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Abstract. Multi-class labeling is one of the core problems in image
analysis. We show how this combinatorial problem can be approximately
solved using tools from convex optimization. We suggest a novel func-
tional based on a multidimensional total variation formulation, allow-
ing for a broad range of data terms. Optimization is carried out in the
operator splitting framework using Douglas-Rachford Splitting. In this
connection, we compare two methods to solve the Rudin-Osher-Fatemi
type subproblems and demonstrate the performance of our approach on
single- and multichannel images.

1 Introduction

1.1 Overview, Motivation

In this paper, we study the variational approach

inf
u∈C

f(u) , f(u) = −
∫

Ω

〈u(x), s(x)〉dx + λ TV(u) , λ > 0 , (1)

for determining a labeling u : Ω → R
L, that is a contextual classification of

each pixel x ∈ Ω into one out of L classes, based on an arbitrary vector-valued
similarity function s(x) ∈ R

L as input data that has been computed from image
data beforehand.

The objective function (1) comprises the common form of a data term plus
a regularization term. The data term is given by the L2 inner product of the
assignment variables u and the similarity function s, and the regularizer is a
total variation (TV) formulation for vector-valued data,

TV(u) =

∫

Ω

√

‖∇u1‖2 + · · ·+ ‖∇uL‖2dx . (2)
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Fig. 1. Left: Noisy input image. Right: The labeled image based on the non-binary
assignment u as global minimizer of the convex approach (1). The discrete problem is
accurately solved by a continuous approach.

Furthermore, the constraint u ∈ C restricts the vector field u(x) at each loca-
tion x ∈ Ω to lie in the standard probability simplex, that is u(x) ∈ R

L
+ and

∑L
i=1

(
u(x)

)

i
= 1 for all x ∈ Ω.

Our work is motivated by the following observation. Suppose that at each
pixel x ∈ Ω, there is an unambiguous assignment (labeling) of the data s(x)
to some class l ∈ {1, . . . , L} represented by the corresponding l-th unit vector,
u(x) = el. Then, an interface with area A between two image regions labeled
with l and l′, respectively, adds A

√
2 to the regularization term iff l 6= l′, because

then all but two gradients under the square root vanish. As a result, under these
assumptions and up to the immaterial constant

√
2, the TV term corresponds

to the well-known Potts model that assigns constant penalties to local changes
of the labeling.

A significant difference between the Potts model and our approach (1), how-
ever, is that the former amounts to solve a discrete combinatorial problem,
whereas the latter is a continuous convex optimization problem. Experiments
show that our approach (1) approximates discrete decisions fairly well – see Fig-
ures 1 and 2 – by computing a global optimum to a single convex optimization
problem. By contrast, the state-of-the-art discrete approach [1] approximates
the combinatorial solution by solving a non-uniquely defined sequence of glob-
ally optimal binary problems via graph cuts. This fact, along with the poten-
tial of continuous convex optimization for parallel implementations and their
more robust dependency on (hyper-) parameters, motivated to investigate the
approach (1) as a promising model for a general “labeling submodule” within
computer vision systems. To this end,

– We have a closer look at the data and regularization terms (section 2).
– We apply an operator splitting approach to (1) in order to decompose the

computation of a globally optimal labeling into two independent compu-
tational steps: TV denoising for vector-valued data, and projection of the
labeling vectors u(x) on the canonical simplex. Iterating a suitable combi-
nation of these steps ensures convergence to a global optimum (section 3).

– We evaluate two different algorithms for the TV denoising subroutine (sec-
tion 4) and compare the performance of our convex method to a range of
established graph cut-based approaches (section 5).
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Fig. 2. Output of the standard TV approach [2] for scalar-valued images applied to
the noisy input image depicted in Figure 1, for different values of the regularization
parameter λ. Irrespective of this value, the performance is worse than with the ap-
proach (1) (cf. Fig. 1, right), because the latter approximates the Potts model that
does not depend on the size (contrast) of discontinuities. Consequently, the former ap-
proach cannot remove noise without degrading weak discontinuities, as apparent above
for the horizontal discontinuities.

