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Abstract

Theories with extended Higgs sectors such as Two-Higgs-Doublet Models (THDMs) or the Next-
to-Minimal Supersymmetric Standard Model (NMSSM) allow for rich CP phenomena and in-
volved Higgs-potential structures. Employing a gauge invariant formulation for the tree-level
Higgs potential of the general THDM, we derive compact criteria for its stability, electroweak
symmetry breaking, and generalised CP properties in a clear geometrical language. A new type
of CP symmetry is shown to impose strong restrictions on the Lagrangian and to require at least
two fermion generations for non-trivial Yukawa terms. Large regions of the NMSSM parameter
space are excluded due to an instable vacuum. We present a rigorous determination of the global
minimum of the tree-level potential via Gröbner bases.

In a second part, we investigate the colour dipole picture. This model of high energy photon-
proton scattering permits a very successful description of available HERA data. Nevertheless,
its range of applicability is limited. We derive general bounds on ratios of deep-inelastic proton
structure functions within the colour dipole picture, following exclusively from its framework and
photon wave function properties. Confronting these bounds with HERA data we can further
restrict the range of applicability of the colour dipole picture. Finally, we calculate Ioffe times
for a specific model and find them to be too small to justify the dipole picture at large photon
virtualities.

Zusammenfassung

In Theorien mit erweiterten Higgs-Sektoren wie Modellen mit zwei Higgs-Doubletts (THDMs)
oder dem Next-to-Minimal Supersymmetric Standard Model (NMSSM) können vielfältige CP-
Phänomene und nichttriviale Strukturen des HiggsPotentials auftreten. Für das allgemeine
THDM erlauben eichinvariante Freiheitsgrade eine geometrische Beschreibung des Higgs-Poten-
tials auf Bornniveau, in der wir kompakte Kriterien für Stabilität, elektroschwache Symme-
triebrechung und CP-Eigenschaften formulieren. Eine neue Art von CP-Symmetrie impliziert
starke Einschränkungen an die Lagrangedichte und erfordert insbesondere mindestens zwei Fer-
mion-Familien für nichtverschwindende Yukawa-Wechselwirkungen. Große Parameterbereiche des
NMSSM können aufgrund eines instabilen Vakuums ausgeschlossen werden. Wir präsentieren eine
Methode zur eindeutigen Bestimmung des globalen Minimums des Potentials auf Bornniveau mit-
tels Gröbnerbasen.

In einem zweiten Teil dieser Arbeit untersuchen wir das Farbdipolbild (colour dipole pic-
ture). Dieses Modell der hochenergetischen Photon-Proton-Streuung erlaubt eine sehr erfolgrei-
che Beschreibung verfügbarer HERA-Daten. Allerdings ist sein Anwendungsbereich beschränkt.
Wir leiten allgemeine Schranken an Verhältnisse tiefinelastischer Strukturfunktionen her, die sich
ausschließlich aus dem konzeptuellen Rahmen und den Photon-Wellenfunktionen ergeben. Durch
einen Vergleich mit HERA-Daten finden wir neue Einschränkungen für den Geltungsbereich des
Dipolbildes. Schließlich berechnen wir Ioffe-Zeiten innerhalb eines speziellen Modells und zeigen,
dass dort eine Standardvoraussetzung des Dipolbildes bei großen Photon-Virtualitäten verletzt
ist.
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Introduction 3

For more than three decades up to date, the Standard Model [1, 2, 3, 4, 5] of particle
physics provides a theoretically consistent [6] framework to describe the measurements in
high-energy physics with great success [7, 8]. Only one ingredient is still missing: the
scalar Higgs boson. This particle is a crucial prediction of the Standard Model mechanism
[9, 10, 11, 12] for generating particle masses and hiding the electroweak symmetry. Direct
Higgs searches at LEP [13] provide a lower bound on its mass of 114.4 GeV.

Enlarging the scope of the Standard Model (SM) from collider physics to other fields,
the SM can not be considered as a complete description. The observed neutrino masses
[14, 15] are not contained in the SM, but they are too small to influence collider physics.
Rotational speed of galaxies [16, 17], the “Bullet cluster” collision [18, 19] and large scale
structure formation [20, 21, 22] suggest the existence of Cold Dark Matter for which the
SM provides no candidate. In the context of collider physics, it is worth mentioning the
roughly 3σ deviations from the SM found for the precision measurements of the muon
anomalous magnetic moment [23, 24] and of Bs decays [25], which may indicate signs of
beyond the SM physics.

From an aesthetical point of view, the Standard Model can not be regarded as a funda-
mental theory, not only because it contains a large number of free parameters. Although
crucial for the stability of atoms, the quantisation of electric charge is purely coincidental
within the SM. Furthermore, the Standard Model does not explain why there are three
fermion generations with the observed mass and mixing patterns, except for the hint that
CP violation in the Yukawa sector requires at least three families. Finally, the Standard
Model provides no link to gravity. These facts suggest new physics at least at very high
scales. Considering the Standard Model to be valid up to such high energies seems un-
natural, since no mechanism stabilises the hierarchy between the electroweak and the high
scale.

Theories able to solve at least a part of the above SM problems typically require ex-
tended Higgs sectors. In this thesis, we consider aspects of the general Two-Higgs-Doublet
model (THDM) [26, 27, 28, 29] and of the Next-to-Minimal Supersymmetric Standard
Model (NMSSM), see [30, 31, 32] and references therein.

The strong interactions of the Standard Model give rise to a rich phenomenology, which
is theoretically challenging due to large quantum corrections and intrinsic non-perturbative
features. An interesting aspect to study is the behaviour of the gluon densities at small
Bjorken-x such as possible saturation effects due to non-linear interactions. HERA provides
a wealth of data for deep inelastic scattering (DIS) of electrons and positrons on protons,
where the region of small Bjorken-x lies in the non-perturbative region. While phenomeno-
logical models based on the colour dipole picture successfully describe the structure function
measurements also in the non-perturbative regime, they can not yet be derived from the
Standard Model. Further, in order to arrive at the framework used for the dipole model,
a number of assumptions and approximations have to be made. In order to derive firm
conclusions from colour dipole models, their range of applicability needs to be understood
as precisely as possible. In this thesis we examine constraints on the colour dipole picture.

This thesis is organised as follows. In part II methods and results for different extensions
of the SM Higgs sector are presented. In chapter 1 we give motivations for specific types
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of extended Higgs sectors and discuss previous related work. The ends of sections 1.3 and
1.4.3 provide a detailed overview of the contents of this part of the thesis. Chapter 2
contains our discussion of THDMs. In section 2.1 we introduce the gauge invariant orbit
variables as the basis for the following tree-level analysis of the general THDM. We derive
the criteria for its stability and electroweak symmetry breaking (EWSB) in section 2.2 and
section 2.3, respectively, followed by a discussion of masses and input parameters in our
notation in section 2.4. In section 2.5 we discuss generalised CP symmetries and derive
criteria for their realisation. Within the employed gauge invariant formulation, a new type
of CP symmetry emerges naturally. These general methods and results are illustrated in
section 2.6 for more specific models. In section 2.7 we discuss in detail the implications of
the new CP symmetry for the Higgs and Yukawa sectors. An extension of these methods
to the case of n doublets is discussed in section 2.8. In chapter 3 we present a method to
determine the global minimum of the NMSSM. The Higgs potential and necessary EWSB
conditions are given in section 3.1 and section 3.2. We introduce orbit variables for the
NMSSM in section 3.3 and discuss an approach to determine the stationarity conditions
via Gröbner bases in section 3.4. Section 3.5 contains our numerical results.

In part III we discuss constraints on the colour dipole picture. Chapter 4 contains
an introduction and a discussion of previous work on the topic, followed by a detailed
overview of the contents of this part of the thesis at the end of section 4.2. A short review
of its foundations is given in chapter 5 along with a detailed discussion of the photon
wave functions. In chapter 6 we derive general bounds on ratios of DIS structure functions
and employ them to constrain the kinematical range of applicability of the colour dipole
picture. Whether different choices for the energy variable in the dipole cross section can
be considered equivalent is discussed in section 7. Finally, in chapter 8, we calculate Ioffe
times for a specific colour dipole model and check whether they justify the application of
the dipole picture.

In part IV we summarise our conclusions. Finally, appendix A contains a short intro-
duction to Gröbner bases and appendix B provides the mathematical details employed in
the derivations of bounds in chapter 6.
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Chapter 1

Motivations for
extended Higgs models

1.1 Open questions in the Standard Model

The detection of the SM Higgs particle is an outstandig problem for the experimental
verification of the Standard Model. Direct searches at LEP give the lower bound [13] on
its mass

mH > 114.4 GeV (1.1)

when combining the measurements of all four LEP experiments. The indirect deter-
mination [8] of the SM Higgs mass from electroweak precision observables alone give
mH = 85 (+39/-28)GeV and mH < 166GeV at 95% confidence level when Z-pole, mt,
mW and ΓW measurements are included. The rather large errors stem from the fact that
the Higgs mass enters only logarithmically in the one-loop expressions. Before the discov-
ery of the top quark, a similar method lead to the prediction of its mass mt. However, the
precision observables are much more sensitive on mt, see also table 10.2 of [8], since mt

enters quadratically. The LHC may presumably discover a Higgs boson up to a mass of
about 1 TeV, see e.g. [33, 34]. For these and many other aspects of Standard Model Higgs
physics see also [35] of the review series [35, 36], which provides a comprehensive coverage
of the state-of-the-art in this field.

Despite the fact, that not even a single scalar elementary particle has been observed
in Nature up to date, it is worthwhile to consider extensions of the Standard Model Higgs
sector for the following reasons.

In the Standard Model the Higgs sector is very sensitive to radiative corrections from
new physics at high scales. The mass of a very heavy particle coupling to the Higgs
boson, such as of an additional vector boson present in Grand Unified Theories (GUTs),
enters quadratically in the radiative corrections to the Higgs boson mass. Explaining the
electroweak symmetry breaking (EWSB) observed in Nature requires then a fine-tuning
in the renormalisation procedure, which cancels these large terms between the bare Higgs
mass and the quantum corrections to give a net renormalised Higgs mass below one TeV.
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This is usually considered to be an unnatural fine-tuning, and therefore referred to as the
fine-tuning or naturalness problem [37, 38, 39].

Supersymmetry [40, 41] provides a mechanism to stabilise the electroweak scale at the
observed value by introducing a symmetry between bosons and fermions. Furthermore,
supersymmetry provides a dark matter candidate in case of R-parity conservation. Finally,
supersymmetry improves the unification of the gauge couplings [42, 43, 44, 45] and provides
a link to gravity. From a mathematical point of view, supersymmetry is special in being
the maximal non-trivial extension of the Poincaré symmetry of the S-matrix, which can
be generated by graded Lie-algebras [46, 47]. If realised in Nature, supersymmetry must
be broken. In order to give masses to both the up- and down-type quarks and to keep the
theory free of chiral anomalies, supersymmetric extensions of the SM require an extended
Higgs sector. The Minimal Supersymmetric Standard Model (MSSM) [48, 49, 50, 51]
contains two Higgs doublets, for general reviews see e.g. [52, 53]. For the Higgs sector
of the MSSM see in particular the comprehensive review [36]. In the Next-to-Minimal
Supersymmetric Standard Model (NMSSM) [30, 54, 31, 32] a further Higgs singlet is added
to solve the µ-problem of the MSSM as we will discuss in section 1.4.

A non-minimal Higgs sector is also favoured for cosmological reasons. CP violation
is one of the three Sakharov criteria, which have to be fulfilled to explain the observed
baryon-antibaryon asymmetry in our Universe through the particle dynamics [55, 56]. In
the Standard Model, CP violation occurs at tree-level only in the Yukawa sector through
the Kobayashi-Maskawa mechanism [57] and is therefore highly constrained. Taking fur-
thermore the lower bound (1.1) on the SM Higgs mass into account, the electroweak phase
transition is not able to provide the thermal instability needed to explain the observed
baryon excess, as described in the review [58]. Extended Higgs sectors are less constrained
and allow to circumvent this problem for instance by providing new sources of CP viola-
tion. In contrast to the SM, extended Higgs sectors can lead to explicit and spontaneous
CP violation [59] in the Higgs sector.

Last but not least, the observed fermion masses and mixings show pronounced patterns
and hierarchies. Involving several Higgs bosons in their generation might be a canonical
approach. After all, there are three known generations of fermions and there is no particular
reason for only one Higgs generation.

1.2 Higgs representations and the ρ parameter

In this section we discuss possible Higgs representations for a SU(3)C × SU(2)L × U(1)Y
gauge theory, where we review the derivations of [60] summarised in [61]. We shall omit the
gauge group SU(3)C of strong interactions since it is irrelevant for the following discussion.
Let χ denote scalar fields carrying some representation of SU(2)L×U(1)Y . In general such
a representation is reducible and contains complex unitary and real orthogonal parts. We
assume without loss of generality that χ carries a real orthogonal representation, since other
cases may always be mapped to this case, as shown in the above citation for the general case
and in appendix B of [27] for two doublets. In order to break the electroweak symmetry
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spontaneously, the potential is assumed to give non-vanishing vacuum expectation values
(vevs) to the components of χ,

v ≡ 〈0|χ|0〉 6= 0 , (1.2)

such that a U(1) factor of SU(2)L × U(1)Y remains unbroken and can be identified with
the electromagnetic gauge group. Here, v is a multi-component vector, as is χ, and gives
rise to particle masses. However, not all a-priori possible representations lead generically
to an experimentally acceptable phenomenology.

A strong restriction stems from the non-observation of large flavour-changing neutral
currents (FCNCs). While FCNCs are automatically suppressed in the SM, this is not
necessarily the case for more general Higgs sectors and corresponding Yukawa couplings.
One way to ensure absence of large FCNCs is to require all fermions of a given charge to
receive their masses from the vev of the same Higgs field and avoid large mixings between
these fields for the physical Higgs bosons [62].

The precisely measured ρ parameter gives severe constraints for the Higgs sector itself.
The ρ parameter relates the masses of the W and Z boson, mW and mZ , to the weak
mixing angle θw:

ρ ≡
(

mW

cos θw mZ

)2

. (1.3)

Precision measurements show that ρ is very close to 1 [63]. This suggests to require
theoretically ρ = 1 at tree-level. While this is indeed the case for the SM, one finds the
following for more general Higgs representations.

Extending χ to carry a unitary representation of the same dimension and decomposing
it into eigenstates (t, y) of weak-isospin and hypercharge with quantum number t and y,
respectively, we have

t = 0,
1

2
, 1,

3

2
, . . . (1.4)

and furthermore assume y to be rational numbers, see [60]. With the normalisation chosen
such that the operators of charge, hypercharge and third weak-isospin component are
related by

Q = T3 + Y , (1.5)

the squared gauge-boson masses are given by

m2
W =

1

2

(
e

sin θw

)2∑
t,y

[
t(t+ 1)− y2

]
vTP(t, y)v, (1.6)

m2
Z =

(
e

sin θw cos θw

)2∑
t,y

y2 vTP(t, y)v, (1.7)

where P(t, y) is the projector on the subspace with representation (t, y). Here, the positron
charge e, and the sine and cosine of the weak mixing angle are defined in terms of the gauge
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couplings g and g′ as in the SM, see for instance [64]:

sin θw =
g′√

g2 + g′ 2
, cos θw =

g√
g2 + g′ 2

, e = g sin θw. (1.8)

It turns out that
vTP(t, y)v 6= 0 (1.9)

is only possible if
y ∈ {−t,−t+ 1, . . . , t}. (1.10)

Inserting the expressions for mW and mZ in the definition (1.3) leads to

ρ =

∑
t,y[t(t+ 1)− y2] vTP(t, y)v∑

t,y 2y2 vTP(t, y)v
. (1.11)

The value ρ = 1 may now either be obtained by fine-tuning the parameters of the potential
in order to get the right vacuum expectation values, which seems rather unnatural and is
therefore not considered here. Or one only allows those representations in (1.6) and (1.7)
that separately lead to ρ = 1. There are infinitely many such representations [65], starting
with the doublet with t = 1/2 and y = ±1/2, and the septuplet with t = 3 and y = ±2.
From each of these representations one or more copies are allowed and one still gets ρ = 1.
Furthermore, the singlet with y = 0 and all representations with

y /∈ {−t,−t+ 1, . . . , t} (1.12)

are allowed since they do not contribute to the sums in (1.11).

1.3 The case of two generic doublets

A particular simple extension of the Standard Model Higgs sector while keeping ρ = 1 at
tree-level is, according to the previous section, to include n instead of only one complex
Higgs doublets. In these n-Higgs-Doublet Models models, electroweak symmetry breaking
works in principle as in the Standard Model. The Lagrangian contains scalar products of
the Higgs doublets without derivatives, which give rise to the tree-level Higgs potential.
The potential is required to be bounded from below and possesses a minimum, which leads
to non-vanishing vacuum expectation values of the Higgs fields. These vevs spontaneously
break the electroweak symmetry down to the electromagnetic symmetry. They give rise to
masses of W and Z bosons through the covariant derivatives of the Higgs doublets, and to
masses of quarks and leptons through Yukawa interactions. As in the Standard Model three
real degrees of freedom from the Higgs doublets can be identified as the Pseudo-Goldstone
Bosons of EWSB, which reappear as longitudinal modes of the massive gauge bosons. Any
further real degree of freedom from the Higgs doublets corresponds to a physical Higgs
boson. Therefore, each additional complex Higgs doublet adds four Higgs bosons to the
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physical spectrum. For more than one doublet the tree-level Higgs potential may give
rise to new phenomena, such as explicit or spontaneous CP violation as well as multiple
minima.

In the case of two Higgs doublets, that is, in Two-Higgs-Doublet Models (THDMs), the
physical spectrum contains 5 physical Higgs bosons. Two of them are charged, H±, and
three of them are neutral. In case CP is conserved one can assign CP quantum numbers to
the neutral Higgs bosons, such that one has one CP odd Higgs A and two CP even Higgses
h and H. By conventions, h denotes the lighter of the two states h and H, which both will
differ from the SM Higgs boson in the general case. For the general THDM the potential
can be quite involved. We shall see that it may contain 14 parameters in contrast to the
2 parameters in the case of one Higgs doublet. The MSSM Higgs sector contains also two
Higgs doublets. Its potential is a very special case of the general THDM potential, since it
is highly constrained by supersymmetry. Introductory remarks specific to the MSSM will
be given in the next section.

Present experiments give the following exclusion regions for various versions of the
THDM. The OPAL collaboration has performed a parameter scan for the CP conserving
THDM [66] and excluded at 95% C.L. large parts of the region where

1GeV < mh < 130GeV,

3GeV < mA < 2TeV,

0.4 < tan β < 40,

α = −π
2
,−π

4
, 0,

π

4
,
π

2
.

(1.13)

Here, tan β is the ratio of the two Higgs vevs and α is a further mixing angle, needed to
diagonalise the mass matrix for the two states h and H. Furthermore, the approximate
region where

1GeV < mh < 55GeV,

3GeV < mA < 63GeV
(1.14)

is excluded for all tan β values for negative α. In a combined analysis [67] of the four LEP
collaborations a lower bound on the mass of the charged Higgs in models with two Higgs
doublets like the THDM or the MSSM, approximately

mH± > 78.6GeV (1.15)

is determined.
In early work [26, 27, 28, 68] on the THDM, the number of parameters were restricted by

continuous or discrete symmetries or other restrictions were employed. See [29] for a review
and further references. A recent proposal [69] considers a specific non-supersymmetric
THDM, which postpones the naturalness problem up to a scale of several TeV. Criteria
for stability and electroweak symmetry breaking in more general THDMs were derived
in [70, 71]. Recently, the completely general THDM became the focus of many studies,
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and different basis independent results were derived. Basis independent conditions for
spontaneous CP violation are found in [72, 73]. An extensive analysis of invariants with
respect to basis changes is employed in [74, 75], from which necessary and sufficient basis
independent criteria for explicit and spontaneous CP violation are derived. See also [76] for
another derivation of criteria for spontaneous CP violation and [77] for a general discussion
of CP transformations in gauge theories. The meaning of tan β in a basis independent
context is discussed in [78]. The coexistence of multiple minima is considered in [79, 80,
81, 82]. Criteria for stability and electroweak symmetry breaking were derived in [61] within
a geometric approach in terms of gauge invariant functions, which we shall also employ
in this thesis. Geometric methods are also used in [83] to study criteria for CP violation
in n-Higgs-Doublet Models. A similar formulation is used in [84, 85, 86] to derive various
structural statements, in particular for the coexistence of minima. There, Lorentz-boost
type transformations are used for the gauge invariant functions to assume a standard basis,
which corresponds to a diagonal matrix Ẽ in our notation. Note that this modifies the
kinetic terms of the Higgs fields and is not possible for all physically acceptable potentials.
For a recent review of the THDM, in particular of its CP violation properties, see [87].

In chapter 2 of this thesis, we shall discuss the completely general THDM using the
geometric approach of gauge invariant functions [61]. This allows us to derive compact
criteria for stability, electroweak symmetry breaking, and generalised CP properties of the
THDM in a clear geometrical language, see also our publications [88, 89, 90]. The scope
of this analysis is the tree-level. In a more detailed study, quantum corrections should be
taken into account. Our main results are formulated in a basis independent way, and may
thus be applied directly to any specific model irrespective of the chosen basis.

In section 2.1 we introduce the gauge invariant functions of the Higgs field degrees of
freedom. These gauge invariant functions combine to a Minkowski-type four-vector, which
lies on or inside the forward light cone. Since they parameterise the gauge orbits of the
Higgs fields, we shall also refer to them as orbit variables. Our discussion of stability
and electroweak symmetry breaking in section 2.2, section 2.3 and physical parameters
in section 2.4 rederives the results of [61] and extends them. We derive concise criteria
for a theory to be phenomenologically acceptable, which restrict the parameters of the
potential. The presented method gives an explicit recipe to determine all stationary points
and thus the global minimum of the potential also for more involved models. We consider
generalised CP transformations in section 2.5, which are shown to correspond to reflec-
tions of the space-like part of the orbit variables. CP transformations which equal the
standard CP transformation in some basis are reflections on a plane, while a new type of
CP symmetry corresponds to a point reflection. Within this geometric picture, we derive
necessary and sufficient criteria for CP symmetries of the potential, the vacuum and the
Yukawa terms. Examples to illustrate the general methods are given in section 2.6. In
particular, we present an explicit analytical discussion of a model with two coexisting min-
ima, which demonstrates the need for a global minimum check beyond considering Higgs
masses. Models having the new CP symmetry mentioned before are discussed in more
detail in section 2.7. There we show, that extending all CP symmetries of the Higgs sector
to the Yukawa sector imposes severe restrictions on the fermion masses and couplings.
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This can be used to generate mass hierarchies and ensure absence of large FCNCs by a
canonical symmetry requirement. Comparisons of our results with the literature may be
found in the respective sections. Similar methods as presented here may also be applied
to other extended Higgs sectors. As an outlook we discuss a possible extension to the case
of n Higgs doublets in section 2.8.

1.4 Supersymmetric extensions and the µ problem

1.4.1 The minimal supersymmetric extension

The MSSM is defined as the softly broken supersymmetric extension of the Standard Model
with minimal additional field content and conserved R-parity. It contains soft supersymme-
try breaking terms, which do not reintroduce the naturalness problem, and parameterises
them in a general way. Supersymmetry requires pairings of fermions with bosons which
lead effectively to a new supersymmetric partner for each of the SM fermions and gauge
bosons. In order to give masses to both up- and down-type fermions, analyticity of the
superpotential and absence of anomalies require two doublets for the Higgs supermulti-
plets. These Higgs supermultiplets contain two scalar Higgs doublets and their fermionic
superpartners, the Higgsinos.

The MSSM Higgs potential is highly constrained due to supersymmetry. Quartic terms
in the Higgs fields are fixed by supersymmetry in terms of gauge couplings, while quadratic
terms receive supersymmetric as well as soft breaking contributions. In fact, the tree-level
Higgs sector can be parameterised by only two unknown parameters, usually chosen to
be the mass of the pseudoscalar boson mA and the ratio tan β of the vacuum expectation
values of the two Higgs doublets. In the decoupling limit mA � mZ , where practically
mA & 200GeV is sufficient [91], one neutral Higgs boson h is light and has the same
couplings as the SM Higgs boson whereas the other Higgs bosons H, A and H± are heavy
and decouple.

The SM mass bound (1.1) applies thus also to the mass mh of the lightest CP-even
MSSM Higgs boson in the decoupling limit. In fact, deviations arise for the MSSM with
real parameters only for small mA and large tan β. There, the combined LEP result [92]
yields for a scan of several MSSM benchmark scenarios the bounds

mA > 93 GeV , (1.16)

mh > 93 GeV (1.17)

and excludes the range 0.9 < tan β < 1.5 at 95% confidence level. Note that the MSSM
predicts mh < mZ = 91GeV at the tree-level, see (2.260), which is in contradiction to
these measurements. However, radiative corrections increase the tree-level mass bound.
But a substantially higher upper bound requires contributions from rather heavy super-
symmetric particles such as the stops, the superpartners of the top quark, or the gluino,
the superpartner of the gluon. On the other hand, these supersymmetric particles should
not be too heavy, since this would reintroduce the naturalness problem. This is called the



14 1. Motivations for extended Higgs models

little fine-tuning problem of the MSSM. State-of-the-art calculations [93, 94] include the
complete 1-loop corrections and many 2-loop contributions also for complex parameters.
For supersymmetric masses not above 1 TeV the radiative corrections are found in [93] to
change the bound on the lightest Higgs mass to

mh ≤ 131GeV (1.18)

where mt = 172.7GeV is used. The maximum is reached for tan β ≥ 10. We also note
that complex parameters of the MSSM actually still allow [92] a very light Higgs bosons
to have escaped detection at LEP.

1.4.2 The µ problem of the MSSM

The superpotential of the MSSM has the form, see [95],

W = ûchuQ̂Ĥu − d̂chdQ̂Ĥd − êcheL̂Ĥd +WH (1.19)

with
WMSSM
H = µĤuĤd , (1.20)

where the hatted fields are superfields. The Yukawa-type terms in (1.19) contain the
coupling matrices hu, hd, he. We list them only for completeness, but they are not relevant
for us in the following. The Higgs superfields Ĥu and Ĥd have hypercharge y = −1/2
and y = +1/2, respectively, and ĤuĤd = Ĥ+

u Ĥ
−
d − Ĥ0

uĤ
0
d . The parameter µ mixes Ĥu

and Ĥd and thus the contained scalar Higgses as well as their fermionic superpartners, the
Higgsinos. The soft breaking terms entering the Higgs potential are

Lsoft = −m2
Hu
H†
uHu −m2

Hd
H†
dHd −

(
m2

3HuHd + h.c.
)
. (1.21)

where Hu, Hd are the scalar doublets, HuHd ≡ H+
u H

−
d − H0

uH
0
d , and m2

Hu
, m2

Hd
, m2

3 are
parameters of dimension mass squared.

The µ-term enters the mass of the charginos, which are the mass eigenstates formed
from the charged Higgsinos and the charged superpartners of the W bosons, the winos.
Absence of signals in the search for charginos at LEP [96] put a bound on the chargino
mass of mχ± > 92GeV and require |µ| > 0. Moreover, for a phenomenologically acceptable
electroweak symmetry breaking, |µ| should have a value of roughly the electroweak scale
to avoid new fine-tuning problems. On the other hand, µ is a parameter of mass dimension
in the superpotential, from which one would expect its natural value to be either of the
order of the Planck scale or exactly zero. A zero µ-term could be realised by a symmetry
at the high scale, and the form of the renormalisation group equations [97] would then
imply a zero µ-term also at the electroweak scale. The lack of a natural origin for a
phenomenologically acceptable µ-term of the order of the electroweak scale v,

|µ| ≈ O(v) (1.22)

is called the µ-problem of the MSSM, see also [98].
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Various solutions to the µ problem have been discussed in the literature. A promi-
nent example is the Guidice-Masiero mechanism [99], where the µ-term is generated in
the context of supergravity breaking. Another solution to the µ-problem has received
much attention in the literature: the Next-to-Minimal Supersymmetric Standard Model
(NMSSM). In this model, the µ-term is effectively generated by coupling the two doublets
to an additional singlet field, which acquires a vev.

1.4.3 The NMSSM as a solution to the µ problem

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) extends the MSSM by
an electroweak singlet chiral superfield Ŝ in addition to the two electroweak doublet su-
perfields Ĥu, Ĥd. We impose a Z3 symmetry on the superpotential, which is defined by
multiplication of all superfields by exp(i2π/3). This forbids linear and mass terms in the
superpotential and leaves only dimensionless couplings as supersymmetric parameters. We
follow the notation of [100] and parameterise the resulting Higgs part of the NMSSM
superpotential by

WH
NMSSM = λ ŜĤuĤd +

1

3
κ Ŝ3 (1.23)

with the dimensionless real couplings λ, κ. For the parameterisation of the soft breaking
terms we use

Lsoft = −m2
Hu
|Hu|2 −m2

Hd
|Hd|2 −m2

S |S|
2 −

(
λAλ SHuHd +

1

3
κAκ S

3 + h.c.

)
. (1.24)

where Hu, Hd are the scalar doublets and S is the complex scalar singlet. Here, m2
Hu

, m2
Hd

,
m2
S are real parameters of dimension mass squared and Aλ, Aκ are complex parameters of

dimension mass.
Note, that the singlet is required to get a non-vanishing vev 〈S〉. A vanishing κ would

lead to the spontaneous breaking of a continuous Peccei-Quinn U(1)PQ symmetry [101]
and thus to a massless Goldstone boson, the axion [102, 103]. Such a massless axion
is inconsistent with astrophysical and cosmological limits, see [7] for a review, except
for very small λ, which in turn prohibits a natural solution of the µ problem. A non-
vanishing κ explicitly breaks this continuous U(1)PQ down to Z3 such that no massless
axion emerges. However, the spontaneous breaking of Z3 can generate domain walls in
the early universe which contradict the cosmic microwave background measurements. This
is called the domain wall problem. However, additional operators suppressed by powers
of the Planck scale might break the Z3 symmetry at the low scale just enough to avoid
the domain wall problem but still suppressed enough to leave unchanged the low-energy
phenomenology considered here. The are claims in the literature that the existence of such
operators introduces a new naturalness problem, see e.g. [104], while other authors propose
solutions to construct them in a way they deem natural, see e.g. [105]. In the following,
we just assume that the solution to the domain wall problem leaves our considerations
unchanged.
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Since the NMSSM is considered as a solution to the the µ-problem of the MSSM we
shall explicitly define a limit to relate both models. Comparing the superpotentials of both
models, (1.20) and (1.23), as well as their soft breaking terms, (1.21) and (1.24), leads to
the identification of the effective µ and m2

3 parameters within the NMSSM:

µ|eff = λ 〈S〉 , m2
3

∣∣
eff

= λAλ 〈S〉 . (1.25)

Thus we may define the “MSSM limit” of the NMSSM as

λ, κ→ 0 with µ|eff , m
2
3

∣∣
eff

= const (1.26)

such that the additional singlet decouples and the standard MSSM Higgs sector with its
two doublets is obtained.

Note, that the supersymmetry breaking parameters are essential for electroweak sym-
metry breaking in the MSSM, see section 2.6.1. Their size is roughly determined by the
electroweak scale, and they may be thought of as being generated by some common mech-
anism. While a phenomenologically acceptable µ parameter appears at the same scale, it
is a parameter of the unbroken supersymmetry in the MSSM, and therefore of different
nature compared to the soft breaking terms. In contrast, the scale of the effective µ-term
in the NMSSM, µ|eff, is set by 〈S〉. It therefore originates from soft breaking terms, such
that these become the only source of scale for the electroweak sector. While the origin of
this scale is still left unexplained in the NMSSM, it might easier be linked to one single
breaking mechanism.

In the NMSSM the tree-level upper bound on the lightest Higgs boson is relaxed, which
is of interest to avoid fine-tuning problems due to large masses of supersymmetric particles.
The analysis [106] includes leading radiative corrections and finds a relaxation of the MSSM
bound of about 12− 16GeV, where the lightest CP-even NMSSM Higgs mass reaches its
maximum for tan β ≈ 2. In contrast, the lightest CP-even MSSM Higgs reaches its upper
bound for tan β > 10. More aspects of fine-tuning problems within supersymmetric theories
and the NMSSM in particular may be found in [107] and the references therein. Note that
even a light NMSSM Higgs boson might be difficult to detect. In fact, it might be very
difficult [108] to observe just one of altogether 5 Higgs bosons at the LHC, since Higgs-
to-Higgs decays may be allowed and all Higgs bosons may have reduced couplings to the
gauge bosons and the top quark due to singlet admixtures.

Further investigations of the NMSSM Higgs sector can be found in [100, 109]. Computer
programs to calculate spectra and check the parameters for various constraints are pre-
sented in [110, 111]. Electroweak baryogenesis and light neutralino dark matter is studied
in [112]. In [113] many different constraints from collider phenomenology to cosmology are
considered for the nMSSM variant of the model, whose superpotential contains a tadpole
but no triple selfcouplings for the singlet.

In chapter 3 of this thesis, we shall focus on the determination of the global minimum
of the Higgs potential in order to ensure a stable vacuum, see also our publication [114].
This aspect is partially omitted in the literature, or a numerical minimisation method is
applied [109]. Global minimisation is generally a non-trivial problem. While for example,
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combining a numerical local descent method with a grid of starting values might often
succeed in finding the global minimum, it is not guaranteed by the method. From a
heuristic point of view, the NMSSM Higgs potential depends on a rather high number of
fields and has an involved structure in the general case, such that a safe and yet numerically
affordable number of such starting points is not a priori obvious. The aim of our work here
is to systematically reveal all stationary points of the potential by solving the system of
equations which originates from the stationarity condition. We restrict to the tree-level
and show, that this can be done for the full parameter space including CP violation. Our
approach employs algebraic calculations of Gröbner bases, for which a short introduction is
given in appendix A. Whether a given parameter set for the classical Higgs potential leads
to the required EWSB at the global minimum or not, can be determined unambiguously
with our method.
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Chapter 2

The general Two-Higgs-Doublet
Model

2.1 Lagrangian and real orbit variables

2.1.1 Lagrangian

We denote the two complex Higgs-doublet fields by

ϕi(x) =

(
ϕ+
i (x)
ϕ0
i (x)

)
(2.1)

with i = 1, 2. Hence we have eight real scalar degrees of freedom. The most general
SU(2)L × U(1)Y -invariant Lagrangian for the THDM can be written as

LTHDM = Lϕ + LYuk + L ′, (2.2)

where the pure Higgs boson Lagrangian is given by

Lϕ =
∑
i=1,2

(Dµϕi)
† (Dµϕi)− V (ϕ1, ϕ2) . (2.3)

This term replaces the kinetic terms of the Higgs boson and the Higgs potential in the
SM Lagrangian, see e.g. [64]. Here and in the following, summation over repeated indices
is understood unless explicitly noted. The covariant derivative is

Dµ = ∂µ + igW a
µTa + ig′BµY, (2.4)

where Ta and Y are the generating operators of weak-isospin and weak-hypercharge trans-
formations. For the Higgs doublets we have Ta = σa/2, where σa (a = 1, 2, 3) are the Pauli
matrices. We assume both doublets to have weak hypercharge y = 1/2. Further, LYuk are
the Yukawa-interaction terms of the Higgs fields with fermions which can be parameterised
in the fully general case by

LYuk = −λl jik L̄
L
i ϕjl

R
k − λd

′ j
ik Q̄L

i ϕjd
′R
k − λu jik Q̄

L
i εϕ

∗
ju

R
k + h.c. (2.5)
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fermion t y fermion generations
multiplet i = 1 i = 2 i = 3

LLi 1/2 −1/2

(
νe
e−L

) (
νµ
µ−L

) (
ντ
τ−L

)
lRi 0 −1 eR µR τR

QL
i 1/2 1/6

(
uL
d′L

) (
cL
s′L

) (
tL
b′L

)
uRi 0 2/3 uR cR tR
dRi 0 −1/3 dR sR bR

Table 2.1: Fermion fields and their quantum numbers weak isospin t and hypercharge y. Here,
the index L, R denotes the chirality of the fields. The mass eigenstates d′L,Ri are obtained from
the fields d′L,Ri by the Cabbibo-Kobayashi-Maskawa basis transformation.

with the fermion electroweak multiplets QL
i , LLi , lRi , d′Ri , uRi (i = 1, 2, 3) and complex

Yukawa couplings λl jik , λ
d′ j
ik , λ

u j
ik . For the usual flavour bases choice, see also [64], the

fermion fields may be identified as in table 2.1, where we also give their quantum numbers.
We shall specify this choice when needed in section 2.7.2. Finally, L ′ contains the terms
of the Lagrangian without Higgs fields. We do not specify L ′ here since they are not
relevant for our analysis. The Higgs potential V in the THDM will be specified below and
discussed extensively.

We remark that in the MSSM the two Higgs doublets Hd and Hu carry hypercharges
y = −1/2 and y = +1/2, respectively, whereas here we use the conventional definition of
the THDM with both doublets carrying y = +1/2. However, our analysis can be translated
to the other case, see for example (3.1) in [50], by setting

ϕα1 = −εαβ(Hβ
d )∗,

ϕα2 = Hα
u ,

(2.6)

where ε is given by

ε =

(
0 1

−1 0

)
. (2.7)

The most general gauge invariant and renormalisable potential V (ϕ1, ϕ2) for the two
Higgs doublets ϕ1 and ϕ2 can be written, following [75], as

V (ϕ1, ϕ2) = Yij (ϕ†iϕj) +
1

2
Zijkl (ϕ

†
iϕj)(ϕ

†
kϕl) (2.8)

where summation over repeated Higgs flavour indices i, j, k, l ∈ {1, 2} is understood here
and in the following. The parameters Yij, Zijkl are in general complex and satisfy

Zijkl = Zklij (2.9)

such that their definition is unique and

Yij = Y ∗
ji , Zijkl = Z∗jilk (2.10)



2.1 Lagrangian and real orbit variables 21

such that the potential is hermitian. A change of basis for the Higgs fields

ϕi −→ ϕ′i = Uii′ ϕi′ , (Uij) ∈ U(2) , (2.11)

leaves the kinetic terms invariant, while the potential keeps its form if its parameters are
changed according to

Yij −→ Y ′
ij = Uii′(U

†)jj′ , Yi′j′ , (2.12)

Zijkl −→ Z ′ijkl = Uii′(U
†)jj′Ukk′(U

†)ll′ , Zi′j′k′l′ . (2.13)

We note that the global phase factor of U cancels in the potential. Denoting the group of
Higgs basis changes by

U(2)ϕ (2.14)

it is only the subgroup
SU(2)ϕ ⊂ U(2)ϕ (2.15)

which changes the parameters of the potential. Instead of the representation (2.8) we will
discuss the Higgs potential using real degrees of freedom as introduced in the following
subsection.

2.1.2 Real orbit variables

It is convenient to discuss the properties of the potential such as its stability and its
spontaneous symmetry breaking directly in terms of gauge invariant expressions. For this
purpose we arrange the Higgs fields in a 2×2 matrix

φ :=

(
ϕ+

1 ϕ0
1

ϕ+
2 ϕ0

2

)
(2.16)

and define the 2×2 matrix
K := φφ† , (2.17)

which contains all SU(2)L × U(1)Y -invariant scalar products,

Kij = ϕ†jϕi , (2.18)

with K = (Kij), i, j ∈ {1, 2}. We decompose this matrix with respect to a complete set of
complex matrices consisting of generators of SU(2)ϕ and the unit matrix 1,

K =
1

2
(K0 1+ K σ) (2.19)

where here and in the following boldface symbols are used to denote three component
vectors. The gauge invariant functions defined by this decomposition are

K0 = tr(K1) , K = tr(Kσ) . (2.20)
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Explicitly we get from (2.18) and (2.19)

ϕ†1ϕ1 =
1

2
(K0 +K3) , ϕ†1ϕ2 =

1

2
(K1 + iK2) ,

ϕ†2ϕ2 =
1

2
(K0 −K3) , ϕ†2ϕ1 =

1

2
(K1 − iK2) , (2.21)

and from (2.20)

K0 = ϕ†1ϕ1 + ϕ†2ϕ2 , K1 = 2 Reϕ†1ϕ2 ,

K3 = ϕ†1ϕ1 − ϕ†2ϕ2 , K2 = 2 Imϕ†1ϕ2 , (2.22)

which we arrange into the four vector

K̃ =

(
K0

K

)
. (2.23)

We see directly from (2.17) that K is hermitian and positive semidefinite. From (2.20) we
conclude that the K0, Ka (a=1,2,3) are real due to the hermiticity of K and satisfy

K0 ≥ 0 , K̃
T
g̃ K̃ ≥ 0 , (2.24)

with
g̃ = diag(1,−1,−1,−1) (2.25)

since the positive semi-definiteness ofK gives trK ≥ 0 and detK ≥ 0. These constraints on
K̃ are also sufficient to find corresponding fields as can be seen in an explicit calculation or
in the way described in section 2.8. That is, for any real K0, K fulfilling (2.24) it is possible
to find fields ϕi such that (2.18) and (2.20) are satisfied. Two Higgs field configurations
ϕ1(x), ϕ2(x) and ϕ′1(x), ϕ

′
2(x) which lie on the same gauge orbit, that is, which differ only

by a gauge transformation, obviously give the same K̃ = K̃
′
. On the other hand, two

configurations not connected by a gauge transformation lead to different K̃, K̃
′
as can be

seen by a short calculation. Since K0, Ka (a=1,2,3) parameterise the Higgs gauge orbits
we will call them orbit variables. It is interesting to note that the gauge orbits of the two
Higgs doublets are parameterised by Minkowski type four vectors K̃ whose domain is the
forward light cone, see figure 2.1.

The most general SU(2)L × U(1)Y -invariant potential can now be written as

V = ξ̃
T

K̃ + K̃
T
Ẽ K̃ (2.26)

where the parameters of the potential are a real four vector ξ̃ and a real symmetric matrix
Ẽ. More explicitly, we have

V = V2 + V4 , (2.27)

V2 = ξ0K0 + ξT K , (2.28)

V4 = η00K
2
0 + 2K0 ηT K + KTEK . (2.29)
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K1
K3

K0

(K2 = 0)

Figure 2.1: The gauge orbits of the Higgs fields in the THDM are parameterised by Minkowski
type four vectors K̃ = (K0,K

T)T = (K0,K1,K2,K3)T, which lie on or inside the forward light
cone.

and

ξ̃ =

(
ξ0
ξ

)
, Ẽ =

(
η00 ηT

η E

)
,

ξ =

ξ1ξ2
ξ3

 , η =

η1

η2

η3

 , E = ET =

η11 η12 η13

η21 η22 η23

η31 η32 η33

 . (2.30)

Under a change of basis of the Higgs fields (2.11) we find

K ′
0 = K0 , K ′ = R(U)K , (2.31)

where R(U) ∈ SO(3) is defined by

U †σaU = Rab(U)σb . (2.32)

The form of the Higgs potential (2.26) remains unchanged under the replacement (2.31) if
we perform an appropriate transformation of the parameters

ξ′0 = ξ0 , ξ′ = R(U) ξ ,

η′00 = η00 , η′ = R(U) η ,

E ′ = R(U)E RT(U) .

(2.33)

The relation (2.32) defines for any U ∈ U(2) uniquely the corresponding real rotation R,
while it specifies for an arbitrary R ∈ SO(3) a corresponding U up to the global phase
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factor. We can therefore diagonalise E, thereby reducing the number of parameters of V
by three. The Higgs potential is then determined by only 11 real parameters. Considering
the subgroup SU(2)ϕ of basis changes the transition from the scalar products to the orbit
variables means in a group theoretical notation

2⊗ 2 = 1⊕ 3 , (2.34)

where K0 is the real flavour singlet and K the real flavour triplet.
The specification of the domain of the orbit variables K0, K enables us to discuss

the potential directly in the form (2.26) with all gauge degrees of freedom eliminated,
reduced powers of the occurring dynamical variables and real degrees of freedom only. In
particular, this scheme allows us to determine various features of the general THDM in a
clear geometrical language.

