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1 - Abstracts

1 Abstracts

1.1 Abstract

Neurofibromatosis type I (NF1) is an inherited neurocutaneous disor-

der with a high incidence of 1 in 3500 newborns. Clinical manifesta-

tions include pigment anomalies, Lisch nodules and the formation of

different tumors like neurofibroma. NF1 is caused by alterations of the

NF1 gene, encoding the Ras specific GTPase activating protein Neu-

rofibromin, which participates in several major signaling pathways.

A structural proteomics approach recently led to the discovery of an

unpredicted pleckstrin homology (PH)- and a Sec14-like domain.

In this thesis I have investigated the biochemical properties of the

NF1-SecPH module. NF1-SecPH can bind glycerophospholipids with

a preference for phosphatidylethanolamine and -glycerol (PtdEtn,

-Gro), of which PtdEtn is abundant in Neurofibromin containing cells

and thus a likely physiological ligand. It was furthermore possible to

crystallize NF1-SecPH in complex with glycerophospholipids which is

the first structure of a CRAL Trio domain bound to such ligands and

shows that PtdEtn binds to the interior of the Nf1-Sec portion. Lipid

exchange experiments revealed that PtdEtn and PtdGro are readily

exchanged, but phosphatidylcholine, -serine and -inositol (PtdCho,

-Ser, -Ins) are only incorporated to a minor degree. The lipid exchange

activity can be modulated by soluble headgroups of phosphorylated

PtdIns derivatives (PIPs), which is consistent with a regulatory in-

teraction between Nf1-Sec and NF1-PH. While some patient derived

mutants show significant structural alterations compared to the cellu-

lar NF1-SecPH module, their properties with respect to lipid content

and PIP binding are only affected slightly. Localization studies in the

presence and absence of stimuli did not reveal a specific compartment

association compared to other PH domain containing proteins.

Taken together, PtdEtn is probably a physiological ligand of NF1-

SecPH, which seems able to incorporate membrane derived lipids in a

regulated fashion.
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1 - Abstracts

1.2 Zusammenfassung

Neurofibromatose Typ I (NF1) ist eine neurokutane Erbkrankheit, die

bei einem von 3500 Neugeborenen auftritt. Häufige Symptome sind

Pigmentanomalien, Lisch-Knoten und verschiedene Tumore, wie Neu-

rofibrome. Die Erkrankung wird durch Mutationen im NF1 Gen verur-

sacht, das mit dem Ras spezifischen GTPase aktivierenden Protein

Neurofibromin einen Regulator zentraler Signalwege kodiert. Durch

strukturbezogene Proteomik wurde kürzlich eine unerwartete Pleck-

strin Homologie- (PH) und eine Sec14-ähnliche Domäne entdeckt.

In der vorliegenden Arbeit untersuchte ich die biochemischen Eigen-

schaften des NF1-SecPH Moduls. NF1-SecPH bindet Glycerophos-

pholipide – im Besonderen Phosphatidylethanolamin und -glycerol

(PtdEtn, -Gro) – was zusammen mit seiner Häufigkeit in Neurofi-

bromin enthaltenden Zellen für PtdEtn als wahrscheinlichen physi-

ologischen Liganden spricht. Zudem konnte NF1-SecPH im Komplex

mit Glycerophospholipiden kristallisiert werden, was die erste Struktur

einer CRAL Trio Domäne mit solchen Liganden darstellt und zeigt,

dass PtdEtn im Inneren von NF1-Sec bindet. Während PtdEtn und

PtdGro leicht austauschbar sind, werden Phosphatidylcholin, -serin

und -inositol (PtdCho, -Ser, -Ins) nur schlecht inkorporiert. Die Aus-

tauschreaktion kann zudem mit hohen Konzentrationen löslicher Kopf-

gruppen phosphorylierter PtdIns Derivate (PIPs) moduliert werden,

was konsistent mit einer regulatorischen Interaktion zwischen NF1-Sec

und NF1-PH ist. Obwohl die Strukturen einiger Mutanten von Pa-

tienten signifikante Änderungen zum zellulären NF1-SecPH aufweisen,

sind hinsichtlich gebundener Lipide oder der Bindung von PIPs kaum

Unterschiede feststellbar. Lokalisierungsstudien bei An- oder Abwe-

senheit von Stimuli zeigten keine Assoziierung mit bestimmten Zell-

bereichen, im Gegensatz zu anderen Proteine mit PH Domänen.

Zusammenfassend ist PtdEtn ein wahrscheinlicher physiologischer

Ligand von NF1-SecPH, das anscheinend auf regulierte Art und Weise

Membranlipide inkorporieren kann.
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2 - Abbreviations

2 Abbreviations

AC adenylyl cylcase
α-TTP α-tocopherol transfer protein
AMP adenosine monophosphate
ArA arachidonic acid
Arp2/3 actin related proteins 2/3

BEACH Beige and Chédiak-Higashi domain
Bp base pair
BSA bovine serum albumin

cAMP cyclic adenosine monophosphate
CASK calcium/calmodulin-dependent serine protein kinase
CBD caveolin binding domain
CD circular dicroism
CNS central nervous system
CRAL Trio domain type named after CRALBP and Trio
CRALBP cellular retinaldehyde binding protein
CREB cAMP response element binding
CSRD cysteine and serine rich domain
CRMP-2 collapsin response mediator protein 2

Dab disabled
DNA deoxyribonucleic acid
D-GD3 disiaganglioside-GD3

ECL enhanced chemiluminescence
ECM extracellular matrix
EDTA ethylenediaminetetraacetic acid
EGF epidermal growth factor
EM electron microscopy
Ena enabled
ER endoplasmatic reticulum
ESI electrospray ionisation
EVH1 enabled / VASP homology 1
EVI2A ecotropic viral integration site 2A
EVI2B ecotropic viral integration site 2B
E.coli Escherichia coli

FFDM fat free dry milk powder

GAP GTPase activating protein
GDP guanosine diphosphate
GEF guanosine nucleotide exchange factor
GFP green fluorescent protein
GPCR G-protein coupled receptor
GRD GAP related domain
GRP1 general receptor for phosphoinositides isoform 1
GST glutathion-S-transferase
GTP guanosine triphosphate
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2 - Abbreviations

HeLa Henrietta Lacks
HEPES N-1-Hydroxyethylpiperazine N’-2-ethanesulfonic acid
HRP horseradish peroxidase

Ins-3-P 1D-myo-Inositol-3-phosphate
InsP6 myo-Inositol-1,2,3,4,5,6-hexakisphosphate
IRA1 inhibitory regulator of the RAS-cAMP pathway 1
IRA2 inhibitory regulator of the RAS-cAMP pathway 2
IRS insulin receptor substrate
ITC isothermal titration calorimetry

LOH loss of heterozygosity
LPA lysophosphatidic acid
LPtdCho lyso-PtdCho

MAPK mitogen-activated protein kinase
MAP1 microtubule-associated protein 1
MES 2-(N-Morpholino)-ethanesulfonic acid
MPNST malignant peripheral nerve sheet tumor
MR molecular replacement
mRNA messenger RNA
MS mass spectrometry
mTOR mammalian target of rapamycin
MWCO molecular weight close out
M-GM1 monosialoganglioside-GM1

NF1 Neurofibromatosis type I
NF1-CSRD cysteine and serine rich domain of Neurofibromin
NF1-GRD gap related domain of Neurofibromin
NF1-PH PH-like domain of human Neurofibromin
NF1-SecPH SecPH domains of human Neurofibromin
NF1-Sec Sec14-like domain of human Neurofibromin
NF1-Syn syndecan binding domain of Neurofibromin
NF1-Tub tubulin binding domain of Neurofibromin
NLS nuclear localization signal

OD optical density
OMPG oligodendrocyte myelin glycoprotein

PA phosphatidic acid
PBS phosphate buffered saline
PDB protein data bank
PDGF platelet derived growth factor
PEG polyethylene glycol
pfu Pyrococcus furiosus
PH pleckstrin homology
PI phosphatidylinositol = PtdIns
PIPs phosphorylated PtdIns derivatives
PITP phosphatidylinositol transfer protein
PI3K phosphatidylinositol 3-kinase
PKA protein kinase a
PKCα protein kinase Cα
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2 - Abbreviations

PLC-β2 phospholipase C-β2
PMFS phenylmethylsulfonylfluoride
Pob3 polimerase 1 binding protein 3
PSn1P phytosphinganine-1-phosphate
PTB phosphotyrosine binding
PtdCho phosphatidylcholine, (3-sn-phosphatidyl)choline
PtdEtn phosphatidylethanolamin
PtdGro phosphatidylglycerol
PtdIns phosphatidylinositol, 1-(3-sn-phosphatidyl)-D-myo-inositol
PtdIns-3-P1 PtdIns-3-phosphate
PtdSer phosphatidylserine
pTyr phosphotyrosine

Q-Tof quadrupol-time of flight

Rac ras related C3 botulinum toxin substrate 1
Ral ras-like protein
Ran ras-related nuclear protein
RanBD ran binding domain
Ras rat sarcoma viral oncogene homolog
RdgB retinal degeneration B (αI / αII)
RMSD root mean square deviation
RNA ribonuleic acid
RTK receptor tyrosine kinase
rutAC rutabaga adenylyl cylcase

SCF stem cell factors
SDS-PAGE sodium dodecyl sulfate polyacrylamid gel electrophoresis
Shc src homology 2 domain containing
Sn1P sphinganine-1-phosphate
SPCho sphingosylphosphorylcholine
src v-Src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene
S1P sphingosine-1-phosphate

TAP-TAG tandem affinity purification - tag
TD tandem duplication mutation
TEV tobacco etch virus
TFIIH transcription factor IIH
ToF time of flight
TRIO triple functional domain protein
Tris tris-(hydroxymethyle)-aminoethane hydrochloride
TGF-β transforming growth factor β

UV ultra violet

VASP vasodilator-stimulated phosphoprotein

WASP Wiscott-Aldrich syndrome proteins

YFP yellow fluorescent protein

4x mutant of NF1-SecPH: K1670A-R1674A-R1748A-K1750A

12



3 - Introduction

3 Introduction

3.1 Neurofibromatosis Type I

Neurofibromatosis type I (NF1), also referred to as von Reckling-

hausen disease, is a common inherited neurocutaneous disorder clas-

sified as a Phakomatosis.1–4 The disease was first described by the

german professor Friedrich Daniel von Recklinghausen in 18825 and

since then, no cure or efficient treatment could be found. Causative

for the autosomal dominant disorder are alterations of the NF1 gene,

which has one of the highest mutation rates in the human genome of

about 0.3 - 1.0 x 10−4. Correspondingly, 50% of new cases arise from

spontaneous mutations.6,7 NF1 has a relative high incidence of 1 in

3500 and a minimum prevalence of 1 in 5000. Although the disorder

is completely penetrant, both severity and the individual phenotype

are unpredictable and differ even between family members carrying

the same mutation.7–9

The most frequent clinical manifestations of NF1 include several

benign pigmented lesions called café-au-lait spots, Neurofibroma, ax-

illary or inguinal freckling and hamartomas of the iris termed lisch

nodules.2,9, 10 Neurofibroma are benign peripheral nerve sheet tu-

mors which mainly consists of fibroblasts, Schwann-, mast- and per-

ineurial cells, large amounts of collagenous extracellular matrix and a

traversing neuron.1 While cutaneous neurofibroma are nearly symp-

tomless except itching, subcutaneous ones can cause pain and neu-

rological deficits by compression of nearby peripheral nerves. Simi-

lar symptoms emerge from plexiform neurofibroma which in addition

diffusely infiltrate the surrounding tissue and grow along nerves to

large size. In some cases cutaneous and plexiform neurofibroma can

progress to highly aggressive malignant peripheral nerve sheet tumors

(MPNSTs) which widely metastase and usually portent a poor out-

come.1,9 Tumor formation is induced by NF1 (−/−) Schwann cells, but

depends on a NF1 (−/+) microenvironment and recruitment of inflam-

matory cells.1,11–13 Other features affect bone homeostasis (scoliosis,

13



3 - Introduction

pseudoarthrosis14), brain function (attention deficit,15 learning prob-

lems,16 epilepsy17) and include further types of tumors (phaeochromo-

cytoma,18 optic pathway glioma,19 rhabdomyosarcoma,20,21 juvenile

myelomonocytic leukemia22) to exemplify some of the many possible

complications.9,10,23,24

3.2 The NF1 gene

The NF1 gene is located on the long arm of chromosome 17 near

the centromere,25–28 consists of about 280 KBp of genomic DNA29–32

and is divided into 60 alternatively spliced exons.33 Although, a large

number of different NF1 splicing products are known,33,34 only five

of them have also been detected on the protein level so far (fig. 3-

1).33,35–37

The expression of the different NF1 splicing products is regulated

in a complex way, including tissue specific expression, mRNA edit-

ing38–40 and developmental changes as shown with cultured human

cells and murine NF1 homologues.41–45 Expression of NF1 during

development is ubiquitous between the onset of organogenesis and

midstage embryonic development, but decreases then in many tissues

until expression in adults is mainly observed in neurons, Schwann cells

and oligodendrocytes.46–48 While the splice products type I and II are

widely expressed with a focus on the nervous system,49–51 the NF1

isoforms 3 and 4 are exclusively expressed in muscle tissue35,36 and

isoform 9br in CNS neurons.37,45,52

It is noteworthy, that the three pseudogenes OMGP (oligoden-

drocyte myelin glycoprotein), EVI2A and EVI2B (ecotropic viral in-

tegration site) are located on the antisense strand of the NF1 gene.

OMPG is a cell adhesion molecule and ligand of the NgR receptor,

while EVI2A/B are transmembrane glycoproteins whose murine ho-

mologues are linked to leukemia formation. However, no mutations

associated with NF1 could be found in this genes so far.53–56
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3 - Introduction

3.3 Animal models of NFI

In different animal systems defects of NFI could be modeled, revealing

a number of mechanisms involved in the pathogenesis of the disease,

especially regarding tumor formation. In many aspects, the acquired

information is valid for the human organism and might help to further

the development of therapies. The best characterized model systems

of NF1 are mouse (Mus musculus) and the fruit fly (Drosophila mela-

nogaster).

3.3.1 Mouse

The mouse Nf1 gene has a sequence homology of 98% to human NF1,

including both, the coding sequence and promoter region.57 Therefore

it can be expected that gene regulation, gene expression as well as the

biochemical functions of the encoded proteins are very similar.

While mice with complete loss of Neurofibromin Nf1−/− are em-

bryonic lethal due to defects in heart development, Nf1+/− mice reca-

pitulate several symptoms of the human disease including abnormal

brain function, learning disabilities, increased risk of myeloid leukemia

and pheochromocytoma.57–61 Although, the development of neurofi-

broma is not among the observed symptoms, they do occur in chimeric

Nf1+/− / Nf1−/− mice, indicating that the required loss of heterozy-

gosity (LOH) in Schwann cells is simply less frequent in mice.13,59,62

To further characterize the prerequisites for tumor formation, mice

were generated with the Nf1 gene specifically disrupted in Schwann

cells. Interestingly, these mice did not develop any tumors in contrast

to Nf1+/− mice with Nf1−/− Schwann cells. While this result shows

that neurofibroma have indeed a Schwann cell origin, it also demon-

strates that tumor formation depends on a Nf1+/− environment and

interaction with other cell types. Similar observations could be made

for the invasion of mast cells into nerve sheets, a process which seems

to be a further prerequisite for tumor formation. Once attracted to

nerve sheets by stem cell factors (SCF) secreting Nf1−/− Schwann

15



3 - Introduction

cells, the mast cells start to produce mitogens, TGF-β (transforming

growth factor β) and angiogenic factors which generates a permissive

environment for the advancement of tumor formation.61,63–65

In another mouse model the occurrence of MPNSTs could be ob-

served. This required a so called second-hit mutation in Nf1+/− mice,

namely the disruption of the p53 allele located at the same chromo-

some like Nf1. Investigations of MPNSTs showed, that during ma-

lignant transformation these tumors had lost the remaining alleles of

Nf1 and p53, displaying the full range of features observed in the hu-

man malignancy.59,61 Also NF1 related learning disabilities could be

investigated in mice, revealing that missing of exon 23a is responsible

for these symptoms. On a molecular level, the removal of exon 23a

results in the reduction of Neurofibromins GAP activity (p. 20) and

leads to an excess of active K-Ras. Downregulation of K-Ras activity

is in turn sufficient to rescue the phenotype, as shown with Nf1+/− /

K-Ras+/− mice and indirect K-Ras inhibitors.57,66

3.3.2 Drosophila melanogaster

The Drosophila melanogaster Nf1 gene has a size of about 13 Kbp and

a sequence identity of 60% with human NF1.67 Deletion of one Nf1

allele seems to have no severe effects, but Nf1−/− flies have a decreased

body size, learning disabilities and abnormalities in the regulation of

circadian rhythm effectors.67–69 Similar to mice, the described learning

defects are reversible, which was shown by inducible expression of

transgenic Nf1.70

Interestingly, dependence on Ras signaling and the MAPK path-

way could only be shown for some of the effects observed in Nf1−/−

flies, including impairment of long term memory formation as well as

altered regulation of circadian controlled proteins like cAMP response

element binding protein (CREB).69,71 In turn, the decreased body size

and impairment of immediate memory seems to be associated with re-

duced PKA activity and cAMP signaling. Biochemical investigations

point towards a potential direct interaction of Neurofibromin with the
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3 - Introduction

rutabaga adenylyl cyclase (rutAC), leading to cAMP production and

PKA activation.70–72 However, the Ras signaling independence of at

least the body size defects are discussed controversially in the litera-

ture.73 In recent studies of Nf1−/− flies, a number of additional effects

have been reported, affecting the life span, stress response and mito-

chondrial activity. These effects could be reversed by overexpression

of Neurofibromin and seem to be connected to AC activity and cAMP

levels but not Ras signaling.74

In summary, the Drosophila Neurofibromin proteins seems to act

on a branching point of Ras and AC / PKA mediated signaling in

the fruit fly, affecting diverse processes like learning, development and

longevity.60,70

3.4 The NF1 gene product Neurofibromin

The 2818 aa large Neurofibromin protein is the best characterized gene

product of the NF1 gene, corresponding to the splice variant type I.

