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Summary 
Arachidonic acid (AA) and its metabolites are implicated in the induction and/or 

resolution of inflammation. Prostaglandin E2 (PGE2) is a metabolite of AA that is 

known to have neurotoxic effects in several pathophysiological conditions such as 

ischemia. PGE2 is produced as a result of the combined activities of several genes 

including, cytosolic phospholipase A-2 (cPLA-2), cyclooxygenase-2 (COX-2) and 

microsomal prostaglandin E2 synthase-1 (mPGES-1).  
 

We have shown that the genes responsible for PGE2 synthesis were upregulated 

following ischemia both in vivo in mice subjected to middle cerebral artery occlusion 

(MCAO) and in vitro in primary cortical neurons subjected to oxygen glucose 

deprivation (OGD).  
 

We also provided in vivo and in vitro evidence that this upregulation was dependant 

on NF-κB signaling. In vivo, mice expressing an inhibitor of the NF-κB pathway in 

neurons showed an abolished upregulation of the AA cascade genes cPLA-2, COX-

2 and mPGES-1 after MCAO. In vitro, reporter fusion genes in which the promoter 

sequence for each of the three AA cascade genes was inserted into a promoterless 

vector showed that the NF-κB activators TNF, constitutively active IKK2 or p65 

stimulated the transcription of cPLA-2, COX-2 and mPGES-1 in primary neurons 

providing evidence for the involvement of NF-κB in the regulation of these genes. 
 

High mobility group box 1 protein (HMGB1), a nuclear protein, was recently shown 

to have a cytokine like activity acting as a late mediator of inflammation in several 

models of inflammation by acting on one or more receptors including receptor for 

advanced glycation end products (RAGE) and Toll like receptors (TLR-2 and -4). 
 

HMGB1 was shown in our study to have a role in mediating the toxic effect 

observed after OGD in primary cortical neurons and in mixed neural cultures 

containing neurons, astrocytes and microglia. Neurons released HMGB1 after OGD 

and blocking the effects of HMGB1 using the decoy receptor sRAGE was 

protective. However, stimulation with recombinant HMGB1 was only toxic to mixed 
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neural cultures and this effect was mediated through RAGE on microglia which 

responded to HMGB1 by the production of PGE2 which further promotes 

neurotoxicity. 
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Zusammenfassung 

Arachidonsäure (AS) und ihre Stoffwechselprodukte sind an der Induktion und/oder 

Beseitigung von Entzündungen beteiligt. Prostaglandin E2 (PGE2) ist ein 

Stoffwechselprodukt von AS, das für seine neurotoxische Wirkung in verschiedenen 

pathophysiologischen Prozessen bekannt ist. PGE2 entsteht durch die Aktivität der 

zytosolischen Phospholipase A-2 (cPLA-2), der Cylcooxygenase-2 (COX-2) und der 

microsomale Prostaglandin E2 Synthetase (mPGES-1).  

In dieser Arbeit konnte gezeigt werden, dass die für die PGE2-Synthese 

verantwortlichen Gene infolge einer Ischämie sowohl in vivo nach Okklusion der 

Arteria cerebri media der Maus (middle cerebral artery occlusion, MCAO), als auch 

in vitro nach Sauerstoff-Glukose-Deprivation (oxygen glucose deprivation, OGD) 

primärer cortikaler Neuronen, hochreguliert werden.  

Außerdem wurden in vivo und in vitro Hinweise auf eine NF-κB-Abhängigkeit dieser 

Hochregulierung geliefert. In vivo zeigten Mäuse, die einen Inhibitor des NF-κB-

Signawegs exprimieren, eine reduzierte Hochregulierung der Gene der 

Prostaglandin-Synthese cPLA-2, COX-2 und mPGES-1 nach MCAO. In vitro konnte 

durch Reporterfusionsgene, in welchen die Promotorsequenz jeweils eines der drei 

AS-Kaskadengene in einen Promotor-losen Vektor eingefügt wurden, gezeigt 

werden, dass der NF-κB-Aktivator TNF, oder Überexpression der konstitutiv aktive 

IKK2 oder p65 die Transkription von mPGES-1, cPLA-2 und COX-2 in primären 

corticalen Neuronen stimulieren, was auf eine Beteiligung von NF-κB an der 

Regulation dieser Gene hinweist.  

Das High Mobility Group Box 1 Protein (HMGB1) ist ein nukleäres Protein, dessen 

Cytokin-ähnliche Aktivität in verschiedenen Entzündungsmodellen als später 

Entzündungsmediator mit Einfluss auf einen oder mehrere Rezeptoren wie 

Receptor for Advanced Glycation End Product (RAGE) und Toll-like Receptor (TL-2 

und TL-4), kürzlich entdeckt wurde.  
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Die vorliegende Studie zeigt, dass HMGB1 eine Rolle in der Vermittlung toxischer 

Effekte der OGD in primären corticalen Neuronen und in gemischten Kulturen aus 

Neuronen, Astrozyten und Mikroglia spielt. Neuronen setzten HMGB1 nach OGD 

frei, während eine Blockierung des HMGB1-Effekts unter Verwendung des löslicher 

Rezeptors sRAGE protektiv wirkte. Die Stimulation mit rekombinantem HMGB1 

hatte nur eine toxische Wirkung auf gemischte Kulturen. Dieser Effekt wurde durch 

die Wirkung von RAGE auf Mikroglia vermittelt, die auf HMGB1 mit der Produktion 

von PGE2 reagierten, was die Neurotoxizität weiter verstärkte.  
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2. Introduction  

2.1. Definition and impact of stroke 

Stroke is the third leading cause of death and the leading cause of long-term 

disability (R. M. Adibhatla et al., 2008), and more than 30 % of stroke survivors will 

have severe disability (A. R. Green, 2008). Stroke is primarily a vascular disease 

with a neurological outcome (A. R. Green, 2008). Stroke can be hemorrhagic 

caused by rupture of a cerebral blood vessel (12%) or ischemic caused by 

occlusion of a cerebral artery. Ischemic stroke might be either thrombolic in which a 

clot or thrombus is formed in a cerebral artery and blocks blood flow at the site of 

formation or embolic, where a cerebral artery is blocked by a clot formed elsewhere 

and carried to the brain through the circulation (R. M. Adibhatla et al., 2008).  

Cerebral ischemia may be global which results from the transient cessation of blood 

flow to the brain (as in case of cardiac arrest) and is associated with problems of 

cognition and memory, sensorimotor deficits, seizures and death (C. K. Petito et al., 

1987). Focal cerebral ischemia refers to local interruption of blood flow to the brain 

due to blockade of a major cerebral artery which results in disruption of glucose and 

oxygen supply leading to apoptotic and necrotic cell death. In focal ischemia there is 

an ischemic core surrounded by a “penumbra” region that has partial reduction in 

blood flow due to collateral arteries. The ischemic core is generally considered 

unsalvageable, whereas the penumbra may be rescued otherwise the infarct can 

propagate into the penumbra (R. M. Adibhatla et al., 2008).  

On average, the impact of stroke on the nervous tissue is severe as patients with 

acute ischemic stroke are estimated to lose 120 million neurons, 830 billion 

synapses and 714 km of myelinated fibers each hour which when compared with 

the normal rate of neuronal loss during aging would mean that the ischemic brain 

will age 3.6 years for every hour the stroke is untreated (J. L. Saver, 2006). Despite 

this, the only treatment of ischemic stroke available is recanalization of the occluded 

vessel by thrombolysis. The thrombolytic compound tissue plasminogen activator (t-

PA), which degrades the fibrin clot blocking the blood flow to the brain tissue, is the 
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only Food and Drug Administration (FDA)-approved agent for stroke therapy in 

humans (J. T. Lang and L. D. McCullough, 2008). However, thrombolysis is safe 

and effective only within 3 hours of the onset of symptoms and is not suitable for 

many patients (J. F. Maestre-Moreno et al., 2005; E. Juttler et al., 2006). This short 

time window results in a low treatment rate and warrants safer treatment regimes. 

2.2. Mechanism of damage associated with stroke 

Although different mechanisms are involved in the pathogenesis of stroke, there is 

increasing evidence that inflammation accounts for its progression at least acutely 

(F. C. Barone and G. Z. Feuerstein, 1999; Y. Samson et al., 2005; A. Chamorro and 

J. Hallenbeck, 2006). During ischemia, the cessation of blood flow, the energy loss 

and the necrotic cell death initiate an immune response, activate inflammatory cells 

(microglia/macrophages) and generate reactive oxygen species (ROS) including 

hydroxyl radical, superoxide anion radical, and hydrogen peroxide. ROS can further 

stimulate the ischemic cells to release cytokines causing up-regulation of adhesion 

molecules and mobilization and activation of leukocytes (M. L. Alexandrova and P. 

G. Bochev, 2005) (Figure 1.1). Also the influx of calcium following ischemia induces 

the production of ROS (D. Tassoni et al., 2008).  

In addition, reperfusion of the occluded vessel leads to the formation of ROS, which 

stimulate ischemic cells to further secrete cytokines, chemokines, matrix 

metalloproteinases (MMPs), nitric oxide (NO) and more ROS causing further cell 

damage and disruption of the blood brain barrier (BBB) and extracellular matrix (H. 

C. Emsley and P. J. Tyrrell, 2002; G. H. Danton and W. D. Dietrich, 2003). Calcium 

influx associated with ischemia stimulates phospholipases, which act on membrane 

phospholipids releasing huge amounts of arachidonic acid (AA). AA is then 

metabolized by the cyclooxygenase (COX) to produce eicosanoids, which are 

actively involved in the neuroinflammatory response occurring after ischemia (S. D. 

Hurley et al., 2002; Y. Gilgun-Sherki et al., 2006). 

Focal ischemia is accompanied by an increase in the levels of several cytokines 

such as tumor necrosis factor (TNF), interleukines IL-1β and IL-6, and several 



Introduction  
 

     7 

 

chemokines such as monocyte chemotactic protein-1 (MCP-1) and macrophage 

inflammatory protein-1 alpha (MIP1α)(T. Liu et al., 1994; X. Wang et al., 1994; J. S. 

Kim et al., 1995; X. Wang et al., 1995; M. A. Soriano et al., 2000; A. Lu et al., 2003; 

R. Kapadia et al., 2006). All of these inflammatory mediators are known to increase 

the expression of adhesion molecules such as intracellular adhesion molecule-1 

(ICAM-1), P-selectin and E-selectin on endothelial cells and white blood cells (M. L. 

Dustin et al., 1986; M. P. Bevilacqua et al., 1987; O. Abbassi et al., 1993; M. J. 

Eppihimer et al., 1996; G. Stoll et al., 1998)(Figure 1.1). 

2.2.1. Reactive oxygen species in ischemia 

ROS cause oxidative damage to nucleic acids, proteins, carbohydrates and lipids, 

normally there are intracellular defense mechanisms to detoxify ROS but when the 

production of ROS exceeds the cells capacity to detoxify them, there is a decline in 

physiological functions and progressive cell damage (oxidative stress). The brain is 

highly sensitive to that condition (R. M. Adibhatla et al., 2008). 

    

 

Figure 1.1. Cellular and molecular events following ischemia, after Z. Zheng and M. A 
Yenari, 2004.  
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2.2.2. Adhesion molecules in ischemia 

Expression of adhesion molecules such as ICAM-1 on endothelial cells and white 

blood cells is a key step in brain inflammation following stroke that facilitates the 

adhesion and transendothelial migration of neutrophils, lymphocytes (S. L. Stevens 

et al., 2002; G. Z. Li et al., 2005) and macrophages into the brain. Leukocytes 

release several pro-inflammatory cytokines, chemokines and oxygen/nitrogen free 

radicals, leading to secondary tissue damage within the penumbra (Q. Wang et al., 

2007). According to recent evidence, preventing the infiltration of neutrophils or 

lymphocytes into the ischemic brain ameliorated the ischemic injury (K. Becker et 

al., 2001; A. Garau et al., 2005). Infiltration of leukocytes into the brain involves 

rolling, adhesion and transendothelial migration (Q. Wang et al., 2007). Three 

groups of cell adhesion molecules mediate the interaction between leukocytes and 

the endothelium: selectins (P-, E- and L-), members of the immunoglobulin 

superfamily (intracellular adhesion molecule, ICAM-1, vascular cell adhesion 

molecule, VCAM-1) and integrins (H. C. Emsley and P. J. Tyrrell, 2002).  

Blocking selectins (P- and E- selectin) improved stroke outcome (J. Mocco et al., 

2002), while, blocking L-selectin did not (M. A. Yenari et al., 2001). Similarly, 

blocking ICAM-1 with antibodies (Y. Kanemoto et al., 2002), with antisense 

oligonucleotides (R. Vemuganti et al., 2004) or even with nitric oxide donors 

preventing elevation of ICAM after ischemia/reperfusion (M. Khan et al., 2006) 

improved the outcome in experimental stroke. Inhibition of the ischemia-induced 

upregulation of VCAM was also reported to reduce infarct size (L. H. Zhang and E. 

Q. Wei, 2003; A. Cervera et al., 2004). Similarly, blockade of neutrophil CD11b after 

hypoxia was shown to be protective (H. Chen et al., 1994; D. Harmon et al., 2004). 

2.2.3. Matrix metalloproteinases in ischemia 

In addition to the locally secreted pro-inflammatory cytokines, which act directly on 

endothelial cells causing increased BBB permeability (G. Y. Yang et al., 1999), 

there is an increase in the expression and activation of MMPs, plasminogen 

activators and serine proteases (G. del Zoppo et al., 2000), which are also 

associated with BBB damage and neuronal injury following experimental ischemia 
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(J. H. Heo et al., 1999; G. del Zoppo et al., 2000). In addition, inhibition of MMPs 

reduces infarct size after ischemia (T. Pfefferkorn and G. A. Rosenberg, 2003). 

However, MMPs may participate in plasticity and recovery at late phases of 

ischemia probably through an effect on angiogenesis and neurovascular remodeling 

(B. Q. Zhao et al., 2006). 

2.2.4. Transcription factors in ischemia  

Transcription factors play an important role in controlling gene expression under 

normal and inflammatory conditions. Several transcription factors were reported to 

be induced following ischemia, some of which are known to prevent ischemic 

neuronal damage and/or promote ischemic tolerance such as hypoxia inducible 

factor-1 (HIF-1), c-fos and peroxisome proliferator-activated receptor (PPAR-γ) (K. 

Tanaka et al., 2000a; K. Tanaka et al., 2000b; S. Cho et al., 2001; K. Maeda et al., 

2001). In contrast, the induction of several other transcription factors promotes 

inflammation and neuronal cell death following ischemia. Examples of the latter 

group are activating transcription factor-2 (ATF-2), signal transducer and activator of 

transcription 3 (STAT3), nuclear factor kappa B (NF-κB), early growth response-1 

(Egr1) and CCAAT/enhancer binding protein (C/EBP) beta (C/EBPβ) (A. M. Planas 

et al., 1996; M. Bergeron et al., 1999; C. Iadecola et al., 1999; B. R. Hu et al., 2000; 

I. M. Johansson et al., 2000; D. Stephenson et al., 2000; S. F. Yan et al., 2000; K. 

Tanaka et al., 2000a; K. Tanaka et al., 2000b; A. J. Williams et al., 2003; A. Nurmi 

et al., 2004; R. Kapadia et al., 2006; K. Tureyen et al., 2007). 

1.2.4.a. Nuclear factor kappa B (NF-κB) in ischemia 

Nuclear factor (kappa) B (NF-κB) was first described in 1986 as a nuclear factor 

necessary for immunoglobulin kappa light chain transcription in B cells (Z. Zheng 

and M. A. Yenari, 2004). It represents a family of proteins that share a highly 

conserved  300 amino acid N-terminal domain called Rel homology domain (RHD). 

The RHD contains a nuclear localization sequence (NLS) and is involved in 

dimerization, sequence specific DNA binding and interaction with the inhibitory IκB 

proteins (S. Ghosh et al., 1998). NF-κB/Rel proteins include five members, which 
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can form homodimers or heterodimers: NF-κB1 (p105/p50), NF-κB2 (p100/p52), 

RelA (p65), RelB and c-Rel (G. Bonizzi and M. Karin, 2004).  

In most cell types, NF-κB dimers are retained in the cytoplasm (in an inactive state) 

by IκBs, which are specific inhibitors that bind to the RHD and interfere with its NLS 

function. The translocation of NF-κB dimers from the cytoplasm to the nucleus 

occurs via the classical pathway and an alternative pathway (G. Bonizzi and M. 

Karin, 2004; M. Karin and F. R. Greten, 2005).  

In the classical pathway, pro-inflammatory cytokines activate the IκB kinase (IKK) 

complex which consists of the IKK1 and IKK2 catalytic subunits and the IKK3 

regulatory subunit (NEMO for ‘NF-κB essential modulator’). In this pathway, the 

activated IKK complex, predominantly acting through IKK2 in an IKK3-dependent 

manner, catalyzes the phosphorylation of IκB followed by polyubiquitination and 

subsequent proteasomal degradation of IκBs releasing NF-κB dimers (p50–RelA 

dimer) which then translocate to the nucleus. Nuclear NF-κB then binds DNA and 

activates gene transcription (S. Ghosh and M. Karin, 2002).  

In the alternative pathway of NF-κB activation, IKK1 homodimers phosphorylate  

NF-κB2/p100 dimers followed by polyubiquitination and proteasomal degradation 

(G. Xiao et al., 2001) (Figure 1.2). 

NF-κB controls the transcription of several pro-inflammatory cytokines such as      

IL-1β, TNF and granulocyte-macrophage colony stimulating factor (GM-CSF), and 

chemokines as IL-8, MIP-1α, which attract inflammatory cells to the site of 

stimulation (P. J. Nelson et al., 1993; N. Mukaida et al., 1994; U. Siebenlist et al., 

1994; A. Ueda et al., 1994). NF-κB also induces the expression of the adhesion 

molecules ICAM-1, VCAM-1 and E-selectin on endothelial cells, which facilitate the 

adherence of inflammatory cells (A. van de Stolpe et al., 1994; M. F. Iademarco et 

al., 1995). Thus, NF-κB proteins lie in the heart of most inflammatory responses. 
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Figure 1.2. NF-κB activation, after M. Karin and F. R. Greten 2005. 
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Some of the down-stream target genes of NF-κB, e.g., IL-1β and TNF, can re-

activate NF-κB itself resulting in a positive feedback activation loop of NF-κB (P. J. 

Barnes and I. M. Adcock, 1998). However, the transcription of the IκB gene is 

regulated by NF-κB and activation of NF-κB induces the expression of IκB, which 

enters the nucleus, binds NF-κB and transports it out to the cytoplasm forming a 

negative feedback control of the activity of NF-κB (Z. Zheng and M. A. Yenari, 

2004). 

Activation of NF-κB was reported following ischemia (A. Schneider et al., 1999; H. 

Seegers et al., 2000; D. Stephenson et al., 2000). Inhibition of NF-κB activity 

reduces the infarct size (A. Nurmi et al., 2004) and mice deficient in p50 develop 

smaller infarcts after focal ischemia (A. Schneider et al., 1999). The activation of 

NF-κB following ischemia might involve TNF (G. I. Botchkina et al., 1999), IL-1 (S. 

L. Dunn et al., 2002) and may depend on ionotropic glutamate receptors and L-type 

voltage-gated calcium channels because antagonists of these channels were 

reported to inhibit activation and translocation of NF-κB (W. Shen et al., 2002). 

