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tmp 2,2,6,6-tetramethyl-piperidino 

unsubst. unsubstituted 

δ chemical shift 
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Zusammenfassung 

 

Die vorliegende Arbeit behandelt die Untersuchung verschiedener mono- and 

disubstitutierter Gallylferrocene bzgl. ihrer Synthese und Struktur sowie der sich daraus 

ergebenden chemischen und physikalischen Eigenschaften. 

Das Bis(diaminogallyl)ferrocen [{Fe(η5-C5H4)2}{Ga(tmp)2}2] 8 und das 

monosubstitutierte Gallylferrocen [{(η5-C5H5)Fe(η5-C5H4)}{Ga(tmp)2}] 9 erwiesen auf 

Grund ihrer einfachen  Synthese sich als die am besten geeigneten Startmaterialien zur 

Synthese von anderen gallyl-substitutierten Ferrocenen und Gallaferrocenophanen. 

Zudem wurden zwei weitere gallyl-substitutierte Ferrocene                                  

[{Fe(η5-C5H4)2}{Ga{N(SiMe3)2}2}2] 10 und [{(η5-C5H5)Fe(η5-C5H4)} 

{Ga{N(SiMe3)2}2}] 11 erhalten. 

Bei der Reaktion von 8 und 9 mit unterschiedlichen Säuretypen wurden verschiedene 

Reaktionsweisen beobachtet. Die Behandlung von 8 und 9 mit einprotonigen Säuren 

wie Essigsäure, Ethanol oder Phenol ergab die gallyl-substitutierten Ferrocene 14 – 17 

und 20 – 22. 

Die so erhaltenen neuen gallyl-subtituierte Ferrocene wurden durch Protonierung und 

Abspaltung der tmp-Gruppen an den Gallium-Atomen gebildet. Dies sind 

[tmpH2]
+

2[{Fe(η5-C5H4)2}{Ga(O2CMe)3}2]
2- 14 und [tmpH2]

+[{(η5-C5H5)Fe(η5-C5H4)} 

{Ga(O2CMe)3}]- 20, [tmpH2]
+

2[{Fe(η5-C5H4)2}{Ga(O-C6H5)3}2]
2- 16, 

[Li(thf)2]
+

2[{Fe(η5-C5H4)2}{Ga(O-C6H5)3}2]
2- 17, [tmpH2]

+[{(η5-C5H5)Fe(η5-C5H4)} 

{Ga(O-C6H5)3}]- 21, [Li(thf)2]
+[{(η5-C5H5)Fe(η5-C5H4)}{Ga(O-C6H5)3}]-

 22 und 

[{Fe(η5-C5H4)2}{GaOEt}2O]4 15. 

Die Reaktion von 8 oder 9 mit organischen Disäuren wie Malonsäure und Catechol 

führte unter Spaltung sowohl der GaN- als auch der GaC-Bindungen zu 

[tmpH2]
+

3[{CH2(COO)2}3Ga]3- 18 und [tmpH2]
+

2[(σ-C6H4-O2)2Ga(OC6H4OH)]2- 19. 

Lässt man 8 mit Kohlenstoffdioxid reagieren, bildet sich unter Insertion in die        

GaN-Bindungen das Carbaminat [{Fe(η5-C5H4)2}{Ga(O2Ctmp)(µ2-O2Ctmp)}2] 13. 
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Abstract 

In this work, several mono- and disubstituted gallyl ferrocenes were synthesized and 

their chemical and physical properties have been investigated. In the same time, new 

information’s regarding the stability and atoms arrangement in solid state structures of a 

series of mono- and disubtituted ferrocenyl gallane are reported. 

From all of them, the disubstituted gallyl ferrocene [{Fe(η5-C5H4)2}{Ga(tmp)2}2] 8 and 

the monosubstituted gallyl ferrocene [{(η5-C5H5)Fe(η5-C5H4)}{Ga(tmp)2}] 9 proves to 

be the most suited starting material for the synthesis of other gallyl substituted 

ferrocenes and gallaferrocenophanes. That is because of their moderate to high yield 

syntheses. 8 and 9 have been characterized by means of 1H-, 13C-NMR spectroscopy, 

elementary analysis, mass spectrometry, cyclovoltammetry and single crystal X-ray 

analysis. Also, several quantum chemical calculations using the crystal coordinates of 8 

and 9 gave an insight into their electronically structures and stabilities. 

Other two gallyl substituted ferrocenes [{Fe(η5-C5H4)2}{Ga{N(SiMe3)2}2}2] 10 and 

[{(η5-C5H5)Fe(η5-C5H4)}{Ga{N(SiMe3)2}2}] 11 have been synthesized. 

By the reaction of 8 and 9 with different acids, a different behavior could be observed. 

When 8 and 9 have been treated with monoacids as acetic acid, ethanol or phenol 

different gallylsubstituted ferrocenes 14 – 17 und 20 – 22 were obtained. These new 

gallylsubtituted ferrocenes are formed by cleavage of the Ga-N bonds. With acetic acid 

[tmpH2]
+

2[{Fe(η5-C5H4)2}{Ga(O2CMe)3}2]
2- 14 and [tmpH2]

+[{(η5-C5H5)Fe(η5-C5H4)} 

{Ga(O2CMe)3}]- 20, with phenol [tmpH2]
+

2[{Fe(η5-C5H4)2}{Ga(O-C6H5)3}2]
2- 16, 

[Li(thf)2]
+

2[{Fe(η5-C5H4)2}{Ga(O-C6H5)3}2]
2- 17, [tmpH2]

+[{(η5-C5H5)Fe(η5-C5H4)} 

{Ga(O-C6H5)3}]- 21 and [Li(thf)2]
+[{(η5-C5H5)Fe(η5-C5H4)}{Ga(O-C6H5)3}]-

 22 and 

with ethanol [{Fe(η5-C5H4)2}{GaOEt}2O]4 15 were formed. 

When 8 or 9 was reacted with the organic diacids malonic acid and catechol, not only 

the Ga-N bonds, but as well the Ga-C bonds were cleaved and 

[tmpH2]
+

3[{CH2(COO)2}3Ga]3- 18 and [tmpH2]
+

2[(σ-C6H4-O2)2Ga(OC6H4OH)]2- 19  

were obtained. The reaction of 8 with carbon dioxide leads to the formation of the 

carbaminate [{Fe(η5-C5H4)2}{Ga(O2Ctmp)(µ2-O2Ctmp)}2] 13. 
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1. Introduction 

1.1. Monomeric Bis(amino)gallium Halides 

The chemistry of organyl and amino compounds of the Group 13 elements is well 

developed because of their potential application in the nitride semiconductors 

production (MN, M = Al, Ga or In)[1]-[3] and then, because of their interesting bonding 

models in comparison with the lighter elements.[4]-[6] These bonding models give rise to 

unusual structures and properties of the compound with the elements from the       

Group 13. That is reflected in debate concerning the very definition of chemical 

bonding.[7]-[9] Almost all the amino complexes of the metals from this Group have in 

common their high tendency to oligomerise through the formation of strong metal-

nitrogen bridges.[10] This is possible through the interaction between the lone pairs of 

the nitrogen atoms, with the formally empty p-orbital on the metal center to form dative 

π-bonds, which are usually reflected by planar core geometry.[9]  

A special case, where the lone pairs of the nitrogen atom are not involved in a              

σ- or π-bonding and in the same time, the metal centers are coordinative unsaturated, is 

that of monomeric bis(amino)gallium halides. These two features, made 

bis(amino)gallium halides, some of the most versatile starting materials for the 

synthesis of different organyl gallium derivatives. 

In 1994 G. Linti et al.
[11] and in parallel P. P. Power et al.

[12] published the synthesis of 

the first reported bis(amino)gallium halides (tmp2GaX, X = Cl (1) or Br (I)[11], 

{(Me3Si)2N}2GaCl (2) and Mes*GaCl{N(H)Ph (II)[12]) which were a landmark at that 

time (see Scheme 1). 
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Scheme 1: Synthesis routes for the first reported bis(amino)gallium halides. 

 

GaX3 Et2O + 2tmpLi

Et2O

- 2 LiX
Ga X

N

N

X =Cl 1
Br I

Ga Cl

Mes*

NH

Mes*GaCl2 + [(THF)MgNPh]6

Et2O

- 2 MgCl

MX3 Et2O + 2LiN(SiMe3)2

Et2O

- 2 LiX
M

(Me3Si)2N

X

(Me3Si)2N

M= Ga, X= Cl 2
M= Al, X= Br III

II

 
 

These bis(amino)gallium and corresponding aluminum halides[13] found rapidly further 

applications as precursors in the synthesis of other gallium or aluminum organyls 

derivatives and from all of them, in the following, it will be mentioned those in which 

tmp2GaCl (1) was used as starting material (see Scheme 2). 

In this thesis, it was appealed again to the versatility of 1 by using it, for the first time, 

as adduct in the synthesis of new mono- and disubstituted ferrocenyl gallanes. 
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Scheme 2: Using of 1 as starting material on the synthesis of different bis(amino)gallium derivatives. 

 

Ga
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(H3C)3C C(CH3)3

+

+ KSCN

+ NaN 3

+ Li(THF) 3
Si[Si(CH 3

) 3
]

+ NaK
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1.2. Ferrocene, Ferrocenyl Derivatives of the Group 13 Elements and 

Their Possible Applications 

There are many years past from the fortunate accident that led to the discovery, made by 

T. J. Kealy and P. L. Pauson,[14] of the first recognized sandwich compound, which is 

known as ferrocene. Although, its “venerable age”, ferrocene is still one of the most use 

precursors for the synthesis of many cyclopentadienyl derivatives of various metals and 

metalloids, some of them having industrial applications ranging from antiknock 

additives to polymerization catalysts[15] or even as building block in supramolecular 

chemistry.[16]-[18] 

One year before the discovery of ferrocene, R. D. Brown[19] predicted a hypothetical 

hydrocarbon as a non-benzenoid molecule which was called fulvalene. Having this 

prediction in mind and also the report of H. Gilman and M. Lichtenwalter[20] for the 
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successful synthesis of biphenyl, Pauson found a new challenge on attempted fulvalene 

synthesis. Thus, by refluxing the Grignard reagent cyclopentadienylmagnesium bromide 

with anhydrous iron (II) chloride (obtained after the initial reduction of FeCl3 to FeCl2 

by the Grignard reagent) in anhydrous ether, a remarkable stable orange solid was 

afforded, with the analytical data showing iron in its backbone. The first formulated 

reaction for ferrocene formation is presented in Scheme 3.[21] 

Scheme 3: Proposed reaction route for the synthesis of ferrocene.[21] 

 

MgBr2 + FeCl2 Fe

Fe2+

+ MgBr2 + MgCl2

XII  

 

In the same year, but one month before T. J. Kealy and P. L. Pauson’s note,                  

S. A. Miller, J. A. Tebboth, and J. F. Tremaine submitted their article to the Journal of 

Chemical Society, which was first published in the following year.[22] By using another 

synthesis route, reduced iron was reacted with cyclopentadiene vapors in a nitrogen 

atmosphere and the same product, now familiarly knows as ferrocene, was exhibited. 

Nevertheless, the first proposal for a sandwich structure of ferrocene came from          

G. Wilkinson et al. after several physical and chemical investigations.[23] In the same 

time with Wilkinson studies, E. O. Fischer succeeded in isolation and analysis via X-ray 

diffraction of suitable single crystals of ferrocene and reported its antiprismatic 

structure.[24] That was one of the most tortuous way for the characterization of a new 

compound, finalized with a Nobel prize for chemistry in 1973 for the “last two pioneer 

researchers in organometallic chemistry”.[25] Since then, ferrocene found its applications 

in almost all large mineral oil companies as additive in fuel oils, which has the 

consequence that the fuel combustion is accelerated and the soot formation is
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 enormously lowered during the burning process.[26] Ferrocene is also used in plastic 

production as flame- and smoke-retardant.[27] 

Apart from ferrocene applications in industrial processes, in the last 50 years, several 

thousands ferrocenyl derivatives were synthesized having the ferrocenyl group as 

substituent and/or backbone in a wide variety of mono- and disubstituted ferrocenyl 

ligand systems. The most common routes for the synthesis of different ferrocenyl 

derivatives are: electrophilic aromatic substitution reactions (ex.: Friedel-Craft 

acylation, intramolecular acylation,[28] intermolecular acylation[29],[30] etc.), metallation 

reactions[31]-[33] and oxidation reactions.[34] From all of them, we will be focus on the 

ferrocenyl derivatives of the Group 13 elements, on their technical and theoretical 

applications, especially on the mono- and disubstituted gallyl ferrocenes and 

respectively on gallaferrocenophanes synthesis. 

In the past decade, several groups were engaged in the synthesis of new ferrocenyl 

substituted alanes,[13],[35]-[41] gallanes,[42] indanes[43] and even in the synthesis of some 

ferrocenophanes with the Group 13 elements.[44]-[50] Such systems fulfilll the features as 

precursors to polymeric materials with ferrocenyl repeat fragments and as starting 

material in the synthesis of new ferrocene-based ligands, that can be used in further 

catalytic transformations, when are bounded directly to an adequate transition metal.[51]-

[55] Another possible application is on the metalorganic chemical vapor deposition of 

GaN : Fe and (Ga,Fe)N[56]  layers with a previously establish stoichiometry. 

The most representative examples of some mono- or disubstituted ferrocenyl derivatives 

of the Group 13 elements and ferrocenophanes of the same Group are shown in   

Scheme 4. 

From all of these ferrocenyl derivatives of the Group 13 elements, only a few of them 

have gallium atoms in their backbone and that is because                                              

the chemistry of gallylsubstituted ferrocenes was limited to methyl                  

derivatives as: [{(η5-C5H5)Fe(η5-C5H4)}{GaMe2}]2,
[42] [{(η5-C5H5)Fe(η5-C5H3)} 

{Ga(Me2)-CH2NMe2}],[43] [1,1’]-digallyl ferrocenes [{Fe(η5-C5H4)2}{GaMe2}2]n and 

donor adducts.[68] 

In the past recent years, several new [1,1’]-gallylferrocenophanes were reported in the 

literature and their redox chemistry has been studied.[47],[66],[68]-[70] 
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Scheme 4: Ferrocenyl derivatives of the Group 13 elements. 

 

Fe

ER

E= B, R= 2,3,7,8,Me4C4B7H7, n =1 [57]

E= B, R=pz3Tl, n =1 [58]

E= Al, R=Me2, n =2 [59]

E= Ga, R=Me2, n =2 [42]

Fe

ER1R2

E =B, R1 = R2 = Br or N iPr2
[60]

E =B, R1 = R2 = NMe2
[61]

E =B, R1 = R2 = N(Ph)-PPh2
[62]

E =B, R1 = R2 = N(Me)Bct [63]

E =Al, R1 = R2 = tmp [13]

E =Ga, R1 =R2 = Me [48]

E =In, R1 = Pytsi, R2 =Cl [64]

ER1R2

Fe

E= B, R= [N(SiMe3)2]
[53]

E= Al, R= Pytsi [45]

E= Ga, R= Pytsi [64]

ER

Fe

E= B [46]

E= Al [44]

E= Ga [64],[65]

E= In [67]

Fe

E

E

2-

Fe

EDo

EDo
3

E= Ga, Do = py [66]

n

 

 

This revival of the gallyl ferrocenes and gallyl ferrocenophanes chemistry came as a 

result of the recently growing interest in using the previous mention compounds as 

precursor to semiconductors materials.[70]-[73] Actually, this is the main reason for the 

currently great popularity of the organo-gallium compounds, including here, also, the 

gallyl ferrocenyl derivatives. Apart from that, there are several indices of some potential 

for using these compounds as precursors for preparing polymers through ring-opening 

reactions, with interesting electrical, magnetic and optical properties, as a result of 

electron delocalization.[74] 

1.3. Aim of this Thesis 

There are several important aims of this thesis which will be summarized as follow.  

The first aim was to synthesize and characterize new mono- and disubstituted gallyl 

ferrocenes. These substituted gallyl ferrocenes were use as precursors to synthesize new 
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ferrocenylgallanes and respectively to prepare oligomeric or polymeric 

gallaferrocenophanes. 

Then, the chemical, electrochemical, physical and structural (solid state) properties of 

the obtained products were analyzed by means of 1H- and 13C-NMR spectroscopy, mass 

spectrometry, elemental analysis, cyclovoltammetry and where it was possible, through 

single crystal X-ray analysis. To gain an insight into electronic influence of 

bis(amino)gallyl substituents on the ferrocenyl rest, a series of quantum chemical 

calculations have been performed on the model compound [Fc{Ga(NR2)}n]                

(Fc = {(η5-C5H5)Fe(η5-C5H4)} or {Fe(η5-C5H4)2}, R = tmp, n = 0, 1 or 2).           

Finally, trying to oxidize the iron atoms from the ferrocenylgallanes and to analyze the 

magnetically behaviour of this new species. 
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2. Synthesis and Characterization of Amino Gallium Halides. 

Starting Materials for Gallylferrocene Derivatives 

2.1. Introduction 

For the synthesis of mono- and digallyl substituted ferrocenes and of 

gallaferrocenophanes, two building blocks are required: the first one is a gallane 

derivative, where a reactive bond Ga-X (X = F, Cl, Br or I) is present. That has the 

possibility to be broken via nucleophilic substitution reaction with the building of a new 

Ga-C bond at the ferrocenyl rest. This second building block is a monolithiated or 

dilithiated ferrocene. 

The approach solution in this thesis was to synthesize monomeric aminogallanes and to 

use them in substitution reactions with monolithiated or dilithiated ferrocene             

(see Scheme 5). 

In the following, the synthesis routes for some monomeric aminogallanes are presented, 

which will be used in the synthesis of mono- and digallyl substituted ferrocenes.      

From all of them the bis(2,2,6,6-tetramethylpiperidino)gallium chloride 1[1] proves to be 

the best starting material, because of its high yield synthesis. 1 has been a valuable 

starting material for various bis(amino)gallanes tmp2GaR (R = H, Me, Si(SiMe3)3, Ph, 

OPh, PtBu2 etc.).[2]-[6] 
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Scheme 5: Possible synthesis routes to achieve mono- and digallyl substituted ferrocenes, respectively 

gallaferrocenophanes.  

 

(R2N)2GaCl

+

+LiCl

+ 2LiCl

+ Fe

Li

Li

2/3 TMEDA

Fe

Li

Fe

Ga(NR2)2

Fe

Ga(NR2)2

Ga(NR2)2

XIII

XIV

XVI

XV

XVII

 
 

2.2. Synthesis Routes 

1,3-Bis(trimethylsilylamino)-2,2-dimethylpropane[7] 4 was synthesized by the reaction 

of 1,3-diamino-2,2-dimethylpropane 3 with Me3SiCl (Eq. 1). 4 can be easily lithiated, 

once to obtain 1-trimethylsilyllithioamino-3-trimethylsilylamino-2,2-dimethylpropane 5 

and twice to obtain 1,3-bis(trimethylsilyllithioamino)-2,2-dimethylpropane XVIII.     

By the reaction of XVIII with galliumtrichloride, the dimeric syn-2,8-dichloro-

5,5,11,11 - tetramethyl - 1,3,7,9 - tetrakis(trimethylsilyl)- 3,9 - diaza - 1,7- diazonia-2,8-

digallactatricyclo dodecane XIX was formed.[8] From the reaction of monolithiated 5 

with equivalent amounts of GaCl3 in thf/Diox (10:1) at -78 °C, the main product        

2,2-dichloro-5,5-dimethyl-1,3-bis(trimethylsilyl)-1-aza-3-azonia-2- gallactacyclohexane 

6 as a white jelly was obtained (Eq. 2). After several washes with diethyl ether together 

with filtration of LiCl and cooling at -32 °C for several days, the product 6 crystallized 

as colorless crystals in good yield. Colorless crystals of the side-product 

[{Li(Diox)2(thf)2}
+{GaCl4}

-]n 7 were grown and further analyzed, too. 
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Equation 1: 

 

NH2

NH2

+

NH

NH

SiMe3

SiMe3

2 Me3SiCl

-2 HCl

3 4  

Equation 2: 

 

NLi

NH

SiMe3

SiMe3

+ GaCl3

N

NH

SiMe3

SiMe3

Ga

Cl

Cl
-LiCl

5 6  

 

The monomeric bis(2,2,6,6-tetramethylpiperidino)gallane 1
[1],[2],[4] and the monomeric 

bis[bis(trimethylsilyl)amino]gallane 2
[9] were prepared as described in literature.     

