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Simulation von Transport in porösen Medien: Bei der Durchführung von Stofftrans-
portprozessen in porösen Medien beobachtet man oft eine asymmetrische Durchbruchs-
kurve mit einem sehr langsamen Absinken der Konzentration. Dieses Phänomen tritt
selbst bei nicht-sorbierenden Stoffen auf und wird als Tailing bezeichnet. Es gibt meh-
rere Hypothesen zur Erklärung des Phänomens, eine Modellierung erfolgt oft mit dem
Mobile-Immobile-Modell (MIM). Dabei nimmt man an, das ein Teil des Wassers im Bo-
den unbeweglich ist. Stoffe können in diese stagnierenden Zonen diffundieren, was zu
dem beobachteten Tailing führt.

In dieser Arbeit wird überprüft, ob Zonen langsamen Flusses, wie sie z. B. durch sack-
gassenartige oder quer zur Fließrichtung liegende Poren entstehen können, tatsächlich
als Ursache des Tailings in Frage kommen. Es wurde ein Programm entwickelt, um
Transportprozesse auf der Porenskala zu simulieren, welches anschließend anhand ver-
schiedener Testprobleme verifiziert wurde. Bei einer Beispielrechnung, die mit einem
einfachen zufällig erzeugten porösen Medium durchgeführt wurde, ließ sich tatsächlich
signifikantes Tailing beobachten.

Simulation of Transport in porous Media: When performing solute transport in porous
media one often observes an asymmetric break-through curve with a very slow decline
of the concentration. This phenomenon even appears with non-sorbing solutes and is
known as tailing. There are several hypotheses to explain this phenomenon. The mod-
elling is often done using the mobile-immobile model (MIM), which assumes that parts
of the solvent are not moving along with the general flow. The solutes can move into
these stagnant zones by diffusion which leads to the observed tailing.

In this thesis it is checked whether tailing can indeed be explained by stagnant zones,
which may result e.g. from dead-end pores or pores perpendicular to the direction of
the flow. A program to simulate transport in porous media was developed and verified
using several test-problems. An example calculation with a randomly generated porous
medium was performed. The resulting break-through curves showed significant tailing.
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1 Introduction

1.1 Motivation

Transport in porous media is important for many applications. Examples are the distri-
bution nutrients in soil, the pollution of soil by toxic substances or the processes taking
place in certain chemical or biological reactors.

On the pore scale the processes in porous media are understood pretty well from first
principles. The same is not always true on the continuum scale however — there are
several phenomena which cannot easily be explained from pore scale processes.

One such phenomenon is known as tailing. Consider a pulse of some solute moving
with the water flow through soil. The displacement of the pulse will happen according
to the macroscopic flow field, but the pulse will also be spread by diffusion. After some
time, the shape of the pulse should be essentially Gaussian, independent of its original
shape. Experiments show that the shape of the pulse is indeed mainly Gaussian, but
they also observe a long tail trailing behind, making the shape rather asymmetrical.

To explain this tail the mobile-immobile model was introduced. On the pore scale,
it splits the water phase into a moving and an unmoving part, the mobile and the
immobile phase respectively. In uniform porous media, the mobile phase is identified
with the flow channels, while the immobile phase is identified with stagnant regions of
minimal velocity, which might occur in dead-end pores and the like. Exchange of solute
between the two phases will happen by diffusion exclusively.

On the continuum scale, in addition to transport and dispersion in the mobile phase
there is now an additional mechanism which has to be taken into account. Solute can
now move into the immobile phase, essentially building a reservoir. When the main
pulse has passed, the solute will move slowly back into the mobile phase, leading to the
observed tail.

1.2 This work

In this work we examine whether tailing can indeed be explained by the mobile-immobile
model. We simulate transport in a sample porous medium numerically on the pore scale.
As fundamental processes we use only convection and diffusion.

If we indeed observe a Gaussian pulse with a tail we know that convection and diffusion
alone are enough to explain tailing. It also tells us that stagnant regions are indeed a
significant part the immobile phase. Of course this would not preclude the contribution of
additional fundamental processes and neither would it preclude additional contributions
to the immobile phase. These would require separate examinations.
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Simulation on the pore scale should allow us to identify stagnant regions. The mobile-
immobile model gives no criterion where exactly to make the distinction between mobile
and immobile part. If we find a region however, which contains significant concentration
long after the main pulse has passed it, we can safely assume we have found a part of
the immobile region.

1.3 Overview

Chapter 2 gives a short summary of the transport processes encountered in porous media.
The transition from the pore to the continuum scale is discussed and the mobile-immobile
model is presented. Finally the transport equation is discussed.

Chapter 3 deals with the discretization of the transport equation. The theory of par-
tial differential equation is touched and the discontinuous Galerkin space discretization
method is presented. This is then applied to the transport equation. For the time
discretization, several schemes are presented.

In chapter 4 the issues of implementing the discretization derived in chapter 3 are
discussed. The implementation is then applied to several test problems to check its
correct operation.

Chapter 5 shows the application of the implementation to an artificial porous medium,
confirming the mobile-immobile model. Similar real-world experiments are discussed.

Finally, in chapter 6 the accomplishments are summarized and future applications and
improvements are discussed.
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2 Transport in Porous Media

Transport in porous media describes the displacement of a substance, the solute, which
is dissolved in another substance, the solvent. In most cases the solvent is water. The
concentration C of the solute may be given as the amount of the solute per amount of
the solvent, or as the amount of the solute per total amount of solute and solvent. The
amount of solute and solvent may be measured either as mass (kg), substance (mol)
or volume (m3). Solute and solvent may even be measured in different units. Since
we consider only incompressible flow, it does not matter which of those units we take,
they are all proportional. Furthermore, only small concentrations are considered, as
non-linear effects might occur if the amount of the solute approaches that of the solvent.
Therefore it does not matter whether we use the total amount or only the amount of the
solvent in the denominator. Thus we will usually give C in some arbitrary units. The
flux j denotes concentration per area and time.

2.1 Fundamental Transport Mechanisms

On the pore scale, transport is described by two processes: convection, and molecular
diffusion.

Convection

Convection is the movement of solute due to the flow of the solvent. Its contribution to
the flow is

jc = uC, (2.1)

where u is the velocity of the solvent.

Molecular Diffusion

Molecular diffusion occurs due to the thermodynamic motion of molecules and small
particles (Brownian motion). In the thermodynamic limit it leads to a flux following the
gradient of the concentration

jm = −Dm∇C, (2.2)

where Dm is the coefficient of molecular diffusion. This is known as Fick’s flux law or
Fick’s first law.
Dm is the diffusion coefficient in an unbounded space. In porous media however there

are lots of boundaries which the solute cannot easily pass. Thus at the continuum scale
the effective diffusion coefficient Ddiff

eff is lower (see Roth (2007), section 6.1.3 for details).
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2.2 Derived Transport Mechanisms

Representative Elementary Volume

The representative elementary volume is used for the transition from the pore scale to
the continuum scale. To show its use we define the indicator function for the pores

χp(x) =

{
1 if x is in a pore,
0 if x is in the solid phase.

(2.3)

On the continuum scale a description of each individual pore is not needed. Still, one
needs to know how much of the overall volume is pore volume. This is described by the
macroscopic parameter porosity Φ, which can be obtained from the indicator function
by averaging using a suitable weight function κ(x) with support Ωκ:

Φ(x) := 〈χp 〉(x) :=
∫

Ωκ

χp(x′ − x)κ(x′)dx′ (2.4)

Naturally it is required that κ(x) ≥ 0 ∀x and
∫

Ωκ
κ(x)dx = 1.

The macroscopic version αm of some other microscopic property αµ can be obtained
using

αm(x) := 〈αµχp 〉(x) :=
∫

Ωκ

αµ(x′ − x)χp(x′ − x)κ(x′)dx′. (2.5)

One choices for κ include a constant within a sphere of radius σ centered at the origin
and zero everywhere else. For very small σ the spatial distribution of the porosity Φ will
vary wildly between 0 and 1. If we enlarge σ, the variation will decrease. Eventually,
all remaining variations in the distribution of Φ can be attributed to inhomogeneities at
the macro scale and Ωκ is large enough to contain a representative sample of the micro
scale. This is called the representative elementary volume or REV.

Other choices for κ are possible. For further details on the REV see Roth (2007).

Dispersion

For the transport mechanisms this means that on the macro scale pore scale variations
cancel out and an averaged flux field remains. However these variations still affect
the macro scale. Together with molecular diffusion they lead to new derived transport
mechanisms, collectively referred to as dispersion.