1.2.4.b. Other transcription factors in ischemia 

Activator protein-1 (AP-1) is a heterodimer comprised of activating transcription 

factor-2 (ATF-2), c-fos or c-jun which bind to a specific DNA sequence that 

regulates the expression of several genes known as late response genes (Q. Wang 

et al., 2007). AP-1 can be activated by TNF and IL-1β and following cerebral 

ischemia (V. L. Woodburn et al., 1993; M. Dragunow et al., 1994). HIF-1 is known to 

be upregulated after stroke leading to activation of iNOS and promoting neuronal 

cell death (C. Iadecola et al., 1995). In addition, C/EBPβ was shown to be 

upregulated following ischemia (V. L. Raghavendra Rao et al., 2002) and is known 

to control the expression of IL-6, IL-1β, IL-8, IL-12, TNF and MCP-1 (M. N. Bradley 

et al., 2003). 

Ischemia induces cerebral Egr1 expression (J. H. Yi et al., 2007), which regulates 

the expression of several inflammatory genes (S. F. Yan et al., 2000). PPARγ is 

known to influence immune and inflammatory functions in macrophages, T cells, B 



Introduction  
 

     13 

 

cells, dendritic cells and endothelial cells (P. Gosset et al., 2001; D. C. Jones et al., 

2002; C. K. Glass and S. Ogawa, 2006). Agonists of PPARγ exhibit anti-

inflammatory properties after ischemia (P. R. Devchand et al., 1996; K. Setoguchi et 

al., 2001). 

2.2.5. Role of cytokines in ischemia 

Cytokines act as mediators for regulating the innate and adaptive immune systems 

(R. M. Adibhatla et al., 2008). They are pleiotropic (acting on different cell types), 

multifunctional (the same cytokine can regulate different functions) and redundant 

(different cytokines can carry out the same function because they use shared 

intracellular signaling pathways) (J. Huang et al., 2006). Some cytokines are pro-

inflammatory (e.g., TNF, IL-1, interferon-γ IFN-γ, IL-12, IL-18 and granulocyte-

macrophage colony stimulating factor GM-CSF), while others are anti-inflammatory 

(e.g., IL-4, IL-10, IL-13, IFN-α and transforming growth factor-ß TGF-ß) (R. M. 

Adibhatla et al., 2008).  

Cytokine release in the brain is increased in response to ischemia and other 

injuries. The inflammatory response often includes glial activation, which 

suppresses the injury process. However, an unchecked inflammatory response may 

increase the injury process (Q. Wang et al., 2007). 

Stroke is followed by upregulation of several cytokines in the brain produced by 

immune cells and neurons and glia (T. Liu et al., 1994; T. Sairanen et al., 2001), 

some of these cytokines such as IL-1β (A. S. Haqqani et al., 2005) and TNF (T. Liu 

et al., 1994) exacerbate the injury while others such as IL-6, IL-10 and TGF-β may 

be neuroprotective (S. M. Allan and N. J. Rothwell, 2001). 

1.2.5.a. Role of TNF in ischemia 

Following ischemia, there is an increase in TNF as well as its two receptors p55 and 

p75 in the brain. p55 contains a death domain and mediates most of the effects of 

TNF including inflammatory response, cytotoxicity and AA release (C. X. Wang and 

A. Shuaib, 2002). p75 may mediate a protective effect after ischemia (Y. Shen et 
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al., 1997). Antagonizing TNF by a neutralizing antibody showed beneficial effects 

after ischemia (S. D. Lavine et al., 1998) and mice deficient in TNF had smaller 

infarcts (A. Martin-Villalba et al., 2001). In addition, infusion with TNF had increased 

infarct volumes following focal cerebral ischemia (F. C. Barone et al., 1997).  

On the other hand, mice deficient in p55 and p75 had larger infarcts (A. J. Bruce et 

al., 1996) which would raise the possibility of the existence of another unidentified 

TNF receptor (N. J. Rothwell and G. N. Luheshi, 1996). Pretreatment of 

hippocampal cultures with TNF protected against OGD induced neuronal damage 

while its application after OGD increased the damage (G. J. Wilde et al., 2000). This 

finding resembles ischemic preconditioning where a short sub-lethal ischemic 

insults provide protection against subsequent severe ischemic injury (R. M. 

Adibhatla et al., 2008). The effect of TNF might be mediated by the production of 

ROS, activation of NF-κB and up-regulation of manganese superoxide dismutase 

(Mn-SOD), which may provide defense against subsequent ROS generation. 

However, addition of TNF after injury would stimulate ROS generation and 

aggravate the damage (G. J. Wilde et al., 2000).  

1.2.5.b. Role of interleukin-1 (IL-1) family in ischemia 

IL-1 proteins include IL-1α, IL-1β (both of which interact with IL-1 receptor type I 

mediating all IL-1 signaling or IL-1 receptor type II which is believed to be a non-

signaling or decoy receptor). The third member of the IL-1 family is the endogenous 

receptor antagonist (IL-1ra) that binds to and blocks IL-1 receptor type I and 

antagonizes the effects of IL-1α and β (N. J. Rothwell, 1999). Interestingly, 

treatment with IL-1ra was protective against ischemia (H. C. Emsley et al., 2005), 

while its knockout animals suffered from larger infarcts (E. Pinteaux et al., 2006).  

The brain expresses mainly IL-1β which is up-regulated after stroke, it was shown 

that administration of IL-1β increased brain damage in ischemic rats (Y. Yamasaki 

et al., 1995). More interestingly, individual knockouts in IL-1α or IL-1β had similar 

infarcts as wild-types after MCAO while double knockouts had smaller infarcts 
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indicating a compensatory response between IL-1α and IL-1β (H. Boutin et al., 

2001). 

1.2.5.c. Role of other cytokines in ischemia 

Ischemia is followed by an up-regulation of IL-6 (X. Wang et al., 1994). IL-6 has an 

anti-inflammatory effect by inhibiting the synthesis of TNF and IL-1, by inducing the 

synthesis of TNF binding protein (which binds TNF and prevent it from interacting 

with its receptors) and also by inducing the synthesis of IL-1ra (B. E. Barton, 1997). 

IL-10 has anti-inflammatory effects by blocking the production of IL-1 and TNF (Q. 

Wang et al., 2007) and is upregulated in experimental stroke (K. Strle et al., 2001). 

In addition, exogenous administration of IL-10 in ischemia had beneficial effects (P. 

A. Spera et al., 1998). TGF-β1 contributes to the recovery of ischemic stroke and 

was shown to protect mouse brains from ischemic stroke (L. Pang et al., 2001). 

Expression of chemokines such as MCP-1 and macrophage inflammatory protein-

1α (Y. Chen et al., 2003) after ischemia has a deleterious role by increasing 

leukocyte infiltration (H. C. Emsley and P. J. Tyrrell, 2002). 

2.2.6. Role of nitric oxide in ischemia 

Nitric oxide (NO) is involved in many physiological processes such as neuronal 

communication, host defense and regulation of vascular tone. It can be produced by 

three different synthases: endothelial (eNOS), neuronal (nNOS) and inducible 

(iNOS). iNOS is expressed mainly by cells involved in inflammatory responses such 

as leukocytes, microglia and astrocytes (Q. Wang et al., 2007). iNOS expression 

and NO production were induced after ischemia (C. Iadecola et al., 1995). 

2.2.7. Role of arachidonic acid and its metabolites in ischemia 

In the brain, energy is supplied by metabolism of glucose and oxygen for the 

phosphorylation of ADP to ATP, which is used to maintain the intracellular 

homeostasis and transmembrane ion gradients of sodium, potassium, and calcium. 

However, energy failure following stroke leads to rapid loss of ATP and uncontrolled 

leakage of ions across the cell membrane resulting in an increase in intracellular 
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calcium and membrane depolarization and release of neurotransmitters such as 

glutamate and dopamine (R. M. Adibhatla and J. F. Hatcher, 2005). The released 

glutamate and the increase in intracellular calcium during cerebral ischemia activate 

phospholipases releasing free fatty acid (FFA) such as AA (H. Katsuki and S. 

Okuda, 1995). AA can stimulate the expression of TNF and IL-1ß (M. Hughes-

Fulford et al., 2006). Both TNF and IL-1ß can activate phospholipases suggesting a 

self-re-enforcing cycle (R. M. Adibhatla et al., 2008). 

The brain content of lipids (36 - 60 %) is the second highest in the body next to 

adipocytes and comprises polyunsaturated fatty acids (mainly AA or 

docosahexaenoic acid DHA) (D. Tassoni et al., 2008). AA is released by cytosolic 

phospholipase A2 (cPLA2) from membrane phospholipids (A. A. Farooqui and L. A. 

Horrocks, 2006). DHA is liberated by the action of plasmalogen-selective 

phospholipase A2 (PlsEtn-PLA2) (Y. Hirashima et al., 1992). The liberated AA and 

DHA can be either reincorporated in neural membrane phospholipids by reacylation 

reactions or oxidized by several enzymatic and nonenzymatic mechanisms (S. I. 

Rapoport, 1999).  

The enzymatic peroxidation of AA produces eicosanoids, which play important 

roles, in regulating signal transduction, gene transcription processes, and in 

inducing and maintaining the acute inflammatory responses (J. W. Phillis et al., 

2006) (Figure 1.3). Eicosanoids include prostaglandins produced by 

cyclooxygenases (COX), thromboxanes and leukotrienes produced by 

lipoxygenases (LOX), and epoxyeicosatrienoic produced by epoxygenases (EPOX). 

Furthermore, COX and LOX metabolize DHA to docosanoids which antagonize the 

effects of eicosanoids and modulate leukocyte trafficking and downregulate the 

expression of cytokines (S. Hong et al., 2003). Docosanoids include resolvins, 

docosatrienes and neuroprotectins (J. W. Phillis et al., 2006). The reactions 

catalyzed by COX, LOX and EPOX also produce ROS. 

Nonenzymatic peroxidation of AA and DHA produces 4-hydroxynonenal (4-HNE) 

and 4-hydroxyhexenal (4-HHE), respectively, which are important mediators of 

neural cell damage (H. Esterbauer et al., 1991). In addition, free radical mediated 
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nonenzymatic oxidation of AA and DHA produces isoprostanes (L. J. Roberts, 2nd 

et al., 2005) and neuroprostanes (N. G. Bazan, 2005), respectively, which are both 

implicated in oxidative stress (Figure 1.3). 

            

Figure 1.3. Release of arachidonic acid and docosahexaenoic acid and their metabolism, 
after J. W. Phillis et al., 2006. 

Agonist (A1 and A2); receptors (R1 and R2); plasma membrane (PM); phosphatidylcholine 
(PtdCho); ethanolamine plasmalogen (PlsEtn); lysophosphatidylcholine (LysoPtdCho); 
ethanolamine lysoplasmalogen (LysoPlsEtn); platelet-activating factor (PAF); calcium 
(Ca2+); cytosolic phospholipase A2 (cPLA2); plasmalogen-selective phospholipase A2 
(PlsEtn-PLA2); cyclooxygenase-1 and 2 (COX-1 and 2); 4-hydroxynonenal (4-HNE); and 
reactive oxygen species (ROS). 

 

1.2.7.a. Role of phospholipase A-2 (PLA-2) in ischemia 

Phospholipase A-2 (PLA-2) isozymes include the calcium independent iPLA-2, the 

secretory sPLA-2 and the calcium-dependent cytosolic cPLA-2. cPLA-2 

preferentially cleaves phospholipids containing AA while iPLA-2 and sPLA-2 have 

no specificity (R. M. Adibhatla et al., 2003; S. Akiba and T. Sato, 2004).  
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Calcium influx associated with ischemia/reperfusion stimulates PLA2 activity leading 

to an increase in the free AA (D. Tassoni et al., 2008). cPLA-2 was up-regulated 

after stroke (D. T. Stephenson et al., 1994), while cPLA-2 knockout mice had 

smaller infarcts (J. V. Bonventre et al., 1997). 

cPLA-2 can be induced by several pro-inflammatory cytokines: in vitro exposure of 

astrocyte cultures to IL-1β induced the expression of cPLA-2 (N. Stella et al., 1997), 

while exposure of an astrocytoma cell line to TNF increased the phosphorylation of 

cPLA-2 through activation of the MAP kinase pathway (M. Hernandez et al., 1999). 

1.2.7.b. Role of cyclooxygenase (COX) in ischemia 

Cyclooxygenases are correctly called prostaglandin-endoperoxide synthase, 

because they catalyzes the conversion of AA into prostaglandin G2 (PGG2), and 

then to prostaglandin H2 (PGH2), which is the precursor of several other 

prostanoids, including prostaglandin E2 (PGE2), prostacyclin (PGI2), and 

thromboxanes (E. Candelario-Jalil and B. L. Fiebich, 2008). 

COX exists in the isoforms COX-1 and COX-2. COX-3 is a splice variant of COX-1 

(B. Kis et al., 2006). COX-1 and COX-2 share about 60 % amino acid identity but 

differ in their expression pattern (E. Candelario-Jalil and B. L. Fiebich, 2008). COX-

1 is constitutively expressed in many cells (J. M. Schwab et al., 2002). It is thought 

to mediate physiological responses (T. Takemiya et al., 2007) and to have a 

protective role since mice deficient in COX-1 showed increased sensitivity to 

ischemia. This protective effect is probably caused by regulating cerebral blood flow 

(C. Iadecola et al., 2001).  

In contrast, COX-2 is an inducible isoform, which can be upregulated in response to 

acute seizures and ischemia (T. Takemiya et al., 2007) and in response to 

inflammatory cytokines, bacterial lipopolysaccharide (LPS) and tumor promoters (E. 

Candelario-Jalil and B. L. Fiebich, 2008). COX-2 mediates its toxic effect through 

PGE2 (Y. Manabe et al., 2004) and the production of free radicals (E. Candelario-

Jalil and B. L. Fiebich, 2008). COX-2 expression is upregulated after experimental 

ischemia (S. Nogawa et al., 1997) and this was associated with increased PGE2 
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levels and neuronal apoptosis (R. C. Li et al., 2003). Indeed, COX-2 deficient mice 

suffered less brain injury following MCAO (C. Iadecola et al., 2001) and treatment 

with COX-2 inhibitors decreased hippocampal neuronal damage after ischemia (T. 

Sasaki et al., 2004).  

1.2.7.c. Role of prostaglandin E synthase (PGES) in ischemia 

In the biosynthetic pathway leading to PGE2 formation, phospholipase A2 (cytosolic 

or secretory) acts on membrane phospholipids releasing AA which is converted to 

PGH2 by COX. PGH2 is then isomerized to PGE2 by prostaglandin E synthase (A. 

C. de Oliveira et al., 2008) (Figure 1.4). Prostaglandin E synthases may be 

microsomal PGESs (mPGES-1 and mPGES-2) or cytosolic (cPGES)(N. Tanikawa 

et al., 2002). Microsomal prostaglandin E synthase-1 (mPGES-1) is functionally 

coupled with COX-2 (M. Murakami et al., 2000).  

Expression of mPGES-1 is of major importance in pathophysiological events in 

which COX-2-derived PGE2 plays a crucial role because it has the most terminal 

position in the PGE2-synthesing pathway, the highest magnitude of upregulation 

among other PGE2-synthesizing enzymes and a long duration of mRNA expression 

(A. C. de Oliveira et al., 2008). mPGES-1 expression was increased in neurons, 

microglia and endothelial cells after ischemia (Y. Ikeda-Matsuo et al., 2006). 

Moreover, mPGES-1 deficient mice had smaller infarcts, less edema and less 

apoptosis following ischemia (Y. Ikeda-Matsuo et al., 2006). 

1.2.7.d. Role of prostaglandin E2 (PGE2) in ischemia 

PGE2 is responsible for the neurotoxic effects of COX-2 (Y. Manabe et al., 2004). 

PGE2 acts on four G-protein coupled receptors (EP1-4), EP2, EP3 and EP4 being 

neuroprotective (M. Bilak et al., 2004; L. McCullough et al., 2004; A. S. Ahmad et 

al., 2005). EP1 mediates the neurotoxic effect of PGE2 (T. Kawano et al., 2006) 

(Figure 1.4). COX-2 inhibitors decreased hippocampal neuronal damage after 

ischemia by reducing PGE2 concentration (M. Nakayama et al., 1998), indicating 

that PGE2 produced by COX-2 may be a stimulator of neuronal damage. PGE2 

aggravated neuronal damage following ischemia (J. Thornhill and M. Smith, 1998) 
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and the level of PGE2 was increased after ischemia (E. Candelario-Jalil et al., 2003; 

C. Yokota et al., 2004).  

Brain PGE2 is synthesized and derived from neurons (P. Ciceri et al., 2002), 

microglia (N. P. Turrin and S. Rivest, 2004), astrocytes (M. Zonta et al., 2003) or 

endothelial cells (T. Takemiya et al., 2007). However, Takemiya et al., proposed 

that PGE2 released from endothelial cells may promote calcium-dependent 

glutamate release from astrocytes leading to an increase in neuronal calcium level 

and neuronal death (T. Takemiya et al., 2007). Others consider PGE2 released by 

activated microglia to be of major importance for the initiation, propagation and 

modulation of brain inflammation (B. Liu and J. S. Hong, 2003). In contrast, PGE2 

administration protected against neuronal death induced by LPS through reduction 

of NO release from microglia and ROS from neurons (E. J. Kim et al., 2002). 

 

Figure 1.4. Activation of arachidonic acid cascade in ischemia 
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2.2.8. Role of High Mobility Group Box-1 in ischemia 

HMGB1 is a 30 kD, abundant, non-histone nuclear protein which derives its name 

from its characteristic fast migration in electrophoresis (M. Bustin, 2001), HMGB1 is 

highly expressed in all eukaryotic cells and is conserved through evolution (99% 

identity in mammals) (S. Muller et al., 2004). Structurally, its 215 residues are 

organized into two DNA-binding domains (Box A and B) each containing about      

80 amino acids in an L-shaped fold and a negatively charged C-terminus (H. M. 

Weir et al., 1993; I. E. Dumitriu et al., 2005) (Figure 1.5).  

In its resting state, the long acidic tail of HMGB1 interacts with basic stretches in the 

box A and box B shielding them from other interactions that might occur before 

HMGB1 binds DNA (S. Knapp et al., 2004). Box B is responsible for many of the 

pro-inflammatory effects of HMGB1 including cytokine release (J. Li et al., 2003) 

while box A acts as a specific antagonist for the interaction between HMGB1 and 

RAGE (M. E. Bianchi and A. A. Manfredi, 2007). 

                           

Figure 1.5.  Structure of HMGB1, after I. E. Dumitriu et al., 2005. 

 

Most cells contain about a million molecules of HMGB1 which bind DNA without 

sequence specificity and induce bends in DNA enabling the physical interaction 

between DNA and various factors such as NF-κB and hormone receptors (M. E. 

Bianchi and A. Manfredi, 2004), thus regulating the transcription of many genes (J. 

S. Park et al., 2003). HMGB1 is an extremely mobile protein resting on a specific 

DNA site only for fractions of a second (R. D. Phair et al., 2004). In addition, some 
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cells express HMGB1 in the plasma membrane (in addition to the nucleus). HMGB1 

is referred to as amphoterin which mediates neurite outgrowth (J. Parkkinen et al., 

1993) and tumor cell metastasis (A. Taguchi et al., 2000).  

