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1 Summary

The generation of calcium signals following synaptic activity is a fundamental

property of neurons that controls many neuronal processes including cell survival,

learning and memory. In cultured neurons, increases in nuclear calcium concentrations

are known to be critical for the activation of gene expression mediated by the

transcription factor CREB. CREB has been implicated in transcription-dependent

plasticity (late phase LTP). It is still unclear whether nuclear calcium signals are also

responsible for CREB mediated gene transcription in vivo.

The goal of the study was to visualise nuclear calcium signals in vivo.

Investigating the importance of nuclear Ca2+ signalling in the intact brain is impeded by

the restrictions and complexities of in vivo experimentation. However, D. melanogaster

provides an excellent system to explore the role nuclear Ca2+ in an intact behaving

animal. Since Ca2+ signalling of the nucleus is of particular interest transgenic flies

expressing the nuclear localised Ca2+ indicator UAS GCaMP NLS to visualise nuclear

Ca2+ signals and the nuclear Ca2+/CaM inhibitor UAS 2xM13 myc to interfere with

nuclear Ca2+ signalling were generated. Using these flies, it could be shown that nuclear

Ca2+ signalling could play a role in LTM.

Further, using rAAV-mediated gene transfer the nuclear Ca2+ indicator rAAV

GCaMP 2.0 NLS was expressed in CA1 pyramidal neurons of juvenile rats two weeks

after in vivo injection. In acute slices from these juvenile rats an increase in nuclear Ca2+

concentration was visualised evoked by LTP inducing electrical stimulation. Using this

method a correlation between LTP and increase in nuclear Ca2+ concentration could be

shown. It is still unclear whether nuclear Ca2+ signals are necessary to induce LTP in

acute slice.

The major challenge of Ca2+ imaging in vivo either in flies or in rodents based on

difficulties to detect signals through the intransparent skulls. The freshwater polyp H.

vulgaris is completely transparent. Therefore, Ca2+ imaging of transgenic hydras

expressing the Ca2+-indicators hyGCaMP or hyGCaMP NLS was done. Increase in

nuclear Ca2+ signals was observed in ectodermal cells expressing hyGCaMP NLS. At the

moment, the role of Ca2+ signals, especially of nuclear Ca2+ signals in hydra is unknown.
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2 Zusammenfassung

Mit Hilfe des Botenstoffs Kalzium koordinieren und steuern Nervenzellen

intrazelluläre Vorgänge wie z.B. Zellwachstum, Zelldifferenzierung, Lern- und

Erinnerungsprozesse. In kultivierten Nervenzellen konnte gezeigt werden, dass ein

Anstieg der Kalziumkonzentration im Zellkern entscheidend für Gentranskription ist, die

von dem Transkriptionsfaktor CREB reguliert wird. Der CREB-regulierten

Gentranskription kommt eine zentrale Bedeutung in der transkriptionsabhängigen Phase

von Langzeitpotenzierung zu. Es ist noch unklar, ob Kernkalziumsignale auch in vivo an

der CREB vermittelten Gentranskription beteiligt sind. Das Ziel dieser Arbeit war,

Veränderungen der Kernkalziumkonzentration in vivo darzustellen.

Die Fruchtfliege D. melanogaster ist für diese Fragestellung ein geeigneter

Modellorganismus. Für diese Arbeit wurden daher mehrere transgene Fliegenlinien

generiert. Eine transgene Fliegenlinie expremiert den Kernkalziumindikator (UAS

GCaMP NLS), um Kernkalziumsignale darzustellen, während eine weitere transgene

Fliegenlinie einen Inhibitor des Kernkalziumsignalwegs (UAS 2xM13 NLS myc)

expremiert. Mit Hilfe dieser Fliegenlinien konnte gezeigt werden, dass

Kernkalziumsiganle eine Rolle in Lern- und Erinnerungsprozesse spielen.

Mit Hilfe eines virusbasierenden Gentransfersystems wurde der

Kernkalziumindikator (rAAV GCaMP 2.0 NLS) in CA1 Pyramidenzellen des

Hippokampus von Ratten expremiert. In Gehirnschnitten wurden Veränderungen der

Kernkalziumkonzentration in Abhängigkeit von LTP-induzierenden Stimulationen

dargestellt. Damit wurde gezeigt, dass ein Anstieg der Kernkalziumkonzentration mit

LTP zeitlich korreliert, jedoch ist dabei unklar, ob der Anstieg der

Kernkalziumkonzentration notwendig für Langzeitpotenzierung ist.

Da der Süßwasserpolyp H. vulgaris vollständig transparent ist, sind

Veränderungen von Kalziumsignalen leichter darzustellen als in anderen

Modellorgansimen. Für diese Arbeit wurden transgene Hydralinien (hyGCaMP und

hyGCaMP NLS) generiert. Ein Anstieg in der Kernkalziumkonzentration konnte gezeigt

werden, dennoch ist im Moment die Rolle von Kalziumsignalen, speziell von

Kernkalziumsignalen in Hydra, völlig unbekannt.
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3 Introduction

3.1 Nuclear Calcium signalling

3.1.1 Nuclear calcium signals induce CREB mediated gene expression

Calcium (Ca2+) acts as an intracellular second messenger responsible for

controlling several cellular mechanisms such as proliferation, development, learning and

memory. In the nervous system, the Ca2+ dependent mechanisms of learning and memory

are based on physiological changes in synaptic transmission. Coincident activation of

pre- und postsynaptic neurons leads to modifications of synaptic efficacy between two

those cells, thereby creating associative links between them (Lamprecht and LeDoux,

2004). Such associative links underlie learning in behaving animals, as well as in an in

vitro model of memory termed long- term potentiation (LTP). LTP occurs in two phases,

first as a temporary, reversible change in synaptic efficacy that can be prolonged into a

more permanent change (Andersen et al., 1971; Bliss and Collingridge, 1993; Nicoll and

Malenka, 1999). The early phase of LTP is independent of gene transcription and

involves Ca2+ influx into the dendrite activating kinases, which modulate the activity of

their substrate leading for example to morphological alteration in the cytoskeleton

(Engert and Bonhoeffer, 1999; Fukazawa et al., 2003). The late, more permanent phase of

LTP is transcription dependent, but again Ca2+ influx into the dendrite is crucial. It is

generally accepted that influx of Ca2+ into postsynaptic neurons through L-type voltage

operated Ca2+ channels (VOCC) but mostly through NMDA receptors stimulates

mechanisms mediating long- term potentiation (LTP) (Nicoll and Malenka, 1999). The

role of Ca2+ as a regulator of the different phases of LTP and including genetic

(transcriptional) responses, raises the issue of specificity: what mechanism allows

neurons to use a single second messenger to convert a range of electrical stimuli into

distinct responses?

It seems that the amplitude and the duration of Ca2+ signals evoked by synaptic

activity at the site of Ca2+ entry are extremely important in modulating the genetic

response. The Ca2+ signal is represented by a Ca2+ code, which communicates specific

firing patterns to the nucleus where the nuclear Ca2+ pool could decode this impulse
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pattern to determine the transcriptional response (Bading, 2000; Hardingham et al.,

2001). The two major pathways for synapse to nucleus communication are: the MAP

kinase/ extracellular signal-regulated kinase (ERK1/2) cascade (Bading and Greenberg,

1991; Ginty et al., 1994; Xing et al., 1996; Chawla et al., 1998; Impey et al., 1998) and

the Ca2+/calmodulin (CaM) dependent protein kinases, especially, the nuclear CaM kinase

IV (Sheng et al., 1991; Cruzalegui and Means, 1993; Matthews et al., 1994; Sun et al.,

1994; Bito et al., 1996; Chawla et al., 1998). Both pathways trigger the phosphorylation

of the transcription factor CREB (cAMP response element binding protein) at serine 133.

However, this phosphorylation event is not sufficient to induce CREB mediated gene

transcription. Activation of coactivator CREB-binding protein (CBP) is a second

regulatory step necessary for gene expression. The CREB/ CBP complex stimulates

transcription of genes by binding to the DNA regulatory element, CRE (cAMP response

element) (Sheng et al., 1988; Bading et al., 1993; Bading et al., 1995). So CaM kinase IV

and Ca2+ act directly in the nucleus by controlling the activity of CBP, but the ERK1/2

cascade cannot control the activity of CBP (Chawla et al., 1998; Hardingham and Bading,

1998; Hu et al., 1999). Therefore, the change in the nuclear Ca2+ concentration following

synaptic activity triggers CREB mediated gene transcription. It seems that the activation

of the transcription factor CREB is involved in changes in synaptic efficacy and may be

critical for LTP and memory formation (Bourtchuladze et al., 1994; Segal and Murphy,

1998). Despite this knowledge, it is still unclear how the Ca2+ signal in neurons is

conveyed from the synapse to the nucleus.

3.1.2 Calcium induced Calcium release

To understand the role of nuclear Ca2+ signalling, it is important to understand the

dynamics of Ca2+ signalling across the nuclear pore complex in hippocampal neurons.

The nuclear pore is unlikely to cause a diffusion barrier for Ca2+ ions. It seems that Ca2+

ions can move freely into the nucleus with no apparent impediment at the nuclear envelop

(Eder and Bading, 2007), suggesting that fast Ca2+ waves (10-30µm/s) might facilitate the

transfer of information from synapses to the nucleus. These waves may be mediated by

Ca2+ induced Ca2+ release (CICR), a reaction diffusion mechanism in which Ca2+ ions

diffuse along the outer wall of the endoplasmic reticulum (ER), and induce the further

release of Ca2+ from ER in a regenerative manner. Calcium stored within the ER of
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neurons represents an important source. The Ca2+ concentration within the ER is ~

100µM whereas the cytoplasmic Ca2+ concentration is ten times lower at resting

conditions ([Ca2+]c ≈ 100nM) compared to excited conditions ([Ca2+]c ≈ 1000nM)

(Berridge et al., 2000). Both internal and external sources of Ca2+ can contribute to the

intracellular Ca2+ concentration in neurons. Increases in intracellular Ca2+ concentration

caused by Ca2+ influx from the extracellular space involve ligand and/or voltage gated ion

channels. These activity-induced increases can be amplified by Ca2+ release from

intracellular Ca2+ stores regulated predominantly by ryanodine receptors (RYRs) and by

inositol-1,4,5-trisphoshate receptors (InsP3Rs). Ca2+ directly activates the RYR to evoke

CICR (see above) but the activation of the InsP3R is more complex and involves

stimulation with the receptor agonist, InsP3. InsP3Rs have a bell- shaped Ca2+ dependence

when treated with low concentrations of InsP3: low concentrations of Ca2+ (100-300nM)

stimulate further Ca2+ release but at concentrations above 300nM, Ca2+ becomes

inhibitory and switches off the channel thus inhibiting Ca2+ release (Bootman and Lipp,

1999). InsP3 is a part of the phosphoinositide pathway, which is widely expressed in the

brain (Fisher et al., 1992; Furuichi and Mikoshiba, 1995). The InsP3 pathway is initiated

at the plasma membrane by the interaction of a ligand (for example hormones) with a cell

surface receptor. This interaction results in the activation of heterotrimeric G-proteins

consisting of three subunits. The α subunit of the G-protein can activate phospholipase C

(PLC), which stimulates the hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2)

to form the second messenger diacylglycerol (DAG) and InsP3 (Furuichi and Mikoshiba,

1995; Seymour-Laurent and Barish, 1995). InsP3 diffuses from the plasma membrane to

the endoplasmic reticulum to bind InsP3Rs and evoke the release of Ca2+ from the InsP3R-

gated store. The process of Ca2+-induced Ca2+-release (CICR) enables the InsP3Rs and

RYR to communicate with each other to establish coordinated Ca2+ signals, often

organized into waves propagating through the neuron (Berridge, 1993; Clapham, 1995).

Despite the complex mechanism of Ca2+ signalling within a single neuron, the main focus

of this work was the visualisation of nuclear Ca2+ signals in complex interaction between

neurons in vivo.

Calcium imaging is traditionally done using chemically synthesized Ca2+-

indicators that are entering the cells as acetoxymethyl esters. The use of Ca2+ indicators
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such as Fluo-3 and fluorescence microscopy makes it possible to visualise Ca2+ events

Confocal microscopy has proven a vital tool in localising distinct Ca2+ signals in vitro.

The Ca2+ indicator Fluo-3 is chemically similar to BAPTA and was developed by Minta

et al. (Minta and Tsien, 1989) for use with visible-light excitation sources in flow

cytometry and confocal laser scanning microscopy. An insuperable disadvantage is that

one cannot target them to specific intracellular locations. An alternative to the synthetic

indicators is protein based Ca2+ probes, which becoming more and more an attractive tool

for studying Ca2+ dynamics in vivo.

3.2 Visualisation of Ca2+ signals using recombinant Ca2+-indicators

3.2.1 FRET based Ca2+-indicator

The first genetic encoded Ca2+-indicator made use of the Ca2+-sensitive

photoprotein “aequorin” from the jellyfish Aequorea victoria (Blinks et al., 1976).

However, a major disadvantage of this protein is that it needs a cofactor “coelenterazine”

to generate light in a Ca2+-dependent and irreversible reaction. The most used genetically

encoded indicators are usually based on fluorescent proteins, which are spontaneously

fluorescent without enzymes or cofactors required. Fluorescent proteins are most

commonly used as reporter gene to monitor gene transcription in cells, tissues or whole

animals. Fluorescent proteins are also used as fusion proteins to monitor the location,

interaction, aggregation, etc. Mutagenesis of the green fluorescent proteins (GFP) (Tsien,

1998) led to the creation of several variants that absorb and emit light of different

wavelength, these makes it possible to be used for FRET (Fluorescence resonance energy

transfer) (Heim and Tsien, 1996).

The first FRET based Ca2+ indicator was pioneered by the development of

“cameleons” more then 10 years ago by Atsushi Miyawaki and Roger Tsien (Miyawaki

et al., 1997). Cameleons are tandem repeats of two different GFP variants with

overlapping emission and excitation spectra linked together by Ca2+ sensor based on

calmodulin (CaM) and the CaM binding peptide of myosin light chain kinase M13 (Ikura

et al., 1992). Miyawaki et al. demonstrated that the binding of Ca2+ resulted in a globular

condensation of calmodulin around the M13 peptide, which leads to a Ca2+-dependent

increase in FRET between donor and acceptor. The reversible changes in FRET can be
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detected as changes in the yellow over cyan emission fluorescents, and the probes

function as ratiometric emission Ca2+ indicator. The idea of FRET based Ca2+-indicator

has been modified in different ways within the last decade including a decrease in pH

sensitivity of the acceptor in the yellow cameleons (Miyawaki et al., 1999; Griesbeck et

al., 2001; Nagai et al., 2002; Evanko and Haydon, 2005) and a shift to longer wavelength

donor and acceptor pairs in the red cameleons (Mizuno et al., 2001) as well as changing

the Ca2+-detector molecule from calmodulin to troponin C (Heim and Griesbeck, 2004;

Mank et al., 2006) or optimizing the donor/ acceptor interactions through redesign the

calmodulin -M13 interaction (Palmer et al., 2006).

Despite these modifications, FRET based genetic encoded Ca2+-indicators have

some disadvantages which makes it sometimes more complicated to work with as with

single fluorophore Ca2+-indicators. The FRET based genetic encoded Ca2+-indicators

have shown lower signal strength in vivo even the improved molecules have shown a

smaller dynamic range when expressed in vivo. An obvious difference in biophysical

properties seems to be characteristic for most of those indicators compared to the results

monitored in more simple assays. A comparative in vivo analysis by Reiff et al. who

expressed of 10 different genetically encoded Ca2+-indicators in transgenic flies (Reiff et

al., 2005), demonstrated that the fold change fluorescence ratio (∆R/R0), where R is the

ratio of fluorescence at the acceptor and donor emission wavelengths, and ∆R is the

change in ratio over the background R0, for a maximum physiological stimulus was

between 5.8% and 11.6% (TN-L15 (Heim and Griesbeck, 2004) and YC2.0 (Miyawaki et

al., 1999), respectively) of the change observed in vitro. This decrease in vivo has been

observed and is almost explicable by the more complex interactions with other biological

molecules in vivo compared to in vitro. For example, calmodulin is involved in several

signalling pathways and recognises multiple cellular targets in its Ca2+-bound form,

therefore interaction with endogenous binding partners are likely. While these would also

be relevant for non-FRET based genetic encoded Ca2+-indicators that used also

calmodulin as sensor, the decreased FRET signal seems to be also depending on the

orientation between the donor and acceptor fluorophores which may allow an enhanced

vulnerability to interaction of this sort (Kotlikoff, 2007). This phenomenon was also

observed at non-calmodulin FRET based genetic encoded Ca2+-indicators (TN-L15
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(Heim and Griesbeck, 2004)), which displayed the lowest relative dynamic range in flies

relative to its in vitro results (Reiff et al., 2005). This cannot be explained by endogenous

calmodulin interaction, but may depend on troponin C interaction with troponin 1

(Kotlikoff, 2007).

3.2.2 Circularly permutated recombinant Ca2+-indicator

Alternatively, one can use genetic encoded Ca2+-indicators based on a single GFP

molecule. The GFP molecule is an 11–stranded β-barrel that forms a nearly perfect shell

around a chromophore spontaneously generated by an unusual multi-step pathway

involving cyclization and oxidation of residues 65–67 (Tsien, 1998).  Baird et al. could

shown that despite a complex maturation process the GFP molecule tolerate major

transposition and insertion which were the basis to develop a single chromophore Ca2+-

indicators (Baird et al., 1999). The GFP molecule is still fluorescent after a variety of

circular permutations (Heinemann and Hahn, 1995) and insertion of different proteins

e.g. calmodulin. Conformational changes of

calmodulin following Ca2+ binding increased around 7-

fold the fluorescence intensity of the GFP-CaM

molecule, named Camgaroo (Baird et al., 1999). In

2001, two laboratories independently developed based

on the idea of circularly permutations of enhanced GFP

(resp. YFP) genetic encoded Ca2+-indicators in which

calmodulin and a target peptide were incorporated

within cpEGFP (pN1 GCaMP (Nakai et al., 2001)) or

cpEYFP (Pericams (Nagai et al., 2001)). Nagai et al.

designed four different genetic encoded Ca2+-indicators

all based on single YFP (Inverse Pericam, Flash

Pericam, Ratiometric Pericam and Split Pericam

(Nagai et al., 2001)). In this work only Inverse Pericam

were used to visualise Ca2+ signals within neurons.

Both genetic encoded Ca2+-indicators are similarly designed containing three

different domains. The polypeptides of the green fluorescent protein (pN1 GCaMP) or

the yellow fluorescent protein (Inverse Pericam) were flipped around a central site. The

Fig 2. Schematic representation of
recombinant Ca2+ probes. pN1 GCaMP
consists of three different domains (M13,
calmodulin and cpEGFP). The N-terminus of
cpEGFP is connected to the C-terminus of
M13, a peptide of the myosin light chain
kinase. M13 is a target sequence of
calmodulin (CaM). The N-terminus of CaM is
fused to C-terminus of cpEGFP.
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N-terminus of the circularly permuted fluorescence proteins (amino acid 145- 238) is

connected to the M13 fragment of the myosin light chain kinase (Rhoads and Friedberg,

1997; Romoser et al., 1997), which is the target sequence of calmodulin (Mori et al.,

2000). The C-terminus of the circularly permuted fluorescence proteins (amino acid 1-

144) is connected to calmodulin. Binding of Ca2+ to calmodulin induces a conformation

change due to Ca2+-calmodulin-M13 interaction that leads to a more compact

conformational in the circularly permuted fluorescence proteins. The reversible

conformation change alters the spectral properties relative to the Ca2+ concentration

(Nagai et al., 2001). So, pN1 GCaMP becomes brighter when it binds Ca2+, whereas

Inverse Pericam gets dimmer. Despite these characteristic optical properties of pN1

GCaMP and Inverse Pericam, differences similar as reported for FRET based genetic

encoded Ca2+-indicators have been shown. Pologruto et al. measured KD values for both

indicators in cultured hippocampal slices and compared that data set with reported KD

values measured in vitro. The reported discrepancy between the KD in vitro and in the cell

cytoplasm is not likely attributable to an error in calibration of the reference synthetic

indicator (X-Rhod-5F) it may arise from differences in the biochemical milieu (Pologruto

et al., 2004). This study reflects the difficulty to extrapolated results from simple cell

culture system to a high complex cellular network. Further, pN1 GCaMP is significant

less bright than native fluorescent protein and display variable stability above 30ºC. The

quantum yield of pN1 GCaMP and Inverse Pericam are 0.05 and 0.44 whereas EGFP and

EYFP are above 0.6. The extinction coefficients are also significantly lower than the

parent proteins, with pN1 GCaMP absorption being less than 3% of EGFP (Kotlikoff,

2007). Nevertheless, the temporal resolution of pN1 GCaMP in vitro is a promising

aspect, which makes the probe more suitable for monitoring intracellular Ca2+

concentration ([Ca2+]i) in excitable cells. The dissociation time constant (τ∼200ms) is

independent of the [Ca2+]i, whereas the association time constant is faster at high [Ca2+]i

(τ<10ms for [Ca2+]i>500mM) (Nakai et al., 2001). This measurement was performed at

room temperature indicate in vitro kinetics significantly faster than in vivo (Reiff et al.,

2005). As mention before, interactions between genetic encoded Ca2+ indicators and

endogenous proteins can markedly decrease the sensor properties and might explain

again the obviously differences between in vitro and in vivo.
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The temperature-sensitivity of pN1 GCaMP makes it useless for in vivo imaging

in mammalian cells and allows only in vivo imaging in lower organisms e.g. D .

melanogaster (Wang et al., 2003), C. elegans (Kahn-Kirby et al., 2004) and H. vulgaris

(data are shown in result part). To overcome that disadvantages pN1 GCaMP was

improved leading to GCaMP 1.6 (Ohkura et al., 2005) by the replacements of Val-163

with Ala (V163A) and Ser-175 with Gly (S175G), which were known to provide a more

efficient chromophore formation of GFP (Tsien, 1998). V163A/S175G mutations of

GCaMP 1.6 markedly improve the brightness of the probes as well as decrease the pH

sensitivity (Ohkura et al., 2005). But also GCaMP 1.6 stays only bright at 37ºC, once the

probe was briefly exposed at lower temperature such at 28ºC. Expressed in transgenic

flies indicated that GCaMP 1.6 reported the largest and most rapid signals reflecting

neuronal activity, although photobleaching was a consisting finding (Reiff et al., 2005).

Recently, GCaMP 1.6 was further modified by A206K mutation to prevent

dimerisation (Zacharias et al., 2002) and a plasmid leader sequence (RSET) attached to

the N-terminus for protein purification. GCaMP 1.6 cDNA was subjected to random

mutagenesis by low fidelity PCR amplification and bacterial colonies displaying the

brightest fluorescence at 37°C were isolated and sequenced. This process identified two

new mutations (D180Y and V93I). So the resulting genetic encoded Ca2+-indicator,

GCaMP 2.0, is brighter than wild-type GFP, maintains a 5-fold dynamic range, displays

the reduced pH sensitivity of GCaMP 1.6 and is fully functional at 37ºC. Interestingly,

the addition of a polyHis linker was critical for thermal stability, because removal of the

sequence led to loss of fluorescence at 37°C (Tallini et al., 2006).

