. Prothrombinase is
responsible for the conversion of prothrombin via meizothrombin (mIIa) to thrombin (Table 2.1,
lines 18-19). Thrombin generation ultimately develops once intrinsic tenase and prothrombinase
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Figure 2.2: The coagulation cascade

have formed on vascular membranes, which is due to the facts that (1) both catalysts are
105–106-fold more efficient than their components acting independently [59]; (2) factor Xa
that is bound in the prothrombinase complex is protected from TFPI [26] and ATIII [72] (in
the presence of prothrombin); (3) factor Va that is bound to a platelet’s surface is protected
from the inhibitor protein C (see below) [46]. The functional structure of these essential
enzyme-cofactor complexes is explained in Figure 2.3 on the basis of prothrombinase.

Termination Down-regulation of the reaction cascade is the consequence of three mechanisms:
(1) decay of factor VIIIa and of intrinsic tenase due to spontaneous dissociation of the A2
domain from factor VIIIa (Table 2.1, lines 13-15), according to [22, 23, 58]; (2) inhibition of
factor Xa, mIIa, IXa, thrombin, and extrinsic tenase by circulating ATIII (Table 2.1, lines
23-27; see also [17, 43, 54]); (3) the action of the TFPI inhibitor, as described in [6] (Table 2.1,
lines 20-22).

Besides ATIII and TFPI, further inhibitors are involved in the regulation of the hemostatic
process. The most important of those is the protein C (PC) system, which—in contrast to
ATIII and TFPI—dynamically adjusts to the extent of thrombin production. The mechanism
is as follows: Thrombin that reaches the intact vascular surface can bind to endothelial throm-
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2.2 Secondary hemostasis

Platelet surface; phospholipids

Product:

thrombin
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Substrate:

prothrombin

(factor II)

2+ 2+

Enzyme:

factor Xa

Cofactor:

factor Va
Ca Ca
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Figure 2.3: The structure of prothrombinase: Calcium ions mediate binding of enzyme (factor
Xa) and substrate (II) to the negatively charged, phospholipid coated surface
of activated platelets. The close proximity of the bound enzyme and substrate
molecules—together with the assistance of the cofactor Va—lead to a burst of
thrombin production (see also [67])

bomodulin (Tm); this thrombin-thrombomodulin complex (IIa=Tm) subsequently activates
protein C (→ APC), which inhibits thrombin formation by inactivating factors Va (→ Vai)
and VIIIa (→ VIIIai) [67]. The efficiency of APC is thereby enhanced by the cofactor protein
S (PS). APC is known to exhibit a more antithrombotic than antihemostatic activity, since it
permits sufficient thrombin production for hemostatic reactions to proceed [66]. A kinetic in
vitro study of protein C is provided in [92]. In summing up, the reactions of the protein C
system are

IIa + Tm 
 IIa=Tm
IIa=Tm + PC 
 IIa=Tm=PC→ IIa=Tm + APC

APC + PS 
 APC=PS
APC=PS + VIIIa 
 APC=PS=VIIIa→ APC=PS + VIIIai

APC=PS + Va 
 APC=PS=Va→ APC=PS + Vai .

To confine hemostatic response to the site of injury, the main reactions shown in Figure 2.2
take place primarily on the surface of activated platelets. There, specific receptors are involved
in the binding of reactants and the formation of the tenase and prothrombinase complexes,
which—as mentioned above—are essential amplifiers of hemostatic reactions [61, 91]. This
cell-based view of coagulation (cf. [60]) is explained in the Figures 2.4–2.6, where clotting
proceeds in three stages: initiation, priming, and propagation. In contrast to the cascade model
presented in Figure 2.2, the cell-based view accounts for platelets as an active means for the
propagation and regulation of hemostatic processes. This notion recently replaced the classic
theory by which hemostasis was thought to occur in two consecutive steps: First, platelet
aggregation and activation; second, the cascade of clotting enzyme complexes leading to fibrin
formation on the surface of platelets, the reactions being enhanced by phospholipids from
the platelet membrane. Furthermore, the cell-based model provides a satisfying explanation
of hemophilia, which could not be derived from the cascade view of coagulation [46, 60].
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2 Biological background

Therefore, to account for their crucial role in the overall system, platelets should be considered
by any future modeling approach attempting to describe the in vivo situation.

In their ODE-models published in [37, 41], Mann et al. neither considered the dynamic
inhibitory protein C system, nor did they take into account the platelets. Instead, they
concentrated on processes and rate constants which are representative of reaction paths and
rates experimentally observed under the condition of saturating phospholipid concentrations
[37, p. 18323]. Thus, these models are useful for the simulation of in vitro laboratory tests,
such as the prothrombin time [69] and the activated partial thromboplastin time [53], but may
fail to explain in vivo mechanisms.

To better capture the in vivo situation, the activation of platelets, the positive feedback induced
by thrombin production on the activated platelet membranes, and the negative feedback due
to protein C generation along the intact endothelium has been investigated in previous work of
the author [97]. In this work, which also takes into account the stoichiometric inhibitor ATIII,
the kinetics of platelet activation, subsequent agonist production, and dynamic inhibition were
first studied by the use of an ODE-system. This revealed thrombin production to proceed
in three phases: initiation during platelet activation, a burst of thrombin generation once
sufficient amount of platelet activation is reached, and termination due to the combined action
of protein C and ATIII. To investigate the spatial behavior of this coupled reaction system
under flow conditions, a model based on reaction-convection-diffusion equations was developed.
Numerical simulations confirmed localization of the hemostatic reactions to the site of injury,
which is assured by the inhibitors protein C and ATIII, as well as by the restriction of the main
reactions to the activated platelet membranes. In addition, protein C was shown to permit
sufficient thrombin production to achieve hemostasis, which is consistent with the experience
of Pierce et al. [66].

Further biological information concerning hemostasis and thrombosis can be found in [19, 46,
59, 60, 67, 97] and the references cited therein. A publication that reviews thrombus formation
from a unique in vivo perspective is provided by [27].

IX

Tissue Factor

bearing cell

X

Xa
TF=VIIa

IIa
Va
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II

IXa

Figure 2.4: Initiation Factor VIIa binds to TF and activates factor X and factor IX. Bound
to the surface of the TF-bearing cell, factor Xa activates factor V. Both form a
complex, which converts small amounts of prothrombin (II) to thrombin (IIa).
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2.2 Secondary hemostasis
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Figure 2.5: Priming The initially produced thrombin activates platelets, which release, among
others, factor V from their α-granules. Thrombin activates the factors V, XI,
and VIII, the latter by cleavage from vWF. These activated factors then bind to
the platelet’s surface. The TF=VIIa complex on the TF-bearing cell is inhibited
by TFPI in complex with factor Xa.
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Figure 2.6: Propagation Factor IXa generated during initiation binds to the activated platelets.
This pool of IXa is supported by factor XIa producing IXa on the platelet’s
membrane. Factor IXa in complex with factor VIIIa activates factor X, which
then moves into the protected prothrombinase complex with factor Va. This
eventually results in a burst of thrombin generation.
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3 The fixed domain model

To determine the influence of various physical quantities on platelet adhesion, this chapter
restricts itself to the initial phase of platelet deposition; that is the period of time when flow
disturbances due to thrombus growth are only of secondary importance. Consequently, a fixed
fluid domain is assumed. A continuous model of platelet adhesion is developed, henceforth
referred to as “Fixed Domain model” (FD-model), which is based on the Navier-Stokes system
and on conservation of particles. It is shown by optimization of parameters and by numerical
simulation that the FD-model cannot reproduce the spatial distribution of bound platelets
observed in three in vitro experiments when platelet adhesion is assumed independent of shear
stress. In contrast to that, taking shear stress into account leads to qualitative agreement with
the experimental data, although quantitative discrepancies remain. Solely by consideration of
both shear stress and saturation-dependent changes in surface reactivity, satisfying quantitative
agreement with the data is obtainable. The optimized parameter values are justified on the
basis of experimental observations. Moreover, mathematical well-posedness in the sense of
weak solutions is established for generalized parabolic systems containing ODE-coupled platelet
flux conditions.

3.1 Model development

Despite their enormous concentration in blood (≈ 250,000 /µl), platelets constitute only about
0.2% of the blood volume [46]. For computational simulations of millimeter-size geometries it
is therefore more appropriate to consider continuous models rather than discrete approaches.

Blood is known to exhibit some shear-thinning non-Newtonian behavior. This relies on the
presence of RBCs that form rouleaux at flow stagnation and tend to deform and align with
the flow at elevated shear rates. In the latter situation, the viscosity reaches an asymptotic
value, so that blood can be regarded as Newtonian once shear rates exceed 200 s−1 [45]. In the
tubular expansion experiments considered here, the mean inlet shear rate

g := 1
|I|

∫
I
g dS = 4

3
U

L
(assuming Poiseuille flow) (3.1)

varied from 400 to 1,300 s−1 (g: shear rate; I: inlet; U : maximum inlet flow velocity; L: inlet
radius). In the stagnation point flow, platelet-rich plasma has been used, which is Newtonian.
Therefore, the velocity-field u was calculated from the Navier-Stokes equations (NSE) with
constant viscosity. This led to quite accurate results for the t-junction, too, despite a mean inlet
shear rate of only 70 s−1. Applicability of NSE was further supported by numerical tests for the
tubular expansion case. In these tests, calculation of u was based on the shear-thinning Yasuda
model [100], which has recently been applied to blood flow in a bifurcation [15]. However,
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3 The fixed domain model

this non-Newtonian fluid model did not improve the predictions of the FD-model (data not
shown).

The total density w of platelets (both resting and activated) is determined by a species
conservation equation. To prevent platelet activation, aggregation, and release reaction, pre-
activated platelets have been used in the stagnation point flow experiment and washed platelets
in Tyrodes-albumin solution in the tubular expansion. This is why activation of platelets and
detailed chemistry does not need to be considered here, but can be included in the FD-model
using [37, 81, 97] and the theory presented in Chapter 2. In addition, due to the absence of
endothelium in these in vitro experiments, the dynamic inhibitory protein C system does not
respond to thrombin production and is therefore not taken into account in this work. However,
using [97], the here presented approaches are readily extendable to in vivo considerations.

Adhesion of platelets to reactive material is taken as a first order reaction, with rate k
depending on the wall shear stress s and—to account for changes in surface reactivity—on the
concentration ψ of bound platelets. Since the focus of the FD-model is on the initial phase of
platelet adhesion, long-term flow disturbances due to thrombus growth are neglected: platelets
that adhere to the wall are regarded as being completely incorporated into the wall. However,
due to the influence of shear stress on platelet adhesion, the coupling of flow and thrombus
growth turns out to be important and will therefore be addressed in the next chapter.

Let Ω ⊂ R3 be the vessel geometry under consideration, with boundary ∂Ω = Γ ∪ Σ ∪ I ∪O,
tangent τ and outer unit normal n. Γ denotes reactive material prone to platelet adhesion, Σ
non-reactive material, I the inlet and O the outlet of the vessel. The domain and its different
parts of the boundary are sketched in Figure 3.1. In cartesian coordinates, the FD-model
reads

∂tu+ (u · ∇)u− ν∆u+∇p = f in Ω

∇ · u = 0 in Ω

u|I = uD ; u|Γ∪Σ = 0 ; u(t = 0) = u0 in Ω

ν∂nu|O = p · n|O or, in the t-junction case:
u|M = uD,M for a subset M ⊂ O.

∂tw −D∆w + (u · ∇)w = 0 in Ω

−D∂nw =
{
k(ψ, s)w on Γ

0 on Σ ∪O

w|I = wD ; w(t = 0) = w0 in Ω

∂tψ = k(ψ, s)w , ψ(t = 0) = 0 on Γ.



(3.2)

In this work, ∇ denotes the gradient, ∆ the Laplacian, and ν the kinematic viscosity of the
fluid. w0 and u0 denote the initial concentration of w and u, respectively; wD and uD are
prescribed values at the inflow.

D denotes the diffusion coefficient of the platelets. In plasma, the Brownian value of D can be
estimated from the Stokes-Einstein equation as Db = 1.58× 10−7 mm2/s [32]. However, the
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3.1 Model development

Reactive material

Non-reactive wall

Inflow

I

Outflow

O

Figure 3.1: The different parts of the boundary

effective diffusion may be increased, dependent on the concentration of RBCs and the level of
shear. One common method to take this into account is Keller’s model [47], which assumes
the augmentation to depend both on the diameter d of RBCs (assumed to be 5.5µm) and,
linearly, on the local shear rate g:

D = Db + 0.045 d2g . (3.3)

However, as already pointed out by Sorensen [81], application of a shear-proportional enhance-
ment factor in Poiseuille-type flows results in a level of enhancement which is the opposite
of what is expected—zero at the centerline, where most of the red cells reside due to the
Fahraeus effect, and highest at the wall, where they are excluded. Therefore, following [25, 81],
a constant enhancement factor was used for D. Regarding the considered experiments, D was
chosen one order of magnitude greater than the Brownian value, and two orders of magnitude
greater in cases when RBCs were present, which is in compliance with the range of diffusion
predicted by Keller’s model.

The adhesion rate k is taken as

k(ψ, s) :=
(
λ(1) + λ(2)s

)(
1− ψ

Ψ

)
︸ ︷︷ ︸

(I)

+
(
κ(1) + κ(2)s

)ψ
Ψ︸ ︷︷ ︸

(II)

. (3.4)

Part (I) accounts for the reactivity of the original surface, whereas part (II) describes ongoing
adhesion of platelets to the surface-bound ones. λ(i) and κ(i) denote reactivities of surface and
platelets, respectively, and Ψ := wDL. Wall shear stress s is defined as s := ν|g|, with wall
shear rate g := (τ · σ · n)/ν and stress tensor σ := −pI + ν(∇u+∇uT ). The exact functional
dependence of k on shear stress is unknown. Therefore, in each part of k, the dependence on s
has been expanded into a Taylor series up to the linear term. Regarding stagnation point flow,
David et al. [20] showed analytically that the use of such a linear dependence is reasonable,
since it locates the position of maximum platelet flux within the range reported by Affeld et
al. [1].

In order to derive a non-dimensional form of the FD-model, let W be a characteristic platelet
concentration (here: W := wD), take L/U as characteristic time, set x̃ := x/L, t̃ := Ut/L,
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3 The fixed domain model

and define the following normalizations:

ũ(x̃, t̃) := u(x, t)
U

, p̃(x̃, t̃) := p

U2 , w̃(x̃, t̃) := w(x, t)
W

, ψ̃(x̃, t̃) := ψ(x, t)
Ψ

s̃(x̃, t̃) := s(x, t)L
Uν

, Re := LU

ν
, Pe := LU

D
, λ1 := λ(1)

U
, λ2 := λ(2)ν

L
.

(3.5)

κ1 and κ2 are defined similar to λ1 and λ2, respectively. Note that λ1 and κ1 implicitly depend
on U and therefore need to be adjusted upon changes in inflow velocity, whereas λ2 and κ2
are independent of flow, but depend on viscosity.

Except the t-junction, the setup of all considered experiments exhibits cylindrical symmetry
(geometry, boundary conditions, etc.). In these cases, we switch from cartesian coordinates
(x, y, z) to cylindrical coordinates (r, θ, z) and may assume uθ = ∂θu = 0, ∂θw = 0, which
reduces dimension. The reasonability of using cylindrical coordinates is further confirmed by
the below presented comparison of numerical and experimental results. Leaving out the tilde,
we obtain

∂tur + (u · ∇)ur − Re−1(∆ur − r−2ur
)
+ ∂rp = 0 in Ωc

∂tuz + (u · ∇)uz − Re−1∆uz + ∂zp = 0 in Ωc

r−1∂r(rur) + ∂zuz = 0 in Ωc

u|Ic = uD/U ; u|Γc∪Σc = 0 ; u(t = 0) = u0/U in Ωc

Re−1∂nu|Oc = p · n|Oc or, in the t-junction case:
u|Mc

= uD,Mc/U for a subset Mc ⊂ Oc.

∂tw − Pe−1∆w + (u · ∇)w = 0 in Ωc

−Pe−1∂nw =
{
k(ψ, s)w on Γc

0 on Σc ∪Oc

w|Ic = wD/W ; w(t = 0) = w0/W in Ωc

∂tψ = k(ψ, s)w , ψ(t = 0) = 0 on Γc,



(3.6)

where
k(ψ, s) :=

(
λ1 + λ2s

)
(1− ψ) +

(
κ1 + κ2s

)
ψ . (3.7)

Here, u := (ur, uz), ∇ :=
(
∂r, ∂z

)T , ∆ := ∂2
r + ∂2

z . Pe and Re are Peclet and Reynolds number,
respectively, which are known from the experiment. In contrast to that, λi and κi are unknown
and have to be fitted to experimental results. Ωc denotes the two-dimensional computational
domain, with Γc, Σc, Ic, Oc ⊂ ∂Ωc.

However, in order to perform numerical simulations based on the Finite Element (FE) method,
the three-dimensional cartesian model (3.2) was first written in variational form, then trans-
formed to cylindrical coordinates, and finally reduced to a two-dimensional system. This
procedure avoids the necessity of introducing artificial boundary conditions on the artificial
boundary Λc := {r = 0} of Ωc, which would arise when starting from the strong formulation
(3.6).
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3.2 Numerical methods and optimization of parameters

3.2 Numerical methods and optimization of parameters

The numerical solution of (3.6) was performed using the FE library Gascoigne [10]. The
Peclet number being rather large, steep gradients in platelet density have to be expected along
the reactive wall. Therefore, a locally refined quadrilateral mesh was used, consisting of a
total of cells ranging from 18,656 (stagnation point) to 47,104 (tubular expansion). Spatial
Discretization was achieved using bilinear finite elements, together with a local projection
stabilization of transport and pressure [9, 12]. The linear systems were solved by the Generalized
Minimal Residual (GMRES) algorithm [74], which was preconditioned by a geometric multigrid
method with block-ILU smoothing. A second order Crank-Nicolson scheme was applied for
time-stepping. However, this scheme being prone to oscillations, four implicit Euler steps were
used in the beginning to damp high frequency error components. This strategy—proposed by
[70]—combines the smoothing property of the Euler scheme and, at the same time, preserves
the higher order of Crank-Nicolson. Further information on these methods can be found in [68].
The implementational details of using the multigrid on locally refined meshes are provided in
[8].

The equations of the FD-model permit the use of an elementary, well working, and easily
implementable optimization strategy to fit the parameters λi, κi. To sketch the procedure, the
special case λ1 ≡ κ1 ≡ 0 is sufficient. Set δ := κ2 − λ2 and λ := λ2. The aim to minimize
the Euclidean distance of the predicted bound platelet concentration to the experimentally
determined values ψ̃i (measured in xi ∈ Γ), i.e.,

J(ψ) :=
N∑
i=1

(
ψi − ψ̃i

)2 −→ min! , ψi := ψ(xi, T ) , (3.8)

was followed by consideration of the necessary conditions

∂λJ = 0 , ∂δJ = 0 . (3.9)

Starting from ∂tψ = k(ψ, s)w, the ψi permit the representation

ψi = λ

δ
eδmi − λ

δ
, mi :=

∫ T

0
s(xi, τ)w(xi, τ)dτ (3.10)

which is inserted in (3.8). The key idea that simplifies (3.9) is to neglect the dependence
of w on δ and λ by the use of a fixed approximation ŵ to w with corresponding weights
m̂i :=

∫ T
0 s(xi, τ)ŵ(xi, τ)dτ . The equations (3.9) then reduce to

N∑
i=1

(
λ

δ
eδm̂i − λ

δ
− ψ̃i

)(
eδm̂i − 1

)
= 0,

N∑
i=1

(
λ

δ
eδm̂i − λ

δ
− ψ̃i

)
eδm̂im̂i = 0 (3.11)

which can be solved by a damped Newton’s method. The solution (λ, δ) is then inserted in
(3.6) and the so modified system is solved again. The whole process is repeated several times
until no further reduction of J is obtained.

17



3 The fixed domain model

3.3 Numerical results

3.3.1 Stagnation point flow

Affeld et al. [1] used platelet-rich plasma (PRP) of pre-activated platelets to study their
deposition onto glass in a rotationally symmetric stagnation point flow environment. Steady
inflow in form of a laminar jet was directed onto a glass plane that was positioned perpendicular
to the jet axis. Figure 3.2 shows the computational domain with locally refined mesh and the
computed streamlines of flow.

IcIcII

c

c
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z

00 11 33

0

1.2

2.4

rr
cc

Figure 3.2: Left Computational domain; locally refined mesh. Right Computed streamlines

At the intersection of the jet axis with the surface a stagnation point (S) is generated. Platelet
deposition has been evaluated in three runs over a period of 160, 170, and 180 s, respectively. As
their main result, the researchers reported platelet deposition to be minimal at the stagnation
point, where shear rate is lowest. Maximum deposition was found downstream of the stagnation
point, at a location of elevated shear rate (Figure 3.3).

Following the presentation in [20], the data was normalized by time, yielding the mean platelet
flux over a period of 160−180 s. This is displayed in Figure 3.4, together with 68.26% confidence
intervals and the optimized solutions of: (1) FD-model with purely shear-dependent platelet
adhesion (λ1 = κ1 = 0); (2) FD-model with shear-independent platelet adhesion (λ2 = κ2 = 0);
(3) FD-model with purely shear-dependent platelet adhesion, but without changes in surface
reactivity: k(ψ, s) := λ2s. The respective parameters are provided by Table 3.1 on page 20.

FD-model number 2 and 3 are similar to those examined by David et al. [20] (except the ODEs
in no. 2). As in their work, the FD-model with shear-independent platelet adhesion predicts
maximum deposition at the stagnation point, which does not match the experimental data at
all. Better compliance is obtained in the third case, when adhesion is assumed shear-dependent.
However, there remains a relatively large overprediction around the stagnation point and
downstream of the maximum.
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Figure 3.3: Left Normalized density of bound platelets. Right Computed normalized wall-
shear rate

The best fit is achieved when both shear stress and changes in surface reactivity (due to platelet
adhesion) are taken into account. In that case, the predicted curve passes well both through
the area of negligible deposition around the stagnation point and the following maximum. In
addition, overprediction further downstream is significantly reduced.

However, the question remains why there is such a remarkable decrease in experimentally
measured platelet flux distal to the maximum. Comparison of wall-shear rate and adhesion
proximal and distal to the maximum reveals that this decrease cannot be explained by a
threshold behavior in the dependency on shear—which would actually be a first guess. It
can rather be explained by upstream thrombus growth—an observation that has also been
made by Sakariassen and Baumgartner [75] studying flow of citrated blood over collagen in a
parallel-plate perfusion chamber. Platelets that would by-pass these growing aggregates on
adjacent streamlines and then hit the glass plane further downstream might be entrapped
by the already bound ones. Depletion of the boundary layer distal to the thrombus is the
consequence, provided that shear rates are not high enough for replenishment. This effect
exceeds the decrement in steady state platelet flux with axial distance l predicted by the
classical theory of Lévêque and Levich [57] for convective diffusion in Poiseuille flow through a
circular tube,

−D
(
∂w

∂n

)
|Γ

= 0.67wD

(
gD2

2l

)1/3

,

and is remarkably reduced when aggregate growth is partially inhibited, for example in the
presence of aspirin [75]. These conclusions also explain the experimentally observed “tendency
for the platelets to deposit in the close vicinity of others already adhering (...)” which results
in the formation of “extensive blots” [1] and is well reflected in the differences in magnitude of
the parameters λ2 and κ2 of FD-model number 1. (see Table 3.1).
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Figure 3.4: Normalized platelet flux. Optimized solutions of: 1 FD-model with changes
in surface reactivity and shear-dependent platelet adhesion; 2 FD-model with
changes in surface reactivity and shear-independent platelet adhesion; 3 FD-
model without changes in surface reactivity, but with shear-dependent platelet
adhesion

Table 3.1: Optimized parameters for platelet deposition from PRP onto glass in stagnation
point flow. Mean inlet velocity U = 15.8mm/s; L = 0.335mm; Re := 2UL/ν =
9.5; W = 1.9× 106 /µl (PRP)

FD-model λ1 λ2 κ1 κ2

1 0 4.79× 10−12 0 1.15× 10−3

2 1.25× 10−11 0 1.38× 10−3 0
3 – 3.62× 10−5 – –

3.3.2 Tubular expansion

Karino and Goldsmith [45] investigated adhesion of human platelets from reconstituted blood
to collagen fibers on glass in a concentric tubular expansion geometry, both in steady and in
pulsatile flow as well as under various Ht. The numerical simulations presented here consider
the case of steady flow over a period of 60 s, Ht= 20%, and various Reynolds numbers. A
magnification of the streamlines and the computational domain are shown in Figure 3.5.

In all considered cases, the experimentally determined number of attached platelets had a
pronounced peak in the area of the vortex, followed by a minimum at the reattachement point
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Figure 3.5: Top Computational domain; locally refined mesh. Bottom Computed streamlines

(R) and a smaller secondary maximum downstream, after which a steady value was reached
(see figures 3.7, 3.8, and 3.9).

Jordan et al. [42] investigated computationally the effect of hematocrit and of RBC augmented
platelet diffusivity on platelet adhesion in the tubular expansion. For this purpose, they
employed the diffusion model proposed by Zydney and Colton [102],

D = Db + 0.15 d2g c (1− c)0.8.

This model can be regarded as an extension of Keller’s model (3.3), since, besides shear, it also
takes into account the mass fraction c of RBCs. By fitting their parameters to the experimental
data corresponding to the Re = 37.7 situation, Jordan et al. obtained reasonable qualitative
agreement. However, notable quantitative discrepancies remained, since agreement with the in
vitro data could only be achieved either in the vortex area or around the reattachement point
and the secondary peak, but not along the whole boundary. These results confirm, to some
extent, the influence of shear enhanced diffusion on platelet adhesion. However, the authors
neglected the influence of shear stress on surface reactivity. Furthermore, instead of using
the local RBC concentration, Jordan et al. employed the averaged hematocrit to calculate
the enhanced diffusion. But, as discussed on page 15, there are situations (e.g., Poiseuille
flow) where the use of such an approximation may be misleading. Therefore, the following
investigations concentrate on the effect of shear enhanced surface reactivity. It is shown that
by the use of a time-dependent model which also accounts for changes in surface reactivity,
good quantitative agreement is obtainable along the whole boundary (Figure 3.7).