1.2 Related Work

Many publications on TV-based segmentation are focused on the fully discrete
setting, which – under anisotropic discretization – can be solved using graph
cuts. Numerous algorithms have been proposed in this field, see e.g. [3] for a ref-
erence. Graph cut-based algorithms require submodularity of the energy function
in order to find a global optimum [4]. While this criterion is often met for bi-
nary segmentation, multi-class labeling requires extensions which usually rely
on solving a sequence of (binary) graph cuts to find a local minimum [1]. Also,
anisotropic discretizations exhibit a bias for edges in some directions, depending
on the neighborhood definition.

In the continuous setting, binary TV-regularized segmentation corresponds
to finding a characteristic function which minimizes the objective function, also
called continuous cut [5].

Interestingly, Nikolova et al. [6] showed that this problem can be relaxed and
solved on a convex set, while still allowing to reconstruct a true binary solution.
Our work is motivated by their approach, but is aimed at the multi-class case.

In [7], an approach comparable to ours was presented, based on Ishikawa’s
analysis in [8]. However, their regularization term prefers transitions between
“nearby” labels as measured by the label index. While this can be a desirable
property, e.g. in stereo reconstruction, our formulation is more suited to the case
when there is no natural label ordering, as in the Potts model.

The Potts model was studied as a special case of the metric labeling prob-
lem in [9]. The corresponding energy functional relates to (1) in the discrete
case and for an anisotropic discretization of the TV term. Approximate solu-
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tions were computed by an LP relaxation with explicit constraints. In contrast,
our approach considers the general TV term and “sparse numerics” through a
problem decomposition into efficiently solvable subproblems, without the need
to introduce any additional variables.

1.3 Notation

We consider the discretized version of our approach (1). Let Ω = {1, . . . , n1} ×
· · ·×{1, . . . , nd} ⊆ R

d , d ∈ N, denote a regular image grid of n := |Ω| pixels. The
(multidimensional) image space X := R

n×L is equipped with the inner product

〈u, s〉Ω =
∑

x∈Ω

〈
u(x), s(x)

〉
,

where 〈·, ·〉 is the usual Euclidean inner product. We naturally identify v =
(v1, . . . , vL) ∈ Rn×L with ((v1)⊤ · · · (vL)⊤)⊤ ∈ R

nL. Using the notation e =
(1, 1, . . . , 1)⊤, the standard simplex on R

L and its extension C on R
n×L are

given by

∆L =
{
v ∈ R

L
∣
∣ v ≥ 0 , 〈e, v〉 = 1

}
, C :=

∏

x∈Ω

∆L . (3)

Vectors are indexed by superscripts, and scalars by subscripts, e.g. v1, v2, v3, . . .
denotes a collection of vectors, while vk is the k-th component of a vector v.

As a discrete, multidimensional analogon for the continuous total variation
formulation we will use the following definition: Let

grad :=






grad1
...

gradd




 , gradi := In1

⊗ . . .⊗ Ini−1
⊗ Fni

⊗ Ini+1
⊗ . . .⊗ Ind

,

be the d-dimensional forward difference gradient operator for Neumann bound-
ary condition, where

Fm ∈ R
m×m, (Fm)ij =







−1, j = i, i < m ,
1, j = i + 1, i < m ,
0, otherwise .

Accordingly, div := −grad⊤ is the backward difference divergence operator for
Dirichlet boundary condition. These operators extend to R

n×L via

Grad := (IL ⊗ grad) , Div := (IL ⊗ div) . (4)

We will also need the convex sets

Bλ :=
{

(p1, . . . , pL) ∈ R
d×L

∣
∣
∣

( L∑

i=1

‖pi‖22
)1/2

6 λ
}

, (5)

Dλ :=
∏

x∈Ω

Bλ ⊆ R
n×d×L , (6)

Eλ := {u = (u1, . . . , uL) ∈ R
n×L|u = Divp , p ∈ Dλ} . (7)
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The discrete total variation on vector-valued data is then defined as

TV(u) := σE1
(u) , (8)

where σM (u) := supp∈M 〈u, p〉 is the support function from convex analysis. We
further define δC(x) to be 0 iff x ∈ C, and +∞ otherwise.