2.2 Stability of the potential

According to subsection 2.1.2 we can analyse the properties of the potential (2.26) as a
function of K0 and K on the domain determined by K0 ≥ 0 and K2

0 ≥ K2. For K0 > 0
we define

k := K/K0 . (2.35)

In fact, we have K0 = 0 only for ϕ1 = ϕ2 = 0, and the potential V = 0 in this case.
From (2.26) and (2.35) we obtain for K0 > 0

V2 = K0 J2(k) , J2(k) := ξ0 + ξTk , (2.36)

V4 = K2
0 J4(k), J4(k) := η00 + 2ηTk + kTEk , (2.37)

where we introduce the functions J2(k) and J4(k) on the domain |k| ≤ 1.
For the potential to be stable, it must be bounded from below. This can be tested by

considering its behaviour at large field configurations, that is, at large K0. The stability is
determined by the behaviour of V in the limit of large field configurations, that is, in the
limit K0 −→∞. Thus, the relevant information is given by the signs of J4(k) and J2(k)
in (2.37) and (2.36). For the theory to be at least marginally stable

J4(k) > 0 or

J4(k) = 0 and J2(k) ≥ 0

}
for all |k| ≤ 1 (2.38)

is necessary and sufficient, since this condition is equivalent to V ≥ 0 for K0 −→ ∞ in
all possible directions k. The more robust stability property V −→ ∞ for K0 −→ ∞ and
any k can either be guaranteed by

J4(k) > 0 or

J4(k) = 0 and J2(k) > 0

}
for all |k| ≤ 1 (2.39)
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in a weak sense, or by
J4(k) > 0 for all |k| ≤ 1 (2.40)

in a strong sense, that is by the quartic terms of V solely.
To assure J4(k) being positive (semi-)definite, it is sufficient to consider its value for

all stationary points of J4(k) on the domain |k| < 1, and for all stationary points on the
boundary |k| = 1. This holds, because the global minimum of the continuous function
J4(k) is reached on the compact domain |k| ≤ 1, and it is among those stationary points.
This leads to bounds on η00, ηa and ηab, which parameterise the quartic term V4 of the
potential. Stationary points of J4(k) with |k| < 1 fulfil

∇k J4(k) = 2(η + Ek) = 0 , 1− k2 > 0 . (2.41)

Stationary points on the domain boundary |k| = 1 satisfy

∇k

(
J4(k) + u(1− k2)

)
= 2(η + (E − u)k) = 0 , 1− k2 = 0 , (2.42)

where u is a Lagrange multiplier. The conditions for both types of stationary points may
be written in the combined form

∇k

(
J4(k) + u(1− k2)

)
= 2(η+(E−u)k) = 0 , u(1−k2) = 0 , 1−k2 ≥ 0 , (2.43)

where the stationary points with |k| < 1 occur with the Lagrange multiplier u = 0.
Depending on the parameters ηa and ηab, there can be exceptional solutions (k, u) of
(2.43) where det(E − u) = 0, i.e. where u is an eigenvalue of E. For regular values of u
such that det(E − u) 6= 0 the stationary points fulfil

k(u) = −(E − u)−1η, (2.44)

where either the Lagrange multiplier u is determined from k(u)2 = 1 or u = 0 and k(0)2 < 1
hold. For all stationary points we can determine their existence and their J4 values using
one function only. We define the Lagrange type function

f(u) :=
(
J4(k) + u(1− k2)

)
k=k(u)

(2.45)

with k(u) as in (2.44). For all regular stationary points k of J4(k) holds

f(u) = J4(k)|stat , (2.46)

f ′(u) = 1− k2
∣∣
stat

. (2.47)

There are stationary points of J4(k) with |k| < 1 and |k| = 1 exactly if f ′(0) > 0 and
f ′(u) = 0, respectively, and the value of J4(k) is then given by f(u). Explicitly, we have

f(u) = u+ η00 − ηT(E − u)−1η , (2.48)

f ′(u) = 1− ηT(E − u)−2η , (2.49)



26 2. The general Two-Higgs-Doublet Model

from the definition (2.45).
In a basis where E = diag(µ1, µ2, µ3) we obtain:

f(u) = u+ η00 −
3∑

a=1

η2
a

µa − u
, (2.50)

f ′(u) = 1−
3∑

a=1

η2
a

(µa − u)2
. (2.51)

The derivative f ′(u) has at most 6 zeros. Notice that there are no exceptional solutions if
all three components of η are different from zero in this basis .

The function f(u) given by (2.48) allows us to discuss also the exceptional solutions
of (2.41) and (2.42). Consider first |k| < 1 and suppose that detE = 0. In the basis where
E is diagonal we have

detE = µ1 µ2 µ3 = 0 (2.52)

and (2.41) reads

µ1 k1 = −η1 ,

µ2 k2 = −η2 ,

µ3 k3 = −η3 .

(2.53)

Obviously, a solution of (2.53) is only possible if with µa = 0 also ηa = 0 (a = 1, 2, 3).
Therefore, we see from (2.50) that exceptional solutions with |k| < 1 are only possible if
f(u) stays finite at u = 0. That is, the pole which would correspond to µa = 0 must have
residue zero. Suppose now that indeed ηa = 0 for all a where µa = 0. Take as an example
µ1 = µ2 = 0 and η1 = η2 = 0, but µ3 6= 0. Then we get the general solution of (2.53) as

k3 = − η3

µ3

, (2.54)

with k1, k2 arbitrary but satisfying k2 < 1. We can write this as

k = k‖ + k⊥, (2.55)

where

k‖ = − 1

µ3

η , E k⊥ = 0 ,

k2
⊥ < 1− k2

‖ = 1−
(
η3

µ3

)2

.

(2.56)

Inserting the solution k from (2.55), (2.56) in J4(k) we get for the functions (2.50) and
(2.51)

f(0) = J4(k)|stat , (2.57)

f ′(0) = 1− k2
‖ > k2

⊥ ≥ 0 . (2.58)



2.2 Stability of the potential 27

Clearly these arguments work similarly, if only one of the µa is equal to zero or all three
µa are zero. In all cases (2.57) holds for the exceptional points with |k| < 1, which can
exist only if f(u) has no pole at u = 0. Since (2.57) involves only ”scalar” quantities, it
holds in any basis.

The case of exceptional solutions for |k| = 1 can be treated in an analogous way. An
exceptional solution of (2.42) with u = µa (a = 1, 2, 3) can only exist if the corresponding
ηa = 0. Then f(u) has no pole for u = µa and the exceptional solutions of (2.42) fulfil

k = k‖ + k⊥ , (2.59)

with
k‖ = − (E − u)−1η

∣∣
u=µa

, (E − µa)k⊥ = 0

and

f(µa) = J4(k)|stat , (2.60)

f ′(µa) = 1− k2
‖ = k2

⊥ ≥ 0 . (2.61)

Note that if a solution is possible, k⊥ may be any linear combination of the eigenvectors
to the eigenvalue µa of E, where the norm is given by |k⊥| =

√
f ′(µa). Thus we see that

the function f(u) is very useful for discussing the stability of the THDM potential. What
we have shown so far can be formulated as follows.

Consider the functions f(u) and f ′(u). Denote by I,

I = {u1, . . . , un}, (2.62)

the following set of values of u. Include in I all u where f ′(u) = 0. Add u = 0 to I if
f ′(0) > 0. Consider then the eigenvalues µa (a = 1, 2, 3) of E. Add those µa to I where
f(µa) is finite and f ′(µa) ≥ 0. We have n ≤ 10. The values of the function J4(k) at its
stationary points are given by

J4(k)|stat = f(ui) (2.63)

with ui ∈ I. The potential is stable if f(ui) > 0 for all ui ∈ I. Then the stability is given
solely by the quartic terms in the potential. The potential is unstable if we have f(ui) < 0
for at least one ui ∈ I. If we have f(ui) ≥ 0 for all ui ∈ I and f(ui) = 0 for at least
one ui ∈ I we have to consider in addition J2(k) in order to decide on the stability of the
potential.

We turn now to this latter case. We shall show that we have to consider in addition
the function

g(u) := ξ0 − ξT(E − u)−1η (2.64)

for the stationary points of J4(k) with

J4(k)|stat = f(ui) = 0 . (2.65)

For the vectors k satisfying (2.65), we get

J2(k)|stat = g(ui) (2.66)



28 2. The general Two-Higgs-Doublet Model

if ui 6= µa, that is ui is not an eigenvalue of E. If ui is an eigenvalue of E, that is ui = µa ∈ I,
we have

inf
k
J2(k) = g(ui)− |ξ⊥(ui)|

√
f ′(ui) , (2.67)

where the infimum is taken over all exceptional solutions k to ui and

ξ⊥(ui) :=
N∑
l=1

ξel(ui)

|el(ui)|2
el(ui) . (2.68)

Here, el(ui) (l = 1, . . . , N) are the N ≤ 3 eigenvectors to ui. We summarise our findings
in a theorem.

Theorem 2.2.1. The most general potential of the Two-Higgs-Doublet Model has the
form (2.26). Its stability is decided in the following way. If the potential has only the
quadratic term V2, it is stable for ξ0 > |ξ|, marginally stable for ξ0 = |ξ| and unstable
for ξ0 < |ξ|. Suppose now that V4 6≡ 0. We construct then the functions f(u) (2.48),
f ′(u) (2.49) and g(u) (2.64), and the set I (2.62) of (at most 10) u values.

1. If f(ui) > 0 for all ui ∈ I the potential is stable in the strong sense (2.40).

2. If f(ui) < 0 for at least one ui ∈ I the potential is unstable.

3. If f(ui) ≥ 0 for all ui ∈ I and f(ui) = 0 for at least one ui ∈ I we consider also the
function g(u) (2.64). The potential is stable in the weak sense (2.39) if for all ui ∈ I
where f(ui) = 0 the following holds (see (2.66) to (2.68)):

g(ui) > 0 if ui 6= µa , (2.69)

g(ui)− |ξ⊥(ui)|
√
f ′(ui) > 0 if ui = µa . (2.70)

If in some or all of these cases we have = 0 instead of > 0 we have marginal sta-
bility (2.38). If in at least one case we have < 0 instead of > 0 the potential is
unstable.

Our theorem gives a complete characterisation of the stability properties of the general
THDM potential. In the following subsection we apply the theorem to assert the strong
stability condition (2.40) for a specific potential. An application for the weaker stability
condition (2.39) is given in subsection 2.6.1.

2.3 Electroweak symmetry breaking

2.3.1 Stationarity conditions via orbit variables

After our stability analysis in the preceding section we now consider the stationary points
of the potential, since among these points there are the local and global minima and thus
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the vacuum. To determine the stationary points of the Higgs potential we consider (2.26)
and take the constraints (2.24) into account. The stationary points with respect to the
Higgs fields may be determined using orbit variables by employing standard techniques
from constrained optimisation. We distinguish three possible types of stationary points by
their location with respect to the domain boundaries.

Classification 2.3.1. The stationary points of the THDM potential (2.26) are described
by the following cases:

• K0 = |K| = 0: The tip of the forward light cone

K̃ = 0 (2.71)

is always a stationary point as a direct consequence of the definitions.

• K0 = |K| > 0: Stationary points on the forward light cone fulfil

∇K̃

(
V − u K̃

T
g̃K̃
)

= 0 , (2.72a)

K̃
T
g̃K̃ = 0 , (2.72b)

K0 > 0 , (2.72c)

where u is a Lagrange multiplier.

• K0 > |K|: Stationary points in the inner part of the forward light cone fulfil

∇K̃ V = 0 , (2.73a)

K̃
T
g̃K̃ > 0 , (2.73b)

K0 > 0 . (2.73c)

The existence of stationary solutions as well as the value of a corresponding Lagrange
multiplier is independent of the chosen Higgs flavour basis.

The vacuum will be at least a local minimum of the potential. A stable vacuum is the
global minimum of a stable potential. We denote the vacuum expectation values (vevs) of
the Higgs fields by

v+
i := 〈ϕ+

i 〉 , v0
i := 〈ϕ0

i 〉 , (2.74)

with i = 1, 2. In general the v+
i , v

0
i are complex numbers. To exhibit the consequences for

gauge invariance we consider the matrices (2.16) at the vacuum,

〈φ〉 =

(
v0

1 v+
1

v0
2 v+

2

)
. (2.75)

The brackets denote also for the other quantities their vacuum expectation value in the
following. The symmetry properties of the vacuum can be formulated using the rank
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of 〈φ〉, which is a gauge and Higgs flavour basis invariant quantity. We shall establish
the connection to the orbit variables of the vacuum and discuss the implications for all
possible cases. We observe that for any matrix A the relation rankA†A = rankA holds
and therefore

rankφ = rankK . (2.76)

Furthermore we have
K̃

T
g̃K̃ = 4 detK (2.77)

so that we find the following cases.

Classification 2.3.2. The electroweak symmetry breaking induced by a vacuum of the
THDM is characterised by the location of its orbit variables with respect to the forward-
light cone.

• 〈K0〉 = 〈K〉 = 0: The trivial vacuum has

rank 〈φ〉 = rank 〈K〉 = 0 (2.78)

and vanishing vacuum expectation values for all Higgs fields. In this case, no sym-
metry is spontaneously broken.

• 〈K0〉 = |〈K〉| > 0: A vacuum on the forward light cone features

rank 〈φ〉 = rank 〈K〉 = 1 (2.79)

such that after performing a SU(2)L × U(1)Y transformation we achieve(
v+

1

v+
2

)
= 0 ,

(
v0

1

v0
2

)
=

(
|v0

1|
v0

2

)
6= 0 , (2.80)

and identify the unbroken U(1) gauge group with the electromagnetic one.

• 〈K0〉 > |〈K〉|: A vacuum in the interior of the forward light cone has

rank 〈φ〉 = rank 〈K〉 = 2 . (2.81)

such that in any gauge or Higgs flavour basis at least one charged and one neutral
vacuum expectation value is non-vanishing. This means that the full gauge group
SU(2)L × U(1)Y is broken.

Clearly, the case 〈K0〉 = |〈K〉| > 0 is required for the vacuum of a phenomenologically
acceptable theory. Figure 2.2 illustrates the different classes of vacua.

A scheme often used in the literature, also for other types of Higgs sectors, is to repa-
rameterise the potential using the stationarity conditions for the Higgs fields. That is, the
stationarity conditions are not solved but only one of the (in general many) stationary
solutions is picked and parameterised. Typically the parameters of the terms quadratic in
the Higgs fields are eliminated and the vacuum expectation values are considered as input
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K1
K3

K0

(K2 = 0)

none

EWSB
full

partial

Figure 2.2: The electroweak symmetry is fully broken, partially broken or unbroken by the
vacuum, depending on its position with respect to the forward light cone.

parameters instead. Physical quantities such as the electroweak scale and the Higgs masses
may now be directly calculated in terms of these parameters. In a second step, parameters
such as the vacuum expectation values are usually traded for the electroweak scale and
maybe other physical quantities like Higgs masses. It is obvious that choosing such a set
of input parameters instead of the original Lagrangian parameters has the advantage that
physical observables such as the known electroweak scale may easily be adjusted to the
observed values. This type of reparameterisation works actually even better when using
orbit variables as we shall show in section 2.4. Note, that even without explicitly solving
the stationarity equations, one achieves with this reparameterisation that the correspond-
ing vacuum solution is a stationary point of the potential by construction. If one arranges
for positive physical Higgs masses it will furthermore be a local minimum. In simple cases,
where e.g. the potential is at least weakly stable and has only one local minimum, this
automatically ensures a stable vacuum. In the general case however, the reparameterisa-
tion alone is not sufficient to ensure the stability of the vacuum. We will show that for
the THDM indeed more than one local minimum can exist. For a stable vacuum it needs
to be checked that it is indeed the global minimum of the potential. Also, to ensure suf-
ficient stability of a meta-stable vacuum requires more global knowledge of the potential
structure. Therefore, we shall develop means to calculate the stationary points and derive
various statements for their classification and existence in the following.



32 2. The general Two-Higgs-Doublet Model

2.3.2 Determination of stationary points

We write the non-trivial stationarity conditions (2.73a) and (2.72a) in the combined form

∇K̃

(
V − u K̃

T
g̃K̃
)

= ξ̃ + 2(Ẽ − ug̃)K̃ = 0 (2.82a)

u K̃
T
g̃K̃ = 0 , (2.82b)

K̃
T
g̃K̃ ≥ 0 , (2.82c)

K0 > 0 , (2.82d)

where a stationary point in the inner part of the forward light cone has Lagrange multiplier
u = 0.

There may be up to 4 values u = µ̃a with a = 1, . . . , 4 for which det(Ẽ − ug̃) = 0. De-
pending on the potential some or all of them may lead to exceptional solutions of (2.82a).
Regular solutions of (2.82a) with det(Ẽ − ug̃) 6= 0 are uniquely determined by

K̃(u) = −1

2

(
Ẽ − ug̃

)−1
ξ̃ . (2.83)

We define the function
f̃(u) :=

(
V − u K̃

T
g̃K̃
)∣∣∣

K̃=K̃(u)
(2.84)

from which we find explicitly

f̃(u) = −1

4
ξ̃

T(
Ẽ − ug̃

)−1
ξ̃ , (2.85)

f̃ ′(u) = −1

4
ξ̃

T(
Ẽ − ug̃

)−1
g̃
(
Ẽ − ug̃

)−1
ξ̃ . (2.86)

Employing this function the non-trivial regular stationary points are determined by

K̃ = K̃(u) for u with det(Ẽ− ug̃) 6= 0 , u f ′(u) = 0 , f ′(u) ≤ 0 , K0(u) > 0 . (2.87)

The only remaining task is now to find the zeros of det(Ẽ−ug̃) and f̃ ′(u), which corresponds
to finding the zeros of two univariate polynomials of at most order 4 and 8 respectively.
This can easily be done numerically for any potential, in some cases all solutions can be
given explicitly in an analytical form, see e.g. sections 2.6.1, 2.6.3 and 2.7.

In many cases, for instance if all values µ̃1, . . . , µ̃4 are different, we can diagonalise the
in general non-hermitian matrix g̃Ẽ in the following way:

g̃Ẽ =
4∑

a=1

µ̃aP̃a . (2.88)

Here the P̃a are quasi-projectors constructed from the normalised right and left eigenvectors
χa, χ̃a of g̃Ẽ. We have then g̃Ẽ χa = µ̃a χa, χ̃a g̃Ẽ = χ̃a µ̃a, χ̃aχb = δab and can impose as
additional normalisation condition χ†aχa = 1. The P̃a are given by

P̃a = χaχ̃a (2.89)
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and satisfy

tr P̃a = 1 , P̃aP̃b =

{
P̃a for a = b ,

0 for a 6= b ,
(2.90)

where a, b ∈ {1, . . . , 4}. In terms of the P̃a (2.85) and (2.86) read

f̃(u) = −1

4

4∑
a=1

ξ̃
T
P̃a g̃ ξ̃

µ̃a − u
, (2.91)

f̃ ′(u) = −1

4

4∑
a=1

ξ̃
T
P̃a g̃ ξ̃

(µ̃a − u)2
. (2.92)

Of course, f̃(u) (2.85) is always a meromorphic function of u but in general poles of higher
order than one may also occur.

Alternatively to the method outlined above one may use Gröbner bases to determine
the stationary points. This method also ensures at the algebraical level that all stationary
points are found, which include in particular the global minimum. The advantage for the
THDM with respect to the method discussed above is the full automation of the calculation.
However, the Gröbner approach can also be applied to more complicated Higgs potentials,
which involve non-linear multivariate stationarity conditions instead of the linear system
(2.82a). We will explain the method in the context of the NMSSM in chapter 3.

2.3.3 Criteria for electroweak symmetry breaking

For any stationary point the potential is given by

V |stat =
1

2
K̃

T
ξ̃ = −K̃

T
ẼK̃. (2.93)

Suppose now that the weak stability condition (2.39) holds. Then (2.93) gives for non-
trivial stationary points where K̃ 6= 0:

V |stat < 0 , (2.94)

since the cases V4 < 0 and V4 = V2 = 0 are excluded by the stability condition. If the
parameters fulfil ξ0 ≥ |ξ|, this immediately implies J2(k) ≥ 0 and hence from (2.39) V > 0
for all K̃ 6= 0, that is, K̃ = 0 is the only stationary point and the global minimum of the
potential. For ξ0 < |ξ| we obtain

∂V

∂K0

∣∣∣∣k fixed,
K0=0

= ξ0 + ξTk < 0 (2.95)

for some k, i.e. K̃ = 0 can not be a local minimum, and the global minimum of V lies
at K̃ 6= 0.
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Whether a non-trivial stationary point is a local minimum, a local maximum or a saddle
is determined by the Hessian matrix with respect to the orbit variables. For u = 0 the free
Hessian matrix

H :=

(
∂2

∂Kµ ∂Kν

V

)
= 2Ẽ , where µ, ν = 0 . . . 3 , (2.96)

determines the type of the stationary point. For u 6= 0 the sign of u and the bordered
Hessian matrix (see for instance [115])

H̄ :=

(
∂2

(∂u)2
∂2

∂u ∂Kµ

∂2

∂u ∂Kµ

∂2

∂Kµ ∂Kν

)(
V − u K̃

T
g̃K̃
)
, where µ, ν = 0 . . . 3 , (2.97)

=

(
0 −2(g̃K̃)T

−2g̃K̃ 2(Ẽ − ug̃)

)
(2.98)

may determine the type of the stationary point. If the signs of u and the last three
leading principal minors of H̄ are +,−,−,− it is a minimum, if they are −,+,−,+ it is a
maximum, if any other combination of definite signs occur it is a saddle. The occurrence
of one or more zeros as is the case e.g. in presence of a degenerate direction might prohibit
the classification. Note, that a definite decision is facilitated by the fact, that no higher
than second derivatives with respect to the orbit variables occur. This is in contrast to
the second derivatives with respect to the Higgs fields, where for zero-directions the fourth
order derivatives must be checked. However, if e.g. already the first or second leading
principal minor described above is zero it will hide the information with respect to the
residual directions, since the following leading principal minors will also be zero. In this
case a simple reordering of the orbit variables in (2.97) may give a definite answer. See
also the discussion of positive semi-definite matrices in section 2.8.

Suppose that the two points

p̃ =

(
p0

p

)
, q̃ =

(
q0
q

)
(2.99)

with p0 ≥ |p| and q0 ≥ |q| are stationary points of V , that is each of them is a solution of
(2.82) together with an appropriate Lagrange multiplier up or uq for p̃ or q̃, respectively.
We have

V (p̃)− V (q̃) =
1

2
p̃Tξ̃ − 1

2
q̃Tξ̃

= p̃T(uq g̃ − Ẽ)q̃ − q̃T(up g̃ − Ẽ)p̃

= (uq − up) p̃Tg̃q̃ . (2.100)

Since p̃ and q̃ are vectors on or inside the forward light cone, p̃Tg̃q̃ is always non-negative.
It becomes zero only for p̃ parallel to q̃ and both on the light cone. Furthermore, the
case that two different p̃, q̃ on the forward light cone are parallel can not occur, since then
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(2.100) requires V (p̃) = V (q̃), while (2.93) and (2.94) imply V (p̃) 6= V (q̃) for that case.
Therefore the values of the potential at non-trivial stationary points are strictly ordered
with respect to their Lagrange multipliers:

up > uq ⇐⇒ V (p̃) < V (q̃) . (2.101)

We found in the previous subsection that a regular solution for some given Lagrange
multiplier is uniquely determined, see (2.83). From (2.101) we see that it is the only
stationary solution with its specific value of the potential. Degenerate stationary points
can therefore not be regular, but need to be exceptional with a Lagrange multiplier given
by one of the eigenvalues of g̃Ẽ, see previous subsection. We summarise.

Theorem 2.3.3. For non-trivial stationary points a larger Lagrange multiplier is equivalent
to a lower value of the potential, see (2.101), which lies always below that of trivial point,
see (2.94). Degenerate stationary points share the same Lagrange multiplier given by an
eigenvalue of g̃Ẽ.

Assuming p0 = |p| and q0 > |q| we get from (2.82a):

V (p̃)− V (q̃) = (p̃− q̃)T Ẽ (p̃− q̃) . (2.102)

If the stationary point p on the forward light cone has a positive Lagrange multiplier, its
potential value will by (2.101) have a lower potential value than any stationary point q
in the interior of the forward light cone. From (2.102) follows in this case that Ẽ has a
negative eigenvalue. Since the Hessian matrix for q equals 2Ẽ, see (2.96), we see that q̃
cannot be a local minimum. This result and the hierarchies of the stationary points derived
above agree with [80].

Suppose now that a stable potential has ξ0 < |ξ|, or equivalently, a non-trivial global
minimum. The Lagrange multiplier u0 of the global minimum is the largest of all occurring
Lagrange multipliers due to (2.101), and – as necessary for any minimum – it must be non-
negative

u0 ≥ 0 . (2.103)

We note that for two different stationary points in the inner part of the domain or with
u = 0 on its boundary, any linear combination of them with K0 ≥ |K| is a stationary
point as well. These points therefore belong to one connected set of degenerate stationary
points. Stability requires that this set contains points with K0 > |K| and is bounded by
points with K0 = |K|. If interpreted geometrically, this degenerate set is a line segment,
ellipsoidal area or volume. We summarise.

Theorem 2.3.4. There are the following mutually exclusive possibilities for local minima:

• one or multiple local minima on the forward light cone (K0 = |K|)

• or a degenerate set of solutions in and on the forward light cone (K0 ≥ |K|)

• or one local minimum in the interior of the forward light cone (K0 > |K|)
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• or the trivial minimum (K̃ = 0).

The Lagrange multiplier of any non-trivial local minimum is non-negative, and the global
minimum has the largest of all occurring Lagrange multipliers.

We know from subsection 2.3.1 that in a theory with the required EWSB, the orbit
variables of the vacuum lie on the forward light cone. For the particularly important case
that the vacuum is stable, it must be a global minimum of the potential. Together with
the discussion above we thus find the following.

Theorem 2.3.5. The global minimum of a stable potential with the spontaneous electroweak
symmetry breaking SU(2)L × U(1)Y−→ U(1)em

(i) requires ξ0 < |ξ|,

(ii) is given and guaranteed by a stationary point on the forward light cone with the largest
occurring Lagrange multiplier u0, which is necessarily non-negative.

2.4 Mass matrices and reparameterisation

We assume a stable potential which leads to the desired symmetry breaking pattern as
discussed in the previous sections and derive consequences for the resulting physical fields
in the following. The EWSB observed in nature is achieved by a stationary solution on
the forward light cone. In the gauge (2.80) we define

〈ϕ1〉 =

(
0
v1

)
, 〈ϕ2〉 =

(
0

v2 e
iζ

)
, v1, v2, ζ ∈ R (2.104)

and have for the orbit variables of such a partially breaking vacuum

〈
K̃
〉

=


v2

1 + v2
2

2v1v2 cos ζ
2v1v2 sin ζ
v2

1 − v2
2

 . (2.105)

Note that this decomposition into the field expectation values holds only for the gauge
(2.80), while 〈K̃〉 itself is of course gauge invariant.

In order to identify the physical content of the Lagrangian, we perform a basis change (2.11)
to decouple the vacuum expectation values of the two Higgs doublets. We only note, that
this basis change isolates the gauge boson mass terms (and the associated Goldstone con-
tributions in more general gauges than considered here). We choose(

ϕ′1
ϕ′2

)
=

(
cos β sin β e−iζ

− sin β eiζ cos β

)(
ϕ1

ϕ2

)
, (2.106)
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with β fulfilling v1 sin β = v2 cos β (tan β = v2/v1 for v1 6= 0), and thus arrange that

〈ϕ′1〉 =

(
0

v/
√

2

)
, 〈ϕ′2〉 =

(
0
0

)
(2.107)

for the vacuum expectation values in the new basis, where

v =
√

2(v2
1 + v2

2) > 0 (2.108)

is the usual Higgs-field vacuum expectation value, v ≈ 246GeV (see for instance [64]). At
the level of the orbit variables the flavour basis change (2.106) means

〈K ′
0〉 = 〈K0〉 (2.109a)

〈K ′〉 =

c2β + 2s2
βs

2
ζ −s2

βs2ζ −s2βcζ
−s2

βs2ζ c2ζ + 2c2βs
2
ζ −s2βsζ

s2βcζ s2βsζ c2β

 〈K〉 (2.109b)

with sβ ≡ sin β, cβ ≡ cos β etc., such that in the new basis

〈
K̃

′〉
=


1
2
v2

0
0

1
2
v2

 . (2.110)

Figure 2.2 illustrates the flavour basis change (2.109) which decouples the vacuum expec-
tation values.

We choose a unitary gauge such that in addition to (2.107) the fields satisfy

ϕ′+1 (x) = 0 , (2.111)

Imϕ′01 (x) = 0 , (2.112)

Reϕ′01 (x) ≥ 0 . (2.113)

We introduce the shifted Higgs fields as the deviations of the original doublet components
from their vacuum expectation values. The actual physical Higgs bosons are the mass
eigenstate admixtures of these shifted fields. We define the three neutral shifted Higgs
fields as

ρ′(x) :=
√

2 Reϕ′01 (x)− v , (2.114)

h′(x) :=
√

2 Reϕ′02 (x) , (2.115)

h′′(x) :=
√

2 Imϕ′02 (x) . (2.116)

and the charged fields as

H+(x) := ϕ′+2 (x) , (2.117)

H−(x) :=
(
H+(x)

)∗
. (2.118)
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K1 K3

K0

(K2 = 0)

2β

Figure 2.3: The vacuum expectation values are decoupled by a flavour basis change which is just
a real rotation of the orbit variables. The angle β satisfies as usual tanβ = v2/v1.

This leads to

ϕ′1(x) =

(
0

1√
2
(v + ρ′(x))

)
, (2.119a)

ϕ′2(x) =

(
H+(x)

1√
2
(h′(x) + i h

′′
(x))

)
. (2.119b)

It is convenient to decompose K̃
′
according to the power of the physical fields they contain

K̃
′
= K̃

′
{0} + K̃

′
{1} + K̃

′
{2} (2.120)

with

K̃
′
{0} =

v2

2


1
0
0
1

 , K̃
′
{1} = v


ρ′

h′

h′′

ρ′

 , K̃
′
{2} =

1

2


ρ′ 2 + h′ 2 + h′′ 2 + 2H+H−

2ρ′h′

2ρ′h′′

ρ′ 2 − h′ 2 − h′′ 2 − 2H+H−

 ,

(2.121)

and, of course, K̃
′
{0} ≡ 〈K̃

′〉. By uv we denote the Lagrange multiplier corresponding to
the vacuum solution (2.110). From (2.82a) we have

Ẽ ′K̃
′
{0} = uv g̃K̃

′
{0} −

1

2
ξ̃
′
. (2.122)

From the explicit expressions (2.121) we further get

K̃
′T
{0} g̃ K̃

′
{0} = 0 , K̃

′T
{0} g̃ K̃

′
{1} = 0 . (2.123)
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Using (2.120) to (2.123) we obtain for the potential (2.26)

V = V{0} + V{2} + V{3} + V{4} , (2.124)

where V{k} are the terms of kth order in the physical Higgs fields

V{0} = (ξ′0 + ξ′3) v
2/4 , (2.125)

V{2} = K̃
′T
{1} Ẽ

′ K̃
′
{1} + 2uv K̃

′T
{0} g̃ K̃

′
{2} , (2.126)

V{3} = 2 K̃
′T
{1} Ẽ

′ K̃
′
{2} , (2.127)

V{4} = K̃
′T
{2} Ẽ

′ K̃
′
{2} . (2.128)

The second order terms (2.126) determine the masses of the physical Higgs fields:

V{2} =
1

2
(h′, h′′, ρ′)M2

neutral

h′h′′
ρ′

+m2
H±H+H− (2.129)

with

M2
neutral = 2

v2 (η′11 + uv) v2 η′12 −ξ′1
v2 η′12 v2 (η′22 + uv) −ξ′2
−ξ′1 −ξ′2 −ξ′3 − ξ′0

 , (2.130)

m2
H± = 2uv v

2 . (2.131)

Note that the condition uv ≥ 0 corresponds to the non-negativity of the charged Higgs
mass squared at the tree-level. Using the stationarity condition in the present flavour basis

to eliminate ξ̃
′
we find for the mass parameters

M2
neutral = 2v2

 η′11 + uv η′12 η′13 + η′1
η′12 η′22 + uv η′23 + η′2
η′13 + η′1 η′23 + η′2 η′33 + 2η′3 + η′00

 , (2.132)

m2
H± = 2v2 uv . (2.133)

Note the simple structure of these mass terms. These, determining the terms quadratic in
the physical fields, are proportional to simple linear combinations of the quartic param-
eters for the original fields and the Lagrange multiplier, with the overall scale set by v.
Generically the mass terms (2.129) contain 7 real parameters. From (2.132) and (2.133)
we see that all 7 parameters are in general independent in this model.

While the charged Higgs fields H± are already mass eigenstates, the physical neutral
Higgs bosons are obtained after diagonalisation of the symmetric mass matrix M2

neutral. If
CP is conserved by both the potential and the vacuum, scalar and pseudo-scalar Higgs
bosons may be defined with a conserved CP quantum number. We shall discuss CP
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invariances in detail in section 2.5, but already note the following. In case of standard
CP conservation of both the potential and the vacuum, M2

neutral becomes diagonal in the
2–direction. Then h′′ is a CP-odd, i.e. pseudo-scalar, mass eigenstate denoted by A := h′′,
while ρ′, h′ are CP-even fields, which mix to two mass eigenstates denoted by h, H. In
case h, H are not degenerate, h is the lighter of the two states by convention. Explicit
examples for physical Higgs bosons and masses can be found in sections 2.6 and 2.7.

We close this section with a remark concerning the choice of input parameters. In
general the vacuum solution (2.105) is a complicated function of the original parameters,
which may not even be calculable analytically. It is therefore tempting to use a parameter-
isation of the vacuum to reparameterise the potential itself via the stationarity conditions,
as already discussed in subsection 2.3.1. A particularly simple starting point is the param-
eterisation of the vacuum in the general basis (2.105). One may now replace ξ̃ via (2.72a)
with K̃ given in (2.105) and v1 eliminated by means of (2.108):

ξ̃ = ξ̃(v, v2, ζ,mH± , η00,η, E) . (2.134)

With this the potential can be reparameterised in terms of v, v2, ζ,mH± , η00,η, E. With
this set of independent input parameters, v can be adjusted to the required value (2.108),
and relations involving the vacuum solution can be evaluated directly in terms of input
parameters. Note, that this parameterisation (2.134) is possible for all potentials having
a non-zero stationary point K̃ on the light cone. A potential not having such a point
can not have the required EWSB behaviour. After the substitution (2.134) the four-
vector K̃ in (2.192) corresponds by construction to a stationary point of V . Thus, the
parameterisation (2.134) is possible for all potentials with a stationary point at the wanted
place (2.192). But for any specific values of the new parameters it remains to be checked
whether K̃ in (2.192) is indeed the global minimum of a stable potential V . This typically
requires to perform the complete analysis presented in the previous section. Note that in
the orbit variable approach this change of parameters is even possible for the cases where
the phase ζ or one of v1, v2 vanishes. We consider this to be a slight advantage with
respect to the similar change of parameters within the traditional field based approach,
where case distinctions are required.
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2.5 Generalised CP symmetries

2.5.1 CP transformations

Standard CP transformation

The standard CP transformation of the gauge, Higgs and fermion fields reads (see for
instance [64])

CPs : W µ(x) −→ −WT
µ (x′) , (2.135a)

Bµ(x) −→ −Bµ(x
′) , (2.135b)

ϕi(x) −→ ϕ∗i (x
′) , i = 1, 2 , (2.135c)

ψi(x) −→ γ0 S(C)ψi
T(x′) , i = 1, . . . , Nf . (2.135d)

Here we have

(xµ) =

(
x0

x

)
, (x′µ) =

(
x0

−x

)
, (2.136)

γ0 and S(C) := iγ2γ0 are the usual Dirac matrices for the parity and charge conjugation
transformations, respectively (see for instance chapter 4 of [64]), and

W µ(x) = W µa(x)
σa
2

(2.137)

is the matrix of the W -potentials. Of course, a discussion of this CP transformation makes
only sense once we have already chosen a particular basis for the two Higgs doublets since
basis transformations (2.11) change (2.135). Such a particular choice of basis is, indeed,
in general required when the Yukawa terms LYuk are taken into consideration. In the
MSSM, for instance, one Higgs doublet couples to the up-type fermions, one to the down
type fermions. This clearly singles out a special basis. Therefore, we have denoted the CP
transformations in (2.135) by CPs for standard and special.

From the definition of our matrix K and of the four real coefficients K0 and Ka it is
obvious that the CPs transformation (2.135) corresponds to

CPs : K0(x) −→ K0(x
′) ,K1(x)

K2(x)
K3(x)

 −→

 K1(x
′)

−K2(x
′)

K3(x
′)

 . (2.138)

That is, the vector K(x) is subjected to a reflection on the 1 − 3 plane and a change of
argument x −→ x′,

CPs : K(x) −→ R2K(x′) , (2.139)

where

R2 :=

1 0 0
0 −1 0
0 0 1

 . (2.140)
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Generalised CP transformations of the fields

We shall in this theses also consider generalised CP transformations of the Higgs fields
[116] defined by

CPg : W µ(x) −→ −WT
µ (x′) , (2.141a)

Bµ(x) −→ −Bµ(x
′) , (2.141b)

ϕi(x) −→ Uϕ
ij ϕ

∗
j(x

′) , i = 1, 2 , (2.141c)

ψi(x) −→ Uψ
ij γ

0 S(C)ψj
T(x′) , i = 1, . . . , Nf (2.141d)

with Uϕ =
(
Uϕ
ij

)
∈ U(2) and Uψ =

(
Uψ
ij

)
∈ U(Nf ). That is, the usual CP transformation

of the Higgs and the fermion fields are supplemented by a flavour basis change. Explicitly,
we allow independent mixings for fermions with different quantum numbers:

CPg : LLi (x) −→ UL
ij γ

0 S(C)L
L

j
T(x′) , (2.142a)

lRi (x) −→ U l
ij γ

0 S(C) l
R

j
T(x′) , (2.142b)

QL(x) −→ UQ
ij γ

0 S(C)Q
L

j
T(x′) , (2.142c)

d′Ri (x) −→ Ud′

ij γ
0 S(C) d

′R
j

T(x′) , (2.142d)

uRi (x) −→ Uu
ij γ

0 S(C)uRj
T(x′) . (2.142e)

Although we presently discuss THDMs, parts of the following discussions are formulated
at a rather generic level. This allows to apply the results to cases with different numbers
not only of the fermions but also of the Higgs doublets.

Now we shall require that a CPg transformation applied twice gives the original fields
up to a symmetry transformation of the Lagrangian, see also [117]. We find from (2.141):

CPg ◦ CPg : W µ(x) −→ W µ(x) , (2.143a)

Bµ(x) −→ Bµ(x) , (2.143b)

ϕi(x) −→ (Uϕ Uϕ ∗)ij ϕj(x) , i = 1, 2 , (2.143c)

ψi(x) −→ −(Uψ Uψ ∗)ij ψj(x) , i = 1, . . . , Nf . (2.143d)

Of course, the complete set of symmetries of the Lagrangian depends on the specific THDM
one considers. We shall consider here completely general potentials without insisting on
any further symmetries. Therefore we require that the twofold application of a CPg trans-
formation reproduces the original fields up to a phase. This implies that any of the mixing
matrices U in (2.141) satisfy

U U∗ = eiκ1 (2.144)

with real κ. It is interesting to note that in (2.144) only certain phases κ are possible
depending on the number of flavours involved. Note that the global phase of the matrix U
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drops out in (2.144) and a non-trivial phase κ can only be generated through a non-trivial
matrix structure. Actually, we see from U U † = 1 that (2.144) implies

U = eiκUT (2.145)

= e2iκU , (2.146)

from which we read off that only the cases UT = U with U U∗ = 1 or UT = −U with
U U∗ = −1 are possible. We therefore find the following.

Theorem 2.5.1. Generalised CP symmetries (2.141) may be defined which involve a uni-
tary flavour mixing in the respective sector in addition to the standard CP transformation.
Requiring a twofold CPg symmetry to reproduce the original fields up to phase implies
U U∗ = eiκ1 with κ ∈ R for the flavour mixing matrices U = Uϕ, Uψ. A unitary matrix
U = U(n) with this property can be realised only in the following ways:

U ∈ U(1) ⇒ UT = U with U U∗ = 1, (2.147)

U ∈ U(n) , n ≥ 2 ⇒ UT = U with U U∗ = 1 ,

or UT = −U with U U∗ = −1 . (2.148)

To our knowledge, cases with U U∗ 6= 1 have not been discussed in the literature before
ref. [89]. The simplest realisation of the case U U∗ = −1 is possible for 2 flavours. In this
case U must be of the form

U = eiδε , ε =

(
0 1
−1 0

)
, δ ∈ R . (2.149)

As a preparation for the following discussion we consider a CPg transformation in a
new basis of the Higgs and the fermion fields, defined by

ϕ′i(x) = Wijϕj(x) , W ∈ U(2) , (2.150a)

ψ′i(x) = Vijψi(x) , V ∈ U(Nf ) . (2.150b)

We get

CPg : ϕ′i(x) −→ (W UϕWT)ijϕ
′∗
j (x′) , i = 1, 2 , (2.151a)

ψ′i(x) −→ (V Uψ V T)ij γ
0 S(C)ψ

′
j

T(x′) , i = 1, . . . , Nf . (2.151b)

From theorem 2.5.1 we see that a mixing U in a generalised CP transformation with
U U∗ = 1 can be realised for any number of flavours. In [75] it was shown for the Higgs
sector that for any generalised CP transformation of this type there exists a Higgs flavour
basis in which it is just the standard CP transformation. We briefly reproduce the proof
here and extend the statement. If a unitary matrix U satisfies U U∗ = 1 it must be
symmetric, U = UT. As a consequence of Takagi’s factorisation theorem, see e.g. [118], it
can then be written as U = XTX where X is a unitary matrix. We consider the action
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of a generalised CP transformation on the Higgs fields, where the mixing matrix Uϕ in
(2.141c) satisfies Uϕ Uϕ ∗ = 1. Choosing the Higgs basis ϕ′i = X∗

ijϕj we see from (2.151a)
with W = X∗

CPg : ϕ′i(x) −→ (X∗UϕX†)ϕ′∗j (x′) = ϕ′∗i (x′) , (2.152)

that is, the generalised CP transformation reduces to the standard CP transformation.
On the other hand, let Uϕ define a generalised CP transformation which is reducible
to the standard CP transformation by a basis change W . From (2.151a) we see that
W UϕWT = 1 and therefore Uϕ Uϕ ∗ = W †W ∗WT W † = 1. For the fermion sector the
arguments run along the same lines. We therefore find the following.

Theorem 2.5.2. For a generalised CPg transformation of the Higgs or the fermion sector,
(2.141c) or (2.141d), a flavour basis exists in which it equals the standard CPs transfor-
mation if and only if

UT = U with U U∗ = 1 (2.153)

holds for the corresponding unitary mixing matrix U = Uϕ or U = Uψ.

This theorem states in particular, that a CPg transformation with U U∗ = −1, such as
in (2.149), is not equivalent to standard CP transformation by a change of basis.

We would like to comment on the “concatenation” of CPg transformations. Applying
three different CPg transformations CPa

g, CPb
g, CPc

g one after the other gives

CPc
g ◦ CPb

g ◦ CPa
g , (2.154)

which is again a transformation of the form (2.141) with new mixing matrices. Suppose
we consider either the Higgses or a specific fermion type, and let Ua, Ub, Uc be the cor-
responding mixing matrices in CPa

g, CPb
g, CPc

g respectively. Rewriting the threefold CPg

product according to (2.141) the resulting mixing will be Utot = Uc U
∗
b Ua and thus unitary.

Even if each of Ua, Ub, Uc is of type (2.144) the matrix Utot must not necessarily satisfy
(2.144) (take for instance Ua = (σ1 + 1)/

√
2, Ub = 1, Uc = ε as a counter example with

2×2 matrices). However, in other cases the Ua, Ub, Uc and also the Utot of all sectors are
of type (2.144) and therefore interpretable in a similar way. A particular case of such a
product will be constructed in section 2.7. There we show that a CPg symmetry of the
new type U U∗ = −1 can actually be written as a threefold product of “conventional” CPg

symmetries with U U∗ = 1.
Concerning the normalisation of the operator (CPg)

2 we remark the following. The
operator (CPg)

2 reproduces the original Higgs fields up to a possible phase factor, which
can in all cases be interpreted as a hypercharge transformation:

CPg ◦ CPg : ϕi(x) −→

{
ϕi(x) if Uϕ Uϕ ∗ = 1

exp(i6πY )ϕi(x) if Uϕ Uϕ ∗ = −1
(2.155)

If only the “standard” mixing types with exp(iκ) = 1 occur in a CPg transformation,
the operator (CPg)

2 is normalised for all fields in the same way as (CPs)
2, that is, for
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the Higgs, the fermion and the gauge boson fields. For certain combinations involving the
“non-standard” mixing types, the operator exp(i6πY ) ◦ (CPg)

2 is normalised for all fields
in the usual way, that is as for (CPs)

2. An example for such a combination is the case
exp(iκϕ) = exp(iκL) = exp(iκQ) = −1 and exp(iκl) = exp(iκd) = exp(iκu) = 1. In the
general case additional unobservable phase factors may occur for the fermions.