To determine fluid viscosities, Karino and Goldsmith extrapolated stress-shear rate plots to a
characteristic value for the mean inlet shear rate, which they chose to be U/L. This value being
smaller than the mathematical expression (3.1) for the mean inlet shear rate, the viscosities
were a little overestimated. Compared to the experimental data, the so obtained numerical
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3 The fixed domain model

results were shifted slightly to the left. However, good agreement was achieved when the
viscosities were determined by the use of (3.1). Therefore, the numerical results presented
below are based on these corrected viscosities. The considered Reynolds numbers are: 40.9
(which corresponds to 37.7 in [45]), 30.1 (28.5) and 56.7 (50.6). The computed normalized
wall-shear rates that prevail at the different Reynolds numbers are shown in Figure 3.6.
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Figure 3.6: Computed normalized wall-shear rates

In order to test the behavior of the FD-model under different flow conditions, the parameters
have been optimized for the case Re = 40.9 and then been applied to the cases of different
Reynolds number. The adhesion rate k was chosen according to (3.7), with κ1 ≡ 0 in the
shear-dependent case (referred to as FD-model no. 1 in Table 3.2). In the shear-independent
case (FD-model no. 2) the best fit was achieved for λ1 = κ1. In all cases, comparison of
measured platelet number with wall-shear rate reveals platelet adhesion to be shear-dependent.
This is further supported by the fact that the FD-model neglecting shear shows only poor
agreement with the experimental data, as it predicts only one maximum in platelet deposition
instead of two. In contrast to that, predictions of the shear-dependent FD-model show good
agreement in the optimized Re = 40.9 case (Figure 3.7).

However, some overprediction occurs in the case of elevated Reynolds number (Figure 3.8),
whereas for Re = 30.1 there is a remarkable underprediction in the vortex area (Figure 3.9).
Hence, with increasing Reynolds number, the behavior of the FD-model is contrary to the
experimentally observed flattening of adhesion peaks. A reason for this could be that Karino
and Goldsmith used Tyrodes-albumin (containing apyrase) as solvent that does neither contain
vWf, nor fibrinogen. The effects of such lack of ligands (or associated receptors) on primary
hemostasis are reflected in the corresponding bleeding disorders, such as von Willebrand
disease (quantitative or qualitative defects in vWf), Bernard-Soulier syndrome (deficiency in
GPIb receptors), or Glanzmann’s thrombasthenia (deficiency in GPIIb/IIIa receptors), where
platelet adhesion or aggregation is known to be impaired [96]. Indeed, for the considered range
of shear rate, the FD-model trends agree with the following experimental findings on whole
blood which demonstrate platelet adhesion to be favored at elevated shear. For example, using
non-anticoagulated human blood flowing over type III collagen in a stenoses for 1 minute,
Barstad et al. [4] observed an increase in % surface coverage at the stenosis apex by a factor of
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Figure 3.7: Normalized densities of bound platelets. Optimized solutions of: 1 FD-model
with shear- and saturation-dependent platelet adhesion; 2 FD-model with shear-
independent platelet adhesion; Re = 40.9
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Figure 3.8: Re = 56.7: normalized densities of bound platelets; FD-model with shear- and
saturation-dependent platelet adhesion.

1.5 when wall shear rate was increased from 420 s−1 to 2,600 s−1. Studying platelet adhesion
from citrated whole blood to confluent spread platelet monolayers in an in vitro flow-based
platelet-aggregation assay, Kulkarni et al [50] observed even a quadruplication of the number
of tethered platelets upon an increase of shear rate from 150 s−1 to 1,800 s−1. Finally, using
anticoagulated whole blood (with PPACK and PGE1) in a parallel plate flow chamber, Savage
et al. [78] reported a triplication of platelets attached to immobilized vWf when wall shear
rate increased from 50 s−1 to 1,500 s−1. However, caution is advised, since platelet adhesion to
immobilized fibrinogen behaves contrary to the case of immobilized vWf [78].
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Table 3.2: Optimized parameters for the deposition of washed platelets to collagen fibers on
glass in a tubular expansion. Diameter of inlet tube: d := 0.917 mm; outlet tube:
3.0mm. L := 1.0mm; U : mean inlet velocity; Re := Ud/ν; W = 5 × 105 /µl.
*Note that λ1, κ1 have to be adjusted upon changes in inflow velocity, and λ2, κ2
upon changes in viscosity

Re FD-model λ1
∗ λ2

∗ κ1
∗ κ2

∗ U (mm s−1)

40.9 1 5.16×10−7 2.59×10−6 0 3.31×10−6 90.1
40.9 2 8.7 × 10−7 – 8.7 × 10−7 – 90.1
30.1 1 6.55×10−7 2.69×10−6 0 3.44×10−6 71.0
56.7 1 4.06×10−7 2.37×10−6 0 3.03×10−6 114.4

3.3.3 T-junction

Lee et al. [56] used citrated human blood to study platelet deposition to polypropylene in
a t-junction geometry. Several runs with steady flow were conducted, of which each had a
period of 60 s. Peak adhesion was found to occur around the apex (A) of the flow divider.
Although the t-junction is actually a three-dimensional problem, deposition at the top sides
of the tubes and deposition at the bottom sides were virtually the same. Therefore, the
two-dimensional version of (3.2) was used to simplify numerical calculations. Figure 3.10(a)
shows the computational domain; a magnification of the fluid streamlines is provided in Figure
3.10(b).

The predictions of the FD-model were investigated for the long side of the main tube (referred
to as Side(I)) and for the right side of the branching tube (Side(II)). Optimization of parameters
showed that changes in surface reactivity due to platelet adhesion were only of secondary
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Figure 3.10: T-junction

importance (i.e., λi = κi). Therefore, the henceforth considered cases are: (1) shear-dependent
adhesion, that is k(ψ, s) := λ2s ; (2) shear-independent adhesion, that is k(ψ, s) := λ1.
Comparison of experimentally measured deposition with computed wall-shear rate shows that
platelet adhesion is strongly determined by wall-shear rate both in the main tube (Figure
3.11) and in the branching tube (Figure 3.12). This is the reason why the shear-independent
FD-model shows only poor agreement with the experimental data. In contrast, the shear-
dependent version accurately captures the minimum adhesion in the branching area of the
main tube (Figure 3.11) as well as the peak adhesion around the flow divider of the side tube
(Figure 3.12).
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Table 3.3: Optimized parameters for platelet deposition from citrated blood onto polypropy-
lene in a t-junction. Mean inlet velocity U = 25.0mm/s; L = 1.0mm;
Re := 2UL/ν = 15.7; W = 2× 105 /µl

Side FD-model λ1 λ2

(I) 1 0 0.86× 10−5

(I) 2 1.87 × 10−5 0
(II) 1 0 4.08× 10−5

(II) 2 2.35× 10−5 0

3.4 Discussion

The aim of this section is to explain the differences among the optimized parameters. In the
stagnation point, initial platelet flux to the surface is low due to the small value of λ2 (cf. Table
3.1, FD-model no. l), whereas adhesion of platelets to already bound ones is high (cf. κ2). In
contrast to that, in the tubular expansion, adhesion to collagen coated glass and adhesion
to bound platelets seem to be more balanced (cf. the magnitudes of λi and κ2 in Table 3.2,
FD-model no. 1). In the t-junction, changes in surface reactivity could even be neglected in
the considered time-frame of 1 min (Table 3.3).

By means of the experimental data of Brash et al. [13], these effects are related to differences in
surface material, solvent, hematocrit, and to more or less pronounced expression of pseudopodia
by the bound platelets. Using rotating cylindrical probes, this group investigated adhesion of
washed pig platelets to glass, to various polymer surfaces, and to collagen coated glass—both
from citrated plasma and from Tyrodes-albumin. The effects of various hematocrits were
studied by adding washed RBCs. Shear rate was 19 s−1. ADP-induced aggregation was
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inhibited and almost all platelets were found to adhere singly and directly to the surface.

Firstly, Brash et al. report hematocrit to increase adhesion. However, the augmentation
strongly depends on the surface material and therefore cannot be explained solely by increased
diffusion. At 0% Ht (corresponding to the stagnation point) adhesion is small and almost the
same over the whole range of considered materials. An increase of Ht to 20% (corresponding to
the tubular expansion) greatly increases adhesion to collagen coated glass (tubular expansion),
but has only minor effect on adhesion to glass (stagnation point) and to polymers. Secondly,
Tyrode-solution (used in the tubular expansion) is found to better support platelet adhesion
than plasma (stagnation point). Both effects explain the differences in initial platelet flux
predicted for the stagnation point flow and for the tubular expansion. The differences in
platelet-platelet adhesion can be explained by the fact that Brash et al. observed expression of
pseudopodia only when the platelets were bound to glass (stagnation point).

Finally, a rise of Ht to 45% (corresponding to the t-junction) led to a remarkable increase
in platelet adhesion to the glass and polymer surfaces (t-junction). In addition, Brash et
al. reported adhesion to reach equilibrium within two minutes, which exceeds well the duration
of the runs performed in the t-junction. This partially explains why changes in surface reactivity
turned out to be negligible there (although they certainly come into play in longer runs).

Altogether, it seems that in the described range of Ht changes in surface reactivity have a
stronger impact on initial platelet adhesion at lower Ht than at elevated Ht. However, it should
be noted that further mechanisms could be important, too, and that more experiments under
comparable conditions are needed to confirm this hypothesis.

3.5 Mathematical analysis

This section deals with the mathematical well-posedness of (3.2). Existence, uniqueness,
and positivity of solutions are proven. In (3.2), the fluid dynamic equations and the species
equations are only coupled in one way: u can be calculated independently of w and then
be inserted into the species equation. Since the NSE have already been extensively studied,
for example in [86], it remains to investigate the coupling of ODEs along the boundary to a
parabolic equation in the interior of the domain via a Robin-type boundary condition. Although
this kind of problem arises in mathematical models concerned with changes in surface reactivity,
for example in [82, 83], its mathematical investigation is still missing. Regarding existence of
solutions, it is not more elaborate to consider the generalized situation of a parabolic system
with a nonlinear right hand side—provided that certain growth conditions are fulfilled. This
accounts for possible extensions of the FD-model involving chemistry.

3.5.1 Notation and function spaces

Let Ω be a bounded open subset of Rn, with Lipschitz boundary ∂Ω (i.e., ∂Ω ∈ C0,1 in the
sense of [99, p. 48]) consisting of two relatively open parts Λ and Ξ. Regarding (3.2), Ξ stands
for reactive and non-reactive wall, whereas Λ comprises inflow and outflow. Here, for simplicity,
the case of Dirichlet boundary conditions on w at the outflow is considered. However, if
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3 The fixed domain model

there is no backflow into the domain, only slight modifications are needed for the original
Neumann case. The following theory makes use of Lebesgue spaces Lp and Sobolev spaces
W s

2 (s ≥ 0) which are defined, for example, in [21, 99]. Norms, such as ‖.‖L2(0,T ;L2(Ω)), are
intuitively abbreviated with ‖.‖L2L2 . We also write W 1

2 (Ω) instead of W 1
2 (Ω,Rm), and so forth.

In addition, let X :=
{
w ∈W 1

2 (Ω) : w|Λ = 0
}
with norm ‖w‖X := ‖∇w‖L2(Ω) and associated

dual space X ′. Define ΩT := Ω× (0, T ] , ΞT := Ξ× (0, T ] , ΛT := Λ× (0, T ] , and let |.| denote
the euclidean norm of Rm and Rr, respectively.

3.5.2 Problem statement and assumptions

The following boundary value problem is investigated, which contains the equations for w in
(3.2) as special case.



∂twi + Liwi = fi(w, x, t) in ΩT , i = 1, ...,m

−
n∑

l,j=1
alji wixln

j = ki(w,ψ, x, t) on ΞT , i = 1, ...,m

w = g(x, t) on ΛT
w(. , 0) = w0 in Ω

∂tψ = q(w,ψ, x, t) on ΞT
ψ(. , 0) = ψ0 on Ξ .

(3.12)

Here, w := (wi)mi=1, ψ := (ψi)ri=1, g := (gi)mi=1, q := (qi)ri=1. The Li are linear elliptic operators
with bounded coefficients alji , bli, ci ∈ L∞(ΩT ),

Liwi := −
n∑

l,j=1

(
alji (x, t)wixl

)
xj

+
n∑
l=1

bli(x, t)wixl + ci(x, t)wi . (3.13)

In the following, f := (fi)mi=1, k := (ki)mi=1, and q are assumed measurable. Furthermore,

g ∈ L2(0, T ;W 1
2 (Ω)) ∩W 1

2 (0, T ;W 1
2 (Ω)′) , q(0, 0, . , . ) ∈ L2(0, T ;L2(Ξ))

w0 ∈ L2(Ω) , ψ0 ∈ L2(Ξ) .
(3.14)

f and k are required to satisfy ∀h, s ∈ Rm and ∀ϕ ∈ Rr the growth conditions

|f(h, x, t)| ≤ Θ(1)
1 + Θ(2)

1 |h| , |k(s, ϕ, x, t)| ≤ Θ(1)
2 + Θ(2)

2 |s|+ Θ(3)
2 |ϕ| , (3.15)

and to be continuous in h, s, and ϕ. q is assumed Lipschitz continuous:

|q(s, ϕ, x, t)− q(s̃, ϕ̃, x, t)| ≤ Θ(1)
3 |s− s̃|+ Θ(2)

3 |ϕ− ϕ̃| ∀s, s̃ ∈ Rm ∀ϕ, ϕ̃ ∈ Rr. (3.16)
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3.5 Mathematical analysis

3.5.3 Existence and uniqueness for the linear problem

To solve the nonlinear system (3.12) we first consider the corresponding linear problem

∂tw + Lw = h in ΩT

−
n∑

l,j=1
aljwxln

j = kw + l on ΞT

w = g on ΛT
w(. , 0) = w0 in Ω ,

(3.17)

where h ∈ L2(0, T ;X ′), k ∈ L∞(0, T ;L∞(Ξ,R+)), and l ∈ L2(0, T ;L2(Ξ)). We define the
bilinear form

B[w, v; t] :=
∫
Ω

n∑
l,j=1

alj(x, t)wxlvxj +
n∑
l=1

bl(x, t)wxlv + c(x, t)wv dx+
∫
Ξ

k(x, t)wv dσ

and say that w is a weak solution of (3.17) if and only if (1) w−g ∈ L2(0, T ;X)∩W 1
2 (0, T ;X ′),

(2) w fulfills the equation

〈w′(t), v〉+B[w(t), v; t] = 〈h(t), v〉 − (l(t), v)L2(Ξ) ∀v ∈ X (3.18)

for almost every t ∈ [0, T ], and (3) w(t = 0) = w0.

The aim is to solve (3.18) by Galerkin’s method. For this purpose, we choose a system of
functions {uk}∞k=1 that constitutes an orthonormal basis of L2(Ω) as well as an orthogonal
basis of X and look for functions wm(t) :=

m∑
k=1

dkm(t)uk that satisfy the system of ordinary

differential equations

(w′m(t), uk)L2 +B[wm(t), uk; t] = 〈h(t), uk〉 − (l(t), uk)L2(Ξ) (k = 1, ...,m), (3.19)

subject to the initial conditions dkm(0) = (w0, uk)L2 (k = 1, ...,m). Application of Banach’s
fixed point theorem reveals (3.19) to have a unique solution wm for each m ∈ N. We further
note that one can employ the eigenfunctions of the Laplacian subject to mixed boundary
conditions as basis functions uk, i.e.

−∆uk = λkuk in Ω
∂nuk = 0 on Ξ
uk = 0 on Λ .

Lemma 3.5.1 (A priori estimates for the approximate solutions). The following estimates
hold uniformly for all m ∈ N:

max
0≤t≤T

‖wm(t)‖L2 + ‖wm‖L2X ≤ C1
(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖w0‖L2

)
‖w′m‖L2X′ ≤ C2

(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖w0‖L2

)
.

(3.20)

Here, C1 = C1(Ω, T, L) and C2 = C2(k,Ω, T, L).

29



3 The fixed domain model

Proof. 1. We multiply (3.19) by dkm(t) and sum over k = 1, ...,m. This yields

(w′m(t), wm(t))L2 +B[wm(t), wm(t); t] = 〈h(t), wm(t)〉 − (l(t), wm(t))L2(Ξ) (3.21)

for almost every t ∈ [0, T ]. Ellipticity of the operator L implies

β‖wm(t)‖2X ≤ B[wm(t), wm(t); t] + γ‖wm(t)‖2L2 (3.22)

for some constants β > 0 and γ ≥ 0. Combining (3.21) and (3.22) we obtain

d

dt

(
‖wm(t)‖2L2

)
+ β‖wm(t)‖2X ≤ C1‖wm(t)‖2L2 + C2

(
‖h(t)‖2X′ + ‖l(t)‖2L2(Ξ)

)
. (3.23)

Application of Gronwall’s inequality (see [21, p. 624]) yields

max
0≤t≤T

‖wm(t)‖2L2 ≤ C
(
‖h‖2L2X′ + ‖l‖

2
L2L2(Ξ) + ‖w0‖2L2

)
. (3.24)

Integrating (3.23) over time and making use of (3.24) we end up with

‖wm(T )‖2L2 − ‖wm(0)‖2L2 + β‖wm‖2L2X ≤ C
(
‖h‖2L2X′ + ‖l‖

2
L2L2(Ξ) + ‖w0‖2L2

)
.

2. To prove the estimate of ‖w′m‖L2X′ we choose v ∈ X with ‖v‖X ≤ 1. Furthermore, we define
Vm := span{uk : k = 1, ...,m} and observe that L2(Ω) = Vm ⊕ V ⊥m , i.e. each v ∈ L2(Ω) has
a unique decomposition v = v1 + v2 with v1 ∈ Vm and v2 ∈ V ⊥m . Clearly, 1 ≥ ‖v‖2X ≥ ‖v1‖2X .
Since w′m(t) ∈ Vm, we obtain using (3.19)

〈w′m(t), v〉 = (w′m(t), v)L2 = (w′m(t), v1)L2 = 〈h(t), v1〉−(l(t), v1)L2(Ξ)−B[wm(t), v1; t] . (3.25)

The assumptions on the coefficients of L ensure continuity of the bilinear form B, i.e.

|B[wm(t), v1; t]| ≤ C‖wm(t)‖X‖v1‖X .

Hence, (3.25) implies

‖w′m(t)‖2X′ ≤ C
(
‖h(t)‖2X′ + ‖l(t)‖2L2(Ξ) + ‖wm(t)‖2X

)
.

Integrating over time and employing the above derived estimate for ‖wm‖2L2X yields the
assertion for ‖w′m‖L2X′ .

Theorem 3.5.1 (Existence and uniqueness in the case of zero boundary values). Suppose
that g ≡ 0. Then there exists a unique weak solution w ∈ L2(0, T ;X)∩W 1

2 (0, T ;X ′) of (3.17).
This solution fulfills the estimates

max
0≤t≤T

‖w(t)‖L2 + ‖w‖L2X ≤ C1
(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖w0‖L2

)
‖w′‖L2X′ ≤ C2

(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖w0‖L2

)
,

(3.26)

where C1 = C1(Ω, T, L) and C2 = C2(k,Ω, T, L).
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Proof. 1. As a consequence of (3.20) there exist a subsequence ml → ∞ and two functions
w ∈ L2(0, T ;X) and v ∈ L2(0, T ;X ′), such that{

wml ⇀ w weakly in L2(0, T ;X)
w′ml ⇀ v weakly in L2(0, T ;X ′).

(3.27)

Consequently, we deduce v = w′ and prove (3.26) to be fulfilled by the weak limits w and w′.

We further note that each weak solution w of (3.17) with g ≡ 0 necessarily fulfills the first
estimate of (3.26) and therefore must be unique. This follows by testing (3.18) with w(t) and
making use of the fact that w ∈ L2(0, T ;X) ∩W 1

2 (0, T ;X ′) implies absolute continuity of the
mapping t 7→ ‖w(t)‖2L2(Ω) as well as ∂t‖w(t)‖2L2(Ω) = 2〈w′(t), w(t)〉 to hold almost everywhere
on [0, T ] (see [101, p. 446-447]), which allows us to use arguments similar to those given in the
proof of Lemma 3.5.1.

2. Next, we demonstrate the weak limit w to be a solution of (3.18). For this purpose, we fix

N ∈ N and choose a function v(t) =
N∑
k=1

dk(t)uk ∈ C1([0, T ];X). Furthermore, we choose a

measurable subset E ⊂ [0, T ]. From (3.19) it follows that∫
E

〈w′m(t), v(t)〉+B[wm(t), v(t); t] dt =
∫
E

〈h(t), v(t)〉 − (l(t), v(t))L2(Ξ)dt . (3.28)

We observe that the left hand side of (3.28) fulfills

AEv (w′m) :=
∫
E

〈w′m(t), v(t)〉dt⇒ AEv ∈
(
L2(0, T ;X ′)

)′
,

BE
v (wm) :=

∫
E

B[wm(t), v(t); t]dt⇒ BE
v ∈

(
L2(0, T ;X)

)′
,

which implies (3.28) to hold in the limit ml →∞:∫
E

〈w′(t), v(t)〉+B[w(t), v(t); t] dt =
∫
E

〈h(t), v(t)〉 − (l(t), v(t))L2(Ξ)dt . (3.29)

Since E was arbitrary, for fixed v there exists a subset Nv ⊂ [0, T ] of measure zero, such that

〈w′(t), v(t)〉+B[w(t), v(t); t] = 〈h(t), v(t)〉 − (l(t), v(t))L2(Ξ) (3.30)

holds for all t ∈ [0, T ]\Nv. Since {uk}∞k=1 constitutes a countable basis of X we obtain the
validity of (3.18) for all t ∈ [0, T ]\N , where N :=

∞⋃
k=1

Nuk has measure zero.

3. It remains to show that w(t = 0) = w0. Performing partial integration in (3.29) we deduce∫ T

0
−〈w(t), v′(t)〉+B[w(t), v(t); t] dt =

∫ T

0
〈h(t), v(t)〉 − (l(t), v(t))L2(Ξ)dt

+ (w(0), v(0))L2

(3.31)
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for a function v(t) =
N∑
k=1

dk(t)uk ∈ C1([0, T ];X) with v(T ) = 0. Furthermore, equation (3.28)

implies∫ T

0
−〈wml(t), v

′(t)〉+B[wml(t), v(t); t] dt =
∫ T

0
〈h(t), v(t)〉 − (l(t), v(t))L2(Ξ)dt

+ (wml(0), v(0))L2 .

(3.32)

We take the limit ml →∞ in (3.32) and thereby employ (3.27) and the fact that wml(0)→ w0
in L2(Ω). Subtracting the so obtained result from (3.31) yields

(w(0)− w0, v(0))L2 = 0 .

Corollary 3.5.1 (Existence and uniqueness for nonzero boundary values). There exists
a unique weak solution w ∈ L2(0, T ;W 1

2 (Ω)) ∩ W 1
2 (0, T ;X ′) of the linear problem (3.17).

Furthermore, this solution satisfies the estimate

max
0≤t≤T

‖w(t)‖L2 + ‖w‖L2W 1
2 (Ω) + ‖w′‖L2X′

≤ C
(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖g‖L2W 1

2 (Ω) + ‖g′‖L2W 1
2 (Ω)′ + ‖w0‖L2

)
, (3.33)

where C = C(k,Ω, T, L).

Proof. Due to Theorem 3.5.1 there exists a unique solution w̃ ∈ L2(0, T ;X) ∩W 1
2 (0, T ;X ′) of

〈w̃′(t), v〉+B[w̃(t), v; t] = 〈h̃(t), v〉 − (l(t), v)L2(Ξ)

:= 〈h(t), v〉 − 〈g′(t), v〉 −B[g(t), v; t]− (l(t), v)L2(Ξ) ∀v ∈ X,

subject to the initial condition w̃(0) = w0 − g(0). Hence, defining w := w̃ + g yields a weak
solution of the original problem (3.18). Uniqueness follows immediately from Theorem 3.5.1
applied to the difference of two weak solutions of (3.18).

To prove the estimate (3.33) we observe that

‖h̃‖L2X′ ≤ C
(
‖h‖L2X′ + ‖g′‖L2W 1

2 (Ω)′ + ‖g‖L2W 1
2 (Ω)

)
.

Together with (3.26), this implies

‖w̃‖L2X ≤ C
(
‖h̃‖L2X′ + ‖l‖L2L2(Ξ) + ‖w0 − g(0)‖L2

)
≤ C

(
‖h‖L2X′ + ‖l‖L2L2(Ξ) + ‖g‖L2W 1

2 (Ω) + ‖g′‖L2W 1
2 (Ω)′ + ‖w0‖L2 + ‖g(0)‖L2

)
.

Since ‖g(0)‖L2 ≤ C
(
‖g‖L2W 1

2 (Ω) + ‖g′‖L2W 1
2 (Ω)′

)
(see [101, p. 446-447]) we obtain the desired

result for ‖w‖L2W 1
2 (Ω). The estimates of ‖w′‖L2X′ and max

0≤t≤T
‖w(t)‖L2 can be derived similarly.
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3.5.4 Existence and uniqueness for the nonlinear problem

The nonlinear system (3.12) is solved by an appropriate fixed point argument. Define the
Banach space Y := L2(0, T ;L2(Ω))×L2(0, T ;L2(Ξ))×L2(0, T ;L2(Ξ)) with norm ‖(h, s, ϕ)‖Y :=
‖h‖L2L2(Ω) + ‖s‖L2L2(Ξ) + ‖ϕ‖L2L2(Ξ) and consider the operator

K : Y → Y
(h, s, ϕ) 7→ (w,w|Ξ, ψ)

which maps (h, s) onto the unique weak solution (w,w|Ξ) of the linear system

∂twi + Liwi = fi(h, x, t) in ΩT , i = 1, ...,m

−
n∑

l,j=1
alji wixln

j = ki(s, ϕ, x, t) on ΞT , i = 1, ...,m

w = g on ΛT
w(. , 0) = w0 in Ω .

(3.34)

ϕ shall be mapped onto the unique solution ψ of the corresponding system of integral equa-
tions

ψ(. , t) = ψ0(.) +
∫ t

0
q(w,ψ, . , τ)dτ . (3.35)

By definition, a fixed point of K is a weak solution of (3.12). K has the following properties:

Lemma 3.5.2. The operator K is well-defined. Furthermore, K is compact.

Proof. 1. Using Corollary 3.5.1, the assumptions (3.13), (3.14), and (3.15) yield the existence
of a unique weak solution w ∈ L2(0, T ;W 1

2 (Ω)) ∩W 1
2 (0, T ;X ′) of the linear problem (3.34).

Furthermore, this solution satisfies

max
0≤t≤T

‖w(t)‖L2 + ‖w‖L2W 1
2 (Ω) + ‖w′‖L2X′

≤ C
(
‖fh‖L2X′ + ‖ks,ϕ‖L2L2(Ξ) + ‖g‖L2W 1

2 (Ω) + ‖g′‖L2W 1
2 (Ω)′ + ‖w0‖L2

)
, (3.36)

where fh := f(h(. , .), . , .) and ks,ϕ := k(s(. , .), ϕ(. , .), . , .). Since q is Lipschitz continuous,
repeated application of Banach’s theorem on the operator

S : L2(0, T̃ ;L2(Ξ))→ L2(0, T̃ ;L2(Ξ)) , Sϕ :=
[
t 7→ ψ(. , t) := ψ0(.) +

∫ t

0
q(w,ϕ, . , τ)dτ

]
for small enough T̃ shows unique solvability of (3.35). Hence, K is well-defined.