Neurofibromin has a central Ras specific GAP (GTPase activating

protein) activity located in the GRD (GAP related domain)80,111,115

and is classified as a tumor suppressor protein,116–119 deficiency of

which leads to an increased Ras activity as shown in at least some

tumor cells116,120–123(Fig.3-1). Sequence comparisons show similari-

ties of GRD to the GAP domains of human p120GAP and the Sac-

caromyces cerevisiae proteins IRA1 and IRA2.80,115,116 As negative

regulator of Ras, Neurofibromin effects a core element of several sig-

nal transduction pathways involved in processes like cell survival,

-proliferation, -differentiation and -migration as well as learning and

memory.10,12,53,58,124

Since membrane attachment of Ras via lipid anchors is regulated

in a complicated manner,125–127 it is tempting to speculate that Neu-

rofibromin harbours membrane targeting activities as well to commu-

nicate with its target protein. Several studies addressing this topic

could show Neurofibromin localization to the plasmamembrane (ker-
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3 - Introduction

J Fig. 3-1 (p.18): NF1 , Neurofibromin and interaction partners.
NF1 Gene:29 ‘Introns & Exons’ displays the 282.75 Kbps of genomic NF1 DNA,
with introns (gray) and exons (red) drawn to scale. ‘Pseudogenes’: Located on
the antisense strand of the NF1 gene are the pseudogenes OMGP,75 EVI2A76 and
EVI2B,77 drawn in dark (exons) and light green (introns). ‘Exons’ displays the
common numbering (Vandenbrouck et.al.33) and relative size of the NF1 exons only,
summing up to a total of 12509bps. NF1 Transcripts: Exon schemes of the five al-
ternatively spliced transcripts of NF1, translation of which could be confirmed on the
protein level.33,35–37 Alternatively spliced exons are indicated with a circumflex and
a gray underlay. Neurofibromin Protein (Type I):‘Domain boundaries’ shows
a scheme of the 2818 aa Neurofibromin protein, with the six known protein regions
CSRD,78 Tub,79 GRD,80–82 Sec,83,84 PH84 and Syn85 displayed in scale as boxes.
The light blue box of the GRD region corresponds to the p120GAP/IRA1/IRA2
homology region,80 the blue box to the crystallized fragment81 and the dark blue
one to the minimal GAP domain.82 Potential PKA28,78 and PKCα86 phosphoryla-
tion sites (‘Phosphorylation sites’) are indicated with blue and yellow circles. Red
circles (‘Missense mutation found in patients’) indicate currently know missense
mutations, single aa deletions and one tandem duplication located between the Sec
and the PH domain.87–105 Corresponding to the protein scheme ‘exon boundaries’
shows the 57 exons of isoform I, with the common numbering on top and continuous
numbering below. Orange triangles indicate the exons 9a, 23a and 48a, which are
removed by alternate splicing in Neurofibromin Type I. ‘Interaction Partners’ shows
the reported nuclear localization signal (NLS),106 the four caveolin binding domains
(CBDs) where caveolin is predicted to bind Neurofibromin107 and the remaining in-
teraction partners Kinesin-1,108 F-Actin,109 Microtubule,79 amyloid precursor pro-
tein,110 H-Ras,111 Lipids,84,112 CRMP-2,113 14-3-3η114 and Syndecans.85 Arrows
indicate the interacting Neurofibromin domain if known.

atinocytes),128 the endoplasmatic reticulum (ER; in CNS neurons),129

mitochondria and microtubules (fibroblasts, leptomeningeal cells, as-

trocytoma cells).130,131 There is also the presence of a nuclear localiza-

tion signal (NLS) in Neurofibromin reported,106 however the biological

meaning of this finding is rather unclear. In the described experiments

only the C-terminal half of the protein was used and despite several

studies of other research groups, a similar observation has not been

reported until now (see above).

To identify further domains of Neurofibromin, patient derived mu-

tations of the NF1 gene have been analyzed revealing a huge number of

different alterations, 90% of which result in truncated protein products

due to premature stop codons or splicing defects. Patient derived mis-

sense mutations and single amino acid deletions are found distributed

over the whole NF1 gene and cluster in regions corresponding to the

GRD and CSRD (cysteine and serine rich domain) of the protein90(fig.
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3-1). This underlines the importance of the GRD domain, but indi-

cates likewise that the CSRD and other regions of Neurofibromin are

likely to be of functional relevance as well.87–105 Biochemical ana-

lysis revealed phosphorylation of Neurofibromin by protein kinase A

(PKA)78 and C (PKC)86 as well as several interaction partners includ-

ing Syndecan,85 amyloid precursor protein,110 Caveolin,107 tubulin,79

kinesin-1,108 collapsin response mediator protein-2 (CRMP-2)113 and

14-3-3η.114 For most of these interactions, the physiological signifi-

cance and the precise mode of interaction with Neurofibromin is not

clarified yet.

3.4.1 The GAP related domain and Ras

The best understood part of Neurofibromin is the GAP related re-

gion (GRD) which spans aa 1095 to 1569 and functions as negative

regulator of the proto-oncogene Ras.79,82,111,132

Ras acts as a molecular switch in the cell and can either be in

an GTP bound ’on’ state allowing target proteins to bind and trigger

further signaling, or a GDP bound ’off’ state (Fig.3-2). Structurally,

in the ’on’ state the else flexible Switch I and II regions of Ras be-

come stabilized by the γ-phosphate of GTP and adopt thereby a more

defined conformation capable of target protein binding, which leads

to further stabilization of the switch regions. The continuous cycling

of Ras between ’on’ and ’off’ states establishes a sensitive equilibrium

and maintains a certain amount of ’on’ state Ras which is tightly reg-

ulated by two protein classes. The first one are Guanine nucleotide

exchange factors (GEFs), which can switch Ras to the ’on’ state by

facilitating the release of GDP, followed by a quick noncatalyzed re-

binding to abundant intracellular GTP. The second one are GTPase

activating proteins (GAPs) like Neurofibromin, which can stop the ’on’

state of Ras by accelerating its slow intrinsic GTP hydrolysis activity

resulting in GDP bound ’off’ state Ras.80,111,115,116,127,132

The activation of Ras catalyzed GTP hydrolysis by Neurofibromin

is well investigated in biochemical and structural detail, suggesting
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Fig. 3-2: The Ras cycle Inactive Ras-GDP binds to a GEF protein, which removes the GDP
from the Ras active site. Due to the high GTP concentration in the cell, Ras immediately picks
up a GTP molecule and becomes active. Ras effectors can now bind and trigger downstream
signaling events. Inactivation of Ras can either occur by its very slow intrinsic GTPase activity
or by interaction with GAP proteins like Neurofibromin, which complement the Ras active site
and accelerate the GTP hydrolysis extremely. Both GEFs and GAPs are regulated themselves,
providing the means of signal input into the Ras cycle.

complementation of the Ras active site by the Arg1276 containing fin-

ger loop of GRD as main catalytic mechanism (fig. 3-3). Arg1276

stabilizes the transition state of the hydrolysis reaction by neutraliza-

tion of negative charges emerging from the nascent inorganic phos-

phate.81,132–134 The importance of Arg1276 for the physiological func-

tionality of Neurofibromin was underlined by the observation of a mis-

sense mutation changing Arg1276 to proline in a patient with malig-

nant tumors, which results in vitro in a 8000-fold reduction of Neurofi-

bromins GAP activity, without changing the binding affinity towards

Ras.135 Other features important for catalysis are the Switch II re-

gion, which needs to be stabilized by GRD interactions to maintain

the geometry of the active site, as well as Ras-Gln61 and a Mg2+ ion

for further stabilization of the transition state. On the GRD side, the

FLR motif is stabilizing the conformation of the finger-loop as well
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as the Switch I and II regions, while the variable loop ensures the

specificity of the GRD - Ras interaction.81,132,133,136,137

Experiments with a GRD containing fragment of Neurofibromin

showed that the GAP activity can be inhibited by phosphatidic and

(PA) arachidonic acid (ArA),138 while the same observation was also

made with the full length protein using different stearic or oleic acid

derivatives.139,140 Although, Neurofibromin has with NF1-Sec (see

below) a lipid binding module, this inhibitory effect seem to be feature

of GRD alone, at last for PA and ArA.

As outlined in fig. 3-4 (p.24), Neurofibromin influences a number

of signal transduction pathways, especially by GRD mediated negative

regulation of Ras. Ras is an important target of RTK signaling and

influences in turn a number of other signaling pathways and cellular

Fig. 3-3: The Ras - RasGAP complex. Scheme of Neurofibromin interactions with the
Ras active site during catalysis: Neurofibromin complements the Ras active site by insertion
of the Arg1276 containing finger loop. Furthermore, several parts of Neurofibromin including
the FLR motive and the variable loop, stabilize the Ras switch I and II regions in a reaction
competent conformation as indicated by arrows. Hydrolysis of the GTP-γphosphate is performed
by Neurofibromin-Arg1276, Ras-Gln61, the P-loop and a Mg2+ ion. The binding affinity and
ligand specificity of Ras for GTP is mediated by the Mg2+ ion, P-loop, NKxD- and DxxG
motive.

22



3 - Introduction

processes. This includes proliferation by MAPK signaling, membrane

trafficking trough Ral, actin cytoskeleton dynamics and cell cycle pro-

gression via Rac and PI3K as well as enhanced cell growth and protein

translation by mTOR signaling. Furthermore, Neurofibromin affects

signaling pathways independent of Ras, for example via AC / PKA

and is in turn influenced by GPCR signaling, PKA and PKCα. A

number of further connections to signaling pathways can be expected,

taken into account the number of Neurofibromin interaction partners,

especially receptors like syndecans.

3.4.2 The tubulin binding region

Stretching from residue 1095 to 1176, the tubulin binding domain

(NF1-Tub) is located inside the p120GAP homology region of Neu-

rofibromin which harbours the GRD domain. The NF1-Tub region

was shown to bind to α/β-tubulin heterodimers as well as whole mi-

crotubules. Furthermore, the GAP activity of Neurofibromin and the

affinity towards Ras is reduced upon tubulin binding in vitro,79,131

an effect which is probably even stronger in the cell since binding to

microtubles removes Neurofibromin from the plasma membrane and

Ras. The finding of a patient derived mutation in GRD, which dis-

rupts tubulin binding but does not influence GAP activity, underlines

the relevance of this observations.196 This interaction potentially con-

nects Ras signaling with important microtubule dependent processes

like chromosome segregation, axonal transport and organelle move-

ment.195

It is noteworthy, that just recently an interaction between Neu-

rofibromin and collapsin response mediator protein-2 (CRMP-2) was

reported, which seems to be involved in the regulation of neurite out-

growth.113 CRMP-2 was furthermore reported to be able to form a

heterotrimeric complex with α/β-tubulin and kinesin-1,194 which are

both interaction partners of Neurofibromin as well.79,108,131 In addi-

tion, Ras was reported to regulate neuronal polarity via a pathway

finally affecting CRMP-2,164 suggesting a feedback loop to Neurofi-
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J Fig. 3-4 (p.24): Simplified scheme of Neurofibromin and related sig-
naling pathways in consideration of the most recent findings.
The best characterized function of Neurofibromin is the negative regulation of Ras,
which connects the protein to various signaling pathways. Ras is a main effector of
RTK signaling and transduces the incoming signals towards different targets includ-
ing the MAP kinase pathway, PI3K / mTOR signaling, Rac / cytoskeletton as well as
membrane trafficking and exocytosis via Ral. Furthermore, Neurofibromin influences
these signaling events via AC / PKA and is in turn influenced by GPCR, syndecan
and integrin signaling. Taking into account the number of Neurofibromin interaction
partners reported, it can be expected that future research will reveal a number of ad-
ditional connections to cellular signaling.16,78,79,81,85,86,107–110,113,114,132,133,141–195

The abbreviations of protein names are itemized in the appendix p.95. Please not
that the interaction scheme does not include all reported interactions, not even if
both components are displayed. Only chosen proteins are shown, not accounting
for all existing isoforms. Colors are used for the purpose of clarity only. Arrow-
heads indicate functional activation of the target molecule or reaction by catalysis,
recruitment, phosphorylation ect., while flat bars indicate functional inhibition or
inactivation. Arrows with two heads symbolize interaction.

bromin.

3.4.3 The syndecan binding region

The syndecan binding region (NF1-Syn) is located at the C-terminus

of Neurofibromin (aa 2619 to 2719) and was shown to bind syndecans

in yeast two hybrid screens, which is supported by the finding that

syndecan-2 induced filopodia and dendritic spine formation is Neu-

rofibromin dependent.85,159

Syndecans are transmembrane receptors carrying 3 to 5 heparan-

or chondroitin-sulfate sugar chains on their extracellular part. With

their intracellular domains, syndecans can bind cytoskeletal and sig-

naling molecules like CASK, synthenin, PKA and Src, while their

extracellular part interacts with plasma proteins, growth factors and

extracellular matrix (ECM) proteins. Thereby syndecans couple ECM

and cytoskeletton, affecting processes like organ morphogenesis, cell

motility and -adhesion, often by synergistic signaling in cooperation

with integrins. Syndecans were also shown to act as co-receptors of

RTKs, modulating their signaling output dependent on the current

extracellular environment.

The signaling events affecting the regulation of filopodia and spino-

genesis are apparently mediated by the subsequent actions of Neurofi-
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bromin, AC, cAMP, PKA and finally Ena/VASP (enabled / vasodilator-

stimulated phosphoprotein) proteins which are key regulators of the

actin cytoskelleton. However, these findings seem to reflect only parts

of the full regulatory mechanism, since PKA activation alone is not suf-

ficient to trigger spinogenesis and the extracellular part of syndecan-2

is needed as well for productive signaling. Whether additional path-

ways are triggered by syndecan-2 via ECM / integrin contacts or by

other mechanisms is unclear, but it should be noted that PKA and

actin are both direct interactors of Neurofibromin and enhance Ras sig-

naling by GRD inhibition. Taken together, syndecans seem to recruit

Neurofibromin to adhesion sensitive signaling complexes involved in

the coupling of extracellular signaling and actin dynamics.85,158–160,197

3.4.4 The CSRD domain

Analysis of patient derived missense mutations revealed a clustering

of mutations in the Neurofibromin region spanning from residues 593

to 909, suggesting the presence of a further functional unit which was

termed cysteine and serine rich domain (CSRD). Features of the CSRD

are three cysteine pairs suggestive of ATP binding as well as potential

phosphorylation sites for PKCα and PKA.90

It was demonstrated, that PKA can phosphorylate CSRD in vitro

and speculated that this could have an effect on microtubule bind-

ing. This idea is based on the finding that one of the amino acid

stretches (815-834) carrying a PKA site has sequence homology to the

microtubule associated proteins MAP-2 and tau.90,131

Phosphorylation of CSRD by PKCα was observed in vivo as conse-

quence of EGF stimulation and enhances both, GRD activity and the

association of Neurofibromin with the actin cytoskeletton. EGF stim-

ulation can simultaneously activate Ras and PLCγ signaling, leading

to cell migration and/or cell proliferation. This PLCγ - PKCα medi-

ated negative feedback on Ras signaling is in this context hypothesized

to represent a mechanism shifting the cellular EGF response towards

cell migration.86
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3.4.5 The Sec14 homology - PH like module

The Sec14 homologous region (NF1-Sec) resides C-terminally of GRD

ranging from residues 1560 to 1698 and is directly followed by the

pleckstrin homology like domain (NF1-PH) extending from residue

1715 to 1816. Bioinformatic studies predicted NF1-Sec83 due to weak

homology to the CRAL TRIO motive (Prosite198 PS50191), which

could be confirmed after we solve the structure of the NF1-SecPH

module.84,199 In contrast, NF1-PH is a crystallographic discovery and

was only recognized as PH domain after structural comparison with

databases, supporting our project approach.

The CRAL TRIO motif was first observed in the Saccharomyces

cerevisiae phosphatidylinositol (PI) transfer protein (PITP) Sec14p

and consists of a large hydrophobic cage which is closed by a spe-

cial amphipatic helix. With this cage, PITPs are able to transfer

hydrophobic lipids between membranes through the aqueous medium.

The amphipatic helix seems to be the key element in this process and

is believed to be able to enter a membrane, extract a single lipid and

seal the lipid-binding cage during the transport (“bulldozer mecha-

nism”).200–205 PITPs are found in most organisms excluding bac-

teria and can be divided into two different domain types which are

unrelated to each other in structure and sequence. In mammalians,

the first domain type includes the protein classes containing PITPα,

PITPβ, RdgBαI and RdgBαII which mainly have a transfer activ-

ity for 1-(3-sn-phosphatidyl)-D-myo-inositol (PtdIns, PI) and (3-sn-

phosphatidyl)choline (PtdCho). The lipid PtdIns and especially its

phosphorylated derivatives (PIPs) are essential components of many

signaling pathways effecting cytoskeletton dynamics, membrane trans-

port and traffic.206 The second domain type consists of the Sec14p-

like proteins, which have strongly diversified in terms of physiological

functions and ligand specificity, transporting for example pigments

and vitamins.207–213

PH domains consists structurally of two stacked β-sheets which
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are interconnected by three variable loops and flanked by an α-helix

(β-sandwich). This structural scaffold is able to carry several different

binding sites for various ligands, which are usually located in the vari-

able loops region.214,215 A short overview of the different groups of PH

domains is given here, since the associated functions might also be rele-

vant for NF1-PH: Classic PH domains are mainly PIP binders of vary-

ing specificity and affinity for single PIPs. While some of them bind

strong enough to localize the host protein to a membrane upon the

availability of one specific target PIP, others are only capable of doing

so in cooperation with additional domains and lack the stringent PIP

specificity (dual-key strategy216). It is noteworthy, that such a coop-

erative mode of action has the features of a logical AND switch, allow-

ing localization only if all required ligands are present simultaneously.