Here, single crystals of 1[10] were obtained, which till now was not possible because of 

the low melting point of 1. 

2.3. Spectroscopic Characterization 

2.3.1. 1H- and 13C-NMR Spectroscopy 

The 1H-NMR spectrum of 6 exhibits four sets of equally intense multiplets 

corresponding to the four methylene protons (Fig. 1). The multiplets can be separated in 

two groups: the first one exhibits a doublet and doublet of doublets, having the same 

value for the coupling constant (2JH,H = 4JH,H = 13.2 Hz). The second group consist of a 

triplet and a doublet of triplets (3JH,H = 4JH,H = 12.4 Hz). The triplet structure is a result 

of an additional coupling with the NH proton. Due to the ring conformation, a large 
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(13.2 Hz) and a small (12.4 Hz) coupling are observed. The further split is due to small 
4JH,H-couplings (12.4 Hz) between the ring protons. One doublet at δ 1H = 1.96 

corresponds to the hydrogen atom from the NH group. Four singlets, observed at           

δ 1H = 1.05, 0.89, 0.47 and 0.09, belongs to the methyl groups of the six-membered ring 

and of the trimethylsilyl substituents. 

 

 

Figure 1: 1H-NMR spectrum of 6 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 3.06 to 2.55 respectively from 2.00 to 1.94 ppm. 

In the 13C-NMR spectrum (Fig. 2), two signals for the methylene carbon atoms             

(δ 13C = 56.5 and 55.2), two for methyl carbon atoms (δ 13C = 26.7 and 21.6) and two 

for trimethylsilyl substituents (δ 13C = 0.8 respectively -1.0) are observed. One singlet at 

δ 13C = 35.0 appeared for the quaternary carbon atom. These spectra are in good 

agreement with the six-membered ring structure of 6, which will be reported in the next 

chapter. 

 

N

NH

SiMe3

SiMe3

Ga

Cl

Cl
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Figure 2: 13C-NMR spectrum of 6 in CDCl3. 

Similar spectra were observed and reported for [{(Me3Si)N(H)CH2}CMe2 

{CH2N(SiMe3)}]GaBr2 6a.[8] The spectra of the monomeric 1
[1],[2],[4],[10] and the 

monomeric 2[9] are in good agreement with those reported in the literature. 

2.3.1. Mass Spectrometry 

Under the conditions of an EI-MS spectrum, 6 is strongly broken up. The molecular ion 

of 6+ was not observed. The peak at highest mass (m/z = 281) correspond to [M-7CH3]
+. 

Other peaks are: m/z = 268 [M – SiMe3 – 3Me]+, 253 [M – SiMe3 – 4Me]+, 170          

[M - 2SiMe3 - Me2C(CH2)2]
+. Two methyl units constitute the base peak (m/z = 30). 

2.4. Crystal Structure Analysis 

2.4.1. Crystal Structure Analysis of 1 

1
[1],[2],[4],[10] crystallizes in prisms of the monoclinic system, space group P21/c.              

A tricoordinated gallium atom is surrounded by two tmp and chlorine substituents   

(Fig. 3). The Ga-N bond lengths [dGa-N = 184.2 pm (ave.)] are in a similar range 

observed for other compounds tmp2GaX with electronegative X groups like OR, NR2,
[4] 

but shorter that those for less electron withdrawing groups as:  

N

NH

SiMe3

SiMe3

Ga

Cl

Cl

6

(ppm) 
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X = Ph [dGa-N = 188.3(2) pm (ave.)], tmp2Ga [dGa-N = 190.1(4) pm (ave.)],[3] PtBu2 

[dGaN= 190.8 pm (ave.)].[6]
 

A slight pyramidal environment can be observed for the nitrogen atoms, which are built 

up by two carbon atoms and a gallium atom (sum of bond angles 354.55°). Other tmp 

derivatives of gallium reported in the literature show planar and pyramidal coordinated 

nitrogen atoms, as well, which can be explained by steric factors. 

The tmp groups (represented by N2GaCl mean planes) have angles of 41° and 70° to the 

N2GaCl plane. Similar values are characteristic also for other tmp2GaX derivatives.      

A wide bond angle (130.21(8)°) is observed for the N-Ga-N, which is in agreement with 

the steric demand of the tmp groups.  

 

 

 
Figure 3: View of crystal structure of 1. Hydrogen atoms have been omitted for more clarity. Selected 

bond lengths [pm] and angles [°]: Ga(1)-Cl(1) 219.9(1), Ga(1)-N(1) 184.5(2), Ga(1)-N(2) 184.0(2);  

N(1)-Ga(1)-N(2) 130.21(8), N(1)-Ga(1)-Cl(1) 111.78(6), N(2)-Ga(1)-Cl(1) 117.98(6), N(2)-Ga(1)-N(1) 

130.21(8), N(2)-Ga(1)-Cl(1) 117.97(6), N(1)-Ga(1)-Cl(2) 111.78(6), C(5)-N(1)-C(1) 118.8(2),          

C(5)-N(1)-Ga(1), 116.9(1), C(1)-N(1)-Ga(1) 118.6(1), C(10)-N(2)-C(14) 119.6(2), C(10)-N(2)-Ga(1) 

117.8(1), C(14)-N(2)-Ga(1) 117.5(1). 

2.4.2. Crystal Structure Analysis of 6 

From a thf solution, 6 precipitated as colorless crystals at -32 °C. It crystallizes in the 

monoclinic system, space group P21/n. A twist conformation exhibits the six-membered 

Legend: 
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ring C3GaN2. The six-membered ring is composed by a gallium atom coordinated in a 

distorted tetrahedral fashion, an almost planar coordinated nitrogen atom (355.5 ° at the 

triply coordinated nitrogen atom) and a distorted tetrahedral coordinated nitrogen atom 

(Fig. 4 A). The Ga-N bond lengths are different (184.9 and 199.9 pm) due to the 

different coordination spheres at the nitrogen atoms. This causes two different Si-N 

bond lengths [dSi(1)-N(1) = 170.7 pm and dSi(2)-N(2) = 182.2 pm], too. The Ga-N bond 

lengths vary from approximately 181[4],[9],[11] to 209 pm[8],[12],[13] in amino compounds of 

gallium, depending on the coordination number at the gallium and nitrogen atoms.[14] 

For example in [(Me2N)2Ga(µ-NMe2)2Ga(NMe2)2],
[13] the bridging Ga-N bonds 

(200.5(2) and 202.1(3) pm) are longer than the terminal ones (184.9(4) and 186.1(4) 

pm). The adduct [Me3GaNH2
tBu][15] has relatively long Ga-N distance (212.0(1) pm). 

Compared to this, the dative Ga-N bond in 6 is quit short. In the homologous bromo 

derivative [{(Me3Si)N(H)CH2}CMe2{CH2N(SiMe3)}]GaBr2 6a
[8] this bond is longer 

(204.0(1) pm). This difference can be explained by the effect of the more 

electronegative chloro substituents compared to the bromo atoms in 6a or methyl groups 

in [Me3GaNH2
tBu]. In the dimeric ([{(Me3Si)NCH2}2CMe2]GaCl)2 XIX

[8] two different 

Ga-N moiety types can be distinguished, the first one is bridging (205.6(2) pm) and 

longer than the others Ga-N bonds that are involved in the six-membered ring C3GaN2 

(184.3(2) and 199.3(2) pm). These are in line with those exhibits by 6. There are also 

other related amino-amide gallane complexes, which shows similar values for the Ga-N 

bond lengths with that in 6 as: [{((Me3Si)NCH2)2CMe2}2Ga]-[LiOEt2]
+[8] (188.1(6) to 

198.9(5) pm), [{((Me3Si)NCH2)2CMe2}2Ga]2
[16] (182.9(3) and 183.4(3) pm) and 

[{(Me3Si)2N}(H)Ga{N(H)CH2CMe2CH2NMe2}]2
[17] (189.3(2) to 201.1(2) pm). 

The two C-N bond lengths have similar values of about 150 pm, meaning that the bond 

length is not effected by the coordination number at the nitrogen atoms. The steric 

contact is minimized trough a staggered arrangement of the atoms involves in the 

crystal structure of 6 (Fig. 4 A and B). Three of the bond angles at the gallium atom 

deviate from the tetrahedral angle. One is sharp (N(1)-Ga(1)-N(2)) with the bond angle 

of 99.4° and the other two are wide (N(1)-Ga(1)-Cl(1) and N(1)-Ga(1)-Cl(2)) with an 

average of the bond angles of about 116°. The Ga-Cl bond lengths [dGa-Cl = 216.4(4) pm 

and 219.6(4) pm] are typical for monomeric gallium chloro compounds reported in 

literature. 



2. Synthesis and Characterization of Amino Gallium Halides. Starting Materials for 

Gallylferrocene Derivatives 

 22

 

 
Figure 4: View of crystal structure of 3.(A – molecule top view, B – down the axis Ga(1)-C(2) view). 

Selected bond lengths [pm] and angles [°]: Ga(1)-N(1) 184.9(3), Ga(1)-N(2) 199.9(7), Ga(1)-Cl(1) 

216.4(4), Ga(1)-Cl(2) 219.6(4), N(1)-Si(1) 170.7(4), N(2)-Si(2) 182.2(3); N(1)-Ga(1)-N(2) 99.4(9), 

Cl(1)-Ga(1)-Cl(2) 107.5(5), Cl(1)-Ga(1)-N(1) 118.6(6), Cl(1)-Ga(1)-N(2) 110.3(7), Cl(2)-Ga(1)-N(1) 

113.9(8), Cl(2)-Ga(1)-N(2) 106.3(7), Ga(1)-N(1)-C(1) 109.5(8), Ga(1)-N(2)-C(3) 104.4(9),              

Ga(1)-N(1)-Si(1) 124.2(10), C(1)-N(2)-Si(2) 121.1(10). 

2.4.3. Crystal Structure Analysis of 7 

7 crystallized as side product from the synthesis of 6 in a solution of thf/diox (10:1) at   

-32 °C (Fig. 5 A and B). It crystallizes in monoclinic system, space group P21/c. One 

anionic and one cationic part constitute the solid state structure of 7. The anionic part of 

the crystal structure is built up by a tetrahedral gallium atom surrounded by four 

chlorine atoms. A lithium atom surrounded by two thf together with two molecules of
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 dioxane, also in a tetrahedral environment, affords the counter ion (cationic part) as a 

polymeric chain (Fig. 5 B). Three Ga-Cl bond lengths are equivalent                        

[dGa-Cl = 215.2 pm] and the axial Ga-Cl bond is a little bit longer [dGa-Cl = 219.6 pm], 

but all the Ga-Cl bond lengths are in the range of other reported gallium chloride 

compounds. The Li-O bond lengths are between 187.5 and 197.5 ppm indicates a 

distorted tetrahedral conformation at the Li atom. The Cl-Ga-Cl bond angles are wider 

(between 108.6° and 110.3°) than the tetrahedral angle. The same situation is exhibit 

also by the O-Li-O angles (average 109.4°). 

 

 
Figure 5: View of a molecule of 7 in solid state (A – asymmetric unit showing the anionic part and the 

fragment of the cationic part, B – the polymeric chain of the cationic part). Hydrogen atoms have been 

omitted for clarity. Selected bond lengths [pm] and angles [°]: Ga(1)-Cl(1) 215.2(4), Ga(1)-Cl(2) 

219.6(6), Ga(1)-Cl(3) 215.2(6), Ga(1)-Cl(4) 215.2(3), Li(1)-O(1) 188.7(4), Li(1)-O(2) 197.5(3),      

Li(1)-O(3) 193.9(5), Li(1)-O(4) 187.5(5); Cl(1)-Ga(1)-Cl(2) 108.8(6), Cl(1)-Ga(1)-Cl(3) 109.3(7),  

Cl(1)-Ga(1)-Cl(4) 108.6(7), Cl(2)-Ga(1)-Cl(3) 109.8(7), Cl(2)-Ga(1)-Cl(4) 110.3(6), Cl(3)-Ga(1)-Cl(4) 

109.8(6), O(1)-Li(1)-O(2) 115.2(8), O(1)-Li(1)-O(3) 110.7(8), O(1)-Li(1)-O(4) 108.6(8),                  

O(2)-Li(1)-O(3) 107.5(7), O(2)-Li(1)-O(4) 105.8(7), O(3)-Li(1)-O(4) 108.8(7). 
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2.5. Summary of Important Bond Lengths 

The Ga-Cl bond lengths in 1 [dGa-Cl = 219.9(1) pm] and respectively in 6                  

[dGa-Cl = 216.4(4) pm and 219.6(4) pm] are consistent with the terminal Ga-Cl bond 

lengths in other monomeric compounds.[18],[8] Similar Ga-Cl bond lengths are observed 

in the side product 7 [dGa-Cl = 215.2 pm and 219.6 pm] which are in agreement with the 

expected range for a Ga-Cl bond length. 

All Ga-Cl and Ga-N bond lengths determined in 1, 6 and 7 are summarized in Table 1. 

Table 1: Summary of Ga-Cl and Ga-N bond lengths. 

Compound dGa-Cl [pm] dGa-N [pm] 

1 219.9(1) 
184.5(2) and 184.0(2) 

184.2 (ave.) 

6 
216.4(4) and 219.6(4) 

218.0 (ave.) 

184.9(3) and 199.9(7) 

192.4 (ave.) 

7 

215.2(4), 215.2(6), 215.2(3) 

and 219.6(6) 

216.3 (ave.) 

- 
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3. Reaction of Bis(amino)gallium Chloride with Mono- and 

Dilithioferrocene 

3.1. Introduction 

The studies concerning ferrocenylgallanes[1]-[4] (structure and bonding) were until the 

1990s almost insignificant, notwithstanding the development of the ferrocenyl-based 

transition metal complexes, which are one of the most investigated species of 

organotransition-metal chemistry.[5] However, seeing the potential utility of 

organogallium compounds as precursors to semiconductor materials, a new trend started 

slowly to get outline. 

The first example of a ferrocenylgallane dimer reported by G. H. Robinson et al. in 

1990,[6] has been synthesized by reaction of (chloromercurio)ferrocene with 

trimethylgallium. Since then, several synthesis routes for the mono-, or digallyl 

substituted ferrocenes and gallaferrocenophanes were reported in the literature          

(see Scheme 6). 

The monogallyl substituted ferrocenes XXI
[6] and XXII

[7] appeared as dimers. From the 

reaction of disubstituted ferrocene with different alyl- or aryl gallium derivatives, 

several digallyl substituted ferrocenes (XXIV and XXV
[8]) and gallaferrocenophanes 

(XXVI,[9] XXVII,[10] XXVIII
[11] and XIV

[12]) were synthesized. 
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Scheme 6: Mono- or digallyl substituted ferrocenes and gallaferrocenophanes synthesis. 
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As follows, the reactions of mono- and dilithio ferrocene with 1[13]-[16] and respectively 

with 2
[17] were investigated, giving rise to several new mono-, or digallyl substituted 

ferrocenes and a gallaferrocenophane, which were further characterized by means of 

NMR spectroscopy, mass spectrometry, cyclovoltammetry and X-ray structure analyses. 

3.2. Synthesis Routes 

When bis(tmp)gallium chloride 1 is treated with a solution of                          

[Li2{Fe(η5-C5H4)2}•2/3 TMEDA] XVI
[18] in hexane (Eq. 3), the digallyl substituted 

ferrocene [{Fe(η5-C5H4)2}{Ga(tmp)2}2] 8 as orange-red crystals is obtained, in good 

yield. The reaction completed at room temperature in approximately 18 hours, with the 

formation of a white precipitate of LiCl. 

Equation 3: 

Fe

Li

Li

Ga Cl +

tmp

tmp

2
-2LiCl

2/3 tmeda

Fe

Ga

Ga

tmp

tmp

tmp

tmp

1 8

n-hexane/RT

XVI  

A similar substitution reaction at one cyclopentadienyl ring (Eq. 4) took place by 

treating of 1 with a solution of [Li{(η5-C5H4)Fe(η5-C5H5)}] (in situ) XIV
[19],[20] in thf   

at -20 °C. Here, a mixture of monogallyl substituted ferrocene 9, digallyl substituted 

ferrocene 8 and not reacted ferrocene was obtained. The monogallyl substituted 

ferrocene 9 was isolated as red-orange crystals in good yield. 

Equation 4: 

Fe

Li

Ga Cl +

tmp

tmp -2LiCl

Fe

Ga

tmp

tmp

1 9

-20 °C/thf/hexane

XIV  
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By treating of 2[17] with a solution of XVI
[18] in hexane (Eq. 5), the bisgallyl-substituted 

ferrocene 10 was obtained in low yield. 10 appeared as a red-brownish solid. 

Equation 5: 

Fe

Li

Li

Ga Cl +

(Me3Si)2N

(Me3Si)2N

2
-2LiCl/Fc

2/3 tmeda

Fe

Ga

Ga

N(SiMe3)2

N(SiMe3)2

(Me3Si)2N

(Me3Si)2N

2 10

n-hexane/RT

XVI  

The monogallylsubstituted ferrocene 11 was obtained by the reaction of 

monolithioferrocene XIV obtained in situ with a stoichiometric quantity of 2.          

Here, 11 was isolated in low yield and characterized only by means of 1H-NMR and 
13C-NMR spectroscopy (Eq. 6). 

Equation 6: 

Fe

Li

-2LiCl

-20 °C/thf/hexane
Fe

Ga

N(SiMe3)2

N(SiMe3)2

11

Ga Cl +

(Me3Si)2N

(Me3Si)2N

2 XIV  

3.3. Spectroscopic Characterization 

3.3.1. 1H- and 13C-NMR Spectroscopy 

The bisgallyl-substituted ferrocene 8 shows in its 1H-NMR spectrum two pseudo-

triplets of an AA’BB’-system with a 1:2:1 intensity ratio at δ 1H = 4.62 and 4.53. These 

signals correspond to the hydrogen atoms from the substituted cyclopentadienyl rings. 

The coupling constants 3JH,H and 4JH,H have the same value of 1.6 Hz. A single signal set 

was recorded for the tmp groups that prove for the free rotation about the Ga-N bonds. 

One centered multiplet (δ 1H = 1.77) corresponding to the hydrogen atoms from the      

γ position was observed and also one singlet (δ 1H = 1.57) and one pseudo triplet 
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(δ 1H = 1.51) corresponding to the hydrogen atoms from the terminal methyl groups and 

to the β hydrogen atoms from the methylene groups of tmp rests (Fig. 6), respectively. 

 

Figure 6: 1H-NMR spectrum of 8 in C6D6, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 4.65 to 4.50, from 1.57 to 1.45 and from 1.80 to 1.73 ppm. 

Three signals are observed for the Cp-rings in the 13C-NMR spectrum (Fig. 7).          

The signals for the carbon atoms of the cyclopentadienyl rings are shifted low field      

(δ 13C = 77.9 and 71.9) compared to ferrocene (δ 13C = 68).[21] The ipso-carbon atoms 

resonance’s appeared at δ 13C = 80.4. For the ipso-carbon atoms in                            

1,1’-dimethylgallylferrocene (δ 13C = 76.2)[22] a less strong low field shift was observed. 

The chemical shifts for the tmp groups in 8 are in the typical region observed for other 

tmp2Ga derivatives.[15] Especially, the chemical shift for the carbon atoms bonded to the 

nitrogen atoms (δ 13C = 54.2) are typical. For the tmp2GaPh,[15] the chemical shift for 

the carbon atoms bonded to the nitrogen atoms was reported at the same value as for 8. 
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Figure 7: 
13C-NMR spectrum of 8 in C6D6. 