As the question about in vivo imaging of nuclear calcium signals has been asked

the first time, the improved indicators (GCaMP 1.6 and GCaMP 2.0) were not available,

but Wang et al. has shown that pN1 GCaMP can be used to visualized Ca2+ signals in fly

antennal lobes (Wang et al., 2003).  Therefore, a transgenic fly was made in the lab

expressing a nuclear Ca2+ indicator (UAS GCaMP NLS) to visualize nuclear Ca2+ signals

during odour avoidance assay.
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3.3 Fruit fly: Odour avoidance assay and nuclear Ca2+-imaging

3.3.1 Odour avoidance assay

Classical conditioning is one form of learning whereby a conditioned stimulus

(CS) becomes predictive of an unconditioned stimulus (US) when the two stimuli are

paired in an appropriate

way. The prototypic

example of classical

conditioning stems from

s t u d i e s  o n  d o g s

conducted by Ivan Pavlov

in which a tone cues (CS)

paired with a food reward

(US) became predictive

of the food reward,

shown by the dog’s

salivation upon hearing

the tone cue after

conditioning.

In D. melanogaster, olfactory classical conditioning is a robust and well-studied

type of learning. In this assay, a group of ~100 flies is trained in a chamber, with an inner

surface covered with an electrifiable printed-circuit grid. Odours are delivered into the

chamber by airflows. The flies are exposed to one odour (e.g. 3-octanol; OCT) while the

walls of the chamber are electrified (CS+). They then experience another odour (e.g. 4-

methylcyclohexanol; MCH) without shock (CS-). The flies are then tested for learning or

memory performance by transporting them to a choice point between converging airflows

suffused with the two odours. After training, the animals are forced to run toward one of

the two converging odours presented to them in a T-maze, and their selective avoidance

of the shock-associated odour is again calculated into a performance index (PI). A single

learning index is the average from two groups of flies trained to avoid each of the two

odours. Depending on training protocol in such a learning assay memories of flies

persists for hours or days (Tully and Quinn, 1985; Tully et al., 1994).

Fig 3. Schematic representation of olfactory conditioning learning. During training,
flies experience an odor in conjunction with electric shock punishment. During
subsequent testing, the flies preferentially avoid the shock-associated odor. Picture was
obtained from (Waddell and Quinn, 2001) and modified for PhD thesis.
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3.3.2 Memory phases

In D. melanogaster four phases of memories have been described: short-term

memory (STM), which decays less than an hour; middle-term memory (MTM), lasting

from one to three hours; and two forms of long-term memory (LTM) persists for 24 hours

or more that are distinguished by different training protocols. One is independent of gene

transcription (anaesthesia-resistant memory, ARM), whereas the second one, observed

after training with interspersed rest interval (spaced training) is gene transcription

dependent (Tully et al., 1994).

Many of LTM associated genes encode components of the cAMP signalling

pathway, such as the adenylyl cyclase encoded by the rutabaga (rut) gene (Livingstone et

al., 1984); the cAMP phosphodiesterase encoded by the dunce (dnc) gene (Dudai et al.,

1976); the cAMP dependent protein kinase (PKA) subunits encoded by the DC0 and

PKA-RI gene (Skoulakis et al., 1993; Goodwin et al., 1997) and the transcription factor

CREB encoded by the dCREB2 (CrebB-7A) gene (Yin et al., 1994; Yin et al., 1995). All

of the genes except dCREB2, which shows a widespread expression pattern, are highly

expressed in mushroom bodies, which are the favoured brain region for CS-US

association.

Today, there is a large body of evidence that suggests that the mushroom bodies

(MBs) are primary sites for olfactory learning (Heisenberg, 2003; Davis, 2005). The first

evidence for a role of the D. melanogaster mushroom bodies in olfactory memory came

from the study of a collection of mutant fly lines with various anatomical brain defects

(Heisenberg et al., 1985). Mushroom body-defective flies were found to sense odours and

shock but could not associate these stimuli.  Nevertheless, to assess the contribution of

the mushroom bodies for associative odour memory, the understanding of the functional

anatomy of the olfactory systems is important.

3.3.3 The functional anatomy of the olfactory system

Flies primarily sense odours through ~60 olfactory receptor proteins, one of which

is expressed in each of the ~1400 olfactory receptor neurons (ORNs) that reside in the

sensory bristles on the antennae and maxillary palps on each side of the head (reviewed

by (Lessing and Carlson, 1999; Davis, 2004). It has been shown that ORNs expressing

the same olfactory receptors project to the same glomerulus among the ~50 glomeruli in
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the antennal lobe (Gao et al., 2000; Vosshall et al., 2000; Couto et al., 2005; Fishilevich

and Vosshall, 2005).

Glomeruli are morphologically distinguishable areas in the antennal lobe that

contain the presynaptic terminals of olfactory receptor neurons (Keene and Waddell,

2007). In the antennal lobe, the cholinergic ORNs form excitatory synapses with at least

three classes of neurons: excitatory cholinergic projection neurons (PNs), inhibitory

GABAergic local interneurons (iLNs) and excitatory cholinergic local interneurons

(eLNs) (Stocker et al., 1997; Jefferis et al., 2001; Marin et al., 2002; Wilson and Laurent,

2005; Shang et al., 2007). Because flies have about ~180 PNs, therefore each glomerulus

is sampled on average by 3–5 PNs (Stocker et al., 1997). The PNs extend dendrites into a

single antennal lobe glomerulus and transmit olfactory information from the antennal

lobe to two locations in the brain: the calyx of mushroom bodies and to the lateral horn

Fig 4. Schematic representation of D. melanogaster head. Dorsal view of fly head showing the
main elements of the olfactory pathway. Odours are sensed by olfactory receptor neurons in the
antennae and maxillary palps. These neurons project axons along the antennal nerve to the antennal
lobe glomeruli. From there information is relayed by projection neurons in the inner and medial
antennocerebral tract (iACT and mACT) to the mushroom body and to the lateral horn. Picture
obtained from (Keene and Waddell, 2007) and modified for PhD thesis.



Introduction

- 20 -

(Jefferis et al., 2001; Marin et al., 2002; Wong et al., 2002). The PNs are organized into

at least two different neural tracts — the inner and medial antennocerebral tract (ACT).

PNs of the inner ACT form synapses in the mushroom body calyx and lateral horn,

whereas PNs in the medial ACT bypass the mushroom body calyx and go straight to the

lateral horn (Stocker et al., 1997). The calyx is a compartment of the mushroom bodies

where the presynaptic projection neurons synapse with the dendrites of the Kenyon cells

(Keene and Waddell, 2007). Beyond the anatomy the organization of PN-MB

connectivity is not well understood. This is shown by the fact that the ~2500 mushroom

body cells (Kenyon cells) in each hemisphere are named on their axonal projection

domain in the mushroom body lobes, rather than by their dendritic fields in the calyx.

The axonal projection of mushroom bodies branch into vertically and horizontally

oriented neuropil regions known as lobes. The vertical lobes consist of the α  and α’

lobes. The horizontal lobes consist of the β, β’, and γ lobes (Crittenden et al., 1998). The

significance of this morphological arrangement is poorly understood, and as a result, their

role in olfactory memory as memory acquisition, storage and retrieval is not clearly

differentiate between αβ, α’β’ and γ lobes.

3.3.4 The role of mushroom bodies in long-term memory

The most olfactory learning experiments with mutant flies have led to the a model

in which MB neurons associate the odour CS with the shock US and store the aversive

associations within the specific neurons that are activated by a particular odour

(Heisenberg, 2003; Davis, 2005). This model is supported by the demonstration that

transient blockade of MB synaptic transmission during acquisition, storage, and/or

retrieval indicates a requirement for MB output only during memory retrieval (Dubnau et

al., 2001; Schwaerzel et al., 2002; McGuire et al., 2003; Davis, 2005). The relevance of

MB neuron output for memory formation implies that memory could be represented at

MB output synapses or synapses that are upstream of MB output synapses. Although

there is evidence for a role of upstream antennal lobe (AL) circuits in memory in other

insects (Stopfer and Laurent, 1999; Daly et al., 2004), but only one live imaging study in

D. melanogaster has been shown that short-term change in AL neural activity occurs

after aversive olfactory training (Yu et al., 2004). Another input to the MB comes from

the Dorsal Paired Medial (DPM) neurons, which innervate the mushroom body lobes.
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DPM neurons express a neuropeptide involved in the regulation of cAMP synthesis,

encoded by the amnesiac (amn) gene (Feany and Quinn, 1995). The intermediate

memory phase (MTM) was proposed after the discovery of this gene (Quinn et al., 1979).

Mutant amn flies forgot the odour within one to three hours. Expressing the amn gene in

DPM cells restores normal olfactory memory to amn mutant flies. Blocking synaptic

transmission from the DPM neurons blocks one-hour memory but leaves immediate

learning intact (Waddell et al., 2000). Further behavioural analysis could show that

output from DPM neurons is critical after training for memory stability and is not

required during acquisition or recall (Keene et al., 2004; Yu et al., 2005; Keene et al.,

2006). DPM neuron projections to MB α’β ’ lobe neurons appear to be sufficient to

stabilize aversive odour memory, suggesting that a DPM neuron-to-MB α’β’ neuron

connection could be critical for memory consolidation (Keene et al., 2006).  Keene et al.

could show that stable memory requires the sequential involvement of different MB

neuron subsets. The α’β’ lobe neurons are required during and after training to acquire

and stabilize olfactory memory, whereas, αβ lobe neuron output is only required to

retrieve the memory (McGuire et al., 2001; Krashes et al., 2007). The analysis of DPM

neurons suggests that a more complex and dynamic process underlies olfactory memory.

So it seems that there is more consensus about the information input into the MB whereas

the output of the MB remains still unclear.

3.3.5 The molecular mechanism of long-term memory

The mushroom bodies are not obviously connected to one particular region of the

brain. Instead, they send information to many of the surrounding, poorly defined,

neuropil areas as for example the central complex. The central complex consists of four

substructures, the ellipsoid body, the fan-shaped body, the nodulii and the protocerebral

bridge. The function of the central complex is not clear; it may mediate communication

between the two hemispheres and is believed to be a control centre for many different

behavioural outputs (Heisenberg and Wolf, 1993). There is evidence that the central

complex are also involved in LTM (Wu et al., 2007). But still a clear picture of the

neuronal circuits and networks that are involved in LTM or its modification has not yet

emerged.

In contrast to STM and MTM much less is known about the mechanisms that are
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relevant for LTM. While there is general agreement that these memory processes require

DNA transcription and RNA translation, it is still unclear which neurons and neuronal

networks are involved in these mechanisms. In D. melanogaster the primary signal for

the activation of learning-associated transcription is thought to be the cyclic-adenosine

monophosphate (cAMP)/ Protein Kinase A (PKA) pathway (Yin and Tully, 1996). In this

pathway, cAMP activates PKA in the cytoplasm resulting in a translocation of the

catalytic subunit of PKA into the nucleus; where it phosphorylates and activates the

transcription factor dCREB2 (Yin et al., 1994; Kandel, 2001). In this study, an additional

pathway is described suggesting that nuclear Ca2+ signalling might play a role in LTM in

D. melanogaster.

3.4 Hippocampal neurons

3.4.1 Organization and role of the hippocampus in long term memory

The hippocampus is a part of the forebrain, located in the medial temporal lobe.

The hippocampus consists of the dentate gyrus, the Cornu Ammonis fields (CA1-CA3),

and the subiculum. The main information input to the hippocampus is via the entorhinal

cortex and the main information output from the hippocampus is via the subiculum.

Between entorhinal cortex and subiculum, three major pathways of the hippocampus are

described. The perforant pathway from entorhinal cortex forms excitatory connections

with the granule cells of the dentate gyrus (Bliss and Lomo, 1973). The mossy fiber

pathway, formed by the axons of the granule cells of the dentate gyrus, connects the

granule cells with the pyramidal cells in area CA3 of the hippocampus (Lu et al., 1997).

The Schaffer collateral pathway connects the pyramidal cells of the CA3 region with the

pyramidal cells in the CA1 region of the hippocampus (Collingridge et al., 1983).
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Studies have identified an

essential role for the hippocampus in:

spatial learning (O'Keefe and

Dostrovsky, 1971; Bachevalier et al.,

1999; Zola et al., 2000), recognition

memory (Pascalis and Bachevalier,

1999; Zola et al., 2000) and working

memory (Laroche et al., 2000). But it

seems that memory processing is not

restricted to one area, rather the

integrity of connections between several

brain areas is necessary for information

storage. It is still unclear what are the

molecular mechanisms for storage of

memory information (Neves et al.,

2008), but it is widely believed that memory formation is dependent on changes in

synaptic efficiency that permit strengthening of associations between neurons; indeed,

activity-dependent synaptic plasticity at appropriate synapses during memory formation

is believed to be both necessary and sufficient for storage of information (Kandel, 2001;

Lynch, 2004).

3.4.2 Long-term potentiation  (LTP)

In 1894, Ramón y Cajal originally hypothesized that information storage based on

changes in strength of synaptic connections between neurons that are active. Donald O.

Hebb supported this hypothesis in one of his famous work (“The organization of

behaviour”, 1949) and proposed that if two neurons are active at the same time, the

synaptic efficiency of the appropriate synapse will be strengthened. The first full

description of LTP by Bliss et al. reported that trains of high-frequency stimulation to the

rabbit perforant path caused a sustained increase in efficiency of synaptic transmission in

the granule cells of the dentate gyrus (Bliss and Lomo, 1973).

Some characteristics of LTP (e.g. cooperativity, associativity and input

specificity) have support the hypothesis that LTP may be a biological mechanism for at

Fig 5. Schematic representation of the hippocampus. The major
input is carried by axons of the perforant path, which convey
sensory information from neurons in layer II of the entorhinal cortex
to the dentate gyrus. Perforant path axons make excitatory synaptic
contact with the dendrites of granule cells. Granule cells project,
through their axons (the mossy fibres), to the proximal apical
dendrites of CA3 pyramidal cells,which, in turn, project to ipsilateral
CA1 pyramidal cells through Schaffer collaterals and to contralateral
CA3 and CA1 pyramidal cells through commissural connections.
Picture pbtained from (Neves et al., 2008) and modified for PhD
thesis.
,



Introduction

- 24 -

least some forms of memory (Lynch, 2004). Some observations support this hypothesis:

e.g. rhythmic bursts of activity that induce LTP mimic naturally occurring theta rhythm

recorded in the hippocampus during exploratory behaviour (Larson et al., 1986; Rose and

Dunwiddie, 1986; Diamond et al., 1988; Greenstein et al., 1988). Inhibitors of

hippocampal LTP (AP5) also block hippocampal learning and retention of tasks (Morris

et al., 1986). LTP was first time described in the granule cells of the dentate gyrus (Bliss

and Lomo, 1973). But it is not restricted to the hippocampus rather it is an almost

ubiquitous property of excitatory synapses throughout the brain. Indeed, it is difficult to

find an excitatory pathway that does not express one or more forms of LTP (Malenka,

2003).

As discussed earlier at least two phases of memory are described: short-term

memory, which persists for a few hours, and long-term memory, which persists for

several days or much longer. At the cellular level, the storage of long-term memory is

associated with gene expression, de novo protein synthesis, and formation of new

synaptic connections. It has been shown that protein synthesis is required to maintain

long-term memory and it seems that long-term memory is accompanied by enlargements

of dendritic spines and associated postsynaptic densities (Yuste and Bonhoeffer, 2001;

Malenka and Bear, 2004; Matsuzaki et al., 2004). These structural changes may be

necessary to consolidate information-storage process (Kauer and Malenka, 2007).

Consistently, protein synthesis inhibitors can block persistent memory but leave short-

term memory unaffected, suggesting that stable long-lasting memories based on gene

activation that is triggered at the time of the experience. Interestingly, also LTP consists

of distinct phases involving different molecular mechanisms. The early phase (E-LTP),

which lasts 2–3 h, is independent of protein synthesis, while more persistent long-lasting

LTP (L-LTP), which lasts several hours in vitro and weeks in vivo, requires synthesis of

new proteins (Lynch, 2004).

3.4.3 Molecular mechanism of LTP

The form of LTP that appears to be important for spatial memory is the NMDA

receptor-dependent form that occurs at the Schaffer collateral pathway. Pharmacological

and genetic disruption of this type of LTP results in impaired performance in tasks that

require spatial memory (Chen and Tonegawa, 1997, Kentros, 1998 #1280). The
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activation of the NMDA receptor requires simultaneously postsynaptic glutamate release

and postsynaptic membrane depolarization. This relieves the voltage-dependent Mg2+

block of the NMDA receptor and allows the Ca2+ influx into the postsynaptic dendritic

spines (Kauer and Malenka, 2007). These characteristics of the NMDA receptor directly

relate to its important physiological roles in synaptic plasticity as a molecular coincidence

detector (Lynch, 2004). These was demonstrated in CA1 and dentate gyrus, using the

specific competitive NMDA receptor antagonist AP5 and the noncompetitive NMDA-

associated channel blocker MK801 (Collingridge et al., 1983; Coan and Collingridge,

1987; Coan et al., 1987). The increase of the Ca2+ concentration is an important trigger for

LTP. As consequence of the Ca2+ influx, a complex intracellular signalling cascade is

activated that include several protein kinases, especially Ca2+/Calmodulin-dependent

protein kinase II (CaMKII) (Malenka and Nicoll, 1999).

CaMKII is one of the most abundant proteins in neurons comprising 1–2% of the

total protein concentration. CaMKII is particularly high expressed at the synapse in

presynaptic and postsynaptic compartments (Fink and Meyer, 2002). Conversely, the

long lasting CaMKII activity is independent of calcium but it is triggered by calcium-

dependent autophosphorylation. This finding led to the concept that CaMKII is used as a

“molecular memory molecule” (Malenka et al., 1989; Malinow et al., 1989; Fukunaga et

al., 1993; Ouyang et al., 1997). Given these results, it was of interest to determine the

targets for CaMKII.

It was shown that CaMKII interact with the AMPA receptor GluR1 subunit

(Barria et al., 1997; Mammen et al., 1997) that results in an increased number of AMPA

receptors in the postsynaptic plasma membrane (Malenka and Nicoll, 1999; Malenka and

Bear, 2004). AMPA receptors are composed of the four different subunits GluR1– GluR4

(Hollmann and Heinemann, 1994; Rosenmund et al., 1998). It is controversially

discussed whether CaMKII interact directly with AMPA receptor subunits (Ehlers, 2000)

or indirectly via other proteins with AMPA receptor (e.g. Stargazin (Stg) and Stg-like

TARPs) (Chen et al., 2000; Schnell et al., 2002). A current model is that, during LTP,

phosphorylation of GluR1 by CaMKII enhances its conductance, while phosphorylation

of the AMPA receptor associated Stargazin controls the trafficking to the synapse

(Boehm and Malinow, 2005).
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The role of CaMKIV and the activation of the transcription factor CREB have

already discussed (section 1.1.1. “Nuclear calcium signals induce CREB- mediated gene

expression”). Of course, many studies of LTP presented here have been only partly

elucidated and some studies are neglected, but are intensively reviewed elsewhere.

3.4.4 DNA delivering system based on recombinant adeno-associated virus (rAAV)

3.4.4.1 Inverted terminal repeats (ITR)

Recombinant adeno-associated virus (rAAV) has become an attractive vehicle for

delivering transgenes to the central nervous system (CNS) due to its lack of toxicity and

absence of inflammatory response. The virus is a member of the Parvoviridae family;

AAV generally requires a helper virus (e.g. adenovirus or herpesvirus) to establish a

productive infection (Casto et al., 1967; Atchison, 1970; Richardson and Westphal,

1984). The shell of rAAV is approximately 25 nm in diameter and encapsidates a single-

stranded DNA genome of 4.7 kb that consists of two large open reading frames (ORFs)

flanked by inverted terminal repeats (ITR). The ITRs are required for genome replication

and packaging (McLaughlin et al., 1988). It is not absolutely clear which sequences

within the ITR are required for packaging or what the immediate DNA precursor for

packaging is (Zhou and Muzyczka, 1998). The two open reading frames (ORFs)

encoding the nonstructural and structural viral proteins (Srivastava et al., 1983).

3.4.4.2 Capsid proteins are encoded by cap gene

The right half of the genome contains the ORF for the cap gene, which encodes

three capsid proteins, VP1, VP2 and VP3 from two mRNAs, which are derived from a

primary transcript by alternative splicing and are expressed under the control of the p40

promoter (Green and Roeder, 1980; Trempe and Carter, 1988). Both spliced transcripts

(2.3-kb RNAs) differ only with respect to their 3' acceptor sites, which are apparently

located only 27 nucleotides apart. The largest protein (VP1 [87 kDa]) is generated from

the slightly larger message (2.3 kbVP1), whereas the other two proteins (VP2 [72 kDa] and

VP3 [62 kDa]) are translated from the smaller message (2.3kbVP2/VP3), by alternative use

of an ACG initiator encoded for VP2 and a downstream AUG initiator that encoded for

VP3 (Becerra et al., 1985; Muralidhar et al., 1994). Because the larger message (2.3



Introduction

- 27 -

kbVP1) is preferred to be spliced out, resulting in a reduced level of VP1 protein synthesis

and within the smaller message (2.3kbVP2/VP3), the ACG codon is a much weaker

translation initiation signal, therefore the ratio of the three capsid proteins is 1(VP1): 1

(VP2): 18 (VP3) (Rabinowitz and Samulski, 2000).

3.4.4.3 Rep proteins are encoded by rep gene

The left half of the genome contains the ORF for the rep gene, which encodes four

nonstructural Rep proteins, Rep78, Rep68, Rep52 and Rep40 according to their sizes in

kDa (Tratschin et al., 1984; Mendelson et al., 1986; Trempe et al., 1987; Weitzman et al.,

1994). The two larger Rep proteins, Rep78 and Rep68, are synthesized from unspliced

and spliced transcripts initiated at the p5 promoter; the smaller Rep proteins, Rep52 and

Rep40, are synthesized from the p19 transcripts (Kyostio et al., 1994). Rep68 and Rep78

can specifically bind the hairpin configuration formed by the AAV inverted terminal

repeat sequence (Im and Muzyczka, 1989), but no site-specific DNA binding could be

detected for Rep52 and Rep40 (Im and Muzyczka, 1992). Like Rep 68, Rep78 has an

ATP-dependent, site-specific, and strand-specific endonuclease activity that specifically

cuts the AAV origin at the inverted terminal repeats (Im and Muzyczka, 1990, 1992).