HMGB1 can be released passively from necrotic cells (P. Scaffidi et al., 2002) or 

actively from immune cells (H. Yang et al., 2004) (Figure 1.6). Passively released 

HMGB1 from necrotic (but not from apoptotic) cells serves as a danger signal that 

alerts the immune system to the presence of injury (K. L. Rock et al., 2005). Passive 

release of HMGB1 may depend on the activation of poly(ADP)-ribose polymerase 

enzyme (PARP) after DNA damage which promotes the translocation of HMGB1 

from the nucleus to the cytosol (D. Ditsworth et al., 2007). 

 HMGB1 can be also actively secreted from monocytes or macrophages in 

response to LPS, TNF, IL-1β and interferon-γ (H. Wang et al., 1999) as a delayed 

mediator of inflammation (H. Wang et al., 1999). In living cells HMGB1 traffics 

between the nucleus and cytosol (T. Bonaldi et al., 2003). However, upon 

stimulation, lysine residues in HMGB1 are acetylated and this blocks its import into 

the nucleus. Acetylated HMGB1 is then packaged into secretory lysosomes before 

being released extracellularly (S. Gardella et al., 2002). Extracellular HMGB1 

activates monocytes to release more cytokines thus prolonging inflammation (U. 

Andersson et al., 2000).  

Thus, HMGB1 is now considered a cytokine because it is secreted by activated 

immune cells, mediates systemic inflammatory responses and activates prototypical 

inflammatory responses in immune cells and endothelial cells (M. T. Lotze and K. J. 

Tracey, 2005). In addition, HMGB1 was reported to be involved in ischemic injury in 

several animal models (R. S. Goldstein et al., 2006; J. B. Kim et al., 2008; J. Qiu et 

al., 2008) and in humans (R. S. Goldstein et al., 2006). 
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Figure 1.6. Release of HMGB1, after M. T. Lotze and K. J. Tracey, 2005. 

 

HMGB1 may signal through TLR-2, TLR-4 and RAGE. However signaling through 

RAGE and the TLRs is fast, while HMGB1 induces a delayed response in 

macrophages which suggest the involvement of another yet to be discovered 

receptor (M. T. Lotze and K. J. Tracey, 2005). 

1.2.8.a. Role of Receptor for Advanced Glycation Endproducts in ischemia 

RAGE, the first receptor identified for HMGB1 (M. T. Lotze and K. J. Tracey, 2005), 

is a member of the immunoglobulin superfamily of cell surface receptors (A. 

Bierhaus et al., 2005) that is activated by several ligands including HMGB1 but also 

by advanced glycation end products (AGEs), S100 proteins, and amyloid β-peptide 
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(Aβ) (M. P. Fink, 2007). RAGE is expressed by monocytes and macrophages, 

dendritic cells (DCs), endothelial cells and vascular smooth muscle cells (A. M. 

Schmidt et al., 2001). In the brain, RAGE is present on neurons, glia and endothelial 

cells (S. D. Yan et al., 1996; R. Deane et al., 2003; O. Arancio et al., 2004; A. 

Bierhaus et al., 2004). RAGE can be expressed as both a transmembrane receptor 

and as a soluble molecule (sRAGE) which can block the action of RAGE ligands 

such as HMGB1 (M. T. Lotze and K. J. Tracey, 2005). RAGE expression was 

reported to be induced after ischemia and a specific antibody against RAGE 

reduced the damage caused by OGD (P. Pichiule et al., 2007; D. X. Zhai et al., 

2008). 
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Aim of the study 
Ischemia is known to induce the upregulation of several cytokines, transcription 

factors and AA. AA and its metabolites play an important role in inflammatory 

processes especially in the brain. Furthermore, the transcription factor NF-κB is 

essential for the regulation of the transcription of several genes involved in 

inflammation. In addition, HMGB1, the late mediator of inflammation was reported to 

have a role in ischemia. 

Our present study aims to investigate whether NF-κB regulates the transcription of 

genes involved in AA metabolism and whether inhibiting NF-κB and AA metabolism 

could provide a new approach for the treatment of ischemia. We would also explore 

the role of HMGB1 in mediating the toxic effects observed after ischemia and also 

study a potential beneficial effect of blocking HMGB1 mediated effects as a therapy 

of ischemia. 
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2. Materials and methods 

2.1. Cell culture 

Materials: 

Hank’s balanced salt solution (HBSS) PAA 
DNase I Roche 
Bovine serum albumin (BSA) Roth 
Dubellco’s modified eagles medium (DMEM) PAA 
Fetal bovine serum (FBS) PAA 
L-glutamine Gibco 
Penicillin/Streptomycin Gibco 
Trypsin-EDTA Gibco 
Phosphate balanced saline (PBS) Gibco 
Glucose Merck 
Hepes Roth 
Neurobasal medium Invitrogen/Gibco
B27 supplement Invitrogen/Gibco
Poly-D-lysine Sigma 
Diphtheria toxin Sigma 
Clodronate containing liposomes (25 % W/V)  
PBS containing liposomes  
Sieve (40 µm) BD Falcon 
  
ACK buffer (ERYLYSE for lysis of erythrocytes and 
blood cells) 

NH4Cl 2.07g 
KHCO3 250 mg 
Na2EDTA 9.3 mg 
Add 200 ml dH2O  
sterile filtered  

 
 

 

 
J.T. Baker 
Ferak berlin 
Serva 
 
 

  
NS-398 Sigma 
SC-51089 Biomol 
Lipopolysaccharide (LPS) Sigma 
TNF Sigma 
HMGB1 HMGbiotech 
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2.1.1. Preparation of glial cultures (Astrocytes/Microglia)  

Glia were prepared from NMRI, RAGEko or CD11b-DTR mice at postnatal day     

P2 or P3 as follows:  

Ten to twelve animals were sacrificed by CO2 inhalation and heads were collected 

in cold HBSS. Then the brains were extracted under sterile conditions, cut into small 

pieces with a scalpel and treated with 25 ml warm HBSS containing 0.3 % BSA, 

0.004 % DNase and 0.025 % trypsin (sterile filtered) for 15 min at 37 °C with 

occasional shaking. The reaction was stopped by the addition of 25 ml DMEM full 

medium (containing 10 % FBS, 0.5 mM L-glutamine and 100 IU/ml penicillin and 

100 µg/ml streptomycin). Cells were centrifuged at 1,000 x g for 7 minutes. The cell 

pellet was resuspended in 15 ml warm HBSS containing 0.3 % BSA, 0.004 % 

DNase (sterile filtered) and incubated at room temperature for 10 min. After tissue 

fragments settled down, the supernatant was carefully transferred to another tube 

and kept at 37 °C while the pellet was resuspended again in the same solution and 

incubated for another 10 min. The clear supernatant was combined with that from 

the previous step. This procedure was repeated to get a total of three resuspension 

steps. The combined supernatant was then centrifuged at 1,000 x g for 7 minutes 

and the pelleted cells were resuspended in 10 ml warm growth medium. Using a 

fire-polished Pasteur pipette, cell clusters were separated into a single cell-

suspension and the volume adjusted to 15 ml per 2 brains. Cells were plated into a 

75 cm2 flask and incubated at 37 °C under 5 % CO2. The cell culture medium was 

changed every 5 days and cells were splitted at 90 % confluency. 

For CD11b-DTR mice the cells were prepared from each mouse individually and 

cultured in 25 cm2 flasks. Meanwhile, a part of the tail was collected for genotyping. 

For splitting of cells, medium was removed and the cells were washed once with 

warm PBS. Trypsin-EDTA (2 ml per 75 cm2 flask or 1 ml per 25 cm2 flask) was 

added and the flask was incubated at 37 °C for 5-10 min until cells detached. Then 

the reaction was stopped by adding 8 ml full medium (containing FBS) and the cells 

were collected in a tube, centrifuged at 1,000 x g for 7 minutes and the cell pellet 
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was then resuspended in 12 ml full growth medium. Cells were plated (500 µl in 

each well in a 24-well plate or 2 ml in each well of 6-well plate). Neurons were 

plated on glia 7 days after splitting. 

2.1.2. Depletion of microglia from mixed glial cultures 

Mixed glial cultures prepared from CD11b-DTR mice were genotyped and the DTR-

positive cells were treated at day in vitro (DIV) 5-6 with diphtheria toxin 100 ng/ml or 

PBS for 24 h in DMEM (without FBS). After 9-10 days, neurons were plated on glial 

cells and the cultures were stained for Iba-1 to detect the depletion of microglia. 

In another set of experiments, mixed glial cultures were prepared from NMRI mice 

and were treated at DIV 5-6 with clodronate or PBS containing liposomes (which 

were kindly provided from Dr. N. Van Rooijen, Department of Molecular cell Biology, 

Vumc, FdG, Amesterdam, The Netherlands) for 24 hours in full DMEM medium (0.2 

ml liposome solution in 3 ml DMEM medium). After 9-10 days, neurons were plated 

on glial cells and the cultures were stained for Iba-1 to detect the depletion of 

microglia. 

2.1.3. Cortical Neuron Preparation  

Primary cortical neurons were prepared from embryonic NMRI mice at embryonic 

day 16 (E16) as follows:  

The pregnant mouse was sacrificed by CO2 inhalation and the embryos were 

collected into ice cold dissection buffer (0.74 % Hepes and 0.6 % Glucose in PBS, 

pH 7.3, sterile filtered). 

Under sterile conditions, the cerebral cortices were dissected under an operational 

microscope while meninges, hippocampus and olfactory bulb were removed and 

discarded. Under the cell culture hood, the cerebral cortices were washed two times 

with pre-warmed PBS, minced with a scalpel and treated with 2 ml of pre-warmed 

trypsin-EDTA. After incubation at 37°C for 7 min with occasional shaking, trypsin 

was discarded and the cell clump washed two times with pre-warmed PBS. Cells 

were resuspended in Neurobasal medium (2.5 ml supplemented with 2% B27,     
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0.5 mM L-glutamine, 100 IU/ml penicillin and 100 µg/ml streptomycin). Then cell 

clusters were separated into single cell suspension by triturating through a fire-

polished Pasteur pipette. 

Cells were counted using a hematocytometer and plated (200,000 cells in each well 

of a 24-well plate or 2,000,000 cells in each well of a 6-well plate coated with poly-

D-lysine for pure cortical neurons or on a confluent glial cell layer for mixed neural 

cultures). Cultures were incubated at 37 °C under 5 % CO2. To change medium, 

only half of medium was removed from each well and fresh pre-warmed medium 

was added. 

For pure cortical neuronal cultures (neurons plated on poly-D-lysine coated plates), 

media was changed the first day after preparation (with full neurobasal medium 

containing 5 % FBS) and then every third day until cells were used for experiments 

at DIV 10 (Figure 2.1). 

 

Figure 2.1 Immunohistochemistry (IHC) of NeuN in primary cortical neurons. 

 

For mixed neural cultures (neurons plated on glial cell layer), media (full DMEM 

containing 25 % full neurobasal medium) was changed every 4 days and the 

cultures were used 6 days after plating neurons. 
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Coating plates with poly-D-lysine  

Five hundred µl/well (in 24-well plate) or 2 ml/well (in 6-well plate) of poly-D-lysine 

solution (50 µg/ml in d H2O) were added and the plates were incubated at 37 °C 

overnight then the solution was sucked off and the plates washed once with PBS 

and allowed to dry under the hood before neurons were plated. 

2.1.4. Isolation of peritoneal macrophages 

Peritoneal macrophages were prepared as described previously (L. Dory, 1989). 

Briefly, mice were killed by CO2 inhalation. Then, peritoneal lavage using 10 ml ice 

cold PBS was performed 5 times. The collected solution was filtered through a      

40 µm sieve and centrifuged at 1,000 x g for 10 min at 4 °C. The cell pellet was 

resuspended in 2 ml ACK (RBCs lysis) buffer and incubated at room temperature 

for 5 min before 10 ml PBS were added to stop the reaction. Then the cell 

suspension was centrifuged again at 1,000 x g for 10 min at 4 °C before the 

supernatant was discarded and the pellet resuspended in full DMEM medium 

containing 25 % neurobasal full medium. 400,000 cells were plated in each well of 

confluent mixed neural cultures in a 24-well plate (Figure 2.2). 

                 

Figure 2.2 IHC of CD11b in peritoneal macrophages.
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2.2. Oxygen Glucose Deprivation (OGD) 

Materials: 

2-Deoxy-D-Glucose Sigma 

OGD was used as an in vitro model of ischemia. Culture medium was replaced with 

stimulation medium (full neurobasal medium without B27 supplement) with (OGD 

plate) or without (control plate) 2-deoxy-D-glucose (5 mM). The plates were 

incubated at 37 °C for 45 min under normal conditions. Then the OGD plate was 

transferred to an anaerobic chamber, which was flushed with 5 % CO2 and 95 %  

N2 for 15 minutes before the anaerobic chamber was tightly sealed and placed in a 

normal incubator adjusted to 37 °C, while the control plate was kept under normal 

conditions (37 °C, 5 % CO2). After the specified duration of OGD (4.5 h), medium 

was removed from both the control and the OGD plates and replaced with fresh 

stimulation medium. Both plates were incubated at 37 °C under normal conditions 

for 24 h before media were collected and RNA was extracted from the cells. 

2.3. Quantification of cell death 

Cell death can be classified into 2 main forms. Necrosis is accompanied by 

increased ion permeability of the plasma membrane associated with swelling and 

plasma membrane rupture. And apoptosis is characterized by condensation of 

nuclei and activation of endogenous nucleases which lead to DNA cleavage. 

2.3.1. Quantification of cell death and lysis by measurement of lactate 
dehydrogenase (LDH) activity 

The leakage of LDH through the damaged cell membrane is an indicator of plasma 

membrane damage and cell death. We quantified the released LDH and this was 

expressed relative to the control conditions. 
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Materials: 

Cytotoxicity Detection Kit (LDH) 

The kit reaction mix for 100 samples consisted 
of: 250 µl catalyst solution + 11.25 ml Dye 
solution (freshly mixed). 

Roche 

The cell culture medium was collected in Eppendorf tubes, spinned at 8,000 x g for 

5 min at 4 °C to remove cells. Then, 100 µl medium were transferred into 96 well 

plate and mixed with 100 µl LDH kit reaction mix and incubated for 30 min at room 

temperature in the dark. The absorbance was then measured at 492 nm and 

reference 620 nm.  

2.3.2. Detection of cytoplasmic histone-associated-DNA-fragments (mono- 
and oligonucleosomes) 

When a sample containing DNA-histone complexes (nucleosomes) is incubated 

with anti-histone (biotin-labeled) antibody and anti-DNA (peroxidase-conjugated) 

antibody in a streptavidin-coated microplate, the anti-histone biotin-labeled antibody 

binds the histone component of the nucleosomes and captures it to the streptavidin 

coat of the plate. Simultaneously, the peroxidase-conjugated anti-DNA reacts with 

the DNA component of the nucleosome and develops color using ABTS as a 

substrate (sandwich ELISA). 

Materials: 

Cell death detection ELISA plus

The kit is composed of the following 
- Anti-Histone-Biotin (biotin-labelled 

monoclonal mouse antibody) 
- Anti-DNA-POD (peroxidase conjugated 

monoclonal mouse antibody) 
- Positive control (DNA-Histone-Complex) 
- Incubation buffer 
- Lysis buffer 
- Substrate buffer 

Roche 
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- ABTS substrate tablet (2,2-azino-di-3-
ethylbenzthiazoline-sulfonic acid) 

- ABTS stop solution 
- Streptavidin-coated microplate 

 

 

At the end of the stimulation period, the cell culture medium was collected and used 

for LDH measurement. The cells were washed once with PBS and lysis buffer    

(200 µl) was added to each well and incubated for 30 min at room temperature. 

Then cell lysates were collected into tubes and centrifuged at 200 x g for 10 min. 

Twenty µl of positive control, negative control, background control (incubation 

buffer) or clear supernatant were carefully transferred to the middle of the 

appropriate wells of the streptavidin-coated microplate. Freshly prepared 

immunoreagant (80 µl of 1 volume Anti-Histone-Biotin + 1 volume Anti-DNA-POD + 

18 volume Incubation buffer) was added to each well and the plate was covered 

with adhesive cover foil and incubated at room temperature for 2 hours on a shaker 

(300 rpm/min). 

After the incubation period, the solution was removed and the plate was washed    

3-times each with 300 µl incubation buffer. Then ABTS solution (100 µl of 1 ABTS 

tablet dissolved in 5 ml substrate buffer) was added to each well and incubated on a 

shaker (250 rpm) for 10 – 20 min. Then ABTS stop solution (100 µl) was pipetted 

into each well. The signal was read at 405 nm and reference 490 nm and ABTS 

stop solution was used as a blank. 

2.4. Quantification of Prostaglandin E2 (PGE2) release. 

Materials: 

Prostaglandin E2 EIA kit-monoclonal Cayman 
  
The kit is composed of the following  

- Prostaglandin E2 Monoclonal antibody  
- Prostaglandin E2 AchE Tracer  
- Prostaglandin E2 EIA Standard  
- EIA Buffer   
- Wash Buffer   
- Goat Anti-Mouse IgG Coated plate  
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- Ellman’s Reagant  
The cell culture medium was collected in Eppendorf tubes and centrifuged at    

8,000 x g for 5 min at 4 °C to remove cells. Then medium or standard (50 µl) was 

transferred into the appropriate wells and PGE2 AChE tracer and PGE2 monoclonal 

antibody (50 µl each) were added. After 18 h incubation at 4 °C, the plate was 

washed and Ellman’s reagent (200 µl) was added to each well and absorbance was 

measured at 420 nm after 60 min. 

2.5. RNA extraction and reverse transcription 

Materials: 

RNApure Peqlab 
Chloroform Sigma 
Isopropanol J.T.Baker 
70 % Ethanol J.T.Baker 
5 x Buffer                      10 µl   Promega 
dNTPs (25 mM)              2 µl   Promega 
Random Primer            1 µl   Promega 
RNAsin                           1 µl Promega 
Reverse Transcriptase   1 µl   Promega 

 

2.5.1. RNA extraction from cultured cells 

Cell culture medium was removed and the cells were washed once with cold PBS. 

Then RNApure reagent was added (1 ml/well in 6-well plate) and cells were 

triturated several times. Cells were allowed to stand on ice for 7 min before the cell 

lysate was transferred to Eppendorf tubes containing 0.2 ml chloroform. Lysates 

were mixed for 15 seconds and again allowed to stand for 7 min on ice. Samples 

were then centrifuged at 13,000 x g for 20 min at 4 ° C. The upper aqueous layer 

containing RNA was carefully transferred to another tube containing 0.5 ml 

isopropanol and incubated overnight at – 20 °C to allow for the precipitation of RNA. 

Samples were then centrifuged at 13,000 x g for 20 min at 4 ° C and the RNA pellet 

was washed two times with 1 ml 75 % ethanol in water. The pellet was allowed to 

dry partially at room temperature and then dissolved in dH2O. The RNA 
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concentration was measured using a spectrophotometer. RNA was stored at           

– 80 °C. 

2.5.2. RNA extraction from brain tissue 

Fifty mg homogenized tissue from the ischemic core or the surrounding periphery 

were used for the extraction of RNA using the same protocol as described with 

cultured cells. 

2.5.3. Reverse Transcription 

Three µg RNA from each sample were diluted to a final volume of 35 µl with dH2O. 

Then RNA was mixed with the above-mentioned volumes of 5X buffer, dNTPs, 

random primer, RNasin and reverse transcriptase and incubated at room 

temperature for 10 min and at 37 °C for 90 min. The obtained cDNA was stored at  

– 20 °C. 