Dispersion is similar to molecular diffusion. Diffusion is described by the coefficient of
molecular diffusion Dm, whereas dispersion is described by D(u), an anisotropic tensor
which depends on the velocity. The contribution to the flux is

jdisp = −D(u)∇C (2.6)

and includes the contribution of molecular diffusion.
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Figure 2.1: Sketch of immobile water in saturated, uniform,
granular media. Water flow will occur along a network of flow
paths (dark blue lines). The region within lm = Dm/v of a
flow path may be considered as mobile (light blue) whereas
those beyond act as immobile (light yellow). Figure taken
from Roth (2007).
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Figure 2.2: Spatial concentration pro-
files for different time scales in the MIM.
(a) short times with dominating main
pulse, (b) intermediate times with com-
paratively dominant main pulse and tail,
(c) long time limit with dominating tail
and nearly vanishing main pulse.

2.2.1 The Mobile-Immobile Model

The mobile-immobile model (MIM, Coats and Smith (1964); van Genuchten and Wierenga
(1976), cited by Roth (2007)) is a simple model which nevertheless roughly explains tail-
ing. It assumes that the solvent volume can be separated in a mobile part with larger
velocities and an immobile part with no velocity. This could be for example porous
pebbles in a sand matrix where the water in the sand is mobile while the water in the
pebbles is immobile. But if we look at any porous medium at the pore scale we find
preferred flow channels and regions with almost no flow as well (figure 2.1). The water
in the flow channels forms the mobile phase whereas the water in the regions without
flow forms the immobile phase.

MIM assumes that the convective transport is happening in the mobile region, and
that the immobile region does not contribute at all. Exchange between the two regions
happens mostly by diffusion. The density of each region is assumed to be macroscopically
uniform.

Now imagine a solute pulse passing through such a medium. Most of the concentration
will stay in the mobile region and just move undisturbed. If the initial pulse was Gaussian
or if dispersion is strong enough to make it Gaussian, we will see it as a Gaussian shaped
pulse in concentration profile. Some of the solute will diffuse into the immobile region
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however and stay there for some time, until diffusion moves it back into the mobile
region, where it will move with the flow again. In the concentration profile, this will
show as a long tail to the main pulse (figure 2.2a).

For longer time scales, the main pulse in the concentration profile will get smaller,
while the tail will get bigger and will eventually evolve into a Gaussian in its own right
(figure 2.2b). In the limit the main pulse has vanished completely, and most of the solute
is concentrated in the immobile region (figure 2.2c).

2.3 The Transport Equation

Transport is described by a linear partial differential equation (PDE). We will refer to
it as the “transport equation,” but it is often also called convection-diffusion equation,
or convection-diffusion-reaction equation if it includes reaction. In the simplest case the
transport equation is

∂tC +∇{uC −Dm∇C} = 0. (2.7)

∂tC is the time development term, ∇(uC) the convection term and−Dm∆C the diffusion
term.

While (2.7) describes convection and diffusion to simulate on the pore scale we will
start from the transport equation for a porous medium on the continuum scale, where
additional processes must be taken into account:

RΦ(∂tC + λC) +∇j = q(C) in Ω (2.8a)
j = uC −D(u)∇C (2.8b)

R is the retardation factor. It describes a slowdown of the solute compared to the solvent
because of adsorption on the pore surface. Φ is the porosity as explained in (2.4). RΦλC
is the decay term with λ being the decay or reaction rate of the solute. It describes the
decay of the solute due to radioactivity or chemical reactions, if the products have no
further influence. D(u) describes the dispersion. Unlike the scalar Dm, D(u) is an
anisotropic tensor depending on the velocity, thus the dispersion term is −∇{D(u)∇C}.
q(C) describes constant sources and sinks of concentration, and non-linear reactions
(linear reactions are described by the decay term).

Equation (2.7) is a special case of (2.8). In free space, the domain is homogeneously
filled with solvent, i.e. porosity Φ = 1. Furthermore adsorption can only take place at
the domain boundary, so the retardation factor is R = 1 within the whole domain. Due
to the lack of pores dispersion does not take place and only molecular diffusion is left,
which leads to D(u) = Dm. If we further assume no decay or other reaction and no
sources or sinks, we get λ = 0 which make the decay term vanish and q(C) = 0, so the
right hand side vanishes as well. Using all these simplifications makes (2.8) equivalent
to (2.7).

Although (2.7) is sufficient for our application, using (2.8) makes it easier to expand
on this work later.1 We will not fully implement (2.8) however, but we will delay the

1An example is the simulation of pebbles in a sand matrix at a scale where the pebbles a resolved, but
the sand is viewed as a continuous porous medium.
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application of simplification as long as possible (see 4.1.3).
The boundary conditions which may be applied are Dirichlet, Neumann (or flux) and

outflow:

C = C0 on ΓC (Dirichlet BC) (2.9a)
jn = J on ΓJ (Neumann BC) (2.9b)
jn = (uC −D(u)∇C)n on ΓO (outflow BC) (2.9c)

n denotes the outer normal to Ω. ΓC , ΓJ and ΓO are the Dirichlet, Neumann and outflow
boundaries, respectively. The special case J = 0 of the Neumann boundary condition is
known as “noflux.” On the outflow boundary it is required that

u · n > 0 on ΓO. (2.10)

When using computed velocities it may happen that for small parts of the boundary
intended for the outflow BC this condition is not fulfilled. For those parts the outflow
BC can be replaced by a noflux BC, which will have the intended effect.
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3 Numerical Treatment

Simulation of physical processes is a vast area. Many methods exist to simulate linear
partial differential equations (PDE), and the applicable methods depend very much on
the problem at hand.

Definition 3.1 (Linear PDE):
The general form of an n-th order linear partial differential equation is∑

|α|≤n

aα(x)∂αu(x) = f(x) ∀x ∈ Ω ⊂ Rd, α ∈ Nd. (3.1)

It is linear in the unknown function u(x). The order of the highest derivative deter-
mines the order of the PDE.

The transport equation is a second order linear PDE in general, and a first order linear
PDE in the case without diffusion or dispersion.

Classification of second order PDEs

The general form of a second order linear PDE is (see Hackbusch (2005))

d∑
i,j=1

aij(x)∂i∂ju(x) +
d∑
i=1

bi(x)∂iu(x) + c(x)u(x) = f(x). (3.2)

We will write b = (bi) and A = (aij). Since ∂i and ∂j may be exchanged, we require
that A be symmetric.

Definition 3.2 (Elliptic second order PDE):
We call (3.2) elliptic if all eigenvalues of A have the same sign.

Definition 3.3 (Hyperbolic second order PDE):
We call (3.2) hyperbolic if one eigenvalue of A has the opposite sign of all other eigen-
values.

Definition 3.4 (Parabolic second order PDE):
We call (3.2) hyperbolic if one eigenvalue of A vanishes and rank(A,b) = d.

There are in principle more types of second order linear PDEs, but those are far less
common.

9



Classification of first order PDEs

First order linear PDEs are always hyperbolic. We get other types only with systems of
first order linear PDEs.

The type of a linear PDE is very important since different types require very different
ways of solving. Also, the initial and boundary conditions which can be specified are
different for each type.

Our transport equation is a linear second order parabolic PDE, as long as D 6= 0. For
D = 0 it is a linear first order hyperbolic PDE.

Order of Convergence

The order of convergence is a measure of how much a scheme benefits from a finer
grained discretization. To define it we need h, the typical size of the elements for space
discretization schemes, or the typical size of the time step for time discretization schemes.
We also need an error estimate

e(h) = ‖uh − u‖, (3.3)

where ‖ · ‖ is commonly the L2 or H1 norm.

Definition 3.5 (Order of Convergence):
A methods order of convergence is n (equivalently, the method is n-th order accurate),
if and only if

e(h) = O(hn) for h→ 0. (3.4)

Different norms will result in different orders of convergence. We will use the L2 norm
exclusively.

Obviously one wants to use a scheme with a high order of convergence, unless other
reasons prohibit it, since that allows to use coarser grids and longer time steps and thus
may consume less memory and fewer CPU cycles. When combining several methods (like
space and time discretization), the method with the lowest convergence order determines
the overall convergence order.

Often one wants to know whether a program actually yields the expected order of
convergence, since a lower than expected order of convergence is a good indicator that
there are bugs left in the code. One can run the program twice, once with a coarse h1

and once with a fine h2 and compare the resulting errors e(h1) and e(h2).

Definition 3.6 (Experimental Order of Convergence):
We define the experimental order of convergence to be

nexp :=
log
(
e(h1)
e(h2)

)
log
(
h1

h2

) . (3.5)
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Of course one will usually run the program not twice, but many times for successively
smaller h, since nexp will approach n only in the limit of h → 0. If no exact solution u
is available, it is usually approximated by calculating a reference solution with a very
small h.

3.1 Space Discretization

For the space discretization, a discontinuous Galerkin (DG) scheme is used. It is the
foundation for the unfitted DG method developed by Engwer and Bastian (2005, 2008),
which we will use to handle the complex geometry of the pore scale, see section 3.1.3.