2 Variational Approach

Based on the introduced notation, our novel approach (1) reads

inf
u∈C

f(u) , f(u) = −〈u, s〉Ω
︸ ︷︷ ︸

data term

+ λ TV(u)
︸ ︷︷ ︸

regularization term

, λ > 0 , (9)

As the objective function f and the constraint set C (see (3)) are convex, the
overall problem is convex as well. We will now define and motivate each term.

2.1 Data Term

The data term in (9) is fairly general. Any vector-valued similarity function s
can be used, whose components

(
s(x)

)

i
indicate the affinity of some data point

at x with class i. We consider an example.
Suppose we have image features g(x), x ∈ Ω, and are given prototypical

feature vectors G = (G1, . . . , GL) as well as a distance measure d on the features.
We might think of g as a grayscale image, of G as some prototypical gray values,
and of d as a quadratic distance measure, possibly derived from a statistical
noise model.

The hard assignment of the pixel x ∈ Ω to a label (or class) l(x) ∈ {1, . . . , L}
should then be penalized by the distance d(g(x), Gl(x)) of the corresponding
feature to the prototype of the assigned class. Denoting the negative distance by
s in order to comply with our affinity notation, and summing up over the image
domain, we see that

∑

x∈Ω

d(g(x), Gl(x)) = −
∑

x∈Ω

〈
s(x), u(x)

〉
for u(x) = el(x) . (10)

Thus, instead of looking for l ∈ {1, . . . , L}n, we may equivalently look for u ∈
{e1, . . . , eL}n. However, the right hand side formulation has the advantage that
it extends naturally to the soft assignment u ∈ C: we may now solve the easier
problem of optimizing for u on the convex set C.

In our experiments, we chose d(x, y) = ||x − y||1 for grayscale as well as
color images, as the ℓ1-norm is still convex but known to be more robust against
noise and outliers. However, s is not restricted to representing distances. More
generally, all data terms of the form

∑

x∈Ω

hx(g, l(x)) (11)
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are covered by our approach if one sets (s(x))l := −hx(g, l). The hx correspond
to the unary potentials in the discrete MRF formulation. This formulation has
the appealing property that hx can be arbitrarily nonlinear and nonconvex, and
involve nonlocal operations on g. The complexity of the similarity measure is
completely hidden within the precomputed vector s.

2.2 Regularization Term

Using the total variation definition (8), we see that the regularizer of (9) is
defined as

TV(u) = sup
p∈D1

〈u,Divp〉 . (12)

In view of the definitions (6), TV can be directly expressed as

TV(u) = sup
p∈D1

〈Gradu, p〉 =
∑

x∈Ω

‖Gxu‖2 (13)

where Gx is an (Ld)× n matrix composed of rows of (Grad) s.t. Gxu gives the
gradients of all ui in x stacked one above the other.

This definition for vector-valued u parallels the definition of the “isotropic”
total variation measure in the scalar-valued case [10, 2, 11]. It is also known as
MTV [12–14], and was recently studied in [15] in its continuous formulation.
Contrary to the anisotropic discretization, where one would substitute the sum
of 1-norms in (5), it is less biased towards edges parallel to the axes.

See also [16] for an overview of TV-based research and applications.

2.3 Optimality

After solving the relaxed problem, it remains to show that a binary solution can
be recovered. For the continuous, binary case, Nikolova et al. [6] showed that an
exact solution can be obtained by thresholding at almost any threshold.

However, their results do not immediately transfer to the discrete multi -class
case. In particular, the crucial “layer cake” formula holds for ℓ1-, but not ℓ2
discretizations of the TV.

Contrary to the binary case, it is not clear which rounding scheme should be
employed for vector-valued u. For our experiments, we chose the final class label
for each pixel x as the index l of the maximal ul(x) of the global optimum u∗ of
(9). This defines a suboptimal discrete solution u∗

t . Bounding the error u∗
t − u∗

d

with respect to the unknown discrete optimum u∗
d in terms of u∗ will be subject

of our future work.

3 Optimization

Two basic problems arise concerning the optimization of (9):
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1. Nondifferentiability of the objective function due to the TV term, and
2. handling of the simplex constraint u ∈ C.

We cope with the latter point using the tight Douglas-Rachford splitting method
as presented in the following section.

