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Chapter 0
Introduction

Think beyond vector spaces !

Diverse evolutions come together under the same roof

Many applications consist of diverse components so that their mathematical descrip-
tion as functions often starts with long preliminaries (like restrictive assumptions
about regularity).
However, shapes and images are basically sets, not even smooth (Aubin [9]).
This observation leads to the question how to specify models in which both real– or
vector–valued functions and shapes are involved. The components usually depend
on time and have a huge amount of influence over each other. Consider e.g.
� A bacterial colony is growing in a nonhomogenous nutrient broth. For the bacte-

ria, both speed and direction of expansion depend on the nutrient concentration
close to the boundary in particular. On the other hand, the nutrient concentration
is changing due to consumption and diffusion.
(Further applications of set–valued flows in biological modeling are presented
in [44, Demongeot, Kulesa, Murray 97].)

� A chemical reaction in a liquid is endothermic and depends strongly on the
dissolved catalyst. However, this catalyst is forming crystals due to temperature
decreasing.

� In image segmentation, a computer is to detect the region belonging one and the
same object. The example of a so–called region growing method (presented by
the author in [101]) is based on constructing time–dependent compact segments
so that an error functional is decreasing in the course of time. So far, smoothing
effects on the image within the current segment are not taken into account.
Basically speaking, it is an example how to extend Lyapunov method to shape
optimization. Further examples can be found in [45, Demongeot, Leitner 96],
[56, Doyen 95].

� In dynamic economic theory, the results of control theory form the mathemat-
ical basis for important conclusions (e.g. [10]). Coalitions of economic agents,
technological progress and social effects due to migration, however, have an
important impact on the dynamic process that is difficult to quantify by vector–
valued functions. Thus, some parameters ought to be described as sets of per-
missible values and, these subsets might depend on current and former states.

Our goal consists in a joint framework for dynamical systems of maybe completely
different types. In particular, examples of evolving shapes motivate the substantial
aspect that we dispense with any (additional) linear structure whenever possible.
In other words, the key question here is how to extend ordinary differential equations
beyond vector spaces.
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2 0 Introduction

Why we need a “nonvectorial” approach to evolving subsets of RN

In regard to time-dependent subsets of the Euclidean space RN , several formulations
in vector spaces have already been suggested and, they have proved to be very use-
ful. Each of these “detours” via a vector space, however, has conceptual constraints
for analytical (but not geometric) reasons. This observation strengthens our interest
in describing shape dynamics on the basis of distances (not vectors).

Indeed, Osher and Sethian devised new numerical algorithms for following fronts
propagating with curvature-dependent speed in 1988 [113]. Describing these fronts
as level sets of a real-valued auxiliary function leads to equations of motion which
resemble Hamilton-Jacobi equations with parabolic right-hand sides. As an essen-
tial advantage, their numerical methods can handle topological merging and break-
ing naturally.
Meanwhile this level set approach has a solid analytical base in the form of viscosity
solutions introduced by Crandall and Lions (see e.g. [39, 40], [32, 33], [20, 135]).
The viscosity approach, however, has two constraints due to the parabolic maximum
principle as its conceptual starting point:

(1.) All these geometric evolutions have to obey the so-called inclusion principle,
i.e., whenever an initial set contains another initial subset, this inclusion is al-
ways preserved while evolving.
De Giorgi even suggested to use this inclusion principle for constructing sub-
solutions and supersolutions whose values are sets with nonsmooth bound-
aries — similarly to Perron’s method for elliptic partial differential equations
[41], [23, 24]. Cardaliaguet extended this notion to set evolutions depending
on their nonlocal properties [27, 28, 29]. However, there is no obvious way
how to apply these concepts to the easy example that the normal velocity at
the boundary is 1

1 + set diameter > 0 .

(2.) There is no popular theory for the existence of viscosity solutions to systems

so far.

Replacing viscosity solutions by weak (distributional) solutions to the equations of
motion, we always have to neglect any influence of subsets with measure 0.
The distance from a given subset might provide a suitable alternative to the charac-
teristic function of this set, but in general, the distance is just Lipschitz continuous.
The choice of the function space is directly related to the regularity of the topologi-
cal boundary. Delfour and Zolésio pointed out that the oriented distance function is
often a more appropriate way to characterize a closed subset K ⊂ RN , i.e.

RN −→ R, x �−→
{

dist(x, K) Def.= inf {|x− y| : y ∈ K} if x ∈ RN \K

− dist(x, ∂K) if x ∈ K.

If its restriction to a neighbourhood of the topological boundary ∂K belongs to the
Sobolev space W

2,p
loc with p > N, for example, then the well-known embedding the-

orem of Sobolev implies immediately that the set K is of class C1,α [42, § 5.6.3].
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Extending the traditional horizon: Evolution equations beyond vector spaces

In fact, we regard nonlocal set evolutions just as a motivating example.
When introducing mutational equations in metric spaces, Aubin’s key motivation
was to extend ordinary differential equations to compact subsets of the Euclidean
space. It should provide, for example, the framework for control problems{

x′(t) = f
(
t, x(t), u(t)

) ∈ RN

u(t) ∈ U(t) ⊂ RM

whose compact control set U(t) ⊂ RM had the opportunity to evolve according to
the current state x(t) and itself (i.e. U(t)).
This approach of mutations has a much larger potential though. Indeed, the main
goal here is a common analytical framework for continuous dynamical systems
within and beyond the traditional border of vector spaces.

Whenever a dynamical system proves to fit in this framework, the mutational
theory immediately opens the door to existence results about systems with other
suitable components – no matter whether their mathematical origins are completely
different. A nonlocal geometric evolution can be combined, for example, with an
ordinary differential equation and a semilinear evolution equation. This is the main
advantage of mutational equations – in comparison to more popular concepts like
viscosity solutions and thus, all our generalizations here are to preserve this feature.
It is to lay the foundations of future results about free boundary problems.

If a component does not fit in this framework, however, it might serve as motivation
for generalizing the mutational theory and weakening the conditions in its defini-
tions.

This interaction between the general mutational framework – without the linear
structure of vector spaces – and diverse examples of dynamical systems facilitates
a better understanding of very popular results in functional analysis. How can weak
sequential compactness, for example, be defined in a metric space without linear
structure (and thus, without linear functionals) ?

Aubin’s initial notion: Consider affine-linear maps are just a special type of
“elementary deformations” (alias transitions).

Roughly speaking, the starting point consists in extending the terms “direction” and
“velocity” from vector spaces to metric spaces. Then the basic idea of first–order
approximation leads to a definition of derivative for curves in a metric space and
step by step, we can apply the same notions as for ordinary differential equations.



4 0 Introduction

First let us focus on velocities of curves [0,T ]−→ RN .
A vector v ∈ RN represents the velocity of the curve x(·) : [0,T ] −→ RN at time
t ∈ [0,T [ if it is the limit of difference quotients:

v = lim
h→0

x(t +h) − x(t)
h

.

Such a difference quotient is difficult to specify in metric spaces and thus, we use
an equivalent condition which became very popular in connection with functions in
Banach spaces. Indeed, v∈RN represents the velocity of x(·) : [0,T ]−→RN at time
t ∈ [0,T [ if it provides a first-order approximation in the following sense:

lim
h→0

1
h
· ∣∣x(t +h) − (x(t) + h v

)∣∣ = 0. (∗)
This condition is reflecting a quantitative comparison between the curve of interest
x(t + ·) and the affine-linear map h �−→ x(t)+ h v for h −→ 0. Such a comparison
can also be formulated in a metric space as soon as we have specified a counterpart
of the affine-linear map.

From a more conceptual point of view, each vector v ∈ RN determines an affine-
linear map of two variables, namely

[0,∞[×RN −→ RN , (h, x) �−→ x+h v .

The first argument h can be interpreted as time whereas the second argument x∈RN

has the geometric meaning of an initial point in the Euclidean space RN . After the
period h≥ 0, it is moved to the end point x+h v ∈ RN .
Moreover, the asymptotic features leading to time derivatives require comparisons
only for short periods. Thus, for the sake of simplicity, let us always choose h∈ [0,1]
instead of h ∈ [0,∞[.

Passing the traditional border of vector spaces, we are free to skip the affine linear
structure of this auxiliary map. In a metric space (E,d), a function

ϑ : [0,1]×E −→ E, (h, x) �−→ ϑ(h,x)

is to play the role of such an affine-linear map instead. ϑ determines to which point
ϑ(h,x) ∈ E any initial point x ∈ E is moved at time h ∈ [0,1] and thus, it can be
regarded as a kind of “elementary deformation” of E.

Such a function ϑ represents the time derivative of a curve
x(·) : [0,T ] −→ E at time t ∈ [0,T [ if it provides a first-order
approximation in the following sense:

lim
h↓0

1
h
· d
(
x(t +h), ϑ(h,x(t))

)
= 0. (∗∗)

This condition is the (almost) exact analogue of preceding statement (∗) as we have
merely restricted the limit to h > 0 tending to 0. Strictly speaking, it is the precise
counterpart of the right-hand Dini derivative of a curve in a vector space like RN .
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Of course, there might be more than just one of these “elementary deformations”
ϑ : [0,1]×E −→ E satisfying the characterizing condition (∗∗) at time t ∈ [0,T [.
Following the proposal of Aubin in [9], we first specify the class Θ(E,d) of such
functions [0,1]×E −→ E appropriate for the metric space (E,d) under considera-
tion and then, the set of all functions ϑ ∈Θ(E,d) satisfying this condition (∗∗) is
called mutation of the curve x(·) : [0,T ]−→ E at time t ∈ [0,T [.

◦
x(t) :=

{
ϑ ∈Θ(E,d)

∣∣ lim
h↓0

1
h
· d
(
ϑ(h, x(t)), x(t +h)

)
= 0
}

.

Here the mutation plays the role of the time derivative, but it may consist of more
than one function in Θ(E,d). There is no obvious additional advantage of boiling it
down to single elements by means of equivalent classes and thus, we use these sets.

Finally, the step to differential equations in a metric space (E,d) is rather small
and based on the notion of feedback.
Indeed, we prescribe such an “elementary deformation” ϑ : [0,1]×E −→ E for
each state y∈ E and at time t ∈ [0,T ] by means of a function E× [0,T ]−→Θ(E,d).
Then the wanted continuous solution x : [0,T ] −→ E to the corresponding muta-

tional equation is expected to obey the underlying law of first-order approximations
(∗∗) — at Lebesgue-almost time t ∈ [0,T ] at least.

Constructing a differential calculus for curves in a metric space (E,d) can only
succeed if these “elementary deformations” [0,1]×E −→ E are sufficiently regular
with respect to both arguments. In this context, Aubin introduced a set of four con-
ditions on a so-called transition ϑ : [0,1]×E −→ E. His rather local formulations in
[9] (quoted in Definition 1.1 on page 20 below) imply the following typical features:

(1.) ϑ(0, ·) = IdE ,

(2.) ϑ has the semigroup property for any x ∈ E, h1,h2 ≥ 0 with h1 +h2 ≤ 1, i.e.

ϑ
(
h2, ϑ(h1,x)

)
= ϑ(h1 +h2, x),

(3.) there exists α(ϑ) < ∞ such that for every h ∈ [0,1] and x,y ∈ E,

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x, y) · eα(ϑ) ·h,

(4.) there exists β (ϑ) < ∞ such that for every h1,h2 ∈ [0,1] and x ∈ E,

d
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β (ϑ) · |h2−h1|.
They prove to be appropriate for extending classical results like the existence theo-
rems of Cauchy-Lipschitz and Nagumo from ordinary differential equations in RN

to the so-called mutational equations in a metric space (E,d). Aubin’s concept is
presented in more detail in Chapter 1.
His typical geometric examples are so-called morphological equations: The set
K (RN) of nonempty compact subsets of RN is supplied with the classical Pompeiu-
Hausdorff metric dl and, transitions are induced by reachable sets of differential
inclusions (with bounded and Lipschitz continuous right-hand side).
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Mutational analysis as an “adaptive black box” for initial value problems

Let us now discuss in more detail how to solve initial value problems by means of
mutational analysis.

The first step consists in specifying the mathematical environment of the problem
under consideration. Basically, we choose a set E �= /0, a metric d : E×E −→R and
a suitable set of transitions [0,1]×E −→ E, denoted by Θ(E,d).

The transitions are usually induced by simpler problems in the same environment,
e.g. on the basis of fixing the coefficients or considering the corresponding linear
problem (instead of the full nonlinear one). It is essential to verify the character-
izing properties of transitions for the respective choice on E, i.e. in particular, the
appropriate continuity with respect to initial state and time.

For constructing wanted solutions approximatively, the two most popular concepts
in analysis are compactness and completeness. Comparing the classical theorem of
Peano (about ordinary differential equations in RN) with Cauchy-Lipschitz The-
orem reveals that compactness usually opens the door to existence theorems un-
der weaker assumptions of continuity. Thus, we mostly intend to verify a form of
sequential compactness for the respective mathematical environment (rather than
completeness).

These are the main “ingredients” of mutational analysis.
Indeed, the full problem under consideration is determined by a “feedback” function

f : E× [0,T ] −→Θ(E,d)
and, the theorems in mutational analysis specify sufficient conditions on f such
that for every initial element x0 ∈ E, there exists a Lipschitz continuous curve
x(·) : [0,T ]−→ (E,d) with x(0) = x0 and at L 1-almost every time t ∈ [0,T [,

◦
x(t) � f

(
x(t), t

)
i.e., lim

h↓0
1
h
· d
(
x(t +h), f (x(t), t) (h, x(t))

)
= 0.

This result corresponds to Peano’s Theorem about ordinary differential equations
in RN and, its proof is based on Euler approximations evaluating transitions succes-
sively in equidistant partitions of [0,T ]. Moreover, mutational analysis provides suf-
ficient conditions on f for structural stability and uniqueness of solutions in bounded
time intervals.
Last, but not least, we can also handle initial value problems with state constraints
leading to the counterpart of Nagumo’s Theorem.

Strictly speaking, however, all these results deal with curves x(·) : [0,T ] −→ E

in some abstract set E �= /0 — with some supplementary properties in regard to
first-order approximations via transitions.
If we stopped here, mutational analysis would hardly provide new insights in more
traditional fields like partial differential equations.
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For this reason, the last step of our method focuses on respective links between such
a solution to the mutational equation

◦
x (·) � f

(
x(·), ·) and a popular concept of

solution (whenever possible).
Such a connection strongly depends on the type of considered problem, of course.
In regard to partial differential equations, for example, it might lead to classical,
strong or weak solutions. Alternatively, for evolution equations, we can often prove
a relation to mild solutions and, some set evolutions in (K (RN),dl) are character-
ized as reachable sets of nonautonomous differential inclusions (whose coefficients
depend on the wanted curve in K (RN)).

As a precipitate result of this summary, mutational analysis might be regarded as
“just” some complicated formalism providing a very long list of features sufficient
for the convergence of Euler approximation in a mathematical environment without
linear structure.
This evaluation, however, ignores an essential advantage of the mutational frame-
work which we have already mentioned in a preceding subsection:

Mutational analysis can handle systems in regard to existence and stability.

As soon as an example fulfills the conditions on distance, transitions etc., we are im-
mediately free to apply the existence results about systems of mutational equations
and couple this example with any other one fitting in this mutational framework.
Nonlocal set evolutions in RN , for example, can be combined with nonlinear trans-
port equations for Radon measures.
This flexibility in regard to systems makes mutational analysis very attractive.

Whenever an example does not fit in the mutational framework, it might serve
as motivation for generalizing mutational analysis. In particular, several examples
of dynamical systems have demonstrated that Aubin’s four conditions on transitions
are quite restrictive for deriving significantly more benefit from this concept. Thus it
is our goal to adapt them step by step — motivated by diverse examples respectively.
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Step (A) Linear examples in vector spaces exclude uniform parameters of
transitions

The affine-linear maps [0,1]×RN −→ RN , (h,x) �−→ x + h v with fixed vectors
v ∈ RN are the first and probably simplest example of transitions on the Euclidean
space RN . Obviously, each of them is Lipschitz continuous with respect to both ar-
guments and thus fulfills Aubin’s conditions on transitions.
This situation changes, however, if the transitions are based on the unique solutions
to linear initial value problems. In connection with a nonlinear continuity equation

∂t u + divx

(
h(u) u

)
= 0 in [0,T ]×RN ,

for example, the linear Cauchy problem with a fixed coefficient function b{
∂t u + divx

(
b u
)

= 0 in [0,h]×RN

u(0, ·) = u0 in RN

provides an obvious ansatz for a transition (h,u0) �−→ u(h, ·) on the corresponding
function space, but Aubin’s conditions on transitions reveal obstacles due to linearity
immediately: The family of curves h �−→ u(h, ·) for all permissible initial functions
u0 : RN −→ RN can hardly be expected to be Lipschitz continuous with a globally
bounded Lipschitz constant. How to choose the parameter of continuity β (ϑ) then?

Whenever a parameter cannot be chosen globally, local bounds might be recom-
mendable to check instead. This is our first step for generalizing the mutational
framework.
In particular, we need a criterion for which subsets of permissible states each transi-
tion should have uniform parameters of continuity (denoted by α(ϑ),β (ϑ) above).
Another glance at the linear examples in vector spaces motivates us to specify coun-
terparts of the norm. Such an “absolute value” reflects the properties of a single state
whereas a metric usually compares two elements.
In addition to a metric space (E,d), any function �·� : E −→ [0,∞[ is now given
at the very beginning of the (new) mutational framework and, a transition ϑ :
[0,1]×E −→ E on the tuple (E,d,�·�) is supposed to have the following features:

(1.) ϑ(0, ·) = IdE ,

(2.) ϑ has the semigroup property for any x ∈ E, h1,h2 ≥ 0 with h1 +h2 ≤ 1, i.e.

ϑ
(
h2, ϑ(h1,x)

)
= ϑ(h1 +h2, x),

(3.’) for every R > 0, there exists α(ϑ ;R) < ∞ such that for every h ∈ [0,1] and
x,y ∈ E with �x� ≤ R and �y� ≤ R,

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x, y) · eα(ϑ ;R) ·h,

(4.’) for every R > 0, there exists β (ϑ ;R) < ∞ such that for every h1,h2 ∈ [0,1]
and x ∈ E with �x� ≤ R,

d
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β (ϑ ;R) · |h2−h1|.
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This list of conditions has to be extended though. Indeed, the concatenation of tran-
sitions leads to curves x(·) : [0,T ]−→ E for any period T > 1 and, they will be used
for solving mutational equations later on. Thus we are obliged to keep the “absolute
value” �x(·)� : [0,T ]−→ [0,∞[ under control so that the propagation of initial errors
can be estimated properly. Each transition ϑ : [0,1]×E −→ E is expected to fulfill
a growth condition whose structure is preserved by concatenation:

(5.) there exists γ(ϑ) < ∞ such that for every h ∈ [0,1] and x ∈ E,

�ϑ(h,x)� ≤ (�x� + γ(ϑ) h
) · eγ(ϑ) ·h.

Now the modified “machinery” of mutational analysis is ready to start again and,
Euler method together with suitable compactness assumptions ensure the existence
of solutions to the Cauchy problem in Chapter 2. One of the consequences is the
following theorem presented in § 2.5.3. It deals with the nonlinear transport equa-
tion for finite real-valued Radon measures on RN whose set is denoted by M (RN).

Theorem 1 (Existence of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W 1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ, t)
∥∥

W 1,∞ +
∥∥ f2(μ, t)

∥∥
W 1,∞

)
< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and any

sequences (tm)m, (μm)m in [0,T ], M (RN) respectively with tm −→ t, μm −→ μ
narrowly for m−→ ∞ and supm |μm|(RN) < ∞, it fulfills

f(μm, tm) −→ f(μ, t) in L∞(RN ,RN)×L∞(RN ,R) for m−→ ∞.

Then for every initial Radon measure μ0 ∈M (RN), there exists a narrowly con-

tinuous distributional solution to the nonlinear transport equation

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in RN× ]0,T [

in the sense that∫
RN

ϕ dμt −
∫

RN
ϕ dμ0 =

∫ t

0

∫
RN

(
∇ϕ(x) · f1(μs,s)(x)+ f2(μs,s)(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).

Mutational equations on function spaces are “functional equations”

The recent example about the nonlinear transport equation reflects a typical feature
of mutational equations on function spaces: Each function (like a Radon measure
here) comes into play as one single element of a basic set E and, the function f (·, ·)
on the right-hand side of the mutational equation

◦
x(t) � f

(
x(t), t

)
is relating each state in E and time in [0,T ] to a transition on (E,d,�·�).
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In connection with a function space for E, this relation can take nonlocal properties
of the functions u ∈ E into consideration immediately, but on the other hand, the
hypotheses about the continuity of f might exclude pointwise composition of these
functions.
Due to this structural consequence of f : E× [0,T ] −→Θ(E,d,�·�) as given data,
most examples of mutational equations on a function space belong to the field of
functional differential equations.

Step (B) Admit more than one distance function on the basic set E

Compactness often plays the basic role for concluding the existence of a solution
from an approximative sequence. It is very restrictive, however, when a vector space
is supplied with a norm because its closed unit ball is compact if and only if the space
is finite-dimensional. This observation has already aroused the frequent interest in
the weak topology on Banach spaces. Indeed, the weak sequential compactness of
the closed unit ball is equivalent to its reflexivity.
The short excursion to linear functional analysis motivates us to provide simple
access to the mutational framework for the weak topology on metric vector spaces.

Our suggestion is to replace the metric d : E ×E −→ [0,∞[ by a family (d j) j∈I

of distance functions E ×E −→ [0,∞[. It is an excellent opportunity to weaken
the conditions on each distance function d j, j ∈I . The example induced by linear
functionals on a metric vector space makes clear that d j does not have to be positive
definite. In this next step of generalization, we assume each d j : E ×E −→ [0,∞[
to be reflexive, symmetric and to satisfy the triangle inequality. These three proper-
ties characterize a so-called pseudo-metric on E.
Similarly, a family (�·� j) j∈I of functions E −→ [0,∞[ substitutes for �·� indicating
the “absolute value” of states in E. All conditions on transitions and solutions are
then formulated or verified for each d j, j ∈I , simultaneously and hence, this ex-
tension does not have any significant influence on the proofs. It is also implemented
in Chapter 2.

How to compare the evolution of two initial states along two transitions:
The key inequality about error propagation

We are still lacking tools how to compare the evolution of two initial states x,y ∈ E

along two (possibly different) transitions ϑ ,τ on (E,(d j) j∈I ,(�·� j) j∈I ). Indeed,
the only inequality about error propagation so far deals with a single transition ϑ
and states that the initial error may grow at most exponentially:

d j

(
ϑ(h,x), ϑ(h,y)

) ≤ d j

(
x, y
) · eα j(ϑ ;R) h

for every h ∈ [0,1] and x,y ∈ E with �x� j, �y� j ≤ R.
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In other words, the qualitative influence of initial error has already been clarified.
Now we focus on the effect of two transitions ϑ ,τ on one and the same initial state

x ∈ E. The curves ϑ(·,x), τ(·,x) : [0,1] −→ E are both continuous
with respect to each d j ( j ∈I ) by definition and thus,

d j

(
ϑ(h,x), τ(h,x)

)−→ 0 for h ↓ 0.

The first-order features of this time-dependent distance might be more informative
and hence, Aubin suggested

sup
x∈E

limsup
h↓0

1
h
· d
(
ϑ(h,x), τ(h,y)

)
as distance between two transitions ϑ ,τ on a metric space (E,d). It is always finite
because the triangle inequality of the metric d reveals the upper bound β (ϑ)+β (τ).
Now our two recent steps of generalization lead to the following counterpart for
transitions ϑ ,τ on the tuple (E,(d j) j∈I ,(�·� j) j∈I )

D j(ϑ ,τ; r) := sup
x∈E: �x� j≤r

limsup
h↓0

1
h
· d j

(
ϑ(h,x), τ(h,x)

)
< ∞

for any radius r≥ 0 and index j ∈I . (If {x∈E |�x� j ≤ r}= /0, set D j( · , · ; r) := 0.)
If d j is a pseudo-metric on E, then D j(·, ·;r) proves to be a pseudo-metric on the set
of transitions for each r ≥ 0.

This supplementary information about transitions is based on local features because
it takes only joint initial states and short periods into consideration. Now we need
to bridge the gap to curves [0,1] −→ E with possibly different initial points and,
Gronwall’s inequality plays the essential role for this step to estimates in [0,1].
Indeed, the distance function ϕ j : [0,1] −→ [0,∞[, h �−→ d j

(
ϑ(h,x), τ(h,y)

)
is

continuous and, the triangle inequality of d j ensures at every time t ∈ [0,1[

limsup
h↓0

ϕ(t+h)− ϕ(t)
h

≤ α j(ϑ ;R j) · ϕ(t) + D j(ϑ ,τ;R j)

with a sufficiently large radius R j > 0 depending only on �x� j, �y� j, γ j(ϑ), γ j(τ).
Then Gronwall’s inequality provides directly the “global” estimate at any time h≤ 1

d j

(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h .

Such a step from a differential quotient to an upper bound in a compact time inter-
val is typical for mutational analysis and, it usually results from some modification
of Gronwall’s Lemma. (For this reason, we present several extensions in Appendix
A.1.)

Furthermore, this general inequality of error propagation has a quite intuitive struc-
ture on its right-hand side. Indeed, the initial distance d j(x, y) can be regarded a
term of order 0 (w.r.t. h) whereas the transitions ϑ ,τ contribute to the “term of first
order”, i.e. h · D j(ϑ ,τ;R j). Both of them are free to increase at most exponentially.
This form of influence is quite similar to Taylor expansions in vector spaces.
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Step (C) Separate families of distances for regularity in state and time

Ordinary differential equations in the Euclidean space were extended to Banach
spaces in a very successful way a long time ago. Nowadays, the result is known
as evolution equations and, its conceptual starting points are strongly continuous
semigroups (S(t))t≥0 on a fixed Banach space X and their respective generators A.
This historic background justifies our attempt to deal with evolution equations

z′(t) = A z(t)+ f (z, t)
in the mutational framework. It does not necessarily provide new results about mild
solutions, but it opens the door to coupling evolution equations with other examples
(like nonlocal set evolutions or nonlinear transport equations) immediately.

Strong continuity, however, causes difficulties. Indeed, the variation of constants
formula motivates the following ansatz for a transition

τv : [0,1]×X −→ X , (h,x) �−→ τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds

with an arbitrarily fixed vector v in the Banach space X . If the semigroup (S(t))t≥0
is assumed to be ω-contractive, then it is easy to verify that initial errors with re-
spect to norm can grow at most exponentially, i.e. for any x,y ∈ X and h ∈ [0,1],∥∥τv(h,x) − τv(h,y)

∥∥
X
≤ ‖x− y‖X · eω h .

In regard to potential transitions on (X ,‖ · ‖X ,‖ · ‖X ), the continuity with respect to
time is an obstacle: All curves τv(·,x) : [0,1] −→ X with x in the unit ball of X are
expected to be uniformly Lipschitz continuous and, this condition is likely to fail
whenever the dimension of X is infinite. The situation is much easier in the follow-
ing estimate, for example,∥∥τv(h,x) − S(h) x

∥∥
X
≤
∫ h

0
‖S(h− s) v‖X ds ≤ h eω h ‖v‖X ,

but then it is probably more difficult to verify a counterpart of the exponentially
growing initial error and to provide a link to mild solutions in the end.

Our proposal to overcome this difficulty in the general mutational framework is
to use separate families (d j) j∈I , (e j) j∈I of distance functions E×E −→ [0,∞[ for
the regularity with respect to state and time (if it is advantageous). Then a transition
ϑ : [0,1]×E −→ E on (E,(d j) j∈I , (e j) j∈I ,(�·� j) j∈I ) is expected to satisfy{

d j

(
ϑ(h, x), ϑ(h, y)

) ≤ d j(x, y) · eα j(ϑ ;r) h

e j

(
ϑ(h1,x), ϑ(h2,x)

) ≤ β j(ϑ ;r) |h1−h2|
for all r ≥ 0, j ∈I , h,h1,h2 ∈ [0,1] and x,y ∈ E with �x� j,�y� j ≤ r.
In fact, (e j) j∈I is supposed to represent the same “topology” as (d j) j∈I in the
sense that every sequence (xn)n∈N tends to x ∈ E with respect to each e j( j ∈I ) if
and only if it converges to x with respect to each di (i ∈I ). We adhere to distance
functions for specifying continuity in time mainly because we need equi-continuity
of Euler approximations for the continuity of their limit function.
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Separate distance functions of the same “topology” for the regularity in state
and time have proved to be a good starting point for handling semilinear evolution
equations with ω-contractive semigroups by means of mutational equations. More
details are discussed in § 3.7.
These results are then used for some initial-boundary value problems with second-
order parabolic differential equations in noncylindrical domains — without assum-
ing any transformation to a reference domain (§ 3.8).

Step (D) Less restrictive conditions on distance functions d j,e j ( j ∈I ):
Continuity assumptions instead of triangle inequality

Examples with stochastic differential equations are quite difficult to consider in
the mutational framework up to now. Let us take a glance at real-valued solutions
(Xt)0≤ t≤T to the stochastic initial value problem{

d Xt = a(t,Xt) dt + b(t,Xt) dWt

X0 given

with a fixed Wiener process W = (Wt)t≥0 on a probability space (Ω ,A ,P). Under
suitable assumptions about the coefficients a,b : [0,T ]×R−→R, a pathwise unique
strong solution (Xt)0≤ t≤T is known to exist and, the following estimates hold with
constants C1,C2,C3 depending only on a(·),b(·),T

E
(|Xt |2

) ≤ (
E
(|X0|2

)
+C2 t

)
eC1 t ,

E
(|Xt −X0|2

) ≤ C3
(
E
(|X0|2

)
+1
)

eC1 t · t .

If we regard these solutions as possible candidates for transitions, then the first in-
equality provides a suitable upper bound of growth. The second inequality indicates
Lipschitz continuity with respect to time – exactly in the form we usually want it,
but the estimate considers the square deviation which does not satisfy the triangle
inequality in general.

This observation exemplifies that the triangle inequality of pseudo-metrics on the
one hand and the familiar types of distance estimates like⎧⎪⎪⎨⎪⎪⎩

d j

(
ϑ(h, x), ϑ(h, y)

) ≤ d j(x, y) · eα j(ϑ ;R j) h

e j

(
ϑ(h1,x), ϑ(h2,x)

) ≤ β j(ϑ ;R j) |h1−h2|
d j

(
ϑ(h, x), τ(h, y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

on the other hand might exclude each other. Now we have to make a decision which
aspect to preserve in the mutational framework.

We prefer the key inequality of error propagation to the triangle inequality.

The main goal of mutational analysis is to extend the familiar results about ordinary
differential equations beyond the traditional border of vector spaces. Meanwhile we
have even left metric spaces by means of the tuples

(
E,(d j) j∈I ,(e j) j∈I ,�·� j) j∈I

)
,
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but the key inequality of error propagation for transitions

d j

(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

still reflects the notion of first-order approximation.
The triangle inequality has become a very popular condition on distance func-

tions and, it seems to be indispensable in many standard textbook about topology
and calculus as it is one of the defining conditions on metrics. A closer look at its
role in proofs reveals that it mostly serves a single purpose: verifying continuity.
In particular, the triangle inequality guarantees that the metric on a set is continuous
with respect to its topology.

In regard to the mutational framework, our new suggestion is to ensure the “con-
tinuity” of each distance function d j, e j ( j ∈I ) by means of explicit hypotheses
about converging sequences in E (instead of the triangle inequality). If, for example,
sequences (xn)n∈N and (yn)n∈N satisfy{

d j(xn, x) −→ 0

d j(yn, y) −→ 0

for n−→ ∞ and each j ∈I , then we expect for every index i ∈I quite intuitively

di(x, y) = lim
n→∞

di(xn, yn) .

At the beginning of Chapter 3, we list a few conditions on d j, e j, �·� j ( j ∈I ) which
admit all steps on the way to the main results of mutational analysis. As a special
consequence of this step, we obtain the existence of strong solutions to a class of
stochastic functional differential equations (in § 3.5) like

dXt = h1
(
t, E(|Xt |), E(|Xt |2)

) · h2(Xt) dt + b(t) dWt .

Step (D) How to extend the weak topology beyond normed vector spaces

Many of our subsequent results about the existence of solutions to examples are
based on the counterpart of Peano’s Theorem in the mutational framework. It states
that continuity of the right-hand side and an appropriate form of sequential compact-
ness always guarantee the existence of a solution to the given mutational equation.
Hence, sequential compactness forms the basis for many existence results below —
on the one hand.
On the other hand, evolution equations in an arbitrary Banach space exemplify that
the norm of a vector space is frequently the most obvious choice for (at least) one
of the distance functions d j,ei.
Norm compactness of the unit ball in a vector space, however, implies necessarily
finite dimensions.
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The weak topology is the typical way out of this conflict: The (norm-) closed
unit ball in a reflexive Banach space is known to be weakly compact. In contrast
to step (B), this observation encourages us now to generalize the concept of weak
sequential compactness to the tuple (E,(d j) j∈I , (e j) j∈I ,(�·� j) j∈I ), but we are
lacking any linear functionals on a set E in general.

Thus, we suggest starting from another connection between norm and weak
topology of a real vector space X (rather than from linear functionals on X). A
popular characterization of the norm concludes from the Theorem of Hahn-Banach

‖x‖X = sup
{

y′(x)
∣∣ y′ : (X ,‖ · ‖X )−→ R linear, continuous, ‖y′‖L (X ,R) ≤ 1

}
.

As a first consequence, we become aware (again) that the substantial difference be-
tween weak and norm convergence of a sequence in X results from switching limit
and supremum. The linear features of the functionals y′ on X are of rather subordi-
nate importance here.
Secondly, the basic structure of this characterization can be extended to abstract sets
easily: The distance between two points is represented as supremum of further dis-
tance functions.

Now we apply this notion to the tuple (E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I ).
The distance functions d j,e j ( j ∈I ) continue their role for transitions and solu-
tions, but in addition, we assume distance functions d j,κ ,e j,κ : E × E −→ [0,∞[
(with a further index set J �= /0) such that for each index j ∈I ,

d j = sup
κ∈J

d j,κ , e j = sup
κ∈J

e j,κ .

Then a sequence (xn)n∈N in E is said to converge “weakly” to an element x ∈ E if
for every j ∈I and κ ∈J ,

lim
n→∞

d j,κ(xn,x) = 0.

The families (d j,κ) j∈I ,κ∈J and (e j,κ) j∈I ,κ∈J do not have to consist of pseudo-
metrics, but they are expected to specify the same “topology” on E again. Thus,
we usually suppose the corresponding list of hypotheses as for (d j) j∈I , (e j) j∈I .
In § 3.3.6, we clarify which forms of “weak” sequential compactness and “weak”
continuity (of the right-hand side of mutational equations) are sufficient for extend-
ing Peano’s Theorem about the existence of solutions.
These general results are applied to the nonlinear continuity equation, for example,{

d
dt

μ + divx (f(μ, ·) μ) = 0 in RN× ]0,T [
μ(0) = ρ0 L N ∈ L∞∩1(RN)

with a given functional relationship in the form of

f : L∞∩1(RN)× [0,T ] −→ BVloc(RN ,RN)∩L∞(RN ,RN)

in § 3.6. Here the distributional solutions μ(·) : [0,T ]−→ L∞∩1(RN) have their val-
ues in L∞∩1(RN) :=

{
ρ L N

∣∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0
}

and are constructed
by means of Prokhorov’s Compactness Theorem.
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Step (F) Less restrictive conditions on distance functions d j,e j ( j ∈I ):
Dispense with symmetry

The evolution of compact subsets of the Euclidean space RN might depend explicitly
on their topological boundary and, we would like to take such an influence into con-
sideration — still without making any a priori assumptions about regularity. Even
simple examples, however, indicate obstacles in the current mutational framework.

Consider just an annulus expanding isotropically
at a constant speed 1. After a finite period, the
“hole” in the center of the annulus disappears
suddenly. Hence, the topological boundary of the
expanding annulus does not evolve continuously
(in the sense of Painlevé–Kuratowski).

The classical Pompeiu-Hausdorff distance between the boundaries of such an an-
nulus K ⊂ RN and its expanding counterpart Bt(K) ⊂ RN does not have to be con-
tinuous with respect to time t and thus, it is unsuitable for comparing topological
boundaries in regard to transitions.
In search of an alternative pseudo-metric, we realize that some topological compo-
nents of ∂Bt(K) might “disappear” while time t is increasing, but each boundary
point of ∂Bt(K) has close counterparts at earlier sets ∂Bs(K) (with s < t). Indeed,

dist
(
∂Bt(K), ∂Bs(K)

) ≤ t− s

for all 0 ≤ s ≤ t, but a corresponding estimate does not have to hold for 0 ≤ t < s.
In other words, we find properties similar to some requirements for transitions if we
compare only later sets with earlier sets (in regard to their topological boundaries),
but not vice versa.

For this reason, we aim at a mutational framework for a tuple (E, (d j) j∈I , (e j) j∈I ,
(�·� j) j∈I ) without assuming symmetry of d j and e j ( j ∈I ). Broadly speaking,
the first argument of each distance usually refers to the earlier state whereas the
second argument is the later element (in Chapter 4).

The same geometric example also demonstrates an analytical obstacle which we
have to overcome after dispensing with symmetry. Indeed, consider a further initial
set K′ ⊂ RN . Of course, the preceding inequality still holds for t �−→ ∂Bt(K′), but
the distance of ∂Bt(K) from the other boundary ∂Bt(K′) at the same time t, i.e.

[0,∞[−→ [0,∞[, t �−→ dist
(
∂Bt(K), ∂Bt(K′)

)
,

might be discontinuous. As a general consequence for mutational equations, we
have to ensure (at least) lower semicontinuity of some time-dependent distances
which had always been continuous before so that the adapted program of muta-
tional analysis still works.
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Step (G) Distribution-like solutions to mutational equations

Examples with compact subsets of RN evolving according to their topological
boundaries are still difficult to handle in the mutational framework though. Indeed,
an additional challenge is closely related to the regularity of transitions with respect
to state (and its continuity parameter α j(ϑ ;r) < ∞).

It is an essential feature of transitions that the
initial distance between two states may grow at
most exponentially while evolving along one and
the same transition.
Although this condition does not require continuity
of distances with respect to time, the boundaries of
two time-dependent compact sets and their normals
might not satisfy it whenever one of the boundaries
is not continuous with respect to time.
With regard to the geometric situation sketched in the figure on the right, there is no
general rule for compact sets when the next topological component of the boundary
disappears, i.e., when the distance from another boundary might be discontinuous
for the next time.

This obstacle can be overcome in the mutational framework if we introduce a
less restrictive concept of transition and solution.
In the theory of partial differential equations, similar difficulties have already led
to distributions and distributional solutions, but their defining property, i.e. partial
integration with smooth functions, requires more mathematical structure than a set
E �= /0 provides in general. For this reason, we suggest a more general interpretation
of the step from classical to distributional derivatives:

Select an essential property in the “classical” theory and demand

to preserve it (only) for all elements of a given fixed “test set” –

instead of the whole “basic set”.

Usually this important feature is the rule of partial integration and, it is preserved
for smooth test functions with compact support (or Schwartz functions).
In the mutational framework, the inequality of error propagation plays a central role
and specifies in which sense transitions represent first-order approximations:

d j

(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

with the radius R j > 0 just depending on max{�x� j, �y� j}, γ j(ϑ), γ j(τ) < ∞.
At time t ∈ [0,T ], a curve x(·) : [0,T ] −→ E has the “same properties up to first
order” as a transition τ (in a generalized sense) if essentially the same asymptotic

inequalities of error propagation hold for τ(·,x(t)), x(t + ·) and h ↓ 0:

d j

(
ϑ(h,z), τ(h,x(t))

) ≤ (
d j(z, x(t)) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

d j

(
ϑ(h,z), x(t +h)

) ≤ (
d j(z, x(t)) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h + o(h).
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Strictly speaking, the latter inequality “in an asymptotic sense for h ↓ 0” means

limsup
h↓0

1
h
·
(

d j

(
ϑ(h,z), x(t +h)

) − d j(z, x(t)) · eα j(ϑ ;R j) h
)
≤ D j(ϑ ,τ;R j). (♦)

In Aubin’s original theory of mutational equations, this condition being satisfied by
all elements z ∈ E and all transitions ϑ proves to be equivalent to τ ∈ ◦

x(t) and thus,
it characterizes the mutation of x(·) at time t. All our steps of generalizations before
have not changed this situation. (In fact, we have even preferred the error inequality
of transitions to the triangle inequality of distances in step (D).)
For the step to distribution-like mutations, we are now free to fix a nonempty “test
set” D arbitrarily and to demand the property (♦) for all elements z ∈ D (instead
of E) and all transitions ϑ . This feature is central to the generalized definition of
τ ∈ ◦

x (t). Motivated by the finite element methods of Petrov-Galerkin, we avoid the
assumption D ⊂ E deliberately.
More details about this step are presented in Chapter 4. Afterwards this most gen-
eral theory of mutational equations so far is applied to two examples with compact
subsets of RN evolving according to their graphs of limiting normal cones.

Last but not least, mutational inclusions

In Chapter 5, mutational inclusions are introduced. Correspondingly to differential
inclusions in RN , they are based on the idea that more than one transition can be
admitted at each element and time. For this purpose, the single-valued function f :
E× [0,T ] −→Θ (on the right-hand side of the mutational equation) is replaced by
a set-valued map F : E × [0,T ] �Θ and, we are looking for a continuous curve
x(·) : [0,T ]−→E such that at L 1-almost every time, a transition ϑ ∈F (x(t), t)⊂Θ
also belongs to the mutation

◦
x(t).

Dispensing with state constraints in § 5.1, we prove a selection principle generaliz-
ing the Theorem of Antosiewicz-Cellina. For technical reasons, however, both the
basic set E and the transition set Θ are supposed to be separable metric spaces. Then
continuity of F and a suitable form of sequential compactness in E are sufficient
for existence of solutions in Theorem 5.4.
Inclusions with state constraints are discussed (only) for morphological transitions
on compact subsets of RN because we need more compactness properties for mea-
surable curves in the transition set. A quite general viability theorem is presented
and proven in § 5.2. Finally, § 5.3 deals with applications to control problems for
nonlocal set evolutions. It is remarkable that these control equations with state con-
straints have the states in a metric space (and not only the controls).

For the sake of the reader ...
Each chapter is elaborated in a quite self-contained way so that the reader has the opportunity to
select freely according to the examples of personal interest. Hence some arguments typical for
mutational analysis might make a frequently repeated impression, but they are always adapted to
the respective framework. Moreover, the proofs are usually collected at the end of each subsection
so that the reader can skip them easily if wanted.



Chapter 1
Extending ordinary differential equations to
metric spaces: Aubin’s suggestion

This chapter is devoted to Aubin’s original concept of mutational equations intro-
duced in the early 1990s. They provide an interesting extension of ordinary differ-
ential equations to a metric space (instead of the classical Euclidean space RN).
The main challenge to which Aubin suggested an interesting answer is how to dis-
pense with any linear structure of the basic set while following the popular track of
ordinary differential equations up to solutions to the initial value problem.

1.1 The key for avoiding (affine-)linear structures: Transitions

For extending ordinary differential equations beyond the traditional border of vector
spaces, we start with a given metric space (E,d) as suitable mathematical environ-
ment. Indeed, even after dispensing with any linear structure of the basic set, we still
need a tool for investigating the asymptotic features of the relation between time-
dependent states.
Roughly speaking, the starting point now consists in extending elementary terms
like “direction” and “velocity” (in the sense of time derivative of a curve) from vec-
tor spaces to the given metric space (E,d).

Considering a curve x(·) : [0,T ]−→RN in the Euclidean space RN , its derivative
x′(t) at time t ∈ [0,T [ is usually defined as limit of difference quotients, i.e.

x′(t) = lim
h→0

x(t +h) − x(t)
h

.

This definition, however, cannot be extended to a metric space in an obvious way
– due to lacking differences. Hence, we consider the alternative characterization
which is based on affine-linear approximation of first-order. Indeed, a vector v∈RN

represents the time derivative of x(·) at time t ∈ [0,T [ if and only if there exists a
residual function w(·) with lim

h→0
1
h
·w(h) = 0 such that

19
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x(t +h) = x(t)+h · v + w(h)

is satisfied for every h ∈ R sufficiently close to 0. The equivalent formulation

lim
h→0

1
h

∣∣x(t +h) − (x(t)+h · v)∣∣ = 0

motivates how this classical notion might be extended to a metric space. Indeed, we
now compare the asymptotic features of the curve h �−→ x(t +h) to the affine-linear
map h �−→ x(t)+h · v with respect to the Euclidean metric | · |.
For dispensing with any aspects of affine-linearity in a moment, we focus on the
continuous map

[0,∞[×RN −→ RN , (h,z) �−→ z+h · v
for a fixed vector v ∈ RN of direction. Geometrically speaking, it indicates the final
point z+h ·v to which the initial point z is moved at time h and, it serves as a kind of
“elementary deformation” of the Euclidean space RN for approximating the curve
x(t + ·) up to first order.
For avoiding any linear structure of the basic set, Aubin suggested to consider such
maps of time and state as counterparts of affine-linear maps in vector spaces, i.e. in
the given metric space (E,d), a continuous map

ϑ : [0,1]×E −→ E, (h,z) �−→ ϑ(h,z)

is to play the role of (not necessarily affine-linear) “deformations” in a fixed direc-
tion. It specifies the point ϑ(h,z) ∈ E to which each initial point z ∈ E is moved at
time h ∈ [0,1]. Such a map ϑ can be interpreted as first-order approximation of a
curve x(·) : [0,T [−→ E at time t ∈ [0,T [ if it satisfies

lim
h→0

1
h
·d(x(t +h), ϑ(h, x(t))

)
= 0.