3.1.1 Discontinuous Galerkin

DG is a finite elements method (FEM) with special ansatz functions which are non-zero
only on one element and zero everywhere else. As the ansatz functions are discontinuous
at the element boundaries, the resulting solution will be discontinuous as well. On the
elements, the shape functions are usually polynomials. If the highest shape function
order is n then the order of convergence of the method is n + 1 for sufficiently regular
solutions (see Bramble and Hilbert (1970); Brenner and Scott (2008)).

DG starts from the weak formulation of the PDE. It then obtains coupling between
elements by transforming divergence integrals into integrals over the boundaries of the
elements. Given a linear PDE

Lu = f on Ω, (3.6)

with the linear differential operator L the weak formulation is obtained by multiplying
with a test function v, integrating over Ω and stating that this new equation must be
fulfilled for each test function v ∈ V :∫

Ω
Lu · v dx =

∫
Ω
f · v dx ∀v ∈ V. (3.7)

V is the space of test functions. If {vi} is a base1 of V with respect to the scalar product

(a, b) :=
∫

Ω
a · b dx a, b ∈ V, (3.8)

then (3.7) is equivalent to∫
Ω
Lu · v dx =

∫
Ω
f · v dx ∀v ∈ {vi}. (3.9)

Then the divergence terms in L are transformed into integrals over the elements’ bor-
der using integration by parts and Gauss’ theorem. This is shown in detail later in
section 3.1.2 for the application to the transport equation. This term now lives on the

1not necessarily an orthogonal base
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intersections and will give us the coupling between elements, together with some other
terms.

We use a DG method with a good order of convergence and local mass conservation. It
is described in Bastian (2003). It includes penalty terms introduced by Oden, Babuška
and Baumann (Oden et al. (1998)) and the interior penalty according to Wheeler (1978)
and Rivière (2000), which were originally developed for elliptic PDEs. These artificial
penalty terms make sure that the jumps in the concentration between elements stay
small while still maintaining a good approximation of the solution. While the interior
penalty is implemented in the code and thus presented here, it is not actually used in
any calculations, since it has adjustable parameters which are hard to get right.

To guarantee positive concentration in all elements we apply upwinding. Consider a
flow over an interface from an element e with concentration 0 into an element f with
concentration 1. If we would take 〈uC 〉 · ne as the flux, we would take concentration
out of an empty element which would result in a negative concentration. But this is just
the most prominent example, it generally makes more sense to let the upwind element
control the flux coming out of it. So we will use the upwind flux 〈u 〉C∗ · ne, where C∗

is the upwind concentration.
Partial integration and Gauss’ theorem, the penalty terms and upwinding together

yield a new equation which may be written as

a(u, v) = l(v) ∀v ∈ V, (3.10)

with a( · , · ) a bilinear form and l( · ) a linear form. Now a concrete function space must
be chosen for V with a finite number m of base functions {φµ}. Since any function v ∈ V
can be represented by a linear combination of the base functions {φµ}, (3.10) can be
written as m equations

a(u, φµ) = l(φµ) ∀µ ∈ N : 0 ≤ µ < n. (3.11)

As customary for Galerkin methods the solution u is discretized by using the same
base {φν} with 0 ≤ ν < n to represent u:

u ≈
∑

0≤ν<n
uνφν . (3.12)

Inserting this into (3.11) and moving the coefficients uν in front of the bilinear form a
one gets ∑

0≤ν<n
uνa(φν , φµ) = l(φµ) ∀µ ∈ N : 0 ≤ µ < n. (3.13)

With the matrix (A)µν := a(φν , φµ) and the two vectors (x)ν := uν and (b)µ := l(φµ),
this is just a system of linear equations

Ax = b. (3.14)
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3.1.2 Discontinuous Galerkin Method for the Transport Equation

We will now discuss a concrete example and apply DG to the transport equation. In the
following the concentration C is the unknown function, which was previously known as
u. The right hand side f describes the source/sink/reaction term q.

The transport equation (2.8) can be written as

RΦ∂tC︸ ︷︷ ︸
Term A

+RΦλC︸ ︷︷ ︸
Term B

+ ∇j︸︷︷︸
Term C

= q(C)︸︷︷︸
Term D

. (3.15)

The time derivative in term A does not really fit into the scheme of (3.6). We shall
handle it separately in section 3.2. Terms B and C correspond to the left hand side Lu
of (3.6), while term D corresponds to the right hand side f . Term C is the divergence
term and will require most of our attention.

Before we start, we need some definitions which we will use in the following.

Definition 3.7 (Partition of Ω):
We partition the domain Ω into disjoint elements and call this subdivision Eh =
{e1, . . . , enh}. We call the sub-domain of element e ∈ Eh Ωe and the outward unit
normal to e ne.

Definition 3.8 (Internal and External Skeleton):
We call

Γint := {γef = ∂Ωe ∩ ∂Ωf |e, f ∈ Eh ∧ γef 6= ∅} (3.16)

the internal skeleton and

Γext := {γe = ∂Ωe ∩ ∂Ω|e ∈ Eh ∧ γe 6= ∅} (3.17)

the external skeleton.

Definition 3.9 (Jump and Average):
Since there may be discontinuities at element boundaries we sometimes need to make
clear which value of a discontinuous function to take. We call the continuous extension
of g from Ωe to ∂Ωe g|e:

g|e(x) := lim
x′→x

g(x′) ∀x′ ∈ Ωe. (3.18)

We call [ g ]ef := g|e− g|f the jump of g on γef and 〈 g 〉ef := 1
2(g|e− g|f ) the average.

Since 〈 g 〉ef = 〈 g 〉fe we will omit the index to the average most of the time. We note
the property

[ gh ]ef = [ g ]ef 〈h 〉+ 〈 g 〉[h ]ef . (3.19)

Weak Formulation

The weak formulation of the problem (2.8) is∫
Ω
RΦ∂tC · v dx+

∫
Ω
RΦλC · v dx+

∫
Ω
∇j · v dx =

∫
Ω
q(C) · v dx ∀v ∈ V. (3.20)
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Boundary Integral

First (3.20) is expressed as a sum over all elements:

∑
e∈Eh

∫
Ωe

RΦ∂tC · v dx+
∑
e∈Eh

∫
Ωe

RΦλC · v dx+
∑
e∈Eh

∫
Ωe

∇j · v dx

=
∑
e∈Eh

∫
Ωe

q(C) · v dx ∀v ∈ V. (3.21)

Now the integral over the divergence is transformed into an integral over the elements’
borders:∑
e∈Eh

∫
Ωe

∇j · v dx =
∑
e∈Eh

{
−
∫

Ωe

j ·∇v dx+
∫

Ωe

∇(jv) dx
}

(integration by parts)

=
∑
e∈Eh

{
−
∫

Ωe

j ·∇v dx+
∫
∂Ωe

vj · ne ds
}

(Gauss’ theorem)

= −
∑
e∈Eh

∫
Ωe

j ·∇v dx+
∑

γef∈Γint

∫
γef

[ vj ]ef · ne ds

+
∑

γe∈Γext

∫
γe

vj · ne ds.
(3.22)

We use the property (3.19) and demand conservation of mass [ j ] = 0 so the sum over
the internal skeleton becomes∑

γef∈Γint

∫
γef

[ vj ]ef · ne ds =
∑

γef∈Γint

∫
γef

[ v ]ef 〈 j 〉 · ne ds. (3.23)

We split the sum over the external skeleton into three sums over the external skeleton
restricted to the Dirichlet, the Neumann and the outflow boundaries respectively and
insert the Neumann and the outflow boundary conditions (2.9b, 2.9c):

∑
γe∈Γext

∫
γe

vj · ne ds =
∑

γe∈Γext

∫
γe∩ΓC

vj · ne ds+
∑

γe∈Γext

∫
γe∩ΓJ

vJ ds

+
∑

γe∈Γext

∫
γe∩ΓO

v(uC −D∇C) · ne ds. (3.24)
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Inserting the flow (2.8b) we now get for all of term C∑
e∈Eh

∫
Ωe

∇j · v dx =−
∑
e∈Eh

∫
Ωe

(uC −D∇C) ·∇v dx (3.25a)

+
∑

γef∈Γint

∫
γef

[ v ]ef 〈uC −D∇C 〉 · ne ds (3.25b)

+
∑

γe∈Γext

∫
γe∩ΓC

v(uC −D∇C) · ne ds (3.25c)

+
∑

γe∈Γext

∫
γe∩ΓJ

vJ ds (3.25d)

+
∑

γe∈Γext

∫
γe∩ΓO

v(uC −D∇C) · ne ds. (3.25e)

Penalty Terms and Upwinding

We now need to insert the OBB penalty term∑
γef∈Γint

∫
γef

[C ]ef 〈D∇v 〉 · ne ds. (3.26)

This term is symmetric to the right part of (3.25b) and it tends toward zero with the
size of the elements, since then [C ] tends toward zero. This term penalizes large jumps
at the element boundaries.