In return, this means that each combination of domains is specific

for a certain membrane microenvironment and/or the occurrence of

defined signaling events.206,217–223 Phosphotyrosine binding domains

(PTB) can bind simultaneously to PIPs and proteins with an Asn-

Pro-X-Tyr (NPXY) motive, often requiring phosphorylation of Tyr.

Subgroups of PTB domains include Shc-, IRS- and Dab-like protein

modules, mostly found in proteins functioning as adaptors or scaffolds

in signal transduction pathways.214,224–227 Also polyproline helices can

be bound by PH domains, which is typical for enabled / VASP ho-

mology 1 (EVH1)- , Wiscott-Aldrich syndrome proteins (WASP) and

homer-vessel scaffold proteins. EVH1 proteins are multidomain modu-

lators of actin cytoskeleton dynamics,197,228 while WASP proteins are

scaffolds coupling several signaling pathways with the Arp2/3 actin

filament nucleation complex.229 Homer-Vessel proteins are found in

excitatory synapses and are involved in memory formation and long

term potentiation.228,230 The last group of protein modules with a

PH fold are Ran binding domains (RanBD), which are components of

the nucleocytoplasmatic transport system and help to dissociate and

recycle Ran-GTP importin / exportin complexes.214,231,232 It should

be noted that some PH domains do not count to the above mentioned
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groups and were only identified after structure determination like in

Neurofibromin. An example is the PH domain of TFIIH, which is

important for nucleotide excision repair.233

The crystal structure of the NF1-Sec domain of Neurofibromin

shows a similar fold like other CRAL TRIO containing protein mod-

ules,84,200,212,213,234 with the the amphipatic helix (lid helix) blocking

the entry to the lipid binding cage.234 Inside, a Triton X-100 molecule

is located which is a detergent from the purification process. The

NF1-PH domain is closely interacting with the NF1-Sec domain an

has besides its normal PH fold an additional β-protrusion (lock) in-

serted between the strands β3 and β4. This β-protrusion folds in the

crystal structure on top of the lid-helix and would prevent an open-

ing movement if inflexible. Such a close interaction between a Sec14-

and PH-domain is uncommon and was not reported previously, sug-

gesting that the combination of these two domains generates a novel

functionality. Mutational analysis in combination with PIP binding

assays showed furthermore a second binding site for PIPs at the lid -

lock interface, composed of residues provided by both Neurofibromin

domains.84

3.5 Current situation and goals

Recently, we could crystallize and determine the structure of a Neu-

rofibromin fragment next to GRD, containing a Sec14-like and an un-

predicted PH domain. Inside the NF1-Sec lipid binding cage, a triton-

X100 detergent molecule from the purification process was bound, re-

placing any previously contained cellular ligand. Furthermore, bind-

ing of the module to phosphorylated PtdIns (PIPs) was shown with

a fusion-tag based assay and the binding site mapped by mutational

analysis. Also first localization experiments were done in several cell

lines, but without a clear result.

The main aim of this thesis is to address the question which role
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the Nf1-SecPH module plays in context of the Neurofibromin protein.

Suggestive possibilities include that NF1-SecPH provides membrane

association or works as a lipid sensor affecting the GAP activity, it

however might also serve another purpose. To address this questions,

a number of points require clarification:

- What is the function of the NF1-Sec lipid binding cage ?

- Is there a regulatory interaction between the NF1-Sec

and NF1-PH domain ?

- What alterations are caused by patient derived missense

mutants ?

Therefore, the thesis work will focus on the further characterization of

the NF1-SecPH module utilizing biochemical and structural methods

with a special emphasis on the various missense mutations observed

in patients.
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4 Results and discussion

4.1 Improved overlay assays and PIP binding

4.1.1 New tools: the αNF1-SecPH antibody

Although a number of assays could be performed so far with tagged

NF1-SecPH protein, several problems were associated with this setup.

The combination of His-Tag, GST (glutathion-S-transferase)-Tag and

TEV (tobacco etch virus) cleavage site adds about 250 aa to the pro-

tein in question, which can lead to the obstruction of binding sites or

the impairment of biological activities, thereby generating false nega-

tive results. Furthermore, we observed the appearance of false posi-

tive signals while detecting the fused protein with αGST antibodies,

which was caused by the combination of His- and GST-Tag. While

this problem could be partly addressed by switching to a GST-tag,

still the question remained if the additional domain does not falsify

or impair the binding properties of NF1-SecPH (Igor D’Angelo, PhD

thesis).

To establish a detection system for NF1-SecPH that circumvents

the problems associated with fusion tags, αNF1-SecPH antibodies

were raised in rabbits (animal handling by EMBL laboratory animal

resources, (LAR)) and purified by means of a custom made NF1-

SecPH affinity column. Typically 0.7 mg of antibody could be ob-

tained from 5 ml of serum. The functionality of the antibody was

Fig. 4-1: Gel with several variants of NF1-SecPH and westernblot of the gel detected with
Rabbit αNF1-SecPH / Goat αRabbit-HRP (Sigma-Aldrich), ECL kit and autoradiography
film (GE Healthcare). See 4.5 (p. 58) for mutants.
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verified by westernblot experiments (fig. 4-1), and shown to recog-

nize also a number of mutant versions of the module as well as the

full length Neurofibromin protein (not shown, personal communica-

tion with Jeanette Seiler, EMBL).

4.1.2 Overlay assays and the PIP binding Site

Given the complicated regulatory mechanisms controlling the local-

ization of Ras in the cell,125 it is suggestive that Neurofibromin might

have membrane targeting activities as well. Since a number of classical

PH domains are known to support membrane association of their host

protein,217 NF1-SecPH was tested for such an activity by assessing its

PIP binding abilities. Due to the availability of the new αNF1-SecPH

antibody, it was possible to perform lipid-protein overlay assays with

tag-free protein, excluding the previous problems with false positive

(fig. 4-3 e)) and -negative signals.

For the assays, PIP-StripsTM, Sphingo-Strips and PIP-ArraysTM

from Echelon biosciences as well as custom made lipid arrays from

Oriol Galego (EMBL Heidelberg) were used. In short, a lipid binding

protein becomes attached to the immobilized lipids on the membrane

and is still present after several wash steps. Detection is done with

Rabbit α-NF1-SecPH and Goat αRabbit-HRP (horseradish peroxi-

dase) antibodies, followed by visualization with a chemiluminescence

reaction and autoradiography film (fig. 4-2).

Before satisfactory results with the protein-lipid overlay assays

could be obtained, a number of optimization steps had to be estab-

lished.

- The replacement of fat free dry milk powder (FFDM) against

fatty acid free BSA (Bovine serum albumin) was necessary, since

FFDM completely blocks both, membrane and lipids (fig. 4-3

f)).

- Reduction of the high initial background to noise ration could

be achieved by using the more sensitive ECL PlusTM- instead of
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Fig. 4-2: PIP-StripTM assays. Lipids are spotted onto a nylon membrane, which is
blocked with BSA before the experiment. While lipid binders become immobilized on the
membrane, non-binders are removed in subsequent washing steps. Detection is done via
rabbit α-NF1-SecPH and goat α-Rabbit-HRP antibodies followed by ECL visualization.
In several reaction steps, Lumigen PS-3 is broken down to CO2, a fluorinated phenol
derivative and excited 9-hydro-10-methyl-9-oxoacridine, which is catalyzed by HRP in the
presence of hydrogen peroxide and solvent. Upon decay of the excited state, 9-hydro-10-
methyl-9-oxoacridine emits a photon which blackens the autoradiography film.235

the ECL kit (fig. 4-3, a) vs. f)).

- For some protein variants it was also necessary to perform the

experiments at low temperature for a good signal to noise ratio

(fig. 4-3, g)).

- Further parameters to be considered were to avoid multiple freeze-

thaw cycles, the pH value and a very quick buffer exchange to

prevent exposure of the membrane to air.

As displayed in fig. 4-3 a),b),d), NF1-SecPH binds only to phos-

phorylated PtdIns derivatives and sulfatide, with a preference for

monophosphorylated PIP species. Although only PIPs are bound, the

precise position of the charged group seems to have a rather weak ef-

fect on ligand binding. Similar to PIPs, also the galactolipid sulfatide

contains a ring-structure with an attached charged group, here sul-

fate instead of phosphate, suggesting some adaptability of the binding

region.
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Fig. 4-3: Lipid protein overlay assays, see text for discussion of the results. a) PIP-
StripTM with NF1-SecPH, membrane blocked with BSA, incubation at 4oC, detection
with ECL PlusTM kit. b) Sphingo strip with NF1-SecPH, conditions like a). c) Lipid
array with NF1-SecPH, produced by Oriol Galego (EMBL Heidelberg, annotation see ap-
pendix p. 97, treated like a). d) PIP-ArrayTM, conditions like a). e) PIP-StripTM with
His-GST only, showing a false positive result. (BSA blocking, αGST, ECL detection). f)
PIP-StripsTM with NF1-SecPH. Comparison of blocking reagents. On the left side BSA
was used and on the right one fat free dry milk powder (FFDM). Detection with ECL
kit. g) PIP-StripsTM, the temperature at which the assay is performed can change the
signal to noise ratio for some proteins dramatically. Here, NF1-SecPH ∆K1750 was used
for the assay at room temperature (RT, left side) and at 4oC (right side). For detec-
tion, the ECL PlusTM kit was used. Abbreviations: phosphatidic acid (PA), lyso-PA
(LPA), Lyso-PtdCho (LPtdCho), sphingosin-1-phosphate (S1P), sphingosylphosphoryl-
choline (SPCho), monosialoganglioside-GM1 (M-GM1), disiaganglioside-GD3 (D-GD3)

Comparison of the GST-based detection with the tag-free system

shows an overall similarity but also some visible differences: In con-

trast to the older system, a PtdIns-(3,4,5)P3 signal is clearly visi-

ble while the previously observed PtdEtn and PtdSer signals (Igor

D’Angelo, PhD thesis) are completely absent in the tag-free system.

Although the GST-based detection system brought already a large in-

crease of signal quality, the presence of the fusion tag still seems to

somehow distort the outcome of the experiment. Since GST alone

shows no lipid binding (Igor D’Angelo, PhD thesis), the interplay be-

tween NF1-SecPH and GST seems to permit an interaction with Ptd-
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Etn and PtdSer. This could either mean that a further mutually pro-

vided binding region is present or that GST alters the NF1-SecPH lipid

binding activity, which is in light of the diminished PtdIns-(3,4,5)P3

binding signal more probable.

Lipid arrays revealed in addition to the previous results binding to

Sphinganine-1-phosphate (Sn1P) and Phyto-Sn1P (PSn1P) (fig. 4-3

c)), but show also some discrepancies to the commercial strips regard-

ing PtdIns-3-P1 and Sphingosin-1-phosphate (S1P; fig. 4-3 compare c)

with a),b)). Further experiments are necessary to verify this observa-

tions, especially since S1P shows clearly no interaction in commercial

strips and differs by only one double bond from Sn1P.

The mutational analysis of the NF1-SecPH lid-lock interface is in

good accordance with the GST-based detection system. As shown in

fig. 4-4, PIP binding is completely abolished if the four residues K1670

- R1674 - R1748 - K1750 (fig. 4-5) are changed to alanine and strongly

impaired for the double mutants K1670A - R1674A, R1748A - K1750A

and R1666A - K1670A (not shown). Since the binding patterns of

the double mutants indicate weaker interactions but do not change

compared to wildtype NF1-SecPH, it seems that the absence of one

residue can be partly compensated by others. These results clearly

demonstrate that the PIP binding patch of NF1-SecPH is located in

the interface region, containing residues from both the NF1-PH and

NF1-Sec domain (fig. 4-5).

Besides the wildtype protein, a number of NF1-SecPH constructs

containing patient derived mutations (see below) were analyzed for

lipid binding properties, which would suggest a connection to the

pathogenesis of NFI. The results of the overlay assays are depicted

in fig. 4-6 and 4-7, showing mainly the same pattern as the wild-

type protein except for ∆K1750 which has an overall weaker signal in

PIPStripsTM and lipid array experiments. The deletion corresponds

to the results of the mutational analysis and is comparable to the ef-

fect of the double mutants (K1670A - R1674A, R1748A - K1750A,

R1666A - K1670A).
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Fig. 4-4: Identification of the PIP binding site by mutational analysis. a) NF1-SecPH
b) R1748A-K1750A c) K1670A-R1674A d) R1748A-K1750A-K1670A-R1674A (4x). For
abbreviations see fig. 4-3

Fig. 4-5: Residues in the lid - lock interface region which are necessary for PIP binding
(compare with fig. 4-4).
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Fig. 4-6: PIPStripTM experiments with different patient derived mutants of NF1-SecPH.
The patterns of the mutants do not vary from the wildtype, except ∆K1750 which shows
a weaker binding like the twofold mutations also located in the lid - lock interface region
(fig. 4-3). On the right side, the mutations I1584V and V1621R show switched signals for
PA and PtdIns-(5)P which is probably a manufacturing problem (see text).

Although NF1-SecPH seems not to have a high specificity for de-

fined phospholipids, it can still contribute to a multivalent membrane

association activity of the full length protein and the specificity of

such an interaction towards a special membrane environment.206,216,217

Notably a number of small GTPases act as co-receptors together with

PIPs to recruit GAP and GEF proteins to specific membrane subcom-

partments, which could also be imagined for Neurofibromin. However,

since the remaining patient derived mutants do not show significant

effects on PIP binding, it it is likely that either an additional activity

is present in NF1-SecPH or PIP binding is only part of a more com-

plicated feature of the module. In this context, the special position of

the PIP binding region could play a role, since it bridges the NF1-Sec

α-helix which blocks access to the lipid binding cage and the closely

interacting NF1-PH protrusion. A movement of both elements seems

to be necessary for NF1-Sec to adopt an open conformation like the

one in Sec14p200 or α-TTP,234 which the PIP ligand could prevent
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Fig. 4-7: Lipid Arrays with different patient derived mutants of Nf1-SecPH, showing
similar results for wildtype and mutant proteins. The fourfold mutation K1670A - R1674A,
R1748A - K1750A (4x) shows in consistence with previous results no binding to PIPs at
all. ∆K1750 displays diminished binding signal like in PIPStripTM experiments fig. 4-6

by sticking helix and protrusion together. In this context, questions

remaining open include whether the lipid binding cage is accessible at

all, what kind of ligands could be accommodated in the cage and the

effect of PIPs on such an activity.

Strangely, the PIPStripsTM of I1584V and V1621R (fig. 4-6) show

switched signals for PA and PtdIns-(5)P. Since these mutants were

investigated with a separate batch of PIPStripsTM and the wildtype

control shows the same discrepancy to older results, there might have
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been a problem in the manufacturing of this batch like a wrong spot-

ting order. Previous PIPTripTM results were repeated many times (for

WT n>20) with different batches, never showing any variations. An

appearance of a new dot, like here for PA, could eventually be ex-

plained with improved manufacturing procedures leading to increased

stability of the immobilized lipid, but the disappearing of the PtdIns-

(5)P signal while all other phosphorylated PIPs still bind lacks an

explanation. Although these experiments should be repeated, the re-

sults from this batch are at least comparable with each other and do

not show differences between the wildtype and the mutant binding

patterns, indicating similar lipid binding properties. Also in the lipid

array experiments, no differences in the ligand binding behavior be-

tween the wildtype, I1584V and V1621R is visible. The manufacturing

of self spotted lipid strips was tried once in our group, but for small

charges the storage of lipids and strips is problematic as well as the

reproducible handling of the volatile organic lipid solutions. In case

of the custom made lipid arrays, this problems could be circumvented

since a special robot was used to fabricate large amounts of arrays for

immediate use.

4.2 Assessment of typical PH- and Sec14-domain

activities

4.2.1 NF1-SecPH does not bind phosphotyrosine

Although, protein-lipid overlay experiments showed clear binding sig-

nals for PIPs, the identity of a physiological ligand of NF1-SecPH is

still not clear. Another group of protein modules containing a PH-like

fold are the phosphotyrosine (pTyr) binding (PTB) domains, classical

representatives of which usually have two separate binding sites, one

for pTyr containing NPXY motifs and a second one for PIPs. Many

proteins containing PTB domains are scaffolds or adapters which con-

tribute to the organization of signaling complexes, affecting for exam-

ple neuronal development.214,224–227 Since pTyr has in addition some
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similarity to PIPs and sulfatide in terms of a ring-structure which is

decorated with a charged group, NF1-SecPH was assessed for pTyr

binding capabilities.

To address this activity, the most meaningful experiment would be

a large scale interaction screen with a combinatorial set of different

phosphotyrosine NPXY motives, to elucidate not only the binding ca-

pability but as well the sequence specificity. Since the implementation

of this experiment requires a considerable effort, a pilot experiment in-

vestigating the ability of NF1-SecPH to bind to phosphotyrosine alone

was done first. Measurements with isothermal titration calorimetry

(ITC) showed clearly no interaction between the two molecules, as dis-

played in fig. 4-8. Therefore, it seems to be unlikely that NF1-SecPH

binds to phosphotyrosine NPXY motives and no further experiments

were performed in this direction. Apparently the aromatic character

Fig. 4-8: Isothermal titration
calorimetry (ITC) measurement
with NF1-SecPH and phosphoty-
rosine. In the upper window, the
heat generated upon injection of
phosphotyrosine is plotted as µcal /
sec against time. The lower window
displays the observed values as
binding curve, with Kcal / mol of
injectant plotted against molar ra-
tio. Clearly, no interaction between
the two molecules is visible.
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of the phosphotyrosine residue with the accompanying steric conse-

quences is not compatible with the NF1-SecPH PIP binding region.