3.1 Operator Splitting

We will state some preliminaries from the theory of maximal monotone opera-
tors, cf. [17, ch. 12]. Given a Hilbert spaceH, an operator (or set-valued mapping)
on T : H ⇉ H is a simply a subset T ⊆ H × H, which assigns to each point
x ∈ H a subset T (x) := {y ∈ H|(x, y) ∈ T}. Operators can be inverted , T−1 :=
{(y, x)|(x, y) ∈ T}, and added , (T +U) := {(x, y + y′)|y ∈ T (x), y′ ∈ U(x)}. The
domain is defined as dom T := T−1(H).

T is said to be monotone iff, for all x, x′, y, y′ ∈ T s.t. y ∈ T (x), y′ ∈ T (x′),

〈x′ − x, y′ − y〉 > 0.

T is maximal monotone iff T is monotone and there is no other operator U that
is a superset of T (precisely, T ⊆ U ⇒ T = U). In what follows, we will fix
H = R

n.
Subgradient mappings ∂f of proper, convex, lower semi-continuous (lsc)

functions f : R
n → R ∪ {+∞} constitute maximal monotone operators [17,

Thm. 12.17]. Accordingly, for any closed, nonempty, convex set C ⊆ R
n, the

normal cone operator NC defined by NC(x) := {x′ ∈ H|∀y ∈ C : 〈x′−x, y〉 6 0}
is maximal monotone, as NC = ∂δC .

Minimization of a proper, convex, lsc function f : R
n → R∪{+∞} amounts to

finding a zero of its subgradient mapping T := ∂f , i.e. finding any x ∈ (∂f)−1(0).
There are two basic building blocks for constructing fixpoint methods to find such
a zero:

– The forward step,
xk+1 ∈ (I − τT )(xk), τ > 0 , (14)

– and the backward step,

xk+1 ∈ (I + τT )−1(xk) = JτT (xk), τ > 0 , (15)

where JτT := (I + τT )−1 is called the resolvent of T .

Applied directly to the subgradient mapping, the forward step is just a sim-
ple subgradient descent, and as such may suffer from nonuniqueness and non-
convergence. However, maximal monotonicity of T ensures that any fixpoint of
the forward step is a zero of T , and thus solves the minimization problem.

The beauty of the backward step lies in the fact that resolvents of monotone
operators are firmly nonexpansive: for all x, x′, y, y′ ∈ R

n with y ∈ T (x) and
y′ ∈ T (x′),

‖y′ − y‖2 6 ‖x′ − x‖2 − ‖(x′ − y′)− (x− y)‖2,
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holds. Maximality of the operator additionally ensures surjectivity of the resol-
vent. Both properties together make JτT single-valued and thus xk+1 uniquely
(and always) defined. Additionally, (xk) converges for any step size τ > 0.

However, inverting JτT is generally as difficult as the original problem. In
the operator splitting approach, T is decomposed into the sum of two “easier”
maximal monotone operators, T = A + B, for which forward and backward
steps are computationally feasible. Then a sequence is constructed which uses
only forward and backward steps on A and B, but allows to find a zero of T .

Here, we consider the (tight) Douglas-Rachford-Splitting iteration [18, 19],

zk+1 ∈ (JτA(2JτB − I) + (I − JτB))
︸ ︷︷ ︸

=:Gτ,A,B

(zk). (16)

Under the very general constraint that A,B : R
n ⇉ R

n are maximal monotone
and A + B has at least one zero, the sequence (zk) will converge to a fixpoint z
of Gτ,A,B , with the additional property that x := JτB(z) is a zero of T ([20,
Thm. 3.15], [20, Prop. 3.20], [20, Prop. 3.19]; for a well-written analysis, see [20]
or [21]).

For a proper, convex, lsc function f = f1+f2 with ri(dom f1)∩ri(dom f2) 6= ∅,
it can be shown [17, Cor. 10.9] that ∂f = ∂f1 + ∂f2. Thus f can be minimized
using operator splitting for the subgradients. As

x ∈ Jτ∂fi
(y)⇐⇒ x = argmin

1

2τ
‖x− y‖22 + fi(x), i ∈ {1, 2},

the computation of the resolvents reduces to proximal point optimization prob-
lems involving only the fi. The Douglas-Rachford iteration takes the form

1. Choose arbitrary u0 ∈ R
n and fix τ > 0.

2. Solve uk = argminu

{
1
2τ ‖u− zk‖22 + f1(u)

}
.