The interior penalty on the internal skeleton has the form∑
γef∈Γint

σ

|γef |β

∫
γef

[C ]ef [ v ]ef ds, (3.27)

for suitable parameters σ and β. As this term is implemented in the code, it is also
discussed here. However, it is not used in the results presented in sections 4.2 and 5
since it does not necessarily tend toward zero with the element size tending toward zero.

Now we apply upwinding to (3.25b), this means we replace C in the left part with the
upwind concentration

C∗(x) :=

{
C|e(x) if 〈u(x) 〉 · ne(x) > 0
C|f (x) else.

(3.28)
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With OBB penalty and upwinding (3.25b) now becomes

∑
γef∈Γint

∫
γef

[ v ]ef 〈uC −D∇C 〉 · ne ds→

∑
γef∈Γint

∫
γef

[ v ]efC∗〈u 〉 · ne ds

+
∑

γef∈Γint

σ

|γef |β

∫
γef

[C ]ef [ v ]ef ds

+
∑

γef∈Γint

∫
γef

{
[C ]ef 〈D∇v 〉 · ne − [ v ]ef 〈D∇C 〉 · ne

}
ds.

(3.29)

Dirichlet Boundary Conditions

Similarly to the OBB penalty, we impose the Dirichlet boundary conditions (2.9a) weakly
on (3.25c). This adds the term∑

γe∈Γext

∫
γe∩ΓC

(C − C0)D∇v · ne ds. (3.30)

There is also a term coming from the interior penalty:∑
γef∈Γext

σ

|γef |β

∫
γef∩ΓC

(C − C0)v ds. (3.31)

Please note that the test function v evaluated outside the whole domain is zero, so this
term is very similar to its counterpart on the internal skeleton.

Again upwinding is applied. On the boundary that means choose either the element’s
concentration C or the Dirichlet boundary value C0 depending on whether the velocity
u points into or out of the domain, respectively. Since C0 is known and C is unknown
it is not convenient to define the upwind concentration C∗ for the boundary. Instead we
shall define the Dirichlet inflow and outflow boundaries.

Definition 3.10 (Dirichlet Inflow and Outflow Boundary):
We divide the Dirichlet boundary ΓC into the Dirichlet outflow Boundary

Γout
C := {x ∈ ΓC |u(x) · n > 0} (3.32)

and the Dirichlet inflow Boundary

Γin
C := {x ∈ ΓC |u(x) · n ≤ 0}, (3.33)

where n is the unit normal vector pointing out of the domain.
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Thus with upwinding we get∑
γe∈Γext

∫
γe∩ΓC

vuC · ne ds→
∑

γe∈Γext

∫
γe∩Γout

C

vuC · ne ds

+
∑

γe∈Γext

∫
γe∩Γin

C

vuC0 · ne ds.
(3.34)

Altogether the Dirichlet boundary term now becomes∑
γe∈Γext

∫
γe∩ΓC

v(uC −D∇C) · ne ds→−
∑

γe∈Γext

∫
γe∩ΓC

vD∇C · ne ds

+
∑

γe∈Γext

∫
γe∩ΓC

(C − C0)D∇v · ne ds

+
∑

γe∈Γext

σ

|γe|β

∫
γe∩ΓC

(C − C0)v ds

+
∑

γe∈Γext

∫
γe∩Γout

C

vuC · ne ds

+
∑

γe∈Γext

∫
γe∩Γin

C

vuC0 · ne ds.

(3.35)

Putting it all together and moving the completely known term to the right hand side:

∑
e∈Eh

∫
Ωe

RΦ∂tC · v dx (3.36a)

+
∑
e∈Eh

∫
Ωe

RΦλC · v dx (3.36b)

−
∑
e∈Eh

∫
Ωe

(uC −D∇C) ·∇v dx (3.36c)

+
∑

γef∈Γint

∫
γef

[ v ]efC∗〈u 〉 · ne ds (3.36d)

+
∑

γef∈Γint

σ

|γef |β

∫
γef

[C ]ef [ v ]ef ds (3.36e)

+
∑

γef∈Γint

∫
γef

{
[C ]ef 〈D∇v 〉 · ne − [ v ]ef 〈D∇C 〉 · ne

}
ds (3.36f)
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+
∑

γe∈Γext

∫
γe∩ΓC

{
CD∇v · ne − vD∇C · ne

}
ds (3.36g)

+
∑

γe∈Γext

σ

|γe|β

∫
γe∩ΓC

Cv ds (3.36h)

+
∑

γe∈Γext

∫
γe∩Γout

C

vuC · ne ds (3.36i)

+
∑

γe∈Γext

∫
γe∩ΓO

v(uC −D∇C) · ne ds (3.36j)

=
∑
e∈Eh

∫
Ωe

q(C) · v dx (3.36k)

−
∑

γe∈Γext

∫
γe∩ΓJ

vJ ds (3.36l)

−
∑

γe∈Γext

∫
γe∩Γin

C

vuC0 · ne ds (3.36m)

+
∑

γe∈Γext

∫
γe∩ΓC

C0D∇v · ne ds (3.36n)

+
∑

γe∈Γext

σ

|γe|β

∫
γe∩ΓC

C0v ds ∀v ∈ V. (3.36o)

Note the similarity to (3.10). Even though we could match (3.10) and (3.36) it is better
to give the time derivative term (3.36a) special treatment. We write (3.36) similar to
(3.10):

m(∂tC, v) + a(C, v) = l(v) ∀v ∈ V. (3.37)

m( · , · ) is another bilinear form denoting time derivative term (3.36a). a( · , · ) denotes
the rest of the left hand side of (3.36), while l( · ) denotes the right hand side. Using a
base {φµ} for v and {ψν} for C we get∑

ν

∂tCν ·m(ψν , φµ) +
∑
ν

Cν · a(ψν , φµ) = l(φµ) ∀µ. (3.38)

To get to a system of linear equations, we define (M)µν := m(ψν , φµ) and (x)ν := Cν .
A and b are defined as previously for (3.14):

M∂tx+Ax = b (3.39)

We now require that φµ = ψν . This allows us to invert M . On a computer this may
be very expensive in terms of CPU time and memory use. If M is sparse with n nonzero
entries, M−1 may still be dense with O(n2) entries. We have already used that all ansatz
functions φµ are nonzero only on one element e. This means that if we have one ansatz
function φµ which is nonzero on element e and one ansatz function φν which is nonzero
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
M




A

Figure 3.1: Block structure of the matrices M and A. This example is for a domain
partitioned into 3 × 3 elements with linear shape functions (constant, x and y). The
gray squares represent dense blocks in the matrix. Each hollow square represents
one block with all entries zero. Each block corresponds to one combination of elements
(e, f). The dense blocks on the diagonal represent the interaction of one element with
itself. Those not on the diagonal represent interactions with neighboring elements. Each
sub-square within one dense block corresponds to a pair of shape functions (i, j).
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Figure 3.2: UDG constrains the support of the shape functions to the liquid phase.

on element f and m(φν , φµ) 6= 0 it follows that e and f are the same element. In other
words, if we group the indices µ in such a way that all base functions φµ which are
nonzero on the same element e get adjacent indices, then M will be block-wise diagonal
with each diagonal block corresponding to one element (figure 3.1). We can simply invert
each block on the diagonal of M to get M−1. This does not require much CPU time
as long as the number of shape functions per element are small, and M−1 will have the
same sparsity pattern as M . Thus the end result of this section is

∂tx+M−1Ax = M−1b. (3.40)

We shall see how to deal with the time derivative in section 3.2.

3.1.3 Unfitted DG

Up to now we talked about a very general partitioning Eh of our domain Ω into elements.
In practice this partitioning is done by a grid, which may be structured or unstructured.
Unstructured grids seem better suited for our purpose since unlike structured grids
they can readily represent the pore structure. However the process of generating an
unstructured grid which fits some structure is often complicated and may require a lot
of fine tuning and manual post-processing.

Christian Engwer is working on a method called unfitted discontinuous Galerkin
(UDG, Engwer and Bastian (2005, 2008)), which allows to use complex structures even
with regular grids. It works by restricting the support of the shape functions to the
geometry, that means to the liquid phase in our case. This may be used on top of more
or less arbitrary grids, especially structured ones. When used with structured grids it
will even result in smaller matrices compared to unstructured grids without UDG.
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3.2 Time Discretization

Now we need to deal with the time derivative in (3.40). We keep only the time derivative
on the left hand side and explicitly state time dependencies:

dx(t)
dt

= M−1b(t)−M−1Ax(t) (3.41)

The time derivative is now a total derivative since time is the only variable left.
The left hand side is usually discretized as

dx(t)
dt
→ 1

∆tn
(xn − xn−1), (3.42)

with xn := x(tn) the vector of unknowns after step n, ∆tn := tn − tn−1 the duration of
step n and tn the end time of step n. x0 := x(t0) is the vector representing the initial
conditions, and t0 is the starting time of the simulation.