2. To demonstrate continuity, let (hn, sn, ϕn)→ (h, s, ϕ) in Y as n→∞. Choose an arbitrary
subsequence nk →∞. We can then extract a sub-subsequence (termed nk again), such that
for almost every (x, t): hnk → h, snk → s, ϕnk → ϕ. According to continuity

fhnk → fh , ksnk ,ϕnk → ks,ϕ .
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3 The fixed domain model

This—together with the above growth conditions—allows application of Lebesgue’s theorem,
which then provides convergence in L2(ΩT ) and L2(ΞT ), respectively. By the use of (3.36) we
obtain

‖wnk − w‖L2W 1
2 (Ω) ≤ C

(
‖fhnk − fh‖L2L2(Ω) + ‖ksnk ,ϕnk − ks,ϕ‖L2L2(Ξ)

)
→ 0. (3.37)

It remains to be shown that ψnk → ψ in L2(ΞT ). Once more, using Lipschitz continuity of q,

|ψnk(x, t)− ψ(x, t)| ≤ C
(∫ t

0
|wnk(x, τ)− w(x, τ)|dτ +

∫ t

0
|ψnk(x, τ)− ψ(x, τ)|dτ

)
.

We take the square, apply Hölder’s inequality, and integrate with respect to x

‖ψnk(t)− ψ(t)‖2L2(Ξ) ≤ C
(
‖wnk − w‖

2
L2L2(Ξ) +

∫ t

0
‖ψnk(τ)− ψ(τ)‖2L2(Ξ)dτ

)
.

Gronwall’s inequality (see [21, p. 624]) provides∫ t

0
‖ψnk(τ)− ψ(τ)‖2L2(Ξ)dτ ≤ CTe

CT ‖wnk − w‖
2
L2L2(Ξ) ,

and hence, due to (3.37),

‖ψnk − ψ‖L2L2(Ξ) ≤ C‖wnk − w‖L2L2(Ξ) → 0 . (3.38)

3. In order to show compactness, let (hn, sn, ϕn)∞n=1 be a bounded sequence in Y . First, we
prove that the corresponding sequence (wn)∞n=1 is relative compact in L2(0, T ;W 3/4

2 (Ω)) and
hence in L2(0, T ;L2(Ω)): According to the estimate (3.36) and with the growth conditions
(3.15), the corresponding sequence (wn)∞n=1 is bounded in L2(0, T ;W 1

2 (Ω)) as well as in
W 1

2 (0, T ;X ′). The embedding

W 1
2 (0, T ;X ′) ∩ L2(0, T ;W 1

2 (Ω)) ↪→ L2(0, T ;W 3/4
2 (Ω))

is compact (Lions–Aubin). Thus, we can extract a subsequence (wnk)∞k=1 that converges in
L2(0, T ;W 3/4

2 (Ω)).

Since the trace operator is continuous, the sequence (wnk |Ξ)∞k=1 converges in L2(0, T ;L2(Ξ)).
Furthermore, by the use of (3.38) we obtain for k1, k2 →∞

‖ψnk1 − ψnk2‖L2L2(Ξ) ≤ C‖wnk1 − wnk2‖L2L2(Ξ) → 0 ,

which shows that (ψnk)∞k=1 is a Cauchy-Sequence in L2(0, T ;L2(Ξ)). This completes the
proof.

Lemma 3.5.2 allows application of Schauder’s fixed point theorem, which yields the existence
of a weak solution of (3.12).

Theorem 3.5.2 (Existence of weak solutions). Provided that the constants Θ(2)
1 , Θ(2)

2 , and
Θ(3)

2 are small enough (dependent on Ω, T , Li, and the remaining constants Θ(k)
j ), there exists

at least one weak solution (w,ψ) of (3.12).
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3.5 Mathematical analysis

Proof. We want to apply Schauder’s fixed point theorem. Since the operator K is compact, it
is enough to prove the existence of a closed Ball BR(0) ⊂ Y , such that K : BR(0)→ BR(0).
First, we calculate using (3.16)

|ψ(x, t)| ≤ |ψ0(x)|+ C

∫ t

0

(
|w(x, τ)|+ |ψ(x, τ)|+ |q(0, 0, x, τ)|

)
dτ .

We take the square, use Hölder’s inequality, integrate with respect to x, and apply (3.14)

‖ψ(t)‖2L2(Ξ) ≤ C
(

1 + ‖ψ0‖2L2(Ξ) + ‖w‖2L2W 1
2 (Ω) +

∫ t

0
‖ψ(τ)‖2L2(Ξ)dτ

)
.

Application of Gronwall’s inequality (in integral form; see [21, p. 625]) yields

‖ψ(t)‖2L2(Ξ) ≤ C
(
1 + CTeCT

) (
1 + ‖ψ0‖2L2(Ξ) + ‖w‖2L2W 1

2 (Ω)

)
. (3.39)

K(h, s, ϕ) can now be estimated as follows, using (3.36), (3.39), and (3.15):

‖K(h, s, ϕ)‖Y ≤ C
(
‖w‖L2H1(Ω) + ‖ψ‖L2L2(Ξ)

)
≤ C

(
‖fh‖L2L2(Ω) + ‖ks,ϕ‖L2L2(Ξ) + ‖g‖L2H1(Ω) + ‖g′‖L2H1(Ω)′

+ ‖w0‖L2(Ω) + ‖ψ0‖L2(Ξ) + 1
)

≤ C
(
1 +D + Θ(2)

1 ‖h‖L2L2(Ω) + Θ(2)
2 ‖s‖L2L2(Ξ) + Θ(3)

2 ‖ϕ‖L2L2(Ξ)
)

=: α+ β‖h‖L2L2(Ω) + γ‖s‖L2L2(Ξ) + δ‖ϕ‖L2L2(Ξ) , (3.40)

where C = C
(
Ω, T, L,Θ(1)

k ,Θ(2)
3
)
, D := ‖g‖L2W 1

2 (Ω) +‖g′‖L2W 1
2 (Ω)′ +‖w0‖L2(Ω) +‖ψ0‖L2(Ξ) and

α := C(1 +D), β := CΘ(2)
1 , γ := CΘ(2)

2 , δ := CΘ(3)
2 .

We want the right hand side of (3.40) to be smaller than R, which requires conditions on
the constants Θ(2)

1 , Θ(2)
2 , and Θ(3)

2 . Observe that ‖(h, s, ϕ)‖Y ≤ R implies ‖h‖L2L2(Ω) ≤
R− ‖s‖L2L2(Ξ) − ‖ϕ‖L2L2(Ξ), and hence

‖K(h, s, ϕ)‖Y ≤ α+ βR+ (γ − β)‖s‖L2L2(Ξ) + (δ − β)‖ϕ‖L2L2(Ξ)

due to (3.40). We assume that β < 1, γ < 1, and δ < 1. We distinguish the following cases:

1. If β ≥ γ and β ≥ δ let R := α
1−β .

2. If β < γ and β ≥ δ let R := α
1−γ .

3. If β ≥ γ and β < δ let R := α
1−δ .

In the remaining case, β < γ and β < δ, we observe that ‖s‖L2L2(Ξ) ≤ R − ‖h‖L2L2(Ω) −
‖ϕ‖L2L2(Ξ), and hence

‖K(h, s, ϕ)‖Y ≤ α+ γR+ (β − γ)‖h‖L2L2(Ω) + (δ − γ)‖ϕ‖L2L2(Ξ) .

Thus, we can choose R := α
1−δ . In all cases, K maps BR(0) onto itself. Hence, the existence of

a weak solution of (3.12) follows from Schauder’s theorem.
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3 The fixed domain model

However, Schauder does not guarantee uniqueness. This requires some tighter conditions.

Remark 3.5.1. If f and k are even Lipschitz continuous, i.e., ∀h, h̃, s, s̃ ∈ Rm, ∀ϕ, ϕ̃ ∈ Rr

|f(h, x, t)− f(h̃, x, t)| ≤ Θ1|h− h̃|

|k(s, ϕ, x, t)− k(s̃, ϕ̃, x, t)| ≤ Θ(1)
2 |s− s̃|+ Θ(2)

2 |ϕ− ϕ̃| ,
(3.41)

and provided that Θ(1)
2 is small enough, then a weak solution of (3.12) is unique, too.

In contrast to Theorem 3.5.2, no smallness of the growth constants of f is needed.

Proof. 1. To demonstrate uniqueness, suppose (w,ψ) and (w̃, ψ̃) are two weak solutions of
(3.12). Due to (3.36), (3.41), and (3.16)

max
0≤τ≤t

‖w(τ)− w̃(τ)‖L2(Ω) + ‖w|Ξ − w̃|Ξ‖L2(0,t;L2(Ξ)) + max
0≤τ≤t

‖ψ(τ)− ψ̃(τ)‖L2(Ξ)

≤ C
(
‖w − w̃‖L2(0,t;L2(Ω)) + Θ(1)

2 ‖w|Ξ − w̃|Ξ‖L2(0,t;L2(Ξ)) + ‖ψ − ψ̃‖L2(0,t;L2(Ξ))
)
.

If Θ(1)
2 C < 1, then Gronwall’s inequality yields w ≡ w̃ and ψ ≡ ψ̃.

2. Existence is obtained by consideration of Y := C0([0, T1], L2(Ω)) × L2(0, T1;L2(Ξ)) ×
C0([0, T1], L2(Ξ)) with norm ‖(h, s, ϕ)‖Y := ‖h‖C0L2(Ω)+‖s‖L2L2(Ξ)+‖ϕ‖C0L2(Ξ) and repeated
application of Banach’s theorem on

K : Y → Y
(h, s, ϕ) 7→ (w,w|Ξ, ψ)

for small enough T1, where (w,w|Ξ) denotes the weak solution of (3.34) and ϕ is mapped onto
ψ(. , t) := ψ0(.) +

∫ t
0 q(w,ϕ, . , τ)dτ .

3.5.5 Positivity of solutions

To demonstrate positivity, we restrict ourselves to the special case of the FD-model—slightly
generalized by a nonnegative right hand side. Furthermore, the original Neumann outflow
condition is imposed on w.

Theorem 3.5.3. Let w be solution of (3.2) and (3.4) (with right hand side h(w, x, t) ≥ 0
in the species equation in (3.2)). Suppose that u ∈ C1 and that w0, wD, λ(i), and κ(i) are
continuous. Furthermore, let D ≡ const. and let Ω fulfill the interior ball condition in each
point of Ξ (specified in [21, p. 330]), where Ξ := Γ ∪ Σ ∪O. Assume that

w ∈ C2
1
(
ΩT

)
∩ C1((Ω ∪ Ξ)T

)
∩ C0(ΩT

)
and set

α := λ− κ
Ψ

, λ := λ(1) + λ(2)s , κ := κ(1) + κ(2)s .

If w0, wD are nonnegative and λ ≥ αψ0 , then w also stays nonnegative.
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3.5 Mathematical analysis

Proof. 1. Let w attain its minimum in (x0, t0) ∈ ΩT . Assume w(x0, t0) < 0. The maximum
principle ([21, p. 368]) together with nonnegativity of initial and boundary data implies x0 ∈ Ξ.
An extension of the elliptic Hopf’s Lemma ([21, p. 330]) to the parabolic situation then yields
∂nw(x0, t0) < 0 , which implies x0 ∈ Γ. There we have −D∂nw(x0, t0) =

(
k(ψ, s)w

)
(x0, t0) , so

that it suffices to show ξ := k(ψ, s)(x0, t0) ≥ 0 to obtain a contradiction.

2. Since ψ is the unique solution of ∂tψ = k(ψ, s)w, ψ(t = 0) = ψ0 , it permits the representa-
tion

ψ(t) = λ

∫ t

0
w(τ) exp

(
−α

∫ t

τ
w(s)ds

)
dτ + ψ0 exp

(
−α

∫ t

0
w(s)ds

)
. (3.42)

Observe that ξ = −αψ(x0, t0) + λ. We insert (3.42) and obtain

ξ = λ

(
1− α

∫ t0

0
w(τ) exp

(
−α

∫ t0

τ
w(s)ds

)
dτ

)
− αψ0 exp

(
−α

∫ t0

0
w(s)ds

)
= λ

(
1−

∫ t0

0

d

dτ
exp

(
α

∫ τ

t0
w(s)ds

)
dτ

)
− αψ0 exp

(
−α

∫ t0

0
w(s)ds

)
= λ

(
1−

(
exp(0)− exp

(
−α

∫ t0

0
w(s)ds

)))
− αψ0 exp

(
−α

∫ t0

0
w(s)ds

)
.

Hence, λ ≥ αψ0 implies ξ ≥ 0.
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4 The free boundary problem

Chapter 3 showed that the above proposed continuous, particle conservation-based FD-model
cannot reproduce experimentally observed spatial platelet distribution without consideration
of shear stress. Thus, there is a strong coupling between flow and platelet deposition, since
the growth of platelet aggregates not only changes the flow field and hence the transport
processes at the surface, but it also alters the shear stress. Indeed, in stagnation point flow, the
development of thrombi was identified as the most likely cause for the remaining discrepancies
between experimental data and the predictions of the FD-model (see page 19). Therefore, the
present chapter derives a free boundary problem of long-term thrombus growth. Numerical
simulations in stagnation point flow and in the tubular expansion are carried out by the level
set method. Comparison of the so obtained results with the experimental data further confirms
the importance of shear stress in the process of platelet deposition.

4.1 Model development

Figure 4.1 sketches the situation that arises when thrombus growth is taken into account. In
that case, the reactive boundary Γ separating flow and platelet aggregates evolves in time:
Γ = Γt.

Moving boundary

Non-reactive wall

Inflow

I

Outflow

O

Time-dependent domain

.

tt

tt

nnnn

Developing thrombus

s(t)s(t)

Figure 4.1: The time-dependent domain

The evolution of Γt depends on the flux of platelets J := −D∇w attaching to the thrombus.
We denote the velocity of this free boundary by v. To derive an equation for v, we consider its
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4 The free boundary problem

Taylor expansion in platelet flux up to first order: v(J) = v(0) + v′(0)J + O(|J |2). Clearly,
v(0) = 0. We assume v to be antiparallel to J . This implies that v′(0) is a diagonal matrix,
that is v′(0) = −diag(α) with an appropriate constant α > 0. Hence, in the first approximation
v fulfills

v = αD∇w .

Since this chapter focuses on the long-term, growth-induced flow disturbances, changes in
surface reactivity due to saturation of the original surface with bound platelets are not
considered here. Instead, at the beginning of the calculations, the original surface is assumed
to be completely covered by a layer of bound platelets.

As in the FD-model, the flow field is based on the NSE and conservation of particles is assumed
for the platelets. At the moving interface, the flow velocity u equals the velocity v of Γt: u = v.
However, switching to non-dimensional quantities as in (3.5) yields ũ = ṽV/U , where U and
V denote characteristic velocities of fluid and interface, respectively. Since U � V holds in all
considered experiments, this model assumes zero flow velocity along the interface. In vivo, the
prerequisite U � V is fulfilled, for example, in the arterial circulation (see, e.g., [48]).

We define α̃ := αDW/(V L) and k̃(s̃) := κ1 + κ2s̃, with the parameters κ1 and κ2 of equation
(3.7). Furthermore, we set IT := I × (0, T ] , OT := O × (0, T ] ,

ΣT := Σ× (0, T ] , ΓT :=
⋃

0<t≤T
Γt × {t} , ΩT :=

⋃
0<t≤T

Ωt × {t} . (4.1)

Let n = nt denote the inward unit normal to ∂Ωt. For the sake of brevity, ν is written instead
of Re−1, D is used instead of Pe−1, and the tilde is omitted. In cartesian coordinates, the free
boundary model reads



∂tu− ν∆u+ (u · ∇)u+∇p = f in ΩT

∇ · u = 0 in ΩT

u = 0 on ΓT ∪ ΣT

u = uD/U on IT

ν∂nu = p · n on OT

u(t = 0) = u0/U in Ω0 ,

(4.2)



∂tw −D∆w + (u · ∇)w = 0 in ΩT

D∂nw = kw on ΓT
∂nw = 0 on ΣT ∪OT
w = wD/W on IT

w(t = 0) = w0/W in Ω0

v = α∇w on ΓT .

(4.3)
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4.2 The level set method and its implementation

An apparent strategy to treat the moving boundary problem (4.2)-(4.3) would be to discretize
the initial interface Γ0 by finitely many, connected points x0

i (i = 1, ..., N) and then to move
these marker points according to the system of ordinary differential equations

dxi
dt

= v(xi) , xi(0) = x0
i (i = 1, ..., N) .

This front-tracking approach has been employed to solve numerous problems, such as multiphase
flows [87] and dendritic solidification [44]. However, the explicit tracking of the interface and
the identification of the phase to which a point belongs to is quite complex. This requires
notable technical efforts, particularly in 3D, where the connectivity of the interface is not as
apparent as in 2D, and in cases when topological changes occur.

Compared to front-tracking, the level set method described in [64] provides a convenient
alternative, which allows to perform all calculations on a fixed configuration Ω∗ ⊃ Ω0 using
a fixed mesh. Furthermore, this approach has been successfully applied to the solution of
the classical two-phase Stefan problem and to dendritic solidification [16], to the classical
single-phase Stefan problem [40], as well as to two-phase flows [85]. It avoids complicated
interface-tracking and is even able to easily handle changes in topology. The idea behind the
level set method is that the moving wall Γt can be represented implicitly as the zero level set
of a function φ, whose sign can serve to distinguish the “phases” fluid domain Ωf (t) := Ωt

and emerging thrombus Ωs(t). To be more specific, the different parts of the domain are
constituted by

Ωf (t) = {x ∈ Ω∗ : φ(x, t) > 0}, Γt = {x ∈ Ω∗ : φ(x, t) = 0}, Ωs(t) = {x ∈ Ω∗ : φ(x, t) < 0},

and Ω∗ = Ωf (t) ∪ Γt ∪ Ωs(t). From the definition of φ it follows that the transport equation

∂tφ+ v∇φ = ∂tφ+ αkD−1w|∇φ| = 0 (4.4)

has to be fulfilled along the moving interface. The second equation provides a continuous
extension of v to the whole domain Ω∗, which is used in the numerical calculations.

At time t = 0, the level set function is initialized as signed distance function (SDF), that is

φ(x, 0) :=
{

dist(x,Γ0) x ∈ Ω0 ∪ Γ0
−dist(x,Γ0) x ∈ Ωs(0) .

The use of SDF is advantageous compared to the normal distance function for two reasons:
First, the SDF facilitates the identification of the phase to which a point belongs to. Second,
the SDF is monotone over the interface, whereas the gradient of the normal distance function
has jump. Thus, the approximation of ∇φ is numerically more stable when φ is a SDF.

To realize vanishing fluid velocities along the a priori unknown interface Γt, the term∫
Γt

(
−ν∂nu+ pn

)
ψ dS
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4 The free boundary problem

that arises upon multiplication of the NSE with a test function ψ followed by partial integration
is replaced by

β(h)
∫
Γt
uψ dS ,

where β depends on the local cell size h such that β(h) → ∞ as h → 0. This strategy to
approximate solutions corresponding to prescribed Dirichlet data by switching to appropriate
natural boundary conditions was proposed by Babuska [3] to solve the Dirichlet problem.
Regarding the Dirichlet problem, this method yields an approximation of order 3/4− ε (ε > 0)
with respect to the W 1

2 -norm, provided that the exact solution of the Dirichlet problem is in
W 2

2 (Ω) (see also [62]).

Next, the flow field is appropriately extended to the solid region Ωs: The flow velocity shall
fulfill u = 0 in Ωs, which yields an additional term

∫
Ωs uψ dx. A homogeneous Dirichlet

condition is prescribed on u along ∂Ωs(t) \ Γt and a harmonic extension into the solid is used
for the pressure. Volume and surface integrals are represented by the use of φ as∫

Ωf
g dx =

∫
Ω∗
gH(φ)dx ,

∫
Ωs
g dx =

∫
Ω∗
g
(
1−H(φ)

)
dx ,

∫
Γt
g dS =

∫
Ω∗
gδ(φ) dx ,

where δ denotes the delta function and H denotes the Heavyside function

H(φ) :=
{

1 φ ≥ 0
0 φ < 0 .

Furthermore, the tangent and the normal vectors to Γt needed to determine the shear stress
are also readily available from φ:

n = ∇φ
|∇φ|

, τ =
(
−n2
n1

)
.

H and δ are approximated by the smeared out functions

Hkh(φ) :=


0 φ < −kh
1
2 + φ

2kh + 1
2π sin

(
πφ
kh

)
−kh ≤ φ ≤ kh

1 kh < φ ,

δkh(φ) :=


0 φ < −kh

1
2kh + 1

2kh cos
(
πφ
kh

)
−kh ≤ φ ≤ kh

0 φ > kh ,

(4.5)

where k > 0 is fixed. This yields an approximation of first order (see [64, p. 15]) and hence
provides an accuracy which is comparable to that of Babuska’s method. The choice k = 1/2,
together with an adaptive quadrature rule increasing the accuracy around the interface, turned
out to be best working. The mesh was adaptively refined, dependent on the distance to the
interface. Coarsening of cells was omitted in the stagnation point, since calculation of the
pressure was observed to be more stable in that case.

All equations were solved simultaneously. The numerical methods were the same as for the
fixed domain model: Spatial discretization was achieved with bilinear finite elements on a
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quadrilateral mesh, together with a local projection stabilization of transport and pressure.
GMRES with multigrid as preconditioner was used to solve the linear systems. Time-stepping
was done with Crank-Nicolson. However, in contrast to the the fixed domain model, some
implicit Euler steps to damp high frequency error components were used not only at the
beginning of the calculation, but also repeated times throughout the simulation. Furthermore,
an adaptive time-step size was used. The adjustment of the step size was based on a heuristic
criterion: If the number of Newton steps needed to decrease the nonlinear residual below a
prescribed tolerance exceeded a certain value, say 7 or 10, then the step size was halved. In
contrast, if only few steps were needed, say one or two, then the step size was doubled.

4.3 Numerical results

This section presents the results of the numerical simulation of the free boundary problem (4.2)-
(4.3) (transformed to cylindrical coordinates) by the level set method, as obtained in stagnation
point flow and in the tubular expansion. All pictures were made with the visualization toolkit
VisuSimple [11].

The figures 4.2, 4.3, and 4.4 on page 45-47 show the location of the interface (black line)
separating thrombus and fluid in stagnation point flow, as well as the radial component of
the flow velocity (color). The results at different points in time are presented, as obtained
on various meshes having different levels of refinement. Platelet adhesion is assumed shear-
dependent. In the beginning of the calculation, the interface is parallel to the lower boundary
of the domain, in a distance of approximately one coarse cell (Figure 4.2(a), 4.3(a), and 4.4(a)).
After, respectively, 190 and 215 time units a platelet aggregate has formed downstream of
the stagnation point (the interface has moved upwards there), at a location of elevated shear
stress (Figure 4.2(b), 4.2(c), 4.3(b), and 4.4(b); Figure 4.3(c) and 4.4(c)). This is in good
accordance with the data of Affeld et al. [1] and with the predictions of the FD-model assuming
shear-dependent platelet adhesion (see Section 3.3.1). Comparison of the relatively rough
shape of the thrombus in Figure 4.2(b) with the smooth ones in Figure 4.3(b) and Figure
4.4(b) reveals the necessity of a certain mesh refinement to accurately resolve the interface.
However, once a certain level of refinement is reached, almost no difference is observed neither
in the location of the interface nor in the flow velocity (Figure 4.3(b) and 4.4(b); Figure 4.3(c)
and 4.4(c)).

In addition, the figures 4.2, 4.3, and 4.4 report an increase in radial flow velocity ũr due
to the narrowing of the vessel associated with thrombus growth. Since the latter is located
downstream of the stagnation point, the axial component ũz of the velocity, which possesses
only non-positive values at the beginning of the simulation (the flow is directed downwards),
becomes positive once the fluid has to flow around the developing platelet aggregate. This
increase in axial velocity is also confirmed by the presented results.

Figure 4.5 on page 48 shows how thrombus growth affects the radial component of the velocity
and the pressure in stagnation point flow. The increase of the velocities’ maximum is evident,
as well as the emerging bump in the velocity field a little downstream of the stagnation point,
which corresponds to vanishing flow velocities inside the evolving thrombus. Figure 4.6 on page
49 shows the flowfield in the vicinity of the thrombus (Figure 4.6(a)) and a magnification of
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4 The free boundary problem

the flow around the thrombus’ tip (Figure 4.6(b)). Both of these pictures confirm that the flow
field adjusts instantaneously to the growth of the platelet aggregate and that the streamlines
pass well around the obstacle. In addition, both Figure 4.5 and Figure 4.6 prove that the flow
velocity drops to zero inside the thrombus after a bandwith of approximately one grid cell.
Actually, this guarantee of flow coming to rest within a sharp layer around the interface is
crucial to ensure an accurate approximation of the free boundary problem (4.2)-(4.3) by the
level set method. Furthermore, it confirms the efficiency of the above described strategy to
impose zero flow velocities along the interface and inside the thrombus.

Figure 4.7 on page 50 shows the results obtained in stagnation point flow, when platelet
adhesion is assumed independent of shear stress. In that case, it is unnecessary to precisely
evaluate the stress tensor (and hence the derivatives of the velocity field) along the moving
boundary. For this reason, accurate results could already be obtained on grids that were
noticeably coarser than those employed in the shear-dependent case. Again, the calculation
starts with the interface being located parallel to the lower boundary of the domain, in a
distance of approximately one coarse cell (Figure 4.7(a)). As in the shear-dependent case, the
radial velocity component increases in time, due to the narrowing of the vessel. However, in
contrast to shear-dependent platelet adhesion, the maximum thrombotic mass forms directly
at the stagnation point and the axial velocity component therefore stays non-positive. The
location of the interface after 190 time units is shown in Figure 4.7(b) and 4.7(c). Thus, the
behavior of the shear-independent free boundary problem is similar to the behavior of the
shear-independent FD-model (see Section 3.3.1). Both of these models show absolutely no
agreement with the experimental data reported by Affeld et al. [1].

Figure 4.8 and 4.9 on page 51 and 52 display the location of the interface separating thrombus
and fluid in the tubular expansion. The results obtained at different points in time by the
use of various meshes having a different level of refinement are shown. Figure 4.8 is the shear-
dependent case. Compared to the simulation of the stagnation point, satisfying results were
already available on coarser grids. However, in the tubular expansion geometry the so achieved
saving of computational time was consumed by an observed necessity of choosing smaller
time-steps in order to decrease the nonlinear residual below a prescribed tolerance, which was
handled by the above described adaptive time-stepping strategy. Like the FD-model assuming
shear-dependent platelet adhesion (Section 3.3.2), the shear-dependent free boundary problem
predicts minimal platelet deposition at the reattachement point and maximal deposition
in the vortex area, which is in good accordance with the data of Karino and Goldsmith
[45]. In contrast to that, when shear stress is neglected, the maximal deposition is found at
the reattachement point (Figure 4.9), which is similar to the behavior of the corresponding
FD-model and completely contradicts the experimental observations.