This is a characterization corresponding to time derivative, but completely free of
any affine-linear structure indeed.
Obviously, such a homotopy–like map ϑ can serve as starting point for a differential
calculus in (E,d) only if it satisfies appropriate continuity conditions. Aubin intro-
duced the term of “transition” in the following way:

Definition 1. Let (E,d) be a metric space. A map ϑ : [0,1]×E −→ E is called
transition on (E,d) if it satisfies the following four conditions:
1.) for every x ∈ E : ϑ(0,x) = x

2.) for every x ∈ E, t ∈ [0,1[: lim
h↓0

1
h
· d
(
ϑ(t +h, x), ϑ(h, ϑ(t,x))

)
= 0

3.) α(ϑ) := sup
x,y∈E

x �=y

limsup
h↓0

max
{

0,
d(ϑ(h,x), ϑ(h,y)) − d(x,y)

h · d(x,y)

}
< ∞

4.) β (ϑ) := sup
x∈E

limsup
h↓0

d(x, ϑ(h,x))
h

< ∞



1.1 The key for avoiding (affine-)linear structures: Transitions 21

Condition (1.) guarantees that the second argument x of ϑ represents the initial
point at time t = 0. Moreover condition (2.) can be regarded as a weakened form of
the semigroup property. Due to Gronwall’s Lemma, it even implies that ϑ satisfies
the semigroup condition

ϑ(t +h,x) = ϑ(h, ϑ(t,x))

for every element x ∈ E and time t,h ∈ [0,1] with t + h ≤ 1 (as we will verify in
subsequent Corollary 22).
Finally the parameters α(ϑ),β (ϑ) < ∞ guarantee the continuity of ϑ with respect
to both arguments. In particular, condition (4.) implies the uniform Lipschitz conti-
nuity of ϑ with respect to time:

d
(
ϑ(s,x), ϑ(t,x)

) ≤ β (ϑ) · |t− s|
for all times s, t ∈ [0,1] and initial elements x ∈ E (as subsequent Lemma 8 shows
in detail). Due to Condition (3.), the distance of initial points can grow at most ex-
ponentially with respect to time (as we will verify in subsequent Proposition 7):

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x,y) · eα(ϑ)h

for all h ∈ [0,1] and x,y ∈ E.

Example 2. The most popular transitions on the Euclidean space (RN , | · |) are in-
duced by the affine-linear functions

ϑv : [0,1]×RN −→ RN , (h,x) �−→ x+h · v

in any fixed direction v ∈ RN . Then, α(ϑv) = 0 and β (ϑv) = |v|.

Example 3. The constant velocity v ∈ RN of translation in RN is now replaced
by a vector field, i.e. for a given bounded Lipschitz function f : RN −→ RN , every
initial point x0 ∈ RN is moving along the unique solution x(·) : [0,∞[−→ RN to the
ordinary differential equation x′(t) = f (x(t)) .
Hence, ϑ f (t,x0) := x(t) with the unique solution x(·) ∈C1([0, t],RN) of the ini-
tial value problem {

x′(t) = f (x(t)) ,
x(0) = x0.

The classical Theorem of Cauchy–Lipschitz about ordinary differential equations
can be regarded as a special case of Filippov’s Theorem A.6 about differential in-
clusions and, it implies that ϑ f : [0,1]×RN −→RN satisfies the four conditions on
transitions with α(ϑ f ) ≤ Lip f and β (ϑ f ) ≤ ‖ f‖sup.
Lip(RN ,RN) consists of all bounded Lipschitz continuous functions RN−→RN .

Example 4. Leaving now the familiar field of points in RN , we consider compact
subsets of the Euclidean space RN (instead of single state vectors).
K (RN) denotes the set of all nonempty compact subsets of RN . Subsets of RN ,
however, do not have any obvious linear structure, but K (RN) is usually supplied
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with a very useful metric: The so–called Pompeiu–Hausdorff distance between two
sets K1,K2 ∈K (RN) is defined as

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

.

Correspondingly to the preceding Example 3, suppose f : RN −→ RN to be a
bounded and Lipschitz vector field. Now the initial points x0 ∈ RN are replaced
by initial sets K0 ∈ K (RN) and, we focus on all points that can be reached by a
solution x(·) of x′(·) = f (x(·)) starting in K0, i.e.

ϑ f : [0,1]×K (RN) −→ K (RN)
(t, K0) �−→

{
x(t)
∣∣ there exists x(·) ∈ C1([0, t],RN) :

x′(·) = f (x(·)), x(0) ∈ K0
}
.

ϑ f (t,K0) is called reachable set of the vector field f and the initial set K0 at time t.
It provides an approach how to “deform” any compact subset of RN – without any
regularity assumptions about the set or its topological boundary. In fact, these set
evolutions belong to the basic tools of the so-called velocity method (alias speed
method) and have led Céa, Delfour, Zolésio and others to excellent results about
shape optimization.
The classical Theorem of Cauchy–Lipschitz about ordinary differential equations
provides estimates that are even uniform with respect to the initial point and thus,
the same conclusions as in Example 3 ensure that ϑ f is a transition on (K (RN),dl)
with α(ϑ f ) ≤ Lip f , β (ϑ f ) ≤ ‖ f‖sup (see subsequent Example 54 for details).

Reachable sets of Lipschitz vector fields, however, are always reversible in time.
Indeed, every reachable set ϑ f (t,K0)⊂ RN can be deformed to the initial set K0 by
means of the flow along − f , i.e.

ϑ− f

(
t, ϑ f (t,K0)

)
= K0

for every set K0 ∈ K (RN). This results directly from the uniqueness of solutions
x(·) : ]−∞,∞[−→ RN to the initial value problem{

x′(t) = f (x(t)) ,
x(0) = x0.

Example 5. The class of set evolutions described as reachable set can be extended
very easily if we admit more than one velocity at each point of the Euclidean space.
Thus, the bounded and Lipschitz vector fields f : RN −→ RN mentioned in Exam-
ple 4 are now replaced by set-valued maps F : RN�RN whose values are nonempty
compact subsets of RN and, we consider the flow along the differential inclusion
x′(·) ∈ F(x(·)) (Lebesgue-almost everywhere) instead of the ordinary differential
equation x′(·) = f (x(·)).
The reachable set ϑF(t,K0)⊂RN of the initial set K0 ∈K (RN) and the set-valued
map F : RN � RN at time t ≥ 0 consists of all points that can be attained at time
t via an absolutely continuous solution x(·) of x′(·) ∈ F(x(·)) a.e. starting in K0. If
F : RN � RN is bounded and Lipschitz continuous with nonempty compact values,
then Filippov’s Theorem A.6) implies that
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ϑF : [0,1]×K (RN) −→ K (RN)
(t, K0) �−→

{
x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1− a.e. in [0, t], x(0) ∈ K0
}
.

is a transition on (K (RN),dl) with α(ϑF) ≤ LipF and β (ϑF) ≤ sup
x∈RN

sup
y∈F(x)

|y|.
Aubin called it morphological transition and used it in most of his examples about
set evolutions. It will be discussed in more detail in subsequent § 1.9.2.

Let us now return to a metric space (E,d) and some nonempty set Θ(E,d) of
transitions in the (very general) sense of Definition 1.
The “flow” along these transitions can form the basis for differential calculus (con-
sidering curves in E) only if we have an opportunity to “compare” the evolution
of two arbitrary initial states along two different transitions. For this reason, Aubin
suggested a distance between transitions:

Definition 6. Let (E,d) be a metric space and Θ(E,d) be a nonempty set of tran-
sitions on (E,d). For any ϑ ,τ ∈Θ(E,d), define

D(ϑ ,τ) := sup
x∈E

limsup
h↓0

1
h
· d
(
ϑ(h,x), τ(h,x)

)
.

The basic idea of D(ϑ ,τ) is to compare the two curves ϑ(·,x), τ(·,x) :
[0,1] −→ E with the same initial point x ∈ E for h ↓ 0. As each
of these curves is continuous, their joint initial point always implies
d
(
ϑ(h,x), τ(h,x)

)−→ 0 for h ↓ 0. Thus we consider its asymptotic
properties of first order – represented by the factor 1

h
in Definition 6.

The parameters of continuity β (ϑ),β (τ) (specified in Definition 1) guarantee that
D(ϑ ,τ) is always finite. Indeed, due to the triangle inequality of the metric d,

D(ϑ ,τ) ≤ sup
x∈E

limsup
h↓0

1
h
· (d(ϑ(h,x), x

)
+d
(
x, τ(h,x)

)) ≤ β (ϑ)+β (τ).

Furthermore, D : Θ(E,d)×Θ(E,d) −→ [0,∞[ is symmetric and always satisfies
the triangle inequality, i.e. for any transitions ϑ1,ϑ2,τ on (E,d),

D(ϑ1,ϑ2) ≤ D(ϑ1,τ)+D(τ,ϑ2).

D(·, ·) is not a metric on Θ(E,d), though, because it does not have to be positive
definite, i.e. D(ϑ ,τ) = 0 does not imply ϑ ≡ τ in general. Indeed, D(ϑ ,τ) focuses
on the transitions ϑ ,τ merely for h ↓ 0.
Now all tools are available for comparing two initial states in E while evolving along
two different transitions respectively:

Proposition 7. Let (E,d) be a metric space and Θ(E,d) be a nonempty set of

transitions on (E,d). For any transitions ϑ ,τ ∈ Θ(E,d) and elements x,y ∈ E,

the following estimate is satisfied at each time h ∈ [0,1[

d
(
ϑ(h,x), τ(h,y)

) ≤ (d(x,y)+h ·D(ϑ ,τ)
) · eα(ϑ)h .
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The subdifferential version of Gronwall’s Lemma (Proposition A.2) is the key tool
for concluding global estimates from local information. In this regard, the proof of
Proposition 7 exemplifies the basic technique for most of our subsequent results:

Lemma 8. For every transition ϑ on a metric space (E,d) and initial point x∈E,
the curve ϑ(·,x) : [0,1[−→ E is β (ϑ)–Lipschitz continuous.

Proof. Choose x ∈ E and ε > 0 arbitrarily. Due to conditions (2.),(4.) of Defini-
tion 1, i.e. ⎧⎪⎨⎪⎩

β (ϑ) Def.= sup
y∈E

limsup
h↓0

1
h
· d(y, ϑ(h,y)) < ∞

lim
h↓0

1
h
· d
(
ϑ(h, ϑ(t,x)), ϑ(t +h, x)

)
= 0

we obtain for each t ∈ [0,1[ that some sufficiently small δt ∈ ]0,1− t[ satisfies

1
h
· d
(
ϑ(t,x), ϑ(t +h,x)

) ≤ β (ϑ)+ ε for all h ∈ ]0,δt ].

For any 0 ≤ s1 ≤ s2 ≤ 1− ε given, covering [s1,s2] with (at most countably many)
subintervals [t, t +δt ] (with t ∈ [s1,s2[) and the triangle inequality of d imply

d
(
ϑ(s1,x), ϑ(s2,x)

) ≤ (β (ϑ)+ ε) · (s2 − s1).

As ε > 0 was chosen arbitrarily, ϑ(·,x) is β (ϑ)–Lipschitz continuous in [0,1[. �

Proof (of Proposition 7). The auxiliary function

ψ : [0,1[−→ [0,∞[, h �−→ d
(
ϑ(h,x), τ(h,y)

)
is Lipschitz continuous due to Lemma 8 and the triangle inequality of d. Moreover
it satisfies for every t ∈ [0,1[

limsup
h↓0

ψ(t+h)−ψ(t)
h

=

= limsup
h↓0

1
h
· (d(ϑ(t+h, x), τ(t+h, y)

) − d
(
ϑ(t, x), τ(t, y)

))
≤ limsup

h↓0

1
h
· (d(ϑ(t+h, x), ϑ(h, ϑ(t,x))

)
+

d
(
ϑ(h, ϑ(t,x)), ϑ(h, τ(t,y))

) − d
(
ϑ(t, x), τ(t, y)

)
+

d
(
ϑ(h, τ(t,y)), τ(h, τ(t,y))

)
+

d
(
τ(h, τ(t,y)), τ(t+h, y )

))
≤ 0 + α(ϑ) · ψ(t) + D(ϑ ,τ) + 0.

Finally, the Gronwall estimate in Proposition A.2 implies for each h ∈ [0,1[

ψ(h) ≤ ψ(0) eα(ϑ)h + D(ϑ ,τ) eα(ϑ)h − 1
α(ϑ) . �

Remark 9. The same arguments lead to the inequality for any t1, t2 ∈ [0,1[

d
(
ϑ(t1 +h,x), τ(t2 +h,y)

) ≤ (
d
(
ϑ(t1,x), τ(t2,y)

)
+ h ·D(ϑ ,τ)

) · eα(ϑ)h .
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1.2 The mutation as counterpart of time derivative

Consider a curve x(·) : [0,T ]−→ E in a metric space (E,d).
A transition ϑ on (E,d) can be regarded as (generalized)
time derivative of x(·) at time t ∈ [0,T [ if the comparison
with x(t + ·) reveals an approximation of first order in the
following sense:

lim
h↓0

1
h
· d
(
ϑ(h, x(t)), x(t +h)

)
= 0.

In general this asymptotic condition may be satisfied by more than one transition
since only the properties for h ↓ 0 are taken into consideration. Aubin suggested to
introduce a new term for the set of all these transitions – rather than considering the
underlying equivalent classes of transitions because the latter do not provide addi-
tional mathematical insight:

Definition 10. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d) and, x(·) : [0,T ]−→ E denotes a curve. For t ∈ [0,T [, the set

◦
x(t) :=

{
ϑ ∈Θ(E,d)

∣∣ lim
h↓0

1
h
· d
(
ϑ(h, x(t)), x(t +h)

)
= 0
}

is called mutation of x(·) at time t.

Remark 11. For every transition ϑ on (E,d) and initial element x0 ∈ E, the curve
xx0(·) := ϑ(·,x0) : [0,1]−→ E has ϑ in its mutation at each time t ∈ [0,1[:

ϑ ∈ ◦
xx0 (t)

for every t ∈ [0,1[. This results directly from condition (2.) in Definition 1.

In regard to real-valued functions, the classical concepts of derivative and inte-
gral are closely related. Motivated by this connection, we can also start with a curve
of transitions and look for an appropriate curve in the metric space:

Definition 12. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d) and, ϑ(·) : [0,T ]−→Θ(E,d) denotes a curve of transitions.
A curve x(·) : [0,T ]−→ E is called primitive of ϑ(·) if x(·) is Lipschitz continuous
with respect to d and satisfies for Lebesgue-almost every t ∈ [0,T ]

ϑ(t) ∈ ◦
x(t)

i.e. lim
h↓0

1
h
· d
(
ϑ(t)(h, x(t)), x(t +h)

)
= 0 for a.e. t ∈ [0,T ].

Lemma 8 and Remark 11 imply that constructing a primitive of ϑ(·) : [0,T ] −→
Θ(E,d) with given initial element x0 ∈ E is particularly easy if ϑ(·) is piecewise
constant with sup

t
β (ϑ(t)) < ∞.
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1.3 Feedback leads to mutational equations

Ordinary differential equations are based on the notion that the derivative of the
wanted solution is prescribed by a given function of the current state. This form of
feedback can be extended to curves in a metric space (E,d) and their mutations.
Aubin introduced the following definition:

Definition 13. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d). Furthermore, a single-valued function f : E× [0,T ]−→Θ(E,d) is given.
A curve x(·) : [0,T ]−→ E is called solution to the mutational equation

◦
x(·) � f

(
x(·), · )

if x(·) is primitive of the composition f (x(·), ·) : [0,T ] −→Θ(E,d) in the sense of
Definition 12, i.e. x(·) is Lipschitz continuous with respect to d and satisfies

lim
h↓0

1
h
· d
(

f (x(t), t)(h, x(t)), x(t +h)
)

= 0

for Lebesgue-almost every t ∈ [0,T ].

Remark 14. At first glance, the symbol � here seems to be contradictory to the
term “equation”. The mutation

◦
x(t), however, is defined as subset of all transitions

in Θ(E,d) providing a first-order approximation of x(t + ·) (Definition 10). The
transition on the “right-hand side” f (x(t), t) ∈Θ(E,d) is required to be one of its
elements at Lebesgue-almost every time t.
Example 2 lays the foundations for applying this framework to Lipschitz continuous
solutions to ordinary differential equations in RN . In this special case, the mutation
of a Lipschitz continuous curve x : [0,T ] −→ RN consists of just one vector at al-
most every time – as a consequence of Rademacher’s Theorem.
In general, however, the mutation

◦
x(t) might consists of more than one transition.

Adapting the classical arguments about ordinary differential equations, the next
step is now to solve initial value problems with mutational equations. As mentioned
at the end of § 1.2, a primitive of piecewise constant functions is easy to construct
and this opens the door to applying Euler method in the mutational framework.
Aubin has already presented the following counterpart of Cauchy–Lipschitz Theo-
rem about existence and uniqueness of solutions to the initial value problem:

Theorem 15 (Aubin’s adaptation of Cauchy–Lipschitz Theorem).
Let (E,d) be a metric space in which all closed bounded balls are compact. Θ(E,d)
denotes a nonempty set of transitions on (E,d).
Let f : E −→Θ(E,d) be a λ–Lipschitz continuous function, i.e.

D( f (y), f (z)) ≤ λ · d(y,z) for any y,z ∈ E.

Furthermore assume α̂ := sup
z∈E

α( f (z)) < ∞.

Fix an element x0 ∈ E and a curve y(·) : [0,T ]−→ E with
◦
y(t) �= /0 for all t ∈ [0,T ].
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Then there exists a unique solution x(·) : [0,T ]−→ E to the initial value problem{ ◦
x(·) � f

(
x(·))

x(0) = x0

In addition, it satisfies the following inequality for all t ∈ [0,T ]

d
(
x(t), y(t)

) ≤ d(x0, y(0)) · e(α̂+λ ) t +∫ t

0
e(α̂+λ ) (t−s) · inf

ϑ ∈◦y(s)
D
(

f (y(s)), ϑ
)

ds.

In particular, this theorem implies for autonomous mutational equations with Lip-
schitz continuous right-hand side that solutions depend continuously on the initial
element and the transition function (on the right-hand side). Here D(·, ·) is usually
the distance function used for transitions on (E,d).

The second important result that Aubin extended from ordinary differential equa-
tions to mutational equations is Nagumo’s Theorem. It provides sufficient and nec-
essary conditions on initial value problems with state constraints.
In addition to the mutational equation, a nonempty subset V ⊂ E is given for spec-
ifying the state constraints and, we want to ensure that each element of V is the
initial point of at least one solution “viable in V ” (i.e. with all its values in V ).
Similarly to the classical form of Nagumo’s Theorem about ordinary differential
equations, the “tangential” properties of the (generalized) directions come into play.
Aubin introduced the following counterpart of Bouligand’s contingent cone:

Definition 16. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d). Fix a nonempty set V ⊂ E and an element x ∈ E.

TV (x) :=
{

ϑ ∈Θ(E,d)
∣∣ liminf

h↓0
1
h
· dist

(
ϑ(h,x), V

)
= 0
}

is called contingent transition set of V at x.

Remark 17. The transitions in TV (x) ⊂Θ(E,d) are specified by means of the
distances of elements from V ⊂ E. By definition,

dist
(
ϑ(h,x), V

) Def.= inf
z∈V

d
(
ϑ(h,x), z

)
.

Example 18. For the affine-linear transitions on RN introduced in Example 2, i.e.

ϑv : [0,1]×RN −→ RN , (h,x) �−→ x+h · v (with v ∈ RN),

we can identify the contingent transition set of V ⊂ RN at x ∈V directly with

TV (x) ∼= {
v ∈ RN

∣∣ liminf
h↓0

1
h
· dist

(
x+h · v, V

)
= 0
}

and, the latter set is the well-known contingent cone of Bouligand (mentioned in
many monographs about nonsmooth analysis and here denoted by TV (x)). In gen-
eral, such an immediate link cannot be expected for the morphological transitions
on (K (RN),dl) in Example 5.
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Theorem 19 (Aubin’s adaptation of Nagumo’s Theorem).
Let Θ(E,d) be a nonempty set of transitions on a metric space (E,d). Assume that

all closed bounded balls in (E,d) are compact.

Suppose f : (E,d)−→ (Θ(E,d), D) to be continuous with

sup
z∈E

α( f (z)) < ∞, sup
z∈E

β ( f (z)) < ∞.

Then the following two statements are equivalent for any closed subset V ⊂ E :

1. Every element x0 ∈ V is the initial point of at least one solution x : [0,1] −→ E

to the mutational equation
◦
x(·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].

2. V ⊂ E is a viability domain of f in the sense that f (z)∈TV (z) for every z∈ V .

1.4 Proofs for existence and uniqueness of solutions
without state constraints

In the previous section, some of Aubin’s results about existence and uniqueness of
solutions are quoted. They exemplify the analogies between mutational equations
and ordinary differential equations. but they are restricted to autonomous mutational
equations.
Now we prove these analogies for nonautonomous mutational equations in more
detail. The proofs presented here, however, differ from their counterparts in Aubin’s
monography because we follow another track which will be generalized succes-
sively in the subsequent chapters.

The following result about existence corresponds to Peano’s Theorem about ordi-
nary differential equations, i.e. continuity of the “right-hand side” implies existence
of a solution:

Theorem 20 (Peano’s Theorem for nonautonomous mutational equations).
Let (E,d) be a metric space in which all closed bounded balls are compact and,

Θ(E,d) denotes a nonempty set of transitions on (E,d).
Assume f : (E,d)× [0,T ]−→ (Θ(E,d),D) to be continuous with

sup
z∈E

0≤ t≤T

α( f (z, t)) < ∞, sup
z∈E

0≤ t≤T

β ( f (z, t)) < ∞.

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E to

the mutational equation

◦
x(·) � f

(
x(·), ·)

with x(0) = x0.
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The proof (presented at the end of this section) is based on Euler’s method in com-
bination with Arzelà–Ascoli Theorem A.63 about compactness of continuous func-
tions. In particular, we have to verify the solution property of the limit function for
a convergent subsequence of Euler approximations. This is based on comparing two
solutions to mutational equations:

Proposition 21. Assume for f ,g : E × [0,T ] −→Θ(E,d) and x,y : [0,T ] −→ E

that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·) and y(·) is a solu-

tion to the mutational equation
◦
y(·) � g(y(·), ·).

Furthermore, let α̂ > 0 and ϕ ∈C0([0,T ]) satisfy for almost every t ∈ [0,T ]{
α(g(y(t), t)) ≤ α̂

D( f (x(t), t), g(y(t), t)) ≤ ϕ(t).

Then, d(x(t), y(t)) ≤ (d(x(0),y(0))+
∫ t

0
ϕ(s) e−α̂sds

)
eα̂t for any t ∈ [0,T ].

Similarly to the estimate comparing two transitions in Proposition 7, this upper
bound results from generalized Gronwall’s Lemma (Proposition A.2) as we will
verify at the end of this section. It lays the basis for three important conclusions:
Firstly, we can now verify easily that all transitions have the semigroup property in
the following sense:

Corollary 22 (Semigroup property of transitions).
Every transition ϑ on a metric space (E,d) satisfies

ϑ
(
h, ϑ(t,x)

)
= ϑ(t +h, x)

for any x ∈ E and t,h ∈ [0,1] with t +h≤ 1.

Indeed, both [0,1−t]−→ E, h �−→ ϑ(h, ϑ(t,x)) and h �−→ ϑ(t +h,x) solve the
mutational equation

◦
x(·) � ϑ according to Remark 11 (on page 25) and share the

initial element at time h = 0. Essentially the same arguments provide the uniqueness
of primitives as second result:

Corollary 23 (Uniqueness of primitives).
Let ϑ(·) : [0,T ]−→Θ(E,d) satisfy sup

t∈ [0,T ]
α(ϑ(t)) < ∞.

If x(·),y(·) : [0,T ]−→ E are primitives of ϑ(·) with x(0) = y(0), then x(·)≡ y(·).

Finally Proposition 21 even guarantees that the solutions depend on the initial data
and the “right-hand side” in a continuous way — under the additional assumption
that the “right-hand side” of a mutational equation is Lipschitz continuous.
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Proposition 24 (Continuity w.r.t. initial data and the right-hand side).
Let Θ(E,d) be a nonempty set of transitions on a metric space (E,d).
For f : E × [0,T ] −→Θ(E,d) suppose α̂ := supz,t α( f (z, t)) < ∞ and that there

exists λ > 0 such that f (·, t) : (E,d) −→ (Θ(E,d), D) is λ–Lipschitz continuous

for L 1-almost every t ∈ [0,T ].
Let g : E× [0,T ]−→Θ(E,d) fulfill sup

z,s
D( f (z,s), g(z,s)) < ∞,

Then every solutions x(·),y(·) : [0,T ]−→ E to the mutational equations

◦
x(·) � f (x(·), ·) ◦

y(·) � g(y(·), ·)
satisfy the following inequality for every t ∈ [0,T ]

d(x(t), y(t)) ≤ (d(x(0),y(0)) + t · sup
z,s

D( f (z,s),g(z,s))
)

e(α̂+λ ) t .

The combination of Theorem 20 and Proposition 24 implies directly Aubin’s
adaptation of Cauchy-Lipschitz Theorem formulated here in Theorem 15.
Let us now prove the three main results of this section:

Proof (of Theorem 20). This existence proof is based on Euler approximations
xn(·) : [0,T ]−→ E (n ∈N with 2n > T ) together with Arzelà–Ascoli Theorem A.63
in metric spaces. Indeed, for each n ∈ N with 2n > T , set

hn := T
2n , t

j
n := j hn for j = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(t
j
n), t

j
n)
(
t− t

j
n, xn(t

j
n)
)

for t ∈ ]t j
n, t

j+1
n ], j < 2n.

According to Remark 11,
◦
xn (t) � f (xn(t

j
n), t

j
n)

for every t ∈ [t j
n, t

j+1
n [ with j ∈ {0,1 . . . 2n−1}.

Due to Lemma 8 and the piecewise construction of each xn(·), the constant β̂ :=
supz,s β ( f (z,s)) < ∞ is a uniform Lipschitz constant of every curve xn(·). More-
over, the set of all values {xn(t) | n ∈ N, t ∈ [0,T ],2n > T} is contained in the ball
B := {y ∈ E |d(x0,y)≤ β̂ T} which is compact with respect to d by assumption.
The Arzelà–Ascoli Theorem states that {xn(·) |n ∈ N,2n > T} ⊂ C0([0,T ],B) is
precompact with respect to uniform convergence and therefore, there exists a sub-
sequence

(
xn j

(·))
j∈N

converging uniformly to a function x(·) ∈C0([0,T ],B).

Finally, we verify that x(·) solves the mutational equation
◦
x(·) � f (x(·), ·).

Indeed, x(·) is β̂–Lipschitz continuous with respect to d by virtue of its construc-
tion. Furthermore, using the notation δn := sup[0,T ] d(xn(·),x(·)), we conclude from
Proposition 21 that for any t ∈ [0,T [, h ∈ [0,T − t[ and n ∈ N with 2n > T
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d ( f (x(t), t)(h, x(t)), x(t +h))

≤ d
(

f (x(t), t)(h,x(t)), xn(t +h)
)

+ d (xn(t+h), x(t+h))

≤ (
δn + h · sup

−hn≤ s≤h
y: d(y,x(t+s))≤δn

D( f (x(t), t), f (y, t + s))
)

eα̂ h + δn

with α̂ Def.= sup
z,s

α( f (z,s)) < ∞.

Due to the continuity of f with respect to D, the limit for n−→ ∞ implies that

d
(

f (x(t), t)(h,x(t)), x(t +h)
) ≤ h · sup

0≤s≤h

D( f (x(t), t), f (x(t + s), t + s)) eα̂ h

and thus,

limsup
h↓0

1
h
· d
(

f (x(t), t)(h,x(t)), x(t +h)
) ≤ 0. �

Remark 25. This proof reveals that the continuity of f : E × [0,T ] −→Θ(E,d)
implies the first-order approximation at even every time t ∈ [0,T [ (and not just at
Lebesgue-almost every time as Definition 13 demands).

Proof (of Proposition 21). Similarly to the proof of Proposition 7 comparing two
transitions, we consider the auxiliary function

ψ : [0,T ] −→ [0,∞[, t �−→ d
(
x(t), y(t)

)
.

It is Lipschitz continuous because any solutions x(·),y(·) to mutational equations
◦
x(·) � f (x(·), ·), ◦

y(·) � g(y(·), ·)
are Lipschitz continuous due to Definition 13.
Furthermore, we obtain for Lebesgue-almost every t ∈ [0,T [

limsup
h↓0

1
h
·d(x(t +h), f (x(t), t)(h,x(t))

)
= 0

limsup
h↓0

1
h
·d( f (x(t), t)(h,x(t)), g(y(t), t)(h,x(t))

) ≤ D
(

f (x(t), t), g(y(t), t)
)

limsup
h↓0

1
h
·d(g(y(t), t)(h,y(t)), y(t +h)

)
= 0

due to Definition 6 and Definition 13. For estimating ψ(t +h), we now use

limsup
h↓0

1
h
· (d(g(y(t), t)(h,x(t)), g(y(t), t)(h,y(t))

) − ψ(t)
) ≤ α̂ ·ψ(t)

and conclude from the triangle inequality of d

limsup
h↓0

ψ(t +h) − ψ(t)
h

≤ α̂ ·ψ(t) + D
(

f (x(t), t), g(y(t), t)
)

≤ α̂ ·ψ(t) + ϕ(t)

at Lebesgue-almost every time t ∈ [0,T [. Finally the claimed estimate results from
generalized Gronwall’s Lemma (Proposition A.2). �
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Proof (of Proposition 24). Assuming f : E× [0,T ]−→Θ(E,d) to be λ–Lipschitz
continuous in the first argument with α̂ := supz,t α( f (z, t)) < ∞, we obtain for any

solutions x(·),y(·) to the mutational equations
◦
x(·) � f (x(·), ·), ◦y(·) � g(y(·), ·) the

following inequality at L 1-almost every time t ∈ [0,T ]

D
(

f (x(t), t), g(y(t), t)
) ≤ D

(
f (x(t), t), f (y(t), t)

)
+ D

(
f (y(t), t), g(y(t), t)

)
≤ λ · d(x(t),y(t)) + sup

z,s
D
(

f (z,s),g(z,s)
)
.

Proposition 21 implies for the Lipschitz continuous auxiliary function
ψ : [0,T ] −→ [0,∞[, t �−→ d

(
x(t),y(t)

)
the implicit integral inequality

ψ(t) ≤ (ψ(0)+
∫ t

0

(
λ ·ψ(s)+ sup D( f (·, ·),g(·, ·))) e−α̂sds

)
eα̂t

at every time t ∈ [0,T ]. Finally the integral version of Gronwall’s Lemma (Proposi-
tion A.1) bridges the last gap and provides the claimed explicit estimate. �

1.5 An essential advantage of mutational equations:
Solutions to systems

Roughly speaking, mutational equations provide a joint framework for diverse time-
dependent systems whose evolutions are determined by a form of generalized dif-
ferential equation – without requiring any linear structure.
In regard to applications, it is of particular interest that we can consider more than
one mutational equation simultaneously. The analytical origin of the individual com-
ponents (like set evolutions in (K (RN),dl)) does not really matter as long as each
component satisfies the conditions on transitions. This opens the door for coupling
nonlocal set evolutions with an ordinary differential equation, for example.

The main basis for considering systems of mutational equations is the follow-
ing counterpart of Peano’s Theorem and thus, all the generalizations of mutational
equations in subsequent chapters are to ensure that the same existence result about
systems holds in the extended framework.

Theorem 26 (Peano’s Theorem for systems of mutational equations).
Let (E1,d1),(E2,d2) be metric spaces in which all closed bounded balls are compact.

Θ(E1,d1) and Θ(E2,d2) denote nonempty sets of transitions on (E1,d1) and (E2,d2)
respectively. Assume

f1 : (E1,d1)× (E2,d2)× [0,T ] −→ (Θ(E1,d1),D1)
f2 : (E1,d1)× (E2,d2)× [0,T ] −→ (Θ(E2,d2),D2)

to be continuous with
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sup
z1, z2, t

{
α( f1(z1,z2, t)), α( f2(z1,z2, t))

}
< ∞,

sup
z1, z2, t

{
β ( f1(z1,z2, t)), β ( f2(z1,z2, t))

}
< ∞.

Then for every elements x0 ∈ E1,y0 ∈ E2, there exist solutions x(·) : [0,T ] −→ E1,
y(·) : [0,T ]−→ E2 to the two mutational equations{ ◦

x(·) � f1
(
x(·), y(·), ·)

◦
y(·) � f2

(
x(·), y(·), ·)

with x(0) = x0 and y(0) = y0.

In this mutational framework, such an existence result is an immediate consequence
of the following relationship between transitions on two separate metric spaces and
on their product space:

Lemma 27 (Product of transitions and mutations).
Let (E1,d1) and (E2,d2) be metric spaces. Θ(E1,d1) and Θ(E2,d2) denote nonempty

sets of transitions on (E1,d1) and (E2,d2) respectively. The product space E :=
E1×E2 is supplied with the metric

d+ : E×E −→ [0,∞[,(
(x1,x2), (y1,y2)

) �−→ d1(x1,y1)+d2(x2,x2) .

1. For every ϑ1 ∈Θ(E1,d1) and ϑ2 ∈Θ(E2,d2), the tuple

ϑ := (ϑ1,ϑ2) : [0,1]×(E1×E2
) −→ E1×E2,(

h, (x1,x2)
) �−→ (

ϑ1(h,x1), ϑ2(h,x2)
)

is a transition on (E1×E2, d+) with⎧⎪⎨⎪⎩
α(ϑ) ≤ max

{
α(ϑ1), α(ϑ2)

}
β (ϑ) ≤ max

{
β (ϑ1), β (ϑ2)

}
D+
(
(ϑ1,ϑ2), (τ1,τ2)

) ≤ D1(ϑ1,τ1) + D2(ϑ2,τ2) .

2. Let the product space E
Def.= E1 × E2 be now supplied with the transitions in

Θ(E,d+) := Θ(E1,d1)×Θ(E2,d2). For arbitrary curves x1(·) : [0,T ] −→ E1
and x2(·) : [0,T ]−→ E2 set x(·) :=

(
x1(·),x2(·)

)
: [0,T ]−→ E.

Then ϑ = (ϑ1,ϑ2) ∈ Θ(E,d+) belongs to the mutation
◦
x (t) if and only if

ϑ1 ∈ ◦
x1 (t) and ϑ2 ∈ ◦

x2 (t).

Proof (of Lemma 27) results directly from the definitions and the essential
estimate of Proposition 7 (on page 23) and thus, we dispense with its details.
Obviously, not every transition on (E1×E2, d+) is necessarily induced by a tuple
of two “decoupled” transitions on the components as in Lemma 27 (1.).
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The close relationship between the mutation of a tuple and the product of the
componentwise mutations cannot be extended to all subsequent generalizations of
mutational equations. For this reason, we present an alternative (and simple) proof
of Theorem 26 whose basic notion will be reused later on.

Proof (of Theorem 26). Correspondingly to the proof of Theorem 20 (page 30),
we use Euler approximations for each component. Arzelà-Ascoli Theorem A.63 ap-
plied to the corresponding curves [0,T ] −→ E1×E2 provides a subsequence such
that each component has a continuous limit curve in E1 and E2 respectively. Finally
we verify the solution property for each component separately.
Indeed, for each n ∈ N with 2n > T , set

hn := T
2n , t

j
n := j hn for j = 0 . . . 2n,

xn(0) := x0,
yn(0) := y0,

xn(t) := f1(xn(t
j
n), yn(t

j
n), t

j
n)
(
t− t

j
n, xn(t

j
n)
)

yn(t) := f2(xn(t
j
n), yn(t

j
n), t

j
n)
(
t− t

j
n, yn(t

j
n)
)

for t ∈ ]t j
n, t

j+1
n ], j < 2n.

According to Remark 11,
◦
xn (t) � f1(xn(t

j
n), yn(t

j
n)), t

j
n)

◦
yn (t) � f2(xn(t

j
n), yn(t

j
n)), t

j
n).

for every t ∈ [t j
n, t

j+1
n [ with j ∈ {0,1 . . . 2n−1}

Due to Lemma 8 and the piecewise construction of each xn(·),yn(·), the constant

β̂ := sup
z1,z2,s

{
β ( f1(z1,z2,s)), β ( f2(z1,z2,s))

}
< ∞

is a joint Lipschitz constant of all curves xn(·) : [0,T ] −→ E1, yn(·) : [0,T ] −→ E2
(2n > T ). As a consequence, the sets of all values

{xn(t) |n ∈ N, 2n > T, t ∈ [0,T ]} ⊂ E1,

{yn(t) |n ∈ N, 2n > T, t ∈ [0,T ]} ⊂ E2

are contained in closed balls of radius β̂ · T respectively. Considering now the
sequence of Lipschitz continuous curves

(xn,yn) : [0,T ] −→ (E1×E2,d1 +d2)
the Arzelà–Ascoli Theorem guarantees a subsequence

(
xn j

(·),yn j
(·))

j∈N
converg-

ing uniformly to a continuous curve (x(·),y(·)) : [0,T ]−→ E1×E2.

Finally, we verify that x(·) solves the mutational equation
◦
x(·) � f1(x(·), y(·), ·).

The corresponding proof for y(·) is based on exactly the same steps.
Indeed, x(·) is β̂–Lipschitz continuous with respect to d1 by virtue of its construc-
tion. Now we focus on the nonautonomous mutational equations in (E1,d1) with

(E1,d1)× [0,T ] −→ Θ(E1,d1), (z1, t) �−→ f1
(
z1, y(t), t

)
on its right-hand side.
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Using the notations α̂1 := sup
z1,z2,s

α( f1(z1,z2,s)) < ∞ and

δ 1
n := sup

[0,T ]
d1(xn(·),x(·)), δ 2

n := sup
[0,T ]

d2(yn(·),y(·)),

Proposition 21 implies for any t ∈ [0,T [, h ∈ [0,T − t[ and n ∈ N

d1
(

f1(x(t), y(t), t) (h, x(t)), x(t +h)
)

≤ d1
(

f1(x(t), y(t), t) (h,x(t)), xn(t +h)
)

+ d1 (xn(t+h), x(t+h))

≤ (
δ 1

n + h · sup
−hn≤ s ≤h

z1: d1(z1,x(t+s))≤δ1
n

z2: d2(z2,y(t+s))≤δ2
n

D1 ( f1(x(t), y(t), t), f1(z1,z2, t + s))
)

eα̂1 h + δ 1
n .

Due to the continuity of f1 with respect to D1, the limit for n−→ ∞ reveals

d1
(

f1(x(t), y(t), t) (h, x(t)), x(t +h)
)

≤ h · sup
0≤s≤h

D1
(

f1(x(t), y(t), t), f1(x(t + s), y(t + s), t + s)
)

eα̂1 h

at every time t ∈ [0,T [ and thus,

limsup
h↓0

1
h
· d1
(

f1(x(t),y(t), t)(h,x(t)), x(t +h)
) ≤ 0. �

1.6 Proof for existence of solutions with state constraints

Theorem 19 (on page 28) specifies Aubin’s adaptation of Nagumo’s Theorem to
mutational equations with state constraint. In this section, we give a slightly modi-
fied proof that the viability condition is sufficient:

Proposition 28.
Let Θ(E,d) be a nonempty set of transitions on a metric space (E,d). Assume that

all closed bounded balls in (E,d) are compact.

Suppose f : (E,d)−→ (Θ(E,d), D) to be continuous with

α̂ := sup
z∈E

α( f (z)) < ∞, β̂ := sup
z∈E

β ( f (z)) < ∞.

For the nonempty closed subset V ⊂ E assume the following viability condition:

f (z) ∈TV (z) for every z ∈ V .

Then every x0 ∈ V is the initial point of at least one solution x : [0,1] −→ E to

the mutational equation
◦
x(·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].
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For proving this proposition, the first step consists in constructing approximative
solutions satisfying a weakened form of state constraints:

Lemma 29 (Aubin’s construction of approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 28, there exists a β̂–

Lipschitz continuous function xε(·) : [0,1] −→ E satisfying with Rε := ε eα̂

(a) xε(0) = x0,

(b) dist
(
xε(t), V

) ≤ Rε for all t ∈ [0,1],
(c)

◦
xε(t) ∩

{
f (z)
∣∣ z ∈ E : d(z, xε(t))≤ Rε

} �= /0 for all t ∈ [0,1[.

Considering a sequence of these approximative solutions (x1/n(·))n∈N, Arzelà-
Ascoli Theorem A.63 provides a subsequence (x1/n j

(·)) j∈N that converges uni-
formly to a Lipschitz continuous curve x(·) : [0,T ] −→ E. Moreover, x(·) has all
its values in the closed set of constraints V ⊂ E.
Finally we have to verify that x(·) solves the mutational equation

◦
x (·) � f

(
x(·)).

This is a consequence of the following general result:

Theorem 30 (Convergence of solutions to mutational equations).
Let Θ(E,d) be a nonempty set of transitions on a metric space (E,d). Consider

f , fm : E× [0,T ]−→Θ(E,d) and x,xm : [0,T ]−→ E for each m ∈ N and, suppose

the following properties:

1. for each m ∈N, xm(·) is solution to the mutational equation
◦
xm (·) � fm(xm(·), ·)

2. β̂ := sup
m∈N

Lip xm(·) < ∞

3. α̂ := sup
m∈N

sup
z∈E

0≤ t≤T

{
α( fm(z, t)), α( f (z, t))

}
< ∞

4. for Lebesgue-almost every t ∈ [0,T ], any y∈ E and all sequences tm → t, ym → y

in [0,T ],E respectively: lim
m→∞

D
(

fm(y, t), fm(ym, tm)
)

= 0

5. for Lebesgue-almost every t ∈ [0,T ] : lim
m→∞

D
(

f (x(t), t), fm(x(t), t)
)

= 0

6. for each t ∈ [0,T ] : lim
m→∞

d
(
x(t), xm(t)

)
= 0.

Then x(·) is solution to the mutational equation
◦
x(·) � f (x(·), ·).

Proof (of Lemma 29). For ε > 0 fixed, let Aε(x0) denote the set of all tuples
(Tx, x(·)) consisting of some Tx ∈ [0,1] and a β̂–Lipschitz continuous function
x(·) : [0,Tx]−→ (E,d) such that

(a) x(0) = x0,

(b’) 1.) dist
(
x(Tx), V

) ≤ rε(Tx) with rε(t) := ε eα̂ t t,
2.) dist

(
x(t), V

) ≤ Rε for all t ∈ [0,Tx],

(c)
◦
x(t) ∩ { f (z)

∣∣ z ∈ E : d(z, x(t))≤ Rε
} �= /0 for all t ∈ [0,Tx[.
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Obviously, Aε(x0) is not empty since it contains (0, x(·)≡ x0). Moreover, an order
relation � on Aε(x0) is specified by

(Tx, x(·)) � (Ty, y(·)) :⇐⇒ Tx ≤ Ty and x = y
∣∣
[0,Tx]

.

Thus, Zorn’s Lemma provides a maximal element
(
T, xε(·)

) ∈Aε(x0).
As all considered functions with values in E have been supposed to be β̂–Lipschitz
continuous, xε(·) is also β̂–Lipschitz continuous in [0,T [. In particular, xε(·) can
always be extended to the closed interval [0,T ]⊂ [0,1] in a unique way.

Assuming T < 1 for a moment, we obtain a contradiction if xε(·) can be extended
to a larger interval [0,T +δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c).
Since closed bounded balls of (E,d) are compact, the closed set V contains an
element z ∈ E with d(xε(T ),z) = dist(xε(T ), V ) ≤ rε(T ) and, assuming the
viability condition implies

f (z) ∈ TV (z) ⊂ Θ(E,d).

Due to Definition 16 of the contingent transition set TV (z), there is a sequence
hm ↓ 0 in ]0,1−T [ such that

dist
(

f (z)(hm,z), V
) ≤ ε hm for all m ∈ N.

Now set for each t ∈ [T, T +h1]

xε(t) := f (z)
(
t−T, xε(T )

)
.

Obviously, Remark 11 implies f (z) ∈ ◦
xε (t) for all t ∈ [T, T + h1[. Moreover,

Lemma 8 leads to
d
(
xε(t), z

) ≤ d
(

f (z)(t−T, xε(T )), xε(T )
)

+ d
(
xε(T ), z

)
≤ β̂ · (t−T ) + ε eα̂ T T

≤ Rε

for every t ∈ [T, T + δ [ with δ := min
{

h1, ε eα̂ 1−T

1+ β̂

}
, i.e. conditions (b’)(2.)

and (c) hold in the interval [T,T +δ ].
For any index m ∈ N with hm < δ , we conclude from Proposition 7

dist
(
xε(T +hm), V

) ≤ d
(

f (z)(hm, xε(T )), f (z)(hm, z)
)

+ dist
(

f (z)(hm, z), V
)

≤ d
(
xε(T ), z

) · eα̂ hm + ε ·hm

≤ ε eα̂ T T · eα̂ hm + ε ·hm

≤ rε(T +hm),

i.e. condition (b’)(1.) is also satisfied at time t = T +hm with any large m ∈ N.
Finally, xε(·)

∣∣
[0,T+hm] provides the wanted contradiction and thus, T = 1.

�
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Proof (of Convergence Theorem 30). The limit curve x(·) : [0,T ] −→ E is
β̂ -Lipschitz continuous due to assumption (6.) and the β̂ -Lipschitz continuity of
each xm(·), m ∈ N. (This is an easy consequence of the triangle inequality of d.)
Choose t ∈ [0,T [ and h ∈ [0,T − t[ arbitrarily. Proposition 21 (comparing solutions
to mutational equations on page 29) implies

d
(

f (x(t), t)(h, x(t)), x(t+h)
)

≤ d
(

f (x(t), t)(h, x(t)), xm(t+h)
)

+ d
(
xm(t+h), x(t+h)

)
≤ d
(

f (x(t), t)(h, x(t)), xm(t+h)
)

+ d
(
xm(t+h), x(t+h)

)
≤ (d(x(t), xm(t)

)
+ h ·Δ(t, t+h,m)

)
eα̂ h + d

(
xm(t+h), x(t+h)

)
with the abbreviation Δ(t, t +h,m) := sup

t≤s≤ t+h

D
(

f (x(t), t), fm(xm(s),s)
)
.

As mentioned after Definition 6 (on page 23), D(·, ·) satisfies the triangle inequality
and thus,

Δ(t, t +h,m) ≤ D
(

f (x(t), t), fm(x(t), t)
)

+ sup
t≤s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)
.

Considering now the limits for m−→∞ (with fixed t,h), we conclude from assump-
tion (5.) for Lebesgue-almost every t ∈ [0,T [ and any h ∈ [0,T − t[

d
(
f (x(t), t)(h, x(t)), x(t+h)

) ≤ h eα̂ h · limsup
m→∞

sup
t≤s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)
.

Finally x(·) is a solution to the mutational equation
◦
x(·)� f (x(·), ·) if we can verify

the following asymptotic condition for Lebesgue-almost every t ∈ [0,T ]

limsup
h↓0

limsup
m→∞

sup
t≤s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)

= 0.

If this last condition was not correct (at time t), we could find some ε > 0 and
sequences (m j) j∈N, (s j) j∈N satisfying for each j ∈ N

t ≤ s j ≤ t + 1
j
, D

(
fm j

(x(t), t), fm j
(xm j

(s j),s j)
) ≥ ε > 0

and this would induce a contradiction to assumption (4.) at L 1-a.e. time t.
�

Remark 31. Lemma 27 lays the foundations for extending Proposition 28 to
systems of mutational equations and a joint set of constraints in the product space.
Some examples with compact subsets of RN are given in subsequent section 1.9.6
(on page 58 ff.).
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1.7 Some elementary properties of the contingent transition set

In Definition 16 (on page 27), the contingent transition set of a nonempty set V ⊂ E

at an element x ∈ V was introduced as counterpart of Bouligand’s contingent cone:

TV (x) Def.=
{

ϑ ∈Θ(E,d)
∣∣ liminf

h↓0
1
h
· dist

(
ϑ(h,x), V

)
= 0
}
.