CP transformations of the orbit variables

We discuss now the generalised CP transformations at the level of the Higgs orbit variables
and rederive some of the statements found above at the level of the Higgs fields. Using the
orbit variable will allow to give a simple geometrical interpretation of the CPg symmetries.
For the standard CP transformation we get from (2.135c) for the orbit variables

CPg : K0(x) −→ K0(x
′) ,

K(x) −→ R2K(x′) . (2.156)

The generalised CP transformations of the orbit variables follow from (2.141c) and (2.11)
according to

CPg : K0(x) −→ K0(x
′) ,

K(x) −→ R(Uϕ)R2K(x′) (2.157)

with R(Uϕ) ∈ SO(3) obtained from (2.11) with U replaced by Uϕ. That is, CPg induces
an improper rotation R̄ϕ of the vector K in addition to the change of argument x −→ x′:

CPg : K(x) −→ R̄ϕK(x′) , (2.158)

where

R̄ϕ = R(Uϕ)R2 ,

R̄ϕR̄ϕT = 13 ,

det R̄ϕ = det (R(Uϕ)R2) = −1 . (2.159)

From the results of subsection 2.1.2 it is clear that to any improper rotation R̄ϕ there is a
Uϕ ∈ U(2) which, inserted in (2.141), gives (2.158) and (2.159).

We shall study now the effect of a basis change (2.11) on R̄ϕ. For this it is convenient
to work with the matrix φ(x) (2.16). Let the new basis fields be ϕ′1(x), ϕ

′
2(x) and the

corresponding matrix

φ′(x) =

(
ϕ′1

+(x) ϕ′1
0(x)

ϕ′2
+(x) ϕ′2

0(x)

)
= Uφ(x) (2.160)

with U ∈ U(2). The CPg transformation (2.141) reads

CPg : φ(x) −→ Uϕφ∗(x′) . (2.161)



46 2. The general Two-Higgs-Doublet Model

This implies

CPg : φ′(x) −→ Uϕ′φ′∗(x′) ,

with
Uϕ′ = UUϕU∗−1 . (2.162)

The transformation of K ′
0(x) and K ′(x) in the new basis is

CPg : K ′
0(x) −→ K ′

0(x
′) ,

K ′(x) −→ R̄ϕ′K ′(x′) ,
(2.163)

with
R̄ϕ′ = R(Uϕ′)R2 = R(U)R̄ϕRT(U) . (2.164)

Here R(U) ∈ SO(3) is the rotation matrix obtained from U according to (2.11). Thus, a
basis change induces an orthogonal transformation of the improper rotation matrix R̄ϕ.

Now we shall require that a CPg transformation applied twice gives the original fields
up to a phase factor. For the orbit variables we find from (2.158):

CPg ◦ CPg : K0(x) −→ K0(x) ,

K(x) −→ (R̄ϕ)2K(x) .
(2.165)

Requiring that CPg ◦CPg gives the unit transformation for the orbit variables leads to the
condition

R̄ϕR̄ϕ = 13 . (2.166)

But we also have R̄ϕR̄ϕT = 13, see (2.159). The requirement (2.166) thus means that R̄ϕ

is symmetric
R̄ϕT = R̄ϕ . (2.167)

As a real symmetric matrix it can be diagonalised by an orthogonal matrix R(U). That
is, we can change the basis of the Higgs fields according to (2.160) and achieve

R̄ϕ′ = R(U) R̄ϕRT(U) = diagonal matrix . (2.168)

Since R̄ϕ′ is an improper rotation it satisfies R̄ϕ′R̄ϕ′T = 13 and det R̄ϕ′ = −1. Thus, we
have only the possibilities R̄ϕ′ = R1 or R2 or R3 or −13. Here

R1 := diag(−1, 1, 1) ,

R2 := diag( 1,−1, 1) ,

R3 := diag( 1, 1,−1) .

(2.169)

The cases R̄ϕ′ = Rj, j = 1, 2, 3 are equivalent by a basis change. In constrast, a CPg

transformation with R̄ϕ′ = −13 is not equivalent by a basis change to any of these cases.
In fact, R̄ϕ′ = R̄ϕ = −13 is invariant under basis changes, since the latter are orthogonal
transformations. Thus we find the following.
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Theorem 2.5.3. Generalised CP symmetries (2.158) whose twofold application reproduce
the original orbit variables, (2.166), are improper rotations R̄ϕ in K-space. Such an im-
proper rotation is either

(i) R̄ϕ = −13 , (2.170)

that is, a basis independent point reflection at the origin, or orthogonally equivalent to the
standard CP transformation described by the reflection R2

(ii) R̄ϕ = RT(U)R2R(U) , (2.171)

that is, a reflection on a plane.

By a straight-forward calculation we find that the CPg type (i) transformation corre-
sponds exactly to the Higgs field mixing (2.149) with Uϕ Uϕ ∗ = −1. On the other hand
we see from theorems 2.5.2 and 2.5.3 that CPg type (ii) symmetries correspond to the CPg

symmetries with Uϕ Uϕ ∗ = 1 for the Higgs fields, which are equivalent to CPs up to a
basis change. We note that in terms of the orbit variables both types of symmetries arise
equally natural in terms of (2.166).

2.5.2 CP symmetries of the potential

The kinetic term in the Lagrangian (2.3) is invariant under CPs and CPg as defined in
(2.135) and (2.141). The CP symmetries of the Lagrangian are therefore determined by
the scalar Higgs potential and the Yukawa terms. We consider first the symmetries of the
scalar Higgs potential. Asking if the potential V (2.26) allows a CPg symmetry is the same
as asking if it is invariant under some improper rotation (2.158) of the K-vectors. That
is, we have invariance under a CPg transformation if the parameters of V (2.26) satisfy

R̄ϕξ = ξ , R̄ϕη = η , R̄ϕER̄ϕT = E (2.172)

for some improper rotation matrix R̄ϕ.

Standard CP symmetry

The potential V (2.26) allows CPs as a symmetry if and only if

R2ξ = ξ , R2η = η , R2ER
T
2 = E , (2.173)

that is, it contains no terms linear in K2. Thus, we have the following theorem.

Theorem 2.5.4. The Higgs Lagrangian (2.3) with the general potential (2.26) is invariant
under the CPs transformation (2.135) if and only if

ξ2 = 0 , η2 = 0 , η12 = η23 = 0 . (2.174)
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CPg type (i) symmetry

For the case (i), R̄ϕ as in (2.170), the invariance conditions (2.172) for the potential
parameters give us the following theorem.

Theorem 2.5.5. The Higgs potential (2.26) has the CPg symmetry (2.158) of type (i),
where R̄ϕ = −13 (see (2.170)), if and only if

ξ = 0 and η = 0 . (2.175)

CPg type (ii) symmetries

For the case (ii), R̄ϕ as in (2.171), we find that the original CPg transformation (2.141)
is equal to the standard CPs transformation (2.135) for the Higgs fields after a suitable
change of basis, see (2.11) and (2.160):

CPg : ϕ′i(x) −→ ϕ′i
∗(x′) , i = 1, 2 . (2.176)

Using now the results of subsection 2.5.1 we find that the THDM potential (2.26) will
be invariant under a CPg transformation of type (ii) if and only if we can find a basis
transformation (2.31) eliminating all odd powers of K2. That is, there must exist some
R(U) ∈ SO(3) such that

ξ′ = R(U) ξ =

 ·0
·

 ,

η′ = R(U) η =

 ·0
·

 ,

E ′ = R(U)E RT(U) =

 · 0 ·
0 · 0
· 0 ·

 ,

(2.177)

where the dots represent arbitrary entries. Note that the central entry of E ′, that is E ′
22,

can be different from zero since it corresponds to a quadratic term in K2. Obviously, the
first two conditions correspond to a rotation of the vector cross product ξ × η into the
2–direction which is always achievable by suitable rotations around the 1- and the 3-axis.
It is advantageous to formulate the conditions (2.177) in a way independent of the chosen
basis, such that no rotations of the original parameters have to be performed.

In the following we shall show that the conditions (2.177) are equivalent to a simple set
of equations. We formulate this result as a theorem.

Theorem 2.5.6. The THDM potential V (2.26) is invariant under a CPg transforma-
tion (2.158) of type (ii) (see (2.171)) if and only if the following basis independent set of
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equations holds:

(ξ × η)T Eξ = 0 , (2.178a)

(ξ × η)T Eη = 0 , (2.178b)

(ξ × (Eξ))T E2ξ = 0 , (2.178c)

(η × (Eη))T E2η = 0 . (2.178d)

Note, that the conditions (2.178) express linear dependencies via four vanishing triple
products of three-vector type quantities. These triple products are “pseudo-scalar”, that
is, they are invariant under rotations (basis changes) but change their sign under reflections
(CPg type (i) or (ii) transformations). The conditions (2.178c) and (2.178d) are required
for the case ξ× η = 0, which leads to trivial equations for (2.178a) and (2.178b) and thus
gives no constraints on the matrix E.

Proof. We shall show that (2.177) is equivalent to (2.178). It is easy to see that (2.177)
implies (2.178) by inserting (2.177) into (2.178). Now we want to show that from (2.178)
follows (2.177) with a suitable rotation R(U). First we choose a basis where

ξ′ = R(U) ξ =

 0
0
ξ′3

 , η′ = R(U) η =

η′10
η′3

 . (2.179)

Note that a rotation into this basis is always possible for two vectors. It remains to be
shown that in addition η′12 = η′23=0 can be achieved if (2.178a)-(2.178d) hold. We remark
that E is a symmetric matrix (see (2.26)) and this property is not altered by a similarity
transformation (2.33). We have to consider different cases depending on whether the vector
cross product

ξ′ × η′ =

 0
ξ′3η

′
1

0

 (2.180)

vanishes or not. Let us first assume that the vector cross product (2.180) does not vanish,
that is, we have ξ′3η

′
1 6= 0. From (2.178a) we find now

(ξ′ × η′)T E ′ ξ′ = η′23 ξ
′2
3 η

′
1 = 0 . (2.181)

This means that η′23 = η′32 = 0. Then (2.178b) gives

(ξ′ × η′)TE ′ η′ = η′21 ξ
′
3η
′2
1 = 0, (2.182)

that is, we have also η′21 = η′12 = 0. Thus, the explicit form (2.177) follows from (2.178a)-
(2.178d) for this case.

Now we have to consider also the special case of a vanishing vector cross product (2.180).
In this case (2.178a) and (2.178b) are trivially fulfilled and give no constraint for the matrix
E ′. We shall now use (2.178c) and (2.178d) to prove (2.177). If ξ × η = 0 and ξ = 0 and
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η = 0 we can achieve (2.177) trivially by diagonalising E. Thus, consider the case that
ξ × η = 0 and ξ 6= 0. By an orthogonal transformation we can diagonalise E:

R(U1)ER
T(U1) = E ′ = diag(µ1, µ2, µ3). (2.183)

In this basis η′12 = η′23 = 0 is fulfilled already. Furthermore, we have

ξ′ =

ξ′1ξ′2
ξ′3

 , E ′ξ′ =

µ1ξ
′
1

µ2ξ
′
2

µ3ξ
′
3

 , ξ′ × E ′ξ′ =

(µ3 − µ2)ξ
′
2ξ
′
3

(µ1 − µ3)ξ
′
3ξ
′
1

(µ2 − µ1)ξ
′
1ξ
′
2

 , (2.184)

and from (2.178c),

(ξ′ × (E ′ξ′))
T
E ′2ξ′ = (µ1 − µ2)(µ2 − µ3)(µ3 − µ1)ξ

′
1ξ
′
2ξ
′
3 = 0 . (2.185)

If all eigenvalues µa are different we find from (2.185) that at least one ξ′a must be zero.
By a change of basis which interchanges the components we can achieve ξ′2 = 0 without
introducing off-diagonal elements in E ′. Then η′ being parallel to ξ′ implies η′2 = 0 and we
found a basis of the form (2.177). Suppose, on the other hand, that at least two eigenvalues
µa are equal. Without loss of generality we can suppose

µ1 = µ2 . (2.186)

By a rotation around the 3-axis, leaving E ′ diagonal, we can then achieve

ξ′ =

ξ′10
ξ′3

 (2.187)

and also η′2 = 0 since η′ is parallel to ξ′, q.e.d. For the case ξ × η = 0 and η 6= 0 the
argumentation runs along the same lines using (2.178d) instead of (2.178c). This completes
the proof that the set of the conditions (2.178a)-(2.178d) is equivalent to the existence of
a basis satisfying (2.177).

Comparing our conditions (2.178a)-(2.178d) to the literature, we find them to be equiv-
alent to (23)-(26) in [75] as well as to the conditions given in (A)-(B) in [83]. In [75] the
conditions were found by a systematic survey of all possible complex invariants - and there
is an enormous number of such invariants - within a field based formulation, which is a
completely different approach. Our triple products required to vanish in (2.178a), (2.178b),
and (2.178d) turn out to be equal to −2−5I2Y 2Z , 2−7IY 3Z , and −2−13I6Z in their notation.
Despite the fact, that the fourth invariant occurring in [75] and our condition (2.178c)
are different, we can show that the full sets of conditions are equivalent. This is conve-
niently done by computing the reduced Gröbner bases for both sets which are indeed equal
(for a brief introduction to the formalism of Gröbner bases see appendix A). The proof
above shows how a Higgs basis is constructed for which the potential is invariant under the
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standard CP transformation, provided (2.178) holds. In this basis the parameters of the
potential with respect to the Higgs fields, V (ϕ1, ϕ2), are real. Note that by construction
the parameters of V (K̃) are always real, independent of its CP properties.

We remark that the conditions in (2.178) guarantee that the potential has at least
one CPg invariance transformation. It is possible that a theory has more than one CPg

invariance transformation. A sufficient condition guaranteeing the uniqueness of the CPg

transformation is
ξ × η 6= 0 . (2.188)

Then, clearly the only reflection symmetry one can have is on the plane spanned by ξ and
η. In table 2.2, we give a classification of CPg type (ii) invariant theories with respect to
the number of independent CPg transformations they allow.

A final remark concerns the relation of type (i) and (ii) symmetries. From theo-
rems 2.5.5 and 2.5.6 we see that a theory having the CPg symmetry of type (i) is also
invariant under - in fact several - CPg transformations of type (ii).

2.5.3 CP symmetries of the vacuum

If there is no CP transformation under which the potential is invariant, CP is broken ex-
plicitly. If the potential is invariant under a certain CPg transformation but the vacuum
expectation value does not respect this symmetry we have spontaneous violation of this
CPg symmetry. Note that a potential can be symmetric under several CPg transforma-
tions where some may be conserved and some violated by the vacuum expectation value.
Examples for this case are given below.

Suppose now that the potential V has a CPg symmetry, that is, an invariance under
an improper rotation R̄ϕ. The potential parameters satisfy then (2.172). This symmetry
is spontaneously broken if and only if the vacuum expectation value K does not respect
this symmetry, that is, it fulfils

R̄ϕK 6= K. (2.189)

Note the gauge invariance and basis independence of this condition.
Spontaneous breaking of any CP symmetry implies that the vacuum belongs to a de-

generate set of stationary points. From theorem 2.3.3 we see that the Lagrange multiplier
uv of the vacuum is an eigenvalue of g̃Ẽ in this case.

We shall now derive conditions for which the vacuum is invariant under possible CPs,
CPg type (i) or (ii) symmetries of the potential. Note that all conditions which refer to the
vacuum solution may be evaluated directly if the potential is reparameterised as described
at the end of section 2.4.

Standard CP symmetry

Suppose the potential is invariant under CPs. Spontaneous CPs violation means that the
vacuum is not invariant under this symmetry,

R2K 6= K, (2.190)
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that is, we have
K2 6= 0. (2.191)

For a vacuum solution with the required EWSB we write as in (2.105)

K̃ =


v2

1 + v2
2

2v1v2 cos ζ
2v1v2 sin ζ
v2

1 − v2
2

 . (2.192)

From (2.191) we find the well known result that CPs is violated spontaneously if and only
if v1 6= 0, v2 6= 0, ζ 6= 0, π. That means, the vacuum expectation values of the two Higgs
fields in this special basis must be complex relative to each other. We note, however, that
this statement has no basis-independent meaning. By a suitable basis transformation we
can always achieve that only one Higgs doublet has a non-vanishing vacuum expectation
value which, moreover, is real (see section 2.4).

Let us discuss in which cases spontaneous CPs violation arises for a stable vacuum. For
any vacuum of a CPs conserving potential (2.174) with partial EWSB we see that (2.72a)
implies

(µ2 + uv)K2 = 0 , (2.193)

where µ2 = η22 is an eigenvalue of Ẽ due to the latter being diagonal in the 2–direction.
Since spontaneous CPs violation means K2 6= 0, it requires for the vacuum Lagrange
multiplier

uv = −µ2 . (2.194)

On the other hand, uv is non-negative and related to the charged Higgs mass squared, see
theorem 2.3.4 and (2.131), such that (2.194) implies

µ2 ≤ 0 , (2.195)

where the inequality becomes strict for absence of massless charged Higgs bosons. Taking
the relation (2.131) into account we summarise as follows.

Theorem 2.5.7. Spontaneous violation of the CPs symmetry of the potential with the
parameters (2.174) requires

µ2 = −uv = − 1

2v2
m2
H± ≤ 0 , (2.196)

for the eigenvalue µ2 = η22 of Ẽ and the Lagrange multiplier uv of the vacuum.

For a vacuum to be stable it must be the global minimum of the potential. Let us there-
fore consider a CPs-symmetric potential with parameters as in (2.174) having (at least) two
stationary solutions on the light cone. We suppose that the CPs symmetry is respected by
one solution K̃CP with KCP

2 = 0 and violated by the other solution K̃��CP through K��CP
2 6= 0.
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We denote the corresponding Lagrange multipliers by uCP and u��CP = −µ2. Perturbing the
CPg conserving point by a small amount (0 < ε� 1) within the light cone according to

K̃CP → K̃CP +KCP
0


√

1 + ε2 − 1
0
±ε
0

 , (2.197)

we find for the potential value

V (K̃CP) → V (K̃CP) + (uCP + µ2)
(
KCP

0

)2
ε2 +O(ε4) (2.198)

after employing the corresponding stationarity condition (2.72a) with u = uCP. There-
fore the CPs conserving point can only be a (local) minimum if uCP + µ2 ≥ 0, that is, if
uCP ≥ u��CP. From theorem 2.3.3 we know that a higher Lagrange multiplier means a lower
potential value. Thus, we find the following.

Theorem 2.5.8. If the THDM potential has a CPs conserving (local) minimum, there can
be no stationary points with lower values of the potential which violate this symmetry.

This result was found before, see [80] and references therein. While the existence of a
CPg conserving light-like minimum implies that the global minimum has these properties
too, there are cases with more than one CPg conserving light-like minimum, see subsec-
tion 2.6.3. Therefore, a determination of the actual global minimum is still necessary in
general.

CPg type (i) symmetry

According to theorem 2.5.5 the potential having CPg invariance of type (i) has the form
(see (2.175))

V = ξ0K0(x) + η00K
2
0(x) + KT(x)EK(x). (2.199)

From (2.24) we see that the correct EWSB requires for the vacuum K 6= 0. This implies
then (2.189) with R̄ϕ = −13 to hold,

− 13K 6= K. (2.200)

We formulate this result as a theorem:

Theorem 2.5.9. A theory which is invariant under the CPg type (i) transformation has
the potential (2.199). The required EWSB implies that the CPg type (i) symmetry is spon-
taneously broken.

In section 2.7 we discuss in detail the stability and EWSB properties of this class of
models having the potential (2.199). There we prove the following theorem.
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Theorem 2.5.10. Consider the Higgs part of the THDM Lagrangian (2.3) with the poten-
tial (2.199) having CPg invariance of type (i). Let µ1 ≥ µ2 ≥ µ3 be the eigenvalues of E
with this ordering. The theory is stable, has the correct EWSB and no zero mass charged
Higgs boson if and only if

η00 > 0,

µa + η00 > 0 for a = 1, 2, 3,

ξ0 < 0,

µ3 < 0.

(2.201)

The CPg symmetry of type (i) is then spontaneously broken.

CPg type (ii) symmetries

For a theory having a CPg invariance of type (ii) the parameters of the potential V must sat-
isfy (2.178a)-(2.178d) according to theorem 2.5.6. Such a CPg symmetry is spontaneously
broken if (2.189) holds with R̄ϕ as in (2.171). Suppose now that for given parameters
satisfying (2.178a)-(2.178d) it has been checked that V is a stable potential. Suppose fur-
thermore, that the vacuum solution K has been identified. The following theorem allows
then to check if CPg is spontaneously violated or not.

Theorem 2.5.11. Suppose that the potential is invariant under one or more CPg type
(ii) transformations, that is, its parameters respect (2.178a)-(2.178d). Let K0,K be the
vacuum solution. There is a CPg invariance which is also respected by the vacuum if and
only if the following three basis independent equations hold:

(ξ × η)TK = 0 , (2.202a)

(ξ × (Eξ))TK = 0 , (2.202b)

(η × (Eη))TK = 0 . (2.202c)

We distinguish two cases.

(a) ξ × η 6= 0 .

The theory allows then exactly one CPg type (ii) invariance transformation which is con-
served also by the vacuum if and only if (2.202a) holds. In this case (2.202b) and (2.202c)
are a consequence of (2.202a).

(b) ξ × η = 0 .

Then (2.202a) is trivial. There may be more than one CPg type (ii) invariance trans-
formation. At least one of these symmetries is also respected by the vacuum if (2.202b)
and (2.202c) hold.
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In order to prove the theorem, we need to show a basis with

ξ′2 = 0 , (2.203a)

η′2 = η′12 = η′23 = 0 , (2.203b)

K ′
2 = 0 (2.203c)

exists if and only if (2.178) and (2.202) hold. As can directly be seen by insertion, (2.203)
implies (2.178) and (2.202) in the primed basis and due to the basis independence of (2.178)
and (2.202) also in any basis. It remains to be shown that from (2.178) and (2.202) the
existence of a basis (2.203) follows. We shall give two independent proofs. The first one
is short and rather formal, but reveals some more invariants which must vanish if (2.202)
holds. The second is quite lengthy, but shows explicitly how to find a basis in which CPs

is a symmetry, provided (2.202) holds. Furthermore, the occurrence of more than one CPg

type (ii) symmetry is considered in detail.

Formal proof. We shall prove that (2.178) and (2.202) imply (2.203) for some basis choice.
For the stationary point K̃ = 0, which leaves the electroweak symmetry unbroken, the
proof is trivial. We shall now prove the statement for all other stationary points, in
particular for solutions with the required EWSB. We will use the fact that any stationary
point K̃ 6= 0 fulfils a stationarity condition (2.82a) whose three-vector part can be written
as

ξ = −2
(
EK + uK +K0η

)
(2.204)

with a specific value of u. As a preparation we first show that certain additional invariants
vanish. Replacing ξ in (2.202a) via the stationarity condition (2.204) we find

(η × (EK))T K = 0 . (2.205)

This implies
(ξ × (EK))T K = 0 , (2.206)

which can be seen by replacing ξ via (2.204). Next we show that

(η × (Eξ))T K = 0 . (2.207)

If η and K are linearly dependent, (2.207) follows immediately. In the other case we
replace ξ in (2.207) by a linear combination of η and K, which is possible by (2.202a).
Using (2.202c) and (2.205), (2.207) follows. Similarly we find

(ξ × (Eη))T K = 0 , (2.208)

using (2.202a), (2.202b) and (2.206). The relation

(EK × (Eξ))T K = 0 (2.209)

follows after substituting EK via (2.204) from (2.202b) and (2.207). Similarly we find

(EK × (Eη))T K = 0 (2.210)
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using (2.204), (2.202c) and (2.208). We find

(K × (EK))T E2K = 0 (2.211)

by replacing EK in the term E2K via (2.204) since (2.209) and (2.210) hold.

In the case that ξ and η are linearly independent, we may choose a basis of the
form (2.177) by theorem 2.5.6. From (2.202a) follows immediately that we have K2 = 0 in
this basis.

In the case that ξ is a multiple of η we note that (2.202c), (2.205), (2.211) and (2.178d),

(K × η)T EK = 0 , (K × (EK))T E2K = 0 ,

(K × η)T Eη = 0 , (η × (Eη))T E2η = 0 ,
(2.212)

are equal to the explicit CP conservation conditions (2.178a)-(2.178d) if we replace ξ by
K in the latter. Using the proof of theorem 2.5.6 we find that there is a basis with
η′2 = K ′

2 = η′12 = η′23 = 0 and thus also ξ′2 = 0.

In the case that η is a multiple of ξ we use (2.202b), (2.206), (2.211) and (2.178c),

(K × ξ)T EK = 0 , (K × (EK))T E2K = 0 ,

(K × ξ)T Eξ = 0 , (ξ × (Eξ))T E2ξ = 0 .
(2.213)

Replacing η by K in the proof of theorem 2.5.6 we see that we can find a basis with
ξ′2 = K ′

2 = η′12 = η′23 = 0 and thus also η′2 = 0.

Detailed proof. Here we present an alternative proof for the existence of the basis (2.203)
in case that (2.178) and (2.202) hold.

We discuss first the trivial case that the potential parameters satisfy (2.178a)-(2.178d)
and the vacuum expectation value is the zero four-vector K̃ = 0. Then (2.202a)-(2.202c)
are also trivially satisfied. From theorem 2.5.6 we see that we can go to a basis where (2.203a)
and (2.203b) hold. Since K = 0 in our case we have also K ′

2 = 0.

Thus we can turn to the case that K̃ 6= 0. Then K̃ fulfils according to (2.82a) the
stationarity condition

ξ = −2
(
EK + uK +K0η

)
. (2.214)

Consider now a potential with parameters satisfying (2.178). We may then choose a
basis with ξ′, η′ and E ′ of the form (2.177) by theorem 2.5.6. With a suitable rotation in
the 1-3 subspace we can diagonalise E ′. Then we have

ξ′ =

ξ′10
ξ′3

 , η′ =

η′10
η′3

 , E ′ = diag(µ1, µ2, µ3) , (2.215)
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ξ′ × η′ =

 0
ξ′3η

′
1 − ξ′1η

′
3

0

 , (2.216)

ξ′ × E ′ξ′ =

 0
(µ1 − µ3)ξ

′
1ξ
′
3

0

 , (2.217)

η′ × E ′η′ =

 0
(µ1 − µ3)η

′
1η
′
3

0

 . (2.218)

Let us first consider the case

(a) ξ × η 6= 0 :

This implies, of course, ξ′ × η′ 6= 0, that is,

ξ′3η
′
1 − ξ′1η

′
3 6= 0 . (2.219)

If now (2.202a) holds we get immediately

(ξ′ × η′)
T

K ′ = 0

=⇒ (ξ′3η
′
1 − ξ′1η

′
3)K

′
2 = 0

=⇒ K ′
2 = 0 .

(2.220)

Furthermore, we find from (2.217), (2.218) and (2.220) that (2.202b) and (2.202c) are
automatically satisfied. We summarise this case. If ξ×η 6= 0 the only possible CPg type (ii)
symmetry is the reflection on the plane spanned by ξ and η (see subsection 2.5.2) and this
symmetry is respected by the vacuum if and only if (2.202a) holds. In this case (2.202a)
implies also (2.202b) and (2.202c). This proves the case (a) of theorem 2.5.11.

Next we consider the case

(b) ξ × η = 0 :

Then (2.202a) is trivially fulfilled. Suppose first that ξ 6= 0. Then η is proportional to ξ,

η = λξ . (2.221)

For the case of linearly dependent vectors K and ξ we have in particular in the basis
(2.215) K ′

2 = 0, so we may assume in the following K and ξ being linearly independent.
Now we distinguish various subcases.

(b.1) ξ × Eξ 6= 0 :

The only reflection plane for a symmetry of the potential is spanned by ξ and Eξ in this
case. We get from (2.217)

(µ1 − µ3) ξ
′
1ξ
′
3 6= 0 (2.222)
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and from (2.202b)
(µ1 − µ3) ξ

′
1ξ
′
3K

′
2 = 0 . (2.223)

This leads to K ′
2=0, q.e.d.

(b.2) ξ × Eξ = 0 :

There we have
(µ1 − µ3) ξ

′
1ξ
′
3 = 0 . (2.224)

Now we distinguish the different cases for the eigenvalues of E.

(b.2.1) µ1, µ2, µ3 all different:

We get ξ′1ξ
′
3 = 0. If, for instance, ξ′1 = 0 the theory has two reflection symmetries namely

in this basis R1 and R2 (see (2.169)). From (2.214) we have

0 = −2(µ1 + u)K ′
1 ,

0 = −2(µ2 + u)K ′
2 .

(2.225)

Since we consider here µ1 6= µ2 we must have either K ′
1 = 0 or K ′

2 = 0. That is, at least one
of the reflection symmetries R1 or R2 is conserved by the vacuum. In case K ′

1 = 0 we can
interchange the 1′- and 2′-components by a change of basis and in this way achieve K ′

2 = 0,
q.e.d. For ξ′3 = 0 the argumentation is analogous, involving R1 and R3.

(b.2.2) µ1 = µ2 6= µ3 :

We get again from (2.224) ξ′1ξ
′
3 = 0. For ξ′3 = 0 the argumentation is as in (b.2.1).

For ξ′3 6= 0 and ξ′1 = 0 we may perform a rotation around the 3′-axis such thatK ′
2 = 0 q.e.d.

Note, that E ′ is not affected by this rotation since µ1 = µ2. In this case we have reflection
symmetry on every plane containing the 3′-axis, in particular on the plane spanned by ξ′

and K ′. The reflection symmetry on this plane clearly is conserved by the vacuum.

(b.2.3) µ2 = µ3 6= µ1 :

The argumentation is analogous to the case (b.2.2).

(b.2.4) µ1 = µ3 6= µ2 :

We can, by a rotation around the 2′-axis, leaving E ′ diagonal, achieve ξ′1 = ξ′2 = 0, ξ′3 6= 0.
Here R1 and R2 are reflection symmetries. Then (2.214) gives

0 = (µ1 + u)K ′
1,

0 = (µ2 + u)K ′
2.

(2.226)

Thus, either K ′
1 or K ′

2 must be zero. In case K ′
1 = 0 we can interchange the 1′- and

2′-components by a change of basis and in this way achieve K ′
2 = 0, q.e.d.
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(b.2.5) µ1 = µ2 = µ3 :

There is reflection symmetry on all planes containing ξ′, in particular on the plane spanned
by ξ′ and K ′. This reflection symmetry is obviously unbroken by the vacuum. This
proves theorem 2.5.11 for the case (b) if ξ 6= 0. For η 6= 0 everything runs analogously
using (2.202c) instead of (2.202b).

(b.3) ξ = η = 0 :

In this case we have CPg invariance of type (i). There are then at least three CPg type (ii)
invariances. Here we get from (2.214)

0 = (µ1 + u)K ′
1 ,

0 = (µ2 + u)K ′
2 ,

0 = (µ3 + u)K ′
3 .

(2.227)

If not all µa are equal, this implies that at least one K ′
a = 0 (a ∈ {1, 2, 3}). By a change of

basis we can always achieve thatK ′
2 = 0, q.e.d. If µ1 = µ2 = µ3 we have reflection symmetry

of the potential on any plane. The reflection symmetries on all planes containing K ′ are
respected by the vacuum. This completes the first proof of theorem 2.5.11.

From the detailed discussion above we also found the number of independent reflections
symmetries, that is, type (ii) CPg transformations, which occur for the various cases. This
is summarised in table 2.2 where it is always supposed that the potential parameters
satisfy (2.178a)-(2.178d).

We compared our conditions (2.202a)-(2.202c) for the existence of a CP symmetry
of the vacuum with those of theorem 4 in [75], which were proven in [74] and found
before in [72, 73]. The triple product in (2.202a) equals −(v/2)4 Im J1 in the notation of
[75], the other invariants in the conditions of [75] and our conditions have no one-to-one
correspondence. However, we find complete agreement between our conditions (2.202) and
those of [75] taking into account the respective full set of equations, that is, including the
explicit CP-conservation conditions and the stationarity equations. This equivalence was
obtained via radical membership tests using Gröbner basis computations (see appendix A
for a short introduction to Gröbner bases). We also compared our conditions (2.202a)-
(2.202c) to the corresponding conditions a)-c) in [83] and find agreement up to (2.202c),
which is not contained in the latter set of criteria. We note that condition c) of [83] is no
independent restriction since it is a consequence of the stationarity condition, see (2.206).
Further, we do find examples where omitting (2.202c) matters, that are examples satisfying
the conditions of [83] but possessing spontaneous breaking of a unique CP symmetry of
the potential.

Note that the formulation absence of spontaneous CP violation is not quite appropriate
in this context. The correct statement is given in theorem 2.5.11 above. It covers also the
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parameter conditions number of CPg type (ii)
reflection symmetries

(a) ξ × η 6= 0 1
(b) ξ × η = 0

(b.1) ξ 6= 0, ξ × Eξ 6= 0 1
η 6= 0, η × Eη 6= 0 1

(b.2) ξ 6= 0, ξ × Eξ = 0 or
η 6= 0, η × Eη = 0,
eigenvalues of E:
µ1, µ2, µ3

(b.2.1) µ1, µ2, µ3 all different 2
(b.2.2) µ1 = µ2 6= µ3 2 or ∞
(b.2.3) µ2 = µ3 6= µ1 2 or ∞
(b.2.4) µ1 = µ3 6= µ2 2
(b.2.5) µ1 = µ2 = µ3 ∞

(b.3) ξ = 0, η = 0,
µ1, µ2, µ3:
all different 3
at least 2 equal ∞

Table 2.2: The CPg type (ii) transformations are described by reflections on planes. The table
lists the number of these symmetries for a potential satisfying (2.178a)-(2.178d) depending on the
different cases for the parameters. The vacuum is invariant under at least one of the symmetries
if and only if (2.202a)-(2.202c) hold. The numbering of the eigenvalues µ1, µ2, µ3 of E is chosen
such that µ2 = η′22 in a basis where ξ′, η′ and E′ have the form (2.177).

case that the theory has more than one independent CPg type (ii) invariance transforma-
tion, where one is respected by the vacuum and another spontaneously broken. From the
discussion of the case (b) in the second proof above and from table 2.2 we see that, indeed,
these mixed cases really occur.

The properties of a spontaneously CPs violating vacuum in theorems 2.5.7 and 2.5.8
can be generalised to the present case of CPg type (ii) transformations. Choosing for some
given CPg type (ii) symmetry of the potential the basis where it equals the CPs symmetry,
both theorems are directly applicable. Further, note that the conditions on the vacuum
given above may be directly evaluated in terms of conditions on the potential parameters,
if the reparameterisation described in subsection 2.4 is applied and the required vacuum
is confirmed to be the global minimum with the methods described in section 2.3.

As discussed in the previous subsection, a type (i) symmetry is necessarily sponta-
neously broken in a phenomenologically acceptable theory. On the other hand, a type (i)
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symmetric model has at least three type (ii) symmetries. We see from table 2.2 that the
vacuum respects at least one of these symmetries.

2.5.4 CP symmetries of the Yukawa terms

We parameterised in (2.5) the Yukawa part of the Lagrangian as

LYuk(x) =− λl jik L̄
L
i (x)ϕj(x) l

R
k (x)

− λd
′ j
ik Q̄L

i (x)ϕj(x) d
′R
k (x)

− λu jik Q̄L
i (x) ε ϕ∗j(x)u

R
k (x) + h.c. (2.228)

Under a generalised CP transformation (2.142) we find

CPg : LYuk(x) −→− λl j ∗ik UL
ii′ U

ϕ ∗
jj′ U

l ∗
kk′ L̄

L
i′(x

′)ϕj′(x
′) lRk′(x

′)

− λd
′ j ∗
ik UQ

ii′ U
ϕ ∗
jj′ U

d′ ∗
kk′ Q̄

L
i′(x

′)ϕj′(x
′) d′Rk′ (x

′)

− λu j ∗ik UQ
ii′ U

ϕ
jj′ U

u ∗
k′ Q̄L

i′(x
′) ε ϕ∗j′(x

′)uRk′(x
′) + h.c. (2.229)

Invariance of LYuk under CPg is therefore equivalent to

λl jik = λl j
′ ∗

i′k′ U
L
i′i U

ϕ ∗
j′j U

l ∗
k′k , (2.230a)

λd
′ j
ik = λd

′ j′ ∗
i′k′ UQ

i′i U
ϕ ∗
j′j U

d′ ∗
k′k , (2.230b)

λu jik = λu j
′ ∗

i′k′ UQ
i′i U

ϕ
j′j U

u ∗
k′k . (2.230c)

By recursive insertion follow the necessary conditions for CPg invariance of the Lagrangian

λl jik = λl j
′

i′k′ (U
L ∗ UL)i′i (U

ϕ Uϕ ∗)j′j (U l U l ∗)k′k , (2.231a)

λd jik = λd j
′

i′k′ (U
Q ∗ UQ)i′i (U

ϕ Uϕ ∗)j′j (Ud Ud ∗)k′k , (2.231b)

λu jik = λu j
′

i′k′ (U
Q ∗ UQ)i′i (U

ϕ ∗ Uϕ)j′j (Uu Uu ∗)k′k . (2.231c)

We saw the requirement CPg ◦CPg to reproduce the original fields up to a phase restricted
the mixing matrices to Uψ Uψ ∗ = ±1, where ψ = L, l, Q, u, d′. Together with (2.231)
follows therefore that such a CPg symmetry of the Lagrangian requires

U U∗ = −1 for 0 or 2 matrices U ∈ {UL, U l, Uϕ} or λlijk ≡ 0 , (2.232a)

U U∗ = −1 for 0 or 2 matrices U ∈ {UQ, Ud′ , Uϕ} or λd
′

ijk ≡ 0 , (2.232b)

U U∗ = −1 for 0 or 2 matrices U ∈ {UQ, Uu, Uϕ} or λuijk ≡ 0 . (2.232c)

That is, a Lagrangian with this kind of CPg symmetry requires either an appropriate match-
ing of the mixing types in the CPg transformation or vanishing Yukawa couplings to the
Higgses and therefore zero masses for all leptons, up-type or down-type quarks respectively.
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In particular, for a CPg symmetry with anti-symmetric Higgs mixing (Uϕ Uϕ ∗ = −1) also
one of the involved fermion mixing matrices must be anti-symmetric in order to have non-
vanishing Yukawa couplings. However, this is possible only for 2 generations of fermions
or more. This proves the following.

Theorem 2.5.12. Non-vanishing CPg type (i) symmetric couplings of fermions to Higgs
fields require

Nf ≥ 2 , (2.233)

that is at least two fermion generations.

We saw in subsection 2.5.2 that a CPg type (i) symmetric Higgs sector is automatically
CPg type (ii) invariant. We discuss this model in detail in section 2.7, where we will see
that such a Higgs potential has in fact at least three different CPg type (ii) symmetries.
Extending all of these symmetries also to the Yukawa couplings requires not only 2 fermion
generations or more, but also leads to severe restrictions on the Yukawa couplings for the
case Nf = 2. We summarise the general results of section 2.7 in the following theorem.

Theorem 2.5.13. A CPg type (i) symmetric Higgs potential is also invariant under at
least three different CPg type (ii) transformations. Extending these three symmetries of the
potential to invariances of the full Lagrangian requires at least two fermion generations for
non-vanishing Yukawa terms. For the case of two coupled fermion generations different and
non-vanishing masses of the two generations imply large FCNCs. It is possible to prescribe
the above set of CPg symmetries such that one fermion generation stays massless, the other
acquires a mass, and no large FCNCs occur.

2.6 Examples

Here we apply the general considerations of sections 2.2 to 2.5 to specific models.

2.6.1 Minimal Supersymmetric Standard Model

In this subsection, we consider the MSSM Higgs potential. The MSSM Higgs sector has
been worked out in great detail by many authors (see e.g. the review [53] and references
therein), and radiative corrections are known to be sizable [93]. The purpose of the follow-
ing discussion is to illustrate the methods for the general THDM described in the previous
sections. We will reproduce the well-known tree-level results for its stability, symmetry
breaking and mass spectrum. The MSSM Higgs potential is

V = VD + VF + Vsoft (2.234)

with

VD =
1

8
(g2 + g′ 2)

(
H†
dHd −H†

uHu

)2

+
1

2
g2
∣∣∣H†

dHu

∣∣∣2 , (2.235)

VF = |µ|2 (H†
dHd +H†

uHu) , (2.236)

Vsoft = m2
H1
H†
dHd +m2

H2
H†
uHu −

(
m2

3H
T
d εHu + h.c.

)
, (2.237)
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where we follow closely the usual notation [95]. Here, Hd and Hu are Higgs doublets with
weak hypercharges y = −1/2 and y = +1/2, respectively, m2

H1
, m2

H2
, |µ|2 are real and m2

3

complex parameters of dimension mass squared.
Substituting Hd and Hu by doublets ϕ1, ϕ2 with the same weak hypercharge y = +1/2

according to (2.6) and using the relations (2.21), we can put the potential in the form (2.26).
The parameters are

η00 =
1

8
g2, η =

0
0
0

 , E =
1

8

−g2 0 0
0 −g2 0
0 0 g′ 2

 (2.238)

for V4 = VD and

ξ0 = |µ|2 +
1

2
(m2

H1
+m2

H2
) , ξ =

 −Re (m2
3)

Im (m2
3)

1
2
(m2

H1
−m2

H2
)

 (2.239)

for V2 = VF + Vsoft.
We determine the stability of the potential by employing theorem 2.2.1. The functions

f(u) (2.48) and f ′(u) (2.49) for the MSSM are

f(u) = u+
1

8
g2, (2.240)

f ′(u) = 1 . (2.241)

Here, the set I (2.62) is given by u = 0 and the eigenvalues of E (2.238),

I =

{
u1 = 0, u2 = −1

8
g2, u3 =

1

8
g′ 2
}
. (2.242)

We find for the stationary points of J4 with ui = u1, u3 the values J4(k)|stat = f(ui) > 0,
but for those with u2 the value J4(k)|stat = f(u2) = 0. Explicitly, the stationary points
of J4 with u2 are

k = (cosφ, sinφ, 0)T, φ ∈ R, with J4(k) = 0 . (2.243)

They are known as the “D-flat” directions, since they have VD = 0. For the MSSM, they
prevent the stability assertion by the quartic terms alone. For the stability to be guaranteed
by V2 > 0 in these directions, theorem 2.2.1 gives as condition, see (2.70) and (2.64), the
inequality

g(u2)− |ξ⊥(u2)|
√
f ′(u2) = ξ0 −

√
ξ2
1 + ξ2

2 > 0 . (2.244)

Inserting (2.239) we get ∣∣m2
3

∣∣ < |µ|2 +
1

2
(m2

H1
+m2

H2
) (2.245)

as the necessary and sufficient condition for the stability of the MSSM potential in the
sense of (2.39).
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Checking the conditions of theorem 2.5.6 we immediately see that the potential has a
CPg type (ii) symmetry.