 Because the viral rep and cap genes are deleted in rAAV, reversion to wild type

is not a serious concern. Even if it were to occur, the wild-type virus (wtAAV), as

mention before is non-pathogenic and incapable of autonomous replication (Janson et al.,

2001). Deletion of the wtAAV rep gene prevents the integration properties in non-

dividing cells and therefore the vector DNA exists mainly in episomal form. Hermonat et

al. were the first using AAV as a general transduction vector, replacing the AAV Cup

genes with the neomycin resistance gene under the control of the SV40 early promoter

(Hermonat and Muzyczka, 1984). Later, modern AAV vectors have 96% of the viral

genome removed from the vector, leaving only the ITRs (McLaughlin et al., 1988;

Samulski et al., 1989). The absence of viral sequences means that no de novo viral

protein synthesis occurs following transduction, minimizing the amount of foreign

protein available to trigger immune responses.
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3.4.4.4 AAV serotypes

Eight different AAV serotypes have been described (Chiorini et al., 1997;

Chiorini et al., 1999; Xiao et al., 1999; Sanlioglu et al., 2000; Gao et al., 2002). A

serotype, by definition, is a newly isolated virus that does not efficiently cross-react with

neutralizing sera specific for all other existing and characterized serotypes. Of all known

AAV serotypes AAV 2 is the best-characterized serotype so far. It is known that AAV2

transduces a wide range of tissue types (e.g. liver, muscle, lung, and central nervous

system) but only with moderate efficiency. Therefore researchers have exploited cross-

packaging strategies to compare the transduction efficiencies of serotypes of AAV

vectors in different tissues. In general, AAV1 and 5 exhibit higher transduction

frequencies than AAV2 in all regions injected within the CNS (Burger et al., 2004).

3.4.4.5 Receptor binding and intracellular processing of rAAV

AVV2 capsid proteins first bind to heparan sulfate proteoglycans at the cell

surface (Summerford and Samulski, 1998) and subsequent interact with cofactors like the

human fibroblast growth factor receptor 1 (Qing et al., 1999), hepatocyte growth factor

receptor (Kashiwakura et al., 2005) and αVβ5 integrin (Summerford et al., 1999; Wu et

al., 2006) which may stabilize the virus attachment or participate during internalization.

Mutagenesis data of AAV2 suggest that the binding ability to heparan sulfate

proteoglycans depends on the correct assembly of VP trimers. In particular, a motif of

five basic amino acids (R484, R487, R585, R588 and K532) has been identified

contributed to the heparin binding (Kern et al., 2003; Opie et al., 2003). Less is known

about receptors of others serotypes. Chen et al. could show first time that transduction

with AAV1 was completely inhibited by removal of via α 2-3 sialic acid with sialidase,

while heparin had no effect (Chen et al., 2005).

After binding to cell surface receptors, in the case of AAV2, particles are

endocytosed into the cell via clathrin-coated pits. This event requires dynamin, a 100-kDa

cytosolic GTPase that selectively regulates clathrin-mediated endocytosis (Duan et al.,

1999). Into the cell, AAV escapes from early endosome by acidification. The acidic pH

of the endosomal lumen is likely to induce conformational changes e.g. exposure of the

phospholipase A2 (PLA2) domain located at the N-terminus of VP1 (Bleker et al., 2005).
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Following release from the endosome, AAV rapidly moves to the cell nucleus and

accumulates perinuclearly beginning within 30 min after the onset of endocytosis

pathways. Interestingly, the majority of the intracellular virus particles remain in a stable

perinuclear compartment in spite of gene expression from nuclear AAV genomes can be

detected (Bartlett et al., 2000). How the virus genome enters the nucleus and whether

virus particles uncoats in the nucleus, in the cytoplasm or in the endosome is still an open

question. In the presence of Adenovirus, however, cytoplasmic AAV quickly translocated

into the nucleus as intact particles as early as 40 min after coinfection. AAV appears to

enter the nucleus through a mechanism independent of the nuclear pore complex, since

agents that block the nuclear pore do not affect AAV nuclear entry. The rapid nuclear

translocation of intact AAV capsids in the presence of Adenovirus suggested that one or

more capsid proteins of Adenovirus might be altering trafficking (Xiao et al., 2002).

3.4.4.6 Promoter based transduction efficiency and specificity

As mention before any differences observed in transduction efficiency between

the different serotypes are likely due to diversity in the viral capsid proteins, their

receptor tropism, and/or their intracellular trafficking following cell entry. Therefore, a

mosaic virus composed of a mixture of capsid subunits from different serotypes enhances

the transgene expression. Using a mixture of AAV1 and 2 helper constructs, Hauck et al.

generated mosaic viruses that combine the transduction characteristics of AAV1 and

AAV2 (Hauck et al., 2003). Variations in transduction efficiency have also been

observed in vivo studies depending on the viral promoters. Klein et al. compared

recombinant adeno-associated virus (rAAV) vectors incorporating either the immediate

early cytomegalovirus (CMV) promoter or the neuron-specific enolase (NSE) promoter.

Transduction in hippocampus resulting from the NSE promoter-containing construct was

more efficient and persistent than that resulting from the CMV promoter containing

construct (Klein et al., 1998).  In addition, transgene expression from the hybrid CMV-

chicken β-actin (CBA) promoter, consisting of a fusion between the chicken β-actin

promoter with the CMV promoter enhancer sequences, is even more efficient (Klein et

al., 2002). Cell specific transgene expression depends on the promoter properties, it has

been shown that gene expression from AAV2 or AAV5 can be restricted to neurons in

vitro by incorporating the hSYN or CBA promoter or restricted mainly to astrocytes by
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using the mCMV promoter (Kugler, 2003, Shevtsova, 2005). Regardless of the promoter

used, transduction efficiency can also be increased using posttranscriptional regulatory

elements such as the Woodchuck hepatitis virus element posttranscriptional regulator

(WPRE). Accordingly, Xu et al. have reported that WPRE increased transgene expression

by 13-fold in the striatum and by 35-fold in the hippocampus (Xu et al., 2001).

The ability of rAAV to stably transduce a wide variety of neuronal cell types in

the brain at any developmental stage, from in utero to adult or senescent animals in all

brain regions through stereotaxic delivery, as well as ability of either short-term or long-

term CNS gene expression makes it extremely popular for in vivo expression.

3.5 Freshwater polyp: nuclear and cytoplasmic Ca2+-imaging

3.5.1 The freshwater polyp H. vulgaris

In the 1740s, the Swiss scientist Abraham Trembley discovered that the freshwater

polyp hydra, which belongs to the cnidaria phylum, could regenerate their heads and feet

and if cut into a few pieces all of them would regenerate to form new individuals. This

model has some advantages for morphological and molecular studies of regeneration

including: the optical transparency of the two tissue layers and the rapid growth rate with

a population doubling time of 3.5 days (Bosch, 2007). Hydra is made up of two cell

layers (the ectoderm and endoderm) separated by a thin extracellular matrix (ECM)

called the mesoglea. Functional studies have established that cell mesoglea interaction is

critical to developmental processes in hydra (Deutzmann et al., 2000; Sarras et al., 2002;

Shimizu et al., 2002). The mature mesoglea contains macromolecules such as laminins,

collagens, heparan sulfate proteoglycans and fibronectin-like molecules (Sarras and

Deutzmann, 2001). Regeneration starts with the immediate retraction of the mesoglea

which subsequently has to be rebuilt (Shimizu et al., 2002). The key role of the mesoglea

in hydra epithelial homeostasis is also underlined by the discovery that the survival of

hydra epithelial cells depends on their anchorage to extracellular matrix molecules

(Kuznetsov et al., 2002). Key regulators for degrading or remodelling the ECM are

metalloproteases (Deutzmann et al., 2000; Fowler et al., 2000; Sarras et al., 2002;

Shimizu et al., 2002).



Introduction

- 31 -

Hydras body plan is organized as a gastric tube with a mouth and ring of tentacles

at the head pole and a peduncle and basal disk at the foot pole. The organism has about

20 different cell types that are distributed along the longitudinal axis in a specific pattern

(Sarras et al., 2002). Cells either belong to the ectodermal or endodermal epithelial cell

lineage, or to the interstitial cell lineage. Epithelial cells are epitheliomuscular cells

covering the outside of the animal or lining the gastric cavity (Bosch, 2007). Interstitial

cells are mostly localized in the interstitial space between ectodermal epithelial cells and

provide precursors for gland cells, neurons, nematocytes and germ cells. The hydra

nervous system is organized as a nerve net that extends throughout the animal and is

made up of two cell lineages: the sensory mechanoreceptor cells, named nematocytes,

and the neurons, with typical synapses (Westfall, 1996).

Cells of hydra are in constant division and turnover. This division occurs by stem

cells in the body column that lead to differentiated body column cells that are constantly

displaced toward the poles (Campbell, 1967). The axial pattern of the animal is

maintained by a gradient of head formation competence, commonly referred to as the

head activation gradient. The gradient is maximal near the head decreasing down the

body column. As a consequence of this extensive cell turnover, hydra is highly

regenerative. Therefore, any isolated fragment of the hydra body, which is larger than a

few hundred epithelial cells, can regenerate into complete animal. Even aggregates of

dissociated cells will regenerate into viable polyps (Gierer et al., 1972; Technau et al.,

2000).

3.5.2 Molecular mechanism involved in head regeneration

Regeneration processes in multi-cellular animals depend on several signalling

transduction pathways. Studies of model organisms have identified a number of such

pathways responding to external signals and leading to changes in cell behaviour.

However, most model organisms are all bilaterians. Investigations of the roles of signal

transduction pathways have revealed that a number of the well-known developmental

signalling pathways were already existing in hydra (Steele, 2002; Bosch, 2007). At least

two signalling pathways involved in the regulation of the head formation in hydra are

described. One is mediated by PKC (Muller, 1996; Cardenas et al., 2000) and the other is

mediated by STK, the hydra homologue of Src (Cardenas et al., 2000; Fabila et al., 2002;
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Cardenas and Salgado, 2003). In addition, there is evidence for the involvement of a third

signalling pathways regulating the head formation. Manuel et al. could show that PI3K

and ERK1/2 are also involved in the head formation. It seems that ERK1/2 plays a central

role in regulating the activities of the PKC, STK and PI3K pathways towards the

transcription of head-specific genes (Arvizu et al., 2006; Manuel et al., 2006). In rodents,

an indirect target for ERK1/2 pathway is the transcription factor CREB. Galliot et al.

identified a hydra related CREB (hyCREB) participated in the CRE binding complex

(Galliot et al., 1995). More recently, Kaloulis et al. further explored the role of hyCREB

using an antibody against hyCREB, which specifically detects phosphoSer133-hyCREB

positive nuclei. They observed a dramatic increase in the number of phospho-hyCREB

positive nuclei at the regenerating tips of the head early during regeneration (Kaloulis et

al., 2004).

The transparency of the outer and inner cellular layer of hydra and the knowledge

about the different signalling pathways makes it extremely interesting for in vivo Ca2+

imaging.
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4 Material and Method

4.1 Material: media, buffer and antibodies

4.1.1 Fruit fly: preparation of larval muscle cells

Haemolymph like (HL3) adjusted to pH 7.2, described (Stewart et al., 1994)

HL3 (plus CaCl2) HL0 (free CaCl2) HL3 (high K+)
NaCl 70 mM 70 mM 70 mM
KCl 5 mM 5 mM 35 mM
CaCl2 1.5 mM 1 mM
MgCl2 20 mM 20 mM 10 mM
NaHCO3 10 mM 10 mM 10 mM
Trehalose 5 mM 5 mM 5 mM
Sucrose 115 mM 116,5 mM 84 mM
HEPES 5 mM 5 mM 5 mM
ddH20 to 1000ml to 1000ml to 1000ml

4.1.2 Fruit fly: preparation and in vivo imaging of adult flies

Ringer solution adjusted to pH 7.3

Hepes 5mM
NaCl 130mM
KCl 5mM
MgCl2 2mM
CaCl2 2mM
Sucrose 36mM

4.1.3 Fruit fly: immunohistochemistry (IHC)

Fixative solution used for fruit fly and hippocampal neurons

Paraformaldehyde 4%
Sucrose 4%
1xPBS to 100ml

Washing and dilution buffer (PAT) for whole mount fly brains

BSA 1%
Triton X-100 0.5%
Na-acide 0.05%
NGS (normal goat serum) 3% (added before blocking step)
1xPBS to 100ml
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Washing and dilution buffer (PBST) used for larvae

Tween 20 0.3%
NGS (normal goat serum) 5% (added before blocking step)
1xPBS to 100ml

Primary antibodies: Immunohistochemistry of larvae and whole mount brains

Mouse monoclonal anti Myc SC-40 (IHC 1:200) Santa Cruz
Rabbit polyclonal anti GFP (IHC 1:200) Molecular Probes

Secondary antibodies: Immunohistochemistry of larvae and whole mount brains

Goat anti mouse Cy3 (IHC 1:200) Dianova
Goat anti mouse Alexa488 (IHC 1:200) Molecular Probes
Goat anti rabbit Alexa488 (IHC 1:200) Molecular Probes

Antibodies are diluted in PBST (larvae) or in PAT (whole mount brains)

4.1.4 Hippocampal neurons: media for dissociated cells

Media used for preparation and culturing of primary hippocampal neurons are

previously described (Diploma thesis of JM. Weislogel, 2003)

4.1.5 Hippocampal neurons: media for cultured brain slice

OTC medium were prepared as described (Stoppini et al., 1991)

MEM high Glucose (6,5mg/ml) plus Hepes 50ml
Horse serum 25ml
Hank’s solution 25ml
ddH20 to 100ml

4.1.6 Hippocampal neurons: anaesthesia for in vivo injection

Sleep mix

Fentanyl 20 µl Fentanyl-Janssen
Medetomidin 30 µl Dormitor©
Midazolam 80 µl Dormicum©15/3
Dilution 1:2 with ddH20, used 3 µl/g body weight

Wake up mix

Atipamzol 120 µl Antisedan©
Flumazenil 200 µl Anexate©
Naloxon 120 µl Narcanti©
Undiluted 5 µl /g body weight
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4.1.7 Hippocampal neurons: media for acute brain slice

Slicing solution (gassed with 95% O2 and 5% CO2)

Sucrose 150mM
NaCl 40mM
KCl 4mM
MgCl2 7mM
NaH2PO4 1.25mM
CaCl2 0.5mM
Glucose 10mM
NaHCO3 26mM

Artificial cerebrospinal fluid (gassed with 95% O2 and 5% CO2)

NaCl 125mM
KCl 3.5mM
MgCl2 1.3mM
NaH2PO4 1.2mM
CaCl2 2.4mM
Glucose 10mM
NaHCO3 26mM

Potassium methylsulphate based solution (pH adjusted to 7.35 with KOH)

KCH3SO4 145mM
NaCl 8mM
HEPES 10mM
K2-phosphocreatine 10mM
Mg2-ATP 4mM
Na3-GTP 0.3mM

4.1.8 Hippocampal neurons: western blot (WB) and immunohistochemistry (IHC)

12% separation gel

SDS 10%
Tris-HCl, pH 8.8 1.5 M
AMBA (Acrylamide, Bis Acrylamide) 30%
APS (Ammonium Persulfate) 10 %
TEMED 0.1 %
ddH20 to 100ml
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4.5% stacking gel

SDS 0.4%
Tris-HCl, pH 6.8 0.5 M
AMBA (Acrylamide, Bis Acrylamide) 30%
APS (Ammonium Persulfate) 10 %
TEMED 0.1 %
ddH20 to 100ml

Sample buffer: western blot (WB)

Glycerol 10%
SDS 3%
Tris-HCl, pH 6.8 10mM
β-mercaptoethanol 5%
Bromphenolblue 0.1%

Washing buffer (PBST): western blot

Tween 20 0.01%
1xPBS to 100ml

Blocking and dilution buffer: western blot

Milk powder 5%
PBST to 100ml

Dilution and blocking buffer: Immunohistochemistry

BSA 2%
Triton X-100 0.1%
NGS (normal goat serum) 10%  (added before blocking step)
1xPBS to 100ml

Primary antibodies: Immunohistochemistry (IHC) or western blot (WB)

Rabbit polyclonal anti hrGFP (WB 1:1000) Stratagene
Rabbit polyclonal anti GFP (IHC 1:1000 or WB 1:10000) Molecular Probes
Rabbit polyclonal anti CREB (WB 1:1000) NEB
Rabbit polyclonal anti pCREB (WB 1:1000) Upstate
Rabbit polyclonal anti ATF3 C-19 (WB 1:800) Santa Cruz
Rabbit polyclonal anti Gal4 DBD (WB 1:2000) Santa Cruz
Rabbit polyclonal anti cFos SC-52 (WB 1:5000) Santa Cruz
Mouse monoclonal anti CaM (WB 1:10000) Upstate
Mouse monoclonal anti Myc SC-40 (IHC 1:1000 or WB 1:1000) Santa Cruz
Mouse monoclonal anti Flag M2 (IHC 1:1000 or WB 1:1000) Sigma
Mouse monoclonal anti α tubulin (WB 1:250000) Sigma
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Secondary antibodies: Immunohistochemistry (IHC) or western blot (WB)

Goat anti mouse Cy3 (IHC 1:800) Dianova
Goat anti rabbit Cy3 (IHC 1:800) Dianova
Goat anti mouse Alexa 488 (IHC 1:800) Molecular Probes
Goat anti rabbit Alexa 488 (IHC 1:800) Molecular Probes
Goat anti mouse HRP (IHC 1:5000) Dianova
Goat anti rabbit HRP (IHC 1:5000) Dianova

Antibodies are diluted either in western blot or immunohistochemistry dilution

buffer

4.1.9 Freshwater polyps: hydra medium

Media used for culture and imaging experiment of H. vulgaris are previously

described (Technau, 1992). Either CaCl2 or KCl used for stimulation experiments were

diluted to final concentration of 90mM directly in hydra medium.

4.2 DNA Plasmids and transgenic flies

4.2.1 Following DNA plasmids were obtained

DNA plasmid name Reference

EYFP-Nuc Cloentech

pN1 GCaMP (Nakai et al., 2001)

GCaMP 1.6 and GCaMP 1.6 (E140K) (Ohkura et al., 2005)

GCaMP 2.0 (Tallini et al., 2006)

Inverse Pericam (Nagai et al., 2001)

YC 3.60 (yellow cameleon) (Nagai et al., 2004)

VC 6.1 (Evanko and Haydon, 2005)

TN-XL (Mank et al., 2006)

D3 cpV (Palmer et al., 2006)

DRIP (DsRed2-referenced Inverse Pericam) (Shimozono et al., 2004)

mCherry (Shaner et al., 2004)

mRFPmars (Muller-Taubenberger et al., 2006)

hoTG actin EGFP (Wittlieb et al., 2006)

rAAV myc (Zhang et al., 2007)
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rAAV CaMBP4 flag (Zhang et al., 2007)

rAAV hrGFP (Zhang et al., 2007)

4.2.2 Following transgenic flies expressing the Ca2+ -indicators were obtained

Name/Genotype Reference

UAS GCaMP (Wang et al., 2003)

UAS TN-L15 (Griesbeck, 2004)

UAS TN-XL (Mank et al., 2006)

UAS CaM2.1-8.2 (Diegelmann et al., 2002)

Gal4 MB247; UAS CaM2.1-8.2 Dr. A. Fiala, Würzburg, Germany

Gal4 Or83b; UAS CaM2.1-8.2 Dr. A. Fiala, Würzburg, Germany

Gal4 MB247 Dr. A. Fiala, Würzburg, Germany

Gal4 MHC Dr. C. Goodman, Berkeley, CA

Gal4 OK6 Dr. C. O’Kane, Cambridge, UK

Gal4 OK107 (Connolly et al., 1996)

Gal4 Or83b Dr. A. Fiala, Würzburg, Germany

Gal4 Feb170 (Siegmund and Korge, 2001)

Hs-Gal4 (P26) (Xia et al., 2005)

2U (wild-type) Dr. T. Tully, Cold Spring Harbor, NY

Ubi Histon 2A-RFP Dr. J. Großhans Heidelberg, Germany

4.3 Cloning of Ca2+-indicators and Ca2+/CaM buffer (hippocampal neurons)

The Ca2+-indicators were delivered into cultured hippocampal neurons either by

Lipofectamin 2000 (Invitrogen GmbH, Karlsruhe, Germany) based transfection

(Weislogel et al., 2003) or by recombinant Adeno-associated virus (Zhang et al., 2007).

Live imaging using the synthetic Ca2+-indicator Fluo-3 was done (Weislogel et al., 2003).

4.3.1 Nuclear Ca2+-indicator: pN1 GCaMP NLS

5’NheI and 3’BamHI sides were added by PCR to the entire coding sequence of

pN1 GCaMP 1.3 (Nakai et al., 2001). The PCR product was subcloned into pCR blunt

vector (Zero Blunt PCR cloning kit; Invitrogen GmbH, Karlsruhe, Germany) to yield
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GCaMP blunt and sequenced (GATC Konstanz, Germany). Subsequently, the coding

sequence was inserted into 5’NheI and 3’BglII sides of pEYFP-Nuc (Clontech) to yield

pN1 GCaMP NLS.  The 3’BglII side of pEYFP-Nuc (Clontech) was deleted by ligation

with the 3’BamH1 side of the PCR product. The following primers were used: 5’ TTG

CTA GCG CTA CCG GAC TCA GAT 3’ (forward) and 5’ CTG GAT CCC TTC GCT

GTC ATC ATT 3’ (reverse).

4.3.2 Nuclear localized EYFP: rAAV EYFP-Nuc

The vectors used to construct and package rAAVs have been described previously

(Klugmann et al., 2005), and were provided by Matthias Klugmann and Matthew During.

The rAAV expression vector was modified in the lab by Dr. Sheng Jia Zhang. 5’Nhe I

side was deleted and a multiple cloning site (MCS) containing a myc-tag was inserted

into 5’BamHI and 3’EcoRI sides of rAAV expression vector to yield rAAVmyc (Zhang

et al., 2007).

 5’BglII and 3’XbaI sides were added by PCR to pM13 NLS VP16. The PCR

product was inserted into rAAVmyc to yield rAAV M13 NLS VP16 myc (see section

4.3.11). 5’BamHI and 3’NheI sides of rAAVmyc were deleted and 5’NheI and 3’BamHI

were created by ligation with the PCR product. The coding sequence of pEYFP-Nuc

(Clontech) was inserted into 5’NheI and 3’BglII sides of rAAV M13 NLS VP16 myc to

yield rAAV EYFP-Nuc.

4.3.3 Nuclear Ca2+-indicator: rAAV GCaMP NLS

The coding sequence of pN1 GCaMP NLS was inserted into 5’NheI and 3’BamHI

sides of rAAV EYFP-Nuc to yield rAAV GCaMP NLS.