It has proved to be useful in connection with Nagumo’s Theorem 19 about solutions
to mutational equations with state constraints (on page 28).
Now we summarize some properties of the contingent transition set. Most of them
result directly from the definition or can be verified in exactly the same way as
their counterparts about Bouligand’s contingent cone of subsets in RN (see e.g. [16,
§ 4.1], [124]).

Lemma 32. Let Θ(E,d) �= /0 be a set of transitions on a metric space (E,d).
ϑ ∈Θ(E,d) belongs to the contingent transition set of V ⊂ E at x ∈ V if and only

if there exist sequences (hn)n∈N, (yn)n∈N in ]0,1[ and V respectively satisfying

hn −→ 0, 1
hn
· d
(
ϑ(hn,x), yn

)−→ 0 for n−→ ∞.
�

Proposition 33. Let Θ(E,d) �= /0 be a set of transitions on a metric space (E,d).
V1,V2,V3 . . . denote nonempty closed subsets of E. Then,

(a) TV1∪V2∪ ... (x) ⊃
⋃

k∈N: x∈Vk

TVk
(x) for any x ∈⋃k∈N Vk.

(b) TV1∪V2∪ ...∪V j
(x) =

⋃
k∈{1 ... j}: x∈Vk

TVk
(x) for any j ∈ N, x ∈ V1 ∪ . . . ∪ V j.

(c) TV1∩V2∩ ... (x) ⊂
⋂

k∈N

TVk
(x) for any x ∈ V1 ∩ V2 ∩ . . . ∩ V j.

�

Considering the contingent transition set of an intersection (as in statement (c)),
there is still an “inner” approximation lacking, i.e. a subset of TV1∩V2∩ ... (x) in
(separate) terms of V1,V2 . . . ⊂ E. For this purpose, we introduce the counterpart of
the tangent cone in the sense of Dubovitsky-Miliutin:

Definition 34. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d). Fix a nonempty set V ⊂ E and an element x ∈ E.

T DM
V (x) :=

{
ϑ ∈Θ(E,d)

∣∣ ∃ ε,ρ ∈ ]0,1[ ∀ h ∈ ]0,ε] : Bρ h

(
ϑ(h,x)

) ⊂ V
}

is called Dubovitsky-Miliutin transition set of V at x.
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Remark 35. For a boundary point x of a nonempty set V ⊂ RN , the tangent cone
in the sense of Dubovitsky-Miliutin is usually defined as

T DM
V (x) :=

{
v ∈ RN

∣∣ ∃ ε,ρ > 0 : x + ]0,ε] · Bρ(v) ⊂ V
}

(see e.g. [13, Definition 4.3.1]). Adapting such a tangent cone to transitions on a
metric space should be done rather carefully. Indeed, not all elements of E close to
ϑ(h,x) have to be values of a transition close to ϑ and thus in general,

Bρ
(
ϑ(h,x)

) �⊂ {
τ(s,y) ∈ E | τ ∈Θ(E,d), s ∈ [0,1], y ∈ Br(x)

}
.

for fixed h ∈ ]0,1], x ∈ E and even arbitrarily small radii ρ,r > 0. The Euclidean
space RN , supplied with affine-linear transitions of Example 2, distinguishes from
many other metric examples in regard to this form of local surjectivity.

Lemma 36. Let Θ(E,d) �= /0 be a set of transitions on a metric space (E,d).
Suppose x to belong to the topological boundary of a nonempty closed set V ⊂ E.
Then, T DM

V (x) = Θ(E,d)\TE\V (x).

Proof is an immediate consequence of Definition 16 and 34.

Proposition 37. Let Θ(E,d) �= /0 be a set of transitions on a metric space (E,d).
V1,V2 . . . V j denote nonempty closed subsets of E. Then,⋃

k∈{1 ... j}

(
TVk

(x) ∩
⋂
l �=k

T DM
Vl

(x)
)
⊂ TV1∩ ...∩V j

(x)

for every element x ∈ V1 ∩ V2 ∩ . . . ∩ V j ⊂ E.

Proof. Choose any element x ∈ V1 ∩ V2 ∩ . . . ∩ V j and transition ϑ ∈TV1(x) ∩
T DM

V2
(x) ∩ . . . ∩ T DM

V j
(x). As a consequence of Definition 34 for each set Vk

(k ∈ {2 . . . j}), there exist ε,ρ ∈ ]0,1[ such that for all h ∈ ]0,ε],

Bρ h

(
ϑ(h,x)

) ⊂ V2 ∩ V3 ∩ . . . ∩ V j .

Due to ϑ ∈TV1(x), there is a sequence (hn)n∈N in ]0,ε[ tending to 0 and satisfying

dist
(
ϑ(hn,x), V1

)
< ρ

n
hn for all n ∈ N.

For each n ∈ N, we can choose an element

yn ∈ V1 ∩ B ρ hn
n

(
ϑ(hn,x)

) ⊂ V1 ∩ V2 ∩ . . . ∩ V j

and thus, ϑ ∈TV1∩ ...∩V j
(x). �



1.8 Example: Ordinary differential equations in RN 41

1.8 Example: Ordinary differential equations in RN

Mutational equations are motivated by the goal of extending ordinary differential
equations to metric spaces. For this reason, we are obliged to verify that ordinary
differential equations fit in the mutational framework as an example.
This example reflects an essential point of mutational analysis. Indeed, the results of
previous sections provide sufficient conditions for the existence of a “generalized”
solution (namely to a mutational equation in the sense of Definition 13). Whenever
we apply this general framework to a classical type of dynamical problem (such as
ordinary differential equations here), we have to investigate the link with a classical
concept of solution. This can be done for each example individually and, the results
prove to be of particular interest when applying them to separate components of a
system of mutational equations as explained in § 1.5.

For linking ordinary differential equations and mutational equations on (RN , | · |),
we consider the maps of Example 2 (on page 21)

ϑv : [0,1]×RN −→ RN , (h,x) �−→ x+h · v

for each vector v ∈RN and summarize some obvious properties in regard to Defini-
tions 1 and 6:

Lemma 38. For each vector v ∈ RN , the affine-linear map

ϑv : [0,1]×RN −→ RN , (h,x) �−→ x+h · v

is a transition on the Euclidean space (RN , | · |) with

α(ϑv) = 0,
β (ϑv) = |v|,

D(ϑv,ϑw) = |v−w|. �

For the sake of simplicity, we identify this transition ϑv : [0,1]×RN −→ RN on the
Euclidean space (RN , | · |) with its directional vector v ∈ RN : Θ(RN , | · |)∼= RN .

Proposition 39. Let f : RN × [0,T ]−→ RN be given.

A curve x(·) : [0,T ]−→ RN is solution to the mutational equation

◦
x(·) � f

(
x(·), ·)

if and only if x(·) is Lipschitz continuous and its weak derivative x′ ∈ L∞([0,T ],RN)
satisfies

x′(t) = f
(
x(t), t

)
at Lebesgue-almost every time t ∈ [0,T ].
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This proposition, whose proof is postponed to the end of this section, implies several
well-known results about ordinary differential equations – now, however, as conse-
quences of the theorems in § 1.3 – § 1.6. This is based on the Heine-Borel theorem
ensuring that all closed bounded sets of the Euclidean space RN are compact.

Corollary 40. Let f : RN × [0,T ]−→ RN be continuous.

A curve x(·) : [0,T ]−→ RN is solution to the mutational equation

◦
x(·) � f

(
x(·), ·)

if and only if x(·) is continuously differentiable and its derivative x′(·) satisfies

x′(t) = f
(
x(t), t

)
at every time t ∈ [0,T ]. �

Corollary 41 (Cauchy–Lipschitz: Classical version for ODEs).
Let f : RN −→RN be λ–Lipschitz continuous. Fix x0 ∈RN and y(·)∈C1([0,T ],RN).
Then there exists a unique continuously differentiable solution x(·) : [0,T ] −→ RN

to the initial value problem {
x′(·) = f (x(·))
x(0) = x0.

In addition, it satisfies the following inequality for all t ∈ [0,T ]

|x(t)− y(t)| ≤ |x0− y(0)| eλ t +
∫ t

0
eλ (t−s) ∣∣ f (y(s))− y′(s)

∣∣ ds.

Proof results directly from Theorem 15 (on page 26) with α̂ := sup α( f (·)) = 0.

Corollary 42 (Nagumo: Classical version for autonomous ODE).
Suppose f : RN −→ RN to be continuous and bounded. Then the following two

statements are equivalent for any closed nonempty subset V ⊂ RN :

1. Every state x0 ∈V is the initial point of at least one solution x(·) : [0,1]−→ RN

to the ordinary differential equation

x′(·) = f
(
x(·))

with all its values in V.

2. V ⊂ RN is a viability domain of f in the sense that for every z ∈ V, the vector

f (z) ∈ RN belongs to Bouligand’s contingent cone of V ⊂ RN at z, i.e.

liminf
h↓0

1
h
· dist

(
z+h · f (z), V

)
= 0.

Proof is an immediate consequence of Theorem 19 (on page 28) due to the
remarks (about contingent cones) mentioned in Example 18.
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Corollary 43 (Peano: Classical version for nonautonomous ODE).
Suppose f : RN × [0,T ]−→ RN to be continuous and bounded.

Then for every initial state x0 ∈ RN , there exists a solution x(·) : [0,T ] −→ RN to

the ordinary differential equation

x′(·) = f
(
x(·), ·)

with x(0) = x0.

Proof results from Theorem 20 (on page 28).

Corollary 44 (Continuity w.r.t. initial data and the right-hand side).
Suppose f : RN × [0,T ]−→ RN to be λ–Lipschitz continuous in the first argument.

Let g : RN × [0,T ]−→ RN be continuous with Δ := sup
z,s

∣∣ f (z,s)−g(z,s)
∣∣< ∞.

Then every continously differentiable solutions x(·),y(·) : [0,T ] −→ RN to the

ordinary differential equations{
x′(·) = f

(
x(·), ·)

y′(·) = g
(
y(·), ·)

satisfy the following inequality for every t ∈ [0,T ]

|x(t)− y(t)| ≤ (|x(0)− y(0)| + Δ · t) eλ t .

Proof is an obvious conclusion from Proposition 24 (on page 30).

Proof (of Proposition 39). The key tool is Rademacher’s Theorem stating that
every Lipschitz continuous function h : RM −→ RN is differentiable at Lebesgue-
almost every point of its domain (see e.g. [124]). In particular, the weak derivative
of h coincides with its Fréchet derivative Lebesgue-almost everywhere in RM.

“⇐=” Obviously, every Lipschitz continuous curve x(·) : [0,T ] −→ RN with
x′(t) = f (x(t), t) at Lebesgue-almost every time t ∈ [0,T ] fulfills

lim
h↓0

1
h

∣∣x(t +h) − (x(t)+h · f (x(t), t)
)∣∣ = 0

for Lebesgue-almost every t ∈ [0,T ] and thus, x(·) solves the mutational equation
◦
x(·) � f

(
x(·), ·) in the sense of Definition 13 (on page 26).

“=⇒” Let x(·) : [0,T ]−→ RN be a solution to the mutational equation
◦
x (·) �

f
(
x(·), ·). According to Definition 13, x(·) is Lipschitz continuous and satisfies

0 = lim
h↓0

1
h

∣∣x(t +h) − (x(t)+h · f (x(t), t)
)∣∣ = lim

h↓0

∣∣∣ x(t+h)− x(t)
h

− f (x(t), t)
∣∣∣

for Lebesgue-almost every t ∈ [0,T ]. Rademacher’s Theorem ensures the differen-
tiability of x(·) Lebesgue-almost everywhere in [0,T ] and thus, the one-sided differ-
ential quotient even reflects the time derivative, i.e. x′(·) = f (x(·), ·) a.e. in [0,T ].

�
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1.9 Example: Morphological equations for compact sets in RN

K (RN) consists of all nonempty compact subsets of the Euclidean space RN .
There is no obvious linear structure on K (RN). To be more precise, Minkowski
suggested a very popular definition of the sum, i.e.

K1 +K2
Def.=
{

x+ y
∣∣ x ∈ K1, y ∈ K2

} ⊂ RN

for K1,K2 ∈ K (RN). This addition has the obvious neutral element {0} ⊂ RN ,
but it is not invertible in general, i.e. for any given K1 ∈ K (RN), the equation
K1 +K2 = {0} does not always have a solution K2 ∈K (RN).
K (RN) can be supplied with a metric instead:

1.9.1 The Pompeiu-Hausdorff distance dl

Definition 45. The Pompeiu–Hausdorff distance between two
nonempty subsets K1,K2 ⊂ RN is defined as

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}
∈ [0,∞].

Now some essential properties of the Pompeiu–Hausdorff distance are summarized.
They belong to the key tools whenever we are dealing with nonempty compact sets.
Their proofs, however, are regarded as standard and can be found in many textbooks
about analysis (see e.g. [1, 9, 108, 124]). For this reason, we dispense with the de-
tailed proof of the next proposition in particular.

Proposition 46. The Pompeiu–Hausdorff distance dl is a metric on K (RN) and

has the equivalent characterizations for any K1,K2 ∈K (RN)

dl(K1,K2) = sup
z∈RN

∣∣dist(z,K1) − dist(z,K2)
∣∣

= inf
{

ρ > 0
∣∣ K1 ⊂ K2 +ρ B and K2 ⊂ K1 +ρ B

}
with the standard abbreviation B for the closed unit ball in RN

B := B1(0) Def.=
{

x ∈ RN
∣∣ |x| ≤ 1} .

Moreover, the metric space (K (RN),dl) is locally compact in the following sense:

Proposition 47. In the metric space (K (RN),dl), every closed bounded ball

Bdl
R(K) :=

{
K′ ∈K (RN)

∣∣ dl(K′,K)≤ R
}

with any centre K ∈K (RN) and arbitrary radius R≥ 0 is compact.
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Proof. Choose any set K ∈K (RN), radius R ≥ 0 and any sequence (Kn)n∈N in
K (RN) satisfying dl(Kn,K)≤ R for all n ∈ N.
Now we prove that some subsequence (Kn j

) j∈N is convergent with respect to the
Pompeiu–Hausdorff distance. Then Bdl

R(K) is sequentially compact with respect to
dl and (as in every metric space) this is equivalent to the property that every open
cover of Bdl

R(K)⊂K (RN) has a finite subcover (see e.g. [132, Chapter 12]).
Using the abbreviation BR+1(K) Def.= {x∈RN | dist(x,K)≤ R+1}, set for each n∈N

δn : BR+1(K) −→ [0,∞[, z �−→ dist(z,Kn).

Obviously each function δn(·) is 1–Lipschitz continuous and has the uniform bound
δn(·) ≤ diam K + 2 (R+1).

Arzelà–Ascoli Theorem A.63 implies that a subsequence (δn j
) j∈N converges uni-

formly to a continuous function δ : BR+1(K) −→ [0,∞[. In particular, δ (·) is also
1–Lipschitz continuous.

Then K∞ := {x ∈ BR+1(K) | δ (x) = 0} is the limit of (Kn j
) j∈N with respect to dl.

Indeed, K∞ is closed because δ (·) is continuous. Furthermore, K∞ is nonempty since
any sequence (xn j

) j∈N with xn j
∈ Kn j

= δ−1
n j

({0}) for each j ∈N is contained in the
compact subset BR(K) ⊂ RN and thus, it has an accumulation point x ∈ BR(K).
The uniform convergence of the 1–Lipschitz functions δn j

(·) implies δ (x) = 0,

i.e. x ∈ K∞. Hence, K∞ ∈K (RN).
Moreover, δ (z) ≤ dist(z,K∞) holds for every vector z ∈ BR+1(K) ⊂ RN because
for every element x ∈ K∞, we conclude from the 1–Lipschitz continuity of δ (·)

δ (z) = δ (z)−δ (x) ≤ ∣∣z− x
∣∣.

For proving the opposite inequality δ (z) ≥ dist(z,K∞) with arbitrary z∈BR+1(K),
we can restrict our considerations to any element z ∈ BR+1(K) with dist(z,K∞) > 0.
In particular, z /∈K∞. Choose any positive r < dist(z,K∞). Then every point y∈Br(z)
does not belong to K∞ either, i.e. δ (y) > 0. Due to the continuity of δ (·), we even
have μ := inf

Br(z)
δ (·) > 0. For all j ∈ N sufficiently large,

sup
x∈BR+1(K)

∣∣δn j
(x) − δ (x)

∣∣ < μ
2 .

and thus, all y ∈ Br(z) satisfy δn j
(y) > δ (y)− μ

2 > 0. We have just verified
Br(z)∩Kn j

= /0 for all large indices j ∈ N. As a consequence,

δ (z) = lim
j→∞

δn j
(z) = lim

j→∞
dist(z,Kn j

) ≥ r

with any positive r < dist(z,K∞). Finally, δ (z)≥ dist(z,K∞) for any z ∈ BR+1(K).
The resulting equality δ (·) = dist(·,K∞) in BR+1(K) ⊂ RN opens the door to
proving the convergence of (Kn j

) j∈N with respect to dl :

dl(Kn j
, K∞) = max

{
sup

x∈Kn j

δ (x), sup
y∈K∞

δn j
(y)
}

≤ sup
z∈BR+1(K)

∣∣δ (z)−δn j
(z)
∣∣ j→∞−→ 0.

�
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1.9.2 Morphological transitions on (K (RN),dl)

As mentioned briefly in Example 5 (on page 22), differential inclusions can serve
as a tool for specifying “deformations” of compact subsets of RN . The so-called
reachable set of such a differential inclusion at time t ≥ 0 consists of all points
x(t) that can be reached by an absolutely continuous solution x(·) : [0, t]−→ RN (to
this differential inclusion) starting in the given set. This notion is not necessarily
restricted to autonomous differential inclusions, of course.

Definition 48. Let F : RN � RN be a set-valued map. Then the set

ϑF(t, K0) :=
{

x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1− a.e. in [0, t], x(0) ∈ K0
}
.

is called reachable set of the initial set K0 ∈K (RN) and the map F at time t ≥ 0.
Correspondingly for any set-valued map F̃ : [0,T ]×RN�RN , we define the reach-

able set of K0 ∈K (RN) and the map F̃ at time t ∈ [0,T ] as

ϑ
F̃
(t, K0) :=

{
x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F̃(·,x(·)) L 1− a.e. in [0, t], x(0) ∈ K0
}
.

Filippov’s Theorem A.6 about solutions to differential inclusions provides the
key tool for investigating compact reachable sets of Lipschitz continuous set-valued
maps with nonempty compact values. It motivates the following abbreviation intro-
duced by Aubin:

Definition 49. LIP(RN ,RN) consists of all set–valued maps F : RN � RN

satisfying the following two conditions:

1.) F has nonempty compact values that are uniformly bounded in RN ,
2.) F is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl.

Furthermore define for any maps F,G ∈ LIP(RN ,RN)

‖F‖∞ := sup
x∈RN

sup
v∈F(x)

|y|,
dl∞(F,G) := sup

x∈RN

dl
(
F(x),G(x)

)
.

Proposition 50. For any initial sets K1,K2 ∈K (RN) and set-valued maps F,G∈
LIP(RN ,RN) with Λ := max{LipF, LipG}, the reachable sets ϑF(t,K1), ϑG(t,K2)
are closed subsets of RN and, the Pompeiu–Hausdorff distance between the reach-

able sets at time t ≥ 0 satisfies

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .



1.9 Example: Morphological equations for compact sets in RN 47

Proof. ϑF(t,K1),ϑG(t,K2)⊂RN are closed due to Filippov’s Theorem A.6. Due
to the symmetry of dl, it is sufficient to prove for every x1 ∈ ϑF(t,K1)

dist
(
x1, ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .

According to Definition 48, there exists a solution x(·) ∈ W 1,1([0, t],RN) to the
differential inclusion x′(·) ∈ F(x(·)) (L 1–almost everywhere in [0, t]) satisfying

x(0) ∈ K1, x(t) = x1.

Choose now any point y0 ∈ K2 with |x(0)− y0| = dist(x(0), K2) ≤ dl(K1,K2).
Filippov’s Theorem A.6 guarantees a solution y(·) ∈W 1,1([0, t],RN) to the differen-
tial inclusion y′(·) ∈ G(y(·)) a.e. in [0, t] satisfying in addition∣∣y(t)− x(t)

∣∣ ≤ ∣∣y0− x(0)
∣∣ eΛ t +

∫ t

0
eΛ ·(t−s) dist

(
x′(s), G(x(s))

)
ds

≤ dl(K1,K2) eΛ t + t eΛ t dl∞(F,G)

In particular, y(t) ∈ ϑG(t,K2) and thus, dist
(
x1, ϑG(t,K2)

) ≤ |x(t)− y(t)|. �

This proof of Proposition 50 reveals that the same estimate holds for any Lipschitz
continuous set-valued maps with nonempty compact values. The uniform bound of
their set values, in particular, is not required for applying Filippov’s Theorem here.
It is used for the Lipschitz continuity with respect to time instead:

Lemma 51. For any initial set K ∈ K (RN) and map F ∈ LIP(RN ,RN), the

reachable set ϑF(·,K) : [0,∞[� RN is Lipschitz continuous with respect to dl, i.e.

dl
(
ϑF(s,K), ϑF(t,K)

) ≤ ‖F‖∞ · |s− t| for any s, t ≥ 0.

Proof results directly from Definition 48 because every absolutely continuous
solution x(·) of x′(·) ∈ F(x(·)) is even ‖F‖∞-Lipschitz continuous. �

Lemma 52. For any initial set K ∈ K (RN) and map F ∈ LIP(RN ,RN), the

reachable set ϑF(·,K) : [0,∞[−→ (K (RN),dl
)

has the semigroup property in the

following sense

ϑF

(
h, ϑF(t,K)

)
= ϑF(t +h, K) for any t,h≥ 0.

Proof is an immediate consequence of Definition 48 and the following concate-
nation properties of solutions to differential inclusions: Let x1(·) ∈W 1,1([0, t],RN)
and x2(·) ∈ W 1,1([0,h],RN) be solutions to the autonomous differential inclusion
x′j ∈ F(x j) a.e. with x1(t) = x2(0). Then

[0, t +h] −→ RN , s �−→
{

x1(s) for 0≤ s≤ t

x2(s− t) for t ≤ s≤ t +h

is an absolutely continuous solution of x′ ∈ F(x) a.e. (and vice versa). �
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Now we have collected all the analytical tools for verifying that reachable sets of
maps in LIP(RN ,RN) induce transitions on (K (RN),dl). Aubin called them mor-

phological transition and used them in most of his examples about evolving sets.

Proposition 53. For every set-valued map F ∈ LIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

is a transition on (K (RN),dl) with

α(ϑF) ≤ Lip F,

β (ϑF) ≤ ‖F‖∞,

D(ϑF ,ϑG) ≤ dl∞(F,G).

Proof. Obviously, ϑF(0,K) = K for every initial set K ∈ K (RN). According
to Proposition 50 and Lemma 51, the reachable set ϑF(t,K) ⊂ RN is closed and
bounded for every K ∈K (RN) and t ≥ 0. Thus, ϑF(t,K) is compact due to Heine–
Borel Theorem, i.e. ϑF(t,K) ∈K (RN).
Moreover Lemma 52 implies condition (2.) on transitions (in Definition 1 on
page 20), i.e. for every set K ∈K (RN) and time t ∈ [0,1[

lim
h↓0

1
h
· dl
(
ϑF(t +h, K), ϑF(h, ϑF(t,K))

)
= 0.

The estimate in Proposition 50 (applied to G := F) guarantees

α(ϑF) Def.= sup
K1,K2∈K (RN )

K1 �=K2

limsup
h↓0

max
{

0,
dl(ϑF(h,K1), ϑF(h,K2)) − dl(K1,K2)

h · dl(K1,K2)

}

≤ limsup
h↓0

eLip F ·h − 1
h

= Lip F.

Due to Lemma 51, we obtain

β (ϑF) Def.= sup
K∈K (RN)

limsup
h↓0

1
h
· dl
(
K, ϑF(h,K)

) ≤ ‖F‖∞.

Finally, Proposition 50 lays also the basis for estimating D(ϑF ,ϑG) (in the sense of
Definition 6) for arbitrary maps F,G ∈ LIP(RN ,RN) and Λ := max{Lip F, Lip G}

D(ϑF ,ϑG) Def.= sup
K∈K (RN)

limsup
h↓0

1
h
· dl
(
ϑF(h,K), ϑG(h,K)

)
≤ limsup

h↓0
dl∞(F,G) · eΛh

= dl∞(F,G) .
�
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Example 54. In Example 4 (on page 21), we have already mentioned the flow of
compact subsets along a bounded Lipschitz continuous vector field f : RN −→RN .
This type of set deformations lays the basis for the so-called velocity method used in
approaches to shape optimization by Céa, Delfour, Sokolowski, Zolésio and others.
Now the flow along such a vector field proves to be a special case of morphological
transitions. Indeed, we just consider a single-valued map f in LIP(RN ,RN).
As an immediate consequence of Proposition 53, the corresponding reachable set
ϑ f (·, ·) induces a transition on (K (RN),dl) with

α(ϑ f ) ≤ Lip f ,

β (ϑ f ) ≤ ‖ f‖sup,

D(ϑ f ,ϑg) ≤ ‖ f −g‖sup

for any bounded and Lipschitz continuous vector fields f ,g : RN −→ RN .

Example 55.

Considering a fixed compact convex neighbourhood C⊂RN of the origin, we find a
further special case of morphological transitions: the so-called morphological dila-

tion, that became very popular in image processing, for example, due to publications
of Matheron and Serra:

Each reachable set of the differential inclusion x′(·)∈C (with constant convex right-
hand side) coincides with a Minkowski sum in the following sense

ϑC(h,K) = K + h C
Def.=
{

x+h v
∣∣ x ∈ K, v ∈C

}
for every initial set K ∈K (RN) and at any time h≥ 0. Indeed, K +h C⊂ϑC(h,K)
results from the obvious statement that for each x ∈ K and v ∈C, the curve

y(·) : [0,h] −→ RN , s �−→ x+ s v

solves the differential inclusion y′(·) ∈ C. In regard to the opposite inclusion
ϑC(h,K)⊂ K +h C, choose z ∈ ϑC(h,K) arbitrarily. It is related to an initial point
x ∈ K and a Lebesgue-integrable function u(·) : [0,h]−→ RN with

z = x+
∫ h

0
u(s) ds, u(t) ∈C for every t ∈ [0,h].

Now the convexity of the closed set C ⊂ RN implies 1
h
·
∫ h

0
u(s) ds ∈ co C = C

and thus, z ∈ x+h C.

In Serra’s framework of “mathematical morphology”, the fixed set C ⊂ RN is
usually called structural element (of the corresponding morphological operations
like dilation). In a figurative sense, every reachable set ϑF(h,K) ⊂ RN of an ini-
tial set K ∈ K (RN) and a set-valued map F ∈ LIP(RN ,RN) can be interpreted as
a generalized dilation of K with the structural element depending on space, namely
F = F(x). This was (probably) Aubin’s motivation for seizing the term “morpho-
logical” in connection with these transitions on (K (RN),dl).
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1.9.3 Morphological primitives as reachable sets

Each morphological transition is induced by set-valued map in LIP(RN ,RN) by def-
inition. For the sake of simplicity, we sometimes identify the morphological transi-
tion ϑF on (K (RN),dl) with its corresponding map F ∈ LIP(RN ,RN) representing
the right-hand side of the autonomous differential inclusion.

Definition 56. A curve [0,T ]−→K (RN) is usually called tube in RN .

According to Definition 10 (on page 25), the (morphological) mutation of a tube
K(·) at time t consists of all morphological transitions providing a first-order ap-
proximation of K(t + ·) with respect to dl. Identifying now morphological transi-
tions with the respective set-valued maps in LIP(RN ,RN), we obtain

◦
K (t) =

{
F ∈ LIP(RN ,RN)

∣∣ lim
h↓0

1
h
· dl
(
ϑF(h, K(t)), K(t +h)

)
= 0
}
.

Each tube K(·) : [0,T ]� RN induces a set-valued map
◦
K: [0,T ]� LIP(RN ,RN)

whose values might be empty.

Primitives are linked to this relation in the opposite direction: Now a curve of
morphological transitions is given, i.e.

F : [0,T ] −→ LIP(RN ,RN).

According to Definition 12, a tube K(·) : [0,T ]�RN is a (morphological) primitive
of F (·) if and only if K(·) is Lipschitz continuous with respect to dl and satisfies at
Lebesgue-almost every time t ∈ [0,T ] :

F (t) ∈ ◦
K (t)

or, equivalently, lim
h↓0

1
h
· dl
(
ϑF (t)(h, K(t)), K(t +h)

)
= 0.

This is a differential criterion – in a figurative sense. The following proposition is
an equivalent “integral” characterization of primitives using reachable sets of non-
autonomous differential inclusions:

Proposition 57. Suppose F : [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be Lebesgue-

measurable with sup
t∈ [0,T ]

(‖F (t)‖∞ +Lip F (t)
)
< ∞ and define the set-valued map

F̂ : [0,T ]×RN � RN , (t,x) �→ F (t)(x).

A tube K : [0,T ]� RN is a morphological primitive of F (·) if and only if at every

time t ∈ [0,T ], its value K(t) ⊂ RN coincides with the reachable set of the non-

autonomous differential inclusion x′ ∈ F̂(·,x) a.e. (in the sense of Definition 48), i.e.

K(t) = ϑ
F̂

(
t, K(0)

)
.



1.9 Example: Morphological equations for compact sets in RN 51

Proof results directly from the uniqueness of primitives (Corollary 23 on page 29)
and the following lemma about reachable sets:

Lemma 58. Suppose F : [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be L 1-measurable

with C := sup
t∈ [0,T ]

(‖F (t)‖∞ +Lip F (t)
)

< ∞ and define the set-valued map

F̂ : [0,T ]×RN � RN , (t,x) �→ F (t)(x).

Then for every initial set K0 ∈ K (RN), the reachable set of the nonautonomous

differential inclusion x′ ∈ F̂(·,x) a.e.

ϑ
F̂
(·,K0) : [0,T ] −→ K (RN)

is a primitive of F (·).

Proof. ϑ
F̂
(·, K0) : [0,T ]−→ (K (RN),dl

)
is C–Lipschitz continuous because the

bound C < ∞ of F (·) implies |v| ≤C for all t ∈ [0,T ], x ∈ RN and v ∈ F̂(t,x).

Denote the pointwise convex hull of F̂ as G : [0,T ]×RN�RN , (t,x) �→ co F̂(t,x).
Then for Lebesgue-almost every t ∈ [0,T ], the set-valued map G(t, ·) : RN�RN is
C-Lipschitz continuous with nonempty compact convex values and ‖G(t, ·)‖∞ ≤C.
For every x ∈ RN , the map G(·,x) : [0,T ]� RN is measurable.
Furthermore Relaxation Theorem A.17 of Filippov–Ważewski (on page 363) im-
plies

ϑ
F̂(t + ·,·)(h,K) = ϑG(t + ·,·)(h,K)

for every initial set K ∈K (RN) and any t,h ∈ [0,T ] with t +h≤ T.

According to Proposition A.13 (on page 359), there exists a set J ⊂ [0,T ] of full
Lebesgue measure (i.e. L 1([0,T ]\J) = 0) such that at every time t ∈ J and for any
set Kt ∈K (RN),

1
h
· dl
(

ϑG(t+· , ·)(h, Kt),
⋃

x∈Kt

(
x + h ·G(t,x)

)) −→ 0 for h ↓ 0.

Applying the same Proposition A.13 to the autonomous differential inclusion with
G(t, ·) : RN � RN and arbitrary t ∈ [0,T ], we obtain

1
h
· dl
(

ϑG(t, ·)(h, Kt),
⋃

x∈Kt

(
x + h ·G(t,x)

)) −→ 0 for h ↓ 0.

The triangle inequality of dl implies for every t ∈ J and Kt ∈K (RN)
1
h
· dl
(

ϑG(t+· , ·)(h, Kt), ϑG(t, ·)(h, Kt)
)
−→ 0 for h ↓ 0,

i.e. for Kt := ϑ
F̂
(t,K0) ∈K (RN) with an arbitrary initial set K0 ∈K (RN) :

1
h
· dl
(

ϑ
F̂
(t +h, K0), ϑF (t)

(
h, ϑ

F̂
(t,K0)

)) −→ 0 for h ↓ 0.

Thus, F (t) ∈ LIP(RN ,RN) belongs to the morphological mutation of ϑ
F̂
(·,K0)

at every time t ∈ J. �
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1.9.4 Some examples of morphological primitives

Proposition 57 (on page 50) has just provided an equivalent characterization of
morphological primitives by means of reachable sets. This property can be very
useful as the following tubes exemplify:

Example 59. For a Lipschitz continuous function g : [0,T ] −→ RN , we consider
the set-valued map (with just one element in each value)

K : [0,T ] � RN , t �→ {
g(t)
}
.

Due to Rademacher’s Theorem, there is a set J ⊂ [0,T ] of full Lebesgue measure
(i.e. L 1([0,T ] \ J) = 0) such that g(·) is differentiable at every time t ∈ [0,T ].

Now we can easily specify an element Ft of the mutation
◦
K (t) ⊂ LIP(RN ,RN) for

every t ∈ J : Choose any set-valued map Ft ∈ LIP(RN ,RN) with

Ft

( · ) ≡ {g′(t)
} ⊂ RN

in some neighbourhood Ut ⊂RN of g(t). Indeed, the differentiability of g(·) at t ∈ J

implies for h ↓ 0
1
h
·dl(K(t +h), ϑFt (h,K(t))

)
= 1

h
· ∣∣g(t +h) − (g(t)+h ·g′(t))∣∣ −→ 0.

Hence, K(·) is a primitive of any curve F : [0,T ] −→ LIP(RN ,RN), t �−→ Ft with
this feature close to g(·).

Example 60. Let A : [0,T ] −→ RN×N be a continuous map of real matrices and
K0 ∈K (RN). We focus on the morphological primitive K(·) : [0,T ]� RN of

[0,T ] −→ LIP(RN ,RN), t �−→ A(t) IdRN

with K(0) = K0. Due to Proposition 57, K(t) = ϑA(·) Id
RN

(t,K0). For simplify-
ing this reachable set, let Φ(·) : [0,T ] −→ RN×N denote the unique matrix-valued
solution to the initial value problem{

Φ ′(t) = A(t) Φ(t) for every t ∈ [0,T ]
Φ(0) = IdRN×N

and the theory of linear differential equations implies immediately K(t) = Φ(t) K0
for every t ∈ [0,T ].

Example 61. Similarly to the preceding Example 60, let A,B : [0,T ]−→RN×N be
two continuous maps of real matrices, U ∈K (RN) convex and K0 ∈K (RN) given.
Now we use Proposition 57 for determining the morphological primitive K(·) of

[0,T ] −→ LIP(RN ,RN), t �−→ A(t) IdRN +B(t) U

with K(0) = K0.
Using again the fundamental matrix Φ(·) : [0,T ]−→RN×N related to A(·), the well-
known variation of constants formula implies for every t ∈ [0,T ]
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K(t) = ϑA(·) Id
RN +B(·)U (t,K0) = Φ(t)K0 +

∫ t

0
Φ(t)Φ(s)−1 B(s) U ds

with the set integral at the end to be understood in the sense of Aumann.

Example 62. The product of primitives is always a primitive of the product –
in the following sense: For any two curves F1(·),F2(·) : [0,T ] −→ LIP(RN ,RN),
let Kj(·) : [0,T ]−→K (RN) denote a morphological primitive of Fj(·) for j = 1,2
respectively. Then

K1×K2 : [0,T ] −→ K (RN ×RN), t �−→ K1(t)×K2(t)⊂ RN ×RN = R2N

is a morphological primitive of

F1×F2 : [0,T ] −→ LIP(RN ×RN , RN ×RN)

with (F1×F2)(t) : RN ×RN � RN ×RN , (z1,z2) �→ F1(z1)×F2(z2).

Indeed, this property results from the representation of morphological primitives as
reachable sets according to Proposition 57.
This examples shows once more that mutations have useful features in regard to
cartesian products. Essentially the same statement about primitives holds even for
the product of metric spaces (and their transitions respectively) as we can conclude
from the results of § 1.5 (and the proof of Theorem 26 on page 34, in particular).

1.9.5 Some examples of contingent transition sets

Considering mutational equations with state constraints, the contingent transition
set plays an essential role. It was introduced in Definition 16 (on page 27) and,
Nagumo’s Theorem 19 (on page 28) uses it for conditions being sufficient and nec-
essary for the existence of solutions under state constraints.
Now we consider the contingent transition set of a nonempty subset V ⊂K (RN).
Using the morphological transitions on the metric space (K (RN),dl), its definition
at K ∈ V can be reformulated as

TV (K) Def.=
{

F ∈ LIP(RN ,RN)
∣∣ liminf

h↓0
1
h
· dist

(
ϑF(h,K), V

)
= 0
}

with dist
(
ϑF(h,K), V

) Def.= inf
S∈V

dl
(
ϑF(h,K), S

)
.

Example 63. For a fixed nonempty closed subset M ⊂ RN , define

V⊂M :=
{

K ∈K (RN)
∣∣ K ⊂M

}
.

Following the arguments of Anne Gorre [70], we can characterize the contingent
transition set TV⊂M

(K)⊂ LIP(RN ,RN) for each K ∈ V⊂M :

TV⊂M
(K) =

{
F ∈ LIP(RN ,RN)

∣∣ ∀ x ∈ K : F(x)⊂ TM(x)
}
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with TM(x)⊂ RN denoting the contingent cone in the classical sense of Bouligand,
i.e.

TM(x) Def.=
{

v ∈ RN
∣∣ liminf

h↓0
1
h
· dist

(
x+h · v, M

)
= 0
}
.

For proving “⊂” choose any set-valued map F ∈ TV⊂M
(K) ⊂ LIP(RN ,RN). Then

the definition of TV⊂M
(K) provides two sequences (hn)n∈N, (Kn)n∈N in ]0,1[ and

V⊂M ⊂K (RN) respectively satisfying for each n ∈ N

hn ≤ 1
n
, 1

hn
· dl
(
ϑF(hn,K), Kn

) ≤ 1
n
.

For each point x ∈ K and velocity v ∈ F(x), we have to verify v ∈ TM(x). Due
to Filippov’s Theorem A.6, there exists a solution x(·) ∈ W 1,1([0,T ],RN) to the
differential inclusion x′(·) ∈ F(x(·)) a.e. with x(0) = x and the additional prop-
erty that x(·) is differentiable at t = 0 with x′(0) = v (e.g. [13, Corollary 5.3.2]).
For each n ∈ N, select yn ∈ Kn ⊂M with∣∣x(hn)− yn

∣∣ = dist(x(hn), Kn) ≤ dl
(
ϑF(hn,K),Kn

) ≤ hn
n

.

Then, we obtain
1
hn
· dist

(
x+hn v, M

) ≤ 1
hn
· ∣∣x+hn v− x(hn)

∣∣ + 1
hn
· ∣∣x(hn) − yn

∣∣
≤ ∣∣v − x(hn)− x

hn

∣∣ + 1
n

−→ 0

for n−→ ∞, i.e. v ∈ TM(x).

For proving the opposite inclusion “⊃”, let F ∈ LIP(RN ,RN) satisfy F(x)⊂ TM(x)
for every x ∈ K. The Invariance Theorem about differential inclusions (Proposi-
tion A.8 on page 357) ensures that every solution x(·) ∈W 1,1([0,1],RN) of x′(·) ∈
F(x(·)) with x(0) ∈ K has all its values in M ⊂ RN and thus, ϑF(h,K) ⊂ M for
every h ∈ [0,1]. In particular,

dist
(
ϑF(h,K), V⊂M

)
= 0 for all h ∈ [0,1],

i.e. F ∈TV⊂M
(K).

This completes the proof of the preceding characterization of the contingent transi-
tion set TV⊂M

(K) for any nonempty closed subset M ⊂ RN .

This Example 63 focuses on a subset V⊂M of the metric space
(
K (RN),dl

)
pre-

scribing a condition on just one compact set. Mutational equations, however, have
the important advantage that many existence results can be extended to systems as
explained in § 1.5 (on page 32). For this reason, we consider now some examples
with tuples of two or even three compact sets.
Strictly speaking, the product K (RN)2 := K (RN)×K (RN) is supplied with the
metric

dl2 :
(
K (RN)×K (RN)

)× (K (RN)×K (RN)
) −→ [0,∞[,(

(K1,K2), (L1,L2)
) �−→ dl(K1,L1)+dl(K2,L2)
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and, the product of maps in LIP(RN×RN ,RN) serve as transitions, i.e. for any tuple
(F,G) ∈ LIP(RN ×RN ,RN)×LIP(RN ×RN ,RN) define

ϑ(F,G) : [0,1]×K (RN)2 −→ K (RN)2(
h, (K1,K2)

) �−→ {
(x(h), y(h))

∣∣ ∃ x(·),y(·) ∈W 1,1([0,h],RN) :
x(0) ∈ K1, y(0) ∈ K2,

x′ ∈ F(x,y), y′ ∈ G(x,y) a.e.
}

Indeed, the transition properties of ϑ(F,G)(·, ·) result from Filippov’s Theorem about
differential inclusions for the same reasons as Proposition 53 (on page 48).
Similarly to Example 63, Anna Gorre has already used the so-called paratingent
cones (of Bouligand) and characterized the contingent transition sets of

V∩ :=
{
(K,L) ∈K (RN)2

∣∣ K∩L �= /0
}

:

Definition 64. Let K,L⊂ RN be nonempty closed subsets and x ∈ K∩L.

PK
L (x) :=

{
v ∈ RN

∣∣ liminf
h↓0

y→x (y∈K)

1
h
· dist(y+h v, L) = 0

}
is called Bouligand paratingent cone to L relative to K at x.

Proposition 65 (Gorre [9, Theorem 4.2.4], [71]).

V∩ :=
{
(K,L) ∈K (RN)2

∣∣ K∩L �= /0
}

is a closed subset of
(
K (RN)2,dl2

)
. For any tuples (K,L) ∈ V∩ and (F,G) ∈

LIP(RN ×RN ,RN)2, the following two statements are equivalent:

1. (F,G) belongs to the contingent transition set of V∩ at (K,L).

2. There exists a point x ∈ K∩L⊂ RN with
(
F(x,x)−G(x,x)

) ∩ PK
L (x) �= /0.

For the corresponding characterization related to

V⊂ :=
{
(K,L) ∈K (RN)2

∣∣ K ⊂ L
}
,

we prefer the simpler transitions on K (RN)2 that are induced by two decoupled

differential inclusions and thus specified by tuples in LIP(RN ,RN)×LIP(RN ,RN).

Proposition 66 (Gorre [9, Theorem 4.2.6], [71]). V⊂ is closed in
(
K (RN)2,dl2

)
.

For every (K,L) ∈ V⊂, the tuple (F,G) ∈ LIP(RN ,RN)2 belongs the contingent

transition set of V⊂ at (K,L) if and only if every x ∈ L satisfies the inclusion

F(x) ⊂ G(x) + TL(x).
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This equivalence is a special case of the following statement considering tuples of
three compact sets. Strictly speaking, K (RN)3 Def.= K (RN)×K (RN)×K (RN) is
now supplied with the distance

dl3 : K (RN)3×K (RN)3 −→ [0,∞[,(
(K1,K2,K3), (L1,L2,L3)

) �−→ dl(K1,L1)+dl(K2,L2)+dl(K3,L3)

and, tuples of three morphological transitions serve as transitions on the metric space
(K (RN)3,dl3) – following the notion of Lemma 27 (on page 33). This is equivalent
to considering reachable sets of three decoupled differential inclusions.

Definition 67. Let K ⊂ RN be a nonempty closed subset and x ∈ K.

T �
K(x) :=

{
v ∈ RN

∣∣ lim
h↓0

1
h
· dist(x+h v, K) = 0

}
is called adjacent cone to K at x (in the sense of Bouligand).

Proposition 68 (Gorre [9, Theorem 4.2.8], [71]). The subset

V⊂∩ :=
{
(K,L,M) ∈K (RN)3

∣∣ K ⊂ L∩M
}

is closed in the metric space
(
K (RN)3, dl3

)
. Furthermore,

1. If (F,G,H) ∈ LIP(RN ,RN)3 belongs to the contingent transition set of V⊂∩ at

(K,L,M) ∈ V⊂∩ then

F(z)+T �
K(z) ⊂ (

G(z)+TL(z)
) ∩ (H(z)+TM(z)

)
for every z ∈ K.

2. If (F,G,H) ∈ LIP(RN ,RN)3 satisfies

F(x) ⊂ (
G(z)+T �

L (z)
) ∩ (H(z)+T �

M(z)
)

for every z ∈ K

then (F,G,H) belongs to the contingent transition set of V⊂∩ at (K,L,M)∈V⊂∩.

Now we continue this list of Gorre’s earlier results by considering a further set of
constraints in detail:

V∩,∪⊂ :=
{
(K,L,M) ∈K (RN)3

∣∣ K∩L �= /0, K∪L ⊂ M
}

Proposition 69. The subset V∩,∪⊂ ⊂ K (RN)3 is closed with respect to dl3.
Moreover,

1. If (F,G,H) ∈ LIP(RN ,RN)3 belongs to the contingent transition set of V∩,∪⊂
at (K,L,M) ∈ V∩,∪⊂ then⎧⎨⎩

/0 �= (
F(x)−G(x)

) ∩ PK
L (x) for some x ∈ K∩L,

F(z) ⊂ H(z)+TM(z) for every z ∈ K,
G(z) ⊂ H(z)+TM(z) for every z ∈ L.
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2. If (F,G,H) ∈ LIP(RN ,RN)3 satisfies⎧⎨⎩
/0 �= (

F(x)−G(x)
) ∩ PK

L (x) for some x ∈ K∩L,

F(z) ⊂ H(z)+T �
M(z) for every z ∈ K,

G(z) ⊂ H(z)+T �
M(z) for every z ∈ L,

then (F,G,H) belongs to the contingent transition set of V∩,∪⊂ at (K,L,M) ∈
V∩,∪⊂.