2.6. Polymerase chain reaction (PCR), Reverse transcription-PCR (RT-PCR) 
and Real-Time RT-PCR 

2.6.1. Real time RT-PCR 

The expression of the target gene(s) was quantified relative to the expression of a 

house keeping gene (cyclophillin) under the different experimental conditions using 

real-time RT-PCR  

Materials: 

Real-Time RT-PCR Cycler: Gene 
Amp 5700 Sequence Detector, PE 

Applied Biosystems 

SYBR Green Kit PE Applied Biosystems 
The reaction mix was composed of 
Master mix (SYBRGreen) 15 µl 
Primer 1 (5 µM) 1.8 µl 
Primer 2 (5 µM) 1.8 µl 
dH2O 6.4 µl 

 

 

PCR plates ABgene 
Primers were synthesized by  TIB-MOLBIOL 
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Primer Primer sequence Amplicon 
length 

Cyclophilin-F 5’ AGG TCC TGG CAT CTT GTC CAT 3’ 51 bp 
Cyclophilin-R 5’ GAA CCG TTT GTG TTT GGT CCA 3’ 
cPLA-2-F 5’ TTG GCG ATA TGC TGG ACA CTC 3’ 84 bp 
cPLA-2-R 5’ AGT GTC TCG TTC GCT TCC TGCT 3’ 
COX-2-F 5’ CAG ACA ACA TAA ACT GCG CCT T 71 bp 
COX-2-R 5’ GAT ACA CCT CTC CAC CAA TGA CC 
mPGES-1-F 5’ AAG ATG TAC GCG GTG GCT GTC A 55 bp 
mPGES-1-R 5’ AAG CCT TCT TCC GCA GCC TCA T 

3’
cDNA samples were diluted 1:16 for cPLA-2, COX-2 and mPGES-1 or 1:1024 for 

cyclophillin and 5 µl were mixed with the above-mentioned volumes of the master 

mix, primers and dH2O in a real-time RT-PCR plate. The real-time RT-PCR was 

performed according to the following protocol: 

10 minutes at 95 °C                                                                                    
15 seconds at 95 °C                                                                                         
1 minute   at 60 °C 

Repeated for 40 cycles 

A linear dilution-amplification curve was obtained from diluted pooled samples     

(1:2 till 1:64) for cPLA-2, COX-2, mPGES-1 or (1:128 till 1: 4096) for cyclophillin. 

Using this curve the expression of each gene was quantified relative to the 

expression of the house keeping gene under different experimental conditions. 

The purity of the amplified products was checked by the dissociation curve and by 

gel electrophoresis. 

2.6.2. RT-PCR 

Materials: 

Taq polymerase Taqara 
dNTPs Promega 
TBE buffer (Tris/Borate/EDTA) 

Tris-borate 89 mM 
EDTA 2 mM 
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Agarose Biozyme 
Primers were synthesized by TIB-MOLBIOL 

   
Primer Primer sequence Amplicon 

length 

TLR-2-F 5’ AGG CTC GGT TCT CAC TGA TGA A 3’ 623 bp 
TLR-2-R 5’ CTA ACA TCC AAC ACC TCC AGC G 3’  
TLR-4-F 5’ GAC ACC AGG AAG CTT GAA TCC 3’ 603 bp 
TLR-4-R 5’ GGC TTG GTC TTG AAT GAA GTC A 3’  
RAGE-F 5’ GAT TCC CGA TGG CAA AGA AAC AC 3’ 512 bp 
RAGE-R 5’ ACT CAC CCA CAG AGC CTT CAG 3’  
GAPDH-F 5’ ATC CTG CAC CAC CAA CTG CTT A 3’ 711 bp 
GAPDH-R 5’ TTC AAG AGA GTA GGG AGG GCT 3’  

 

To investigate the presence of HMGB1 receptors (TLR-2, -4 and RAGE) in our cell 

culture model, we performed RT-PCRs using cDNA obtained from spleen, whole 

brain, cultured neurons or cultured microglia. For comparison, levels of the house 

keeping gene GAPDH were determined using the following PCR reaction: 

Taq polymerase      0.25 µl                                                                       
dNTPs                     4 µl                                                                                   
10 x buffer               5 µl                                                                             
Primer F (10 µM)     5 µl                                                                             
Primer R (10 µM)    5 µl                                                                                           
cDNA                      7 µl                                                                                  
water to                   50 µl 

and the PCR protocol consisted of the following steps: 

Initial denaturation   94 °C        1 min 

Denaturation            94 °C        15 sec    
 Annealing                 *   °C        30 sec     
 Extension                 72 °C        1 minute     
      Repeated 40 x   
 Final extension         72 °C         7 minute 

Hold                           4 °C 

*  The annealing temperature was adjusted for each PCR product according to the 

primers used:  
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TLR-2    56 °C        
 TLR-4    53 °C        
 RAGE    52 °C        
 GAPDH 61 °C 

2.6.3. Genotyping of CD11b-DTR mice 

Materials: 

Non Ionic detergent (NID) buffer: 

50 mM HCl 
10 mM Tris/Cl pH 8.3 
2 mM MgCl2 
0.1 mg/ml gelatin 
0.45 % NP40 
0.45 % Tween 20 

 

 
J.T Baker 
Roth 
Fluka 
Gruessing 
 
Roth 

Proteinase K Merck 
Taq polymerase Taqara 
Primers were synthesized by TIB-MOLBIOL 

  

Primer Primer sequence Amplicon 
length 

WT-F 5’ CTA GGC CAC AGA ATT GAA AGA TCT 3’ 324 bp 
WT-R 5’ GTA GGT GGA AAT TCT AGA ATC ATC C 3’  
TG-F 5’ GAG GGC GAT GCC ACC TAC GGC AAG 3’ 500 bp 
TG-R 5’ CTA AGG GCG GAC TGG GTG CTC AGG 3’  

At the age of P2, heterozygous CD11b-DTR mice were killed by CO2 inhalation. A 

part of the tail from each mouse was incubated in 200 µl NID buffer and 2 µl 

proteinase K (10 mg/ml) at 56 °C for 6 hours with mild shaking. Then proteinase K 

was inactivated by heating at 95 °C for 10 min. The obtained genomic DNA was 

used to perform PCR reaction for the transgene (TG) and the wild-type (WT) allele 

as an internal standard using the following procedure: 
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WT 

The PCR reaction contained  

MgCl2                  1.5 µl       
 dNTPs (5 mM)    0.4 µl       
 10x buffer            5 µl       
 WT-F (10 µM)      3 µl       
 WT-R (10 µM)      3 µl       
 DNA                    1.3 µl       
 Taq polymerase  0.2 µl       
 dH2O                  35.6 µl 

 

and the PCR protocol consisted of the following steps: 

Initial denaturation   94 °C        4 min 

Denaturation            94 °C          30 sec     
 Annealing                 60  °C         30 sec    
 Extension                 72 °C          30 sec     
       Repeated 32 x  
   Final extension         72 °C         5 minute 

Hold                           4 °C 

TG 

The PCR reaction contained  

MgCl2                   2  µl      
 dNTPs (5 mM)     0.4 µl       
 10x buffer             5 µl       
 WT-F (10 µM)      3 µl       
 WT-R (10 µM)      3 µl       
 DNA                     1 µl       
 Taq                      0.2 µl       
 dH2O                   35.4 µl 

 

and the PCR protocol consisted of the following steps: 



Materials and Methods  
  

     40 

 

Initial denaturation   94 °C        4 min 

Denaturation            94 °C          45 sec    
 Annealing                 64 °C         45 sec    
 Extension                 72 °C          30 sec     
       Repeated 32 x  
  Final extension         72 °C         5 minute 

Hold                           4 °C 

The PCR products were ran on an agarose gel (1% in 0.5 x TBE) next to a marker 

(Figure 2.3). 

             

                                     

 

Figure 2.3 Genotyping of CD11b-DTR mice. 
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2.7. Immunohistochemistry 

Materials: 

Para–formaldehyde (PFA) Sigma 
Triton 100-X Merck 
Tween 20 Roth 
  
Normal goat serum (NGS) Vector Laboratories 
Normal horse serum (NHS) Vector Laboratories 
  
Mouse anti-NeuN antibody Chemicon international 
Mouse anti-GFAP Santa cruz 
Rabbit anti-IBA-1 antibody Wako 
Rabbit polyclonal anti-HMGB1 antibody  
Rat anti-CD11b Serotec 
Goat anti-RAGE antibody Biologo 
  
Rhodamine (TRITC) goat anti-mouse 
antibody 

Jackson Laboratories 

Alexa Fluor 488-conjugated donkey anti-
mouse antibody 

Invitrogen 

Fluorescein-conjugated anti-rabbit antibody Vector Laboratories 
Cy3-conjugated goat anti-rabbit antibody Jackson 
Alexa Fluor 488-conjugated donkey anti-rat 
antibody 

Invitrogen 

Cy3-conjugated donkey anti-goat antibody Jackson 
DAPI (4′,6-Diamidino-2-phenylindole dihyd-
rochloride) 

Sigma 

  
Mowiol Calbiochem 
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2.7.1. Anti-Neuronal Nuclei (NeuN) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal goat serum (NGS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary mouse anti-NeuN 

antibody (1:50 in 5% NGS) for 1 hour at room temperature. The cells were then 

washed with PBS and incubated for 30 min with the secondary antibody 

(Rhodamine [TRITC] goat anti-mouse antibody, 1:100) at room temperature and 

protected from light. Finally the cells were treated with DAPI in water (1:10,000) for 

5 min, washed with water and mounted with Mowiol DAPCO. 

2.7.2. Anti-Glial Fibrillary Acidic Protein (GFAP) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal goat serum (NGS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary mouse anti-GFAP 

antibody (1:50 in NGS) for 1 hour at room temperature. The cells were then washed 

with PBS and incubated for 30 min with the secondary antibody (alexa fluor         

488-conjugated donkey anti-mouse, 1:100) the secondary antibody (Rhodamine 

[TRITC] goat anti-mouse antibody, 1:100) at room temperature and protected from 

light. Finally the cells were treated with DAPI in water (1:10,000) for 5 min, washed 

with water and mounted with Mowiol DAPCO. 

2.7.3. Anti- Ionized calcium binding adaptor molecule 1 (Iba-1) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal goat serum (NGS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary rabbit anti-IBA-1 antibody 
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(1:1000 in NGS) for 1 hour at room temperature. The cells were then washed with 

PBS and incubated for 30 min with the secondary antibody (flourescein-conjugated 

anti-rabbit antibody, 1:100) at room temperature and protected from light. Finally the 

cells were treated with DAPI in water (1:10,000) for 5 min, washed with water and 

mounted with Mowiol DAPCO. 

2.7.4. Anti-High Mobility Group Box-1 protein (HMGB1) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal horse serum (NHS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary rabbit polyclonal anti-

HMGB-1 antibody (which was kindly provided by Dr K. J: Tracey, Feinstein Institute 

for Medical Research, Manhasset, USA), the anti-HMGB1 antibody was applied in a 

dilution of 1:200 in NHS for 1 hour at room temperature. The cells were then 

washed with PBS and incubated for 30 min with the secondary antibody            

(Cy3-conjugated goat anti-rabbit antibody, 1:100) at room temperature and 

protected from light. Finally the cells were treated with DAPI in water (1:10,000) for 

5 min, washed with water and mounted with Mowiol DAPCO. 

2.7.5. Anti- Cluster of Differentiation molecule 11b (CD11b) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal horse serum (NHS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary rat anti-CD11b antibody 

(1:200 in NHS) for 1 hour at room temperature. The cells were then washed with 

PBS and incubated for 30 min with the secondary antibody (Alexa Fluor              

488-conjugated donkey anti-rat antibody, 1:100) at room temperature and protected 

from light. Finally the cells were treated with DAPI in water (1:10,000) for 5 min, 

washed with water and mounted with Mowiol DAPCO. 
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2.7.6. Anti-Receptor for Advanced Glycation Endproducts (RAGE) Staining 

After removal of cell culture medium, the cells were fixed with 4 % PFA for             

30 minutes, washed with PBS before they were permeabilised for 5 min in Triton 

0.25 % and Tween 0.1 % for another 5 minutes. The cells were then washed with 

PBS and blocked with 5 % normal horse serum (NHS) in PBS for 1 hour at room 

temperature. Then, cells were incubated with the primary goat anti-RAGE antibody 

(1:200 in NHS) for 1 hour at room temperature. The cells were then washed with 

PBS and incubated for 30 min with secondary antibody (Cy3-conjugated donkey 

anti-goat antibody, 1:100) at room temperature and protected from light. Finally the 

cells were treated with DAPI in water (1:10,000) for 5 min, washed with water and 

mounted with Mowiol DAPCO. 

2.8. Cloning 

Materials: 

Phusion Polymerase Finnzymes 
dNTPs Finnzymes 
Primers were synthesized by TIB MOLBIOL 

TAE buffer (Tris/Acetate/EDTA)                  
Tris-acetate (40 mM)                           
EDTA (1 mM)

 

Primer Extra 
bases 

Res. Enz. 
Rec. Seq. 

Main sequence Amplicon 
length 

cPLA2-1750-F 5’ATTCA GGATCC TTCAAACCCTGCAGTGCCT 1830 bp 
cPLA2-900-F 5’ATTCA GGATCC AGGCATTCTAACCAGGGTAC 980 bp 
cPLA2-R 5’TCGTA CTCGAG TGAGAATCCTCAGGCTTCTC  
COX2-1750-F 5’ATTCA GGATCC GAGGATGGAGTTGGTCAAAGTC 1830 bp 
COX2-900-F 5’ATTCA GGATCC GGTTAGGGAGAATAAGGCTAGT 980 bp 
COX2-R 5’TCGTA CTCGAG AGTAGTGGTGGCGGTGGAGC  
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QIAquick PCR purification kit supplied 
with the following solutions:                      
Buffer PBI                                               
Buffer PE                                               
Buffer EB 

Qiagen 

 
BamHI Promega 
XhoI Promega 
Buffer B (10x) Promega 
BSA BioLabs 

QIAquick gel extraction supplied with the 
following solutions:                               
Buffer QG                                             
Buffer PE                                              
Buffer EB 

Qiagen 

 
Ligation Buffer Roche 
T4 DNA Ligase Roche 
  
Gene Ruler 1 κB DNA ladder Fermentas 
CaCl2 (0.1 M) Merck 

 
LB Medium (Lysogeny broth) *                    
1 % Peptone from Casein                            
0.5 % Yeast extract                                
0.5 % NaCl 

                           
Fluka                  
Roth              
Prolabo 

 
HB101 competent cells Promega 
 
SOC medium (Super Optimal broth, 
SOB, with Catabolite repression) *          
2 % Peptone from casein                       
0.5 % Yeast extract                                   
20 mM NaCl                                            
2.5 mM KCl                                                  
10 mM MgCl2                                               
10 mM MgSO4                                            
20 mM Glucose 

 

Fluka                     
Roth                
Prolabo               
Merck               
Merck                         
J.T.Baker        
Merck 

Agar GibcoBRL 

Ampicillin Roth 
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Agar plates 1.5 % agar in LB + 50 µg/ml 
ampicillin 

 

Taq Polymerase Taqara 

PureYield Plasmid Midiprep System 
supplied with the following reagents            

- Cell Resuspension solution (CRA)        
50 mM Tris-HCL, pH 7.5                         
10 mM EDTA, pH 8.0                           
100 µg/ml RNase A 

- Cell Lysis Solution (CLA)                      
0.2 M NaOH                                            
1 % SDS 

- Neutralisation solution (NSB)                
4.09 M Guanidine HCl (pH 4.8)               
759  mM Potassium Acetate                   
2.12 M glacial acetic acid 

Promega 

- Endotoxin Removal wash                     
162.8 mM potassium acetate                  
22.6 mM Tris-HCl (pH 7.5)                      
0.109 mM EDTA (pH 8.0)          
supplemented with 95 % ethanol 
before use 

- Column Wash 

 

Plasmid purification maxi kit     
supplied with the following reagents          

- Resuspension Buffer (P1)                   
50 mM Tris-HCL, pH 8.0                        
10 mM EDTA                                      
100 µg/ml RNase A                                 

Qiagen 
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- Lysis Buffer (P2)                                   
200 mM NaOH                                       
1 % SDS                                                  
- Neutralisation Buffer                             
3 M Potassium Acetate, pH 5.5               
- Equilibration buffer (QBT)                     
750 mM NaCl                                          
50 mM MOPS, pH 7.0                             
15 % isopropanol (v/v)                            
0.15 % Triton X-100 (v/v)                        
- Washing Buffer (QC)                            
1 M NaCl                                                 
50 mM MOPS, pH 7.0                             
15 % isopropanol (v/v)                            
- Elution Buffer (QF)                               
1.25 M NaCl                                            
50 mM Tris-HCl, pH 8.5                          
15 % isopropanol (v/v) 

 

BD+ (BigDye® Terminator v1.1 Cycle 
Sequencing Kit) 

Applied Biosystems 

Luc-5 primer                                                
5’ CCATTT TACCAA CAGTAC CG 

TIB MOLBIOL 

Sephadex GE Health Care 
Biosciences 

Hi-Di™ Formamide Applied Biosystems 
 

*  LB and SOC were sterilized by autoclaving and ampicillin was added to LB after 
the solution had reached a temperature of about 50 – 55 °C. 

 

The promoter region (-2000 base downstream and +200 b upstream of the 

transcription start site TSS) for cPLA-2, COX-2 and mPGES-1 were analysed to find 

the probable transcription factor binding sequences in that region using an online 

software (http://www.gene-regulation.com/). 

Interestingly, we found several sites where NF-κB can bind in the promoter regions 

for these genes and we decided to prepare two constructs for each gene, a long 
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one starting at –1750 to +80 relative to the TSS and a short construct starting at –

900 to +80 relative to the TSS (of cPLA-2 and COX-2) and cloned them into the 

promoterless vector pXP2. PCR primers producing these fragments were designed 

in a way that the 5’ end of each primer contained - in addition to the required DNA 

sequence – a recognition sequence for the restriction enzymes BamHI (GGATCC in 

case of the forward primer) and XhoI (GAGCT in case of the reverse primer) 

preceded by 5 non-specific bases to ensure that the restriction enzyme will be able 

to cut at that site.  

For mPGES-1, constructs containing the sequences –1814 to +33 and –930 to   

+33 in the promoterless vector pGL3-basic were kindly provided by Dr. Hiroaki 

Naraba (Iwate Medical University, Japan) and were described previously in details 

(H. Naraba et al., 2002). 

2.8.1. Cloning PCR 

The PCR reaction consisted of  

buffer (5x)               10 µl       
 dNTPs (5mM)           2 µl       
 primer F (10 µM)      1 µl       
 primer R (10 µM)      1 µl       
 Phusion Polymerase 0.5 µl      
 genomic DNA           2 µl       
 dH2O                        33.50 µl 

The following PCR protocol was used 

Initial denaturation   98 °C        30 seconds 

Denaturation            98 °C            10 seconds    
 Annealing                60 °C             30 seconds for 1 κB   
      1 minute for 2 κB   
 Extension                 72 °C             1 minute    
       Repeated 30 x 

Final extension        72 °C         7 minute 

Hold                          4°C 
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Then, the PCR products were ran on an agarose gel (1% in 0.5 x TAE) (Figure 2.4) 

and purified using the PCR product purification kit (Qiagen). 