4.3.4 Nuclear Ca2+-indicator: rAAV Inverse Pericam NLS (rAAV IP NLS)

5’NheI and 3’BglII sides were added by PCR to the entire coding sequence of

Inverse Pericam pcDNA 3 (Nagai et al., 2001). The PCR product was inserted into

5’NheI and 3’BglII sides of rAAV EYFP-Nuc to yield rAAV Inverse Pericam NLS

(rAAV IP NLS). The following primers were used: 5’ TTT TGC TAG CGC CAC CAT

GAA GAG G 3’ (forward) and 5’ GAT GAC AGC AAA GAG ATC TTC T 3’ (reverse).
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4.3.5 Nuclear Ca2+-indicator: rAAV GCaMP 1.6 NLS

5’NheI and 3’BglII sides were added by PCR to the entire coding sequence of pN1

GCaMP 1.6 (Ohkura et al., 2005). The PCR product was inserted into 5’NheI and 3’BglII

sides of rAAV EYFP-Nuc to yield rAAV GCaMP 1.6 NLS. The following primers were

used: 5’ TTA GTG AAC CGT CAG ATC CGC TAG 3’ (forward) and 5’ AGG CAA

GAT CTC TTC GCT GTC ATC 3’ (reverse).

4.3.6 Nuclear Ca2+-indicator: rAAV GCaMP 2.0 NLS

5’AgeI and 3’BglII sides were added by PCR to the entire coding sequence of pN1

GCaMP 2.0 (Tallini et al., 2006). The PCR product was inserted into 5’AgeI and 3’BglII

sides of rAAV EYFP-Nuc to yield rAAV GCaMP 2.0 NLS. The following primers were

used: 5’ TTA ACC GGT GGA TCC CGC CAC CAT GCG GGG 3’ (forward) and 5’

AGC CAG ATC TCT TCG CTG TCA TCA 3’ (reverse).

4.3.7 Nuclear localized EYFP: rAAV EYFP Cherry Nuc

5’BspEI and 3’XhoI sides were added by PCR to the entire coding sequence of

pBS34 mCherry (Shaner et al., 2004). Additionally, five amino acids linker sequences

(GGSGG) were added to the 3’ and 5’ end of the PCR product by PCR. The PCR product

was inserted into 5’BspEI and 3’XhoI sides of rAAV EYFP-Nuc to yield rAAV EYFP

Cherry Nuc. The following primers were used: 5’ TAT CCG GAA GAT CTG GTG GCA

GCG GTG GCA TGG TGA GCA AGG GCG AG 3’ (forward) and 5’ GCA AGC TTC

TCG AGT GCC ACC GCT GCC ACC CTT GTA CAG CTC GTC CAT GC’ (reverse).

4.3.8 Nuclear localized EYFP: rAAV EYFP-Nuc Cherry

5’BglII and 3’HindIII sides were added by PCR to the entire coding sequence of

pBS34 mCherry (Shaner et al., 2004) and additionally, two five amino acids linker

sequences (GGSGG) were added to the 3’ and 5’ end. The PCR product was inserted in

frame into 5’BamHI and 3’HindIII sides of rAAV EYFP-Nuc to yield rAAV EYFP-Nuc

Cherry. The 5’BamH1 side of rAAV EYFP-Nuc was deleted by ligation with 5’BglII site

of the PCR product. Primers see section 4.3.7.
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4.3.9 Nuclear Ca2+-indicator: rAAV GCaMP2 NLS Cherry

Coding sequence of rAAV GCaMP2 NLS were digest and in frame inserted into

5’AgeI and 3’BglII sides of rAAV EYFP-Nuc Cherry to yield rAAV GCaMP2 NLS

Cherry.

4.3.10 Nuclear Ca2+/CaM buffer: pM13 NLS VP16 and p2xM13 NLS VP16

The Ca2+-indicator pN1 GCaMP 1.3 (Nakai et al., 2001) were used as template to

amplify the chicken smooth muscle M13 peptide and parts of the cpEGFP. Either one or

two copies of the PCR product were inserted into the pVP16 AD cloning vector (BD

Biosciences, Clontech) to yield pM13 NLS VP16 and p2xM13 NLS VP16 (Zhang et al.,

2006).

4.3.11 Nuclear Ca2+/CaM buffer: rAAV (2x) M13 NLS VP16 myc

5’BglII and 3’XbaI sides were added by PCR to the entire coding sequence of

either pM13 NLS VP16 or p2xM13 NLS VP16. Both PCR products were cloned into

rAAVmyc to yield either rAAV M13 NLS VP16 myc or rAAV 2xM13 NLS VP16 myc.

The following primers were used: 5’ TTT GGA GGA GAT CTA AGC TAG CGC 3’

(forward) and 5’ CAT TAT CTA GAA GCT TCT GCA GAC 3’ (reverse)   

4.3.12 Nuclear Ca2+/CaM buffer: rAAV (2x) M13 NLS myc

5’BamHI and 3’XbaI sides were added by PCR to the entire coding sequence of

either pM13 NLS VP16 or p2xM13 NLS VP16. Both PCR products were cloned into

rAAVmyc to yield either rAAV M13 NLS myc or rAAV 2xM13 NLS myc. The

following primers were used: 5’ TCC TCG GAT CCA GAA GTA GTG AAG 3’

(forward) and 5’ TTC CTA GCT CTA GAG TCC AGA TCG 3’ (reverse)   

4.4 Cloning of Ca2+-indicators and Ca2+/CaM buffer (transgenic flies)

To generate a transgenic fly expressing the nuclear localised Ca2+-indicator, the

Gal4/UAS (Brand and Perrimon, 1993) system was used to direct the expression of the

indicator to specific cells of interest. The embryo injection to generate the transgenic flies

was done by Best Gene Company (Chino Hills, California) and at least five independent

transformants expressing the gene of interest heterozygous were sent back to the lab.
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4.4.1 Nuclear Ca2+-indicator: UAS GCaMP NLS

The coding sequence of GCaMP NLS blunt (see section 4.3.1) was inserted into

5’BglII and 3’NotI sites of UAS injection vector to yield UAS GCaMP NLS. The 5’BglII

side of UAS injection vector was deleted by ligation with the 5’BamH1 site of GCaMP

NLS blunt.

4.4.2 Nuclear Ca2+-indicator: UAS GCaMP2 NLS Cherry

Coding sequence of rAAV GCaMP2 NLS Cherry were inserted into 5’BamHI and

3’EcoRI sides of pCR blunt vector (Invitrogen- Zero Blunt PCR cloning kit) to yield

GCaMP2 NLS Cherry blunt. Coding sequence of GCaMP2 NLS Cherry blunt was

inserted into 5’BglII and 3’NotI sites of UAS injection vector to yield UAS GCaMP2

NLS Cherry. The 5’BglII side of UAS injection vector was deleted by ligation with the

5’BamH1 site of GCaMP2 NLS Cherry blunt.

4.4.3 Nuclear Ca2+/CaM buffer: UAS 2xM13 NLS myc

Coding sequence of rAAV 2xM13 NLS myc were inserted into 5’BamHI and

3’EcoRI sides of pCR blunt vector (Invitrogen- Zero Blunt PCR cloning kit) to yield

2xM13 NLS myc blunt. Coding sequence of 2xM13 NLS myc blunt was inserted into

5’BglII and 3’NotI sites of UAS injection vector to yield UAS 2xM13 NLS myc. The

5’BglII side of UAS injection vector was deleted by ligation with the 5’BamH1 site of

2xM13 NLS myc blunt.

4.4.4 Nuclear Ca2+/CaM buffer positive control: UAS CaMBP4 myc

5’NheI, 5’BamHI and 3’BglII sides were added by PCR to the entire coding

sequence of rAAV CaMBP4 flag (Zhang et al., 2007). CaMBP4 consists of four copies of

the rabbit skeletal muscle M13 peptide (Wang et al., 1995). The PCR product was

inserted into 5’NheI and 3’BamHI sides of rAAV 2xM13 NLS myc to yield rAAV

CaMBP4 myc. The entire coding sequence of rAAV CaMBP4 myc was inserted into

5’BamHI and 3’EcoRI sides of pCR blunt vector (Invitrogen- Zero Blunt PCR cloning

kit) to yield CaMBP4 myc blunt. Subsequently, the coding sequence of CaMBP4 myc

blunt was inserted into 5’BglII and 3’NotI sites of UAS injection vector to yield UAS

CaMBP4 myc. The 5’BglII side of UAS injection vector was deleted by ligation with the
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5’BamH1 site of CaMBP4 myc blunt. The following primers were used: 5’ AAT TGC

TAG CGG ATC CCC CAT GGG ACC C 3’ (forward) and 5’ CGA TAG ATC TGT

AGT CAC TGC C 3’ (reverse).

4.4.5 Nuclear Ca2+/CaM buffer negative control: UAS mM13 NLS myc

A negative control were designed by Dr. Carla Margulies and synthesised by the

GeneArt Company. The original 2xM13 NLS myc was modified by three amino acid

substitutions in both copies of M13 (first M13: W11E, V18K and L24R; second M13

W62E, V69K and L75R) and by deletion of the first Xho1 site within the coding

sequence UAS 2xM13 NLS myc. The synthesised sequence of pGA4 mut 2xM13 was

inserted into 5’NheI and 3’XhoI sites of rAAV 2xM13 NLS myc to yield rAAV mut

2xM13 NLS myc and now named mM13 NLS myc. Coding sequence of rAAV mM13

NLS myc were inserted into 5’BamHI and 3’EcoRI sides of pCR blunt vector

(Invitrogen- Zero Blunt PCR cloning kit) to yield mM13 NLS myc blunt. Coding

sequence of mM13 NLS myc blunt was inserted into 5’BglII and 3’NotI sites of UAS

injection vector to yield UAS mM13 NLS myc. The 5’BglII side of UAS injection vector

was deleted by ligation with the 5’BamH1 site of mM13 NLS myc blunt.

4.5 Cloning of Ca2+-indicators (transgenic hydra)

To generate a transgenic hydra expressing the nuclear and cytoplasmic Ca2+-

indicator GCaMP, embryo injection at two to eight cell stage were done as described

(Wittlieb et al., 2006).

4.5.1 Nuclear/ cytoplasmic Ca2+-indicator: hyGCaMP and hyGCaMP NLS

5’NheI, 3’BglII and 3’EcoRI sides were added by PCR to the entire promotor

sequence of hoTG actin EGFP (Wittlieb et al., 2006). The PCR product was inserted into

5’XbaI and 3’EcoRI to yield ∆XbaI hoTG actin. The 5’XbaI side of hoTG actin EGFP

vector was deleted by ligation with the 5’NheI site of the PCR product. A MCS

containing additional restriction sites was inserted into 5’BglII and 3’EcoRI sides to yield

∆XbaI hoTG actin MCS. The following primers were used for the MCS: 5’ GAT CTA

GCT TCG CTA GCT GCA GTC GAC GGT GGA TCC ACC TAA G 3’ (forward) and
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5’ GAT CTA GCT TCG CTA GCT GCA GTC GAC GGT GGA TCC ACC TAA G 3’

(reverse).

Due to AT-rich genome of H. vulgaris the entire coding sequence of pN1 GCaMP

NLS (see section 4.3.1) was optimised by the Operon Company according to NCBI

taxonomy browser to yield pPCR-Script GCaMP NLS.  5’Nhe1 and 3’BamHI sides were

added to the ends of the synthesised gene and additionally, a BglII side upstream of the

nuclear localisation signal was created. The optimised sequence of pPCR-Script GCaMP

and pPCR-Script GCaMP NLS were inserted into 5’NheI and 3’BamH1 sidess of ∆XbaI

hoTG actin MCS to yield ∆XbaI hoTG actin GCaMP and ∆XbaI hoTG actin GCaMP

NLS (named here hyGCaMP and hyGCaMP NLS).

4.5.2 Nuclear Ca2+-indicator: hyGCaMP NLS mars

5’BglII and 3’EcoRI sides were added by PCR to the entire coding sequence of

mRFPmars (Muller-Taubenberger et al., 2006) and additionally, a five amino acids linker

sequence (GGSGG) was also added to the 5’ end. The PCR product was inserted in frame

into 5’BamH1 and 3’EcoRI sides of hyGCaMP NLS to yield hyGCaMP NLS mars. The

5’BamHI side of hyGCaMP NLS was deleted by ligation with the 5’BglII site of the PCR

product. The following primers were used: 5’ TAT AGA TCT GGT GGC AGC GGT

GGC ATG GCA TCA TCA GAA GAT G 3’ (forward) and GGT AGA CAT TCA ACA

GGT GCA TAA GAA TTC GCC 3’(reverse).

4.5.3 Cytoplasmic Ca2+-indicator: hyGCaMP mars

The PCR product of mRFPmars (see section 4.5.2) was inserted in frame into

5’BamH1 and 3’EcoRI sides of pPCR-Script GCaMP to yield pPCR-Script GCaMP

mars. Subsequently, the entire coding sequence of pPCR-Script GCaMP mars was

inserted into 5’NheI and 3’EcoRI sides of hyGCaMP to yield hyGCaMP mars.

4.6 Fruit fly: culture, in vivo imaging and behaviour assay

4.6.1 Fruit fly: culture and genetics

Flies were cultured on standard medium at 25ºC, 60% relative humidity. Standard

medium was made according to standard medium used at Bloomington Drosophila
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stock centre (homepage http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/media-

recipes.htm). Standard medium: 8g/l agar, 18g/l yeast, 10g/l soy flour, 80g/l yellow

cornmeal, 22g/l light corn syrup, 80g/l malt extract and 6,25ml/l propionic acid.

For immunostaining in larvae, flies carrying UAS transgenes (listed above) were

crossed with muscle specific driver line (Gal4 MHC). For live imaging in larvae, flies

carrying UAS transgenes containing GCaMP (Wang et al., 2003) or GCaMP NLS were

crossed with motoneurons specific (Gal4 OK6) driver lines. 3rd instar larvae were used

for staining as well as for imaging.

For in vivo imaging in adult flies, flies carrying UAS transgenes containing

GCaMP (Wang et al., 2003) or GCaMP NLS were crossed with mushroom body specific

driver line Gal4 MB247 (Dr. A. Fiala, Würzburg, Germany). New hatched flies (female)

were collect and cultured for additional 5-6 days on standard medium at room

temperature and transferred over night to 25ºC before used next day for imaging.

For the odour avoidance assay, all transgenic flies were outcrossed into 2U wild-

type (Dr. T. Tully, Cold Spring Harbor, NY) background for at least six generations by

standard Drosophila genetics. Flies carrying UAS transgenes containing 2xM13 NLS

myc or 2U (wild-type) were crossed with heat shock driver line P26 (Xia et al., 2005).

Flies were kept on standard medium at 18ºC and 70% relative humidity to prevent leaky

expression. Two to three days after hatching, flies were collect for heat shock and

training. Heat shock induction was carried out according to an established protocol with

same hs-GAL4 driver line (Xia et al., 2005).

4.6.2 Fruit fly: immunostaining and live imaging of 3rd instar larvae

To test the expression level of the transgenic lines generated in this study

immunostaining of larvae were done. Preparation were done as described (Stewart et al.,

1994; Sigrist et al., 2000). Briefly, third instar larvae were dissected by making a

longitudinal mid-dorsal incision and pinning the cuticle flat in haemolymph-like saline

HL0 (HL3, Ca2+ free) solution. The internal organs were carefully removed to expose the

body-wall muscles and the nervous system. Larvae preparations were incubated in

fixative solution for 10min at RT. Larvae preparations were washed in Drosophila larvae

washing buffer (PBST) at RT. After incubation with 5% normal goat serum (NGS) for
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1h, primary antibody (diluted in Drosophila antibody dilution buffer) was added and kept

overnight at 4ºC. Next day, larvae preparations were washed again in PBST and

secondary antibody (diluted in Drosophila antibody dilution buffer) was added and

incubated for 1h at RT. Finally, larvae preparations were counterstained and mounted in

VECTASHIELD® containing DAPI (1.5µg/ml). Larvae preparations were imaged using

a Leica SP2 confocal microscope with an HCX PL APO CS 40x 1.25 oil UV objective

(Leica Microsystems GmbH, Wetzlar, Germany). Confocal z-stacks were processed

using ImageJ and Adobe Photoshop software.

To test the brightness and kinetics of UAS GCAMP NLS Ca2+-imaging were done.

The preparation of the larval brain are in the beginning similar to steps as described

(Stewart et al., 1994; Sigrist et al., 2000). Briefly, third instar larvae were dissected by

making a longitudinal mid-dorsal incision and pinning the cuticle flat in haemolymph-

like saline HL0 (HL3, Ca2+ free) solution. The internal organs were carefully removed to

expose the body-wall muscles and the nervous system. The nervous system were

transferred to the perfusion chamber (LIS, Reinach, Switzerland) and completely

submerged with continuously flowing (1.0 ml/min) HL0 solution. A small metal ring on

top of the larval brain was used to reduce movement artefacts. Larval brains were imaged

using a Leica SP2 confocal microscope with an HCX PL APO CS 40x 1.25 oil UV

objective (Leica Microsystems GmbH, Wetzlar, Germany). Time series as well as

confocal z-stacks were processed using ImageJ, Windows Excel and Adobe Photoshop

software. ∆F/F was calculated as ∆F/F = (F-F0)/F0. F= fluorescence and F0= baseline

fluorescence corresponding to the average fluorescence over a 60 sec window before

stimulation.

4.6.3 Fruit fly: behaviour assay

Olfactory associative learning was measured by training 2–3 days old flies with a

Pavlovian conditioning procedure (Tully and Quinn, 1985). Groups of about 60 flies are

placed in the training chamber with air drawn through the chamber at 750 ml/min.  The

flies are exposed to this novel environment for 90 seconds. Flies received one training

session, during which they were exposed for 60sec sequentially to one odour

(conditioned stimulus, CS+, 3-octanol (OCT) or 4-methyl-cyclohexanol (MCH)) paired
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with 60V electric shock (US) and then a second odour (unconditioned stimulus, CS-,

OCT or MCH) without US. The 60V electric shock is delivered in 1.5 sec pulses with 4.5

sec pauses.

Conditioned odour avoidance was tested immediately after training. During testing,

flies were exposed simultaneously to the CS+ and CS- in a T-maze for 2 min. Then, flies

were trapped in either T-maze arm, anaesthetized, and counted. From this distribution, a

performance index (PI) was calculated as the number of flies avoiding the shocked odour

minus that avoiding the non-shocked odour divided by the total number of flies and

finally multiplied by 100. A equal distribution (no learning) yielded a PI of 0 and 100%

distribution away from the CS+ yielded a PI of 100 (Xia et al., 2005). The pure odours

were diluted 1.5:1000 (OCT) and 1:1000 (MCH) in mineral oil. To eliminate naive odour

bias, experiments are performed in a counterbalanced design and averaged, with one

group of flies used in the calculation of the PI being trained to the first odour and a

second group to the second odour.

24h memory was evaluated after spaced or massed training, which induces strong,

long-lasting memory for conditioned avoidance (Tully et al., 1994). Spaced training

consists of ten cycles of one-session training, where a 15 minutes rest interval is

introduced between each session. Massed training consists of ten cycles of one-session

training, where one session immediately follows the previous one. Then flies were tested

for memory retention of conditioned avoidance at the choice point of the T-maze after

one day. Performance index was calculated as described before.

4.6.4 Fruit fly: in vivo imaging

Functional imaging procedures were similar to those already described (Yu et al.,

2004; Yu et al., 2005). Flies were immobilized in culture bottle on ice without CO2

anesthesia and mounted in blue pipette tips and their exposed heads secured to the tip

opening with silicon cement. The head was covered with polyethylene foil, where which

was sealed against the cuticle with silicone. A small area of foil and cuticle was removed

from the top of the head capsule and this allowed optical access to the mushroom bodies.

The brain was immediately bathed with Ringer solution. Tracheal air sacks and glands

covering the brain were removed from head capsule (Riemensperger et al., 2005).
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Finally, flies were mounted beneath a 20x objective (NA = 0.9) on an upright microscope

(BX51WI, Olympus, Hamburg, Germany) equipped with a CCD camera (Photometrics

Coolsnap HQ, Roper Scientific, Ottobrunn, Germany) connected through a software

interface (Metafluor, Universal Imaging Systems and Molecular Devices, Downington

PA, USA) to a computer monitor. Excitation light was generated by a monochromator

coupled to a light source with a 75W Xenon arc lamp (Optoscan and Optosource, Cairn,

Faversham, UK). UAS GCaMP and UAS GCaMP NLS were excited at 480nm with a

bandwidth of 20nm through a BA470-490 filter (Olympus) and emission was passed

through a BA510-550 filter before collection at the CCD chip. Due to strong

photoisomerization of GCaMP, experiments were performed at a constant imaging rate

(2Hz). A constant air stream was guided through a Pasteur pipette with the tip placed at a

distance of 5mm from the fly’s antennae. The pure odours were delivered a rate of 1ml/s.

Odour (OTC 10-1) was spread on a small piece of filter paper inside of a syringe barrel

and the syringe barrel was placed in line with the pressurized air (Riemensperger et al.,

2005). Electric shock pulses were applied to the fly’s abdomen. A total of 10 pulses of

electric shock at 90V were delivered with each shock lasting between 50ms and 300ms

with 500ms rest interval. Time series were processed using Metafluor. Subsequently,

analysis was done using Windows Excel and Adobe Photoshop software. ∆F/F was

calculated as ∆F/F = (F-F0)/F0. F= fluorescence and F0= baseline fluorescence

corresponding to the average fluorescence over a 60 sec window before stimulation.

4.6.5 Fruit fly: whole mount immunostaining of adult brains

Fly brains were prepared similar as described (Krashes et al., 2007). Briefly, fly

brains were dissected in ice-cold Schneider’s Drosophila Medium (Gibco Invitrogen,

Gaithersburg, MD, USA) and incubated in fixative solution overnight at 4ºC. Brains were

washed in Drosophila washing buffer (PAT) at RT. After incubation with 3% normal

goat serum (NGS) for 1h, primary antibody (diluted in Drosophila antibody dilution

buffer) was added and kept overnight at 4ºC. Next day, brains were washed again in PAT

and secondary antibody (diluted in Drosophila antibody dilution buffer) was added and

kept overnight at 4ºC. Next day, brains were washed again in PAT overnight. Finally,

brains were counterstained and mounted in VECTASHIELD® containing DAPI
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(1.5µg/ml). Brains were imaged using either Leica SP2 confocal microscope with HCX

PL APO CS 40x 1.25 oil UV objective (Leica Microsystems GmbH, Wetzlar, Germany)

or Zeiss LSM 5 Exciter with Zeiss 40x EC Plan-NEOFLUAR objective (Zeiss

Application Center, Heidelberg). Confocal z-stacks were processed using ImageJ and

Adobe Photoshop software.

4.7 Hippocampal neurons: culture and in vitro, in vivo imaging

4.7.1 Hippocampal neurons: culture and stimulation of primary

The procedure used to isolate and culture hippocampal neurons has been described

previously (Bading and Greenberg, 1991; Bading et al., 1993, Weislogel, et al. 2003).