In summing up, it should first be noted that the above presented strategies to approximate the
free boundary problem (4.2)-(4.3) by the level set method have proven successful, since they
were capable to satisfyingly handle the full coupling of flow and thrombus growth. Furthermore,
similar to the observations made in Chapter 3 for the FD-model, the predictions of the free
boundary problem turned out to be incompatible with the experimental data when shear stress
was neglected, whereas consideration of shear stress in the above proposed way led to good
agreement with the experimental evidence.
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4.3 Numerical results

(a) Location of the interface at t̃ = 0; cell size: hmax = 12.5 × 10−2, hmin =
3.125× 10−2; #cells = 1,376, #nodes = 1,513; max ũr = 0.310, max ũz = 0

(b) Location of the interface at t̃ = 190; cell size: hmax = 12.5 × 10−2, hmin =
3.125× 10−2; #cells = 1,712, #nodes = 1,855; max ũr = 0.339, max ũz = 0.008

(c) Location of the interface at t̃ = 190; cell size: hmax = 6.25 × 10−2, hmin =
1.5625× 10−2; #cells = 6,128, #nodes = 6,413; max ũr = 0.336, max ũz = 0.007

Figure 4.2: Stagnation point flow with shear-dependent platelet adhesion calculated on a
coarse grid (top and middle) and on a once refined grid (bottom). Red color
indicates elevated radial velocity, whereas dark blue color denotes vanishing radial
velocity.
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4 The free boundary problem

(a) Location of the interface at t̃ = 0; #cells = 13,376, #nodes = 13,901; max ũr =
0.312, max ũz = 0

(b) Location of the interface at t̃ = 190; #cells = 21,440, #nodes = 21,993;
max ũr = 0.335, max ũz = 0.007

(c) Location of the interface at t̃ = 215; #cells = 22,904, #nodes = 23,463;
max ũr = 0.350, max ũz = 0.010

Figure 4.3: Stagnation point flow with shear-dependent platelet adhesion calculated on a
fine grid. Cell size ranges from hmax = 3.125× 10−2 to hmin = 0.78125× 10−2

around the interface. Red color indicates elevated radial velocity, whereas dark
blue color denotes vanishing radial velocity.
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4.3 Numerical results

(a) Location of the interface at t̃ = 0; #cells = 33,536, #nodes = 34,467; max ũr =
0.312, max ũz = 0

(b) Location of the interface at t̃ = 190; #cells = 70,688, #nodes = 71,697;
max ũr = 0.335, max ũz = 0.006

(c) Location of the interface at t̃ = 215; #cells = 73,592, #nodes = 74,605;
max ũr = 0.348, max ũz = 0.009

Figure 4.4: Stagnation point flow with shear-dependent platelet adhesion calculated on a very
fine grid. Cell size ranges from hmax = 3.125× 10−2 to hmin = 0.390625× 10−2

around the interface. Red color indicates elevated radial velocity, whereas dark
blue color denotes vanishing radial velocity.
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4 The free boundary problem

(a) t̃ = 0; #cells = 13,376, #nodes = 13,901; max ũr = 0.312

(b) t̃ = 190; #cells = 21,440, #nodes = 21,993; max ũr = 0.335

(c) t̃ = 215; #cells = 22,904, #nodes = 23,463; max ũr = 0.350

Figure 4.5: Thrombus growth affecting radial flow velocity ũr (left column) and pressure
p̃ (right column) in stagnation point flow, assuming shear-dependent platelet
adhesion. The values of ũr and p̃ are drawn in the direction perpendicular
to the mesh. The locally refined mesh and the interface separating fluid and
thrombus are also contained in the pictures on the right. Cell size ranges from
hmax = 3.125× 10−2 to hmin = 0.78125× 10−2 around the interface.
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4.3 Numerical results

(a) Flowfield in the vicinity of the thrombus

(b) Magnification of the flowfield around the thrombus’ tip

Figure 4.6: Thrombus growth affecting the flow field in stagnation point flow at t̃ = 215,
assuming shear-dependent platelet adhesion. The requirement that the flow
velocity vanishes inside the thrombus is fulfilled after a bandwith of approximately
one cell size around the interface (see Figure (b)). Calculations were performed
on a grid consisting of 22,904 cells and 23,463 nodes (not shown). Cell size ranges
from hmax = 3.125× 10−2 to hmin = 0.78125× 10−2 around the interface.
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4 The free boundary problem

(a) Location of the interface at t̃ = 0; cell size: hmax = 12.5 × 10−2, hmin =
3.125× 10−2; #cells = 1,376, #nodes = 1,513; max ũr = 0.310

(b) Location of the interface at t̃ = 190; cell size: hmax = 12.5 × 10−2, hmin =
3.125× 10−2; #cells = 2,228, #nodes = 2,373; max ũr = 0.352

(c) Location of the interface at t̃ = 190; cell size: hmax = 6.25 × 10−2, hmin =
1.5625× 10−2; #cells = 7,916, #nodes = 8,201; max ũr = 0.359

Figure 4.7: Stagnation point flow with shear-independent platelet adhesion calculated on
various grids. Red color indicates elevated radial velocity, whereas dark blue
color denotes vanishing radial velocity.
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4.3 Numerical results

(a) Location of the interface at t̃ = 0; cell size: hmax = 5.73 × 10−2, hmin =
1.4325× 10−2; #cells = 1,216, #nodes = 1,323

(b) Location of the interface at t̃ = 110; cell size: hmax = 5.73 × 10−2, hmin =
1.4325× 10−2; #cells = 1,492, #nodes = 1,605

(c) Location of the interface at t̃ = 110; cell size: hmax = 2.865 × 10−2, hmin =
0.71625× 10−2; #cells = 4,948, #nodes = 5,167

(d) Location of the interface at t̃ = 190; cell size: hmax = 5.73 × 10−2, hmin =
1.4325× 10−2; #cells = 1,612, #nodes = 1,725

Figure 4.8: Tubular expansion with shear-dependent platelet adhesion calculated on various
grids. Red color indicates elevated radial velocity, green color corresponds to zero
radial velocity, and dark blue color denotes elevated negative radial velocity.
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4 The free boundary problem

(a) Location of the interface at t̃ = 0; cell size: hmax = 2.865 × 10−2, hmin =
1.4325× 10−2; #cells = 2,368, #nodes = 2,503

(b) Location of the interface at t̃ = 130; cell size: hmax = 2.865 × 10−2, hmin =
1.4325× 10−2; #cells = 2,428, #nodes = 2,565

(c) Location of the interface at t̃ = 130; cell size: hmax = 1.4325 × 10−2, hmin =
0.71625× 10−2; #cells = 9,496, #nodes = 9,767

(d) Location of the interface at t̃ = 155; cell size: hmax = 2.865 × 10−2, hmin =
1.4325× 10−2; #cells = 2,488, #nodes = 2,627

Figure 4.9: Tubular expansion with shear-independent platelet adhesion calculated on various
grids. Red color indicates elevated radial velocity, green color corresponds to zero
radial velocity, and dark blue color denotes elevated negative radial velocity.
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5 Classical solvability of the free boundary
problem

This chapter proves classical solvability of (5.1)-(5.2) under the assumptions specified below.
The proof consists of several steps, which are presented in the following sections. First, the
original moving boundary problem is transformed to an equivalent formulation on the fixed
initial domain Ω0. This is presented in Section 5.2, making use of a transformation that was
originally employed by Hanzawa [36] to prove classical solvability of the single phase Stefan
problem. Then, in Section 5.3, the flow field is fixed and the corresponding linear problem
for the platelets is investigated. Starting in half space, this coupled linear problem is split
up in several auxiliary problems, which are treated by Fourier-Laplace transform techniques.
One of these auxiliary problems has been investigated by Kusaka and Tani, who also derived
an explicit representation formula of its solution (see [51, p. 594]). The remaining ones are
treated here by similar techniques. Besides this, some results on pseudodifferential operators
are employed to derive a priori estimates (see the proof of Lemma 5.3.3). After that, the
full linear problem is solved in half space by Banach’s fixed point theorem, which requires a
thorough investigation of the representation formula reported by Kusaka and Tani. Then, by
means of a regularizer, the results for the half space are used to solve the linear problem in
the original domain Ω0. Relying on the linear theory, Section 5.4 is devoted to the solution of
the nonlinear problem for the platelets, when the flow field is still fixed. After quite technical
estimates of the nonlinear terms it turns out that Banach’s theorem is applicable—provided
that time and the initial data for the platelets are sufficiently small. Finally, in Section 5.5,
the full coupling of flow and platelets is investigated. The transformed Navier-Stokes system
has been studied by Solonnikov [80] and his results even yield compactness of a thoroughly
defined operator solving the full problem. Furthermore, it is shown here that this operator
maps a ball into itself—provided that time is sufficiently small. Thus, Schauder’s theorem
yields a classical solution of the whole system.

5.1 Preliminaries

5.1.1 Geometry and model equations

Consider a domain as displayed in Figure 5.1, where k > 0 on the reactive (free) boundary
and k, l = 0 on the non-reactive (fixed) wall.
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.
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tt

t (k > 0)t (k > 0)

(k, l = 0)(k, l = 0)

Figure 5.1: Considered domain

In this situation, the free boundary problem (4.2)-(4.3) reads
∂tu− ν∆u+ (u · ∇)u+∇p = f in ΩT

∇ · u = 0 in ΩT

u = 0 on ΓT ∪ ΣT

u(t = 0) = u0 in Ω0

(5.1)


∂tw −D∆w + (u · ∇)w = 0 in ΩT

D∂nw = kw + l on ΓT ∪ ΣT

w(t = 0) = w0 in Ω0

v = ∇w on ΓT .

(5.2)

ΩT , ΓT , and ΣT are defined as in (4.1). Furthermore, the factor α in (4.3) has been set to one,
which is possible after an obvious redefinition of w, w0, and l.

5.1.2 Notation and function spaces

Let l > 0 be nonintegral and let ρ0 be a fixed positive number. According to Ladyzenskaja
et al. [52], we define the Hölder spaces H l(Ω) as Banach spaces of functions w(x) that are
continuous in Ω, together with all derivatives up to order [l] inclusively, and have a finite
norm

‖w‖(l)Ω := 〈w〉(l)Ω +
[l]∑
j=0
〈w〉(j)Ω , 〈w〉(0)

Ω := ‖w‖(0)
Ω := max

Ω
|w| , 〈w〉(j)Ω :=

∑
|s|=j
‖Ds

xw‖
(0)
Ω ,

〈w〉(l)Ω :=
∑
|s|=[l]

〈Ds
xw〉

(l−[l])
Ω ; 〈w〉(α)

Ω := sup
x, y ∈ Ω
|x− y| ≤ ρ0

|w(x)− w(y)|
|x− y|α

(0 < α < 1) .
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5.1 Preliminaries

In addition, we set QT := Ω0 × (0, T ], ST := ∂Ω0 × (0, T ], and define the Hölder spaces
H l,l/2(QT ) as Banach spaces of functions w(x, t) that are continuous in QT , together with all
derivatives of the form Dr

tD
s
xw for 2r + |s| < l, and have a finite norm

‖w‖(l)QT := 〈w〉(l)QT +
[l]∑
j=0
〈w〉(j)QT , 〈w〉(0)

QT
:= ‖w‖(0)

QT
:= max

QT

|w|,

〈w〉(j)QT :=
∑

2r+|s|=j
‖Dr

tD
s
xw‖

(0)
QT
, 〈w〉(l)QT := 〈w〉(l)x,QT + 〈w〉(l/2)

t,QT
,

〈w〉(l)x,QT :=
∑

2r+|s|=[l]
〈Dr

tD
s
xw〉

(l−[l])
x,QT

, 〈w〉(l/2)
t,QT

:=
∑

0<l−2r−|s|<2
〈Dr

tD
s
xw〉

( l−2r−s
2 )

t,QT
.

Here, for 0 < α < 1,

〈w〉(α)
x,QT

:= sup
(x, t), (y, t) ∈ QT
|x− y| ≤ ρ0

|w(x, t)− w(y, t)|
|x− y|α

, 〈w〉(α)
t,QT

:= sup
(x, t), (x, s) ∈ QT
|t− s| ≤ ρ0

|w(x, t)− w(x, s)|
|t− s|α

.

Let H l,l/2
0 (QT ) be the Hölder spaces corresponding to zero initial conditions, that is w ∈

H
l,l/2
0 (QT ) satisfies ∂kt w(t = 0) = 0 ∀k ∈ {0, ..., [l/2]}. In addition, we define the product

spaces

R1 := H
α,α2
0 (QT )×H1+α, 1+α2

0 (ST )×H1+α, 1+α2
0 (ST ) , R2 := H

2+α, 2+α2
0 (QT )×H2+α, 2+α2

0 (ST )

with norms

‖(F1, F2, F3)‖R1 := ‖F1‖(α)
QT

+ ‖F2‖(1+α)
ST

+ ‖F3‖(1+α)
ST

, ‖(ξ, σ)‖R2 := ‖ξ‖(2+α)
QT

+ ‖σ‖(2+α)
ST

.

Here, we finally introduced the Hölder spaces of functions on the boundary ST . By switching
to local coordinates (given that the boundary is sufficiently smooth), these spaces are defined
similarly to the above defined ones.

5.1.3 Assumptions and main theorem

We assume that 0 < α′ < 1 and that Ω0 is a given domain in R3 whose boundary ∂Ω0 belongs
to H3+α′ in the sense of [52, pp. 9–10]. For points of the surface ∂Ω0 we introduce local
coordinates ω = (ω1, ω2); we also denote by x(ω) ∈ ∂Ω0 or ω the corresponding points in R3.
Let n(ω) be the unit normal to ∂Ω0 at ω directed into Ω0. We assume a positive number γ0 to
be chosen so small that the mapping

∂Ω0 × [−γ0, γ0] → N
(ω, λ) 7→ x(ω, λ) := ω + λn(ω)

into a neighborhood N ⊂ R3 of ∂Ω0 is regular, one to one, and onto. By (ω(x), λ(x)) we
denote the inverse mapping of x from N to ∂Ω0 × [−γ0, γ0].

We suppose that the moving boundary Γt permits the representation

Γt = {x = ω + h̃(ω, t)n(ω), ω ∈ Γ0} , t ∈ [0, T ] ,
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5 Classical solvability of the free boundary problem

with a function
h̃ : Γ0 × [0, T ]→ R , h̃(ω, 0) = 0 .

We further assume that 0 < α < α′, u0 ∈ H2+α(Ω0), w0 ∈ H3+α(Ω0), f ∈ Hα,α/2(R3
T ),

k ∈ H1+α′, 1+α
′

2 (ST ), and l ∈ H1+α′, 1+α
′

2 (ST ). The extension of k and l into the interior of
the domain is chosen similarly to that of h̃, which is defined in (5.3). Furthermore, the
compatibility conditions of order zero shall be fulfilled (cf. [52, p. 319]). Then the following
theorem holds, which will be proven in the sections below:

Theorem 5.1.1 (Classical solvability of (5.1)-(5.2)). Let 0 < β < α. Under the assumptions
made above and provided that T and ‖w0‖(3+α)

Ω0
are sufficiently small, problem (5.1)-(5.2) has

a solution

h̃ ∈ H2+α, 2+α2
(
Γ0 × [0, T ]

)
, u ∈ H2+β, 2+β2 (ΩT ) , ∇p ∈ Hβ,β2 (ΩT ) , w ∈ H2+α, 2+α2 (ΩT ).

5.2 Transformation to fixed domain

Let NΓ0 := {x ∈ N : ω(x) ∈ Γ0}. We define

h(x, t) := h̃(ω(x), t) and φ(x, t) := λ(x)− h(x, t) , (x, t) ∈ NΓ0 × [0, T ] . (5.3)

Using the level set function φ, the moving boundary fulfills⋃
0≤t≤T

Γt × {t} =
{
(x, t) ∈ NΓ0 × [0, T ] : φ(x, t) = 0

}
.

The evolution of Γt is determined by the transport equation

∂th−∇w∇φ = 0 on ΓT , h(x, 0) = 0 on Γ0 . (5.4)

At this stage, the formulation of the problem contains two different parts of the boundary: the
reactive (moving) wall Γt and the non-reactive (fixed) material Σ. However, unification to a
formulation with a single boundary is straightforward, since ∂nw = 0 on ΣT and because ∇φ is
perpendicular to ∂Ωt. Hence, equation (5.4) holds on the whole boundary ΓT ∪ ΣT , that is

∂th−∇w∇φ = 0 on ΓT ∪ ΣT , h(x, 0) = 0 on ∂Ω0 . (5.5)

In the following, the moving boundary problem is reformulated on the fixed original domain
Ω0, that is the coordinate system is changed from x(ω, λ) to y(ω, η). For this purpose, we
choose a smooth cutoff function χ with

χ(η) :=
{

1 if |η| ≤ γ0/4
0 if |η| ≥ 3γ0/4

, |χ′(η)| ≤ 4
3γ0

. (5.6)

An appropriate transformation Ψh : QT → ΩT can be defined as

Ψh(y, t) :=
(
y + h(y, t)β(y), t

)
=:
(
Ψ(1)
h (y, t),Ψ(2)

h (t)
)
, β(y) := χ(η(y))n(ω(y)) . (5.7)
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5.2 Transformation to fixed domain

Its inverse is denoted by Φh(x, t) =
(
Φ(1)
h (x, t),Φ(2)

h (t)
)
. The Jacobian DΨh of Ψh with respect

to space and time variables fulfills

DΨh(y, t) =
(
Mh(y, t) Nh(y, t)

0 1

)
, Mh := Id+β∇yhT + hDyβ , Nh := ∂thβ . (5.8)

We define

f(y, t) := f
(
Ψh(y, t)

)
Ah(y, t) := (M−1

h )T (5.9)

qh(y, t) :=
(
∂tΦ(1)

h

)(
Ψh(y, t)

)
∇Ah := Ah(y, t)∇y (5.10)

and observe that the differential operators transform as

∇xf(x, t) = ∇Ahf(y, t) ∂tf(x, t) = ∂tf(y, t) + (qh · ∇y)f(y, t) (5.11)
∇ · f(x, t) = ∇Ah · f(y, t) ∆f(x, t) = ∇2

Ah
f(y, t) . (5.12)

The inward normal n = |∇η|−1∇η transforms into nAh := |∇Ahη|−1∇Ahη . For the sake of
brevity, the subfix h and the underscores are sometimes omitted.

Using (5.11) and (5.12), the equations (5.2) and (5.5) transform into

∂tw −D∇2
Aw + (u · ∇A)w + (q · ∇)w = 0 in QT

DnA∇Aw = kw + l on ST

w(t = 0) = w0 in Ω0

∂th−∇Aη∇Aw = 0 on ST

h(t = 0) = 0 on ∂Ω0 .

(5.13)

The penultimate equation follows from (5.5) by the observations that (5.3), (5.7), and (5.6)
yield

φ(y, t) = η(y) + h(y, t)χ(η(y))− h̃(w(x), t) = η(y) + h(y, t)− h̃(w(y), t) = η(y) ∀(y, t) ∈ ST ,

and that q ≡ 0 on ST . We note that for fixed u the problem is to determine (w, h) from
(5.13).

As second step, we appropriately reduce (5.13) to zero initial conditions. For this purpose,
let

w(1) := D∆w0 − u0∇w0 + (∇η∇w0)β∇w0 , h(1) := ∇η∇w0 (5.14)

be the functions arising from the compatibility conditions on the equations and the data
(cf. [52, p. 319]). By means of [52], Section 4.4 Theorem 4.3., we can construct two functions
ŵ and ĥ that satisfy

ŵ(y, 0) = w0(y) , ∂tŵ(y, 0) = w(1)(y) , ĥ(y, 0) = 0 , ∂tĥ(y, 0) = h(1)(y) , (5.15)

and

‖ŵ‖(3+α)
QT

+ ‖ĥ‖(3+α
′)

ST
≤ C(T )

(
‖w0‖(3+α)

Ω0
+ ‖w(1)‖(1+α)

Ω0
+ ‖h(1)‖(1+α′)

∂Ω0

)
≤ g

(
‖w0‖(3+α)

Ω0
, ‖u0‖(1+α)

Ω0
, T
)
→ 0

(5.16)
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as ‖w0‖(3+α)
Ω0

→ 0 , provided that T and ‖u0‖(1+α)
Ω0

are bounded. Finally, we define

σ := h− ĥ , ξ := w − ŵ − χσ∂nŵ

and observe that σ and ξ fulfill

σ(t = 0) = 0 , ∂tσ(t = 0) = 0 , ξ(t = 0) = 0 , ∂tξ(t = 0) = 0 ,

as well as

∂tξ −D∆ξ = −∂t(ŵ + χσ∂nŵ) +D∇2
A(ξ + ŵ + χσ∂nŵ)−D∆ξ

− (u∇A)(ξ + ŵ + χσ∂nŵ)− (q∇)(ξ + ŵ + χσ∂nŵ)
=: F1(u, ξ, σ) in QT

D∂nξ = kξ + (kχ∂nŵ)σ −DnA∇A(ξ + ŵ + χσ∂nŵ) +D∂nξ + kŵ + l

=: kξ + (kχ∂nŵ)σ + F2(ξ, σ) on ST
ξ(t = 0) = 0 in Ω0

∂tσ −∇ξ∇η = −∂tĥ+∇A(ξ + ŵ + χσ∂nŵ)∇Aη −∇ξ∇η
=: F3(ξ, σ) on ST

σ(t = 0) = 0 on ∂Ω0 .

(5.17)

5.3 The linear problem for the platelets; fixed flow

The aim is to solve the linear problem which corresponds to (5.17), that is

∂tξ −D∆ξ = F1 in QT

∂nξ = kξ + cσ + F2 on ST

ξ(t = 0) = 0 in Ω0

∂tσ − d∂nξ = F3 on ST

σ(t = 0) = 0 on ∂Ω0 .

(5.18)

ξ can be decomposed into ξ = ξ1 + ξ2, with the solutions ξ1 and (ξ2, σ) of, respectively,
∂tξ1 −D∆ξ1 = F1 in QT

∂nξ1 = kξ1 + F2 on ST

ξ1(t = 0) = 0 in Ω0

(5.19)

and 

∂tξ2 −D∆ξ2 = 0 in QT

∂nξ2 = kξ2 + cσ on ST

ξ2(t = 0) = 0 in Ω0

∂tσ − d∂nξ2 = F3 + d∂nξ1 on ST

σ(t = 0) = 0 on ∂Ω0 .

(5.20)

58



5.3 The linear problem for the platelets; fixed flow

Solvability of (5.19)-(5.20) follows from the solvability of both (5.19) and

∂tξ2 −D∆ξ2 = 0 in QT

∂nξ2 = kξ2 + cσ on ST

ξ2(t = 0) = 0 in Ω0

∂tσ − d∂nξ2 = F on ST

σ(t = 0) = 0 on ∂Ω0 .

(5.21)

The solution of (5.19) and (5.21) presupposes their investigation in half space, where Fourier-
Laplace transform techniques can be employed. After that, on the basis of these results, the
original problem (5.18) is solved in the domain QT .

5.3.1 Investigation of auxiliary problems in half space

Throughout this subsection, k, c, and d are assumed to be positive constants. We define

R3
+ := R3 ∩ {z ≥ 0} , D3

T := R3
+ × [0, T ] , D2

T := R2 × {0} × [0, T ] , R2
T := R2 × [0, T ] .

The Fourier transform and the inverse Fourier transform of a function f ∈ L1(Rd) are defined
by

F(f)(ρ) := f̂(ρ) := 1
(2π)

d
2

∫
Rd
e−iρxf(x)dx , F−1(f)(ρ) := f̌(ρ) := 1

(2π)
d
2

∫
Rd
eiρxf(x)dx ,

with ρ ∈ Rd; the Laplace transform of a real-valued function g is given as

L(g)(p) :=
∫ ∞
0

e−ptg(t)dt (Re(p) > 0) ,

provided that the integral is convergent.

Solution of (5.21) in half space

Let χ be a smooth cutoff function, that is χ ∈ C∞0 (R2). To solve (5.21), we consider the three
coupled problems (5.22)–(5.24) and thereby benefit from the theory that has been developed
for (5.23) by Bazalii and Degtyarev [7] and by Kusaka and Tani [51] (see Proposition 5.3.2 on
page 71): 

∂tζ1 −D∆ζ1 = 0 in D3
T

∂tσ1 = dkζ1 on D2
T

ζ1(t = 0) = 0 in R3
+

∂tσ1 − d∂zζ1 = 2dχ∂zζ3 on D2
T

σ1(t = 0) = 0 on R2,

(5.22)
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5 Classical solvability of the free boundary problem



∂tζ2 −D∆ζ2 = 0 in D3
T

kζ2 = cσ2 on D2
T

ζ2(t = 0) = 0 in R3
+

∂tσ2 − d∂zζ2 = F on D2
T

σ2(t = 0) = 0 on R2,

(5.23)


∂tζ3 −D∆ζ3 = 0 in D3

T

∂zζ3 = −kζ3 + χ
(
∂zζ2 − 2cσ2 − cσ1

)
on D2

T

ζ3(t = 0) = 0 in R3
+ .

(5.24)

The solutions ζi must belong to H2+α, 2+α2
0 (D3

T ); the σi must belong to H2+α, 2+α2
0 (R2

T ).

First, the corresponding uncoupled problems are treated. Then, using a smallness assumption
on T , the coupled system is solved by application of Banach’s theorem. We observe that on
{(x, y) : χ(x, y) = 1} the functions ξ2 := ζ1 + ζ2 + ζ3 and σ := σ1 + σ2 solve the original
equations of (5.21), with the exception of the third one. Instead, ∂tσ − d∂zξ2 = F + d∂zζ3 is
fulfilled. Thus, in a third step, the “defect” d∂zζ3 has to be corrected.

Investigation of (5.22) and (5.24) This paragraph treats systems of equations which are
similar to, respectively, the uncoupled problems (5.22) and (5.24). First, we consider (5.22),
that is 

∂tζ −D∆ζ = 0 in D3
T

∂tσ = kζ on D2
T

ζ(t = 0) = 0 in R3
+

∂tσ − d∂zζ = F on D2
T

σ(t = 0) = 0 on R2,

(5.25)

where F ∈ H1+α, 1+α2
0 (R2

T ) is a compactly supported function. Assuming small time intervals,
solvability of (5.24) can then be deduced from the solvability of (5.25) by a fixed point argument
(see the proof of Proposition 5.3.1 on page 71).