In the 1H-NMR spectrum of monogallyl-substituted ferrocene 9 a singlet (δ 1H = 4.07) 

for unsubstituted Cp-ring, two pseudo-tripletts for the substituted Cp-ring (δ 1H = 4.55 

and 4.31) are observed. These are shifted to lower frequencies compared to 8.            

The coupling constants have the same value as in 8 (3JH,H = 4JH,H = 1.6 Hz). One single 

set of signals is recorded for the both tmp terminal groups (Fig. 8). That is in good 

agreement with the values reported in the literature.[15] 

Figure 8: 1H-NMR spectrum of 9 in C6D6, at room temperature, with the inset showing an expanded view 

of the chemical shift range from 4.56 to 4.30, from 1.77 to 1.70 and respectively from 1.49 to 1.44 ppm. 
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In the 13C-NMR spectrum of 9 (Fig. 9) three signals for the substituted Cp-ring and one 

signal for the unsubstituted Cp-ring are observed. The ipso-carbon resonated at              

δ 13C = 81.0, which is a similar value as for the ipso-carbon atoms signals in the 

bisgallyl-substituted ferrocene 8. As expected, the tmp groups in 9 give rise only to one 

set of signals as an effect of the free rotation of tmp groups about the Ga-N bond. 

Figure 9: 
13C-NMR spectrum of 9 in C6D6. 

 

Two pseudo-triplets (δ 1H = 4.61 and 4.41) corresponding to the hydrogen atoms from 

the cyclopentadienyl rings, are observed in the 1H-NMR spectrum of bisgallyl-

substituted ferrocene 10. The coupling constant has the same value as in 8 and 9     

(3JH,H = 4JH,H = 1.6 Hz). A single signal is recorded for the methyl groups (δ 1H = 0.40) 

(see Fig. 10). 

 

 
Figure 10: 1H-NMR spectrum of 10 in C6D6, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 4.62 to 4.40 ppm. 
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The 13C-NMR spectrum of 10 (Fig. 11) shows the expected signals for the substituted 

cyclopentadienyl rings resonating at δ 13C = 77.4 and 72.0. One signal for the carbon 

atoms from the methyl rests (δ 13C = 6.1) was observed. The signal corresponding to the 

ipso-carbons could not be observed. 

 

 

Figure 11: 
13C-NMR spectrum of 10 in C6D6. 

The 1H-NMR and 13C-NMR spectra for the monogallyl-substituted ferrocene 11 were 

also recorded (Fig. 12 and Fig. 13). In the proton spectrum two sets of signals 

corresponding to the substituted respectively unsubstituted cyclopentadienyl rings were 

observed (δ 1H = 4.31 and 4.27 - pseudo-triplets, 3JH,H = 4JH,H = 1.6 Hz for the 

substituted Cp-ring and one singlet at 4.11 for the unsubstituted Cp-ring). The two 

pseudo-triplets are less separated. The methyl rests give rise to one singlet                    

(δ 1H = 0.51). 

The 13C-NMR spectrum exhibits the expected signals for the carbon atoms, with the 

exception that, again, the signal for the ipso-carbon could not be observed                     

(δ 13C = 76.7 -subst. Cp-C3
/C

4 or Cp- C
2
/C

5, 71.8 - subst. Cp-C3
/C

4 or Cp- C
2
/C

5,       

68.9 - unsubst. Cp, 6.3 - CH3). 
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Figure 12: 1H-NMR spectrum of 11 in C6D6, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 4.32 to 4.26 ppm. 

 

Figure 13: 
13C-NMR spectrum of 11 in C6D6. 

3.4. Cyclo Voltammetric Determinations 

The electrochemical properties of 8 and 9 were investigated via cyclovoltammetry.   

The cyclic voltammograms were recorded in thf solution with NBu4PF6 as supporting 

electrolyte and decamethylcobaltocene/decamethylcobaltocenium as internal reference 

(see Fig. 14). Reversible oxidation potentials were observed for both compounds at   

E1/2 = -199 mV (8) and E1/2 = 23 mV (9) (vs. ferrocene/ferrocenium) with peak 

separations of 218 mV (8) and 241 mV (9). 
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Figure 14: Cyclic voltammograms of 8 and 9 versus Fc/Fc+ in thf, internal standard CoCp*
2/CoCp*

2
+ 

The oxidation waves of 8 are shifted to a high oxidation potential in               

comparison with other reported gallyl substituted ferrocenes. For example          

[{Fe(η5-C5H4)2}{GaMe2}2]n
[22] shows a lower oxidation potential [E1/2 = -370 mV, in 

pyridine] and [{Fe(η5-C5H4)2}2{GaMe(Py)}2]
[23] exhibits two oxidation potentials    

[E1/2 = -314 mV and E1/2 = -114 mV, in pyridine]. This indicates that the bisgallyl 

substituted ferrocene 8 is more easily oxidized than ferrocene, but more difficult 

oxidized than the other gallyl substituted ferrocenes. This can be explained by the 

electron withdrawing substituents at the gallium atoms. The tmp2Ga groups are less able 

to donate electrons into the ring than the subtituents with tetra coordinated gallium 

atoms. 

On the other hand, the monogallyl substituted ferrocene 9 exhibits the highest oxidation 

potential from all gallyl substituted ferrocenes, reported in this thesis. The shift of the 

oxidation wave to a higher oxidation potential in comparison with the oxidation wave of 

ferrocene/ferrocenium was observed. Thus, the electron donating ability decreases in 

the order [{Fe(η5-C5H4)2}{GaMe2}2]n
[22] < [{Fe(η5-C5H4)2}2{GaMe(Py)}2]

[23] < 8 < 

[Fe(η5-C5H5)2] < 9. For a more detailed discussion see Chapter 4.2.3. 
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3.5. Quantum Chemical Calculations 

Quantum chemical calculations were carried out for 8, 9 and ferrocene at the   

B3LYP/6-311G(d) level of theory. For single point quantum chemical calculations the 

crystal coordinates of 8 and 9 have been used. 

These calculations show a larger π-electron delocalization from the ferrocenyl unit to 

the Ga atom in 9 than that in 8. This can also be seen, by comparing the HOMO and 

LUMO of 8 and 9 with that of ferrocene (Fig. 15). 
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LUMO HOMO 
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Figure 15.: Frontier molecular orbitals of Fc (A and B), 8 (C and D) and 9 (E and F). 
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The HOMO energies are identical for both compound (-4.99 eV) and larger than the 

HOMO energie for ferrocene (-5.49 eV). In the same time, the LUMO energies are 

different (-0.95 eV 8, -0.52 eV 9) indicating a different electron donating ability.     

Both values are smaller than that of LUMO in ferrocene (-0.07 eV). 

The charge densities are summarized in Table 2: 

Table 2: Charge density in Fc, 8 and 9. 

Charge density 
Compound 

Ga Fe N 

Fc - +0.954 - 

8 +0,887 ÷ +0,900 +0,960 -0,482 ÷ -0,505 

9 +1,208 +0,952 -0,698 ÷ -0,724    

3.6. Crystal Structure Analysis 

3.6.1. Crystal Structure Analysis of 8 

From a solution of 8 in n-hexane suitable orange crystals were grown at 6°C during 

several days. 8 crystallizes in the triclinic space group Pī (Fig. 16). The parallel Cp rings 

are in an eclipsed conformation and the tmp2Ga-substituents are in anti position.       

The Ga-N do not differ largely (187.2(2) - 188.0(2) pm). This is a hint to a minor Ga-N 

pp-π-bonding interaction. The nitrogen atoms of e.g. tmp2Ga group show a different 

environment, respectively two of them are coordinated planar and the others less are 

slightly pyramidal coordinated (sum of angles 355°). 

The NGaN and C2N planes intersect with angles of 71° and 40°. That means, only one 

of the tmp groups is nearly orthogonal to the N2GaC planes. This is similar to the 

situation found in tmp2GaOPh.[15] Because of a higher steric demand of the tmp groups 

compared to the ferrocenyl unit, the N-Ga-N angles are slightly larger than 120°. A 

roughly coplanar arrangement of N2Ga planes to the cyclopentadienyl rings is observed. 

The Ga-C bond lengths [dGa-C = 197.4 pm and 197.9 pm] are in the same range as 

gallium aryl bonds. Also, Ga-C bonds of similar length were reported by Jutzi et al. for 

[{Fe(η5-C5H4)2}2{GaMe2(Do)}2]
[22] (Do = Phenazine) [dGa-C = 197.1(4) pm]. 
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Figure 16: View of a molecule of 8. Hydrogen atoms are omitted for clarity. Selected bond lengths [pm] 

and angles [°]: Ga(1)-N(2) 187.9(2), Ga(1)-N(1) 188.0(2), Ga(1)-C(1) 197.4(3), Ga(2)-N(4) 187.2(2), 

Ga(2)-N(3) 187.3(2), Ga(2)-C(6) 197.9(3); N(2)-Ga(1)-N(1) 123.3(11), N(2)-Ga(1)-C(1) 112.0(12),  

N(1)-Ga(1)-C(1) 124.7(1), N(4)-Ga(2)-N(3) 123.3(1). 

3.6.2. Crystal Structure Analysis of 9 

9 crystallizes in the monoclinic space group P21/n (Fig. 17). The Cp rings are in 

eclipsed conformation. 9 is the first monosubstituted gallyl ferrocene in monomeric 

conformation.[6] The Ga-N bond lengths are 188.0(4) and 190.7(3) ppm, respectively. 

These values are comparable with the reported values of the Ga-N bond lengths.[16],[24]-

[27] Both nitrogen atoms of the tmp2Ga group exhibit a planar coordination environment 

(sum of angles: 360° and 358°). The higher steric demand of the tmp groups compared 

to the ferrocenyl unit have an effect in an N-Ga-N angles slightly larger than 120° 

(121.7(15)°). The Ga-C (200.9(4) ppm) bond is a little bit longer than the range of 

gallium aryl bonds and in the same time longer as the other reported gallyl substituted 

ferrocenes.[16],[22],[28] 

 

 

 

Legend: 

C 

Fe 

Ga 

N 

Fe1
Ga1

Ga2

N1

N2

N3

N4

C1

C6



3. Reaction of Bis(amino)gallium Chloride with Mono- and Dilithioferrocene 
 

 41 

 

 

Figure 17: Solid state structure of a molecule of 9. Thermal ellipsoids show 25% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [pm] and angles [°]:Ga(1)-N(1) 188.0(4), 

Ga(1)-N(2) 190.7(3), Ga(1)-C(1) 200.9(4); N(1)-Ga(1)-N(2) 121.7(15), N(1)-Ga(1)-C(1) 124.4(16),  

N(2)-Ga(1)-C(1) 113.9(15). 

3.6.3. Crystal Structure Analysis of 12 

The red crystals of 12 were isolated as side-product from an n-hexane solution from the 

synthesis of 8. 12 crystallizes in the triclinic space group Pī (Fig. 18 A, B and C). 

Further discussions about the bonding nature and other features of the crystal structure 

of 12 could not be taken in consideration because of its low quality (R indices for all 

data is 23.3%). The crystals of 12 diffracted very poorly and the data do not give a 

complete crystal structure of 12 with accurate bond lengths and bond angles, but shows 

with certainty the presence of a lithium ferrocenophane cage. 
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Figure 18: Stereoscopic views of the crystal structure of 12 (A), where two diethyl ether molecules, the 

molecule of [Li(TMEDA)2]
+ and respectively all hydrogen atoms have been omitted for clarity. The next 

two figures exhibits the perspective views of 12, without the counter ion molecule of [Li(TMEDA)2]
+

 (B) 

and with the counter ion molecule of [Li(TMEDA)2]
+

 (C). Thermal ellipsoids show 25% probability level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fe1

C4

C10 Fe2

Fe4

O4

C38

C33

C19

C15

Li2

Fe3

C28

C23

N2

N1

N5

N4

O3

O2

O1

N10
N9

Li6

Li5

Li4

Li3

Li1

N22

N21

Li10

Li9

Li8

Li7

Li32

Li31

C 



3. Reaction of Bis(amino)gallium Chloride with Mono- and Dilithioferrocene 
 

 44

References 

[1] A. H. Cowley, R. A. Jones, K. B. Kidd, C. M. Nunn, and D. L. J. Westmoreland, 

J. Organomet. Chem., 1988, 341, C1-C5. 

[2] R. L. Wells, A. P. Purdy, A. T. McPhail, and C. G. Pitt, J. Organomets. Chem., 

1988, 354, 287-292. 

[3] D. L. Reger, S. J. Knox, and L. Leboida, Inorg. Chem., 1989, 28, 3092-3093. 

[4] M. A. Banks, O. T. Jr. Beachley, H. J. Gysling, and H. R. Luss, 

Organometallics, 1990, 9, 1979-1982. 

[5] G. Marr, B. W. Rockett, J. Organomet. Chem., 1988, 343, 79-146. 

[6] B. Lee, W. T. Pennington, J. A. Laske, and G. H. Robinson, Organometallics, 

1990, 9, 2864-2865. 

[7] E. Hecht, Z.Anorg.Allg.Chem., 2000, 626, 759-765. 

[8] P. Jutzi, N. Lenze, B. Neumann, and H.-G. Stammler, Angew. Chem. Int. Ed., 

2001, 40(8), 1423-1427. 

[9] W. Uhl, I. Hahn, A. Jantschak, and T. Spies, J. Org. Chem., 2001, 637-639,  

300-303. 

[10] J. A. Schachner, C. L. Lund, J. W. Quail, and J. Müller, Organometallics, 2005, 

24, 4483-4488. 

[11] C. L. Lund, J. A. Schachner, J. W. Quail, and J. Müller, Organometallics, 2006, 

25, 5817-5823. 

[12] J. A. Schachner, G. A. Orlowski, J. W. Quail, H. -B. Kraatz, and J. Müller, 

Inorg. Chem., 2006, 45, 454-459. 

[13] R. Frey, Diploma Thesis, München, 1993. 

[14] R. Frey, G. Linti, and K. Polborn, Chem. Ber., 1994, 127, 101-103. 

[15] G. Linti, R. Frey, and K. Polborn, Chem. Ber., 1994, 127, 1387-1393. 

[16] O. Feier-Iova, and G. Linti, Z. Anorg. Allg. Chem., 2008, 634,559-564. 

[17] P. J. Brothers, R. J. Wehmschulte, M. M. Olmstead, K. Ruhlandt-Senge, S. R. 

Parkin, and P. P. Power, Organometallics, 1994, 13, 2792-2799. 

[18] I. R. Butler, W. R. Cullen, J. Ni, and S. J. Rettig, Organometallics, 1985, 4, 

2196-2201. 

[19] F. Rebiere, O. Samuel, and H. B. Kagan, Tetrahedron Lett., 1990, 31,         

3121-3124. 



3. Reaction of Bis(amino)gallium Chloride with Mono- and Dilithioferrocene 
 

 45 

[20] U. T. Mueller-Westerhoff, Z. Yang, and G. Ingram, J. Organomet. Chem., 1993, 

463, 163-167. 

[21] T. J. Kealy, P. L. Pauson, Nature, 1951, 168, 1039-1040. 

[22] A. Althoff, P. Jutzi, N. Lenze, B. Neumann, A. Stammler, and H. G. Stammler, 

Organometallics, 2002, 21, 3018-3022. 

[23] A. Althoff, P. Jutzi, N. Lenze, B. Neumann, A. Stammler, and H.-G. Stammler, 

Organometallics, 2003, 22, 2766-2774. 

[24] D. A. Atwood, R. A. Jones, A. H. Cowley, S. G. Bott, and J. L. Atwood,           

J. Organomet. Chem, 1992, 434, 143-150. 

[25] J. T. Park, Y. Kim, J. Kim, K. Kim, and Y. Kim, Organometallics, 1992, 11, 

3320-3323. 

[26] K. M. Waggoner, M. M. Olmstead, and P. P. Power, Polyhedron, 1990, 9,    

257-263. 

[27] G. Linti, H. Noeth, K. Polborn, C. Robl, and M. Schmidt, Chem. Ber., 1995, 

128, 487-492. 

[28] O. Feier-Iova, and G. Linti, WCECS, 2007, Proceedings, ISBN: 978-988-98671-

6-4, 182-187. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 47 

 

 

 

 

 

 

 

4. Reactivity Studies on 8 and 9 

4.1. Introduction 

Usually, the mono- or digallyl substituted ferrocenes and gallaferrocenophanes, reported 

in the literature, were synthesized from mono- or disubstituted ferrocenes via 

nucleophilic substitution reactions at the cyclopentadienyl rings with the formation of a 

Ga-C bond.[1]-[5] To the best of our knowledge, until now, no studies on the modification 

of the gallyl substitutents in ferrocenyl gallanes have been made. There are some studies 

made by Jutzi et al.
[6]-[9] regarding the formation of different monomeric adducts in 

donor solvents (py, thf, phenazine, etc.) with the purpose of using these adducts as 

starting materials for the synthesis of di- or trinuclear ferrocenophane complexes. Also, 

some of those adducts were fully characterized by means of NMR spectroscopy, single 

crystal structure analysis and even cyclovoltammetry.  

4.2. Reaction of 8 with Acids 

4.2.1. Synthesis Routes 

If CO2, in the form of dry ice, is added to a chilled (at -78 °C) solution of 8
[10] in 

hexane, the color changes immediately from red-orange to yellow. The carbamate 13
[10] 

is formed. Here an insertion of CO2 into all four gallium-nitrogen bonds takes place. 

After several weeks of standing at room temperature, yellow crystals of 13 are 

collected. 
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The reaction of 8 with different Brønsted acids (e.g. MeCOOH, CH2(COOH)2, 

EtOH/H2O, C6H5OH and C6H4(OH)2) is investigated. When a solution of water free 

acetic acid is added dropwise to a chilled (at -78 °C) solution of 8,       

[tmpH2]
+

2[{Fe(η5-C5H4)2}{Ga(O2CMe)3}2]
2- 14

[11] in good yield is obtained. 

The gallaferocenophane [{Fe(η5-C5H4)2}{GaOEt}2O]4 15
[11] which appeared as an 

oligomeric structure with four ferrocenyl units in its backbone, is obtained by treating a 

solution of 8 with an excess of ethanol with water traces. The reaction takes place at 

room temperature. The product 15 is obtained as yellow crystal by standing several days 

at -32 °C. 

A mixture of digallyl substituted ferrocenes [tmpH2]
+

2[{Fe(η5-C5H4)2}                 

{Ga(O-C6H5)3}2]
2- 16 and [Li(thf)2]

+
2[Fe{(η5-C5H4)2}{Ga(O-C6H5)3}2]

2- 17 has been 

obtained from the reaction of 8 with phenol in thf at room temperature. The reaction 

control is made by using 1H-NMR technique. The product’s ratio of 2:1 is observed (see 

Fig. 23). Thus, the end of reaction can be also visually observed, through color 

changing from red-orange to yellow. The products appeared as a yellow-light orange 

powder. 

Compound [tmpH2]
+

3[{CH2(COO)2}3Ga]3- 18, isolated as colorless crystals is prepared 

by the reaction of 8 with malonic acid. Tetrahydrofuran is used as solvent for this 

reaction, which took place at room temperature. The product is obtained in good yield. 

Finally when a solution of catechol (1,2-dihydroxobenzene) in thf, is                       

added dropwise to a chilled solution of  8, the gallium catecholate               

[tmpH2]
+

2[(σ-C6H4-O2)2Ga(σ-OC6H4OH)]2- 19
[11] as main product is yield (Scheme 7). 
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Scheme 7: Reactions of 8 with different acids. 
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4.2.2. Spectroscopic Characterization 

4.2.2.1. 1H- and 13C-NMR Spectroscopy 

The ferrocenyl derivative 13
[10] gives rise to two pseudo triplets (δ 1H = 4.39 and 4.36) 

for the protons of the Cp-rings in the 1H NMR spectrum (see Fig. 19). The coupling 

constant is 3JH,H = 4JH,H = 1.5 Hz. A different bonding mod of the tmpCO2 units was 

observed in the 1H NMR spectrum. These agree well with the solid state structure of 13. 