4.2.2 Localization studies in life cells

Since protein-lipid overlay assays show that NF1-SecPH binds PIPs,

cellular localization experiments were performed to assess if the pro-

tein module can associate with membranes in life cells. As outlined

previously, the motivation for this experiments is that Ras localizes to

distinct subcellular membranes,125,126,208,236 which suggests that reg-

ulators of Ras might attach to membranes as well in order to interact

with their target protein. Both NF1-Sec and Nf1-PH are potential

candidates to exert such activities, which can include the binding to

lipids, other membrane attached proteins or binding in cooperation

with other domains from the same protein.206,215,217–219,221–223,237–239

The localization experiments continue previous studies (PhD the-

sis, Igor D’Angelo), which did not reveal a specific localization of

GFP/YFP (green/yellow fluorescent protein) fused Neurofibromin frag-

ments in monkey fibroblasts, neuroblastoma- or HeLa cells. However,

possible complications which can occur in such a setup include the

competition of non-labeled endogenous Neurofibromin protein for rare

interaction partners or the absence of an appropriate exogenous sig-

nal. To circumvent this problems, the localization of some of these

constructs was assessed in Schwann cells deficient for Neurofibromin

(NF96.2, american type culture collection (ATCC)) and in NIH 3T3

mouse fibroblasts, which can be stimulated with platelet derived growth

factor (PDGF) resulting in plasmamembrane localization of some pro-

teins.

One or two days after transient transfection of NF96.2 cells with

GFP tagged Neurofibromin fragments including NF1-GRD-SecPH,

NF1-SecPH, NF1-Sec and NF1-PH, the localization of the protein was

observed in life cells by confocal microscopy under controlled temper-

ature and CO2 conditions. For all constructs, only a diffuse staining of

the whole cell could be observed, similar to control experiments with
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Fig. 4-9: Localization experiments with different neurofibromin constructs including
NF1-GRD-SecPH, NF1-SecPH, NF1-Sec and NF1-PH, which are N-terminally fused to
GFP. The experiments were done by confocal microscopy (60x magnification) of life cells
in a controlled environment (37oC, 5% CO2) two days after transient transfection of Neu-
rofibromin constructs. For this experiments, the Neurofibromin deficient Schwann cell line
NF96.2 from ATCC was used, to prevent competition between the GFP-labeled protein
and endogenous Neurofibromin. All constructs as well as the GFP control show a diffuse,
uniform staining of the cells, not indicating any specific localization.
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Fig. 4-10: Positive and negative control experiments for PDGF stimulation experiments
with NIH 3T3 mouse fibroblast. The upper row shows cells expressing GFP before (left)
and after stimulation (right) with PDGF (100µM final concentration). As expected, no
differences are visible, also shown by histograms (below) displaying the pixel intensities
along the yellow line. In contrast, a clear plasma membrane localization of Grp1 is visible
after stimulation (lower row, left image), also indicated by the strong peaks in the his-
togram (below). Imaging was done by confocal microscopy (60x magnification) with life
cells in a controlled environment (37oC, 5% CO2).

NF96.2 cells expressing GFP alone (fig.4-9).

NIH 3T3 cells were serum starved before imaging and observed

before and after stimulation with PDGF, which increases the gen-

eration of PtdIns-(3,4,5)-P3 at the plasmamembrane via activation of

PI3K.240 While control experiments with the highly specific and strong

PtdIns-3,4,5-P3 binder GRP1 (general receptor for phosphoinositides

isoform 1)241 showed immediate localization to the plasmamembrane

(fig. 4-10), the NF1-SecPH construct shows a diffuse uniform distri-
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Fig. 4-11: Stimulation experiments in NIH 3T3 cells with NF1-SecPH-GFP and YFP-
NF1-SecPH. A similar diffuse uniform stain of the cells can be observed before (left row)
and after PDGF stimulation (right row) for both constructs (top two rows and lower
row respectively). Histograms (below images) showing the pixel intensities along the
yellow lines, display the observations in a quantitative way. Imaging was done by confocal
microscopy (60x magnification) with life cells in a controlled environment (37oC, 5% CO2).
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bution before and after stimulation (fig. 4-11), similar to the GFP

control.

Although the performed experiments do not show localization of

NF1-SecPH, there are still scenarios imaginable where such an activity

could have been overlooked. If the tagged fragment is strongly over-

expressed and has therefore a much higher abundance than its mem-

brane bound ligand, the few translocated proteins would not stand out

against the overall stain. Furthermore, in case of low affinity binding

there might be a fast equilibrium between membrane bound and free

protein, differences of which would also be difficult to observe. Beside

such methodological problems, the question remains whether PDGF is

the right choice for stimulation experiments or if other signals are nec-

essary to trigger membrane localization of Neurofibromin. It should

be noted that other experiments in our group using full length Neu-

rofibromin showed a diffuse uniform staining of cells, indicating that

also the combination of all Neurofibromin domains does not provide

a constitutive localization activity (Welti and Seiler, unpublished ob-

servation).

4.3 Structural investigation of lipid bound NF1-

SecPH

4.3.1 Improved purification procedure for NF1-SecPH

The NF1-SecPH fragment was so far purified by nickel affinity chro-

matography, cleavage of the His-tag with TEV protease during dialysis

and a second nickel affinity chromatography step. While it was pos-

sible to crystallize the protein obtained by this procedure, a Triton-

X100 detergent molecule was present in the NF1-Sec lipid binding

cage, replacing any previously bound cellular ligand. To character-

ize the interaction of NF1-SecPH with a physiological relevant ligand

and analyze the structural consequences of ligand binding, a structure

containing such a cellular ligand was highly desired.

To obtain protein without incorporated Triton-X100, cell lysis and
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Fig. 4-12: Purification procedures for NF1-SecPH a) The protein is purified by Ni-
affinity chromatography, cleaved with TEV protease during dialysis and further purified
by a second Ni-affinity chromatography step. Traces of TEV-Protease, aggregated and
uncleaved protein as well as small compounds can still be present. b) New purification
procedure. The protein is also purified by Ni-affinity chromatography followed by TEV
protease cleavage and size exclusion chromatography. The protein fraction contains usually
no aggregates, TEV protease leftovers or small compounds.

all subsequent steps were performed in the absence of detergents. Al-

though the protein purified in this way crystallized, the obtained crys-

tals diffracted only up to 3.5 Å, which is not sufficient for a detailed

characterization of a bound ligand molecule. Since already a large

number of crystallization trials had been performed, improvement of

the purity and homogeneity of the protein sample was considered.

Therefore, the second nickel affinity purification step was replaced by

preparative size exclusion chromatography, which should remove low

molecular weight impurities, traces of aggregated protein and leftovers

of TEV protease. Cleavage of the His-tag was carried out for 48h, with

a second addition of TEV protease after 24h to obtain full cleavage of
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the protein.

With the modified purification protocol, cleaved and detergent free

NF1-SecPH protein and mutants could be produced for further crys-

tallization trials with a reasonable yield (about 0.7 mg/g cells) for the

wildtype protein. See materials and methods for a detailed descrip-

tion; the analysis of a typical purification is displayed in fig.4-13.

4.3.2 Crystallization of detergent free NF1-SecPH

After establishing the new purification procedure, crystallization of

NF1-SecPH was tested in conditions where previous crystallization

trials were successful with Triton-X100 bound protein but not deter-

gent free NF1-SecPH. While screens composed of ammonium sulfate /

Na4P2O7 ∗ 10H2O or PEG 4000 / Na2Citrate only resulted in protein

precipitation, the combination of PEG 4000 and Na4P2O7 ∗ 10H2O

lead to large single crystals (fig. 4-14) as observed for Triton-X100

bound protein.

For freezing the crystals in liquid nitrogen, a cryo-solution com-

posed of precipitant solution and 20% ethyleneglycol was used. Diffrac-

tion experiments and data collection were performed at the Euro-

pean Synchrotron Radiation Facility (ESRF) in Grenoble at beamline

ID14-2 under cryogenic conditions. The crystals belonged to the space

group P41212 as confirmed by molecular replacement (see below, Igor

D’Angelo) and diffracted to a maximum of 2.5 Å, which was an im-

provement of about 1Å resolution compared to previous experiments.

Processing of the dataset was done with XDS.242 The crystallization

conditions of the NF1-SecPH crystals with the best diffraction prop-

erties are summarized in table 4-1

compound amount
Na4P2O7 ∗ 10H2O pH5.4 0.25M
PEG 4k 12.5%
MES pH6 0.10M
1.5µl protein + 0.5µl precipitant,
hanging drop, 18oC

Table 4-1: Crystallization
conditions for detergent free
NF1-SecPH
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Fig. 4-13: Typical analysis of a NF1-SecPH protein purification. A) SDS-PAGE gel
showing protein samples after cell lysis (T), ultracentrifugation (S), during Ni-affinity pu-
rification (F,W,E) and TEV cleavage (1dT, 2dT). B) SDS-PAGE of single elution fractions
of the Ni-affinity purification and bradford assay. C) Size exclusion chromatography, OD
curve. The merged fractions 9-13 are indicated in gray. D) SDS-PAGE gel of fractions 7
- 15 of the size exclusion chromatography.
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PEG 4k Na4P2O7 ∗ 10H2O
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0.1M Mes pH6.0

Fig. 4-14: Crystal screens with detergent free NF1-SecPH (new purification protocol)
crystal sizes: tiny (t), small (s), medium (m), large (l), huge (h), amount of crystals: 1-5 (*), 5-
20 (**), 20-50(***), 50-200(****), >1000 (*****), precipitation(↓), twinned/multiple (‡), clear
drop (-).

In search of crystal forms where the protein might adopt a different

conformation, a number of additional robotic (EMBL Crystallization

Platform Team (XTP)) and manual screens were carried out. How-

ever, despite extensive screening including the variation of surrounding

conditions like temperature and experimental setup, suitable crystals

could not be obtained until now.

4.3.3 Structure of glycerophospholipid bound NF1-SecPH

The structure of detergent free NF1-SecPH could be solved by molec-

ular replacement with CNS245 (Igor D’Angelo) using the coordinates

of the Triton-X100 containing protein module (PDB code 2D4Q) as

starting model. From the initial electron density map, the final struc-

ture was obtained by alternating structure refinement and manual

model building, using CNS and COOT,246 respectively (fig. 4-15, ta-

ble 4-2). The stereochemistry of the final structure was validated with

PROCHECK.247 In difference fourier maps, additional electron den-

sity was visible inside the NF1-Sec cage, which could be explained by

a bound glycerophospholipid molecule. If superimposed, the detergent
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Fig. 4-15: Ribbon representation of the NF1-SecPH module. a) Top view, the NF1-
PH and NF1-Sec domains are colored in red and violet respectively, connected by the
linker region displayed in yellow. The lid-helix of the NF1-Sec domain is highlighted in
blue and blocks the entry to the NF1-Sec lipid binding cage. Displayed in orange, the β-
protrusion (lock) of the NF1-PH domain is closely interacting with the lid-helix. In green,
the calculated surface of the 18:1(9)-16:1-PtdEtn ligand is shown, enwrapping a ball-and-
stick model of the lipid (black: carbon, red: oxygen, blue: nitrogen, orange: phosphorus).
b) Front view. Image created with POVScript+243 and POV-Ray.244
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Table 4-2: Summary of crystallographic analysis of wildtype NF1-SecPH (from Welti
et. al.112).

Data collection:

X-ray source ESRF ID14-2
Wavelength (Å) 0.933
Space group P41212
Unit cell (Å, deg) a=b=110.1

c=121.9
α = β = γ = 90

Resolution (Å) 2.5
Highest shell (Å) 2.5-2.6
No. of observations 198’116 (21’650)
Unique reflections 52’887 (5’687)
I/σ 15.2 (4.1)
Rsym (%)a 7.0 (33.4)
completeness (%) 97.9 (95.4)

Refinement

Resolution range (Å) 20-2.5
No. of reflections 49’260
Rwork/Rfree

b 25.4/28.3
No.of atoms Protein 4133
No.of atoms Solvent 78
PtdEtn 2 molecules
Pyrophosphate 2 molecules
Mean B value protein (Å2) 31.4
Mean B value ligand (Å2) 47.5
RMSD

Bond length (Å) 0.011
Bond angle (deg) 1.77

Ramachandran-plot
Regions (no. residues)

most favored 394
additional allowed 55
generously allowed 4
disallowed 1

free and the Triton-X100 bound NF1-SecPH structures show a good

overlap with an RMSD of 0.8Å for 249Cα atoms.84,112

The overall fold of the lipid bound Nf1-SecPH module is very sim-

ilar to the previous structure, showing the NF1-Sec domain which

resembles a typical CRAL TRIO lipid binding cage and the NF1-PH
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domain, consisting of a β-sandwich that is capped by an α-helix. In fig.

4-15, the additional electron density inside the NF1-Sec lipid binding

cage is explained with a 18:1(9)-16:1-PtdEtn glycerophospholipid lig-

and. The bound ligand is stabilized by hydrophobic interactions of its

fatty acid tails with the cage interior as well as hydrogen bonds span-

ning from the lipid head group to main chain atoms of Phe1642 and

the side chain of Arg1684. Arg1684 is a conserved residue in Sec14p-

like domains83,112 and was shown to be essential for the Sec14p PtdIns

transfer activity.200 Comparing the bent conformation of the PtdEtn

fatty acid tails with alkyl-chains of other ligands found in lipid binding

cages, a good agreement can be observed,248,249 suggesting altogether

that the details of PtdEtn binding as seen in NF1-SecPH are probably

a good model for such interactions in related proteins.

The NF1-SecPH module is in a closed conformation as comparisons

with related structures show, with the NF1-Sec lid helix obstructing

the entry point of the lipid binding cage.200,212,213,234 The NF1-PH

domain is closely interacting with NF1-Sec, extending a β-protrusion

on top of the lid helix. Interestingly, in the observed conformation the

lock would block an opening movement of the lid helix due to steric

hindrance,84,112 pointing towards a regulatory interaction controlling

the access to the lipid binding cage.

4.4 Properties of the lipid binding cage

4.4.1 Identification of the bound ligands as PtdEtn and Ptd-

Gro

To clarify the identity of the glycerophospholipid observed in the

crystal structure, mass spectrometry (MS) analysis was performed

with the detergent free NF1-SecPH protein in collaboration with Sven

Fraterman (EMBL Heidelberg). By using electrospray ionization time

of flight mass spectrometry (ESI-ToF MS), the lipid content of the pro-

tein could be analyzed similar to other studies.249,250 The result clearly
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shows a peak for the protein mass alone and for different protein - lipid

complexes, which associate in a 1:1 stoichiometry (fig. 4-16a). For the

precise determination of the bound ligands, a lipid extraction was per-

formed and the purified lipids analyzed by nanospray quadrupol time

of flight mass spectrometry (Q-ToF MS), unambiguously identifying

them as PtdGro and PtdEtn251 (fig. 4-16b). The fatty acid part of

the lipids varied from unsaturated hexadecanoic (16:0 plamitic acid)

to monosaturated cis-9-octadecenoic acid (18:1(9) oleic acid).

Since each molecule has its own ionisation efficiency, the abundance

of two compounds can usually not be compared on the basis of the ion

intensities in a mass spectrum. Although, the ionisation efficiency of

the observed glycerophospholipids is indeed quite different, this is not

the case for the NF1-SecPH - lipid complexes, since this parameter

depends mainly on the number of charge acceptor sites on the surface

of a molecule and its radius. Based on the mass differences of about

85 Da between the observed lipid headgroups, the radii of the protein

- lipid complexes can be approximated to vary only about 0.26%.252

Furthermore, the analysis of unprocessed datasets showed no evidence

for an influence of positively charged PtdEtn on the surface charge of

the protein. The reason for this might be, that the protein engulfs the

lipid ligand and isolates it from the surrounding.

Although a quantification of the single lipid species is possible by

compound R1/R2 m/z compound R1/R2 m/z
PtdGro 18:1/18:1 773 PtdEtn 18:1/18:1 742

18:1/16:1 745 18:1/16:1 714
18:1/16:0 747 16:1/16:1 686
16:1/16:1 717 16:1/16:0 688
16:1/16:0 719 PtdEtn(2H31) 18:1/16:0 746

PtdGro(2H31) 18:1/16:0 778 PtdCho 18:1/18:1 844
PtdIns 18:1/18:1 861 PtdSer 18:1/18:1 786

18:1/18:0 863
20:4/18:0 885
20:3/18:0 887

Table 4-3: Table with the masses of glycerophospholipids112 observed in the spectra
of fig. 4-16.
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Fig. 4-16: MS analysis of NF1-SecPH.112 See p. 55 for figure legend.
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J Fig. 4-16 (p.54): MS analysis of NF1-SecPH.112 a) nanospray ToF-MS spectrum
of Nf1-SecPH in complex with lipids. The Protein can be seen alone (m/z=31616.0)
and in 1:1 complexes with PtdGro (labeled as mass difference to the protein peak;
m/z=∆773.0/ ∆747.0/ ∆718.0) and PtdEtn (m/z=∆688.0). b) Nanospray ToF-MS
spectrum (negative mode) of lipids extracted from NF1-SecPH. The protein was ex-
pressed in E.coli and purified without detergents. Main binders are PtdEtn and PtdGro
species (see table 4-3). c) Lipid content of NF1-SecPH after exchange reaction with
18:1/16:1-(2H31)-PtdGro liposomes, analyzed by lipid extraction and nanospray ToF-MS
(negative mode). Comparing b) and c), the deuterated PtdGro (m/z=778.7) has almost
completely replaced PtdGro (table 4-3). d) Result of lipid exchange reaction with
liposomes composed similar to the inner leaflet of Schwann cell plasma membranes,
containing 18:1/16:1-(2H31)-PtdEtn, PtdSer, PtdCho, Sphingomyelin and PtdIns. The
lipids extracted from Nf1-SecPh were analyzed by nanospray ToF-MS (negative mode),
see table 4-3 for peak annotation.

analysis of the complete protein - lipid complexes, this comes at the

cost of limited resolution and sensitivity as well as time consuming

sample preparation procedures. However, by correlation of low resolu-

tion complex spectra with the precise data obtained from lipid extract

analysis, both, quantification and precise identification of the bound

lipids is possible. Following this approach, the main binder of NF1-

SecPH were identified as 36:2-PtdGro followed by 36:2-PtdEtn112 (fig.