Lemma 5.3.1. Take the Fourier transform with respect to the spatial variables (x, y) and
the Laplace transform with respect to t. The so transformed functions—denoted by ζ̃(ρ, z, p),
σ̃(ρ, p), and F̃ (ρ, p)—fulfill

ζ̃(ρ, z, p) = p

k
σ̃(ρ, p) exp

−(p+D|ρ|2

D

)1/2

z

 (5.26)

σ̃(ρ, p) = F̃ (ρ, p)
p
(
1 + d

k

√
D−1p+ |ρ|2

) (ρ ∈ R2, Re(p) > 0) . (5.27)
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5.3 The linear problem for the platelets; fixed flow

Proof. The zero initial conditions ensure ∂̃tζ = pζ̃. Furthermore, the relation ∂̃sζ = (iρ)sζ̃
holds. Thus, transforming the first two equations of (5.25) yields an ODE in z:

∂2
z ζ̃(ρ, z, p) =

( p
D

+ |ρ|2
)
ζ̃(ρ, z, p) , ζ̃(ρ, 0, p) = p

k
σ̃(ρ, p) . (5.28)

Clearly, ζ̃ as defined in (5.26) solves (5.28). The minus sign in (5.26) arises from the integrability
requirement on ζ̃ (which implies ζ̃ → 0 as |ρ| → ∞). Formula (5.27) follows by transforming
the fourth equation of (5.25) and making use of (5.26).

The aim is to invert the Laplace transform in order to derive an explicit representation of σ̂.
For this purpose, we consider the following lemma:

Lemma 5.3.2. Let the Laplace transform of a function f(t) fulfill

L(f)(p) = 1
p
(
1 + a

√
p+ b

) (Re(p) > 0) , (5.29)

where a and b are positive constants. Then f equals

f(t) = −1
2

1(
1 + a

√
b
) − a

π

∫ ∞
0

e−(x+b)t

x+ b

√
x

1 + a2x
dx (t > 0) . (5.30)

Proof. 1. According to the inversion formula of the Laplace transform (cf. [52, p. 256]),

f(t) = 1
2πi

γ+i∞∫
γ−i∞

ept

p
(
1 + a

√
p+ b

) dp , (5.31)

where γ > 0 is fixed. Since
√
z :=

√
|z| exp

(
iArg(z)

2

)
is analytic on C−, L(f) can be extended

to this region. We observe that both Arg(z) and |z| change along the line [γ − i∞, γ + i∞],
which makes direct evaluation of (5.31) extremely difficult. Hence, it is necessary to reduce
(5.31) to problems with one argument being constant. We achieve this by integrating along
the path shown in Figure 5.2 and by following the subsequently presented steps.

According to Cauchy’s theorem,

1
2πi

∮
ept

p
(
1 + a

√
p+ b

) dp = 0 . (5.32)

The absolute value of the denominator p
(
1 + a

√
p+ b

)
rises like aR3/2 as R→∞. Thus,

1
2πi

∫
Γ1+Γ2

ept

p
(
1 + a

√
p+ b

) dp→ 0 (R→∞) . (5.33)

Hence, (5.31), (5.32), and (5.33) yield

f(t) = − 1
2πi

lim
R→∞

∫
L1+L2

ept

p
(
1 + a

√
p+ b

) dp − 1
2πi

∫
B

ept

p
(
1 + a

√
p+ b

) dp .
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Figure 5.2: Path of integration and its magnification around the origin; ε′ := ε/
√

2 > 0

Since this equation holds for all 0 < ε < γ, we end up with

f(t) = − 1
2πi

lim
ε→0

lim
R→∞

∫
L1+L2

ept

p
(
1 + a

√
p+ b

) dp − 1
2πi

lim
ε→0

∫
B

ept

p
(
1 + a

√
p+ b

) dp
=: −I1 − I2 .

(5.34)

2. The second term in (5.34) can be treated with Lebesgue’s theorem (cf. [2, p. 52]),

I2 = 1
2πi

lim
ε→0

3
4π∫

− 3
4π

eεe
iθtiεeiθ

εeiθ
(
1 + a

√
εeiθ + b

) dθ = 3
4

1(
1 + a

√
b
) , (5.35)
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5.3 The linear problem for the platelets; fixed flow

which is applicable since the integrand in (5.35) is bounded. I1 is split up into three terms:

I1 = 1
2πi

lim
ε′→0

 −ε′∫
−∞

e(x+iε
′)t

(x+ iε′)
(
1 + a

√
x+ iε′ + b

) dx+
−∞∫
−ε′

e(x−iε
′)t

(x− iε′)
(
1 + a

√
x− iε′ + b

) dx


= 1
2πi

lim
ε′→0

0∫
−∞

e(y−b)t

a1a2

(y − b− iε′)a1e
iε′t − (y − b+ iε′)a2e

−iε′t

(y − b)2 + ε′2
dy

+ 1
2πi

lim
ε′→0

b/2∫
0

... dy + 1
2πi

lim
ε′→0

b−ε′∫
b/2

... dy

=: J1 + J2 + J3 ,

(5.36)

where a1 := 1 + a
√
y − iε′ and a2 := 1 + a

√
y + iε′ .

3. For all ε′ ≥ 0, the integrands of J1 and J2 can be estimated on the respective intervals by
the integrable function Ce(y−b)t. Hence, Lebesgue’s theorem allows once more to interchange
integration and limit procedure. We observe that for y < 0

lim
ε′→0

a1 = 1− ia
√
−y , lim

ε′→0
a2 = 1 + ia

√
−y ,

whereas for y > 0
lim
ε′→0

a1 = 1 + a
√
y = lim

ε′→0
a2 .

That is why

J1 = a

π

∫ ∞
0

e−(x+b)t

x+ b

√
x

1 + a2x
dx , J2 = 0 . (5.37)

In order to treat J3, we first note that

a1 = 1 + a
√
y − iε′a

2√y
+O

(
ε′

2)
, a2 = 1 + a

√
y + iε′a

2√y
+O

(
ε′

2) (5.38)

holds uniformly on [b/2, b]. Because of this and by expansion of e+− iε′t, J3 can be rewritten as

J3 = 1
2π

lim
ε′→0

b−ε′∫
b/2

e(y−b)t

a1a2

(
2t
(
1 + a

√
y
)
− a
√
y

)
(y − b)ε′

(y − b)2 + ε′2
dy

+ 1
2πi

lim
ε′→0

O
(
ε′

2) b−ε′∫
b/2

1
(y − b)2 + ε′2

dy − 1
π

lim
ε′→0

b−ε′∫
b/2

e(y−b)t

a1a2

ε′
(
1 + a

√
y
)

(y − b)2 + ε′2
dy

=: J4 + J5 − J6 .

(5.39)
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4. J4 and J5 vanish, because

|J4| ≤ lim
ε′→0

O(ε′)
b−ε′∫
b/2

(b− y)
(y − b)2 + ε′2

dy = lim
ε′→0

O(ε′)
2

(
log
(b2

4
+ ε′

2
)
− log

(
2ε′2

))
= 0 , (5.40)

|J5| ≤ lim
ε′→0

O
(
ε′

2) b−ε′∫
b/2

1
(y − b)2 + ε′2

dy ≤ lim
ε′→0

O(ε′)
[
arctan

(y − b
ε′

)]b−ε′
b/2

= 0 . (5.41)

To evaluate J6, we observe that (5.38) and (5.41) yield

J6 = 1
π

lim
ε′→0

b−ε′∫
b/2

ε′e(y−b)t(
1 + a

√
y
)(

(y − b)2 + ε′2
) dy

= 1
π

lim
ε′→0

b−ε′∫
b/2

ε′(
1 + a

√
y
)(

(y − b)2 + ε′2
) dy − 1

π
lim
ε′→0

ε′
b−ε′∫
b/2

O(b− y)(
1 + a

√
y
)(

(y − b)2 + ε′2
) dy ,

where the last term vanishes according to (5.40). Thus, integration by parts leads to

J6 = lim
ε′→0

1
π

arctan
(
y−b
ε′

)
1 + a

√
y

b−ε
′

b/2

+ lim
ε′→0

1
π

b−ε′∫
b/2

a
arctan

(
y−b
ε′

)
(
1 + a

√
y
)22√y dy .

The integrand of the second term is bounded, thus allows application of Lebesgue. Hence,

J6 = 1
π

lim
ε′→0

 arctan (−1)
1 + a

√
b− ε′

−
arctan

(
−b
2ε′
)

1 + a
√

b
2

+ 1
2

b∫
b/2

d

dy

1
1 + a

√
y
dy = 1

4
(
1 + a

√
b
) . (5.42)

Finally, the assertion follows from (5.34), (5.35), (5.36), (5.37), (5.39), (5.40), (5.41), and
(5.42).

We define the convolution of u(t) and w(t) as u ∗ w(t) :=
∫ t
0 u(s)w(t− s)ds. In addition, we

set a := d
k
√
D
, e := d

k , and

ĥ(ρ, t) := −1
2

1(
1 + e|ρ|

) − a

π

∫ ∞
0

e−(s+D|ρ|2)t

s+D|ρ|2

√
s

1 + a2s
ds =: ĥ1(ρ) + ĥ2(ρ, t) . (5.43)

Then, Lemma 5.3.1, Lemma 5.3.2, and the convolution theorem for the Laplace transform
yield

σ̂ = L−1(L(F̂ )L(ĥ)
)

= L−1(L(F̂ ∗ ĥ)
)

= F̂ ∗ ĥ1 + F̂ ∗ ĥ2 =: ϑ̂1 + ϑ̂2 . (5.44)

Lemma 5.3.3 (Estimates of ϑ1). The following estimate holds:

‖ϑ1‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.45)

where C = C(T ) remains bounded as T → 0.
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Proof. 1. According to the proof of Lemma 2 on page 133 in the book of Stein [84], the

quotient −1
2

(
1+e|ρ|2

)1/2
1+e|ρ| is the Fourier transform of a finite measure µ on R2. We define the

pseudodifferential operator P acting on a function u(x, y) as

Pu :=
(
I − e∆

)− 1
2u := F−1

 F(u)(
1 + e|ρ|2

)1/2
 .

According to [84], Theorem 4 on page 149, P : H l+α(R2)→ H l+1+α(R2) (l ≥ 0) and

‖Pu‖(l+1+α)
R2 ≤ C‖u‖(l+α)

R2 . (5.46)

We observe that ϑ̂1(ρ, t) = ĥ1(ρ)
∫ t
0 F̂ (ρ, s)ds =: ĥ1(ρ)F̂1(ρ, t). Hence, ϑ1 can be written as

ϑ1 = F−1

−1
2

(
1 + e|ρ|2

)1/2
1 + e|ρ|

F(F1)(
1 + e|ρ|2

)1/2
 = F−1 (F(µ)F

(
P(F1)

))
= µ ∗ PF1 , (5.47)

where the convolution theorem for Fourier transform was used in the last equation. Furthermore,

F1(x, t) = F−1
(∫ t

0
F̂ (., s)ds

)
(x) =

∫ t

0
F−1(F̂ (., s)

)
(x)ds =

∫ t

0
F (x, s)ds , (5.48)

and hence

G(x, t) := PF1(. , t)(x) =
∫ t

0
PF (. , s)(x)ds , ∂tG(x, t) = PF (. , t)(x) . (5.49)

2. We show that G ∈ H2+α(R2
T ). In doing so, we restrict ourselves to the highest order terms.

Using (5.49) and (5.46) we deduce

〈∂i∂jG〉(α)
x,R2

T
≤ sup

(x, t), (y, t) ∈ R2
T

|x− y| ≤ ρ0

∫ t

0

∣∣∂i∂jPF (. , s)(x)− ∂i∂jPF (. , s)(y)
∣∣

|x− y|α
ds

≤ sup
t

∫ t

0
‖PF (. , s)‖(2+α)

R2 ds

≤ C sup
t

∫ t

0
‖F (. , s)‖(1+α)

R2 ds

≤ CT‖F‖(1+α)
R2
T

(5.50)

and, for t ≥ t′,

〈∂i∂jG〉(α/2)t,R2
T
≤ sup

(x, t), (x, t′) ∈ R2
T

|t− t′| ≤ ρ0

∫ t
t′
∣∣∂i∂jPF (. , s)(x)

∣∣ ds
|t− t′|α/2

≤ C sup
t,t′

∫ t
t′ ‖F (. , s)‖(1+α)

R2

|t− t′|α/2
ds

≤ CT 1−α/2‖F‖(1+α)
R2
T

.

(5.51)
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Furthermore,

〈∂tG〉(α/2)t,R2
T

= sup
(x, t), (x, t′) ∈ R2

T
|t− t′| ≤ ρ0

∣∣∣∣P (F (. , t)− F (. , t′)
|t− t′|α/2

)
(x)
∣∣∣∣

≤ C sup
t,t′

∥∥∥∥F (. , t)− F (. , t′)
|t− t′|α/2

∥∥∥∥(α)

R2

≤ C‖F‖(1+α)
R2
T

,

(5.52)

where the last inequality follows from

〈
F (. , t)− F (. , t′)
|t− t′|α/2

〉(α)

x,R2
≤ sup

x, y ∈ R2

|x− y| ≤ ρ0

ρ1−α
0

∫ 1

0

∣∣∇F (x+ s(y − x), t)−∇F (x+ s(y − x), t′)
∣∣

|t− t′|α/2
ds

≤ ρ1−α
0 〈∇F 〉(α/2)

t,R2
T

≤ ρ1−α
0 ‖F‖(1+α)

R2
T

.

Finally, by the use of (5.49), (5.46), and (5.99) we get

〈∂tG〉(α)
x,R2

T
≤ sup

(x, t), (y, t) ∈ R2
T

|x− y| ≤ ρ0

ρ1−α
0

∫ 1

0

∣∣∇(PF (. , t)
)
(x+ s(y − x)

∣∣ ds
≤ ρ1−α

0 sup
t
‖PF (. , t)‖(1+α)

R2

≤ C‖F‖(α)
R2
T

≤ C
√
T‖F‖(1+α)

R2
T

.

(5.53)

Hence, combination of (5.50), (5.51), (5.52), and (5.53) yields

‖G‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.54)

where C remains bounded as T → 0.

3. To conclude the proof it suffices to note that convolution with a finite measure preserves
the H l-spaces. Thus, assertion (5.45) follows from (5.47), (5.49), and (5.54).

Lemma 5.3.4 (Estimates of ϑ2). Suppose that supp
(
F (. , τ)

)
⊂ BR(0) ∀τ ∈ [0, T ]. Then

‖ϑ2‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.55)

where C = C(T,R, α) remains bounded as T → 0.

Proof. The assertion is verified for 〈∂i∂jϑ2〉(α)
x,R2

T
and for 〈∂tϑ2〉(α/2)

t,R2
T
. The other terms of

‖ϑ2‖(2+α)
R2
T

can be treated similarly.
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1. To estimate 〈∂i∂jϑ2〉(α)
x,R2

T
, we first note the following relations for a function u(x, y):

‖u‖L∞(R2) ≤
1
2π
‖F(u)‖L1(R2) , F

(
u(.+ h)

)
(ρ) = eiρhF(u)(ρ) . (5.56)

Thus, using the definition (5.44) of ϑ̂2,

‖∂i∂jϑ2( .+ h, t)− ∂i∂jϑ2(. , t)‖L∞(R2) ≤ C‖F
(
∂i∂j(ϑ2(.+ h, t)− ϑ2(. , t))

)
‖L1(R2)

= C‖ρiρj
(
eiρh − 1

)
ϑ̂2(. , t)‖L1(R2)

≤ C
∫ t

0

∥∥(eiρh − 1)F(∂iF )(. , τ)ρj ĥ2(. , t− τ)
∥∥
L1(R2)dτ

≤ C sup
τ

∥∥F(∂iF (.+ h, τ)− ∂iF (. , τ)
)∥∥
L2(R2) ×

×
∫ t

0

∥∥|ρ|ĥ2(. , t− τ)
∥∥
L2(R2)dτ

=: CI1 ×
∫ t

0
I2(t− τ)dτ .

(5.57)

According to Plancherel’s theorem (cf. [21, p. 183]),

I1 = sup
τ
‖∂iF (.+ h, τ)− ∂iF (. , τ)‖L2(R2) ≤ 2

√
πR2 ‖F‖(1+α)

R2
T
|h|α. (5.58)

Using polar coordinates and formula (5.43) we estimate I2 as

I2(t−τ)2 = C

∫ ∞
0

re−2Dr2(t−τ)
(∫ ∞

0

e−s(t−τ)

1 + a2s

2
√
s
√
Dr

s+Dr2︸ ︷︷ ︸
≤1

ds

)2

dr ≤ C

t− τ

(∫ ∞
0

e−s(t−τ)

1 + a2s
ds

)2

.

Furthermore,

∫ ∞
0

e−s(t−τ)

1 + a2s
ds ≤

∫ 1

0

1
1 + a2s

ds+ 1
a2

∫ ∞
t−τ

e−s

s
ds ≤ C + 1

a2
(
− log(t− τ) + e−1),

where, for the sake of simplicity, we assumed T ≤ 1 in deriving the last inequality. Hence,

∫ t

0
I2(t− τ)dτ ≤ C

∫ t

0

1− log(t− τ)√
t− τ

dτ = C
(
6
√
t− 2 log (t)

√
t
)
≤ 6C ∀t ∈ [0, T ] . (5.59)

Thus, (5.57), (5.58), and (5.59) imply 〈∂i∂jϑ2〉(α)
x,R2

T
≤ C‖F‖(1+α)

R2
T

.
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2. 〈∂tϑ2〉(α/2)t,R2
T

can be treated as follows: By the use of (5.56) and (5.44) we obtain for h > 0

‖∂tϑ2(. , t+ h)− ∂tϑ2(. , t)‖L∞(R2) ≤ C
∥∥∂t(F(ϑ2(. , t+ h)

)
−F

(
ϑ2(. , t)

))∥∥
L1(R2)

= C
∥∥∂t(∫ t+h

0
F̂ (. , τ)ĥ2(. , t+ h− τ)dτ

−
∫ t

0
F̂ (. , τ)ĥ2(. , t− τ)dτ

)∥∥
L1(R2)

≤ C
( ∥∥(F̂ (. , t+ h)− F̂ (. , t)

)
ĥ2(. , 0)

∥∥
L1(R2)

+
∫ t

0

∥∥F̂ (. , τ)∂t
(
ĥ2(. , t+ h− τ)− ĥ2(. , t− τ)

)∥∥
L1(R2)dτ

+
∫ t+h

t

∥∥F̂ (. , τ)∂tĥ2(. , t+ h− τ)
∥∥
L1(R2)dτ

)
=: C

(
J1 + J2 + J3

)
.

(5.60)

3. First, J1 shall be investigated. We observe from definition (5.43) that

∣∣ĥ2(ρ, 0)
∣∣ = a

π

∫ ∞
0

√
s

(s+D|ρ|2)(1 + a2s)
ds = 1

1 + |ρ|
√
Da
≤ C√

1 + |ρ|2
.

Furthermore, Lemma 7.9.2 in the book of Hörmander [38] states that for a function u(x, y)

‖u‖L1(R2) ≤ C
(∫

R2
|u|2

(
1 + |ρ|2

)1+ε
dρ
)1/2

(ε > 0).

The number ε will be specified below. Employing these two estimates we obtain

J1 ≤ C
(∫

R2
|F̂ (. , t+ h)− F̂ (. , t)|2

(
1 + |ρ|2

)ε
dρ

)1/2

≤ C‖F (. , t+ h)− F (. , t)‖L2(R2)

+ C

(∫
R2

∫
R2

∣∣F (ρ, t+ h)− F (ρ, t)− F (ρ̃, t+ h) + F (ρ̃, t)
∣∣2

|ρ− ρ̃|2+2ε dρ dρ̃

)1/2

,

(5.61)

where the last inequality follows from the formulas (7.9.3) and (7.9.4) in [38]. Note that

‖F (. , t+ h)− F (. , t)‖L2(R2) ≤ 2
√
πR2 ‖F‖(1+α)

R2
T
|h|

1+α
2 . (5.62)

We set B := BR(0) and split the square of the double integral term in (5.61) into three parts,
namely∫

CB

∫
B

∣∣F (ρ, t+ h)− F (ρ, t)
∣∣2

|ρ− ρ̃|2+2ε dρ dρ̃+
∫
B

∫
CB

∣∣F (ρ̃, t+ h)− F (ρ̃, t)
∣∣2

|ρ− ρ̃|2+2ε dρ dρ̃

+
∫
B

∫
B

∣∣F (ρ, t+ h)− F (ρ, t)− F (ρ̃, t+ h) + F (ρ̃, t)
∣∣2

|ρ− ρ̃|2+2ε dρ dρ̃

=: J (1)
1 + J

(2)
1 + J

(3)
1 .

(5.63)
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4. Estimate of J (1)
1 and J (2)

1 . Let M := R− |ρ|, assume 0 < h < 1, ε < 1/2. Proceed as follows:

J
(1)
1 ≤ C

(
‖F‖(1+α)

R2
T

)2
h1+α

∫
B

∫
CBM (ρ)

|ρ− ρ̃|−2(1+ε) dρ̃ dρ

= C
(
‖F‖(1+α)

R2
T

)2
h1+α

∫
B

∫ ∞
M

r−2(1+ε)r dr dρ

= C
(
‖F‖(1+α)

R2
T

)2h1+α

2ε

∫ R

0
(R− r)−2εr dr

≤ C R2−2ε

2ε(1− 2ε)

(
‖F‖(1+α)

R2
T

hα/2
)2
.

(5.64)

J
(2)
1 can be estimated similarly.

5. Estimate of J (3)
1 . We set ε := 1/8 and calculate as follows:

J
(3)
1 ≤

∫
B

∫
B

(∥∥∇F (. , t+ h)
∥∥
L∞(R2)|ρ− ρ̃|+

∥∥∇F (. , t)
∥∥
L∞(R2)|ρ− ρ̃|

)1/2

|ρ− ρ̃|9/4
×

×
(∣∣F (ρ, t+ h)− F (ρ, t)

∣∣+ ∣∣F (ρ̃, t+ h)− F (ρ̃, t)
∣∣)3/2

dρ dρ̃

≤ C
(
‖F‖(1+α)

R2
T

)2(
h

1+α
2
)3/2 ∫

B

∫
B

1
|ρ− ρ̃|7/4

dρ dρ̃

≤ C(R)
(
‖F‖(1+α)

R2
T

hα/2
)2
.

(5.65)

6. Estimate of J2. According to [38], Section 7.9., the L1-norm of the Fourier transform
satisfies

‖F̂ (. , τ)‖L1(R2) ≤ C(R,α)‖F (. , τ)‖(1+α)
R2 . (5.66)

Hence, from the definitions (5.60) of J2 and (5.43) of ĥ2 it follows that

J2 ≤ C
∫ t

0

∥∥F̂ (. , τ)
∥∥
L1(R2)

∥∥∂tĥ2(. , t+ h− τ)− ∂tĥ2(. , t− τ)
∥∥
L∞(R2)dτ

≤ C‖F‖(1+α)
R2
T

∫ t

0

∥∥∥∫ ∞
0

e−(s+D|ρ|2)(t−τ)
√
s

1 + a2s

(
1− e−(s+D|ρ|2)h

)
ds
∥∥∥
L∞(R2)

dτ .

(5.67)

It is not difficult to see that

∣∣∣∫ ∞
0

e−s(t−τ)
√
s

1 + a2s

(
1− e−(s+D|ρ|2)h

)
ds
∣∣∣ ≤ C(1−e−D|ρ|2h)+ C√

t− τ

(
1−

√
t− τ√

t− τ + h
e−D|ρ|

2h
)

and that

e−D|ρ|
2(t−τ)(1−e−D|ρ|2h) ≤ h

t− τ + h
, e−D|ρ|

2(t−τ)
(

1−
√
t− τ√

t− τ + h
e−D|ρ|

2h
)
≤

√
h√

t− τ + h
.
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Employing these three estimates in (5.67) yields

J2 ≤ C‖F‖(1+α)
R2
T

∫ t

0

( √
h

t− τ + h
+

√
h√

t− τ
√
t− τ + h

)
dτ

= C‖F‖(1+α)
R2
T

√
h
(
− log(h) + log(t+ h) + log(h)− 2 log(

√
t+ h−

√
t)
)

≤ hα/2C‖F‖(1+α)
R2
T

h
1−α

2 log
( √

T + h√
T + h−

√
T

)
︸ ︷︷ ︸

≤C2(T,α)

.

(5.68)

We note that C2 can be chosen independent of h. Moreover, C2 remains bounded as T → 0.

7. Estimate of J3. Equation (5.66) and the definitions (5.60) of J3 and (5.43) of ĥ2 yield

J3 ≤ C(R)‖F‖(1+α)
R2
T

∫ t+h

t
‖∂tĥ2(. , t+ h− τ)‖L∞(R2)dτ

= C(R)‖F‖(1+α)
R2
T

∫ t+h

t

∫ ∞
0

e−s(t+h−τ)
√
s

1 + a2s
ds dτ

≤ C(R)‖F‖(1+α)
R2
T

∫ t+h

t

∫ ∞
0

e−s(t+h−τ)√
s

ds dτ

=
√
hC(R)‖F‖(1+α)

R2
T

2
√
π .

(5.69)

Finally, the equations (5.60)-(5.65), (5.68), and (5.69) yield 〈∂tϑ2〉(α/2)
t,R2

T
≤ C‖F‖(1+α)

R2
T

.

Proposition 5.3.1 (Solution of problem (5.25) and problem (5.24)). Let F be a compactly
supported function in H

1+α, 1+α2
0 (R2

T ). Then both problem (5.25) and (5.24) (the latter with
χ(∂zζ2− 2cσ2− cσ1) replaced by F ) have a unique solution in H2+α, 2+α2

0 (D3
T )×H2+α, 2+α2

0 (R2
T ).

Both solutions fulfill the estimate

‖ζ‖(2+α)
D3
T

+ ‖σ‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.70)

where C remains bounded as T → 0.

Proof. 1. Regarding (5.25), the equations (5.44), (5.45), and (5.55) yield ‖σ‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

.

Using Lemma 5.3.1 we verify that ‖ζ‖(2+α)
R3
T
≤ C‖F‖(1+α)

R2
T

. A brief sketch of the argument
should be sufficient. From (5.26) it follows that for z > 0

ζ(x, y, z, t) =
∫ t

0

∫ ∞
−∞

∫ ∞
−∞

σ
(
x− ξ1, y − ξ2, t− s

)
g
(
ξ1, ξ2, z, s

)
dξ1 dξ2 ds ,

where g := F−1L−1
(
p
k exp

[
−
(
p+D|ρ|2

D

)1/2
z

])
. Hence, regarding the variables x, y, and t,

the function ζ has at least the regularity of σ. Furthermore, g is smooth enough with respect
to z.
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On the plane {z = 0}, the equations (5.26) and (5.27) imply

ζ̃(ρ, 0, p) = F̃ (ρ, p)
k + d

√
D−1p+ |ρ|2

.

Because of the prefactor
(
k + d

√
D−1p+ |ρ|2

)−1, the function ζ gains one order of regularity.

2. When the right hand side χ(∂zζ2−2cσ2−cσ1) of (5.24) is replaced by F , the main difference
that remains to (5.25) is the sign of k in the boundary condition. However, with regard to
(5.70) and (5.99) it is clear that—assuming small time intervals—the solvability of (5.24)
follows immediately from the above proven solvability of (5.25) by means of Banach’s fixed
point theorem. Furthermore, estimate (5.70) carries over to the solution of (5.24).