For the global minimum to be non-trivial, criterion (i) of theorem 2.3.5 gives ξ0 <√
ξ2
1 + ξ2

2 + ξ2
3 , or equivalently

|µ|2 +
1

2
(m2

H1
+m2

H2
) <

√
|m2

3|
2
+

1

4

(
m2
H1
−m2

H2

)2
(2.246)

as a necessary and sufficient condition. We consider the acceptable global minimum can-
didates on the forward light cone with the method described in subsection 2.3.2. The
conditions (2.245) and (2.246) prevent exceptional solutions. The regular solutions are
determined by the functions

f̃(u) = −1

4

(
ξ2
0 − ξ2

1 − ξ2
2

1
8
g2 − u

− ξ2
3

−1
8
g′ 2 − u

)
, (2.247)

f̃ ′(u) = −1

4

(
ξ2
0 − ξ2

1 − ξ2
2

(1
8
g2 − u)2

− ξ2
3

(−1
8
g′ 2 − u)2

)
, (2.248)

K0(u) = −1

2
· ξ0

1
8
g2 − u

, (2.249)

where we omitted the insertions (2.239) for a compact notation. Employing again the
conditions (2.245) and (2.246) we find the following. The function f̃ ′(u) always has two
zeros and those zeros imply values of K0(u) with opposite signs. The physical solution
with K0(u) > 0 has the Lagrange multiplier

u0 =
1

8
· |ξ3| g

2 +
√
ξ2
0 − ξ2

1 − ξ2
2 g

′ 2

|ξ3| −
√
ξ2
0 − ξ2

1 − ξ2
2

, (2.250)

which is positive. Figure 2.4 shows the functions f̃ ′(u), K0(u) for an example set of pa-
rameters (corresponding to the SPS1a scenario [119] at the tree-level). As apparent from
the graph of f̃ ′(u) the zero-crossing at u0 is not very pronounced compared to the other
features of the function. This visualises the fact that satisfying both (2.245) and (2.246)
at the same time requires some kind of fine-tuning of the original potential parameters. If
(2.246) is violated, the zero-crossing of f̃ ′(u) in the physical region with K0(u) > 0 van-
ishes. In this context we note that the scope of the present discussion is the tree-level and
these results may be modified by radiative corrections, see the introductory remark. We
conclude that (2.245) and (2.246) guarantee the existence of the stationary point K̃(u0),
which fulfils criterion (ii) of theorem 2.3.5 and therefore is the global minimum with the
required EWSB pattern. Moreover, there are no other local minima.

The existence of a unique minimum immediately tells us that there is no spontaneous
CPg violation, since CPg violating minima always come in pairs. This can also be seen
from table 2.2. Note from (2.238) and (2.239) that it is always possible by a rotation in
the 1–2 plane of the orbit variables to choose a basis with ξ1 = − |m2

3|, ξ2 = 0 without
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Figure 2.4: The global minimum determining functions f̃ ′(u) and K0(u) for the MSSM,
see (2.248) and (2.249), with |µ|2 + m2

Hd = 157486GeV2, |µ|2 + m2
Hu = −2541 GeV2,

∣∣m2
3

∣∣ =
15341 GeV2, corresponding to the SPS1a scenario [119] at the tree-level. The small boxes show
the functions with enhanced ordinate resolution in the region around the physically relevant zero
of f̃ ′(u).

affecting any other parameters. We change to this basis where the potential as well as the
vacuum has the standard CPs symmetry. We further choose a gauge where (2.105) holds,
and perform the rotation (2.106) with

tan β =

√
ξ0 |ξ3|+

√
ξ2
0 − ξ2

1 − ξ2
2 ξ3

ξ0 |ξ3| −
√
ξ2
0 − ξ2

1 − ξ2
2 ξ3

(2.251)
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into a basis of the form (2.110), which has the new parameters

ξ′ =

−c2β |m2
3| − s2β

1
2
(m2

H1
−m2

H2
)

0
−s2β |m2

3|+ c2β
1
2
(m2

H1
−m2

H2
)

 , (2.252)

E ′ =
1

8

−g2 + s2
2β ḡ

2 0 −1
2
s4β ḡ

2

0 −g2 0
−1

2
s4β ḡ

2 0 −g2 + c22β ḡ
2

 (2.253)

with the abbreviations ḡ2 := g2 + g′ 2 and s2β := sin 2β etc. We insert the expressions into
the formulae of section 2.4 and use

m2
W :=

(
1

2
gv

)2

, m2
Z :=

(
1

2
ḡv

)2

(2.254)

with v =
√

2K0(u0). Since we have CPs conservation of both the potential and the
vacuum we can assign conserved CP-parities to the neutral Higgs bosons. We obtain the
mass squares

m2
A = 2v2(η′22 + u0) , m2

H± = m2
A +m2

W (2.255)

for the pseudo-scalar boson A := h′′ and the charged bosonsH±, which are mass eigenstates
already. The non-diagonal part of the neutral mass matrix is

M2
∣∣
neutral,
CP even

=

(
c22βm

2
Z −1

2
s4βm

2
Z

−1
2
s4βm

2
Z m2

A + s2
2βm

2
Z

)
(2.256)

in the basis (ρ, h′). Its diagonalisation leads to mass squares

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)
2 − 4 c22βm

2
Am

2
Z

)
(2.257)

for the mass eigenstates h,H. They are obtained from(
H
h

)
=

(
cosα′ sinα′

− sinα′ cosα′

)(
ρ
h′

)
(2.258)

with the mixing angle α′ determined by

cos 2α′ =− m2
A − c4βm

2
Z

m2
H −m2

h

,

sin 2α′ =− s4βm
2
Z

m2
H −m2

h

.

(2.259)

Note that from tree-level formula (2.257) one may read off the upper bound on the lightest
CP even Higgs mass

mh ≤ mZ = 91GeV . (2.260)
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If the tree-level bound was to hold as it stands, the MSSM would already be excluded
by direct Higgs searches at LEP [92]. However, it is modified by radiative corrections.
While the masses of supersymmetric particles can in general not be predicted on a rigorous
basis, this bound represents a striking prediction of the MSSM. Moreover, also non-minimal
scenarios predict only slightly looser versions of this bound. See the discussion in section 1.4
for more details and references.

The basis change described above corresponds to a unitary transformation (2.106) of
the complete doublets. This leads to states ρ, h′ with simple couplings to the gauge
bosons, e.g. vanishing ZZh′ and WWh′ couplings at tree-level. However, usually the real
parts of the neutral doublet components are excluded from that transformation (2.106),
which is sufficient to disentangle the mass terms of the gauge bosons (and the associated
Goldstone contributions in other gauges than considered here). Applying the inverse of
the rotation (2.106) only to the neutral components (ρ, h′) gives

√
2(ReH1

d ,ReH2
u). The

mass matrix in this basis is diagonalised analogously to (2.258), where α′ is replaced by
the mixing angle α with

cos 2α =− cos 2β
m2
A −m2

Z

m2
H −m2

h

,

sin 2α =− sin 2β
m2
A +m2

Z

m2
H −m2

h

,

(2.261)

which is the well-known result.

2.6.2 Models with softly broken Z2

We consider a class of THDMs with the Higgs potential

V (ϕ1, ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 −

[
m2

12ϕ
†
1ϕ2 + h.c.

]
+

1

2
λ1(ϕ

†
1ϕ1)

2 +
1

2
λ2(ϕ

†
2ϕ2)

2 + λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2)

+ λ4(ϕ
†
1ϕ2)(ϕ

†
2ϕ1) +

[
1

2
λ5(ϕ

†
1ϕ2)

2 + h.c.

]
, (2.262)

written in the parameterisation of [120], where m2
12 and λ5 may be arbitrary complex and

all other parameters are real. This potential breaks the Z2 symmetry

ϕ1 −→ −ϕ1

ϕ2 −→ ϕ2 (2.263)

only softly, that is by quadratic terms in the Higgs doublet fields. This is motivated by
the suppression of large FCNCs for certain choices of the Yukawa couplings. We put the
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potential into the form (2.26) using the relations (2.21) and get

ξ0 =
1

2
(m2

11 +m2
22) , ξ =

 −Rem2
12

Imm2
12

1
2
(m2

11 −m2
22)

 , (2.264a)

η00 =
1

8
(λ1 + λ2 + 2λ3) , η =

1

8

 0
0

λ1 − λ2

 ,

E =
1

4

λ4 + Reλ5 − Imλ5 0
− Imλ5 λ4 − Reλ5 0

0 0 1
2
(λ1 + λ2 − 2λ3)

 . (2.264b)

The stability of the potential is easily investigated employing theorem 2.2.1. Stability is
guaranteed by the terms quartic in the fields alone if and only if

λ1 > 0 , λ2 > 0 , and
√
λ1λ2 + λ3 > max(0, |λ5| − λ4) . (2.265)

In order to determine the CP properties of the potential we have to check (2.178). Two
of the conditions for CPg type (ii) invariance of the potential, (2.178b) and (2.178d), are,
with (2.264), automatically fulfilled. The remaining conditions (2.178a) and (2.178c) give

(λ1 − λ2) Im
(
(m2

12)
2λ∗5
)

= 0 , (2.266)[
(λ1 + λ2 − 2(λ3 + λ4))

2 − 4 |λ5|2
]
(m2

11 −m2
22) Im

(
(m2

12)
2λ∗5
)

= 0 (2.267)

as necessary and sufficient conditions for the existence of a CPg invariance of type (ii) for
the potential. It is obvious that for the case of real parameters m2

12 and λ5 (2.266) and
(2.267) are satisfied. For ξ × η we find from (2.264)

ξ × η =
1

8
(λ1 − λ2)

Im(m2
12)

Re(m2
12)

0

 . (2.268)

From theorem 2.5.6 ff. we find, therefore, that in this model the potential allows one or
more CPg symmetries if and only if (2.266) and (2.267) hold. There is exactly one CPg

symmetry if λ1 − λ2 6= 0 and m2
12 6= 0.

In the case CPg is conserved, that is (2.266), (2.267) are fulfilled, CPg may be violated
spontaneously. We reparameterise the potential via the stationarity conditions in the
general basis, see end of section 2.4, and assume that the vacuum expectation values v1,
v2 together with the phase ζ indeed describe a sufficiently stable minimum (2.192) of the
potential. The reparameterisation replaces m2

11, m
2
12 and m2

22 by

m2
11 = −λ1v

2
1 + (4uv − λ3)v

2
2 ,

m2
22 = (4uv − λ3)v

2
1 − λ2v

2
2 ,

m2
12 = v1v2(e

iζλ5 + e−iζ(4uv + λ4)) (2.269)
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where uv = m2
H±/(2v2) is the Lagrange multiplier of the vacuum. We check the conditions

for spontaneous CPg violation (2.202a)-(2.202c) and see that (2.202c) is automatically
fulfilled. We find that (2.202a), (2.202b) together with (2.266), (2.267) are equivalent to
the condition that either

v1v2 [cos(2ζ) Imλ5 + sin(2ζ) Reλ5] = 0 (2.270)

or

λ1 = λ2, (v2
1 − v2

2)
[
(λ3 + λ4 − λ1)

2 − |λ5|2
]

= 0 (2.271)

or both are fulfilled. That is, exactly if (2.270) or (2.271) or both are fulfilled, there is a
CPg symmetry of both the potential and the vacuum expectation value K̃.

In the general case the potential can have more than one local minimum. The vacuum
expectation values used in the parameterisation describe a stationary point by construction,
for positive masses a local minimum. Whether it parameterises a stable vacuum, that is,
the global minimum, must still be checked, e.g. by considering all stationary points of the
potential. The generic stationary points are determined by

f̃(u) =
Re (λ5(m

2 ∗
12 )2)− (4u+ λ4) |m2

12|
2

16(u− µ̃1)(u− µ̃2)
+

2(4u− λ3)m
2
11m

2
22 + λ1m

4
22 + λ2m

4
11

32(u− µ̃3)(u− µ̃4)
,

(2.272)

f̃ ′(u) =
|(4u+ λ4)m

2
12 − λ5m

2 ∗
12 |

2

64(u− µ̃1)2(u− µ̃2)2
− ((4u− λ3)m

2
11 + λ1m

2
22)((4u− λ3)m

2
22 + λ2m

2
11)

64(u− µ̃3)2(u− µ̃4)2
,

(2.273)

K0(u) =
λ1m

2
22 + λ2m

2
11 + (4u− λ3)(m

2
11 +m2

22)

16(u− µ̃3)(u− µ̃4)
(2.274)

where we omitted the insertions (2.269) for brevity. The eigenvalues of Ẽg̃

µ̃1,2 = −1

4
(λ4 ± |λ5|) , (2.275)

µ̃3,4 =
1

4
(λ3 ∓

√
λ1λ2) (2.276)

may lead to exceptional stationary points.
For the special case λ5 = 0 we get the simple form

f̃ ′(u) =
|m2

12|
2

4(u− µ̃1)2
− ((4u− λ3)m

2
11 + λ1m

2
22)((4u− λ3)m

2
22 + λ2m

2
11)

64(u− µ̃3)2(u− µ̃4)2
(2.277)

The determination of the generic Lagrange multipliers corresponds to finding the zeros of
f̃ ′(u), which means solving a univariate polynomial of only degree four in this case. This
is possible analytically and we indeed find explicit analytical expressions. However, they
are very lengthy.
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From a practical point of view it is sufficient to directly determine the zeros of (2.273)
(in the general basis) numerically. Actually, once the results become lengthy one might
also consider to use the fully automated Gröbner basis approach which we describe in the
next chapter. In the following subsection we will give explicit analytical results for a special
case of the model discussed here, which has the interesting property that two minima can
coexist.

2.6.3 A simple THDM with two minima

We consider the potential (2.262) with the reparameterisation (2.269) of the V2 parameters
for the case that λ1 = λ2, λ5 = 0, v2 = 0:

V (ϕ1, ϕ2) = −1

2
λ1v

2ϕ†1ϕ1 +
1

2
(2m2

H± − λ3v
2)ϕ†2ϕ2

+
1

2
λ1

(
(ϕ†1ϕ1)

2 + (ϕ†2ϕ2)
2
)

+ λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1) . (2.278)

Clearly, the potential and the vacuum K̃ = (v2/2)(1, 0, 0, 1)T are CPs invariant, see (2.270).
Furthermore, we replace the following V4 parameters in favour of physical masses, see
section 2.4,

λ1 = m2
ρ′/v

2 , (2.279)

λ4 = 2(m2
A −m2

H±)/v2 . (2.280)

All of the Higgses ρ′, h′ and h′′ ≡ A are mass eigenstates already. We denote their masses
by mρ′ , mh′ and mA, respectively, and assume all to be positive. We do not introduce the
notation h, H for the fields ρ′ and h′ since we leave open which of the latter two fields is
the lighter one. One of the scalar Higgses and the pseudo-scalar Higgs are degenerate:

mh′ = mA . (2.281)

Thus we are left with the input parameters

m2
ρ′ > 0 , m2

A > 0 , m2
H± > 0 , λ3 (2.282)

in addition to the fixed electroweak scale v ≈ 246GeV. Stability in the strong sense is then
equivalent to

λ3 > max(−m2
ρ′ , −m2

ρ′ + 2(m2
H± −m2

A) )/v2 . (2.283)

We now consider all stationary points of the potential using the methods described in
subsection 2.3.2. Exceptional solutions may occur with a Lagrange multiplier u coinciding
with one of the eigenvalues of g̃Ẽ:

µ̃1 = µ̃2 =
1

2v2
(m2

H± −m2
A) , (2.284)

µ̃3,4 =
1

4
(λ3 ∓m2

ρ′/v
2) . (2.285)
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uv
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2
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1
0
0
1

 minimum

(required
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Table 2.3: Stationary points of the potential for the model (2.278). All physical masses are
considered to be positive (2.282) and the stability constraint (2.283) is assumed to hold. The
otherwise regular stationary points associated to u = 0, µ̃5, uv are exceptional if their Lagrange
multipliers coincide with one of µ̃1, µ̃3, µ̃4. The minimum with the required vacuum expectation
values (vevs) is the global minimum if and only if λ3v

2 ≤ 2m2
H± + m2

ρ′ . An illustration of the
values of the potential at the stationary points is given in figure 2.5.

The Lagrange multipliers of the regular solutions are the zeros µ̃5, µ̃6 of f̃ ′(u):

µ̃5 =
1

4

(
λ3 +

m4
ρ′

v2
(
2m2

H± − λ3v2
)) , (2.286)

µ̃6 = uv =
1

2v2
m2
H± . (2.287)

Our results for all stationary points are summarised in table 2.3. Note that to determine
the Lagrange multiplier of the global minimum it is sufficient to check the hierarchy of the
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Figure 2.5: Values of the potential at its stationary points for variation of λ3 in the model
(2.278). Parameters are mρ′ = 110 GeV, mA = 120 GeV, mH± = 130 GeV. The location of the
orbit variables with respect to the forward light cone determines the EWSB of the respective
stationary point: none (tip), full (inner part) and partial (on cone). Analytical expressions for
all stationary points are listed in table 2.3. In the dark grey area the potential is unbounded
from below, in the light grey area the required vacuum (solid line) is not the global minimum
(respective lowest line). Only in the unshaded area the vacuum is stable.

Lagrange multipliers for parameters where the associated stationary solutions exist. We
find that the global minimum has the Lagrange multiplier

u0 =

{
uv if and only if λ3 ≤ (2m2

H± +m2
ρ′)/v

2 ,

µ̃5 if and only if λ3 ≥ (2m2
H± +m2

ρ′)/v
2 .

(2.288)

In other words, the required vacuum solution with u = uv is the global minimum only
for λ3 ≤ (2m2

H± + m2
ρ′)/v

2. Figure 2.5 shows the value of the potential at all stationary
points as listed in table 2.3 along with the conditions (2.283), (2.288) for a stable vacuum
for fixed values of the physical masses and variation of λ3. We stress that by construction
the required vacuum with u = uv is always a local minimum, and all Higgs masses are
independent of λ3. Thus it is really impossible to recognise the instability of the vacuum
for λ3 > (2m2

H± + m2
ρ′)/v

2 from the leading local features of the vacuum, that is, the
masses.
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2.7 CP type (i) symmetric model

Here we study the theories having a CPg invariance of type (i) in detail, see theorem 2.5.5,
(2.175).

2.7.1 Higgs potential and bosons

The most general potential with type (i) invariance is given in (2.199). Note that the
condition ξ = η = 0 is basis independent. We choose a basis where E is diagonal with
ordered diagonal entries, such that the parameters of the potential are

ξ0 , ξ = 0 , (2.289a)

η00 , η = 0 , E = diag(µ1, µ2, µ3) with µ1 ≥ µ2 ≥ µ3 . (2.289b)

Obviously this model has not only the required CPg type (i) symmetry, but it is also
automatically invariant under at least three CPg symmetries of type (ii), namelyR1, R2, R3,
and infinitely many if two or three eigenvalues of E coincide. Furthermore, the potential
is invariant under ϕ1 −→ −ϕ1. Note that for the parameterisation used in (2.262) this
corresponds to m2

11 = m2
22, m

2
12 = 0, λ1 = λ2, λ5 ∈ R. We choose to use the orbit space

parameters (2.289) in the following discussion, the translation to the parameters of (2.262)
is very simple using (2.264).

The potential is stable in the strong sense if and only if

η00 > 0 , η00 + µi > 0 , i = 1, 2, 3 . (2.290)

The existence of a non-trivial minimum necessary for a vacuum with the correct EWSB
requires

ξ0 < 0 . (2.291)

This condition implies immediately that the potential can not be stable in the weak or
marginal sense, since for increasing fields in a V4-flat direction the potential would decrease
due to (2.291) beyond any lower bound. Formulated in terms of theorem 2.2.1, we have
for the function g(u) = ξ0 < 0, hence no weak or marginal stability.

A global minimum with the required EWSB is given by the stationary point

K̃ =
−ξ0

2(η00 + µ3)


1
0
0
1

 , with uv = −µ3 (2.292)

if and only if
µ3 ≤ 0 . (2.293)

Otherwise the global minimum is given by a stationary point with full EWSB. Exactly for
µ2 6= µ3 and µ3 < 0 the point (2.292) is a unique global minimum up to a discrete ambiguity
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in the sign of K3. If µ2 = µ3 the point (2.292) belongs to a continuous degenerate set of
stationary points on the light cone. Any of these points may be brought into the form
(2.292) by a basis change without modifying any parameter of the potential. Absence of
zero-mass charged Higgses requires the strict inequality µ3 < 0. If µ3 = 0 the point (2.292)
belongs to a degenerate set of stationary points extending into the inner part of the light
cone. Obviously a stable vacuum (2.292) necessarily breaks a CPg type (i) spontaneously.
However, at least one CPg symmetry of type (ii) is respected by the vacuum.

We suppose now (2.293) holds such that (2.292) is a stable vacuum and discuss the
consequences for the physical Higgs boson. Comparison of (2.292) with (2.110) gives

v2 =
−ξ0

η00 + µ3

. (2.294)

The mass squared of the charged Higgs particles is, according to (2.131),

m2
H± =

2µ3ξ0
η00 + µ3

. (2.295)

The mass matrix squared of the neutral Higgs particles (2.130) is diagonal already with
our basis choice and we find for the mass squares

m2
ρ′ = 2(−ξ0) ,

m2
h′ = 2 v2 (µ1 − µ3) ,

m2
h′′ = 2 v2 (µ2 − µ3) . (2.296)

In the following we shall require that none of the neutral physical Higgs particles is massless
and that there is no mass degeneracy between h′ and h′′. This implies from (2.296) the
condition

µ1 > µ2 > µ3 (2.297)

which is slightly stricter than (2.289).
Our Higgs potential has five parameters ξ0, η00, µ1, µ2, µ3. We now express these in

terms of the five physical quantities v2, m2
H± , m2

ρ′ , m
2
h′ , m

2
h′′ . This gives

ξ0 = −1

2
m2
ρ′ ,

η00 =
1

2v2

(
m2
H± +m2

ρ′

)
,

µ1 =
1

2v2

(
m2
h′ −m2

H±

)
,

µ2 =
1

2v2

(
m2
h′′ −m2

H±

)
,

µ3 = − 1

2v2
m2
H± . (2.298)
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For positive squared masses and m2
h′ > m2

h′′ the conditions (2.290), (2.291) and (2.293) are
always satisfied.

Let us next discuss the CP symmetries of our model and the CP transformation prop-
erties of the vacuum expectation values and of the physical fields. The Higgs Lagrangian
(2.3) with the potential (2.199) where we require (2.297) to hold emerged essentially from
the basis independent CPg type (i) symmetry requirement. But this Higgs Lagrangian is
automatically invariant under exactly three more CPg type (ii) symmetries. For all of these
four CPg symmetries the gauge potentials are transformed according to (2.141a)-(2.141b).
But the transformation of the Higgs fields and of the orbit variables K0(x), K(x) is dif-
ferent. All four CPg symmetries are unique at the level of the orbit variables. However,
at the level of the Higgs fields a global phase remains arbitrary for each of the Higgs CP
transformations. Such a global phase factors drop out in the Higgs potential, and for the
Yukawa terms they may always be absorbed by proper redefinitions of the fermion fields,
as will be explained in the next section. Therefore, without loss of generality, we may set
these global phase factors to specific values, as we shall indeed do for ease of notation.
Moreover, we shall give names to all four CPg symmetries.

We choose the global phase in the type (i) CPg transformation, see (2.149) respectively
(2.170), and set

CP(i)
g : ϕi(x) −→ εijϕ

∗
j(x

′) ,

ϕ1(x) −→ ϕ∗2(x
′) ,

ϕ2(x) −→ −ϕ∗1(x′) , (2.299)

K0(x) −→ K0(x
′) ,

K(x) −→ −K(x′) . (2.300)

Note that CP(i)
g is basis invariant. The form of the other three CPg symmetries, CP

(ii)
g,1 ,

CP
(ii)
g,2 and CP

(ii)
g,3 , depends on the basis. Here we continue to use the convenient basis choice

(2.289). For the type (ii) transformation CP
(ii)
g,1 we set

CP
(ii)
g,1 : ϕi(x) −→ σ3

ijϕ
∗
j(x

′) ,

ϕ1(x) −→ ϕ∗1(x
′) ,

ϕ2(x) −→ −ϕ∗2(x′) , (2.301)

K0(x) −→ K0(x
′) ,

K(x) −→ R1 K(x′) (2.302)

with R1 being the matrix of the reflection on the 2–3 plane, see (2.169). The type (ii)

transformation CP
(ii)
g,2 is defined as the standard CP transformation, CPs, for the Higgs
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CPg Uϕ

CP(i)
g ε

CP
(ii)
g,1 σ3

CP
(ii)
g,2 12

CP
(ii)
g,3 σ1

Table 2.4: The matrices Uϕ in (2.141c) for the four CPg transformations.

fields, where

CP
(ii)
g,2 : ϕi(x) −→ ϕ∗j(x

′) ,

ϕ1(x) −→ ϕ∗1(x
′) ,

ϕ2(x) −→ ϕ∗2(x
′) , (2.303)

K0(x) −→ K0(x
′) ,

K(x) −→ R2 K(x′) (2.304)

with R2 being the matrix of the reflection on the 1–3 plane, see (2.169). Finally, the

transformation CP
(ii)
g,3 is defined by

CP
(ii)
g,3 : ϕi(x) −→ σ1

ijϕ
∗
j(x

′) ,

ϕ1(x) −→ ϕ∗2(x
′) ,

ϕ2(x) −→ ϕ∗1(x
′) , (2.305)

K0(x) −→ K0(x
′) ,

K(x) −→ R3 K(x′) (2.306)

with R3 being the matrix of the reflection on the 1–2 plane, see (2.169). Table 2.4 sum-
marises the four CPg transformations by listing their Higgs flavour mixing matrices Uϕ for
the generic CPg transformations defined in (2.141c). The potential with (2.289) is invariant

under all of these four CPg transformations, CP(i)
g , CP

(ii)
g,1 , CP

(ii)
g,2 and CP

(ii)
g,3 .

Note that the symmetries CP(i)
g , CP

(ii)
g,1 , CP

(ii)
g,2 and CP

(ii)
g,3 are not independent since we

have at the level of the transformation of the Higgs fields the relation

CP(i)
g = CP

(ii)
g,1 ◦ CP

(ii)
g,2 ◦ CP

(ii)
g,3 . (2.307)

This result was already mentioned in the general discussion of CPg symmetries.
Any of the above CP symmetries is conserved by the vacuum if and only if the vacuum

value K satisfies

R̄K = K . (2.308)
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Here we have to insert R̄ = −13, R1, R2 and R3 for the symmetries CP(i)
g , CP

(ii)
g,1 CP

(ii)
g,2

and CP
(ii)
g,3 , respectively. For the vacuum solution K̃ as in (2.292) we immediately get

(−13)K 6= K ,

R1K = K ,

R2K = K ,

R3K 6= K . (2.309)

Thus, the symmetries CP(i)
g and CP

(ii)
g,3 are spontaneously broken. On the other hand, the

symmetries CP
(ii)
g,1 and CP

(ii)
g,2 are conserved by the vacuum.

Now we come to the CP transformation properties of the physical Higgs fields defined
in (2.119). Under CP(i)

g which transforms the Higgs doublets according to (2.299) the

physical Higgs fields have no definite transformation property. This is alright, since CP(i)
g

is spontaneously broken. For the unbroken symmetry CP
(ii)
g,1 we get from (2.119) and (2.301)

CP
(ii)
g,1 : ρ′(x) −→ ρ′(x′) ,

h′(x) −→ −h′(x′) ,
h′′(x) −→ h′′(x′) ,

H+(x) −→ −H−(x′) . (2.310)

On the other hand, we obtain from (2.119) and (2.303) for the CP
(ii)
g,2 symmetry

CP
(ii)
g,2 : ρ′(x) −→ ρ′(x′) ,

h′(x) −→ h′(x′) ,

h′′(x) −→ −h′′(x′) ,
H+(x) −→ H−(x′) . (2.311)

We see that the field ρ′ is CP
(ii)
g,1 and CP

(ii)
g,2 even, h′ is CP

(ii)
g,1 odd and h′′ is CP

(ii)
g,1 even. This

role of h′ and h′′ is interchanged for the symmetry CP
(ii)
g,2 , see (2.311). We note, however,

that this assignment of CP(ii)
g quantum numbers is to some extent a convention since we

could have inserted extra global factors of (−1) in (2.301) and (2.303). This would not
change the transformation properties of the orbit variables in (2.302) and (2.304) and thus
have no physical consequence.

2.7.2 Maximal CPg invariance

We saw that a CP(i)
g -symmetric Higgs potential is automatically invariant under three more

CPg symmetries. It is interesting to study under which conditions all of these symmetries
can be extended to the full Lagrangian. We shall call the simultaneous invariance of the full
Lagrangian under all four CPg transformations maximal CPg invariance. We already know
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from theorem 2.5.12 that non-vanishing CP(i)
g -symmetric Yukawa couplings requires at least

two generations of fermions. In this section we shall treat the case of two families where,
for definiteness, we consider the families 2 and 3. It is convenient to use matrix notation
for the Yukawa couplings. The 2×2 matrices λl j = (λl jik), λ

d′ j = (λd
′ j
ik ), λu j = (λu jik ) have,

to start with, arbitrary complex entries.
Without changing the physical content of the theory we can make U(2)-rotations of the

right handed fields lRi , d′Ri uRi and the left handed doublet fields LLi and QL
i . As in the SM

we can use this to require, without loss of generality, for the couplings to the first Higgs
doublet certain standard forms:

λl 1 =

(
λl 122 0
0 λl 133

)
, λl 133 ≥ λl 122 ≥ 0 , (2.312a)

λd 1 = V

(
λd 1

22 0
0 λd 1

33

)
V † , λ̃d 1

33 ≥ λ̃d 1
22 ≥ 0 , (2.312b)

λu 1 =

(
λu 1

22 0
0 λu 1

33

)
, λu 1

33 ≥ λu 1
22 ≥ 0 (2.312c)

with

V =

(
cosϑ sinϑ

− sinϑ cosϑ

)
, 0 ≤ ϑ ≤ π/2 . (2.312d)

For the derivation of the corresponding results in the SM see, for instance, chapter 22.4 of
[64]. The matrix V = (Vij) in (2.312d) will turn out to be the Cabibbo-Kobayashi-Maskawa
(CKM) matrix in the 2–3 sector. As we shall see, in the basis of the fermion fields defined
by (2.312) the fields lRi , lLi and uRi , uLi correspond to mass eigenstates. For the d′-fields
defined in this basis the mass eigenstates will be

dR,Li (x) = V †
ij d

′R,L
j (x) . (2.313)

In the following we shall always work in the fermion basis defined by (2.312) if not stated
otherwise. In this basis, the usual idenfication of the fermions fields given in table 2.1
holds.

We shall construct mixing matrices matrices U l, UL for each of the four Uϕ such that
LYuk,l is invariant. We recall that each U ∈ U l, UL must be either a symmetric or an
antisymmetric unitary matrix. For their general parameterisation we use the scheme

U = eiα
(
a ib
ib a∗

)
= UT , α ∈ R, a ∈ C, b ≥ 0, |a|2 + b2 = 1 (2.314)

for the symmetric case and

U = eiα
(

0 1
−1 0

)
= −UT , α ∈ R (2.315)
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for the antisymmetric case. Furthermore, we take into account that for each CPg symmetry
the total number, including Uϕ, of antisymmetric mixing matrices must be 0 or 2. The
necessary and sufficient conditions for CPg invariance of the Yukawa terms (2.230) read in
matrix notation

λl j = Uϕ
jj′ U

L λl j
′ ∗ U l † , (2.316)

λd
′ j = Uϕ

jj′ U
Q λl j

′ ∗ Ud′ † , (2.317)

λu j = Uϕ ∗
jj′ U

Q λl j
′ ∗ Uu † . (2.318)

2.7.3 Invariant couplings for two lepton families

Now we consider extending all four CPg symmetries of the Higgs sector to the Yukawa
interaction (2.5). We want to find out what this implies for the coupling matrices λl j, λd

′ j

and λu j. We start by considering only the leptonic part of LYuk in (2.5),

LYuk, l(x) = −λl jik L̄
L
i (x)ϕj(x) l

R
k (x) + h.c. (2.319)

As explained in section 2.7.2 we can, without loss of generality, suppose (2.312a) to hold.
Furthermore, the diagonal forms for λl 1 (2.312a) still allows to redefine lRi and LLi for given
index i by multiplication with an arbitrary phase factor. We use this freedom to require,
without loss of generality,

λl 223 > 0 if λl 223 6= 0 , (2.320a)

λl 232 ≥ 0 if λl 223 = 0 . (2.320b)

Two massive leptons with different masses

Let us first consider the case

λl 122 > 0 , λl 133 > 0 , λl 122 6= λl 133 . (2.321)

This corresponds to non-vanishing and unequal masses for the leptons l2 and l3 after EWSB,
since only ϕ1 acquires a non-vanishing vev. By considering all possible cases under the
above assumptions we find that a CP

(ii)
g,2 symmetry is possible if and only if

λl 2 = λl 2 ∗ . (2.322)

The corresponding matrices UL, U l must be equal, UL = U l, symmetric and diagonal.
Choosing them equal to the unit matrix up to a global phase factor, UL = U l ∝ 1, is
sufficient always, and necessary if at least one off-diagonal element of λl 2 is non-vanishing.
A CP

(ii)
g,1 symmetry is possible in addition if and only if

λl 2 =

(
0 λl 223
λl 223 0

)
= λl 2 ∗ . (2.323)
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The matrices UL, U l for this symmetry must be equal, UL = U l, symmetric and diag-
onal again. The choice UL = U l ∝ σ3 is sufficient always, and necessary if at least one
off-diagonal element of λl 2 is non-vanishing. On top of that a CP(i)

g symmetry can be
constructed if and only if

λl 2 =

(
0 λl 133

±λl 122 0

)
, (2.324a)

or λl 2 =

(
0 λl 122

±λl 133 0

)
. (2.324b)

For the two cases (2.324a) we have UL = eiαε, α ∈ R, and U l = eiασ3 (first case) or
U l = −eiαL1 (second case). For the two cases (2.324b) we have U l = eiαε, α ∈ R, and

UL = eiασ3 (first case) or UL = eiαL1 (second case). The remaining CP
(ii)
g,3 transformation

may then always be constructed according to

CP
(ii)
g,3 = CP

(ii)
g,1 ◦ CP

(ii)
g,2 ◦ CP(i)

g , (2.325)

under which LYuk, l is automatically invariant, such that no additional restrictions on λl 2

arise. We find that this is possible since the right hand side of this equation is of the form
(2.141), see subsection 2.5.1, (2.325) holds for the already fixed transformations in the
Higgs sector and the fermion mixings U = UL, U l defined by (2.325) are unitary matrices
with U U∗ = ±1 for the case (2.324). Note that we explicitly checked the last two of these
three statements for the present case. In particular, the last of the three statements follows
from the above given restrictions on the fermion mixings in CP

(ii)
g,1 , CP

(ii)
g,2 and CP(i)

g for non-

diagonal λl 2 as in (2.324), and not from their generic CP(i)
g , CP(ii)

g properties already, see
subsection 2.5.1.

To see the physical consequences of this result we look at LYuk,l after EWSB. Inserting
for the Higgs fields the physical expressions (2.119) we get from (2.319)

LYuk,l = −ml2 l̄2 l2 −ml3 l̄3 l3

− 1√
2
ρ′
[
λl 122 l̄2 l2 + λl 133 l̄3 l3

]
−H+

[
λl 223 ν̄2ωRl3 + λl 232 ν̄3ωRl2

]
−H− [λl 223 l̄3ωLν2 + λl 232 l̄2ωLν3

]
− 1√

2
h′
[
l̄3
(
λl 232ωR + λl 223ωL

)
l2 + l̄2

(
λl 232ωL + λl 223ωR

)
l3
]

− i√
2
h′′
[
l̄3
(
λl 232ωR − λl 223ωL

)
l2 + l̄2

(
−λl 232ωL + λl 223ωR

)
l3
]

(2.326)

with the chirality projectors

ωR :=
1 + γ5

2
and ωL :=

1− γ5

2
(2.327)

and the lepton masses given by

ml 2 = λl 122
v√
2
,

ml 3 = λl 133
v√
2
. (2.328)
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µ−

µ−

h′, h′′

τ−

τ−

N

µ−

γ∗

}

X

µ−

h′, h′′

τ−

µ+

τ−

Figure 2.6: Left : Two Feynman diagrams for the large FCNC process µ−µ− −→ τ−τ− reflecting
the last two contributions in the Lagrangian (2.326) for the case l2 and l3 are identified with µ
and τ respectively. Right : Two Feynman diagrams for the deep inelastic muon-nucleon scattering
process which would reveal FCNCs corresponding to the same couplings as in the left diagrams.

Identifying the leptons 2 and 3 with the µ and τ leptons respectively we see that for all
cases in (2.324) either

∣∣λl 223∣∣ = mτ

√
2/v or

∣∣λl 232∣∣ = mτ

√
2/v. Thus (2.326) always contains

large lepton flavour changing neutral currents. These would allow processes like

µ− + µ− −→ τ− + τ− (2.329)

through diagrams like in figure 2.6 (left). A direct study of this process would be a topic
for a muon collider which, however, is a project for the far future. But the couplings
in figure 2.6 (left) would also lead to spectacular lepton-flavour-violating events in deep
inelastic muon-nucleon scattering,

µ− +N −→ µ+ + τ− + τ− +X . (2.330)

Two of the corresponding tree-level Feynman diagrams are shown in figure 2.6 (right).
Here X stands for the hadronic final state. Since such FCNCs were never observed we
consider them to be disfavoured phenomenologically.

Two massive leptons with equal mass

The next case to study is

λl 122 = λl 133 > 0 . (2.331)

Considering CP(i)
g symmetries we find that a realisation requires the matrix λl 2/λl 122 to be

unitary. This matrix may then be diagonalised with a single unitary matrix (for both
the left and the right handed fields), such that λl 1 is unchanged. In the new basis CP(i)

g

symmetry requires

λl 2 = eiηλl 122

(
1 0
0 −1

)
, η ∈ R . (2.332)

Moreover, this form of λl 2 is also sufficient for a CP(i)
g symmetry to exist. The mixings

must be either UL = eiαε and U l = −ei(α−η)σ1 or U l = eiαε and UL = −ei(α+η)σ1, with
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α ∈ R. We find an additional CP
(ii)
g,2 symmetry to be possible if and only if

λl 2 = ±iλl 122
(

1 0
0 −1

)
, or (2.333a)

λl 2 = ±λl 122
(

1 0
0 −1

)
. (2.333b)

For (2.333a) we must have either UL = U l ∝ σ1 or UL = U l ∝ ε. For (2.333b) UL and

U l must be equal, UL = U l, symmetric and diagonal. On top of that a CP
(ii)
g,1 symmetry

may be constructed without further restriction on λl 2. Here, for (2.333a) UL and U l must
be equal, UL = U l, symmetric and diagonal. For (2.333b) UL and U l we must have either

UL = U l ∝ σ1 or UL = U l ∝ ε. By checking all cases we find that the remaining CP
(ii)
g,3

symmetry may be constructed according to (2.325) without further restriction on λ2 l, since
the fermion mixings described above guarantee U U∗ = ±1 for U = UL, U l.

We see from (2.312a) and (2.333) that there are no mixings between the two lepton
families. Furthermore, the two Higgs doublets do not mix for our choice of basis, see sub-
section 2.7.1. From this we conclude that there are no FCNCs at the tree-level. However,
here we have, according to (2.328), equal lepton masses, ml 2 = ml 3, which is unacceptable
phenomenologically.

One massless, one massive lepton

It remains to be studied what happens for the case of one massless and one massive lepton.
Taking, by convention, l3 to be the massive lepton we have the case

λl 122 = 0 , λl 133 > 0 . (2.334)

In this case (2.312a) and (2.320) still leave an additional freedom in the choice of field
phase factors, which we employ to require

λl 222 ≥ 0 (2.335)

in the following. This means no loss of generality, since we may first choose a basis such
that (2.312a) holds, then redefine the phase of lR2 to achieve (2.335) and finally arrange for
(2.320) in the previously described way. We find that a CP(i)

g symmetry may be realised
for our conventions if and only if

λl 2 = λl 133

(
cos η 0
sin η 0

)
, 0 ≤ η < π/2 , or (2.336a)

λl 2 = λl 133

(
cos η sin η

0 0

)
, 0 ≤ η < π/2 . (2.336b)

An antisymmetric UL together with a symmetric U l are possible if (2.336a) holds and the
second column of UL equals the first column of λl 2/λl 133 up to a phase. An antisymmetric
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U l together with a symmetric UL are possible if (2.336b) holds and the second column of
U l ∗ equals the first row of λl 2/λl 133 up to a phase. There are no other options. In addition,

a CP
(ii)
g,1 and a CP

(ii)
g,2 symmetry can be constructed without further restrictions on λl 2.

For each of these two symmetries, the corresponding UL, U l must both be symmetric and
diagonal. We find that a CP

(ii)
g,3 symmetry may be defined without further restrictions on

the couplings. However, here not all possible mixings in CP
(ii)
g,1 , CP

(ii)
g,2 , and CP(i)

g define

via (2.325) a valid CP
(ii)
g,3 transformation with U U∗ = ±1 for U = UL, U l. Nevertheless

choosing all symmetries such that (2.325) holds for the lepton sector is possible without
additional restrictions on λl 2.

We see that (2.336) may contain an off-diagonal term which leads to FCNCs, which we
consider to be phenomenologically disfavoured. Requiring absence of those FCNCs means
η = 0 in (2.336) and leads to a highly symmetric form of the leptonic Yukawa terms with
only one free parameter (fixed by v and ml 3). However, it is also clear from the above
discussion, that we can prescribe the lepton mixings in the CP(i)

g transformation in such a
way, that an invariant λl 2 is required to be diagonal and thus FCNCs are absent. Explicitly,
choosing both UL and U l off-diagonal for that symmetry requires

λl 2 =

(
λl 133 0
0 0

)
. (2.337)

This phenomenologically particularly interesting case will be discussed in subsection 2.7.5
in more detail.

2.7.4 Invariant couplings for two quark families

In this section we study the quark part of the Lagrangian (2.5). Let us first look at the
term which generates masses for the u-type quarks,

LYuk,u = −λu jik Q̄
L
i εϕ

∗
ju

R
k + h.c. (2.338)

Here we can suppose without loss of generality that λu 1 is as in (2.312c). As for the
case of the leptons in subsection 2.7.3 we ask if LYuk,u in (2.338) allows to implement all
four CPg symmetries from the Higgs sector. Since all Uϕ matrices are real, the invariance
condition (2.318) for the present case is completely analogous to (2.316) in the lepton
sector. We can immediately conclude from the results of the previous section that for
the case of two massive up-type quarks with unequal masses the symmetry requirement
leads to large FCNCs. Here it is important to note that these FCNCs are generated for
the physical mass eigenstates u2 and u3. Requiring absence of these FCNCs allows then
only two possibilities for a non-zero coupling LYuk,q′ . Either we must have non-zero equal
masses for the quarks u2 and u3 or we must have u2 massless and u3 massive. Discarding
the former for phenomenological reasons we are left with the case of a massless u2 = c
quark and a massive u3 = t quark.

We turn next to the term in (2.5) which generates masses for d-type quarks

LYuk,q = −λd jik Q̄
L
i ϕjd

′R
k + h.c. (2.339)
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Here the standard form for λd 1 is given in (2.312b) and (2.312d). Note that d′β are – in
general – not the mass eigenstates. We shall change to the basis of dα mass according to
(2.313) by setting

dRi = V †
ii′ d

′R
i′ ,

Q̃L
i = V †

ii′ Q
L
i′ . (2.340)

The coupling term (2.339) reads now

LYuk,d = −λ̃d jik
¯̃QL
i ϕjd

R
k + h.c. (2.341)

where
λd j = V † λd

′ j V , (j = 1, 2) . (2.342)

From (2.312b) we see that this implies

λ̃d j =

(
λd j22 0

0 λd j33

)
. (2.343)

Now we can proceed as for the lepton case. For the case of two massive down-type quarks
with unequal masses, the maximal CP invariance requirement implies large FCNCs. among
the physical d-quark mass eigenfields. These FCNCs can only be avoided if we require either
equal masses md2 = md3 or md2 = 0 and md3 6= 0. Again we discard the former possibility
for phenomenological reasons.