Briefly, hippocampal neurons from newborn C57Bl6J mice (Charles River, Sulzfeld,

Germany) were cultured in Neurobasal media (Invitrogen, Gaithersburg, MD, USA)

containing 1% rat serum, B27 (Invitrogen, Gaithersburg, MD, USA), and penicillin and

streptomycin (Sigma). Hippocampal neurons from newborn Sprague-Dawley rats were

prepared in the same way with the exception that the growth media was with B-27 serum-

free supplement (Invitrogen GmbH, Karlsruhe, Germany). Neurons were infected with

rAAVs after 4 days in vitro (DIV) and stimulations were done at 10-12 DIV when

transgene protein expression has peaked to remain at stable level as described (Zhang et

al., 2007). Action potential bursting was induced by treatment with the GABAA receptor

antagonist Bicuculline (50µM) as described previously (Hardingham et al., 2001; Arnold

et al., 2005).

4.7.2 Hippocampal neurons: immunostaining of dissociated cells

Primary hippocampal neurons were incubated in fixative solution for 15 min at RT.

Cells were washed in 1xPBS at RT. After incubation with blocking buffer for 1h, primary

antibody (diluted in antibody dilution buffer) was added and kept overnight at 4ºC. Next

day, cells were washed again in 1xPBS and secondary antibody (diluted in antibody

dilution buffer) was added and incubated for 1h at RT. Finally, cells were counterstained

with nuclear maker Hoechst 33258 (Invitrogen), Moviol (Calbiochem) mounted. Cells

were imaged using a Leica SP2 confocal microscope with an HCX PL APO CS 40x 1.25

oil UV objective (Leica Microsystems GmbH, Wetzlar, Germany). Confocal z-stacks
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were processed using ImageJ and Adobe Photoshop software.

4.7.3 Hippocampal neurons: western blot analysis of dissociated cells

For sodium dodecyl sulfate poly acrylamide gel-electrophoresis (SDS-PAGE)

neurons were lysed by adding 200µl pre-heated 1xLaemmli and transferred into

Eppendorf tubes. Additionally, samples were boiled for 5 min to denature all protein.

Sample were loaded on 12% SDS poly acrylamide gels and were run at 35mA/gel for

90min. Proteins were transferred directly onto a nitrocellulose membrane with a pore size

of 0.45 µm (Schleicher & Schuell) in a wet transfer chamber for 1.5 hours at a constant

potential of 20V. As control, membrane was counterstained with Ponçeau red (Serva) for

5min. After incubation with Western plot blocking solution for 1h primary antibody

(diluted in Western plot blocking solution) was added and kept overnight at 4ºC. Next

day, membrane was washed with PBST. The secondary antibody (diluted in Western plot

blocking solution) was applied for 30 min and then washed off with PBST. Finally,

membrane was subjected to an enhanced chemiluminescence solution (ECL, Amersham)

and afterward exposed to Kodak Hyperfilm for the desired time. Films were developed in

a Chemilumininescence Film developer M35M-Omat Processor (Kodak).

4.7.4 Hippocampal neurons: preparation and infection of cultured brain slice

The brain slice culture technique represents a simple but effective procedure to

maintain in vitro nervous tissue. 5-6 days old newborn Sprague Dawley rats (Charles

River, Sulzfeld, Germany) were used for the slice cultures. The procedure used to isolate

and culture hippocampal brain slices has been described previously (Stoppini et al.,

1991). Briefly, brain slices were cultured on 0.4µm pore size membranes supplied by

Millipore (Billerica, Massachusetts, USA) in a humidified atmosphere of 5 % CO2 at 37

°C. A half OTC medium change was performed every third day. Brain slices were

infected either with nuclear Ca2+-indicator (rAAV GCaMP 1.6 NLS, rAAV GCaMP 2.0

NLS, rAAV GCaMP2 Cherry) or nuclear localized EYFP (rAAV EYFP-Nuc) at 4 or 5

DIV. A total volume of 2,5µl containing about 1x1011 genomic virus particles were added

directly on top of the slice preparation. Ca2+ live imaging was done 10 days after virus

application when transgene protein expression has peaked to remain at stable level. Slices

were stimulated either with 50µM Bicuculline or 50mM KCl, (see section 1.5.1).
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Additionally, slices were fixed over night in fixative solution and counterstained with the

nuclear maker Hoechst 33258 (Invitrogen).

4.7.5 Hippocampal neurons: in vivo injection and slice preparation of juvenile rats

Nuclear Ca2+-indicators (rAAV IP NLS, rAAV GCaMP 1.6 NLS, rAAV GCaMP

2.0 NLS) were delivered by stereotaxic injection (Kopf Instruments, Tujunga, CA) into

the hippocampus of Sprague Dawley rats (Charles River Breeding Laboratories) at P23

weighing ∼44g as described previously (Cetin et al., 2006). Animals were anesthetized

intraperitoneal with sleep-mix. A total volume of 3µl containing about 2x109 genomic

virus particles were injected unilaterally at flow rate of 200 nl/min using a

microprocessor-controlled mini-pump (World Precision Instruments, Sarasota, FA). The

following coordinates relative to Bregma were: anteroposterior, -4.3 mm; mediolateral, -

4.1 mm; dorsoventral (2xlineshot), -3.6 and -3.9 mm from the skull surface. After

operation, animals were antagonised by wake up mix treatment, applied

subcutaneously. Animals had free access to food and water and were housed under

diurnal lighting conditions. At P35-39, rats were anaesthetized by inhalation and killed by

decapitation. The brain was rapidly removed and submerged in ice-cold slicing solution.

300µm thick acute slices were cut using a vibratome (CU65 Cooling Unit & HM650V

Vibratome, Microm, Walldorf, Germany) in slicing solution maintained at 0°C.

Hippocampii were dissected out of each slice and transferred to a holding chamber

containing artificial cerebrospinal fluid. Slices were maintained at 32°C for the first 30

min and then returned to room temperature until used for recording over the subsequent

4h. The experiments were carried out according to ethical guidelines for the care and use

of laboratory animals for experiments, and were approved by the local animal care

committee (Karlsruhe, Germany).

4.7.6 Hippocampal neurons: in vivo injection and slice preparation of adult rats

Nuclear Ca2+-indicator (rAAV GCaMP2 NLS Cherry) and control (rAAV EYFP-

Nuc) were delivered by stereotaxic injection (Kopf Instruments, Tujunga, CA) into dorsal

hippocampus of male Sprague Dawley rats (Charles River Breeding Laboratories)

weighing 200-250g as described previously (Cetin et al., 2006). Animals were



Material and Method

- 52 -

anesthetized intraperitoneal with sleep-mix. A total volume of 3µl containing about either

1x109 or 1x1013 genomic virus particles were injected unilaterally at flow rate of 200

nl/min using a microprocessor-controlled mini-pump (World Precision Instruments,

Sarasota, FA). The following coordinates relative to Bregma were: anteroposterior, -3.8

mm; mediolateral, -2.8 mm; dorsoventral, -2.8 to -3.8 mm from the skull surface. After

operation, animals were antagonised by wake up mix treatment, applied

subcutaneously. Animals had free access to food and water and were housed under

diurnal lighting conditions. Three weeks after rAAV delivery when transgene protein

expression has peaked to remain at stable level, rat brains were perfused using standard

procedures (Klugmann et al., 2005). Briefly, rats were killed by transcardiac perfusion

under deep anesthesia with injection of Narkoren (500µl pro 250g). After perfusion with

100ml PBS, brains were fixed by perfusion of 200ml, 10 % buffered neutral formalin, pH

7.4 (Sigma), removed, and postfixed overnight before cryoprotection in 30%

sucrose/PBS. Brain slices (40 µm) were cut at -15 °C using a cryostat (Jung Frigocut

2800N Leica) and collected in 1xPBS containing 0.04% thimerosal. Slices were

incubated in 1xPBS containing 0.1% Triton X-100 (Merck) for 1h at RT, washed with

PBST and finally, counterstained with Hoechst for 5 min. Slices were Moviol

(Calbiochem) mounted on slides (Super Frost Plus; Menzel GmbH & Co KG). The

experiments were carried out according to ethical guidelines for the care and use of

laboratory animals for experiments, and were approved by the local animal care

committee (Karlsruhe, Germany).

4.7.7 Hippocampal neurons: patch-clamp recording and Ca2+-imaging of young

rats

Patch-clamp recording and Ca2+-imaging of P35 rats was carried out by Dr. Peter

Bengtson (IZN). Briefly, single slices were transferred to a recording chamber (PM-1,

Warner Instruments, Hamden, CT, USA) and completely submerged with warmed (32

°C), continuously flowing (2.5 ml/min) ACSF. Patch electrodes (3-4 MΩ) were made

from borosilicate glass (1.5 mm, WPI, Sarasota, FL, USA) and filled with a potassium

methylsulphate based solution. Recordings were made with a Multiclamp 700A or 700B

amplifier, digitized through a Digidata 1322A A/D converter, acquired and analysed
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using pClamp 9 software (Axon Instruments and Molecular Devices, Union City, CA,

USA).

Evoked excitatory post-synaptic currents (eEPSCs) were recorded in response to

100 µs long constant current pulse stimuli (40 to 200µA) from constant current bipolar

stimulators (A365 stimulus isolators, World Precision Instruments, Sarasota, Florida,

USA) connected to the two barrels of theta-glass capillaries (Hilgenberg, Malsfeld,

Germany) pulled to a tip of about 4µm and filled with ACSF. Stimulators were placed in

the stratum radiatum and stratum oriens at a distance of approximately 50µm from the

apical dendrite toward the CA3 region. High frequency stimulation (HFS) protocols

consisted of 100Hz stimulations of specified durations. Such bursts of HFS were repeated

at the intervals indicated.

Neurons were viewed with differential interference contrast optics through a 20x

(N.A. 0.9) objective on an upright microscope (BX51WI, Olympus, Hamburg, Germany)

equipped with a CCD camera (Photometrics Coolsnap HQ, Roper Scientific, Ottobrunn,

Germany) connected through a software interface (Metafluor, Universal Imaging Systems

and Molecular Devices, Downington PA, USA) to a computer monitor. Excitation light

was generated by a monochromator coupled to a light source with a 75W Xenon arc lamp

(Optoscan and Optosource, Cairn, Faversham, UK). Nuclear Ca2+-indicators were excited

at 480nm with a bandwidth of 20nm through a BA470-490 filter (Olympus) and emission

was passed through a BA510-550 filter before collection at the CCD chip. Due to strong

photoisomerization of nuclear Ca2+-indicators, experiments were performed at a constant

imaging rate (2Hz) and only after baseline intensities had stabilized after the onset of

imaging. Time series were processed using Metafluor. Subsequently, analysis was done

using Windows Exel and Adobe Photoshop software. ∆F/F was calculated as ∆F/F = (F-

F0)/F0. F= fluorescence and F0= baseline fluorescence corresponding to the average

fluorescence over a 60 sec window before the first burst

4.8 Freshwater polyp: culture, microinjection and in vivo imaging

The freshwater polyps H. vularis (AEP strain) were mass-cultured according to

standard procedures at 18°C (Wittlieb et al., 2006). Polyps were fed according to the

additional experiments with Artemia salina. To induce gametogenesis for microinjection
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experiments animals were fed daily for 2 weeks and then fed only twice per week. For

imaging experiments at least 24h unfed polyps were used.

4.8.1 Freshwater polyp: embryo microinjection

One weeks after gametogenesis induction, testis were detectable and after two

weeks oogenesis started. Embryos were removed from females and microinjected with

the either hyGCaMP or hyGCaMP NLS expression constructs at the two- to eight-cell

stage as described (Wittlieb et al., 2006). Microinjection was done using a fluorescence

stereomicroscope (SMZ 1500, Nikon) and micromanipulator (Eppendorf). The construct

was injected by using pneumatic pump (PV 820, World Precision). The constructs (0.1µl;

0.6µg/µl) were injected into the embryos. Each embryo was injected only once. During

the injection procedure, embryos were kept in hydra medium at RT. Microinjected

embryos were transferred to 35mm culture dishes and incubated for 3 weeks at 18°C in

hydra medium. After hatching, either hyGCaMP or hyGCaMP NLS expressing cells

became visible as small patches in either ectoderm or endoderm or both layers. Polyps

expressing homogeneously hyGCaMP or hyGCaMP in ectoderm or endoderm cells were

generated by randomly budding.

4.8.2 Freshwater poly: in vivo imaging

Polyps expressing homogeneously hyGCaMP or hyGCaMP in ectoderm or

endoderm cells were used for Ca2+ live imaging. At least 24h before imaging experiments

started polyps feeding were stopped to reduce artificial background signals. Young

polyps were placed on glass coverslip (∅18 mm, Carl Roth, Karlsruhe, Germany)

covered with hydra medium. Locomotion was reduced by a small metal net on top of the

animal. Finally, coverslip was transferred to the perfusion chamber (LIS, Reinach,

Switzerland) and placed upon the microscopic stage. Transgenic polyps were imaged

using either an confocal spinning disc (ERS-FRET, Perkin Elmer) on inverted

microscope (TE2000, Nokia) with a 20x water immersion objective at the Nikon Imaging

Center Heidelberg or an inverted non-confocal fluorescence microscope (Axio Observer,

Zeiss) with 5x and 10x EC Plan-NEOFLUAR objective at the Zeiss Application Center

Heidelberg. Pictures were taken by using either the CCD camera (Orca-ER, Hamamatsu),

or the CCD camera (AxioCaM MRm, Zeiss). Confocal time series were processed using
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UltraViews software, Perkin Elmer. Non-confocal time series were processed using

AxioVision software, Zeiss. Subsequently, analysis was done using ImageJ, Windows

Exel and Adobe Photoshop software. ∆F/F was calculated as ∆F/F = (F-F0)/F0. F=

fluorescence and F0= baseline fluorescence corresponding to the average fluorescence

o v e r  a  3 0  s e c  w i n d o w .
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5 Results

5.1 Visualisation of nuclear Ca2+ signals in hippocampal neurons

The main focus of the present study was to visualise changes in nuclear Ca2+

concentration in vivo. The measurements of nuclear Ca2+ concentrations as previously

described (Hardingham et al., 2001) were done using the chemically synthesized Ca2+-

indicator Fluo-3. However, chemically synthesized Ca2+-indicators have significant

limitations. For example, although these indicators are loaded into cells as acetoxymethyl

esters, such loading does not enable targeting to specific cells and/or compartments in

vivo.

Fig. 7 Ca2+-imaging using recombinant Ca2+-indicators in dissociated cells. Hippocampal neurons were transfected with either
pN1 GCaMP (A) or pN1 GCAMP NLS (B). Bursts of action potentials were triggered with the GABAA receptor antagonist
bicuculline (50µM). Representative pictures of a time series show changes in fluorescence of neurons expressing the Ca2+-indicators.
Scale bars are 5µm (A) and 4µm (B). Analyses of time series are shown for pN1 GCaMP (C) and for pN1GCaMP NLS (D). Images
were taken every 2 sec. The bold black line indicates the average of n=3 cells.
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To monitor Ca2+ signals in distinct cellular compartments, particularly in the cell

nucleus, a nuclear localization signal was fused to the amino terminus of pN1 GCaMP

(Nakai et al., 2001). Confocal microscopy analysis of neurons expressing either pN1

GCaMP or pN1 GCaMP NLS were done to demonstrate the localisation of the indicators

(Fig. 7A and 7B). No differences in changes of due to the amino terminal modification in

pN1 GCaMP NLS were observed in comparison with pN1 GCaMP in neurons.

Oscillatory Ca2+ changes with a frequency of 0.1Hz induced by application of 50µM

bicuculline, a GABAA receptor blocker, was previously visualised using Fluo-3

(Hardingham et al., 2001) (Hardingham et al., 2001)in neural networks composed mostly

of glutamatergic excitatory neurons (~90%) as well as some GABAergic inhibitory

interneurons (~10%). Comparing the results obtained with Fluo-3 to those obtained with

the recombinant Ca2+-indicators it could be shown that both pN1 GCaMP and pN1

GCaMP NLS were suitable for monitoring calcium oscillations of 0.1 Hz. The average of

amplitudes, ∆F/F, after bicuculline stimulation measured in neurons expressing pN1

GCaMP was in % = 27.1 ± 32.0. The average peak time from begin of stimulation to

peak of the first maximum was in sec = 2.0 ± 0.0 (n= 3 cells, Fig. 7C). In neurons

expressing pN1 GCaMP NLS ∆F/F was in % = 46.7 ± 30.3.  The peak time was in sec =

4.5 ± 1.0 (n = 3 cells, Fig. 7D). Due to the temperature sensitivity of pN1 GCaMP,

neurons were cultured after transfection at 28ºC. No fluorescence signal could be

detected in hippocampal neurons transfected either with pN1 GCaMP or pN1 GCaMP

NLS incubated at 37ºC after transfection (data not shown).
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5.2 Blocking nuclear Ca2+/CaM signalling pathway in hippocampal neurons

Fig. 8 Characterisation of the Ca2+/CaM inhibitor: rAAV 2xM13 NLS myc. Immunostaining (A), western blot analysis (B) and
Ca2+-imaging (C) of hippocampal neurons infected with rAAV expressing 2xM13 NLS myc. The inhibitor is Myc tagged and was
detected with Myc antibody. Nuclei of cells were counterstained with Hoechst. Representative overview and detail images are
shown. Scale bars are 100µm (upper panel) and 20µm (lower panel) (A). Blockade of activity-dependent induction of cFos and
ATF3 expression in neurons expressing the inhibitor. Uninfected neurons or neurons infected with rAAVs expressing either 2xM13
NLS myc or hrGFP as control were treated for 4 hrs with bicuculline (50 µM) to induce AP bursting, for 4 hrs with 10µM Forskolin/
0.5mM IBMX to increase cAMP concentration, or were left unstimulated. Calmodulin was used as loading control. CREB and
pCREB were used as control to show that CREB activation via other pathways was unaffected (B). Time course analyses of changes
in fluorescence after stimulation are shown (C, D). No differences were observed between neurons infected with rAAVs expressing
2xM13 NLS myc (C) or uninfected neurons (D). Images were taken every 1.6 sec. The bold black line indicates the average of n=12
cells. Western blot data were kindly provided by Dr. B. Buchthal and U. Weiss.
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Besides the imaging project a nuclear Ca2+/CaM inhibitor was developed to

interfere with nuclear Ca2+ signalling. The Ca2+/CaM inhibitor is a nuclear protein that

consists of two repeats of the smooth muscle M13 peptide derived from the chicken

myosin light chain kinase. The two peptides were separated by a spacer of 26 amino

acids, fused to nuclear localization signal (NLS) and for biochemical analysis tagged with

Myc epitope. Therefore, the inhibitor was named “2xM13 NLS myc”. Using rAAV-

mediated gene transfer, expression of 2xM13 NLS myc was obtained in 80%–95% of the

viable hippocampal neurons (Fig. 8A). Expression of the inhibitor in neurons blocks

synaptic activity-evoked CREB-mediated gene transcription compared to control. As

control noninfected neurons or neurons infected with rAAV hrGFP were chosen.

Induction of cFos and ATF3 expression were reduced in neurons infected with rAAV

2xM13 NLS myc to 67.1% ± 14.7% (cFos) and 74.6 ± 7.8% (ATF3) after 4hrs

bicuculline (50µM) stimulation (Buchthal et al. unpublished data). Induction of cFos and

ATF3 expression were also reduced after 4hrs 10µM Forskolin/ 0.5mM IBMX

stimulation. In contrast to AP bursting after bicuculline stimulation, Forskolin/ IBMX

stimulation leads to long lasting elevated nuclear Ca2+ level (Fig. 8D), which is sufficient

to induce cFos and ATF3 expression. No differences were observed comparing CREB

expression in neurons either uninfected or infected. The transcription factor CREB was

used as control for virus infection of rAAV hrGFP and rAAV 2xM13 NLS myc.

Phosphorylation of CREB at Ser 133 was detected by pCREB antibody. No differences

were observed comparing pCREB expression in neurons either uninfected or infected.

Therefore, phosphorylation of CREB was not affected in presence of the inhibitor (Fig.

8B). Ca2+ live imaging experiments were done to confirm that the inhibitor specifically

interacts with the binding partner calmodulin and not binds to other nuclear proteins or

buffers nuclear calcium itself. Oscillatory Ca2+ changes with a frequency of 0.1Hz

induced by application of 50µM bicuculline was visualised with Fluo-3. No difference in

frequency of the oscillatory Ca2+ changes was observed in neurons either infected with

the inhibitor (Fig. 8C) or uninfected (Fig. 8D). However, higher amplitudes (∆F/F in % =

131.9 ± 20.1 n=12cells) were observed in neurons infected with the inhibitor in average

compared to amplitudes of uninfected neurons (∆F/F in % = 46.6 ± 5.1 n=12cells). From

these results it cannot be excluded that either the inhibitor or the virus infection itself was
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responsible for the increase of amplitudes. Therefore, a control inhibitor was developed

that was more similar to rAAV 2xM13 NLS myc. In each peptide of the control inhibitor

three charged amino acids responsible for the Ca2+/CaM binding properties of M13 were

replaced by uncharged amino acids.

5.3 Visualisation of Ca2+ signals in 3rd larvae of D. melanogaster

Due to the temperature sensitivity of the nuclear Ca2+-indicator pN1 GCAMP NLS

in vivo imaging of cellular activity in rodents at physiological temperature was limited to

postsynaptic signalling in smooth muscle (Ji et al., 2004). However, any Ca2+ signals

could not be detected in cultured hippocampal neurons transfected either with pN1

GCAMP or pN1 GCAMP NLS at 37ºC.

 In contrast, using genetically encoded Ca2+-indicators in the D. melanogaster

central nervous system provides an excellent system to explore the role of nuclear Ca2+ in

an intact behaving animal. In 2004, Wang et al. visualised Ca2+ signals in the mushroom

bodies of D. melanogaster crossing UAS GCaMP (Wang et al., 2004) with the MB

specific Gal4 driver line, OK107 (Connolly et al., 1996). Since the aim of the study was

to monitor nuclear Ca2+ signals in vivo either direct by using the nuclear Ca2+-indicator or

indirect by using the nuclear Ca2+/CaM inhibitor, transgenic flies were engineered based

on GCaMP NLS and 2xM13 NLS myc. To direct the expression of the transgenes to cells

of interest, the GAL4/UAS-system were used (Brand and Perrimon, 1993).

 Because the larval neuromuscular junction has been a simple and useful system to

study plasticity, UAS GCaMP NLS was expressed under control of muscle specific Gal4

promoter in larval muscle cells to verify the expression pattern. Confocal microscopy

analysis of 3rd instar larvae (Gal4 MHC/ UAS GCAMP NLS) after dissection (Fig. 9A)

and GFP staining was done to demonstrate the nuclear localisation of the indicator (Fig.