4-16).

Intriguingly, in none of the protein - lipid overlay assays binding to

PtdEtn or PtdGro was detected, nor were PIPs detected in the mass

spectrometry experiments. The reason for this apparent contradiction

most probably originates from the different natures of the measure-

ment techniques. MS measurements depend on the ionization of the

measured species, which creates an environment where only ligands

robustly bound inside the lipid binding cage are detected, but not

transient surface binders like PIPs. In contrast, overlay assays work

only if the spotted lipids remain attached to the membrane during the

assay and immobilize the bound protein. Even if NF1-SecPH extracts

spotted PtdEtn or PtdGro from the membrane, no signal would be

visible due to the removal of the protein in the subsequent wash steps.

Therefore, MS and overlay assays complement each other by address-

ing different activities rather than producing conflicting results.

55



4 - Results and discussion

4.4.2 NF1-SecPH has lipid exchange activity

To characterize the lipid binding cage in terms of accessibility and

specificity, lipid exchange experiments were performed. For this pur-

pose, unilamellar liposomes of various compositions were prepared

by extrusion and incubated with the protein. The production of li-

posomes was monitored with negative stain- and cryo electron mi-

croscopy (Simone Prinz, Stephanie Kronenberg), which confirmed the

unilamellarity and size of the liposomes (see fig. 4-17). Subsequently,

the liposomes were removed by size exclusion chromatography and

the lipid content of the protein assessed by lipid extraction and MS

analysis, as described above. Control experiments without protein

confirmed the complete absence of lipids from the merged fractions

after size exclusion chromatography, demonstrating the full removal

of liposomes from the sample.

A rapid exchange after 5 min incubation at 291 K, could be ob-

served for the deuterated analogs (1-palmitoyl(2H31)-2-oleoyl-syn-gly-

cero-3-PtdEtn / -PtdGro; 2H31-PtdEtn/ -PtdGro) of the initially bound

lipids PtdEtn and PtdGro (fig. 4-16c)). In contrast, PtdCho, PtdSer

and PtdIns were only incorporated after extended incubations of 48

h at 291 K or 2 h at 310 K. This results show clearly, that the NF1-

SecPH lipid binding cage is accessible in aqueous solutions and able

to extract lipids from membranes, preferring PtdEtn and PtdGro in

vitro. Interestingly, the NF1-Sec derived lock seems not to prevent an

opening of the lipid binding cage by default, but is rather flexible or

can make way for the lid-helix as part of a concerted movement.

These findings were underlined by competitive experiments with

liposomes corresponding in their lipid composition to the inner leaflet

of a Schwann cell plasma membrane (41% PtdEtn, 9.3% PtdSer, 17%

PtdCho, 21.7% PtdIns and 10% sphingomyelin; molar ratio).253 Again,

the exchange / binding of PtdEtn and PtdGro was clearly favored and

could be observed within minutes, while PtdSer, PtdCho and PtdIns

was only detected after several hours of incubation (fig. 4-16d)).

56



4 - Results and discussion

Fig. 4-17: Exemplary electron microscopy images of liposomes to assess size and unil-
amellarity. a) Cryo electron microscopy image of PtdGro liposomes, showing clearly that
the liposomes are unilamellar and contain no further membranes. Due to the freezing pro-
cess, the size distribution of the observed liposomes is not representative, preventing the
determination of their average diameter. b) Negative stain electron microscopy image of
PtdSer liposomes, which have a diameter of roughly 100 - 200 nm and a good homogeneity.
This matches well with the 100 nm pore size of the membrane used for extrusion.

Considering that Escherichia coli membranes contain 75% PtdEtn

and 20% PtdGro,254 it is not surprising that these lipids are bound

to NF1-SecPH after purification from this organism. However, in eu-

karyotic cells, PtdGro is only present in trace amounts, where it is an

intermediate of cardiolipin synthesis in mitochondria.255 In contrast,

15% of total phospholipids in neuronal cells are PtdEtn,253,256 even

increasing to 45% in defined Drosophila melanogaster tissues which

express a Neurofibromin orthologue.67,257–259 Therefore it is sugges-

tive that PtdEtn is a likely physiological ligand of Neurofibromin in

neuronal cells.

It should be noted in this context, that colocalization of Neurofi-

bromin and mitochondria could be observed previously130 and the

Neurofibromin target K-Ras is able to translocate to the outer mito-

chondrial membrane, where it participates in local signaling events.260

However, further experiments would be necessary to assess if Neurofi-

bromin can bind mitochondrial PtdGro in vivo and whether this is

physiologically relevant.112
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Mutation Domain Location Reference
I1584V NF1-Sec cage backside, protein core Fahsold 200090

R1590W NF1-Sec domain contact region Upadhyaya 1997261

V1621R NF1-Sec cage backside, protein core Jeong 200694

∆IY1658-59 NF1-Sec inside cage Wu 1999105

N1662K NF1-Sec interface region Boyanapalli 2006107

TD1699-1713 Linker linker Tassabehji 1993102

∆K1750 NF1-PH interface region Fahsold 200090

A1764S NF1-PH protein core Han 200192

T1787M NF1-PH protein surface Lee 200697

Table 4-4: Selected patient derived mutations in NF1-SecPH (see fig. 4-19)

4.5 Patient derived mutations of NF1-SecPH

The structural analysis of patient derived mutations can be used to

identify functionally important regions of a protein and characterize

the activity in question, thereby advancing the understanding of the

related disease and eventually even contribute to the development of

therapeutics. For this purpose, the patient derived mutations known

in the NF1-SecPH region have been analyzed.

4.5.1 Purification and characterization of NF1-SecPH mu-

tants

In NF1-SecPH, a number of relevant patient derived missense mu-

tations, deletions and even a tandem duplication (TD) have been

observed (table 4-4). For biochemical and structural investigations,

these mutations were introduced into pETM11 plasmids carrying NF1-

SecPH for expression in E.coli. While several mutants were already

available from our previous investigations, site directed mutagenesis

had to be performed to obtain V1621R, ∆IY1658-59 and T1787M.

According to the new protocol for the wildtype protein, all nine

mutants listed in table 4-4 were expressed in the E.coli BL21 Codon+

RIL cell strain and purified by Ni-affinity chromatography, His-tag

cleavage and size exclusion chromatography.

Although all mutants were purified with the same protocol, con-

siderable differences in the yield, purity and solubility of the proteins
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could be observed. While a very good yield was obtained with I1584V

and V121R, others including N1662K, ∆IY1658-59 and T1787M were

mostly insoluble and prone to degradation as multiple bands on SDS-

PAGE gels indicated. Consequently, one can speculate that the path-

ogenic effect of this mutations is rather caused by the instability of the

NF1-SecPH module instead of impaired catalytic or interaction prop-

erties. Interestingly both N1662K and ∆IY1658-59 are located near

the lid - lock interface region and could hinder interdomain contacts

between NF1-Sec and NF1-PH (fig. 4-19).

In order to assess the quality of the purified proteins regarding over-

all fold, thermal stability and multimerisation, circular dicroism (CD)

measurements and analytical size exclusion chromatography were per-

formed (fig. 4-20, 4-21, 4-22). Comparisons between the far UV

spectra of wildtype NF1-SecPH and mutants show good consilience,

demonstrating that all proteins are folded and have a similar composi-

tion of secondary structure elements. Only N1662K deviates from the

wildtype curve, which is probably caused by the presence of degrada-

tion products in the sample, leading to an overrepresentation of the

corresponding protein segments in the CD-Spectrum. Thermal de-

Fig. 4-18: Protein yield of
the wildtype protein and the
investigated patient derived
mutations of NF1-SecPH.
Abbreviations: wildtype
(WT), tandem duplication
1699-1713 (TD), fourfold
mutation K1670A - R1674A -
R1748A - K1750A (4x).
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Fig. 4-19: Ribbon representation of NF1-SecPH with known patient derived missense
mutations and amino acid deletions, both displayed as ball and stick models. The linker
region shown in yellow was found duplicated (TD: tandem duplication) in one patient (see
table 4-4). Red: NF1-Sec domain, Violet: NF1-PH. In green, the calculated surface of
the 18:1(9)-16:1-PtdEtn ligand is shown, enwrapping a ball-and-stick model of the lipid
(black: carbon, red: oxygen, blue: nitrogen, orange: phosphorus) a) top view. b) back
view. Image created with POVScript+243 and POV-Ray.244
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Fig. 4-20: CD-spectra of NF1-SecPH and selected mutants. The spectra were scaled to
each other in the y-direction for better comparison. No major variations are visible except
for N1662K, showing a slight shift of the spectrum between 215 - 240nm (see text). The
recorded data were processed and visualized with Excel (Microsoft).

naturation experiments suggest a melting point of about 60-65oC for

most mutants in agreement with the wildtype protein. Interestingly,

for ∆K1750 and the TD mutation much lower melting points of about

52.5 and 50oC are observed, indicating an increased protein flexibil-

ity. Both, the affected ∆K1750 lock region and the duplicated TD

linker are located at the protein surface and could indeed adopt vari-

ous conformations without disrupting the overall fold of NF1-SecPH.

In analytical gel filtration experiments (fig. 4-22), it can be observed

that all mutants migrate similar to the wildtype protein. In this buffer

conditions, the elution volume of the main peak is about 14 - 14.5 ml

corresponding to a monomer (about 31 KDa) as estimated with a log-

arithmic plot of the size standard (not shown). A second peak can

be observed mainly for V1621R (12 ml), where a tetramer would be

expected (about 124 KDa). In agreement with the CD-spectroscopy

data, also the similarity of the hydrodynamic radii suggests that the

analyzed proteins are structurally related.

MS analysis of the NF1-SecPH mutants was carried out in col-
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Fig. 4-21: Thermal denaturation of NF1-SecPH and selected mutants. Single wavelength
measurements at 220 nm were performed while the temperature was increased from 20 to
85oC. The melting points of most mutants conform with the wildtype protein, with values
between 60 - 65oC. In contrast, the measurements for TD and ∆K1750 indicate a lower
melting point of about 50 and 52.5oC respectively. The recorded data was visualized and
scaled in y-direction with Excel (Microsoft).

laboration with Sven Fraterman (EMBL Heidelberg), showing for a

selected range that they are also bound to PtdEtn and PtdGro like

the wildtype protein. Also this results suggest, that the different muta-

tions do not seem to have a major influence on the overall conformation

of the lipid binding cage. The analyzed mutations included A1764S

(NF1-PH), R1590W (NF1-Sec), ∆K1750 and K1670A - R1674A -

R1748A - K1750A (4x, lid - lock interface region) as well as TD (du-

plication of the linker regions), covering all structural regions of NF1-

SecPH. Also exchange experiments comparing the wildtype protein

and the mutation 4x, which affects the entrance to the lipid binding

cage, did not show any differences.

4.5.2 Structure of the ∆K1750 mutant

To investigate the differences between wildtype and mutant proteins

on the structural level, crystallization trials were done with all patient

derived mutants. As starting point, the crystallization conditions of
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Fig. 4-22: Analytical size exclusion chromatography curves for NF1-SecPH and patient
derived mutants. The main peak at 14 - 14.5 ml corresponds to a monomeric protein
(about 31 KDa) while a second peak mainly visible for V1621R at 12 ml could be explained
with a tetramer(about 124 KDa). The peaks of the standard curve (BioRad, Gelfiltration
standard) correspond to 1) 670 KDa, 2) 185 KDa, 3) 44 KDa, 4) 17 KDa and 5) 1.35
KDa. A Superdex 200 column from GE Healthcare with a column volume of 25 ml and a
resolution of 10 - 600 KDa was used.

the triton free wildtype protein were used, but extended to robotic

screens (EMBL Crystallization Platform Team (XTP)) if necessary.

Similar to the wildtype protein, also several of the mutants could be

crystallized successfully due to the improved purification protocol. In

the course of a laboratory practical, the ∆K1750 mutant could be

crystallize by utilizing the same crystallization screen (p. 49) that

was used previously for the wildtype protein (Uli Karst, trainee). The

most suited crystals could be obtained in a hanging drop setup with

following conditions:

compound amount
MES pH6.0 0.1M
PEG 4000 12%
Na4P2O7 ∗ 10H2O 0.3M
0.1µl mother solution + 1.5µlprotein
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Table 4-5: Summary of crystallographic analysis of the NF1-SecPH ∆K1750 mutant
(Igor D’Angelo, unpublished results)

Data collection

X-ray source ESRF ID14-1
Wavelength (Å) 1.000
Space group P41212
Unit cell (Å, deg) a=b=114.33

c=125.33
α = β = γ = 90

Resolution (Å) 2.23
Highest shell (Å) 2.23-2.3
No. of observations 287’397 (20’611)
Unique reflections 76’273 (5484)
I/σ 13.8 (3.5)
Rsym (%)a 5.0 (35.7)
completeness (%) 97.8 (99)

Refinement

Resolution range (Å) 20-2.23
No. of reflections 34’675
Rwork/Rfree

b 21/26
No.of atoms Protein 693
No.of atoms Solvent 58
Mean B value protein (Å2) 44.3
RMSD

Bond length (Å) 0.018
Bond angle (deg) 1.9

Ramachandran-plot
Regions (%)

most favored 87.7
additional allowed 10.6
generously allowed 1.5
disallowed 0.2

a) as defined in XDS,242 b) as defined in CNS245

A dataset with a resolution of 2.5Å was collected at the European

Synchrotron Radiation Facility (ESRF) Grenoble at beamline ID14-

1. Structure determination was done by Igor D’Angelo (table 4-5,

using the wildtype structure to generate an initial model from the

integrated data (XDS,242 CNS245 ), followed by manual and automated

refinement (CNS, COOT246). The final model is nearly identical to
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Fig. 4-23: Structural comparison between the lid - lock interface region of wildtype NF1-
SecPH and ∆K1750. In the wildtype structure the residues K1750 and R1748 are in an
upward orientation, which probably permits participation in PIP binding. In contrast, the
peptide backbone of ∆K1750 adopts an switched conformation leading to a rearrangement
of R1748 and T1749 as indicated with blue arrows. A blue cross marks the position where
K1750 is missing. Protein - lipid overlay assays with ∆K1750 show a decrease of PIP
binding similar to the results obtained with double mutant constructs (p. 35), suggesting
that not only K1750 is missing, but R1748 is no longer able to participate in PIP binding
as well.

the wildtype structure, showing only differences in the lock region of

NF1-PH, were the mutation is located. Apparently, removal of K1750

induced a local flip of the protein backbone, leading to an inversed

orientation of the R1748 and T1749 side chains (fig. 4-23). This

rearrangement is compatible with the weakened PIP binding activity

of ∆K1750. Similar to the weakly binding double mutations (K1670A

- R1674A, R1748A - K1750A and R1666A - K1670A ), two residues

contributing to the PIP binding platform are missing: K1750 is deleted

while R1748 adopts a conformation incompatible with ligand binding.

Since the rest of the protein is unchanged, this findings could suggest

a connection between the function of the lipid binding cage and the

observed phenotype.
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4.5.3 Structure of the TD mutant

The TD mutant could be crystallized and its structure determined

in the course of a diploma thesis by Sonja Kühn. Although the

TD mutation affects Neurofibromin, the related phenotype is rather

indicative for Noonan-syndrome, which shares a number of clinical

manifestations with NF1.262,263 A large number of Noonan-syndrome

cases are associated with gain-of-function alterations in the SHP-2 pro-

tein, which acts, besides other functions, as positive regulator of the

Ras-Raf-MEK-Erk signaling cascade.264,265 Suggestive explanations

for this observation would include the possibility that TD affects the

GAP activity of Neurofibromin and causes an equivalent perturbation

of Ras signaling like SHP-2 alterations. Also imaginable is that the

TD alteration disrupts an interaction of neurofibromin with a protein

to be identified, leading to an indirect effect on SHP-2 activity.

Crystals of TD could only be obtained after extensive robotic and

manual screening (diploma thesis, Sonja Kühn) and optimization of

crystallization conditions. The crystals with the best diffraction prop-

erties were obtained in a hanging drop experiment with following con-

ditions:

compound amount
HEPES pH7.0 0.05M
PEG 400 39%
(NH4)2SO4 0.2M

The crystals diffracted to 2.5 Å at ID14-3 at the ESRF Grenoble and

were solved by molecular replacement (Sonja Kühn) with CNSsolve245

using the PtdEtn bound wildtype structure (PDB code 2E2X)112 as

search model. Refinement was done in various steps using CNSsolve,

REFMAC 5 (CCP4 suite)266 and COOT for model building (table 4-

6). Comparing the final structure with the wildtype protein, again no

major changes are visible besides a slightly different orientation of the

single domains towards each other. No electron density for the linker

region including the tandem duplication is visible, indicating this re-
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Fig. 4-24: Structure of the NF1-SecPH tandem duplication (TD) mutant in ribbon rep-
resentation. Similar to ∆K1750, the overall structure of NF1-SecPH TD is unchanged
compared to the wildtype protein. The linker region including the duplicated residues
1699 - 1713 is not visible in the electron density map, therefore depicted here symbolically
as dashed yellow line. This observation indicates that the linker is flexible, in consistency
with thermal denaturation experiments (p. 61).

gion to be unordered and flexible. This finding is compatible with

the lower melting point observed in CD measurements in comparison

to the wildtype protein. A difference to the wildtype protein is the

orientation of the PtdEtn ligand, which is positioned more toward the

outside of the lipid binding cage and forms a crystal contact with the

next protein molecule via H-bonds to a solvent molecule. Therefore,

the lipid head group is also not interacting with the residues R1684

and F1642 as observed in the wildtype structure. The fatty acid chains

of the lipid are as well in a different orientated than their counterparts

in the wildtype structure, demonstrating that the conformation of the
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Table 4-6: Summary of crystallographic analysis of the NF1-SecPH tandem duplica-
tion mutant (from Sonja Kühn, diploma thesis)

Data collection

X-ray source ESRF ID14-3
Wavelength (Å) 0.931
Space group P6422
Unit cell (Å, deg) a=b=104.6

c=116.3
α = β = 90
γ = 120

Resolution (Å) 2.52
Highest shell (Å) 2.52-2.67
No. of observations 300’107 (10519)
Unique reflections 12’507 (1532)
I/σ 21.78 (2.49)
Rsym (%)a 11.2 (78.4)
completeness (%) 94.5 (75.4)

Refinement

Resolution range (Å) 19.77-2.52
No. of reflections 12’506
Rwork/Rfree

b 24.11 / 31.09
No.of atoms Protein 1969
No.of atoms Solvent 15
PtdEtn 1 molecule
Presumable metal atoms 4
Mean B value protein (Å2) 54.47
Ramachandran-plot
Regions (% of residues)

most favored 77.7
additional allowed 17.3
generously allowed 4.1
disallowed 0.9

a) as defined in XDS,242 b) as defined in CNS245

lipid tails does rather not depend on defined interactions with the

hydrophobic cage, but the availability of space.