3. Solve wk = argminw

{
1
2τ ‖w − (2uk − zk)‖22 + f2(u)

}
.

4. Set zk+1 ← zk +wk−uk, k ← k+1 and go to 2. until convergence in (zk, uk).

Under the assumptions that f1 and f2 are proper, convex, lsc; ri(dom f1) ∩
ri(dom f2) 6= ∅; and that minu f(u) has a solution, the Douglas-Rachford itera-
tion converges and uk → u ∈ argmin f(u) [20, Prop. 3.40].

3.2 Application

For our specific problem, we split

inf
u∈C

f(u) = inf
u

(f1(u)+f2(u)) , f1(u) = −〈u, s〉Ω +λ TV(u) , f2(u) = δC(u) .

(17)
and get the following Douglas-Rachford scheme:
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Algorithm 1 Outer loop (Douglas-Rachford)

1: choose some u0 and a fixed step size τ > 0
2: repeat

3: solve

uk ← argminu

{ 1

2τ
‖u− zk‖2 − 〈u, s〉+ σEλ

(u)
}

(18)

4: solve

wk ← argminw

{ 1

2τ
‖w − (2uk − zk)‖2 + δC(w)

}

(19)

5: zk+1 ← zk + wk − uk

6: until ‖uk − uk−1‖∞ 6 δouter.

From the remarks in section 3.1, we get convergence of the scheme for the
discrete case: δC(w) and σEλ

are both proper, convex, lsc with domσEλ
= R

n

and rint(C) 6= ∅. Also, f is bounded from below on the compact set C and thus
attains its minimum.

In practice, one has to deal with solutions of the subproblems with limited
accuracy. While there are extensions of the convergence result that take these
inexact solutions into account [20, Prop. 4.50], they require the subproblems
to be solved with increasing accuracy. While not strictly theoretically justified,
we found that in practice the method generally converged even though these
requirements were not met.

We see that the second subproblem (19) is just a projection on the constraint
set:

wk = ΠC(2uk − zk) . (20)

As C is the direct product of unit simplices, this can be solved by one projection
on the low-dimensional unit simplex ∆L per x ∈ Ω. These projections can be
computed in a finite number of steps [22].

The first subproblem (18) can be rewritten as

uk = argminu

1

2
‖u− (zk + τs)‖2 + (τλ)TV (u), (21)

which is just the classical Rudin-Osher-Fatemi (ROF, TV-L2) problem with the
regularization parameter set to τλ, and extended to vector-valued u. There is
a vast body of literature on the solution of the ROF problem. Among others,
authors have suggested PDE, fixpoint or interior point methods for primal [2,
23], dual [24–26] or mixed [27] formulations.

Here we evaluate two approaches: First, we will formulate a particularly
simple gradient projection method in the operator splitting framework. This
scheme was introduced in [25] and extended to the multidimensional case in
[15]. The second, faster approach is an application of the fast half-quadratic
method presented by Yang et al. [14].
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4 Inner Loop Optimization

4.1 Forward-backward approach for the inner problem

We start by rewriting the optimality condition of (18),

1

τ
(zk − u) + s ∈ ∂σEλ

(u)

⇔ u ∈ NEλ

((
zk − u

)
/τ + s

)

⇔ u = τ
((

zk/τ + s
)
−ΠEλ

(
zk/τ + s

))
.

To compute the projection ΠEλ
, we use the dual representation,

ΠEλ
(x) = argmin

q∈Eλ

1

2
‖q − x‖2Ω = Div

{

argmin
p

1

2
‖Divp− x‖2Ω + δDλ

(p)

}

. (22)

Using a simple forward-backward splitting for the inner problem results in the
(gradient projection) update rule

pj+1 = ΠDλ

(

p− νDiv⊤ (Divp− x)
)

.

The projection ΠDλ
can be computed explicitly and is separable in x, while the

inner part can be computed for all models independently. This opens up the
method to parallelization.