9B). Due to syncytial character of larval muscle cells no signal in 3rd instar larvae (Gal4

MHC/ UAS GCAMP) was detected expressing GCaMP under control of the muscle

specific Gal4 promoter after GFP staining (data not shown). In addition, UAS GCaMP

NLS was expressed under control of motoneuron specific Gal4 promoter in neuronal cells

of 3rd instar larvae (Gal4 OK6/ UAS GCAMP NLS). The larval brain was removed from
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the body-wall muscles and isolated imaged in haemolymph-like saline solution. Single

nuclei could be clearly identified by confocal microscopy z-stack analysis (Fig. 9C).

Fig. 9 Characterisation of 3rd instar larvae expressing GCaMP NLS. DIC images of 3rd instar larva before and after dissection.
Scale bar is 1mm (A). Immunostaining of 3rd instar larvae expressing GCaMP NLS in muscle cells. GCaMP NLS was detected with
GFP antibody (B). 3rd instar larva expressing GCaMP NLS in motoneuron. Representative overview and detailed images of larval
ventral cord at 4 different optical sections are shown. Scale bars are 40µm and 9µm (C). Larvae expressing either GCaMP NLS (D)
or as control GCaMP (E) in motoneuron were used for Ca2+-imaging. Time course analyses of changes in fluorescence after high
K+-stimulation (50mM) and subsequent wash out are shown. Images were taken every 1.6 sec. The bold black line indicates the
average of n=15 cells.
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Next, it was tested whether changes of Ca2+ signals expressing UAS GCaMP NLS

could be detected in response to high K+-induced membrane depolarization. Therefore,

isolated brains of 3rd instar larvae expressing either UAS GCaMP (Gal4 OK6/ UAS

GCaMP) or UAS GCaMP NLS (Gal4 OK6/ UAS GCaMP NLS) were used for live Ca2+-

imaging. Both UAS GCaMP and UAS GCaMP NLS were suitable for detecting calcium

transients in the larval brain in response to high K+-induced membrane depolarization

(Fig 9D and 9E). Surprisingly, in motoneurons expressing either UAS GCaMP NLS or

UAS GCaMP a sustained Ca2+ level after high K+-stimulation was observed, which was

never observed in cultured neurons. The average peak time from begin of stimulation to

peak of the plateau was in larvae expressing UAS GCaMP NLS in sec = 83.3 ± 22.6 and

in larvae expressing UAS GCaMP in sec = 46.2 ± 4.8. The average of the sustained Ca2+

level was in larvae expressing UAS GCaMP NLS ∆F/F in % = 66.9 ± 45.3 n = 15) and in

larvae expressing UAS GCaMP ∆F/F in % = 112.7 ± 19.9 n = 15. The difference

observed comparing UAS GCaMP NLS and UAS GCaMP might depend on either

expression levels due to different integration sites of the P-element carrying the transgene

or due to difficulties to monitor single nuclei over time in a 0.25µm optical section.

Nevertheless, these results show that UAS GCaMP NLS expressed in 3rd instar larvae is

suitable to detect changes in Ca2+ level and is exclusively localised to the nucleus.

Therefore, the transgenic fly (UAS GCaMP NLS) allows visualising of nuclear Ca2+

signals in complex behavioural experiment as, for example, the olfactory avoidance assay

(Tully and Quinn, 1985)
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5.4 Blocking nuclear Ca2+/CaM signalling pathway in adult flies

Dr. C. Margulies established the classical olfactory avoidance assay (Tully and

Quinn, 1985) in the lab, which allowed addressing the question about role on nuclear

Ca2+ in long-term memory (LTM) in adult flies. All preliminary results obtained from the

olfactory avoidance assay (Fig. 10D - 10F) were measured by Dr. C. Margulies.
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First, to block nuclear Ca2+/CaM signalling it was determined whether the nuclear

Ca2+/CaM inhibitor (UAS 2xM13 NLS myc) was localised in adult flies also exclusively

to the nucleus. Flies expressing UAS 2xM13 NLS myc under the control of the Gal4 heat

shock promoter P26 (P26/ UAS 2xM13 NLS myc) were dissected 15 hours after a 30-

minute heat shock induction of 37ºC. Confocal microscopy analysis of whole mount fly

brains stained with Myc antibody was done to demonstrate the nuclear localisation of the

inhibitor. Nuclei of cells were counterstained with Hoechst (Fig. 10A and 10B). A

nuclear staining was neither observed in heat shocked wild type flies (2U) nor in non-heat

shocked transgenic flies (P26/ UAS 2xM13 NLS myc) (Bongers et al., 2007). In flies

expressing the inhibitor after heat shock, only a few cells within the brain were stained.

The staining pattern was observed throughout the entire brain and no obvious clusters

could be seen (Fig. 10A). The same results was observed with another UAS 2xM13 NLS

myc transgenic fly line based on second independent embryonic injection event and also

in flies expressing another transgene UAS GCaMP NLS (Bongers et al., 2007).

A time course of inhibitor expression was done to assess the time window of

maximal protein expression (Fig. 10C). The Ca2+/CaM inhibitor was detectable in nuclei

of adult flies between 7-24 hours after induction. The results were confirmed by western

blot analysis for two lines based on two independent embryonic injection events (6M and

8M). UAS 2xM13 NLS myc were detected 7h after heat shock with Myc antibody in the

transgenic line 8M but not in the transgenic line 6M. Antibody against Gal4 was used as

control for the heat shock induction and tubulin antibody as loading control (Fig. 10G).

Fig. 10 Blocking of nuclear Ca2+ signalling during the acquisition phase of LTM. Immunostaining of a whole mounted fly brain
expressing the nuclear Ca2+/CaM inhibitor (2xM13 NLS line 8M). The inhibitor is Myc tagged and was detected with Myc
antibody. Nuclei of cells were counterstained with Hoechst. Representative overview (A) and detail images (B) of a brain 15hrs
after heat shock induction are shown. Scale bars are 75µm (A) and 4µm (B). Representative images of a time course of the inhibitor
expression level is shown. Scale bars are 9.5µm (C). Flies heat-shocked (black bars) or not heat shocked (white bars) were trained
in order to test for STM (D) or LTM phenotypes (E, F). Flies expressing the nuclear Ca2+/CaM inhibitor have normal STM. 7 to 10
hours after heat shock, wild-type and transgenic flies were trained with a single training session (lasting 3 minutes) and tested
immediately after training (D). Flies expressing the nuclear Ca2+/CaM inhibitor during training have impaired LTM. 7 to 10 hours
after heat shock, wild-type and transgenic flies were trained with 5 spaced training sessions and tested 24 hours after training (E).
Flies expressing the nuclear Ca2+/CaM inhibitor between training and testing have normal LTM. 4 to 7 hours after heat shock, wild-
type and transgenic flies were trained with 5 spaced training sessions and tested 24 hours after training (F). The data represent
means (± SEM) of at least eight independent PI values. Protein expression of the transgenic flies 2xM13 NLS line 8M, line 9M and
line 4M of the transgenic fly CaMBP4 were tested by western blot analysis. The inhibitors are Myc tagged and were detected with
Myc antibody. Tubulin was used as loading control and Gal4 as control for the heat shock induction (G). Immunostaining of 3rd

instar larva expressing either CaMBP4 or mM13 NLS (positive and negative control for 2xM13 NLS) in muscle cells. Both
inhibitors are Myc tagged and were detected with Myc antibody. Nuclei of cells were counterstained with Hoechst. Representative
picture of larval muscle cells 15h after heat shock induction are shown. Scale bars are 15µm (H). All behavioural data (D-F) were
kindly provided by Dr. C. Margulies.
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Based on the established assays to generate and measure STM and LTM in D.

melanogaster (Tully and Quinn, 1985; Tully et al., 1994), the question was addressed

whether the transient expression of the nuclear Ca2+/CaM inhibitor (P26/ UAS 2xM13

NLS myc) interferes with memory formation in flies. To exclude genetically caused

memory defects due to the injection site of transgene in UAS 2xM13 NLS myc flies

short-term memory was tested. Independently of the heat shock, no differences in STM

were observed in flies expressing the inhibitor (performance index = non-heat shock 92.5

± 1.8 and heat shock 90.1 ± 4.2) compared to wild-type flies (performance index = non-

heat shock 91.9 ± 3.0 and heat shock 93.5 ± 2.2) (Fig. 10D).

LTM was inhibited in heat shocked transgenic flies (performance index = heat

shock 18.2 ± 4.0) compared to heat shocked/ non-heat shocked wild-type (performance

index = non-heat shock 32.3 ± 5.3 and heat shock 31.4 ± 5.5), when the nuclear

Ca2+/CaM inhibitor was transiently expressed during the time period of acquisition,

whereas LTM was not inhibited in non-heat shocked transgenic flies (performance index

= non-heat shock 40.8 ± 5.5) (Fig. 10E). Independently of the heat shock, no inhibition of

LTM was observed in flies expressing the inhibitor (performance index = non-heat shock

26.9 ± 7.2 and heat shock 31.0 ± 5.4) compared to wild-type flies (performance index =

non-heat shock 33.0 ± 4.3 and heat shock 30.4 ± 10.1) at a time period between

acquisition and retrieval (Fig. 10F). These data provide evidence for the role of nuclear

Ca2+/CaM signalling during the acquisition phase of LTM in flies. To verify these

experiments and to confirm the specificity of the M13 interaction, positive and negative

control fly lines were generated based on the previously described rAAV mM13 NLS

myc and based on a Myc tagged version of the previously published Ca2+/CaM inhibitor

rAAV CaMBP4 flag (Wang et al., 1996; Limback-Stokin et al., 2004; Zhang et al.,

2007). Protein expression was confirmed by western blot analysis for the transgenic fly

lines UAS 2xM13 NLS myc 8M, 9M and the transgenic fly line UAS CaMBP4 myc 4M

before heat shock and 4hrs, 8hrs and 13hrs after 30-minute heat shock induction of 37ºC

(Fig. 10G). Further, UAS mM13 NLS myc and UAS CaMBP4 myc were expressed under

control of Gal4 heat shock promoter (P26/ UAS mM13 NLS myc and P26/ UAS

CaMBP4 myc) in larval muscle cells to prove the expression pattern. Confocal

microscopy analysis of 3rd instar larvae stained with Myc antibody was done to
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demonstrate the nuclear localisation of the control transgenes. Nuclei of cells were

counterstained with Hoechst (Fig. 10H).

5.5 Visualisation of Ca2+ signals in mushroom bodies of adult flies

The results obtained by the olfactory avoidance assay indicate that nuclear Ca2+

signals are required during the acquisition phase of LTM, indirectly shown by

overexpression of the nuclear Ca2+/CaM inhibitor (UAS 2xM13 NLS myc) in adult flies.

Next step was to visualise nuclear Ca2+ signals directly using the transgenic flies (UAS

GCaMP NLS).
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In cell culture but also in 3rd instar larvae the nuclear localisation was confirmed by

the counterstaining with Hoechst. It could be observed using confocal microscopy z-stack

analysis that in whole mount brain preparation of adult flies Hoechst accumulates for

unknown reason in the nucleus, probably in nucleoli, Therefore, the nuclear Ca2+-

indicator fly (UAS GCaMP NLS) was crossed with a transgenic fly expressing a red

fluorescent protein fused to the Histon 2A subunit under the control of an ubiquitin

promoter to yield (ubi H2A-RFP; UAS GCaMP NLS). The crossing of the flies was done

with the assistance of Dr. Christian Wenzel, ZMBH University of Heidelberg.

To confirm the nuclear localisation, confocal microscopy z-stack analysis of whole

mount fly brains stained with GFP antibody of flies expressing UAS GCaMP NLS under

the control of Gal4 MB247 (ubi H2A-RFP/+; MB247/ UAS GCaMP NLS myc) was done

(Fig. 11A). As expected, optical sections of nuclei expressing ubi H2A-RFP and the UAS

GCaMP NLS show congruent pattern of fluorescence signals, but different from the

pattern of fluorescence signals obtained with Hoechst counterstaining. These results show

that UAS GCaMP NLS was exclusively expressed in the nucleus.

To confirm the functionality of UAS GCAMP NLS in adult flies as previously

done in 3rd instar larvae, Ca2+ live imaging were done as described (Yu et al., 2004; Yu et

al., 2005). To establish the Ca2+ live imaging in vivo, first flies expressing the

cytoplasmic Ca2+-indicators UAS GCAMP (Gal4 Or83b/ UAS GCAMP) or UAS

CaM2.1-8.2 under control of Gal4 Or83b (Gal4 Or83b; UAS CaM2.1-8.2) in the of

receptor neurons of the antennal lobes was used (data not shown). Then, it was tested

whether UAS GCaMP NLS were able to detect changes of Ca2+ signals in response to

high K+-induced membrane depolarization in Kenyon cells of the mushroom body.

Therefore, flies expressing either UAS GCaMP NLS (Gal4 MB247/ UAS GCaMP NLS)

Fig. 11 Ca2+-imaging using recombinant Ca2+-indicator in adult flies. Immunostaining of a whole mount fly brain expressing
the nuclear Ca2+-indicator (ubi H2A-RFP; UAS GCaMP NLS) in mushroom body Kenyon cells. Histon 2A-RFP was detectable
without antibody staining. GCaMP NLS was detected with GFP antibody. Nuclei of cells were counterstained with Hoechst.
Representative images of three different optical sections are shown. Scale bars are 4µm (A). Adult flies expressing either GCaMP
NLS or GCaMP in mushroom body Kenyon cells were used for Ca2+-imaging. Time course analyses of changes in fluorescence
after high K+ stimulation are shown. Scale bar is 25µm. Images were taken every 500msec. The bold black line indicates the
average of n=12 areas (B). Adult flies expressing GCaMP in mushroom body Kenyon cells were stimulated either with OTC 10-1 or
with electrical shock pulses (90V) or both. Time course analyses of changes in fluorescence after presentation of odour and
electrical shock pulses are shown. Images were taken every 500msec. Each curve corresponds to one circle indicated at the panel
beside (C).
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or UAS GCaMP (Gal4 MB247/ UAS GCaMP) were used for live Ca2+-imaging. Either

calcium indicator was suitable to detect Ca2+ transients in the mushroom bodies in

response to high K+-induced membrane depolarization (Fig 11B). Compared to the results

obtained from 3rd instar larvae experiments a sharp peak after high K+-stimulation was

observed. The average peak time from begin of stimulation to peak the maximum

response was very different from fly to fly depending on the preparation. Therefore, no

calculation was done. The average of amplitudes in flies expressing UAS GCaMP NLS

was ∆F/F in % = 22.0 ± 4.2 and in flies expressing UAS GCaMP ∆F/F in % = 60.8 ±

14.3. The differences observed might depend on the same reason listed above (see section

5.3).

In addition to the global Ca2+ signals in response to high K+-induced membrane

depolarization, Ca2+ signals evoked either by electrical shock pulses or by odour

application were recorded in flies expressing UAS GCaMP under the control of Gal4

MB247 (Gal4 MB247/ UAS GCaMP). Changes in fluorescence were observed after 3 sec

application of 3-octanol (OCT) at a concentration 10-1 in the lobes (axons) of mushroom

bodies. OCT at a concentration of 10-1 is sufficient for STM and LTM. The average of

amplitudes after first time OCT application was measured in one fly ∆F/F in % = 3.0 ±

1.7 and the corresponding average peak time was in sec = 1.6 ± 0.2. The average of

amplitudes after second time OCT application was ∆F/F in % = 2.6 ± 0.6 and the

corresponding average peak time was in sec = 1.6 ± 0.2. No or only slightly changes in

fluorescence were observed after airflow stop, which occurred always by switching to the

odour application and back (Fig 11C).

Either electrical shock pulse protocols applied to the fly abdomen were able to

induce changes in fluorescence recorded from the mushroom body lobes. The average of

amplitudes after 3sec protocol I (10x 300ms 90V shock pulses) was ∆F/F in % = 4.4 ±

1.4 and the corresponding average peak time was in sec = 2.2 ± 0.8. After application of

protocol I a transient increase in Ca2+ concentration was observed followed by a decrease

in Ca2+ concentration below the basal level before stimulation. This was probably caused

by the effect of photoisomerisation that is inherent to the Ca2+-indicator. The average of

amplitudes after 3sec protocol II (10x (6x50ms) 90V shock pulses) was ∆F/F in % = 3.9

± 0.5 and the corresponding average peak time was in sec = 2.2 ± 0.8. Application of
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protocol II induced a sustained increase in Ca2+ concentration lasting for in sec = 24.8 ±

3.2. Pairing electrical stimulation (protocol I) and OCT application, induced changes in

fluorescence that were slightly higher as electrical stimulation (protocol I) alone. The

average of amplitudes was ∆F/F in % = 5.3 ± 1.7 and the corresponding average peak

time was in sec = 2.4 ± 0.6 (Fig 11C). Since the aim of the project was to visualise

nuclear Ca2+ signals, the experiments must be repeated with flies expressing UAS

GCaMP NLS under the control of Gal4 MB247 (Gal4 MB247/ UAS GCaMP NLS). In

parallel, a new transgenic fly was generated expressing the nuclear Ca2+-indicator

GCaMP2 NLS fused to a red fluorescent protein, named mCherry (Shaner et al., 2004)

(more details at section 5.7.). This transgenic fly will allow distinguishing changes in

fluorescence evoked by artefacts from changes in fluorescence evoked by increase in Ca2+

concentration by recording two wavelengths simultaneously.
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5.6 Visualisation of nuclear Ca2+ signals in organotypic slices

In 2005, Ohkura et al. published a modified version of pN1 GCaMP, named

GCaMP 1.6. Although GCaMP 1.6 was hardly fluorescent at 37°C when expressed in

cells.
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An obvious improvement of GCaMP 1.6 over pN1 GCaMP was its brightness and

the property to reach a sufficient fluorescence level following temperature change from

37°C to 28°C (Ohkura et al., 2005). The Ca2+-imaging experiments were done together

with D. Ditzel (Ditzel et al., 2008).

GCaMP 1.6 allowed expressing the nuclear Ca2+-indicator by rAAV-mediated gene

transfer in hippocampal cells or in organotypic slices. Expression of rAAV Inverse

Pericam NLS was used as control infection in organotypic slices (Fig. 12A). A bright

green fluorescent signal was observed restricted to the nucleus of neurons infected with

rAAV Inverse Pericam (2x1011 virus particle/ml). Green fluorescence signal in

organotypic slices infected with rAAV GCaMP 1.6 NLS (2x1011 virus particle/ml) was

hardly to detect at 37°C (data not shown), but the signal increase after 1h incubation at

28°C (Fig. 12B). Oscillatory Ca2+ changes with a frequency of 0.0125 Hz induced by

application of 50µM bicuculline were measured. The average of amplitudes was ∆F/F in

% = 71.9 ± 6.2 and the corresponding average peak time was in sec = 5.3 ± 0.6 (Fig 12B)

In 2007, Tallini et al. published the Ca2+-indicator GCaMP 2.0 that was fluorescent

at 37°C (Tallini et al., 2006). Therefore, GCaMP 2.0 allowed visualising Ca2+ signals at

physiological temperature. A bright green fluorescent signal was observed in neurons

infected with rAAV GCaMP 2.0 NLS (2x1011 virus particle/ml) at 37°C (Fig. 12C).

Oscillatory Ca2+ changes with a frequency of 0.02 Hz induced by application of 50µM

bicuculline were measured. The average of amplitudes was ∆F/F in % = 110.0 ± 17.4 and

the corresponding average peak time was in sec = 4.3 ± 0.3 (Fig 12C). To confirm

nuclear localisation of neurons expressing rAAV GCaMP 2.0 NLS organotypic slices

were fixed and nuclei were counterstained with Hoechst. Several optical sections

demonstrated the nuclear localisation of the Ca2+-indicator GCaMP 2.0 NLS (Fig 12D).

The nuclear Ca2+-indicator GCaMP 2.0 NLS allowed for the first time to image nuclear

Ca2+ signals at physiological temperature necessary for in vivo imaging. In contrast to

Fig. 12 Nuclear Ca2+-imaging using recombinant Ca2+-indicators in organotypic brain slice. Live imaging (A), Ca2+-imaging
(B, C), and immunostaining (D) of cultured hippocampal brain slices infected with rAAV expressing Inverse Pericam NLS (A),
GCaMP 1.6 NLS (B), or GCaMP 2.0 NLS (C, D). Overview and detail fluorescence images plus corresponding DIC images are
shown. Scale bars are 250µm and 50µm (A). Ca2+-imaging were done at 28ºC (B) and at 37ºC (C). Time course analyses of
changes in fluorescence after 50µM bicuculline stimulation are shown. Corresponding DIC and fluorescence images are beside the
charts. Images were taken every 500msec. The bold black line indicates the average of n=15 cells (B, C). Brain slice infected with
rAAV expressing GCaMP 2.0 NLS were fixed and nuclei of cells were counterstained with Hoechst. Representative overlay images
of four different optical sections are shown. Scale bars are 75µm (D). Imaging data were kindly provided by D. Ditzel.
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Ca2+-imging in culture or in brain slice where changes in fluorescence evoked by

movement artefacts might be negligibly, fluorescence changes caused purely by

movement artefacts will be a serious issue when Ca2+ imaging is done in a free moving

animal.
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5.7 Visualisation of nuclear Ca2+ signals using rAAV GCaMP2 NLS Cherry
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To use the nuclear Ca2+-indicator GCaMP 2.0 NLS in vivo, a red fluorescent protein

(mCherry) was added to the C-terminus of the indicator. An additional linker was fused

to the N-terminus of mCherry to separate the NLS and the red fluorescent protein (Fig

13A). The cloning and imaging experiments were done together with D. Ditzel (Ditzel et

al., 2008).