The question remains how the TD alteration exerts its pathogenic

effect. Although the duplicated linker region is not visible in the elec-

tron density, it can be ruled out that the geometry of the NF1-SecPH

module is somehow distorted by to the TD alteration. It is more
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likely that due to its enlarged size, the duplicated linker prevents an

intramolecular contact within Neurofibromin or masks a binding site

for interaction partners. This might lead to an improperly folded pro-

tein or disturb the information flow between Neurofibromin and other

signal regulatory proteins.

4.6 Access to the lipid binding cage can be inhib-

ited with PIPs

In order to address the question if PIPs can regulate the access to

the lipid binding cage via stabilization of the lid - lock interaction,

the effect of soluble PIP headgroups on lipid exchange assays was in-

vestigated. Therefore, exchange experiments with NF1-SecPH and

2H31-PtdGro liposomes were performed in the presence of increasing

amounts of 1D-myo-Inositol-3-phosphate (Ins-3-P) or myo-Inositol-

1,2,3,4,5,6-hexakisphosphate (InsP6). The results indicate an inhi-

bition of the lipid exchange reaction in the presence of Ins-Ps (fig.

4-25).

For Ins-3-P and InsP6 IC50 values of 271 and 49 µM could be

calculated, indicating that the number of phosphate groups influences

the inhibitory power of the compound via their negative charge. The

single measuring points of the inhibition curves (fig. 4-25a)) represent

the ratio between the summed intensities of the initial and exchanged

ligands. Data processing and analysis was done with Excel (Microsoft)

and Igor Pro 5.0 (Wavemetrics) by Sven Fraterman. Further exper-

iments showed, that myo-Inositol is not able to inhibit the exchange

reaction in contrast to Ins-3-P and in agreement with the observed

charge dependence of the inhibitory power of these compounds (fig.

4-25b)). Underlining the findings of the mutational analysis, the four-

fold NF1-SecPH mutant (R1748A-K1750A-K1670A-R1674A) cannot

be inhibited by Ins-3-P, since the compound is unable to bind to the

protein (fig. 4-25b)).

Although the performed experiments cannot clarify the identity of
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a physiological inhibitory compound or protein, they strongly support

a mechanistic view in which the interface region plays a significant role

in regulating access to the lipid binding cage. In the current model, the

lipid binding cage can adopt an open conformation either directly by

a combined movement of lock and lid, or by sequential conformational

changes (fig. 4-26,1-3)). Once in an open conformation, the protein

module can exchange the incorporated ligand against a lipid extracted

from a membrane (fig. 4-26,4)). Alternatively, an inhibitor molecule

Fig. 4-25: Inhibition of lipid exchange reactions with NF1-SecPH and 2H31-PtdGro li-
posomes by InsPs.112 a) Inhibition curves, the single measure points represent the ratio
between the summed intensities of the initial and the exchanged ligands. b) While the
exchange reaction with wildtype NF1-SecPH protein can be inhibited by InsPs, this is
not observed for the four fold mutant (R1748A-K1750A-K1670A-R1674A) since the in-
hibitors are not able to bind the protein. Consistent with protein - lipid overlay assays,
myo-Inositol is not able to inhibit the exchange reaction, because it lacks a negatively
charged group for protein binding.
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Fig. 4-26: Model of NF1-SecPH lipid exchange and inhibition of exchange. Starting from
1) the closed cage can become open either by a concerted 1)→3) or stepwise movement of
lid and lock 1)→2)→3) as indicated with black arrows. Once open, the bound lipid can be
exchanged 4). Alternatively, a negative regulator can bind to the lid - lock interface region
and stabilize the closed conformation of the cage 5), inhibiting the exchange reaction.

binds the lock - lid region of the closed lipid binding cage and prevents

the lock from making way for an opening movement of the lid-helix

(fig. 4-26,1;5)).

4.7 Conclusions and outlook

Background: In the course of this thesis work, the Sec14- and

PH-like domains of the RasGAP Neurofibromin were structurally and

biochemically investigated. A suggestive question in this context is

whether the NF1-SecPH module can regulate or influence the GAP

activity of Neurofibromin. This might occur directly in response to

a specific interaction or indirectly by affecting the subcellular local-

ization of Neurofibromin and therewith its possibility to interact with

Ras. In previous studies we established the basis for such investiga-

tions by solving the structure of the NF1-SecPH module and showed

an interaction with PIPs.84

Ras proteins usually control a number of different signal trans-

duction pathways by direct interaction. However, incoming signals
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are not relayed to all subordinate pathways at once but only to a

signal-specific subset, depending on the subcellular localization of the

activated Ras proteins.236 The localization of Ras is a dynamic pro-

cess which is spatio-temporally regulated and maintained by a steady

cycle of de- and re-acylation of the Ras C-terminus.125 To maintain

the selective regulation of specific Ras pathways, it therefore seems

necessary that the related GEF and GAP proteins can also associate

with defined endomembrane compartments and affect distinct popu-

lations of membrane bound Ras. A number of signal regulatory pro-

teins including PTPases, RhoGAPs and RhoGEFs were indeed shown

to be able to associate with membranes depending on their Sec14-like

domains. In the case of the proto-oncogenic RhoGEF Dbs the subcel-

lular localization is further influenced by a regulatory intramolecular

interaction of the Sec14-like domain with a PH domain located at the

opposite terminus of the protein.237–239,267,268

Localization experiments: To address this topic experimentally,

localization experiments were performed in our group, expressing GFP/

YFP-fused Neurofibromin fragments in mammalian cells. Based on

these studies, localization was examined after stimulation with PDGF241

and in a Neurofibromin deficient Schwann cell line, excluding com-

petition with endogenous protein for rare interaction partners. In

all experiments, only a diffuse unspecific staining could be observed

which was also seen with a full length Neurofibromin construct (Welti

and Seiler, unpublished observation), suggesting that there is no con-

stitutive, specific localization of Neurofibromin. Given the biological

background of Ras, we suspect that Neurofibromin has a membrane

association activity either by itself or via mediating proteins. As sug-

gested by the experiments performed, a specific signal or stimulus,

which we could not yet identify, might be necessary to trigger this

activity.

Since localization of a protein can also depend on the simultane-

ous cooperation of more than one activity,216 localization experiments
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might give false negative results if the investigated fragments do not

contain all domains necessary. Also analysis of the full length protein

might be difficult, if one of these domains is subject to an autoin-

hibitory mechanism or is missing an activating signal or interaction.

An approach to this problem is the biochemical assessment of protein

fragments, which was applied to NF1-SecPH since this module is one

of the few Neurofibromin segments that can be recombinantly pro-

duced in a satisfactory way.

Interaction with PIPs: In previous experiments we could show

binding of NF1-SecPH to different immobilized lipids with protein-

lipid overlay assays. The quality of these assays could be improved

by the usage of purified anti-NF1-SecPH antibodies and an optimiza-

tion of the detection procedure. This revealed binding to PtdEtn

and PtdSer as false positive results, while the interactions with PIPs

and Sulfatide could be confirmed as well as the mutational analysis

which identified the PIP interaction region. The investigation of pa-

tient derived mutations showed a weakened ligand binding of ∆K1750,

suggesting an involvement of this region in physiological relevant inter-

actions. However, whether PIPs are physiological relevant ligands of

Neurofibromin remains questionable, since NF1-SecPH does not show

specificity for distinct PIP species, and this lack of specificity was also

observed for the full length protein (Anabell Parret, unpublished).

Ligand bound NF1-SecPH Structure: Since in the previous

structure of NF1-SecPH a detergent molecule from the purification

process was bound,84 a structure disclosing the mode of interaction

with a physiological ligand was highly desirable. While this prob-

lem could not be solved with extended crystallization screens, crystal-

lization and structure determination of ligand-bound wildtype NF1-

SecPH as well as the patient derived mutations ∆K1750 and TD were

possible after improvement of the protein purification procedure.

In the structure of the wildtype protein, electron density compat-
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ible with a glycerophospholipid was visible, showing for the first time

the mode of interaction between such a ligand and a CRAL TRIO lipid

biding cage.112 Mass spectromtery analysis showed a 1:1 stoichiome-

try of the NF1-SecPH:lipid complex and unambiguously identified the

bound ligands as PtdEtn and PtdGro. While in eucaryotic cells Ptd-

Gro is only present in mitochondria as an intermediate of cardiolipin

synthesis, PtdEtn is an abundant membrane lipid that we propose to

be a likely physiological ligand in neuronal cells.253,255,256

By utilizing liposomes, it could be shown that NF1-SecPH can

adopt an open conformation, interact with membranes and can ex-

change the bound lipid against a membrane derived one, favoring

PtdEtn and PtdGro. Furthermore, soluble PIP headgroups are able

to inhibit the exchange of lipids, apparently by stabilizing parts of

NF1-PH in a way that prevents NF1-Sec from adopting an open con-

formation.112

The consequences of lipid incorporation for Neurofibromin’s overall

function are rather unclear and difficult to estimate, given the unusual

interaction of the two domains. However, some scenarios seem more

likely including a membrane association activity or a lipid sensing

function, which might modulate the GAP activity.269 Although ki-

netic experiments in the presence of lipids did not show an altered

activity of GRD (Vladimir Pena, unpublished), it should be noted

that the specificity of several RhoGAPs can vary and depends on

the prenylation state of their target GTPases.270 This suggests that

farnesyl- and/or palmitoylation of Ras might be necessary to observe

a lipid dependent regulation of Neurofibromin’s GAP activity in such

experiments. Although the idea that NF1-Sec might be able to incor-

porate the farnesyl/palmitoyl chains of Ras should also be considered,

it seems rather unlikely that Neurofibromin has a quantitative lipid

transport activity.269

Analysis of patient derived Mutants: The structure of the

∆K1750 mutation shows an alteration of the NF1-SecPH interface
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region, which is in agreement with its weakened PIP binding ac-

tivity, and matches with protein/PIP binding sites of other PH do-

mains.214,215,271,272 The second crystallized mutation TD contains a

duplication of the linker region between NF1-Sec and NF1-PH, how-

ever this only marginally changes the orientation of the two domains

towards each other. In the electron density the linker region itself is

not visible, indicating a high flexibility which is compatible with the

lower melting point of the protein. Since the biochemical analysis of

patient derived mutations did not show large differences when com-

pared to the wildtype protein, the NF1-SecPH module might have a

further, yet undiscovered function.

The structural changes in the mutant proteins suggest that such

an activity could be located at the top/back of NF1. In this region is

not only K1750 located, but also the elongated linker region present

in TD could reach there and mask, for example, a protein binding

site. Furthermore, the I1584V and V1621R alterations are located

nearby, which rather seem to cause a functional impairment instead of

a destabilization of the protein. A protein ligand docking to this region

of Nf1-Sec might additionally regulate access to the lipid binding cage,

similar to the effect observed with PIPs.

In the case of Nf1-PH it is difficult to estimate further possible

functions, since the lack of sequence homology to other domain com-

plicates a precise classification to any subgroup of PH-like domains

(see p.28). It is noteworthy that other similar cases are known, includ-

ing BEACH domain containing proteins, TFIIH, Pob3 and Ran-BD

domains,233,273–275 most of which are involved in protein - protein inter-

actions. However, since the individual activities of these proteins are

completely unrelated, it is not possible to further restrict the spectrum

of probable NF1-PH functions from these observations. Furthermore,

some PH-like domains can also bind to two different ligands simulta-

neously like PLC-β2,276,277 further complicating the identification of

a related activity of NF1-PH even more.
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Outlook: This work describes the structural and biochemical basis of

glycerophospholipid binding to NF1-SecPH as well as the properties of

the lipid binding cage and patient derived mutations. Future studies

could be performed to investigate the effect of lipid incorporation on

other Neurofibromin domains including GRD, and the role it serves in

vivo. For further localization studies, the experiments performed give

direction, suggesting that a localization activity is probably regulated

and triggered by defined signaling events. Identification of such events

by further stimulation experiments with life cells could clarify, which

signals are recognized by Neurofibromin and how they might lead to

the regulation of Ras and/or other targets. The investigation of pa-

tient derived mutations suggests that there might be another binding

activity hosted by NF1-SecPH, encouraging further interaction screens

like TAP-TAG purifications, pull down assays and yeast two hybrid

screens. Identification of further ligands could reveal additional cellu-

lar processes connected to Neurofibromin function.

76



5 - Materials and methods

5 Materials and methods

5.1 Common Methods

Common molecular biology methods have been done due to standard

laboratory protocols278,279 or according to manufacturers Protocols,

like dialysis, glycerol stocks, SDS-PAGE- and agarose gels.

Purification of plasmid DNA in mini and midi scale as well as re-

covery of DNA fragments from agarose gels was done with kits from

Qiagen. Analytical and preparative restriction digests were performed

with restriction enzymes from New England Biolabs (NEB) and lig-

ations with T4 DNA Ligase (Roche) or the rapid DNA dephos and

ligation kit (Roche). For the production of plasmid DNA, the DH5α

E.coli cell line was used (Life technologies).

Protein concentrations were determined by absorbance measure-

ments at 280 and 320 nm using a GeneQuant pro (Amersham Bio-

sciences) photospectrometer and UVettes (Eppendorf) according to

the formula:

c(protein)[mg/ml] = (OD280 −OD320) ∗
Mw[Da] ∗ dilutionFactor

ε

with the protein concentration in mg/ml (c(protein)[mg/ml]), the ab-

sorbance at 280 and 320 nm (OD280, OD320), the molecular weight in

daltons (Mw[Da]) and the extinction coefficient (ε). The protein in

question was denatured and diluted in 8M guanidinium hydrochlorid

(Pierce) prior to the measurement. Both Mw and ε were calculated

with the ExPASy ProtParam tool.280

Western blot protein transfer was done with a BioRad Transblot

cassette (BioRad) and Imobilontm-fl membrane (Milipore) for 1 - 2 h

with a current of 80 - 100 mA (35V). The detection procedure was

similar as described for protein lipid overlay assays (see below, p.80),

except for the use of less pure BSA (Serva, albumin bovine fraction

V) and skipping of the incubation step with protein after blocking of

the membrane.
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5.2 Expression and purification of NF1-SecPH

The NF1-SecPH module (aa 1545-1816) or patient derived missense

mutations were expressed in BL21 CodonPlus(DE)-RIL E. coli cells

(Stratagene), with a pETM-11 vector (Gunther Stier, EMBL) in the

presence of of Kanamycin (34µg/ml) and Chloramphenicol (20µg/ml).

From an over night starter culture (LB medium, EMBL media kitchen),

500 ml cultures (TB-FB medium, EMBL media kitchen) were inoc-

ulated and incubated (37oC, 200rpm) until an OD of 0.8 - 1.0 was

reached. The cultures were then induced with 100µl of 1M IPTG

(isopropyl β-D-1-thiogalactopyranoside), cooled for 5 min on ice and

incubated over night (20h, 15oC 200rpm). After harvesting the cells

by centrifugation (appropriate buckets, max speed), the pellet was

resuspended in lysis buffer (LyB, 20 mM Tris, 0.5 M NaCl, 40mM

Imidazol, 1mM β-Mercaptoethanol (β-ME), pH8.1) and lysed by 15

min of incubation in the presence of Lysozym (1µg/ml, Sigma) and

DNaseI (1µg/ml, Roche), followed by sonnication (2x 5min, duty cy-

cle 50%, power 5; Branson W-250, Heinemann). The cell lysate was

then cleared of cell debris and particles by ultracentrifugation (1h,

40.000 rpm, 4oC; Beckmann L-70), and applied to a preequilibrated

HisTrap column (1ml nickel containing resin, GE healthcare) for 2h

(4oC) in a circulatory way with a peristaltic pump. The column was

then washed with 10 ml of LyB and slowly eluted with 10 ml of elution

buffer (ElB, 20 mM Tris, 0.5 M NaCl, 125 mM imidazol, 1 mM β-ME,

pH8.1) in 1 ml fractions. Protein containing fractions were merged af-

ter visual inspection of protein content by drop-scale bradford assays.

The His-tag was then removed by cleavage with TEV (Tobacco etch

virus) protease (48h, 5 µg / mg protein, 4oC, second addition after

24h) and the eluat concentrated to a total volume of 2 ml (Amicon R©

Ultra-15 10K MWCO, Milipore). For further purification of the sam-

ple including the removal of compounds, cleaved His-tag and TEV

protease, a preparative size exclusion chromatography was performed

(GE healthcare, Superdex 200 HiLoad 16/60)) using buffer GF ( 20
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mM Tris, 150 mM NaCl, 1 mM β-ME, 1 mM EDTA, pH8.0) and the

appropriate fractions merged after analysis of protein purity by SDS-

PAGE. Finally the protein sample was concentrated (see above) to 10

- 15 mg/ml and stored at -80oC after snap freezing in liquid nitrogen.