The most straightforward way to discretize the right hand side is

M−1b(t)−M−1Ax(t)→M−1b(tn−1)−M−1Axn−1 (3.43)

(“take the old values”), which gives us after some reordering

xn = ∆tnM−1b(tn−1) + {1−∆tnM−1A}xn−1. (3.44)

This is known as explicit Euler. The new value of x can be calculated explicitly, there
is no need to solve a linear equation system. The drawback is that unlike the implicit
methods presented later, this method is strongly restricted by the CFL condition. This
is unfortunate, since in the UDG method the smalled grid element may be much smaller
than the typical element.

3.2.1 Implicit Euler

For the implicit Euler the right hand side is discretized as

M−1b(t)−M−1Ax(t)→M−1b(tn)−M−1Axn (3.45)

(“take the new values”). The discretized equation is

{1 + ∆tnM−1A}xn = ∆tnM−1b(tn) + xn−1. (3.46)

This is a system of linear equations which needs to be solved in each time step. This
method is first order accurate and since it is implicit it is not necessary to fulfill the CFL
condition strictly. However, since our space discretization allows for a higher order of
convergence with the appropriate shape functions this is still not optimal.
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3.2.2 One Step θ, Crank-Nicholson

One way to achieve a higher order accuracy is the one step θ scheme, see Bastian and
Lang (2004). This is essentially a mix of the explicit and the implicit Euler schemes.
The right hand side is discretized as:

M−1b(t)−M−1Ax(t)→ (1− θ) · {M−1b(tn−1)−M−1Axn−1}
+ θ · {M−1b(tn)−M−1Axn},

(3.47)

and the full equation reads:

{1 + ∆tnθM−1A}xn =∆tnM−1{(1− θ)b(tn−1) + θb(tn)}
+ {1−∆tn(1− θ)M−1A}xn−1

(3.48)

For θ = 0 this is the explicit Euler scheme, for θ = 1 it is identical to the implicit Euler
scheme.

The scheme with θ = 1/2 is known as Crank-Nicholson and is second order accurate.

3.2.3 Fractional Step θ

The fractional step θ scheme (see also Bastian and Lang (2004)) consists of three steps
of the one step θ scheme. The computational cost per time step is three times the cost
of one Crank-Nicholson step, but ∆t can be chosen three times as large as for Crank-
Nicholson. θ and the step size for the sub steps are chosen in a special way:

θ1 =
√

2− 1, ∆t1 = ∆t · θ1, (3.49a)

θ2 = 2−
√

2, ∆t2 = ∆t · θ2/2, (3.49b)

θ3 = 2−
√

2, ∆t3 = ∆t · θ3/2. (3.49c)

This scheme is second order accurate and has improved stability properties over Crank-
Nicholson. However, our implementation has unsolved problems (see section 4.2.1), so
we will not use it in production.

22



4 Implementation and Testing

4.1 Implementation Details

As we have seen in section 3 we need to build our matrices M and A and the right hand
side vector b. This process is called assembling.

4.1.1 DUNE

The implementation uses the DUNE framework (Distributed and Unified Numerics Envi-
ronment, see Bastian et al. (n.d.b) and Bastian et al. (n.d.a)). According to its homepage,
“DUNE [. . . ] is a modular toolbox for solving partial differential equations (PDEs) with
grid-based methods.” It currently offers a unified interface to several existing grid man-
agers (UG, ALBERTA, ALUgrid, . . . ) and solvers (SuperLU, PARDISO, . . . ) as well as
some DUNE-native grid managers (YaspGrid1, OneDGrid, . . . ) and solvers (BiCGstab,
CG, . . . ). DUNE is written in C++ and makes heavy use of templates and compile
time polymorphism, which allows for good optimization by the compiler and especially
reduces the cost at runtime for wrapping third party libraries, while still keeping the
code generic. The uniform interface allows to quickly try different implementations of
grids or solvers or other things.

An UDG implementation for DUNE is developed by C. Engwer, which is used for this
work.

4.1.2 Numerical Quadrature

In the assembling stage we need to evaluate several integrals, which we will do by using
Gaussian quadrature rules. Gaussian quadrature works by representing the integral as
a weighted sum of the function evaluated at special quadrature points xi:∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi) (4.1)

If the integrand f(x) is a polynomial of order 2n − 1 or less then (4.1) becomes exact.
Based on this one-dimensional rule, quadrature rules for higher dimensions and different
element shapes may be constructed. These are all available in DUNE.

1Yet another structured parallel grid
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4.1.3 Simplifications

We now apply several simplifications:

Pore scale only R = Φ = 1: Since we simulate on the pore scale, the retardation factor
R and the porosity Φ are both 1. These only matter at scales where the pores are
not resolved.

No decay λ = 0: For our simple problems decay does not matter, so term (3.36b) van-
ishes.

No sources q(C) = 0: No concentration sources or sinks, no reactions which produce or
consume solute. This makes term (3.36k) vanish.

Stationary flow field ∂tu = 0: This avoids the need to reassemble A and b in each time
step.

Time independence of ΓC , ΓJ and ΓO: As with the stationary flow field, this avoids
the need to reassemble A and b in each time step.

Time independent boundary values ∂tC0 = ∂tJ = 0: This avoids the need to reassem-
ble b in each time step. Although this may seem very limiting, one can actually
get quite far without time dependent boundary conditions, though sometimes at
the expense of a bigger simulation domain.

ΓC , ΓJ and ΓO match element boundaries:

γe ∩ ΓJ 6= ∅ ⇔ γe ⊆ ΓJ ∀γe ∈ Γext (4.2)

Similarly for ΓC and ΓO. This just means that one boundary intersection γe cannot
contain parts of two different boundary condition types.

4.1.4 Assembling

Assembling is done by iterating over the grid. For each element, we first handle the
integrals over ΩE (the volume term), then the integrals over the element’s intersections
with other elements (Γint, the face term) and at last the integrals over the element’s
intersection with the domain boundary (Γext, the boundary term). The integral over
the internal intersections Γint is done twice, once for each element on either side of the
intersection.

I’ll now give three examples of how to compute the integrals.

Volume Term

As an example we will use the term (3.36c):

−
∑
e∈Eh

∫
Ωe

(uC −D∇C) ·∇v dx (4.3)
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We split the index µ of our shape functions {φµ} into the elements index e ∈ Eh and
the shape functions index within the element i, using an appropriate mapping m:

µ = m(e, i), φµ = φei (4.4)

A shape function has element index e if and only if it is nonzero within element e. We
required earlier that it is nonzero only in exactly one element, so this is unambiguous.
Likewise, we split the indices of our matrices and our vector:

Mµν = M ef
ij Aµν = Aefij bµ = bei ν = m(f, j) (4.5)

Now we can insert the base functions φei for v and φej for C. This gives us the
contribution of this term to the matrix element Aeeij :

−
∑
e∈Eh

∫
Ωe

(uφej −D∇φej) ·∇φei dx (4.6)

Face Term

We will use (3.36d) as an example:

+
∑

γef∈Γint

∫
γef

[ v ]efC∗〈u 〉 · ne ds (4.7)

This may be split into four smaller terms∑
γef∈Γint

∫
γef

Θ(〈u 〉ne) · v|eC|e〈u 〉ne ds (4.8a)

+
∑

γef∈Γint

∫
γef

Θ(〈u 〉ne) · v|fC|e〈u 〉nf ds (4.8b)

+
∑

γef∈Γint

∫
γef

Θ(〈u 〉nf ) · v|eC|f 〈u 〉ne ds (4.8c)

+
∑

γef∈Γint

∫
γef

Θ(〈u 〉nf ) · v|fC|f 〈u 〉nf ds (4.8d)

with Θ being the Heaviside step function

Θ(x) =


0 x < 0,
1
2 x = 0,
1 x > 0.