Two signal sets for tmp-methyl groups were recorded (δ 1H = 1.53 and 1.44). This 
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brings to different bonding modes of tmpCO2 groups or hindered rotation.                 

One pseudo-triplet (δ 1H = 1.70) and one centered and multiplet (δ 1H = 1.58) were 

recorded for the γ and for the β hydrogen atoms of the tmp groups. 

 

 

Figure 19: 
1H-NMR spectrum of 13 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 4.40 to 4.31, from 1.88 to 1.54 and from 1.35 to 1.29 ppm. 

The 13C-NMR spectrum of 13 (Fig. 20) shows a double signal for the carbon atoms of 

the tmp groups (δ13C = 29.7 and 29.6) and two signals for the NCO2 atoms                   

(δ 13C = 165.8 and 161.3). This is indicative for two different bonding modes. This 

finding is consistent with the crystal structure of 13. The signal for the ipso-carbon 

atoms exhibit a high field shifting (δ13C = 64.7) compared to ferrocene and 8[10] which 

can be explain as a result of the higher coordination number of the attached gallium 

atoms (C.N. 4-5). In other reported organyl substituted [1, 1]-digallyl ferrocenophanes[4] 

the ipso-carbon atoms resonated at about δ 13C = 70. 
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Figure 20: 13C-NMR spectrum of 13 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 29.8 to 29.6 ppm. 

The 1H NMR spectrum of a solution of 14
[11] in CDCl3 displays broad signals for all the 

hydrogen atoms from its molecule. A single signal set for both                              

2,2,6,6-tetramethylpiperidinium ions, one signal for all methyl units of the acetates 

groups (δ 1H = 2.02) and two signals for the α-CH and β-CH units of the Cp rings        

(δ 1H = 4.28 and 4.24) are observed (Fig. 21). The signal corresponding to the γ-CH2 

protons from the tetramethylpiperidinium ions resonate at 1.69 ppm. The signal 

corresponding to the hydrogen atoms from the amine rests is observed (δ 1H = 2.10).  

 

Figure 21: 
1H-NMR spectrum of 14 in CDCl3, at r. t., with the inset showing an expanded view of the 

chemical shift range from 4.29 to 4.20, from 1.84 to 1.80 and respectively from 1.65 to 1.58 ppm. 
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The 13C NMR spectrum of 14 display two signals for the carbon atoms of the Cp rings 

(see Fig. 22). This indicate a highly symmetrically structure in solution. The signal for 

the ipso-carbon atoms could not be observed. The signals for the carbons atoms of the 

Cp rings are shifted to lower field, compared to ferrocene, as well as almost all other 

reported gallylferrocenophanes. Three broad signals are recorded for the acetate groups 

(δ 13C = 23.6 - CH3, 177.8 and 177.3 - H3CCO2). This is in contrast with the solid 

structure of 14, where only two acetate groups are involved in hydrogen bonding. That 

is indicative for a migration of the methyl units between the acetate fragments in the 

molecule of 14. 

 

Figure 22: 13C-NMR spectrum of 14 in CDCl3. 

From the 1H-NMR spectrum of 16 and 17 (Fig. 23), the typical signal set for a [tmpH2]
+ 

(δ 1H = 1.66 mc, 1.47 mc and 1.31 s) and in addition signals for [Li(thf)]+ shifted high 

field (δ 1H = 3.74 and 1.84) compared to free thf are presented. The anionic part gives a 

double set of signals for the phenolate group (δ 1H = 7.11, 6.91 and 6.75).                  

The multipletts are overlapping. The hydrogen atoms from the Cp-ring give rise only to 

two broad signals (δ 1H = 3.81 and 3.55) (again overlapping). This lent to a 

coordination of Li(thf)2 even in solution. From the integrals of the hydrogen atoms 

signals of both cationic parts, it is concluded that in solution is a 1:1 mixture of the 

products (see Fig. 23). 
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The structure predictions of these two digallyl substituted ferocenes 16 and 17 and the 

spectral interpretations were made taking in consideration the crystal structure of 

[Li(thf)2]
+[{(η5-C5H5)Fe(η5-C5H4)}{Ga(C6H5-O)3}]- 22 (see Chapter 4.3.3.1.). 

 

Figure 23: 1H-NMR spectrum of 16 and 17 in CDCl3, at room temperature, with the inset showing an 

expanded view of the chemical shift range from 7.28 to 6.72, 3.81 to 3.54 and respectively from 1.88 to 

1.44 ppm. 

 

In the 13C-NMR spectrum (Fig. 24), the two sets of signals were observed 

corresponding to the phenolate rests of 16 and 17 (δ 13C = 161.0 – 160.0, 129.2 – 129.1, 

120.0 – 119.6 and 118.8 – 118.0). For the ferrocenyl fragments, only one set of signals 

is observed for the CH groups (δ 13C = 74.6 and 70.7) showing again isochronic nuclei. 

Last but not least the signals for the carbon atoms of tetramethylpiperidinium cations (δ 
13C = 53.9, 36.8, 29.3 and 16.8) and the signals for the carbon atoms of the [Li(thf)2]

+ (δ 
13C = 67.9 and 25.5 ppm) were clearly observed. The signals for the    ispo-C could not 

be observed. 
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Figure 

24: 
13C-NMR spectrum of 16 and 17 in CDCl3. 

 

The 1H-NMR spectrum of 18 consists of three broad peaks with relative intensities of 

6:18:36 (Fig. 25). This is not in agreement with the structure of 18, because in its       
1H-NMR spectrum are expected five signals, corresponding to the hydrogen atoms, on 

different environment bonding mode. Taking in consideration the peaks ratio’s mention 

before, it can be assumed that the hydrogen atoms from the malonate fragments are 

resonated at 3.34 ppm, the hydrogen atoms of the methyl groups of the [tmpH2]
+ cations 

are resonated at 1.41 ppm and the other hydrogen atoms from the methylene groups of 

the counter ion are overlapping and resonated at 1.67 ppm. The resonance for the 

hydrogen atoms from the amine groups could not be observed. 

Figure 25: 
1H-NMR spectrum of 18 in CDCl3, at room temperature. 
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The 13C-NMR spectrum of 18 at room temperature shows six signals for the carbon 

atoms’ resonances. The two signals at 174.1 and 45.0 ppm belong to the carbon atoms 

of the malonate fragments and the other four are the signals of the carbon atoms’ 

resonance of the three tmpH2
+ counter ions (δ 13C = 56.5, 34.8, 27.4 and 16.3 ppm). 

That is in agreement with the solid state structure of 18 (Fig. 26). 

 

Figure 26: 
13C-NMR spectrum of 18 in CDCl3. 

 

A 1H- and 13C- NMR examination of 19
[11] was performed. In the 1H-NMR spectrum 

(Fig. 27), 19 exhibits a broad signal for the proton of the –OH group (δ 1H = 8.40), three 

broad signals corresponding to the protons of the catecholate-rings in a ratio of 2:6:4   

(δ 1H = 6.85, 6.66 and 6.55, respectively) and also one single set of signals for the 

2.2.6.6-tetramethylpiperidinium ions (δ 1H = 1.69, 1.58 and 1.28). As already 

mentioned before, the catecholate moieties of 19 gives rise only to four signals in the 

proton NMR spectrum, which is not in line with the solid state structure of 19. This and 

the broad signals might be explained as an effect of the proton migration between 

different oxygen atoms. The signal for the N bonded hydrogen atoms could not be 

observed. 
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Figure 27: 1H-NMR spectrum of 19 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 6.90 to 6.50 respectively from 1.72 to 1.55 ppm. 

 

In the 13C-NMR spectrum of 19, the six observed signals for the aromatic part are very 

broad. The substituted carbon atoms of the aromatic-rings afforded two broad signals at 

δ 13C = 150.0 and 145.2, as well (Fig. 28). For the carbon atoms of the CH groups four 

signals are observed (δ 13C = 120.3, 116.9, 117.7 and 114.2). This is indicative for a 

dynamic structure, too. The tmp rests give rise to one single set of signals for the 

corresponding carbon atoms, resonated at 56.0, 35.8, 27.9 and 16.1 ppm. 

 

 
Figure 28: 

13C-NMR spectrum of 19 in CDCl3. 
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4.2.2.2. Mass spectrometry 

 

The peak corresponding to the molecular ion of 13
+ was observed (m/z = 1060 (0.4)). 

This indicates a highest stability for 13 in comparison with 8 or 9. The molecule of 13 

loses very easily, under mass spectrometric conditions, one after other CO2 and tmp 

units and the following fragments could be found: [M-2CO2]
+, [M-tmpCO2]

+,            

[M- tmp2CO2]
+ (m/z = 972, 875 and 832). In addition [tmpGa-Me]+ (m/z = 194) and 

seven other fragments are recorded (m/z = 186 [C10H10Fe]•+, 141 [tmpH]•+,                

126 [tmpH-Me]+, 121 [C5H5Fe]+, 69 [Ga]+, 58 [Fe]+, 44 [CO2]
•+). The base peak of the 

spectrum is: [tmpH-Me]+, [Ga]+ and [Fe]+, as well. 

Using the Electron Spray Ionization technique, a mass spectrum of 14 was recorded. 

The molecular ion peak could not be observed. Only some fragments as              

[{Fe(η5-C5H4)2}{GaAc3}]- and [{Fe(η5-C5H4)2}{GaAc2OH}]-      (m/z = 431 

respectively 389) were obtained. 

In the mass spectrum of 15, the peak of the half molecular ion was recorded              

(m/z = 858 [M – 2({Fe(η5-C5H4)2}{Ga(OEt)2}2O)]+). [Ga]+ was the base peak.        

Also, some decomposition fragments with different intensities were observed           

(m/z = 186 (96) [C10H10Fe]+, 121 (60) [C5H5Fe]+, 56 (30) [Fe]+). 

A gas phase pyrolysis study of 19 was conducted in a mass spectrometer having He as 

carrier gas. The ESI mass spectrum monitoring of the anions,                               

afforded one fragment having one gallium atom in its backbone                                 

(m/z = 321 (100) [{Ga(σ-C6H4-O2)}{C6H4O(OH)}(OH)2]
-) and the cathecholate anionic 

rest [C6H4O(OH)]- (m/z = 109). 

 

4.2.3. Cyclovoltammetric Determinations 

 

The cyclo-voltammograms of 13, 14 and 15
[11] were recorded (Fig. 29). 

Tetrahydrofuran was used as solvent, NBu4PF6 as supporting electrolyte and 

decamethylcobaltocene/decamethylcobaltocenium as internal reference. The 

voltammograms show one oxidation and reduction process for each product separated 

by 169 mV (13), 196 mV (14) and 130 mV (15). The corresponding half wave 
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potentials are: E1/2 = -196 mV (13), E1/2 = -277 mV (14) and E1/2 = -222 mV (15)       

(vs. ferrocene/ferrocenium). 
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Figure 29: Cyclic voltammograms of 13, 14 and 15 versus Fc/Fc+ in thf, internal standard 

CoCp*
2/CoCp*

2
+. 

 

As it was already mentioned in Chapter 3, again higher oxidation potentials are 

observed, in comparison with other gallaferrocenophanes.[3],[4],[6]-[9] This is an effect of 

the groups directly bonded to the gallium atoms and the influence of                            

the solvent. Interesting to mention is that, for the tetranuclear species 15 only one 

oxidation-reduction peak is observed. On the other hand, the trinuclear ferrocenophane 

[{Fe(η5-C5H4)2}3{Ga}2]
[9] shows three peaks. This behaviour could be an effect of the 

well separated ferrocenyl units and because of that, probable, no delocalization is 

possible. 

In Table 3 are summarized the first oxidation potentials of different gallyl substituted 

ferrocenes and gallaferrocenophanes reported in the literature, respectively determined 

in this thesis, measured in pyridine, tetrahydrofuran, dichloromethane or even DMSO 

and compared with ferrocene’s oxidation potential. 
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Table 3: Summary of the first oxidation potentials recorded for different gallyl substituted ferrocenes, 

gallaferrocenophanes and respectively ferrocene. 

 

Compound Structure Solvent 
E1/2 

[mV] 

[{Fe(ηηηη5
-C5H4)2}{GaMe2}2]n

[7] Fe

GaMe2

Me2Ga
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py

py  
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Table 3: (Continuation). 
 

Compound Structure Solvent 
E1/2 

[mV] 

9 
Fe

Ga

tmp

tmp

 

Tetrahydrofuran 23 

[{Fe(ηηηη5
-C5H4)2}2{Ga(Pytsi)2}2]

[4] Fe Fe

Ga

Ga
NMe2

Me2N

 

Dichloromethane 50 

 

4.2.4. Electron Paramagnetic Resonance (EPR) Spectroscopy 

 

Figure 30 shows the EPR signal observed upon reaction of 8 with bromine. A sample of 

the blue-green disubstituted gallyl ferricenium 8a was prepared by solving it in a 

mixture of thf/toluene (1/1). The split isotropic signal is generated at g = 2.00 (from the 

experimental data). The spectrum indicated that only a single paramagnetic center is 

generated by the preparation of disubstituted gallyl ferricenium species, as expected. 

Similar EPR spectra are also reported in the literature for different substituted 

ferricinium ions.[12],[13] 
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Figure 30: EPR spectrum of disubstituted gallyl ferricenium in thf/toluene (1/1) mixture. Spectrum was 

recorded at 105 K, with a 9.44 GHz microwave frequency, a 19.92 mW power, and a 5 G modulation 

amplitude.
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4.2.5. Crystal Structure Analysis 

 

4.2.5.1. Crystal Structure Analysis of 13 

 

13 (Fig. 31) crystallizes in crystals of the system, space group triclinic Pī.                    

By the insertion of four CO2 molecules in all four Ga-N bonds of 8 a ferrocenophane 

with a Ga[OC(tmp)O]2Ga bridge is afford. Each gallium atom is surrounded distorted 

tetrahedral. The cyclopentadienyl rings are staggered (angles of 25.29° respectively 

26.44° to each other). The gallyl groups are in syn-position with a torsion angle     

Ga(2)-C(36)-C(31)-Ga(1) of 43°. 

The Ga-C bond lengths [dGa-C = 192.8 pm (ave.)] are shorter than those in 8 and even 

other organyl gallium substituted ferrocenes and -ferrocenophanes.[8] Two of the 

carbaminates coordinate bridging and the others are terminal. Therefore, a boat shaped 

eight-membered Ga(OCO)2Ga-ring is built. An example of a gallium carbamate with 

bridging carbaminates similar with those exhibits in 13, is presented by the 

dimethyl(2,2,6,6-tetramethylpiperidinocarbaminato)gallan-dimer XXX.[10] Here, a 

heterocyclic built from the same atoms as in 13, is in crown like conformation.          

The relevant distances are in the same range to those of 13. The Ga-O bond distances 

are between 189.2 and 194.6 pm and the C-O bonds are at an average bond length of 

130 pm. The terminal carbamato groups are coordinated to gallium by a short Ga-O 

moiety [dGa-O = 189 pm]. The other oxygen atoms have distances of 234.1 and 242.4 pm 

to the gallium atoms. The terminal bonding mode of this ligand is found in    

bis(2,2,6,6-tetramethylpiperidino)-η2-(2,2,6,6-tetramethylpiperidinocarbaminato)gallane 

XXXI.[10] Here the gallium atom is tetra coordinated by two tmp groups                    

[dGa-N = 187 pm] and a η2-carbamato ligand [dGa-O = 202.7(2) pm and 200.4(2) pm]. 

This is different from 13, where the terminal carbamate groups are to be regarded as  

η1-ligated to tetra coordinated gallium atoms. The resulting GaO2C-ring has two similar 

Ga-O and C-O bonds, but the difference is significant, as the longer Ga-O bond is 

connected to the shorter C-O bond. 
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Figure 31: Molecular structure of 13 with thermal ellipsoids at the 25 % probability level. Hydrogen 

atoms and solvent molecules are omitted for clarity. Selected bond lengths [pm] and angles [°]:        

Ga(1)-O(1) 188.6(5), Ga(1)-O(2) 242.4(5), Ga(1)-O(3) 193.6(6), Ga(1)-O(7) 189.2(5),                     

Ga(1)-C(31) 193.8(9), O(1)-C(1) 131.3(9), O(2)-C(1) 125.2(9), O(3)-C(11) 130.5(9),                         

O(7)-C(41) 129.4(9), N(1)-C(1) 138.8(8), N(2)-C(11) 137.0(9), N(4)-C(41) 136.5(9),                       

Ga(2)-O(4) 189.8(5), Ga(2)-O(5) 190.7(6), Ga(2)-O(8) 194.6(6), Ga(2)-O(6) 234.1(5),                      

Ga(2)-C(36) 191.7(9); O(1)-Ga(1)-O(3) 88.8(2), O(1)-Ga(1)-O(7) 104.5(2), O(3)-Ga(1)-O(7) 102.2(2), 

O(1)-Ga(1)-C(31) 125.7(3), O(3)-Ga(1)-C(31) 109.2(3), O(7)-Ga(1)-C(31) 119.8(3), C(1)-O(1)-Ga(1), 

O(4)-Ga(2)-O(5) 104.7(2), O(4)-Ga(2)-C(36) 120.8(3). 

4.2.5.2. Crystal Structure Analysis of 14 

The pale yellow crystals of 14 (Fig. 32) are found to be triclinic, space group Pī. 14, is 

the 2,2,6,6-tetramethylpiperidinium salt of a 1,1’-bis(trisacetatogallyl)ferrocenate(2-). 

The centro symmetric anionic part of 14 has staggered Cp rings, the substituents are in 

anti position. The gallium atoms are coordinated distorted tetrahedral by a η1-Cp ring 

and three η1-acetate groups. The O-Ga-O bond angles are (99.3° - 103.4°) less widely 

distorted tetrahedral coordinated. The O-Ga-C bond angles (107.6° - 121.6°) are wider 

than the tetrahedral angle. Values of Ga-O distances [dGa-O = 189.4 pm (ave.)] are 

typical for Ga-O distances with gallium atoms in a tetrahedral conformation. The 

carboxylate groups are coordinated different at the gallium atoms via oxygen atoms, 

which is indicated by one short and two large distances to the gallium atoms             

[dGa-O = 276.2 pm (O6), 318.7 pm (O4), 403.6 pm (O2)]. The C-O distances 
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in the carboxylate groups are differents, the gallium bonded oxygen atoms                

[dGa-O = 131.0 pm] are larger bonds than the other ones [dGa-O = 123.2 pm]. The cationic 

counter ions are bonding to the anionic part via hydrogen bonds [dO(2)-H(1) = 192.1 pm, 

dO(4)-H(2) = 214.6 pm]. Due to the high electronegativity of the substituents bonded to the 

gallium atoms, the Ga-C bonds [dGa(1)-C(1) = 194.3 pm] are shorter than those in 8 and 

similar with those in 13. This is agreement with the Bent’s rule. 

 

 

 

Figure 32: Molecular structure of 14 in solid state with the hydrogen bonds between cations and anion.  

Hydrogen atoms at the Cp-ring are omitted for clarity. Additional bond lengths [pm] and angles [°]: 

Ga(1)-C(1) 194.4(3), Ga(1)-O(1) 189.5(2) , Ga(1)-O(3) 189.2(2) , Ga(1)-O(5) 189.4(2) ,                     

C(6)-O(1) 131.4(3), C(6)-O(2) 124.0(3), C(8)-O(5) 130.9(4), C(8)-O(6) 123.5(4), C(10)-O(3) 131.0(3), 

C(10)-O(4) 123.3(3); O(1)-Ga(1)-O(3) 101.95(9), O(1)-Ga(1)-O(5) 103.38(9), O(3)-Ga(1)-O(5) 99.3(1), 

O(1)-Ga(1)-C(1) 119.55(9), O(3)-Ga(1)-C(1) 107.6(1), O(5)-Ga(1)-C(1) 121.6(1), O(1)-C6)-O(2) 

120.0(3). 