Proof. The set V∩,∪⊂ ⊂K (RN)3 can be regarded as an intersection of three
sets similar to the types investigated by Gorre:

V∩,∪⊂ =
({

(K,L) ∈K (RN)2
∣∣ K∩L �= /0

}×K (RN)
)

∩ (K (RN)×{(L,M) ∈K (RN)2
∣∣ L⊂M

})
∩ {

(K,L,M) ∈K (RN)3
∣∣ K ⊂M, L ∈K (RN) arbitrary

}
As each of these three sets is closed w.r.t. dl3, so is their intersection V∩,∪⊂.

(1.) According to Proposition 33 (c) (on page 39), the contingent transi-
tion set of an intersection is contained in the intersection of the contingent tran-
sition sets. Statement (1.) thus results from Gorre’s characterizations in Proposi-
tion 65 (just with the restricted class of transitions in LIP(RN ,RN)2 instead of
LIP(RN ×RN ,RN)2) and Proposition 66 respectively.

(2.) As a consequence of Proposition 65, the tuple (F,G) ∈ LIP(RN ,RN)2 is
contingent to V∩ at (K,L). Hence there exist sequences (hn)n∈N,

(
(Kn,Ln)

)
n∈N

in
]0,1[ and K (RN)2 respectively satisfying for all n ∈ N

hn ≤ 1
n
, Kn∩Ln �= /0, dl

(
ϑF(hn,K), Kn

)
+ dl

(
ϑG(hn,L), Ln

) ≤ hn
n

.

Now we prove indirectly the existence of a sequence εn ↘ 0 satisfying

ϑF(hn,K) ∪ ϑG(hn,L) ⊂ ϑH(hn,M) + εn hn B for each n ∈ N

because it implies Kn∪Ln ⊂ ϑH(hn,M) + (εn+ 1
n
) hn ·B =: Mn for each n ∈ N,

i.e. (Kn,Ln,Mn) ∈ V∩,∪⊂.
If such a sequence (εn)n∈N tending to 0 does not exist, then there are some ε > 0

and a monotone sequence n j ↗ ∞ of indices with

ϑF(hn j
,K) ∪ ϑG(hn j

,L) �⊂ ϑH(hn j
,M) + ε hn j

B for each j ∈ N.

Without loss of generality, we consider a further subsequence (again denoted by)
(n j) j∈N such that for each j ∈ N, an element y j ∈ ϑF(hn j

,K) does not belong to
ϑH(hn j

,M) + ε hn j
B.

The compactness of K ⊂ RN and Filippov’s Theorem A.6 lead to a subsequence
(again denoted by) (n j) j∈N, an initial point x ∈ K, a vector v ∈ F(x) and a sequence
(ỹ j) j∈N satisfying ỹ j ∈ ϑF

(
hn j

,{x}), |ỹ j− y j| < ε
2 hn j

for each j

and 1
hn j

· (ỹ j− x) −→ v for j → ∞.

In particular, ỹ j �∈ ϑH(hn j
,{x}) + ε

2 hn j
B ⊂ ϑH(hn j

,M) + ε
2 hn j

B.
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The assumption F(x)⊂ H(x)+T �
M(x) provides w1 ∈ H(x) and w2 ∈ T �

M(x) with

v = w1 +w2.

In particular, there is a sequence
(
w

j
2

)
j∈N

tending to w2 such that for every j ∈ N,

x + hn j
w

j
2 ∈ M

Now each z j : [0,hn j
] −→ RN , t �−→ x + hn j

w
j
2 + t · ( ỹ j − x

hn j
−w

j
2

)
is a curve

starting in M and ending at ỹ j. According to Filippov’s Theorem A.6, there exists
an absolutely continuous solution x j(·) : [0,hn j

]−→RN to the differential inclusion
x′j(·) ∈ H(x j(·)) a.e. satisfying x j(0) = z j(0) ∈M and∣∣x j(hn j

) − z j(hn j
)
∣∣

≤
∫ hn j

0
e

Lip H ·(hn j
−s) dist

(
z′j(s), H(z j(s))

)
ds

≤
∫ hn j

0
e

Lip H ·(hn j
−s) (∣∣ ỹ j − x

hn j
−w

j
2 − w1

∣∣ + dist(w1, H(z j(s)))
)

ds

≤ hn j
e

Lip H ·hn j
(∣∣ ỹ j − x

hn j
−w

j
2 − w1

∣∣ + Lip H · hn j

(|w j
2| +

∣∣ ỹ j − x

hn j
−w

j
2

∣∣)),
i.e. 1

hn j
· dist

(
ỹ j, ϑH(hn j

,M)
) ≤ 1

hn j
· ∣∣z j(hn j

)− x j(hn j
)
∣∣ −→ 0 for j −→ ∞.

This contradicts the preceding property ỹ j �∈ ϑH(hn j
,M) + ε

2 hn j
B for each j ∈N.

�

1.9.6 Solutions to morphological equations

Now we apply the rather general results about mutational equations to the metric
space (K (RN),dl) and the morphological transitions (represented by the set-valued
maps in LIP(RN ,RN)).
Let F : K (RN)× [0,T ] −→ LIP(RN ,RN) be given. According to Definition 13
(on page 26), a compact-valued tube K(·) : [0,T ]�RN is a solution to the so-called
morphological equation

◦
K (·) � F

(
K(·), · )

if (and only if) K(·) is a morphological primitive of the composition

F (K(·), ·) : [0,T ] −→ LIP(RN ,RN),

i.e. K(·) is Lipschitz continuous with respect to dl and satisfies

lim
h↓0

1
h
· dl
(
ϑF (K(t),t) (h, K(t)), K(t +h)

)
= 0

at Lebesgue-almost every time t ∈ [0,T ].
Proposition 57 (on page 50) has already provided an equivalent characterization of
morphological primitives:
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Proposition 70 (Solutions to morphological equations as reachable sets).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (LIP(RN ,RN),dl∞
)

to be a Carathéodory

function (i.e. here continuous with respect to the first argument and measurable

with respect to time) satisfying

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +Lip F (M, t)
)

< ∞ .

Then a continuous tube K : [0,T ]�RN is a solution to the morphological equation
◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂RN coincides with the reachable

set of the initial set K(0)⊂ RN and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·)(x(·)).

Proof. Suppose the tube K(·) : [0,T ]� RN to be continuous. As a consequence
of the Carathéodory property of F (·, ·), the composition

F (K(·), ·) : [0,T ]−→ LIP(RN ,RN)

is always measurable and thus, we can conclude the claimed equivalence directly
from Proposition 57. �

First we focus on the initial value problem of morphological equations without

state constraints:

Proposition 71 (Peano’s Theorem for morphological equations).
Suppose F :

(
K (RN),dl

)× [0,T ]−→ (LIP(RN ,RN),dl∞
)

to be continuous

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +Lip F (M, t)
)

< ∞ .

Then for every initial set K0 ∈ K (RN), there exists a solution K : [0,T ]� RN to

the morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof results directly from Theorem 20 (on page 28) in combination with Propo-
sition 47 (on page 44) and Proposition 53 (on page 48). �

Proposition 72 (Cauchy–Lipschitz Theorem for morphological equations).
Suppose the continuous function F :

(
K (RN),dl

)× [0,T ]−→ (LIP(RN ,RN),dl∞
)

to be Lipschitz continuous in the first argument with

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +Lip F (M, t)
)

< ∞ .
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Then for every initial set K0 ∈K (RN), there exists a unique solution K : [0,T ]�
RN to the morphological equation

◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof. The existence of a solution results from preceding Proposition 71 and,
Proposition 24 (on page 30) implies uniqueness. �

Proposition 73 (Continuity w.r.t. initial data and the right-hand side).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be λ–Lipschitz

continuous in the first argument with

α̂ := sup
M∈K (RN )

t∈ [0,T ]

Lip F (M, t) < ∞ .

For G : K (RN)× [0,T ]−→ LIP(RN ,RN) assume sup
M, t

dl∞
(
F (M, t), G (M, t)

)
< ∞.

Then every solutions K1(·), K2(·) : [0,T ]� RN to the morphological equations{ ◦
K1 (·) � F

(
K1(·), ·

)
◦
K2 (·) � G

(
K2(·), ·

)
satisfy the following inequality for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

) ≤ (dl
(
K1(0), K2(0)

)
+ t · sup

M, s

dl∞
(
F (M,s), G (M,s)

))
e(λ+α̂) t .

Proof is also a consequence of Proposition 24 in combination with Proposition 53
(about morphological transitions). �

Now we consider the initial value problem with state constraints and apply
Nagumo’s Theorem 19 (on page 28) to morphological transitions on (K (RN),dl):

Proposition 74 (Nagumo’s Theorem for morphological equations).
Suppose F : (K (RN),dl)−→ (LIP(RN ,RN), dl∞) to be continuous with

sup
M∈K (RN)

(‖F (M)‖∞ +Lip F (M)
)

< ∞.

Then the following statements are equivalent for any closed subset V ⊂K (RN) :

1. Every set K0 ∈ V is the initial set of at least one solution K : [0,1]−→K (RN)

to the morphological equation
◦
K (·) � F

(
K(·)) with K(t)∈V for all t ∈ [0,1].

2. V ⊂K (RN) is a viability domain of F in the sense that F (M) ∈ TV (M) for

every M ∈ V . �
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Corollary 75. Suppose F : (K (RN),dl)−→ (LIP(RN ,RN), dl∞) to be continu-

ous with sup
M∈K (RN)

(‖F (M)‖∞ + Lip F (M)
)

< ∞.

Let M ⊂RN be a nonempty closed set satisfying F (K)(x)⊂ TM(x)⊂RN for every

nonempty compact subset K ⊂M and element x ∈ K.

Then for any compact initial set K0 ⊂M, there exists a solution K(·) : [0,1]�RN

to the morphological equation
◦
K (·) � F

(
K(·)) with K(0) = K0 and K(t) ⊂ M

for all t ∈ [0,1].

Proof results from Proposition 74 and Example 63 (on page 53). �

As mentioned briefly in Remark 31, the existence of viable solutions can also be
guaranteed for systems of morphological equations. Now Propositions 65 and 68
respectively imply the following statements (as Aubin has already concluded in
[9, §§ 4.3.2, 4.3.3]):

Corollary 76. Suppose F ,G : (K (RN)2,dl2) −→ (LIP(RN ,RN), dl∞) to be

continuous with⎧⎪⎨⎪⎩
sup

M1,M2∈K (RN)

(‖F (M1,M2)‖∞ + Lip F (M1,M2)
)

< ∞,

sup
M1,M2∈K (RN)

(‖G (M1,M2)‖∞ + Lip G (M1,M2)
)

< ∞,

Assume for any sets M1,M2 ∈K (RN) with M1∩M2 �= /0(
F (M1,M2)(x)−G (M1,M2)(x)

) ∩ P
M1
M2

(x) �= /0 for some x ∈M1∩M2.

Then for any sets K0,L0 ∈ K (RN) with K0 ∩ L0 �= /0, there exist solutions

K(·),L(·) : [0,1]� RN to the morphological equations{ ◦
K (·) � F

(
K(·), L(·))

◦
L(·) � G

(
K(·), L(·))

with K(0) = K0, L(0) = L0 and K(t)∩L(t) �= /0 for all t ∈ [0,1]. �

Corollary 77. Suppose F ,G ,H : (K (RN)3,dl3)−→ (LIP(RN ,RN), dl∞) to be

continuous with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sup
M̃∈K (RN)3

(‖F (M̃)‖∞ + Lip F (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖G (M̃)‖∞ + Lip G (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖H (M̃)‖∞ + Lip H (M̃)
)

< ∞,

Assume for any M̃ = (M1,M2,M3)∈K (RN)3 with M1 ⊂M2∩M3 and every x∈M1

F (M̃)(x) ⊂ (G (M̃)(x)+T �
M2

(x)
) ∩ (H (M̃)(x)+T �

M3
(x)
)
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Then for any sets K0,L0,M0 ∈K (RN) with K0 ⊂ L0∩M0, there exist solutions

K(·),L(·),M(·) : [0,1]� RN to the morphological equations⎧⎪⎪⎨⎪⎪⎩
◦
K (·) � F

(
K(·), L(·), M(·))

◦
L(·) � G

(
K(·), L(·), M(·))

◦
M (·) � H

(
K(·), L(·), M(·))

with K(0) = K0, L(0) = L0, M(0) = M0 and K(t)⊂ L(t)∩M(t) for all t ∈ [0,1].
�

Finally we extend this list of conclusions here on the basis of Proposition 69 (2.):

Corollary 78. Suppose F ,G ,H : (K (RN)3,dl3)−→ (LIP(RN ,RN), dl∞) to be

continuous with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sup
M̃∈K (RN)3

(‖F (M̃)‖∞ + Lip F (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖G (M̃)‖∞ + Lip G (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖H (M̃)‖∞ + Lip H (M̃)
)

< ∞,

Assume for any M̃ = (M1,M2,M3)∈K (RN)3 with M1∩M2 �= /0 and M1∪M2 ⊂M3⎧⎪⎨⎪⎩
/0 �= (

F (M̃)(x)−G (M̃)(x)
) ∩ P

M1
M2

(x) for some x ∈M1∩M2,

F (M̃)(z) ⊂ H (M̃)(z)+T �
M3

(z) for every z ∈M1,

G (M̃)(z) ⊂ H (M̃)(z)+T �
M3

(z) for every z ∈M2.

Then for any sets K0,L0,M0 ∈ K (RN) with K0 ∩ L0 �= /0 and K0 ∪ L0 ⊂ M0,
there exist solutions K(·),L(·),M(·) : [0,1]� RN to the morphological equations⎧⎪⎪⎨⎪⎪⎩

◦
K (·) � F

(
K(·), L(·), M(·))

◦
L(·) � G

(
K(·), L(·), M(·))

◦
M (·) � H

(
K(·), L(·), M(·))

with K(0) = K0, L(0) = L0, M(0) = M0 and K(t)∩L(t) �= /0, K(t)∪L(t) ⊂ M(t)
for all t ∈ [0,1].

�
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1.10 Example: Modified morphological equations for compact
sets in RN via bounded one-sided Lipschitz continuous maps

Reachable sets of differential inclusions can serve as transitions on (K (RN),dl)
only if they are stable with respect to initial set and the right-hand side of the inclu-
sion. For this reason, we have considered Lipschitz continuous maps with uniformly
bounded compact values so far.
In [8, Remark 5.2], Artstein poses the question which other assumptions (alterna-
tive to classical Lipschitz continuity) might guarantee such an estimate of stability
as in Proposition 50 (on page 46) here. Donchev and Farkhi suggest an answer in
[54] introducing the so-called one-sided Lipschitz continuity (with respect to space).
Their existence theorem (quoted in subsequent Theorem A.49 on page 385) provides
an estimate of the distance between a given curve and the wanted solution being very
similar to the inequality of Filippov. Some key aspects of their nonautonomous dif-
ferential inclusions are summarized in Appendix A.6 (on page 385 f.).

In this section, we use this type of set-valued maps as right-hand side of autonomous
differential inclusions so that their reachable sets induce more general transitions on
(K (RN),dl). In regard to Theorem A.49 applied to autonomous differential inclu-
sions, we introduce similarly to Definition 49 (on page 46):

Definition 79. OSLIP(RN ,RN) consists of all set–valued maps F : RN � RN

satisfying the following three conditions:
1. F has nonempty compact convex values that are uniformly bounded in RN ,
2. F is upper semicontinuous,
3. F is one-sided Lipschitz continuous, i.e. there is a constant L ∈R such that for

every x,y ∈ RN and v ∈ F(x), there exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ L |x− y|2.
The smallest constant L ∈ R with this property is usually abbreviated as Lip F.

Remark 80. Every map F ∈ LIP(RN ,RN) with convex values is contained in
OSLIP(RN ,RN). Set-valued maps in OSLIP(RN ,RN), however, do not have to be
continuous in general, just consider the example (in addition to Remark A.48)

R � R, x �→
⎧⎨⎩

−1 for x > 0
[−1,1] for x = 0

1 for x < 0

Proposition 81. For any sets K1,K2 ∈K (RN) and maps F,G ∈OSLIP(RN ,RN)
with Λ := max{Lip F, Lip G} ∈ R, the reachable sets ϑF(t,K1), ϑG(t,K2) are

closed subsets of RN and, the Pompeiu–Hausdorff distance between the reachable

sets at time t ≥ 0 satisfies

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .
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Proof follows from Theorem A.49 (on page 385) in exactly the same way as
Proposition 50 about morphological transitions in LIP(RN ,RN) resulted from Filip-
pov’s Theorem A.6 (see page 47 for details). �

Obviously, [0,∞[−→ (K (RN),dl
)
, t �−→ ϑF(t,K0) is ‖F‖∞–Lipschitz continuous

for every F ∈ OSLIP(RN ,RN) and, the semigroup property of reachable sets still
holds (as in Lemma 52 on page 47). The same conclusions as for morphological
transitions in § 1.9.2 (on page 46 ff.) now lead to

Proposition 82. For every set-valued map F ∈ OSLIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

with ϑF(t,K)⊂RN denoting the reachable set of the initial set K ∈K (RN) and the

differential inclusion x′ ∈ F(x) a.e. at time t is a transition on (K (RN),dl) with

α(ϑF) ≤ max
{

0, Lip F
}
,

β (ϑF) ≤ ‖F‖∞,

D(ϑF ,ϑG) ≤ dl∞(F,G). �

Remark 83. We prefer excluding negative values of the transition parameter α(ϑF)
because Gronwall’s estimate (in form of Proposition A.2 on page 352) often serves
as key analytic tool, but does not cover exponential decrease here.

The next step consists in existence of solution to initial value problems without state
constraints:

Proposition 84 (Peano’s Theorem for modified morphological equations).
Suppose F :

(
K (RN),dl

)× [0,T ]−→ (OSLIP(RN ,RN),dl∞
)

to be continuous and

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +max{0, Lip F (M, t)})< ∞ .

Then for every initial set K0 ∈ K (RN), there exists a solution K : [0,T ]� RN to

the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0, i.e. K(·) is Lipschitz continuous with respect to dl and satisfies

for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h
· dl
(
ϑF (K(t),t)(h, K(t)), K(t +h)

)
= 0

Proof results directly from Theorem 20 (on page 28) in combination with Propo-
sition 47 (on page 44) and Proposition 82. �
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Proposition 85 (Cauchy–Lipschitz for modified morphological equations).
Suppose the continuous function F : K (RN)× [0,T ] −→ (OSLIP(RN ,RN),dl∞

)
to be Lipschitz continuous in the first argument with

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +max{0, Lip F (M, t)})< ∞ .

Then for each initial set K0 ∈K (RN), there exists a unique solution K : [0,T ]�RN

to the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof. The existence of a solution results from preceding Proposition 84 and,
Proposition 24 (on page 30) implies uniqueness. �

Proposition 86 (Continuity w.r.t. initial data and the right-hand side).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (OSLIP(RN ,RN),dl∞
)

to be λ–Lipschitz

continuous in the first argument with

α̂ := sup
M∈K (RN )

t∈ [0,T ]

max{0, Lip F (M, t)} < ∞ .

For G : K (RN)× [0,T ]−→ OSLIP(RN ,RN) assume

sup
M, t

dl∞
(
F (M, t), G (M, t)

)
< ∞.

Any solutions K1(·), K2(·) : [0,T ]� RN to the modified morphological equations{ ◦
K1 (·) � F

(
K1(·), ·

)
◦
K2 (·) � G

(
K2(·), ·

)
satisfy the following inequality for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

) ≤ (dl
(
K1(0), K2(0)

)
+ t · sup

M, s

dl∞
(
F (M,s), G (M,s)

))
e(λ+α̂) t .

Proof is also a consequence of Proposition 24 in combination with Proposition 82.
�

Furthermore, the existence of solutions with state constraints is again guaranteed by
a consequence of Nagumo’s general Theorem 19 (on page 28):

Proposition 87 (Nagumo’s Theorem for modified morphological equations).
Suppose F : (K (RN),dl)−→ (OSLIP(RN ,RN), dl∞) to be continuous with

sup
M∈K (RN)

(‖F (M)‖∞ +max{0, Lip F (M)}) < ∞.

Then the following statements are equivalent for any closed subset V ⊂K (RN) :
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1. Every set K0 ∈ V is the initial set of at least one solution K : [0,1]−→K (RN)

to the modified morphological equation
◦
K (·) � F

(
K(·)) with K(t) ∈ V for

all t ∈ [0,1].

2. V ⊂K (RN) is a viability domain of F in the sense that

F (M) ∈TV (M)⊂ OSLIP(RN ,RN) for every M ∈ V .
�

This, however, seems to be the critical point at which the obvious analogies to
the morphological equations discussed in § 1.9 (on page 44 ff.) end.
In particular, Proposition 70 (on page 59) specifies the close link between any solu-
tion of a morphological equation and reachable sets of a suitable nonautonomous
differential inclusions. Its counterpart for modified morphological equations can
be formulated here only under additional assumptions about the continuity of each
value F (M, t) ∈ OSLIP(RN ,RN).
This results from the following feature: Replacing the Lipschitz continuity of § 1.9
by the one-sided Lipschitz continuity (in combination with upper semicontinuity)
implies an essential gap that is also pointed out in Remark A.50 (on page 386).
Indeed, every map F ∈OSLIP(RN ,RN) satisfies the assumptions of Theorem A.49,
but not every point x0 ∈ RN and vector v0 ∈ F(x0) has to be related to a solution
x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F(x(·)) satisfying x(0) = x0 and

lim
h↓0

1
h
· (x(h)− x(0)

)
= v0.

Definition 88. COSLIP(RN ,RN) consists of all maps in OSLIP(RN ,RN) that
are continuous in addition, i.e. every set-valued map F : RN � RN satisfying

1. F has nonempty compact convex values that are uniformly bounded in RN ,
2. F is continuous,
3. F is one-sided Lipschitz continuous, i.e. there is a constant L ∈R such that for

every x,y ∈ RN and v ∈ F(x), there exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ L |x− y|2.

Lemma 89. Let F : [0,T ] −→ (
COSLIP(RN ,RN),dl∞

)
be L 1-measurable with

sup
t∈ [0,T ]

(‖F (t)‖∞ +max{0, Lip F (t)})< ∞ and define the set-valued map

F̂ : [0,T ]×RN � RN , (t,x) �→ F (t)(x).

Then for every set K0 ∈K (RN), the reachable set ϑ
F̂
(·,K0) : [0,T ] −→ K (RN)

of the nonautonomous differential inclusion x′ ∈ F̂(·,x) a.e. is a modified morpho-

logical primitive of F (·).

Proof results from Proposition A.13 (on page 359) in exactly the same way
as Lemma 58 (on page 51). Indeed, continuity of the set-valued maps with respect
to space (and not Lipschitz continuity) is assumed for proving the integral funnel
equation in Proposition A.13. �
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As a direct consequence of the uniqueness of primitives (Corollary 23 on page 29),
we obtain the counterpart of Proposition 57 (on page 50) and can characterize these
modified morphological primitives as reachable sets of nonautonomous differential
inclusions:

Proposition 90 (Modified morphological primitives as reachable sets).
Suppose F : [0,T ] −→ (

COSLIP(RN ,RN),dl∞
)

to be Lebesgue-measurable with

sup
t∈ [0,T ]

(‖F (t)‖∞ +max{0, Lip F (t)})< ∞ and define the set-valued map

F̂ : [0,T ]×RN � RN , (t,x) �→ F (t)(x).

A tube K : [0,T ]� RN is a modified morphological primitive of F (·) if and only

at every time t ∈ [0,T ], its value K(t)⊂ RN coincides with the reachable set of the

nonautonomous differential inclusion x′ ∈ F̂(·,x) a.e.

K(t) = ϑ
F̂

(
t, K(0)

)
.

Corollary 91 (Solutions to modified morphological equations as reachable sets).
Let F :

(
K (RN),dl

)× [0,T ] −→ (
COSLIP(RN ,RN),dl∞

)
be a Carathéodory

function (i.e. here continuous with respect to the first argument and measurable

with respect to time) satisfying

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞ +max {0, Lip F (M, t)})< ∞ .

Then a continuous tube K : [0,T ]�RN is a solution to the modified morphological

equation
◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂RN coincides with the reachable

set of the initial set K(0)⊂ RN and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·)(x(·)).





Chapter 2
Adapting mutational equations to examples in
vector spaces: Local parameters of continuity

The notion of transitions instead of affine-linear maps in a given direction has proved
to be very powerful. Aubin’s definition of transition (Definition 1.1), however, is too
restrictive.
Indeed, many examples in vector spaces share the feature that the Lipschitz con-
stant of t �−→ ϑ(t,x) cannot be bounded uniformly for all initial states x. In this
chapter we will study several examples in which the transitions are based on solu-
tions to linear problems in vector spaces. Doubling the initial state implies doubling
the transition value and thus doubling the Lipschitz constant with respect to time.

The main goal of the subsequent chapters is to weaken the conditions on tran-
sitions and solutions in the mutational framework such that Euler method still pro-
vides existence of (generalized) solutions.
In this chapter, we implement two additional aspects in the recently introduced
terms: Firstly, we use an analog of the absolute value in the metric space (E,d).
Indeed, �·� : E −→ [0,∞[ is just to specify the “absolute magnitude” of each ele-
ment in E, but does not have to satisfy structural conditions such as homogeneity
or triangle inequality. In contrast to a metric, �·� does not serve the comparison of
two elements in E, but the continuity parameters α(ϑ),β (ϑ) will be assumed to be
uniform in all “balls” {x ∈ E | �x� ≤ r} with positive “radius” r > 0. The proofs do
not change substantially if we impose appropriate bounds on the growth of �ϑ(·,x)�
for each initial element x ∈ E.

Secondly, we admit more than just one distance function on E simultaneously.
A family (d j) j∈I of pseudo-distances on E (i.e. reflexive, symmetric and satisfying
the triangle inequality, but not necessarily positive definite) replaces the metric d

always used in Chapter 1. The weak topology of a Banach space, for example, is
much easier to describe by means of many linear forms than by just a single metric
and, the suitable choice of linear forms will prove to be very helpful for semilinear
evolution equations discussed in subsequent § 2.4.

In a word, these extensions of the mutational framework do not require significant
improvements of the proofs in comparison with the preceding chapter. They share
the basic notion with later generalizations: For implementing additional “degrees of
freedom”, we focus on the question which parameter may depend on which others.

69
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2.1 The topological environment of this chapter

E always denotes a nonempty set, but we do not restrict our considerations to a
metric space (E,d) as in Chapter 1.

Definition 1. Let E be a nonempty set. A function d : E×E −→ [0,∞[ is called
pseudo-metric on E if it satisfies the following conditions:

1. d is reflexive, i.e. for all x ∈ E : d(x, x) = 0,
2. d is symmetric, i.e. for all x,y ∈ E : d(x, y) = d(y, x)
3. d satisfies the triangle inequality, i.e. for all x,y,z : d(x, z) ≤ d(x, y) + d(y, z).

In particular, a pseudo-metric d on E does not have to be positive definite, i.e.
d(x,y) = 0 does not always imply x = y.

General assumptions for Chapter 2. E is a nonempty set and, I �= /0 denotes
an index set. For each index j ∈I , d j : E×E −→ [0,∞[ is a pseudo-metric on E

and, �·� j : E −→ [0,∞[ is a given function that is lower semicontinuous with respect
to the topology of (di)i∈I , i.e. strictly speaking,

�x� j ≤ liminf
n−→∞

�xn� j

for any x ∈ E and sequence (xn)n∈N in E with di(xn,x)
n→∞−→ 0 and supn �xn�i < ∞

for each i ∈I .

Now the main goal of this chapter is to extend the mutational framework from a
metric space to the tuple

(
E,(d j) j∈I ,(�·� j) j∈I

)
. Several examples in vector spaces

like semilinear evolution equations and nonlinear transport equations will follow.

2.2 Specifying transitions and mutation on
(
E,(d j) j∈I ,(�·� j) j∈I

)
Definition 2. ϑ : [0,1]×E −→ E is called transition on

(
E,(d j) j∈I ,(�·� j) j∈I

)
if it satisfies the following conditions for each j ∈I :

1.) for every x ∈ E : ϑ(0,x) = x

2.) for every x ∈ E, t ∈ [0,1[: lim
h↓0

1
h
· d j

(
ϑ(t +h, x), ϑ(h, ϑ(t,x))

)
= 0

3.) there exists α j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any x,y ∈ E with

�x� j ≤ r, �y� j ≤ r : limsup
h↓0

d j(ϑ(h,x), ϑ(h,y))− d j(x,y)
h

≤ α j(ϑ ;r) · d j(x,y)

4.) there exists β j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any s, t ∈ [0,1] and x ∈ E

with �x� j ≤ r : d j

(
ϑ(s,x), ϑ(t,x)) ≤ β j(ϑ ;r) · |t− s|

5.) there exists γ j(ϑ) ∈ [0,∞[ such that for any t ∈ [0,1] and x ∈ E :

�ϑ(t,x)� j ≤
(�x� j + γ j(ϑ) t

) · eγ j(ϑ) t
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Remark 3. In particular, this definition covers the special case of a transition
ϑ : [0,1]× E −→ E on a metric space (E,d) in the sense of Definition 1.1 (on
page 20). Indeed, set I = {0}, d0 := d and �·�0 := 0. Then α(ϑ ; ·) and β (ϑ ; ·)
can be chosen constant for each transition ϑ on (E,d). γ0(ϑ) is defined as 0 arbi-
trarily.

Now the continuity parameters of a transition are fixed for each “ball” {x ∈ E |
�x� j ≤ r} (r > 0, j ∈I ). This does not cause analytical difficulties since condi-
tion (5.) provides a suitable bound of �ϑ(t,x)� j for t ∈ [0,1]. Strictly speaking,
the following lemma lays the foundations for extending many results of Chapter 1
to transitions on

(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Lemma 4. Let ϑ1 . . . ϑK be finitely many transitions on
(
E,(d j) j∈I ,(�·� j) j∈I

)
with γ̂ j := sup

k∈{1 ...K}
γ j(ϑk) < ∞ for some j ∈I .

For any x0 ∈ E and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve

x(·) : [0, tK ]−→ E piecewise as x(0) := x0 and

x(t) := ϑk

(
t− tk−1, x(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . .K}.

Then, �x(t)� j ≤
(�x0� j + γ̂ j · t

) · eγ̂ j · t at every time t ∈ [0, tK ].

Proof is given via induction with respect to k : The claim is obvious at time t0 = 0.
Assuming this estimate at time tk−1, we conclude for each t ∈ ]tk−1, tk]

�x(t)� j =
⌊
ϑk

(
t− tk−1, x(tk−1)

⌋
j

≤ (�x(tk−1)� j + γ̂ j · (t− tk−1)
) · eγ̂ j ·(t−tk−1)

≤ ((�x0� j + γ̂ j · tk−1
) · eγ̂ j tk−1 + γ̂ j · (t− tk−1)

) · eγ̂ j ·(t−tk−1)

≤ (�x0� j + γ̂ j · t
) · eγ̂ j ·t .

�

The next step is to implement this locally uniform aspect of parameters in the
distance between transitions. Seizing the basic idea of Definition 1.6 (on page 23),
we introduce

Definition 5. Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
denotes a nonempty set of transitions on(

E,(d j) j∈I ,(�·� j) j∈I

)
satisfying additionally

D j(ϑ ,τ; r) := sup
x∈E: �x� j≤r

limsup
h↓0

1
h
· d j

(
ϑ(h,x), τ(h,x)

)
< ∞

for any ϑ ,τ ∈Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
and r≥ 0, j ∈I . (If {x∈E |�x� j ≤ r}= /0,

set D j( · , · ; r) := 0.)
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For each r ≥ 0, the distance function

D j( · , · ;r) : Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)×Θ
(
E,(d j) j∈I ,(�·� j) j∈I

) −→ [0,∞[

is reflexive, symmetric and satisfies the triangle inequality and thus, D j( · , · ;r) is a
pseudo-metric on the transition set Θ

(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Similarly to Proposition 1.7 (on page 23), we can now compare the evolution of two
states in E along two different transitions:

Proposition 6. Let ϑ ,τ ∈Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
be arbitrary, r ≥ 0, j ∈I .

Then for any elements x,y ∈ E with �x� j ≤ r, �y� j ≤ r and times t1, t2 ∈ [0,1[, the

following estimate is satisfied at each time h ∈ [0,1[ with max{t1 +h, t2 +h} ≤ 1

d j

(
ϑ(t1+h,x), τ(t2+h,y)

) ≤ (d j

(
ϑ(t1,x), τ(t2,y)

)
+ h ·D j(ϑ ,τ ;R j)

) · eα j(ϑ ;R j)h

with R j :=
(
r +max{γ j(ϑ), γ j(τ)}) · emax{γ j(ϑ), γ j(τ)}.

Proof results from Gronwall’s inequality (in Proposition A.2 on page 352)
applied to the auxiliary function

ψ j : h �−→ d j

(
ϑ(t1 +h,x), τ(t2 +h,y)

)
in exactly the same way as the proof of Proposition 1.7 (on page 24) because con-
dition (5.) of Definition 2 ensures for each h ∈ [0,1]{

�ϑ(h,x)� j ≤ R j

�τ(h,y)� j ≤ R j �

As in § 1.2 (on page 25), the notion of first-order approximation leads to the so-
called mutation of a curve – as counterpart of its time derivative:

Definition 7. Let x(·) : [0,T ]−→ E be a function. The set
◦
x(t) :=

{
ϑ ∈Θ

(
E,(d j) j∈I ,(�·� j) j∈I

) ∣∣
∀ j ∈I : lim

h↓0
1
h
· d j

(
ϑ(h, x(t)), x(t +h)

)
= 0
}

is called mutation of x(·) at time t ∈ [0,T [ in
(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Remark 8. Remark 1.11 (on page 25) also holds for transitions on the tuple(
E,(d j) j∈I ,(�·� j) j∈I

)
: For every transition ϑ

(
E,(d j) j∈I ,(�·� j) j∈I

)
and initial

element x0 ∈ E, the curve xx0(·) := ϑ(·,x0) : [0,1] −→ E has ϑ in its mutation at
each time t ∈ [0,1[:

ϑ ∈ ◦
xx0 (t).

This results directly from condition (2.) in Definition 2 and, it lays the basis for
constructing solutions by means of Euler method in the next section.
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2.3 Solutions to mutational equations

Now we focus on solving dynamical problems with feedback: For a given function
relating each state in E and time to a transition on

(
E,(d j) j∈I ,(�·� j) j∈I

)
, we are

looking for a curve in E whose mutation obeys this “law” at almost every time.
In comparison with Definition 1.13 (on page 26) for a metric space, however, the
families (d j) j∈I , (�·� j) j∈I should be taken into consideration appropriately:

Definition 9. A single-valued function f : E× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
is given. x(·) : [0,T ]−→ E is called a solution to the mutational equation

◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(�·� j) j∈I

)
if it satisfies the following conditions for each j ∈I :

1.) x(·) is continuous with respect to d j

2.) for L 1-almost every t ∈ [0,T [: lim
h↓0

1
h
· d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

A global bound of the continuity parameter β j( · ; R) implies that each solution is
even (locally) Lipschitz continuous with respect to d j.

Lemma 10. For f : E× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
let x(·) : [0,T ]−→E

be a solution to the mutational equation
◦
x(·) � f (x(·), ·) such that some j ∈I and

L j,R j ∈ R satisfy for all t ∈ [0,T ]{
�x(t)� j ≤ R j

β j

(
f (x(t), t), R j

) ≤ L j.

Then x(·) is L j-Lipschitz continuous with respect to d j .

Proof. Fix s ∈ [0,T [ arbitrarily. Then the auxiliary function

ψ j : [s,T ] −→ R, t �−→ d j

(
x(s), x(t)

)
is continuous due to Definition 9 (1.) and, it satisfies for L 1-almost every t ∈ [s,T ]

limsup
h↓0

ψ j(t+h)−ψ j(t)
h

≤ limsup
h↓0

1
h
· d j

(
x(t), x(t +h)

)
≤ limsup

h↓0

1
h
·
(

d j

(
x(t), f (x(t), t)(h,x(t))

)
+

d j

(
f (x(t), t)(h,x(t)), x(t +h)

))
≤ L j + 0 .

Finally ψ j(t) ≤ L j · (t − s) for all t ∈ [s,T ] results from Gronwall’s inequality
(Proposition A.2 on page 352). �
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2.3.1 Continuity with respect to initial states and right-hand side

The continuity of solutions with respect to given data plays a key role for solving
mutational equations by explicit methods such as Euler algorithm. For this reason,
we now extend Proposition 1.21 (on page 29) and Proposition 1.24 (on page 30) to
mutational equations in

(
E,(d j) j∈I ,(�·� j) j∈I

)
:

Proposition 11. Assume for f ,g : E × [0,T ] −→ Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
and

x,y : [0,T ] −→ E that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

and y(·) is a solution to the mutational equation
◦
y(·) � g(y(·), ·).

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for almost every t ∈ [0,T ]⎧⎪⎨⎪⎩
�x(t)� j, �y(t)� j ≤ R j

α j (g(y(t), t); R j) ≤ α̂ j

D j ( f (x(t), t), g(y(t), t); R j) ≤ ϕ j(t).

Then, d j(x(t), y(t)) ≤ (d j(x(0),y(0))+
∫ t

0
ϕ j(s) e−α̂ j ·sds

)
eα̂ j ·t for any t ∈ [0,T ].

By means of monotone approximation in the sense of Daniell-Lebesgue, this esti-
mate can be extended to Lebesgue-integrable functions ϕ j : [0,T ]−→ [0,∞[ easily.
Assuming one of the functions on the right-hand side to be Lipschitz continuous in
addition simplifies the comparison between two solutions w.r.t. a pseudo-metric d j:

Corollary 12. For some j ∈I and each r > 0, suppose f : E × [0,T ] −→
Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
to satisfy α̂ j,r := supz, t α j( f (z, t); r) < ∞ and to fulfill

with a constant λ j,r > 0 that for L 1-almost every t ∈ [0,T ],

f (·, t) : (E,d j) −→
(
Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
, D j( · , · ;r)

)
is λ j,r-Lipschitz continuous. For g : E× [0,T ]−→Θ

(
E,(di)i∈I ,(�·�i)i∈I

)
assume

sup
z,s

D( f (z,s), g(z,s); r) < ∞ for each r > 0.

Then every solutions x(·), y(·) : [0,T ]−→ E to the mutational equations
◦
x(·) � f (x(·), ·) ◦

y(·) � g(y(·), ·)
satisfy the following inequality for every t ∈ [0,T ]

d j(x(t), y(t)) ≤ (d j(x(0),y(0)) + t · sup
z, s

D j( f (z,s),g(z,s)); R j)
)

e
(α̂ j,R j

+λ j,R j
) t

with R j := sup
t∈ [0,T ]

{�x(t)� j, �y(t)� j

}
< ∞ .

Proof (of Proposition 11). As in the proof of Proposition 1.21 (on page 31), we
consider the auxiliary function

ψ j : [0,T ] −→ [0,∞[, t �−→ d j

(
x(t), y(t)

)
.
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It is continuous because any solutions x(·), y(·) to mutational equations are contin-
uous with respect to d j due to Definition 9.
Furthermore, we obtain for Lebesgue-almost every t ∈ [0,T [

limsup
h↓0

1
h
·d j

(
x(t +h), f (x(t), t)(h,x(t))

)
= 0

limsup
h↓0

1
h
·d j

(
f (x(t), t)(h,x(t)), g(y(t), t)(h,x(t))

) ≤ D j

(
f (x(t), t), g(y(t), t);R j

)
limsup

h↓0

1
h
·d j

(
g(y(t), t)(h,y(t)), y(t +h)

)
= 0

due to Definition 5 and Definition 9. For estimating ψ j(t +h), we conclude from the
assumed bound of α j(g(y(t), t); R j), i.e.

limsup
h↓0

1
h
· (d j

(
g(y(t), t)(h,x(t)), g(y(t), t)(h,y(t))

) − ψ j(t)
) ≤ α̂ j ·ψ j(t),

and the triangle inequality of d j

limsup
h↓0

ψ j(t +h) − ψ j(t)
h

≤ α̂ j ·ψ j(t) + D j

(
f (x(t), t), g(y(t), t); R j

)
≤ α̂ j ·ψ j(t) + ϕ j(t)

at Lebesgue-almost every time t ∈ [0,T [. Finally the claimed estimate results from
generalized Gronwall’s Lemma (Proposition A.2 on page 352). �

Proof (of Corollary 12). It results from Proposition 11 in exactly the same way
as Proposition 1.24 was concluded from Proposition 1.21 (on page 32). �

2.3.2 Limits of pointwise converging solutions:
Convergence Theorem

Considering preceding Proposition 11, the continuity of solutions (with respect to
initial data and right-hand side) is based on the assumption that two solutions are
given. Hence this result can hardly be used as a tool for proving an existence theo-
rem.

Now we consider a sequence of solutions instead. If it converges with respect to
the topology of (d j) j∈I then the limit function might be a solution to a mutational
equation. The following theorem extends Convergence Theorem 1.30 (on page 36)
and specifies the details.
It is worth pointing out briefly that we do not require uniform convergence of the
sequence with respect to each d j, j ∈I , but just pointwise convergence of subse-
quences (which can even depend on time). Moreover, perturbations of the right-hand
sides are also taken into consideration. This aspect will be very helpful for the Euler
approximations used in subsequent § 2.3.3.
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Theorem 13 (Convergence of solutions to mutational equations).
For each j ∈I , suppose the following properties of

fn, f : E× [0,T ] −→ Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t

�xn(t)� j < ∞,

α̂ j := sup
n,t,y

α j

(
fn(y, t); R j

)
< ∞,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,d j)

)
< ∞,

2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 9 on page 73) for every n ∈N,

3.) lim
n→∞

D j ( fn(x(t), t), fn(yn, tn); R j) = 0 for L 1-almost every t ∈ [0,T ] and

any sequences (tn)n∈N, (yn)n∈N in [t,T ] and E respectively satisfying

lim
n→∞

tn = t and lim
n→∞

di

(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for each i ∈I ,

4.) for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T [, there exists a

sequence nm ↗ ∞ of indices (possibly depending on t, t̃, j) that satisfies

for m−→ ∞ and each i ∈I⎧⎪⎨⎪⎩
(i) D j

(
f (x(t), t), fnm(x(t), t); R j

) −→ 0

(ii) di

(
x(t), xnm(t)

) −→ 0

(iii) d j

(
x(̃t), xnm (̃t)

) −→ 0

Then, x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·) in [0,T [.

Proof. Choose the index j ∈I arbitrarily. Then x(·) : [0,T ] −→ (E,d j) is β̂ j–
Lipschitz continuous. Indeed, for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T ],
assumption (4.) provides a subsequence

(
xnm(·))

m∈N
satisfying{

d j

(
x(t), xnm(t)

) −→ 0
d j

(
x(̃t), xnm (̃t)

) −→ 0 for m−→ ∞.

The uniform β̂ j–Lipschitz continuity of xn(·),n∈N, and the properties of d j imply

d j

(
x(t), x(̃t)

) ≤ d j

(
x(t), xnm(t)

)
+ d j

(
xnm(t), xnm (̃t)

)
+ d j

(
xnm (̃t), x(̃t)

))
≤ d j

(
x(t), xnm(t)

)
+ β̂ j |̃t− t| + d j

(
xnm (̃t), x(̃t)

))
−→ 0 + β̂ j |̃t− t| + 0 for m→ ∞.

This Lipschitz inequality even holds for any t ∈ [0,T ] due to the triangle inequality
of d j. Moreover the general hypothesis about lower semicontinuity of �·� j ensures

�x(̃t)� j ≤ liminf
m−→∞

�xnm (̃t)� j ≤ R j.

Finally we verify the solution property

lim
h↓0

1
h
· d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0

for Lebesgue-almost every t ∈ [0,T [. Indeed, for Lebesgue-almost every t ∈ [0,T [
and any h ∈ ]0, T − t[, assumption (4.) guarantees a subsequence

(
xnm(·))

m∈N
satisfying for each i ∈I and m−→ ∞
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D j

(
f (x(t), t), fnm(x(t), t); R j

) −→ 0

di

(
x(t), xnm(t)

) −→ 0

d j

(
x(t+h), xnm(t+h)

) −→ 0

We conclude from Proposition 6 (on page 72) and Proposition 11 (on page 74) re-
spectively

d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
≤ d j

(
f (x(t), t) (h, x(t)), fnm(x(t), t)(h, x(t))

)
+ d j

(
fnm(x(t), t)(h, x(t)), xnm(t +h)

)
+ d j

(
xnm(t +h), x(t +h)

)
≤ h eα̂ j h · D j

(
f (x(t), t), fnm(x(t), t); R j

)
+ d j

(
x(t), xnm(t)

)
eα̂ j h + h eα̂ j h · sup

t≤s≤ t+h

D j

(
fnm(x(t), t), fnm(xnm(s),s); R j

)
+ d j

(
xnm(t +h), x(t +h)

)
.

Now m−→ ∞ leads to the inequality

d j

(
f (x(t), t)(h, x(t)), x(t+h)

)
≤ h eα̂ j h · limsup

m−→∞
sup

[t, t+h]
D j

(
fnm(x(t), t), fnm(xnm(·), ·); R j

)
.

For completing the proof, it is sufficient to verify

limsup
h↓0

limsup
m−→∞

sup
[t, t+h]

D j

(
fnm(x(t), t), fnm(xnm(·), ·); R j

)
= 0

for Lebesgue-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))

m∈N
satisfying

di

(
x(t), xnm(t)

) −→ 0 for m−→ ∞ and each i ∈I .
Indeed, if this limit superior was positive then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that{

D j

(
fnml

(x(t), t), fnml
(xnml

(t + sl), t + sl); R j

) ≥ ε
0 ≤ sl ≤ hl ≤ 1

l
, ml ≥ l

for all l ∈ N.

The consequence

di

(
x(t), xnml

(t + sl)
) ≤ di

(
x(t), xnml

(t)
)

+ β̂i sl
l→∞−→ 0

for each i ∈I would lead to a contradiction to equi-continuity assumption (3.) at
Lebesgue-almost every time t ∈ [0,T [. �

Remark 14. The continuity assumptions about (xn(·))n∈N can be weakened easily.
Supposing for each index j ∈I that the sequence (xn(·))n∈N is equi-continuous
with respect to d j (instead of uniformly β̂ j–Lipschitz continuous) admits the same
conclusions and thus, the limit function x(·) is also a solution of

◦
x (·) � f (x(·), ·)

in the sense of Definition 9.
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2.3.3 Existence for mutational equations without state constraints

Whenever equations are solved constructively, two principles usually bridge the gap
between approximations and the wanted solution: completeness or compactness. In
fact, both principles guarantee the existence of a limit, but compactness refers to
any sequence and focuses on a suitable subsequence whereas the concept of com-
pleteness is restricted to Cauchy sequences. In metric spaces, compactness usually
implies completeness.
For the tuple

(
E,(d j) j∈I ,(�·� j) j∈I

)
, however, we usually prefer compactness as

analytical basis for constructing solutions to mutational equations because a family
(d j) j∈I of pseudo-metrics is admitted (and we have not even supposed the index
set I �= /0 to be at most countable).