Investigation of (5.23) Problem (5.23) has been investigated by Bazalii and Degtyarev [7]
and by Kusaka and Tani [51]. According to their results, the following proposition holds:

Proposition 5.3.2 (Solution of problem (5.23)). Let F be a compactly supported function
in H

1+α, 1+α2
0 (R2

T ). Then problem (5.23) has a unique solution (ζ2, σ2) ∈ H
2+α, 2+α2
0 (D3

T ) ×
H

2+α, 2+α2
0 (R2

T ). This solution fulfills the estimate

‖ζ2‖(2+α)
D3
T

+ ‖σ2‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.71)

where C remains bounded as T → 0. Furthermore, σ2 can be represented as (x′ := (x, y))

σ2(x′, t) =
∫ t

0

∫
R2
K(x′ − ξ′, t− τ)F (ξ′, τ) dξ′dτ (5.72)

with

K(x′, t) := 1
4π1/2

cd

kD3/2

∫ t

0
(t− τ)τ−5/2 exp

(
−|x

′|2

4Dτ
− c2d2(t− τ)2

4k2Dτ

)
dτ. (5.73)

Solution of the coupled system (5.22)-(5.24) and correction of the defect

Proposition 5.3.3 (Solution of the system (5.22)-(5.24)). Provided that T is sufficiently small
and that F ∈ H1+α, 1+α2

0 (D2
T ) is a compactly supported function, the system (5.22)-(5.24) has a

unique solution (ζ1, ζ2, ζ3, σ1, σ2) ∈
(
H

2+α, 2+α2
0 (D3

T )
)3
×
(
H

2+α, 2+α2
0 (R2

T )
)2
.

Proof. Problem (5.23) can be solved independently of (5.22) and (5.24). To cope with the
coupling of (5.22) and (5.24), the right hand side 2dχ∂zζ3 of (5.22) is replaced by 2dχ∂zh,
with a fixed h ∈ H2+α, 2+α2

0 (D3
T ). The so obtained (ζ1, σ1), along with (ζ2, σ2), is inserted into

(5.24). According to Proposition 5.3.1 and Proposition 5.3.2, the operator

LF : H
2+α, 2+α2
0 (D3

T ) → H
2+α, 2+α2
0 (D3

T )
h 7→ ζ3
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is well defined. Furthermore, we can derive the estimate

‖LFh− LF h̃‖(2+α)
D3
T
≤ C‖σ1 − σ̃1‖(1+α)

R2
T
≤ C
√
T‖σ1 − σ̃1‖(2+α)

R2
T
≤ C
√
T‖h− h̃‖(2+α)

D3
T

,

where (5.99) has been employed to obtain the second inequality. Thus, LF is a strict contraction
for sufficiently small T .

The aim is to correct the remaining “defect” d∂zζ3 in a ball BR(0) ⊂ {(x, y) : χ(x, y) = 1}
(cf. page 60). For this purpose, we examine (5.22)-(5.24), but now with (5.23) containing
F − χd∂zg as right hand side instead of F alone. For small T we consider the operator

KF : H
2+α, 2+α2
0 (D3

T ) → H
2+α, 2+α2
0 (D3

T )
g 7→ ζ3

.

KF is well-defined according to Proposition 5.3.3. Furthermore, the functions ξ2 := ζ1 + ζ2 + ζ3
and σ := σ1 + σ2 fulfill 

∂tξ2 −D∆ξ2 = 0 in B3
T

∂zξ2 = kξ2 + cσ on B2
T

ξ2(t = 0) = 0 in R3
+

∂tσ − d∂zξ2 = F − d∂zg + d∂zζ3 on B2
T

σ(t = 0) = 0 on R2 ,

(5.74)

where B3
T := D3

T ∩
(
BR(0) × {z ≥ 0} × [0, T ]

)
, B2

T := D2
T ∩

(
BR(0) × {0} × [0, T ]

)
. Thus,

on the indicated sets, a fixed point of KF fulfills the equations of (5.21). Such a fixed point
will be provided by Banach’s theorem (cf. the proof of Proposition 5.3.4). To demonstrate
KF to be a strict contraction, we make substantially use of the representation formulas (5.72)
and (5.73) of σ2 (cf. Lemma 5.3.7), combined with a scaling argument (Lemma 5.3.6) and the
following estimate:

Lemma 5.3.5 (An estimate of the solution of (5.23)). Suppose that T is sufficiently small.
Let (ζ2, σ2) ∈ H

2+α, 2+α2
0 (D3

T ) × H2+α, 2+α2
0 (R2

T ) be the unique solution of (5.23) according to
Proposition 5.3.2. Then σ2 can be controlled solely by its second spatial derivatives and Tα/2
times the norm of F , i.e.

‖σ2‖(2+α)
R2
T
≤ C

 2∑
i,j=1

(
‖∂i∂jσ2‖(0)

R2
T

+ 〈∂i∂jσ2〉(α)
x,R2

T
+ 〈∂i∂jσ2〉(α/2)

t,R2
T

)
+ Tα/2‖F‖(1+α)

R2
T

 ,
where C remains bounded as T → 0.

Proof. Since ζ2 solves a Dirichlet problem in half space, it satisfies the estimate

‖ζ2‖(2+α)
D3
T
≤ C‖σ2‖(2+α)

R2
T

, (5.75)

where C remains bounded as T → 0 (cf. [52, p. 322]). Observe that

σ2(x′, t) =
∫ t

0
d∂zζ2(x′, 0, τ) + F (x′, τ) dτ .
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Hence, by the use of (5.75) and (5.99) we obtain

‖σ2‖(0)R2
T

+ ‖∇σ2‖(0)R2
T

+ ‖∂tσ2‖(0)
R2
T
≤ CT

1+α
2
(
‖σ2‖(2+α)

R2
T

+ ‖F‖(1+α)
R2
T

)
. (5.76)

Furthermore, using (5.75),∣∣∂tσ2(x′, t)− ∂tσ2(x′, s)
∣∣

|t− s|α/2
≤ d

∣∣∂zζ2(x′, 0, t)− ∂zζ2(x′, 0, s)∣∣
|t− s|

1+α
2

|t− s|1/2 +
∣∣F (x′, t)− F (x′, s)

∣∣
|t− s|

1+α
2

|t− s|1/2

≤ C
√
T

(
〈∂zζ2〉

( 1+α
2 )

t,D3
T

+ 〈F 〉(
1+α

2 )
t,R2

T

)
≤ C
√
T
(
‖σ2‖(2+α)

R2
T

+ ‖F‖(1+α)
R2
T

)
.

Once more, we employ (5.99) and obtain∣∣∂tσ2(x′, t)− ∂tσ2(x̃′, t)
∣∣

|x′ − x̃′|α
≤ d‖D2ζ2‖(0)

D3
T
ρ1−α
0 + ‖∇F‖(0)

R2
T
ρ1−α
0

≤ CTα/2
(
‖σ2‖(2+α)

R2
T

+ ‖F‖(1+α)
R2
T

)
,

and, for t ≥ s, ∣∣∂iσ2(x′, t)− ∂iσ2(x′, s)
∣∣

|t− s|
1+α

2
≤ C

∫ t

s

∣∣∂i∂zζ2(x′, 0, τ) + ∂iF (x′, τ)
∣∣

|t− s|
1+α

2
dτ

≤ CT
1−α

2 Tα/2
(
‖σ2‖(2+α)

R2
T

+ ‖F‖(1+α)
R2
T

)
.

Thus,

〈∂tσ2〉(α/2)t,R2
T

+ 〈∂tσ2〉(α)
x,R2

T
+

2∑
i=1
〈∂iσ2〉

( 1+α
2 )

t,R2
T
≤ CTα/2

(
‖σ2‖(2+α)

R2
T

+ ‖F‖(1+α)
R2
T

)
. (5.77)

Now, the assertion of the Lemma follows from (5.76) and (5.77), provided that CTα/2 < 1.

Lemma 5.3.6 (Scaling properties). Let t̃ := t/T and define σ(x, y, t̃) := σ(x, y, t). Then,
according to the chain rule, ∂t̃σ(x, y, t̃) = T∂tσ(x, y, t) and

‖Dr
t̃D

s
xσ‖

(0)
R2

1
= T r‖Dr

tD
s
xσ‖

(0)
R2
T

〈∂t̃σ〉
(α)
x,R2

1
= T 〈∂tσ〉(α)

x,R2
T

〈∂t̃σ〉
(α/2)
t̃,R2

1
= T 1+α

2 〈∂tσ〉(α/2)t,R2
T

〈∂iσ〉
( 1+α

2 )
t̃,R2

1
= T

1+α
2 〈∂iσ〉

( 1+α
2 )

t,R2
T

〈∂i∂jσ〉(α)
x,R2

1
= 〈∂i∂jσ〉(α)

x,R2
T

〈∂i∂jσ〉(α/2)
t̃,R2

1
= T

α
2 〈∂i∂jσ〉(α/2)

t,R2
T
.

In addition, ‖σ‖(2+α)
R2

1
≥ T 1+α

2 ‖σ‖(2+α)
R2
T

and ‖σ‖(2+α)
R2

1
≤ ‖σ‖(2+α)

R2
T

, provided that 0 < T ≤ 1.

Proof. This is obvious.

Proposition 5.3.4. Provided that T is sufficiently small, KF has a unique fixed point.
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Proof. The aim is to show that KF is a strict contraction.

1. According to (5.70), (5.99), and (5.75) we have

‖ζ3 − ζ̃3‖(2+α)
D3
T
≤ C

(
‖ζ2 − ζ̃2‖(2+α)

D3
T

+
√
T‖σ2 − σ̃2‖(2+α)

R2
T

+
√
T‖σ1 − σ̃1‖(2+α)

R2
T

)
≤ C

(
‖σ2 − σ̃2‖(2+α)

R2
T

+
√
T‖ζ3 − ζ̃3‖(2+α)

D3
T

)
.

Using the smallness assumption on T and Lemma 5.3.5 we obtain

‖ζ3 − ζ̃3‖(2+α)
D3
T
≤ C

2∑
i,j=1

(
‖∂i∂jσ2 − ∂i∂j σ̃2‖(0)

R2
T

+ 〈∂i∂jσ2 − ∂i∂j σ̃2〉(α)
x,R2

T

)

+ C
( 2∑
i,j=1
〈∂i∂jσ2 − ∂i∂j σ̃2〉(α/2)

t,R2
T

+ Tα/2‖g − g̃‖(2+α)
D3
T

)
.

(5.78)

2. The terms on the right hand side of (5.78) shall be estimated by the scaled quantities
(ζ2, σ2), which are defined as in Lemma 5.3.6. For that purpose, we set a := DT , b := dT , and
e := c/k. Furthermore, we observe that (ζ2, σ2) solves

∂t̃ζ2 − a∆ζ2 = 0 in D3
1

ζ2 = eσ2 on D2
1

ζ2(t̃ = 0) = 0 in R3
+

∂t̃σ2 − b∂zζ2 = TF − bχ∂zg on D2
1

σ2(t̃ = 0) = 0 on R2 .

Define

K(x′, t̃) := 1
4π1/2

eb

a3/2

∫ t̃

0
(t̃− τ)τ−5/2 exp

(
−|x

′|2

4aτ
− e2b2(t̃− τ)2

4aτ

)
dτ , (5.79)

then, according to Proposition 5.3.2,

σ2(x′, t̃)− σ̃2(x′, t̃) = b

∫ t̃

0

∫
R2
K(x′ − ξ′, t̃− τ)

(
χ∂z g̃ − χ∂zg

)
(ξ′, τ) dξ′dτ

=: bK ∗ (χ∂z g̃ − χ∂zg)(x′, t̃) .

Since χ∂z g̃ − χ∂zg has compact support, we deduce

∂i∂j(σ2 − σ̃2) = b ∂iK ∗ ∂j(χ∂z g̃ − χ∂zg) .

Hence, due to the convolution estimate (cf. [2, p. 94]),

‖∂i∂j(σ2 − σ̃2)‖(0)
R2

1
≤ b‖∂iK‖L1(R2

1)
‖∂j(χ∂z g̃ − χ∂zg)‖(0)

R2
1

≤ Cb‖∂iK‖L1(R2
1)
‖g − g̃‖(2+α)

D3
1

.
(5.80)

Similar estimates are obtained for the remaining seminorms on the right hand side of (5.78).
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3. Using (5.78), Lemma 5.3.6, and the estimate (5.80) we end up with

‖ζ3 − ζ̃3‖(2+α)
D3
T
≤ C

2∑
i,j=1

(
‖∂i∂jσ2 − ∂i∂j σ̃2‖(0)

R2
1

+
〈
∂i∂jσ2 − ∂i∂j σ̃2

〉(α)
x,R2

1

)

+ C
( 1
Tα/2

2∑
i,j=1

〈
∂i∂jσ2 − ∂i∂j σ̃2

〉(α/2)
t̃,R2

1
+ Tα/2‖g − g̃‖(2+α)

D3
T

)

≤ C
( 2∑
i=1

b

Tα/2
‖∂iK‖L1(R2

1)
‖g − g̃‖(2+α)

D3
1

+ Tα/2‖g − g̃‖(2+α)
D3
T

)

≤ C
( 2∑
i=1

b

Tα/2
‖∂iK‖L1(R2

1)
+ Tα/2

)
︸ ︷︷ ︸

=:Θ

‖g − g̃‖(2+α)
D3
T

.

The factor Θ becomes small for sufficiently small T , according to Lemma 5.3.7.

Lemma 5.3.7. Let K be defined according to (5.79). Then

b

Tα/2
‖∂iK‖L1(R2

1) → 0 as T → 0 (i = 1, 2) . (5.81)

Proof. 1. From (5.79) and the definition of a, b, and e on page 74 it follows that

b

Tα/2
‖∂iK‖L1(R2

1)
= CT 2

T
α
2 + 3

2

∫ 1

0

∫
R2

∣∣∣∫ t̃

0

t̃− τ
Tτ

5
2+1

xi exp
(
−C|x

′|2

Tτ
− CT 2(t̃− τ)2

Tτ

)
dτ
∣∣∣dx′dt̃

≤ CT−
1+α

2

∫ 1

0

∫ ∞
0

∫ t̃

0

t̃− τ
τ7/2 r

2 exp
(
−Cr

2

Tτ
− CT (t̃− τ)2

τ

)
dτdrdt̃

= CT−
1+α

2

∫ 1

0

∫ t̃

0

t̃− τ
τ7/2 exp

(
−CT (t̃− τ)2

τ

)∫ ∞
0

r2 exp
(
−Cr

2

Tτ

)
dr︸ ︷︷ ︸

=CT 3/2τ3/2

dτdt̃

= CT−
α
2

∫ 1

0

∫ t̃

0

1
t̃+ τ

d

dτ
exp

(
−CT (t̃− τ)2

τ

)
dτdt̃ ,

where d
dτ exp

(
−CT (t̃−τ)2

τ

)
= CT (t̃−τ)(t̃+τ)

τ2 exp
(
−CT (t̃−τ)2

τ

)
was used in the last equation.
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Hence,

b

Tα/2
‖∂iK‖L1(R2

1)
≤ CT−

α
2

∫ 1

0

∫ t̃

0

d

dt̃
log (t̃+ τ) d

dτ
exp

(
−CT (t̃− τ)2

τ

)
dτdt̃

= CT−
α
2

∫ 1

0

d

dt̃

∫ t̃

0
log (t̃+ τ) d

dτ
exp

(
−CT (t̃− τ)2

τ

)
dτdt̃

− CT−
α
2

∫ 1

0

∫ t̃

0
log (t̃+ τ) d

dτ

d

dt̃
exp

(
−CT (t̃− τ)2

τ

)
dτdt̃

− CT−
α
2

∫ 1

0
log (2t̃)

(
d

dτ
exp

(
−CT (t̃− τ)2

τ

))
|τ=t̃︸ ︷︷ ︸

=0

dt̃

=: J1(T ) + J2(T ) .

(5.82)

2. Estimate of J1. We note that the expansion

log(1 + τ) =
∞∑
k=1

(−1)k+1 τ
k

k
(0 ≤ τ ≤ 1)

implies

log(1 + τ)1− τ
2

τ2 = 1
τ

+O(1) ≤ C

τ
(0 ≤ τ ≤ 1) .

In addition,

exp
(
−CT (1− τ)2

τ

)
≤ C exp

(−CT
τ

)
(0 ≤ τ ≤ 1) .

We define erf(x) := C
∫ x
0 e
−τ2

dτ , where C is a suitable constant. Using these relations and
α < 1 we obtain

J1(T ) = CT 1−α2
∫ 1

0
log (1 + τ)1− τ

2

τ2 exp
(
−CT (1− τ)2

τ

)
dτ

≤ CT 1−α2
∫ 1

0

exp
(
−CT

τ

)
τ

dτ

≤ CT 1−α2
∫ ∞
1

exp (−CTτ)√
τ

dτ

= CT 1−α2

√
π√
CT

(
1− erf

(√
CT

))
≤ CT

1−α
2 → 0 (T → 0) .

(5.83)
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3. Estimate of J2. By partial integration, we obtain

J2(T ) = −CT−
α
2

∫ 1

0

∫ t̃

0
log(t̃+ τ) d

dτ

(
−2CT t̃− τ

τ
exp

(
−CT (t̃− τ)2

τ

))
dτdt̃

≤ CT 1−α2
∫ 1

0

∫ t̃

0

t̃− τ
(t̃+ τ)τ

exp
(
−CT (t̃− τ)2

τ

)
dτdt̃

≤ CT 1−α2
∫ 1

0

1
τ

∫ 1

0
exp

(
−CT t̃

2

τ

)
dt̃dτ

≤ CT 1−α2
∫ 1

0

τ
√
CT

τ

−1

erf

√CT

τ

 dτ
≤ CT 1−α2

∫ 1

0
(Tτ)−

1
2dτ

≤ CT
1−α

2 → 0 (T → 0) .

(5.84)

Hence, (5.81) follows from (5.82), (5.83), and (5.84).

Lemma 5.3.8. Assume that T is sufficiently small. Let ξ2 := ζ1 + ζ2 + ζ3, σ := σ1 +σ2. Here,
ζi and σi solve the system (5.22)-(5.24), where, according to Proposition 5.3.4, (5.23) is taken
with right hand side F − dχ∂zζ3 instead of F . Then

‖ξ2‖(2+α)
D3
T

+ ‖σ‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

, (5.85)

and C remains bounded as T → 0.

Proof. First, we observe that, according to (5.70) and (5.99),

‖σ1‖(2+α)
R2
T
≤ C‖ζ3‖(2+α)

D3
T
≤ C

(
‖ζ2‖(2+α)

D3
T

+
√
T‖σ2‖(2+α)

R2
T

+
√
T‖σ1‖(2+α)

R2
T

)
. (5.86)

Because of (5.75), we obtain for sufficiently small T

‖σ1‖(2+α)
R2
T
≤ C‖σ2‖(2+α)

R2
T

. (5.87)

In addition, due to (5.71),

‖σ2‖(2+α)
R2
T
≤ C

(
‖F‖(1+α)

R2
T

+ ‖ζ3‖(2+α)
D3
T

)
. (5.88)

By calculations similar to those of the proof of Proposition 5.3.4 we deduce

‖ζ3‖(2+α)
D3
T
≤ C

( 2∑
i=1

T

Tα/2
‖∂iK‖L1(R2

1)
+ Tα/2

)(
‖ζ3‖(2+α)

D3
T

+ ‖F‖(1+α)
R2
T

)
.

Hence, using Lemma 5.3.7, we conclude that for small T

‖ζ3‖(2+α)
D3
T
≤ C‖F‖(1+α)

R2
T

. (5.89)
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Inserting (5.89) into estimate (5.88) yields

‖σ2‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

. (5.90)

By combination of (5.87) and (5.90) we obtain

‖σ1 + σ2‖(2+α)
R2
T
≤ C‖F‖(1+α)

R2
T

. (5.91)

From (5.70) and (5.89) it follows that

‖ζ1‖(2+α)
D3
T
≤ C‖ζ3‖(2+α)

D3
T
≤ C‖F‖(1+α)

R2
T

,

and, by the use of (5.75) and (5.90),

‖ζ2‖(2+α)
D3
T
≤ C‖F‖(1+α)

R2
T

.

Thus,
‖ζ1 + ζ2 + ζ3‖(2+α)

D3
T
≤ C‖F‖(1+α)

R2
T

. (5.92)

Solution of (5.19) in half space

Observe that on {(x, y) : χ(x, y) = 1} the solution ξ1 of the half space problem corresponding
to (5.19) can be written as ξ1 = ξ

(1)
1 + ξ

(2)
1 , where ξ(1)

1 solves the Dirichlet problem
∂tξ

(1)
1 −D∆ξ(1)

1 = F1 in D3
T

ξ
(1)
1 = 0 on D2

T

ξ
(1)
1 (t = 0) = 0 in R3

+

(5.93)

and ξ(2)1 is solution to
∂tξ

(2)
1 −D∆ξ(2)

1 = 0 in D3
T

∂zξ
(2)
1 = kξ

(2)
1 − χ

(
∂zξ

(1)
1 − F2

)
on D2

T

ξ
(2)
1 (t = 0) = 0 in R3

+ .

(5.94)

Problem (5.93) is treated in [52], Section 4.6 Theorem 6.1., and problem (5.94) is covered by
Proposition 5.3.1 solving (5.25). The so obtained ξ1 = ξ

(1)
1 + ξ

(2)
1 satisfies the estimate

‖ξ1‖(2+α)
D3
T
≤ C

(
‖F1‖(α)

D3
T

+ ‖F2‖(1+α)
R2
T

)
, (5.95)

where C remains bounded as T → 0.
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5.3.2 Solution of the linear problem in QT

Now, the results obtained for the half space in the case of constant coefficients k, c, and
d are used to solve the original problem (5.18) that is posed in QT with (x, t)-dependent
coefficients.

Theorem 5.3.1 (Local existence in time). Provided that T is sufficiently small, for each
right hand side (F1, F2, F3) ∈ R1 the linear problem (5.18) has a unique solution (ξ, σ) ∈ R2.
Furthermore,

‖ξ‖(2+α)
QT

+ ‖σ‖(2+α)
ST

≤ C
(
‖F1‖(α)

QT
+ ‖F2‖(1+α)

ST
+ ‖F3‖(1+α)

ST

)
, (5.96)

where C = C(D, k, c, d, T ) remains bounded as T → 0.

Proof. 1. First, we assume that k, c, and d are positive constants: k ≡ k0, c ≡ c0, and d ≡ d0.

Let {Ω(j)} and {ω(j)} (j ∈ M1 ∪M2) be two systems of coverings of Ω0 constructed in the
same way as in [52], Section 4.4., and let λ be a positive constant to be specified later. For
j ∈M1, Ω(j) and ω(j) are cubes with common centers which are contained in the interior of
Ω0. Their edges are assumed to be parallel to the coordinate axes, with length λ and λ/2
(0 < λ < 1), respectively. For j ∈M2, Ω(j) and ω(j) have common parts with ∂Ω0, which are
defined in local coordinates {z} in the neighborhood of ∂Ω0 as

Ω(j) = Πz
x

(
{|zi| ≤ λ (i = 1, 2), 0 ≤ z3 − q(z1, z2) ≤ 2λ}

)
,

ω(j) = Πz
x

(
{|zi| ≤

λ

2
(i = 1, 2), 0 ≤ z3 − q(z1, z2) ≤ λ}

)
.

Here, z3 = q(z1, z2) represents part of ∂Ω0. Πz
x denotes the transformation from the local

coordinates z to the coordinates x. Let Πx
z denote the inverse transformation from x to z. For

a function f(z) set
(
Πz
xf
)
(x) := f

(
Πx
z (x)

)
. Similarly, let

(
Πx
zg
)
(z) := g

(
Πz
x(z)

)
for a function

g(x). The vector e(j)3 shall be given by (0, 0, 1)T in the local coordinates of Ω(j), j ∈M2. Of
course, Πz

x and Πx
z also depend on j. However, this is omitted in their notation for the sake of

brevity.

We define a partition of unity subordinate to {Ω(j)} and {ω(j)} as follows: We choose smooth
cutoff functions ϕ(j)(x) such that

ϕ(j)(x) =
{

1 x ∈ ω(j)

0 x ∈ Ω\Ω(j) , 0 ≤ ϕ(j)(x) ≤ 1 ,
∣∣Ds

xϕ
(j)(x)

∣∣ ≤ Cλ−|s| , (5.97)

and define η(j)(x) := ϕ(j)(x)∑
l
ϕ(l)(x)2 . Finally, let H :=

(
F1, F2, F3

)
and define a regularizer R as

RH :=
∑
j∈M1

η(j)(ξ(j), 0)+
∑
j∈M2

η(j)Πz
x

(
ξ(j), σ(j)) .

If j ∈M1, ξ(j) denotes a solution of Cauchy’s problem according to [52], Chapter 4 Theorem
6.1: {

∂tξ
(j) −D∆ξ(j) = ϕ(j)F1 in R3

T

ξ(j)(t = 0) = 0 in R3.
(5.98)

79



5 Classical solvability of the free boundary problem

If j ∈M2,
(
ξ(j), σ(j)) are determined by the procedure described in Section 5.3.1, that is they

fulfill 

∂tξ
(j) −D∆ξ(j) = Πx

z

(
ϕ(j)F1

)
in B3

T

∂zξ
(j) = k0ξ

(j) + c0σ
(j) + Πx

z

(
ϕ(j)F2

)
on B2

T

ξ(j)(t = 0) = 0 in R3
+

∂tσ
(j) − d0∂zξ

(j) = Πx
z

(
ϕ(j)F3

)
on B2

T

σ(j)(t = 0) = 0 on R2,

where B3
T and B2

T are defined as in (5.74) and assumed sufficiently large.

2. We define E(z) :=
(
eij
)3
ij=1 :=

(
DzΠz

x(z)−1)T , ∇(z) := E(z)∇z, and observe that

∂tΠz
xξ

(k) = Πz
x∂tξ

(k), ∇xΠz
xξ

(k) = Πz
x∇ξ(k), ∆xΠz

xξ
(k) = Πz

x∇
2
ξ(k).

Hence, (ξ, σ) := RH satisfies

∂tξ −D∆ξ = F1 − T1H in QT

∂nξ = k0ξ + c0σ + F2 − T2H on ST

ξ(t = 0) = 0 in Ω0

∂tσ − d0∂nξ = F3 − T3H on ST

σ(t = 0) = 0 on ∂Ω0 ,

where

T1H := D
∑
j∈M1

(
∆η(j)ξ(j) + 2∇η(j)∇ξ(j)

)
+D

∑
j∈M2

(
η(j)Πz

x

(
∇2 −∆

)
ξ(j) + 2∇η(j)Πz

x∇ξ(j) + ∆η(j)Πz
xξ

(j)
)
,

T2H :=
∑
j∈M2

(
η(j)(e(j)3 − n

)
Πz
x∇ξ(j) + η(j)e

(j)
3 Πz

x

(
∇−∇

)
ξ(j) − ∂nη(j)Πz

xξ
(j)
)
,

T3H := −d0T2H.