What we have discussed so far were only separate requirements for each of the up- and
down-type quark sectors. We now take into account the connection of the latter by asking
how a CPg symmetry can actually be implemented for both sectors simultaneously. This
will of course involve the CKM matrix. We consider the phenomenologically particular
interesting case of one massless quark pair (u2, d2) and one massive pair (u3, d3). That
is, we suppose

λu 1
22 = 0 , λu 1

33 > 0 ,

λ̃d 1
22 = 0 , λ̃d 1

33 > 0 . (2.344)

Similar to the corresponding lepton case we choose, without loss of generality, a basis with

λu 2
22 ≥ 0 ,

λ̃d 2
22 ≥ 0 , (2.345)

and find that the requirement of maximal CP invariance together with the requirement of
absence of FCNCs leads to the following structure of the quark-Higgs coupling matrices
(see (2.337)):

λu 2 =

(
λu 1

33 0
0 0

)
, (2.346)

λ̃d 2 =

(
λd 1

33 0
0 0

)
. (2.347)



2.7 CP type (i) symmetric model 85

Here λ̃d 2 is the CKM-rotated matrices according to (2.342). From the discussion of the
lepton case we see that CP(i)

g invariance is implementable for (2.346) and (2.347) only with

certain matrices Uu, UQ in (2.338) and certain CKM rotated matrices Ũd, ŨQ for the CKM
rotated fields in (2.341). Here we have according to (2.151b)

Ũd = V † Ud V ∗ , (2.348)

ŨQ = V † UQ V ∗ . (2.349)

Now we consider matrices Uu, UQ and Ũd, ŨQ for each of the possible cases described
after (2.336) and check if we can fulfil (2.349). For the case that both Uu and Ũd are
antisymmetric we find the two solutions

UQ = ŨQ = eiξσ1 Uu = Ũd = eiξε , Ud = Uu , ϑ = 0 , V = 1 , (2.350)

UQ = −ŨQ = eiξσ1 Uu = −Ũd = eiξε , Ud = −Uu , ϑ = π/2 , V = ε , (2.351)

that is, in both cases the 2–3 sector of the CKM matrix is fixed. For the case that both
UL and ŨL are antisymmetric we find

UQ = ŨQ = eiξε , Uu = Ũd = eiξσ1 , Ud = eiξ
(

sin 2ϑ cos 2ϑ
cos 2ϑ − sin 2ϑ

)
(2.352)

without restriction on V . We find that there are no other solutions. Thus we see that,
strictly speaking, the CP(i)

g invariance plus absence of FCNCs gives no restriction on the
angle ϑ in the 2–3 sector of the CKM matrix. But perhaps we can argue that also the right
handed quarks uαR, d′αR should belong to some multiplet of a bigger gauge group as would
be possible in grand unified scenarios. Then a natural requirement could be Uu = Ud.
From (2.350)-(2.352) we see that we have then only the solution V = 12.

2.7.5 Mass hierarchies and FCNC suppression via
CP invariances

In this section we will present a model defined by a specific set of CPg symmetries. These
symmetries lead to a highly symmetric form of the Lagrangian, produce mass hierarchies
and forbid FCNCs. Let us first recapitulate what we found in the previous sections. In
subsection 2.7.1 we have discussed the Higgs sector of the model which is characterised
by the requirement of CP(i)

g invariance. We have seen that this leads automatically to

three more CPg invariances, CP
(ii)
g,1 , CP

(ii)
g,2 and CP

(ii)
g,3 . Two of them, CP(i)

g and CP
(ii)
g,3 ,

are broken spontaneously along with the electroweak symmetry. At tree-level, which we
have discussed above, the symmetries CP

(ii)
g,1 and CP

(ii)
g,2 are unbroken. We know from

theorem 2.5.12 that requiring a single family to have a CP(i)
g invariant coupling leads

necessarily to the coupling being identically zero. Thus, as the minimal non-trivial case,
we discussed the extension of the four CPg symmetries to non-zero Yukawa couplings for
two families in the subsections 2.7.3 and 2.7.4. We chose the two families to be the second
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CPg Uϕ UψL UψR

CP(i)
g ε ε -σ1

CP
(ii)
g,1 σ3 σ3 -12

CP
(ii)
g,2 12 12 12

CP
(ii)
g,3 σ1 σ1 σ1

Table 2.5: Flavour mixing matrices for four CPg transformations (2.141). Uϕ describes the mixing
of the two Higgs doublets, UψL and UψR the mixings of two fermion generations. Invariance under
all of them with U l = Ud = Uu = UψR and UL = UQ = UψL leads to mass hierarchies and absence
of FCNCs, see (2.334).

and the third. We found that unequal non-zero masses for the leptons l2 and l3, the quarks
u2 and u3, as well as d2 and d3 always implied large FCNCs. The absence of large FCNCs
required either equal masses of corresponding fermions (ml2 = ml3 etc.) or one fermion
massless, the other massive. Discarding the equal mass case on phenomenological grounds
we were, thus, left with the possibility

ml 2 = 0 , ml 3 6= 0 ,

md 2 = 0 , md 3 6= 0 ,

mu 2 = 0 , mu 3 6= 0 . (2.353)

Here we shall prescribe the form of the matrices U
(l)
R and U

(l)
L for the four CPg trans-

formations as shown in table 2.5 and require the Lagrangian to be invariant under them.
Note that our set of CPg transformations chosen here differs slightly from those described
in [89], which will lead together with the other conventions to differences only in the
signs of the resulting Yukawa couplings. In the present scheme, we chose the same mix-
ing matrices in the CPg transformations for all electroweak doublets, that is, the Higgs
fields and the left-handed fermion fields. These transformations have the normalisation
(CP

(ii)
g,1 )2 = (CP

(ii)
g,2 )2 = (CP

(ii)
g,3 )2 = (CPs)

2 and (CP(i)
g )2 = exp(i6πY ) ◦ (CPs)

2, see end of

subsection 2.5.1. CP
(ii)
g,2 is the standard CP transformation for all fields, CP

(ii)
g,2 = CPs. A

direct calculation for the mixing matrices of each field type shows that

CP
(ii)
g,3 = CP(i)

g ◦ CP
(ii)
g,2 ◦ CP

(ii)
g,1 (2.354)

for all fields. In this model the first family remains uncoupled to the Higgs fields. We require
now invariance of the general non-trivial Yukawa interaction (2.319) under each of these
four CPg transformations, that is, we require (2.230) to hold with the corresponding mixing
matrices from table 2.5. We choose a basis where (2.312) holds. We start by considering

λd
′ 1 and impose invariance under CP

(ii)
g,1 . This requires V λd

′ 1 V † = σ3 V λd
′ 1 V †(−1),

which can only be fulfilled with (2.312b) if the CKM matrix of the families 2 and 3 is

V = 1 . (2.355)
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This means we are already in the mass basis for all fermions and may check the sym-
metry requirements for all coupling matrices in the same way. We successively evaluate
the restrictions following from invariance under CP(i)

g , CP
(ii)
g,1 , CP

(ii)
g,2 . CP

(ii)
g,3 needs not

be checked, since it is a consequence of CP(i)
g , CP

(ii)
g,1 and CP

(ii)
g,2 symmetry (2.354). Our

calculation shows that these four invariances require the Yukawa couplings

λl 1 =

(
0 0
0 λl 133

)
, λl 2 =

(
λl 133 0
0 0

)
,

λd 1 =

(
0 0
0 λd 1

33

)
, λd 2 =

(
λd 1

33 0
0 0

)
,

λu 1 =

(
0 0
0 λu 1

33

)
, λu 2 =

(
λu 1

33 0
0 0

)
(2.356)

for the basis choice (2.312), (2.335), (2.345). This form guarantees the absence of large
FCNCs and requires vanishing masses for family 2.

The full Yukawa part of the Lagrangian takes the simple form

LYuk = −λl 133
(
L̄L3 ϕ1l

R
3 + L̄L2 ϕ2l

R
2

)
− λd 1

33

(
Q̄L

3 ϕ1d
R
3 + Q̄L

2 ϕ2d
R
2

)
− λu 1

33

(
Q̄L

3 ε ϕ
∗
1u

R
3 + Q̄L

2 ε ϕ
∗
2u

R
2

)
+ h.c. (2.357)

Note the high degree of symmetry between the second and third family here. However,
after EWSB we get, inserting (2.119) for the Higgs fields,

LYuk =

−ml3 l̄3l3 − ρ′
ml3

v
l̄3l3 − h′

ml3

v
l̄2l2 − h′′

iml3

v
l̄2 γ5 l2 −

[
H+

√
2ml3

v
ν̄2 ωR l2 + h.c.

]
−md3 d̄3d3 − ρ′

md3

v
d̄3d3 − h′

md3

v
d̄2d2 − h′′

imd3

v
d̄2 γ5 d2 −

[
H+

√
2md3

v
ū2 ωR d2 + h.c.

]
−mu3 ū3u3 − ρ′

mu3

v
ū3u3 − h′

mu3

v
ū2u2 + h′′

imu3

v
ū2 γ5 u2 +

[
H+

√
2mu3

v
ū2 ωL d2 + h.c.

]
(2.358)

with the fermion masses

ml3 = λl 133
v√
2
≡ mτ ,

md3 = λd 1
33

v√
2
≡ mb ,

mu3 = λu 1
33

v√
2
≡ mt . (2.359)

The third generation fermions have become massive and couple to the physical ρ′ Higgs.
The second generation fermions stay massless but couple to h′, h′′ and the charged Higgses
H±.
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We consider it noteworthy that our symmetry principles require more than one family.
For two families we get in a natural way mass hierarchies. Choosing the simplest extension
to three families we get masses unequal to zero only for τ, t and b whereas all other leptons
and quarks, µ, e, c, u, s, d stay massless. In addition, the CKM matrix of the quarks equals
the unit matrix, V = 1. Clearly, all this is not quite as it is observed in Nature. On the
other hand, as a first approximation, it is not too bad. We have [7, 121, 122]

me

mτ

≈ 0.00029 ,
mµ

mτ

≈ 0.059 ,

mu

mt

∣∣∣∣
v

≈ 9.9 · 10−6 ,
mc

mt

∣∣∣∣
v

≈ 0.0036 ,

md

mb

∣∣∣∣
v

≈ 0.0010 ,
ms

mb

∣∣∣∣
v

≈ 0.018 . (2.360)

Here we have used for the quarks the MS masses at the renormalisation point µ = v ≈
246GeV and αs(mZ) = 0.119. Also, taking into account experimental measurements, the
CKM matrix is not too far from unity. Indeed, one finds for the absolute values |Vij|
(see [7]) |V11| |V12| |V13|

|V21| |V22| |V23|
|V31| |V32| |V33|

 ≈

0.974 0.227 0.004
0.227 0.973 0.042
0.008 0.042 0.999

 . (2.361)

Note that in the 2–3 sector V is very close to the unit matrix. Without question, a good
theory should be able to explain the experimental numbers in (2.360) and (2.361) in more
detail. It remains to be seen, whether the presented model provides a starting point for
this.

Summary

We have studied a Two-Higgs-Doublet Model where the scalar sector has four generalised
CP symmetries. EWSB leads to the spontaneous breakdown of two of these CP symmetries.
We have introduced the principle of maximal CP invariance requiring that these four CP
symmetries can be extended to the full Lagrangian of the theory. We find that for a single
fermion family this principle forbids a non-zero fermion-Higgs coupling. Thus, if we require
massive fermions which arise from non-zero Yukawa couplings we need family replication.
We have studied then in detail theories with two fermion families. Here, indeed, we can
extend all four CP symmetries to the full Lagrangian with non-zero Yukawa couplings
which are, however, highly constrained. Discarding extensions which enforce large FCNCs,
we are left with the possibilities of either equal masses for each fermion type or large mass
hierarchies between the families. Choosing the latter possibility we arrive at a theory with
a high degree of symmetry between the two families and absence of FCNCs. We have
shown that we can obtain this theory directly from a symmetry requirement. For this we
have prescribed the form of the four CP transformations for the lepton and quark fields
as shown in table 2.5. Our principle of maximal CP invariance leads then directly to the
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Yukawa coupling (2.357) implying one massive and one massless family as well as absence
of large FCNCs. The Yukawa part of this theory is given in (2.357) and after EWSB
in (2.358). Through EWSB one family becomes massive the other stays massless at the
tree-level, which we have discussed in this chapter. Adding a fermion family uncoupled to
the Higgs particles we arrive at a model which gives a rough approximation of the fermion
pattern observed in Nature. Concerning the charged fermions we have one massive family
which we identify with the third one (τ , t, b) and two massless ones, which we identify with
the second (µ, c, s) and the first (e, u, d) families. In this model the CKM matrix of the
quark generations is equal to unity. As for any THDM, the spectrum of physical Higgs
particles consists of three neutral scalars, ρ′, h′ and h′′, and the charged Higgses H±. The
neutral Higgs particle ρ′ – which has essentially the same properties as the SM Higgs –
couples exclusively to the third family of fermions. The other Higgses h′, h′′ and H± couple
exclusively to the second family of fermions. The first fermion family remains uncoupled
to the Higgses. Of course, these statements are expected to be only approximately true.
It remains to be seen whether such a mechanism is realised in Nature. The experiments
at the LHC might be able to tell.

2.8 Orbit variables for the n-Higgs-Doublet Model

After our discussion of the general THDM in the previous chapters, we discuss here as an
outlook a possible extension of the presented methods to the case of n > 2 Higgs doublets.
We consider n complex Higgs-doublet fields

ϕi(x) =

(
ϕ+
i (x)
ϕ0
i (x)

)
, i = 1, . . . , n . (2.362)

All doublets are supposed to have the same weak hypercharge y = +1/2. In analogy to
(2.16) we introduce the matrix

φ :=


ϕ+

1 ϕ0
1 0 . . . 0

ϕ+
2 ϕ0

2 0 . . . 0
...

...
... · · · ...

ϕ+
n ϕ0

n 0 . . . 0

 . (2.363)

which is now a n×n matrix. As in (2.17) we define the matrix

K := φφ† (2.364)

of all SU(2)L × U(1)Y -invariant scalar products,

Kij = ϕ†jϕi , (2.365)

with K = (Kij), i, j ∈ {1, . . . , n}. A change of basis among the doublets means

φ −→ φ′ = U φ ,

K −→ K ′ = U K U † (2.366)
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with a constant unitary matrix U ∈ U(n). A gauge transformation from SU(2)L × U(1)Y

ϕ′αi (x) = (UG(x))αβ ϕ
β
i (x), i = 1, . . . , n (2.367)

with UG(x) ∈ U(2) means

φ(x) −→ φ′(x) = φ(x) ŨT
G(x) ,

K(x) −→ K ′(x) = K(x) , (2.368)

where ŨG(x) ∈ U(n) is block-diagonal

ŨG(x) :=

(
UG(x) 0

0 1n−2

)
. (2.369)

We see directly from the definitions (2.363) and (2.364) that K is hermitian, positive
semidefinite and has rank ≤ 2, since

rankK = rankφ (2.370)

and φ has rank ≤ 2. We shall show that these conditions are also sufficient for some matrix
K to find corresponding Higgs fields with (2.365).

Suppose an otherwise arbitrary complex n×n matrix K is hermitian, positive semidef-
inite and has rank ≤ 2. We can diagonalise K and represent it as

K(x) = W (x)

κ1(x) 0
0 κ2(x)

0

0 0

W †(x) (2.371)

with W (x) ∈ U(n) and κ1(x) ≥ 0, κ2(x) ≥ 0. We set now

φ(x) = W (x)


√
κ1(x) 0

0
√
κ2(x)

0

0 0

 (2.372)

and see easily that φ(x) is of the form (2.363) and satisfies (2.365). Thus to any hermitian
and positive semidefinite matrix K(x) of rank ≤ 2 there is at least one field configuration
of the n Higgs doublets such that (2.364) holds. Furthermore, a direct calculation shows
that any two field configurations (2.363) which give by (2.364) the same matrix K differ
at most by a electroweak gauge transformation. We summarise our findings in a theorem.

Theorem 2.8.1. For n Higgs doublet fields of the same weak hypercharge y = +1/2 the

matrix K(x) =
(
ϕ†j(x)ϕi(x)

)
is a positive semidefinite n×n matrix of rank ≤ 2. For any

hermitian positive semidefinite n×n matrix K(x) of rank ≤ 2 there are Higgs fields such
that (2.364) holds. Any two field configurations giving the same matrix K(x) are related
by a SU(2)L×U(1)Y gauge transformation. The matrices K(x) form, therefore, the space
of the gauge orbits of the n Higgs-doublet fields.
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In order to discuss a Higgs potential in terms of the gauge invariant matrix K or some
decomposition of it, we need a more explicit characterisation of the domain of K. In order
to be incorporated in a Lagrange type minimisation of the potential, the domain should be
characterised by some set of equalities and inequalities. If the constraints are polynomial in
the used degrees of freedom, they might be used in the Gröbner basis approach explained
in chapter 3. For example, the eigenvalues of K contain the relevant information, but their
usage is complicated by the fact that no explicit formulae exist for them in the general
case. Instead we shall consider the principal minors of K. It is well known that a hermitian
matrix is positive definite if and only if all leading principal minors are positive. Since the
corresponding necessary and sufficient criterion for positive semi -definiteness is omitted in
the text books we checked, we insert a brief intermezzo of some basic linear algebra here.

For some complex n×n matrix H one may consider r×s submatrices (r, s ∈ {1, . . . , n})
obtained from H by deleting arbitrary n − r rows and arbitrary n − s columns. The
determinants of these submatrices are called minors. The determinants of r×r submatrices
obtained by deletion of n− r rows and columns with the same indices are called principal
minors or, when referring to a specific dimension r×r of the submatrices, principal r-
minors. Finally, if a principal minor originates from a r×r submatrix of H, where the last
n − r rows and columns were deleted, it is called a leading principal minor. With these
notations1 fixed we state the following.

Theorem 2.8.2. For a hermitian n×n matrix H the following is equivalent:

(i) H is positive semi-definite,

(ii) all principal minors of H are non-negative.

Please note that in contrast to the criterion for positive definiteness here all principal
minors are involved, not only the leading ones. We do not give a detailed proof here, but
only outline the idea. For (i) ⇒ (ii) we assume that H is positive semi-definite but has at
least one negative principal minor, which is obtained from some r×r submatrix Ĥ. Then Ĥ
has a negative eigenvalue and there is a vector v̂ with r components such that v̂TĤv̂ < 0.
From v̂ a vector v with n components may be constructed by adding zero components
such that vTHv < 0, which contradicts the assumption. For (ii) ⇒ (i) we construct a
matrix H̃ by permutating same index rows and columns of H such that the upper left
block submatrix of H̃ has the rank of H. A diagonalisation of the H̃ shows that this
upper left block can be written as B D̂B†, where D̂ is a diagonal matrix with all non-zero
eigenvalues of H and B is invertible. All principal minors of B D̂B† must be positive and
using the proof of the well known theorem for positive matrices we conclude that B D̂B†

is positive definite. Therefore also D̂ must be positive which implies (i). Please see [123]
for details omitted here, in some cases a generalisation of their proofs from symmetric to
hermitian matrices is necessary.

1Another common nomenclature deviates from these definitions by using the name principal minor for
the above definition of a leading principal minor.
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Using theorem 2.8.2 we find that for some hermitian n×n matrix K there are Higgs
fields with (2.364) if and only if all of the following hold:

all principal 1-minors of K are non-negative, and (2.373a)

all principal 2-minors of K are non-negative, and (2.373b)

all principal 3-minors of K are zero. (2.373c)

Since the minors of K also allow to directly read off the rank of K we can characterise the
possible cases as follows.

Theorem 2.8.3. A hermitian n×n matrix K corresponds to a field configuration of n

Higgs doublets with K(x) =
(
ϕ†j(x)ϕi(x)

)
if and only if one of the following holds:

• All principal 1-minors of K are zero.
Then rankK = 0 and K = 0 hold.

• All principal 2-minors of K are zero, at least one 1-minor is positive.
Then rankK = 1 holds.

• All principal 3-minors of K are zero, at least one 2-minor is positive.
Then rankK = 2 holds.

As for the THDM, the rank of K has a direct physical meaning. We observe from
(2.363) and (2.370) the following.

Classification 2.8.4. A matrix 〈K〉 describing the vacuum of a potential belongs to one
of the following categories:

• rank 〈K〉 = 0: A vacuum 〈K〉 of this type is trivial, that is, it has vanishing vacuum
expectation values for all Higgs fields. In this case, no symmetry is spontaneously
broken.

• rank 〈K〉 = 1: For a vacuum 〈K〉 of this type a SU(2)L × U(1)Y transformation is
possible such that

〈φ〉 =


0 |〈ϕ0

1〉| 0 . . . 0
0 〈ϕ0

2〉 0 . . . 0
...

...
... · · · ...

0 〈ϕ0
n〉 0 . . . 0

 (2.374)

and we identify the unbroken U(1) gauge group with the electromagnetic one. By a
transformation (2.366) we can arrange that

〈φ′〉 =


0 v/

√
2 0 . . . 0

0 0 0 . . . 0
...

...
... · · · ...

0 0 0 . . . 0

 , v =
√

2

(
n∑
i=1

∣∣ϕ0
i

∣∣2)1/2

(2.375)
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for the vacuum expectation values in the new basis. Again, v ≈ 246GeV is the usual
Higgs-field vacuum expectation value.

• rank 〈K〉 = 2: A vacuum K of this type means that in any gauge or Higgs flavour
basis at least one charged and one neutral vacuum expectation value is non-vanishing.
This means that the full gauge group SU(2)L × U(1)Y is broken.

We now consider a decomposition of the matrix K(x) such that we arrive at real degrees
of freedom. Let

λa/2 , a = 1, . . . , n2 − 1 (2.376)

be generators of SU(n), that is hermitian and traceless n×n matrices, with the normali-
sation

trλaλb = 2δab , a, b ∈ {1, . . . , n2 − 1} . (2.377)

We arrive at a complete set of complex n×n matrices by supplementing these generators
by a multiple of the unit matrix

λ0 := N0

√
2

n
1n (2.378)

with yet to be specified normalisation N0 ∈ R. The matrix K can be decomposed in the
following way

K = K0
λ0

2
+

n2−1∑
a=1

Ka
λa
2
. (2.379)

The coefficients K0, Ka (a = 1, . . . , n2 − 1) defined in this way are real and satisfy

K0 =
1

N2
0

tr (Kλ0) ,

Ka = tr (Kλa) , a = 1, . . . , n2 − 1 . (2.380)

These are the orbit variables for the n-Higgs-Doublet Model. Although setting N0 = 1
would appear most natural at this point, we keep N0 unfixed for a reason which will
become clear. From a group theoretical point of view this construction means with respect
to the SU(n)ϕ subgroup of the Higgs flavour transformations U(n)ϕ:

n⊗ n = 1⊕ (n2 − 1) , (2.381)

where K0 is the singlet 1 and the vector (Ka) the fundamental multiplet (n2− 1). That is,
for a Higgs flavour transformation (2.366) the doublets transform as “spinors”, K0 as an
invariant “scalar” and (Ka) as a real “vector” (with the associated real rotation in SO(n)).
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As an example we consider the case of three Higgs doublets, n = 3. As generators of
SU(3) satisfying (2.377) we have the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 i
0 −i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (2.382)

The minor conditions (2.373) are

K11 ≥ 0 , K11K22 − |K12|2 ≥ 0 ,

K22 ≥ 0 , K22K33 − |K23|2 ≥ 0 ,

K33 ≥ 0 , K33K11 − |K31|2 ≥ 0 , detK = 0 . (2.383)

Taking the sum of the principal 1-minor inequalities gives trK ≥ 0, which in turn is
equivalent to

K0 ≥ 0 . (2.384)

From the sum of the principal 2-minor inequalities we get

2N2
0 K

2
0 −

8∑
a=1

K2
a ≥ 0 . (2.385)

Here we see N0 = 1/
√

2 would render (2.385) to the simplest generalisation of the “forward
light cone” restriction. Note that the constraints in (2.383) are written in a basis dependent
form. As basis independent constraints we find that at least (2.384), (2.385) and detK = 0
must be taken into account, where the latter is a polynomial constraint of third order in
Ka (a = 1, . . . , 8). This is in contrast to the THDM, where the analogues of (2.384) and
(2.385) were sufficient for the specification of the domain of the orbit variables.

To summarise, we have presented with theorem 2.8.3 the domain of gauge invariant
functions for the n-Higgs-Doublet Model with n > 2, described by a hermitian matrix.
These conditions may be directly translated to the singlet plus vector type real orbit
variables (2.379), where they become polynomial inequalities and equalities. We have
illustrated the case n = 3 and found the domain of the orbit variables to be more involved
than in the case of the THDM. Nevertheless, to determine the stability and EWSB of
potentials for n > 2 doublets, Lagrange methods similar as described for the THDM may
be applied.



Chapter 3

The Next-to-Minimal
Supersymmetric Standard Model

3.1 Higgs potential

The Next-to-Minimal Supersymmetric Standard Model Higgs sector contains a complex
scalar Higgs singlet S in addition to the two scalar Higgs doublets Hu, Hd present in the
MSSM, see subsection 1.4.3. The two Higgs doublets have opposite hypercharges, y = 1/2
for Hu and y = −1/2 for Hd. We assume the soft breaking mass terms for the sleptons
and squarks to be sufficiently large to prevent nonvanishing vevs for the latter. For the
discussion of the electroweak symmetry breaking at the tree-level, we then need to consider
only the scalar potential of the pure Higgs part. We denote the scalar Higgs fields by

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−
d

)
, S . (3.1)

For the scalar doubletsHu, Hd, we get contributions to the Lagrangian from the elimination
of the vector supermultiplet auxiliary fields, the so-called D-terms,

L H
D = −1

2
g2

3∑
a=1

(H†
uTaHu +H†

dTaHd)
2 − 1

2
g′ 2(H†

uYHu +H†
dYHd)

2 . (3.2)

Contributions for all scalar Higgs fields arise from the elimination of the chiral supermul-
tiplet auxiliary fields, the so-called F -terms,

L H
F = −

∣∣∣∣δWH

δH+
u

∣∣∣∣2 − ∣∣∣∣δWH

δH0
u

∣∣∣∣2 − ∣∣∣∣δWH

δH0
d

∣∣∣∣2 − ∣∣∣∣δWH

δH−
d

∣∣∣∣2 − ∣∣∣∣δWH

δS

∣∣∣∣2 (3.3)

where WH (1.23) is taken as a functional of the scalar fields instead of the superfields.
Using the identity

∑3
a=1 σ

a
ijσ

a
kl + δijδkl = 2δilδjk we find with VD = −L H

D , VF = −L H
F ,



96 3. The Next-to-Minimal Supersymmetric Standard Model

Vsoft = −L H
soft and (1.24) for the Higgs potential (see also [32, 100])

V = VD + VF + Vsoft

where

VD =
1

8
ḡ2
(
|Hu|2 − |Hd|2

)2
+

1

2
g2
∣∣∣H†

dHu

∣∣∣2
VF = |λ|2 |S|2

(
|Hu|2 + |Hd|2

)
+
∣∣λHT

u εHd + κS2
∣∣2

Vsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S |S|
2 +

(
λAλ SH

T
u εHd +

1

3
κAκ S

3 + h.c.

)
(3.4)

Here, λ, κ are complex dimensionless couplings, m2
Hu
, m2

Hd
, m2

S are real parameters of
dimension mass squared and Aλ, Aκ are complex parameters of dimension mass. Further,
we have HT

u εHd = H+
u H

−
d −H0

uH
0
d and ḡ =

√
g2 + g′2, where g and g′ are the SU(2)L and

U(1)Y gauge couplings, respectively. Thus, the parameters of the potential are given by
the experimentally fixed electroweak gauge couplings and

λ, κ, m2
Hu
, m2

Hd
, m2

S, Aλ, Aκ . (3.5)

The quartic terms of the potential (3.4) are positive for any non-trivial field configura-
tion, if both λ, κ are non-vanishing. The potential is therefore bounded from below for all
cases considered here, and stability has not to be checked any further.

3.2 Physical parameters and necessary symmetry

breaking conditions

The vacuum is required to break the electroweak symmetry SU(2)L × U(1)Y down to
U(1)em as observed in Nature. In this case, we can always achieve by a SU(2)L × U(1)Y
transformation that the vevs take the form

〈Hu〉 = eiϕu

(
0

1√
2
vu

)
, 〈Hd〉 =

( 1√
2
vd

0

)
, 〈S〉 =

1√
2
eiϕSvS (3.6)

with the real parameters vu, vd, vS and the real phases ϕu and ϕS. Since in the NMSSM up-
and down-type fermions acquire their masses through the vacuum expectation values of Hu

and Hd respectively, we require vu, vd 6= 0. Also on phenomenological grounds, we assume
vS 6= 0 in order to have a non-vanishing effective µ term, see subsection 1.4.3. At this
point, we merely assume (3.6) to be the global minimum of the potential and postpone the
question for which parameters of the potential this is indeed the case. Necessary conditions
will be derived successively in this section. Our method presented in section 3.4 allows
then for a definite answer.
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The stationarity of the vacuum requires a vanishing gradient with respect to the Higgs
fields. We define

R := Re
(
λκ∗ei(ϕu−2ϕS)

)
, I := Im

(
λκ∗ei(ϕu−2ϕS)

)
,

Rλ :=
1√
2

Re
(
λAλe

i(ϕu+ϕS)
)
, Iλ :=

1√
2

Im
(
λAλe

i(ϕu+ϕS)
)
,

Rκ :=
1√
2

Re
(
κAκe

i 3ϕS
)
, Iκ :=

1√
2

Im
(
κAκe

i 3ϕS
)
, (3.7)

and find the stationarity conditions for (3.6) to be equivalent to

m2
Hu

= −1

8
ḡ2(v2

u − v2
d)−

1

2
|λ|2 (v2

S + v2
d) +

1

2
Rv

2
Svd
vu

+Rλ
vSvd
vu

, (3.8a)

m2
Hd

=
1

8
ḡ2(v2

u − v2
d)−

1

2
|λ|2 (v2

S + v2
u) +

1

2
Rv

2
Svu
vd

+Rλ
vSvu
vd

, (3.8b)

m2
S = − |κ|2 v2

S −
1

2
|λ|2 (v2

u + v2
d) +Rvuvd +Rλ

vuvd
vS

−RκvS , (3.8c)

Iλ = −1

2
vSI , (3.8d)

Iκ = −3

2

vuvd
vS

I . (3.8e)

We shall use these equations to reparameterise the potential in the following.
In order to access the physical content of the Lagrangian, we define the shifted Higgs

fields as deviations from their vacuum expectation values. Introducing new linear combina-
tions of the shifted Higgs fields, we can isolate the gauge boson mass terms (along with the
Goldstone modes). The electroweak coupling structure is complicated when working with
Hu, Hd due to their opposite hypercharges. Instead, we change to the same hypercharge
convention using the substitution (2.6), where the couplings to the gauge bosons are more
transparent. In this notation, the separation of the gauge boson masses becomes really
simple, it reduces to a simple basis change to decouple the vacuum expectation values, see
section 2.4. Inserting the rotated fields into the potential, we get for the non-interaction
part of the charged Higgses

V c
mass = m2

H± H+H− (3.9)

with

m2
H± = m2

W −
1

2
|λ|2 v2 +

1

s2β

vS(vSR+ 2Rλ) , (3.10)

showing that the charged Higgses H± are already mass eigenstates with mass squares m2
H± .

Here, the W boson mass is identified according to (1.6) and appears as a consequence of
supersymmetry. Further, v ≡

√
v2
u + v2

d ≈ 246GeV is the electroweak scale, tan β ≡ vu/vd
and s2β ≡ sin(2β). In addition to the fields ρ′, h′, h′′ there are two more real modes from
the complex singlet S. These five neutral Higgses combine to five physical neutral Higgs
bosons, which are for generic values of the potential parameters all massive.
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Usually, stationarity conditions similar to (3.8) are used to reparameterise the potential.
We employ such a reparameterisation in section 3.5. By construction it is then assured,
that the required vacuum solution (3.6) is a stationary point. Further, choosing all physical
masses positive would guarantee that the required vacuum is a local minimum of the
potential. However, whether the required vacuum is the global minimum of the potential
and thus stable, can not be decided on its local properties alone. A rigorous check is
possible by considering all stationary points of the potential and test whether their values
of the potential lie indeed not below that of the required vacuum, for which we get

〈V 〉 = −1

8
c22βv

2m2
Z+

1

8
s2
2βv

2(m2
H±−m2

W )+
1

4
v2
S

(
− |λ|2 v2 +

1

2
s2βRv2 − |κ|2 v2

S −
2

3
RκvS

)
.

(3.11)
We shall present a method to find all solutions of the stationarity conditions in section 3.4.
Here, we want to discuss some particularly simple stationary points.

The trivial point of vanishing fields,

Hu = Hd = S = 0 (3.12)

is always a stationary point with the potential value

V |triv = 0 . (3.13)

Requiring the required vacuum to lie not above the trivial point in the potential gives

〈V 〉 ≤ V |triv = 0 (3.14)

⇔ m2
H± ≤ cot2(2β) +m2

W +
2

s2
2β

v2
S

(
|λ|2 − 1

2
s2βR+ |κ|2 v

2
S

v2
+

2

3
Rκ

vS
v2

)
. (3.15)

This result was also found in (39) of [109]1.
Let us next consider a specific example for the CP conserving case, where all parameters

of the potential as well as the vacuum expectation values in (3.6) are real. We find a
particular stationary solution, where both doublets vanish but the singlet does not,

Hu = Hd = 0, S =

√
A2
κ − 8m2

S − Aκ
4κ2

(3.16)

where we assume A2
κ > 8m2

S. The value of the potential at this stationary point is

Vnb = −

(
Aκ −

√
A2
κ − 8m2

S

)2 (
A2
κ − Aκ

√
A2
κ − 8m2

S − 12m2
S

)
384κ2

. (3.17)

A stable vacuum with the vevs (3.6) requires then

〈V 〉 ≤ Vnb , (3.18)

1Their notation differ from ours by a sign in the definition of κ.
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which implies further restrictions on the parameters. Moreover, the stationary point (3.16)
has an interesting property. We reparameterise the potential in terms of the vacuum
expectation values as described above and consider the hierarchy between this point and
the required vacuum (3.6). After reparameterisations we find as an approximation in the
case vS � v,mH± , Aκ and κ of O(1) for the relative splitting of the potential values

lim
vS→∞

Vnb − 〈V 〉
〈V 〉

= −2(1 + c4β)ḡ
2κ2 + λ2(−3(−1 + c4β)κ

2 − 8λ2 + 8κλs2β)

32κ4
· v

4

v4
S

. (3.19)

Considering the infimum and supremum of this expression in the range

κ ∈ [0.6, 1] , λ ∈]0, 1] , tan β ∈ [0,∞[ , (3.20)

we find

− 0.2 · v
4

v4
S

≤ lim
vS→∞

Vnb − 〈V 〉
〈V 〉

≤ 1.7 · v
4

v4
S

. (3.21)

This means that at large vS the value of the potential at the stationary point (3.16) comes
very close to that of the required vacuum (3.6). Note that the two points are always well
separated due to their doublet components, which are vanishing in the one case and given
in terms of the electroweak scale in the other case. The stationary points are typically
connected by a long, flat, but very narrow valley, as our numerical evaluations will show.
This feature is in fact much more generic than considered here, see section 3.5.

Note concerning the stability of the vacuum, that the presented conditions are only
necessary but not sufficient. Commonly encountered checks in the literature consider only
stationary points, where at least one of Hu, Hd or S vanishes. In section 3.5, we shall
demonstrate at the tree-level that these partial checks are insufficient.

3.3 Stationary points via orbit variables

The analysis of the electroweak symmetry breaking is simplified by using gauge invariant
degrees of freedom similar to the scheme presented in chapter 2. We describe the two
scalar doublets by the orbit variables (2.20) introduced for the THDM. To achieve this, we
first rewrite Hu, Hd in terms of same-hypercharge doublets via (2.6), and then replace all
doublet scalar products in the potential via (2.21). Further, we decompose the complex
singlet field into two real fields according to S = Sre + iSim. In this notation we find for
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the NMSSM Higgs potential

VF =
1

4
|λ|2

(
K2

1 +K2
2 + 4K0(S

2
re + S2

im)
)

+ |κ|2(S2
re + S2

im)2

− Re(λκ∗)
(
K1(S

2
re − S2

im) + 2K2SreSim
)

+ Im(λκ∗)
(
K2(S

2
re − S2

im)− 2K1SreSim
)
, (3.22)

VD =
1

8
ḡ2K2

3 +
1

8
g2
(
K2

0 −K2
1 −K2

2 −K2
3

)
, (3.23)

Vsoft =
1

2
m2
Hu

(K0 −K3) +
1

2
m2
Hd

(K0 +K3) +m2
S (S2

re + S2
im)

− Re(λAλ) (K1Sre −K2Sim) +
2

3
Re(κAκ)

(
S3
re − 3SreS

2
im

)
+ Im(λAλ) (K2Sre +K1Sim) +

2

3
Im(κAκ)

(
S3
im − 3S2

reSim
)
, (3.24)

where all six degrees of freedom are real. As for the THDM, the domain of the orbit
variables is given by the forward light cone condition

K0 ≥ |K| , (3.25)

see (2.24).
We shall now consider stationary points in these new degrees of freedom. With respect

to a spontaneous breaking of the electroweak symmetry the singlet is irrelevant, and we
may directly translate the results from section 2.3.1 to the present case.

Classification 3.3.1. We distinguish the possible cases of stationary points by the SU(2)L×
U(1)Y symmetry breaking behaviour which a vacuum of this type would have, see classifi-
cation 2.3.1:

• unbroken SU(2)L × U(1)Y : A stationary point with

K0 = K1 = K2 = K3 = 0 . (3.26)

A global minimum of this type implies vanishing vacuum expectation value for the
doublet fields (2.1) and therefore the trivial behaviour with respect to the gauge group.
The stationary points of this type are found by setting all Higgs-doublet fields (or
correspondingly the K0 as well as the Ka fields) in the potential to zero and requiring
a vanishing gradient with respect to the singlet fields:

∇ V (Sre, Sim) = 0 . (3.27)

• partially broken SU(2)L × U(1)Y : A stationary point with

K0 > 0 ,

K2
0 −K2

1 −K2
2 −K2

3 = 0 .
(3.28)
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A global minimum of this type leads to the desired partial breaking of SU(2)L×U(1)Y
down to U(1)em . Using the Lagrange method, these stationary points are given by
the real solutions of the system of equations

∇
[
V (K0, K1, K2, K3, Sre, Sim)− u · (K2

0 −K2
1 −K2

2 −K2
3)
]

= 0 ,

K2
0 −K2

1 −K2
2 −K2

3 = 0 ,
(3.29)

where u is a Lagrange multiplier. The inequality in (3.28) must be checked explicitly
for the solutions found for (3.29).

• fully broken SU(2)L × U(1)Y : A stationary point with

K0 > 0 ,

K2
0 −K2

1 −K2
2 −K2

3 > 0 .
(3.30)

A global minimum of this type has non-vanishing vacuum expectation values for
the charged components of the doublets fields in (2.1), thus leading to a fully bro-
ken SU(2)L × U(1)Y . The stationary points of this type are found by requiring a
vanishing gradient with respect to all singlet fields and all gauge invariant functions:

∇ V (K0, K1, K2, K3, Sre, Sim) = 0 . (3.31)

The constraints (3.30) on the gauge invariant functions must be checked explicitly for
the real solutions found.

For a potential which is bounded from below, the global minima will be among these
stationary points. Solving the systems of equations (3.27), (3.31), and (3.29), and inserting
the solutions in the potential, we can therefore identify the global minima as those solutions
which have the lowest value of the potential. Note that in general the global minimum
can be degenerate. In fact, due to the Z3 symmetry of the potential, stationary points
generically are either threefold degenerate or non-degenerate.

3.4 Determination of stationary points via Gröbner

bases

From the mathematical point of view we have to solve with (3.27), (3.31), (3.29) a non-
linear, multivariate, inhomogeneous systems of polynomial equations of third order. Stan-
dard analytical approaches [124] fail due to the complexity of the problem, while a numer-
ical approach [124] tends to be unreliable, since it sometimes misses solutions. Floating
point numbers in algorithms like that should be treated with care for reason we shall
shortly explain. In the following, we provide an algorithm, which reliably solves the sta-
tionarity conditions in short time despite the relatively large number of fields present in
the NMSSM. The most involved case is given by (3.29), which consists of seven equations
in seven indeterminates, namely six real fields and one Lagrange multiplier.
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In the following we describe an algorithmic method to solve (3.27), (3.31), (3.29) for
the case that the number of complex solutions is finite. The latter is indeed fulfilled for
the NMSSM with generic values for the parameters, and it is automatically checked by the
method. Note that the gauge invariant functions avoid spurious continuous sets of complex
solutions, which we found to arise in the case of the MSSM as well as the NMSSM if the
stationarity conditions are formulated with respect to the Higgs fields (2.1) in a unitary
gauge. This is not surprising given the fact, that the gauge invariant functions express the
contribution of the doublets to the potential by four real degrees of freedom in contrast to
the five encountered for the doublet components in the unitary gauge.

The solution of multivariate polynomial systems of equations is the subject of polyno-
mial ideal theory and can be obtained algorithmically in the Gröbner basis approach [125].
See appendix A for a brief introduction to this subject. Within this approach, the system
of equations is transformed into a unique standard form with respect to a specified un-
derlying ordering of the polynomial terms of the sum (monomials). This unique standard
form of the system of equations is given by the corresponding reduced Gröbner basis. If
the underlying order is the lexicographical ordering, the unique standard form consists of
equations with a partial separation in the indeterminates. We use a variant of the F4

algorithm [126] to compute the Gröbner bases. A Gröbner basis computation is often con-
siderably faster if the standard form is computed with respect to total degree orderings and
then transformed into a lexicographical Gröbner basis. The transformation of bases from
total degree to lexicographical ordering is done with the help of the FGLM algorithm [127].
Finally, the system of equations represented by the lexicographical Gröbner basis has to be
triangularised. The decomposition of the system of equations with a finite number of so-
lutions into triangular sets is performed with the algorithm introduced in [128, 129]. Each
triangular system consists of one univariate equation, one equation in 2 indeterminates,
one equation in 3 indeterminates and so forth. This means that the solutions are found by
subsequently solving just univariate equations by inserting the solutions from the previous
steps.

The construction of the Gröbner basis as well as the triangularisation are done al-
gebraically, so no approximations are needed there. However, the triangular system of
equations contains in general polynomials of high order, where the zeros cannot be ob-
tained algebraically. Here numerical methods are needed to find the in general complex
roots of the univariate polynomials.

For more involved systems of equations, as is the case for the NMSSM stationarity
conditions, the algorithmic solution is considerably simplified (or even made accessible), if
the coefficients of the polynomials are given in form of rational numbers. Since rational
numbers are arbitrarily close to real numbers and moreover the physical parameters are
given only with a certain precision, this does not limit the general applicability of the
method in practice. While Gröbner basis algorithms exist which use floating point number
representations, their mathematical foundations are still in development. The key problem
lies in the fact that the recognition of exact zeros is at the heart of the Gröbner algorithms,
see appendix A, but difficult to achieve with approximate number representations. For
further reading on this topic and a rigorous approach see [130, 131] and references therein.
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All algorithms for the computation of the Gröbner basis with respect to a given order of
the monomials, the change of the underlying order, the triangularisation, and the solution
of the triangular systems are implemented in the Singular program package [132]. The
solutions obtained can be easily checked by inserting them into the initial system of equa-
tions. Moreover, the number of complex solutions, that is the multiplicity of the system, is
known at the algebraical level, so we can easily check that no stationary point is missing.

3.5 Numerical results

In order to fix experimentally known parameters like the electroweak scale, it is inappro-
priate to choose numerical values for the original potential parameters (3.5). Instead, we
express different original parameters in terms of more physical input parameters, namely
the desired vacuum expectation values (3.6) of the neutral components of the Higgs dou-
blets and the Higgs singlet, the mass of the charged Higgs boson and a CP-violating phase.
We write the complex parameters λ, κ, Aλ, and Aκ in polar coordinates with phases δλ,
δκ, δAλ

, δAκ and introduce the abbreviations

δEDM ≡ δλ + ϕu + ϕS , δ′κ ≡ δκ + 3ϕS . (3.32)

Together with the stationarity conditions (3.8) and the tree-level expression for the charged
Higgs mass squared (3.10), the initial parameters of the potential (3.5) can be replaced by
the new set of parameters

λ, κ, |Aκ|, tan β, vS, mH± , signRκ, δEDM, δ
′
κ (3.33)

plus the electroweak scale v ≈ 246GeV. In the mass matrix of the Higgs scalars, the CP
violating entries which mix the “scalar” with the “pseudoscalar” fields are proportional to
the imaginary part of exp[i(δEDM− δ′κ)]. This new set of physical input parameters for the
potential allows e.g. to adjust the electroweak scaled to the observed value. It is applicable
in presence of CP violating phases as well as for their absence without the necessity of any
case distinction.

As a numerical example, we choose the parameter values

λ = 0.4 , κ = 0.3 , |Aκ| = 200GeV,

tan β = 3 , vS = 3v , mH± = 2v ,

signRκ = − , δEDM = 0 , δ′κ = 0

(3.34)

and consider the variation of one parameter at a time with the values of the other param-
eters in (3.34) kept fixed. For a given point in parameter space, we compute all stationary
points of the NMSSM potential as described above. As mentioned in section 3.4 the
Gröbner basis construction is performed with numerical coefficients. Here we use a pre-
cision of 12 digits for the input parameters (3.5), which are determined from the values
for the parameters (3.33). The roots of the univariate polynomials are found numerically,
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where we choose a precision of 100 digits. Our approach is not limited by any fixed preci-
sion in both cases. We verify that the errors of the approximate statements described in
the following are under control. For generic values of the parameters we find 52 complex
solutions: 7 corresponding to the unbroken, 38 to the partially broken, and 7 to the fully
broken cases. The number of real and therefore relevant solutions depends on the specific
values of the parameters.