Specifying a suitable form of sequential compactness in
(
E,(d j) j∈I ,(�·� j) j∈I

)
plays an essential role in the mutational framework. Indeed, Aubin’s initial concept
(as presented in Chapter 1) considers metric spaces in which all closed bounded
balls are assumed to be compact. Now we have more than just one distance func-
tion and thus, the classical equivalence of compactness (with regard to covers) and
sequential compactness well-known in metric spaces might fail in this environment.

Our main goal is to construct solutions by means of Euler method and thus, the
piecewise Euler approximations using transitions should provide a convergent sub-
sequence. For this reason, we introduce the following version of compactness:

Definition 15 (Euler compact).
The tuple

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
is called Euler com-

pact if it satisfies the following condition for any initial element x0 ∈ E, time
T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→E constructed in the following piecewise way: Choosing an arbitrary
equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and transitions
ϑ1 . . .ϑn ∈Θ

(
E,(di)i∈I ,(�·�i)i∈I

)
with⎧⎪⎨⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as

y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈ N } ⊂ E has a
subsequence (znm)m∈N converging to an element z ∈ E with respect to each pseudo-
metric d j ( j ∈I ).
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Remark 16. Euler compactness weakens the condition that all bounded closed
balls are compact – in the following sense: The family (d j) j∈I of pseudo-metrics
induces a topology of the nonempty set E. If every “ generalized ball” in E{

y ∈ E
∣∣ ∀ j ∈I : d j(x0,y)≤ r j, �y� ≤ R j

}
with arbitrary “centre” x0 ∈ E and bounds r j,R j ∈ ]0,∞[ ( j ∈I ) is sequentially
compact, then

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
is Euler compact.

Indeed, fixing the parameters x0,T,(α̂ j, β̂ j, γ̂ j) j∈I arbitrarily, every curve y(·) :
[0,T ]−→ E in N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) satisfies

�y(t)� j ≤ (�x0� j + γ̂ j T ) eγ̂ j T

for each t ∈ [0,T ] and j ∈I according to Lemma 4 (on page 71). Furthermore,
condition (4.) of Definition 2 (about transitions) and the triangle inequality of d j

guarantee for each index j ∈I that y(·) : [0,T ]−→ (E,d j) is β̂ j–Lipschitz contin-
uous and thus,

d j

(
x0, y(t)

) ≤ β̂ j T

for every t ∈ [0,T ]. Hence the set of all values {y(t) | y(·) ∈N , t ∈ [0,T ]} ⊂ E is
contained in such a “generalized ball”.

The bound on the parameter α j is not used explicitly, but it weakens the conditions
of Euler compactness. Indeed, subsequent Theorem 18 about existence assumes
such a bound anyway and thus, the Euler approximations are based on transitions
with uniform bounds on all their parameters α j,β j,γ j.

In a word, Euler compactness ensures the existence of a convergent subsequence for
each point of time separately. This even implies the existence of one and the same
subsequence converging at every time. Specifying this conclusion in the following
lemma, we realize a counterpart of Arzelà–Ascoli Theorem A.63 (on page 391) –
now, however, in the tuple

(
E, (d j) j∈I , (�·� j) j∈I

)
.

Lemma 17 (Uniform sequential compactness due to Euler compactness).
Assume

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Using the notation of Definition 15, choose initial element x0 ∈ E, time T ∈ ]0,∞[
and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ) arbitrarily.

For every sequence (yn(·))n∈N of curves [0,T ] −→ E in N
(
x0,T,(α̂ j, β̂ j, γ̂ j) j∈I

)
,

there exists a subsequence (ynm(·))m∈N and a function y(·) : [0,T ] −→ E such that

for every j ∈I ,
sup

t∈ [0,T ]
d j

(
ynm(t), y(t)

) −→ 0 for m−→ ∞.

Furthermore if (yn(t0))n∈N is constant for some t0 ∈ [0,T ] then y(·) can be chosen

with the additional property y(t0) = yn(t0).
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The last statement does not result directly from the convergence because the set
E supplied with the topology of (d j) j∈I does not have to be a Hausdorff space.
The proof is postponed to the end of this section. As a consequence, we obtain the
extension of Peano’s Theorem 1.20 (on page 28) to the tuple

(
E, (d j) j, (�·� j) j

)
and

its transitions.

Theorem 18 (Peano’s Theorem for nonautonomous mutational equations).
Suppose

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Assume for f : E× [0,T ]−→Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
and each j ∈I , R > 0,

1.) sup
z, t

α j( f (z, t); R) < ∞,

2.) sup
z, t

β j( f (z, t); R) < ∞,

3.) sup
z, t

γ j( f (z, t)) < ∞,

4.) lim
n→∞

D j

(
f (zn, tn), f (z, t); R

)
= 0 for L 1-almost every t ∈ [0,T ] and

any sequences (tn)n∈N in [0,T ] and (zn)n∈N in E satisfying lim
n→∞

tn = t and

lim
n→∞

di(zn,z) = 0, sup
n∈N

�zn�i < ∞ for every i ∈I .

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E to

the mutational equation ◦
x(·) � f

(
x(·), ·)

in the tuple
(
E,(d j) j∈I ,(�·� j) j∈I

)
with x(0) = x0.

Proof (of Lemma 17). Fixing the parameters x0,T,(α̂ j, β̂ j, γ̂ j) j∈I arbitrarily, we
can assume the set N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) to be nonempty (since otherwise
the claim is trivial).
Let (yn(·))n∈N be any sequence of functions [0,T ] −→ E in N . Then for every
j ∈I and n ∈N, the curve yn : [0,T ]−→ (E,d j) is β̂ j–Lipschitz continuous due to
condition (4.) of Definition 2 (about transitions) and the triangle inequality of d j.

For each t ∈ [0,T ], the assumption of Euler compactness ensures a subsequence
of
(
yn(t)

)
n∈N

converging with respect to each d j. Cantor’s diagonal construction
provides a subsequence

(
ynm(·))

m∈N
of functions [0,T ] −→ E with the additional

property that at every rational time t ∈ [0,T ], an element y(t) ∈ E satisfies

d j

(
ynm(t), y(t)

) −→ 0 for m−→ ∞

and each j ∈I since the subset Q∩ [0,T ] of rational numbers in [0,T ] is countable.

Now we consider any t ∈ [0,T ] \Q. Due to Euler compactness, there exists a sub-
sequence

(
ynml

(t)
)

l∈N
converging to an element y(t) ∈ E with respect to each d j

(but maybe depending on t).
Then we even obtain d j

(
ynm(t), y(t)

) −→ 0 for m −→ ∞ and each j ∈I . Indeed,
the triangle inequality of d j and the β̂ j–Lipschitz continuity of each yn(·), n ∈ N,
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imply for every s ∈ [0,T ]∩Q and l,m ∈ N

d j

(
ynm(t), y(t)

) ≤ d j

(
ynm(t), ynm(s)

)
+ d j

(
ynm(s), ynml

(s)
)

+
d j

(
ynml

(s), ynml
(t)
)

+ d j

(
ynml

(t), y(t)
)

≤ β̂ j |t− s| + d j

(
ynm(s), ynml

(s)
)

+
β̂ j |t− s| + d j

(
ynml

(t), y(t)
)
.

l −→∞ leads to the following inequality for every m∈N, s∈ [0,T ]∩Q and j ∈I

d j

(
ynm(t), y(t)

) ≤ 2 β̂ j |t− s| + d j

(
ynm(s), y(s)

)
and thus, limsup

m−→∞
d j

(
ynm(t), y(t)

) ≤ inf
s∈ [0,T ]∩Q

2 β̂ j |t− s| + 0 = 0.

Finally pointwise convergence of
(
ynm(·))

m∈N
to y(·) : [0,T ] −→ E and the

β̂ j–Lipschitz continuity of each ynm(·) : [0,T ] −→ (E,d j), m ∈ N, imply uniform
convergence with respect to d j in the compact interval [0,T ] for each index j ∈I .

�

Proof (of Theorem 18). It is based on Euler approximations xn(·) : [0,T ] −→ E

(n ∈ N) on equidistant partitions of [0,T ]. Indeed, for each n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(tk
n), tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Using the abbreviation γ̂ j := supz, t γ j( f (z, t)) < ∞, Lemma 4 (on page 71) ensures

�xn(t)� j ≤
(�x0� j + γ̂ j T

) · eγ̂ j T =: R j

for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I .
Due to Euler compactness and assumptions (1.)–(3.), preceding Lemma 17 provides
a subsequence

(
xnm(·))

m∈N
and a function x(·) : [0,T ]−→ E with x(0) = x0 and

sup
t∈ [0,T ]

d j

(
xnm(t), x(t)

) −→ 0 for m−→ ∞

and each j ∈I .

Finally we conclude from Convergence Theorem 13 (on page 76) that x(·) is a
solution to the mutational equation

◦
x(·) � f

(
x(·), ·)

in the sense of Definition 9 (on page 73). Indeed, as a consequence of Remark 8 (on
page 72), each Euler approximation xn(·) : [0,T ] −→ E, n ∈ N, is a solution to the
mutational equation

◦
xn (·) � fn

(
xn(·), ·

)
with the auxiliary function fn : E × [0,T [−→ Θ

(
E,(d j) j∈I ,(�·� j) j∈I

)
that is

defined in a piecewise way: fn(y, t) := f
(
xn(tk

n), tk
n

)
for t ∈ [tk

n , tk+1
n [, k < 2n.
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At Lebesgue-almost every time t ∈ [0,T ], assumption (4.) about the continuity of f

implies indirectly

D j

(
f (x(t), t), fnm(x(t), t); R j

) ≤ sup
s: |s−t|≤hnm

D j

(
f (x(t), t), f (xnm(s),s); R j

)
−→ 0 for m−→ 0,

D j

(
fnm(x(t), t), fnm(ym, tm); R j

) ≤ sup
s: |s−t| ≤hnm
s̃: |s̃−tm|≤hnm

D j

(
f (xnm(s),s), f (xnm(s̃), s̃); R j

)
−→ 0 for m−→ 0

for each j ∈I and any sequences (tm)m∈N, (ym)m∈N in [0,T ], E respectively with
tm −→ t. (A similar indirect conclusion has already been drawn at the end of the
proof of Convergence Theorem 13 on page 77.)
Thus, all hypotheses of Convergence Theorem 13 are satisfied by the subsequence
(xnm(·))m∈N of Euler approximations and x(·). As a consequence, x(·) is a solution
to the mutational equation

◦
x(·) � f

(
x(·), ·).

�

2.3.4 Convergence theorem and existence for systems

The preceding results about convergence and existence of solutions can be extended
to systems of finitely many mutational equations in a rather obvious way, but this is
an important feature of the mutational framework as we have already pointed out in
§ 1.5 (on page 32 ff.).

Now a (possibly infinite) family (d j) j∈I of pseudo-metrics should be taken into
consideration – instead of a single metric as in Chapter 1.
For this reason, we cannot use the same arguments as in Lemma 1.27 (on page 33)
and supply a product E1×E2 simply with the sum of distance functions. In particu-
lar, the equivalence about componentwise mutations in Lemma 1.27 (2.) might lack
a suitable counterpart for products of tuples

(
E,(di)i∈I ,(�·�i)i∈I

)
.

We prefer an alternative notion that has already been used for proving Peano’s
Theorem 1.26 for systems in metric spaces (on page 34 f.): The wanted mutational
properties are verified for each component separately while the other components
are regarded as additional time-dependent parameters. For proving existence of a
joint solution to the system in particular, we again rely on Euler approximations for
the system and select suitable subsequences successively according to Euler com-
pactness in each component.

The assumptions, however, are now doubling ...
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Theorem 19 (Convergence of solutions to systems of mutational equations).
Let the tuples

(
E1,(d1

j ) j∈I1 ,(�·�1
j) j∈I1

)
and

(
E2,(d2

j ) j∈I2 ,(�·�2
j) j∈I2

)
satisfy the

general assumptions of this chapter (on page 70). Θ
(
E1,(d1

j ) j∈I1 ,(�·�1
j) j∈I1

)
and

Θ
(
E2,(d2

j ) j∈I2 ,(�·�2
j) j∈I2

)
respectively denote nonempty sets of transitions as in

Definition 5 (on page 71).

For each j1 ∈I1, j2 ∈I2, suppose the following properties of

f 1
n , f 1 : E1×E2× [0,T ] −→ Θ

(
E1,(d1

i )i∈I1 ,(�·�1
i )i∈I1

)
(n ∈ N)

f 2
n , f 2 : E1×E2× [0,T ] −→ Θ

(
E2,(d2

i )i∈I2 ,(�·�2
i )i∈I2

)
(n ∈ N)

x1
n, x1 : [0,T ] −→ E1 :

x2
n, x2 : [0,T ] −→ E2 :

1.) R1
j1

:= sup
n,t

�x1
n(t)�1

j1
< ∞, α̂1

j1
:= sup

n,t,y1,y2
α1

j1

(
f 1
n (y1,y2, t); R1

j1

)
< ∞,

R2
j2

:= sup
n,t

�x2
n(t)�2

j2
< ∞, α̂2

j2
:= sup

n,t,y1,y2
α2

j2

(
f 2
n (y1,y2, t); R2

j2

)
< ∞,

β̂ 1
j1

:= sup
n

Lip
(
x1

n(·) : [0,T ]−→ (E,d1
j1
)
)

< ∞,

β̂ 2
j2

:= sup
n

Lip
(
x2

n(·) : [0,T ]−→ (E,d2
j2
)
)

< ∞,

2.)
◦
x 1

n(·) � f 1
n (x1

n(·), x2
n(·), ·)◦

x 2
n(·) � f 2

n (x1
n(·), x2

n(·), ·) (in the sense of Definition 9) for every n ∈ N,

3.) lim
n→∞

D1
j1

(
f 1
n (x1(t), x2(t), t), f 1

n (y1
n, y2

n, tn); R1
j1

)
= 0

lim
n→∞

D2
j2

(
f 2
n (x1(t), x2(t), t), f 2

n (y1
n, y2

n, tn); R2
j2

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (y1
n)n∈N, (y2

n)n∈N

in [t,T ], E1 and E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
x1(t),y1

n

)
= 0, sup

n∈N

�y1
n�1

i ≤ R1
i for each i ∈I1,

lim
n→∞

d2
i

(
x2(t),y2

n

)
= 0, sup

n∈N

�y2
n�2

i ≤ R2
i for each i ∈I2,

4.) for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T [, there exists a

sequence nm ↗ ∞ of indices (possibly depending on t, t̃, j1, j2) that satisfies

for m−→ ∞ and each i1 ∈I1, i2 ∈I2⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) D1

j1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); R1

j1

) −→ 0
D2

j2

(
f 2(x1(t), x2(t), t), f 2

nm
(x1(t), x2(t), t); R2

j2

) −→ 0

(ii) d1
i1

(
x1(t), x1

nm
(t)
) −→ 0, d2

i2

(
x2(t), x2

nm
(t)
) −→ 0

(iii) d1
j1

(
x1(̃t), x1

nm
(̃t)
) −→ 0, d2

j2

(
x2(̃t), x2

nm
(̃t)
) −→ 0

Then, x1(·) and x2(·) are solutions to the mutational equations

◦
x 1(·) � f 1

(
x1(·), x2(·), ·), ◦

x 2(·) � f 2
(
x1(·), x2(·), ·).
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Theorem 20 (Peano’s Theorem for systems of mutational equations).
Suppose the tuples

(
E1, (d1

j ) j∈I1 , (�·�1
j) j∈I1 , Θ

(
E1,(d1

i )i∈I1 ,(�·�1
i )i∈I1

))
and(

E2, (d2
j ) j∈I2 , (�·�2

j) j∈I2 , Θ
(
E2,(d2

i )i∈I2 ,(�·�2
i )i∈I2

))
to be Euler compact.

Assume for

f 1 : E1×E2× [0,T ] −→ Θ
(
E1,(d1

i )i∈I1 ,(�·�1
i )i∈I1

)
f 2 : E1×E2× [0,T ] −→ Θ

(
E2,(d2

i )i∈I2 ,(�·�2
i )i∈I2

)
and each j1 ∈I1, j2 ∈I2, R > 0 :

1.) sup
z1, z2, t

α1
j1
( f 1(z1,z2, t); R) < ∞, sup

z1, z2, t

α2
j2
( f 2(z1,z2, t); R) < ∞,

2.) sup
z1, z2, t

β 1
j1
( f 1(z1,z2, t); R) < ∞, sup

z1, z2, t

β 2
j2
( f 2(z1,z2, t); R) < ∞,

3.) sup
z1, z2, t

γ1
j1
( f 1(z1,z2, t)) < ∞, sup

z1, z2, t

γ2
j2
( f 2(z1,z2, t)) < ∞,

4.) lim
n→∞

D1
j1

(
f 1(z1

n,z
2
n, tn), f 1(z1,z2, t); R

)
= 0

lim
n→∞

D2
j2

(
f 2(z1

n,z
2
n, tn), f 2(z1,z2, t); R

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (z1
n)n∈N (z2

n)n∈N

in [0,T ],E1, E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
z1,z1

n

)
= 0, sup

n∈N

�z1
n�1

i < ∞ for each i ∈I1,

lim
n→∞

d2
i

(
z2,z2

n

)
= 0, sup

n∈N

�z2
n�2

i < ∞ for each i ∈I2,

Then for any elements x1
0 ∈ E1,x

2
0 ∈ E2, there exist solutions x1(·) : [0,T ]−→ E1 and

x2(·) : [0,T ]−→ E2 to the mutational equations⎧⎨⎩
◦
x 1(·) � f 1

(
x1(·), x2(·), ·)

◦
x 2(·) � f 2

(
x1(·), x2(·), ·)

with x1(0) = x1
0, x2(0) = x2

0.

The proofs do not really provide new analytical aspects in comparison with the
proofs of Theorem 13 (on page 76 f.) and Theorem 18 (on page 81 f.) respectively.
Thus, we verify only Convergence Theorem 19 in detail and, the formulation is
deliberately analogous to § 2.3.2:

Proof (of Theorem 19). Due to the symmetry with respect to x1(·) and x2(·),
we can restrict ourselves to the solution properties of x1(·).

For each index j1 ∈I1, the function x1(·) : [0,T ] −→ (E,d1
j1
) is β̂ 1

j1
–Lipschitz

continuous. Indeed, for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T ], assump-
tion (4.) provides a subsequence

(
x1

nm
(·))

m∈N
with{

d1
j1

(
x1(t), x1

nm
(̃t)
) −→ 0

d1
j1

(
x1(̃t), x1

nm
(̃t)
) −→ 0

for m−→ ∞.
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Now the uniform β̂ 1
j1

–Lipschitz continuity of x1
n(·),n ∈ N, implies

d1
j1

(
x1(t), x1(̃t)

) ≤ d1
j1

(
x1(t), x1

nm
(t)
)

+ d1
j1

(
x1

nm
(t), x1

nm
(̃t)
)

+ d1
j1

(
x1

nm
(̃t), x1(̃t)

))
≤ d1

j1

(
x1(t), x1

nm
(t)
)

+ β̂ 1
j1
|̃t− t| + d1

j1

(
x1

nm
(̃t), x1(̃t)

))
−→ 0 + β̂ 1

j1
|̃t− t| + 0 for m→ ∞.

This Lipschitz inequality can be easily extended to all t ∈ [0,T ] by means of the
triangle inequality of d1

j1
. Moreover the general hypothesis about lower semiconti-

nuity of �·�1
j1

ensures

�x1(̃t)�1
j1
≤ liminf

m−→∞
�x1

nm
(̃t)�1

j1
≤ R1

j1
.

Finally we focus on the feature of first-order approximation

lim
h↓0

1
h
· d1

j1

(
f 1(x1(t),x2(t), t)(h, x1(t)), x1(t +h)

)
= 0

at Lebesgue-almost every time t ∈ [0,T [. Indeed, for Lebesgue-almost every t ∈
[0,T [ and any h ∈ ]0, T−t[, assumption (4.) provides a sequence nm ↗∞ of indices
satisfying for each i1 ∈I1, i2 ∈I2 and m−→ ∞⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D j

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); R1

j1

) −→ 0

d1
i1

(
x1(t), x1

nm
(t)
) −→ 0

d2
i2

(
x1(t), x1

nm
(t)
) −→ 0

d1
j1

(
x1(t+h), x1

nm
(t+h)

) −→ 0

We conclude from Proposition 11 (on page 74) respectively

d1
j1

(
f 1(x1(t),x2(t), t)(h, x1(t)), x1(t +h)

)
≤ d1

j1

(
f 1(x1(t),x2(t), t) (h, x1(t)), f 1

nm
(x1(t),x2(t), t)(h, x1(t))

)
+ d1

j1

(
f 1
nm

(x1(t),x2(t), t)(h, x1(t)), x1
nm

(t +h)
)

+ d1
j1

(
x1

nm
(t +h), x1(t +h)

)
≤ h e

α̂1
j1

h · D1
j1

(
f 1(x1(t),x2(t), t), f 1

nm
(x1(t),x2(t), t); R j

)
+ d1

j1

(
x1(t), x1

nm
(t)
)

e
α̂1

j1
h +

h e
α̂1

j1
h · sup

[t, t+h]
D1

j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j

)
+ d1

j1

(
x1

nm
(t +h), x1(t +h)

)
.

Now m−→ ∞ leads to the inequality

d1
j1

(
f 1(x1(t),x2(t), t)(h, x1(t)), x1(t+h)

)
≤ h e

α̂1
j1

h · limsup
m−→∞

sup
[t, t+h]

D1
j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j

)
.
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For completing the proof, it is sufficient to verify

0 = limsup
h↓0

limsup
m−→∞

sup
[t, t+h]

D1
j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j

)
for Lebesgue-almost every t ∈ [0,T [ and any subsequence

(
xnm(·))

m∈N
satisfying{

d1
i1

(
x1(t), x1

nm
(t)
) m→∞−→ 0 for each i1 ∈I1,

d2
i2

(
x2(t), x2

nm
(t)
) m→∞−→ 0 for each i2 ∈I2.

Indeed, if this limit superior was positive then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that for every l ∈ N,{

D1
j1

(
f 1
nml

(x1(t),x2(t), t), f 1
nml

(x1
nml

(t + sl),x2
nml

(t + sl), t + sl); R j

) ≥ ε

0 ≤ sl ≤ hl ≤ 1
l
, ml ≥ l .

The consequence⎧⎨⎩d1
i1

(
x1(t), x1

nml
(t + sl)

) ≤ d1
i1

(
x1(t), x1

nml
(t)
)

+ β̂ 1
i1

sl
l→∞−→ 0

d2
i2

(
x2(t), x2

nml
(t + sl)

) ≤ d2
i2

(
x2(t), x2

nml
(t)
)

+ β̂ 2
i2

sl
l→∞−→ 0

for any indices i1 ∈I1 and i2 ∈I2 would lead to a contradiction to equi-continuity
assumption (3.) at Lebesgue-almost every time t ∈ [0,T [. �

2.3.5 Existence for mutational equations with delay

Euler method in combination with Euler compactness proves to be useful indeed.
Essentially the same approximations also provide solutions to mutational equations
with delay. Pichard and Gautier formulated and proved their existence for Aubin’s
form of mutational equations in a metric space [120]. Now we present the coun-
terpart for the tuple

(
E, (d j) j∈I , (�·� j) j∈I

)
. First we have to specify the type of

functions that are admitted as argument in the delay equation:

Definition 21. Let I ⊂ R be a nonempty interval.
BLip

(
I, E; (d j) j∈I , (�·� j) j∈I

)
denotes the set of all functions y(·) : I −→ E

satisfying the following conditions for each index j ∈I :

1.) y(·) : I −→ E is Lipschitz continuous with respect to d j

2.) sup
t∈ I

�y(t)� j < ∞.

Proposition 22 (Existence of solutions to mutational equations with delay).
Suppose

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Moreover assume for some fixed τ ≥ 0, the function

f : BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)× [0,T ] −→ Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
and each j ∈I , R > 0 :
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1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,

4.) lim
n→∞

D j

(
f (zn(·), tn), f (z(·), t); R

)
= 0 for L 1-almost every t ∈ [0,T ] and

any sequences (zn(·))n∈N, (tn)n∈N in BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)
and [0,T ] respectively satisfying

lim
n→∞

tn = t and lim
n→∞

sup
s∈ [−τ,0]

di

(
zn(s), z(s)

)
= 0,

sup
n∈N

sup
s∈ [−τ,0]

�zn(s)�i < ∞ for every i ∈I .

For every function x0(·) ∈ BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)
, there exists a

curve x(·) : [−τ,T ]−→ E with the following properties:

(i) x(·) ∈ BLip
(
[−τ,T ], E; (d j) j∈I , (�·� j) j∈I

)
,

(ii) for L 1–almost every t ∈ [0,T ], f
(
x(t + ·)∣∣[−τ,0], t

)
belongs to

◦
x(t),

(iii) x(·)∣∣[−τ,0] = x0(·).

In particular, the restriction x(·)∣∣[0,T ] is a solution to the mutational equation

◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)
in the sense of Definition 9 (on page 73).

Proof. Similarly to the proof of Peano’s Theorem 18 (on page 81 f.), we
construct a sequence of Euler approximations on equidistant partitions of [0,T ].
The (only) new aspect is due to the appropriate restrictions as argument of f (·, t).
For every n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(·)
∣∣
[−τ,0] := x0,

xn(t) := f (xn(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

With γ̂ j := sup γ j( f (·, ·)) < ∞, Lemma 4 (on page 71) again provides a uniform
bound for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I :

�xn(t)� j ≤
(�x0(0)� j + γ̂ j T

) · eγ̂ j T =: R j .

Thus, exactly as in the proof of Peano’s Theorem 18, we conclude from Euler com-
pactness and assumptions (1.)–(3.) that a subsequence

(
xnm(·))

m∈N
converges to a

function x(·) : [0,T ]−→ E in the sense that

sup
t∈ [0,T ]

d j

(
xnm(t), x(t)

) −→ 0 for m−→ ∞

and each index j ∈I . In particular, x(0) = x0(0) due to Lemma 17.
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For every t ∈ [0,T ], the estimate �x(t)� j ≤ R j results from the general assumption
about �·� j (on page 70) and, x(·) : [0,T ]−→ (E,d j) is also β̂ j–Lipschitz continuous
with β̂ j := sup β ( f (·, ·)) < ∞. Defining x(·)∣∣[−τ,0] := x0(·), we obtain

x(·) ∈ BLip
(
[−τ,T ], E; (d j) j∈I , (�·� j) j∈I

)
.

Finally it is again the conclusion of Convergence Theorem 13 (on page 76) implying

lim
h↓0

1
h
· d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t +h)

)
= 0

for arbitrarily fixed j ∈I and L 1-almost every t ∈ [0,T ]. Indeed, each Euler
approximation xn(·) : [0,T ]−→ E, n ∈ N, can be regarded as a solution of

◦
xn (t) � fn

(
xn(t + ·)∣∣[−τ,0], t

)
with the auxiliary function

fn : BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
,

fn

(
y(·), t

)
:= f

(
xn(·)

∣∣
[tk

n−τ, tk
n ], tk

n

)
for any y(·) and t ∈ [tk

n , tk+1
n [, k < 2n.

Fix index j ∈I arbitrarily. At L 1-almost every time t ∈ [0,T ], assumption (4.) has
two indirect consequences. First,

D j

(
f (x(t + ·)|[−τ,0], t), fnm(x(t + ·)|[−τ,0], t); R j

)
≤ sup

s: |s−t|≤hnm

D j

(
f (x(t + ·)|[−τ,0], t), f (xnm(s+ ·)|[−τ,0],s); R j

) m→∞−→ 0,

because for any index i ∈I and s, t ∈ [0,T ],

sup
[−τ,0]

di

(
x(t + ·), xnm(s+ ·)) ≤ sup

[−τ,0]
di

(
x(t + ·), xnm(t + ·)) + β̂i |s− t|

m→∞−→ 0 + β̂i |s− t|.
Second, we obtain for any sequences (tm)m∈N in [0,T ] tending to t and (ym(·))m∈N in
BLip

(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)
D j

(
fnm(x(·)|[t−τ, t], t), fnm(ym(·), tm); R j

)
≤ sup

s: |s−t| ≤hnm
s̃: |s̃−tm|≤hnm

D j

(
f (xnm(·)|[s−τ, s],s), f (xnm(·)|[s̃−τ, s̃], s̃); R j

) m→∞−→ 0.

Finally we can now draw exactly the same conclusions as in the proof of Conver-
gence Theorem 13 (on page 76 ff.) – considering, however, x(·) and the subsequence
(xnm(·))m∈N of Euler approximations restricted to [0,T ]. As a consequence,

lim
h↓0

1
h
· d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t +h)

)
= 0

is satisfied for arbitrarily fixed index j ∈I and at L 1-a.e. time t ∈ [0,T ]. �
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2.3.6 Existence under state constraints for finite index set I

If the index set I �= /0 consists of at most finitely many elements, then we even can
restrict our considerations to a single index (i.e. I = {0}). Indeed, all conditions
on transitions and solutions respectively are then satisfied by

d0 := max
j∈I

d j : E×E −→ [0,∞[,

�·�0 := max
j∈I

�·� j : E −→ [0,∞[.

Even in this special case, the recent mutational framework is more general than its
counterpart in Chapter 1 because the parameters α, β of transitions and the distance
between transitions require merely “local” bounds, i.e. in every “generalized ball”
{x ∈ E | �x�0 ≤ r} with arbitrary r > 0.
This additional feature, however, does not have any significant consequences for
verifying the existence of solutions with state constraints. Now Proposition 1.28 (on
page 35) has the following counterpart:

Proposition 23 (Existence of solutions under state constraints for I = {0}).
In addition to I = {0} let (E,d0) be a metric space and assume that for every

r1,r2 > 0 and x0 ∈ E, the (possibly empty) set {x ∈ E |d0(x0,x)≤ r1, �x�0 ≤ r2} is

sequentially compact. For each r > 0, suppose

f : (E,d0)−→
(
Θ
(
E, d0, �·�0

)
, D0(·, ·;r)

)
to be continuous with

α̂(r) := supz∈E α0( f (z);r) < ∞,

β̂ (r) := supz∈E β0( f (z);r) < ∞,
γ̂ := supz∈E γ0( f (z)) < ∞.

Let the nonempty closed subset V ⊂ (E,d0) satisfy the following viability condition

(with the contingent transition set as specified in Definition 1.16 on page 27) :

f (z) ∈TV (z) for every z ∈ V ,

i.e. liminf
h↓0

1
h
· inf

y∈V
d0
(

f (z)(h,z), y
)

= 0 for every z ∈ V .

Then every x0 ∈ V is the initial point of at least one solution x : [0,1] −→ E to

the mutational equation
◦
x(·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].

The proof follows exactly the arguments of Proposition 1.28 and is based on the ap-
proximative solutions in subsequent Lemma 24 in combination with Arzelà-Ascoli
Theorem A.63 and Convergence Theorem 13 (on page 76).
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Lemma 24 (Constructing approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 23, there always exists a

β̂–Lipschitz continuous function xε(·) : [0,1]−→ (E,d0) satisfying

(a) xε(0) = x0,

(b) dist
(
xε(t), V

) ≤ ε eα̂ for all t ∈ [0,1],
(c)

◦
xε(t) ∩

{
f (z)
∣∣ z ∈ E : d0(z, xε(t))≤ ε eα̂} �= /0 for all t ∈ [0,1[,

(d) �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t for all t ∈ [0,1].

This lemma differs from Aubin’s metric counterpart in Lemma 1.29 (on page 36)
merely in property (d). Following the proving arguments (on page 36 f.), however,
this upper bound of �x(t)�0 can be implemented easily due to Lemma 4 (on page 71).
Now we dispense with further details verifying Lemma 24 and Proposition 23.

The analogy to Lemma 1.29 and its proof is a reason for assuming I = {0} here. In-
deed, the indirect arguments for Lemma 1.29 consider several points of time T +hm,
m ∈ N, with a sequence hm ↓ 0 related to

liminf
h↓0

1
h
· inf

y∈V
d0
(

f (z)(h,z), y
)

= 0

for some z ∈ V . Such a sequence should be chosen appropriately “uniformly” if
more than one distance function comes into play.
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2.4 Example: Semilinear evolution equations
in reflexive Banach spaces

In this example, we consider semilinear evolution equations
d
dt

u(t) = A u(t) + f
(
u(t), t

)
with a fixed generator A of a C0 semigroup on a Banach space X . The goal is to
specify sufficient conditions on X , its topology and the generator A so that initial
value problems can be solved in the mutational framework.
Solutions to the corresponding mutational equations prove to be weak solutions.
A proposition of John Ball [17] implies that they are even mild solutions. Consid-
ering these results separately, they have already been well-known, but the essential
advantage of their fitting in the mutational framework is that we are free to combine
these evolution equations with any other example in systems. This opens the door to
coupling, for example, a reaction-diffusion equation (on the whole Euclidean space)
with a modified morphological equation for compact subsets (in the sense of § 1.10).
Such a result about existence for systems is formulated in subsequent Proposition 36
(on page 96).

Assumptions for § 2.4.
(1.) (X ,‖ · ‖) is a separable reflexive Banach space.

(2.) The linear operator A generates a C0 semigroup (S(t))t≥0 on X .

(3.) The C0 semigroup (S(t))t≥0 on X is ω-contractive, i.e. there is some ω > 0
such that ‖S(t) x‖ ≤ eω t ‖x‖ for all x ∈ X , t ≥ 0.

(4.) The dual operator A′ of A has a family of unit eigenvectors {v′j} j∈I spanning
the dual space X ′. λ j denotes the eigenvalue of A′ related to v′j for each j ∈I .

(5.) For each index j ∈I , set d j : X ×X −→ [0,∞[, (x,y) �−→ |〈x− y, v′j〉| and
�·� j := ‖ · ‖.

Among these five assumptions, condition (4.) is probably the most restrictive one:
The eigenvectors of A′ are spanning the dual space X ′. First we specify two classes
of operators fulfilling this condition with an even countable family of eigenvectors.
In particular, the separability of the dual space X ′ implies that X is also separable
[143, Chapter V, Appendix § 4].

Example 25. Consider a normal compact operator A : H −→ H on a separable
Hilbert space H generating a C0 semigroup (S(t))t≥0.
Then there exists a countable orthonormal system (ei)i∈Î

of eigenvectors of A with
H = ker A⊕∑i∈Î

R ei [142, Theorem VI.3.2]. Since H is separable, (ei)i∈Î
in-

duces a countable orthonormal basis (ei)i∈I of H with Aei =0 for all i ∈I \ Î .
In fact, each ei (i ∈I ) is also eigenvector of the dual operator A′ as A is normal
[142, Lemma VI.3.1]. Hence, assumption (3.) of this section is satisfied. Symmetric
integral operators of Hilbert–Schmidt type provide typical examples of this class.
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Example 26. Another example is the generator A : DA −→ H (DA ⊂ H) of a
C0 semigroup (S(t))t≥0 on a Hilbert space H under the assumption that the resolvent
R(λ0,A) := (λ0 · IdH −A)−1 : H −→ H is compact and normal for some λ0.
For the same reasons as before, there exists a countable orthonormal system (ei)i∈I

of eigenvectors of R(λ0,A) satisfying H = kerR(λ0,A)⊕∑i∈I R ei = ∑i∈I R ei.
R(λ0,A) ei = μi ·ei implies μi �= 0 and that ei is eigenvector of A corresponding
to the eigenvalue λ0− 1

μi
since (λ0−A) ei = (λ0−A) · 1

μi
R(λ0,A) ei = 1

μi
ei.

This example opens the door to considering strongly elliptic differential operators
in divergence form with smooth (time-independent) coefficients.

The variation of constants formula motivates the following choice of candidates for
transitions on

(
X , (d j) j∈I , (‖ · ‖) j∈I

)
.

Definition 27. For each v ∈ X , the function τv : [0,1]×X −→ X is defined as
mild solution to the initial value problem d

dt
u(t) = A u(t)+ v, u(0) = x ∈ X , i.e.

τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds.

Proposition 28. For each vector v∈X fixed, the function τv : [0,1]×X −→X has

the following properties for every j ∈I , x,y,w ∈ X and t,h ∈ [0,1] with t +h≤ 1

(1.) τv(0,x) = x

(2.) τv(t +h, x) = τv

(
h, τv(t,x)

)
(3.) limsup

h↓0

1
h

(
d j

(
τv(h,x), τv(h,y)

)−d j(x,y)
) ≤ |λ j| d j(x,y)

(4.) d j

(
x, τv(h,x)

) ≤ (‖x‖+‖v‖) eλ j h

(5.) ‖τv(h,x)‖ ≤ (‖x‖+‖v‖ h
)

eω h

(6.) limsup
h↓0

1
h
·d j

(
τv(h,x), τw(h,x)

) ≤ d j(v,w).

For preparing the proof, we summarize the essential tools about C0 semigroups.
Subsequent Lemma 29 bridges the gap between the semigroup operators and their
dual counterparts. It is one of the reasons for assuming X to be reflexive. Afterwards
Lemma 30 implies that each vector v′j ( j ∈I ) is eigenvector of every dual operator
S(t)′ (t ≥ 0) belonging to the eigenvalue eλ j ·t .

Lemma 29 ([60, Proposition I.5.14], [118, Corollary 1.10.6]).
Let (S(t))t≥0 be a C0 semigroup on a reflexive Banach space with generator A.
Then the dual operators S(t)′ (t ≥ 0) provide a C0 semigroup on the dual space

and its generator is the dual operator A′.

Lemma 30 ([60, Corollary IV.3.8]). The eigenspaces of the generator A and

of the C0 semigroup operators S(t) (t ≥ 0), respectively, fulfill for every μ ∈ C

ker (μ−A) =
⋂

t≥0

ker
(
eμ t −S(t)

)
.
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Proof (of Proposition 28). Statements (1.) and (2.) result directly from the
semigroup property of (S(t))t≥0.

(3.) For every x,y ∈ X , h ∈ [0,1] and j ∈I , we obtain

d j

(
τv(h,x), τv(h,y)

) − d j(x,y) ≤ |〈x− y, (S(h)′ − IdX ′) v′j〉 |
limsup

h↓0

1
h

(
d j

(
τv(h,x), τv(h,y)

) − d j(x,y)
) ≤ |〈x− y, A′ v′j〉 |
≤ |λ j| · | 〈x− y, v′j〉 |.

(4.) Each v′j ∈ X ′ is unit eigenvector of A′ related to eigenvalue λ j by assumption.
Thus, Lemma 30 implies for every x ∈ X , h ∈ [0,1] and j ∈I

d j

(
x, τv(h,x)

)
=
∣∣∣〈(S(h)− IdX ) x +

∫ h

0
S(h− s) v ds, v′j

〉∣∣∣
≤ ∣∣〈x, (S(h)′ − IdX ′) v′j

〉∣∣ +
∣∣〈v, ∫ h

0
S(h− s)′ v′j ds

〉∣∣∣
≤ ‖x‖ (eλ j h−1)‖v′j‖ + ‖v‖ ∥∥∫ h

0
eλ j (h−s) v′j ds

∥∥
≤ (‖x‖ + ‖v‖) eλ j h h.

(5.) (S(t))t≥0 is ω-contractive with ω > 0. Thus, for every x ∈ X , h ∈ [0,1]

‖τv(h,x)‖ ≤
∥∥∥S(h) x +

∫ h

0
S(h− s) v ds

∥∥∥
≤ eω h ‖x‖ +

∫ h

0
eω (h−s) ds · ‖v‖

≤ eω h ‖x‖ + eω h − 1
ω ‖v‖.

(6.) For arbitrary vectors v,w ∈ X , the functions τv,τw : [0,1]×X −→ X satisfy
for every x ∈ X and h ∈ [0,1]

d j

(
τv(h,x), τw(h,x)

)
=
∣∣∣〈∫ h

0
S(h− s) (v−w) ds, v′j

〉∣∣∣
=
∣∣∣〈v−w,

∫ h

0
S(h− s)′ v′j ds

〉∣∣∣
=
∣∣∣〈v−w,

∫ h

0
eλ j ·(h−s) v′j ds

〉∣∣∣
≤ ∣∣〈v−w, v′j

〉∣∣ eλ j h h

limsup
h↓0

1
h
·d j

(
τv(h,x), τw(h,x)

) ≤ d j(v, w). �

Corollary 31. For each v∈ X , the function τv : [0,1]×X −→ X specified in Defini-

tion 27 is a transition on
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
in the sense of Definition 2 (on

page 70) with

α j(τv; r) := |λ j|
β j(τv; r) := (r +2 ‖v‖) eω+λ j

γ j(τv) := max
{‖v‖, ω

}
D j(τv, τw, r) ≤ d j(v, w)
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Theorem 32 (Existence of mild solutions to semilinear evolution equations).
In addition to the general assumptions of § 2.4, suppose for f : X × [0,T ]−→ X

(i) supx,t ‖ f (x, t)‖ < ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and any

sequences (tm)m, (ym)m in [0,T ], X respectively with tm −→ t and ym −→ y

weakly in X for m−→ ∞, it fulfills

f (ym, tm) −→ f (y, t) weakly in X for m−→ ∞.

Then for every initial vector x0 ∈ X , there exists a solution x(·) : [0,T ] −→ X to

the mutational equation
◦
x(·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
with x(0) = x0.

Furthermore every solution x(·) : [0,T ]−→ X to this mutational equation is a mild

solution to the semilinear evolution equation

d
dt

x(t) = A x(t) + f (x(t), t).

The proof results from Peano’s Theorem 18 (on page 80) and the following lemmas:

Lemma 33. (1.) A sequence (ym)m∈N in X converges to y weakly in X if and

only if supm ‖ym‖< ∞ and lim
m→∞

d j(ym,y) = 0 for each index j ∈I .

(2.) Every ball {y ∈ X | ‖y‖ ≤ r} with arbitrary radius r ≥ 0 is sequentially com-

pact w.r.t. the topology of (d j) j∈I . Hence
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
is Euler com-

pact.

Lemma 34. Under the assumptions of Theorem 32, any solution x(·) : [0,T ]−→ X

to the mutational equation
◦
x(·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖·‖) j∈I

)
has the following properties for every v′ ∈X ′ :

(1.) [0,T ] −→ R, t �−→ 〈 f (x(t), t), v′〉 is continuous at L 1-almost every time t,

(2.) f (x(·), ·) ∈ L∞([0,T ],X),
(3.) [0,T ] −→ R, t �−→ 〈x(t), v′ 〉 is absolutely continuous for every v′ ∈D(A′)⊂

X ′ and d
dt
〈x(t), v′ 〉 = 〈x(t), A′ v′ 〉 + 〈 f (x(t), t), v′ 〉.

Lemma 35 (Ball [17]). Let A be a densely defined closed linear operator on

a real or complex Banach space Y and g ∈ L1([0,T ],Y ).
There exists for each x0 ∈ Y a unique weak solution u(·) of{

d
dt

u(t) = A u(t) + g(t) on ]0,T ]
u(0) = x0

i.e. for every v′ ∈ D(A′)⊂ Y ′, 〈u(·),v′〉 ∈W 1,1([0,T ]) and
d
dt
〈u(t), v′〉 = 〈u(t), A′ v′〉 + 〈g(t), v′〉 for almost all t,

if and only if A is the generator of a strongly continuous semigroup (S(t))t≥0, and

in this case u(t) is given by u(t) = S(t) x0 +
∫ t

0
S(t−s) g(s) ds.
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Proof (of Lemma 33). Statement (1.) is a standard result of linear functional
analysis since (v′j) j∈I spans X ′ by assumption (see e.g. [143, § V.3, Theorem 3]).
The sequential compactness (of closed norm balls) in statement (2.) results from
Alaoglu’s Theorem due to the reflexivity of X . Finally we obtain Euler compactness
as a consequence of Remark 16 (on page 79). �

Proof (of Lemma 34). (1.) According to Definition 9 (on page 73), every solu-
tion x(·) : [0,T ]−→ X to the mutational equation

◦
x(·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
satisfies supt ‖x(t)‖ < ∞ and is contin-

uous with respect to each pseudo-metric d j, j ∈I . Due to preceding Lemma 33,
x(·) : [0,T ]−→X is weakly continuous. For each linear form v′ ∈X ′, assumption (ii)
of Theorem 32 guarantees the continuity of the composition

[0,T ] −→ R, t �−→ 〈 f (x(t), t), v′〉
at L 1-almost every time t ∈ [0,T ].

(2.) Statement (1.) and the uniform bound

sup
t∈ [0,T ]

|〈 f (x(t), t), v′〉| ≤ ‖ f‖L∞ ‖v′‖X ′ < ∞

imply the weak Lebesgue measurability of f (x(·), ·). Banach space X is separable
by assumption and thus, f (x(·), ·) : [0,T ]−→ X is (strongly) Lebesgue-measurable
due to the Theorem of Pettis (stated and proved in [143, § V.4], for example).

(3.) Choose any index j ∈I . At L 1-almost every time t ∈ [0,T ], x(·) satisfies

0 = lim
h↓0

1
h
· d j

(
τ f (x(t), t)(h, x(t)), x(t +h)

)
= lim

h↓0
1
h
· ∣∣〈τ f (x(t), t)(h, x(t)) − x(t), v′j〉 − 〈x(t +h) − x(t), v′j〉

∣∣
Due to Definition 27 (on page 92), we obtain for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h

〈
x(t +h) − x(t), v′j

〉
= 〈x(t), A′ v′j〉 + 〈 f (x(t), t), v′j 〉

and, the right–hand side is L 1-integrable with respect to t. These two properties
ensure that [0,T ] −→ R, t �−→ 〈x(t), v′j〉 is absolutely continuous for every j ∈I .
The corresponding integral equation

〈x(t), v′j〉 − 〈x(0), v′j〉 =
∫ t

0

(〈x(s), A′ v′j〉 + 〈 f (x(s),s), v′j〉
)

ds

with arbitrary t ∈ [0,T ] can be extended to every linear form v′ ∈ D(A′)⊂ X ′ since
(v′j) j∈I spans the dual space X ′. Hence, [0,T ] −→ R, t �−→ 〈x(t), v′〉 is abso-
lutely continuous for every v′ ∈ D(A′)⊂ X ′ and satisfies

d
dt
〈x(t), v′ 〉 = 〈x(t), A′ v′ 〉 + 〈 f (x(t), t), v′ 〉. �



96 2 Adapting mutational equations to examples in vector spaces

Proposition 36 (Existence of solutions to a system with semilinear evolution
equation and modified morphological equation).
In addition to the general assumptions of § 2.4, suppose for

f : X ×K (RN)× [0,T ] −→ X ,
G : X ×K (RN)× [0,T ] −→ OSLIP(RN ,RN)

(i) sup
x,M,t

(‖ f (x,M, t)‖X + ‖G (x,M, t)‖∞ +max{0, Lip G (x,M, t)})< ∞ .