4.2.5.3. Crystal Structure Analysis of 15 

15 crystallizes in yellow needles together with two molecules of benzene (Fig. 33 A and 

B) of the monoclinic system, space group P21. 15 has a gallium-oxygen cage             

(the central core) built up by eight gallium atoms and eight oxygen atoms. The oxygen 

atoms are of different nature: four of them are part of the ethoxy groups and the others 

four are oxide ions. This cage shows two stacked boat-shaped Ga4O4 rings, which are 

linked by four Ga-O bonds. This gives rise to four sides faces each of them looking as a 

distorted hexagon made up by three gallium atoms, two oxygen atoms and one µ
2-OEt 

groups. Four additional OEt groups are in terminal positions directly bonded to the 

gallium atoms. As a result of the bonding manner, mentioned before, the gallium atoms 
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have a tetra-coordinated environment made up by three oxygen atoms and one carbon 

atom, which is part of the ferrocenyl unit. The Ga-O distances in the cage are varying 

between 179.5 and 194.0 pm. The Cp ring planes of the four ferrocenyl units are 

intersecting at angles between 5 and 17°, which mean that the ferrocenyl units are in an 

almost mutually coplanar orientation. The distances between iron atoms are relatively 

large (730 to 780 pm), that is about 200 pm larger than in                                    

[{Fe(η5-C5H4)2}3 {Ga}2].
[9] This might explain the different electrochemical behavior of 

both compounds. 
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Figure 33: ORTEP plot of compound 15 (A-one side view, B-top view). Thermal ellipsoids are drawn at 

the 25 % probability level. Hydrogen atoms and benzene molecules are omitted for clarity. Selected bond 

lengths [pm] and angles [°]: Ga-O from 179.5(12) to 194.3(13), Ga-C from 192.3(19) to 199.3(19), O-Ga-

O from 93.2(5) to 115.7(5), O-Ga-C from  106.5(6) to 122.6(7), Ga-O-Ga from 111.3(6) to 127.6(6), C-

O-Ga from 113.7(11) to 126.3(18), C-C-Ga from 122.1(13) to 132.1(15), Ga-C-Fe from 123.1(10) to 

126.9(9). 

4.2.5.4. Crystal Structure Analysis of 18 

Colorless crystals of 18, space group P21, were obtained from a concentrated solution 

in acetonitrile, after several days standing at 6°C. The structure of 18 was determined 

by single X-ray crystallography (Fig. 34 A and B) and can be described as a Ga3+ ion 

coordinated with three carboxylate units. Thus, the central Ga atom is chelated in a 

bidentate fashion through two oxygen atoms of the three CH2(COO)2
- units, therefore 

the Ga atom is octahedral coordinated. Each of the three six-membered chelate rings 

has a boat conformation flattened at the Ga end. The anion has a distorted octahedral 

geometry with significantly different Ga-O bond lengths which vary from 193.0(3) to 

197.3(4) pm. The mean angle subtented at the Ga atom by the malonate ligands          

O-Ga-O is 90.7°. 
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Figure 34: Molecular structure of 18 (A - the anionic part together with the three cations; B - in the 

scaled view of the anion) showing thermal ellipsoids at the 25% probability level. Selected bond lengths 

[pm] and angels [°]:Ga(1)-O(1) 197.3(4), Ga(1)-O(3) 197.2(4), Ga(1)-O(5) 197.2(4),                       

Ga(1)-O(7) 193.0(3), Ga(1)-O(9) 194.0(4), Ga(1)-O(11) 195.2(4), O(1)-C(1) 129.0(6),                      

O(2)-C(1) 122.4(6), O(3)-C(3) 126.7(7), O(4)-C(3) 120.6(6), O(5)-C(4) 132.8(6), O(6)-C(4) 121.3(6), 

O(7)-C(6) 130.7(6), O(8)-C(6) 124.4(5), O(9)-C(7) 130.6(6), O(10)-C(7) 121.4(6), O(11)-C(9) 129.4(6), 

O(12)-C(9) 121.2(6); O(1)-Ga(1)-O(3) 90.16(16), O(5)-Ga(1)-O(7) 91.95(15),                                   

O(9)-Ga(1)-O(11) 89.94(15). 
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4.2.5.5. Crystal Structure Analysis of 19 

After several days at 6°C, colorless crystals of 19 were grown. 19 crystallizes in plates 

of the orthorhombic system, space group P212121 together with a molecule of thf in its 

unit cell (Fig. 35). 19 exhibits two 2,2,6,6-tetramethylpiperidinium cations which 

balance the charge of one dianionic gallanate. A rare coordination of the central gallium 

atom as square pyramidal was observed. Two chelating catecholate ligands build the 

base of the pyramid and a further η1-catecholate in the axial position is acting as a tip. 

The oxygen atom O(6) which belong to the η1-catecholate is protonated.                    

The Ga-O bonds in the square base have lengths that varying between 189.7 and     

194.9 pm. The shortest Ga-O bond length is the axial one [dGa-O(5) = 183.2 pm]. 

 

 

 

Figure 35: Thermal ellipsoid plot of the anion of 19. The tmpH2
+ cations and thf molecule are omitted 

for clarity. Selected bond lengths [pm] and angels [°]: Ga(1)-O(1) 189.8(7), Ga(1)-O(2) 192.2(6),   

Ga(1)-O(3) 194.9(6), Ga(1)-O(4) 191.2(6), Ga(1)-O(5) 183.2(8); O(1)-Ga(1)-O(2) 84.4(3),               

O(1)-Ga(1)-O(3) 89.2(3), O(3)-Ga(1)-O(4)  83.0(3), O(1)-Ga(1)-O(5)  104.2(3),                                

O(4)-Ga(1)-O(5) 113.0(3), O(3)-Ga(1)-O(5) 90.7(3). 

4.3. Reaction of 9 with Acids 

4.3.1. Synthesis Routes 

 

By the reaction of 9 with the Brønsted acids: MeCOOH, σ-C6H4(OH)2 and C6H5OH, 

several new monogallyl ferrocene derivatives are obtained (Scheme 8). 
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The product 20 synthesized by the reaction of 9 with MeCOOH in a 1:4 ratio was 

isolated as a yellow powder. No suitable crystals could be grown. It was analyzed only 

by means of 1H- and 13C-NMR. 

21 and 22 were obtained by the reaction of 9 with phenol (exactly: 2% excess) in a 3:1 

ratio in an n-hexane and diethyl ether mixture (see Scheme 8). The reaction took place 

at room temperature and was completed within few minutes. After all the volatiles were 

evaporated under vacuum and the residue was washed several times with n-hexane, a 

mixture of products 21 and 22 as an orange powder was isolated. The products were 

separated via recrystallization and further analyzed by means of 1H- and 13C-NMR 

spectroscopy. Also, suitable crystals of 22 were grown. 

When a solution of catechol (1,2-dihydroxybenzene) in thf, was added dropwise to a 

solution of 9, the catechol gallanate 19 as described in Chapter 4.2.1. (see Scheme 7) in 

good yield was obtained. 

Scheme 8: Reactions of 9 with acids. 
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4.3.2. Spectroscopic Characterization 

4.3.2.1. 1H- and 13C-NMR Spectroscopy 

The 1H NMR spectrum of 20 (Fig. 36) exhibits one set of signals for the              

2,2,6,6-tetramethylpiperidinium ion (δ 1H = 1.71, 1.63 and 1.39), one signal for the 

methyl groups of the acetate ligands (δ 1H = 2.03) and three signals for the hydrogen 

atoms of the substituted Cp ring (δ 1H = 4.29 and 4.25, br) and of the unsubstituted     

Cp ring (δ 1H = 4.13), respectively. One broad signal was recorded for the hydrogen 

atoms of NH2 moiety (δ 1H = 2.10). Until now, it was not possible to perform a single 

crystal structure analysis of 20. Nevertheless, from the 1H- and 13C-NMR spectra 

recorded for 14 (see Chapter 4.2.2.1.), it was possible to confirm the structure of 20. 

 

Figure 36: 
1H-NMR spectrum of 20 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 1.56 to 2.20 ppm. 

In the 13C NMR broad signals for the acetate groups were recorded, which is in 

agreement with the predicted structure of 20. One of the acetated group is involved in 

hydrogen bonding showing a different environment than the other two (δ 13C = 23.4 

(CH3), δ = 177.2, 177.8 (H3CCO2)). The other observed signals are in line with the 

expected resonance of the carbon atoms from the molecule of 20. Last but not least, it is  
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important to mention that the signal for the ipso-carbon atom could not be observed  

(Fig 37). 

Until now, it was not possible to perform a single crystal structure analysis of 20. 

Nevertheless, from the 1H- and 13C-NMR spectra, and from the comparison of these 

spectra with the 1H- and 13C-NMR spectra recorded for 14 (see Chapter 4.2.2.1.), it was 

possible to confirm the structure of 20. 

Figure 37: 
13C-NMR spectrum of 20 in CDCl3. 

In the 1H NMR spectrum of 21 (Fig. 38) the expected signals for the hydrogen atoms’ 

resonances were recorded. Thus, one doublet and two pseudo-triplets (intensity = 6:6:3) 

corresponding to the hydrogen atoms from ortho, meta and para positions of the 

phenolate units are exhibited (δ 1H = 7.20, 7.08 and 6.84). The protons of the 

cyclopentadienyl rings give rise to three signals, two for the substituted Cp-rings          

(δ 1H = 4.30 and 4.04) and one for the resonance of the equivalent hydrogen atoms of 

the unsubstituted Cp-ring (δ 1H = 3.88). One the other hand, three signals occur in the 

region corresponding to the tetramethylpiperidinium ions, similar with that observed for 

19 or for  14 (δ 1H = 1.53, 1.37, 1.24, respectively). This is a strong sign for a salt art 

conformation of 21 where the cationic part built up by the tetramethylpiperidinium ion 

is bonded to the anionic fragment via hydrogen bonds. 
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Figure 38: 1H-NMR spectrum of 21 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 7.28 to 6.80 respectively from 1.56 to 1.16 ppm. 

The 13C-NMR spectrum shows the expected signals, with the exception of the ipso-C 

atoms of the substituted cyclopentadienyl ring, which unfortunately could not be 

observed (see Fig. 39). 

 

 

Figure 39: 
13C-NMR spectrum of 21 in CDCl3. 
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The NMR spectra of 22 are in agreement with its molecular structure. In the 1H-NMR 

spectrums of 22 (Fig. 40) the resonances of the phenolate rests appear in the specific 

aromatic area (δ 1H = 7.13, 6.92 and 6.81) in a 6:6:3 integral ratios. This is high filed 

shifted compared with 21. Three broad signals are produced by the Cp rings, two of 

them belong to the substituted Cp ring (δ 1H = 4.21 and 3.83) and the other one 

represent the resonance of the other five equivalent hydrogen atoms from the 

unsubstituted Cp ring (δ 1H = 3.68). Finally, two broad signals occur by the hydrogen 

atoms of the thf residues (δ 1H = 3.77 and 1.76). 

 

Figure 40: 
1H-NMR spectrum of 22 in CDCl3, at room temperature, with the inset showing an expanded 

view of the chemical shift range from 7.26 to 6.72 respectively from 4.24 to 3.64 ppm. 

 

The 13C-NMR spectrum of 22 is similar to that of 21, excepting the anionic part. Slight 

low field shifting of the substituted and unsubstituted Cp-ring carbon atoms was 

observed (δ 13C = 74.7, 70.2 - CH(subst. Cp) and 68.2 - CH(unsubst. Cp)). Instead of 

signals for tmpH2
+, two signals for thf groups occur (δ 13C = 68.1, 25.4) (Fig. 41). 
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Figure 41: 
13C-NMR spectrum of 22 in CDCl3. 

4.3.3. Crystal Structure Analysis 

4.3.3.1. Crystal Structure Analysis of 22 

The molecular structure of 22 is depicted in Figure 42. Suitable orange crystals for      

X-ray diffraction of 22 were collected from a thf: n-hexane solution (1:1) after several 

days standing at 6°C. 22 crystallizes in the triclinic system, space group Pī. The Ga 

atom is tetrahedral coordinated by three oxygen atoms (O1, O2 and O3) and one carbon 

atom (C18) from the substituted Cp-ring. The Cp-rings are in an eclipsed conformation. 

The Ga-O distances vary from 183.8(3) to 188.4(3) pm, are typical for Ga-O bond 

lengths having gallium atoms in a tetrahedral conformation. 22 exhibits the shortest 

reported Ga-C bond [dGa(1)-C(18) = 191.3 pm] in this series of gallylferrocenes. The       

O-Ga-O bond angles (84.8° - 113.4°) are describing a distorted tetrahedral conformation 

at the gallium atoms. The O-Ga-C bond angle (112.2°) is wider than the tetrahedral 

angle. The lithium ion is bounded to the oxygen atoms of two of the phenolates         

[dLi-O = 195.1 pm and 195.8 pm]. A tetrahedral coordination at the lithium atom is 

afforded. The O-Li-O bond angles are describing a distorted tetrahedral conformation. 

Two angles are wider than the tetrahedral angle (110.1° and 132.6°) and the other two 

are narrower than the tetrahedral angle (108.8°). 
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Figure 42: Solid state structure of 22 showing thermal ellipsoids at the 25% probability level. Selected 

bond lengths [pm] and angels [°]: Ga(1)-C(18) 191.3(6), Ga(1)-O(1) 188.4(3), Ga(1)-O(2) 183.8(3), 

Ga(1)-O(3) 185.8(4), Li(1)-O(1) 195.8(12), Li(1)-O(3) 195.1(8), Li(1)-O(4) 190.6(10),                      

Li(1)-O(5) 192.8(10), Ga(1)…Li(1) 286.5(10), Ga(1)…Fe(2) 353.8(13), O(1)-C(17) 134.6(6),              

O(2)-C(16) 134.3(6), O(3)-C(21) 136.9(6), O(4)-C(32) 143.8(7), O(4)-C(45) 142.7(7),                       

O(5)-C(24) 140.5(7), O(5)-C(43) 140.7(8);  O(1)-Ga(1)-C(18) 115.51(17), O(2)-Ga(1)-C(18) 112.2(2), 

O(3)-Ga(1)-C(18) 116.4(2), O(1)-Ga(1)-O(2) 113.4(15), O(1)-Ga(1)-O(3) 84.8(15), O(2)-Ga(1)-O(3) 

112.0(16), O(1)-Li(1)-O(3) 80.4(4), O(1)-Li(1)-O(4) 110.1(5), O(1)-Li(1)-O(5) 114.3(5), O(3)-Li(1)-O(4) 

132.6(5), O(3)-Li(1)-O(5) 107.7(4), O(4)-Li(1)-O(5) 108.8(5). 

4.4. Comparison of Important Bond Lengths 

The main features of interest of 8 and 9 are of course the Ga-C and Ga-N bond lengths 

and the Ga…Fe and respectively Ga…Ga interactions (only for 9). Several gallyl 

ferrocenes derivatives are discussed from the above mentioned features point of view. 

Also, it is necessary to mention that until now almost all of the reported gallyl 

ferrocenes exhibits in their backbones, attached ligands to the gallium atoms, which 

include carbon and nitrogen atoms resulting in Ga-C and Ga-N bonds,[1]-[9] with four 

exceptions where instead of nitrogen atoms, oxygen atoms are presented, giving rise to 

Ga-O moieties.[8],[9] All Ga-C and Ga-N bond lengths determined for compounds 8 and 
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9 and all reported Ga-C and Ga-N bond lengths in different gallyl ferrocenes derivatives 

are summarized in Table 4. 

Table 4: Summary of Ga-C and Ga-N bond lengths. 

Compound dGa-C [pm] dGa-N [pm] 

8
[10] 

197.4(3) and 197.9(3) 

197.7 (ave.) 

187.9(2), 188.0(2), 

187.2(2)
b and 

187.3(2) 

187.6
b
 (ave.) 

9 200.9(4) 

188.0(4) and 

190.7(3) 

189.4 (ave.) 

[{Fe(ηηηη5
-C5H4)2}{GaC(SiMe3)2(SiMe2NMe2)}]

[5] 

200.8(3), 201.7(3) and 

204.8(3) 

202.4 (ave.) 

210.5(2) 

[{(ηηηη5
-C5H5)Fe(ηηηη5

-C5H3)}{GaMe2(CH2NMe2)}]2
[2] 

199.5(4), 200.4(3) and 

201.6(4) 

200.5 (ave.) 

217.8(2) 

[{Fe(ηηηη5
-C5H4)2}{GaMe2}2]n

[7]
 

197.8(2), 277.5(2)
a, 

196.5(3), 195.7(2), 

198.9(2), 241.0(2), 

196.9(2) and 197.4(2) 

212.7
a (ave.) 

- 

[{Fe(ηηηη5-C5H4)2}{GaMe2(Phenazine)}2]n
[7] 

197.1(4), 198.0(4) and 

197.5(4) 

197.5 (ave.) 

240.8(3)a  

[{Fe(ηηηη5-C5H4)2}2{GaCH(SiMe3)2}2]
[3] 

196.9(4), 193.4(4) and 

193.3(4)b 

194.5
b
 (ave.) 

- 

[{Fe(ηηηη5
-C5H4)2}2{Ga(Pytsi)2}2]

[4] 

198.8(3), 195.1(4) and 

196.3(3) 

196.7 (ave.) 

217.8(3) 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Pyridine)}2]

[6] 

196.8(19), 196.5(17) and 

197.3(17) 

196.8 (ave.) 

214.3(14) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe}2]

[8] 

194.42(15), 194.56(15) 

and 195.02(18) 

194.7 (ave.) 

- 
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Table 4: (Continuation). 
 

Compound dGa-C [pm] dGa-N [pm] 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Et2O)}2]

[8] 

196.2(4), 195.7(3) and 

197.7(4) 

196.5 (ave.) 

- 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyridine)}2]

[8] 

198.1(6), 195.7(6) and 

197.6(7) 

197.1 (ave.) 

214.4(5) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyrimidine)}2]

[8] 

197.0(2), 196.1(2) and 

197.6(2) 

196.9 (ave.) 

215.08(16) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Quinoxaline)}2]

[8] 

196.30(19), 196.5(2) and 

197.8(2) 

196.9 (ave.) 

221.92(16) 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Pyrazine)}2]
[8] 

196.05(17), 196.56(17) 

and 197.75(19) 

196.8 (ave.) 

218.54(14) 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Diox)}2]
[8] 

195.5(2), 196.1(3) and 

198.6(3) 

196.7 (ave.) 

- 

[{(ηηηη5-C5H5)Fe(ηηηη5-C5H4)}{GaMe2}]2
[1] 

199.1 (5) and 196.4 (5) 

197.8 (ave.) 
- 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Et2O)}2]

[9] 

195.16(16), 194.61(16) 

and 194.99(16) 

194.9 (ave.) 

- 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Pyridine)}2]

[9] 

196.8(19), 196.5(17) and 

197.3(17) 

196.9 (ave.) 

214.3(14) 

[{Fe(ηηηη5-C5H4)2}3{Ga(DMSO)}2]
[9] 

195.2(2), 195.8(2) and 

195.7(2) 

195.6 (ave.) 

- 

[{Fe(ηηηη5-C5H4)2}3{Ga(Pyrazine)}2]
[9] 

196.3(4), 194.3(4) and 

196.1(4) 

195.6 (ave.) 

228.0(3) 

a – largest bond length 
b – shortest bond length 

 

It can be easily seen that Ga-C bond lengths in 8 and 9 are in line with other reported 

Ga-C bond lengths in gallium substituted ferrocene. But, when we take a look to the  

Ga- N bond lengths, then, one can say that the shortest Ga-N bond length
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is exhibited by 8 follow closely by 9 [dGa-N = 187.6 pm and 189.4 pm]. Their values are 

much closer to the other compounds of type tmp2GaX where X is a less electron 

withdrawing groups as Ph [dGa-N = 188.3(2) pm], tmp2Ga [dGa-N = 190.1(4) pm],[14] 

PtBu2 [dGa-N= 190.8 pm].[15] 

The intermolecular Ga…Ga separation in 8 is 717.1 pm. Due to the conformation of 8 is 

much longer than in other gallyl ferrocenes derivatives (see Table 5) and in the same 

time is roughly four times the van der Waals radius of gallium (187 pm[16]). However, 

there is one reported gallyl ferrocene ([{Fe(η5-C5H4)2}{GaMe2(Phenazine}2]n
[7]) with 

the Ga…Ga separation of 619.2 pm, which is the most close value to that of 8. Another 

Ga…Ga separation with a value of approximately 700 pm is presented by 14         

[dGa…Ga = 690.0 pm] (see Table 7). 