(4.9)
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For the matrix entry Aeeij with the shape functions φei for v and φej for C only term (4.8a)
contributes: ∫

γef

Θ(〈u 〉ne) ·φei |e φej |e〈u 〉ne ds

+
∫
γef

Θ(〈u 〉ne) · φei |f︸︷︷︸
0

φej |e〈u 〉nf ds

+
∫
γef

Θ(〈u 〉nf ) ·φei |e φej |f︸︷︷︸
0

〈u 〉ne ds

+
∫
γef

Θ(〈u 〉nf ) · φei |f︸︷︷︸
0

φej |f︸︷︷︸
0

〈u 〉nf ds

=
∫
γef

Θ(〈u 〉ne) ·φei |e φej |e〈u 〉ne ds

(4.10)

Likewise, for the matrix entry Afeij with the shape functions φei for v and φfj for C the
only contribution comes from term (4.8c):∫

γef

Θ(〈u 〉ne) ·φei |e φ
f
j |e︸︷︷︸
0

〈u 〉ne ds

+
∫
γef

Θ(〈u 〉ne) · φei |f︸︷︷︸
0

φfj |e︸︷︷︸
0

〈u 〉nf ds

+
∫
γef

Θ(〈u 〉nf ) ·φei |e φ
f
j |f 〈u 〉ne ds

+
∫
γef

Θ(〈u 〉nf ) · φei |f︸︷︷︸
0

φfj |f 〈u 〉nf ds

=
∫
γef

Θ(〈u 〉nf ) ·φei |e φ
f
j |f 〈u 〉ne ds

(4.11)

Term (4.8b) transforms into (4.8c) and term (4.8d) transforms into (4.8a) if we exchange
e and f . Since each internal intersection is visited twice, the second time with e and f
exchanged, it is enough to only implement (4.8a) and (4.8c).

The Heaviside step function Θ presents a problem since it is not polynomial and
thus cannot be integrated exactly using Gaussian quadrature. We have to do another
approximation: we use the integrand without Θ to determine the quadrature order, and
simply don’t evaluate the integrand if Θ = 0.

Boundary Term

Here we will use term (3.36l) as example:

−
∑

γe∈Γext

∫
γe∩ΓJ

vJ ds (4.12)
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Since this term does not contain the unknown C it does not contribute to the matrix A
but to the vector b. Inserting φei for v and using constraint (4.2) we get the contribution
to the vector entry bei :

−
∫
γe

φeiJ ds ∀γe ⊆ ΓJ (4.13)

4.1.5 Parameterizing UDG

There are several ways how UDG has to be parameterized currently. Most important is
the choice whether or not to do normalizing. UDG currently works by evaluating a level-
set function on the nodes of a fine grid, which we call the geometry grid. If one of the
nodes of the geometric grid is outside the domain but very near the domain boundary,
the process of normalizing will move the boundary onto that node. This is done to avoid
very small elements.

Of course, this is not always feasible. In the circular channel setup (Figure 4.9) the
velocity is perfectly aligned with the boundary. If we now move the boundary, the
flow lines will cross it. However, because of the noflux boundary condition, the flux of
concentration across the boundary is zero, hence concentration cannot move across that
boundary and will start to accumulate. So in the case of analytic velocities normalizing
is generally a bad idea.

If we compute the velocity using Stokes equation normalizing does not hurt, since the
velocity computation takes the adjusted geometry into account. In fact in the Stokes
implementation, very small elements lead to a badly conditioned matrix, so normalizing
becomes mandatory.

4.2 Testing the Code

There are several ways how the code can be tested.

Convergence Test

This is the most important test. After the final time step we calculate the relative error
in the L2 norm

1
|Ω|

√∫
Ω

(C − Cref)2 dx (4.14)

and use it to determine the experimental order of convergence. The current code is
limited to analytic reference solutions Cref, so it is currently not possible to take a
solution on a very fine grid as a reference.

Breakthrough Test

In each time step n, we calculate the relative flux leaving our domain as

fn =

∫
ΓO
Cu · n ds∫

ΓO
u · n ds

, (4.15)
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Figure 4.1: The linear channel setup in 2
dimensions. The domain is “empty,” that
means it has no internal structure, and its
extension is 1 in each direction. The velocity
is homogeneous and points in direction of
the x axis. Boundary conditions are noflux
on the upper and lower boundaries, C0 = 0
to the left and outflow to the right. Initial
condition is a gauss pulse at x = 0.25.

where “relative” means relative to the outflow of solvent. If we do this for successively
finer h we will get a series of breakthrough curves which should eventually converge.
Again we can determine the experimental order of convergence in the L2 norm. This
time however we can use a calculated solution as the reference.

Mass Balance Test

This is a test of the velocity function u(x). It tests the local mass balance∫
∂Ωe

u · ne ds ∀e ∈ Eh (4.16)

and the global mass balance ∫
∂Ω

u · n ds. (4.17)

A nonzero value means there are sources or sinks in the element e or the domain Ω. For
the local mass balance, values in the order of 10−16 relative to the size of the cells are
usually OK for IEEE doubles.2

4.2.1 Gaussian Pulse in Linear Channel

The linear channel setup is shown in figure 4.1. It contains no internal structure and
the flow is strictly in x-direction. The velocity is homogeneous, has magnitude 1, and
points in direction of the x axis. Boundary conditions are noflux (Neumann with J = 0)
on the upper and lower boundaries, Dirichlet C0 = 0 to the left and outflow to the right.
Initial condition is a Gaussian pulse of height α0 = 1 and width σ0 = 0.05 at x = 0.25.
It is homogeneous in y- and z-direction.

2If the velocity function was obtained by taking the derivative of another function halve of the precision
is lost, so one can only expect 10−8.
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Figure 4.2: Order of convergence for the pseudo 1D problem without diffusion. Setup is
the linear channel (figure 4.1) with second order shape functions. Implicit Euler.

Implicit Euler (double refinement). Crank-Nicholson. Fractional
Step.

The duration of the simulation is 0.5, which means that the initial pulse will be
transported to x = 0.75. If there is diffusion (with the diffusion constant D) the final
width of the pulse will be σf =

√
σ2

0 +D and its final height will be αf = α0/
√
D/σ2

0 + 1.
We will use D = 10−3 exclusively which gives us σf = 0.059 and αf = 0.845. With pure
convection the pulse will be undisturbed apart from the translation in x-direction.

For the initial refinement the number of time steps is 1 and the number grid elements
in each direction is chosen according to the CFL condition3

u · ∆t
h

< c, (4.18)

where c is a problem dependent constant (usually 1). This gives us 2 steps for the
implicit Euler and Crank-Nicholson time schemes, and 6 steps for the fractional step
time scheme, since each time step may be three times as large as for the other schemes.

Pseudo 1D

Since this setup is basically 1D, it is sufficient to refine the 2D grid only in x-direction
and to have only one element in y-direction.

Figure 4.2 shows the test results without diffusion and figure 4.3 those with diffusion
D = 10−3.

The implicit Euler scheme approaches the expected order of convergence of 1 both
with and without diffusion. The approach is very slow however compared to the other
schemes. The implicit Euler scheme is not very interesting for us due to being only first
order accurate. It is included for comparison only and we will not use it later on.

Also for comparison we have included a variant of the implicit Euler scheme, where we
refine the time domain twice each time we refine the space domain. This is denoted as
“implicit Euler (double refinement)”. Here we expect second order accuracy, and indeed

3R. Courant, K. Friedrichs and H. Lewy
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Figure 4.3: Order of convergence for the pseudo 1D problem with diffusion D = 10−3.
Setup is the linear channel (figure 4.1) with second order shape functions. Implicit
Euler. Implicit Euler (double refinement). Crank-Nicholson. Frac-
tional Step.

it is observed in both tests. We could only test this scheme to a much coarser refinement
compared to the others due to the quadratically increasing number of time steps. This
limits the usefulness of this scheme; it was only used to test the space discretization
while the code was still written and a second order accurate time discretization was not
yet available. We will not consider this scheme any further.

The Crank-Nicholson scheme behaves very well. It quickly approaches the expected
order of 2.

With the three schemes discussed so far the error increases in the first refinement
step. This is probably due to the method with which the error is calculated. Since
the exact solution is not a polynomial but a Gaussian pulse, Gaussian quadrature is
no longer exact but an approximation. This approximation improves with increasing
number of quadrature points and with decreasing h. We used quadrature rules with
four quadrature points in each dimension, but in the coarsest refinement level this was
probably not enough, resulting in the Gaussian being missed and thus in a much too
small approximated error.

We have also tested with our implementation of the fractional step scheme. As can
be seen from these tests, this implementation of the fractional step has severe problems.
Down to h = 1

3 · 2−7 the order of convergence approaches the expected 2. Then it
suddenly drops and the error gets worse instead of better. This is a typical sign of an
error in the implementation. However, we have been unable to locate it in the available
time. Thus we will not use the fractional step scheme any further in this work.

2D and 3D

We also tested this setup with the Crank-Nicholson scheme and second order shape
function in 2 and 3 dimensions. The results are in figures 4.4 and 4.5. These tests
were run with diffusion D = 10−3. In 2D we can see how the order converges nicely
to the expected 2. In 3D we are limited by computation time and thus cannot reach
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Figure 4.4: Order of convergence for the 2D problem with diffusion D = 10−3. Setup is
the linear channel (figure 4.1) with second order shape functions and Crank-Nicholson.
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Figure 4.5: Order of convergence for the 3D problem with diffusion D = 10−3. Setup is
the linear channel (figure 4.1) with second order shape functions and Crank-Nicholson.
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Figure 4.6: The tilted channel setup in 2D.
Like the linear channel setup (figure 4.1), ex-
cept that the lower right of the domain as
marked by a straight line through the origin
is removed. The velocity is no longer paral-
lel to the x axis but parallel to the clipping
line. The boundary conditions on the top
border changed from noflux to outflow. In
3D the domain is simply extended in the z-
direction.

the limit. On the other hand, up to those refinement levels that could be tested we
found no unexpected behavior. In both cases we note again the problem with the bad
approximation when calculating the error in the coarsest level, as we have seen it before
in the 1D case.