3. Observe that T := (Ti)3i=1 : R1 → R1. We will demonstrate below that ‖T ‖ < 1, provided
that both λ and T are sufficiently small. Hence, I − T is invertible and R(I − T )−1H solves
the original equations that contain (F1, F2, F3) as right hand side.

To deduce estimates of the TiH, we employ the following known inequalities:

‖u‖(l)QT ≤ CT
l′−l
2 ‖u‖(l

′)
QT

, l′ > l ≥ 0 , u ∈ H l′,l′/2
0 (QT ) ,

‖uv‖(l)QT ≤ C
(
‖u‖(l−1)

QT
‖v‖(l)QT + ‖u‖(l)QT ‖v‖

(l−1)
QT

)
, l > 1 ,

‖uv‖(α)
QT
≤ C

(
‖u‖(0)

QT
‖v‖(α)

QT
+ ‖u‖(α)

QT
‖v‖(0)

QT

)
, 0 < α < 1 .

(5.99)

Let Q(j)
T := Ω(j) × (0, T ], W (j)

T := Πx
zQ

(j)
T . We note that |∂αη(j)| ≤ Cλ−|α| due to (5.97) and

that
‖Πz

xξ
(j)‖(α)

Q
(j)
T

≤ C‖ξ(j)‖(α)
W

(j)
T

≤ CT‖ξ(j)‖(2+α)
W

(j)
T

,
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‖Πz
x∇ξ(j)‖

(α)
Q

(j)
T

≤ C‖∇ξ(j)‖(α)
W

(j)
T

≤ C
√
T‖ξ(j)‖(2+α)

W
(j)
T

.

The smoothness of the boundary yields |eik(z)− δik| ≤ Cλ+ o(λ). Thus,

‖Πz
x

(
∇2 −∆

)
ξ(j)‖(α)

Q
(j)
T

≤ C‖
(
∇2 −∆

)
ξ(j)‖(α)

W
(j)
T

≤ ‖(eik − δik)eir∂k∂rξ(j)‖
(α)
W

(j)
T

+ ‖(ekr − δkr)∂k∂rξ(j)‖
(α)
W

(j)
T

+ ‖eik(∂keir)∂rξ(j)‖
(α)
W

(j)
T

≤ ‖(eik − δik)eir‖
(0)
W

(j)
T

‖∂k∂rξ(j)‖
(α)
W

(j)
T

+ ‖(eik − δik)eir‖
(α)
W

(j)
T

‖∂k∂rξ(j)‖
(0)
W

(j)
T

+ ‖(ekr − δkr)‖
(0)
W

(j)
T

‖∂k∂rξ(j)‖
(α)
W

(j)
T

+ ‖(ekr − δkr)‖
(α)
W

(j)
T

‖∂k∂rξ(j)‖
(0)
W

(j)
T

+ ‖eik(∂keir)‖
(0)
W

(j)
T

‖∂rξ(j)‖(α)
W

(j)
T

+ ‖eik(∂keir)‖
(α)
W

(j)
T

‖∂rξ(j)‖(0)
W

(j)
T

≤ C
(
λ+ T

α
2 + λ+ T

α
2 +
√
T + T

1+α
2
)
‖ξ(j)‖(2+α)

W
(j)
T

≤ C
(
λ+ T

α
2
)
‖ξ(j)‖(2+α)

W
(j)
T

,

where we assumed T ≤ 1 in the last inequality to simplify the result. Furthermore,

‖Πx
z (ϕ(j)F1)‖(α)

D3
T
≤ C

(
1 + T

α
2 + T

α
2

λα

)
‖F1‖(α)

Q
(j)
T

and

‖Πx
z (ϕ(j)Fi)‖(1+α)

D2
T
≤ C

(
1 + T

1+α
2 + T

α
2

λα
+ T

1
2

λ
+ T

1+α
2

λ1+α

)
‖Fi‖(1+α)

S
(j)
T

(i = 2, 3) ,

where the extensions Πx
z (ϕ(j)F1)(z, t) := 0 ∀ z /∈ Πx

zΩ(j), etc., have been used. Therefore, using
(5.95) and (5.85),

‖ξ(j)‖(2+α)
W

(j)
T

≤ C
(
‖Πx

z (ϕ(j)F1)‖(α)
D3
T

+ ‖Πx
z (ϕ(j)F2)‖(1+α)

D2
T

+ ‖Πx
z (ϕ(j)F3)‖(1+α)

D2
T

)

≤ C
(

1 + T
α
2 + T

1+α
2 + T

α
2

λα
+ T

1
2

λ
+ T

1+α
2

λ1+α

)
‖H‖R1

≤ C‖H‖R1 ∀j ∈M2 ,

where T ≤ λ2 was additionally assumed in the last inequality. In addition, the solution of the
Cauchy problem (5.98) satisfies

‖ξ(j)‖(2+α)
Q

(j)
T

≤ C‖ϕ(j)F1‖(α)
R3
T
≤ C

(
1 + T

α
2 + T

α
2

λα

)
‖F1‖(α)

QT
≤ C‖H‖R1 ∀j ∈M1.
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Using these inequalities, we obtain

‖T1H‖(α)
Q

(l)
T

≤ C sup
j∈M1

(
‖∆η(j)‖(0)

Q
(j)
T

‖ξ(j)‖(α)
Q

(j)
T

+ ‖∇η(j)‖(0)
Q

(j)
T

‖∇ξ(j)‖(α)
Q

(j)
T

)
+ C sup

j∈M2

(
‖η(j)‖(0)

Q
(j)
T

‖Πz
x

(
∇2 −∆

)
ξ(j)‖(α)

Q
(j)
T

+ ‖∇η(j)‖(0)
Q

(j)
T

‖Πz
x∇ξ(j)‖

(α)
Q

(j)
T

+ ‖∆η(j)‖(0)
Q

(j)
T

‖Πz
xξ

(j)‖(α)
Q

(j)
T

)
+ C sup

j∈M1

(
‖∆η(j)‖(α)

Q
(j)
T

‖ξ(j)‖(0)
Q

(j)
T

+ ‖∇η(j)‖(α)
Q

(j)
T

‖∇ξ(j)‖(0)
Q

(j)
T

)
+ C sup

j∈M2

(
‖η(j)‖(α)

Q
(j)
T

‖Πz
x

(
∇2 −∆

)
ξ(j)‖(0)

Q
(j)
T

+ ‖∇η(j)‖(α)
Q

(j)
T

‖Πz
x∇ξ(j)‖

(0)
Q

(j)
T

+ ‖∆η(j)‖(α)
Q

(j)
T

‖Πz
xξ

(j)‖(0)
Q

(j)
T

)
≤ C

(
T

λ2 +
√
T

λ
+ (λ+ T

α
2 ) +

√
T

λ
+ T

λ2

)(
1 + T

α
2

λα

)
‖H‖R1

≤ C
(
T

λ2 +
√
T

λ
+ λ+ T

α
2

)
‖H‖R1 ,

where the Cs are independent of λ and T . Similarly, with the definition S(l)
T :=

(
Ω(l) ∩ ∂Ω0

)
×

(0, T ] and using
∣∣e(j)3 − n(x)

∣∣ ≤ C
∣∣(∂z1q, ∂z2q, 0)T (z′)

∣∣ ≤ C
∣∣D2q(z′0)(z′ − z′0)

∣∣ + o
(
|z′ − z′0|

)
≤

Cλ+ o(λ), we deduce

‖T2H‖(1+α)
S

(l)
T

+ ‖T3H‖(1+α)
S

(l)
T

≤ C
(

T

λ2+α +
√
T

λ1+α + λ1−α
)
‖H‖R1 .

Due to the assumption T ≤ λ2 we have ‖T1H‖(α)
QT
≤ C sup

l
‖T1H‖(α)

Q
(l)
T

, with C being independent

of λ and T (see [52, p. 302]). Since analogous relations hold for ‖T2H‖(1+α)
ST

and ‖T3H‖(1+α)
ST

,
we end up with

‖T ‖ ≤ C
(

T

λ2+α +
√
T

λ1+α + λ1−α + T
α
2

)
≤ 1

2
,

provided that λ and T = T (λ) are sufficiently small.

4. Now the aim is to get rid of the assumption of k, c, and d being constant coefficients. We
define KH := R(I − T )−1H and observe that (ξ, σ) := KH solves

∂tξ −D∆ξ = F1 − S1H in QT

∂nξ = kξ + cσ + F2 − S2H on ST

ξ(t = 0) = 0 in Ω0

∂tσ − d∂nξ = F3 − S3H on ST

σ(t = 0) = 0 on S0 ,
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5.3 The linear problem for the platelets; fixed flow

where S1H := 0, S2H := (k − k0)ξ + (c − c0)σ, S3H := (d − d0)∂nξ; S := (S1,S2,S3) :
R1 → R1 . Thus, KH solves the original problem with right hand side (I − S)H instead of
H. It turns out that ‖S‖ < 1, provided that ‖d− d0‖(α)

ST
and T are sufficiently small, which

follows from

‖S2H‖(1+α)
ST

≤ C
(
‖k − k0‖(1+α)

ST
‖ξ‖(1+α)

QT
+ ‖c− c0‖(1+α)

ST
‖σ‖(1+α)

ST

)
≤ C
√
T
(
‖k − k0‖(1+α)

ST
‖ξ‖(2+α)

QT
+ ‖c− c0‖(1+α)

ST
‖σ‖(2+α)

ST

)
≤ C
√
T‖H‖R1

and from

‖S3H‖(1+α)
ST

≤ C
(
‖d− d0‖(1+α)

ST
‖ξ‖(1+α)

QT
+ ‖d− d0‖(α)

ST
‖ξ‖(2+α)

QT

)
≤ C

(√
T‖d− d0‖(1+α)

ST
+ ‖d− d0‖(α)

ST

)
‖H‖R1 .

Since d(x) =
∣∣(−∂z1q,−∂z2q, 1)T (z′)

∣∣, the regularity of ∂Ω0 yields finiteness of ‖d− d0‖(1+α)
ST

.

5. The last step of this proof is to replace the smallness assumption on ‖d − d0‖(α)
ST

made
in Step 3 by a smallness assumption on T . For this purpose, in a similar way as in Step
1, we choose another system of coverings {Ω̂(j)} and {ω̂(j)} (j ∈ M̂1 ∪ M̂2) of Ω0 with
corresponding cutoff functions ϕ̂(j) and η̂(j), such that for all j ∈ M̂2 there exists a constant
d

(j)
0 > 0 with ‖d− d(j)

0 ‖
(α)
Ŝ

(j)
T

≤ ε, where ε is a fixed small positive number determined later and

Ŝ
(j)
T :=

(
Ω̂(j) ∩ ∂Ω0

)
× (0, T ]. The existence of such a covering is ensured by the regularity

assumption on ∂Ω0, which implies∣∣∇q(z′)∣∣ = ∣∣D2q(z′0)(z′ − z′0) + o
(
|z′ − z′0|

)∣∣ ≤ Cλ+ o(λ) , (5.100)

and hence, with d(j)
0 ≡ 1,

∣∣d(x)− d(j)
0
∣∣ = ∣∣√1 + |∇q(z′)|2 − 1

∣∣ = |∇q(z′)|2
2

+ o
(
|∇q(z′)|2

)
≤ Cλ2 + o(λ2) ∀x ∈ ∂Ω0 .

Furthermore, ∀x, x̃ ∈ ∂Ω0,

∣∣d(x)− d(x̃)∣∣
|x− x̃|α

=

∣∣∣∣√1 +
∣∣∇q(z′)∣∣2 −√1 +

∣∣∇q(z̃′)∣∣2 ∣∣∣∣(
|z′ − z̃′|2 +

∣∣q(z′)− q(z̃′)∣∣2)α/2
≤

2−1(1 +
∣∣∇q(z̃′)∣∣2)− 1

2
∣∣∣∣∣∇q(z′)∣∣2 − ∣∣∇q(z̃′)∣∣2∣∣∣+ o

(∣∣∣|∇q(z′)|2 − |∇q(z̃′)|2∣∣∣)∣∣z′ − z̃′∣∣α (1 +
∣∣∇q(z̃′) + o(1)

∣∣2)α/2
≤ C

∣∣∇q(z′)−∇q(z̃′)∣∣+ o
(∣∣∇q(z′)−∇q(z̃′)∣∣)

|z′ − z̃′|α

≤ Cλ1−α + o(λ1−α) .

Thus, ‖d− d(j)
0 ‖

(α)
Ŝ

(j)
T

can be made arbitrarily small by refining the covering {Ω̂(j), ω̂(j)}.
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Extend d|Ŝ(j)
T

to a function d(j) defined on the whole boundary ST , such that ‖d(j)−d(j)
0 ‖

(α)
ST
≤ Cε

and C is independent of j, ε, and λ. This can be accomplished using the reflection techniques
described in [52, p. 297]. For sufficiently small ε and j ∈ M̂2 let (ξ̂(j), σ̂(j)) be a solution of

∂tξ̂
(j) −D∆ξ̂(j) = ϕ̂(j)F1 in QT

∂nξ̂
(j) = kξ̂(j) + cσ̂(j) + ϕ̂(j)F2 on ST

ξ̂(j)(t = 0) = 0 in Ω0

∂tσ̂
(j) − d(j)∂nξ̂

(j) = ϕ̂(j)F3 on ST

σ̂(j)(t = 0) = 0 on ∂Ω0 ,

the existence of which is ensured by Step 3 of this proof. For j ∈ M̂1 let ξ̂(j) be a solution of{
∂tξ̂

(j) −D∆ξ̂(j) = ϕ̂(j)F1 in R3
T

ξ̂(j)(t = 0) = 0 in R3.

We define R̂H :=
∑

j∈M̂1

η̂(j)(ξ̂(j), 0) +
∑

j∈M̂2

η̂(j)(ξ̂(j), σ̂(j)) and observe that (ξ̂, σ̂) := R̂H solves



∂tξ̂ −D∆ξ̂ = F1 − T̂1H in QT

∂nξ̂ = kξ̂ + cσ̂ + F2 − T̂2H on ST

ξ̂(t = 0) = 0 in Ω0

∂tσ̂ − d∂nξ̂ = F3 − T̂3H on ST

σ̂(t = 0) = 0 on ∂Ω0 ,

where

T̂1H := D
∑
j

(
∆η(j)ξ(j) + 2∇η(j)∇ξ(j)

)
, T̂2H := −

∑
j∈M2

∂nη̂
(j)ξ̂(j), T̂3H := d

∑
j∈M2

∂nη̂
(j)ξ̂(j).

Clearly, T̂ := (T̂i)3i=1 : R1 → R1 and ‖T̂ ‖ ≤ C
(

T
λ2+α +

√
T

λ1+α

)
≤ 1

2 for sufficiently small T .

Finally, we prove solvability of the linear problem (5.18) on any finite time interval [0, T ], i.e.
we cease to assume that time is small.

Corollary 5.3.1 (Global existence in time). For each T > 0 and any right hand side
(F1, F2, F3) ∈ R1 the linear problem (5.18) has a unique solution (ξ, σ) ∈ R2. Furthermore,

‖ξ‖(2+α)
QT

+ ‖σ‖(2+α)
ST

≤ C
(
‖F1‖(α)

QT
+ ‖F2‖(1+α)

ST
+ ‖F3‖(1+α)

ST

)
, (5.101)

where C = C(D, k, c, d, T ) remains bounded as T → 0.

Proof. 1. First, we assume that that k, c, d ∈ H2+α, 2+α2 (ST ) and that Fi ∈ H
1+α, 1+α2
0 (ST ) ∩

H2+α, 2+α2 (ST ) (i = 2, 3). We define F4 := dF2 + F3. By the use of Theorem 5.3.1 we can solve
(5.18) on a small time interval [t0 = 0, t0 + τ ]. We denote this solution by

(
ξ(1), σ(1)) and note
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5.3 The linear problem for the platelets; fixed flow

that both the constant C in (5.96) and the length τ of the interval do not depend on the initial
time t0. Using Theorem 4.1. and Theorem 4.3. in [52, p. 298] as well as the remark on page
10 of this book, we can construct two functions

(
ξ̂(2), σ(2)

)
∈ H2+α, 2+α2 (QT )×H2+α, 2+α2 (ST )

satisfying
ξ̂(2)

(
.,
τ

2

)
= ξ(1)

(
.,
τ

2

)
, ∂tξ̂

(2)
(
.,
τ

2

)
= ∂tξ

(1)
(
.,
τ

2

)
,

σ(2)
(
.,
τ

2

)
= σ(1)

(
.,
τ

2

)
, ∂tσ

(2)
(
.,
τ

2

)
= ∂tσ

(1)
(
.,
τ

2

)
,

and ∥∥ξ̂(2)∥∥(2+α)
QT

≤
∥∥ξ(1) (., τ

2

)∥∥(2+α)
Ω0

,
∥∥σ(2)∥∥(2+α)

ST
≤
∥∥σ(1)

(
.,
τ

2

)∥∥
∂Ω0

.

According to (5.96), the right hand sides of these inequalities can be estimated by the Fi
(i = 1, 2, 3). Adding the fourth equation and d times the second equation of (5.18) yields

∂tσ
(1) = dkξ(1) + dcσ(1) + F4 on Sτ . (5.102)

On ST we define the function σ̂(2) as

σ̂(2)(x, t) := σ(1)
(
x,
τ

2

)
+
∫ t

τ
2

(
dkξ̂(2)(x, s) + dcσ(2)(x, s) + F4(x, s)

)
dτ

and observe that σ̂(2) ∈ H2+α, 2+α2 (ST ) and ∂tσ̂
(2) ∈ H2+α, 2+α2 (ST ). Note that we need at

least ∂tσ̂(2) ∈ H1+α, 1+α2 to ensure that the below defined F̃3 is in H1+α, 1+α2
0 . Furthermore, we

observe that σ̂(2) and ∂tσ̂(2) fulfill

σ̂(2)
(
.,
τ

2

)
= σ(1)

(
.,
τ

2

)
, ∂tσ̂

(2)
(
.,
τ

2

)
= ∂tσ

(1)
(
.,
τ

2

)
,

where the latter equation follows from (5.102) and the definitions of ξ̂(2) and σ(2). We define

F̃1 := F1 − ∂tξ̂(2) +D∆ξ̂(2)

F̃2 := F2 − ∂nξ̂(2) + kξ̂(2) + cσ̂(2)

F̃3 := F3 − ∂tσ̂(2) + d∂nξ̂
(2)

and observe that

F̃1 ∈ H
α,α2
0 (Ω0×[τ/2, T ]) , F̃2 ∈ H

1+α, 1+α2
0 (∂Ω0×[τ/2, T ]) , F̃3 ∈ H

1+α, 1+α2
0 (∂Ω0×[τ/2, T ]) .

Hence, using Theorem 5.3.1 we can solve on the interval [τ/2, 3τ/2]

∂tξ̃
(2) −D∆ξ̃(2) = F̃1

∂nξ̃
(2) = kξ̃(2) + cσ̃(2) + F̃2

ξ̃(2)(., τ/2) = 0
∂tσ̃

(2) − d∂nξ̃(2) = F̃3

σ(2)(., τ/2) = 0 .
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5 Classical solvability of the free boundary problem

Clearly,

(ξ, σ) :=
{ (

ξ(1), σ(1)) t ≤ τ(
ξ̃(2) + ξ̂(2), σ̃(2) + σ̂(2)) τ ≤ t ≤ 3τ/2

solves (5.18) on [0, 3τ/2] and can be estimated by the Fi (i = 1, 2, 3). Hence, repetition of this
argument yields the solution (ξ, σ) of (5.18) on the whole interval [0, T ].

2. The general case Fi ∈ H
1+α, 1+α2
0 (ST ) (i = 2, 3) follows by approximation of the Fi in

H
1+α, 1+α2
0 (ST ) with smoother functions F (n)

i ∈ H1+α, 1+α2
0 (ST ) ∩H2+α, 2+α2 (ST ) (i = 2, 3). Due

to (5.101), the corresponding solutions
(
ξ(n), σ(n))∞

n=1 form a Cauchy sequence in R2 and their
limit obviously solves the original problem (5.18).

3. The case that the coefficients k, c, d only belong to H1+α, 1+α2 (ST ) can also be treated by
approximation. We choose k1, c1, and d1 in H2+α, 2+α2 (ST ) such that

C‖k − k1‖(1+α)
ST

≤ 1
4
, C‖c− c1‖(1+α)

ST
≤ 1

4
, C‖d− d1‖(1+α)

ST
≤ 1

4
,

where C is a bound of the C(D, k1, c1, d1, T ), which are defined as the constants arising in
estimate (5.101) of the linear problem (5.18) containing k1, c1, d1 as coefficients instead of
k, c, d. The existence of such a bound for all (k1, c1, d1) that are located in a sufficiently small
neighborhood of (k, c, d) is not difficult to prove.

Now we observe that a solution of (5.18) can be obtained as fixed point of the operator
K : R2 → R2 mapping (h, e) ∈ R2 onto the solution (ξ, σ) ∈ R2 of

∂tξ −D∆ξ = F1 in QT

∂nξ = k1ξ + c1σ +
(
F2 + (k − k1)h+ (c− c1)e

)
on ST

ξ(t = 0) = 0 in Ω0

∂tσ − d1∂nξ = F3 + (d− d1)∂nh on ST

σ(t = 0) = 0 on ∂Ω0 .

According to Step 1 and 2 of this proof, this operator is well defined and satifies

‖K(h, e)−K(h̃, ẽ)‖R2 ≤ C
(
‖k − k1‖(1+α)

ST
+ ‖c− c1‖(1+α)

ST
+ ‖d− d1‖(1+α)

ST

)
‖(h, e)− (h̃, ẽ)‖R2

≤ 3
4
‖(h, e)− (h̃, ẽ)‖R2 .

Thus, K is a strict contraction.

5.4 Solution of the nonlinear problem for the platelets; fixed flow

Lemma 5.4.1. Let r0 be sufficiently small, NT := N × (0, T ], and hi, h be functions of the
type hi(y, t) = h̃i(ω(y), t) (i=1,2), h(y, t) = h̃(ω(y), t). We assume that hi, h ∈ Br0(0) ⊂
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H
2+α, 2+α2
0 (NT ) and define Ah as in (5.9) and nAh as on page 57. Then the following estimates

hold:

‖Ah1 −Ah2‖
(l+α)
QT

≤ C‖h1 − h2‖(l+1+α)
ST

(l = 0, 1) , (5.103)

‖nAh1 − nAh2‖
(l+α)
ST

≤ C‖h1 − h2‖(l+1+α)
ST

(l = 0, 1) , (5.104)

‖nAh − n‖
(l+α)
ST

≤ C‖h‖(l+1+α)
ST

(l = 0, 1) . (5.105)

Proof. 1. From the definition (5.7) of Ψh and from hi(y, t) = h̃i(ω(y), t) we deduce that

‖Ψh1 −Ψh2‖
(l+α)
R3
T

= ‖β(h1 − h2)‖(l+α)
NT

≤ C‖h1 − h2‖(l+α)
ST

(l = 1, 2).

Thus,
‖Mh1 −Mh2‖

(l+α)
R3
T
≤ C‖h1 − h2‖(l+1+α)

ST
(l = 0, 1) , (5.106)

where Mh is defined according to (5.8):

Mh = Id+Bh , Bh := β∇hT + hDβ .

We observe that ‖Bh‖
(0)
QT

< 1 when r0 is sufficiently small. Therefore, Mh(x, t) has an inverse
Ah(x, t) for all (x, t) ∈ QT , which fulfills

|Ah(x, t)| ≤
1

1− |Bh(x, t)|
. (5.107)

Due to its representation

Ah(x, t) =
∞∑
n=0

Bh(x, t)n

with a uniformly convergent series of continuous functions, the inverse Ah is continuous, too.
Hence, we obtain from (5.107)

‖Ah‖
(0)
QT
≤ 1

1− ‖Bh‖
(0)
QT

≤ C(r0). (5.108)

In addition,

〈Ah〉
(α)
x,QT

= sup
(x, t), (y, t) ∈ QT
|x− y| ≤ ρ0

∣∣Ah(x, t)(Mh(y, t)−Mh(x, t)
)
Ah(y, t)

∣∣
|x− y|α

≤
(
‖Ah‖

(0)
QT

)2
〈Mh〉

(α)
QT

≤ C(r0) ,

(5.109)

where we used the fact that the matrices Mh are bounded in H1+α, 1+α2 (QT ) for h being
bounded in H2+α, 2+α2 (NT ). We note that analogous estimates hold for 〈Ah〉

(α2 )
t,QT

and 〈Ah〉
( 1+α

2 )
t,QT

.
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The differentiability of the inverse Ah follows from its above derived continuity, from the
differentiability of Mh, and from

∂iAh(x, t) = lim
s→0

Ah(x+ sei, t)
(
Mh(x, t)−Mh(x+ sei, t)

)
Ah(x, t)

s

= −Ah(x, t)∂iMh(x, t)Ah(x, t) ,
(5.110)

where ei (i = 1, 2, 3) denotes the i-th cartesian coordinate vector. Together with (5.108),
formula (5.110) implies

‖DAh‖
(0)
QT
≤ C(r0) .

Next, we observe that two functions p and q satisfy

〈pq〉(α)
x,QT

≤ 〈p〉(α)
x,QT

‖q‖(0)
QT

+ ‖p‖(0)
QT
〈q〉(α)

x,QT〈
p

q

〉(α)

x,QT

≤ inf(q)−1 〈p〉(α)
x,QT

+
〈q〉(α)

x,QT

inf(q)2
‖p‖(0)

QT
.

(5.111)

Hence, (5.110), (5.111), (5.108), and (5.109) yield

〈∂iAh〉
(α)
QT
≤ C

(
‖Ah‖

(α)
QT

)2
‖Mh‖

(1+α)
QT

≤ C(r0) . (5.112)

In summing up, we have shown that for all h ∈ Br0(0) ⊂ H2+α, 2+α2
0 (NT ) the Matrices Ah are

uniformly bounded in H1+α, 1+α2 (QT ), that is

‖Ah‖
(l+α)
QT

≤ C(r0) (l = 0, 1) . (5.113)

2. To show (5.103), we employ (5.113) and (5.106) as follows:

‖Ah1 −Ah2‖
(l+α)
QT

= ‖Ah1

(
Mh2 −Mh1

)
Ah2‖

(l+α)
QT

≤ ‖Ah1‖
(l+α)
QT
‖Ah2‖

(l+α)
QT
‖Mh2 −Mh1‖

(l+α)
QT

≤ C(r0)‖h1 − h2‖(l+1+α)
ST

(l = 0, 1) .