The intermolecular Ga…Fe average distance of 370.8 pm in 8 and respectively of    

379.0 pm in 9 indicate no attractive interactions between the electron-rich Fe atoms and 

the electron deficient Ga atoms (empty p orbital). 

 

Table 5: Summary of Ga…Fe and Ga…Ga separation. 

 

Compound dGa…Ga [pm] dGa…Fe [pm] 

8[10] 717.1 
374.2 and 367.4 

370.8 (ave.) 

9 - 379.0 

[{Fe(ηηηη5
-C5H4)2}{GaC(SiMe3)2(SiMe2NMe2)}]

[5] - 281.8 

[{(ηηηη5-C5H5)Fe(ηηηη5-C5H3)}{GaMe2(CH2NMe2)}]2
[2] 473.7 352.2 

[{Fe(ηηηη5
-C5H4)2}{GaMe2}2]n

[7]
 304.4 

311.2 and 341.9 

326.6 (ave.) 

[{Fe(ηηηη5-C5H4)2}{GaMe2(Phenazine)}2]n
[7] 619.2 345.6 

[{Fe(ηηηη5
-C5H4)2}2{GaCH(SiMe3)2}2]

[3] 462.5 
354.0 and 351.3 

352.7 (ave.) 

[{Fe(ηηηη5-C5H4)2}2{Ga(Pytsi)2}2]
[4] 473.4 

371.0 and 351.5 

361.2 (ave.) 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Pyridine)}2]

[6] 386.4 
365.3, 369.3 and 375.2 

369.9 (ave.) 

[{Fe(ηηηη5-C5H4)2}2{GaMe}2]
[8] 441.4 

348.1 and 353.6 

350.8 (ave.) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Et2O)}2]

[8] 464.7 
361.8 and 353.0 

357.4 (ave.) 
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Table 5: (Continuation). 
 

Compound dGa…Ga [pm] dGa…Fe [pm] 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyridine)}2]

[8] 476.8 
368.2 and 354.0 

361.1 (ave.) 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Pyrimidine)}2]
[8] 463.1 

357.1 and 360.8 

359.0 (ave.) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Quinoxaline)}2]

[8] 473.4 
362.6 and 359.4 

361.0 (ave.) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyrazine)}2]

[8] 458.1 

357.1, 357.3, 359.6 and 

356.1 

357.5 (ave.) 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Diox)}2]
[8] 447.6 

345.7 and 359.5 

352.6 (ave.) 

[{(ηηηη5
-C5H5)Fe(ηηηη5

-C5H4)}{GaMe2}]2
[1] 299.9 

466.1 and 317.7 

391.9 (ave.) 

[{Fe(ηηηη5-C5H4)2}3{Ga(Et2O)}2]
[9] 372.1 

368.7, 366.1 and 365.1 

366.3 (ave.) 

[{Fe(ηηηη5
-C5H4)2}3{Ga(DMSO)}2]

[9] 379.5 

364.9, 368.4, 370.0, 

362.7, 363.6 and 371.2 

366.8 (ave.) 

[{Fe(ηηηη5-C5H4)2}3{Ga(Pyrazine)}2]
[9] 381.4 

364.7, 364.3, 369.6, 

367.8, 366.0 and 361.8 

365.7 (ave.) 

 

The bond lengths (Ga-C and Ga-O) and the intermolecular separations (Ga…Fe, Ga…Ga 

and Fe…Fe) of the other gallyl substituted ferrocenes presented in this chapter are 

discussed as follow. Thus, the Ga-C and respectively the Ga-O bonds lengths in the 

gallyl substituted ferrocenes reported in this thesis and other gallyl substituted 

ferrocenes reported in the literature (instead of the gallyl substituted ferrocenes 8      

and 9), which exhibits also Ga-C and Ga-O bonds, are summarized in Table 6. 
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Table 6: Summary of Ga-C and Ga-O bond lengths. 

 

Compound dGa-C [pm] dGa-O [pm] 

13
[10] 

193.8(9) and 191.7(9)b* 

192.8
b
 (ave.) 

188.6(5), 242.4(5), 

193.6(6), 189.2(5), 

189.8(5), 190.7(6), 

194.6(6), and 

234.1(5) 

202.9 (ave.) 

14
[10]

 194.4(3) 

189.5(2), 189.2(2) 

and 189.4(2) 

189.4 (ave.) 

15
[10]

 
192.3(19) ÷ 199.3(19) 

195.8 (ave.) 

179.5(12)
b ÷ 

194.3(13) 

186.9b (ave.) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Et2O)}2]

[8] 

196.2(4), 195.7(3) and 

197.7(4) 

196.5 (ave.) 

215.3(2) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Diox)}2]

[8] 

195.5(2), 196.1(3) and 

198.6(3) 

196.7 (ave.) 

220.00(17)
a
 

[{Fe(ηηηη5-C5H4)2}3{Ga(Et2O)}2]
[9] 

195.16(16), 194.61(16) and 

194.99(16) 

194.9 (ave.) 

215.51(12) 

[{Fe(ηηηη5-C5H4)2}3{Ga(DMSO)}2]
[9] 

195.2(2), 195.8(2) and 

195.7(2) 

195.6 (ave.) 

209.84(13) 

a – largest bond length 
b – shortest bond length 
* – see Table 4 
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If we take a look at the Ga-C bond lengths presented in Table 6 and respectively at the 

Ga-C bond lengths exhibited by Table 4 it can be observed that the Ga-C bond lengths 

reported for the gallyl substituted ferrocenes synthesized in this thesis, in big line, are at 

similar lengths with the other gallyl substituted ferrocenes reported in the literature.  

The shortest Ga-C bond length reported so far is afforded by the digallyl substituted 

ferrocenes 13 [dGa-C = 191.7 pm]. This can be an effect of the substituents directed 

bonded at the gallium atoms. 

On the other hand, the shortest Ga-O bond lengths is afforded by the 

gallaferrocenophane 15 [dGa-O = 179.5 pm] which is 41 pm shorter than the longest 

reported Ga-O moiety [dGa-O = 220.0 pm].[8] The other gallyl substituted ferrocenes 

discussed in this chapter shows Ga-O bond lengths in agreement with the reported 

values for this type of moiety. 

A large intermolecular Ga…Ga separation is observed for the digallyl substituted 

ferrocene 14 [dGa…Ga = 690.0 pm], but a little bit smaller than that reported for 8       

(see Table 5). These two values of the intermolecular Ga…Ga separation are the largest 

reported so far. Having so big separation values between the gallium atoms, it can be 

concluded that no metal-metal interactions between gallium atoms are presented.  

The Ga…Fe distance values reported for 13, 14 and 15 are not so different from the 

other Ga…Fe distance values reported in the literature (see Table 7) and in the same 

time big enough to have no interaction between the Ga and Fe atoms. 

Only 15 exhibit in its backbone more than one ferrocenyl unit giving rise to a possible 

intermolecular Fe…Fe interaction. As it was observed from its single crystal X-ray 

analysis (see Chapter 4.2.5.3.), in its structure, four ferrocenyl fragments are bonded 

through a gallium-oxygen cage. Here, the distance between the Fe atoms is the largest 

distance reported for a gallaferrocenophane, so far [dFe…Fe = 748.3 pm (ave.)]            

that can explain it’s electrochemical behavior in comparison with                        

[{Fe(η5-C5H4)2}3{Ga(Do)}2]
[9] which has the Fe…Fe distance with about 200 pm 

shorter than 15. A similar value of the Fe…Fe distance was                                  

reported for the ferrocenylgallane dimer [{(η5-C5H5)Fe(η5-C5H4)}{GaMe2}]2
[1]   

[dFe…Fe = 739.2 pm (ave.)]. 
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Table 7: Summary of intermolecular Ga…Fe, Ga…Ga and Fe…Fe separations. 

Compound dGa…Ga [pm] dGa…Fe [pm] dFe…Fe [pm] 

13
[10]

 372.4 
351.2 and 351.6 

351.4 (ave.) 
- 

14
[10]

 690.0 345.0 - 

15
[10]

 

316.8, 319.6, 

318.0 and 319.6 

318.5 (ave.) 

355.8, 356.6, 

354.8, 355.4, 

356.8, 359.6, 

357.6 and 352.4 

356.1 (ave.) 

778.0, 728.8, 

754.8 and 731.6 

748.3 (ave.) 

[{Fe(ηηηη5-C5H4)2}2{GaCH(SiMe3)2}2]
[3] * * 532.5 

[{Fe(ηηηη5
-C5H4)2}2{Ga(Pytsi)2}2]

[4] * * 546.2 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Pyridine)}2]

[6] * * 

540.3, 540.3 and 

558.2 

546.3 (ave.) 

[{Fe(ηηηη5
-C5H4)2}2{GaMe}2]

[8] * * 545.5 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Et2O)}2]

[8] * * 543.2 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyridine)}2]

[8] * * 542.7 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyrimidine)}2]

[8] * * 548.5 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Quinoxaline)}2]
[8] * * 545.0 

[{Fe(ηηηη5
-C5H4)2}2{GaMe(Pyrazine)}2]

[8] * * 549.0 

[{Fe(ηηηη5-C5H4)2}2{GaMe(Diox)}2]
[8] * * 545.1 

[{(ηηηη5
-C5H5)Fe(ηηηη5

-C5H4)}{GaMe2}]2
[1] * * 739.2 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Et2O)}2]

[9] * * 

545.2, 545.2 and 

551.0 

547.1 (ave.) 

[{Fe(ηηηη5
-C5H4)2}3{Ga(DMSO)}2]

[9] * * 

547.1, 535.8 and 

548.0 

543.6 (ave.) 

[{Fe(ηηηη5
-C5H4)2}3{Ga(Pyrazine)}2]

[9] * * 

545.5, 539.7 and 

536.1 

540.4 (ave.) 

* - see Table 5 
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5. Conclusion and Outlook 

 

With the bis(amino)gallium substituted ferrocene derivative 8, a useful synthetic tool is 

available to synthesize various digallyl substituted ferrocenes (13, 14, 16 and 17) or 

digallylferrocenophane derivatives (15). 9 also proves to be a valuable synthon for the 

synthesis of other monogallyl substituted ferrocene (20, 21 and 22).  

Due to the insertion of carbon dioxide in the gallium-nitrogen bonds, new expectations 

are opened on using these compounds for the synthesis of new ferrocenyl gallane with 

different “inert molecules”. 

A new type of ferrocenyl oligomers is obtained together with the first member of this 

class (15) prepared by mixed alcoholysis/hydrolysis, whose structure is determined by a 

gallium/oxo cage.  

The reported new gallyl substituted ferrocene derivatives complete the small family of 

ferrocene substituted gallanes, and together with compounds 18 and 19 exhibit great 

possibilities to be further used as precursors in the synthesis of semiconductors.      

Also, these compounds might be used as single-source molecular precursors in the 

synthesis of Ga-O-N thin films, with addition of other elements as Fe. 

An interesting further research work could be the synthesis of new oligomers or 

polymers via thermolysis reaction, having in their backbones these gallyl substituted 

ferrocenes. As well, using these gallyl substituted ferrocenes in the metalorganic 

chemical vapor deposition of GaN : Fe and (Ga,Fe)N layers, as single-source molecular 

precursors might be possible. 
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6. Summary 

 

Because of the lowest development in the gallyl substituted ferrocenes chemistry, 

although the ferrocenyl derivatives found many applications, a new insight in the 

chemical and physical properties of the previous mentioned compounds was required. 

With this thesis, new informations regarding the stability, different properties and atoms 

arrangement in solid state structures of a serie of mono- and bisubstituted ferrocenyl 

gallanes are presented. 

As starting materials two gallyl substituted ferrocenes 8 and 9 from actually four 

synthesized gallyl substituted (also 10 and 11) ferrocenes were used. The disubstituted 

and the monosubstituted gallyl ferrocenes 10 and 11 could not be further used as 

starting materials because of their low yields. 

The disubstituted gallyl ferrocene 8 was synthesized by treating of the monomeric 

bis(2,2,6,6,-tetramethylpiperidino)gallium chloride 1 with a suspension of     

[Li2{Fe(η5-C5H4)2}•2/3 TMEDA] in hexane. It leads not only to the isolation of the first 

starting material, but also to the isolation of a side product which shows a lithium 

ferrocene cage of nine lithium atoms and four disubstituted ferrocenyl rests (12). 
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The monosubstituted gallyl ferrocene 9, which is in fact the second starting material, 

was achieved in moderate yield from the reaction of 1 with monolithiated ferrocene 

obtained in situ. 
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In the course of our investigations on the chemical properties of the mono- or 

disubstituted gallyl ferrocenes 8 and 9, we observed a different behavior of the previous 

mention gallyl substituted ferrocenes in the reaction with mono- and diacids. When 8 or 

9 react with monoacids as acetic acid, ethanol or phenol different gallyl substituted 

ferrocenes and a gallaferrocenophane are obtained. The new gallyl subtituted ferrocenes 

obtained in these reactions, are formed from a substitution reaction at the gallium atoms 

where the tmp units are replaced with carboxylato groups (14 and 20), phenolato groups 

(16, 17, 21 and 22) or with ethoxylato rests, where the first member (15) of a new 

gallaferrocenophane class was synthesized. Several from these new products could be 

characterized by single crystal X-ray analyses. 
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By the reaction of 8 or 9 with diacids malonic acid and catechol, not only the cleavage 

of the Ga-tmp bonds is observed but also the Ga-C moiety is broken, resulting in new 

gallium alkoxide complexes as 18 and 19. 
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Even almost inert molecules, as carbon dioxide, could be activated through an insertion 
of CO2 into all four gallium-nitrogen bonds of 8 giving the new gallium carbamate 13. 

 

 

Three other suitable crytals for analysis were collected. The first one came from the 

monomeric 1, which till now was not possible because of the low melting point of its 

crystals. From the synthesis of the monomeric 6, the second convenient single cystals 

for further X-ray analyses were collected accompanied by the colorless crystals of the 

side product 7. 7 shows a polymeric cationic chain in solid state. 
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The electrochemical behaviour of 8, 9, 13, 14 and 15 was determined via 

cyclovoltammetry. Here, the higher oxidation potential was recorded for the 

monosubstituted gallyl ferrocene 8 (E1/2 = 121 mV). This indicates that the 

monosubstituted gallyl ferrocene 8 is more difficult oxidized than ferrocene and than 

the other gallyl substituted ferrocenes. In the same time for the 
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tetranuclear species 15 only one oxidation-reduction peak is observed. This could be an 

effect of the well separated ferrocenyl units and because of that, probably, no 

delocalization is possible. 

Usually, the mass spectra recorded for these substituted ferrocenyl gallanes did not 

show the molecular ion peaks, indicating a low stability in gas phase. The only one 

molecular ion was observed for 13 that indicates a highest stability of 13 in comparison 

with the other gallyl ferrocenyl derivatives. 

Several quantum chemical calculations on the model compound [Fc{Ga(NR2)}n]        

(Fc = {(η5-C5H5)Fe(η5-C5H4)} or {Fe(η5-C5H4)2}, R = tmp, n = 0, 1 or 2) have been 

performed. These bring a new insight in the energetical characteristcs of the previous 

mentioned substituted gallyl ferrocenes 8 and 9. 
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7. Experimental 

7.1. General Remarks 

All operations were performed in vacuum or under purified and dried argon using 

Schlenk techniques. Solvents were dried prior to use, using standard techniques, and 

stored under argon atmosphere. All other chemicals were of commercial reagent grade 

and used without any further purification directly as purchased. 

7.1.1. NMR Spectroscopy 

The NMR spectra were recorded using three different spectrometers: Bruker ARX 200, 

Bruker Advance II 400 and Bruker Advance III 600. All the chemical shifts were 

referenced to internal solvent resonance and reported to external standard 

tetramethylsilane (1H, 13C, 29Si). 

7.1.2. Elementary Analysis 

Elementary analyses (EA) were recorded by the Micro Analytical Laboratory of the 

Institute of Inorganic Chemistry, Heidelberg. The measured samples were embedded in 

two micro aluminum containers and put in the machine. A Vario EL Elementar analysis 

apparatus was used. The deviations which appeared in the results from calculated values 

are due to the extremely air-sensitive and hygroscopic nature of some of the 

compounds. 

 



7. Experimental 
 

 94

7.1.3. Mass Spectrometry 

The mass spectra were recorded on a JEOL JMS-700 (EI) and a Finnigan TSQ 700 

(ESI) machine. For all EI mass spectra, 70 eV electron beam energy was operated.     

All the samples were directly brought in the ionization field using a glass tube. 

7.1.4. Cyclovoltammetry 

All electrochemical experiments were carried out with a Princeton Applied Research 

Potentiostat/Galvanostat Model 263A respectively the corresponding software       

Power Suite 2.11. A three-electrode system was used. The working electrode employed 

was a glass carbon electrode (2 mm diameter). A silver wire, immersed in a solution of 

0.1 M tetrabutylammonium hexafluorophosphate (NBu4PF6) in thf, was the pseudo 

reference electrode. Platinum wire was used as the auxiliary electrode. For all the CVs 

measurements, IR compensation was applied in order to reduce the thf resistance.     

The scan rate used was 25 mV/s. Bis(pentamethylcyclopentadienyl)cobaltocene 

tetrafluoroborate was added for each measurement as an internal standard. All the 

measured redox potentials were later converted into ferrocene/ferrocenium 

([FeCp2]/[FeCp2]
+) potentials (E([CoCp*2]) = -585 mV (in thf) vs. [FeCp2]/[FeCp2]

+; 

our own measurement). Experiments were performed under strict inert conditions. 

Measurements were taken at room temperature (296 K) in thf as solvent with NBu4PF6 

as supporting electrolyte.  

7.1.5. X-ray Analysis 

Suitable single crystals were mounted with perfluorated polyether oil on the tip of a 

glass fiber and cooled immediately on the goniometric head. Data collections were 

performed with Mo(Kα) radiation (graphite monochromated) on a Stoe IPDSI 

diffractometer. The structures were solved and refined using the Bruker AXS 

SHELXTL (PC) package[1]. The non-hydrogen atoms were given anisotropic 

displacement parameters. All hydrogen atoms bonded to carbon atoms were included in 

calculated positions and refined using a riding model with fixed isotropic U’s in the 

final refinement. All the crystal structures were solved by Direct Methods and refined 

by full-matrix least-squares against F
2. The positions of other hydrogen atoms were
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 taken from a difference Fourier map and refined isotropically. For supplementary 

details, see appendices on crystallographic data, without structure factors, or see the 

Cambridge Crystallographic Data Center where have been deposited some structures 

reported in this thesis. The supplementary publication numbers are: CCDC - 652002 - 

652004 (1, 8, 13). These data can be obtained free of charge from via 

www.ccdc.cam.ac.uk/data_request/cif, or on application to CCDC, 12 Union Road, 

Cambridge CB 2 1 EZ, UK [Fax: int. code +44(1223)336-033; E-mail: 

deposit@ccdc.cam.ac.uk]. The data for the other structures (6, 7, 9, 12, 14, 15, 18, 19, 

22) reported in this thesis are deposited at Prof. Dr. Gerald Linti, University of 

Heidelberg, Institute of Inorganic Chemistry, Im Neuenheimer Feld 270, D-69120 

Heidelberg, Germany Fax: +49-6221-546617, E-mail: gerald.linti@aci.uni-

heidelberg.de 

All the structures were solved by Prof. Dr. Gerald Linti. 

7.1.6. Quantum Chemical Calculations 

Theory level used: B3LYP/6-311G(d) for all the atoms. Single-points energies were 

calculated with GAUSSIAN 03[2] software and the crystals coordinate from the 

structures of 8 and 9 were used, respectively. 