4.2.2 Gaussian Pulse in Tilted Channel

The tilted channel setup is shown in figure 4.6. It is basically the unit square (or unit
cube in 3D). However, the lower part is clipped away along the line (or plane) given by
y = ax. In the tests we use a = 1/1.1, such that the clipping line intersects the extension
of the upper boundary at x = 1.1. The velocity is homogeneous, with ux = 1, uy = a
and in 3D uz = 0. That means it is parallel to the clipping line. Boundary conditions
are noflux (Neumann with J = 0) on the lower boundary, Dirichlet C0 = 0 to the left
and outflow on the upper and right boundaries. The initial condition is identical to the
linear channel setup: a Gaussian pulse of height α0 = 1 and width σ0 = 0.05 at x = 0.25.

As before, the duration of the simulation is 0.5, which means that the initial pulse will
be transported to x = 0.75. It will also be transported by a/2 in y-direction, but since
it is homogeneous in y and the parts that are outside the domain do not matter we can
ignore that. Unfortunately we do not know an exact solution for the case with diffusion,
since the pulse is no longer perpendicular to the boundary. With pure convection the
pulse will be undisturbed apart from the translation in x-direction.

The experimental order of convergence for 2D and 3D is shown in figures 4.7 and
4.8. As with the linear channel, the 2D test converges nicely to the expected order of 2.
Again, in 3D we cannot really reach the limit due to limited computation time, but we
still see nothing contradicting second order accuracy.

The negative order of convergence in the first refinement step is not as bad as before.
This is consistent with our previous explanation. Since in this setup the area of the
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Figure 4.7: Order of convergence for the 2D problem without diffusion. Setup is the
tilted channel (figure 4.6) with second order shape functions and Crank Nicholson.
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Figure 4.8: Order of convergence for the 3D problem without diffusion. Setup is the
tilted channel (figure 4.6) with second order shape functions and Crank-Nicholson.
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Figure 4.9: The circular channel setup in
2D. A circular channel with variable inner
diameter. The outer diameter is the same
as the extension of the grid. The veloc-
ity is clockwise along the channel and its
magnitude is proportional to the distance
from the center (the angular velocity is con-
stant). Boundary conditions are noflux on
all boundaries, initial condition is a Gauss
peak in the left side of the channel.

Gaussian pulse in the final solution is much smaller than in the linear channel setup, a
much smaller error will result overall.

4.2.3 Gaussian Peak in Circular Channel

This is the setup in figure 4.9. The domain is the space between two circles in 2D and
two cylinders in 3D. The outer diameter is 1 and the inner is 0.6. The flow is clockwise
with a constant angular velocity, i.e. the magnitude of the velocity grows linearly with
the distance from the center and is 1 at the outer border. This is the first example with
a spatially inhomogeneous velocity field. Boundary conditions are noflux everywhere.
The initial condition is a Gaussian peak with a maximum of α0 = 1 sitting left of the
center in the middle of the channel. Its width is σ0 = 0.05.

The duration of the simulation is π/4 and is chosen such that the pulse will be trans-
ported exactly above the center. Unlike before, this is not the limit of what is permitted
by the Courant-Friedrichs-Lewy condition. Again, the exact solution for the case with
diffusion is unknown, so we will only consider the case without diffusion.

The test results are in figures 4.10 and 4.11. In 2D, the order of convergence approaches
2. For h < 10−7 it becomes smaller again, although it still stays very close to 2. For the
3D case, we see the order of convergence actually approaching 2, although barely. The
order of convergence is better than in the earlier test, probably because we do not fully
exploit the limit permitted by the CFL condition.

The negative order of convergence in the first refinement step is much worse than
before. Indeed the reason is different: the grid on which the geometry reconstruction
for h = 20 is done is too coarse to approximate the geometry properly. The domain is
broken into four disconnected parts and the peak of the solution is completely outside
of the domain.
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Figure 4.10: Order of convergence for the 2D problem without diffusion. Setup is the
circular channel (figure 4.9) with second order shape functions and Crank-Nicholson.
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Figure 4.11: Order of convergence for the 3D problem without diffusion. Setup is the
circular channel (figure 4.9) with second order shape functions and Crank-Nicholson.
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5 Results

5.1 Application: Tailing in Porous Media

As an example application we simulate tailing in porous media. To calculate the velocity
field we use a Stokes implementation by S. Pulloor Kuttanikkad. It also uses Dune and
UDG and thus integrates nicely with our code. It supports several sets of boundary
conditions, of which we will use the “pressuredrop” set: p = p1 on the inflow boundary
to the left, p = p2 < p1 on the outflow boundary to the right, and noslip u = 0 everywhere
else. The code also offers several discretization schemes, we will use the OBB scheme
and no interior penalty. See Pulloor Kuttanikkad (2008) and Engwer et al. (2008).

Unfortunately the Stokes discretization implementation currently has one issue, which
S. Pulloor Kuttanikkad is still working on at the time of this writing. The local mass
balance

∫
∂Ωe
〈u 〉 · ne = 0 (with e ∈ Eh) is only badly fulfilled, and thus the global mass

balance
∫
∂Ω u · n = 0 is problematic as well. The worst deviations in the local mass

balance are in the order of |u| · |e| · 10−3. We will ignore this problem for this sample
application, since it does not lead to complications later on.

While it is convenient to denote one side of the domain as “the outflow boundary,”
this may conflict with the condition u · n > 0 (2.10) for the outflow boundary. Unlike
the analytic velocities in section 4.2, which are completely known when denoting the
boundary conditions, computed velocity fields may exhibit small flows into the domain
at certain points on the intended outflow boundary. This is a result of the discretization,
which allows small undershoots if they make the overall result better. We have observed
these inflows when a sphere intersects the intended outflow boundary. The correct
solution is to dynamically restrict the outflow boundary to the parts where (2.10) is
fulfilled, and to use noflux boundary conditions on the other parts. This is done by
checking at each quadrature point whether (2.10) holds and selecting outflow or noflux
BC accordingly. This is a similar approach to the one we took in 4.1.4 with the Heaviside
step function Θ.

We used the setup shown in figure 5.1. It is 2D and has a height of 1 and a width of
1.5. The domain is a random packing of spheres with radius 0.1 and a minimum distance
of 0.05 in the region x > 0.5. The left part x . 0.5 is free of internal structure. The
velocity indicated by the flow lines is calculated using the Stokes equation with pressure
drop boundary conditions (p = p1 to the left, p = p2 to the right, and noslip everywhere
else). The flow (see also figure 5.2) is from left to right and the velocity field is scaled
such that the approximate maximum velocity magnitude

umax = max
xq
|u(xq)|, xq ∈ {quadrature points} (5.1)
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Figure 5.1: The setup to simulate tailing. It is 2D and has a height of 1 and a width
of 1.5. The domain is a random packing of spheres with radius 0.1 and a minimum
distance of 0.05 in the region x > 0.5. That region has a porosity of Φ = 0.64. The
left part x . 0.5 is free of internal structure. The velocity indicated by the flow lines
is calculated with the Stokes equation with pressure drop boundary conditions (p = p1

to the left, p = p2 to the right, and noslip everywhere else) with the flow going from
left to right. The boundary conditions for the transport are specified in the illustration.
Initial condition is a rectangular pulse of concentration 1 at the left border (as shown
by the red box) and zero concentration everywhere else. This illustration was created
with h = 2−6.
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Figure 5.2: The magnitude of the velocity field used in the computation. Red denotes
|u| = 1 while blue denotes |u| = 0. The arrows denote stagnant zones. This illustration
was created with h = 2−6.

is 1. For the transport, boundary conditions are Dirichlet C0 = 0 to the left, outflow
to the right,1 and noflux J = 0 on the upper, lower and internal boundaries. Initial
condition is a rectangular pulse of concentration 1 in the region 0 < x < 0.25 and
0.25 < y < 0.75 and zero concentration everywhere else. For the calculation we used
diffusion with D = 10−3.

The duration of the simulation was chosen to be 16, with the number of time steps
in the initial refinement being 32. After ∆t = 0.5 a snapshot of the concentration
distribution was taken and saved for later analysis.

The development of the concentration for h = 10−6 is shown in figure 5.3. We can see
that after about t = 12.5 the main pulse has passed and we can identify several stagnant
zones still containing concentration. These were marked in figure 5.2.