All steps of the purification were routinely inspected by SDS-PAGE

to monitor the sample quality and identify error sources in case of

protein loss.

5.3 Protein - lipid overlay assays

5.3.1 Generation of αNF1-SecPH antibodies

Since the detection of NF1-SecPH via expression tags was giving false

positive signals in some assays, αNF1-SecPH antibodies were raised

an purified for a direct detection of the protein. Removal of the fusion

tag can furthermore eliminate false negative signals which might occur

due to the masking of a binding site by the tag or the impairment of

a catalytic activity.

The antibodies were raised in rabbits (Oryctolagus cuniculus) by

usage of the RIBI adjuvant system (Corixa) and purified NF1-SecPH

protein according to manufacturers protocols and guidelines of the

EMBL Laboratory Animal Resources (LAR) facility, which also per-

formed all animal handling. Obtained blood was incubated 1 h for

37oC and the blood clotting removed by centrifugation (30 min, 4000

rpm, 4oC). Remaining clots were removed with a further centrifuga-

tion step (10 min, 4000 rpm, 4oC) and the resulting serum flash frozen

in liquid nitrogen before storage at -80oC.

To purify the antibodies from the serum, an affinity column was

prepared by coupling NF1-SecPH to a sepharose matrix (CNBr-ac-

tivated sepharose 4B, GE Healthcare) due to manufacturers instruc-

tions. Loading of 5 ml serum to the resin was done by batch incubation

for 12 h in the presence of 5 mM EDTA and 0.2 mM PMFS at 4oC.

After the column was washed with 5x 10 ml PBS + 0.05% Tween-20

the antibodies were eluted with 5 ml elution buffer (0.2M Glycine,
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0.15M NaCl) pH2.7 followed by 5ml elution buffer pH2.3 to detach

high affinity binders. The eluat was immediately neutralized with an

appropriate amount of 2M Tris pH9.0, to prevent permanent denatu-

ration of the antibodies and concentrated to 0.5 - 1.0 mg/ml protein

with a spin concentrator (Amicon R© Ultra-15 10K MWCO, Milipore).

Finally, the concentrated sample was dialyzed (Slide-A-Lyser R© 10’000

MWCO, Pierce) over night at 4oC to PBS and subsequently flash

frozen in liquid nitrogen for storage at -80oC. Typically 0.7 mg of pure

antibody could be obtained from 5 ml of serum. The purified anti-

bodies from different batches were tested by western blot analysis for

functionality and specificity towards NF1-SecPH, showing also that

the different mutants are recognized (fig. 4-1, p. 31). Usually the

NF1-SecPH affinity matrix was reusable after extended washing with

PBS.

5.3.2 Protein lipid overlay assays

To assess the lipid binding properties of Nf1-SecPH and mutants,

lipid overlay assays were done, using PIP-StripsTM, PIP-Arrays and

Sphingo-Strips from Echelon biosciences as well as custom made lipid

arrays from Oriol Galego (EMBL). All strips and arrays consists of a

nylon membrane where an assortment of lipids is spotted onto. In a

simplistic model, the lipids are thought to stick to the nylon membrane

by interactions with their hydrophobic fatty acid tails and expose their

headgroup to the surrounding environment. Proteins which can bind

the lipid head groups are therefore immobilized and remain on the

membrane during subsequent wash steps, in contrast to non-binders

that are removed. Similar to a western blot, the protein was detected

with Rabbit αNF1-SecPH antibodies, secondary Goat αRabbit-HRP

antibodies (Sigma-Aldrich), the enhanced chemiluminescence (ECL)

plus kit and autoradiography film (GE Healthcare).

To reduce the background of the assay, the whole procedure was

carried out at 4oC and the exchange of solutions was done as quick as

possible to prevent prolonged exposure of the membrane to air. After
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the blocking of the membrane for 1 h with PBS/Tween/BSA (PBS

(media kitchen EMBL) with 0.1% v/v Tween 20 (Sigma-Aldrich) and

3% w/v faty acid free BSA (Sigma-Aldrich)), 10µg of protein were

added and incubated for 3 h with panning. Following 10 times 5

min washing with PBS/Tween (as above without BSA), rabbit αNF1-

SecPH antibody (1:1000) was applied in PBS/Tween/BSA and incu-

bated for 1 h. Subsequently, the membrane was rinsed two times and

incubated once for 1 h and 3 times for 10 min with PBS/Tween to re-

move surplus antibody. The secondary Goat αRabbit-HRP antibody

(1:10’000) was incubated for 30 min in PBA/Tween/BSA, followed

by three times rinsing and once 1 h and four times 5 min incubation

with PBS/Tween. Directly thereafter, the ECL plus kit and autora-

diography film was used according to manufacturers instructions for

visualization.

As positive control PIP-GripTM(Echelon biosciences) was used in

the first experiments but replaced later by wildtype NF1-SecPH pro-

tein, which at the same time was used as reference for the evaluation

of signal intensities of mutant proteins, since exposure times always

vary slightly. A negative control is included on most membranes and

also the absence of signal outside of spot areas shows that protein and

antibody is not binding unspecifically to the membrane.

5.3.3 Site directed mutagenesis

Site directed mutagenesis was done with the QuikChange R© site di-

rected mutagenesis kit (Stratagene) according to manufacturers in-

structions, with the wildtype NF1-SecPH DNA in the pETM-11 vec-

tor which was available from earlier experiments. ∆IY1658-59 was

generated stepwise via ∆IY1659. For the PCR reaction, Pfu Turbo

DNA polymerase and a RoboCycler (Gradient 96) with heated lid

were used (both Stratagene), nucleotides and primers were obtained

from Sigma-Aldrich.
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primer sequences 5’-3’ forward/reverse complementary

V1621R
gcaaagccatatgaaattCGTgtggaccttacccataccgg
ccggtatgggtaaggtccacACGaatttcatatggctttgc

∆Y1659
cgacaacgtctccgcagtctatatc<>aactgtaactcctggg
cccaggagttacagtt<>gatatagactgcggagacgttgtcg

∆IY1658-59
gcttacgacaacgtctccgcagtctat<>aactgtaactcctgggtcaggg
ccctgacccaggagttacagtt<>atagactgcggagacgttgtcgtaagc

T1787M
ccattgcaaaccagggcATGccgctcaccttcatgc
gcatgaaggtgagcggCATgccctggtttgcaatgg

changed codons are in uppercase, <>indicates skipped aa

5.4 Crystallographic techniques

5.4.1 Crystallization

X-ray crystallography is a method to determine the structure of a

molecule at atomic resolution. In order to obtain a diffraction pattern

strong enough to be recorded, it is necessary that the material in

question is available as single crystal of an appropriate size. Proteins

can be crystallized by various techniques, of which two prominent ones

are the hanging- and sitting drop method.

In brief, the protein solution is mixed with precipitant and sealed

airtight in a small chamber together with a reservoir of the precipi-

tant solution. Inside this chamber, the drop is either hanging on the

bottom of a coverslide (hanging drop), which also seals the chamber

or positioned on top of a small pedestal (sitting drop). In this setup,

the protein drop starts to loose solvent molecules to the reservoir solu-

tion due to their higher ionic strength, until an equilibrium is reached.

Thereby, the effective protein concentration in the drop increases and

can reache the phases in which nucleation or precipitation occurs (fig.

5-1). In the optimal case, only a few nucleation events occur before the
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drop enters the metastable phase where no further nucleation occurs,

but existing crystals continue to grow.

For initial screening, all available commercial (Hampton Research,

Emerald BioSystems) and home-made robotic screens were performed

(EMBL Crystallization Platform Team (XTP), Mosquito Robot, Molec-

ular Dimensions) and manually monitored for crystallization. Usually

drops were prepared by the robot in a 100 nl protein + 100 nl pre-

cipitant fashion. Initial hits were then further optimized by hand in

24-well plates with drop volumes of 0.5 - 2 µl in different ratios of 1:4

or 1:1 with protein concentrations ranging from 10 - 15 mg/ml.

5.4.2 X-ray data collection

During this step of structure determination, the actual diffraction ex-

periment is performed and the resulting data recorded. The protein

crystal is therefore kept under cryogenic conditions while exposed to

a monochromatic X-ray beam with a wavelength of about 1 Å, which

interacts with the electron clouds of the crystallized proteins and is

diffracted according to Bragg’s Law. This can be viewed as a Fourier

analysis of the crystalline object, resulting in a diffraction pattern

where each spot represents a basis function. Once a sufficient num-

ber of maxima are recorded by rotation of the crystal in the X-ray

beam, the protein structure can be reconstructed by Fourier synthe-

sis from the collected data. This can not be done directly however,

since it is not possible to record the phase information due to technical

limitations. Ways to circumvent the phase problem include the esti-

mation of phases from the structure of a very similar, known molecule

(molecular replacement) or to compare a heavy-atom derivatized ver-

sion to the original protein crystal, leading also to an estimate for

initial phases (isomorphous replacement). Although, X-ray crystal-

lography is a powerful method to analyze even the largest protein

complexes at atomic resolution, flexible regions can not be monitored

due to their varying conformations in the crystal and are absent in the

final electron density map.
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Fig. 5-1: Crystallization setup for Proteins. a) Hanging drop setup; the protein drop
is attached on the bottom of a cover slide which seals the well containing reservoir solu-
tion. Broken arrows indicate the diffusion of solvent molecules. The drop looses solvent
molecules until an equilibrium is reached. b) Sitting drop setup; here the protein drop
sits on top of a pedestal and the well is sealed (together with neighboring wells) by con-
tinuous tape. From the principle similar to hanging drop experiments, this setup can be
pipetted by robots. c) Phase diagram; the protein and precipitant concentration increase
slowly due to the loss of solvent molecules by vapor diffusion. Once the nucleation phase
is reached, protein crystals nucleate and start to grow. The precipitant concentration
continues to increase due to the ongoing dehydration of the drop, while crystal growth
depletes the soluble protein until an equilibrium between dissolving and growth of the
crystal is reached.
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To prepare the crystal for data collection, it is transfered to a drop

with cryosolution and then frozen and stored in liquid nitrogen. Dur-

ing data collection, the low temperature helps to enhance the ordered

state of the crystal by reducing molecular thermal vibrations and con-

formational disorder, improving resolution and signal to noise ratio of

the data. In addition, the diffusion speed of free radicals generated

during exposure to the X-ray is decreased, prolonging the lifespan of

the protein crystal. Beside cryoprotectant like 20% ethyleneglycol or

PEG, the used cryosolution is usually composed according to the crys-

tallization conditions in question. This prevents dissolving as well as

ice formation, which could damage the crystal and interferes with the

diffraction experiment.

Crystals were usually tested for diffraction quality at the rotating

anode setup at EMBL Heidelberg and then brought to the european

synchrotron radiation facility (ESRF, Grenoble) for complete data col-

lection. After the collection of about 10 rotation images, the space-

group was determined and a data collection strategy calculated with

XDS, according to which a complete high- and low-resolution dataset

was acquired.

5.4.3 Structure determination by molecular replacement

The structures of the discussed proteins were determined by molec-

ular replacement, using previously obtained NF1-SecPH coordinates

as starting models. Recorded datasets were processed and integrated

with XDS,242 while CNS245 was used for the molecular replacement

(MR) procedures.

To use the phase information of the known protein for the recorded

dataset, it is necessary to find the right orientation and position of

the model structure in the unit cell. For comparison and evaluation

of a given orientation, the patterson functions of model and recorded

dataset are calculated and superpositioned. Once a good match is

found, a patterson correlation refinement is done, where the orien-

tation of domains or rigid secondary structure elements against each
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other is optimized. Finally, the right position of the optimized model

is determined with a translational search, which is evaluated by com-

parison of the observed reflexes with structure factors calculated for

each investigated location.281

With such a starting model, initial electron density maps could be

calculated and final structures obtained by alternating model building

and structure refinement using COOT246 and CNSsolve or REFMAC

5 (CCP4 suite),266 respectively.

5.5 Analysis of the NF1-SecPH - glycerophospho-

lipid interaction

5.5.1 Lipid extraction

To analyze the lipids bound to the NF1-SecPH module after purifi-

cation or exchange reactions, an isolation with the method described

by Folch112,251 was done and subjected to mass spectrometry. The

method takes advantage of the different solubility of lipids in aqueous

and organic solvents. In brief, a sample with a volume of 100 µl and 15

mg/ml of protein is added to 375 µl of methanol (MeOH) and vortexed

for 10 min. Afterwards, 750 µl of chloroform (CHCl3) is added and

again vortexed for 10 min. Finally 225 µl of water are added and the

sample stirred or inverted for another 10 min, spun down (5 min, 500

rpm) and the lower, organic phase collected. For an increase of purity,

the organic phase is mixed with 400 µl of CHCl3/MeOH/H2O 3:48:47

and inverted 5 times. The sample is again centrifuged (5 min, 500

rpm) and the lower, organic phase collected. For mass spectrometry

analysis, the sample is completely dried in a vacuum centrifuge, redis-

solved in 19 µl of CHCl3/MeOH 1:2 (v/v), and briefly vortexed. After

the addition of 1 µl of 100 mM ammonium acetate (in MeOH), the

sample is directly injected into the mass spectrometer and analyzed.
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5.5.2 Preparation of liposomes

Liposomes were prepared to investigate the interaction of NF1-SecPH

with membranes of a defined lipid composition. The preparation of

the liposomes was done with an extruder following published proto-

cols.282,283 To protect the lipids during preparation against oxidation,

the solutions were overlaid with argon whenever possible and contact

time to air was kept short. Furthermore, the temperature was kept

above the highest phase transition temperature Tm of the lipids during

the complete procedure, to ensure a uniform mixture. Is the temper-

ature to low, lipid bilayers are present in a tightly packed and rigid

gel phase, while above Tm the liquid crystal phase is adopted, where

lipid movement and flexibility is increased. Values of Tm vary largely

and are strongly dependent on the type of fatty acid chains in the

lipid, ranging from -16oC for PtdEtn (18:1) to 70oC for unsaturated

PtdEtn (18:0), as taken from the website of Avanti polar lipids inc. or

the CRC Handbook of lipid bilayers.284 To decrease the loss of lipids

at surfaces, glass ware or siliconized pipette tips and sample tubes

(Biozym, no longer produced) were used during the preparation.

For the preparation of Liposome solutions with 10 mM total lipid,

2 µmol of appropriate lipids (obtained from Avanti polar lipids inc.)

were mixed together and completely dried in a vacuum centrifuge

(Uniequip, univapo 150H). Afterwards they were resuspended by vor-

texing in 200 µl of liposome buffer (100 mM KCl, 1 mM MOPS, pH7.0)

and incubated above the highest Tm for 1 h with vigorous shaking.

This causes the lipids to dissolve in the aqueous solution as multila-

mellar liposomes of various sizes. To be able to estimate the amount

of accessible lipid, the liposomes need to be converted to unilamel-

lar vesicles, preferentially with a uniform and defined size. Therefore

the liposome solution is subjected to five freeze/thaw cycles (liquid

nitrogen / 37oC) for an initial reduction of size. Afterwards they were

extruded 20 times through two stacked 100 nm pore size polycarbon-

ate membranes with an extruder (Avanti polar lipids inc.) leading to
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unilamellar liposomes of about 100 - 200 nm (fig. 4-17, p. 57). Finally

the liposome solution was overlaid with argon, stored at 4oC and used

within 3 to 4 days.

5.5.3 Lipid exchange reactions and inhibition

With lipid exchange experiments, the accessibility of the NF1-SecPH

lipid binding cage was assessed as well as its specificity and the amount

of exchange. Therefore, 5µl of liposomes (10 mM total lipid) with a

given composition were incubated with 20µl of protein (10 - 15mg/ml)

and incubated for 5 min at room temperature. For inhibition exper-

iments, the compounds of question were added before the incubation

and then proceeded as described. Afterwards, the liposomes were re-

moved by analytical size exclusion chromatography (GE Healthcare,

Superdex 200, 25ml column volume, buffer GF p.79), the protein con-

taining fractions merged and concentrated (Amicon R© Ultra-15 10K

MWCO, Milipore) to the minimal volume of about 250µl. The lipid

content was the analyzed by lipid extraction and subsequent mass

spectrometry. Control experiments with liposomes only showed that

the collected fractions from the size exclusion chromatography did not

contain any lipids.

5.5.4 Mass spectrometry analysis

To identify the composition of extracted lipids (p. 86), the samples

were analyzed by nanospray Q-ToF MS (quadrupol - time of flight

mass spectrometry) in negative ion mode collecting data over a range

of 650-1000 m/z. In addition to mass determination, the identity of

the lipids was also examined by fragmentation of the respective precur-

sor ions, followed by data collection over a range of 50-900 m/z. Data

were collection with an electrospray ionization (ESI)- ToF spectrome-

ter (QStar Pulsar i, Applied Biosystems) and processed with the Ar-

cade software tool (Matthial Wilm, EMBL Heidelberg, unpublished).

All MS experiments were performed by Sven Fraterman (EMBL Hei-
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delberg).

For analysis, the sample is transfered into a volatile solvent (see

above) and enters the spectrometer via a small conductive capillary.

By applying a strong electric field, a Taylor cone with a steady cone

jet forms at the tip of the capillary, leading to the continuous forma-

tion of small charged droplets. By several rounds of a not completely

understood process called Coloumbic fission, the droplets break down

to lone ions. During this process, the droplets shrink due to evapo-

ration of the volatile solvent and burst as soon as the repelling force

between the charged analytes becomes too strong.