For ab initio Electronic Structure Calculations of ferrocene, the same          

(GAUSSIAN 03[2]) software was used. 

7.1.7. EPR Spectroscopy 

A Bruker Biospin Elexsys spectrometer equipped with a variable temperature accessory 

from Eurotherm and a Super High Q Cavity was used. The X-band was about 9 GHz. 

EPR spectrum had been measured in a glassy solution obtained by frozing (at 105 K) 

the disubstituted gallyl ferricenium in a thf/toluene (1:1) solution mixture. The sample 

was measured in seals quartz tubes (under argon) place in the Eurotherm (B-VT-2000) 

dewar filled with liquid nitrogen, respectively. The spectrum was visualized by using 

the Bruker Xepr software (Version 2.4b.12). 
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7.1.8. Melting Point 

Melting points were measured with a Gallenkamp Melting Point Apparatus.              

The measurements were made using sealed capillaries. The reported values of the 

melting points are the one directly recorded from the apparatus, without further 

corrections. 

7.1.9. Chemical used 

[N(SiMe3)2]2GaCl,[3] Me2C[{CH2N(Li)SiMe3}{CH2N(H)SiMe3}],[4] tmpLi,[5] 

tmp2GaCl,[6],[7] [Li2{Fe(η5-C5H4)2} • 2/3 TMEDA],[8] [Li(η5-C5H4)Fe(η5-C5H5)]
[9] were 

prepared as described in the literature. 

7.2. Preparation of Amino Gallium Halides 

7.2.1. Synthesis of 6 and 7 

A solution of the N,N’-disilylated amine 3 (1.6 g, 6.34 mmol) was lithiated with a 

solution of tBuLi in hexane (0.41 g, 6.4 mmol) cooling the solution at -78 °C.            

The resulting solution was stirred further for 2 hours (10 minutes at -78 °C and 110 

minutes by room temperature) until the evolution of butane was finished. The amide 

solution was transferred to a dropping funnel and added slowly (over a period of 20 

minutes) to a solution of GaCl3 (1.12 g, 6.34 mmol) in 10 ml thf/diox (10:1) (at -78 °C). 

Then the cooling bath was removed continuing the stirring over night. 

After stirring the mixture for 18 hours, all volatiles were evaporated under vacuum and 

a white jelly was obtained. This residue was treated with diethyl ether (50 ml), upon a 

while LiCl precipitated. Then the mixture was filtrated and the filtrate concentrated to 

1/3 of the original volume. On cooling the solution at -32 °C for several days, 1.79 g of 

6 (yield: 73 %) precipitated as colorless crystals. 

M.p.: 71-73 °C, (216-220 °C dec.); 

1H NMR (600 MHz, CDCl3, 25°C): δ = 3.04 (d, 2JH,H = 13.2 Hz, 1H, NCH2),            

2.86 (t, 3JH,H = 12.4 Hz, 1H, N(H)CH2), 2.75 (dd, 4JH,H = 13.2 Hz, 1H, NCH2),    
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2.59 (dt, 4JH,H = 12.4 Hz, 1H, NCH2), 1.96 (d, 3JH,H = 12.4 Hz, 1H, NH),                    

1.05 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.47 (s, 9H, Si(CH3)3NH), 0.09 (s, 9H, Si(CH3)3); 

13C NMR (CDCl3, 25°C): δ = 56.5, 55.2 (CH2), 35.0 (C(CH3)2), 26.7, 21.6 (CH3),     

0.8, -1.0 (Si(CH3)3); 

EA C11H29GaN2Si2 (386.17): calcd. C 34.21, H 7.57, N 7.25; found C 33.81, H 7.52, 

N7.20; 

MS (70eV, EI-MS, 69Ga): m/z (%) = 281 (12) [M – 7CH3]
+, 268 (5)                             

[M – Si(CH3)3 – 3CH3]
+, 253 (8) [M – Si(CH3)3 – 4CH3]

+, 170 (30)                             

[M – 2Si(CH3)3 – 2CH3 – C(CH2)2]
+, 30 (100) [2CH3]

 +. 

7.3. Preparation of Ferrocenyl Substituted Bis(amino)gallanes 

7.3.1. Synthesis of 8 and 12 

A solution of 2.71 g (7.02 mmol) 1 in 60 ml n-hexane was cooled at -78 °C and a 

suspension of 0.97 g (3.52 mmol) [Li2{Fe(η5-C5H4)2}•2/3TMEDA] in 30 ml n-hexane 

was added dropwise. The solution was stirred for 18 h. During this time, the color 

changed to red-orange and a precipitate of LiCl was formed. The reaction mixture was 

filtrated and the filtrate was reduced to one-third of its original volume and stored at      

-32 °C for several days, resulting in a deposition of  2.58 g (yield: 83 %) of red-orange 

crystals of 8. In the same time, some red crystals were collected and investigated by    

X-ray single crystal analysis giving rise to a new dilithioferrocene-TMEDA adduct with 

eleven lithium atoms and four ferrocenyl units in its backbone 12. 

M.p.: 198-200 °C; 

1H NMR (400 MHz, C6D6, 25 °C): δ = 4.62 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 4 H,     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.53 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 4 H, Cp-H2
 / H

5 or  

Cp-H3
 / H

4), 1.77 (mc, 8 H, tmp-γ-CH2), 1.57 (s, 48 H, tmp-CH3), 1.51 (pseudo-t,     
2JH,H = 3JH,H = 6.3 Hz, 16 H, tmp-β-CH2); 
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13C NMR (C6D6, 25 °C): δ = 80.4 (ipso-C, subst. Cp-ring), 77.9 (Cp-C3
/C

4 or             

Cp- C
2
/C

5), 71.9 (Cp-C3
/C

4 or Cp- C
2
/C

5), 54.2 (tmp-C2
/C

6), 40.7 (tmp-C3
/C

5), 34.9 

(tmp-C7
/C

8
/C

9
/C

10), 18.6 (tmp-C4); 

EA C46H80FeGa2N4 (884.47): calcd.: C 62.47, H 9.12, N 6.33, found: C 59.80, H 8.62, 

N 5.92; 

MS (70eV, EI-MS, 69Ga): m/z (%) = 489 (0.6) [tmp3Ga] +, 253 (0.8)                     

[{Fe(η5 – C5H4)2}Ga] +, 186 (94) [C10H10Fe]+, 141 (31) [C9H19N]+, 126 (100)       

[tmpH-Me]+, 121 (44) [C5H5Fe]+, 69 (100) [Ga]+, 58 (100) [Fe]+. 

7.3.2. Synthesis of 8a 

A solution of 0.033 g (0.205 mmol) bromine in 5 ml n-hexane was added dropwise via a 

seringe to a solution of 0.360 g (0.41 mmol) 8 in 15 ml n-hexane. The reaction took 

place at room temperature. The color changed rapidly from orange to green and then to 

blue, with the formation of a precipitate. All volatiles were evacuated under vacuum and 

the resulting solid was washed several times with n-hexane yielding (0.084 g,           

21% yield) the disubstituted gallyl ferricenium species, as a blue solid.  

7.3.3. Synthesis of 9 

To a solution of 2.35 g (12.63 mmol) ferrocene in 30 ml thf, chilled at - 20 °C, 11.15 ml 

(18.95 mmol) of 1.7 M tBuLi in pentane were added dropwise (over a period of           

20 min.). After the addition was complete, the mixture was stirred further for 120 min. 

and allowed to warm up slowly at - 10 °C. Then it was stirred another 2 h and allowed 

to warm at r.t. and stirred further for another 30 min. During this time, the color 

changed to deep red. The monolithioferrocene solution was transferred into a dropping 

funnel and added dropwise into a solution of 4.87 g (12.63 mmol) 1 in 60 ml n-hexane. 

The reaction mixture was stirred over night and the color changed to red-orange.        

All volatiles were evacuated under vacuum and the resulting solid was dissolved in     

70 ml n-hexane with the precipitation of LiCl. The reaction mixture was filtrated and 

the filtrate was reduced to one-third of its original volume and stored at -32 °C for 

several days, resulting in a deposition of 3.11 g (yield: 46 %) of                                  

red-orange crystals of 9. 
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1H NMR (600 MHz, C6D6, 25 °C): δ = 4.55 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 2 H,     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.31 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 2 H, Cp-H2
 / H

5 or  

Cp-H3
 / H

4), 4.07 (s, 5 H unsubst. Cp-ring), 1.74 (mc, 4 H, tmp-γ-CH2), 1.51 (s, 24 H, 

tmp-CH3), 1.46 (pseudo-t, 2JH,H = 3JH,H = 6.2 Hz, 8 H, tmp-β-CH2); 

13C NMR (C6D6, 25 °C): δ = 81.0 (ipso-C, subst. Cp-ring), 77.6 (Cp-C3
/C

4 or             

Cp- C
2
/C

5), 71.2 (Cp-C3
/C

4 or Cp- C
2
/C

5), 68.7 (unsubst. Cp-ring), 54.1 (tmp-C2
/C

6), 

40.8 (tmp-C3
/C

5), 34.8 (tmp-C7
/C

8
/C

9
/C

10), 18.7 (tmp-C4); 

EA C28H45FeGaN2 (535.26): calcd.: C 62.83, H 8.47, N 5.23, found: C 61.25, H 7.66, N 

3.99; 

7.3.4. Synthesis of 10 

A suspension of (1.28 g, 4.65 mmol) [Li2{Fe(η5-C5H4)2}•2/3TMEDA] in 40 ml            

n-hexane was added dropwise into a solution of (3.51 g, 9.11 mmol) 2 in 50 ml n-

hexane with continuous stirring at room temperature. In a few minutes, the solution gets 

an orange color. Then, the reaction mixture was stirred over night. At the end of 

reaction, a white precipitate was formed and the solution color turned red-orange.   

After the removal of the precipitate, by filtration and the removal of all volatiles under 

vacuum, the product 10 as an orange solid was afforded. Yield: 42 %. 

1H NMR (600 MHz, C6D6, 25 °C): δ = 4.61 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 4 H,     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.41 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 4 H, Cp-H2
 / H

5 or  

Cp-H3
 / H

4), 0.40 (s, 72 H, N(Si(CH3)3)2). 

13C NMR (C6D6, 25 °C): δ = 77.4 (Cp-C3
/C

4 or Cp- C
2
/C

5), 72.0 (Cp-C3
/C

4 or            

Cp- C2
/C

5), 6.1 (N(Si(CH3)3)2). 

7.3.5. Synthesis of 11 

To a solution of 0.98 g (5.27 mmol) ferrocene in 15 ml thf, chilled at - 20 °C, 4.65 ml 

(7.91 mmol) of 1.7 M tBuLi in pentane was added dropwise (over a period of 20 min.). 

After the addition was complete, the mixture was stirred further for 120 min and 

allowed to warm up slowly at - 10 °C. Then it was stirred another 2 h and allowed to 
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warm at r.t. and stirred further for another 30 min. During this time, the color changed 

to deep red. The monolithioferrocene solution was put into a dropping funnel and added 

dropwise into a solution of 3.02 g (5.27 mmol) 2 in 30 ml n-hexane. The reaction 

mixture was stirred over night and the color change to red-orange. All volatiles were 

evacuated under vacuum and the resulting solid was treated with 40 ml n-hexane.      

The reaction mixture was filtrated and the filtrate was reduced to one-third of its 

original volume and stored at -32 °C for several days, resulting in a deposition of 1.10 g 

(yield: 29 %) of red-orange crystals of 11. 

1H NMR (600 MHz, C6D6, 25 °C): δ = 4.31 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 2 H,     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.27 (pseudo-t, 3JH,H = 4JH,H = 1.6 Hz, 2 H, Cp-H2
 / H

5 or  

Cp-H3
 / H

4), 4.11 (s, 5 H, unsubst. Cp-ring), 0.51 (s, 36 H, N(Si(CH3)3)2). 

13C NMR (C6D6, 25 °C): δ = 76.7 (Cp-C3
/C

4 or Cp- C
2
/C

5), 71.8 (Cp-C3
/C

4 or            

Cp- C2
/C

5), 68.9 (unsubst. Cp), 6.3 (N(Si(CH3)3)2). 

7.4. Preparation of Different Derivatives of Mono- and Bisgallyl 

Substituted Ferrocenes 

7.4.1. Synthesis of 13 

Into a stirred solution of 0.21 g (0.23 mmol) 8 in 10 ml of thf, cooled at –78 °C, was 

added dry ice in excess. Within a few seconds the color changed from red-orange to 

yellow. Then the mixture was warmed up slowly at ambient temperatures and stirred for 

another 20 minutes. The clear yellow solution was reduced to one-third of its original 

volume and stored at –32 °C for several days. 0.23 g (yield: 94 %) 13 as yellow crystals 

formed. 

M.p.: 216-219 °C; 

1H NMR (400 MHz, CDCl3, 25 °C): δ = 4.39 (pseudo-t, 3JH,H = 4JH,H = 1.5 Hz , 4 H,  

Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.36 (pseudo-t, 3JH,H = 4JH,H = 1.5 Hz, 4 H, Cp-H2
 / H

5 or  

Cp-H3
 / H

4), 1.70 (pseudo-t, 8 H, tmp-γ-CH2), 1.58 (mc, 16 H, tmp-β-CH2),               

1.53 (s, 24 H, tmp-CH3), 1.44 (s, 24 H,µ2-tmp-CH3); 
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13C NMR (CDCl3, 25 °C): δ = 165.8 (CO2N), 161.3 (CO2N),  75.8 (Cp-C3
/C

4 or        

Cp- C
2
/C

5), 71.6 (Cp-C3
/C

4 or Cp- C
2
/C

5), 64.7 (ipso-C, subst. Cp-ring), 57.4          

(tmp-C2
/C

6), 56.7 (tmp-C2
/C

6), 42.9 (tmp-C3
/C

5), 40.7 (tmp-C3
/C

5), 29.7                 

(tmp-C7
/C

8
/C

9
/C

10), 29.6 (tmp-C7
/C

8
/C

9
/C

10), 16.4 (tmp-C4), 15.7 (tmp-C4); 

EA C50H80FeGa2N4O8 (1060.52): calcd.: C 56.63, H 7.60, N 5.28, found: C 56.46,        

H 7.79, N 5.04; 

MS (70eV, EI-MS, 69Ga): m/z (%) = 1060 (0.4) [M]+, 972 (7) [M-2CO2]
+, 875 (0.4)  

[M-tmpCO2]
+, 832 (14) [M- tmp2CO2]

+, 194 (3) [tmpGa-Me]+, 186 (99) [C10H10Fe]+, 

141 (31) [tmpH]+, 126 (100) [tmpH-Me]+, 121 (27) [C5H5Fe]+, 69 (100) [Ga]+, 58 (100) 

[Fe]+, 44 (97) [CO2]
+. 

7.4.2. Synthesis of 14 

Into a solution of 0.43 g 8 (0.49 mmol) in 20 ml of diethyl ether, cooled at –78 °C, a 

solution of 0.17 ml water free H3CCOOH (2.99 mmol) in 5 ml of diethyl ether was 

added dropwise. Within a few seconds the color changed from red-orange to yellow. 

Then the mixture was allowed to warm up slowly at ambient temperature and stirred for 

an additional hour. A deposition of a yellow precipitate was observed. All volatiles were 

removed in vacuum (0.01 mbar) and the remaining solid was washed with hexane 

several times. Then the solid was dissolved in a 10:1 mixture of tetrahydofurane/hexane 

and stored at –32 °C for several days. 0.46 g 14 (Yield: 97 %) as yellow crystals were 

collected. 

M.p.: 132 – 135 °C; 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 4.28 (br, H, Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.24 

(br, 4 H, Cp-H2
 / H

5 or Cp-H3
 / H

4), 2.10 (br, 4H, tmpH2
+-NH2), 2.02 (br, 18 H, 

O2CCH3), 1.69 (br, 4H, tmpH2
+-γ-CH2), 1.62 (br, 8H, tmpH2

+-β-CH2), 1.39 (br, 24H, 

tmpH2
+-CH3); 

13C NMR (CDCl3, 25 °C): δ = 177.8 (CO2CH3), 177.3 (CO2CH3), 75.0 (Cp-C3
/C

4 or 

Cp- C
2
/C

5), 70.5 (Cp-C3
/C

4 or Cp- C
2
/C

5), 55.7 (tmp-C2
/C

6), 35.2 (tmp-C3
/C

5), 27.5 

(tmp-C7
/C

8
/C

9
/C

10), 23.6 (CO2CH3), 16.4 (tmp-C4); 
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EA C40H66FeGa2N2O12 (962.25): calcd. C 49.93, H 6.91, N 2.91, found C 50.25, H 7.06, 

N 3.05; 

MS (5.5 kV, ESI-MS, thf, 8 µl/min, 69Ga): m/z (%) = (–): 431 (100)                      

[Fe(η5-C5H4)GaAc3]
-, 389 (53) [Fe(η5-C5H4)GaAc2OH]-. (Ac = CH3COO-). 

7.4.3. Synthesis of 15 

0.64 g 8 (0.73 mmol) were dissolved in 20 ml of benzene at room temperature and   

0.35 ml of 90%-ethanol (5.94 mmol) were added dropwise. Within a few seconds the 

color changed from red-orange to light yellow. Then the reaction mixture was stirred for 

another 15 minutes. The clear yellow solution was reduced to one-third of its original 

volume in vacuum and stored at –32 °C for several days. 0.22 g 15 (yield: 18 %) as 

yellow crystals precipitated. 

M.p.: 119 – 123 °C, (240 °C dec.); 

EA C56H72Fe4Ga8O12 (1718.42): calcd. C 39.14, H 4.22, found C 36.22, H 4.43; 

MS (70eV, EI-MS, 69Ga): m/z (%) = 858 (0.2) [M/2]+, 186 (96) [C10H10Fe]+, 121 (60) 

[C5H5Fe]+, 69 (100) [Ga]+ , 56 (30) [Fe]+. 

7.4.4. Synthesis of 16 and 17 

A solution of C6H5OH (0.298 g, 3.17 mmol) in 5 ml thf was added dropwise via a 

syringe to a solution of 8 (0.458 g, 0.52 mmol) in 15 ml thf with continuous stirring at 

room temperature. The solution color turned immediately yellow. After the removal of 

all volatiles in vacuum, the residue was washed several times with n-hexane yielding a 

yellow powder of the mixture of 16 and 17; 67 % yield based upon consumed 8. 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 7.11 (m, H, phenol-p-CH), 6.91 (m, H,  

phenol-o-CH), 6.75 (m, H, phenol-m-CH), 3.81 (br, 4H, subst. Cp-H2
 / H

5 or             

Cp-H3
 / H

4), 3.74 (mc, 8H, [Li(thf)2]), 3.55 (br, 4H, subst. Cp-H2
 / H

5 or Cp-H3
 / H

4), 

1.84 (mc, 8H, [Li(thf)2]), 1.66 (mc, 4H, tmp-γ-CH2), 1.47 (mc, 8 H, tmp-β-CH2),        

1.31 (s, 24 H, tmp-CH3); 



7. Experimental 
 

 103 

 

13C NMR (CDCl3, 25 °C): δ = 161.0 and 160.0 (Ph-COGa), 129.2 and 129.1             

(Ph-m-CH), 120.0 and 119.6 (Ph-o-CH), 118.8 and 118.0 (Ph-p-CH), 74.6 (subst.      

Cp-C3
/C

4 or Cp- C
2
/C

5), 70.7 (subst. Cp-C3
/C

4 or Cp- C
2
/C

5), 67.9 (Li(thf)2), 53.9   

(tmp-C2
/C

6), 36.8 (tmp-C3
/C

5), 29.3 (tmp-C7
/C

8
/C

9
/C

10), 25.5 (Li(thf)2), 16.8 (tmp-C4); 

7.4.5. Synthesis of 18 

0.65 g (0.74 mmol) of 8 were dissolved in 15 ml thf. Into this solution was added 0.31 g 

(3.00 mmol) of a solution of malonic acid in thf. The reaction took place at room 

temperature with continuous stirring. In a few seconds, a yellow precipitate was formed. 