2.8.2. PCR product purification  

The PCR product (100 µl) was mixed with 500 µl buffer PBI and applied to the spin 

column assembled in a collection tube. Centrifugation at 10,000 x g for 1 min at 

room temperature allowed DNA to bind to the column. Then, the flow-through was 

discarded and the column was washed with 750 µl buffer PE. After centrifugation for 

1 min the flow-through was discarded and the column centrifuged again for 1 min. 

The column was removed to a new 1.5 ml tube, buffer EB (50 µl) was added to the 

center of the membrane and the column was centrifuged for 1 min to elute DNA. 

                           

Figure 2.4 cPLA-2 and COX-2 constructs 

 

2.8.3. Cleavage with restriction enzymes 

Both the DNA insert and vector were cleaved by the restriction enzymes BamHI and 

XhoI  

Vector (pXP2) cleavage 

Buffer (10x)                            2 µl      
 Acetylated BSA    (10 µg/µl)  0.2 µl     
 Plasmid (1µg)                        5 µl      
 dH2O                                     12.3 µl     
 BamHI                                    0.5 µl     
 XhoI                                       0.5 µl 
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Figure 2.5 pXP2 linearized by the restriction enzymes and subjected to agarose 
electrophoresis 

 

Insert cleavage 

Buffer (10x)                             2 µl     
 Acetylated BSA (10 µg/µl)      0.2 µl     
 DNA                                       18 µl     
 BamHI                                    0.5 µl     
 XhoI                                       0.5 µl 

After cleavage (4 h at 37 °C), 4 µl loading buffer was added and the cut product was 

loaded on 1 % agarose gel in TAE to check again for the correct size (Figure 

2.5).Then the bands were cut and purified using the Gel purification kit (Qiagen). 

2.8.4. Gel purification 

Gel fragments containing the DNA fragment of the correct size were excised by a 

clean scalpel and weighed. Buffer QG was added (in a volume equal to 3 times the 

gel weight) and incubated at 50 °C for 10 min till the gel was dissolved. Then 

isopropanol was added (in equal volume to the gel weight) and the mixture was 

applied into a spin column assembled in a collection tube. The column was 

centrifuged at 10,000 x g for 1 min at room temperature to allow DNA to bind to the 

column. 

The flow-through was discarded and Buffer QG (500 µl) was added and the column 

was centrifuged for 1 min to remove any traces of agarose before the column was 

washed with 750 µl buffer PE and centrifuged for 1 min. 
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The flow-through was discarded and the column was centrifuged for additional        

1 min. The column was removed to a new 1.5 ml tube and 50 µl buffer EB added to 

the center of the membrane and centrifuged for 1 min to elute DNA. 

2.8.5. Ligation 

The concentration of digested vector and DNA insert was estimated by comparing 

the band intensity on the gel with that on the product data sheet of the ladder (Gene 

Ruler).  

In each ligation reaction, a total of 1 µg DNA (vector: insert in a ratio of 1:2) was 

mixed with 3 µl ligation buffer, 2 µl T4 DNA Ligase and dH2O to 30 µl. The reaction 

was incubated overnight at 4 °C and the ligated product was used to transform 

competent cells. 

2.8.6. Generation of Competent HB101 cells  

Commercially available HB101 cells were streaked on the surface of an agar plate 

without antibiotics and grown overnight at 37 °C. Then, a single colony was picked 

and inoculated into 3 ml LB medium free from antibiotics and grown overnight at   

37 °C with shaking. This bacterial suspension was used to inoculate a larger volume 

of LB without antibiotics (200 ml) and incubated at 37 °C with shaking until they 

reached the logarithmic growth phase (Optical Density OD600 = 0.4 – 0.6). The 

bacterial suspension was then centrifuged at 5,000 x g for 5 min at 4 °C and the 

pellet was resuspended in 200 ml ice-cold 0.1 M CaCl2 and again centrifuged at 

5,000 x g for 5 min at 4 °C. Washing with CaCl2 was repeated two times before the 

pellet was resuspended in 5 ml ice-cold CaCl2 and 100 µl aliquots were transferred 

to pre-chilled Eppendorf tubes. The samples were frozen in liquid nitrogen and 

stored at – 80 °C. To test for absence of any resistance to antibiotics, competent 

cells were streaked on the surface of an agar plate containing ampicillin on which 

they did not grow after overnight incubation at 37 °C. Also the competence of the 

cells was evaluated by test transformation using a control plasmid                  

(HB101 competent cells have no resistance to antibiotics and they gain resistance 
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against certain antibiotic when they take in a plasmid expressing resistance gene to 

antibiotics, e.g. ampicillin in case of pXP2 or pGL3-basic).  

2.8.7. Transformation 

HB101 cells were transformed with the blank vector (pXP2 or pGL3-basic) or 

vectors containing the DNA inserts as follows: 

100 µl competent cells (HB101)      
 + 2 µl vector,         
 on ice for 5 minutes        
 at 42°C for 50 seconds       
 on ice for 2 minutes 

Then 900 µl LB medium or SOC were added to the mixture and incubated at 37 °C 

for 1 hr with shaking (900 rpm). 

The bacteria/vector solution (100 µl) was streaked on the surface of an agar plate 

containing ampicillin (50 µg/ml) so that only bacterial cells containing the vector 

could grow. In addition, the remaining solution was centrifuged at 5,000 x g for        

5 minutes at 16 °C. The supernatant was discarded, the pellet was resuspended in 

100 µl SOC and plated on another agar plate containing ampicillin. The plates were 

incubated inverted up-side-down overnight at 37 °C. 

To ensure appropriate ligation of the vector and the DNA insert in bacterial colonies 

that grew on ampicillin plates after transformation, colony PCR was performed to 

detect the presence of the correct DNA insert in several single colonies. Several 

single colonies were picked and each resuspended in 20 µl water before colony 

PCR was performed. 
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2.8.8. Colony PCR 

The PCR reaction consisted of 

buffer (10x)             5 µl       
 dNTPs (5 mM)        1 µl       
 primer F (10 µM)     2.5 µl       
 primer R (10 µM)     2.5 µl       
 Taq polymerase      1 µl       
 DNA                         10 µl       
 d H2O                      28 µl 

The following PCR protocol was used 

Initial denaturation   94 °C        10 minutes 

Denaturation            94 °C          20 seconds    
 Annealing                58 °C          30 seconds   
 Extension                 72 °C          2  minute    
      repeated 30 x 

Final extension         72 °C         7 minute 

Hold                          4°C 

Then, a positive colony (containing the correct insert size) (Figure 2.6) was 

inoculated in 3 LB (+ ampicillin 50 µg/ml) and grown overday (8 h) and then used to 

inoculate larger volumes of LB (+ ampicillin) which was used for the isolation of 

large amounts of the plasmid. 

             

Figure 2.6 Colony PCR for cPLA-2 and COX-2 constructs 
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2.8.8. Purification of the plasmid 

For purification of the plasmids we used PureYield Plasmid Midiprep System 

(Promega) or Qiagen plasmid purification maxi kit. 

2.8.8.1. PureYield Plasmid Midiprep System (Promega) 

Thirty µl bacterial suspension were inoculated in 3 ml LB (containing ampicillin      

50 µg/ml) and incubated at 37 °C with shaking for 8 hours. Then, 100 µl of the 

bacterial suspension were inoculated into 100 ml LB (+ amp) in a 500-ml sterile 

flask and incubated at 37 °C with shaking for 16-21 h.  

The cells were collected by centrifugation at 4.000 x g for 10 min at 16 °C and then 

resuspended in 3 ml cell resuspension solution. Cell lysis solution (3 ml) was added 

and mixed by inverting 5 times. After 3 min incubation at room temperature, 

neutralisation solution (5 ml ) was added. The solution was mixed by inverting       

10 times and incubated for 3 min at room temperature. Finally it was centrifuged at 

6,000 x g for 30 min at 16 °C. 

The supernatant was carefully transferred into the blue clearing column assembled 

on the white binding column connected to a vacuum manifold. The supernatant was 

left for 2 min to allow the debris to float upwards and then vacuum was applied till 

the solution passed through both columns. Then, the vacuum was released and the 

blue column discarded before 5 ml endotoxin removal wash were applied and 

allowed to pass through the column. 

Twenty ml column wash were added and allowed to pass through the column. The 

vacuum continued for another 1-2 min to dry the column. Then, the column was 

transferred to a 50-ml tube and 600 µl nuclease free water were added. To elute 

DNA, after 5 min at room temperature, the tubes (without lid) were centrifuged at 

2,000 x g for 5 min at 16 °C. The concentration of the eluted DNA was determined 

spectrophotometrically at 260 nm. 
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2.8.8.2. Plasmid purification maxi kit (Qiagen) 

Thirty µl bacterial suspension were inoculated in 3 ml LB (containing ampicillin       

50 µg/ml) and incubated at 37 °C with shaking for 8 hours. Then, 200 µl of the 

bacterial suspension were inoculated into 100 ml LB (+ amp) in a 500-ml sterile 

flask and incubated at 37 °C with shaking for 12-16 h.  

The cells were collected by centrifugation at 6,000 x g for 15 min at 4 °C and then 

resuspended in 10 ml resuspension buffer P1 supplemented with RNase A (DNase 

free). Ten ml lysis buffer P2 were added and mixed by inverting 5 times. After 5 min 

incubation at room temperature, 10 ml of pre-chilled neutralisation buffer P3 were 

added. The solution was mixed by inverting 5 times and incubated for 20 min on ice. 

After further mixing, it was centrifuged at 14,000 x g for 30 min at 4 °C. 

The supernatant was carefully transferred into a new tube and centrifuged again at 

14,000 for 15 min at 4 °C. Then, the supernatant was carefully transferred into a 

column which was previously equilibrated with 10 ml equilibration buffer QBT. The 

solution was allowed to drain through the column by gravity and then the column 

was washed two times each with 30 ml wash buffer QC. DNA was eluted into a new 

tube using 15 ml elution buffer GF and then precipitated with 10.5 ml isopropanol. 

After centrifugation at 14,000 x g for 15 min at 4 °C the DNA pellet was washed with 

5 ml 70 % ethanol, air dried and dissolved in sterile water. The concentration was 

determined spectrophotometrically at 260 nm 

2.8.9. Sequencing 

To ensure that PCR has synthesized the correct DNA insert(s) and that the previous 

steps did not cause any mutations in these sequences, we sequenced the DNA 

insert in each of our vectors. 

The PCR reaction consisted of 

BD+                    3.2 µl       
 Primer (10 µM)   1.3 µl      
 Plasmid (1 µg)        
 Water to 8 µl 
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The following PCR protocol was used 

94 °C      15 seconds       
 60 °C       4 minutes        
   repeated 32 x 

We performed two sequencing reactions for each insert using either the reverse 

primer used to synthesize that sequence or a primer directed against a sequence 

located in the plasmid (LUC-5) to get as much information as possible about the 

sequence of each insert. 

Sephadex solution (750 µl) was applied to a separating column placed in a 

collection tube and centrifuged at 4,000 x g for 5 minutes. The flow-through was 

discarded before centrifuging again. Then, the column was placed in a new 1.5 ml 

tube and the PCR product (8 µl) + 2 µl water were applied to the column and 

centrifuged at 4,000 x g for 5 minutes. 

The flow-through was collected and mixed with 10 µl HiDi in another 0.5 ml tube. 

Then the sequence was determined using the ABI Prism 310 Genetic Analyser. The 

obtained sequence was aligned to the original sequence of the DNA insert to check 

for any possible mutations or mismatches. Sequences were found to be identical 

using sequence analyser ABI prism software. 

2.9. Transfection  

Materials: 

Lipofectamine 2000 Invitrogen 
Opti-MEM I medium Invitrogen 
phRL-TK Promega 
pNF-κB-luc Stratagene 

 

Pure cortical neurons in (24 well plates) were transfected at DIV 10 as follows: 

2.9.1. Transfection of a single plasmid 

Cell culture medium was replaced with 500 µl transfection medium (full neurobasal 

medium without antibiotics) and incubated for 24 h. Then the blank plasmid or 
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plasmid containing the gene constructs (1 µg DNA/well) was diluted in 50 µl Opti-

MEM I medium. Also 1.5 µl/well Lipofectamine 2000 was diluted in 50 µl Opti-MEM I 

and incubated for 5 minutes at room temperature. Then, the diluted DNA and 

Lipofectamine were combined, mixed gently and incubated for 20 minutes at room 

temperature. 100 µl of the combined solution were added to the appropriate wells 

(containing media without antibiotic) and mixed gently by rocking the plate. After 

incubation at 37 °C for 18-24 hours, the medium was replaced with stimulation 

medium with or without TNF and incubated for 6 hours before the transcriptional 

activity was assessed by luciferase assays. 

2.9.2. Transfection of multiple plasmids 

Plasmids containing the gene constructs (0.5 µg), pBS and p65 or Flag-IKK-2-EE 

(0.5 µg) together with 0.05 µg phRL-TK were transfected using the same protocol 

described above. However, the transcriptional activity was assessed by the dual 

luciferase assay. 

In another experiment, neurons were transfected with phRL-TK and pNF-κB-luc for 

18-24 hr. Then, the cells were subjected to OGD for 4.5 h and 24 h recovery, before 

the transcriptional activity was assessed by dual luciferase. 

2.10. Luciferase Assay 

Materials: 

100 mM KH2PO4 (pH 7.8) Merck 
180 mM EGTA (pH7.4) Roth 
1 M MgSO4 J.T.Baker 
0.5 Glycylglycin (pH7.8) Serva 
DL-Dithiothreitol (DTT) Roth 
Luciferin Sigma 
  
Glycylglycin buffer (pH 7.8)               

5 ml 0.5 M Glycylglycin              
1.5 ml 1M MgSO4                                 

2.22 ml 180 mM EGTA             
Complete with water to 100 ml
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Assay Mix for 10 samples                
1.5 ml Glycylglycin buffer           
300 µl 100 mM KH2PO4             
20 µl 100 mM DTT                 
4 µl 1M ATP.                            
16 µl water. 

 

  
Extraction buffer for 10 samples   

1.1 ml Glygylglycin buffer           
11 µl Triton x-100 (1%)              
11 µl 100 mM DTT (1mM) 

 

  
Luciferin                                              

55 mg DTT                                     
35.7 ml Glycylglycin buffer on ice  
10 mg luciferin                               
store aliquots at – 80 °C. 

 

  
Luciferin mix                                      

600 µl luciferin                                
2.4 ml Glycylglycin buffer               
240 µl 100 mM DTT. 

 

 

The cell culture medium was removed and the cells were washed once with ice-cold 

PBS. Then extraction buffer (110 µl) was applied to each well and the cells were 

scraped and transferred to Eppendorf tubes. After centrifugation at 13,000 x g for    

5 minutes at 4 °C, assay mix (184 µl) was applied in each measurement tube, and 

50 µl sample were added just before measuring. The luminometer (Lumat LB 9501, 

Berthold) automatically subtracted the background activity, injected 100 µl luciferin 

solution and measured the activity in the sample. 
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2.11. Dual Luciferase Assay 

Materials: 

Dual Luciferase Assay Kit Promega 
  
The kit is composed of:  
- Passive lysis buffer  
- LAR II  
- Stop & Glo solution  

The cell culture medium was removed and the cells were washed once with cold 

PBS. Then, passive lysis buffer (100 µl) was applied to each well and the cells were 

scraped and transferred to Eppendorf tubes. After centrifugation at 13,000 for         

5 minutes at 4 °C, LAR II solution (100 µl) was applied in each measurement tube. 

The background activity was measured before the sample (20 µl) was added and 

the firefly luciferase activity measured. Finally, 100 µl Stop & Glo solution was 

added to stop the firefly luciferase activity and to start the renilla luciferase activity. 

Firefly luciferase activity was expressed relative to the renilla luciferase activity as a 

control for differences in transfection efficiency or cell death. 

2.12. Statistics  

Student t-test was used for comparison of two groups and one way ANOVA was 

used for comparison between more than two groups. Data were expressed as 

means ± S.E.M.  
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3. Results 

Ischemia is accompanied by elevation in the levels of several inflammatory 

mediators including TNF (T. Liu et al., 1994), HMGB1 (J. B. Kim et al., 2006; J. Qiu 

et al., 2008), and interleukines (T. Liu et al., 1994; T. Sairanen et al., 2001). 

Ischemia also results in the activation of several transcription factors such as NF-κB 

and AP-1 (Q. Wang et al., 2007). 

In this study, we used an in vivo model of ischemia, MCAO in mice and an in vitro 

model, OGD of primary cortical neurons to investigate a possible link between the 

transcription factor NF-κB and some of the inflammatory mediators reported to play 

a role in stroke, namely the AA cascade end product, PGE2, together with the         

3 major genes responsible for its production cPLA-2, COX-2 and mPGES-1, and 

TNF. Our study investigated the role of HMGB1 in ischemia using primary cortical 

neurons or mixed neural cultures containing neurons, astrocytes and microglia. 

3.1. Neuronal IKK2 is essential for arachidonic acid cascade activation 
following ischemia  

To investigate the activation of the AA cascade following ischemia, mice were 

subjected to 48 h of ischemia using MCAO. The mRNA expression of the three AA 

cascade genes cPLA-2, COX-2 and mPGES-1 in the ischemic core and periphery 

was quantified using real time RT-PCR. We observed a 298 % induction in cPLA-2 

in the ischemic core and a 178 % induction in the periphery of ischemia (Figure 

3.1a). Similarly, COX-2 was up-regulated to about 212 and 207 % in the ischemic 

core and in the periphery of ischemia respectively (Figure 3.1b), while mPGES-1 

was induced up to 293 % in the ischemic core and to lesser extent (132 %) in the 

periphery of ischemia (Figure 3.1.c). 
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Figure 3.1: Ischemia (48 h MCAO) activates the arachidonic acid cascade, 

3.1.a) mRNA expression of cPLA-2 was increased both in core and periphery of ischemia 
in wild-type mice but not in mice expressing a dominant inhibitor of IKK-2 in neurons. 
Values are means ± SEM, n=6, * P<0.05, Student t-test. 
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3.1.b) mRNA expression of COX-2 was increased both in core and periphery of ischemia 
in wild-type mice but not in mice expressing a dominant inhibitor of IKK-2 in neurons. 
Values are means ± SEM, n=6, * P<0.05, Student t-test. 
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3.1.c) mRNA expression of mPGES-1 was increased both in core and periphery of 
ischemia in wild-type mice but not in mice expressing a dominant inhibitor of IKK-2 in 
neurons. Values are means ± SEM, n=6, * P<0.05, Student t-test. 

 

In parallel, we subjected mice expressing a dominant inhibitor of IKK-2 in neurons to 

cerebral ischemia (O. Herrmann et al., 2005). Fourty eight hours after MCAO, the 

mRNA expression of the three AA cascade genes in the ischemic core and 

periphery was quantified. However, we could not detect any up-regulation in the 

expression of cPLA-2, COX-2 and mPGES-1 in these mice after MCAO both in the 

ischemic core or in the periphery of ischemia (Figure 3.1a, b and c). Interestingly, 

these mice had less infarct volume in comparison to their littermates (O. Herrmann 

et al., 2005). This suggests that neuronal activation of IKK2 mediates the up-

regulation of cPLA-2, COX-2 and mPGES-1 induced after ischemia. This effect may 

be responsible for the damage occurring in MCAO. 

3.2. Oxygen glucose deprivation activates NF-κB and arachidonic acid 
cascade genes. 

In an in vitro model of ischemia, primary cortical neurons were subjected to OGD for 

4.5 h and allowed to recover for 24 h under normal conditions. OGD resulted in 
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neuronal cell death as indicated by the elevation in LDH release into the cell culture 

medium (Figure 3.2.a).  