As expected from the Z3 symmetry of the potential, we find either 1 or 3 solutions
sharing the same value of the potential within the accuracy of the numerical roots. From the
computed stationary points only those may be accepted as global minima which correspond
to the initial vacuum expectation values (up to the complex phases), that is which fulfil√

2K0 ≈ v ,

√
K0 −K3

K0 +K3

≈ tan β ,
√

2(S2
re + S2

im) ≈ vS . (3.35)

Since for non-vanishing λ, κ the potential is bounded from below, the stationary point
with the lowest value of the potential is the global minimum. Further, we determine
for every stationary solution, whether it is a local maximum, local minimum or a sad-
dle point. For the regular solutions, i.e. the partially- and fully-broken cases, this is
achieved via the bordered Hessian matrix (see for example [115], see also (2.97)), in terms
of K0, K1, K2, K3, Sre, Sim. This takes all powers of the doublet fields into account, which
allows for a definite decision on the type of the stationary point also for frequently encoun-
tered partial breaking solutions where at least one mass squared is zero and the others have
the same sign. For irregular solutions, i.e. the non-breaking solutions with K0 = 0, the
Lagrange formalism can not be used since the gradients of the two boundary conditions
with respect to K0, K1, K2, K3, Sre, Sim become linearly dependent. Instead, we resubsti-
tute the original fields H+

u , H
0
u, H

0
d , H

−
d , Sre, Sim in this case and consider the free Hessian

matrix with respect to these fields. This turns out to be sufficient in practice to judge on
the type of the stationary points.

Figures 3.1-3.4 show the values of the potential at all stationary points for the param-
eter values (3.34) and the cases where successively one of the parameters κ, λ, tan β, vS,
mH± , δ′κ is varied. Each curve in the Figures represents 1- or 3-fold degenerate stationary
potential values, where the gauge symmetry breaking behaviour of the solutions is denoted
by different line styles. Excluded parameter regions, where the global minimum does not
exhibit the required expectation values (3.35) are drawn shaded. As is illustrated by the
figures, we find that substantial regions of the NMSSM parameter space are excluded.
For some excluded parameter regions, the partially breaking solutions with the required
vacuum expectation values (3.35) are saddle points (see for instance figure 3.1, top). This
means they can be discarded as global minima without calculation of the other stationary
points by checking for positive Higgs masses. However, this is not always the case. Obvi-
ously from figure 3.3, top, we find an upper bound for vS. For the plotted vS larger than
this upper exclusion bound the solutions fulfilling (3.35) are still pronounced minima, i.e.
the mass matrices have positive eigenvalues, but they are no longer the global minima. We
note furthermore, that the “dangerous” solutions are often partially breaking triples, of
which one is CP-invariant. That is, they are of the same type as the triple containing the
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required vacuum. Even though most difficult to calculate, these cannot be omitted from
the discussion. We also note that for some cases, an unwanted global minimum occurs at
large field configurations. The influence of the CP-violating phase δ′κ is shown in figure 3.4,
bottom. Note that δ′κ → −δ′κ is not a symmetry of the potential. However, the potential is
invariant under (δ′κ, K2, Sim) → −(δ′κ, K2, Sim), that is (δ′κ, Hu, Hd, S) → (−δ′κ, H∗

u, H
∗
d , S

∗),
if the residual phases are chosen as in (3.34). Therefore the stationary values of the poten-
tial in figure 3.4 depend only on |δ′κ|.

In all figures shown here there are non-breaking saddle points with potential values
slightly above those of the wanted global minimum. We already discussed this feature in
section 3.2 for a certain limit of the parameters. We find that this effect is not coincidental
for the parameters (3.34) chosen there or here, but rather a generic feature of the NMSSM.
Within the CP conserving parameter range

λ ∈ ]0, 1], κ ∈ ]0, 1], Aκ ∈ ± ]0, 2500] GeV, (3.36)

tan β ∈ ]0, 50], vs ∈ ]0, 5000] GeV, mH± ∈ ]0, 2500] GeV (3.37)

we select samples producing the wanted global minimum and typically find non-breaking
saddle points, where the relative separation of the potential values for the saddle points
and the global minimum is below the per-mille level, in many cases even far below. We do
not find fully breaking global minima for scenarios in the range (3.37) where the solutions
with the required vacuum expectation values (3.35) are local minima. Eventually, we
find examples, where CP conserving parameter values with the “wrong” global minimum
produce the wanted global minimum if a non-vanishing phase δ′κ is introduced.

Summary and outlook

We have demonstrated a new method to determine the global minimum of the NMSSM
Higgs potential at the tree-level. We have used Gröbner basis calculations to determine
all stationary points, where the approach ensures at the algebraical level that the global
minimum is not missed. To our knowledge, the presented method is the first minimisation
proposal for extended Higgs potentials achieving this. Our results show that the require-
ment of a stable vacuum excludes large regions of the NMSSM parameter space. Without
fine-tuning, we have found cases which are challenging for local descent based algorithms
because of strongly anisotropic potential structures or minima at large field values. Further,
we have encountered non-finetuned cases, where the instability of the vacuum is neither
obvious from the mass matrices nor due to often suspected minima.

Clearly, the scope of the method is not restricted to the NMSSM. We have successfully
tested it also for THDMs. The run-time of existing Gröbner basis algorithms grows rapidly
with the complexity of the equations and in particular the number of degrees of freedom.
This limits the applicability of the method currently to cases not much more involved than
the NMSSM. For the approach as it stands, it is essential to manually eliminate continuous
symmetries from the potential. Here, this was achieved for the gauge degrees of freedom
by employing orbit variables for the two Higgs doublets. While it was not necessary for



106 3. The Next-to-Minimal Supersymmetric Standard Model

the case of the NMSSM, the Gröbner basis approach might also be used to ensure a Higgs
potential is bounded from below. For this, the large field behaviour of the potential could
be described by a function defined on a compact domain similar as shown for the THDM
in section 2.2. Stability of the potential could then be achieved by checking the stationary
points of such a function with the Gröbner basis method.

Since the Higgs sectors in particular of supersymmetric theories are known to receive
considerably large radiative corrections, it would be very desirable to extend our method
to at least the 1-loop-effective potential. This extension is not straight-forward, since the
Gröbner basis notation is restricted to problems which can be formulated via polynomials.
Nevertheless, the tree-level result obtained with our method might at least serve as a basic
handle to access the global structure of the potential reliably.
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Figure 3.1: Values of the NMSSM potential at its stationary points in dependence of κ and λ,
respectively. The following parameters are kept constant unless explicitly varied: λ = 0.4, κ =
0.3, |Aκ| = 200 GeV, tanβ = 3, vS = 3v,mH± = 2v, signRκ = −, δEDM = δ′κ = 0. Each line
corresponds to 1 or 3 stationary points sharing the same value of the potential. The different line
styles denote saddle points, maxima, and minima. The labels ’none’, ’full’, and ’partial’ denote
solutions of the classes with unbroken (3.27), fully broken (3.31), and partially broken (3.29)
SU(2)L × U(1)Y , respectively. For solutions of the partially broken class, it is also denoted
whether they correspond to the ’required vevs’ vu, vd, vS or to ’other vevs’. Excluded parameter
values, where the global minimum does not exhibit the required vacuum expectation values, are
drawn shaded.
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Figure 3.2: Same as in figure 3.1 but for variation of mH± and Aκ, respectively.
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Figure 3.3: Same as in figure 3.1 but for variation of vS and tan β, respectively.
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Figure 3.4: Same as in figure 3.1 but for variation of the CP-violating phase δ′κ.
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Part III

Constraints on the
Colour Dipole Picture





Chapter 4

Success of the colour dipole picture

4.1 The picture

For the understanding of the proton substructure, studies of deep inelastic scattering (DIS)
of electrons and positrons on protons

e± + p→ e± +X (4.1)

play a crucial role [133]. We shall consider here momentum transfers squared Q2 .
1000 GeV2. Then it is sufficient to consider exchange of a virtual photon between the
leptons and the hadrons in (4.1). Thus, the reaction which we shall study in the following
is the absorption of a virtual photon γ∗ on the proton,

γ∗ + p→ X , (4.2)

where we perform the sum over all final states X. The center-of-mass energy for this
reaction is denoted by W , the virtuality of γ∗ by Q2. The proton in (4.2) is supposed to be
unpolarised, but the virtual photon can have transverse or longitudinal polarisation. The
corresponding total cross sections are σT and σL, respectively. The F2 structure function
takes with Hand’s convention [134] for the γ∗ flux factor at small Bjorken-x the simple
form

F2(W,Q
2) =

Q2

4π2αem

(
σT (W,Q2) + σL(W,Q2)

)
, (4.3)

where αem is the fine structure constant. To obtain the standard dipole model for the
cross sections σT,L , they are first related to the imaginary part of the γ∗p→ γ∗p forward
scattering amplitude. The latter is represented as the initial γ∗ splitting in a qq̄ pair,
this pair scattering on the proton and the qq̄ subsequently fusing to the final state γ∗, see
figure 4.1. Note that this figure is to be read from right to left in order to be in complete
analogy with the occurrence of the various factors in the amplitudes. In the high-energy
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q
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γ
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γ
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Figure 4.1: Basic diagram for the description of the cross sections σT,L of γ∗p scattering in the
standard dipole approach.

limit, the diagram of figure 4.1 leads to

σT (W,Q2) =
∑
q,λ,λ′

∫
d2r

∫ 1

0

dα
(
ψ

(q)±
γ, λλ′(α, r, Q

2)
)∗

σ̂(q)(r,W,Q2)ψ
(q)±
γ, λλ′(α, r, Q

2) , (4.4)

σL(W,Q2) =
∑
q,λ,λ′

∫
d2r

∫ 1

0

dα
(
ψ

(q)L
γ, λλ′(α, r, Q

2)
)∗

σ̂(q)(r,W,Q2)ψ
(q)L
γ, λλ′(α, r, Q

2) , (4.5)

provided a number of assumptions and approximations hold, as worked out in detail in
[135, 136]1. In (4.4) either ψ

(q)+
γ, λλ′ or ψ

(q)−
γ, λλ′ may be used, both give the same result. Here,

α is the longitudinal momentum fraction of the γ∗ carried by the quark, r is the vector
in transverse position space from the antiquark to the quark, and λ and λ′ are the spin
indices of q and q̄, respectively. The total cross section for the scattering of the qq̄ pair
on the proton is denoted by σ̂(q), the γ∗ wave functions for transversely and longitudinally
polarised γ∗ by ψ

(q)±
γ, λλ′ and ψ

(q)L
γ, λλ′ respectively. Finally, a sum over all contributing quark

flavours q is to be performed. The photon wave functions are calculated perturbatively.
They enter the total cross sections via their absolute squares, which give to leading order
in αem and with the usual normalisation:∑

λ,λ′

∣∣∣ψ(q)±
γ,λλ′(α, r, Q)

∣∣∣2 =
NcαemQ

2
q

2π2

[
(α2 + (1− α)2)ε2qK

2
1(εqr) +m2

qK
2
0(εqr)

]
, (4.6)

∑
λ,λ′

∣∣∣ψ(q)L
γ,λλ′(α, r, Q)

∣∣∣2 =
2NcαemQ

2
q

π2
Q2 (α(1− α))2K2

0(εqr) . (4.7)

with the abbreviation

εq :=
√
α(1− α)Q2 +m2

q. (4.8)

1In the next chapter, we shall give more details and point out a subtle restriction for (4.4)-(4.5) obtained
in [136].
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Here, Nc = 3 is the number of colours, Qq denotes the quark charges in units of the proton
charge, mq the quark masses and K0,1 are modified Bessel functions.

A prediction for the dipole cross section from first principles within QCD is not available
up to now. Due to its intrinsic non-perturbative nature, it can not be calculated from
perturbative QCD. While its computation via lattice QCD simulations seems to be a
natural attempt, it still is an unsolved problem. A solution might possibly be found using
alternative formulations of lattice QCD instead of the standard euclidean path-integral
based methods. For instance, in [137] a Hamiltonian formulation of lattice QCD is proposed
aiming at a well-defined continuum limit also on the light cone.

Several phenomenological models have been proposed for the dipole cross section, see
e.g. [138, 139, 140, 141, 142, 143] and the review [144]. A further review and a discussion
of several issues considered in this thesis can be found in [145]. The proposed phenomeno-
logical dipole cross sections involve parameters which are fitted to the data. In this thesis
we derive various bounds within the colour dipole picture, which are independent on the
specific form of the dipole cross section. But we shall also use particular models for σ̂ for
the discussion of various effects.

4.2 The Golec-Biernat-Wüsthoff model

A particular popular dipole cross section was proposed by Golec-Biernat and Wüsthoff
(GBW) in [138]. It represents the prototype for models with small-x saturation. Its dipole
cross section is

σ̂
(q)
GBW(r, x) = σ0

(
1− e

- r2

4r20(x̃)

)
, (4.9)

where

r2
0(x̃) =

(
x̃

x0

)λ
GeV−2, x̃ =

(
1 +

4m2
q

Q2

)
x . (4.10)

This dipole cross section depends on Bjorken-x, x ≈ Q2/W 2, and therefore not only on
W but also on Q2. For small r the cross section rises with r2 (colour transparency) and
reaches a plateau at larger r (saturation). Besides the general saturation feature, the
scale r0 at which saturation sets in decreases with decreasing x. This can be interpreted
as the parton structure of the proton being resolved only if testing with small dipoles.
For decreasing x only decreasingly small dipoles are able to resolve the partons. In our
numerical applications we use their “no charm” fit, see p.10 in [138]:

σ̂0 = 23030 µb, λ = 0.288, x0 = 3.04 · 10−4. (4.11)

Figure 4.2 illustrates the cross section for the case of one massless quark flavour and
different values of x. Despite its simple form with only three free parameters, the GBW
model is actually able to describe the HERA data remarkably well. In [146] a modified
version of the model was presented, which takes the DGLAP evolution [147, 148, 149, 150]
of the gluon distributions into account. This modification allows improved fits to the
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Figure 4.2: Dipole cross section σ̂(q) for one massless quark flavour in dependence of the dipole
size r for the Golec-Biernat-Wüsthoff model. In this model σ̂(q) depends on x.

HERA data in particular for higher values of Q2 at the cost of introducing alltogether five
free parameters. Figure 4.3 shows HERA data for F2 in dependence of x together with fits
for the original GBW model and its DGLAP based modification.

Often results obtained within the dipole picture are interpreted in terms of the pertur-
bative gluon densities g(x, µ2), where the relation (see e.g. [151])

σ̂ ' π2

3
r2αs xg(x, µ

2) (4.12)

is used. There, the evolution scale µ is described in terms of 1/r, and 1/r is often regarded
as being effectively proportional to Q. Saturation effects at small x are then considered as
non-linear phenomena due to the quick rise of the gluon densities. As will be discussed in
the next chapter, the applicability of this relation might actually require some care.

In this thesis we shall consider various bounds and consistency checks for the colour
dipole picture in order to deepen the understanding of its range of applicability, see also
our article [152]. This is important, since the dipole picture is not exact and requires
several approximations and assumptions to be made. In section 5 we review the derivation
[135, 136] of the colour dipole picture and provide the building blocks for the following
discussions. There, the motivations for our considerations are specified in more detail.
In section 6 we derive general bounds on ratios of DIS structure functions, which follow
from the general framework of the dipole picture and photon density properties alone.
In section 6.1 we consider the ratio of the charm and longitudinal part of the structure
function F2. We shall derive bounds on this ratio, which are necessarily valid for any dipole
cross section and might provide constraints on the dipole picture when confronted with
future measurements. In section 6.2 we consider ratios of F2 taken at the same energy W
but different Q2. We shall calculate bounds, which are valid for any dipole cross sections
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Figure 4.3: HERA data (dots) for F2 in dependence of x together with fits for the original
GBW model and its DGLAP based modification (lines). Upper graph: ZEUS BPT97 (full),
GBW+DGLAP (solid), GBW (dashed). Lower graph: ZEUS (full), H1 (open), GBW+DGLAP
(solid), GBW (dashed). Figures are taken from [146].
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whose energy dependence is given by W alone. Confronting these bounds with data allows
us to derive restrictions on the range of applicability of the framework. In section 7 we
consider explicitly different choices for the energy dependence of the dipole cross section
and discuss whether they may be related by effective scale arguments. Finally, in section 8
we shall calculate Ioffe times, that is, dipole lifetimes within the colour dipole picture. As a
consistency check we consider, whether major contributions are associated with long Ioffe
times such that the separation of dipole production and interaction with the proton used
in the dipole picture is justified.



Chapter 5

Foundations and building blocks

In this chapter we review the foundations of the dipole picture as worked out in [135,
136]. Further, we shall discuss important features of the photon densities in detail as a
preparation for the following chapters of this thesis.

5.1 Non-perturbative foundations

We consider deep inelastic lepton-proton scattering

l(l) + p(p) → l(l′) +X(p′) , (5.1)

where the corresponding 4-momenta of the particles are indicated in parentheses and
l = e−, e+. In standard kinematics (see for instance [64]) we have

s = (p+ l)2 , q = l − l′ = p′ − p , ν =
pq

mp

, y =
pq

pl
=

2mpν

s−m2
p

,

Q2 = −q2 , W 2 = (p+ q)2 = 2mpν −Q2 +m2
p , x =

Q2

2mpν
=

Q2

W 2 +Q2 −m2
p

(5.2)

with the proton mass mp. In the following, we consider moderate Q2,

0 ≤ Q2 / 103 GeV2 , (5.3)

such that only photon exchange has to be taken into account. That is, we are interested
in the reaction

γ∗(q) + p(p) → X(p′) , (5.4)

where the proton is supposed to be unpolarised and a sum over all final states X is per-
formed. The total cross section for (5.4) is encoded in the hadronic tensor

W µν(p, q) = −W1(ν,Q
2)

(
gµν − qµqν

q2

)
+

1

m2
p

W2(ν,Q
2)

(
pµ − (pq)qµ

q2

)(
pν − (pq)qν

q2

)
(5.5)
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with the usual invariant functions W1,2, see for instance [64].
In order to define the cross sections for longitudinally and transversely polarised virtual

photons in (5.4) we work in the proton rest system, supposing

(qµ) =


q0

0
0
|q|

 , (5.6)

and define the following photon polarisation vectors:

(
εν±
)

= ∓ 1√
2


0
1
±i
0

 , (5.7)

(ενL) =
1

Q


|q|
0
0
q0

 , (ε′νL ) = (ενL)− (qν)

Q
=

1

Q


|q| − q0

0
0

q0 − |q|

 . (5.8)

With Hand’s convention [134] the γ∗p cross sections for transverse or longitudinal γ∗ po-
larisation are

σT (W,Q2) =
2πmp

W 2 −m2
p

εµ∗+ e
2Wµν ε

ν
+ =

2πmp

W 2 −m2
p

εµ∗− e
2Wµν ε

ν
−

=
2πmp

W 2 −m2
p

e2W1(ν,Q
2) , (5.9)

σL(W,Q2) =
2πmp

W 2 −m2
p

ε′µ∗L e2Wµν ε
′ν
L =

2πmp

W 2 −m2
p

εµ∗L e
2Wµν ε

ν
L

=
2πmp

W 2 −m2
p

[
e2W2(ν,Q

2)
ν2 +Q2

Q2
− e2W1(ν,Q

2)

]
. (5.10)

Note that due to gauge invariance the hadronic tensor W µν (5.5) satisfies

qµW
µν(p, q) = 0 ,

W µν(p, q) qν = 0 .
(5.11)

Thus, choosing ενL or ε′νL for the γ∗ polarisation vector does not change the result of σL
(5.10). However, as shown in [136], in applications of the dipole model it is essential to
use ε′νL and not ενL, in particular when one calculates the photon wave function from the
Feynman rule for an incoming photon splitting into outgoing on-shell quark and antiquark.
In that case the photon polarisation vector has to be chosen such that its components
remain finite in the high energy limit, as is true for ε′L but not for εL.
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The standard structure function F2 is defined as

F2(W,Q
2) := ν W2(ν,Q

2)

=
Q2

4π2αem

[
σT (W,Q2) + σL(W,Q2)

](
1 +

Q2
(
W 2 +Q2 + 3m2

p

)(
W 2 −m2

p

) (
W 2 +Q2 −m2

p

))−1

=
Q2

4π2αem

[
σT (W,Q2) + σL(W,Q2)

]
(1− x) +O(m2

p/W
2) . (5.12)

In the high energy limit, W � Q,mp, this simplifies to the commonly used form

F2(W,Q
2) =

Q2

4π2αem

[
σT (W,Q2) + σL(W,Q2)

]
(5.13)

up to terms of order O(Q2/W 2). Similarly, we use for the standard transverse and longi-
tudinal structure functions FT and FL:

FT (W,Q2) =
Q2

4π2αem

σT (W,Q2) , (5.14)

FL(W,Q2) =
Q2

4π2αem

σL(W,Q2) . (5.15)

In the following we shall always use the relation (5.13) valid in the high energy limit
unless explicitly noted otherwise. In section 6.2 we shall discuss how the results obtained
there are modified for finite Bjorken-x if we use the exact formula (5.12) instead of (5.13).
We note that one could also consider (5.13) as the defining equation for σT and σL. This
would correspond to a different choice of flux factor for the virtual photons as compared
to [134]. The considerations of section 6 of [136] show, however, that Hand’s convention
[134] is the natural one for the dipole picture; see especially (121)-(128) of [136].

In [135, 136] non-perturbative methods were employed in order to work towards a
foundation of the dipole model for quasi-real and virtual photon induced reactions at high
energies. The result for W µν (2.5) obtained there is shown diagrammatically in figure 5.1.
In the high energy limit,

q0 →∞ , (5.16)

taken in the proton rest frame, they find a factorisation into photon wave function and
dipole-proton scattering parts. The wave function parts contain the renormalised γqq̄ ver-
tex function plus a rescattering term. The dipole-proton scattering is built from diagrams
of type (a) where the quark lines go through from right to left and type (b) where the
quark lines do not go through, see figure 5.1. To get from this point to the standard dipole
picture requires a number of assumptions and approximations as listed in [136]:

(i) Quarks of flavour q have a mass shell mq and can be considered as asymptotic states.

(ii) The rescattering terms are dropped and the γqq̄ vertex functions are replaced by the
lowest order terms in perturbation theory.
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Figure 5.1: Quark skeleton diagrams for the photon-proton scattering cross section in the high
energy limit. The shaded area indicates a functional integration over gluon field configurations,
and Γ, K, SF are the renormalised γqq̄ vertex, the renormalised kernel for q′q̄′ to qq̄ scattering,
and the renormalised quark propagator, respectively. The diagrams are to be read from right to
left.

(iii) The T -matrix element for the dipole-proton scattering is diagonal in the quark flavour
q, in α and in r. Here α is the longitudinal momentum fraction of the photon carried
by the quark, and r is the two-dimensional vector from the antiquark to the quark in
transverse position space. Further, the T -matrix element is proportional to the unit
matrix in the space of spin orientations of the quark and antiquark in the dipole.

(iv) In the T -matrix element for the dipole-proton scattering only the contribution of
type (a) is kept while that of type (b) is neglected, see figure 5.1.

(v) The proton spin averaged reduced matrix element for a given quark flavour q depends
only on the dipole size r ≡

√
r2 and on W 2 = (p+ q)2.

With these assumptions the authors arrive indeed at the standard dipole picture as used
extensively in the literature, see the previous chapter. In detail, they find for the total
cross section

σT (W,Q2) =
∑
q

∫
d2r w

(q)
T (r,Q2) σ̂(q)(r,W ) , (5.17)

σL(W,Q2) =
∑
q

∫
d2r w

(q)
L (r,Q2) σ̂(q)(r,W ) . (5.18)
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with the photon densities w
(q)
T,L. They are defined by the absolute squares of the photon

wave functions upon integration over α and summation over quark spins as functions of
the dipole size r and of Q2,

w
(q)
T (r,Q2) :=

∑
λ,λ′

∫ 1

0

dα
∣∣∣ψ(q)µ

γ,λλ′(α, r, Q) ε+µ

∣∣∣2 ,
=
∑
λ,λ′

∫ 1

0

dα
∣∣∣ψ(q)µ

γ,λλ′(α, r, Q) ε−µ

∣∣∣2 , (5.19)

w
(q)
L (r,Q2) :=

∑
λ,λ′

∫ 1

0

dα
∣∣∣ψ(q)µ

λλ′ (α, r, Q) ε′Lµ

∣∣∣2 (5.20)

and yield exactly the expressions (4.6) and (4.7), respectively. Note however, that (4.4)
and (4.5) differ from (5.17) and (5.18) in the energy dependence of σ̂(q), We shall return
to this issue after completing further definitions.

In this thesis, we shall also consider structure functions with the production of specific
quark flavours. In the dipole model the cross sections for production of a specific quark
flavour are obtained as in (4.4), (4.5) but without the summation over quark flavour q,

σ
(q)
T,L(W,Q2) =

∫
d2r w

(q)
T,L(r,Q2) σ̂(q)(r,W ) . (5.21)

We set as in (5.14) and (5.15) for the flavour specific structure functions

F
(q)
T,L =

Q2

4π2αem

[
σ

(q)
T (W,Q2) + σ

(c)
L (W,Q2)

]
(5.22)

and

F
(q)
2 = F

(q)
T + F

(q)
L . (5.23)

This assumes that all quarks of flavour q are exclusively produced directly by the inital
γ∗. In particular, we consider F

(c)
2 as defined by (5.23) in section 6.1. There, we thus ne-

glect associated charm-anticharm production in reactions initiated by other quark flavours
coupling directly to the photon.

In [136] it is stressed that the dipole-proton cross section is naturally independent of
Q2, and thus its correct energy variable is given exclusively by W :

σ̂(q) = σ̂(q)(r,W ) . (5.24)

This excludes in particular the choice of Bjorken-x instead of W , since this introduces
a dependence on Q2 in addition to W , see (5.2). It was argued in [136] that using x
instead of W requires additional assumptions which are difficult to assess quantitatively
and which go beyond those listed above. In their derivation of the dipole picture the dipole
cross section arises from a T -matrix element for scattering of a dipole state on the proton.
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There, the key feature of these dipole states is that they consist of a quark and an anti-
quark described by asymptotic states. The dipole states are then independent of Q2 in
the high energy limit. By a smearing in r and α they can be viewed as hadron analogues,
whose normalisation is independent of continuous internal degrees of freedom. But also
the mean squared invariant mass of such smeared dipole states is independent of Q2 at
large W . Nevertheless, the energy variable x – and hence a Q2-dependence – is frequently
used in popular models for the dipole cross section, such as in (4.9). Sometimes also other
dependencies on Q2 are introduced. Furthermore, the perturbative gluon density g(x,Q2)
naturally depends on x and Q2 and its often assumed connection (4.12) to the dipole cross
section suggests that the latter is also Q2 dependent. The only detailed derivation [136] of
the dipole picture available uses the high energy limit

W →∞ , Q2 fixed . (5.25)

The formula (4.12) on the other hand is based on a comparison with the perturbative result
obtained in the double leading logarithmic approximation (DLLA) for the limit

W →∞ , Q2 →∞ ,
Q2

W 2
fixed . (5.26)

The authors of [136] point out, that a step-by-step comparison may be intrinsically difficult
due to these different limites, since first taking (5.25) and then letting Q2 become large
is not necessarily equivalent to (5.26). Actually, the choice of the energy variable can be
crucial at moderate values of Q2 and W , and we shall explicitly demonstrate that different
choices may in general not be considered effectively equivalent, see section 6.2 and in
particular section 7.2.

For arbitrary kinematics various contributions to the forward scattering amplitude are
potentially relevant which cannot be interpreted in terms of the dipole picture. In the high
energy limit q0 →∞ the two contributions shown in figure 5.1 are enhanced with respect
to the others due to a pinch singularity of two poles in the integration over the quark
offshellness. Let k0 be the energy of the quark and k′0 be the energy of the anti-quark.
Defining the energy mismatch of the quark anti-quark dipole as

∆E := k0 + k′0 − q0 (5.27)

the pinch condition is
∆E → 0 . (5.28)

In the high energy limit, the pinch condition (5.28) effectively restricts the range of the α
integration to the finite range

0 < α < 1 . (5.29)

Furthermore, the pinch condition implies a natural UV-cutoff also for the transverse mo-
menta of the quark and the anti-quark. Thus (5.28) is a crucial element for the dipole
picture to be valid. In chapter 8 we calculate the ∆E values which actually occur for a
typical dipole model. Considering to what extent the condition (5.28) is fulfilled represents
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an important self-consistency check and potentially allows to restrict the kinematical range
of validity of the dipole model.

Discarding the rescattering effects for the quark and anti-quark forming the dipole,
assumption (ii), and neglecting contributions of type (b) in figure 5.1, assumption (iv), is
justified in the perturbative regime, since they are of higher order in the strong coupling
constant αs. In the non-perturbative regime of low Q2 however it may very well be that
these effects beyond the standard dipole picture are non-negligible.

5.2 Photon wave function

In this section, we provide details for the photon wave functions, since they are an im-
portant ingredient for our analysis in the following chapters. In the proton rest frame, we
decompose the 4-momentum of the quark, k, and that of the antiquark, k′, as follows:

k = αq + kT , k0 =
√

k2 +m2
q ,

k′ = (1− α)q − kT , k′0 =
√

k′2 +m2
q . (5.30)

We shall first evaluate certain expressions without any explicit restriction on kT and α,

−∞ < α <∞ . (5.31)

This serves as a preparation for consistency checks in chapter 8. In order to arrive at
the standard dipole picture formulae, we apply the restriction (5.29) at a later stage of
the calculation and consider the transverse UV-regulator to be removed by taking the
asymptotic limit in the final expressions. In this way we will get the standard formulae for
the photon wave functions, see (4.6) and (4.7). From this we infer that in this standard
scheme the corresponding dipole cross section should assure, that physical observables such
as σT,L are insensitive to the properties of the photon wave functions at large kT , since
there the dipole picture is not justified due to large ∆E.

We define the photon wave functions to leading order αem, αs in momentum space
according to (40) in [136], but without the explicit transverse UV-cutoff:

ψ̃
(q) ν
γ,λλ′(α, kT , Q) = Qq

N

∆E

|q|
2π2k02k′0

ūλ(k)γ
νvλ′(k

′) , (5.32)

where γν are the Dirac matrices, see for instance [64]. The spinors u and v are solutions
to the free Dirac equation,

uλ(k) =
1√

k0 +mq

(
(k0 +mq)χλ

σk χλ

)
, (5.33)

vλ′(k
′) =

−1√
k′0 +mq

(
σk′ ε χ∗λ′

(k′0 +mq) ε χ
∗
λ′

)
(5.34)
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with

χ+ 1
2

=

(
1
0

)
, χ− 1

2
=

(
0
1

)
. (5.35)

The normalisation

N = −2
√
Ncπe

√
α(1− α) (5.36)

is chosen, with the proton charge e ≡
√

4παem and the number of colours Nc = 3. The
wave functions for transversely polarised photons are defined by

ψ̃
(q)±
γ,λλ′(α,kT , Q) := −ε±ν ψ̃(q)ν

γ,λλ′(α,kT , Q) , (5.37)

and for longitudinally polarised photons by

ψ̃
(q)L
γ,λλ′(α,kT , Q) := −ε′Lν ψ̃

(q) ν
γ,λλ′(α,kT , Q) , (5.38)

which give, see (52) and (58) of [136]),

ψ̃
(q)±
λλ′ (α,kT , Q

2) = ∓ N√
2
Qq

1

∆E

|q|
2π2k02k′0

ūλ(k)
(
γ1 ± iγ2

)
vλ′(k

′) (5.39)

ψ̃
(q)L
λλ′ (α,kT , Q

2) = −NQq
1

∆E

|q|
2π2k02k′0

|q| − q0

Q
ūλ(k)

(
γ0 + γ3

)
vλ′(k

′) . (5.40)

Explicitly, we find by evaluating (5.39) and (5.40):

ψ̃
(q)±
λλ′ (α,kT , Q) = ∓ N√

2
Qq

1

∆E

|q|
2πk02k′0

2√
k0 +mq

√
k′0 +mq

·

[
±
(
(k0 +mq)(k

′0 +mq)− α(1− α)q2
)
δλ,λ′δλ,± 1

2

+ e±iφkkT |q| δλ,−λ′
(
αδλ,± 1

2
− (1− α)δλ,∓ 1

2

)
± e±i2φkk2

T δλ,λ′δλ,∓ 1
2

]
,

(5.41)

ψ̃
(q)L
λλ′ (α,kT , Q) = −NQq

1

∆E

|q|
2πk02k′0

|q| − q0

Q

1√
k0 +mq

√
k′0 +mq

·

[(
k2
T + (k0 +mq + α |q|)(k′0 +mq + (1− α) |q|)

)
δλ,−λ′

+ e−i(signλ)φk(signλ)(k0 − k′0 − (1− 2α) |q|)kT δλ,λ′
]
, (5.42)

where φk = arg(kT1 + ikT2) with kT1 and kT2 being the 1- and 2-component of the vector
kT , respectively. The photon wave functions in transverse position space are obtained by
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a Fourier transformation from their momentum space representation. We write as in (42)
of [136]

ψ
(q)±
γ, λλ′(α, r, Q) =

∫
d2kT
(2π)2

eikT rψ̃
(q)±
γ, λλ′(α,kT , Q) , (5.43)

ψ
(q)L
γ, λλ′(α, r, Q) =

∫
d2kT
(2π)2

eikT rψ̃
(q)L
γ, λλ′(α,kT , Q) . (5.44)

From (5.41), (5.42) we find

ψ̃
(q)±
λλ′ (α, r, Q) =

∓NQq

8
√

2π2

∫ ∞

0

dkT
kT |q|

∆E k0k′0
√
k0 +mq

√
k′0 +mq

·

[
± δλ,λ′

(
δλ,± 1

2

(
(k0 +mq)(k

′0 +mq)− α(1− α) |q|2
)
J0(rkT )

− δλ,∓ 1
2
e±2iϕrk2

T J2(rkT )
)

+ δλ,−λ′ ie
±ϕrkT |q| (δλ,± 1

2
α− δλ,∓ 1

2
(1− α))J1(rkT )

]
,

(5.45)

ψ̃
(q)L
λλ′ (α, r, Q) =

NQq

16π2

∫ ∞

0

dkT
kT |q|

∆E k0k′0
√
k0 +mq

√
k′0 +mq

|q| − q0

kT

·
[
δλ,λ′ sign(λ)ie−i sign(λ)ϕr kT (k0 − k′0 − (1− 2α) |q|) J1(ktr)

+ δλ,−λ′
(
k2
T + (k0 +mq + α |q|)(k′0 +mq + (1− α) |q|)

)
J0(rkT )

]
,

(5.46)

where Ji (i = 0, 1, 2) are Bessel functions and ϕr = arg(r1 + ir2) with r1 and r2 being the
1- and 2-component of the vector r. In the high-energy limit |q| → ∞ we find from (5.41)
and (5.42)

ψ̃
(q)±
λλ′ (α,kT , Q) =

√
2NcαemQq

α(1− α)Q2 + k2
T +m2

q

[
± kT e

±iφkδλ,−λ′
(
αδλ,± 1

2
− (1− α)δλ,∓ 1

2

)
+mqδλ,λ′δλ,± 1

2

]
, (5.47)

ψ̃
(q)L
λλ′ (α,kT , Q) = − 2

√
NcαemQq

α(1− α)Q2 + k2
T +m2

q

α(1− α)Qδλ,−λ′ , (5.48)

which agrees with (53) and (60) of [136]. With (5.43) and (5.44) we obtain their position
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space representation as

ψ
(q)±
γ,λλ′(α, r, Q) =

√
Ncαem√

2π
Qq

[
± ie±iφrεq

(
α δλ,± 1

2
δλ′,−λ − (1− α) δλ,∓ 1

2
δλ′,−λ

)
K1(εqr)

+mq δλ,± 1
2
δλ′,λK0(εqr)

]
, (5.49)

ψ
(q)L
γ,λλ′(α, r, Q) = −

√
Ncαem

π
Qq α(1− α)Qδλ′,−λK0(εqr) (5.50)

in agreement with (54) and (61) of [136]. These give the standard dipole picture formulae
(4.6) and (4.7). If not noted otherwise, we shall always use these high-energy expressions
for the photon wave functions.

In [136] a detailed derivation for this high-energy approximation is given, which in
particular involves neglection of terms such as k2

T/(α
2q2) and k2

T/((1−α)2q2) with respect
to 1. However, for some given |q| those terms become non-negligible not only if kT is
large but also if α is close to 0 and 1 respectively. If relevant contributions to some
observable depend on the photon wave functions in this kinematical region, the high-
energy approximation could become invalid. This is potentially relevant when considering
distributions in the Ioffe times, in particular for short Ioffe times. We shall calculate the
distributions with and without the high-energy approximation in order to quantify this
effect.

5.3 Photon densities

In this section we shall discuss the photon densities in some detail, since they are an
important ingredient in the following studies.

We define the unintegrated photon densities by

v
(q)
T (α, r,Q2) =

∑
λ,λ′

∣∣∣ψ(q)+
γ,λλ′(α, r, Q)

∣∣∣2 , (5.51)

v
(q)
L (α, r,Q2) =

∑
λ,λ′

∣∣∣ψ(q)L
λλ′ (α, r, Q)

∣∣∣2 . (5.52)

In the high energy limit we find from (5.49) and (5.50)

v
(q)
T (α, r,Q2) =

NcαemQ
2
q

2π2

[
(α2 + (1− α)2)ε2qK

2
1(εqr) +m2

qK
2
0(εqr)

]
, (5.53)

v
(q)
L (α, r,Q2) =

2NcαemQ
2
q

π2
Q2 (α(1− α))2K2

0(εqr) . (5.54)

Upon integration over α we get from vT and vL the partially integrated photon densities
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Figure 5.2: Photon densities normalised to αemQ2
q in dependence of the quark longitudinal

momentum α.

wT (5.19) and wL (5.20) entering the dipole formulae (4.4) and (4.5):

w
(q)
T (r,Q2) =

∫ 1

0

dα v
(q)
T (α, r,Q2) , (5.55)

w
(q)
L (r,Q2) =

∫ 1

0

dα v
(q)
L (α, r,Q2) . (5.56)

Figure 5.2 shows the α dependencies of the unintegrated photon densities vT , vL. Here
and in the following we use

mq = 0 for u, d, s-quarks, (5.57)

mq = 1.3 GeV for c-quarks, (5.58)

mq = 4.6 GeV for b-quarks (5.59)

for our numerical evaluations. The graphs for transversely polarised photons (upper plots)
show a rise in vT for approaching the longitudinal momentum endpoints α = 0, 1 and a
minimum at α = 1/2. This means for the splitting of a transversely polarised photon into
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a dipole it is most likely that either the quark or the anti-quark takes most of the photon
momentum. This effect becomes increasingly pronounced with larger Q2. For longitudi-
nally polarised photons (lower plots) the density vL peaks at α = 1/2 and drops when
approaching the endpoints. With increasing Q2 this behaviour changes and vL develops
two peaks close to (but not at) the endpoints. Thus, in dipoles produced from longitu-
dinally polarised photons with small virtuality, the quark and anti-quark typically have
approximately equal momenta. For high virtualities it most probably either the quark or
the anti-quark which carries most of the photon momentum. All of these effects are gen-
erally less pronounced for non-zero quark masses (right plots) than for the massless case
(left plots). Furthermore, increasing quark masses lower the photon densities.

Let us consider the behaviour of the partially integrated photon densities at small and
large distances r.

At small distances, rQ, rmq � 1, we use

K0(x)
x→0−−→ − lnx , (5.60)

Kn(x)
x→0−−→ Γ(n)

2

(
2

x

)n
for n > 0 , (5.61)

and find

w
(q)
T (r,Q2)

r→0−−→
NcαemQ

2
q

2π2
Q2 2

3

1

(Qr)2
, (5.62)

w
(q)
L (r,Q2)

r→0−−→
2NcαemQ

2
q

π2
Q2 1

30
ln2(Qr) . (5.63)

Note that these leading terms are independent of mq.
For the limites at large distances we consider massless quarks and massive quarks sepa-

rately. For massless quarks, mq = 0, we find from (5.53)-(5.56) without any approximation

w
(q)
T (r,Q2) =

NcαemQ
2
q

2π2
Q2 2π

(Qr)6

(
2G3,1

2,4

(
1

4
(Qr)2

∣∣∣∣ 2, 7/2
2, 3, 4, 3/2

)
−G3,1

2,4

(
1

4
(Qr)2

∣∣∣∣ 1, 7/2
2, 3, 4, 1/2

))
, (5.64)

w
(q)
L (r,Q2) =

2NcαemQ
2
q

π2
Q2 2π

(Qr)6
G3,1

2,4

(
1

4
(Qr)2

∣∣∣∣ −2, 1/2
0, 0, 0,−5/2

)
(5.65)

with Meijer’s G function in the notation [124]. From this we get at large distances r,
rQ� 1:

w
(q)
T (r,Q2)

r→∞−−−→
NcαemQ

2
q

2π2
Q2 8

3

1

(Qr)4
, (5.66)

w
(q)
L (r,Q2)

r→∞−−−→
2NcαemQ

2
q

π2
Q2 64

15

1

(Qr)6
. (5.67)



5.3 Photon densities 133

10−15

10−10

10−5

1

105

1

α
e

m
Q

2 q

w
T

[G
eV

2
]

Transverse

10−15

10−10

10−5

1

105

0.001 0.01 0.1 1 10 100 1000

1

α
e

m
Q

2 q

w
L

[G
eV

2
]

r [GeV−1]

Longitudinal

u, d, s-quarks
c-quarks
b-quarks

u, d, s-quarks
c-quarks
b-quarks

Figure 5.3: Partially integrated photon densities w
(q)
T (r, Q2) (upper plot) and w

(q)
L (r, Q2) (lower

plot) both normalised to αemQ2
q as a function of the dipole size r. In addition, the leading terms

for small and large r (dotted curves) are shown. The photon virtuality is fixed to the value
Q2 = 10GeV2.

For massive quarks, mq > 0, and large distances, rQ, r mq � 1, our calculation for w
(q)
T

and our guess for w
(q)
L give:

w
(q)
T (r,Q2)

r→∞−−−→
NcαemQ

2
q

2π2
Q2πmq

Q

exp(−2mqr)

Qr
, (5.68)

w
(q)
L (r,Q2)

r→∞−−−→
2NcαemQ

2
q

π2
Q2 πQ

2mq

ᾱ2(mq/Q)
exp(−2mqr)

(Qr)3
(5.69)

with some r-independent function ᾱ2(m2
q/Q

2), for which we find in the case mq < Q the
numerical value ᾱ2(m2

q/Q
2) ≈ 0.25.

Figure 5.3 shows the photon densities in dependence of the dipole size r. In addition,
their asymptotic expressions discussed above are plotted. The transverse densities w

(q)
T
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(upper plot) and longitudinal densities w
(q)
L (lower plot) show a significant difference in

their distributions. Compared to the longitudinal densities, the transverse densities rise
faster towards small r and decrease less rapidly at large r. This means that typically a
broader range of dipole sizes r will contribute to σT than to σL, see also chapter 7. How
much of this effect survives depends of course on the dipole cross section. Further we
see that large dipoles become strongly suppressed for increasing quark mass. The figure
illustrates the photon densities reaching the discussed asymptotic expressions for the case
of small r. At large r the asymptotic behaviour is visible only for the massless quarks.
The aforementioned suppression of massive quarks at large distances is so strong, that their
densities at actually large r are beyond the double-logarithmic plot range of figure 5.3. Our
numerical tests indicate that the presented asymptotic expressions are indeed approached
at large r, and the corresponding w

(q)
T,L values are extremely small.



Chapter 6

Bounds on ratios of DIS observables

In this chapter, we derive bounds for ratios of structure functions from the relations (4.4),

(4.5), (5.21). These bounds will rest on the explicit forms of the photon densities w
(q)
T,L

(5.55), (5.56) and on the non-negativity of the dipole-proton cross sections

σ̂(q)(r,W ) ≥ 0 . (6.1)

The bounds derived in section 6.1 remain unchanged if we assume that the dipole cross
sections σ̂(q) are functions of r and Bjorken-x instead of r and W . The bounds derived in
section 6.2, on the other hand, depend crucially on the functional dependence indicated in
(6.1).