The mass of the generated ions is then calculated from the time

they need to travel a given distance after acceleration by a defined

high-voltage pulse. The accuracy of the measurement is usually in-

creased by an inserted electrostatic reflector field, which changes the

flight direction of the ions by 180 degrees and compensates thereby

for differences between the initial positions and velocities of the ions.

In the Q-ToF setup, the ions pass through a quadrupol before mass

determination, which can be used as mass filter permitting only the

passage of ions with a specific mass-to-charge (m/z) value. Therefore,

a high frequency electrical field is generated between the rods of the

quadrupol, which forces all ions without the corresponding m/z value

onto instable trajectories, resulting in a collision with the rods. By

the subsequent use of a collision chamber, a characteristic set of frag-

ments can be generated from the selected precursor ion, allowing its

unambiguous identification in the ToF section.285–287

For the mass determination of native proteins, the buffer of the

sample was exchanged against 80mM ammonium bicarbonate (80mM,

pH6.5) by dialysis for 2h. Afterwards, the sample was diluted 1:20 in

80mM ammonium bicarbonate(pH6.5)/5% methanol and applied to

nanospray Q-ToF MS analysis in positive ion mode, collecting data

over a range of 1000-6000 m/z.

The inhibitory effect of soluble PIP headgroups on lipid exchange

reactions was assessed by calculating the ratios between the summed
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peak intensities of the exchanged lipid D31-PtdGro and the initial lig-

ands (PtdEtn and PtdGro). The ratios were processed, compared

(Microsoft Excel, Wavemetrics Igor Pro5.0) and differences tested for

significance with the Student’s T-Test, with p<0.05 considered as sig-

nificant.112

5.6 Protein characterization

5.6.1 Analytical size exclusion chromatography

With this technique, the approximate molecular weight and the mul-

timeric state of a compound can be estimated. The porous matrix of

the column offers smaller molecules a large number of holes and chan-

nels to enter, increasing the time to pass through the whole column.

Although the retention time in the column depends not directly on

the molecular weight but the hydrodynamic radius of a compound,

for most proteins a good estimate can be made with a protein stan-

dard. This technique can also be used to separate proteins of different

size and remove small compounds or high molecular weight impurities.

Usually, a Superdex 200 column from GE Healthcare with a column

volume of 25 ml was used with buffer GF (see above).

5.6.2 Circular dicroism spectroscopy

Circular dicroism (CD) spectroscopy can be used to estimate the over-

all ratio of α-helical, β-sheet and coiled-coil secondary structure ele-

ments of a protein. Thereby, also the structural similarity of mutants

or the thermal stability of a protein can be investigated. For the

measurement, the difference between the absorption of right and left

circular polarized light by the chiral peptide bonds of the protein is

recorded for a range of wavelengths. In consequence, the overall sig-

nal intensity is also dependent on the protein concentration and the

pathlength of the used cuvette. The obtained curve can be interpreted

as linear combination of reference spectra for the different secondary

structure elements, revealing the overall secondary structure composi-
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tion of the protein. To determine the thermal stability of a protein, the

signal change at a fixed wavelength can be observed while constantly

increasing the temperature of the sample. Upon denaturation of the

protein, the conformation of the peptide backbone changes strongly,

which leads to a notable change of the CD signal.

For the performed measurements, 200 - 600µl of protein (0.2 mg/ml,

in PBS) were transferred to a quartz precision cuvette (Helmann, 100-

QS, 110-QS) and analyzed with a Jasco-710 spectropolarimeter. CD

spectra were recorded with 1 nm resolution from 199 - 250 nm with

a sensitivity of 20 mdeg and 10 accumulations at 20oC. The thermal

denaturation of proteins was observed at 205 nm from 20 - 80oC.

5.6.3 Isothermal titration calorimetry

With isothermal titration calorimetry (ITC) the thermodynamic pa-

rameters of molecular interactions can be determined. By recording

the evolving or absorbed heat during the titration of a molecule to its

binding partner over time, the binding affinity (Ka; equilibrium con-

stant K), the enthalpy change (∆H) and the binding stoichiometry

(n) of the reaction are measured. With the Gibbs-Helmholtz equation

∆G = ∆H−T∆S and ∆G = −RTlnK,288 also the Gibbs free energy

change ∆G and the entropy change ∆S can be calculated.

The experimental setup consists of a measuring cell with injection

system and an identical reference cell, both shielded by an adiabatic

jacket and made from an efficient thermal conducting material. Be-

tween the two cells, the temperature difference is continuously mea-

sured and corrected for by feedback driven heating of the measuring

cell. During the titration experiment, the reference cell is constantly

heated with low power and the energy uptake for the adjustment of

the measuring cell recorded. Is the association of molecule and bind-

ing partner exotherm, less energy is needed to adjust the measurement

cell and vice versa for an endotherm reaction.

ITC measurements were performed with a VP-ITC calorimeter

(MicroCal) at 25oC, by titrating a 2 mM phosphotyrosine (Fluka)
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solution to 222 uM of NF1-SecPH. The protein was prior to the ex-

periment dialyzed (Slide-A-Lyser R© 10’000 MWCO, Pierce) to ITC

buffer ( 20 mM Tris, 150 mM NaCl, 1 mM EDTA, pH8.0). With the

buffer used during dialysis, the phosphotyrosine sample was prepared

and the pH value carefully adjusted.

5.7 Mammalian cell culture and microscopy

To investigate the subcellular localization of Neurofibromin fragments

in life cells, NIH 3T3 mouse fibroblasts (ATCC, American Type Cul-

ture Collection) and the NF1−/− human Schwann cell line sNF96.2

(ATCC, CRL-2884) were cultivated. The cells were grown in appro-

priate condition (37oC, 5% CO2, media see table 5-1) and splitted

regularly in a 1:2 or 1:3 ratio to prevent the formation of a conflu-

ent monolayer of cells. For splitting, the cells were detached from the

culture flasks by 10 min of incubation with Trypsin-EDTA (Invitro-

gen) at 37oC, gently pelleted and resuspended in a sufficient amount

of fresh medium.

From previous experiments, different Neurofibromin fragments were

available (Fabien Bonneau, EMBL Heidelberg) in pEGFP and pEYFP

plasmids (Clonetech), which can drive the expression of the inserted

fragment as N-terminal GFP- or C-terminal YFP-fusion in mam-

malian cells. Transfection of the plasmids was done according to man-

cell type compound final amount provider

NIH 3T3 DMEM - EMBL media kitchen
L-glutamine 4mM Gibco
penicillin 100 U/ml Gibco
streptomycin 100 µg/ml Gibco
Fetal bovine serum 10% PAA

sNF96.2 DMEM complete - ATCC (30-2002)
Fetal bovine serum 10% ATCC (ATCC-30-2021)

Table 5-1: Growth media for the NIH 3T3 and sNF96.2 cell lines
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ufacturers instructions, either with FuGENE6 (Roche) for sNF96.2

cells or Lippofectamin 2000TM (Invitrogen) in case of NIH 3T3 cul-

tures. Prior to transfection, the cells were transfered to a 35 mm glass

bottom culture dish (MatTek corporation, Part No.:p35G-1.5-10-C)

and in case of NIH 3T3 cells serum starved for 12 h in OptiMEM-

I R© medium (Invitrogen), to ensure a good response to PDGF. One

day after transfection, the cells were visualized by confocal microscopy

(Olympus FluoView FV1000 system) at regulated environmental con-

ditions (Olympus evotec, 37oC,5% CO2) with a magnification of 60x.

For stimulation experiments, PDGF (Sigma, P8147) was directly added

to life cells during visualization, with a final concentration of 100 µM.

Recorded images were processed with the FV1000 software (Olympus)

and the Olympus FLUOVIEW Ver.1.6a Viewer.
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6 Appendix

6.1 Publication list

Stefan Welti, Igor D’Angelo and Klaus Scheffzek “Structure and Func-
tion of Neurofibromin” Monogr Hum Genet, vol. 16, pp. 113-128, 2008

Stefan Welti, Sven Fraterman, Igor D’Angelo, Matthias Wilm and
Klaus Scheffzek, “The Sec14 homology module of neurofibromin binds
cellular glycerophospholipids: mass spectrometry and structure of a
lipid complex.” J Mol Biol, vol. 366, no. 2, pp. 551-562, Feb 2007,
PMID: 17187824

Igor D’Angelo, Stefan Welti, Fabien Bonneau and Klaus Scheffzek, “A
novel bipartite phospholipid-binding module in the neurofibromatosis
type I protein” EMBO Rep, vol. 7, no. 2, pp. 174-179, Feb 2006,
PMID: 16397625.

Fabien Bonneau, Igor D’Angelo, Stefan Welti, Gunter Stier, Jari Ylänne
and Klaus Scheffzek, “Expression, purification and preliminary crys-
tallographic characterization of a novel segment from the neurofibro-
matosis type I protein.” Acta Crystallogr D Biol Crystallogr, vol. 60,
no. Pt 12 Pt 2, pp. 2364-2367, Dec 2004, PMID: 15583390.
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6.2 Abbreviations used in Fig. 3-4 (p.24)

AC Adenylyl cyclase
Akt/PKB protein kinase B
AMPK AMP activated kinase
aPKC atypical protein kinase C
BAD Bcl-2 antagonist of cell death
BRaf B rapidly growing fibrosarcoma
Cdc42 cell division cycle 42
Cdc42GEF cell division cycle 42 GTPase exchange factor
CRMP-2 Collapsin response mediator protein-2
c-Fos FBJ (Finkel-Biskis-Jinkins) osteosarcoma,

v-Fos FBJ murine osteosarcoma viral oncogene homolog
c-Jun ju-nana (jap. for 17), v-Jun avian sarcoma virus 17 oncogene

homolog
c-myc myelocytomatosis, v-Myc avian myelocytomatosis viral

oncogene homolog
DAG diacylglycerol
Dock180 dedicator of cytokinesis 180
eIF4B eukaryotic initiation factor 4B
eIF4E eukaryotic initiation factor 4E
ECM extracellular matrix
ELMO engulfment and cell motility
Ena/VASP enabled / vasodilator-stimulated phosphoprotein
ER endoplasmatic reticulum
Erk extracellular signal-regulated kinase
ETS erythroblastosis, v-ETS erythroblastosis virus E26 oncogene

homolog (avian)
FOXO forkhead box O1
Gab1 GRB2(growth factor receptor-bound)-associated binding

protein 1
GF growth factor
GPCR G-protein coupled receptor
GRB2 growth factor receptor-bound 2
Gsk3 glycogen synthase kinase 3
Gαi guanine nucleotide-binding protein α-inhibiting activity

polypeptide
Gαq guanine nucleotide-binding protein α q polypeptide
Gαs guanine nucleotide-binding protein α-stimulatory activity

polypeptide
HIF1 hypoxia-inducible factor-1
IP145P3 1D-myo-inositol 1,4,5-tris(phosphate)
IRS1 insulin receptor substrate 1
KSR kinase suppressor of Ras
LKB1 renamed to STK 11, serine/threonine protein kinase 11
Mek mitogen-activated protein kinase kinase 1
mLST8 mammalian lethal with sec thirteen 8, GβL
mTOR mammalian target of rapamycin
Par3 partitioning defective 3
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Par6 partitioning defective 6
PDK1 pyruvate dehydrogenase kinase, isozyme 1
PI3K phosphatidylinositol 3-kinase
PI34P2 1-(3-sn-Phosphatidyl)-D-myo-inositol 3,4-bis(phosphate)
PI345P3 1-(3-sn-Phosphatidyl)-D-myo-inositol 3,4,5-tris(phosphate)
PI45P2 1-(3-sn-Phosphatidyl)-D-myo-inositol 4,5-bis(phosphate)
PKA protein kinase A
PKCα protein kinase Cα
PKD protein kinase D
PLC phospholipase C
Pol-II polymerase II
PTEN phosphatase and tensin homolog
P-Rex1 phosphatidylinositol-3,4,5-trisphosphate-dependent

Rac exchanger 1
Pyk2 proline-rich tyrosine kinase 2, = PTK2B
Rac Ras related C3 botulinum toxin substrate 1
Raf replication-defective acutely transforming,

v-Raf-1 murine leukemia viral oncogene homolog 1
Ral Ras-like protein
Rap1 Ras-related protein 1
Raptor regulatory associated protein of mTOR
Ras rat sarcoma viral oncogene homolog
REDD1 Regulated in development and DNA damage response 1
Rheb Ras homolog enriched in brain
RhoA Ras homology A
Rictor rapamycin-insensitive companion of mTOR
Rock Rho-associated, coiled-coil containing protein kinase
Rsk ribosomal protein S6 kinase
RTK receptor tyrosine kinase
SHC Src homology 2 domain containing
SHIP1 SH2-containing inositol phosphatase
SKAR S6K1 ALY/REF-like target
SOS son of sevenles
Src v-Src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene
STAT3 signal transducer and activator of transcription 3
STEF = Tiam2, T-cell lymphoma invasion and metastasis protein-2
S6 surface antigen 6
S6K1/2 ribosomal protein S6 kinase
Tiam1 T-cell lymphoma invasion and metastasis protein-1
TSC1 tuberous sclerosis complex 1, hamartin
TSC2 tuberous sclerosis complex 2, tuberin
VPS34 phosphatidylinositol 3-kinase class 3, PIK3C3
4E-BP1 4E binding protein 1, EIF4EBP1
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6.3 Key to the lipid arrays

The lipid arrays were custom made by Oriol Galego (EMBL Heidelberg).

A 1 NBD-PG
2 PtdIns
3 PtdIns 3-phosphate
4 PtdIns 4-phosphate
5 PtdIns 4,5-bisphosphate
6 PtdIns 3,4,5-trisphosphate

B 1 PtdSer
2 PtdCho
3 PtdGro M
4 Phosphatidate
5 Cardiolipin M
6 NBD-PG

C 1 PtdEtn
2 Phosphatidyl-N-methylethanolamine
3 Phosphatidyl-N-dimethylethanolamine
4 Ethanolamine phosphate,

O-Phosphorylethanolamine
5 CDP-diacylglycerol
6 CDP-choline

D 1 NBD-PG
2 CDP ethanolamine
3 3-Dehydrosphinganine,

3-keto-dihydrosphingosine
4 Sphinganin, D-erythro-Dihydrosphingosine
5 Sphinganine 1-phosphate
6 Phytosphingosine

E 1 Phytosphingosine 1-phosphate
2 N-Acylsphinganine, Dihydroceramide
3 Ceramide, N-Acylsphingosine
4 N-Acyl Phytosphingosine C8 Phytoceramide
5 N-acyl-phytosphingosine
6 NBD-PG

F 1 Sphingosine
2 Sphingosine 1-phosphate
3 CoA
4 Acetyl CoA
5 Acetoacetyl-CoA
6 (S)-3-Hydroxy-3-methylglutaryl-CoA

G 1 Chl:MeOH 1:1
2 Palmitoyl-CoA
3 α-hydroxy stearoyl Coenzyme A,

(NH+
4 )3 salt)

4 Hexadecanoic acid
5 (9Z)-Octadecenoic acid
6 (9Z,12Z)-Octadecadienoic acid

H 1 15(S)-HETE
2 Acylglycerol
3 Diacylglycerol
4 Triacylglycerol
5 1,2-Diacyl-3-β-

D-galactosyl-sn-glycerol
6 Chl:MeOH:H2O 1:1:0.2

I 1 Digalactosyl-diacylglycerol
2 Diacylglycerol pyrophosphate
3 1-Alkyl-2-acetyl-sn-glycero-

3-phosphocholine
4 1-Acyl-sn-glycerol 3-phosphate
5 Geranyl diphosphate
6 Farnesyl diphosphate

J 1 Geranylgeranyl diphosphate
2 Squalene
3 Coenzyme Q
4 Dolichol
5 Lanosterol
6 Ergosterol

K 1 Desmosterol
2 Ergocalciferol
3 S-Adenosyl-L-methionine
4 L-Serine
5 Chloroform
6 NBD-PG
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6.4 Units, amino acids and prefixes

Abbreviated units
A ampere
Å Ångström = 1x10−10m
cal calorie, 1cal ca. 4.184 kJ
Da dalton
oC degree Celsius, K = oC+ 273.14
deg degrees
g gramm
h hour
J joule
K degree Kelvin
l liter
M mol / l
m meter
min minute
rpm rotations per minute
V volt

Abbreviations of amino acids (aa)
Alanine Ala A Methionine Met M
Cysteine Cys C Asparagine Asn N
Aspartic Acid Asp D Proline Pro P
Glutamic Acid Glu E Glutamine Gln Q
Phenylalanine Phe F Arginine Arg R
Glycine Gly G Serine Ser S
Histidine His H Threonine Thr T
Isoleucine Ile I Valine Val V
Lysine Lys K Tryptophan Trp W
Leucine Leu L Tyrosine Tyr Y

Prefixes
G giga 109

M mega 106

K kilo 103

m mili 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

98



REFERENCES

References

[1] Rosalie E Ferner, “Neurofibromatosis 1.” Eur J Hum Genet, vol. 15, no. 2, pp.
131–138, Feb 2007, PMID: 16957683.

[2] Amy Theos, Bruce R Korf, American College of Physicians, and
American Physiological Society, “Pathophysiology of neurofibromatosis type 1.”
Ann Intern Med, vol. 144, no. 11, pp. 842–849, Jun 2006, PMID: 16754926.

[3] Online Mendelian Inheritance in Man; OMIMTM,
“Neurofibromatosis type I” (162200)
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
(Baltimore, MD) and National Center for Biotechnology Information, National
Library of Medicine (Bethesda, MD); http://www.ncbi.nlm.nih.gov/omim/.

[4] International Classification of Diseases (ICD),
“Neurofibromatosis (nonmalignant)” (ICD-10 Q85.0)
World Health Organization; http://www.who.int/classifications/icd/en/.

[5] Friedrich Daniel von Recklinghausen, Über die multiplen Fibrome der Haut und
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