(ii) f and G are continuous in the following sense:{
f (yn,Mn, tn) − f (y,M, t) −→ 0 weakly in X

dl∞
(
G (yn,Mn, tn), G (y,M, t)

) −→ 0 for n−→ ∞

holds for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (Mn)n∈N and

(yn)n∈N in [0,T ],K (RN),X respectively satisfying tn −→ t, dl(Mn,M) −→ 0
and yn −→ y weakly in X for n−→ ∞.

Then for every initial vector x0 ∈ X and set K0 ∈K (RN), there exist solutions

x(·) : [0,T ]−→ X , K(·) : [0,T ]−→K (RN) to the system of mutational equations{ ◦
x(·) � τ f (x(·),K(·), · )◦

K (·) � G
(
x(·), K(·), · )

with x(0) = x0 and K(0) = K0. In particular,

(1.) x(·) : [0,T ]−→ X is a mild solution to the evolution equation
d
dt

x(t) = A x(t) + f (x(t), K(t), t).

(2.) K(·) is Lipschitz continuous w.r.t. dl and satisfies for L 1-almost every t

lim
h↓0

1
h
· dl
(
ϑG (x(t),K(t), t)(h, K(t)), K(t +h)

)
= 0.

(3.) If, in addition, the set-valued map G (x(t),K(t), t) : RN � RN is continuous

for each t ∈ [0,T ], then the set K(t) ⊂ RN coincides with the reachable set

ϑG (x(·),K(·),·)(t,K0) of the nonautonomous differential inclusion

y′(·) ∈ G
(
x(·), K(·), · )(y(·))

at every time t ∈ [0,T ].

Proof. It results from Peano’s Theorem 20 about systems of mutational equations
(on page 84), Theorem 32 about mild solutions (on page 94) and Proposition 1.82
in combination with Corollary 1.91 about modified morphological equations (on
pages 64, 67). �
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2.5 Example: Nonlinear transport equations
for Radon measures on RN

In this section, the focus of interest is the Cauchy problem of the nonlinear transport
equation

d
dt

μ + divx

(
f (μ, ·) μ

)
= g(μ, ·) μ (in RN× ]0,T [)

together with its distributional solutions μ(·) : [0,T ]−→M (RN) whose values are
Radon measures on the whole Euclidean space RN . The coefficients f (μ, t), g(μ, t)
are assumed to be uniformly bounded and Lipschitz continuous vector fields on RN .
Considering them as an example of the mutational framework here, we specify some
sufficient conditions on the coefficients f (·, ·), g(·, ·) for existence, uniqueness and
even for stability of distributional solutions.
In particular, this nonlinear transport equation takes nonlocal dependencies into
consideration because the arguments of the coefficient functions f (·, t) and g(·, t)
are not restricted to local properties of measures, but consider the Radon measures
on whole RN .

2.5.1 The W 1,∞ dual metric ρM on Radon measures M (RN)

For implementing these transport equations in the mutational framework, we first
specify the basic set and an appropriate metric.

Definition 37. C0
c (RN) denotes the space of continuous functions RN −→ R

with compact support and C0
0(RN) its closure with respect to the supremum norm,

respectively.
Furthermore, M (RN) consists of all finite real-valued Radon measures on RN , i.e.,
it is the dual space of

(
C0

0(RN), ‖ · ‖sup
)

(due to Riesz theorem [4, Remark 1.57]).
M +(RN) denotes the subset of nonnegative measures μ ∈M (RN), i.e. μ(·)≥ 0.

The weak* topology on M (RN) is a rather obvious choice. There is, however, a
very useful alternative which proves to be equivalent if we restrict our considera-
tions to subsets of Radon measures which are “concentrated not too far away from
each other”.

Definition 38. A sequence (μn)n∈N in M (RN) is said to converge narrowly to
μ ∈M (RN) if for every bounded continuous function ϕ : RN −→ R,

lim
n→∞

∫
RN

ϕ dμn =
∫

RN
ϕ dμ.

Definition 39. A nonempty subset V ⊂M (RN) is called tight if for every ε > 0,
there exists a compact set Kε ⊂RN such that the total variations of all μ ∈ V satisfy

sup
μ∈V

∣∣μ∣∣(RN \Kε) < ε.
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Remark 40. (1.) On every tight subset of M (RN), the narrow topology is
equivalent to the weak* topology (with respect to M (RN) = C0

0(RN)′).

(2.) Tightness is just one of the many concepts which are often introduced
(merely) for probability measures or positive Radon measures (see e.g. [2, 3, 5]).
Many results also hold in M (RN) by considering the total variation (if necessary).
Indeed, we want to dispense with any global restrictions in regard to sign or total
variation of Radon measures in this section.

(3.) A nonempty subset V ⊂ M (RN) is tight if and only if there is a function
Ψ : RN −→ [0,∞] whose sublevel set {x ∈ RN |Ψ(x) ≤ c} is compact for every
c ∈ [0,∞[ and which satisfies

sup
μ∈V

∫
RN

Ψ(x) d|μ|(x) < ∞

[5, Remark 5.1.5]. In regard to total variation |μ|, the last condition is equivalent to

sup
μ∈V

sup
φ ∈C0(RN ):
|φ |≤Ψ

∫
RN

φ(x) dμ(x) < ∞ .

The topology of narrow convergence on M (RN) is metrizable on tight subsets
with uniformly bounded total variation:

Definition 41.

M (RN)×M (RN) −→ [0,∞[

(μ, ν) �−→ sup
{∫

RN
ψ d(μ−ν)

∣∣∣ψ ∈C1(RN), ‖ψ‖∞,‖∇ψ‖∞ ≤ 1
}

is called W 1,∞ dual metric ρM on M (RN).

Proposition 42. (1.) For every λ > 0 and μ,ν ∈M (RN),

ρM (μ, ν) = sup
{

1
λ

∫
RN

ϕ d(μ−ν)
∣∣∣ ϕ ∈C∞

c (RN), ‖ϕ‖∞ ≤ λ , ‖∇ϕ‖∞ ≤ λ
}

= sup
{

1
λ

∫
RN

ϕ d(μ−ν)
∣∣∣ ϕ ∈W 1,∞(RN), ‖ϕ‖∞ ≤ λ , ‖∇ϕ‖∞ ≤ λ

}
= ‖μ−ν‖(W 1,∞)′

(2.) For any tight sequence (μn)n∈N and μ in M (RN), the following equivalence

holds⎧⎨⎩ lim
n→∞

ρM (μn,μ) = 0

sup
n∈N

|μn|(RN) < ∞

⎫⎬⎭ ⇐⇒ μn −→ μ weak* for n−→ ∞

⇐⇒ μn −→ μ narrowly for n−→ ∞

(3.) For any r > 0, the set
{

μ ∈M (RN)
∣∣ |μ|(RN)≤ r

}
is complete w.r.t. ρM .

(4.) Every tight set V ⊂M (RN) with sup
μ∈V

|μ|(RN) < ∞ is relatively compact

with respect to ρM .
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Proof. (1.) Considering the restrictions to an arbitrarily fixed compact subset
of RN , each function in W 1,∞(RN) can be approximated by elements of C∞

c (RN)⊂
C1(RN)∩W 1,∞(RN) with respect to supremum norm. This implies the equivalent
characterizations of ρM (μ,ν) claimed here.

(2.) The equivalence of narrow and weak* convergence results from the assump-
tion of tightness according to Remark 40 (1.).

Now let (μn)n∈N be any sequence in M (RN) and μ ∈M (RN) satisfying

lim
n→∞

ρM (μn,μ) = 0, sup
n∈N

|μn|(RN) < ∞

In particular,
∫

RN
ϕ dμn −→

∫
RN

ϕ dμ for n−→ ∞ and every ϕ ∈W 1,∞(RN).

We obtain
∫

RN
ϕ dμn −→

∫
RN

ϕ dμ for n−→ ∞ and every ϕ ∈C0
0(RN)

since W 1,∞(RN) is dense in (C0
0(RN),‖ · ‖∞) and the total variations of (μn)n∈N

are bounded. Thus, the sequence (μn)n∈N converges also weakly* in M (RN) =
C0

0(RN)′.

Finally, assume the tight sequence (μn)n∈N in M (RN) to converge weakly*
to μ ∈ M (RN). Then C := sup

n∈N

|μn|(RN) < ∞ due to the uniform boundedness

theorem and, |μ|(RN) ≤ liminf
n→∞

|μn|(RN) ≤ C. We still have to prove for n−→ ∞

sup
{∫

RN
ϕ d
(
μn−μ

) ∣∣∣ ϕ ∈C∞
c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

}
−→ 0

Choose ε > 0 arbitrarily. Then there exists a sufficiently large radius R > 0 with

sup
n∈N

∣∣μn

∣∣(RN \BR(0)) +
∣∣μ∣∣(RN \BR(0)) ≤ ε

since {μn |n ∈ N} is tight. Due to Arzelà–Ascoli Theorem A.63,{
ϕ ∈C∞

c (BR+1(0))
∣∣ ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

}
is relatively compact in

(
C0(BR+1(0)), ‖ · ‖sup

)
. Hence,there always exist finitely

many functions ϕ̃1 . . . ϕ̃kε ∈ C∞
c (RN) with support in BR+1(0) and ‖ϕ̃i‖sup ≤ 1,

‖∇ϕ̃i‖sup ≤ 1 such that{
ϕ ∈C∞

c (BR+1(0))
∣∣ ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

} ⊂ ⋃
i=1 ...kε

{
ϕ
∣∣ ‖ϕ− ϕ̃i|BR+1(0)‖ ≤ ε

}
.

This implies

sup
{∫

RN
ϕ d

(
μn−μ

) ∣∣∣ ϕ ∈C∞
c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

}
≤ sup

{∫
BR(0)

ϕ d
(
μn−μ

) ∣∣∣ ϕ ∈C∞
c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

}
+ ε

≤ sup
{∫

BR(0)
ϕ̃i d

(
μn−μ

) ∣∣∣ 1 ≤ i ≤ kε

}
+ 2C ε + ε

≤ ε + 2C ε + ε
for all n ∈ N sufficiently large (merely depending on ε) as μn −→ μ weakly*.



100 2 Adapting mutational equations to examples in vector spaces

(3.) Let (μn)n∈N be a ρM -Cauchy sequence satisfying supn∈N |μn|(RN) ≤ r < ∞.
The arguments proving the first part “⇒” of statement (2.) imply that (μn)n∈N

is Cauchy sequence with respect to the weak* topology of M (RN). There is the
unique measure μ ∈M (RN) as weak* limit of (μn)n∈N due to [4, Theorem 1.59].
In particular, |μ|(RN) ≤ liminf

n→∞
|μn|(RN) ≤ r.

We still have to verify ρM (μn,μ) −→ 0 for n −→ ∞. Indeed for arbitrary ε > 0,
there exists nε ∈ N such that for all m,n≥ nε

ρM (μm,μn)
Def.= sup

{∫
RN

ϕ d
(
μm−μn

) ∣∣∣ϕ ∈C∞
c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1

}
≤ ε .

Due to the weak* convergence of (μn)n∈N to μ in M (RN) =
(
C0

0(RN), ‖ · ‖sup
)′,

the limit for n−→ ∞ reveals for every m≥ nε

ρM (μm, μ)
Def.= sup

{ ∫
RN

ϕ d
(
μm−μ

) ∣∣∣ϕ ∈C∞
c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1

}
≤ sup

{
lim

n→∞

∫
RN

ϕ d
(
μm−μn

) ∣∣∣ϕ ∈C∞
c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1

}
≤ ε.

(4.) Due to the assumption of tightness, the relative compactness of V with
respect to ρM results from its weak* compactness in M (RN) = C0

0(RN)′ and,
the latter is ensured by the Banach-Alaoglu Theorem.
(Alternatively, the so-called Prokhorov Theorem states that bounded and tight sub-
sets of positive Radon measures are sequentially relatively compact with respect to
narrow convergence [2, 5, 130]. Finally the claim here can also be concluded from
this compactness statement by means of Jordan decompositions.) �

2.5.2 Linear transport equations induce transitions on M (RN)

Considering transport equations for Radon measures, the linear one is much simpler
to solve, of course. Indeed, the method of characteristics even provides an explicit
solution to the initial value problem:

Let b : RN −→ RN , c : RN −→ R be bounded and Lipschitz continuous. For given
ν0 ∈M (RN), the linear problem here focuses on a measure–valued distributional
solution μ : [0,T ]−→M (RN), t �−→ μt of{

∂t μt + divx (b μt) = c μt in [0,T ]
μ0 = ν0

in the sense that∫
RN

ϕ(x) dμt(x) −
∫

RN
ϕ(x) dν0(x) =

∫ t

0

∫
RN

(
∇ϕ(x) ·b(x)+ c(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).
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Definition 43. Xb : [0,T ] × RN −→ RN is induced by the flow along b, i.e.
Xb(·,x0) : [0,T ] −→ RN is the continuously differentiable solution to the Cauchy
problem {

d
dt

x(t) = b(x(t)) in [0,T ],
x(0) = x0.

As a well-known result about ordinary differential equations, solutions to Cauchy
problems are continuously differentiable with respect to initial data and right-hand
side if the vector field (on the right-hand side) is continuously differentiable and,
the following estimates result from the corresponding integral equations and Gron-
wall’s Lemma (see e.g. [73, Chapter V], [74, Chapter 17], [140, § 13]).

Lemma 44. For any vector fields b, b̃ ∈ C1(RN ,RN) ∩W 1,∞(RN ,RN), the

solution maps Xb,Xb̃ : [0,T ]×RN −→ RN are continuously differentiable with

Lip Xb(t, ·) ≤ eLip b · t ,
‖Xb(t, ·)−Xb̃(t, ·)‖∞ ≤ ‖b− b̃‖∞ · t et ·Lip b̃ .

Proposition 45. For any b ∈W 1,∞(RN ,RN), c ∈W 1,∞(RN ,R) and initial mea-

sure ν0 ∈M (RN), a solution μ : [0,T ] −→M (RN), t �−→ μt to the linear problem{
∂t μt + divx (b μt) = c μt in [0,T ]

μ0 = ν0

(in the distributional sense) is given by∫
RN

ϕ dμt =
∫

RN
ϕ(Xb(t,x)) · exp

(∫ t

0
c(Xb(s,x)) ds

)
dν0(x)

for all ϕ ∈C0
c (RN).

Proof. First, we verify that the right–hand side provides a distributional solution
to the linear problem with the initial measure ν0. In fact, it is absolutely continuous
with respect to t because for any subinterval [s, t]⊂ [0,T ],∣∣∣∫

RN
ϕ dμt −

∫
RN

ϕ dμs

∣∣∣
=
∣∣∣∫

RN

(
ϕ(Xb(t,x)) · e

∫ t
0 c(Xb(r,x)) dr− ϕ(Xb(s,x)) · e

∫ s
0 c(Xb(r,x)) dr

)
dμ0(x)

∣∣∣
≤
∫

RN

(∣∣∣[ϕ(Xb(σ ,x))
]σ=t

σ=s

∣∣∣ et ‖c‖∞+ |ϕ(Xb(s,x))|
[
e
∫ σ

0 c(Xb(r,x)) dr
]σ=t

σ=s

)
d|μ0(x)|

≤
(
‖∇ϕ‖∞ ‖b‖∞ (t− s) et ‖c‖∞+ ‖ϕ‖∞ et ‖c‖∞ ‖c‖∞ (t− s)

)
|μ0|(RN)

At L 1-almost every time t ∈ [0,T ], we conclude from the chain rule for weak
derivatives
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d
dt

∫
RN

(
ϕ(Xb(t,x)) · exp

(∫ t

0
c(Xb(s,x)) ds

))
dν0(x)

=
∫

RN

(
∇ϕ(Xb(t,x)) ·b(Xb(t,x)) + ϕ(Xb(t,x)) c(Xb(t,x))

)
e
∫ t

0 c(Xb(r,x)) dr dν0

=
∫

RN

(
∇ϕ(y) ·b(y) + ϕ(y) c(y)

)
dμt(y). �

This solution is already well-known and usually denoted in the form of a push-
forward. Furthermore, it is unique because solutions to the nonautonomous linear
transport equation fulfill the following comparison principle (see also [2, 5, 51]):

Proposition 46 (Maniglia [104]). Let v : t �−→ vt be a Borel vector field in

L1
(
[0,T ]; W 1,∞(RN ,RN)

)
and c a Borel bounded and locally Lipschitz contin-

uous (w.r.t. the space variable) scalar function in ]0,T [×RN.

(1.) For each positive Radon measure ν0 ∈ M (RN) with ν0(RN) = 1, there

exists a unique narrowly continuous μ : [0,T ] −→ M (RN), t �−→ μt solving the

initial value problem (in the distributional sense)
∂t μt + divx (vt μt) = ct μt in ]0,T [×RN , μ0 = ν0.

(2.) The comparison principle holds in the following sense: Let σ : t �−→ σt be

a narrowly continuous family of (possibly signed) measures solving

∂t σt + divx (vt σt) = ct σt in ]0,T [×RN

with σ0 ≤ 0 and∫ T

0

∫
RN

(
|vt(x)| + |ct(x)|

)
d|σt |(x) dt < ∞∫ T

0

(
|σt |(B) + sup

B

|vt | + Lip vt |B
)

dt < ∞∫ T

0

(
|σt |(B) + sup

B

|ct | + Lip ct |B
)

dt < ∞

for any bounded closed set B⊂ RN . Then, σt ≤ 0 for any t ∈ [0,T [.

Now the solutions to the linear problem lay the basis for transitions on M (RN):

Definition 47. For each b ∈W 1,∞(RN ,RN) and c ∈W 1,∞(RN ,R), define

ϑM (RN),b, c : [0,1]×M (RN) −→ M (RN), (t,μ0) �−→ μt

with μ : [0,T ] −→M (RN), t �−→ μt denoting the unique solution of

∂t μt + divx (b μt) = c μt in [0,T ]

(in the distributional sense) as specified in Proposition 45.
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Lemma 48. For any b, b̃∈C1(RN ,RN)∩W 1,∞(RN ,RN) and c, c̃∈W 1,∞(RN ,R),
the measure-valued maps

ϑM (RN),b, c, ϑM (RN), b̃, c̃
: [0,1]×M (RN) −→M (RN)

fulfill for any μ0,ν0 ∈M (RN) and t,h ∈ [0,1] with t +h≤ 1

(a) ϑM (RN),b, c(0, μ0) = μ0

(b) ϑM (RN),b, c

(
h, ϑM (RN),b, c(t,μ0)

)
= ϑM (RN),b, c(t +h, μ0)

(c)
∣∣ϑM (RN),b, c(h, μ0)

∣∣(RN) ≤ e‖c‖∞ h · |μ0|(RN)

(d) ρM

(
ϑM (RN),b, c(t, μ0), ϑM (RN),b, c(t+h, μ0)

)≤ h
(‖b‖∞+‖c‖∞

)
e‖c‖∞

· |μ0|(RN)

(e) ρM

(
ϑM (RN),b, c(h, μ0), ϑM (RN),b, c(h, ν0)

) ≤ ρM (μ0 ν0) e(Lip b+‖c‖
W1,∞ )h

(f ) ρM

(
ϑM (RN),b, c(h, μ0), ϑM (RN), b̃, c̃

(h, μ0)
) ≤

≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞
)

h eh · (Lip b+max{‖c‖∞,‖c̃‖∞}) · ∣∣μ0
∣∣(RN)

The proof in detail is postponed to the end of this section.

Remark 49. Assuming b, b̃ ∈ C1(RN ,RN) in addition to b, b̃ ∈ W 1,∞(RN ,RN)
serves the single purpose that we can use the estimates of preceding Lemma 44
for the comparisons specified in Lemma 48.
The additional regularity of b, b̃ does not have any influence on the inequalities
though. Indeed, for each h ∈ [0,1] and μ0 ∈M (RN), the map

(b,c) �−→ ϑM (RN),b, c(h, μ0)
is continuous with respect to the L∞ norm according to statement (f). For this rea-
son, we can extend all statements in Lemma 48 to arbitrary b, b̃ ∈W 1,∞(RN ,RN)
because C1(RN ,RN)∩W 1,∞(RN ,RN) is dense in W 1,∞(RN ,RN) with respect to the
L∞ norm and, bounded subsets of M (RN) are complete w.r.t. ρM as specified in
Proposition 42 (3.) (on page 98).

Definition 2 (on page 70) and Definition 5 (on page 71) lead directly to

Proposition 50. For every b ∈W 1,∞(RN ,RN) and c ∈W 1,∞(RN ,R),

ϑM (RN),b, c : [0,1]×M (RN) −→M (RN)

is a transition on
(
M (RN), ρM , | · |(RN)

)
with

α(ϑM (RN),b, c; r) := Lip b + ‖c‖W 1,∞

β (ϑM (RN),b, c; r) :=
(‖b‖∞+ ‖c‖∞

)
e‖c‖∞ r

γ(ϑM (RN),b, c) := ‖c‖∞

D(ϑM (RN),b, c, ϑM (RN), b̃, c̃
; r) ≤ (‖b− b̃‖∞ +‖c− c̃‖∞

)
r

From now on, the set of these transitions on
(
M (RN), ρM , | · |(RN)

)
is abbreviated

as Θ
(
M (RN), ρM , | · |(RN)

)
.
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Proof (of Lemma 48). Statements (a) and (b) result directly from the explicit for-
mula in Proposition 45 (on page 101) and the semigroup property of the flow Xb(·, ·)

Xb
(
h, Xb(t,x)

)
= Xb(t +h, x)

for all x ∈ RN and t,h≥ 0.

(c) The total variation of any measure μ ∈M (RN) in open set A⊂ RN is

|μ|(A) = sup
{∫

RN
ϕ d μ

∣∣∣ ϕ ∈C0
c (A), ‖ϕ‖∞ ≤ 1

}
according to [4, Proposition 1.47]. Thus, we conclude from Proposition 45 for every
μ0 ∈M (RN) and h ∈ [0,1]∣∣ϑM (RN),b, c(h, μ0)

∣∣(RN)

= sup
{∫

RN
ϕ d ϑM (RN),b, c(h, μ0)

∣∣∣ ϕ ∈C0
c (RN), ‖ϕ‖∞ ≤ 1

}
= sup

{∫
RN

ϕ(Xb(t,x)) · e
∫ h

0 c(Xb(s,x)) ds d μ0 (x)
∣∣∣ ϕ ∈C0

c (RN), ‖ϕ‖∞ ≤ 1
}

≤ e‖c‖∞ h · sup
{∫

RN
|ϕ(Xb(t,x))| d|μ0|(x)

∣∣∣ ϕ ∈C0
c (RN), ‖ϕ‖∞ ≤ 1

}
≤ e‖c‖∞ h · |μ0|(RN).

(d) Let ϕ ∈ C∞
c (RN) be an arbitrary function with ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1.

Due to Proposition 45 again, we obtain for every μ0 ∈ M (RN) and t,h ∈ [0,1]
with t +h≤ 1∫

RN
ϕ d

(
ϑM (RN),b, c(t +h, μ0) − ϑM (RN),b, c(t, μ0)

)
=
∫ t+h

t

d
ds

∫
RN

ϕ(y) d ϑM (RN),b, c(s, μ0)(y) ds

=
∫ t+h

t

∫
RN

(
∇ϕ(y) · b(y) + ϕ(y) c(y)

)
d ϑM (RN),b, c(s, μ0)(y) ds

≤
∫ t+h

t

(‖∇ϕ‖∞ ‖b‖∞ + ‖ϕ‖∞ ‖c‖∞
) ∣∣ϑM (RN),b, c(s, μ0)

∣∣(RN) ds

≤ h · (‖b‖∞ + ‖c‖∞
)

e‖c‖∞ |μ0|(RN)

as a consequence of statement (c). The supremum with respect to all these functions
ϕ leads to claim (d) about ρM

(
ϑM (RN),b, c(t, μ0), ϑM (RN),b, c(t +h, μ0)

)
.

(e) Let ϕ ∈ C∞
c (RN) again denote any function with ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1.

Then, any measures μ0,ν0 ∈M (RN) satisfy at every time h ∈ [0,1]∫
RN

ϕ d
(
ϑM (RN),b, c(h, μ0) − ϑM (RN),b, c(h, ν0)

)
=
∫

RN
ϕ(Xb(h,x)) · exp

(∫ h

0
c(Xb(s,x)) ds

)
d
(
μ0−ν0

)
(x)

≤ e(Lip b+‖c‖
W1,∞ ) h ρM (μ0,ν0)
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Indeed, the last estimate results from Proposition 42 (1.) (on page 98) because the
composition

ψh : RN −→ RN , x �−→ ϕ(Xb(h,x)) · exp
(∫ h

0
c(Xb(s,x)) ds

)
is continuously differentiable with compact support and, Lemma 44 (on page 101)
implies

‖ψh‖∞ ≤ ‖ϕ‖∞ e‖c‖∞ h ≤ e‖c‖∞ h

‖∇ψh‖∞ ≤ e‖c‖∞ h
(
‖∇ϕ‖∞ ‖∇Xb(h, ·)‖∞ +‖ϕ‖∞ ·

∫ h

0
‖∇c‖∞ ‖∇Xb(s, ·)‖∞ ds

)
≤ e‖c‖∞ h

(
eLip b ·h +h ‖∇c‖∞ eLip b ·h

)
≤ e(Lip b+‖c‖∞) h

(
1 +h ‖∇c‖∞

)
≤ e(Lip b+‖c‖∞) h eh ‖∇c‖∞

= e(Lip b+‖c‖
W1,∞ ) h .

The supremum with respect to all ϕ ∈ C∞
c (RN) satisfying ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

leads to

ρM

(
ϑM (RN),b, c(h, μ0), ϑM (RN),b, c(h, ν0)

) ≤ e(Lip b+‖c‖
W1,∞ ) h ρM (μ0,ν0).

(f) For estimating ρM

(
ϑM (RN),b, c(h, μ0), ϑM (RN), b̃, c̃

(h, μ0)
)

with any μ0 ∈
M (RN) and h ∈ [0,1], we again choose an arbitrary function ϕ ∈ C∞

c (RN) with
‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1 and consider now an appropriate convex combination
ψ : [0,1]× [0,1]×RN −→ RN :

ψ(λ ,h,x) := ϕ
(
λ Xb(h,x)+(1−λ ) Xb̃(h,x)

) · e
∫ h

0 λ ·c(Xb(r,x)) + (1−λ )·c̃(Xb̃(r,x)) dr

Obviously, ψ is continuously differentiable and, Lemma 44 (on page 101) ensures∥∥ ∂
∂ λ ψ(λ ,h, ·)∥∥∞ ≤ ‖∇ϕ‖∞

∥∥Xb(h, ·)−Xb̃(h, ·)∥∥∞ · eh·max{‖c‖∞,‖c̃‖∞}

+‖ϕ‖∞ ·
∫ h

0

∥∥c(Xb(r, ·))− c̃(Xb̃(r, ·))∥∥∞ dr eh ·max{‖c‖∞,‖c̃‖∞}

≤ ‖b− b̃‖∞ h eh ·Lip b · eh ·max{‖c‖∞,‖c̃‖∞}

+ h
(‖c− c̃‖∞ + ‖∇c‖∞‖b− b̃‖∞ h eh ·Lip b) eh ·max{‖c‖∞,‖c̃‖∞}

≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞
)

h eh · (Lip b+max{‖c‖∞,‖c̃‖∞})

Hence we obtain∫
RN

ϕ d
(
ϑM (RN),b, c(h, μ0) − ϑM (RN), b̃, c̃

(h, μ0)
)

=
∫

RN

(
ψ(1,h,x) − ψ(0,h,x)

)
dμ0(x)

=
∫

RN

∫ 1

0

∂
∂ λ ψ(λ ,h,x) dλ dμ0(x)

≤ ∥∥ ∂
∂ λ ψ(λ ,h, ·)∥∥∞

∣∣μ0
∣∣(RN)

≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞
)

h eh · (Lip b+max{‖c‖∞,‖c̃‖∞}) ∣∣μ0
∣∣(RN) . �
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2.5.3 Conclusions about nonlinear transport equations

Now we exploit the preparations and draw some conclusions about the nonlinear
transport equation of Radon measures – in the mutational framework. Here Euler
compactness plays the role of a key ingredient to existence, but its slightly technical
proof is postponed to the end of this section (on page 108).

Lemma 51. The tuple
(
M (RN), ρM , | · |(RN), Θ

(
M (RN), ρM , | · |(RN)

))
is Euler compact (in the sense of Definition 15 on page 78), i.e.

choose μ0 ∈M (RN), T > 0, R > 0 arbitrarily and let N = N (μ0,T,R) denote

the subset of all curves μ(·) : [0,T ]−→M (RN) constructed in the following piece-

wise way: Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T

of [0,T ] (with n > T ) and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

max
{‖bk‖W 1,∞ , ‖ck‖W 1,∞

∣∣ 1≤ k ≤ n
} ≤ R,

define μ(·) : [0,T ]−→ E, t �−→ μt as

μt := ϑM (RN),bk, ck

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then at each time t ∈ [0,T ], the set {μt |μ(·)∈N } ⊂M (RN) is relatively sequen-

tially compact with respect to W 1,∞ dual metric ρM .

Furthermore, the set of all measure values of N (μ0,T,R), i.e.{
μt

∣∣ t ∈ [0,T ], μ(·) ∈N
}⊂M (RN),

is tight.

Theorem 52 (Existence of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W 1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ, t)
∥∥

W 1,∞ +
∥∥ f2(μ, t)

∥∥
W 1,∞

)
< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and

any sequences (tm)m, (μm)m in [0,T ], M (RN) respectively with tm −→ t,
ρM (μm,μ)−→ 0 for m−→ ∞ and supm |μm|(RN) < ∞, it fulfills

f(μm, tm) −→ f(μ, t) in L∞(RN ,RN)×L∞(RN ,R) for m−→ ∞.

Then for every initial Radon measure μ0 ∈ M (RN), there exists a solution

μ(·) : [0,T ]−→M (RN) to the mutational equation

◦
μ (·) � ϑM (RN), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with μ(0) = μ0 and, all its values in M (RN)

are tight.
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Furthermore every solution μ(·) : [0,T ] −→M (RN) (to this mutational equation)
with tight values in M (RN) is a narrowly continuous distributional solution to the

nonlinear transport equation

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in RN× ]0,T [

in the sense that∫
RN

ϕ dμt −
∫

RN
ϕ dμ0 =

∫ t

0

∫
RN

(
∇ϕ(x) · f1(μs,s)(x)+ f2(μs,s)(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).

Corollary 12 (on page 74) provides sufficient conditions for the uniqueness of
solutions to mutational equations. Moreover, the comparison principle in Proposi-
tion 46 (2.) (on page 102) implies uniqueness of the linear (but) nonautonomous

transport equation for Radon measures. The combination of these two results leads
to uniqueness of solutions to the nonlinear transport equation:

Theorem 53 (Uniqueness of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W 1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ, t)
∥∥

W 1,∞ +
∥∥ f2(μ, t)

∥∥
W 1,∞

)
< ∞,

(ii) f is Lipschitz continuous with respect to state in the following sense: There

exists a constant λ > 0 such that for L 1-almost every t ∈ [0,T ] and every

μ0,μ1 ∈M (RN),∥∥f(μ0, t) − f(μ1, t)
∥∥

∞ ≤ λ · ρM (μ0, μ1).

Then for every initial μ0 ∈M (RN), the solution μ(·) : [0,T ]−→M (RN) to the

mutational equation

◦
μ (·) � ϑM (RN), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with μ(0) = μ0 is unique.

In particular, the distributional solution μ(·) : [0,T ] −→ M (RN), t �−→ μt to the

nonlinear transport equation

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in RN× ]0,T [

being continuous with respect to ρM , having initial Radon measure μ0 ∈M (RN)
at time t = 0 and satisfying sup

t∈[0,T ]
|μt |(RN) < ∞ is unique.

Remark 54. The two preceding theorems exemplify how to benefit from the mu-
tational framework appropriately. Indeed, the results of § 2.3 (on page 73 ff.) cover a
generalized type of solutions, namely to mutational equations. Theorem 52 reveals
the connection to the more popular concept of distributional solutions.
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On this basis, the results of § 2.3 lead to further statements about measure-valued
distributional solutions to nonlinear transport equations with delay or in systems
with other examples of mutational equations. We are not going to formulate them in
detail here.

Proof (of Lemma 51). In regard to Definition 15 (on page 78), choose μ0 ∈
M (RN), T > 0 and R > 0 arbitrarily and let N = N (μ0,T,R) denote the sub-
set of all curves μ(·) : [0,T ] −→ M (RN) constructed in the following piecewise
way: Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ]
(with n > T ) and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

max
{‖bk‖W 1,∞ , ‖ck‖W 1,∞

∣∣ 1≤ k ≤ n
} ≤ R,

define μ(·) : [0,T ]−→M (RN), t �−→ μt as

μt := ϑM (RN),bk, ck

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then we have to verify at each time t ∈ [0,T ] : The set {μt |μ(·) ∈N } ⊂M (RN)
is relatively sequentially compact with respect to W 1,∞ dual metric ρM .

As a consequence of Lemma 48 (c) (on page 103), the total variation |ν |(RN) is
uniformly bounded for all measures ν ∈ {μt | t ∈ [0,T ], μ(·) ∈N } ⊂M (RN) :

|ν |(RN) ≤ eR T |μ0|(RN).

Thus, due to Proposition 42 (4.) (on page 98), it suffices to prove that this set{
μt

∣∣ t ∈ [0,T ], μ(·) ∈N
}⊂M (RN) is tight.

For every ε > 0, there exists a compact subset Kε ⊂RN with |μ0|(RN \Kε) < ε .
Then, ∣∣μt

∣∣(RN \BRT (Kε)
) ≤ ∣∣μt

∣∣(RN \BRt(Kε)
)

< ε eRt ≤ ε eR T

holds for all t ∈ [0,T ] and μ(·) ∈N (μ0,T,R).
Indeed, we consider the underlying equidistant partition 0 = t0 < t1 < .. . < tn = T

of [0,T ] and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

μt = ϑM (RN),bk+1, ck+1

(
t− tk, μtk

)
for t ∈ ]tk, tk+1], k = 0,1 . . . n−1.

Then, we obtain for each t ∈ ]tk, tk+1]∣∣μt

∣∣(RN \BRt(Kε)
)

= sup
{∫

RN
ϕ d ϑM (RN),bk+1, ck+1

(t− tk, μtk)
∣∣∣ ϕ∈C0

c (RN \BRt(Kε)), ‖ϕ‖∞≤1
}

≤ sup
{∫

RN
ϕ̃
∣∣
(Xbk+1 (t−tk,x))

dμtk(x) e(t−tk) R
∣∣∣ ϕ̃∈C0

c (RN \BRt(Kε)), ‖ϕ̃‖∞≤1
}

≤ sup
{∫

RN
ψ(y) dμtk(y) e(t−tk) R

∣∣∣ ψ∈C0
c (RN \BRtk(Kε)), ‖ψ‖∞≤1

}
= e(t−tk) R

∣∣μtk

∣∣(RN \BRtk(Kε)
)
.

�
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Proof (of Theorem 52). The existence of a solution μ(·) : [0,T ] −→ M (RN) to
the mutational equation results directly from Peano’s Theorem 18 (on page 80) and
Proposition 50 (on page 103). Its proof is based on Euler approximations in combi-
nation with Lemma 51 (as presented on page 81 f.).
In addition, with R > 0 denoting the bound of assumption (i), Lemma 51 states that
the values of all Euler approximations in N (μ0,T,R),{

νt

∣∣ t ∈ [0,T ], ν(·) ∈N (μ0,T,R)
}⊂M (RN),

are tight. Thus for every ε > 0, there exists a compact set Kε ⊂ RN satisfying

|νt |(RN \Kε) < ε for all t ∈ [0,T ] and ν(·) ∈N (μ0,T,R).

Since the solution μ(·) : t �−→ μt is constructed as ρM -limit of Euler approxima-
tions, each measure μt is weak* limit of a sequence in

{
νt

∣∣ ν(·) ∈ N (μ0,T,R)
}

due to Proposition 42 (2.) and, the lower semicontinuity of total variation implies
|μt |(RN \Kε) < ε. Hence, {μt | t ∈ [0,T ]} ⊂M (RN) is tight.

Now we provide the claimed link to distributional solutions.
Let μ(·) : [0,T ]−→M (RN), t �−→ μt be a solution to the mutational equation

◦
μ (·) � ϑM (RN), f1(μ(·), ·), f2(μ(·), ·)

with tight values in M (RN). In particular, μ(·) is continuous w.r.t. ρM and,
R := 1 + supt∈[0,T ] |μt |(RN) < ∞. Due to Proposition 42 (2.) (on page 98), μ(·) is
narrowly continuous.
There exists a L 1-measurable subset A⊂ [0,T ] such that L 1([0,T ]\A) = 0,

lim
h↓0

1
h
· ρM

(
μt+h, ϑM (RN), f1(μt , t), f2(μt , t)(h, μt)

)
= 0

for every t ∈ A and that assumption (ii) about the continuity of f is satisfied at every
time t ∈ A. Choosing the test function ϕ ∈C∞

c (RN ,R) arbitrarily, we obtain

lim
h↓0

1
h
·
∫

RN
ϕ d
(
μt+h − ϑM (RN), f1(μt , t), f2(μt , t)(h, μt)

)
= 0

for each t ∈ A. The auxiliary function ψ : [0,T ]−→R, t �−→
∫

RN
ϕ d μt is contin-

uous due to the ρM -continuity of μ(·) and, it fulfills at every time t ∈ A⊂ [0,T ]

lim
h↓0

ψ(t+h)−ψ(t)
h

= lim
h↓0

1
h

∫
RN

ϕ d
(
ϑM (RN), f1(μt , t), f2(μt , t)(h, μt) − μt

)
= lim

h↓0
1
h

∫
RN

(
ϕ(Xf1(μt , t)(h,x)) · e

∫ h
0 f2(μt , t)

(
Xf1(μt , t)(s,x)

)
ds

− ϕ(x)
)

dμt(x)

=
∫

RN

(
∇ϕ(x) · f1(μt , t)(x) + ϕ(x) f2(μt , t)(x)

)
dμt(x) .

In particular, the last integral on the right-hand side is continuous with respect to t

for each t ∈ A. Thus, ψ : [0,T ] −→ R is even absolutely continuous and, its weak
derivative is

d
dt

ψ(t) =
∫

RN

(
∇ϕ(x) · f1(μt , t)(x) + ϕ(x) f2(μt , t)(x)

)
dμt(x)
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for L 1-almost every t ∈ [0,T ]. As a consequence, μ(·) is a weak solution of

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in RN× ]0,T [

�

Proof (of Theorem 53). Lipschitz continuity of f with respect to state implies
uniqueness of solutions to mutational equations according to Corollary 12 (on
page 74).

Now let μ(·) : [0,T ]−→M (RN), t �−→ μt be a distributional solution of

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in RN× ]0,T [

that is continuous with respect to ρM and satisfies supt∈ [0,T ] |μt |(RN) < ∞.
Then μ(·) is a solution to the mutational equation

◦
μ (·) � ϑM (RN), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
and thus, it is uniquely determined by

μ0 ∈M (RN). Indeed, the composition

g : [0,T ] −→ W 1,∞(RN ,RN)×W 1,∞(RN ,R), t �−→ (
f1(μt , t), f2(μt , t)

)
is continuous with respect to L∞ norm L 1-almost everywhere in [0,T ]. Theorem 52
(on page 106) guarantees a solution ν(·) : [0,T ]−→M (RN), t �−→ νt to the muta-
tional equation

◦
ν (·) � ϑM (RN), g1( ·), g2( ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with ν0 = μ0 and, it is a distributional solu-

tions to the nonautonomous linear transport equation

∂t νt + divx (g1(t)νt) = g2(t) νt in RN× ]0,T [.

Finally the comparison principle in Proposition 46 (2.) (on page 102) implies

ν(·) ≡ μ(·). �
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2.6 Example: A structured population model
with Radon measures over R+

0 = [0,∞[

Now we focus on measure-valued solutions to a nonlocal first-order hyperbolic
problem on R+

0
Def.= [0,∞[ describing a physiologically structured population:⎧⎪⎪⎨⎪⎪⎩

∂t μt + ∂x

(
F2(μt , t) μt

)
= F3(μt , t) μt , in R+

0 × [0,T ]

F2(μt , t)(0) μt(0) =
∫

R+
0

F1(μt , t)(x) dμt(x), in ]0,T ]

μ0 = ν0,

Avoiding structural restrictions on its coefficients, we specify continuity assump-
tions sufficient for global existence and for structural stability of distributional
solutions whose values are tight finite Radon measures on R+

0 . These results can be
easily extended to systems describing more than one species because this problem
is considered in the mutational framework.

2.6.1 Introduction
A joint framework for both continuous and discrete distributions:
Radon measures

Global existence and stability of solutions to structured population models were es-
tablished for states defined in Banach space L1 [75, 141]. In this case it was possible
to prove strong continuity and structural stability of solutions. However, it is often
necessary to describe populations in which the initial distribution of the individuals
is concentrated with respect to the structure, i.e., it is not absolutely continuous with
respect to the Lebesgue measure.
In these cases it is relevant to consider initial data in the space of Radon measures as
proposed in [106]. It covers both finite measures of the Euclidean space being abso-
lutely continuous with respect to Lebesgue measure and all Dirac measures that are
suitable for describing discrete distributions.
For linear age-dependent population dynamics, a qualitative theory using semigroup
methods and spectral analysis has been laid out in [106]. The follow-up work [46]
is devoted to constructing nonlinear models. Some analytical results concerning the
existence of solutions are given in [47]. All results there about continuous depen-
dence of solutions on time and initial state are based on the weak∗ topology of
Radon measures. Moreover, there exist even simple counterexamples indicating that
continuous dependence, either with respect to time or to initial state, cannot be ex-
pected in the strong (dual) topology in general [47].

In this section, we use the W 1,∞ dual metric on M (R+
0 ) as introduced in Def-

inition 41 (on page 98). It metrizes both weakly* and narrow topology on each
tight subset of Radon measures with uniformly bounded total variation according to
Proposition 42.
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Furthermore bounded Lipschitz continuous test functions have proved to be particu-
larly useful for investigating continuity properties of solutions to the linear subprob-
lems here in § 2.6.2.
In general, using a dual norm can be interpreted in regard to modelling biological
processes. The basic notion of weak* topology is to compare features of two linear
forms individually. Considering the dual space of any topological vector space, the
features of interest result from the effect of a linear form on each vector separately.
Here we use Radon measures μ,ν on R+

0 in combination with bounded Lipschitz
continuous functions ϕ : R+

0 −→R. Then ϕ(x) indicates the relevance of each struc-
tural state x ∈R+

0 and, the integral
∫
R+

0
ϕ(x) d(μ−ν)(x) reflects how much μ and

ν differ from each other in regard to this weight function ϕ.
Restricting to bounded Lipschitz continuous functions instead of any real-valued
function vanishing at infinity, however, is based on our interest only in those weight
functions ϕ : R+

0 −→ R being not too sensitive with respect to structural state. For
modelling biological systems, it is not recommended to take features into consider-
ation which are extremely sensitive with respect to the structure parameter.

The nonlinear model of physiologically structured population

The structured population models considered in [75, 141] focus on solutions u(·, t)∈
L1(R+

0 ) to first-order hyperbolic problems of the general form

∂t u(x, t) + ∂x (F2(u(·, t), x, t)u(x, t)) = F3(u(·, t),x, t) u(x, t) in R+
0 × [0,T ],

F2(u(·, t), 0, t) u(0, t) =
∫

R+
0

F1(u(·, t), x, t) u(x, t) dx in ]0,T ],

u(x,0) = u0(x) in R+
0 .

Here x denotes the state of individuals (for example, the size, level of neoplastic
transformation, stage of differentiation) and u(x, t) the density of individuals being
in state x ∈ R+

0 at time t. By F3(u,x, t) we denote a function describing the individ-
ual’s rate of evolution, such as growth or death rate. F2(u,x, t) describes the rate of
the dynamics of the structure, i.e., the dynamics of the transformation of individual
state. The boundary term describes influx of new individuals to state x = 0. Finally,
u0 denotes initial population density.
In the special case of the so-called Gurtin–MacCumy model, the coefficient func-
tions Fj depend on the integral

∫
R+

0
u(x, t) dx [141, § 1.3] and, additional weight

functions were taken into consideration later (e.g. [47]).

In this section, we investigate existence of measure-valued solutions μt ∈M (R+
0 )

to the corresponding nonlinear equations⎧⎪⎪⎨⎪⎪⎩
∂t μt + ∂x (F2(μt , t) μt) = F3(μt , t) μt in R+

0 × [0,T ]

F2(μt , t)(0) μt(0) =
∫

R+
0

F1(μt , t)(x) dμt(x) in ]0,T ]

μ0 = ν0

(2.1)



2.6 Example: A structured population model with Radon measures over R+
0 = [0,∞[ 113

and their dependence on both the initial measure ν0 ∈M (R+
0 ) and three coefficient

functions F1,F2,F3 : M (R+
0 )× [0,T ]−→W 1,∞(R+

0 ).
In particular, there are no structural assumptions about the coefficients Fj such as lin-
earity with respect to the measure μt . Furthermore, the partial differential equation
and the boundary condition on ]0,T ] are nonlocal because the coefficients depend
on the whole measures as elements of the space M (R+

0 ) – and not on their local
properties in R+

0 .

Problem (2.1) is interpreted in a distributional sense: The wanted solutions are
weakly* continuous curves μ : [0,T ]−→M (R+

0 ) =C0
0(R+

0 )′ satisfying the problem
in a distributional sense, i.e. in duality with all test functions in C∞

c (R+
0 × [0,T ]).

The additional assumption F1(·)≥ 0 guarantees that positivity of initial measure ν0
is preserved by the solution μt constructed here. This feature is of particular interest
for modelling population dynamics. The main results of this section are:

Theorem 55 (Existence of solutions to nonlinear structured population model).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞.

(ii) F : (M (R+
0 ),narrow)× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞
)

is continuous.

Then, for any initial measure ν0 ∈ M (R+
0 ), there exists a narrowly continuous

weak solution μ : [0,T ] −→M (R+
0 ) to the nonlinear population model (2.1) with

μ(0) = ν0.
If, in addition, ν0 ∈M +(R+

0 ) and F1(ν , t)(·)≥ 0 for every ν ∈M +(R+
0 ), t ∈ [0,T ],

then the solution μ(·) has values in M +(R+
0 ).