6.1 Longitudinal and charm part of F2

In this section we consider the structure functions FL, F
(c)
2 , and F2 at fixed values of Q2

and W . Arranging them into a three-vector gives according to the dipole formula FL(W,Q2)
F

(c)
2 (W,Q2)
F2(W,Q2)

 =
∑
q

∫
d2r

σ̂(q)(r,W )

4π2αem

 f
(q)
L (r, Q2)

δq,c f (c)(r, Q2)
f (q)(r, Q2)

 , (6.2)

with

f (q)(r,Q2) = Q2
[
w

(q)
T (r,Q2) + w

(q)
L (r,Q2)

]
, (6.3)

f
(q)
L (r,Q2) = Q2w

(q)
L (r,Q2) . (6.4)

Note that the second entry in the vector in (6.2) receives a contribution only from the charm
quark, as indicated by the Kronecker delta symbol. In the following we will make use of
a geometrical interpretation of (6.2) in order to obtain correlated bounds on the structure
functions involved here. Due to the Kronecker symbol the case at hand is somewhat special,
which might make the geometrical interpretation slightly more difficult to conceive. An
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illustration of the general argument is given in figure 6.4 in section 6.2 below where we
discuss similar three-vectors of structure functions, but there without the occurrence of a
Kronecker symbol.

We recall that the dipole cross sections σ̂(q) are non-negative. Thus the r.h.s. of (6.2) is
a sum and an integral over three-vectors multiplied by non-negative weights, or, in other
words, a special linear superposition of the three-vectors appearing under the integral.
We search for the set of all possible linear superpositions of this kind with non-negative
coefficients. This is called a moment problem. In appendix B we discuss the necessary
mathematical tools to solve this problem. We give there the precise definitions of the key
concepts convex set, convex hull and convex cone. We also give the detailed solution of
the moment problem for the case of three F

(q)
2 structure functions as discussed below in

section 6.2. The solution of the moment problem in this section runs along the same lines.
The analogue of the result (B.49) reads here as follows. The set of all vectors allowing a
representation (6.2) is given by a convex cone. Any vector within this cone can be written
as a non-negative multiple of an element within the closed convex hull (denoted by co) of
the three-vectors appearing in the r.h.s. of (6.2). Therefore we have FL(W,Q2)

F
(c)
2 (W,Q2)
F2(W,Q

2)

 = λu(Q2)

with λ ≥ 0 , u(Q2) ∈ co


 f

(q)
L (r,Q2)

δq,c f
(c)(r,Q2)
f (q)(r,Q2)

∣∣∣∣∣∣ r ∈ R+, q = u, d, . . .

 .

(6.5)

Note that the three-vectors from which the convex hull is constructed involve only the
functions f (q)(r,Q2) and f

(q)
L (r,Q2) which are for any given Q2 explicitly known for all r,

see (5.53)-(5.56). Hence it is also straightforward to compute their convex hull. We further
point out that these vectors are independent of the energy W , and that the condition (6.5)
does not involve any model assumption about the dipole cross section σ̂(q).

We can now use the condition (6.5) to derive bounds on ratios of FL, F
(c)
2 , and F2.

These bounds originate only from the photon wave functions. They will be valid for any
dipole cross section σ̂(q), and will be independent of the energy W . Clearly, the bounds
will vary with the photon virtuality Q2, since Q2 explicitly enters the vectors in (6.5) via
the photon wave function.

We first notice that the condition (6.5) constrains only the directions of the three-vectors
involved, while their normalisation is irrelevant for that condition. We can therefore nor-
malise the vector composed of the three structure functions such that its third component
equals one, that is, we consider the vector (FL/F2, F

(c)
2 /F2, 1)T instead of (FL, F

(c)
2 , F2)

T.
That normalisation does not change the direction of the vector, and hence also the so
normalised vector fulfils the condition (6.5). Similarly, we normalise the set of vectors of
which the closed convex hull is formed such that its third component equals one, hence
considering (f

(q)
L /f (q), δq,cf

(c)/f (q), 1)T = (f
(q)
L /f (q), δq,c, 1)T in place of (f

(q)
L , δq,cf

(c), f (q))T.
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Again, that does not affect the direction of the vectors, and the condition (6.5) immedi-
ately applies with this replacement. The condition with both vectors normalised in this
way contains only vectors whose third component equals one, and for this case the only
possible choice for the factor λ is λ = 1. We can then eliminate the trivial third component
by projecting onto the 1-2-plane and obtain from (6.5) the simpler condition(

FL(W,Q2)/F2(W,Q
2)

F
(c)
2 (W,Q2)/F2(W,Q

2)

)
∈ co

{(
f

(q)
L (r,Q2)/f (q)(r,Q2)

δq,c

) ∣∣∣∣ r ∈ R+, q = u, d, . . .

}
,

(6.6)
which is in fact equivalent to the original condition (6.5) for the realistic case that F2 and
f (q) for r ∈ R+ are strictly positive. For a rigorous derivation of bounds on ratio vectors
as in (6.6), see appendix B, where the analogous case of three F2 structure functions is
discussed in detail (see (B.52)).

The first bound that we discuss here is now obtained from (6.6) by projecting onto the
1-axis. This immediately gives

inf
r,q

f
(q)
L (r,Q2)

f (q)(r,Q2)
≤ FL(W,Q2)

F2(W,Q2)
≤ sup

r,q

f
(q)
L (r,Q2)

f (q)(r,Q2)
, (6.7)

where inf and sup denote the infimum and supremum, respectively 1. Note that these
lower and upper bounds on FL/F2 are given only in terms of the photon wave function. It
is therefore straightforward to analyse the bounds (6.7) numerically.

In figure 6.1 we plot the ratio f
(q)
L (r,Q2)/f (q)(r,Q2) as a function of r for different

quark flavours, choosing as an example Q2 = 10 GeV2. Here and in the following we use
vanishing masses for the light (u, d, s) quarks, mc = 1.3GeV for the charm quark and
mb = 4.6GeV for the bottom quark. We find that the lower bound in (6.7) is trivial,
FL/F2 ≥ 0. The upper bound, on the other hand, is non-trivial. We find that the maximal

value of f
(q)
L (r,Q2)/f (q)(r,Q2) is obtained for light quarks, as can be seen in figure 6.1

where this maximum is drawn as a dotted horizontal line. It turns out that this upper
bound is independent of Q2 and numerically leads to

FL(W,Q2)

F2(W,Q2)
≤ 0.27139 . (6.8)

An equivalent result was already obtained in [136]. There, the authors consider the ratio

R :=
σL
σT

(6.9)

and derive by a direct calculation an inequality for R, which is similar to (6.7), see (144)
in [136]. From this they find the limit

R ≤ 0.37248 (6.10)

1We recall that for a given subset S of R the infimum of the set S is the greatest number less than
or equal to each element of S. Similarly, the supremum is the smallest number that is greater than or
equal to each element of S. For a compact set S the minimum (maximum) coincides with the infimum
(supremum).
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Figure 6.1: The ratio f
(q)
L (r, Q2)/f (q)(r, Q2) as a function of r for different quark flavours. The

photon virtuality is chosen to be Q2 = 10 GeV2. The absolute maximum value (dotted line) of
all curves provides an upper bound on FL(W,Q2)/F2(W,Q2), see (6.7) and (6.8).

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

Q2 [GeV2]

CCFR
E143
EMC
CDHSW

NMC

R

Figure 6.2: Comparison of experimental data for R = σL/σT in the region x < 0.05 with the
bound (6.10) resulting from the dipole picture. Full points correspond to data with x < 0.01,
other points to data with 0.01 < x < 0.05. Figure taken from [136].

originating again from the light quarks. From FL/F2 = (R−1 + 1)−1 we see that this result
is equivalent to (6.8). In figure 6.2 taken from [136] the bound on R is confronted with data.
It is interesting to note that at low Q2 some data points actually lie outside the allowed
range for the dipole picture. However, the errors of the low Q2 data are still too big to
judge that this really means a breakdown of the colour dipole picture in this kinematical
regime.

A stronger bound can be obtained by considering the correlation of the ratios FL/F2 and
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within the dipole picture. The weaker bound (6.7) is shown as a dashed line, while the stronger
bound implied by (6.6) is shown as a solid line.

F
(c)
2 /F2, that is, by taking into account both components of the constraint on the vectors in

(6.6). In this case the bound on the ratio FL/F2 will depend on the value of F
(c)
2 /F2 or vice

versa. By computing the closed convex hull in (6.6) from the ratios f
(q)
L (W,Q2)/f (q)(W,Q2)

we obtain the correlated bounds shown in figure 6.3 for the two values Q2 = 0.1 GeV2 and
Q2 = 10 GeV2. The unshaded area in the two plots is the allowed region for the dipole
picture. The figure is drawn for the whole range of F

(c)
2 /F2 between zero and one to

illustrate origin of the bounds. Realistic values of F
(c)
2 /F2 can only range from zero to

at most about 0.4. The allowed area in figure 6.3 is bounded by a straight line. This
particular shape emerges due to the fact that the second component of the vectors in (6.6)
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receives a contribution only from the charm quark. Due to the corresponding Kronecker
symbol the upper bound on FL/F2 at the (unphysical) point F

(c)
2 /F2 = 1 is given by the

maximum of f
(c)
L (r,Q2)/f (c)(r,Q2) over all r for the Q2 under consideration. The value

of this maximum for the case Q2 = 10 GeV2 can be read off from the charm quark curve
in figure 6.1. For Q2-values well below the charm mass, like for example Q2 = 0.1 GeV2,
the analogous function practically vanishes and the resulting upper bound on FL/F2 at

F
(c)
2 /F2 = 1 is practically zero. The fact that the unphysical point F

(c)
2 /F2 = 1 is relevant

for the determination of the correlated bounds on FL/F2 and F
(c)
2 /F2 in the physical region

of these ratios should not cause any worries here. It is just the consequence of omitting
any assumptions about the flavour dependence of the dipole cross sections σ̂(q), except
their non-negativity. This general case includes for example the unphysical case that all
dipole cross sections but the one for the charm quark would vanish, which would give rise
to F

(c)
2 /F2 = 1. By making further assumptions about the dipole cross sections it may

lead to more stringent bounds – but at the expense of introducing a dependence on those
assumptions. Here, however, it is our aim to study bounds on ratios of structure functions
from the dipole picture which do not depend on any further assumptions on the dipole
cross section.

Future measurements of the structure functions FL, F
(c)
2 and F2 at identical values of

Q2 and W might in combination with our bounds be able to constrain the range of validity
of the dipole picture.

Closing this section we would like to emphasise again that the geometric argument and
its implications discussed in this section remain unchanged if the dipole cross section is
chosen to depend on x instead of W .

6.2 F2 at different Q2

In this section we use the dipole picture to derive bounds on ratios of the structure function
F2 taken at the same W but at different values of Q2. The results found here crucially
depend on choosing the functional dependence of the dipole cross section such that its
arguments are r and W . In particular, the dipole cross section σ̂(q)(r,W ) is assumed to be
independent of Q2, see the corresponding discussion in section 5.1.

We consider the structure function F2 at three different values of Q2 but at the same
W . Similarly to the previous section we arrange them into a three-vector, and evaluate it
according to the dipole formula,F2(W,Q

2
1)

F2(W,Q
2
2)

F2(W,Q
2
3)

 =
∑
q

∫
d2r

σ̂(q)(r,W )

4π2αem

f (q)(r,Q2
1)

f (q)(r,Q2
2)

f (q)(r,Q2
3)

 , (6.11)

where the f (q)(r,Q2
i ) are defined in (6.3). We can now derive bounds on ratios of such

structure functions following the same procedure as in the preceding section. To find all
vectors allowing a representation (6.11) is again a moment problem. In appendix B we
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f (q)(r, Q2
1)

f (q)(r, Q2
2)

f (q)(r, Q2
3)

Figure 6.4: The vectors (f (q)(r, Q2
1), f

(q)(r, Q2
2), f

(q)(r, Q2
3))

T for different values of r, shown here
for a massless quark flavour q and for one particular choice of the triple (Q2

1, Q
2
2, Q

2
3).

discuss the solution of this problem for the case at hand in a mathematically rigorous way.
A simple argument, leaving out some subtleties, is as follows.

The vector on the l.h.s. of (6.11) is a linear superposition of the three-vectors (f (q)(r,Q2
1),

f (q)(r,Q2
2), f

(q)(r,Q2
3))

T which appear under the integral. For a given flavour q and given
values of the Q2

i that vector follows a trajectory as r ∈ R+ is varied. Figure 6.4 illustrates
a number of vectors along such a trajectory for the case of massless quarks and for one
particular choice of Q2

1, Q
2
2, and Q2

3. We recall again that the dipole cross sections σ̂(q) are
non-negative. Accordingly, the r.h.s. of (6.11) is a linear superposition with non-negative
weights of the vectors that appear under the integral. Therefore the resulting vector on
the l.h.s. must lie in the closed convex cone formed by all possible linear superpositions
with non-negative weights of those vectors and their boundary. Any vector within such a
cone is a non-negative multiple of a vector that lies in the closed convex hull (denoted by
co) of the vectors appearing under the integral in (6.11), see (B.49) of appendix B. Hence
we obtain the conditionF2(W,Q

2
1)

F2(W,Q
2
2)

F2(W,Q
2
3)

 = µv(Q2
1, Q

2
2, Q

2
3)

with µ ≥ 0 , v(Q2
1, Q

2
2, Q

2
3) ∈ co


f (q)(r,Q2

1)
f (q)(r,Q2

2)
f (q)(r,Q2

3)

∣∣∣∣∣∣ r ∈ R+, q = u, d, . . .

 .

(6.12)

As in the case of (6.6) in the previous section this condition constrains only the directions of
the vectors involved, but not their length. This applies both to the vector with components
F2(W,Q

2
i ) and to the vector with components f (q)(r,Q2

i ). Accordingly, we can normalise
these vectors such that their third component equals one. Performing this for both vectors
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Figure 6.5: The ratio f (q)(r, Q2
1)/f (q)(r, Q2

3) as a function of r for different quark masses, here
for the choice (Q2

1, Q
2
3) = (2, 10) GeV2. The minimum and maximum values of all curves (shown

as dotted lines) provide a lower and an upper bound on F2(W,Q2
1)/F2(W,Q2

3), respectively, see
(6.14).

that appear in (6.12) we obtain an equivalent condition. In this condition the only possible
value for µ is obviously µ = 1. Since the third component of the condition is now trivial
we discard it by projecting onto the 1-2-plane to obtain(

F2(W,Q
2
1)/F2(W,Q

2
3)

F2(W,Q
2
2)/F2(W,Q

2
3)

)
∈ co

{(
f (q)(r,Q2

1)/f
(q)(r,Q2

3)
f (q)(r,Q2

2)/f
(q)(r,Q2

3)

) ∣∣∣∣ r ∈ R+, q = u, d, . . .

}
,

(6.13)
which is fully equivalent to (6.12) because F2(W,Q

2
3) and f (q)(r,Q2

3) are strictly positive for
the relevant range of their arguments. For a rigorous derivation of (6.13) see (B.50)-(B.52)
of appendix B.

Let us first consider the two components of the condition (6.13) separately. Projecting
it onto the 1-axis and onto the 2-axis immediately gives the conditions

inf
r,q

f (q)(r,Q2
1)

f (q)(r,Q2
3)
≤ F2(W,Q

2
1)

F2(W,Q2
3)
≤ sup

r,q

f (q)(r,Q2
1)

f (q)(r,Q2
3)
, (6.14)

inf
r,q

f (q)(r,Q2
2)

f (q)(r,Q2
3)
≤ F2(W,Q

2
2)

F2(W,Q2
3)
≤ sup

r,q

f (q)(r,Q2
2)

f (q)(r,Q2
3)
, (6.15)

respectively. The condition (6.15) equals (6.14) if we replace Q2
2 by Q2

1. Thus, for two
given values of Q2 we actually obtain one condition here which contains an upper and a
lower bound. The same result was already presented in [153], where these bounds were
derived in a different way.

Here we discuss briefly the bounds of (6.14), for a more detailed discussion we refer
the reader to [153]. We first note that the upper and lower bound (6.14) depend only on
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the values of Q2
1 and Q2

3, but do not involve the energy W . Figure 6.5 shows the ratio
f (q)(r,Q2

1)/f
(q)(r,Q2

3) as a function of r for different quark masses along with the resulting
bounds on F2(W,Q

2
1)/F2(W,Q

2
3) for the specific choice (Q2

1, Q
2
3) = (2, 10) GeV2.

In the following we confront the bounds that we obtain in this section from the colour
dipole picture with HERA data. Before we proceed a remark concerning the comparison
with data is in order. Data on F2 and measurements of the reduced cross section are
available for a large range of Q2 values with (x,Q2)-binning. However, throughout this
section we deal with bounds involving values of F2 (or of the reduced cross section, see
below) at the same W but at different Q2

i . Hence a comparison with our bounds requires
different values of Q2 at the same value of W , and data with (W,Q2)-binning are published
only for comparatively small kinematical ranges. We therefore use a fit to the F2 data that
can, to a good approximation, be considered as a substitute of actual data. We do this
in most of the following comparisons, except for two illustrations where HERA data are
used directly (see figure 6.9 and the corresponding discussion below). Concretely, we use
the ALLM97 fit to F2 [154, 155] which represents the measured data points of [156, 157]
within their errors, except maybe for the region of very low Q2 where the fit appears to
be slightly worse. We emphasise that we use the fit only inside the kinematical range in
which actual HERA data are available. No extrapolation beyond that range is done here.

Figure 6.6 confronts the bound (6.14) with the ALLM97 fit to F2 for a fixed value of Q2
3

and variation of Q2
1, as presented in [153] before. It is apparent from the figure that there

is a value of Q2
1 beyond which the dipole picture fails to be compatible with the ALLM97

fit. This maximal Q2
1 value depends on the value of W , as can be seen in the figure from

the three curves for different W , and it also depends on the value chosen for Q2
3. With

the choice Q2
3 = 10 GeV2 made for the figure, this maximal Q2

1 is in the range of about
150-300 GeV2, depending on W .

Let us discuss, to what extent the bound (6.14) is affected by different normalizations
of the γ∗p cross sections σT and σL relative to F2. Above, we used the simple relation
(5.13), as often encountered in the context of high energy scattering, in particular for
applications of the dipole picture. The relation (5.12) derived from Hand’s convention
reduces to that simple expression if the high energy limit is taken for fixed Q2. For finite x
the normalization of σT,L relative to F2 differs by a factor (1− x) between the two choices
(neglecting terms of O(m2

p/W
2)), as is indicated in (5.12). The bounds discussed here are

all based on the simpler formula (5.13). It is straightforward, however, to derive similar
bounds based on the relation (5.12). The additional factor (1 − x) depends both on Q2

and W . Therefore this factor does not cancel if ratios of structure functions are taken at
different Q2

i . Furthermore, the bounds on ratios of F2 inherit a dependence on W from this

factor. The bounds on ratios of FL, F
(c)
2 , and F2 discussed in subsection 6.1, on the other

hand, are not affected. There, the structure functions are evaluated at the same W and Q2

and the additional factor (1−x) cancels in the ratios. In figure 6.7 we show for one energy
W = 60 GeV how the bound (6.14) is changed if one uses (5.12) instead of (5.13). A sizable
deviation from the original bound occurs only at relatively large Q2 where the new bound
is closer to the data than the original bound. However, both bounds are violated by the
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Figure 6.6: The bounds (6.14) on F2(W,Q2
1)/F2(W,Q2

3) resulting from the dipole picture (solid
lines) confronted with the corresponding ratios obtained using the ALLM97 fit to F2 for three
different values of W . Here Q2

1 is varied while the value Q2
3 = 10GeV2 is kept fixed. The shaded

region is excluded by the bounds.
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Figure 6.7: Change of the bound (6.14) on F2(W,Q2
1)/F2(W,Q2

3) due to using Hand’s convention
(5.12) instead of the simpler (5.13), shown here for W = 60GeV and the choice Q2

3 = 10GeV2.
The solid lines are the original bounds (6.14), while the dashed lines represent the modified
bounds. The dotted line is the ALLM97 fit to F2(W,Q2

1)/F2(W,Q2
3).
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Figure 6.8: The trajectory of the vectors (f (q)(r, Q2
1)/f (q)(r, Q2

3), f
(q)(r, Q2

2)/f (q)(r, Q2
3))

T

for variation of r (solid curve), here for a massless quark flavour q and for the choice
(Q2

1, Q
2
2, Q

2
3) = (4, 10, 80) GeV2. The unshaded area is the closed convex hull of the vec-

tors that form the trajectory. According to the weaker bounds (6.14) and (6.15) the vectors
(F2(W,Q2

1)/F2(W,Q2
3), F2(W,Q2

2)/F2(W,Q2
3))

T must lie within the dashed rectangle, while the
stronger bound (6.13) requires them to lie within the convex hull of the unshaded area and the
corresponding areas obtained for massive quarks. The curves for massive quarks have a similar
shape and are not shown here for simplicity.

data at about the same Q2 and the difference between the original and the modified bound
grows only at larger Q2. Therefore the normalization of the γ∗p cross sections according to
Hand’s convention would not significantly alter our results concerning the range of validity
of the dipole picture. We restrict to the simpler relation (5.13) in the following.

So far we have discussed in some detail the bounds (6.14) and (6.15) which resulted
from considering the two components of (6.13) separately. We can improve these bounds
by taking into account the correlation of those two components, that is the correlation of
the two ratios F2(W,Q

2
1)/F2(W,Q

2
3) and F2(W,Q

2
2)/F2(W,Q

2
3). According to (6.13) the

2-vector constructed from these two ratios for a given set of Q2
i lies in the closed convex

hull of the vectors (f (q)(r,Q2
1)/f

(q)(r,Q2
3), f

(q)(r,Q2
2)/f

(q)(r,Q2
3))

T. As r is varied the latter
vector (for each quark flavour q) follows a trajectory in 2-dimensional space. For the case
of a massless quark flavour q that trajectory is shown as the solid curve in figure 6.8, where
we have chosen the values (Q2

1, Q
2
2, Q

2
3) = (4, 10, 80)GeV2 for this example. The white

(unshaded) area is the closed convex hull of the vectors that form the trajectory. Similar
but slightly different trajectories are obtained for massive quark flavours, which are not
shown here in order to keep the figure simple. As a consequence of the dipole picture the
2-vectors (F2(W,Q

2
1)/F2(W,Q

2
3), F2(W,Q

2
2)/F2(W,Q

2
3))

T must lie within the closed convex
hull of those trajectories, independently of the energy W , see (6.13). The dashed lines in
figure 6.8 represent the two bounds (6.14) and (6.15). Clearly, the correlated bound (6.13)
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is much stronger than the separate bounds on the ratios.
Next we want to compare the stronger bound (6.13) with experimental data. For this

purpose we need data points of F2 at three different Q2
i but at the same W . As we have

mentioned before, most of the available data are not published in (W,Q2)-binning. We
have found only few points which are suitable for a direct comparison with our bound,
that is with the same W and three different Q2

i that are not too close to each other. We
will now present two of these examples. Further below we will then again use the ALLM97
fit for a more comprehensive analysis of the kinematical range in which the bound (6.13)
is respected. For the comparison with actual HERA data we choose as the observable
the reduced cross section instead of F2, since the former is the one which was directly
measured. The reduced cross section is defined as

σr(W,Q
2) =

Q2

4π2αem

(
σT +

2(1− y)

1 + (1− y)2
σL

)
, (6.16)

with y ≈ (W 2 +Q2)/s, see (5.2), where
√
s ≈ 300GeV is the lepton-proton center-of-mass

energy for the available HERA data. It is straightforward to derive correlated bounds for
ratios of reduced cross sections instead of F2 structure functions from the dipole picture.
The derivation is completely analogous to the one described above. We just have to replace
f (q)(r,Q2) by

f (q)
r (r,Q2) = Q2

[
w

(q)
T (r,Q2) +

2(1− y)

1 + (1− y)2
w

(q)
L (r,Q2)

]
, (6.17)

as can be seen from (5.13) and (6.16) together with (6.2), (6.3). The resulting bound

is then as given by (6.13) but with F2 replaced by σr and f (q) replaced by f
(q)
r . Due

to this modification the bound for the reduced cross section now depends on W (which
enters via y), which was not the case for the original bound for F2. Figure 6.9 confronts
the bound on the quantity (σr(W,Q

2
1)/σr(W,Q

2
3), σr(W,Q

2
2)/σr(W,Q

2
3))

T with its measured
values from ZEUS [158] and H1 [159] for two different choices of W and of the triple of
Q2
i . The depicted errors on the ratios are the combination of the experimental errors on

σr in quadrature. The curves in figure 6.9 show the correlated bounds for contributions to
(σr(W,Q

2
1)/σr(W,Q

2
3), σr(W,Q

2
2)/σr(W,Q

2
3))

T from different quark flavours as given by the
analogue of (6.13) for σr. Only if the point obtained from the data lies within the convex
hull of all these curves it can possibly be described in the framework of the dipole picture.
We see that this condition is fulfilled for the high W , moderate Q2 sample (upper graph),
while it is violated by approximately two standard deviations for the lower W , higher Q2

sample (lower graph).
The above discussion refers to the applicability of the dipole picture at a given value of

W for one particular triple of Q2-values. For a determination of the range of applicability
of the dipole picture it is more desirable to determine for a given W a maximal range in Q2

in which the three Q2
i can be chosen without giving rise to a violation of the bound. For

this purpose we now consider again the structure function F2 (and no longer the reduced
cross section). Using the ALLM97 fit to the measured F2 data we can then perform a
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Figure 6.9: Correlated bounds on ratios of the reduced cross section (6.16) at different values of
Q2 obtained from the dipole picture, confronted with HERA data. The inner parts of the different
curves show the allowed regions if only contributions from specific quark flavours are considered,
while the convex hull of these regions gives the net bound if no further assumptions are made.
The kinematical values are W = 247GeV, (Q2

1, Q
2
2, Q

2
3) = (2, 12, 35) GeV2 for the upper plot and

W = 75GeV, (Q2
1, Q

2
2, Q

2
3) = (3.5, 45, 120) GeV2 for the lower plot.

continuous scan in Q2 and determine precisely the kinematical range in which the bounds
are respected. We first consider the correlated bounds obtained from (6.13), and later
compare the allowed Q2-range with the one resulting from the weaker bounds (6.14) and
(6.15).

Let us first fix the energy W at some value. We will in the following call a violation of
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the dipole-picture bound a ‘significant’ violation if the ALLM97 F2 ratios give a relative
deviation of more than 10% from the bound. This accounts for a kind of error band
which should be associated with the ALLM97 fit or with the corresponding ratios of F2.
If for a certain triple (Q2

1, Q
2
2, Q

2
3) the ratios obtained from the ALLM97 fit violate the

bounds by a significant amount (in the above sense) any Q2-range containing the values
Q2

1, Q
2
2, Q

2
3 is excluded for a successful description within the dipole picture. In contrast,

agreement with the bounds for a triple does not necessarily imply agreement for the full
range [mini(Q

2
i ),maxi(Q

2
i )] of that triple since the bounds depend on all three Q2

i . We
therefore systematically search for the maximal Q2-range that contains no Q2-triple for
which the bounds are violated significantly. Technically, we do this by searching for the
minimal Q2-range in which we can find at least one Q2-triple for which the bounds are
violated significantly. The lower bound of a given Q2-interval turns out to have only
mild influence on whether a significant violation of the bounds can be found within that
interval – provided it is not much larger than 1GeV2. We therefore keep the lower end of
the considered Q2-range fixed at 1GeV2 and determine the upper end Q2

max of the Q2-range
within which the bounds are not significantly violated. We can then repeat this procedure
for each energy W and determine Q2

max as a function of W .
The solid line in figure 6.10 shows the result of such a calculation based on the correlated

bounds obtained from (6.13). The allowed Q2-range slowly grows with increasing energy, as
can be expected on general grounds. Q2

max ranges from about 100 GeV2 for W = 60 GeV to
about 200 GeV2 for W = 245 GeV. The dashed line in figure 6.10 represents the analogous
curve obtained from the uncorrelated bounds (6.14) and (6.15). Here we have varied both
Q2

1 and Q2
3 in (6.14) in order to determine the maximal virtuality, Q2

max, below which
both Q2

1 and Q2
3 can be chosen arbitrarily without giving rise to a significant violation of

the bound. We see that the correlated bounds resulting from (6.13) indeed give stronger
restrictions on the range of validity of the dipole picture than the uncorrelated bounds
(6.14), (6.15).

Note that the violation of the correlated bound does not take place at a constant value
of x. In the contrary, the value of x changes along the solid line in figure 6.10. For
Q2 = 100 GeV2 we find that x < 0.03 is required for the bound not to be violated, while
for Q2 = 200 GeV2 the bound is only respected for x < 0.003. A similar observation applies
to the uncorrelated bounds (6.14), (6.15) (see the dashed line in figure 6.10) as already
observed in [153].

Obviously, a violation of the above bounds indicates that some contributions to the
cross section become important which are not contained in the dipole picture. We would
like to emphasise that such corrections to the dipole picture might become sizable already
before the bounds are actually violated. One should therefore expect that corrections to
the standard dipole picture are important already if the data come close to the bounds.

The upper limit on the kinematical range of validity of the dipole picture that we find
here appears to be rather low in view of the fact that phenomenological fits to F2 data
based on the dipole picture often work quite well up to rather high Q2, see for example
[146]. However, the good quality of those fits at large Q2 is not in contradiction with
our result. We recall that the bounds derived in this section crucially depend on the
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the bounds obtained from the dipole picture within a 10% relative deviation of the F2 ratios,
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functional dependence of the dipole cross section σ̂ on r and W , as obtained naturally
from the derivation of the dipole picture presented in [135, 136]. In particular, σ̂ needs
to be independent of Q2 for our bounds to be valid. But almost all recent models for σ̂
assume it to depend on x, and hence on Q2. The transition from the energy variable W
to the energy variable x in the dipole cross section requires additional assumptions the
justification and the physical significance of which appears difficult to assess. In practice,
they might capture – at least partly – some corrections that are left out in the usual dipole
picture (see the discussion in chapter 5). It would be very desirable to obtain a better
understanding of this situation. An important step would be to check whether it is also
possible to describe the presently available HERA data by models for the dipole cross
section based on the more natural variables r and W .

We finally note that our bounds are modified if one uses, as suggested by Hand’s
convention, the relation (5.12) between F2 and the γ∗p cross sections σT and σL instead of
the simpler relation (5.13) that has been used here. The modification becomes relevant for
not so small x, and hence for large Q2. The natural kinematical region for the application
of the dipole picture is the region of small x, so that this modification is only of minor
relevance for the dipole picture. Nevertheless, we illustrated the effect of using (5.12) on
our bounds for an example. Our conclusions about the range of validity of the dipole
picture would not to be significantly affected.
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Summary

We have derived correlated bounds on FL/F2 and F
(c)
2 /F2 within the dipole picture. These

are valid for any dipole model, independent of the dipole cross section and its energy
dependence. It will be interesting to compare these bounds with the very recent [160] and
future HERA structure function measurements.

Further, we have derived correlated bounds on ratios of F2 taken at three different
values of Q2 but the same energy W . Here, we have taken the energy dependence of the
dipole cross section to be given by W alone. This is crucial for the derived bounds, such
that these do not apply for an x-dependent dipole cross section. Similarly, modifications of
the standard dipole formuae might alter these bounds as illustrated for one example. We
find, that the correlated bounds are significantly more restrictive than their uncorrelated
counter-parts. We have confronted the bounds with experimental data. More precisely,
we have used the ALLM97 fit to the measured F2 data except for two examples, where
we used actual data points. A more direct comparison would require a (W,Q2) instead of
the usual (x,Q2) binning of the data. Our results show that these bounds give no relevant
limitation at low Q2. But we find the dipole picture to fail in describing high Q2 data.
Depending on W , this results in an upper bound on Q2 of roughly 100− 200GeV2 for the
range of applicability of any such dipole model.



Chapter 7

Energy dependence of the dipole
cross section

7.1 Typical dipole sizes

We discussed in chapter 5 that in a natural scheme the dipole cross section is independent of
Q2 and depends on the energy W only. We also noted that in contrast to this, prominent
dipole models discussed in the literature introduce a dependence of σ̂ on Q2, typically
through the Bjorken-x variable. Often it is argued that in the dipole model one has a
relation of the kind

r ∝ 1

Q
, (7.1)

that is, the most relevant dipole sizes r are given by the scale Q. The reasoning behind
this is the fact, that due to the interplay of the Q2 dependence of the photon wave function
and the r dependence of the dipole cross section a typical size is generated. Neglecting
the W dependency, the masses and all non-perturbative intrinsic scales, this typical size
must by dimensional reasons obviously given by (7.1). Taking (7.1) seriously one might
rewrite energy dependencies such that the choice of the energy dependence in the dipole
cross section would be a mere convention without physical consequences. In this chapter
we shall show that this is not true, that is, a strict identification of the type (7.1) fails.

Let us first see how the relation (7.1) for typical dipole sizes arises in the generic case.
We consider a dipole cross section

σ̂(r) = c0 r
2 (7.2)

where c0 ∈ R is constant. This dipole cross section implements colour transparency as
present in many proposed models at small r. The non-perturbative region of large r is
of course unphysical for this cross section. However, the region of large r is not relevant
for our aim here. A physical model might deviate from (7.2) also in the intermediate r
region. These effects could alter the present discussion but are neglected here, since we are
interested in a generic discussion with minimal model assumptions here. With (7.2) the
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γ∗p cross sections are formally

σT (Q2) =
∑
q

∫ ∞

0

dr 2πc0 r
3w

(q)
T (r,Q2) , (7.3)

σL(Q2) =
∑
q

∫ ∞

0

dr 2πc0 r
3w

(q)
L (r,Q2) . (7.4)

Figure 7.1 shows the behaviour of the integrands in (7.3) (left graph) and (7.4) (right graph)
for the case of massless quarks and different values of Q2. It is apparent from the curves
that the integrands feature a maximum, and the position of the maximum depends on Q2.
We note however, that in particular for transverse photon polarisation the distribution of
the integrand is rather broad.

For the massless case we find the rescaling property r2w
(q)
T,L(r,Q2) = (cr)2w

(q)
T,L(cr,Q2/c2)

for any c ∈ R. We numerically maximise r3(w
(q)
T (r,Q2) +w

(q)
L (r,Q2)) with respect to r for

some constant value of Q2 and conclude that for arbitrary fixed Q2 the maximum position
is given by

r|max =
C

Q
with C = 2.40 . (7.5)

Note that in the massless case, σ
(q)
T is not well defined due to logarithmic endpoint singu-

larities in the α integration:

σ
(q)
T (Q2) = 2πc0 αemNc

∫ 1

0

dα
1 + (1− 2α)2

6π2Q2α(1− α)
, (7.6)

σ
(q)
L (Q2) = 2πc0 αemNc

∫ 1

0

dα
2

3π2Q2
. (7.7)

These endpoint singularities arise from the large r behaviour of the integrand. For dipole
cross sections which rise for large r only as ∝ r the singularities vanish. This applies in
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particular to the physical dipole models we found in the literature. However, also in the
case of convergence, for increasing Q2 the integral becomes dominated by integrand peaks
in narrow regions with α near the endpoints and relatively large r.

The aforementioned endpoint singularities with σ̂ as in (7.2) are regularised by the
introduction of a non-zero quark mass in the photon densities:

σ
(q)
T (Q2) = 2πc0αemNc

∫ 1

0

dα
2(1− 2α(1− α))(α(1− α)Q2 +m2

q) +m2
q

6π2(α(1− α)Q2 +m2
q)

2
, (7.8)

σ
(q)
L (Q2) = 2πc0αemNc

∫ 1

0

dα
2(α(1− α)Q2)2

3π2Q2(α(1− α)Q2 +m2
q)

2
, (7.9)

σ
(q)
tot (Q

2) = σ
(q)
T (Q2) + σ

(q)
L (Q2)

= 2πc0 αemNc

Q
√
Q2 + 4m2

q + 4(Q2 −m2
q) arctanh

√
Q2

Q2+4m2
q

3π2Q3
√
Q2 + 4m2

q

. (7.10)

For the massive case the simple rescaling property does not hold. Fitting the ansatz

rmax =
√
C2/(Q2 + 4m2

q) to samples with Q2 = 1, 10, 100GeV2 and mq = 0.14, 1.3GeV

gives C = 2.28 (or C = 2.34 if massless samples are included). This fit works well for
small masses but produces errors up to the order 25 % for the maximum position in the

charm mass case. For the ansatz r|max =
√
C2/(Q2 +Dm2

q) a simultaneous fit of C,D

automatically reproduces the value of C needed for the massless case, even if no massless
samples are included in the fit. We perform another fit with the aforementioned samples
where the value of C is fixed to the massless value and D is varied. The result is

r|max =

√
C2

Q2 +Dm2
q

with C = 2.40 , D = 7.12 (7.11)

with maximal relative errors for the maximum position of the order 1 %.
We thus see that for the simple ansatz (7.2) there is a dipole size for which the contribu-

tion to the γp cross section is maximal, and this size is roughly of type (7.1), see (7.5) and
(7.11). On the other hand we keep in mind, that the relevant distributions are quite broad,
see figure 7.1. For a better estimate of the dominant dipole size one could consider the
centre of the integrand instead of the integrand’s maximum position. This goes beyond
the (unintegrable) ansatz (7.2) and depends on more details of the specific dipole cross
section. We shall demonstrate in the following section that a type (7.1) relation may not
be taken in a straight-forward way to substitute energy dependencies. A mere change of
the numerical constants in a type (7.1) relation by considering the integrand centre instead
of its maximum will turn out to be rather irrelevant to this overall conclusion.

7.2 Substitution of scales via typical dipole sizes

Let us consider the Golec-Biernat-Wüsthoff model described in section 4.2. Its dipole cross
section σ̂GBW (r, x) depends on Bjorken-x, see (4.9), and therefore not only on W but also
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on Q2. We may ask now, whether this corresponds effectively to a Q2-independent dipole
cross section σ̂modGBW (r,W ) by taking typical dipole sizes via (7.1) into account. Let us
restrict to the case of massless quarks and define an effective Q2 via (7.5):

Q̄2(r) :=
C2

r2
, C = 2.40 . (7.12)

We consider the GBW dipole cross section as a function of W and Q2,

σ̂GBW (r, x) = σ̂GBW

(
r,

Q2

Q2 +W 2

)
. (7.13)

The simplest effective σ̂modGBW (r,W ) is obtained now by keeping W fixed and eliminating all
occurrences of Q2 in σ̂GBW via identification with Q̄2(r):

→ σ̂modGBW (r,W ) := σ̂GBW

(
r,

Q̄2(r)

Q̄2(r) +W 2

)
= σ̂GBW

(
r,

C2

C2 + r2W 2

)
. (7.14)

Figure 7.2 (left) shows the effect of the replacement (7.14) on F2. There, contributions
from massless u, d, s-quarks are considered. The curves for F2 of the original GBW
model (solid lines) are significantly modified by the substitution (7.14) (dashed lines), in
particular, the dependence on Q2 and x is altered. This is also the case when using C = 4.8
in (7.14) (dotted lines), which corresponds to choosing higher typical dipole sizes. Note
that a similar procedure for non-vanishing quark masses by ”inversion” of (7.11) instead
of (7.5) would lead to negative Q̄2 which is obviously questionable. The reason is that
for Q2 → 0 the maximum position given by the massive formula (7.11) converges to a
finite upper bound. In other words, sizes r larger than this limit do not correspond to any
maximum position.

We shall now consider the reversed case, that is, introducing a Q2 dependence via the
typical dipole size into a dipole cross section, which depends only on r and W but not
on Q2. Actually there are only few examples for dipole models of the latter kind. We
choose here a model proposed by Donnachie and Dosch in [140] based on previous work
by them and Rueter [161, 162, 163], which in turn is based on work by Nachtmann [164].
This model is based on Regge theory with a two-Pomeron exchange, that is, the exchange
of a soft and a hard Pomeron. The intercepts of the Pomeron trajectories are denoted by
(1+ εsoft) for the soft and (1+ εhard) for the hard Pomeron. The dipole cross section in this
model is:

σ̂DDR(r,W 2) = A0 r
(
1− e−r/R0

)
×


0 if r < Rc

(W 2/W 2
0 )
εhard if Rc ≤ r ≤ a

(W 2/W 2
0 )
εsoft if r > a

(7.15)

with the parameter values, see p.3-4 of [140],

εhard = 0.42, A0 = 10954µb GeV, Rc = 0.81/GeV, R0 = 3.1 a, (7.16)

εsoft = 0.09, W 2
0 = (20 GeV)2, a = 1.75/GeV. (7.17)
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The short-distance cut-off Rc is introduced to suppress the otherwise overestimated con-
tributions for extrapolation of this non-perturbative model to higher values of Q2.

We consider now the introduction of a Q2 dependency into the dipole cross section
based on typical dipole sizes according to (7.1), again for massless quarks only. For this
we define the typical dipole size according to (7.5) as

r̄(Q2) =
C

Q
. (7.18)

We consider the dipole cross section as a function f of r and the dimensionless quantity
Wr,

σ̂DDR(r,W ) =: f(r,Wr) (7.19)

and introduce a Q2 dependency into σ̂DDR by replacing r by r̄(Q2) only in the dimensionless
argument Wr

→ σ̂modDDR(r,W,Q2) := f(r,W r̄(Q2)) = σ̂DDR(r,WC/(rQ)). (7.20)

That is, the replacement changes the cross section only via terms which are sensitive to the
external scaleW . Figure 7.2 (right column) shows the effect of this substitution on F2. Only
contributions from massless u, d, s-quarks are considered. There are significant deviations
in F2 between using σ̂DDR(r,W ) (solid curves) and using σ̂modDDR(r,W,Q2) with C = 2.4
(dashed curves) or C = 4.8 (dotted curves). In particular, the x and Q2 dependence is
heavily altered. We note that the solid curves are well off the data as a consequence of using
three massless quarks in contrast to the model presented in [140]. Nevertheless, setting the
quark masses to zero avoids additional complications for the effect we are demonstrating
here.

Actually, we could infer already from the previous chapters that the choice of the energy
variable in σ̂ is crucial at high Q2. We saw that any dipole cross section of the form σ̂(r,W )
fails to describe the data at high Q2. In contrast, the GBW model with σ̂GBW (r, x) provides
a good fit to the data also at high Q2. From this we see that a dependence of σ̂ on Q2 in
addition to W can certainly not be eliminated or introduced by an effective scale argument
of the type (7.1) in the regime of high Q2. Let us compare ratios of F2 for different values of
Q2 for the models and replacements discussed in this section above. An illustration is given
in figure 7.3, where in addition the general bound (6.14) valid for any σ̂(r,W ) are shown.
We see as expected, that σ̂modGBW (r,W ) as well as σ̂DDR(r,W ) respect the general bounds.
In contrast, the bounds are violated for both Q2-dependent cross sections σ̂GBW (r, x) and
σ̂modDDR(r,W,Q2).

We conclude that different choices of the energy variables are in general not effectively
equivalent at high Q2. Furthermore, also at medium or low Q2, the effective dipole size
argument (7.1) does not allow to consider different choices of the energy variable to be
equivalent in the straight-forward way tested here. Since the involved distributions are
rather broad in r, a reduction to one effective dipole size tends to oversimplify the picture.
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The dipole size argument (7.1) furthermore neglects the influence of W and further details
entering through the dipole cross section. Therefore we suggest that the effective dipole
size (7.1) can not be regarded as a strict equality without further qualification.
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Chapter 8

Ioffe times

8.1 Ioffe times in DIS

In this chapter we study the Ioffe times [165, 166] for scattering of real and virtual photons
on hadrons. In particular, we shall calculate such Ioffe times for γ∗p reactions from the DIS
structure functions within the framework of the colour dipole model. Please see [167] for
a discussion of Ioffe time distributions in the context of the Operator Product Expansion
formalism, and [168] for the Ioffe time structure of the gluon distribution function in the
double logarithmic approximation.

In the colour dipole picture, the virtual photon fluctuates into a quark-antiquark pair
where the three-momenta are conserved but the energy is not, see chapter 5. The energy
mismatch

∆E = k0 + k′0 − q0 , (8.1)

defined in the proton rest frame, implies via the uncertainty relation that this colour dipole
is unstable and lives no longer than the Ioffe time

τ =
1

∆E
. (8.2)

The key idea of the dipole model is the splitting of the γp scattering into a two-step process:
First the photon splits into a dipole, then the dipole interacts with proton. This separation
however is expected to be valid only as long as the dipole lifetime is well above the timescale
of the hadronic interactions. In applications of the dipole model one frequently finds simple
estimates for Ioffe times and if they turn out to be of order of several femtometer or larger
this is used as justification of the dipole model. Furthermore, we saw in section 6.2 that
for W = 60− 245 GeV the standard dipole model necessarily fails to describe the HERA
data for Q2 larger than about 100 to 200 GeV2, see figure 6.10. It is interesting to see
whether this could be related to Ioffe times becoming too short.