Convergence is guaranteed for ν < 2/‖Div⊤Div‖ (see e.g. [20, Thm. 3.12]).
Extending the argument in [24, Thm. 3.1], we find that ‖div‖ 6

√
4d. Accord-

ingly, we may set ν < 1
2d . In our experiments, we set ν = 0.95

2d to avoid numerical
problems close to the theoretical maximum. Wrapping up, we have

Algorithm 2 Inner loop, forward-backward approach

1: x← zk

τ
+ s, choose arbitrary p0 ∈ R

n×d×L

2: repeat

3: pj+1 = ΠDλ
(pj − νDiv⊤(Divp− x))

4: until ‖pj+1 − pj‖∞ 6 δinner

5: uk ← τ(x−Divpj+1).

4.2 Half-quadratic approach for the inner problem

While the forward-backward method is simple and easy to implement, its con-
vergence speed is in practice not satisfactory. As an alternative, we tested a
method by Yang et al. [14], which was proposed for general multichannel image
restoration. In the following, we give a short overview specialized to the ROF
case. Half-quadratic regularization has been introduced by [28]. For an overview
of related techniques we refer to [29].
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Starting from (21), the problem is to find

uk = argminug(u) , g(u) :=
µ

2
‖u− f‖2 + TV (u) , (23)

where µ := 1
τλ and f := zk + τs. To avoid the nondifferentiability of the discrete

TV, the authors employ a smoothing approach for the discrete norms. For given
β > 0, let

TVβ(u) :=
∑

x∈Ω

φβ(Gxu),

φβ(t) :=

{ β
2 ‖t‖2 + 1

2β , if ‖t‖ 6
1
β ,

‖t‖, otherwise .

φβ is the Huber function. For large β we do not lose much when solving (23):
Following [30, 3.30], we have

0 6 TVβ(u)− TV(u) 6
n

2β
.

Define gβ(u) as g(u) with TV replaced by TVβ . For solutions u∗
β and u∗ of the

smoothed respective original problem, we get

g(u∗
β) 6 gβ(u∗

β) 6 gβ(u∗) 6 g(u∗) +
n

2β
.

Thus the solution u∗
β of the smoothed problem is n

2β - suboptimal for the original
problem. ε-suboptimality requires

β >
n

2ε
. (24)

Using a half-quadratic approach, Yang et al. derive the splitting/penalty formu-
lation

(u, y) = argmin
yx∈RLd,x∈Ω,u∈RnL

∑

x∈Ω

(

‖yx‖+
β

2
‖yx −Gxu‖2

)

+
µ

2
‖u− f‖2Ω . (25)

This can be solved using alternating minimization w.r.t. u and the auxiliary
variables yx. The latter is highly parallelizable, as it boils down to n separate
explicit operations:

yj+1
x = max

{

‖Gxu‖ − 1

β
, 0

}
Gxu

‖Gxu‖ . (26)

On the other hand, minimizing (25) for u amounts to solving the normal equa-
tions for the quadratic program:

(

Grad⊤Grad +
µ

β
I(nL)

)

uj+1 = Grad⊤yj+1 +
µ

β
f, (27)
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where yj+1 is a proper rearrangement of the yx.
For periodic boundary conditions, Yang et al. solved (27) rapidly using FFT.

In our case, we have Neumann boundary conditions, so the Discrete Cosine
Transform (DCT-2) is appropriate [31]. Specifically, define ci ∈ R

ni as

(ci)k := 1− cos

(
3

2

kπ

ni

)

/ cos

(
1

2

kπ

ni

)

, i ∈ {1, . . . , d},

Dgrad :=

(
d∑

i=1

In1
⊗ . . .⊗ Ini−1

⊗ diag(ci)⊗ Ini+1
⊗ . . .⊗ Ind

)

,

DGrad := IL ⊗Dgrad.