Only a small portion of the GFP emission spectrum overlaps with the excitation

spectrum of mCherry (Shaner et al., 2004). Therefore, fluorescence resonance energy

transfer (FRET) between the GFP and mCherry within rAAV GCaMP2 NLS Cherry

could theoretically occur. Tramier et al. published in 2006 that GFP and mCherry were

suitable for FRET based lifetime imaging in living cells (Tramier et al., 2006). However,

using rAAV-mediated gene transfer, nuclear expression of GCaMP2 NLS Cherry was

obtained in 80%–95% of the viable hippocampal neurons. Nuclear localisation of the

indicator was detectable either with λ = 510nm ± 20nm (emission spectrum of GFP) or λ

= 616nm ± 20nm (emission spectrum of mCherry). No signal was observed using the

excitation wavelength of GFP (λ = 488nm) and emission spectrum of mCherry or vice

versa (data not shown). To test whether fluorescence resonance energy transfer (FRET)

between the GFP and mCherry within rAAV GCaMP2 NLS Cherry occurred, GFP

fluorescence signals were detected within the emission spectrum of GFP and

simultaneously, mCherry was bleached to destroy the possible photon acceptor of the

GFP emitted photons. No increase of GFP emitted fluorescence signal was observed

Oscillatory Ca2+ changes with a frequency of 0.025Hz induced by application of

50µM bicuculline were detected within the emission spectrum of GFP, but no or only

slightly change in fluorescence were detected within the emission spectrum of mCherry

Fig. 13 Characterisation of the Ca2+-indicator rAAV GCaMP2 NLS Cherry. Schematic representation of rAAV GCaMP2 NLS
Cherry (A). Ca2+-imaging of hippocampal neurons infected with rAAV expressing GCaMP2 NLS Cherry. Cells were excited with
wavelengths of 488nm and 587nm. Emission light was detected at wavelengths of 510nm +/-20nm (GCaMP 2.0) and 616 nm +/-
20nm (mCherry). Representative images of a time series are shown. Scale bars are 15µm (B). Both charts show the time course
analyses of changes in fluorescence after 50µM bicuculline detected at the indicated wavelength. Images were taken every 1.6 sec.
The bold black line indicates the average of n=12 cells (C). Cultured hippocampal brain slices infected with rAAV expressing
GCaMP2 NLS Cherry were fixed and nuclei of cells were just counterstained with Hoechst 33258. Representative images of three
different optical sections are shown. Scale bars are 50µm (D). Western blot analyses (E, F) of hippocampal neurons uninfected or
infected with rAAV expressing either GCaMP 2.0 NLS, GCaMP2 NLS Cherry, DRIP, or EYFP-Nuc. Uninfected neurons or
neurons infected with rAAVs were treated for 4 hrs with bicuculline (50 µM) to induce AP bursting or were left unstimulated.
Activity-dependent blockade of the induction of cFos and ATF3 expression is not apparent. CREB was used as control to show that
viral infection by itself not induces an increase of cell death. (E). Calmodulin was used as loading control (E, F). Z-stack images
and western blot analyses were kindly provided by D. Ditzel.
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(Fig 13B). The average of amplitudes was ∆F/F in % = 86.1 ± 36.2 and the corresponding

average peak time was in sec = 3.1 ± 0.5 (Fig 13C). To confirm nuclear localisation of

neurons expressing rAAV GCaMP2 NLS Cherry organotypic slices were fixed and

nuclei were counterstained with Hoechst. Several optical sections demonstrated the

nuclear localisation of the Ca2+-indicator GCaMP2 NLS Cherry (Fig 13D).

Western blot analysis was done to determine whether either GCaMP 2.0 NLS or

GCaMP2 NLS Cherry block synaptic activity-evoked CREB-mediated gene transcription

due to buffering nuclear Ca2+ signals itself or disturbing Ca2+/CaM binding through the

M13 peptide within the Ca2+-indicators. Using rAAV-mediated gene transfer, the

expression of GCaMP 2.0 NLS, GCaMP2 NLS Cherry and EYFP NUC was obtained in

80%–95% of the viable hippocampal neurons. For unknown reason, no expression was

observed for DRIP infected neurons (Fig. 13F). No blocking effect of synaptic activity-

evoked CREB-mediated gene transcription was observed compared to control (i.e.

noninfected neurons or neurons infected with rAAV EYFP Nuc). Induction of cFos and

ATF3 expression was not reduced in neurons infected with either rAAV GCaMP 2.0

NLS or rAAV GCaMP2 NLS Cherry after 4hrs bicuculline (50µM) stimulation. Also, no

differences were observed comparing CREB expression in neurons either uninfected or

infected. Calmodulin was used as loading control (Fig. 13E).

Using rAAV GCaMP2 NLS Cherry as Ca2+-indicator for in vivo imaging allowed

to distinguish between changes in fluorescence evoked by movement artefacts and

changes in fluorescence evoked by increase in nuclear Ca2+ concentration. Nevertheless,

given the complexity of intact animal brains and failures of several indicators which

worked excellent in culture but not in vivo, next step was to test whether these indicators

were suitable to detect nuclear Ca2+ signals in acute brain slices of juvenile and adult rats.

5.8 Visualisation of nuclear Ca2+ signals in brain slices

Dr. P. Bengtson established an electrophysiology setup in the lab, which allowed to

recording Ca2+ signals with a high-speed CCD camera evoked by electrical stimulation in

acute slices of juvenile rats. All electrophysiology results were recorded by Dr. P.

Bengtson.
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Fig. 14 Nuclear Ca2+-imaging using recombinant Ca2+-indicators in brain slices. Ca2+-imaging of acute hippocampal brain
slices of juvenile rats infected with rAAV expressing Inverse Pericam NLS (A, B) and GCaMP 2.0 NLS (C). DIC and fluorescence
image of acute brain slice are shown. Scale bars are 250µm and 75µm (A). Schematic representation of stimulation protocol (B).
Time course analyses of changes in fluorescence after 3x100 Hz (B) and 6x100 Hz (C) stimulation are shown. Corresponding DIC
and fluorescence images are beside the charts. Scale bars are 50µm. Images were taken every 500msec. The bold black line
indicates the average of n=10 cells (B, C). In vivo titration of the Ca2+-indicator rAAV GCaMP2 NLS Cherry in adult rats. Images
of the fixed hippocampal brain slices infected with rAAV expressing GCaMP2 NLS Cherry are shown. The basal GFP fluorescence
of the Ca2+-indicator is shown at five different virus concentrations. Scale bars are 250µm (D).
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The nuclear Ca2+-indicator rAAV Inverse Pericam NLS was used to establish the

coordinates of injection site and the virus concentration due to the bright fluorescence at

resting conditions. A total volume of 3µl containing 2x109 virus particles/ml was injected

unilaterally into the hippocampus of P23 rats. The rAAV-mediated gene expression

requires at least 15 days to peak in the rodent brain and then persists at stable levels

without inflammation (Xu et al., 2001). Two to three weeks after surgery, the

transduction efficiency was assessed by live imaging experiments of acute brain slices.

According to the results obtained in culture robust transgene expression was observed in

CA1 pyramidal neurons of rats two weeks after viral infection (2x109 virus particle/ml)

(Fig 14A). Whole-cell patch clamp recordings were made from CA1 hippocampal

pyramidal neurons in brain slices and simultaneously Ca2+ signals were recorded evoked

by high frequency stimulation (HFS) protocols (Fig 14B).

A bright green fluorescent signal was observed restricted to the nucleus of CA1

hippocampal pyramidal neurons infected with rAAV Inverse Pericam NLS before

stimulation. Small Ca2+ changes evoked by 3x100Hz electrical stimulations were

recorded. The average of amplitudes was ∆F/F in % = 2.3 ± 2.0 and the corresponding

average peak time was in sec = 0.9 ± 0.4 (Fig 14C). Most of the CA1 hippocampal

pyramidal neurons expressing GCaMP 2.0 NLS show a moderate green fluorescence

signal at resting conditions. However, strong changes in nuclear Ca2+ concentration

evoked by 6x100Hz electrical stimulations were recorded. The average of amplitudes was

∆F/F in % = 77.3 ± 2.3 and the corresponding average peak time was in sec = 1.0 ± 0.3

(Fig 14D).

In addition to the Ca2+-imaging in acute brain slices of juvenile rats, Ca2+-imaging

was done in adult rats. Aso et al. described that high dose of virus concentration causes

neuronal cell loss according to the injection site in adult rats (Aso et al., 2007). To avoid

that the injected virus concentration itself causes cell loss and to determine optimal virus

concentration to yield high transfection efficiency, in vivo titration of rAAV GCaMP2

NLS Cherry was done in adult rats. Five different virus concentrations were tested

ranging from 4.89x1013 to 2.05x107 virus particles/ml. All virus concentration tested were

diluted from a virus batch stored at –80ºC except of the highest concentration which were

used from a virus batch stored at 4ºC. Three weeks after rAAV delivery, when transgene
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protein expression has peaked to remain at stable level, rat brains were perfused using

standard procedures (Klugmann et al., 2005). Surprisingly, no inflammatory caused cell

loss was observed as expected at least for the highest virus concentration of 4.89x1013

virus particles/ml. The best results were obtained either at a concentration of 4.89x1013

genomic virus particles/ml or at a concentration of 2.05x109 genomic virus particles/ml,

suggesting that the injection site is more critical as the injected virus concentration.

However, it could be shown that GCaMP 2.0 NLS and GCaMP2 NLS Cherry were

suitable to visualise nuclear Ca2+ signals in acute brain slices.
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5.9 Visualisation of Ca2+ signals in freshwater polyps using hyGCaMP

The major challenge of Ca2+ imaging in vivo either in flies or in rodents based on

difficulties to emit or detect photons through the intransparent skulls that protect the

brains. The freshwater polyp H. vulgaris is completely transparent and live imaging

through the outer layers to track individual label cells of the endoderm layer has been

described at (Wittlieb et al., 2006). Therefore, several transgenic hydra lines were

generated expressing the Ca2+-indicator hyGCaMP or hyGCaMP NLS.
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The generation of transgenic hydra lines by DNA injection into early hydra

embryos was done by J. Schlüter (Schlüter et al. 2008). After hatching patchy expression

of hyGCaMP was observed either in ectodermal or endodermal cells. By further

propagation, lines could be established homogeneously expressing hyGCaMP in all

ectodermal (Fig. 15A - 15C) or endodermal cells (Fig. 15D - 15F). The Ca2+-imaging

experiments comparing Ca2+ events of ectodermal cells with Ca2+ events of endodermal

cells were done together with J. Schlüter.

Spontaneous Ca2+ signals were visualised through the transparent layers either in

ectodermal cells or endodermal cells expressing hyGCaMP. Clearly differences of

spontaneous Ca2+ events were observed in lines expressing hyGCaMP in all ectodermal

cells compared to those lines expressing hyGCaMP in all endodermal cells. Spontaneous

changes in Ca2+ concentrations in lines expressing hyGCaMP in all ectodermal cells were

observed mostly randomly distributed concerning only a few cells. Thus, this kind of Ca2+

event was named “lightnings”. “Lightnings” were observed in the head, in the middle and

in the foot region (data not shown). In contrast to the constantly occurring small changes

in fluorescence, a second kind of spontaneous Ca2+ event was observed that occurred

infrequently and more often in the food then in other body regions. This kind of Ca2+

event was named “Ca2+-wave” (Fig 15B) because the increase in Ca2+ concentration

started from only a few cells and spread out into the neighbouring cells in a coordinated

pattern. The Ca2+ signals observed in ectodermal cells diffused rather slowly, typically in

the range of seconds, observed either throughout the neighbouring cells (Fig 15B) or

within a single cell (Fig 15C).

The spontaneous Ca2+ signals visualised in endodermal cells expressing hyGCaMP

Fig. 15 Visualisation of Ca2+ signals in the ectoderm or the endoderm of H. vulgaris using hyGCaMP. Ca2+-imaging of H.
vulgaris expressing the Ca2+-indicator hyGCaMP either in ectodermal (A-C, G) or endodermal (D-F, H) cells. Overview of
indicator expression pattern at head/ tentacle region (ectodermal) is shown. Scale bar is 135µm (A). The time series shows changes
in fluorescence recorded from the foot region. Images were taken every 1sec. Scale bar is 75µm (B). Detailed pictures show
changes in fluorescence within single cells. Images were taken every 200msec. Scale bar is 20µm (C). Overview of indicator
expression pattern at the head/ tentacle region (endodermal) is shown. Scale bar is 135µm (D). The time series shows changes in
fluorescence recorded from the foot region. Images were taken every 1sec. Scale bar is 75µm (E). Detailed pictures show changes
in fluorescence within single cells. Images were taken every 500msec. Scale bar is 20µm (F). Comparison of Ca2+ signals in the
ectoderm: foot region vs. middle region. Either chart shows the time course analyses of changes in fluorescence at the indicated
regions. Images were taken every 560msec. The bold black line indicates the average of n=12 area within these regions (G).
Comparison of Ca2+ signals in the endoderm: foot region vs. middle region. Either chart shows the time course analyses of changes
in fluorescence at the indicated regions. Images were taken every 560msec. The bold black line indicates the average of n=12 area
within these regions (H). Ca2+-imaging data were kindly provided by J. Schlüter.
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differed dramatically from the Ca2+ signals visualised in ectodermal cells. In ectodermal

cells no Ca2+ signals were observed that were similar to the Ca2+ events described for

endodermal cells (“lightnings", "Ca2+-wave”). Further, it was not possible to visualise the

diffusion of Ca2+ signals either throughout the neighbouring cells (Fig 15E) or within a

single cell (Fig 15F), at least with the same microscope setting as used to visualise Ca2+

signals expressing hyGCaMP in ectodermal cells. Instead, an increase in Ca2+ signals was

observed typically in the range of millisecond. These Ca2+ signals were not only restricted

to a few cells the entire foot region showed fast oscillatory changes in fluorescence (Fig

15E). Thus, this kind of Ca2+ event was named “Ca2+ bursts”. “Ca2+ bursts” were also

observed in the head or the middle region. Sometimes, sustained Ca2+ levels were

observed instead of fast oscillatory Ca2+ changes.

Next, Ca2+ signals of foot and middle region were compared within one animal

using an objective of 5x magnification to exclude differences within the transgenic line

(e.g. age or feeding behaviour). Differences in the average changes in fluorescence

visualised in ectodermal cells expressing hyGCaMP were observed comparing the foot

region with the middle region. The average of amplitudes was ∆F/F in % = 13.7 ± 4.0 in

the foot region compared to ∆F/F in % 1.2 ± 0.3 in the mid region (Fig 15G). Comparing

changes in fluorescence visualised in endodermal cells expressing hyGCaMP, the

average of amplitudes was ∆F/F in % = 22.3 ± 17.6 in the foot region compared to ∆F/F

in % 5.6 ± 4.2 in the mid region (Fig 15H).
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5.10 Visualisation of nuclear Ca2+ signals in freshwater polyps using

hyGCaMP NLS

Fig. 16 Visualisation of nuclear Ca2+ signals in the ectoderm H. vulgaris using hyGCaMP NLS. Ca2+-imaging of H. vulgaris
expressing the Ca2+-indicator hyGCaMP NLS (A, B) or hyGCaMP NLS mRFPmars (D) in all ectodermal cells. Overview of
indicator expression pattern at the head/ tentacle region (ectodermal) is shown. Scale bar is 135µm (A). Time series shows changes
in fluorescence of a single nucleus recorded from the head region indicated by the red circle. Images were taken every 560msec.
Scale bar is 75µm (B). Schematic representation of hyGCaMP NLS mRFPmars (C). Transgenic polyp was sequentially excited
with wavelengths of 488nm and 568nm and emission light was sequentially detected at wavelengths of 510nm +/-25nm
(hyGCaMP) and 600 nm +/-25nm (mRFPmars). Either chart shows the time course analyses of changes in fluorescence within one
cell at the indicated wavelength. Images were taken every 500msec (E). Images of the time series analysed in D are shown. Scale
bars are 10µm (D).
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The generation and screening of transgenic hydra lines expressing hyGCaMP NLS

were done by J. Schlüter. By further propagation, it was possible to establish lines

homogeneously expressing hyGCaMP NLS in ectodermal cells. The Ca2+-imaging

experiments were done together with J. Schlüter (Schlüter et al. 2008).

In transgenic hydra expressing hyGCaMP NLS fluorescence signals were restricted

to the nuclei of all ectodermal cells (Fig. 16A). Single nuclei could be followed over a

certain time period. Changes in fluorescence were visualised within the indicated time

window (Fig. 16B). The changes in nuclear Ca2+ signals observed in transgenic hydra

expressing hyGCaMP NLS were in the range of seconds and were comparable to the

results obtained with hyGCaMP expressed in ectodermal cells. The amplitude was ∆F/F

in % = 53,0 analysed from the head region of hydra expressing hyGCaMP NLS. As

expected, no nuclear Ca2+ event was observed similar to the Ca2+ event “lightnings” that

was visualised with hyGCaMP expressed in ectodermal cells. No nuclear Ca2+ event

similar to the Ca2+ event “Ca2+-wave” was recorded. The nuclear Ca2+ signals observed

were randomly distributed and extremely rare. Most of the time, only one nucleus of

hundreds showed spontaneous changes in fluorescence (Fig. 16B).

As described before in more details (see section 5.7) changes in fluorescence

evoked by movement of a living animal are a serious issue, especially when imaging is

done in small regions such as the cell nucleus (Fig. 16B). Therefore, to exclude changes

in fluorescence due to artefacts, a fluorescent protein optimised for hydra (mRFPmars)

was added to the C-terminus of the indicator (Muller-Taubenberger et al., 2006). An

additional linker was fused to the N-terminus of mRFPmars to separate the NLS and the

red fluorescent protein (Fig 16C). Theoretically, there is a small overlapping of the

excitation spectrum of GFP and emission spectrum of mRFPmars. However, no FRET

was measured so far between the two fluorophores. Nuclear expression of hyGCaMP

NLS mRFPmars was observed in all ectodermal cells. Nuclear localisation of the

indicator was detectable either with λ = 510nm ± 25nm (emission spectrum of GFP) or λ

= 600nm ± 25nm (emission spectrum of mRFPmars). Increases in Ca2+ concentration

were detected within the emission spectrum of GFP, but no or only slightly change in

fluorescence were detected within the emission spectrum of mRFPmars (Fig 16D). The

amplitude of the single nuclei recorded was ∆F/F in % = 20.8 (Fig 16E).
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6 Discussion

In the nervous system, calcium (Ca2+) acts as an intracellular second messenger

responsible for controlling several cellular mechanisms such as proliferation,

development, learning and memory. Especially, changes in the nuclear Ca2+ concentration

following synaptic activity are the molecular basis for such cellular mechanisms

(Hardingham et al., 1997; Chawla and Bading, 2001; Hardingham et al., 2001; Limback-

Stokin et al., 2004; Papadia et al., 2005; Zhang et al., 2007). Given the central role of

nuclear Ca2+ in the control of adaptive responses, one would like to visualise nuclear Ca2+

in physiological context of behavioural experiment. But visualisation of Ca2+ signals by

fluorescent indicators have some disadvantages when used in a biological context: 1)

Photobleaching limits the total number of photons that a single fluorescent molecule can

emit. 2) Excited fluorophors often create reactive chemical species in their vicinity; these

species can cause damage to surrounding molecules and thus be toxic to the cell. 3)

Fluorescent indicators bind to or interact with molecules that they detect, so indicators

can act as buffers and compete with natural targets. Expression of indicators, especially at

very high levels, can therefore change the biological processes being studied. 4) Physical

and optical properties of fluorescent indicators are extremely different and therefore

difficult to compare.

6.1 Nuclear Ca2+-indicator pN1 GCaMP NLS

Measurements of nuclear Ca2+ signals require the introduction of Ca2+-indictors into

the cell. The most widely used Ca2+-indictors are chemically synthesized fluorescent

indicators (Grynkiewicz et al., 1985; Takahashi et al., 1999). These indicators are easily

loaded but are difficult to target precisely in specific intracellular locations. The

development of recombinant Ca2+-indicator proteins allows genetic targeting to specific

cell compartments. In a previous study, the recombinant Ca2+-indictors pN1 GCaMP

(Nakai et al., 2001) and Inverse Pericam (Nagai et al., 2001) were compared in

hippocampal neurons (Weislogel et al. 2003). To visualise specifically nuclear Ca2+

signals a nuclear localization signal (NLS) was attached to the amino terminus of pN1

GCaMP. It seems that the attached NLS is exposed and does not project toward the
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interior of the indictor because pN1 GCaMP NLS localised exclusively to the nucleus.

Further, it is unlikely that the NLS disturbs the interaction between the M13 and

calmodulin because disturbance/defect in the interaction of both domains is responsible

for detection of changes in fluorescence and would lead to reduced Ca2+ sensitivity.

Indeed, the nuclear Ca2+-indictors pN1 GCaMP NLS was suitable to visualise slow

oscillatory Ca2+ changes induced by application of 50µM bicuculline (GABAA receptor

blocker) in hippocampal neurons (Fig. 7B and 7D). Similar Ca2+ responses to HiK and

bicuculline were seen with pN1 GCaMP NLS and pN1 GCaMP suggesting an unaltered

function of the indicator (Fig. 7A and 7C). Therefore, it seems that the amino terminal

end tolerant genetically manipulation.

6.2 Nuclear Ca2+/CaM inhibitor: rAAV 2xM13 NLS myc

Blocking of CREB mediated gene transcription by interfering with downstream

signals of nuclear Ca2+/CaM pathway using the Ca2+/CaM inhibitor CaMB4 (Wang et al.,

1995) was previously shown in vivo by (Limback-Stokin, 2004). CaMBP4 consists of

four copies of the skeletal muscle M13 peptide derived from the rabbit myosin light chain

kinase (KRRWKKNFIAVSAANRFKK) (Blumenthal and Krebs, 1987; Wang et al.,

1996), whereas the nuclear Ca2+/CaM inhibitor used in this study consists of only two

copies of the smooth muscle M13 peptide derived from the chicken myosin light chain

kinase (GPVDSSRRKWNKTGHAVRAIGRLSS) (Rhoads and Friedberg, 1997;

Romoser et al., 1997; Nakai et al., 2001). For an unknown reason rAAV 2xM13 NLS

myc shows a staining pattern localised to the nuclear border suggesting a concentrtation

of the construct at or near the nuclear envelope (Fig. 8A). A similar pattern was

previously observed in COS-7 cells transfected with CaMBP4 (Wang et al., 1995).

Using rAAV-mediated gene transfer, expression of 2xM13 NLS myc in neurons

blocks synaptic activity-evoked CREB mediated gene transcription compared to control

(i.e. noninfected neurons or neurons infected with rAAV hrGFP). Induction of cFos and

ATF3 expression were strongly reduced in neurons infected with rAAV 2xM13 NLS myc

after 4hr bicuculline (50µM) stimulation (Fig. 8B), which specifically activates the

nuclear Ca2+/CaM pathway (Pokorska et al., 2003). Surprisingly, induction of cFos and

ATF3 expression were also reduced after 4hr 10µM Forskolin/ 0.5mM IBMX stimulation
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(Buchthal et al. unpublished data). It is known that Forskolin/ IBMX stimulation leads to

an increase of the second messenger cAMP, which activates PKA causing its

translocation to the nucleus and activation of CREB mediated gene transcription (e.g.

cFos and ATF3) (Mayr and Montminy, 2001). It is not clear whether Forskolin activates

the observed long lasting elevated nuclear Ca2+ level via cAMP–PKA activation (Fig.

8D). Nevertheless, 2xM13 NLS myc blocks Forskolin/ IBMX induced cFos and ATF3

expression activated by nuclear Ca2+ signalling. The Ca2+ live imaging experiments

confirm the specificity of the nuclear Ca2+/CaM-inhibitor, but for unknown reasons

2xM13 NLS myc infected neurons showed higher amplitude bicuculline-induced Ca2+

signals compare to the uninfected neurons. From these results one can’t exclude that

either the inhibitor or virus infection itself was responsible for the increase of amplitudes.

It is likely that the increase of amplitudes caused by blocking nuclear Ca2+ signalling

during the development of the neuronal network. Therefore, an inert control more similar

to rAAV 2xM13 NLS myc was developed, where in each peptide of M13 three charged

amino acids responsible for the Ca2+/CaM binding properties of M13 are replaced by

uncharged amino acids. The mutated inhibitor was named mM13 NLS myc. But the

functional tests of this control are still under investigation.