Here, we shall really calculate the Ioffe times and not estimate them based on effective
quantities, since the latter may lead to oversimplifications, see section 7.2. It turns out that
even for a fixed kinematical point (W,Q2) for the γ∗p reaction one has a whole distribution
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Figure 8.1: Basic diagram for the description of the cross sections σT,L of γ∗p scattering in the
standard dipole approach.

of Ioffe times. In fact, the γ∗p total absorption cross sections must be considered as
imaginary part of the forward scattering amplitude γ∗p → γ∗p, see figure 8.1. Thus, we
shall have to deal with two Ioffe times, one for the initial state γ∗ and one for the final
state γ∗. Both times have distributions which also depend on the polarisation, transverse
or longitudinal, of the γ∗. We shall calculate such distributions in the following for the
GBW model, which describes the HERA data rather well. It is clear, that such an analysis
of the occurring Ioffe times serves only as a consistency check. That is, the analysis can
not prove the applicability of the dipole picture, but it may point out kinematical ranges
where the interpretation of the picture becomes questionable.

Let us first note some basic features for the offshellness ∆E in (8.1) which follow directly
from the kinematics of the γ → qq̄ splitting. Explicitly we have from (8.1)

∆E(kT , α) =
√
α2q2 + k2

T +m2
q +

√
(1− α)2q2 + k2

T +m2
q − q0 . (8.3)

Figure 8.2 shows the dependencies of ∆E on the quark transverse momentum kT (left
graph) and longitudinal momentum fraction α for the case of massless quarks. We note
that ∆E strongly peaks at the longitudinal momentum endpoints and rises monotonously
with the transverse momentum, see (8.3) and the figure. The minimal possible energy
mismatch as a function of α is reached at vanishing transverse momentum. The minimal
possible energy mismatch as a function of α is

∆Emin(α) := ∆E(0, α) =
√
α2q2 +m2

q +
√

(1− α)2q2 +m2
q − q0 (8.4)

reaching the absolute minimum of ∆E at α = 1/2,

∆Emin,tot := ∆E(0, 1/2) =
√

q2 + 4m2
q − q0 . (8.5)

That is, we have
∆E(kT , α) ≥ ∆Emin(α) ≥ ∆Emin,tot ≥ 0 , (8.6)
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where the last inequality is strict for any Q2 > 01. Thus we see that there is an a priori
minimal value for the energy mismatch ∆E. Figure 8.3 shows the minimal energy mismatch
∆Emin,tot in dependence of Q2 for massless quarks (left graph) and massive quarks (right
graph). We see that ∆E becomes non-negligible for small W , large mq or large Q2. This
means the corresponding Ioffe times become short and the applicability of the dipole picture
becomes questionable. The restrictions following directly from ∆Emin,tot are numerically
not very tight, see figure 8.3.

We considered so far only the a priori lower bound on ∆E. Let us now study which
values for ∆E are actually relevant for the cross section. From this we expect stronger
bounds on the range of applicability of the dipole model. The expressions (4.4) and (4.5)
for σT and σL, respectively, involve the γ∗ wave functions in transverse position space.
This is appropriate since the formulae are simple there due to the assumption that the qq̄
pair does not change its transverse size r nor the longitudinal momentum fraction α of the
quark in the scattering on the proton. These forms are not appropriate for a study of the
energy mismatches ∆E occurring in the initial splitting process γ∗ → qq̄ and ∆Ē occurring
in the final fusion process qq̄ → γ∗. For this we have to employ the transverse momentum
representation of the initial and final photon wave functions. We insert the representations
(5.43) and (5.44) for both the initial and final state photon wave functions in (4.4) and

1 The inequality is also strict for Q2 = 0 and mq > 0. This is the reason why a real photon can not
decay into an on-shell e+e− pair in the vacuum.
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(4.5), respectively, and obtain

σT =
∑
q

∑
λ,λ′

∫
dα

∫
d2k̄T
(2π)2

∫
d2kT
(2π)2

(
ψ̃

(q)±
γ, λλ′(α, k̄T )

)∗
˜̂σ(q)(kT − k̄T )ψ̃

(q)±
γ, λλ′(α,kT ) , (8.7)

σL =
∑
q

∑
λ,λ′

∫
dα

∫
d2k̄T
(2π)2

∫
d2kT
(2π)2

(
ψ̃

(q)L
γ, λλ′(α, k̄T )

)∗
˜̂σ(q)(kT − k̄T )ψ̃

(q)L
γ, λλ′(α,kT ) (8.8)

with the Fourier transform of the dipole cross section

˜̂σ(q)(kT ,W ) =

∫
d2r eikT rσ̂(q)(r,W ) , (8.9)

where we omit here and in the following dependencies e.g. on Q2 in the notation for
the sake of brevity. Note, that we omitted the explicit restriction 0 < α < 1 on the α
integration range for another reason. Also, we shall consider the expressions (5.41) and
(5.41) for the photon wave functions instead of their high-energy approximations (5.47)
and (5.48). We omit both of these high-energy approximations to begin with, since it
is not a priori obvious, that they are irrelevant for the calculation of Ioffe times, see the
discussion in section 5.2. At a later stage, we shall then consider both approximations in
order to quantify their influence on our results. We shall see, that the α integration is
automatically restricted to finite integration intervals for the calculation of Ioffe times.

The energy mismatches ∆E for the initial γ∗ splitting to qq̄ and ∆Ē for the final qq̄
fusion to γ∗ are (see chapter 5)

∆E := k0 + k′0 − q0 , (8.10)

∆Ē := k̄0 + k̄′0 − q0 . (8.11)
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The corresponding Ioffe times are

τ =
1

∆E
, (8.12)

τ̄ =
1

∆Ē
. (8.13)

The expressions (8.10) and (8.11) are not very suitable for direct numerical evaluation due
to large cancellations between the terms of the sum. We use the identity

√
1 + ε− 1 =

(
√

1 + ε− 1)(
√

1 + ε+ 1)√
1 + ε+ 1

=
ε√

1 + ε+ 1
, ε ∈ R (8.14)

to rewrite (8.10) and (8.11) as sums of non-negative terms:

∆E =
α2Q2 +m2

q

k0 + |α| q0
+

(1− α)2Q2 +m2
q

k0 + |1− α| q0
+


2 |α| q0 if α < 0

0 if 0 ≤ α ≤ 1

2 |1− α| q0 if α > 1

, (8.15)

∆Ē =
α2Q2 +m2

q

k̄0 + |α| q0
+

(1− α)2Q2 +m2
q

k̄0 + |1− α| q0
+


2 |α| q0 if α < 0

0 if 0 ≤ α ≤ 1

2 |1− α| q0 if α > 1

. (8.16)

We see that ∆E depends on kT , ∆Ē on k̄T . Thus, the cross sections (8.7) and (8.8) involve
the superpositions of amplitudes of various ∆E in the initial and various ∆Ē in the final
state. We define now the joint distribution of η = ∆E and η̄ = ∆Ē by

∂2σT
∂η ∂η̄

=
∑
q,λ,λ′

∫
dα

d2k̄T
(2π)2

d2kT
(2π)2

(
ψ̃

(q)±
γ λλ′(α, k̄T )

)∗
δ(η̄ −∆Ē(k̄T , α))

· ˜̂σ(q)(kT − k̄T ) δ(η −∆E(kT , α)) ψ̃
(q)±
γ λλ′(α,kT ) , (8.17)

∂2σL
∂η ∂η̄

=
∑
q,λ,λ′

∫
dα

d2k̄T
(2π)2

d2kT
(2π)2

(
ψ̃

(q)L
γ λλ′(α, k̄T )

)∗
δ(η̄ −∆Ē(k̄T , α))

· ˜̂σ(q)(kT − k̄T ) δ(η −∆E(kT , α)) ψ̃
(q)L
γ λλ′(α,kT ) . (8.18)

Note that for η 6= η̄ these distributions need not be positive. In the next section we shall
study in particular the distribution of the sum of ∆E and ∆Ē

∆E+ = ∆E + ∆Ē . (8.19)

We also define the corresponding Ioffe time

τ+ =
1

∆E+

. (8.20)
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Due to ∆E ≥ 0, ∆Ē ≥ 0 we find that at a given ∆E+ only ∆E and ∆Ē less or equal to ∆E+

can contribute. Moreover, for some given ∆E+ at least one of ∆E, ∆Ē must be greater or
equal to ∆E+/2. Therefore the distributions

dσT,L
d∆E+

=

∫ ∞

0

dη1

∫ ∞

0

dη2
∂2σT,L
∂η1 ∂η2

δ(∆E+ − η1 − η2) (8.21)

allow to test for large energy mismatches, i.e. short Ioffe time, which are relevant for
the cross section. For the typical interaction time τhad of the dipole with the proton we
follow [145] and use the inverse of the QCD scale, τhad ≈ 1/λQCD, corresponding to the
confinement scale of the light quarks. A necessary condition for both dipole lifetimes τ
and τ̄ being much larger than τhad is thus ∆E+/2 � λQCD or, equivalently,

2τ+ � τhad ≈
1

λQCD
≈ 2 fm . (8.22)

If this condition is violated for a relevant portion of the contributions to the total γ∗p cross
section, the applicability of the dipole model is questionable.

8.2 Results for the Golec-Biernat-Wüsthoff model

In this section we shall evaluate dσT,L/d∆E+ defined in (8.21) using the Golec-Biernat-
Wüstoff model [138]. We described this model in section 4.2 and recall that it matches
the F2 data from HERA quite well. If it also describes the longitudinal structure func-
tion FL must be left open since FL measurements from HERA have been published just
recently [160]. We note again, that its dipole cross section (4.9) depends not only on W
but also on Q2. The Fourier transformation of (4.9) gives

σ̃
(q)
GBW(kT ) = σ0

[
(2π)2δ(2)(kT )− 4πr2

0 exp(−r2
0k

2
T )
]
. (8.23)

In order to integrate out the azimuthal angles we decompose the photon wave functions

ψ̃
(q)±,L
λλ′ (α,kT ) =

2∑
n=−2

einφkψ̃
(q)±,L
λλ′n (α, kT ) (8.24)

with φk = arg(kT,1 + i kT,2). We use the substitution

∫ ∞

0

dkT f(kT ) =

∫ ∞

∆Emin(α)

d(∆E)
k0k′0

kT (k0 + k′0)
f(kT (∆E,α)) (8.25)
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and find for the distribution in ∆E+

dσ
(q)
T,L

d∆E+

=
dσ

(q),const
T,L

d∆E+

+
dσ

(q),exp
T,L

d∆E+

, (8.26)

dσ
(q),const
T,L

d∆E+

= σ0

∫ αmax(∆E+)

αmin(∆E+)

dα
k0k′0

2π(k0 + k′0)

∑
λ,λ′,n

∣∣∣ψ̃(q)±,L
λλ′n (α, kT )

∣∣∣2 , (8.27)

dσ
(q),exp
T,L

d∆E+

= σ0

∫ αmax(∆E+)

αmin(∆E+)

dα

∫ ∆Emin(α)

−∆Emin(α)

d∆E−
k0k′0k̄0k̄′0r2

0

2π(k0 + k′0)(k̄0 + k̄′0)

· e−r20(kT−k̄T )2
∑
λ,λ′,n

In(2r
2
0kT k̄T )

exp(2r2
0kT k̄T )

ψ̃
(q)±,L
λλ′n (α, kT )

(
ψ̃

(q)±,L
λλ′n (α, k̄T )

)∗
.

(8.28)

Here, the energies and momenta of quark and anti-quark (5.30) are understood as functions
of α, ∆E, ∆Ē via

kT =

√
((∆E + q0)2 − q2) ((∆E + q0)2 − (1− 2α)2q2)

4(∆E + q0)2
−m2

q , (8.29)

k̄T =

√(
(∆Ē + q0)2 − q2

) (
(∆Ē + q0)2 − (1− 2α)2q2

)
4(∆Ē + q0)2

−m2
q . (8.30)

The integration area in (8.26) is finite for fixed ∆E+ and its boundaries correspond to
vanishing transverse momenta. The extremal values of α are given by the two solutions of
the equation ∆E+/2 = ∆E|kT =0 with respect to α:

αmax
min

=
1

2
± ∆E+/2 + q0

2 |q|

√
1− 4m2

(∆E+/2 + q0)2 − q2
. (8.31)

In all cases considered in the following αmin ≈ 0 and αmax ≈ 1.
We perform the residual integrations in (8.26) numerically with a C++ program and

take care of various numerical issues. We avoid loss of precision due to large cancellations
in the evaluation of sums by rewritings similar to (8.14). Non-negligible contributions
occur at large arguments of the Bessel functions In, thus it is important to avoid finite
range problems due to the exponential factor in In in that region. We already wrote
(8.26) in a form which shows that this exponential rise is effectively cancelled. We achieve
this cancellation at the algebraical level by using the the expansion of [169] for the In at
large arguments. Further, we find that the implementation of the In in [170], also used
by other general purpose libraries such as [171], gives wrong results at large arguments
already before the expected finite range problem arises. We make sure the In evaluations
in our program are reliable by alternatively using the implementations of [172] and cross-
checking with various versions of [124]. Last but not least, we perform the same numerical
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integrations employing different algorithms and cross-check the results. Specifically, we use
Monte-Carlo as well as deterministic quadratures implemented in [173, 172] and modify
them slightly to overcome deficiencies due to significant underestimation of the integration
errors. By these means we make sure the integration error is under control.

Figure 8.4 shows our results for the ∆E+ distributions of the total γ∗p cross section in
the GBW model. Here, the full expressions (5.41) and (5.42) are used for the photon wave
functions rather than using their high energy approximation. Also we integrate over the
full range in α which is slightly bigger than [0, 1], see (8.31). Contributions to the total
cross section may be directly read off the plots in terms of areas under the curves, since
the normalisation includes a ∆E+ factor which compensates for the logarithmic abscissa
scale. The onset at the respective kinematical lower bound ∆E+ = 2∆Emin,tot, see (8.19)
and (8.5), is clearly visible for all curves and sharp for longitudinal γ∗ polarisation. The
∆E+ distributions for transverse γ polarisation are significantly broader than those for
longitudinal γ polarisation. For both polarisation types the distributions become narrow
for increasing values of Q2. In all cases the cross section is dominated by ∆E+-values not
more than one order of magnitude above the absolute minimum 2∆Emin,tot given by pure
kinematical restrictions as shown in figure 8.3. We note that the typical Ioffe times τ+ are
well above 1 fm for all Q2 ≤ 100 GeV2. There, the necessary separation condition (8.22)
is satisfied. However, for Q2 = 1000 GeV2 we see that at least for transversely polarised
photons the separation condition (8.22) is clearly violated – non-negligible contributions
come from Ioffe times τ+ which are actually smaller than 1 fm.

We study the effect of the high energy approximation (5.49) and (5.50) for the photon
wave functions as well as of restricting the α integration range to [0, 1]. The Ioffe-time
distributions in figure 8.4 are essentially unaltered when performing the α integration only
over [0, 1]. The α range specified by (8.31) is only slightly larger than [0, 1] and no suffi-
ciently strong enhancement of the integrand compensates for this fact in the kinematical
ranges considered here. As expected, deviations in the Ioffe-time distributions by the high
energy approximation for the photon wave functions become larger for increasing ∆E+.
However, these deviations are numerically negligible for the peak regions of the distribu-
tions considered here. They would be visible in figure 8.4 only at the large ∆E+ tails of
the curves for high Q2 and may therefore be omitted in the present discussion. We stress
that this result is not obvious, since the interplay of the high energy approximation and
the dipole energy mismatch is non-trivial in the longitudinal endpoint regions, as discussed
above.

Conclusions

We have calculated Ioffe times in the Golec-Biernat-Wüsthoff dipole model, where the
energy W = 150 GeV was chosen. We find that typical Ioffe times are large with respect
to hadronical scales forQ2 ≤ 100 GeV2, such that no inconsistency arises. However, at large
photon virtuality, Q2 = 1000 GeV2, typical Ioffe times are of similar order as hadronical
scales, which violates a standard assumption for the validity of the dipole picture. In
section 6.2 we have seen that Q2-independent dipole cross sections fail to describe the data
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at Q2 ≈ 150 GeV2 for W = 150 GeV, see figure 6.10. In this context it is interesting
to note, that a model with Q2-dependent dipole cross section starts to lack justification
at Q2 not much higher than this value. This puts the inability of Q2-independent dipole
cross sections to describe the data at high Q2 into perspective again, since the dipole
picture itself might generally lack justification at Q2 values in a similar region. Although
a breakdown of the dipole picture is generally expected at high Q2, our analysis helps to
quantify the scale at which this should be expected.



168 8. Ioffe times

0

1

2

3

4

10−5 10−4 10−3 10−2 10−1

1101102103104

∆
E

+

Q
2 q

d
F

(q
)

T

d
∆

E
+ Transverse

Q2
= 0.1 GeV

2

Q2
= 1 GeV

2

Q2
= 10 GeV

2

Q2
= 100 GeV

2 Q2
= 1000 GeV

2

∆E+[GeV]

τ+[fm]

0

1

2

3

4

5

6

10−5 10−4 10−3 10−2 10−1

1101102103104

∆
E

+

Q
2 q

d
F

(q
)

L

d
∆

E
+ Longitudinal

Q2
= 0.1 GeV

2

Q2
= 1 GeV

2

Q2
= 10 GeV

2

Q2
= 100 GeV

2

Q2
= 1000 GeV

2

∆E+[GeV]

τ+[fm]

0

5

cross section distributions

0

5

cross section distributions

u, d, s-quarks
c-quarks
b-quarks

u, d, s-quarks
c-quarks
b-quarks

Figure 8.4: F2 contributions in dependence of the joint dipole energy mismatch ∆E+ respectively
Ioffe time τ+ for the GBW model (large plots). Upper graph for transverse, lower graph for
longitudinal γ∗ polarisation. Curves are for different values of Q2 and quark flavours, W =
150 GeV is kept fixed. The small plots show correspondingly (∆E+dσ(q)/d∆E+)/(αemQ2

q) [mb].



Part IV

Conclusions





Conclusions 171

In this thesis, we employed gauge invariant functions to analyse extended Higgs poten-
tials in a transparent geometrical picture. In the case of two Higgs doublets these gauge
invariant functions form a Minkowski-type four-vector, which has to lie on or inside the
forward light cone. For the general Two-Higgs-Doublet Model (THDM), we confirmed and
extended previous results by giving concise criteria for the stability and electroweak symme-
try breaking properties of its tree-level potential. These criteria cover in particular the case
of multiple minima, show how to find the global minimum of the potential and constrain the
parameters of a phenomenologically acceptable theory. We discussed generalised CP trans-
formations, which are space-like reflections at the level of the gauge invariant four-vectors.
Reflections on a plane were shown to correspond to the standard CP transformation up
to a basis change. We derive basis independent necessary and sufficient conditions for the
potential and the vacuum to be invariant under such a type of CP transformation. We
find that the point-reflection at the origin represents a new basis independent type of CP
transformation. A CP symmetry of this type is necessarily spontaneously broken for a
phenomenlogically acceptable Higgs potential. Invariance of non-vanishing Yukawa terms
under the new CP symmetry requires at least two fermion families. Starting from this new
symmetry, a set of CP invariance conditions was prescribed, which produces large mass
hierachies and absence of large flavour changing neutral currents for the considered case
of two fermion families. The gauge invariant function approach may be combined with
algebraic Gröbner basis techniques, which allows for a fully automated unambigous deter-
mination of the global minimum of a tree-level Higgs potential. We applied this method
to the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where we find that
the study of the minima structure is indeed necessary to avoid a destabilisation of the
required vacuum. Requiring the vacuum to be not only a local but a global minimum of
the potential excludes further regions in the NMSSM parameter space.

In a second part of this thesis, we presented bounds for the colour dipole picture, which
help to further clarify its range of application. We derived general bounds on the ratio of
the charm and the longitudinal part of the structure function F2, which apply for any choice
of the dipole cross section. Future measurements of these ratios might exclude kinematical
ranges, where this bound is violated. We derived bounds on ratios of F2 at different photon
virtualities Q2, assuming the energy dependence of the dipole cross section to be given only
by the center-of-mass energy. Confronting these bounds with a fit to the data, we find that
any such dipole model necessarily fails to describe the data for Q2 above 100-200 GeV2,
depending on the center-of-mass energy. Furthermore, we explicitly considered different
choices of energy variables for the dipole cross section and find, that they may not be
related through effective scale arguments in a straight-forward way. Finally, we calculated
Ioffe times, that is, dipole lifetimes, for a popular dipole model. This serves as a consistency
check, since the Ioffe times are supposed to be large with respect to hadronical sizes in
order to justify a separate treatment of dipole production and scattering on the proton.
We find this justification to fail at large Q2.

At the time of this writing, final preparations are taken at the Large Hadron Collider
(LHC) and its experiments to start operation. Whatever the origin of electroweak sym-
metry breaking may be, new phenomena are expected below 1-2 TeV, and thus the LHC
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may shed light on this long outstanding question of physics within the nearer future.
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Appendix A

Gröbner Bases

In this appendix we want to sketch the construction of the Buchberger algorithm which
transforms a given set of polynomials F into a Gröbner basis G. The Gröbner basis G has
exactly the same simultaneous zeros as the initial set of polynomials F , but allows better
access to the actual calculation of these zeros. The general idea is to complete the set F by
adjoining differences of polynomials. Before we can present the algorithms themselves we
have to introduce the two basic ingredients, that is Reduction and the S-polynomial. For
a more detailed discussion we refer the reader to the literature [125, 174, 175, 130, 131].
Here we repeat the summary given in [114], which follows closely [175]. First of all we
recall some definitions.

Definition A.1. Polynomial Ring
A Polynomial Ring K[x1, . . . , xn] ≡ K[x] is the set of all n-variate polynomials with vari-
ables x1, . . . , xn and coefficients in the field K.

Definition A.2. Generated Ideal
Let F = {f1, . . . , fn} ⊂ K[x] be finite, F generates an ideal defined by

I(F ) ≡
{ ∑
fi∈F

ri · fi
∣∣∣∣ ri ∈ K[x], fi ∈ F, i = 1, . . . , n

}
.

In the following we want to consider an explicit example, that is a set F = {f1, f2, f3} ⊂
Q[x, y] of polynomials with rational coefficients:

f1 = 3x2y + 2xy + y + 9x2 + 5x− 3,

f2 = 2x3y − xy − y + 6x3 − 2x2 − 3x+ 3,

f3 = x3y + x2y + 3x3 + 2x2. (A.1)

The set F generates an ideal I(F ), which is given by the set of sums of f1, f2, and f3, where
each polynomial is multiplied with another arbitrary polynomial from the ringQ[x, y]. The
summands of the polynomial are denoted as monomials and each monomial is the product
of a coefficient and a power product.
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Further, we introduce an ordering (�) of the monomials. In the lexicographical order-
ing (�lex) the monomials are ordered with respect to the power of each variable subse-
quently. The ring notation Q[x, y] defines y �lex x, that is for the lexicographical ordering
of monomials powers of y are considered first, then powers of x. Explicitly, this means
2x2y3 �lex 5xy2 because the power of y is larger in the first monomial and 2xy2 �lex 5y2,
because both monomials have the same power of y, but the first monomial has a larger
power of x. The monomials of the polynomials (A.1) from the ring Q[x, y] are ordered
with respect to lexicographical ordering. In total degree ordering (�deg) the monomials
are ordered with respect to the sum of powers in each monomial. If two monomials have
the same sum of powers, they are ordered with respect to another ordering, for instance
lexicographical. For polynomials in Q[x, y] we have x2y �deg 4xy since the sum of powers
of the left power product is 3 compared to 2 for the right power product.

The largest power product with respect to the underlying ordering (�) of a polynomial f
is denoted as the leading power product, LP(f), the corresponding coefficient as leading
coefficient, LC(f). With help of these preparations we can define the two essential parts
of the Buchberger algorithm, that is Reduction and the S-polynomial.

Definition A.3. Reduction
Let f, p ∈ K[x]. We call f reducible modulo p, if for a power product t of f there exists
a power product u with LP(p) · u = t. Then we say, f reduces to h modulo p, where

h = f − Coefficient(f,t)
LC(p)

· u · p.

In the example (A.1) the polynomial f3 is reducible modulo f1, since for example the
second monomial of f3, that is x2y, is a multiple of the LP(f1), and h = f3 − 1/3f1 =
x3y − 2/3xy − 1/3y + 3x3 − x2 − 5/3x+ 1.

Reduction of a polynomial modulo a set P ⊂ K[x] is accordingly defined if there is a
p ∈ P such that f is reducible modulo p. Further, we say, a polynomial h is in reduced
form or normal form modulo F , in short normf(h, F ), if there is no h′ such that h reduces
to h′ modulo F . A set P ⊂ K[x] is called reduced, if each p ∈ P is in reduced form
modulo P\{p}. Note that reduction is defined with respect to the underlying ordering of
the monomials, since the leading power product is defined with respect to the ordering. In
general, a normal form is not unique, neither for a polynomial nor for a set.

Now we can present an algorithm, to compute a normal form Q ⊂ K[x] of a finite
F ⊂ K[x].

Algorithm A.4. Normal form
For a given finite set F ⊂ K[x] determine a normal form Q ⊂ K[x].
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Q := F

while exists p ∈ Q which is reducible modulo Q\{p} do

Q := Q\{p}
h := normf(p,Q)

if h 6= 0 then

Q := Q ∪ {h}
return Q

Clearly, the simultaneous zeros of all fi ∈ F are also simultaneous zeros of all qi ∈ Q and
vice versa.

Definition A.5. S-polynomial
For g1, g2 ∈ K[x] the S-polynomial of g1 and g2 is defined as

spol(g1, g2) ≡
lcm

(
LP(g1),LP(g2)

)
LP(g1)

g1 −
LC(g1)

LC(g2)

lcm
(
LP(g1),LP(g2)

)
LP(g2)

g2,

where lcm denotes the least common multiple.

Clearly, a simultaneous zero of g1 and g2 is also a zero of spol(g1, g2). In the example (A.1)
we can build the S-polynomial for any two polynomials, for instance

spol(f1, f2) =
x3y

x2y
f1 −

3

2

x3y

x3y
f2 = x f1 − 3/2 f2

= 2x2y + 5/2xy + 3/2y + 8x2 + 3/2x− 9/2. (A.2)

Finally we define the Gröbner basis.

Definition A.6. Gröbner basis
G ⊂ K[x] is called Gröbner Basis, if for all f1, f2 ∈ G normf(spol(f1, f2), G) = 0.

Now everything is prepared to present the Buchberger algorithm.

Algorithm A.7. Buchberger
For a given finite set F ⊂ K[x] determine the Gröbner basis G ⊂ K[x] with I(F ) = I(G).



178 A. Gröbner Bases

G := F

B := {{g1, g2}|g1, g2 ∈ G with g1 6= g2}
while B 6= ∅ do

choose {g1, g2} from B

B := B\{{g1, g2}}
h := spol(g1, g2)

h′ := normf(h,G)

if h′ 6= 0 then

B := B ∪ {{g, h′}|g ∈ G}
G := G ∪ {h′}

return G

Note, that since G just follows by adjoining reduced S-polynomials to F both sets
generate the same ideal, especially, both sets have exactly the same simultaneous zeros. It
can be proven, that the Buchberger algorithm terminates. The final step is to construct
the reduced Gröbner basis by applying the normal form algorithm defined above to the
Gröbner basis G. It can be shown that the reduced Gröbner basis is unique [174]. If we
apply the Buchberger algorithm to the set (A.1) with subsequent reduction we end up with
the reduced Gröbner basis (with underlying lexicographical ordering)

g1 = y + x2 − 3/2x− 3,

g2 = x3 − 5/2x2 − 5/2x. (A.3)

The system of equations g1 = g2 = 0 is equivalent to f1 = f2 = f3 = 0, but the former
allows to directly calculate the solutions: Since g2 = 0 is univariate it can be solved
immediately and subsequently g1 = 0 for each partial solution inserted.

Despite the correctness of the Buchberger algorithm tractability of practical examples
requires to improve this algorithm. In particular, the number of iterations in the algorithm
drastically grows with an increasing number of polynomials and with higher degrees of the
polynomials. In this respect much progress has been made with the improvement of this
original Buchberger algorithm from 1965 (see [174, 175, 126]).

The scope of Gröbner bases is not limited to system solving. In this thesis it is also
used to unambiguously check equivalences of polynomial systems of equations via radical
membership tests. For this and many more topics we refer the interested reader to the
recent text books [130, 131].
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Convex hulls, convex cones and
moment problems

In this appendix we discuss the notions of convex hull and convex cone as well as some
further mathematical relations, as given in [152]. The precise mathematical definitions can
be found in [176], for our notation see also [177].

Let us consider the n-dimensional Euclidean space Rn with elements x, y etc. A non-
empty subset X of Rn is called a convex set if for any elements x, y in X and any real
number a with 0 ≤ a ≤ 1 the element ax + (1− a)y is also contained in X. That is, with
any two points of X the complete straight line connecting them is also in X.

Let now Y be an arbitrary nonempty subset of Rn. The minimum convex set containing
Y exists [176] and is called the convex hull of Y and denoted by co(Y ). Its closure is denoted
by co(Y ). To illustrate this concept we give a physical example. Let Y = {y(1), . . . ,y(N)}
be a set ofN points inRn. Consider arbitrary distributions of massesmi ≥ 0 (i = 1, . . . , N)
on these points. The center-of-mass is then

x =

∑N
i=1miy

(i)∑N
i=1mi

. (B.1)

The convex hull of Y , co(Y ), is the set of all possible center-of-mass points of such mass
distributions.

Next we discuss the notion of convex cone. A nonempty subset X of Rn is called a
convex cone if for any elements x, y of X and any real number a ≥ 0 the elements ax and
x + y are also contained in X. Let Y be an arbitrary non-empty subset of Rn, then the
minimal convex cone containing Y exists and is denoted by K(Y ). Its closure is denoted
by K(Y ).

We illustrate these notions with a two-dimensional example. Let Y consist of three
points in R2

Y =
{
y(1),y(2),y(3)

}
(B.2)
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Figure B.1: Illustration of the convex hull co(Y ) and the convex cone K(Y ) for the set Y of
(B.2). Here both sets are closed, that is co(Y ) = co(Y ) and K(Y ) = K(Y ).

as shown in figure B.1. Here

y(i) =

(
y

(i)
1

y
(i)
2

)
(B.3)

and we suppose
y

(i)
2 > 0 for i = 1, 2, 3 . (B.4)

The convex hull of Y , co(Y ), is given by the dark grey triangle bounded by the polygon
from y(1) to y(2), y(3) and back to y(1). The cone K(Y ) is indicated by the light grey area
bounded by the rays λy(2) with λ ≥ 0 and µy(3) with µ ≥ 0.

Let Y be a non-empty subset of Rn and let co(Y ) be the convex hull of Y and K(Y )
the minimal convex cone containing Y . We define the set

K′(Y ) = {x | x = λy, λ ≥ 0, y ∈ co(Y ) } (B.5)

and assert that
K′(Y ) = K(Y ) . (B.6)

The proof of (B.6) goes as follows. It is easy to see that K′(Y ) is a convex cone containing
Y . Thus, since K(Y ) is the minimal such cone we have

K′(Y ) ⊃ K(Y ) . (B.7)

On the other hand, K(Y ) is a convex set containing Y and co(Y ) is the minimal such set.
Thus

K(Y ) ⊃ co(Y ) . (B.8)

Since K(Y ) is a convex cone this implies that for any element x ∈ co(Y ) and any λ ≥ 0
we have λx ∈ K(Y ). That is, we have

K′(Y ) ⊂ K(Y ) . (B.9)
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Therefore, we have shown that K′(Y ) = K(Y ). That is, every element of K(Y ) can be
written in the form given in (B.5). For the closures we find in a similar way

K(Y ) = {x | x = λy, λ ≥ 0, y ∈ co(Y ) } . (B.10)

Next we come to the moment problem which is at the heart of our derivations of bounds.
Suppose we have a continuous vector function on a closed interval [t0, t1] ⊂ R defining a
curve L in Rn:

L : [t0, t1] → Rn ,

t 7→ y(t) . (B.11)

We also suppose that there is at least one constant vector a such that

aTy(t) > 0 for all t ∈ [t0, t1] . (B.12)

We are interested in the set K̃ of all points x of Rn which can be represented as

x =

∫ t1

t0

y(t) dΣ(t) (B.13)

where Σ(t) is some non-decreasing function on [t0, t1]. Note that such a function is bounded
from below and above since

Σ(t0) ≤ Σ(t) ≤ Σ(t1) . (B.14)

Before we discuss the solution of this problem as given in [178] we note that in (B.13) we
are dealing with so-called Stieltjes integrals, see for example [179, 180]. The reader not
familiar with these integrals may always set

dΣ(t) = σ(t) dt (B.15)

where σ(t) is some non-negative distribution. That is, σ(t) can be an ordinary non-negative
function but can also contain non-negative δ-distributions.

The solution of the problem posed above is as follows, see [178]. The set K̃ of points
which can be represented in the form (B.13) is given by K(L), that is, by the smallest
closed convex cone containing the curve L:

K̃ = K(L) . (B.16)

Consider for illustration the two-dimensional example as in figure B.1 and the following
curve L defined for t ∈ [0, 1],

L : t 7→ y(t) =

{
y(1) + 2t(y(2) − y(1)) : 0 ≤ t ≤ 1

2
,

y(2) + (2t− 1)(y(3) − y(2)) : 1
2
< t ≤ 1 .

(B.17)



182 B. Convex hulls, convex cones and moment problems

We are interested in the points x allowing a representation

x =

∫ 1

0

y(t) dΣ(t) (B.18)

with some non-decreasing function Σ(t). According to the theorem quoted above x has
to be in the closed convex cone K(L) as shown in figure B.1. We ask now for the allowed
range for x1 given some x2. The possible x1 values are obtained by cutting the cone K(L)
at y2 = x2 = const. and reading off the corresponding y1 values. Similarly, the allowed
range of the ratio x1/x2 is obtained if we choose y2 = 1 for cutting the cone. Clearly, to
get the extremal values of x1/x2 we just have to consider the generating rays λy(i), λ ≥ 0,

for i = 1, 2, 3. Cutting them at y2 = 1 gives y
(i)
1 /y

(i)
2 , i = 1, 2, 3. Among these ratios there

are the extremal points of x1/x2. In our example we get

y
(3)
1

y
(3)
2

≤ x1

x2

≤ y
(2)
1

y
(2)
2

. (B.19)

Note that the interval [y
(3)
1 /y

(3)
2 , y

(2)
1 /y

(2)
2 ] is the convex hull of the set {y(i)

1 /y
(i)
2 | i = 1, 2, 3}.

For the general case, in Rn, the situation is completely analogous. Consider (B.13) in
Rn (n ≥ 2) and let us write in componentsx1

...
xn

 =

∫ t1

t0

y1(t)
...

yn(t)

 dΣ(t) . (B.20)

Let us suppose that
0 < c0 ≤ yn(t) ≤ c1 for t0 ≤ t ≤ t1 . (B.21)

Thereby (B.12) is satisfied with aT = (0, . . . , 0, 1). To get the bounds for the ratio vector

x′ =


x1/xn

...
xn−1/xn

1

 (B.22)

we just have to cut the cone K(L) with the hyperplane xn = 1. The corresponding set in
Rn obtained by this cutting is given by the closed convex hull of the ratio vectors of the
curve L generating the cone K(L). That is, we denote by L′ the following curve in Rn

L′ : t 7→


y1(t)/yn(t)

...
yn−1(t)/yn(t)

1

 , t ∈ [t0, t1]. (B.23)
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Let co(L′) be the closed convex hull of L′. The intersetion of K(L) with the hyperplane
xn = 1 is given by co(L′). Clearly, the extremal points of the above cone–hyperplane
intersection must be given by the intersections of the rays generating the cone K(L), that
is by the rays through the curve L. But this gives just L′.

We give now a formal proof of the above statements. For this consider the minimal
closed convex cone K(L) containing L and analogously K(L′) containing L′. We assert
that

K(L) = K(L′) . (B.24)

To prove (B.24) we note that according to (B.13) and (B.23) all vectors x′ ∈ K(L′) are of
the form

x′ =

∫ t1

t0

y(t)

yn(t)
dΣ′(t) (B.25)

with some non-decreasing function Σ′(t). Due to (B.21) the division by yn(t) in (B.25) is
harmless and we can define a non-decreasing function Σ(t) on [t0, t1] by

Σ(t) =

∫ t

t0

1

yn(t′)
dΣ′(t′) . (B.26)

We get then for x′ of (B.25)

x′ =

∫ t1

t0

y(t) dΣ(t) . (B.27)

That is, x′ ∈ K(L) according to (B.13) and we have shown

K(L′) ⊂ K(L) . (B.28)

Now we consider an arbitrary element x ∈ K(L) which according to (B.13) has the form

x =

∫ t1

t0

y(t) dΣ(t) (B.29)

with some non-decreasing function Σ(t). We define a non-decreasing function Σ′(t) on
[t0, t1] by

Σ′(t) =

∫ t

t0

yn(t
′) dΣ(t′) . (B.30)

Again, we use here (B.21). We get then

x =

∫ t1

t0

y(t)
1

yn(t)
dΣ′(t) . (B.31)

That is, x ∈ K(L′) and therefore

K(L) ⊂ K(L′) . (B.32)
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From (B.28) and (B.32) follows (B.24), q.e.d.
From (B.31) we can now draw the following conclusion for any non-zero element x ∈

K(L). Such an x is of the form (B.29) with Σ(t) 6= const. We have then with Σ′(t) from
(B.30),

xn = Σ′(t1) =

∫ t1

t0

dΣ′(t) > 0 (B.33)

where we use (B.21). From (B.31) we can represent x as

x = xn x′ (B.34)

where

x′ =

∫ t1

t0


y1(t)/yn(t)

...
yn−1(t)/yn(t)

1

 dΣ′′(t) ,

dΣ′′(t) =
1

xn
dΣ′(t) ,

∫ t1

t0

dΣ′′(t) = 1 . (B.35)

Clearly x′ is in the intersection of K(L′) with the hyperplane x′n = 1. Since K(L′) is the
minimal closed convex cone containing L′ this intersection is the minimal closed convex
set containing L′, that is, the closed convex hull co(L′):

x′ ∈ co(L′) . (B.36)

Thus we have shown that every non-zero vector x ∈ K(L), that is of the form (B.29), can
be represented as xn x′ where x′ ∈ co(L′).

Now we come to the application of the above mathematical theorems to our problems.
Consider three structure functions as in (6.11) but – for simplicity – only for fixed massless
flavour q F

(q)
2 (W,Q2

1)

F
(q)
2 (W,Q2

2)

F
(q)
2 (W,Q2

3)

 =

∫ ∞

0

dr r
σ̂(q)(r,W )

2παem

f (q)(r,Q2
1)

f (q)(r,Q2
2)

f (q)(r,Q2
3)

 . (B.37)

To bring this into the form of the problem (B.11), (B.13), we change variables and set

r = r0
t

1− t
, r0 = 1 fm , 0 < t < 1 . (B.38)

Furthermore, we shall split off from f (q)(r,Q2) the asymptotic terms for r → 0 and r →
∞ derived in subsection 5.3. In the present case of a massless flavour q, we see from
(5.62),(5.63),(5.66) and (5.67) that f (q)(r,Q2) increases for r → 0 as 1/r2. and decreases
for r →∞ as 1/r4. Thus, we define a function

g(r) =
r4
0

r2(r0 + r)2
(B.39)
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which is independent of Q2. This allows us to define the function

f̂ (q)(t, Q2) =


limt′→0

f (q)(r,Q2)
g(r)

∣∣∣
r=r0

t′
1−t′

if t = 0 ,

f (q)(r,Q2)
g(r)

∣∣∣
r=r0

t
1−t

if 0 < t < 1 ,

limt′→1
f (q)(r,Q2)

g(r)

∣∣∣
r=r0

t′
1−t′

if t = 1

(B.40)

for all t in the closed interval [0, 1], since the limites in (B.40) exist. It is easy to show that
f̂ (q)(t, Q2) is continuous as function of t. Moreover, we find

0 < c0(Q
2) ≤ f̂ (q)(t, Q2) ≤ c1(Q

2) (B.41)

for all t ∈ [0, 1]. Here cj(Q
2) (j = 0, 1) are fixed positive constants for fixed Q2. Next we

note that the dipole model makes only sense if the dipole cross section σ̂(q)(r,W ) can be
integrated with g(r), that is, if∫ ∞

0

dr r g(r)
σ̂(q)(r,W )

2παem

< ∞ . (B.42)

Further, we assume for 0 < r <∞:

σ̂(q)(r,W ) ≥ 0 . (B.43)

This allows us to define a function Σ(q)(t,W ) which is non-decreasing in t for fixed W :

Σ(q)(t,W ) =

∫ t

0

dt′
[
dr′

dt′
r′ g(r′)

σ̂(q)(r′,W )

2παem

]
r′=r0

t′
1−t′

(B.44)

for 0 ≤ t ≤ 1. Conversely, every non-decreasing function Σ(q)(t,W ) gives, via (B.44), an
acceptable dipole cross section σ̂(q)(r,W ). Furthermore, we define the curves L and L′ as
follows

L : t 7→ y(t) :=

f̂ (q)(t, Q2
1)

f̂ (q)(t, Q2
2)

f̂ (q)(t, Q2
3)

 , 0 ≤ t ≤ 1 , (B.45)

L′ : t 7→y′(t) :=

y1(t)/y3(t)
y2(t)/y3(t)

1

 , 0 ≤ t ≤ 1 . (B.46)

Our original integrals (B.37) take now exactly the form of (B.13):

x ≡

F
(q)
2 (W,Q2

1)

F
(q)
2 (W,Q2

2)

F
(q)
2 (W,Q2

3)

 =

∫ 1

0

y(t) dΣ(q)(t,W ) . (B.47)
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The vector function y(t) is continuous for t ∈ [0, 1] and (B.12) is satisfied with aT = (0, 0, 1)
due to (B.41) which also guarantees (B.21). From (B.16) we conclude that x must be in
the smallest closed convex cone containing L, that is, in K(L). It is easy to see that this
cone coincides with the cone defined as in (6.12) but for fixed flavour q. Indeed, we have
from (B.10) that K(L) can be represented as

K(L) = {x | x = λz, λ ≥ 0, z ∈ co(L) } . (B.48)

With a simple rescaling by g(r) from (B.39) and using that the closure takes care of the
limiting points t = 0 and t = 1 which correspond to r → 0 and r → ∞ we get for every
x ∈ K(L) the representation

x = µv,

with µ ≥ 0, v ∈ co


f (q)(r,Q2

1)
f (q)(r,Q2

2)
f (q)(r,Q2

3)

∣∣∣∣∣∣ r ∈ R+

 . (B.49)

The extension of these arguments to more than one flavour is straightforward. With this
we have given a rigorous proof of (6.12).

Consider next the ratio vector

x′ =
1

x3

x =

F (q)
2 (W,Q2

1)/F
(q)
2 (W,Q2

3)

F
(q)
2 (W,Q2

2)/F
(q)
2 (W,Q2

3)
1

 . (B.50)

From (B.29), (B.34) and (B.36) we see that x′ must be in the closed convex hull co(L′):

x′ ∈ co(L′) . (B.51)

We have from (B.46), (B.45) and (B.40)

co(L′) = co


f̂ (q)(t, Q2

1)/f̂
(q)(t, Q2

3)

f̂ (q)(t, Q2
2)/f̂

(q)(t, Q2
3)

1

∣∣∣∣∣∣ 0 ≤ t ≤ 1


= co


f (q)(r,Q2

1)/f
(q)(r,Q2

3)
f (q)(r,Q2

2)/f
(q)(r,Q2

3)
1

∣∣∣∣∣∣ 0 < r <∞

 . (B.52)

Taking the closure eliminates differences which could otherwise exist between the two
convex hulls of the sets in (B.52) originating from the fact that f̂ (q)(t, Q2) is defined on a
closed t interval whereas f (q)(r,Q2) is defined on an open r interval. The straightforward
extension of (B.51) and (B.52) to the case of several flavours q proves (6.13).

With this we have illustrated for one particular case how our bounds are derived in a
mathematically rigorous way. For all other cases analogous arguments can be applied.
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