After the addition was finished, the mixture was stirred for another 20 minutes. Then all 

the volatiles were evaporated under vacuum at room temperature, and the residue was 

washed several times with n-hexane and then with diethyl ether. The yellow jelly 

proved to be insoluble in thf at room temperature and also after refluxing for                

30 minutes. By refluxing the residue for 20 minutes in acetonitrile, a clear pale yellow 

solution was obtained. The last solution was cool down slowly to room temperature and 

let for several days at 6°C yielding 0.423 g of colorless crystals of 18 (yield: 71%). 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 3.34 (br, 6H, Mal-(COO)2CH2), 1.67 (br, 18 H, 

tmp-γ-CH2 and tmp-β-CH2), 1.41 (s, 36 H, tmp-CH3); 

13C NMR (CDCl3, 25 °C): δ = 174.1 (Mal-(COO)2CH2), 56.5 (tmp-C2
/C

6), 45.0      

(Mal-(COO)2CH2), 34.8 (tmp-C3
/C

5), 27.4 (tmp-C7
/C

8
/C

9
/C

10), 16.3 (tmp-C4). 

7.4.6. Synthesis of 19 

a) Into a solution of 0.36 g 8 (0.40 mmol) in 20 ml of thf, cooled at -78°C, 0.18 g      

1,2-dihydroxybenzene (1.66 mmol) dissolved in 5 ml  of thf were added dropwise.    

The color changed immediately from red-orange to yellow and a white precipitate was 

formed. Then the reaction mixture was heated to reflux for 10 minutes and a clear 

yellow solution was obtained. The mixture was stirred for another 30 minutes at room 

temperature. The clear yellow solution was reduced to one-third of its original volume 

and stored at –32 °C for several days. 0.28 g 19 (yield: 93 %) as colorless crystals were 

formed. 
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b) By a similar reaction, to a solution of 0.37 g (0.69 mmol) 9 in 10 ml thf, at room 

temperature, was added dropwise a solution of 0.228 g (2.07 mmol)                           

1,2-dihydroxybenzene, in 5 ml thf. In a few minutes the color turned yellow. Then three 

quarter volumes were evaporated under vacuum. After several days standing at 7°C, 

colorless prismatic crystals of 19 were formed (yield: 87%).   

M.p.: 247 – 250 °C (with dec.); 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 8.40 (br, 1 H, OH), 6.85 (br, 2 H, CH),        

6.66 (br, 6 H, CH), 6.55 (br, 4 H, CH), 1.69 (m, 4H, tmp-γ-CH2), 1.58 (m, 8 H,        

tmp-β-CH2), 1.28 (s, 24 H, tmp-CH3); 

13C NMR (CDCl3, 25 °C): δ = 150.0 (COGa), 145.2 (COH), 120.3 (o-CH), 117.7        

(o-CH), 114.2 (m-CH), 56.0 (tmp-C2
/C

6), 35.8 (tmp-C3
/C

5), 27.9 (tmp-C7
/C

8
/C

9
/C

10), 

16.1 (tmp-C4); 

EA C40H57GaN2O7 (747.61): calcd. C 64.26, H 7.68, N 3.75, found C 60.55, H 7.42,    

N 3.68. 

MS (5.0 kV, ESI-MS, thf, 8 µl/min, 69Ga): m/z (%) = (-) 321 (100) 

[Ga(C6H4O2){C6H4O(OH)}(OH)2]
-, 109 (3) [C6H4O(OH)]-. 

7.4.7. Synthesis of 20 

A solution of 0.49 g 9 (0.92 mmol) in 10 ml diethyl ether was treated with a solution of 

acetic acid (0.22 g, 3.67 mmol) in 5 ml diethyl ether. The reaction took place at room 

temperature. The color changed immediately from orange to yellow with the formation 

of a yellow precipitate. All volatiles were removed under vacuum (0.01 mbar) and the 

remaining solid was washed with hexane several times. 0.41 g 20 (yield: 78 %) as 

yellow powder was collected. 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 4.29 (br, 2H, Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.25 

(br, 2H, Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.13 (br, 5H, unsubst. Cp), 2.10 (br, 2H,       

tmpH2
+-NH2), 2.03 (br, 9 H, O2CCH3), 1.71 (br, 2H, tmpH2

+-γ-CH2), 1.63 (br, 4H, 

tmpH2
+-β-CH2), 1.39 (br, 12H, tmpH2

+-CH3); 
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13C NMR (CDCl3, 25 °C): δ = 177.8 (CO2CH3), 177.2 (CO2CH3), 75.0 (Cp-C3
/C

4 or 

Cp- C2
/C

5), 70.5 (Cp-C3
/C

4 or Cp- C2
/C

5), 68.0 (unsubst. Cp), 55.7 (tmp-C2
/C

6), 35.2 

(tmp-C3
/C

5), 27.4 (tmp-C7
/C

8
/C

9
/C

10), 23.4 (CO2CH3), 16.4 (tmp-C4); 

7.4.8. Synthesis of 21 and 22 

To a stirred solution of 9 (0.659 g, 1.23 mmol) in 15 ml n-hexane was added dropwise a 

solution of C6H5OH (0.355 g, 3.77 mmol) in 10 ml mixture of n-hexane and diethyl 

ether (8:2). The reaction took place at room temperature. The solution color turned 

yellow and the products mixture as an orange precipitate was formed. Product mixture 

yield 72%, based upon consumed 9. The products 21 and 22 were separated by 

recrystallization from a thf:n-hexane solution (1:1) yielding suitable crystals of 22  

(32% yield, based on product mixture yield) and the other product 21 remained in the 

solution. 

a) 21: 1H- and 13C-NMR 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 7.20 (pseudo-t, 3JH,H = 5JH,H = 7.8 Hz, 6H,    

Ph-m-CH), 7.08 (d, 3JH,H = 7.8 Hz, 6H, Ph-o-CH), 6.84 (pseudo-t, 3JH,H = 5JH,H = 7.2 Hz, 

3H, Ph-p-CH), 4.30 (br, 2H, subst. Cp-H2
 / H

5 or Cp-H3
 / H

4), 4.04 (br, 2H, subst.     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 3.88 (s, 5H, unsubst. Cp-ring), 1.53 (m, 2H, tmp-γ-CH2), 

1.37 (m, 4 H, tmp-β-CH2), 1.24 (s, 12 H, tmp-CH3); 

13C NMR (CDCl3, 25 °C): δ = 160.6 (Ph, COGa), 129.3 (Ph, m-CH), 120.0 (Ph, o-CH), 

118.5 (Ph, p-CH), 74.7 (subst. Cp-C3
/C

4 or Cp- C
2
/C

5), 69.9 (subst. Cp-C3
/C

4 or         

Cp- C
2
/C

5), 68.1 (unsubst. Cp), 56.4 (tmp-C2
/C

6), 35.6 (tmp-C3
/C

5), 28.2                 

(tmp-C7
/C

8
/C

9
/C

10), 15.9 (tmp-C4); 

b) 22: 1H- and 13C-NMR 

1H NMR (600 MHz, CDCl3, 25 °C): δ = 7.13 (pseudo-t, 3JH,H = 5JH,H = 7.5 Hz, 6H,    

Ph-m-CH), 6.92 (d, 3JH,H = 7.5 Hz, 6H, Ph-o-CH), 6.81 (pseudo-t, 3JH,H = 5JH,H = 7.2 Hz, 

3H, Ph-p-CH), 4.21 (br, 2H, subst. Cp-H2
 / H

5 or Cp-H3
 / H

4), 3.83 (br, 2H, subst.     

Cp-H2
 / H

5 or Cp-H3
 / H

4), 3.77 (br, 4H, thf-CH2), 3.68 (s, 5H, unsubst. Cp-ring), 1.76 

(br, 4H, thf-CH2); 
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13C NMR (CDCl3, 25 °C): δ = 159.9 (Ph, COGa), 129.3 (Ph, m-CH), 119.8 (Ph, o-CH), 

119.1 (Ph, p-CH), 74.7 (subst. Cp-C3
/C

4 or Cp- C
2
/C

5), 70.2 (subst. Cp-C3
/C

4 or         

Cp- C2
/C

5), 68.2 (unsubst. Cp-ring), 68.1 (thf-CH2), 25.4 (thf-CH2). 
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8. Crystals Data 

 1 6 

Identification code of4 li_of2 

Empirical formula C18H36ClGaN2 C11H29Cl2GaN2Si2 

Molar mass [g mol-1]  385.66 386.16 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system monoclinic monoclinic 

Space group P21/c P21/n 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
10.876(2) 
23.807(5) 
7.951(2) 
90.00 
104.09(3) 
90.00 

 
13.534(3) 
11.113(2) 
13.613(3) 
90.00 
106.52(3) 
90.00 

Volume [Å3] 1996.7(7) 1962.9(7) 

Z 4 4 

Density (calculated) [g/cm3] 1.283 1.307 

Absorption coefficient [mm-1] 1.512 1.785 

F(000) [e] 824 808 

Crystal size [mm3] 0.48 x 0.24 x 0.22 0.25 x 0.25 x 0.20 

θ range for data collection [°] 1.93 to 24.12 1.87 to 30.51 

Index ranges -12 ≤ h ≤ 12 

-26 ≤ k ≤ 25 

-9 ≤ l ≤ 9 

-19 ≤ h ≤ 18 

0 ≤ k ≤ 15 

0 ≤ l ≤ 19 

Reflections collected 12794 5980 

Independent reflections 3076 [Rint = 0.0299] 5980 [Rint = 0] 

Completeness to…  θ = 24.12°; 96.4% θ = 30.51°; 100% 

Refinement method Full-matrix least-squares on 

F2 

Full-matrix least-squares on 

F2 

Data/restraints/parameters 3076/0/207 5980/0/205 

Goodness-of-fit on F2 1.058 1.068 

Final R indices [I>2σ (I)] R1 = 0.0248 

wR2 = 0.0647 

R1 = 0.0625 

wR2 = 0.1580 

R indices (all data) R1 = 0.0292 

wR2 = 0.0686 

R1 = 0.0706 

wR2 = 0.1647 

Largest difference peak and 

hole [eÅ-3] 

0.274 and -0.342 3.342 and -2.492 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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 7 8 

Identification code of14 of9 

Empirical formula (C12H24Cl4GaLiO4)n C46H80FeGa2N4 

Molar mass [g mol-1]  (450.77)n 884.43 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system monoclinic triclinic 

Space group P21/c Pī 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
9.906(2) 
15.733(3) 
13.292(3) 
90.00 
91.22(3) 
90.00 

 
10.999(2) 
13.803(3) 
15.830(3) 
91.82(3) 
106.32(3) 
104.62(3) 

Volume [Å3] 2071.0(7) 2218.0(8) 

Z 4 2 

Density (calculated) [g/cm3] 1.446 1.324 

Absorption coefficient [mm-1] 1.854 1.564 

F(000) [e] 920 944 

Crystal size [mm3] 0.65 x 0.30 x 0.24 0.32 x 0.24 x 0.10 

θ range for data collection [°] 2.01 to 20.88 1.93 to 24.11 

Index ranges -9 ≤ h ≤ 9 

-15≤ k ≤ 15 

-13 ≤ l ≤ 13 

-12 ≤ h ≤ 12 

-15 ≤ k ≤ 15 

-18 ≤ l ≤ 18 

Reflections collected 8740 14381 

Independent reflections 2151 [Rint = 0.1325] 6594 [Rint = 0.0422] 

Completeness to… θ = 20.88°; 98.3% θ = 24.11°; 93.5% 

Refinement method Full-matrix least-squares 

on F2 

Full-matrix least-squares on 

F2 

Data/restraints/parameters 2151/0/199 6594 /0/494 

Goodness-of-fit on F2 1.468 0.940 

Final R indices [I>2σ (I)] R1 = 0.1238 

wR2 = 0. 2812 

R1 = 0.0332 

wR2 = 0.0813 

R indices (all data) R1 = 0.1967 

wR2 = 0.3043 

R1 = 0.0403 

wR2 = 0.0832 

Largest difference peak and hole 

[eÅ-3] 

1.494 and -0.686 0.647 and -0.801 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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 9 12 

Identification code of36 of13 

Empirical formula C28H45FeGaN2 C72H124Fe4Li12N8O4•2(H5C2)2O 

Molar mass [g mol-1]  535.23 1612.65 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system monoclinic triclinic 

Space group P21/n Pī 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
10.293(2) 
12.504(3) 
21.388(4) 
90.00 
101.07(3) 
90.00 

 
15.607(3) 
16.654(3) 
20.577(4) 
80.19(3) 
71.69(3) 
64.57(3) 

Volume [Å3] 2701.6(9) 4581.5(16) 

Z 4 2 
Density (calculated) [g/cm3] 1.316 1.169 

Absorption coefficient [mm-1] 1.552 0.670 

F(000) [e] 1136 1720 

Crystal size [mm3] 0.48 x 0.44 x 0.37 0.40 x 0.39 x 0.29 

θ range for data collection [°] 1.94 to 23.99 1.58 to 24.11 

Index ranges -11 ≤ h ≤ 11 

-14 ≤ k ≤ 14 

-24 ≤ l ≤ 24 

-17 ≤ h ≤ 17 

-18 ≤ k ≤ 19 

-23 ≤ l ≤ 23 

Reflections collected 16689 29649 

Independent reflections 4179 [Rint =  0.0685] 13614 [Rint =  0.1007] 

Completeness to… θ = 23.99°; 98.4% θ = 24.11°; 93.5% 

Refinement method Full-matrix least-squares 

on F2 
Full-matrix least-squares on F2 

Data/restraints/parameters 4179/0/297 13614/0/991 

Goodness-of-fit on F2 1.057 1.041 

Final R indices [I>2σ (I)] R1 = 0.0476 

wR2 = 0.1284 

R1 = 0.1890 

wR2 = 0.5312 

R indices (all data) R1 = 0.0540 

wR2 = 0.1319 

R1 = 0.2358 

wR2 = 0.5469 

Largest difference peak and 
hole [eÅ-3] 

1.970 and -0.758 3.338 and -1.166 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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 13 14 

Identification code of16 of24 

Empirical formula C50H80FeGa2N4O8•2 thf C40H66FeGa2N2O12 

Molar mass [g mol-1]  1204.68 962.26 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system triclinic triclinic 

Space group Pī Pī 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
12.322(3) 
15.243(3) 
17.673(4) 
103.40(3) 
102.20(3) 
103.38(3) 

 
10.580(2) 
11.072(2) 
11.438(2) 
64.81(3) 
84.86(3) 
75.75(3) 

Volume [Å3] 3015.9(10) 1174.9(4) 

Z 2 1 

Density (calculated) [g/cm3] 1.327 1.360 

Absorption coefficient [mm-1] 1.182 1.500 

F(000) [e] 1280 504 

Crystal size [mm3] 0.20 x 0.18 x 0.14 0.20 x 0.14 x 0.13 

θ range for data collection [°] 2.15 to 24.14 1.97 to 24.03 

Index ranges -14 ≤ h ≤ 14 

-17 ≤ k ≤ 17 

-20 ≤ l ≤ 20 

-12 ≤ h ≤ 12 

-12 ≤ k ≤ 12 

-13 ≤ l ≤ 13 

Reflections collected 19531 7517 

Independent reflections 8975 [Rint = 0.0485] 3458 [Rint = 0.0480] 

Completeness to… θ = 24.14°; 93.2% θ = 24.03°; 93.6% 

Refinement method Full-matrix least-squares on 

F2 

Full-matrix least-squares on 

F2 

Data/restraints/parameters 8975/0/677 3458/0/267 

Goodness-of-fit on F2 1.008 0.828 

Final R indices [I>2σ (I)] R1 = 0.0731 

wR2 = 0.1920 

R1 = 0.0284 

wR2 = 0.0596 

R indices (all data) R1 = 0.1051 

wR2 = 0.2174 

R1 = 0.0442 

wR2 = 0.0622 

Largest difference peak and 

hole [eÅ-3] 

0.684 and -0.842 0.371 and -0.380 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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 15 18 

Identification code of26 of46o 

Empirical formula C56H72Fe4Ga8O12•2C6H6 C36H66GaN3O12 

Molar mass [g mol-1]  1874.51 802.64 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system monoclinic orthorhombic 

Space group P21 P212121 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
12.646(3) 
13.037(3) 
22.861(5) 
90.00 
104.41(3) 
90.00 

 
11.909(2) 
14.958(3) 
22.798(5) 
90.00 
90.00 
90.00 

Volume [Å3] 3650.3(13) 4061.1(14) 

Z 2 4 

Density (calculated) [g/cm3] 1.705 1.313 

Absorption coefficient [mm-1] 3.725 0.740 

F(000) [e] 1880 1720 

Crystal size [mm3] 0.57 x 0.15 x 0.09 0.24 x 0.30 x 0.46 

θ range for data collection [°] 1.69 to 23.98 2.01 to 26.1 

Index ranges -14 ≤ h ≤ 13 

-14 ≤ k ≤ 14 

-26 ≤ l ≤ 26 

-14 ≤ h ≤ 14 

-18 ≤ k ≤ 18 

-27 ≤ l ≤ 28 

Reflections collected 22714 32848 

Independent reflections 11199 [Rint = 0.1208] 8045 [Rint = 0.2118] 

Completeness to… θ = 23.98°; 99.2% θ = 26.10° 

Refinement method Full-matrix least-squares on 

F2 

Full-matrix least-squares on 

F2 

Data/restraints/parameters 11199/1/837 8045/2/499 

Goodness-of-fit on F2 0.861 0.573 

Final R indices [I>2σ (I)] R1 = 0.0710 

wR2 = 0.1671 

R1 = 0.0468 

wR2 = 0.0906 

R indices (all data) R1 = 0.1226 

wR2 = 0.1957 

R1 = 0.1291 

wR2 = 0.0904 

Largest difference peak and 

hole [eÅ-3] 

1.012 and -1.846 0.44 and -0.33 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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 19 22 

Identification code of25 of47 

Empirical formula C36H53GaN2O6•thf C36H40FeGaLiO5 

Molar mass [g mol-1]  747.60 685.22 

Data collection temp. [K] 200(2) 200(2) 

Wavelength [pm] 71.073 71.073 

Crystal system orthorhombic triclinic 

Space group P212121 Pī 

Unit cell dimensions: 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

 
13.917(3) 
14.254(3) 
20.509(4) 
90.00 
90.00 
90.00 

 
8.9821(18) 
11.100(2) 
16.770(3) 
101.56(3) 
92.31(3) 
97.10(3) 

Volume [Å3] 4068.5(14) 1621.9(6) 

Z 4 2 

Density (calculated) [g/cm3] 1.221 1.403 

Absorption coefficient [mm-1] 0.724 1.319 

F(000) [e] 1592 712 

Crystal size [mm3] 0.53 x 0.32 x 0.19 0.28 x 0.23 x 0.15 

θ range for data collection [°] 1.99 to 19.48 1.89 to 22.39 

Index ranges -12 ≤ h ≤ 12 

-13 ≤ k ≤ 13 

-19 ≤ l ≤ 19 

-9 ≤ h ≤ 9 

-11 ≤ k ≤ 11 

-17 ≤ l ≤ 17 

Reflections collected 14436 8610 

Independent reflections 3479 [Rint = 0.0724] 3954 [Rint = 0.0598] 

Completeness to… θ = 19.48°; 99.0% θ = 22.39°; 94.5% 

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2 

Data/restraints/parameters 3479/24/526 3954/0/397 

Goodness-of-fit on F2 1.030 0.822 

Final R indices [I>2σ (I)] R1 = 0.0558 

wR2 = 0.1421 

R1 = 0.0429 

wR2 = 0.0945 

R indices (all data) R1 = 0.0679 

wR2 = 0.1490 

R1 = 0.0718 

wR2 = 0.1000 

Largest difference peak and 

hole [eÅ-3] 

0.412 and -0.225 0.468 and  -0.540 

X-ray diffractometer STOE IPDS I STOE IPDS I 
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