6.3 Visualisation of nuclear Ca2+ signals in 3rd instar larvae

In 3rd instar larvae GCaMP NLS is exclusively expressed in the cell nucleus, but

hard to detect without GFP antibody staining. To increase protein expression level the P-

element containing UAS GCaMP NLS were genetically immobilised and randomly

integrated into a new chromosomal site. Fly lines UAS GCaMP NLS 3.1 and UAS

GCaMP NLS 7.3 were used for live imaging, but still the fluorescent signal is smaller

compare to UAS GCaMP. Therefore, the difference observed in the larval brain

expressing either UAS GCaMP NLS (Fig 9D) or UAS GCaMP (Fig 9E) depends more

likely on the expression levels due to integration sites of the P-elements as on different

Ca2+ concentration within the nucleus compare to the cytoplasm. In general, it is difficult

to monitor changes in fluorescent within single nuclei over time in small optical section

due to x/y- or z-movements. However, these results show that UAS GCaMP NLS



Discussion

- 87 -

expressed in 3rd instar larvae are suitable to detect changes in Ca2+ concentration and is

exclusively localised to the nucleus.

6.4 Blocking nuclear Ca2+/CaM signalling pathway in adult flies

Both learning and early memory are disrupted in dunce and rutabaga mutants,

suggesting that these genes primarily are involved in STM (Tully et al., 1994). In 1994,

Tully et al. show that in flies fed cycloheximide (CXM: protein-synthesis inhibitor)

learning and memory retention during the first 7 hr was unaffected, whereas in CXM-fed

flies LTM was blocked (Tully et al., 1994). Interestingly, it seems that only 50% level of

inhibition of protein synthesis in whole-brain tissue is sufficient to disrupt LTM (Tully et

al., 1994).

Flies expressing the nuclear Ca2+/CaM inhibitor 2xM13 NLS myc during the time

period of acquisition showed an impaired LTM after space training (Fig. 10E), whereas

STM was unaffected (Fig. 10D). Expression of nuclear Ca2+/CaM inhibitor under the

control of Hs-Gal4 was restricted to a few cells within the brain (Fig. 10A) suggesting

that blockade of those cells could be sufficient to impair LTM. LTM is not affected in

flies expressing the inhibitor at a time period between acquisition and retrieval (Fig. 10F).

These data provide for the first time an evidence for the role of nuclear Ca2+/CaM

signalling during the acquisition phase of LTM in flies, but has to be confirmed by

further control experiments. Therefore, LTM studies will be repeated using either a

second fly line expressing 2xM13 NLS myc and in addition a new fly line expressing a

Myc tagged version of rAAV CaMBP4 flag (Wang et al., 1996; Limback-Stokin et al.,

2004; Zhang et al., 2007) were generated (Fig. 10H).

6.5 Visualisation of Ca2+ signals in mushroom bodies of adult flies

The results obtained by the olfactory avoidance assay indicate that nuclear Ca2+

signals seem to be required during the acquisition phase of LTM This was inferred from

the result that overexpression of the nuclear Ca2+/CaM inhibitor (UAS 2xM13 NLS myc)

in adult flies interferes with LTM. It is not clear which brain region are involved in LTM.

The mushroom bodies are the most favoured regions within the fly brain for

transcription-dependent memory because several genes involved in LTM are mushroom
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body specific (Dudai et al., 1976; Livingstone et al., 1984; Skoulakis et al., 1993;

Goodwin et al., 1997; Dubnau et al., 2003; Didelot et al., 2006). Further, the mushroom

bodies can be removed from the adult fly brain by pulsefeeding hydroxyurea to larvae (de

Belle, 1994 #766) or by mutations (Heisenberg et al., 1985). Such studies indicate that

the mushroom bodies are required for olfactory learning and memory (Heisenberg et al.,

1985; de Belle and Heisenberg, 1994). Previous studies have reported that mushroom

body synaptic output is dispensable during memory acquisition and storage but required

for the retrieval of aversive odour memory (Dubnau et al., 2001; McGuire et al., 2001;

Schwaerzel et al., 2002; Davis, 2005), but most mushroom body Gal4 drivers lines only

label a fraction of Kenyon cells, and little effort has been expended to quantify the extent

of expression in each line (Keene and Waddell, 2007). Krashes et al. could show that

neurotransmission from the α’β’ subset of mushroom body neurons is required to acquire

and stabilize aversive odour memory, but is dispensable during memory retrieval. In

contrast, neurotransmission from mushroom body α β neurons are only required for

memory retrieval (Krashes et al., 2007).

To confirm the preliminary data of the odour avoidance assay, in vivo imaging was

performed in the lab to visualise changes in Ca2+ signals during a LTM inducing training

protocol. In vivo imaging in D. melanogaster in context of olfactory learning provides a

suitable technique first time described in 2002 by Fiala et al. (Fiala et al., 2002) and

further developed by Yu et al. (Yu et al., 2004). The difference observed in the larval

brain expressing either UAS GCaMP NLS (Fig 9D) or UAS GCaMP (Fig 9E) after high

potassium stimulation was also observed in adult flies. These findings suggest that

differences in Ca2+ level of the nucleus and the cytoplasm are most likely due to

differences in the expression levels of the indictors (Fig. 11B) and cannot be attributed to

preparation or the imaging system which was identical.

Small changes in fluorescence were recorded either after electrical shock pulse or

odour application or both stimuli paired in flies expressing UAS GCaMP under control of

a mushroom body specific driver line (Fig. 11C). The results obtained for the electrical

stimulation are similar to the previously published data (Yu et al., 2005), but in that study

Ca2+ signals were recorded from DPM neurons. It is not clear if Ca2+ signalling in that

subset of neurons is comparable to the Ca2+ signalling within Kenyon cells.
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Riemensperger et al. measured Ca2+ signals evoked by electrical shock pulses in adult fly

brains, but in that studies a different preparation technique and another Ca2+ indicator was

used (Riemensperger et al., 2005). In addition, Ca2+ signals were recorded from

dopaminergic projection neurons and not from mushroom bodies, which makes it more

difficult to compare. To compare Ca2+ signals, calibration of the fluorescent signals would

be necessary, but is extremely difficult in vivo.

Whereas the results obtained after electrical stimulation are in the range of

previously published studies, differ the odour evoked Ca2+ signals completely from a

previous study. Wang et al. reported large fluorescence transients in a subset of Kenyon

cells after odour application (Wang et al., 2004). It is still unclear if these differences

were due to the Gal4 driver line, the odours used, the use of two-photon microscopy or

(most likely) differences in preparation and odour application. Improving fly preparation,

odour application and imaging techniques will undoubtedly improve odour-evoked and

stimulation-evoked fluorescence responses in our experiments. Further, the generation of

a new transgenic fly expressing the nuclear Ca2+-indicator GCaMP2 NLS fused to a red

fluorescent protein, named mCherry (Shaner et al., 2004) might solve the problem

described between UAS GCaMP and UAS GCaMP NLS due to higher basal fluorescence

of GCAMP2. In addition, flies expressing UAS GCAMP2 NLS Cherry will allow us to

distinguish changes in fluorescence evoked by artefacts from changes in fluorescence

evoked by increases in Ca2+ concentration.

6.6 Visualisation of nuclear Ca2+ signals in brain slices

Several Ca2+ indicators including Inverse Pericam (Nagai et al., 2001), GCaMP 1.6

(Ohkura et al., 2005) and GCaMP 2.0 (Tallini et al., 2006) were cloned into a modified

rAAV vector containing three tandem repeats of the nuclear localization signal from

simian virus large T-antigen at the carboxy-terminus of the multiple cloning site (Fischer-

Fantuzzi and Vesco, 1988). The nuclear Ca2+ indicators were express by rAAV-mediated

gene transfer in hippocampal slices cultures. The expression of all used indicators were

restricted to the nucleus. Among the tested indicators rAAV Inverse Pericam NLS shows

by far the brightest fluorescence signal at 37°C (Fig 12A), whereas rAAV GCaMP 1.6

NLS was barely visible at that temperature. All indicators showed a large decrease in
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fluorescence at the start of excitation but recovered fluorescence after several seconds in

the dark, indicating that the fluorescence decrease results from photoisomerization, but

not from bleaching. All indicators were able to detect oscillatory Ca2+ changes induced by

bicuculline application over long recording periods (1hr) with no or only slight bleaching

effects (Fig. 12B and 12C). The indicators rAAV Inverse Pericam NLS and rAAV

GCaMP 2.0 NLS show a much brighter basal fluorescence than rAAV GCaMP 1.6 NLS

making infected cells much easier to locate. All three indicators showed a similar

dynamic range (fluorescence difference between minimum and maximum Ca2+

concentrations) consistent with previous reports (Koltikoff 2007; Polugrotto 2004).

Responses to bicuculline application were observed in hippocampal slices cultures

infected with rAAV Inverse Pericam NLS, but only small changes in fluorescence

amplitudes were measured. These translate to large signals when represented as ΔF/F but

are often difficult to detect from the raw fluorescence signal making interpretations from

on-line live analysis difficult during experiments. Comparing all tested Ca2+ indicators

including FRET based indicators like YC 3.60 (Nagai et al., 2001), VC 6.1 (Evanko and

Haydon, 2005), TN-XL (Mank et al., 2006) and D3 cpV (Palmer et al., 2006), rAAV

GCaMP 2.0 NLS seems to be most suitable for in vivo imaging of nuclear Ca2+ signals

due to improved brightness and thermo stability. Two recently studies reported the use of

GCaMP 2.0 in vivo either expressed in cardiomyocyte or cerebellar granule cells of

transgenic mice (Tallini et al., 2006; Diez-Garcia et al., 2007).

6.7 Visualisation of nuclear Ca2+ signals using rAAV GCaMP2 NLS Cherry

Changes in fluorescence due to movement artefacts are negligible in culture or in

brain slices, but will be a serious issue for in vivo imaging. Distinguishing between

fluorescence signals recorded due to movement and changes in Ca2+ concentration are

important. Especially, for small changes in fluorescence visualized by single

chromophore Ca2+-indicator as Inverse Pericam or GCaMP such small changes are

difficult to differentiate. Shimozono et al. modified the Ca2+-indicator Inverse Pericam by

attaching red fluorescent protein dsRed2 via a short linker to the C terminus (Shimozono

et al., 2004). Based on that construct, a far-red fluorescent protein mCherry (Shaner et al.,

2004) was attached to rAAV GCaMP 2.0 NLS.
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The maturation of the protein is not affected due to attachment of mCherry. The

indicator is fully functional at 37°C and is exclusively localised to the cell nucleus

detected either within the emission spectrum of GFP or within the emission spectrum of

mCherry (Fig. 13B). Therefore, it is unlikely that the attached mCherry protein projects

towards the interior of the indictor and make it inaccessible by masking the NLS for

binding to proteins involved in nuclear import. Further, it is unlikely that mCherry

disturbs the interaction between the M13 and calmodulin because disturbance/defect in

the interaction of both domains is responsible for detection of changes in fluorescence

and would lead to reduced Ca2+ sensitivity. Indeed, the Ca2+-indicator rAAV GCaMP2

NLS Cherry was suitable to detect Ca2+ transient over long time periods and no

significant bleaching effect was observed. A part of the GFP emission spectrum

overlapped with the excitation spectrum of mCherry as described (Shaner et al., 2004).

Tramier et al. reported that GFP and mCherry were suitable for FRET based lifetime

imaging in living cells (Tramier et al., 2006). But in hippocampal neurons expressing

GCaMP2 NLS Cherry no or only slight changes in fluorescence were detected within the

emission spectrum of mCherry, whereas large changes in fluorescence at the same time

were detected within the emission spectrum of GFP after application of bicuculline (Fig

13C). The changes in fluorescence were comparable to previously reported Ca2+ signals

visualised by rAAV GCaMP 2.0. Therefore, decrease of the GFP signal evoked by FRET

was not observed in cell culture. To determine whether the modification has influence on

infection efficiency, dissociated neurons (Fig 13B) and organotypic slice cultures (Fig

13D) of rat hippocampus were infected with rAAV GCaMP2 NLS Cherry. In spite of

large coding sequence of GCaMP2 NLS Cherry and the limited packing capacity of

rAAV, no or negligible differences in transfection efficiency was observed compares to

the other indicator.

Since the tested Ca2+-indicators based on interaction between the Ca2+ binding

protein calmodulin (CaM) and M13, it might be possible that endogenous Ca2+ or

endogenous calmodulin be inhibited or buffered by overexpression of the nuclear Ca2+-

indicators and so not longer available for nuclear Ca2+ signalling. Effects on signalling

pathways and subsequent gene expression were tested with Western Blot analysis.

Induction of cFos and ATF3 expression was not reduced in neurons infected either with
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rAAV GCaMP 2.0 NLS, rAAV GCaMP2 NLS Cherry or rAAV EYFP NUC or left

uninfected after 4hr bicuculline stimulation. Indicating that the infection with nuclear

Ca2+-indicators did not affect nuclear Ca2+ signalling pathways (Fig 13E).

6.8 Visualisation of nuclear Ca2+ signals in brain slices

The role of nuclear Ca2+ as the link between synaptic stimulation and gene

transcription has only been intensively investigated in cell culture (Hardingham et al.,

2001).. This raises the question whether nuclear Ca2+ plays a role in cell systems with a

more complex, more physiological organisation such as acute brain slices? Do nuclear

Ca2+ events occur in brain slices or in vivo and if so, is it possible to trigger them by

synaptic stimulation. Two publications have described nuclear Ca2+ signals in acute brain

slices with regard to late phase LTP (Johenning and Holthoff, 2006; Raymond and

Redman, 2006). The role of these nuclear Ca2+ signals in transcription-dependent

plasticity is controversial and unclear. Furthermore, the complexity of the mammalian

brain makes it difficult to extrapolate results from in vitro experiments to the intact brain.

Ideally one would like to image nuclear Ca2+ signals within the intact hippocampus

induced by neural activity during the performance of behavioural tasks. To date, no one

has published results using Ca2+-indicator delivered by rAAV or localised to a subcellular

compartment in vivo. Such results have been achieved in this thesis, by visualising

nuclear Ca2+ signals evoked by electrical stimulation in acute brain slices of the

hippocampus using either rAAV Inverse Pericam NLS or rAAV GCaMP 1.6 NLS or

rAAV GCaMP 2.0 NLS.

The difference observed in dynamic ranges and Ca2+ responses between in vitro and

in vivo assays has been discussed in details in the introduction. Briefly, either the

Ca2+/CaM binding peptide M13 of indicators binds to endogenous calmodulin or the

calmodulin domain of the indicator participate in nonproductive interactions with

endogenous calmodulin targets. Consistent with this idea, Hasan et al. have reported that

50% of the intracellular indicator is immobile and unresponsive to Ca2+ in vivo (Hasan et

al., 2004).

According to that a bright green fluorescent signal restricted to the nucleus of CA1

hippocampal pyramidal neurons infected with rAAV Inverse Pericam NLS were
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observed in acute brain slices of juvenile rats, but only small Ca2+ changes evoked by

3x100Hz electrical stimulations were recorded (Fig 14C). However, strong changes in

nuclear Ca2+ concentration were measured in CA1 hippocampal pyramidal neurons

expressing rAAV GCAMP 2.0 NLS (Fig 14D). The results obtained with rAAV GCAMP

2.0 NLS in acute slice are comparable to results obtained in organotypic slices (Fig 12C).

That could mean that the reported buffering effect is not a general problem of Ca2+-

indicators rather it depends more on the spatial orientation of the functional domains.

Consistent with that, Kotlikoff et al. reported that decreased fluorescence signal seems to

be depending on the orientation between the donor and acceptor fluorophores in FRET

based indicators, which may allow an enhanced vulnerability to interact with endogenous

proteins. But to confirm that idea more experiments has to be done (Koltikoff 2007).

Another point of discussion belongs to virus concentration used for in vivo

injection. Aso et al. (unpublished data) described that high dose of virus concentration

caused neuronal cell loss according to the injection site in adult rats. Analysis of adult rat

brain slices (Fig. 14E) showed that neurons at CA1-CA3 regions could successfully be

infected with either lower concentrations of rAAV GCaMP2 NLS Cherry (2,05 x 109) or

high concentrations of rAAV GCaMP2 NLS Cherry (4.89x1013). Because of titration

method by qPCR one cannot differentiate between infectious and uninfectious viruses,

which could explain the discrepancy observed. Further it is known that length and DNA

sequence of the gene of interest influences packaging of the virus, which could result in

higher dose of uninfectious viruses. Toxicity will result from too much protein delivered

by rAAV into cells. Nevertheless, either rAAV GCaMP 2.0 NLS or rAAV GCaMP2 NLS

Cherry are suitable to visualise nuclear Ca2+ signals in acute brain slices and will be

useful tools for in vivo imaging in freely moving animals.

6.9 Visualisation of Ca2+ signals in freshwater polyps using hyGCaMP

In vivo imaging studies are extremely useful, but always difficult to handle due to

complex organization of the organism. So far only parts of animal could be imaged, but

not the entire animal. Another question was whether nuclear calcium signals are

restricted to higher organism or do they also exist in simpler organized animals. One of

the simplest nervous systems described in the animal kingdom has the freshwater polyp
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hydra. Due to the optical transparency of the outer and inner layer, hydra is ideal for live

imaging experiments of an intact animal.

First, the entire coding sequence of pN1 GCaMP and pN1 GCaMP NLS were

transiently expressed under the control of hydra specific actin promoter. But no

fluorescence signals were observed. Like many other lower eukaryotes, in cnidarians the

codon usage is very biased in favour of codons with an A or T at the third position,

whereas vertebrate species more frequently display G or C (Galliot and Schummer,

1993). To express GCaMP or GCaMP NLS in H. vulgaris the entire coding sequence of

pN1 GCaMP NLS was codon optimised according to NCBI taxonomy browser. The

Ca2+-indicator hyGCaMP show a green fluorescence signal either in ectodermal or

endodermal cells (Fig. 15A and 15D). Spontaneous changes in Ca2+ concentrations in

ectodermal cells expressing hyGCaMP were observed most of the time randomly

distributed, whereas less frequently spontaneous Ca2+ signals in form of a coordinate

“Ca2+-wave” were observed (Fig 15B). Propagations of slow Ca2+ signals were recorded

also within a single cell (Fig 15C). The molecular mechanism of the Ca2+ propagation in

hydra is unknown either within a single cell or throughout a cellular network. One can

speculated if such a slow Ca2+ signal within a cell used internal Ca2+ stores and

propagates passively by diffusion or actively by mechanisms like Ca2+ induced Ca2+

release (Berridge et al., 2000). The Ca2+-wave propagation throughout the neighbouring

cells based probably on cap junctions but also propagation via TNT might be a possible

explanation (Rustom et al., 2004). Most of the time the Ca2+-waves started from a central

point and spread out in all directions like concentric circles. Ca2+-waves were mostly

observed in the foot region and sometimes in the head region, but never observed in the

middle region (Fig 15G). These finding and the propagation in form of concentric circles

might be depend on proceeding pacemaker neuronal activity. According to that Khalturin

et al. observed that interstitial stem cell, after entering the neuron differentiation pathway

migrate toward the head and foot region (Khalturin et al., 2007). Therefore, it could be

possible that nerve cells innervate ectodermal cells and trigger such observed Ca2+-waves.

Spontaneous changes in Ca2+ concentrations observed in endodermal cells

expressing hyGCaMP differed dramatically from the Ca2+ signals visualised in

ectodermal cells. The Ca2+ signals were much faster and not restricted to a few cells rather
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the entire foot region show fast oscillatory changes in fluorescents (Fig 15E and 15F).

Such Ca2+ bursts were also observed throughout the whole animal, but again the foot and

the head region seems to be more active than the middle region (Fig 15H). Therefore, it

could be possible that neuronal cell activity trigger such Ca2+ bursts.

In 1963, Passano et al. described first time contraction of the body column as a

result of ectodermal contraction burst pacemaker system. They could show that hydra

undergoes series of longitudinal contractions each contraction is preceded by a large

(30mV) but slow (250-500msec) compound potential. These ectodermal contractions

bursts are similar to the observed endodermal Ca2+ bursts (Fig 15E). It is unclear if these

signals are triggered by the same source e.g. nerve cells or activated each other. It is also

unknown whether contraction bursts follow or precede endodermal Ca2+ bursts and

whether contraction burst are really ectodermal origins.

6.10 Visualisation of nuclear Ca2+ signals in freshwater polyps using

hyGCaMP NLS

The aim of my PhD thesis was to visualise nuclear Ca2+ signals in vivo. Using

transgenic hydra expressing hyGCaMP NLS, changes in nuclear Ca2+ signals were

observed in vivo (Fig. 16A and 16B). However, to differentiate between changes in

fluorescent evoked by increase in Ca2+ concentration and changes in fluorescent caused

purely by movement artefacts, a hydra optimised red fluorescent protein (mRFPmars)

was attached to the C-terminus of the indicator (Muller-Taubenberger et al., 2006). Using

transgenic hydra expressing hyGCaMP NLS mars in all ectodermal cells, comparable

results were recorded. These suggest that the observed changes in fluorescent are indeed

based on an increase in Ca2+ concentration (Fig. 16D and 16E). Surprisingly, only a few

nuclei of hundreds showed spontaneous changes in fluorescent, but increase in Ca2+

concentration with the same frequency as ectodermal Ca2+-wave were expected. Eder et

al. reported that the nuclear envelope is unlikely to be a diffusion barrier for Ca2+ ions

(Eder and Bading, 2007). Therefore, it is unclear why only a few nuclei show an increase

in fluorescent. Perhaps, these differences depend on the indicator itself due to binding to

endogenous binding partners, which was never observed other cell systems, but cannot be

exclude. Another explanation could be that milieu in the nucleus is different compare to
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the cytoplasm in Hydra (e.g. pH-value) and therefore kinetics and sensitivity of the

indicator are changed with the consequence that small increases in nuclear Ca2+

concentration can not be detected anymore.

In general, not much is known about Ca2 signalling in hydra, indeed it is the first

time that changes in nuclear Ca2+ concentration are visualised in hydra. A proteomic

study by Pauly et al. identified three Ca2+ binding proteins including calmodulin, which is

a key player in the nuclear Ca2+ pathway described above (Pauly et al., 2007). Moreover,

Cnidaria not only have about the same number of genes as human and share most of their

genes with human (Miller et al., 2005) but their protein sequences are often more similar

to human sequences than to those from fly and worm (Kortschak et al., 2003). One can

speculate if such nuclear Ca2 signals play a role in CREB dependent gene transcription.

Signalling pathways might be evolutionary conserved and several groups have reported

that CREB plays a role hydra head regeneration (Galliot et al., 1995; Kaloulis et al.,

2004; Arvizu et al., 2006; Manuel et al., 2006; Chera et al., 2007). However, to determine

the role of nuclear Ca2+ signals in hydra is an exciting question but could be answered

here. Nevertheless, it is unlikely that nuclear Ca2+ signals have no function in hydra.
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