To test the possible involvement of NF-κB in the effects observed following OGD, 

we transfected primary cortical neurons with phRL-TK and pNF-κB-luc. In the latter 

the transcription and production of luciferase enzyme is driven by NF-κB activating 

signals. Neurons were transfected for 24 h before the induction of OGD (4.5 h 

followed by 24 h recovery). Then, the transcriptional activity of NF-κB was assessed 

using dual luciferase assay. Indeed, we observed a 196 % increase in the 

transcriptional activity of NF-κB (Figure 3.2.b), indicating the involvement of NF-κB 

in the effects observed in this in vitro model of ischemia. 
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Figure 3.2: Oxygen glucose deprivation (OGD, for 4.5 h followed by 24 h recovery) of 
primary cortical neurons is cytotoxic and activates both NF-κB and the arachidonic acid 
cascade. 

3.2.a) Primary cortical neurons release more LDH into the medium after exposure to 
OGD. Values are means ± SEM, n=8, * P<0.05, Student t-test. 

3.2.b) The transcriptional activity of NF-κB was elevated following OGD in primary 
cortical neurons transfected with pNF-κB-luc. Values are means ± SEM, n=8, * P<0.05, 
Student t-test. 
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In parallel, RNA was extracted from neuronal cultures subjected to OGD to 

investigate the mRNA expression of the AA cascade genes by real time RT-PCR. 

We found an induction of cPLA-2 and COX-2 at the mRNA level (Figure 3.2.c). We 

also checked the release of PGE2 in the cell culture medium after OGD using 

specific ELISA for PGE2 and found the level to be elevated after OGD (Figure 

3.2.d). 
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3.2.c) mRNA expression of the arachidonic acid cascade genes cPLA-2 and COX-2 in 
primary cortical neurons was increased following OGD. Values are means ± SEM, n=6, * 
P<0.05, Student t-test. 
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3.2.d) Primary cortical neurons release more PGE2 into the medium after exposure to 
OGD. Values are means ± SEM, n=8, * P<0.05, Student t-test. 
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To identify the mediator responsible for the toxic effects observed after OGD, we 

subjected primary cortical neurons to OGD in the presence of SC-51089 (10 µM), 

an EP1 antagonist (P. Zhou et al., 2008) or solvent. Interestingly,                     

SC-51089 completely abolished the toxic effects observed after OGD (Figure 3.2.e), 

indicating that activation of the AA cascade following ischemia and the subsequent 

production of PGE2 might play a role in the toxic effects observed. 
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3.2.e) Blocking the EP1 receptor by the antagonist SC-51089 (10 µM) protected neurons 
against the toxic effects of OGD. Values are means ± SEM, n=6, * P<0.05 in comparison 
to non-OGD control, one way ANOVA with Tukey’s post hoc test. 

 

3.3. Tumor necrosis factor activates NF-κB and the arachidonic acid cascade 
genes expression. 

TNF is reported to have a pro-inflammatory role after brain injuries such as 

ischemia (S. M. Allan and N. J. Rothwell, 2001). To investigate the effect of TNF on 

the transcriptional activity of NF-κB, we transfected primary cortical neurons with 

pNF-κB-luc vector. The cultures were transfected for 24 h, stimulated with TNF    

(10 ng/ml) for 6 h and then changes in the transcriptional activity were measured by 

means of the luciferase assay. Interestingly, TNF induced a 305 % increase in the 

transcriptional activity of NF-κB indicating the involvement of NF-κB in the effects 

produced by TNF (Figure 3.3.a).  
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Figure 3.3:Tumor necrosis factor (TNF, 10 ng/ml) activates NF-κB and the arachidonic 
acid cascade genes in primary cortical neurons but does not induce cytotoxicity. 

3.3.a) The transcriptional activity of NF-κB was elevated in primary cortical neurons 
transfected with pNF-κB-luc following stimulation with TNF for 6 h. Values are means ± 
SEM, n=6, * P<0.05, Student t-test. 

 

The release of LDH into the medium after TNF treatment was not changed after     

6, 15 and 24 h (Figure 3.3.b). 
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3.3.b) TNF did not change the level of LDH released into the cell culture medium by 
primary cortical neurons after 6, 15 and 24 hours. Values are means ± SEM, n=6. 

 

Next, we stimulated primary cortical neuronal cultures with TNF (10 ng/ml) for         

6, 15 or 24 h and quantified the mRNA expression of cPLA-2, COX-2 and mPGES-1 
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by real-time RT-PCR. Stimulation of neurons with TNF resulted in a 256 % induction 

of cPLA-2 after 6 hr and a smaller elevation at later time points (Figure 3.3.c). 
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3.3.c) mRNA expression of cPLA-2 in primary cortical neurons was increased following 
stimulation with TNF. Values are means ± SEM, n=6, * P<0.05, Student t-test. 

 

Similarly, COX-2 mRNA levels were elevated to 202 % after 6 hr of stimulation with 

TNF (Figure 3.3.d) and also mPGES-1 levels were upregulated after 6 hr and 

declined at 15 and 24 h (Figure 3.3.e). 
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3.3.d) mRNA expression of COX-2 in primary cortical neurons was increased following 
stimulation with TNF. Values are means ± SEM, n=6, * P<0.05, Student t-test. 



Results  
 

     68 

 

                     

R
el

at
iv

e 
R

N
A

 A
cc

um
ul

at
io

n *

6 h                   15 h                     24 h

Control

TNF

0.0

0.5

1.0

2.0

1.5

2.5

3.5

3.0
mPGES-1

*

 

 

3.3.e) mRNA expression of mPGES-1 in primary cortical neurons was increased 
following stimulation with TNF. Values are means ± SEM, n=6, * P<0.05, Student t-test. 

 

In parallel, we measured the levels of PGE2 in the cell culture supernatant at the 

different time points following stimulation of neurons with TNF using an ELlSA 

specific for PGE2 and found the levels to be elevated at all time points (Figure 3.3.f). 
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3.3.f) Primary cortical neurons released more PGE2 into the medium after 6, 15 and 24 h 
of exposure to TNF .Values are means ± SEM, n=6, * P<0.05, Student t-test. 
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3.4. TNF activation of NF-κB enhances the transcriptional activity of the 
arachidonic acid cascade genes  

Next, we wanted to confirm the transcriptional regulation of the three AA cascade 

genes by NF-κB. To do so we used an online software (www.gene-regulation.com) 

and analysed the promoter region of the cPLA-2, COX-2 and mPGES-1 genes for 

probable NF-κB binding sites. This analysis showed several binding sites for NF-κB 

in the promoter regions of these genes (Figure 3.4.a). 

- for cPLA-2, a single binding sequence was found at     
  – 1637 (GGAATTCCCT).  

- for COX-2, several binding sequences were detected at:     
  - 427 (GGGGATTCCC),        
  - 428 (AGGGGATTCC),        
  - 591 8GGGTAGTTCC),        
  - 704 (GGAAAATACC),        
  - 1514 (GAAATTTCCC) and       
  - 1515 (TGAAATTTCC). 

- for mPGES-1, a single binding sequences was detected at     
  - 801 (GGAAGGGCCA). 

We constructed reporter fusion genes by inserting a short (-900/+80 bp) or a long (-

1750/+80 bp) segment of the promoter sequence of the cPLA-2 and COX-2 genes 

into the promoterless vector pXP2. In these constructs, the transcriptional activity in 

the promoter region of these genes will drive the expression of luciferase. To test 

changes in the transcriptional activity induced in mPGES-1, we used the previously 

reported vectors (H. Naraba et al., 2002), which contain a short (-930/+33 bp) or a 

long (-1814/+33 bp) segment of the promoter region of mPGES-1 in the 

promoterless vector pGL3-basic to drive the expression of luciferase.  
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Figure 3.4. NF-κB can bind to and activate the arachidonic acid cascade genes, cPLA-2, 
COX-2 and mPGES-1. 

3.4.a. Probable binding sites of NF-κB to the promoter regions of cPLA-2, COX-2 and 
mPGES-1. Binding sequences are shown in the left panel. 

 

Primary cortical neurons were transfected with each of these constructs or the 

empty vector (which served as a background control) 24 h before being stimulated 

with TNF for 6 h. The transcriptional activity of cPLA-2 was only increased in case 

of the long construct cPLA-2(-1750/+80)-luc that contained the binding site for     

NF-κB (Figure 3.4.b). Interestingly, the transcriptional activity of COX-2 was 

increased in both constructs that contain NF-κB binding sites (Figure 3.4.b). 

However, the transcriptional activity of mPGES-1 was only increased in the case of 

the short construct mPGES(-930/+33)-luc (Figure 3.4.b).  
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3.4.b. Stimulation by TNF (10 ng/ml for 6 h) leads to induction of the transcription of the 
arachidonic acid cascade genes, cPLA-2, COX-2 and mPGES-1. Values are means ± 
SEM, n=6, * P<0.05, Student t-test. 

 

To further investigate the possible role of NF-κB in driving the expression of cPLA-2, 

COX-2 and mPGES-1, we decided to use two approaches. The first was to use an 

upstream activator of NF-κB, IKK2, which is responsible for the phosphorylation and 

degradation of the inhibitory IκB (N. D. Perkins, 2000). Once IκB is degraded, free 

NF-κB is immediately translocated into the nucleus where it binds to DNA inducing 

the expression of several genes (Q. Wang et al., 2007). The second approach was 

to use the active subunit of NF-κB, p65 as a direct stimulant for the transcription of 

cPLA-2, COX-2 and mPGES-1 in primary cortical neurons. 

First, we transfected primary cortical neurons with the vector bluescript (pBS) or the 

constitutively active IKK2 vector (B. Baumann et al., 2007) together with phRL-TK 

and one of the following constructs: cPLA(-900/+80)-luc, cPLA(-1750/+80)-luc, 

COX(-900/+80)-luc, COX(-1750/+80)-luc, mPGES(-930/+33)-luc or                

mPGES (-1814/+33)-luc. Six hours after transfection, the changes in the 
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transcriptional activity of cPLA-2, COX-2 and mPGES-1 were evaluated by 

measuring the firefly luciferase activity. In parallel, the renilla luciferase activity was 

measured to normalize for differences in cell death or transfection efficiency. 

Interestingly, we found out that the transcriptional activity for both constructs of 

cPLA-2 was significantly elevated under the influence of the constitutively active 

IKK2 (Figure 3.4.c). Similarly, the transcriptional activity for COX-2 and mPGES-1 

constructs was increased by the constitutively active IKK2 (Figure 3. 4. c). 
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3.4.c. Increasing the activity of NF-κB by overexpressing a constitutively active IKK2 
increased the transcriptional activity of the arachidonic acid cascade genes, cPLA-2, 
COX-2 and mPGES-1. Values are means ± SEM, n=6, * P<0.05, Student t-test. 

 

This provides evidence that increasing the activity of NF-κB by the use of the 

constitutively active IKK2 construct (Flag-IKK2-EE) induces an increase in the 

transcription of cPLA-2, COX-2 and mPGES-1. 

The second approach was to test if direct activation of NF-κB could also trigger the 

expression of these genes. Primary cortical neurons were transfected with phRL-TK 
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and an expression plasmid for p65, RcCMV-p65 (M. L. Schmitz and P. A. Baeuerle, 

1991) or bluescript (pBS) together with one of the following constructs:           

cPLA(-900/+80)-luc, cPLA(-1750/+80)-luc, COX(-900/+80)-luc, COX(-1750/+80)-luc, 

mPGES(-930/+33)-luc or mPGES (-1814/+33)-luc. Six hours after transfection, the 

transcriptional activity of each of the genes was measured by dual luciferase assay. 

Differences in transfection efficiency were normalized by renilla luciferase activity. 

The transcriptional activity of all constructs (cPLA-2, COX-2 and mPGES-1, both the 

short and the long constructs) was increased by overexpression of p65 (Figure 

3.4.d). 

                

R
el

at
iv

e 
Lu

ci
fe

ra
se

 A
ct

iv
ity

0

200

400

800

1000

COX(-900/+80)-luc

COX(-1750/+80)-luc

*

cPLA(-900/+80)-luc

mPGES(-930/+33)-luc

mPGES(-1814/+33)-luc

cPLA(-1750/+80)-luc

*

* *

p65

pBS

**

 

3.4.d. Direct stimulation of NF-κB in primary cortical neurons by overexpression of p65 
resulted in an elevation in the transcriptional activity of the arachidonic acid cascade 
genes cPLA-2, COX-2 and mPGES-1. Values are means ± SEM, n=6, * P<0.05, Student t-
test. 

 

This further confirms our conclusion that NF-κB regulates the transcription of   

cPLA-2, COX-2 and mPGES-1 in cultured primary cortical neurons. 
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3.5. Oxygen glucose deprivation-associated toxicity of primary cortical 
neurons is mediated through High mobility group box 1 protein release  

When primary cortical neurons were subjected to OGD (4.5 hours and recovery for 

24 hours), we noticed an elevation in the levels of HMGB1 in the cell culture 

medium (Figure 3.5.a). 
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Figure 3.5: HMGB1 is associated with death of primary cortical neurons subjected to 
OGD (4.5 hours and 24 hours recovery). 

3.5.a. Neurons release HMGB1 following OGD. Values are means ± SEM, n=8, * P<0.05, 
Student t-test. 

 

HMGB1 acts on several receptors including RAGE, TLR-2 and TLR-4 and other 

unidentified receptors (M. T. Lotze and K. J. Tracey, 2005). To study the role of 

HMGB1 in the toxic effects observed after OGD, we subjected primary cortical 

neurons to OGD in the presence of soluble RAGE (sRAGE, 50 µg/ml), which is the 

decoy receptor for RAGE blocking binding of agonists to RAGE (G. Marsche et al., 

2007), or solvent. Interestingly, sRAGE completely abolished the toxic effects 

observed after OGD (Figure 3.5.b), indicating that the release of HMGB1 following 

ischemia may play a role in neuronal cell death. 



Results  
 

     75 

 

                                 

R
el

at
iv

e 
LD

H
 A

ct
iv

ity

Control                              OGD

Control

sRAGE

0.0

1.0

2.0

3.0

4.0

*

 

3.5.b. sRAGE (50 µg/ml) could protect neurons against the toxic effects of OGD. Values 
are means ± SEM, n=6, * P<0.05 in comparison to non-OGD control, non-OGD sRAGE 
and OGD sRAGE, one way ANOVA with Tukey’s post hoc test. 

 

3.6. Recombinant HMGB1 is not toxic to primary cortical neurons and does 
not activate NF-κB nor the expression of genes in the arachidonic acid 
cascade 

In an attempt to confirm the role of HMGB1 in neuronal cell death following OGD, 

primary cortical neurons were stimulated with recombinant HMGB1 (500 ng/ml) for 

24 h and cell death was investigated by measuring the release of LDH into the cell 

culture medium. Surprisingly, HMGB1 did not change the level of LDH released 

(Figure 3.6.a). To study the effects of HMGB1 on the NF-κB signaling in primary 

cortical neurons, we transfected primary cortical neurons with pNF-κB-luc vector for 

24 hours, then stimulated with HMGB1 (500 ng/ml) for another 24 h before the 

transcriptional activity of NF-κB was measured by luciferase assay. The 

transcriptional activity of NF-κB was not different after stimulation with HMGB1 

(Figure 3.6.b). 
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Figure 3.6. Stimulation of primary cortical neurons with the recombinant HMGB1 (500 
ng/ml for 24 hours) is not toxic and does not activate NF-κB nor the arachidonic acid 
cascade. 

3.6.a. Stimulation of primary cortical neurons with the recombinant HMGB1 does not 
change the amount of LDH released into the medium. Values are means ± SEM, n=8. 

3.6.b. Stimulation of primary cortical neurons (transfected with pNF-κB-luc) with the 
recombinant HMGB1 does not change the transcriptional activity of NF-κB. Values are 
means ± SEM, n=6. 

 

To identify a possible effect of HMGB1 on the AA cascade, primary cortical neurons 

were stimulated with HMGB1 for 24 hours. Then, RNA was isolated and used to 

perform real time RT-PCR for cPLA-2, COX-2 and mPGES-1. We found no change 

in the expression of cPLA-2, COX-2 and mPGES-1 (Figure 3.6.c). 

During this experiment, cell culture medium was collected and used to measure the 

level of PGE2 using a specific ELISA. However, this revealed no change in the level 

of PGE2 in response to HMGB1 (Figure 3.6.d) indicating that HMGB1 is not acting 

through NF-κB or the AA cascade in primary cortical neurons. 
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3.6.c. Stimulation of primary cortical neurons with recombinant HMGB1 did not induce 
the expression of the arachidonic acid cascade genes (cPLA-2, COX-2 and mPGES-1. 
Values are means ± SEM, n=6. 

3.6.d. Stimulation of primary cortical neurons with the recombinant HMGB1 did not 
change the level of PGE2 released into the medium. Values are means ± SEM, n=6. 
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3.7. Neuronal glial interaction mediates the toxic effect of HMGB1 

To identify whether HMGB1 has a cell specific effect or not, we cultured pure 

cortical neurons, glial mixtures (astrocytes and microglia), pure astrocytes, pure 

microglia or mixed neural cultures containing all three types of cells (neurons, 

astrocytes and microglia) and stimulated each of these cultures with recombinant 

HMGB1 (500 ng/ml) for 24 h. Cell death was evaluated by measuring the amount of 

LDH released in the medium. Interestingly, HMGB1 had a toxic effect only on mixed 

neural cultures containing neurons, astrocytes and microglia (Figure 3.7.a), 

indicating the importance of the interaction between these cell types to mediate the 

effect(s) of HMGB1. 
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Figure 3.7. The interaction between neurons and glia is needed to mediate the effect of 
HMGB1. 

3.7.a. Recombinant HMGB1 (500 ng/ml for 24 hours) is toxic only to cultures containing 
neurons, microglia and astrocytes (mixed neural cultures). Values are means ± SEM, 
n=6, * P<0.05, Student t-test. 
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Since the toxic effect of HMGB1 was quite mild (only 25 – 35 % increase in LDH 

leakage from the cells into the cell culture medium), we wanted to confirm that this 

effect is really specific and not due to any possible contaminant endotoxins 

(although the effect was cell type specific and the levels of contaminants were far 

beyond the level reported to have any biological effects). For this purpose, we 

stimulated mixed neural cultures with heat-inactivated HMGB1 (heated at 95 °C for 

5 min) and measured LDH release after 24 h. Indeed, heat-inactivated HMGB1 had 

lost its toxic effects and the levels of LDH in the culture medium were not 

significantly different from the control group (Figure 3.7.b). 

                                              

R
el

at
iv

e 
LD

H
 A

ct
iv

ity

Control   Heated 
                HMGB1

0.0

0.5

1.0

1.5

 

3.7.b. Heat-inactivated HMGB1 is non toxic to mixed neural cultures proving specificity 
of the effects observed. Values are means ± SEM, n=6. 

 

Interestingly, when we stimulated mixed neural cultures with HMGB1 and measured 

changes in LDH level after 24 and 48 h, we found that mixed neural cultures release 

more LDH after 48 h than after 24 h in response to HMGB1 (Figure 3.7.c) 

confirming the specificity of the effect of HMGB1. 