3. Equation (5.103) yields (5.104). Indeed, we first observe that (5.8) and (5.9) imply

A0 = Id (5.114)

which, together with (5.103), yields

∣∣∇Ahiη∣∣ ≥ ∣∣∇η∣∣− ‖Ahi − Id ‖(0)
QT

∣∣∇η∣∣ ≥ ∣∣∇η∣∣(1− ‖hi − 0‖(2+α)
ST

)
≥ c(r0) > 0 . (5.115)

From the definition of nAhi it follows that

nAh1 − nAh2 =
|∇Ah2η|

(
∇Ah1η −∇Ah2η

)
+
(
|∇Ah2η| − |∇Ah1η|

)
∇Ah2η

|∇Ah1η||∇Ah2η|
. (5.116)
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Using (5.116), (5.115), and (5.103) we obtain∥∥nAh1 − nAh2∥∥(0)
ST
≤ C(r0)

(∥∥∇Ah1η −∇Ah2η∥∥(0)
ST

+
∥∥|∇Ah1η| − |∇Ah2η|∥∥(0)

ST

)
≤ C(r0)‖Ah1 −Ah2‖

(0)
QT

≤ C(r0)‖h1 − h2‖(1+α)
ST

.

(5.117)

Furthermore, the equations (5.116), (5.111), (5.115), and (5.103) yield

〈
nAh1 − nAh2

〉(α)
x,ST
≤
〈

|∇Ah2η|
|∇Ah1η||∇Ah2η|

〉(α)

x,ST

∥∥∇Ah1η −∇Ah2η∥∥(0)
ST

+
∥∥∥∥∥ |∇Ah2η|
|∇Ah1η||∇Ah2η|

∥∥∥∥∥
(0)

ST

〈
∇Ah1η −∇Ah2η

〉(α)
x,ST

+
〈

∇Ah2η
|∇Ah1η||∇Ah2η|

〉(α)

x,ST

∥∥|∇Ah1η| − |∇Ah2η|∥∥(0)
ST

+
∥∥∥∥∥ ∇Ah2η
|∇Ah1η||∇Ah2η|

∥∥∥∥∥
(0)

ST

〈
|∇Ah1η| − |∇Ah2η|

〉(α)
x,ST

≤ C(r0)
(〈
∇Ah1η −∇Ah2η

〉(α)
x,ST

+
〈
|∇Ah1η| − |∇Ah2η|

〉(α)
x,ST

+
∥∥∇Ah1η −∇Ah2η∥∥(0)

ST

)
.

(5.118)

To estimate
〈
|∇Ah1η| − |∇Ah2η|

〉(α)
x,ST

, the expansion

|∇Ah1η| − |∇Ah2η| ≤
∇Ah2η
|∇Ah2η|

(
∇Ah1η −∇Ah2η

)
+ o

(
‖∇Ah1η −∇Ah2η‖

(α)
QT

)
is employed, which—together with (5.111), (5.115), and (5.103)—yields〈
|∇Ah1η| − |∇Ah2η|

〉(α)
x,ST
≤ C(r0)

(〈
∇Ah1η −∇Ah2η

〉(α)
x,ST

+
∥∥∇Ah1η −∇Ah2η∥∥(0)

ST

)
≤ C(r0)

∥∥Ah1 −Ah2

∥∥(α)
QT

≤ C(r0)
∥∥h1 − h2

∥∥(1+α)
ST

.

(5.119)

Thus, (5.118) and (5.119) yield
〈
nAh1 − nAh2

〉(α)
x,ST
≤ C‖h1 − h2‖(1+α)

ST
. We note that

〈
nAh1 −

nAh2
〉(α/2)
t,ST

can be treated similarly. These findings and (5.117) imply (5.104) in the case l = 0.
The case l = 1 can be treated by differentiation of (5.116).

4. Because of (5.114), equation (5.105) is a direct consequence of equation (5.104).

The next step towards existence is to derive estimates of the right hand sides of equations
(5.17). For this purpose, we define Bd :=

{
u ∈ H1+α, 1+α2 (QT ) : ‖u − u0‖(1+α)

QT
≤ d

}
and

Dr := Br(0) ⊂ R2.
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5 Classical solvability of the free boundary problem

Lemma 5.4.2 (Estimates of the Fi). Let w0 fulfill D∂nw0 = kw0 + l0 along ∂Ω0 (which
follows from the compatibility conditions on the data). Assume that (ξ, σ) ∈ Dr and u ∈ Bd.
Let Fi (i = 1, 2, 3) be defined by (5.17). Then the following estimates hold:

‖F1(u1, ξ, σ)− F1(u2, ξ, σ)‖(α)
QT
≤ C‖u1 − u2‖(1+α)

QT
(5.120)

‖F1(u, ξ1, σ1)− F1(u, ξ2, σ2)‖(α)
QT
≤ C

(
Tα/2 + g(r)

)
(5.121)(

‖ξ1 − ξ2‖(2+α)
QT

+ ‖σ1 − σ2‖(2+α)
ST

)
.

Furthermore, there exists ε > 0 such that

‖F2(ξ1, σ1)− F2(ξ2, σ2)‖(1+α)
ST

≤ C
(
T ε/2 + ‖ŵ‖(2+α)

ST

)
(5.122)(

‖ξ1 − ξ2‖(2+α)
QT

+ ‖σ1 − σ2‖(2+α)
ST

)
‖F3(ξ1, σ1)− F3(ξ2, σ2)‖(1+α)

ST
≤ C

(
T ε/2 + ‖ŵ‖(2+α)

ST

)
(5.123)(

‖ξ1 − ξ2‖(2+α)
QT

+ ‖σ1 − σ2‖(2+α)
ST

)
.

Finally,

‖F1(u, 0, 0)‖(α)
QT

+ ‖F2(0, 0)‖(1+α)
ST

+ ‖F3(0, 0)‖(1+α)
ST

≤ CT
α′−α

2 (α′ > α > 0) . (5.124)

All prefactors C = C(r, d, T ) remain bounded for bounded r, d, and T . In addition, g(r)→ 0
as r → 0.

Proof. 1. The estimates (5.120) and (5.121) were proven in [7], Lemma 2 on page 12.

2. Let hi := σi + ĥ (i=1,2). Estimate (5.122) can be shown as follows:

‖F2(ξ1, σ1)− F2(ξ2, σ2)‖(1+α)
ST

≤ ‖DnAh1∇Ah1 ξ1 −Dn∇ξ1 −DnAh2∇Ah2 ξ2 +Dn∇ξ2‖(1+α)
ST

+ ‖DnAh1∇Ah1
(
χσ1∂nŵ

)
−DnAh2∇Ah2

(
χσ2∂nŵ

)
‖(1+α)
ST

+ ‖DnAh1∇Ah1 ŵ −DnAh2∇Ah2 ŵ‖
(1+α)
ST

=: I1 + I2 + I3 .

I1 ≤ ‖DnAh1∇Ah1 (ξ1 − ξ2)−DnAh1∇(ξ1 − ξ2)‖(1+α)
ST

+ ‖DnAh1∇(ξ1 − ξ2)−Dn∇(ξ1 − ξ2)‖(1+α)
ST

+
(
‖DnAh1∇Ah1 ξ2 −DnAh2∇Ah1 ξ2‖

(1+α)
ST

+ ‖DnAh2∇Ah1 ξ2 −DnAh2∇Ah2 ξ2‖
(1+α)
ST

)
=: J1 + J2 + J3 .

We define ε := (1− α)/2. By the use of (5.114), (5.103), (5.99), and (5.105) we obtain

J1 ≤ C‖nAh1‖
(1+α)
ST

(
‖Ah1 − Id ‖(α)

QT
‖ξ1 − ξ2‖(2+α)

ST
+ ‖Ah1 − Id ‖(1+α)

QT
‖ξ1 − ξ2‖(1+α)

ST

)
≤ C(r)‖nAh1‖

(1+α)
ST

(
‖h1‖(1+α+ε)

ST
T ε/2 + ‖h1‖(2+α)

ST
T 1/2

)
‖ξ1 − ξ2‖(2+α)

QT

≤ C(r)
(
‖h1‖(2+α)

ST
+ ‖n‖(1+α)

ST

)
‖h1‖(2+α)

ST
T ε/2‖ξ1 − ξ2‖(2+α)

QT

≤ C(r)T ε/2‖ξ1 − ξ2‖(2+α)
QT

.
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From (5.114) and (5.105) it follows that

J2 ≤ C
(
‖nAh1 − n‖

(α)
ST
‖ξ1 − ξ2‖(2+α)

ST
+ ‖nAh1 − n‖

(1+α)
ST

‖ξ1 − ξ2‖(1+α)
ST

)
≤ C(r)

(
‖h1‖(1+α+ε)

ST
T ε/2 + ‖h1‖(2+α)

ST
T 1/2

)
‖ξ1 − ξ2‖(2+α)

QT

≤ C(r)T ε/2‖ξ1 − ξ2‖(2+α)
QT

.

Employing (5.114), (5.103), and (5.104) yields

J3 ≤ C‖Ah1‖
(1+α)
QT

(
‖nAh1 − nAh2‖

(α)
ST
‖ξ2‖(2+α)

ST
+ ‖nAh1 − nAh2‖

(1+α)
ST

‖ξ2‖(1+α)
ST

)
+ C‖nAh2‖

(1+α)
ST

(
‖Ah1 −Ah2‖

(α)
QT
‖ξ2‖(2+α)

ST
+ ‖Ah1 −Ah2‖

(1+α)
QT

‖ξ2‖(1+α)
ST

)
≤ C(r)

(
‖h1‖(2+α)

ST
+ ‖h2‖(2+α)

ST
+ 1

)
T 1/2‖σ1 − σ2‖(2+α)

ST
‖ξ2‖(2+α)

ST

≤ C(r)T 1/2‖σ1 − σ2‖(2+α)
ST

.

Hence,
I1 ≤ C(r)T ε/2

(
‖ξ1 − ξ2‖(2+α)

QT
+ ‖σ1 − σ2‖(2+α)

ST

)
. (5.125)

I2 is treated as follows:

I2 ≤ ‖DnAh1∇Ah1
(
χσ1∂nŵ

)
−DnAh1∇Ah2

(
χσ1∂nŵ

)
‖(1+α)
ST

+ ‖DnAh1∇Ah2
(
χσ1∂nŵ

)
−DnAh1∇Ah2

(
χσ2∂nŵ

)
‖(1+α)
ST

+ ‖DnAh1∇Ah2
(
χσ2∂nŵ

)
−DnAh2∇Ah2

(
χσ2∂nŵ

)
‖(1+α)
ST

=: J4 + J5 + J6 .

J4 and J6 can be estimated similarly to J3:

J4 + J6 ≤ C(r)
(
‖h1‖(2+α)

ST
+ ‖h2‖(2+α)

ST
+ 1

)
T 1/2‖σ1 − σ2‖(2+α)

ST

(
‖χσ1∂nŵ‖(2+α)

ST
+ ‖χσ2∂nŵ‖(2+α)

ST

)
≤ C(r)T 1/2‖σ1 − σ2‖(2+α)

ST
.

The remaining term is handled as

J5 ≤ C(r)‖(σ1 − σ2)∂nŵ‖(2+α)
ST

≤ C(r)
(
‖σ1 − σ2‖(2+α)

ST
‖∂nŵ‖(1+α)

ST
+ ‖σ1 − σ2‖(1+α)

ST
‖∂nŵ‖(2+α)

ST

)
≤ C(r)

(
‖ŵ‖(2+α)

ST
+ T 1/2‖ŵ‖(3+α)

ST

)
‖σ1 − σ2‖(2+α)

ST

≤ C(r)
(
‖ŵ‖(2+α)

ST
+ T 1/2

)
‖σ1 − σ2‖(2+α)

ST
.

Thus,
I2 ≤ C(r)

(
‖ŵ‖(2+α)

ST
+ T 1/2

)
‖σ1 − σ2‖(2+α)

ST
. (5.126)

I3 can also be treated according to J3:

I3 ≤ C(r)
(
‖h1‖(2+α)

ST
+ ‖h2‖(2+α)

ST
+ 1

)
T 1/2‖σ1 − σ2‖(2+α)

ST
‖ŵ‖(2+α)

ST

≤ C(r)T 1/2‖σ1 − σ2‖(2+α)
ST

.
(5.127)
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Finally, observe that (5.125), (5.126), and (5.127) yield (5.122). Furthermore, the proof of
(5.123) is similar to the proof of (5.122).

3. The properties (5.15) and (5.14) of ŵ and ĥ, together with equation (5.114), yield

F1(u, 0, 0)|t=0 =
(
−∂tŵ +D∇2

Aĥ
ŵ − (u∇Aĥ)ŵ − (qĥ∇)ŵ

)
|t=0

= −D∆w0 + (u0∇)w0 − (∇η∇w0)β∇w0 +D∆w0 − (u0∇)w0 − (qĥ(t = 0)∇)w0

= 0 ,

where qĥ(t = 0) = −(∇η∇w0)β was employed to derive the last equality. Moreover, there
holds

F2(0, 0)|t=0 =
(
−DnAĥ∇Aĥŵ + kŵ + l

)
|t=0 = −D∂nw0 + kw0 + l0 = 0

and
F3(0, 0)|t=0 =

(
−∂tĥ+∇Aĥŵ∇Aĥη

)
|t=0 = −∇η∇w0 +∇w0∇η = 0 .

As all functions on the left hand side of (5.124) vanish at t = 0, this estimate follows from
equation (5.99), the three just derived relations, and estimate (5.16).

Theorem 5.4.1. Provided that ‖w0‖(3+α)
Ω0

, T , and r are sufficiently small, for each u ∈ Bd
there exists a unique (ξ, σ) ∈ Dr which solves problem (5.17). Furthermore, the operator

H : Bd → Dr
u 7→ (ξ, σ)

is continuous.

Proof. 1. Obviously,

F1 : Bd ×R2 → H
α,α2
0 (QT ) , F2 : R2 → H

1+α, 1+α2
0 (ST ) , F3 : R2 → H

1+α, 1+α2
0 (ST ) .

Therefore, according to Theorem 5.3.1, the solution of (5.17) can be written as

(ξ, σ) = B
(
F1(u, ξ, σ), F2(ξ, σ), F3(ξ, σ)

)
with a bounded linear operator B : R1 → R2, or, equivalently, as

(ξ, σ) = Ku(ξ, σ)

with a nonlinear operator Ku : R2 → R2.

2. We show that for sufficiently small ‖w0‖(3+α)
Ω0

, T, and r the operator Ku maps Dr into itself
and is a strict contraction there. Hence, existence and uniqueness in Dr follow from Banach’s
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theorem. By the use of the boundedness of B and (5.121)-(5.123) we obtain

‖Ku(ξ1, σ1)−Ku(ξ2, σ2)‖R2 = ‖B
(
F1(u, ξ1, σ1), F2(ξ1, σ1), F3(ξ1, σ1)

)
−B

(
F1(u, ξ2, σ2), F2(ξ2, σ2), F3(ξ2, σ2)

)
‖R2

≤ C
(
‖F1(u, ξ1, σ1)− F1(u, ξ2, σ2)‖(α)

QT

+ ‖F2(ξ1, σ1)− F2(ξ2, σ2)‖(1+α)
ST

+ ‖F3(ξ1, σ1)− F3(ξ2, σ2)‖(1+α)
ST

)
≤ C

(
T δ/2 + g(r) + ‖ŵ‖(2+α)

ST

)
(
‖ξ1 − ξ2‖(2+α)

QT
+ ‖σ1 − σ2‖(2+α)

ST

)
,

(5.128)

where δ := min(α, ε). Similarly, using (5.124), we obtain

‖Ku(0, 0)‖R2 ≤ CT
α′−α

2 .

Now we choose T and r so small that

C
(
T δ/2 + g(r) + ‖ŵ‖(2+α)

ST

)
≤ 1

2
, CT

α′−α
2 ≤ 1

2
r ,

which is possible since ŵ is small due to (5.16) and the given smallness of initial data. Hence,

‖Ku(ξ, σ)‖R2 ≤ ‖Ku(0, 0)‖R2 + ‖Ku(ξ, σ)−Ku(0, 0)‖R2 ≤ r .

Thus, Ku maps Dr into itself and is a strict contraction there because of (5.128).

3. According to part 1 and 2 of this proof, the operator H is well-defined. To demonstrate
continuity, let ui ∈ Bd with corresponding (ξi, σi) (i = 1, 2). Using once more the boundedness
of B and (5.120) it follows that

‖Ku1(ξ, σ)−Ku2(ξ, σ)‖R2 ≤ C‖u1 − u2‖(1+α)
QT

. (5.129)

Employing (5.128) and (5.129) we obtain

‖(ξ1, σ1)− (ξ2, σ2)‖R2 = ‖Ku1(ξ1, σ1)−Ku2(ξ2, σ2)‖R2

≤ ‖Ku1(ξ1, σ1)−Ku1(ξ2, σ2)‖R2 + ‖Ku1(ξ2, σ2)−Ku2(ξ2, σ2)‖R2

≤ 1
2
‖(ξ1, σ1)− (ξ2, σ2)‖R2 + C‖u1 − u2‖(1+α)

QT
.

Hence,
‖(ξ1, σ1)− (ξ2, σ2)‖R2 ≤ C‖u1 − u2‖(1+α)

QT
. (5.130)
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5.5 Solution of the full nonlinear problem including flow

Application of the transformation (5.7) to the Navier-Stokes system (5.1) yields
∂tu− ν∇2

Au+∇Ap = −(q∇)u− (u · ∇A)u+ f =: F0(u, σ) in QT
∇A · u = 0 in QT

u = 0 on ST
u(t = 0) = u0 in Ω0 .

(5.131)

Actually, this problem was already studied by Solonnikov [80] (see the proof of Theorem 3).
He showed that (5.131) is always uniquely solvable for a given function F0(x, t) ∈ Hα,α/2(QT ),
and that the solution fulfills the estimate

‖u‖(2+β)
QT

+ ‖∇p‖(β)
QT
≤ C(r)‖F‖(α)

QT
(0 < β < α) . (5.132)

In addition, the operator

G : Dr × Bd → H1+α, 1+α2 (QT )(
(ξ, σ), v

)
7→ u

is continuous, which maps
(
(ξ, σ), v

)
onto the solution u of the system (5.131) containing

F0(v, σ) as right hand side instead of F0(u, σ).

Let H be defined as in Theorem 5.4.1 and consider the operator

P : Bd → H1+α, 1+α2 (QT )
u 7→ G(H(u), u)

.

We note that a fixed point of P solves the full problem (5.1)-(5.2). The existence of such a
fixed point will be proven by Schauder’s fixed point theorem.

Theorem 5.5.1. P has at least one fixed point.

Proof. 1. Let ε := (α′ − α)/2. The following estimate shows that for sufficiently small T the
operator P maps Bd into itself. Employing (5.99) and (5.132) we obtain

‖P (u)− u0‖(1+α)
QT

≤ CT ε‖P (u)− u0‖(1+α′)
QT

≤ CT ε
(
‖P (u)‖(2+β)

QT
+ ‖u0‖(2+α)

QT

)
≤ CT ε

(
‖F0(u, σ)‖(α)

QT
+ ‖u0‖(2+α)

QT

)
.

This can be further estimated by the use of Lemma 5.5.1:

‖P (u)− u0‖(1+α)
QT

≤ CT ε
(
‖u‖(1+α)

QT
+ ‖f‖(α)

QT
+ ‖u0‖(2+α)

QT

)
≤ CT ε

(
‖u− u0‖(1+α)

QT︸ ︷︷ ︸
≤d

+‖f‖(α)
QT

+ ‖u0‖(2+α)
QT

)
≤ CT ε → 0 (T → 0) .
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5.5 Solution of the full nonlinear problem including flow

2. Since both H : Bd → Dr and G : Dr × Bd → H1+α, 1+α2 (QT ) are continuous, their
composition P : Bd → H1+α, 1+α2 (QT ) is continuous, too. In addition, P maps bounded
sets of H1+α, 1+α2 (QT ) into bounded sets of H2+β, 2+β2 (QT ), according to (5.132) and Lemma
5.5.1. Thus, P is a compact operator and the assertion follows from Schauder’s fixed point
theorem.

Lemma 5.5.1. Let u ∈ Bd and (ξ, σ) ∈ Dr. F0 fulfills the estimate

‖F0(u, σ)‖(α)
QT
≤ C

(
‖u‖(1+α)

QT
+ ‖f‖(α)

QT

)
,

where C = C
(
r, d, T, ‖w0‖(3+α)

Ω0
, ‖u0‖(1+α)

Ω0

)
remains bounded for bounded arguments.

Proof. From the definition of F0 it follows that

‖F0(u, σ)‖(α)
QT
≤ C

(
‖qh‖

(α)
QT

+ ‖u‖(α)
QT︸ ︷︷ ︸

≤d+‖u0‖(1+α)
Ω0

‖Ah‖
(α)
QT

)
‖u‖(1+α)

QT
+ ‖f‖(α)

QT
.

The definition (5.10) of qh and the estimate (5.16) imply that

‖qh‖
(α)
QT
≤ C‖∂th‖(α)

ST
≤ C

(
‖σ‖(2+α)

ST
+ ‖ĥ‖(2+α)

ST

)
≤ C

(
r + g

(
‖w0‖(3+α)

Ω0
, ‖u0∇w0‖(1+α)

Ω0
, T
))
.

Furthermore, due to (5.103) and (5.114),

‖Ah‖
(α)
QT
≤ C(r)

(
1 + ‖h‖(1+α)

ST

)
≤ C(r)

(
1 + r + g

(
‖w0‖(3+α)

Ω0
, ‖u0∇w0‖(1+α)

Ω0
, T
))
.

The proof of Theorem 5.1.1 is completed.
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6 Conclusions and outlook

To investigate the influences of shear stress, saturation-dependent changes in surface reactivity,
and thrombus growth on primary hemostasis in various vessel geometries, this thesis developed
two mathematical models based on the Navier-Stokes equations and on the conservation of
particles.

The first model, presented in Chapter 3, describes the initial phase of platelet adhesion,
when thrombus growth is negligible. Consequently, this model assumes a fixed domain and
was therefore termed “FD-model”. It accounts for saturation-dependent changes in surface
reactivity by coupling platelet flux conditions to ordinary differential equations describing
the evolution of surface-bound platelets. Existence of weak solutions of such ODE-coupled
problems was established for generalized parabolic systems using Schauder’s fixed point theorem.
Uniqueness and positivity of solutions require some tighter conditions which are fulfilled by the
presented FD-model. Thus, its mathematical well-posedness is guaranteed. The parameters
of the FD-model were optimized to fit experimental data concerning platelet adhesion to
glass in stagnation point flow (at Ht= 0%), platelet adhesion to collagen downstream of
a tubular expansion (Ht= 20%), and platelet adhesion to polypropylene in a t-junction
(Ht= 45%). Moreover, the so obtained parameter values were justified by the observations
of Brash et al. [13] studying the effects of various materials, solvents, and hematocrits on
platelet deposition. When platelet adhesion was assumed independent of shear stress, the
predictions of the FD-model matched none of the experimental data. In contrast to that, when
adhesion was taken shear-dependent, good qualitative agreement with the data was achieved.
To obtain even good quantitative agreement, it was necessary for the stagnation point flow
and for the tubular expansion to additionaly consider saturation-dependent changes in surface
reactivity. Furthermore, the so obtained improvement of the model’s ability to match the
data was observed to be greater in the stagnation point flow than in the tubular expansion.
Based on these observations, the first conclusion was that initial platelet deposition is highly
determined by shear stress and by changes in surface reactivity. In addition, comparison
of the optimized parameter values with the corresponding experimental conditions revealed
the impact of changing surface reactivity to likely depend on hematocrit. Consequently, the
hypothesis was put forward that the importance of saturation-dependent surface reactivity
rises with decreasing hematocrit.

With regard to possible applications in bioengineering and medicine, the FD-model was kept
on a rather fundamental level. Hence, due to the biological complexity of hemostasis, some
limitations exist. The most striking one is the dependence on surface material and solvent
upon changes in inflow velocity, as discussed in Section 3.3.2 for the tubular expansion. Model
behavior turned out to be contrary to experimental observations using immobilized fibrinogen
as reactive surface or Tyrodes-solution as solvent. However, it matches the behavior observed
for the more physiological situation of whole blood as solvent and adhesion to fibrillar collagen,
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immobilized vWf, and immobilized platelets. Besides this, the influence of surface pretreatment,
of various anticoagulants, and of differences between species (human and animals; see, e.g.,
[35], [33]) should be carefully analyzed. Another limitation is that the effects of thrombus
growth are not satisfyingly captured by the FD-model, as discussed in Section 3.3.1 for the
stagnation point. However, the eminent impact of shear stress on platelet deposition calls for
consideration of aggregate growth in models intended to capture the long-term behavior of the
process: The development of thrombi not only changes the flow field and thus the transport
of platelets along the streamlines, it also alters the shear stress. Modeling aggregate growth
leads to a free boundary problem with fully coupled fluid dynamic and species conservation
equations.

The growth of thrombi is taken into account by the second model, derived in Chapter 4 of this
work. It captures the long-term behavior of platelet deposition, when saturation-dependent
changes in surface reactivity can be neglected. Regarding mathematical well-posedness of this
free boundary problem, a detailed proof of classical solvability in terms of Hölder spaces was
presented. This difficult task was subdivided in several steps: First, the moving boundary
problem was transformed to an equivalent formulation on the fixed initial domain. Then,
the flow field was fixed and the corresponding linear problem for the platelets was addressed
in half space by application of Fourier-Laplace transform techniques and pseudodifferential
operator theory. After that, the linear problem was solved in the original domain by means of
a regularizer and the results derived for the half-space. Next, the linear theory was applied
to solve the nonlinear problem for the platelets (the flow field still fixed). This was achieved
by Banach’s fixed point theorem and required the assumption that the time and the initial
data for the platelets are small. Finally, the fully coupled problem was solved by Schauder’s
theorem, making use of the theory for fixed flow and a result of Solonnikov [80] concerning
the solvability of the transformed Navier-Stokes equations. Numerical simulations of the free
boundary problem in stagnation point flow and in the tubular expansion were performed by
the level set method, which provides a convenient alternative with notably reduced technical
complexity compared to present front-tracking approaches. Like the FD-model, the predictions
of the free boundary problem showed no agreement with the experimental data when platelet
deposition was assumed independent of shear stress. In contrast to that, when adhesion was
assumed shear-dependent, good agreement with experimental evidence was obtained. Hence, in
addition to the findings obtained by the FD-model, the results for the free boundary problem
further confirm the importance of shear stress in the processes of primary hemostasis.

The mathematical models developed in this work provided valuable information on spatial
platelet distribution: By comparison with in vitro experimental data, they revealed shear
stress, changes in surface reactivity, and thrombus growth to be important factors in the
course of primary hemostasis. Due to its rather fundamental character, the FD-model could be
used as starting point for an important problem in bioengineering: Given a prescribed inflow,
how can the shape and the surface of a vascular prostheses be optimized such that platelet
deposition to the vascular surface is minimal? However, due to the influence of shear stress a
consideration of the free boundary problem seems unavoidable to derive information about
the long-term behavior of platelet deposition. Besides hemostasis and thrombosis, application
of the presented approaches to further kinds of adhesion processes under flow is believed to
prove beneficial in figuring out how shear stress, surface, and aggregate growth determine their
behavior.
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