We determined the breakthrough curves for different h (figure 5.4). These show clear
evidence for tailing. The pulse has a steep front and a much gentler slope in the back.

From the breakthrough curves we estimated the order of convergence using the solution
for h = 2−8 as the reference. First we note the very low order between h = 2−6 and
h = 2−7. This could be because h = 2−7 is too close to the reference solution already.
However, in this case there is a much stronger effect: the outflow values were written
to an ASCII log file using the standard precision, and then read back to produce these
plots. This reduces the precision to 6 decimal digits. At h = 2−6 the absolute L2 error is
already smaller than 10−6, so the error due to the lack in precision becomes dominant.

The experimental order of convergence is quite jumpy, something we are not used to
from the earlier plots in chapter 4.2. However, those were all ideal problems, so this is

1As permitted by (2.10); noflux otherwise.
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t = 0.0 t = 0.5

t = 1.0 t = 1.5

t = 2.0 t = 2.5

Figure 5.3: The development of the concentration given the setup in figure 5.1. This
calculation was done with h = 2−6 and the situation after each 32nd time step is shown.
All pages of this figure overlap by one frame with the previous and next page. Each
page has its own color scale; on this page blue denotes C = 0 and red denotes C = 1.
(Continued on the next page.)
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t = 2.5 t = 3.0

t = 3.5 t = 4.0

t = 4.5 t = 5.0

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.75. (Continued on the next page.)
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t = 5.0 t = 5.5

t = 6.0 t = 6.5

t = 7.0 t = 7.5

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.35. (Continued on the next page.)
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t = 7.5 t = 8.0

t = 8.5 t = 9.0

t = 9.5 t = 10.0

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.15. (Continued on the next page.)
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t = 10.0 t = 10.5

t = 11.0 t = 11.5

t = 12.0 t = 12.5

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.04. (Continued on the next page.)
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t = 12.5 t = 13.0

t = 13.5 t = 14.0

t = 14.5 t = 15.0

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.017. (Continued on the next page.)

45



t = 15.0 t = 15.5

t = 16.0

Figure 5.3 (cont.): The development of the concentration given the setup in figure 5.1.
This calculation was done with h = 2−6 and the situation after each 32nd time step is
shown. All pages of this figure overlap by one frame with the previous and next page.
Each page has its own color scale; on this page blue denotes C = 0 and red denotes
C = 0.012.
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Figure 5.4: Breakthrough curves for different refinement levels for the setup in fig-
ure 5.1. The curves for h = 2−1 and h = 2−2 are not shown since the discretization is
too coarse to resolve the spheres properly.
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Figure 5.5: Order of convergence for the breakthrough curves from figure 5.4. We used
the curve with h = 2−8 as the reference.
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8.3. HYDRODYNAMIC DISPERSION
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Figure 8.20: a Temporal evolution of dye concentrations at x = 27.9 mm / z = 32 mm for
15.9 mm < y < 28.7 mm and 600 s < t < 8100 s in experiment A6. The stagnant can be
recognized by their long tails. b Comparison of the temporal evolutions at y = 23.6 mm and
y = 23.9 mm. c Macroscopic averaged distribution c̄(x) at t = 3000 s.

143

Figure 5.6: Tailing as seen in the experiment. The experiment was done in a 80 mm×
40 mm×40 mm cell with the flow in x-direction. These breakthrough curves were taken
at x = 27.9 mm / z = 32 mm and two different y values. This is from figure 8.20 of
Stöhr (2003).

not really a surprise.
In the average the order of convergence is higher than the expected 2. This is because

we use the maximum velocity in the CFL condition (4.18), while in reality most of the
flow is slower. This means the convergence order is initially not limited by the time
discretization. For the space discretization we expect third order accuracy due to the
second order shape functions.

The numerical results exhibit the features predicted by the MIM. Stagnant zones, as
assumed in the MIM, as well as the resulting tailing are observed. This gives qualitative
verification of the mobile-immobile model.

5.2 Comparison with Experiments

While a confirmation of the MIM was found, a comparison to real-world experiments
would be good. Such experiments have been done by M. Stöhr and haven been presented
in his dissertation, see Stöhr (2003). He used a cell of 8× 4× 4 cm3 packed with a porous
medium of plexiglass spheres with a mean diameter of 0.6 mm. For the solvent he used
silicone oil with its refractive index matched to the plexiglass. With this setup he was
able to measure full three-dimensional concentration profiles using planar laser-induced
fluorescence (PLIF) techniques. This way he obtained fully four dimensional datasets
with an effective spatial resolution of 70 µm × 70 µm × ca. 0.5− 1 mm and a temporal
resolution of 30 s.

Figure 5.6 shows a breakthrough curve for one of his experiments. The shape of the
pulse is asymmetrical, but the asymmetry is much weaker than in the breakthrough
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curves obtained through simulation. There are certain differences in the setups used
for simulation and real world experiments which make a direct comparison impossible.
For example, simulation and experiment were done for differing numbers of dimensions
and the size of the domain compared to the size of the pores was much bigger in the
experiment.

Especially the differing number of dimensions makes a big difference, since in three
dimensions the velocity has more possibilities to flow around an obstacle, thus reducing
the probability and size of stagnant zones. These issues can be resolved by making the
implementation parallel, thereby allowing the simulation of larger systems (such as 3D).

When these issues are overcome, a quantitative verification of the MIM should be
possible.
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6 Conclusion and Outlook

In this work an Unfitted Discontinuous Galerkin (UDG) method for the convection-
diffusion equation was implemented. This allows the direct simulation of transport
processes on the pore scale, using state of the art numerical methods. A simulation
of an artificial domain was then carried out, resulting in a confirmation of the mobile-
immobile model.

For the time discretization second order accurate time schemes were investigated.
The space discretization used second order shape functions, resulting in a third order
accurate space discretization. The implementation was done using UDG and DUNE as
a framework. It was then tested using several test problems with sufficient regularity
and analytically given velocity fields. The Crank-Nicholson time scheme was selected
to run the simulations.1 Full convergence rates were observed for two and three space
dimensions.

To verify the mobile-immobile model, numerical experiments of pore scale convection
dominated transport were carried out in an idealized domain of randomly generated
spheres in two space dimension. The flow field was given by the Stokes equation. To
solve the Stokes equation an existing implementation for UDG was used.2

The simulations concluded in a qualitative confirmation of the mobile-immobile model,
a macroscopic empirical law, using only first principles. As predicted by the MIM, the
breakthrough curves showed strong tailing, even without adsorption. Stagnant zones
were observed, a precondition for the MIM. The simulation showed the expected order
of convergence.

This demonstrates that the new model is a powerful numerical tool for pore scale
simulations. Computations in two dimensions were shown, and code for three dimensions
exists.3 In fact, the implementation is totally independent on the number of dimensions
or the order of the shape functions.

Of course there are many improvements possible which were beyond the scope of
this work. One improvement would be to make the input velocity continuous using a
BDM projection (Bastian and Rivière (2003)), which would allow a finer grid for the
velocity computation than for the transport simulation. Parallelization would permit the
simulation much larger systems, which will enable some interesting applications, such as
the use of a pore structure obtained from a real-world sample using micro-tomography.

1A fractional step Θ time scheme was also implemented but failed the validation. The programming
error has so far not been found. Fractional step Θ is more robust than Crank-Nicholson and would
allow for an even better time discretization.

2This implementation of Stokes does not guarantee local mass conservation.
3Due to the lack of computing power the simulations were only in two dimensions.
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This can then be used for a direct comparison of simulation and experiment and a
quantitative verification of the MIM.4

Another application is a multi-scale heterogeneous setup like pebbles embedded in a
sand matrix, requiring a full velocity dependent dispersion tensor for a simulation at the
scale of the pebbles. There are also applications outside the scope of soil physics, like
transport in chemical and biological reactors, where a big surface area is often realized
using a porous medium.

4Of course a mass conservative Stokes discretization would also be required.
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Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Unterschrift


	Introduction
	Motivation
	This work
	Overview

	Transport in Porous Media
	Fundamental Transport Mechanisms
	Derived Transport Mechanisms
	The Mobile-Immobile Model

	The Transport Equation

	Numerical Treatment
	Space Discretization
	Discontinuous Galerkin
	Discontinuous Galerkin Method for the Transport Equation
	Unfitted DG

	Time Discretization
	Implicit Euler
	One Step θ, Crank-Nicholson
	Fractional Step θ


	Implementation and Testing
	Implementation Details
	DUNE
	Numerical Quadrature
	Simplifications
	Assembling
	Parameterizing UDG

	Testing the Code
	Gaussian Pulse in Linear Channel
	Gaussian Pulse in Tilted Channel
	Gaussian Peak in Circular Channel


	Results
	Application: Tailing in Porous Media
	Comparison with Experiments

	Conclusion and Outlook
	Bibliography
	Thanks