 



Results  
 

     80 

 

                                

R
el

at
iv

e 
LD

H
 A

ct
iv

ity

24 h                         48 h

*

Control

HMGB1

0.0

0.5

1.5

2.5

1.0

2.0

3.0

 

3.7.c. Time-dependant effect of HMGB1 stimulation of mixed neural cultures showing 
that the effect is increased by increasing the exposure time. Values are means ± SEM, 
n=8, * P<0.05 in comparison to 24 and 48 h control, one way ANOVA with Dunn's post 
hoc test. 

 

In order to identify the mechanism of the observed effect of HMGB1, we wanted to 

identify the cell population which was killed in response to HMGB1. To do so we 

compared the number of neurons in our mixed neural cultures treated with HMGB1 

or solvent by counting the number of NeuN-positive cells in these cultures. Indeed, 

HMGB1 reduced the number of neurons in mixed neural cultures and this was 

significantly different after 48 h (Figure 3.7.d and e). 
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3.7.d. Stimulation of mixed neural cultures with recombinant HMGB1 reduced the 
number of neurons in these cultures. Values are means ± SEM, n=8, * P<0.05 in 
comparison to 24 h control, one way ANOVA with Dunn's post hoc test. 
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3.7.e. IHC of NeuN in mixed neural cultures showing the reduction in the count of NeuN-
positive cells 48 hours after stimulation with HMGB1. Scale bar 50 µm. 

 

3.8. RAGE on microglia mediates the toxic effect of HMGB1 on mixed neural 
cultures 

In order to define the molecular basis for the effect of HMGB1 on mixed neural 

cultures, we wanted to investigate the presence of HMGB1 receptors in our cell 

culture model. To do so we performed RT-PCR for TLR-2, TLR-4 and RAGE using 

cDNA obtained from whole brain, pure neuronal cultures, or pure microglial cultures 

and spleen tissue as a positive control. We used the levels of GAPDH as a house 

keeping gene. Whole brain expressed all receptors and both TLR-2 and TLR-4 were 

expressed by microglia, while neurons expressed only TLR-2 and RAGE (Figure 

3.8.a).  
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Figure 3.8. RAGE on microglia mediates the toxic effects of HMGB1. 

3.8.a. RT-PCR confirmed the presence of HMGB1 receptors in our cell culture model. 

 

To investigate the expression of RAGE by microglia, we stained glial cultures for 

Iba-1, which is a marker for microglia, together with RAGE and found that some 

microglia express RAGE (Figure 3.8.b). Interestingly, stimulation of microglia with 

LPS (1 µg/ml) for 24 h or OGD resulted in an increase in the number of microglia 

expressing RAGE (Figure 3.8.b) which was accompanied by a change in the 

morphology of microglia from the resting ramified shape to the stimulated amoeboid 

shape (Z. Xiang et al., 2006). 
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3.8.b. IHC of Iba-1 and RAGE showing the colocalization of both in some microglia and 
this colocalization is increased after stimulation with OGD or LPS (1 µg/ml for 24 hours). 
Scale bar 50 µm. 

 

To confirm the role of RAGE in neuronal cell death following ischemia, we subjected 

mixed neural cultures to OGD in presence of sRAGE (50 µg/ml) or solvent and 

investigated cell death by comparing the amount of LDH released in the cell culture 

medium between the two treatment groups. sRAGE, indeed, protected mixed neural 

cultures against the toxic effects of OGD (Figure 3.8.c). 
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3.8.c. sRAGE (50 µg/ml) protected mixed neural cultures against OGD induced cell death. 
Values are means ± SEM, n=8, * P<0.05 in comparison to Non-OGD and OGD sRAGE, 
one way ANOVA with Dunn's post hoc test. 

 

To further confirm the role of RAGE in mediating the effects of HMGB1 in our mixed 

neural culture model, we prepared mixed neural culture from different genotypes. 

Cultures containing RAGEko glia with wild-type neurons or cultures containing wild-

type glia and wild-type neurons were stimulated with HMGB1. Interestingly, 

absence of RAGE on glia abolished the toxic effect of HMGB1 on mixed neural 

cultures (Figure 3.8.d) which implies an important role of glial RAGE in mediating 

the effects of HMGB1. 
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3.8.d. Absence of RAGE on glia abolished the toxic effect of HMGB1 on mixed neural 
cultures. Values are means ± SEM, n=8, * P<0.05, Student t-test. 
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To confirm the effect of RAGE in vivo, bone marrow from wild-type or RAGEko mice 

was transplanted into irradiated wild-type mice. Six weeks later, MCAO was 

performed for 48 hours which showed that mice receiving RAGEko bone marrow 

had smaller infarcts (S. Muhammad et al., 2008). In order to find the role of RAGE 

on migrating macrophages we stained sections from mice of both groups for RAGE 

and Iba-1 and found less colocalization between RAGE and Iba-1 in mice which 

received bone marrow from RAGEko mice indicating that absence of RAGE on 

migrating macrophages could protect the mice against the damage occurring after 

MCAO (Figure 3.8.e). 

                               

3.8.e. IHC of sections obtained 48 hours after MCAO in mice transplanted with wild-type 
or RAGEko bone marrow showing less colocalization between RAGE and Iba-1 on 
migrating macrophages in case of bone marrow derived from RAGEko mice. Scale bar 50 
µM. 

 

3.9. Microglia/macrophage mediates the toxic effect of HMGB1 on mixed 
neural cultures. 

In order to test the role of microglia in the observed response to HMGB1, we 

wanted to deplete mixed neural cultures from microglia and investigate the 

response of microglia-depleted cultures to HMGB1. To do so we applied two 

approaches:  

First, we treated wild-type glial cultures with liposomes containing PBS or 

clodronate (25 % W/V) which is reported to deplete microglia and macrophages in 

vivo (N. van Rooijen and E. van Kesteren-Hendrikx, 2002). Treatment of glial 
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cultures with liposomes (0.2 ml / 3 ml medium) for 24 hours reduced the number of 

Iba-1-positive cells (Figure 3.9.a and b).  

                                             

   
   

 Ib
a-

1 
+v

e 
ce

lls
 

(%
 o

f t
ot

al
 c

el
l c

ou
nt

)

0

10

20

30

*

PBS Lipo.
Clodronate lipo.

 

Figure 3.9. Microglia and macrophages mediate the toxic effect of HMGB1 on mixed 
neural cultures. 

3.9.a. Treatment of glial cultures with clodronate containing liposomes reduced the 
number of Iba-1-positive cells. Values are means ± SEM, n=4, * P<0.05, Student t-test. 

                                    

3.9.b. IHC of Iba-1 in glial cultures after treatment with PBS or clodronate containing 
liposomes showing the depletion of microglia by clodronate treatment. Scale bar 50 µM. 

 

After treatment with liposomes, HMGB1 did not increase the level of LDH in the cell 

culture medium (Figure 3.9.c). 
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3.9.c. Stimulation  with HMGB1 of glial cultures pretreated with PBS or clodronate 
containing liposomes showed no significant difference in cell death between the different 
groups. Values are means ± SEM, n=6. 

 

When neurons were cocultured with glia pretreated with PBS or clodronate 

containing liposomes HMGB1 had no effect on liposome-treated cultures (PBS or 

clodronate) (Figure 3.9.d). However, the basal level of LDH release was higher in 

case of cultures pretreated with clodronate containing liposomes, indicating that 

treatment of cultures with liposome had affected all cell populations in the culture 

and lead to loss of the effect of HMGB1 in both cases. 
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3.9.d. Stimulation with HMGB1 (500 ng/ml) of mixed neural cultures in which glia were 
pretreated with PBS or clodronate containing liposomes did not affect LDH release. 
Values are means ± SEM, n=6. 
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When we checked cell death by apoptosis using a specific ELISA kit for DNA 

histone complexes, we found that HMGB1 caused a mild but non-significant 

increase in cell death by apoptosis in both groups. However, the basal level was 

much higher in the group that was pretreated with clodronate containing liposomes 

(Figure 3.9.e) indicating that at least in our cell culture model, liposome treatment 

affects more cells than only microglia. 
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3.9.e. HMGB1 did not cause a significant increase in apoptotic cell death after 
pretreatment with PBS or clodronate containing liposomes. Values are means ± SEM, 
n=6. 

The second approach to deplete mixed neural cultures from microglia was to 

prepare glia from CD11b-DTR mice which express diphtheria toxin receptor only in 

microglia (V. Stoneman et al., 2007). Treatment of cultures prepared from these 

mice with diphtheria toxin should only kill microglia. Indeed, treatment with 

diphtheria toxin (100 ng/ml) for 24 hours resulted in a reduction in the number of 

Iba-1-positive cells (Figure 3.9. f). 
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3.9.f. IHC of Iba-1 in glial cultures prepared from CD11b-DTR-positive mice after 
treatment with diphtheria toxin (100 ng/ml) or solvent showing the depletion of microglia 
in these cultures. Scale bar 50 µM. 

 

Stimulation with HMGB1 (500 ng/ml for 24 hours) caused only a mild nonsignificant 

increase in LDH release (Figure 3.9.g), indicating that the presence of microglia is 

indeed important to mediate the effect of HMGB1. 
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3.9.g. Stimulation with HMGB1 of mixed neural cultures in which CD11b-DTR-positive 
glia were pretreated with diphtheria toxin or solvent showed a mild nonsignificant 
elevation in LDH release. Values are means ± SEM, n=6. 
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As an alternative approach, we decided to mimic the in vivo situation following 

ischemia, which is characterized by an increase in the migration of blood derived 

immune cells such as macrophages (R. Tanaka et al., 2003), neutrophils (J. M. 

Hallenbeck, 1996) and other cell types to the site of the injury. We cocultured mixed 

neural cultures with peritoneal macrophages. When mixed neural cultures grown 

with macrophages were stimulated with HMGB1 for 48 hours we noticed a large 

increase in cell death from 198 % to 383 % (Figure 3.9.h). 

 

                                       

R
el

at
iv

e 
LD

H
 A

ct
iv

ity

0

1

2

3

4

5

Mixed culture              + macrophages

Control

HMGB1
*

 

3.9.h. Coculture of mixed neural cultures with peritoneal macrophages increased the 
toxic effect of HMGB1. Values are means ± SEM, n=6, * P<0.05 in comparison to non-
HMGB1 controls, one way ANOVA with Tukey’s post hoc. 

 

3.10. Prostaglandin E2 released from microglia mediates the toxic effect of 
HMGB1  

In an attempt to identify the mediator responsible for the interaction between the 

different cell populations in our cell culture model, we cultured pure microglia and 

stimulated them with HMGB1 for 24 h before cell culture medium was removed and 

processed for the measurement of LDH and PGE2 using a specific ELISA. We 

found that HMGB1 could increase the levels of PGE2 released in the medium by 

about 30 % (Figure 3.10.a). This was not accompanied by any change in the cell 



Results  
 

     91 

 

death as seen from the similar level of LDH released into the cell culture medium in 

both groups (Fig 3.10.b) 
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Figure 3.10. HMGB1 (500 ng/ml for 24 hours) induced the release of PGE2 from 
microglia and causes cell death in mixed neural cultures. 

3.10.a). Stimulation with HMGB1 of pure microglial cultures resulted in an elevation in 
the release of PGE2 into the medium. Values are means ± SEM, n=8, * P<0.05, Student t-
test. 

3.10.b). Stimulation with HMGB1 of pure microglial cultures did not cause any change in 
the release of LDH into the medium. Values are means ± SEM, n=8. 

 

Nevertheless, we could not find similar changes in PGE2 in case of mixed neural 

cultures stimulated with HMGB1 for 24 h (Figure 3.10.c). 
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3.10.c. Stimulation with HMGB1 of mixed neural cultures did not change the level of 
PGE2 released in the medium. Values are means ± SEM, n=8. 
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To confirm a possible role of PGE2 released by microglia in mediating the effect of 

HMGB1 on mixed neural cultures, we applied NS-398, a well established inhibitor of 

COX-2 activity (H. C. Choi et al., 2008). NS-398 (10 µM) was applied to mixed 

neural cultures 1 hour before stimulation with HMGB1 for 24 h. Then PGE2 levels in 

the cell culture medium were quantified in comparison to a control group, which 

received only the solvent DMSO. Indeed, pretreatment with NS-398 reduced the 

level of PGE2 in the medium to less than 50 % of the solvent treated groups (Figure 

3.10.d). 
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3.10.d) Stimulation with HMGB1 of mixed neural cultures pretreated with NS-398 (10 
µM) or solvent resulted in a significant reduction in the level of PGE2 released into the 
medium. Values are means ± SEM, n=8, * P<0.05 in comparison to DMSO treated 
groups, one way ANOVA with Dunn's post hoc test. 

 

At the same time, media were also used to measure the levels of LDH as a marker 

of cell death. Surprisingly, after 24 h with NS-398 or DMSO, the toxic effect of 

HMGB1 was not detectable anymore and the level of LDH released into the cell 

culture medium was the same between all groups (Figure 3.10.e).  
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3.10.e. Stimulation with HMGB1 (for 24 hours) of mixed neural cultures pretreated with 
NS-398 (10 µM) or DMSO showed no change in the level of LDH released into the 
medium. Values are means ± SEM, n=6 

 

However, when the stimulation time was increased to 48 h, HMGB1 had a toxic 

effect on DMSO treated mixed neural cultures but not in NS-398 treated cultures 

(Figure 3.10.f) although the effect after treatment with DMSO was less than that 

observed without DMSO (Figure 3.10.f) thus, blocking PGE2 production can rescue 

mixed neural cultures from the toxic effects of HMGB1. 
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3.10.f. Stimulation with HMGB1 (for 48 hours) of mixed neural cultures pretreated with 
NS-398 (10 µM) or DMSO showed that blocking the release of PGE2 by NS-398 protected 
the cultures against the toxic effects of HMGB1. Values are means ± SEM, n=6, * P< 
0.05, Student t-test. 
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3.11. Ischemia induces the release of HMGB1 from neurons but not from glia 

In order to identify the cell population which releases HMGB1 after OGD, glial 

cultures were subjected to OGD. Then, we stained the cells for HMGB1 together 

with GFAP as a marker for astrocytes or CD11b as a marker for microglia and 

compared the colocalization under normal and OGD conditions. Colocalization was 

not changed by OGD indicating that in our model of OGD, astrocytes and microglia 

retain their content of HMGB1 following OGD (Figure 3.11.a).  

                 

Figure 3.11. OGD (4.5 hours and 24 hours recovery) of mixed neural cultures induced the 
release of HMGB1 from neurons not microglia or astrocytes. 

3.11.a. IHC of glial cultures after OGD showing the colocalization of HMGB1 and the 
microglial marker CD11b or the astrocytic marker GFAP under normal and OGD 
conditions. Scale bar 50 µM. 

 

We also used media obtained from glial cultures subjected to OGD to measure the 

levels of HMGB1 released into the medium and found no change between control 
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and OGD groups (Figure 3.11.b), although there was a mild increase in LDH 

release after OGD (Figure 3.11.c). 
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3.11.b. OGD of glial cultures did not increase the release of HMGB1 into the cell culture 
medium. Values are means ± SEM, n=6. 

3.11.c. OGD of glial cultures caused an increase the release of LDH into the cell culture 
medium. Values are means ± SEM, n=6, * P< 0.05, Student t-test. 

 

When mixed neural cultures were subjected to OGD and then stained for HMGB1 

and NeuN as a marker of neurons, we found a decrease in the number of double 

positive cells and also a reduction in the HMGB1 staining intensity in NeuN-positive 

cells (Figure 3.11.d), indicating that OGD induced the release of HMGB1 from 

neurons. 

                            

3.11.d. IHC of mixed neural cultures after OGD showing less colocalization of HMGB1 
and the neuronal marker NeuN after OGD. Scale bar 50 µM. 
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To confirm the observation that HMGB1 is released after ischemia, sections 

obtained from mice subjected to MCAO for 4 hours were stained for HMGB1. 

Interestingly, there was a profound reduction in the number of cells, which express 

HMGB1 in the ischemic hemisphere (periphery) and a complete loss in the core of 

ischemia in comparison to the contralateral hemisphere (Figure 3.11.e) indicating 

that mild ischemic insults as OGD (in vitro) or in the periphery of ischemia (in vivo) 

caused the release of HMGB1 from some cells (probably neurons), while, severe 

ischemic insults as in the core of ischemia (in vivo) caused the release of HMGB1 

from all cells. 

                

3.11.e. IHC of sections obtained 4 hours after MCAO showing the complete loss of 
HMGB1 signal in the core of ischemia and the partial loss in the periphery of ischemia. 
For comparison, nuclei were stained by DAPI. Scale bar 50 µM. 
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4. Discussion 

4.1. Summary of the results 

In the present study, we show that ischemia induces genes involved in the AA 

cascade both in vivo and in vitro and that the induction is dependent on NF-κB 

signaling. The in vitro experiments also showed that PGE2 was associated with the 

neurotoxicity observed after OGD of primary cortical neurons. We also show that 

the three genes of the AA cascade, cPLA-2, COX-2 and mPGES-1 have probable 

binding sites where NF-κB can bind and induce their expression.  

Stimulation of primary cortical neurons with TNF activated NF-κB and induced the 

expression of the three genes, cPLA-2, and COX-2 and mPGES-1 both at the 

transcriptional level and at the mRNA level. TNF also induced the production of the 

AA cascade end product PGE2. In addition, increasing the activity of NF-κB by the 

use of the constitutively active IKK-2 construct or the active subunit p65 both 

resulted in a significant induction in the transcription of the three target genes.  

In addition, we studied the effect of the late mediator of inflammation HMGB1 

following ischemia and confirmed its role in mediating some of the toxic effects 

observed after ischemia. HMGB1 was released from neurons (but not from 

microglia or astrocytes) after ischemia. Blocking its effects using the decoy receptor 

sRAGE was found to be protective both in vivo and in vitro. However, stimulation of 

primary cortical neurons with recombinant HMGB1 was not toxic and toxicity was 

only induced in cultures containing neurons, astrocytes and microglia (mixed neural 

cultures).  

The toxic effect of HMGB1 was dependant on the presence of RAGE on glia 

(microglia in mixed neural cultures and microglia or infiltrating macrophages in vivo 

after MCAO). Moreover, the toxicity following OGD was abolished by sRAGE both 

in vivo and in vitro. Depletion of microglia in vitro showed that microglia are 

important for mediating the toxic effect of HMGB1 and also the application of 

macrophages on the cultures exacerbated the toxicity induced by HMGB1. We 
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found that microglia release PGE2 in response to HMGB1 and blocking the 

production of PGE2 protected against the toxic effects of HMGB1. 

4.2. Mechanisms of stroke associated damage 

Stroke (focal cerebral ischemia) affects 15 million people worldwide each year and 

is a leading cause of death or long-term disability (J. H. Yi et al., 2007). However, 

the only drug approved for clinical use in most countries is the thrombolytic agent 

recombinant tissue plasminogen activator (rt-PA) which is only given to 4–5% of 

patients due to the short therapeutic time window of 3 h in which thrombolysis is 

safe (A. R. Green, 2008). Therefore, new treatments are needed that are still 

effective when administered with some delay after onset of stroke. 

Stroke in experimental animals and humans leads to an infarct with a core where 

the blood flow is decreased by up to 100 % surrounded by a penumbra with about 

90 % reduction in blood flow (J. H. Yi et al., 2007). Following stroke, oxygen and 

glucose insufficiency in the core lead to mitochondrial failure and inability of the 

cells to maintain ionic gradients across the membrane resulting in necrotic cell 

death.  