Theorem 56 (Stability of distributional measure-valued solutions).
Assume that for F,G : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3| b(0) > 0

}
,

(i) MF := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖F(μ, t)‖W 1,∞(R+

0 ) < ∞,

MG := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖G(μ, t)‖W 1,∞(R+

0 ) < ∞,

(ii) for any R > 0, there are a constant LR > 0 and a modulus of continuity ωR(·)
with ‖F(μ,s)−F(ν , t)‖L∞(R+

0 ) ≤ LR · ρ(μ,ν)+ωR(|t− s|)
for all μ,ν ∈M (R+

0 ) with |μ|(R+
0 ), |ν |(R+

0 )≤ R.

(iii) G : (M (R+
0 ),ρM )× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞) is continuous.

Let μ, ν : [0,T ] −→M (R+
0 ) denote ρM -continuous distributional solutions to the

nonlinear population model (2.1) for the coefficients F(·),G(·) respectively such

that supt |μt |(R+
0 ) < ∞, supt |νt |(R+

0 ) < ∞ and all their values are tight in M (R+
0 ).

Then there is C =C(MF ,MG, |μ0|(R+
0 ), |ν0|(R+

0 ))∈ [0,∞[ such that for all t ∈ [0,T ],

ρM (μt ,νt) ≤ (
ρM (μ0,ν0) + C t · sup

M (R+
0 )×[0,T ]

‖F(·, ·)−G(·, ·)‖L∞(R+
0 )
)

eC t .
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Comparison with earlier results of Diekmann and Getto

Model (2.1) is a generic formulation of a nonlinear single-species model with a
one-dimensional structure. The model was considered by Diekmann and Getto in
reference [47] in a case where the functions Fi depend on the population density
via weighted integrals

∫
γi(x)dμt . Diekmann and Getto proved the global existence

of solutions and their continuous dependence on time and initial state in the weak*
topology of M (R+

0 ). The results were formulated under the assumptions of Lips-
chitz continuity of functions F1, F2 and F3 and the global Lipschitz property of the
output function γi.
For solving the fully nonlinear problem, Diekmann and Getto applied the so-called
method of interaction variables. The method consists of replacing the dependence
on the measure μ incorporated in F1, F2 and F3 by input I(t) at time t, and splitting
the nonlinear problem (2.1) into a nonautonomous linear problem coupled to a fixed
point problem. Indeed, their linear problem is determined by parameter function I(·)
of time and, it is solved by extending the concept of semigroup.
The feedback law relates the parameter function I(·) to the wanted solution and
thus provides a fixed point problem equivalent to the original nonlinear problem.
Appropriate assumptions about the coefficients lay the basis for applying Banach’s
contraction principle.

In this section, we investigate the nonlinear problem (2.1) in the mutational
framework. Similarly to § 2.5 about the nonlinear transport equation, the transitions
on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

are induced by the underlying linear problem, i.e.⎧⎪⎪⎨⎪⎪⎩
∂t μt + ∂x (b μt) = c μt , in R+

0 × [0,T ],

b(0) μt(0) =
∫

R+
0

a dμt , in ]0,T ],

μ0 = ν0.

(2.2)

with a(·), b(·), c(·) ∈W 1,∞(R+
0 ) and b(0) > 0.

The key estimates for this linear problem are obtained using the concepts of duality
theory applied to transport equations similarly in [51]. In subsequent § 2.6.2, the
smooth solution to a dual partial differential equation provides an integral repre-
sentation of a measure-valued solution μ : [0,T ] −→M (R+

0 ) to equation (2.2). In
particular, this solution exists and depends continuously on the initial measure ν0
and on the coefficients a(·), b(·) and c(·).

In comparison to the approach of Diekmann and co-workers [46, 47], the connec-
tion with the nonlinear problem (2.1) is not based on the contraction principle, but
on Euler compactness in the mutational framework.
It has the advantage that existence of weak solutions to the nonlinear population
model (2.1) does not require Lipschitz continuity of the coefficients F1(·, t), F2(·, t),
F3(·, t), but merely continuity. In addition, assuming Lipschitz continuity of the
model coefficients F1(·, t), F2(·, t), F3(·, t) ensures uniqueness of the weak solution.
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2.6.2 The linear population model

Now we consider the linear structured population model⎧⎪⎪⎨⎪⎪⎩
∂t μt +∂x (b μt) = c μt , in R+

0 × [0,T ],

b(0) μt(0) =
∫

R+
0

a dμt , in ]0,T ],

μ0 = ν0,

(2.3)

where a,b,c : R+
0 −→ R are bounded and Lipschitz continuous functions with

b(0) > 0 and, ν0 ∈M (R+
0 ) is a given initial Radon measure.

Similarly to § 2.5.2 (about linear transport equations for Radon measures on RN),
we first assume b(·) ∈C1(R+

0 ) in addition and then extend the subsequent estimates
to b(·) ∈W 1,∞(R+

0 ) by means of L∞ continuity (correspondingly to Remark 49 on
page 103). All proofs of the following results about problem (2.3) are collected at
the end of this subsection.

The statements

Formal integration by parts motivates how to define a weak solution [0,T ] −→
M (R+

0 ) to linear problem (2.3).

Definition 57. μ : [0,T ]−→M (R+
0 ), t �−→ μt is called a weak solution to prob-

lem (2.3) if μ is narrowly continuous with respect to time and, for all test functions
ϕ ∈C1(R+

0 × [0,T ])∩W 1,∞(R+
0 × [0,T ]),∫

R+
0

ϕ(x,T ) dμT (x) −
∫

R+
0

ϕ(x,0) dν0(x)

=
∫ T

0

∫
R+

0

∂tϕ(x, t) dμt(x) dt +
∫ T

0

∫
R+

0

(
∂xϕ(x, t) b(x)+ϕ(x, t) c(x)

)
dμt(x) dt

+
∫ T

0
ϕ(0, t)

∫
R+

0

a(x) dμt(x) dt.

Now the key point is an implicit characterization of the solution to the linear prob-
lem (2.3) by an integral equation exploiting the notion of characteristics. This so-
lution is derived for any initial finite Radon measure ν0 ∈M (R+

0 ) and coefficient
b(·) ∈C1(R+

0 )∩W 1,∞(R+
0 ) with b(0) > 0.

Motivated by the application to population dynamics, we then specify a suffi-
cient condition on a(·) for preserving nonnegativity of measures, namely a(·) ≥ 0.
The corresponding solution map can easily be extended to less regular coefficients
b(·) ∈W 1,∞(R+

0 ) as specified in subsequent Corollary 65 (on page 119).

Remark 58. Adapting Definition 43 (on page 100), each function b∈W 1,∞(R+
0 ,R)

induces the flow Xb : [0,T ]×R+
0 −→ R in the following sense: For any initial point

x0 ∈ R+
0 , the curve Xb(·,x0) : [0,T ] −→ R+

0 is the continuously differentiable solu-
tion to the Cauchy problem
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d

dt
x(t) = b(x(t)), in [0,T ],

x(0) = x0 ∈ R+
0 .

The additional property b(0) > 0 ensures that all values of Xb are in R+
0 .

The local assumptions b ∈C1(R+
0 )∩W 1,∞(R+

0 ), b(0) > 0 and Gronwall’s Lemma
imply continuous differentiability of solutions to ordinary differential equations
with respect to parameters and initial data [73, 74, 140]. We summarize in the coun-
terpart of Lemma 44 (on page 101):

Lemma 59. Xb : [0,T ]×R+
0 −→ R+

0 is continuously differentiable with

(i) ‖∂xXb(t, ·)‖∞ ≤ e‖∂xb‖∞ t ,

(ii) Lip ∂x Xb(·,x) ≤ ‖∂xb‖∞ e‖∂xb‖∞ T ,

(iii) ‖Xb(t, ·)−X
b̃
(t, ·)‖∞ ≤ ‖b− b̃‖∞ t e‖∂xb̃‖∞ t for any b̃ ∈W 1,∞(R+

0 ), b̃(0) > 0.

For every weak solution μ : [0,T ] −→ M (R+
0 ), integration by parts provides a

characterization using a dual problem in the form of a partial differential equation:

Definition 60. Let ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ). We call ϕt,ψ ∈C1(R+
0 × [0, t]) the

solution to the dual problem related to ψ(·) and t if it satisfies{
∂τ ϕt,ψ +b(x)∂x ϕt,ψ + c(x)ϕt,ψ +a(x)ϕt,ψ(0,τ) = 0 in R+

0 × [0, t],
ϕt,ψ(·, t) = ψ in R+

0 .
(2.4)

The formulation of the dual problem is particularly useful as tool for proving exis-
tence of weak solutions. Knowing the solution to the dual problem, the solution to
the linear problem (2.3) is given by the integral formula explicitly stated in subse-
quent Proposition 62. First we collect the properties of the dual problem though.

Lemma 61. Let a,b,c∈W 1,∞(R+
0 ) and b∈C1(R+

0 ), b(0) > 0. For any function

ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) and time t ∈ ]0,T ], the solution ϕ := ϕt,ψ to the related

dual problem (2.4) is unique and, its equivalent characterization is given by the

integral equation

ϕ(x,τ) = ψ (Xb(t− τ,x)) · e
∫ t

τ c(Xb(r−τ,x)) dr

+
∫ t

τ
a(Xb(s− τ,x)) ϕ(0,s) e

∫ s
τ c(Xb(r−τ,x)) dr ds. (2.5)
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Moreover, for any t > 0 and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) fixed, the following holds

(i) ϕ(0, ·) : [0, t]−→ R is a bounded and continuously differentiable solution to the

following inhomogeneous Volterra equation of second type

ϕ(0,τ) = ψ (Xb(t− τ,0)) e
∫ t

τ c(Xb(r−τ,0)) dr

+
∫ t

τ
a(Xb(s− τ,0)) ϕ(0,s) e

∫ s
τ c(Xb(r−τ,0)) dr ds (2.6)

with ‖ϕ(0, ·)‖∞ ≤ sup
z≤‖b‖∞ t

|ψ(z)| · (1+‖a‖∞ t) e(‖a‖∞+‖c‖∞) t ,

‖∂τ ϕ(0, ·)‖∞ ≤ const(‖a‖W 1,∞ , ‖b‖∞, ‖c‖W 1,∞) · max{‖ψ‖∞,‖∂xψ‖∞}·
e2 (‖a‖∞+‖c‖∞) t (1+ t).

(ii) ϕ(x, ·) : [0, t]−→ R is continuously differentiable for each x ∈ R+
0 with

‖∂τ ϕ(x, ·)‖∞ ≤ const(‖a‖W 1,∞ , ‖b‖∞, ‖c‖W 1,∞) · max{‖ψ‖∞,‖∂xψ‖∞}
e2(‖a‖∞+‖c‖∞) t (1+ t).

(iii) ϕ(·,τ) : R+
0 −→ R is continuously differentiable for every τ ∈ [0, t] and satisfies

‖ϕ(·,τ)‖∞ ≤ ‖ψ‖∞ e2(‖a‖∞+‖c‖∞) t ,

‖∂xϕ(·,τ)‖∞ ≤ max{‖∂xψ‖∞,1} emax{‖ψ‖∞,1}3(‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) t .

(iv) For every t > 0 and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ), there exists a continuously differ-

entiable solution ϕ : R+
0 × [0, t]−→R to integral equation (2.5). It is unique and

has the regularity properties stated in parts (ii) and (iii).

(v) If additionally ψ ∈C2(R+
0 )∩W 2,∞(R+

0 ), then ∂xϕ(x, ·) : [0, t]−→R is Lipschitz

continuous and, its Lipschitz constant has an upper bound depending only on

‖a‖W 1,∞ , ‖b‖W 1,∞ , ‖c‖W 1,∞ , ‖ψ‖W 2,∞ and, in particular, on t in an increasing way.

Proposition 62. Let ϕt,ψ ∈C1(R+
0 × [0, t]) denote the solution to the dual prob-

lem (2.4) or equivalently, the integral equation (2.5) for any t > 0 and ψ ∈C1(R+
0 )∩

W 1,∞(R+
0 ). For any Radon measure μ0 ∈ M (R+

0 ), let μ : [0,T ] −→ M (R+
0 ),

t �−→ μt be given by ∫
R+

0

ψ(x)dμt(x) =
∫

R+
0

ϕt,ψ(x,0)dμ0(x). (2.7)

Then

(i) μ satisfies the following form of the semigroup property for every 0≤ s≤ t ≤ T

and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ):∫
R+

0

ψ(x)dμt(x) =
∫

R+
0

ϕt,ψ(x,s)dμs(x). (2.8)
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(ii) t �−→
∫

R+
0

ψ dμt is Lipschitz continuous for every ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) with

Lipschitz constant ≤ const
(‖a‖W 1,∞ ,‖b‖∞,‖c‖W 1,∞ ,T

) · ‖ψ‖W 1,∞ |μ0|(R+
0 ).

Furthermore, |μt |(R+
0 ) ≤ e2(‖a‖∞+‖c‖∞) t · |μ0|(R+

0 ).

(iii) μ is a weak solution to the linear problem (2.3) (in the sense of Definition 57).

(iv) For any φ ∈C0(R+
0 ) such that supp φ ⊂ [‖b‖∞ t,∞[, the following estimate holds

with φ̃(x) := supz≤x φ(z) :∫
R+

0

φ̃(x+‖b‖∞t) d|μ0|(x) ≥ e−‖c‖∞ t

∫
R+

0

φ(x) dμt(x).

We can also exploit the preceding properties to demonstrate nonnegativity preserva-
tion of finite Radon measures.

Corollary 63. Under the additional hypothesis that a(·) ≥ 0, all values of the

weak solution μ : [0,T ] −→ M (R+
0 ) presented in Proposition 62 are nonnegative

Radon measures for every nonnegative initial measure μ0 ∈M +(R+
0 ).

The preceding results provide more information than just the existence of solutions.
Using the construction of Proposition 62, we obtain a continuous solution map for
the linear problem (2.3). Furthermore, these solutions depend continuously on the
coefficients a(·), b(·), c(·).

Proposition 64.
Let a(·), c(·) ∈ W 1,∞(R+

0 ) and b(·) ∈ C1(R+
0 ) ∩W 1,∞(R+

0 ) satisfy b(0) > 0.

The weak solutions to the linear problem (2.3), characterized in Proposition 62,

induce a map

ϑa,b,c : [0,1]×M (R+
0 ) −→ M (R+

0 ), (t,μ0) �−→ μt

satisfying for any μ0,ν0 ∈M (R+
0 ), t,h ∈ [0,1], ã, c̃ ∈W 1,∞(R+

0 ), b̃ ∈C1(R+
0 )∩

W 1,∞(R+
0 ) with t +h≤ 1, b̃(0) > 0 :

(i) ϑa,b,c(0, ·) = IdM (R+
0 )

(ii) ϑa,b,c(h, ϑa,b,c(t,μ0)) = ϑa,b,c(t +h,μ0)

(iii)
∣∣ϑa,b,c(h,μ0)

∣∣(R+
0 ) ≤ |μ0|(R+

0 ) · e2 (‖a‖∞+‖c‖∞) h

(iv) ρM

(
ϑa,b,c(t,μ0), ϑa,b,c(t+h,μ0)

) ≤ h ·C(‖a‖W 1,∞ ,‖b‖∞,‖c‖W 1,∞) · |μ0|(R+
0 )

(v) ρM

(
ϑa,b,c(h,μ0), ϑa,b,c(h,ν0)

) ≤ ρM (μ0,ν0) · e3 (‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) h

(vi) ρM

(
ϑa,b,c(h,μ0), ϑ

ã,b̃,c̃
(h,μ0)

) ≤ h
∥∥(a,b,c) − (ã, b̃, c̃)

∥∥
∞ Ĉ |μ0|(R+

0 )
with a constant Ĉ = Ĉ(‖a‖W 1,∞ , ‖ã‖W 1,∞ , ‖b‖W 1,∞ , ‖b̃‖W 1,∞ , ‖c‖W 1,∞ , ‖c̃‖W 1,∞)

(vii) If additionally a(·)≥ 0, then ϑa,b,c([0,1],M +(R+
0 ))⊂M +(R+

0 ).
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The additional hypothesis b(·) ∈ C1(R+
0 ) is dispensable – similarly to Remark 49

about the linear transport equation in M (RN) (on page 103):

Corollary 65. For any functions a(·),b(·),c(·) ∈W 1,∞(R+
0 ) satisfying b(0) > 0,

a map ϑa,b,c : [0,1]×M (R+
0 ) −→M (R+

0 ) can be constructed in such a way that

ϑa,b,c(·,μ0) is a weak solution to the linear problem (2.3) for each μ0 ∈ M (R+
0 )

and the statements (i)–(vii) of Proposition 64 hold for all μ0,ν0 ∈ M (R+
0 ), t,h ∈

[0,1], ã, b̃, c̃ ∈W 1,∞(R+
0 ) with t +h≤ 1, b̃(0) > 0.

In terms of the mutational framework, we have obtained the following statement as
main result of § 2.6.2:

Corollary 66 (Transitions due to linear problem (2.3)).
For arbitrary functions a(·),b(·),c(·) ∈W 1,∞(R+

0 ) satisfying b(0) > 0, the corre-

sponding solution map of linear problem (2.3)

ϑa,b,c : [0,1]×M (R+
0 )−→M (R+

0 )

is a transition on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

with

α(ϑa,b,c; r) := 3 (‖a‖W 1,∞ +‖∂xb‖∞ +‖c‖W 1,∞)
β (ϑa,b,c; r) := C(‖a‖W 1,∞ ,‖b‖∞,‖c‖W 1,∞) · r

γ(ϑa,b,c) := 2 (‖a‖∞ +‖c‖∞)
D(ϑa,b,c, ϑ

ã,b̃,c̃
; r) ≤ ∥∥(a,b,c) − (ã, b̃, c̃)

∥∥
∞ · Ĉ r

From now on, the set of these transitions on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

is abbreviated

as Θ
(
M (R+

0 ), ρM , | · |(R+
0 )
)
.

The proofs about the linear population model

Proof (of Lemma 61 on page 116).

We start with the proof of integral characterization (2.5). Fix t > 0 arbitrarily. For
any b̃∈C1(R+

0 )∩W 1,∞(R+
0 ), c̃∈W 1,∞(R+

0 ) and f̃ ∈W 1,∞(R+
0 × [0, t]) with b̃(0) < 0

and every ψ ∈C1(R+
0 ), the semilinear initial value problem{

∂τ ξ (x,τ) + b̃(x) ∂xξ (x,τ) + c̃(x) ξ (x,τ) + f̃ (x,τ) = 0 in R+
0 × [0, t]

ξ (·,0) = ψ in R+
0

has a unique solution ξ ∈C1(R+
0 × [0, t]) given explicitly by

ξ (x,τ) = ψ
(
X−b̃

(τ,x)
) · e

−∫ τ
0 c̃(X−b̃

(τ−r,x)) dr

−
∫ τ

0
f̃
(
X−b̃

(τ− s,x), s
) · e

−∫ τ
s c̃(X−b̃

(τ−r,x)) dr
ds.

This explicit representation of ξ (x,τ) results from the classical method of charac-
teristics. It was presented by Conway [37] for the corresponding problem in Rn,
instead of R+

0 . Since b̃(0) < 0, i.e., R+
0 is invariant under the characteristic flow of

−b̃(·), the expression obtained in [37] can be restricted to R+
0 .
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Substituting ϕ(x,τ) := ξ (x, t − τ) yields the solution to the corresponding partial
differential equation with an end-time condition and the coefficients b(·) and c(·)
satisfying b(0) > 0. Indeed, let t > 0, b ∈C1(R+

0 )∩W 1,∞(R+
0 ), c ∈W 1,∞(R+

0 ) and
f ∈W 1,∞(R+

0 × [0, t]) be arbitrary with b(0) > 0. For any function ψ ∈C1(R+
0 ),

the semilinear partial differential equation{
∂τ ϕ(x,τ) + b(x) ∂xϕ(x,τ) + c(x) ϕ(x,τ) + f (x,τ) = 0 in R+

0 × [0, t],
ϕ(·, t) = ψ in R+

0 ,

has a unique solution ϕ ∈C1(R+
0 × [0, t]) explicitly given by

ϕ(x,τ) = ψ
(
Xb(t− τ,x)

) · e
∫ t

τ c(Xb(r−τ,x)) dr

+
∫ t

τ
f
(
Xb(s− τ,x), s

) · e
∫ s

τ c(Xb(r−τ,x)) dr ds.

Applying this result to f (x,τ) = a(x) ϕ(0,τ), we obtain the equivalence between
equations (2.4) and (2.5) for every function ϕ ∈C1(R+

0 × [0, t]) (with Lipschitz con-
tinuous ϕ(0, ·) : [0, t]−→ R).

Now we proceed with the proof of the statements (i)–(v) of Lemma 61:

(i) Volterra equation (2.6) results directly from equation (2.5) by setting x = 0.
The upper bound of |ϕ(0, ·)|, restricted to [0, t], is a consequence of

|ϕ(0,τ)| e‖c‖∞ τ ≤ sup
z≤‖b‖∞ t

|ψ(z)| e‖c‖∞ t + ‖a‖∞

∫ t

τ
|ϕ(0,s)| e‖c‖∞ sds

and Gronwall’s Lemma (Proposition A.1 on page 351).
Moreover, the right-hand side of Volterra equation (2.6) is continuously differen-
tiable with respect to τ and thus, ϕ(0, ·) ∈C1([0, t]). The product rule reveals that at
every time τ ∈ [0, t]∣∣ d

dτ ϕ(0,τ)
∣∣ ≤

≤ e‖c‖∞ (t−τ)
(
‖∂xψ‖∞ · ‖b‖∞ + ‖ψ‖∞

(
‖c‖∞ +(t− τ) · ‖∂xc‖∞ · ‖b‖∞

))
+ e‖c‖∞ (t−τ)

(
‖a‖∞ ‖ϕ(0, ·)‖∞ + (t−τ) ·

(
‖∂xa‖∞ · ‖b‖∞ ‖ϕ(0, ·)‖∞+

‖a‖∞ ‖ϕ(0, ·)‖∞

(
‖c‖∞+ t · ‖∂xc‖∞ ‖b‖∞

)))
.

(ii) For arbitrarily fixed x ∈ R+
0 , ϕ(x, ·) : [0, t] −→ R is continuously differen-

tiable since it satisfies the integral equation (2.5) and ϕ(0, ·) is continuous. The
upper bound of the derivative ‖∂τ ϕ(x, ·)‖∞ results from considerations similar to
those conclusions concerning sup |∂τ ϕ(0, ·)| in statement (i).

(iii) The upper bound of ‖ϕ(·,τ)‖∞ results directly from the integral equa-
tion (2.5) and property (i)
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‖ϕ(·,τ)‖∞

≤ ‖ψ‖∞

(
e‖c‖∞ t +

∫ t

0
‖a‖∞·(1+‖a‖∞ s) e(‖a‖∞+‖c‖∞) ·s · e‖c‖∞ s ds

)
≤ ‖ψ‖∞

(
e‖c‖∞ t + ‖a‖∞

∫ t

0
(1+(‖a‖∞ +2‖c‖∞) s) e(‖a‖∞+2‖c‖∞) ·s ds

)
= ‖ψ‖∞

(
e‖c‖∞ t + ‖a‖∞ t e(‖a‖∞+2‖c‖∞) · t

)
≤ ‖ψ‖∞ e(‖a‖∞+2‖c‖∞) · t

(
1 + ‖a‖∞ t

)
≤ ‖ψ‖∞ e(2‖a‖∞+2‖c‖∞) · t .
The last inequality results from 1 + s ≤ es for all s ≥ 0. The form of the right-hand
side of integral equation (2.5) ensures that ϕ(·,τ) : R+

0 −→ R is continuously dif-
ferentiable for every τ ∈ [0, t]. Furthermore, for every x ∈ R+

0 , the chain rule and
Lemma 59 (on page 116) imply∣∣∣ ∂

∂x
ϕ(x,τ)

∣∣∣ · e‖c‖∞ (τ−t) ≤
≤ ‖∂xψ‖∞ · ‖∂xXb(t−τ, ·)‖∞ + ‖ψ‖∞

∫ t

τ
‖∂xc‖∞ · ‖∂xXb(r−τ, ·)‖∞ dr

+
∫ t

τ

(
‖∂xa‖∞ · ‖∂xXb(s−τ, ·)‖∞ + ‖a‖∞

∫ s

τ
‖∂xc‖∞ · ‖∂xXb(r−τ, ·)‖∞ dr

)
|ϕ(0,s)| ds,

and thus due to property (i),

‖∂xϕ‖∞ ≤ ‖∂xψ‖∞e(‖∂xb‖∞+‖c‖∞) t +‖ψ‖∞ ‖∂xc‖∞ e(‖∂xb‖∞+‖c‖∞) t t

+ ‖ψ‖∞ e(2‖a‖∞+‖∂xb‖∞+2‖c‖∞) t
(
‖∂xa‖∞ t +‖a‖∞‖∂xc‖∞

t2

2

)
≤ max{‖∂xψ‖∞,1} e(2‖a‖∞+‖∂xb‖∞+2‖c‖∞) t(

1+‖ψ‖∞ (‖∂xc‖∞ +‖∂xa‖∞) t + ‖ψ‖∞ ‖a‖∞ ‖∂xc‖∞
t2

2

)
≤ max{‖∂xψ‖∞,1} · emax{‖ψ‖∞,1} ·3 (‖a‖

W1,∞ +‖∂xb‖∞+‖c‖
W1,∞ ) t .

(iv) Volterra equation (2.6) has a unique continuous solution, since the integrand
is Lipschitz continuous with respect to ϕ(0,s) [133, 140]. It induces directly the
unique continuously differentiable solution to equation (2.5) and thus equivalently
to dual problem (2.4).

(v) This feature results from differentiating equation (2.5) with respect to x.
Indeed, due to Lemma 59 (on page 116), the functions [0,T ]−→R, t �−→ ∂x Xb(t,x)
are uniformly Lipschitz continuous for all x ∈ R+

0 . �

Proof (of Proposition 62 on page 117).

(i) Choose arbitrary 0≤ s < t ≤ T and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ).
Let ξ ∈C1(R+

0 × [0,s]) denote a solution to the semilinear differential equation

∂τ ξ +b(x)∂x ξ + c(x)ξ +a(x)ξ (0,τ) = 0 in R+
0 × [0,s],

ξ (·,s) = ϕt,ψ(·,s) in R+
0 ,
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or (as an equivalent formulation) to the integral equation for (x,τ) ∈ R+
0 ×[0,s]

ξ (x,τ) = ϕt,ψ
(
Xb(s− τ,x), s

) · e
∫ s

τ c(Xb(r−τ,x))dr

+
∫ s

τ
a(Xb(σ − τ,x)) ξ (0,σ) e

∫ σ
τ c(Xb(r−τ,x))dr dσ .

According to Lemma 61 (iv), such a solution exists and is unique since ϕt,ψ(·,s) is
continuously differentiable and bounded in W 1,∞(R+

0 ). Thus, ξ ≡ ϕt,ψ(·, ·)|R+
0 ×[0,s]

and, using the duality formula (2.7), we conclude that∫
R+

0

ψ(x) dμt(x) =
∫

R+
0

ϕt,ψ(x,0) dμ0(x)

=
∫

R+
0

ξ (x,0) dμ0(x) =
∫

R+
0

ϕt,ψ(x,s) dμs(x).

(ii) The total variation of μt can be characterized as a supremum [4, Proposi-
tion 1.47]. Therefore, due to Lemma 61 (iii),

|μt |(R+
0 ) = sup

{∫
R+

0

u(x) d μt(x)
∣∣∣ u ∈C0

c (R+
0 ), ‖u‖∞ ≤ 1

}
= sup

{∫
R+

0

u(x) d μt(x)
∣∣∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}
(2.7)
= sup

{∫
R+

0

ϕt,u(x,0) d μ0(x)
∣∣∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}
≤ sup

{
‖ϕt,u(·,0)‖∞ |μ0|(R+

0 )
∣∣∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}
≤ e2(‖a‖∞+‖c‖∞) · t |μ0|(R+

0 ).

Choosing arbitrary 0≤ s < t ≤ T and ψ ∈W 1,∞(R+
0 )∩C1(R+

0 ), we obtain∣∣∣∫
R+

0

ψ dμt −
∫

R+
0

ψ dμs

∣∣∣ = ∣∣∣∫
R+

0

ϕt,ψ(x,s) dμs(x) −
∫

R+
0

ϕt,ψ(x, t) dμs(x)
∣∣∣

≤
∫

R+
0

∣∣∣ϕt,ψ(x,s) − ϕt,ψ(x, t)
∣∣∣ d |μs|(x)

≤ (t− s) ‖∂τ ϕt,ψ‖∞ |μs|(R+
0 ).

Lemma 61 (ii) implies Lipschitz continuity due to ψ ∈W 1,∞(R+
0 ).

(iii) First we focus on autonomous functions ψ ∈C2(R+
0 )∩W 2,∞(R+

0 ) and prove

lim
h↓0

1
h
·
(∫

R+
0

ψ dμt −
∫

R+
0

ψ dμt−h

)
=
∫

R+
0

(
b ·∂xψ + c ψ + a ψ(0)

)
dμt

for any t ∈ ]0,T ]. Indeed, statement (i) implies for any 0 < h≤ t ≤ T

1
h
·
(∫

R+
0

ψ dμt −
∫

R+
0

ψ dμt−h

)
=
∫

R+
0

ϕt,ψ (x, t−h)− ψ(x)
h

dμt−h(x).

In particular, Lemma 61 (ii) and (v) provide upper bounds for the W 1,∞ norm of
R+

0 −→ R, x �−→ ϕt,ψ (x,t−h)− ψ(x)
h

which depend on ‖ψ‖W 2,∞ , but not on t,h:∥∥∥ϕt,ψ (·, t−h)− ψ(·)
h

∥∥∥
∞
≤ const(‖a‖W 1,∞ , ‖b‖∞, ‖c‖W 1,∞ , T ) · ‖ψ‖W 1,∞ ,∥∥∥ ∂x ϕt,ψ (·, t−h)− ∂x ψ(·)

h

∥∥∥
∞
≤ const(‖a‖W 1,∞ , ‖b‖W 1,∞ , ‖c‖W 1,∞ , T, ‖ψ‖W 2,∞).



2.6 Example: A structured population model with Radon measures over R+
0 = [0,∞[ 123

Hence property (ii) provides a constant C(‖a‖W 1,∞ ,‖b‖W 1,∞ ,‖c‖W 1,∞ ,‖ψ‖W 2,∞ ,T )
such that for every h ∈ ]0, t],∣∣∣ 1h (∫

R+
0

ψ dμt −
∫

R+
0

ψ dμt−h

)
−
∫

R+
0

ϕt,ψ (x, t−h)− ψ(x)
h

dμt(x)
∣∣∣ ≤ C ·h · |μ0|(R+

0 ).

In regard to the limit for h ↓ 0, we conclude from ϕt,ψ ∈C1(R+
0 × [0, t]) solving the

dual problem (2.4)

lim
h↓0

1
h
·
(∫

R+
0

ψ dμt −
∫

R+
0

ψ dμt−h

)
= lim

h↓0

∫
R+

0

ϕt,ψ (x, t−h)− ψ(x)
h

dμt(x)

=
∫

R+
0

(
b ·∂xψ + c ψ + a ψ(0)

)
dμt .

Finally we will provide the missing link to weak solutions to the linear prob-
lem (2.3) in the sense of Definition 57 (on page 115). Indeed, for an arbitrary test
function ϕ ∈C∞

c (R+
0 × [0,T ]), the auxiliary function

ζ : [0,T ]× [0,T ] −→ R, (s, t) �−→
∫

R+
0

ϕ(x, t) dμs(x)

has continuous partial derivatives
∂
∂ s

ζ (s, t) =
∫

R+
0

(
b ·∂x ϕ(·, t) + c ϕ(·, t) + a ϕ(0, t)

)
dμs

∂
∂ t

ζ (s, t) =
∫

R+
0

∂tϕ(x, t) dμs(x).

Hence, ζ (·, ·) ∈C1([0,T ]× [0,T ]). Due to the chain rule, the function [0,T ]−→ R,
t �−→ ζ (t, t) is continuously differentiable with

d
d t

ζ (t, t) =
∫

R+
0

(
b ·∂x ϕ(·, t) + c ϕ(·, t) + a ϕ(0, t)

)
dμt +

∫
R+

0

∂tϕ(·, t) dμt .

Thus, μ(·) satisfies the integral condition on weak solutions for all smooth test func-
tions ϕ ∈ C∞

c (R+
0 × [0,T ]). This property is easy to extend to all test functions

ϕ ∈ C1(R+
0 × [0,T ])∩W 1,∞(R+

0 × [0,T ]) by means of continuity with respect to
W 1,∞ norm.

(iv) supp φ ⊂ [‖b‖∞ t,∞
[

implies ‖ϕt,φ (0, ·)‖∞ = 0 due to Lemma 61 (i). Hence
the integral equation (2.5) for ϕt,φ simplifies to

ϕt,φ (x,τ) = φ (Xb(t− τ,x)) e
∫ t

τ c(Xb(r−τ,x))dr

for all x ∈ R+
0 and τ ∈ [0, t]. Finally, we conclude for φ̃(x) := supz≤x φ(z)

e‖c‖∞ t

∫
R+

0

φ̃(x+ t ‖b‖∞) d|μ0|(x) ≥
∫

R+
0

φ̃(Xb(t,x)) e
∫ t

0 c(Xb(r,x))dr d|μ0|(x)

≥
∫

R+
0

φ(Xb(t,x)) e
∫ t

0 c(Xb(r,x))dr d μ0(x)

=
∫

R+
0

ϕt,φ (x,0) dμ0(x) =
∫

R+
0

φ(x) dμt(x).

�
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Proof (of Corollary 63 on page 118). The construction of μt using equation (2.7)
implies that nonnegativity of measures is preserved if we can ensure that

ψ(·) ≥ 0 =⇒ ϕt,ψ(·,0) ≥ 0.

Setting x = 0 in the integral characterization (2.5) of ϕt,ψ leads to the Volterra equa-
tion (2.6) for ϕt,ψ(0, ·). In particular, supposing ψ(·)≥ 0 implies

ϕt,ψ(0,τ) ≥
∫ t

τ
a(Xb(s− τ,0)) ϕt,ψ(0,s) e

∫ s
τ c(Xb(r−τ,0))dr ds.

The additional hypothesis a(·)≥ 0 guarantees for all τ ∈ [0, t]

min
{

0, ϕt,ψ(0,τ)
}

≤ min
{

0,
∫ t

τ
a
(
Xb(s− τ,0)

)
ϕt,ψ(0,s) e

∫ s
τ c(Xb(r−τ,0))dr ds

}
≤

∫ t

τ
a
(
Xb(s− τ,0)

)
min
{

0, ϕt,ψ(0,s)
}

e
∫ s

τ c(Xb(r−τ,0)) dr ds.

and, we conclude from Gronwall’s Lemma (Proposition A.1 on page 351) that
ϕt,ψ(·, t) = ψ(·)≥ 0 implies min

{
0, ϕt,ψ(0, ·)} ≡ 0, i.e. ϕt,ψ(0, ·)≥ 0. �

The next lemma is very useful for proving Proposition 64 (vi) afterwards. Indeed, it
provides a link between two solutions to the dual problems for different coefficient
functions a(·),b(·),c(·) and ã(·), b̃(·), c̃(·) respectively. Appropriate convex combi-
nations lay the foundations:

Lemma 67. Suppose a, ã, c, c̃ ∈ W 1,∞(R+
0 ), b, b̃ ∈ C1(R+

0 )∩W 1,∞(R+
0 ) with

b(0) > 0 and b̃(0) > 0. Fixing t ∈ ]0,1], λ ∈ [0,1] and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 )
arbitrarily, let ϕλ ∈C0(R+

0 × [0, t]) satisfy the integral equation

ϕλ (x,τ) = ψ
∣∣∣
(λ Xb(t−τ,x)+(1−λ ) X

b̃
(t−τ,x))

e
∫ t

τ(λ c(Xb(r−τ,x))+(1−λ ) c̃(X
b̃
(r−τ,x)))dr

+
∫ t

τ

(
λ a(Xb(s− τ,x))+(1−λ ) ã

(
X

b̃
(s− τ,x)

)) · ϕλ (0,s) ·

· e
∫ s

τ (λ c(Xb(r−τ,x))+(1−λ ) c̃(X
b̃
(r−τ,x)))dr

ds. (2.9)

Then, λ �−→ϕλ (x,τ) is continuously differentiable for every x∈R+
0 and τ ∈ [0, t]

and there is a constant C =C(‖a‖W 1,∞ , ‖ã‖W 1,∞ , ‖b‖W 1,∞ , ‖b̃‖W 1,∞ , ‖c‖W 1,∞ , ‖c̃‖W 1,∞)
such that ∣∣∣ ∂

∂ λ ϕλ (x,τ)
∣∣∣ ≤ C · max{‖ψ‖∞,‖∂xψ‖∞,1} · (t− τ) eC (t−τ) ·

· (‖a− ã‖∞ +‖b− b̃‖∞ +‖c− c̃‖∞
)
.
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Proof (of Lemma 67). Similarly to Lemma 61 (on page 116),

[0, t]−→ R, τ �−→ ϕλ (0,τ)

is a bounded and Lipschitz continuous solution to the following inhomogeneous
Volterra equation of the second type

ϕλ (0,τ) = ψ
∣∣∣
(λ Xb(t−τ,0)+(1−λ ) X

b̃
(t−τ,0))

e
∫ t

τ(λ c(Xb(r−τ,0))+(1−λ ) c̃(X
b̃
(r−τ,0)))dr

+
∫ t

τ

(
λ a(Xb(s− τ,0))+(1−λ ) ã

(
X

b̃
(s− τ,0)

)) · ϕλ (0,s) ·
· e
∫ s

τ (λ c(Xb(r−τ,0))+(1−λ ) c̃(X
b̃
(r−τ,0)))dr

ds.

The bounds on the L∞ norm and the Lipschitz constant mentioned in Lemma 61 (i)
can be adapted by considering max{‖a‖W 1,∞ ,‖ã‖W 1,∞} instead of ‖a‖W 1,∞ and so
forth.
Furthermore, ϕλ (0,τ) depends on λ in a continuously differentiable way [140, § 13]
and, using the abbreviations â := max{‖a‖∞, ‖ã‖∞}, ĉ := max{‖c‖∞,‖c̃‖∞},∣∣∣ ∂

∂ λ ϕλ (0,τ)
∣∣∣ e− ĉ·(t−τ)

≤
(
‖∂xψ‖∞ · ∣∣Xb(t− τ,0)−X

b̃
(t− τ,0)

∣∣+
‖ψ‖∞ · (t− τ) (‖c− c̃‖∞ +‖∂xc‖∞ · sup

[τ,t]

∣∣Xb|(·−τ,0)−X
b̃
|(·−τ,0)

∣∣))
+
∫ t

τ

(
|ϕλ (0,s)| (‖a− ã‖∞ +‖∂xa‖∞ ·

∣∣Xb(s− τ,0)−X
b̃
(s− τ,0)

∣∣) +

|∂λ ϕλ (0,s)| â +
|ϕλ (0,s)| â · (s− τ)

(‖c− c̃‖∞+‖∂xc‖∞ sup
[τ,s]

|Xb|(·−τ,0)−X
b̃
|(·−τ,0)|

))
ds.

Lemma 59 (on page 116) provides the estimate

‖Xb(s, ·)−X
b̃
(s, ·)‖∞ ≤ ‖b− b̃‖∞ · s e‖∂xb‖∞s

for all s≥ 0 and thus, Gronwall’s Lemma implies the bound∣∣∣ ∂
∂ λ ϕλ (0,τ)

∣∣∣ ≤ C0 · max
{‖ψ‖∞, ‖∂xψ‖∞, 1

} · (t− τ) eC0 (t−τ)

· (‖a− ã‖∞ +‖b− b̃‖∞ +‖c− c̃‖∞
)

with a constant C0 = C0(‖a‖W 1,∞ , ‖ã‖W 1,∞ , ‖b‖W 1,∞ , ‖b̃‖W 1,∞ , ‖c‖W 1,∞ , ‖c̃‖W 1,∞).
Integral equation (2.9) ensures that ϕλ (x,τ) is continuously differentiable with
respect to the parameter λ . Similarly to the preceding estimate of

∣∣∣ ∂
∂ λ ϕλ (0,τ)

∣∣∣,
the differentiation of equation (2.9) yields for all x ∈ R+

0 , τ ∈ [0, t]∣∣∣ ∂
∂ λ ϕλ (x,τ)

∣∣∣ ≤ C · max{‖ψ‖∞,‖∂xψ‖∞,1} · (t− τ) eC (t−τ) ·
· (‖a− ã‖∞ +‖b− b̃‖∞ +‖c− c̃‖∞

)
.

with a constant C = C(‖a‖W 1,∞ , ‖ã‖W 1,∞ , ‖b‖W 1,∞ , ‖b̃‖W 1,∞ , ‖c‖W 1,∞ , ‖c̃‖W 1,∞). �
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Proof (of Proposition 64 on page 118). (i) It is a consequence of equation (2.7)
in Proposition 62 (on page 117).

(ii) It results from equation (2.8) in Proposition 62 (i), which can be written in the
form∫

R+
0

ψ(x) dμt+h(x) =
∫

R+
0

ϕt+h,ψ(x, t) dμt(x) =
∫

R+
0

ϕh,ψ(x,0) dμt(x).

for every ψ ∈ C1(R+
0 )∩W 1,∞(R+

0 ). In particular, ϕt+h,ψ(·, t) ≡ ϕh,ψ(·,0) results
from partial differential equation (2.4) characterizing ϕh,ψ since all its coefficients
are autonomous.

(iii) It has already been verified in Proposition 62 (ii).

(iv) It results directly from Proposition 62 (ii) and the definition of ρM (·, ·):
ρM

(
ϑa,b,c(t,μ0),ϑa,b,c(t +h,μ0)

)
=

= sup
{∫

R+
0

ψ d
(
ϑa,b,c(t +h,μ0)−ϑa,b,c(t,μ0)

) ∣∣∣
ψ ∈C1(R+

0 ), ‖ψ‖∞ ≤ 1, ‖∂xψ‖∞ ≤ 1
}

≤ const
(‖a‖W 1,∞ , ‖b‖∞, ‖c‖W 1,∞

) · |μ0|(R+
0 ) · h.

(v) Choose any ψ ∈ C1(R+
0 ) with ‖ψ‖∞ ≤ 1 and ‖∂xψ‖∞ ≤ 1. Employing the

notation of Proposition 62, we obtain∫
R+

0

ψ d
(

ϑa,b,c(h,μ0) − ϑa,b,c(h,ν0)
)

=
∫

R+
0

ϕh,ψ(x,0) d (μ0−ν0)(x),

and, due to Lemma 61 (iii), x �−→ ϕh,ψ(x, t) is continuously differentiable with

‖ϕh,ψ(·, t)‖∞ ≤ e2(‖a‖∞+‖c‖∞) h,

‖∂x ϕh,ψ(·, t)‖∞ ≤ e3 (‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) h.

Therefore, Proposition 42 (i) concerning the W 1,∞ dual metric ρM (·, ·) (on page 98)
implies∫

R+
0

ϕh,ψ(·,0) d (μ0−ν0)

≤ ρM (μ0,ν0) max
{

e2(‖a‖∞+‖c‖∞) h, e3 (‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) h
}

≤ ρM (μ0,ν0) e3 (‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) h

and thus,

ρM

(
ϑa,b,c(h,μ0), ϑa,b,c(h,ν0)

) ≤ ρM (μ0,ν0) e3 (‖a‖
W1,∞ +‖∂xb‖∞+‖c‖

W1,∞ ) h.

(vi) It is based on the estimate in Lemma 67 (on page 124) and therefore it uses
notation ϕλ (·, ·) for some arbitrary ψ ∈ C1(R+

0 ) with ‖ψ‖∞ ≤ 1, ‖∂x ψ‖∞ ≤ 1
(see equation (2.9)). Indeed, Proposition 62 (on page 117) implies that for every
μ0 ∈M (R+

0 ) and t ∈ [0,1]
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R+
0

ψ d
(

ϑa,b,c(t,μ0)−ϑ
ã,b̃,c̃

(t,μ0)
)

=
∫

R+
0

(
ϕ1(x,0)−ϕ0(x,0)

)
dμ0(x)

=
∫

R+
0

∫ 1

0

∂
∂ λ ϕλ (x,0) dλ dμ0(x).

Lemma 67 guarantees that for every x ∈ R+
0∣∣∣ ∂

∂ λ ϕλ (x,0)
∣∣∣ ≤ C · t eC t · (‖a− ã‖∞ +‖b− b̃‖∞ +‖c− c̃‖∞

)
,

with a constant C = C(‖a‖W 1,∞ , ‖ã‖W 1,∞ , ‖b‖W 1,∞ , ‖b̃‖W 1,∞ , ‖c‖W 1,∞ , ‖c̃‖W 1,∞).
Now we obtain uniformly for all ψ ∈C1(R+

0 ) with ‖ψ‖∞ ≤ 1, ‖∂x ψ‖∞ ≤ 1∫
R+

0

ψ d
(
ϑa,b,c(t,μ0)−ϑ

ã,b̃,c̃
(t,μ0)

) ≤ C · t eC t · |μ0|(R+
0 ) ·(‖a− ã‖∞ +‖b− b̃‖∞ +‖c− c̃‖∞

)
.

(vii) If additionally a(·) ≥ 0, then nonnegative initial measures lead to solutions
with nonnegative values in M (R+

0 ) according to Corollary 63 (on page 118). �

Proof (of Corollary 65 on page 119).

The solution map ϑa,b,c : [0,1]×M (R+
0 )−→M (R+

0 ) is continuous with respect to
the coefficients

(
a(·),b(·),c(·)). In particular, Proposition 64 (vi) (on page 118) in-

dicates that the distance between two solutions to the problem with the same initial
data but a different coefficient b(·) can be estimated by the L∞ norm of the differ-
ence in the values of b.
Therefore, we can extend our obtained results to the problems with coefficients
b(·)∈W 1,∞(R+

0 )\C1(R+
0 ). Indeed, C1(R+

0 )∩W 1,∞(R+
0 ) is dense in W 1,∞(R+

0 ) with
respect to the L∞ norm and thus, any b(·) ∈W 1,∞(R+

0 ) can be approximated by a
sequence

(
bn(·))

n∈N
in C1(R+

0 )∩W 1,∞(R+
0 ) converging to b(·) in L∞(R+

0 ).
According to Proposition 42 (3.) (on page 98), the subset of Radon measures{

μ ∈M (R+
0 )
∣∣ |μ|(R+

0 ) ≤ r
}

(with arbitrary r > 0) is complete with respect to the
W 1,∞ dual metric ρM and, the sequence of solutions ϑa,bn,c(t,μ0), n ∈ N, has uni-
formly bounded variation due to Proposition 64 (iii) (on page 118). The Cauchy
sequence

(
ϑa,bn,c(t,μ0)

)
n∈N

has a limit ϑa,b,c(t,μ0) ∈M (R+
0 ).