Note that Dgrad and DGrad are both diagonal. Then

grad⊤grad = (DCT−1)Dgrad(DCT),

Grad⊤Grad = (IL ⊗DCT−1)DGrad(IL ⊗DCT),

where DCT is the DCT transformation matrix for (n1, . . . , nd)-dimensional data.
To solve the linear equation system (27), we compute

uj+1 =

(

Grad⊤Grad +
µ

β
I(nL)

)−1(

Grad⊤yj+1 +
µ

β
f

)

(28)

=

(

IL ⊗
(

DCT−1

(

Dgrad +
µ

β
In

)−1

DCT

))((

IL ⊗ grad⊤
)

yj+1 +
µ

β
f

)

This amounts to 2L independent (parallelizable) individual DCTs which can be
efficiently computed in O(n log n) each.

By the alternating application of (26) and (28), we can solve (25) for fixed β
large enough to guarantee the required suboptimality. In practice, convergence
can be sped up by starting with a smaller β and solving a sequence of problems
for increasing β, where each problem is warm-started with the solution for the
previous problem. The complete algorithm for β > 0 and arbitrary u0 ∈ R

nL

reads:

Algorithm 3 Inner loop, half-quadratic approach

1: while stopping criterium not satisfied do

2: compute yj+1 from (26)
3: compute uj+1 from yj+1 and (28),
4: possibly increase β
5: end while

The stopping criteria can be based on the residual [14]. For our experiments,
we set a fixed iteration count, as increasing β at each step turned out to lead to
fastest convergence, and residua for different β are not comparable.
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τλ 0.1 1 2 5 10 20 50

tHQ 1.14 1.23 1.20 1.31 0.98 0.95 1.08
tFB 1.03 1.02 1.06 1.03 1.22 1.25 1.19
rHQ 3901.9 27660.7 36778.5 40038.8 42262.8 44377.1 44752.5
rFB 3901.9 27660.4 36760.6 40104.3 42924.3 46988.6 57504.9

rel. diff. 1.17e-16 1.24e-5 4.85e-4 -1.64e-3 -0.0156 -0.0588 -0.285

Table 1. Run times t (in seconds), objective function values r and relative differences
(rHQ−rFB)/rHQ for the experiment in Fig. 3. For larger τλ, the half-quadratic method
gives more accurate results in the same time.

5 Experiments, Performance Evaluation

5.1 Inner Problem

We compared Yang’s half-quadratic approach to the conventional forward-back-
ward method. The difficulty with the former lies in the choice of the update
strategy for β. We chose a generalization of the exponential strategy as out-
lined in the original paper: set β = βmin and update by multiplying with
c := (βmax/βmin)1/K for some K until β = βmax.

We made the following observations:

– In order to rapidly minimize the objective function, it is best to use a con-
tinuation strategy, i.e. to increase β at each step, rather than spending time
on solving (25) exactly for each β.

– Increasing K generally improves the quality of the result.
– For fixed βmax and K, there seems to be a unique optimal βmin that mini-

mizes the final objective function value.

With the fixed continuation strategy and fixed βmax, we found the optimal βmin

to usually lie in the range of 10−5βmax to 10−3βmax. Unfortunately, there seems
to be a strong dependency on the choice of λ as well as the scale and complexity
of s. We set βmin = 0.2 · 10−4βmax, which worked well for our data. βmax was set
at n/0.2 according to (24) with ε = 0.1.

To evaluate the performance of the two methods, we chose fixed iteration
counts so that both had approximately the same runtime, and compared the
results in terms of the objective function value (Fig. 3, Table 1). The algo-
rithms were implemented and optimized in MATLAB. For small τλ, the forward-
backward method gives slightly better results, while for larger τλ (> 3 for the
image shown), the half-quadratic method stays ahead. For τλ = 20, less than 10
iterations are required to reach the quality of the forward-backward method with
300 iterations, giving a speedup of about 4 − 5. However, finding the optimal
parameter set is more involved than for the forward-backward method.