Anoxic depolarization in the core is accompanied by elevated extracellular 

potassium and glutamate, intracellular calcium, generation of free radicals, oxidative 

stress and lactic acidosis which adds to the overall neuronal damage. However, in 

the penumbra, ischemia itself is not sufficiently severe to cause cell death and 

penumbral neurons could be rescued by therapies given within the first 6 hours 

following stroke (P. Lipton, 1999).  

Neuroinflammation is a host defense mechanism which aimed to neutralize the 

insult and restore the normal structure and function of brain. All neural cells, 

including microglia, astrocytes, neurons, and oligodendrocytes, participate in 

inflammatory responses. However, microglia play the most important role. Microglial 

cells are activated during a CNS injury and initiate a rapid response that involves 

cell migration, proliferation and release of cytokines/chemokines, which stimulate 
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phospholipases A2 and cyclooxygenases. This results in breakdown of membrane 

glycerophospholipids with the release of AA and DHA (A. A. Farooqui et al., 2007).  

AA and its metabolites play an important role in inflammation (D. Tassoni et al., 

2008). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and 

thromboxanes, while, DHA is metabolized to resolvins and neuroprotectins, that 

inhibit the generation of prostaglandins, leukotrienes, and thromboxanes (A. A. 

Farooqui et al., 2007). All isoforms of PLA2 and COX in the brain were reported to 

be stimulated after inflammation and this involved the NF-κB-mediated induction of 

TNF-a, IL-1β, and chemokines (A. A. Farooqui et al., 2007). 

4.3. Stroke induces the arachidonic acid cascade genes through NF-κB 
activation 

 Following MCAO, we observed an upregulation in the mRNA expression of the 

three AA cascade genes cPLA-2, COX-2 and mPGES-1 both in the ischemic core 

and its periphery. Interestingly, when mice expressing a dominant inhibitor of IKK-2 

in neurons were subjected to MCAO, we could not detect similar elevations in the 

expression of cPLA-2, COX-2 and mPGES-1 indicating that, MCAO can induce the 

expression of the three AA cascade genes cPLA-2, COX-2 and mPGES-1 and that 

the expression of the AA cascade genes depends on intact NF-κB signaling. 

Recently it was shown that transient ischemia resulted in an induction of cPLA-2 (C. 

Nito et al., 2008), COX-2 (E. Candelario-Jalil and B. L. Fiebich, 2008) and mPGES-

1 (Y. Ikeda-Matsuo et al., 2006). 

 A link between NF-κB and the AA cascade genes was previously reported although 

in different models and cell types. Blocking NF-κB was shown to reduce the 

expression and release of phospholipases (M. Lappas et al., 2004), and COX-2 was 

previously reported to be a target of NF-κB (B. Kaltschmidt et al., 2002). In addition, 

inhibition of NF-κB signaling through blockade of IKK2 was recently shown to 

decrease the expression of COX-2, mPGES-1 and the production of PGE2 in LPS-

activated rat microglia (A. C. de Oliveira et al., 2008). However, in this study we 
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provide evidence that NF-κB activity in neurons is essential for the induction of the 

AA cascade genes after MCAO and OGD. 

4.4. OGD induces the arachidonic acid cascade genes and NF-κB 

In addition, OGD of primary cortical neurons, an in vitro model of ischemia, (F. He et 

al., 2008), was accompanied by an induction in the transcriptional activity of NF-κB. 

Activation of NF-κB following ischemia was previously described both in vivo (A. 

Schneider et al., 1999) and in vitro (A. Cardenas et al., 2000). OGD was also 

accompanied by an increase in the expression of the AA cascade genes cPLA-2 

and COX-2 and by an increase in the production of PGE2 in accordance with 

previous experiments (E. Candelario-Jalil et al., 2003; C. Yokota et al., 2004).  

Blocking EP1 receptor (using the blocker SC-51089) resulted in protection of the 

cultures against the toxic effects observed after OGD providing further evidence for 

the toxic effect of PGE2. Our in vitro findings confirm the work of Kawano et al that 

EP1 is the main PGE2 receptor mediating neurotoxicity (T. Kawano et al., 2006). 

However, they used a different insult. 

Ischemia is known to induce the activity of several transcription factors including 

NF-κB which controls the expression of several genes involved in inflammatory 

conditions such as ischemia. Cerebral ischemia also induces the production of 

several cytokines such as TNF, IL1β and leads to the release of HMGB1 which is a 

late mediator of inflammation known to be released passively or actively at late 

stages following inflammatory conditions such as sepsis, heat shock and ischemia. 

The activation of NF-κB is well known to contribute to the injury following ischemia 

(A. Schneider et al., 1999). NF-κB is present in an inactive state, complexed to IκB 

proteins in the cytoplasm. However, upon stimulation, IκB proteins are 

phosphorylated, ubiquitinated and degraded by proteasome releasing free NF-κB to 

translocate to the nucleus (M. Schwaninger et al., 2006). This is mediated mainly by 

the IKK complex composed of IKK1 (or IKKα), IKK2 (or IKK β) and IKK3 (or IKK γ). 
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4.5. TNF induces the arachidonic acid cascade genes and NF-κB 

Ischemia is known to increase the levels of TNF (L. Zhou et al., 2008). Therefore, 

we decided to use TNF as a stimulant of primary cortical neurons to study the 

mechanism(s) of the toxic effect observed after ischemia. In the tested 

concentration of TNF we observed no neurotoxicity but found activation of the 

transcriptional activity of NF-κB in accordance with previous results (G. Bonizzi and 

M. Karin, 2004).  

Also we found an induction in the mRNA expression of the three AA cascade genes 

cPLA-2, COX-2 and mPGES-1 in primary cortical neurons stimulated with TNF at 

different time point. This was also accompanied by an increase in the production of 

PGE2. TNF was known to activate cPLA-2 and thus increase the release of AA 

which is then metabolized to produce eicosanoids which are potent inflammatory 

mediators (M. Kronke and S. Adam-Klages, 2002). The expression of COX-2 was 

reported to be induced by TNF (Y. C. Chang et al., 2003) and also mPGES-1 

expression could be induced by TNF (K. Subbaramaiah et al., 2004).  

In order to find a possible link between the induction in the three AA cascade genes 

and the activation of NF-κB transcriptional activity that was induced in primary 

cortical neurons stimulated with TNF, we created reporter fusion genes in which the 

transcriptional activity of each of the AA cascade genes cPLA-2, COX-2 and 

mPGES-1 can be induced by binding of NF-κB to their prompter regions. We found 

that stimulation of neurons transfected with these reporter fusion genes with TNF 

induced the transcription of cPLA-2, COX-2 and mPGES-1 indicating that induction 

of NF-κB activity by TNF can trigger the transcription of the three AA cascade 

genes. In addition, we found that increasing the activity of NF-κB using the 

constitutively active IKK2 construct or p65 (active subunit of NF-κB) also resulted in 

an increase in the transcription of the three AA cascade genes which clearly 

indicated that, NF-κB regulates the expression of the three AA cascade genes, 

cPLA-2, COX-2 and mPGES-1. Hence the production of PGE2 which mediates 

some of the toxic effects observed after ischemia is controlled by NF-κB. 
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4.6. HMGB1 is associated with ischemia induced neuronal cell death 

In our in vitro model of ischemia (OGD) of primary cortical neurons we found an 

increase in the level of HMGB1 released into the medium which was also reported 

by others following ischemia (R. S. Goldstein et al., 2006). However, when glial 

cultures were subjected to OGD we found no change in the levels of HMGB1 

released into the medium indicating that, our mild model of ischemia can induce the 

release of HMGB1 from neurons but not from glia. The effects of HMGB1 are 

mediated mainly through its interaction with RAGE. TLR2 and TLR4 are other 

membrane receptors that bind HMGB1 in addition to RAGE (J. S. Park et al., 2004; 

J. S. Park et al., 2006), although a recent study has questioned this finding (J. Tian 

et al., 2007).  

HMGB1 is a nonhistone DNA binding protein that is widely expressed in various 

tissues including the brain and was thought to be important only for the stabilization 

of nucleosomal structures and the facilitation of gene transcription (M. Bustin, 

1999). However, recently, it was shown to act as a cytokine-like mediator of delayed 

endotoxin lethality and acute lung injury (H. Wang et al., 1999).  

HMGB1 can be secreted actively from macrophages and monocytes or passively 

released by necrotic cells (J. B. Kim et al., 2006). It has been also shown that 

HMGB1 is released in the brain, after cytokine stimulation and after ischemia (J. Qiu 

et al., 2008). However, actively released HMGB1 is highly acetylated by nuclear 

acetyltransferase before secretion, whereas passively released HMGB1 is not 

acetylated (T. Bonaldi et al., 2003) and so acetylated HMGB1 may have different 

biological properties and functions that differ from passively released or 

recombinant HMGB1. 

Extracellular HMGB1 may exert its effects through different receptors including 

RAGE, TLR-2 and TLR-4 (J. R. Klune et al., 2008). Absence of RAGE (L. G. 

Bucciarelli et al., 2008) or TLR-2 (S. C. Tang et al., 2007) or TLR-4 (U. Kilic et al., 

2008) is protective to animals subjected to ischemia.  
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RAGE is a multi-ligand membrane receptor, which can be activated by several 

ligands in cerebral ischemia. Hyperglycemia, a common finding in stroke patients (J. 

F. Scott et al., 1999), enhances the production of AGEs that have been shown to 

contribute to neurotoxicity during ischemic stroke (G. A. Zimmerman et al., 1995). In 

addition, there is evidence that Aβ is involved in the pathogenesis of ischemic brain 

injury (M. Koistinaho and J. Koistinaho, 2005) and that S100 proteins are released 

during ischemia and modulate its outcome (D. Kogel et al., 2004). However, the 

most obvious RAGE activator in stroke seems to be HMGB1 that is known to be 

released from necrotic cells (B. Degryse et al., 2001; P. Scaffidi et al., 2002).  

4.7. HMGB1 is not acting through NF-κB nor the arachidonic acid cascade in 
primary cortical neurons 

To test whether HMGB1 mediates some of the toxic effects of OGD, we treated 

primary cortical neuronal cultures with the decoy receptor sRAGE before and during 

OGD and found that sRAGE abolished the toxic effects observed after ischemia 

indicating a role of HMGB1 in that toxic effect. Protective effects were also observed 

by blocking RAGE in other models of ischemic injury (S. Zeng et al., 2004). 

However, stimulation of primary cortical neurons with the recombinant HMGB1 did 

not induce cell death (no change in the amount of LDH released into the medium), 

did not increase the transcriptional activity of NF-κB, did not induce the mRNA 

expression of the three AA cascade genes (cPLA-2, COX-2 and mPGES-1) and did 

not increase the production of PGE2 indicating that in our model of primary cortical 

neurons, recombinant HMGB1 is not acting through NF-κB or the AA cascade. 

4.8. Neuronal glial interaction mediates the toxic effects of HMGB1 

We wondered if the effects of endogenous HMGB1 released passively after OGD 

differ from that of the recombinant HMGB1 or if the effect was cell specific. To 

answer this question, we applied recombinant HMGB1 on different primary cells 

(pure cortical neurons, mixed glia, pure microglia, primary astrocytes or mixed 

neural cultures) and found that HMGB1 is toxic only to cultures which contained 
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neurons, astrocytes and microglia (mixed neural cultures) indicating that interaction 

between these cells is required to mediate the toxic effects of recombinant HMGB1.  

4.9. HMGB1 is toxic to neurons in mixed neural culture 

In order to determine the mechanism of that interaction, we tried to solve several 

questions. First, we wanted to identify the cells which were dying in response to 

HMGB1 and found out that neurons were killed after exposure of mixed neural 

cultures to HMGB1 and this was more evident after prolonged exposure time.  

Second, was to identify the receptor responsible for this effect, the first candidate 

being RAGE, we treated mixed neural cultures with sRAGE before and during OGD 

and found that the cultures were protected against the toxic effects of OGD by 

treatment with sRAGE, which is similar to the effect seen in pure cortical neurons 

and with previous reports (S. Zeng et al., 2004).  

4.10. RAGE on glia is essential for the neurotoxic effect of HMGB1 

The third aim was to identify the cells which express RAGE and are responsible for 

mediating the toxic effect of recombinant HMGB1. RAGE is localized on all types of 

brain cells. Activation of RAGE on neurons has been shown to stimulate the 

production of reactive oxygen species and to lead to the death of neuron-like cell 

lines (S. D. Yan et al., 1996; A. M. Vincent et al., 2006). RAGE is involved in the 

recruitment of neutrophils by HMGB1 (V. V. Orlova et al., 2007) and neutrophil 

recruitment contributes to ischemic brain injury, at least in transient cerebral 

ischemia (R. L. Zhang et al., 1995), suggesting that the cells mediating the RAGE 

effect could be neutrophils. 

However, when we stimulated mixed neural cultures, in which glia lack RAGE, with 

recombinant HMGB1, they were not affected in contrast to cultures in which glia 

express RAGE indicating that the presence of RAGE on glia is essential for the 

toxic effects of HMGB1 on mixed neural cultures. This was also confirmed by bone 

marrow transplantation of RAGEko or wild-type marrow into irradiated wild-type 

mice followed after 6 weeks by MCAO. We found that mice receiving RAGEko 
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marrow had smaller infarcts and their brains contained fewer RAGE expressing 

macrophages confirming that absence of RAGE on infiltrating macrophages can 

reduce the damage occurring after MCAO.  

To further identify the individual glial cell type responsible for mediating the toxic 

effect of HMGB1 in vitro, we depleted mixed neural cultures from microglia using 

clodronate liposomes in wild-type cultures or diphtheria toxin in cultures prepared 

from CD11b-DTR mice and found a tendency towards a reduced toxic effect of 

HMGB1 suggesting that mainly microglia mediate the toxic effect of HMGB1. To 

further confirm the role of microglia, we added peritoneal macrophages to mixed 

neural cultures before stimulating them with recombinant HMGB1 and found that 

the presence of macrophages exacerbates the response of mixed neural cultures to 

recombinant HMGB1.  

Since macrophages enhanced the toxic effect of HMGB1 on the viability of mixed 

neural cultures, we propose that RAGE activated by HMGB1 functions as a sensor 

of necrotic cell death at the core of the ischemia and mediates the activation of 

brain macrophages, mainly immigrant macrophages. 

4.11. HMGB1 induces the release of PGE2 from microglia which has a 
neurotoxic effect 

The next aim was to identify the mediator responsible for the interaction between 

microglia and neurons after HMGB1 stimulation. We observed an increase in the 

level of PGE2 released into the medium after stimulation of microglia by HMGB1 

and found that blocking the production of PGE2, with the COX-2 inhibitor NS-398 

protected mixed neural cultures from the toxic effects of recombinant HMGB1 

indicating that PGE2 might be responsible for the interaction between neurons and 

microglia that mediated the toxic effects of HMGB1. 
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4.12. Suggested model for the interaction between neurons and microglia 
after ischemia 

In conclusion, we propose that PGE2 released by neurons and/or microglia mediate 

some of the toxic effects of ischemia. Ischemia (among other effects) activates NF-

κB in neurons that leads to the induction of genes involved in PGE2 synthesis which 

mediates a neurotoxic effect by acting on EP1 receptors. In addition to that, 

ischemia induces neuronal death and the necrotic neurons release HMGB1 acting 

on RAGE receptor on microglia/macrophages. RAGE activation stimulates the AA 

cascade in microglia/macrophages and the subsequent production of PGE2. PGE2 

released by microglia/macrophages act on neurons producing a kind of feedback 

loop which increases the neurotoxic effect occurring after ischemia (Figure 4.1). a 

similar model was proposed by Block et al., 2007 but they did not investigate the 

role of HMGB1 released from neurons (M. L. Block et al., 2007). 
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Figure 4.1. Suggested model for the interaction between neurons and microglia after 
insults such as ischemia, after M. L. Block et al., 2007 (with modification). 
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Abbreviation 
 

4-HHE 4-hydroxyhexenal 
4-HNE 4-hydroxynonenal 
AA Arachidonic acid 
ABTS 2,2-azino-di-3-ethylbenzthiazoline-sulfonic acid 
AGEs advanced glycation end products 
AP-1 Activator protein-1 
ATF-2 Activating transcription factor-2 
Aβ amyloid β-peptide  
BBB Blood-brain barrier 
BSA Bovine serum albumin 
C/EBPβ CCAAT/enhancer binding protein (C/EBP) beta 
Ca2+ calcium 
CD11b Cluster of Differentiation molecule 11b 
COX-2 Cyclooxygenase-2 
cPLA-2 Cytosolic phospholipase A-2 
DAPI 4′,6-Diamidino-2-phenylindole dihyd-rochloride 
DCs dendritic cells 
DHA Docosahexaenoic acid 
DIV day in vitro 
DMEM Dubellco’s modified eagles medium 
E16 embryonic day 16 
Egr-1 Early growth response-1 
eNOS Endothelial nitric oxide synthase 
EPOX Epoxygenase 
FBS Fetal bovine serum 
FDA Food and drug administration 
FFA Free fatty acid 
GFAP Glial Fibrillary Acidic Protein 
HBSS Hank’s balanced salt solution 
HIF-1 Hypoxia inducible factor-1 
HMGB1 High mobility group box 1 protein 
Iba-1 Ionized calcium binding adaptor molecule 1 
ICAM Intracellular adhesion molecule-1 
IFN-γ Interferon-γ 
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IHC Immunohistochemistry  
IL-1ra Interleukin-1 receptor antagonist 
IL-1β Interleukin-1 beta 
iNOS Inducible nitric oxide synthase 
LB Lysogeny broth Medium 
LDH lactate dehydrogenase 
LOX Lipoxygenases 
LPS Lipopolysaccharide 
LysoPlsEtn ethanolamine lysoplasmalogen 
LysoPtdCho lysophosphatidylcholine 
MCAO Middle cerebral artery occlusion 
MCP-1 Monocyte chemotactic protein-1 
MIP-1 Macrophage inflammatory protein-1 alpha 
MMPs Matrix metalloproteinases 
Mn-SOD manganese superoxide dismutase 
mPGES-1 Microsomal prostaglandin E2 synthase-1 
NeuN Neuronal Nuclei 
NF-κB Nuclear factor kappa B 
NGS Normal goat serum  
NHS Normal horse serum 
NID Non ionic detergent buffer 
NLS Nuclear localization sequence 
NMRI Naval Medical Research Institute 
nNOS Neuronal nitric oxide synthase 
NO Nitric oxide 
OGD Oxygen glucose deprivation 
P2 postnatal day 2 
PAF Platelet-activating factor 
PARP poly(ADP)-ribose polymerase enzyme 
PBS Phosphate balanced saline 
PCR Polymerase chain reaction 
PFA Para–formaldehyde 
PGE2 Prostaglandin E2 
Pgg2 prostaglandin G2 
Pgh2 prostaglandin H2 
PlsEtn ethanolamine plasmalogen 
PlsEtn-PLA2 Plasmalogen-selective phospholipase A2 
PM plasma membrane 
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PPAR-γ Peroxisome proliferator-activated receptor 
PtdCho phosphatidylcholine 
RAGE Receptor for advanced glycation end products 
RHD Rel homology domain 
ROS Reactive oxygen species 
RT-PCR Reverse transcription-PCR 
STAT3 Signal transducer and activator of transcription 3 
TG transgene 
TGF-β Transforming growth factor-ß 
TLR-2 Toll like receptor-2 
TLR-4 Toll like receptor-4 
TNF Tumor necrosis factor 
t-PA Tissue plasminogen activator 
VCAM Vascular cell adhesion molecule-1 
WT wild-type 
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