5.2 Overall Problem

We evaluated the performance of our algorithm against five different methods
in their publicly available implementations from the Middlebury MRF bench-
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Fig. 3. Results of the speed comparison between half-quadratic method and forward-
backward method for the inner problem, applied to data from the first iteration of
the outer problem (cf. Table 1). Top row: Half-quadratic method. Bottom row:

Forward-backward method. Left to right: Original input, τλ = 2, 5, 20. Iteration
counts were fixed at 80 resp. 300 to equalize the runtime for both approaches. For
larger regularization parameter, the half-quadratic method outperforms the forward-
backward approach as smoothness increases.

mark [32]: Belief Propagation (BP), Sequential Belief Propagation (BPS), Graph
Cuts with alpha-expansion (GCE), Graph Cuts with alpha-beta swap (GCS) and
Sequential Tree Reweighted Belief Propagation (TRBPS). Each of the grayscale
32× 32 images with pixel values in [0, 1] was overlaid with normally distributed
noise, and then segmented into four gray levels with fixed intensities with the
distance measure from section 2.1. The experiments were repeated 20 times for
each λ, with fixed step size τ = 1. In view of the last section and in order not to
mix up speed with accuracy issues, we used the forward-backward approach for
the inner loop. Termination criteria were set at δinner = 1e− 3, δouter = 2e− 2.

For small λ, our method shows results comparable to the other approaches
with respect to the number of bad labels. We point out again that this solution to
the non-binary labeling problem is achieved by solving the convex optimization
problem (9) followed by local rounding as explained in section (2.3).

In contrast to our method, the MRF benchmark algorithms optimize the
anisotropic energy. To compensate, their λ was scaled by a common factor of
≈
√

2 that was found empirically. Nevertheless, their discretization gives them
a small advantage on images with axis parallel edges (experiments 1 and 2). It
also explains why in experiments 3 and 4, our method could perform well w.r.t.
the number of bad labels, while the energy was quite high.

Fig. 6 demonstrates the performance of our algorithm for color segmentation.
Generally only few outer iterations (20 in our case) are necessary for accurate
optimization.
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Fig. 4. Exemplary grayscale segmentation results for the benchmarked methods for
four labels. Left to right: Noisy input data, final results for BP, BPS, GCE, GCS,
TRWS, and the proposed method (TV). λ was manually chosen for each method.
Axis-parallel edges are better recovered by the anisotropic methods, while our isotropic
discretization has an advantage on diagonal edges.

6 Conclusion and Further Work

In this paper, we presented a convex variational approach to solve the com-
binatorial multi-labeling problem for energies involving a general data term,
total-variation-like regularizers, and simplex constraints. To enforce the required
simplex constraint, we based our approach on the globally convergent Douglas-
Rachford operator splitting scheme. We evaluated two methods in order to effi-
ciently solve the ROF-type subproblems, and showed that Yang’s half-quadratic
approach allows faster convergence at the price of more involved parameter tun-
ing.

Experiments showed that the quality of the generated labelings is comparable
to state of the art discrete optimization methods, and can be achieved by just
solving a convex optimization problem.

Due to the generality of the data term, our method allows for a wide range of
features or distance measures. To fully evaluate these possibilities in connection
with variations of the TV measure is a subject of our future research.

Acknowledgement Jing Yuan gratefully acknowledges support by the German
National Science Foundation (DFG) under grant SCHN 457/9-1.
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Fig. 5. Error rates compared to ground truth for the first experiment in Fig. 4 for
varying λ. For each λ, all experiments were repeated 20 times with random noise (zero-
mean Gaussian with σ = 0.45, 0.35, 0.25 resp. 0.35 for experiments 1–4 and image
intensities in [0, 1]), and the percentage of incorrectly assigned labels compared to
ground truth was recorded. Sequential Belief Propagation (BPS) generally performed
worst, while our method (TV) was on par with the others, in particular for lower λ.
The figure also reveals that belief propagation (BP) gets stuck in a good, but often
inferior local optimum. As a consequence, the method does not respond to larger values
of the regularization parameter λ, i.e. stronger regularizaton requested by the user.
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Fig. 6. Performance of our method for four-class segmentation based on ℓ1 color dis-
tance. Top row: Ground truth, inspired by [27, 33] (left), overlaid with Gaussian noise,
σ = 1 (right). Bottom row: Local nearest-neighbor labeling (left), our approach with
λ = 0.7 after 20 outer iterations (right). The energy of the result is about 1% lower than
the energy of the ground truth, suggesting that at this noise level, further improvements
are limited by the model.



18 J. Lellmann, J. Kappes, J. Yuan, F. Becker, C. Schnörr
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