As a consequence, we can extend Proposition 64 to coefficients b(·) ∈W 1,∞(R+
0 )

with b(0) > 0. �

2.6.3 Conclusions about the full nonlinear population model

As main result of § 2.6.2, the linear population model (2.3) provides transitions
ϑa,b,c(·, ·) on the tuple

(
M (R+

0 ), ρM , | · |(R+
0 )
)

and, Corollary 66 (on page 119)
specifies the underlying parameters of continuity.
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Now we pass to the nonlinear problem⎧⎪⎪⎨⎪⎪⎩
∂t μt + ∂x (F2(μt , t) μt) = F3(μt , t) μt in R+

0 × [0,T ]

F2(μt , t)(0) μt(0) =
∫

R+
0

F1(μt , t)(x) dμt(x) in ]0,T ]

μ0 = ν0

(2.10)

with F : M (R+
0 )× [0,T ]−→{(a,b,c) ∈W 1,∞(R+

0 )3 | b(0) > 0
}

and ν0 ∈M (R+
0 )

given.
Due to Definition 57 (on page 115), μ : [0,T ] −→ M (R+

0 ), t �−→ μt is regarded
as a weak solution to this nonlinear problem (2.10) if it is narrowly continuous and
satisfies for every test function ϕ ∈C1(R+

0 × [0,T ])∩W 1,∞(R+
0 × [0,T ])∫

R+
0

ϕ(x,T ) dμT (x) −
∫

R+
0

ϕ(x,0) dν0(x) =

=
∫ T

0

∫
R+

0

(
∂tϕ(x, t) + ∂xϕ(x, t) ·F2(μt , t)(x) + ϕ(x, t) ·F3(μt , t)(x)

)
dμt(x) dt

+
∫ T

0
ϕ(0, t) ·

∫
R+

0

F1(μt , t)(x) dμt(x) dt.

Mutational equations (presented in § 2.3) serve as tools for proving existence, stabil-
ity and uniqueness of weak measure-valued solutions to problem (2.10). In particu-
lar, we have to focus again on the relationship between solutions to the mutational
equation in

(
M (R+

0 ), ρM , | · |(R+
0 )
)

and weak solutions to the nonlinear prob-
lem (2.10) (in the sense of distributions).
Let us formulate the main results of this section before giving all proofs in detail:

Lemma 68. The tuple
(
M (R+

0 ), ρM , | · |(R+
0 ), Θ

(
M (R+

0 ), ρM , | · |(R+
0 )
))

is

Euler compact in the sense of Definition 15 (on page 78) :

For any initial measure μ0 ∈M (R+
0 ), time T ∈ ]0,∞[ and bound M > 0, let N =

N (μ0,T,M) denote the set of all measure-valued functions μ : [0,T ]−→M (R+
0 )

constructed in the following piecewise way: For any finite equidistant partition

0 = t0 < t1 < .. . < tn = T of [0,T ] and n tuples {(an
j ,b

n
j ,c

n
j)}n

j=1 ⊂ W 1,∞(R+
0 )3

with bn
j(0) > 0, ‖an

j‖W 1,∞ +‖bn
j‖W 1,∞ +‖cn

j‖W 1,∞ ≤M for each j = 1 . . . n

define μ :]0,T ]−→M (R+
0 ), t �−→ μt by

μt := ϑan
j ,b

n
j ,c

n
j

(
t− t j−1, μt j−1

)
for t ∈ ]t j−1, t j], j = 1 . . . n.

Then for each t ∈ [0,T ], the union of all images {μt | μ ∈N } ⊂M (R+
0 ) is tight

and relatively compact in the metric space (M (R+
0 ),ρM ).

Proposition 69 (Solutions to the underlying mutational equation).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞.

(ii) F : (M (R+
0 ),ρM )× [0,T ] −→ (

W 1,∞(R+
0 )3,‖ · ‖∞

)
is continuous.
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Then, for any initial Radon measure ν0 ∈ M (R+
0 ), there exists a solution μ :

[0,T ]−→M (R+
0 ), t �−→ μt to the mutational equation

◦
μ t � ϑF(μt ,t)

in
(
M (R+

0 ), ρM , | · |(R+
0 )
)

with μ0 = ν0 and tight values in M (R+
0 ), i.e.

(a) μ(·) is continuous with respect to ρM ,

(b) lim
h↓0

1
h
·ρM

(
ϑF1(μt ,t),F2(μt ,t),F3(μt ,t)(h,μt), μt+h

)
= 0 for L 1-a.e. t ∈ [0,T [,

(c) sup
0≤ t <T

|μt |(R+
0 ) < ∞.

If, in addition, ν0 ∈M +(R+
0 ) and F1(ν , t)(·)≥ 0 for every ν ∈M +(R+

0 ), t ∈ [0,T ],
then this solution μ(·) has values in M +(R+

0 ).

Furthermore every solution μ : [0,T ] −→ M (R+
0 ), t �−→ μt to this mutational

equation with tight values in M (R+
0 ) is a narrowly continuous weak solution to

nonlinear population model (2.10).

The continuity conditions on F : M (R+
0 )× [0,T ] −→ W 1,∞(R+

0 )3 can be formu-
lated for the narrow topology on M (R+

0 ) and, we obtain Theorem 55 (on page 113)
as a corollary:

Corollary 70 (Existence of solutions to nonlinear structured population model).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞.

(ii) F : (M (R+
0 ),narrow)× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞
)

is continuous.

Then, for any initial measure ν0 ∈ M (R+
0 ), there exists a narrowly continuous

weak solution μ : [0,T ]−→M (R+
0 ) to the nonlinear population model (2.10) with

μ(0) = ν0.
If, in addition, ν0 ∈M +(R+

0 ) and F1(ν , t)(·)≥ 0 for every ν ∈M +(R+
0 ), t ∈ [0,T ],

then the solution μ(·) has values in M +(R+
0 ).

Lipschitz continuity of the coefficient function F with respect to state measures
implies the opposite inclusion, i.e. every weak solution to population model (2.10)
is also solution to the corresponding mutational equation.

Proposition 71 (Weak solutions solve the mutational equation).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞.

(ii) F : (M (R+
0 ),ρM )× [0,T ] −→ (

W 1,∞(R+
0 )3,‖ · ‖∞

)
is Lipschitz continuous.

Then every narrowly continuous weak solution μ : [0,T ] −→ M (R+
0 ), t �−→ μt to

the nonlinear population model (2.10) with tight values and supt |μt |(R+
0 ) < ∞

is a solution to the mutational equation
◦
μ t � ϑF(μt ,t) in

(
M (R+

0 ), ρM , | · |(R+
0 )
)
.
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We conclude uniqueness and stability of weak solutions directly from the more gen-
eral Proposition 11 (on page 74) and Gronwall’s inequality (Proposition A.2 on
page 352). As a consequence, we obtain the estimate stated already in Theorem 56
(on page 113):

Proposition 72 (Stability of weak measure-valued solutions).
Assume that for F,G : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3| b(0) > 0

}
,

(i) MF := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖F(μ, t)‖W 1,∞(R+

0 ) < ∞,

MG := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖G(μ, t)‖W 1,∞(R+

0 ) < ∞,

(ii) for any R > 0, there are a constant LR > 0 and a modulus of continuity ωR(·)
with ‖F(μ,s)−F(ν , t)‖∞ ≤ LR · ρM (μ,ν)+ωR(|t− s|)
for all μ,ν ∈M (R+

0 ) with |μ|(R+
0 ), |ν |(R+

0 )≤ R.

(iii) G : (M (R+
0 ),ρM )× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞) is continuous.

Let μ, ν : [0,T ] −→M (R+
0 ) denote ρM -continuous distributional solutions to the

nonlinear population model (2.10) for the coefficients F(·),G(·) respectively such

that supt |μt |(R+
0 ) < ∞, supt |νt |(R+

0 ) < ∞ and all their values are tight in M (R+
0 ).

Then there is C =C(MF ,MG, |μ0|(R+
0 ), |ν0|(R+

0 ))∈ [0,∞[ such that for all t ∈ [0,T ],

ρM (μt ,νt) ≤ (
ρM (μ0,ν0) + C t · sup ‖F(·, ·)−G(·, ·)‖L∞(R+

0 )
)

eC t .

Remark 73. Furthermore, Lemma 68 and Proposition 69 lay the foundations for
applying the mutational tools to a nonlinear population model with delay:⎧⎪⎪⎨⎪⎪⎩

∂t μt + ∂x

(
G2(μ|[t−τ, t], t) μt

)
= G3(μ|[t−τ, t], t) μt in R+

0 ×[0,T ]

G2(μ|[t−τ, t], t)(0) μt(0) =
∫

R+
0

G1((μ|[t−τ, t], t)(x) dμt(x) in ]0,T ]

μ|[−τ,0] = ν0

with given initial data ν0 ∈ BLip
(
[−τ,0], M (R+

0 ), ρM , | · |(R+
0 )
)

and

G : BLip
(
[−τ,0], M (R+

0 ), ρM , | · |(R+
0 )
)× [0,T ] −→ {

(a,b,c) ∈W 1,∞(R+
0 )3 |

b(0) > 0
}

for a fixed time interval [−τ,0] �= /0 (BLip is introduced in Definition 21 on page 86).
Indeed, ρM -continuous weak solutions are guaranteed by Proposition 22.

The proofs about the nonlinear population model

Proof (of Lemma 68 on page 128). Every subset of M (R+
0 ) with exactly one

Radon measure is tight, of course. Therefore, Remark 40 (3.) (on page 98) provides
a nondecreasing continuous function Ψ0 : R+

0 −→R+
0 with lim

x→∞
Ψ0(x) = ∞ such that∫

R+
0

Ψ0 d|μ0| < ∞.
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Setting x̄ := M T ≥ sup
j∈{1...n}

‖bn
j‖∞ T, let us define ψT : R+

0 −→ R as

ψT (x) :=
{

0 for x≤ x̄,
Ψ0(x)−Ψ0(x̄) for x > x̄.

Obviously, ψT (·) is continuous, nondecreasing and thus nonnegative. Considering
now any measure-valued function μ(·) ∈N , Proposition 62 (iv) implies a uniform
integral bound for any function φT ∈C0(R+

0 ) satisfying |φT | ≤ψT and for each time
t ∈ [0,T ]:∫

R+
0

φT dμt ≤ e‖c‖∞T

∫
R+

0

ψT d|μ0| ≤ e‖c‖∞T

∫
R+

0

Ψ0 d|μ0| < ∞

and thus
∫

R+
0

ψT d|μt | ≤ e‖c‖∞T

∫
R+

0

Ψ0 d|μ0| < ∞ .

Therefore, the set of all values {μ(t)| μ ∈N , t ∈ [0,T ]} ⊂M (R+
0 ) is tight due to

Remark 40 (3.) (on page 98).
Furthermore, all total variations |μt |(R+

0 ) are uniformly bounded, i.e.

sup μ∈N
t∈ [0,T ]

|μt |(R+
0 ) < ∞

as a consequence of Proposition 64 (iii), Corollary 65 and the piecewise construction
of each μ(·) ∈N . Finally the assertion about compactness follows from Proposi-
tion 42 (4.) (on page 98). �

Proof (of Proposition 69 on page 128).

Peano’s Theorem 18 (on page 80) guarantees the existence of a ρM -continuous
solution μ : [0,T ]−→M (R+

0 ), t �−→ μt to the mutational equation
◦
μ t � ϑF(μt ,t)

with μ0 = ν0. Its proof by means of Euler method reveals that the set of all its values
{μt | t ∈ [0,T ]} ⊂M (R+

0 ) is tight – as a consequence of Lemma 68.
Suppose in addition that F1(ν , t) ∈W 1,∞(R+

0 ) is nonnegative for any ν ∈M +(R+
0 ),

t ∈ [0,T ]. Then the piecewise Euler approximations used in Peano’s Theorem 18
have nonnegative values due to Corollary 63 (on page 118). As M +(R+

0 ) is closed
in (M (R+

0 ),ρM ), all values of the resulting solution μ are also in M +(R+
0 ).

For the last step, let μ : [0,T ] −→M (R+
0 ), t �−→ μt denote any solution to the

mutational equation
◦
μ t � ϑF(μt ,t)

with tight image in M (R+
0 ). Then μ : [0,T ] −→ M (R+

0 ) is narrowly continuous
due to Proposition 42 (2.) (on page 98).
We have to verify that μ is a distributional solution to the nonlinear model (2.10).
Similarly to the proof for the linear model in § 2.6.2 (Proposition 62 (iii) on
page 117), we first choose an arbitrary test function ψ ∈C∞

c (R+
0 ). Then,

Ψ : [0,T ]−→ R. t �−→
∫

R+
0

ψ(x) dμt(x)
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is continuous because Proposition 42 (1.) (on page 98) implies∣∣∣∫
R+

0

ψ dμt −
∫

R+
0

ψ dμs

∣∣∣ ≤ max
{

1, ‖ψ‖∞, ‖∂xψ‖∞
} · ρM (μt ,μs) .

The solution μ(·) is even Lipschitz continuous with respect to the W 1,∞ dual metric
ρM due to Lemma 10 (on page 73) and thus, Ψ is Lipschitz continuous.
At L 1-almost every time t ∈ [0,T [, the derivative of Ψ is

Ψ ′(t) = lim
h↓0

1
h
·
∫

R+
0

ψ d
(
ϑF(μt ,t)(h,μt)−μt

)
because Proposition 62 (iii) (on page 117) ensures∣∣∣∣∫

R+
0

ψ dμt+h −
∫

R+
0

ψ dμt −
∫

R+
0

ψ d
(
ϑF(μt ,t)(h,μt)−μt

)∣∣∣∣
=
∣∣∣∣∫

R+
0

ψ d
(
μt+h−ϑF(μt ,t)(h,μt)

)∣∣∣∣
≤ max{1, ‖ψ‖∞, ‖∂xψ‖∞} · ρM

(
μt+h, ϑF(μt ,t)(h,μt)

)
= o(h) for h ↓ 0.

The special form of ϑF(μt ,t)(h,μt) has the consequence

Ψ ′(t) = lim
h↓0

1
h
·
∫ h

0

∫
R+

0

(
ψ(0) · F1(μt , t)(x) +

∂xψ(x) · F2(μt , t)(x) +
ψ(x) · F3(μt , t)(x)

)
dϑF(μt ,t)(s,μt)(x) ds.

for L 1-almost every t ∈ [0,T [.
Finally, this derivative proves to be an integral just with the Radon measure μt :

Ψ ′(t) =
∫

R+
0

(
ψ(0) ·F1(μt , t)(x)+∂xψ(x) ·F2(μt , t)(x)+ψ(x) ·F3(μt , t)(x)

)
dμt(x).

Indeed, using the abbreviation M := sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞, Proposi-

tion 42 (1.) (on page 98) and Proposition 64 (iv) (on page 118) yield for any s∈ ]0,1]∣∣∣∫
R+

0

(
ψ(0) ·F1(μt , t)+∂xψ ·F2(μt , t)+ψ ·F3(μt , t)

)
d
(
ϑF(μt ,t)(s,μt) − μt

)∣∣∣
≤ const(M,‖ψ‖W 1,∞) · ρM

(
ϑF(μt ,t)(s,μt), μt

)
≤ const(M,‖ψ‖W 1,∞) · const(M,supτ |μτ |(R+

0 )) · s.

The last representation of Ψ ′(t) at L 1-almost every time t ∈ [0,T ] leads to∫
R+

0

ψ dμt −
∫

R+
0

ψ dν0 =

=
∫ t

0

∫
R+

0

(
ψ(0) ·F1(μt , t)+∂xψ ·F2(μt , t)+ψ ·F3(μt , t)

)
dμs ds

for every t ∈ [0,T ] and ψ ∈ C∞
c (R+

0 ). The more general interpretation of non-
linear equation (2.10) using nonautonomous test functions ϕ ∈ C1(R+

0 × [0,T ])∩
W 1,∞(R+

0 × [0,T ]) results from the chain rule and the continuity with respect to
W 1,∞ norm in exactly the same way as for Proposition 62 (iii) (on page 122 f.). �
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Proof (of Corollary 70 on page 129). Set M := sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν , t)‖W 1,∞ < ∞

as an abbreviation and, consider the subset N (ν0,T,M) of all Euler approximations
[0,T ] −→ M (R+

0 ) as specified in Lemma 68 (on page 128). In fact, the proof of
Lemma 68 (on page 130 f.) reveals that the subset

N[0,T ] :=
{

μt

∣∣ t ∈ [0,T ], μ(·) ∈N (ν0,T,M)
}⊂M (R+

0 )

is tight and has uniformly bounded total variations. Hence, narrow convergence and
W 1,∞ dual metric ρM induce the same topology on N[0,T ] ⊂M (R+

0 ) and, N[0,T ] is
relatively compact according to Proposition 42 (on page 98).
Let N[0,T ] ⊂M (R+

0 ) denote the closure of N[0,T ] with respect to ρM . In particular,
N[0,T ] supplied with the narrow topology is a compact topological space metrized
by ρM . Due to assumption (ii) of this Corollary 70, the restriction

F :
(
N[0,T ], ρM

)× [0,T ] −→ (
W 1,∞(R+

0 )3, ‖ · ‖∞
)

is continuous and, all corresponding transitions on
(
N[0,T ], ρM , | · |(R+

0 )
)

have
their values in N[0,T ]. This lays the basis for continuing with the same conclusions
as in Proposition 69 (on page 128). �

Proof (of Proposition 71 on page 129). Suppose that
F : (M (R+

0 ), ρM ) × [0,T ] −→ (
W 1,∞(R+

0 )3, ‖ · ‖∞
)

is Lipschitz continuous and bounded. Let μ : [0,T ]−→M (R+
0 ), t �−→ μt denote a

narrowly continuous weak solution to the nonlinear population model (2.10) with
tight values and sup

t∈ [0,T ]
|μt |(R+

0 ) < ∞.

As a consequence of Proposition 42 (2.) (on page 98), μ(·) is continuous with
respect to ρM . Now we still have to verify for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h
·ρM

(
ϑF(μt ,t)(h,μt), μt+h

)
= 0 .

Choosing any ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) with ‖ψ‖∞ ≤ 1, ‖∂xψ‖∞ ≤ 1, we conclude
from the definition of weak solution and Proposition 62 (on page 117 f.) respectively∣∣∣∫

R+
0

ψ d
(
ϑF(μt ,t)(h,μt) − μt+h

)∣∣∣
=
∣∣∣∫ t+h

t

(∫
R+

0

(
ψ(0) ·F1(μt , t) + ∂xψ ·F2(μt , t) + ψ ·F3(μt , t)

)
d μt −∫

R+
0

(
ψ(0) ·F1(μs,s) + ∂xψ ·F2(μs,s) + ψ ·F3(μs,s)

)
d μs

)
ds

∣∣∣
≤
∣∣∣∫ t+h

t

∫
R+

0

(
ψ(0) ·F1(μs,s) + ∂xψ ·F2(μs,s) + ψ ·F3(μs,s)

)
d
(
μt −μs

)
ds

∣∣∣
+ h · const

(‖ψ‖W 1,∞ , Lip F
) · (h + sup

t≤s≤ t+h

ρM (μs,μt)
) · |μt |(R+

0 )

≤ h · const
(‖ψ‖W 1,∞ , sup ‖F(·, ·)‖∞

) · sup
t≤s≤ t+h

ρM (μs,μt)

+ h · const
(‖ψ‖W 1,∞ , Lip F

) · (h + sup
t≤s≤ t+h

ρM (μs,μt)
) · |μt |(R+

0 )

= o(h) for h ↓ 0 uniformly with respect to ψ with ‖ψ‖∞ ≤ 1, ‖∇xψ‖∞ ≤ 1. �
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2.7 Example: Modified morphological equations for compact sets
via one-sided Lipschitz continuous maps of linear growth

In comparison to Aubin’s original suggestion in Chapter 1, the extensions of Chap-
ter 2 lay the basis for a more general type of morphological equations.

Indeed, in § 1.9, we have applied the (original) mutational framework to nonempty
compact subsets of the Euclidean space RN supplied with the Pompeiu-Hausdorff
distance dl and, we have used reachable sets of differential inclusions as so-called
morphological transitions. The set-valued maps in LIP(RN ,RN) have served as ap-
propriate right-hand side of these differential inclusions as specified in Proposi-
tion 1.53. According to Definition 1.49 (on page 46), a map F ∈ LIP(RN ,RN) is
characterized by the following two conditions:

1. F has nonempty compact values that are uniformly bounded in RN ,
2. F is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl.

Then, in § 1.10, the Lipschitz continuity has been weakened to one-sided Lipschitz
continuity in combination with upper semicontinuity. Indeed, the set-valued maps
F : RN � RN in OSLIP(RN ,RN) lead to differential inclusions whose reachable
sets are transitions on (K (RN),dl) as specified in Proposition 1.82 (on page 64).
According to Definition 1.79 (on page 63), every map F ∈ OSLIP(RN ,RN) has to
satisfy the following three conditions:

1. F has nonempty compact convex values that are uniformly bounded in RN ,
2. F is upper semicontinuous,
3. F is one-sided Lipschitz continuous, i.e. there exists L ∈ R such that for every

x,y ∈ RN , v ∈ F(x), there is some w ∈ F(y) with 〈x− y, v−w〉 ≤ L |x− y|2.
The condition of uniformly bounded values is still a severe restriction though.

In particular, the concept of Chapter 1 does not admit simple linear differential
inclusions in RN for transitions on K (RN). This obstacle is now overcome by
means of a linear growth condition (instead of a uniform bound):

Definition 74. LOSLIP(RN ,RN) consists of all set–valued maps F : RN � RN

satisfying the following four conditions:
1. F has nonempty compact convex values,
2. F is upper semicontinuous,
3. F is locally one-sided Lipschitz continuous, i.e. for each radius r > 0, there is

a constant Lr ∈ R such that for every x,y ∈ Br(0) ⊂ RN and v ∈ F(x), there
exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ Lr |x− y|2.
The smallest constant Lr ∈ R with this property is abbreviated as Lip F |Br

.

4. F has linear growth, i.e. there is a constant c≥ 0 satisfying for all x ∈ RN ,

supv∈F(x) |v| ≤ c · (1+ |x|).
The smallest constant c≥ 0 with this property is denoted by ‖F‖lg.
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Remark 75. Obviously, the following inclusions hold and are even strict:{
F ∈ LIP(RN ,RN)

∣∣ F has convex values
} ⊂ OSLIP(RN ,RN)
⊂ LOSLIP(RN ,RN).

The key advantage of the linear growth condition here is concluded from Gronwall’s
inequality in the subsequent lemma:

Definition 76. For any nonempty bounded subset K ⊂ RN , define

|K|∞ := sup
y∈K

|y| ∈ [0,∞[

Lemma 77. For every set-valued map F ∈ LOSLIP(RN ,RN) and any initial set

K0 ∈K (RN), the reachable set at each time t ≥ 0 fulfills∣∣ϑF(t,K0)
∣∣
∞ ≤ (|K0|∞ + ‖F‖lg t) · e‖F‖lg · t .

In particular, sup
t∈ [0,1]

∣∣ϑF(t,K0)
∣∣
∞ ≤ (|K0|∞ + ‖F‖lg) · e‖F‖lg .

Proof. For every point xt ∈ϑF(t,K0), there exists a solution x(·)∈W 1,1([0, t],RN)
to the differential inclusion x′(·)∈F(x(·)) a.e. satisfying x(0)∈K0, x(t) = xt . Then,
for every τ ∈ [0, t],∣∣x(τ)− x(0)

∣∣ ≤ ∫ τ

0
|F(x(s))|∞ ds ≤

∫ τ

0
‖F‖lg (1+ |x(s)|) ds

≤ ‖F‖lg τ (1+ |K0|∞) +
∫ τ

0
‖F‖lg

∣∣x(s)− x(0)
∣∣ ds

and, Gronwall’s Lemma (Proposition A.1 on page 351) implies∣∣x(t)− x(0)
∣∣ ≤ ‖F‖lg t (1+ |K0|∞) +

∫ t

0
e‖F‖lg ·(t−s) ‖F‖2

lg s (1+ |K0|∞) ds

= (1+ |K0|∞)
(
e‖F‖lg · t −1

)
,

|xt | ≤ |K|∞ + (1+ |K0|∞)
(
e‖F‖lg · t −1

)
≤ |K|∞ e‖F‖lg · t + ‖F‖lg t e‖F‖lg · t �

Proposition 78. Choosing arbitrary r,L > 0 and T > 0, set R := (r +L T ) eL T .

For any sets K1,K2 ∈K (RN) and set-valued maps F,G ∈ LOSLIP(RN ,RN) with⎧⎨⎩
K1,K2 ⊂ Br(0),

‖F‖lg, ‖G‖lg ≤ L,
Λ := max{Lip F |BR+1(0), Lip G|BR+1(0)} ∈ R

the reachable sets ϑF(t,K1), ϑG(t,K2) ⊂ RN are compact subsets of RN and, the

Pompeiu–Hausdorff distance between the reachable sets at time t ∈ [0,T ] satisfies

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞
(
F |BR+1(0), G|BR+1(0)

)) · eΛ t .
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Proof. Whenever compact initial sets K0,K1 are chosen within a ball Br(0)⊂RN

of arbitrarily fixed radius r > 0, Lemma 77 provides a joint a priori estimate for any
s, t ∈ [0,T ], i.e.∣∣ϑF(s,K0)

∣∣
∞,
∣∣ϑF(t,K1)

∣∣
∞ ≤ (

r +‖F‖lg T
)

e‖F‖lg T Def.= R.

Restricting now our considerations to BR+1(0)⊂RN , we can draw exactly the same
conclusions from Theorem A.49 (on page 385) as we have already done for

• Proposition 1.81 (on page 63) about transitions in OSLIP(RN ,RN) and for
• Proposition 1.50 (on page 46) about morphological transitions in LIP(RN ,RN)

by means of generalized Filippov’s Theorem A.6 respectively. �

In particular, each set-valued map in LOSLIP(RN ,RN) induces a transition on
(K (RN),dl, | · |∞) and, we identify the relevant parameters of continuity easily:

Proposition 79. For every set-valued map F ∈ LOSLIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

with ϑF(t,K) ⊂ RN denoting the reachable set of the initial set K ∈ K (RN) and

the differential inclusion x′ ∈ F(x) a.e. at time t is a transition on (K (RN),dl, | · |∞)
in the sense of Definition 2 (on page 70) with

α(ϑF ; r) := max
{

0, Lip F |Br+1(0)
}
,

β (ϑF ; r) := ‖F‖lg

(
1+(r +‖F‖lg) e‖F‖lg

)
,

γ(ϑF) := ‖F‖lg,

D(ϑF , ϑG; r) ≤ dl∞
(
F |Br+1(0), G|Br+1(0)

)
. �

As an abbreviation, we again identify each set-valued map F ∈ LOSLIP(RN ,RN)
with the corresponding transition ϑF : [0,1]×K (RN)−→K (RN).
Now evolving compact subsets of the Euclidean space RN are regarded in the recent
mutational framework for the tuple (K (RN),dl, | · |∞) and, the results of § 2.3 pro-
vide directly the counterparts of the propositions about existence and stability in
§ 1.10 (on page 64 ff.).

Proposition 80 (Peano’s Theorem for modified morphological equations).
For F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) and each radius r > 0 suppose

(1.) sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖lg +max{0, Lip F (M, t)
∣∣
Br(0)}

)
< ∞ ,

(2.) for L 1-almost every t ∈ [0,T ] and every set K ∈K (RN), the function(
K (RN), dl

)× [0,T ] −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

(M,s) �−→ F (M,s)
is continuous in (K, t).
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Then for every initial set K0 ∈ K (RN), there exists a solution K : [0,T ]� RN to

the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0, i.e. K(·) is bounded, continuous with respect to dl and satisfies

for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h
· dl
(
ϑF (K(t),t)(h, K(t)), K(t +h)

)
= 0

Proof results from Peano’s Theorem 18 for nonautonomous mutational equations
(on page 80) in combination with preceding Proposition 79. �

Proposition 81 (Cauchy–Lipschitz for modified morphological equations).
Suppose F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) to satisfy for each radius r > 0

(1.) α̂r := sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖lg +max{0, Lip F (M, t)
∣∣
Br(0)}

)
< ∞ ,

(2.) for L 1-almost every t ∈ [0,T ] and every set K ∈K (RN), the function(
K (RN), dl

)× [0,T ] −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

(M,s) �−→ F (M,s)
is continuous in (K, t),

(3.) there exists λr > 0 such that for L 1-almost every t ∈ [0,T ],(
K (RN), dl

) −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

M �−→ F (M, t)
is λr-Lipschitz continuous.

Then for every initial set K0 ∈K (RN), the solution K : [0,T ]�RN to the modified

morphological equation
◦
K (·) � F

(
K(·), ·) with K(0) = K0 exists and is unique.

Proof. Existence due to continuity has just been specified in Proposition 80.
Uniqueness of solutions results from Corollary 12 (on page 74). �

Proposition 82 (Continuity w.r.t. initial data and the right-hand side).
In addition to the assumptions of Proposition 81 about

F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN),
suppose for G : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) and each r > 0

sup
M, t

dl∞
(
F (M, t)|Br(0), G (M, t)|Br(0)

)
< ∞.

Consider any solutions K1(·),K2(·) : [0,T ]� RN to the modified morphological

equations { ◦
K1 (·) � F

(
K1(·), ·

)
◦
K2 (·) � G

(
K2(·), ·

)
with sup

{|K1(t)|∞, |K2(t)|∞
∣∣ t ∈ [0,T ]

}≤ R.
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Then the Pompeiu–Hausdorff distance of K1(t), K2(t) satisfies for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

) ≤
≤
(

dl
(
K1(0), K2(0)

)
+ t · sup

M, s

dl∞
(
F (M,s)|BR+1(0), G (M,s)|BR+1(0)

))
e(λR+α̂R) t .

Proof is an immediate consequence of Corollary 12 (on page 74). �

Proposition 83 (Existence of solutions under state constraints).
For F : K (RN)−→ LOSLIP(RN ,RN) and each radius r > 0 suppose

(1.) sup
M∈K (RN)

(‖F (M)‖lg +max{0, Lip F (M)
∣∣
Br(0)}

)
< ∞ ,

(2.) the function(
K (RN), dl

) −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

M �−→ F (M)
is continuous.

For the nonempty closed subset V ⊂ (K (RN), dl
)

assume the viability condition:

liminf
h↓0

1
h
· inf

N∈V
dl
(
ϑF (M)(h,M), N

)
= 0 for every M ∈ V .

Then every compact set K0 ∈ V is the initial compact set of at least one solution

K(·) : [0,1]−→K (RN) to the modified morphological equation
◦
K (·) � F

(
K(·))

with K(t) ∈ V for all t ∈ [0,1].

Proof. It is a corollary of Proposition 23 (on page 89). �

As a new result in comparison with § 1.10, we now obtain the existence of solutions
to modified morphological equations with delay additionally. Indeed, Proposition 22
(on page 86) implies the following statement:

Proposition 84 (Existence for modified morphological equations with delay).
Assume for some fixed τ > 0, the function

F : BLip
(
[−τ,0], K (RN); dl, | · |∞

)× [0,T ] −→ LOSLIP(RN ,RN)

and each radius r > 0 :
(1.) sup

M(·), t

(‖F (M(·), t)‖lg +max{0, Lip F (M(·), t)∣∣
Br(0)}

)
< ∞ ,

(2.) lim
n→∞

dl∞
(
F (Mn(·), tn)|Br+1(0), F (M(·), t)|Br+1(0)

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (Mn(·))n∈N, (tn)n∈N in

BLip
(
[−τ,0], K (RN); dl, | · |∞

)
and [0,T ] respectively satisfying

lim
n→∞

tn = t, lim
n→∞

sup
s∈ [−τ,0]

dl
(
Mn(s), M(s)

)
= 0.
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For every function K0(·) ∈ BLip
(
[−τ,0], K (RN); dl, | · |∞

)
, there exists a curve

K(·) : [−τ,T ]−→K (RN) with the following properties:

(i) K(·) ∈ BLip
(
[−τ,T ], K (RN); dl, | · |∞

)
,

(ii) for L 1–almost every t ∈ [0,T ], F
(
K(t + ·)∣∣[−τ,0], t

)
belongs to

◦
K (t),

(iii) K(·)∣∣[−τ,0] = K0(·).
In particular, the restriction K(·)∣∣[0,T ] is a solution to the modified morphological

equation
◦

K (t) � F
(
K(t + ·)∣∣[−τ,0], t

)
.

In § 1.9.3 and § 1.9.6 (on pages 50, 58 ff. respectively), we have discussed the
equivalence between solutions to morphological equations and reachable sets of
nonautonomous differential inclusions (whose set-valued right-hand side depends
on the wanted tube).
Then in § 1.10, this relationship is extended to modified morphological equations
by assuming continuity of set-valued maps additionally. It motivated the definition
of COSLIP(RN ,RN) as abbreviation used in Corollary 1.91 (on page 67).
The same additional hypothesis of continuity for all set-valued maps inducing tran-
sitions lays now the foundations for generalizing this equivalence once more – by
means of Proposition A.13 (on page 359).
First we introduce the following abbreviation:

Definition 85. CLOSLIP(RN ,RN) consists of all maps in LOSLIP(RN ,RN)
that are continuous in addition, i.e. every set-valued map F : RN � RN satisfying

1. F has nonempty compact convex values,

2. F is continuous,

3. F is locally one-sided Lipschitz continuous, i.e. for each radius r > 0, there is
a constant Lr ∈ R such that for every x,y ∈ Br(0) ⊂ RN and v ∈ F(x), there
exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ Lr |x− y|2.
4. F has linear growth, i.e. there is a constant c≥ 0 satisfying for all x ∈ RN ,

supv∈F(x) |v| ≤ c · (1+ |x|).

Proposition 86 (Modified morphological primitives as reachable sets).
For G : [0,T ] −→ CLOSLIP(RN ,RN) and each radius r > 0 suppose that

(1.) sup
t∈ [0,T ]

(‖G (t)‖lg +max{0, Lip G (t)
∣∣
Br(0)}

)
< ∞ ,

(2.) [0,T ]−→ (CLOSLIP(RN ,RN), dl∞
( · |Br+1(0), · |Br+1(0)

))
, t �−→ G (t)

is Lebesgue measurable.

Moreover define the set-valued map Ĝ : [0,T ]×RN � RN , (t,x) �→ G (t)(x).
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A tube K : [0,T ]� RN solves the modified morphological equation
◦
K (·) � G

( · )
if and only at every time t ∈ [0,T ], its compact value K(t)⊂ RN coincides with the

reachable set of the nonautonomous differential inclusion x′ ∈ Ĝ(·,x) a.e.

K(t) = ϑ
Ĝ

(
t, K(0)

)
.

Corollary 87 (Solutions to modified morphological equations as reachable sets).
Suppose F : K (RN)× [0,T ]−→ CLOSLIP(RN ,RN) to satisfy for each r > 0

(1.) sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖lg +max{0, Lip F (M, t)
∣∣
Br(0)}

)
< ∞ ,

(2.) F :
(
K (RN), dl

)× [0,T ]−→ (CLOSLIP(RN ,RN), dl∞
( · |Br+1(0), ·|Br+1(0)

))
,

is a Carathéodory function (i.e. here continuous with respect to the first argu-

ment and measurable with respect to time).

Then a continuous tube K : [0,T ]�RN is a solution to the modified morphological

equation
◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂RN coincides with the reachable

set of the initial set K(0)⊂ RN and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·)(x(·)).

Both the recent proposition and its corollary result from the following morpho-
logical features of reachable sets (in combination with uniqueness specified in
Proposition 81).

Lemma 88. In addition to the assumptions of Proposition 86 about G : [0,T ] −→
CLOSLIP(RN ,RN), define again Ĝ : [0,T ]×RN � RN , (t,x) �→ G (t)(x).

Then for every initial set K0 ∈K (RN), the reachable set

K(·) := ϑ
Ĝ
(·,K0) : [0,T ] −→ K (RN)

of the nonautonomous differential inclusion x′ ∈ Ĝ(·,x) a.e. is a solution to the

modified morphological equation
◦
K (·) � G

( · ).
Proof. It follows from Proposition A.13 (on page 359) in exactly the same way
as Lemma 1.58 (on page 51).
Indeed, K(·) := ϑ

Ĝ
(·,K0) : [0,T ] � RN has compact values and is Lipschitz con-

tinuous with respect to dl for the same reasons as in Proposition 79. In particular,
supt |K(t)|∞ < R for some R > 0 sufficiently large. Thus without loss of generality,
we can assume for Ĝ additionally that ‖Ĝ‖∞ ≤ supt ‖G (t)‖lg · (1+R) < ∞.
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Now Proposition A.13 guarantees a set J ⊂ [0,T ] of full Lebesgue measure (i.e.
L 1([0,T ]\ J) = 0) such that at every time t ∈ J and for any set M ∈K (RN),

1
h
· dl
(

ϑ
Ĝ(t+· , ·)(h, M),

⋃
x∈M

(
x + h · Ĝ(t,x)

)) −→ 0 for h ↓ 0.

Applying the same Proposition A.13 to the autonomous differential inclusion with
Ĝ(t, ·) : RN � RN and arbitrary t ∈ [0,T ], we obtain

1
h
· dl
(

ϑ
Ĝ(t, ·)(h, M),

⋃
x∈M

(
x + h · Ĝ(t,x)

)) −→ 0 for h ↓ 0.

Hence, the triangle inequality of dl implies for every t ∈ J and M ∈K (RN)
1
h
· dl
(

ϑ
Ĝ(t+· , ·)(h, M), ϑ

Ĝ(t, ·)(h, M)
)
−→ 0 for h ↓ 0,

i.e. for M := ϑ
Ĝ
(t,K0) ∈K (RN) and each t ∈ J,

1
h
· dl
(

ϑ
Ĝ
(t +h, K0), ϑG (t)

(
h, ϑ

Ĝ
(t,K0)

)) −→ 0 for h ↓ 0.

�





Chapter 3
Less restrictive conditions on distance functions:
Continuity instead of triangle inequality

In a word, the triangle inequality serves essentially the purpose to estimate the dis-
tance between two points by means of a third state. It might be regarded as one of
the simplest ways of providing such a relation.
The mutational framework, however, requires several parameters (for its transitions)
in addition so that we can verify the key estimate along transitions in Proposition 2.6
(on page 72), for example,

d j

(
ϑ(h,x), τ(h,y)

) ≤ (d j(x,y) + h ·D j(ϑ ,τ ;R j)
) · eα j(ϑ ;R j)h

with x,y∈E and R j :=
(

max{�x� j, �y� j}+ max{γ j(ϑ), γ j(τ)}) · emax{γ j(ϑ), γ j(τ)}.

Indeed, the right-hand side of this inequality reflects very well the basic notion of
distinguishing between the “initial error” and “first-order terms”.

For identifying suitable choices of d j and D j in applications to stochastic analy-
sis, for example, it is recommendable to dispense with the triangle inequality of d j

in its classical form.
Instead we modify the definitions of D j and of solutions to mutational equations
in such way that the basic structural influence of “initial error” and “transitional
error” on comparing estimates is preserved. This “conceptual shift” opens the door
to replacing the triangle inequality of d j and D j(·, ·;r) by appropriate assumptions of
continuity. In particular, the results of preceding chapters prove to be special cases.

These are the main goals of this chapter.
After adapting the mutational framework in detail, we present several examples get-
ting benefit from this extension – like semilinear evolution equations in arbitrary
Banach spaces and stochastic functional differential equations.

143
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3.1 General assumptions of this chapter

E is always a nonempty set and, I �= /0 denotes an index set. For each index j ∈I ,

d j, e j : E×E −→ [0,∞[,
�·� j : E −→ [0,∞[

are supposed to satisfy the following conditions:

(H1) d j and e j are reflexive, i.e. for all x ∈ E: d j(x,x) = 0 = e j(x,x),

(H2) d j and e j are symmetric, i.e. for all x,y ∈ E: d j(x,y) = d j(y,x),
e j(x,y) = e j(y,x),

(H3) (d j) j∈I and (e j) j∈I induce the same concept of convergence in E and are
(semi-) continuous in the following sense:

(o)
(∀ j ∈I : lim

n→∞
d j(x,xn) = 0

)
⇐⇒ (∀ j ∈I : lim

n→∞
e j(x,xn) = 0

)
for any x ∈ E and (xn)n∈N in E with sup

n∈N

�xn�i < ∞ for each i ∈I .

(i) d j(x,y) = lim
n→∞

d j(xn,yn),

e j(x,y) ≤ limsup
n→∞

e j(xn,yn)

for any x,y ∈ E and (xn)n∈N, (yn)n∈N in E fulfilling for each i ∈I ,

lim
n→∞

di(x,xn) = 0 = lim
n→∞

di(yn,y), sup
n∈N

{�xn�i,�yn�i}< ∞ .

(ii) 0 = lim
n→∞

d j(x, xn)

for any x ∈ E and (xn)n∈N, (yn)n∈N in E fulfilling for each i ∈I

lim
n→∞

di(x,yn) = 0 = lim
n→∞

ei(yn,xn), sup
n∈N

{�xn�i,�yn�i}< ∞ .

(iii) 0 = lim
n→∞

d j(x, xn)

for any x ∈ E and (xn)n∈N, (yk)k∈N, (zk,n)k,n∈N in E fulfilling⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim
k→∞

ei(x, yk) = 0 for each i ∈I ,

lim
n→∞

di(yk, zk,n) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ei(zk,n, xn) = 0 for each i ∈I ,

sup
k,n∈N

{�xn�i,�yk�i,�zk,n�i} < ∞ for each i ∈I .

(H4) �·� j is lower semicontinuous with respect to (di)i∈I , i.e.,
�x� j ≤ liminf

n−→∞
�xn� j

for any element x ∈ E and sequence (xn)n∈N in E fulfilling for each i ∈I ,

lim
n→∞

di(xn,x) = 0, sup
n∈N

�xn�i < ∞ .
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Remark 1. In comparison to Chapter 2, these assumptions do not imply the
triangle inequality of d j since d j does not have to be a pseudo-metric in the sense
of Definition 2.1 (on page 70).
But obviously property (H3) is satisfied whenever d j ≡ e j is a pseudo-metric for
each index j ∈I . Hence the topological environment of Chapter 2 is a special case.

A transition ϑ : [0,1]×E −→ E is expected to satisfy essentially the same con-
ditions as in Definition 2.2 (on page 70).
In fact, we can even dispense with the generalized form of semigroup property
since estimates will be done “uniformly” along transitions ϑ(·,x) : [0,1] −→ E

as hypothesis (H7) will reveal in a moment. Indeed, up to now, we have drawn all
quantitative conclusions from the “local” features of transitions close to the initial
element, i.e., for time tending to 0. (See, for example, Definition 2.5 and Proposi-
tion 2.6 on page 71 f.)
As key new aspect about single transitions, we are now free to use different distance
functions (namely d j resp. e j) for the continuity estimates with respect to initial
elements and time. These families of distance functions (d j) j∈I , (e j) j∈I are linked
according to hypothesis (H3). In particular, they induce the same concept of conver-
gence, but they might differ in quantitative features.
For extending Definition 2.2, we specify the conditions on a transition — now on
the tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
:

Definition 2. A function ϑ : [0,1]× E −→ E is called transition on the tuple(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
if it has the following properties for each j ∈I :

1.) for every x ∈ E : ϑ(0,x) = x

3.) there exists α j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any x,y ∈ E with

�x� j ≤ r, �y� j ≤ r : limsup
h↓0

d j(ϑ(h,x), ϑ(h,y))− d j(x,y)
h

≤ α j(ϑ ;r) · d j(x,y)

4.′) there exists β j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any s, t ∈ [0,1] and x ∈ E

with �x� j ≤ r : e j

(
ϑ(s,x), ϑ(t,x)) ≤ β j(ϑ ;r) · |t− s|

5.) there exists γ j(ϑ) ∈ [0,∞[ such that for any t ∈ [0,1] and x ∈ E :

�ϑ(t,x)� j ≤
(�x� j + γ j(ϑ) t

) · eγ j(ϑ) t

The essential new aspect about comparing two transitions comes now into play
as counterpart of Definition 2.5 (on page 71): Θ̂

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
denotes a nonempty set of transitions on

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
and,

for each j ∈I , the function

D̂ j : Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

) × Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

) × [0,∞[ −→ [0,∞[

is assumed to satisfy the following conditions:
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(H5) for each r ≥ 0, D̂ j( · , · ; r) is reflexive and symmetric,

(H6) for any r ≥ 0,

D̂ j(·, · ; r) : Θ̂
(
E,(d j),(e j),(�·� j)

)× Θ̂
(
E,(d j),(e j),(�·� j)

) −→ [0,∞[ is
continuous with respect to (D̂i)i∈I in the following sense:

(i) D̂ j(ϑ , τ; r) = lim
n−→∞

D̂ j(ϑn, τn; r)

for any transitions ϑ ,τ and sequences (ϑn)n∈N, (τn)n∈N satisfying
for every i ∈I and R≥ 0

lim
n→∞

D̂i(ϑ , ϑn; R) = 0 = lim
n→∞

D̂i(τ, τn; R) .

(ii) lim
n−→∞

D̂ j(ϑ , τn; r) = 0

for any transition ϑ and sequences (ϑn)n∈N, (τn)n∈N satisfying for
every i ∈I and R≥ 0

lim
n→∞

D̂i(ϑ , ϑn; R) = 0 = lim
n→∞

D̂i(ϑn, τn; R) .

(H7) limsup
h↓0

d j

(
ϑ(t1+h,x), τ(t2+h,y)

) − d j(ϑ(t1,x), τ(t2,y)) · eα j(τ;R j)·h

h

≤ D̂ j(ϑ ,τ; R j) < ∞

for any ϑ ,τ ∈ Θ̂
(
E,(di)i,(ei)i,(�·�i)i

)
, x,y ∈ E, t1, t2 ∈ [0,1[, r ≥ 0, j ∈I

with �x� j, �y� j ≤ r and R j :=
(
r +max{γ j(ϑ),γ j(τ)}) · emax{γ j(ϑ),γ j(τ)}.

Not even D̂ j(·, ·;r) has to satisfy the triangle inequality. Instead we restrict our
assumption (H6) to the aspect of continuity. More generally speaking, the triangle
inequality can be regarded as the classical tool for simplifying the verification of
continuity in metric spaces.

Hypothesis (H7) specifies D̂ j(·, ·;r) in a rather global way whereas Definition 2.5
of D j(·, ·;r) (on page 71) was comparing the evolution of one and the same initial
point along two transitions. The criterion here in (H7) is motivated by a question
focusing on vanishing times: Which “first-order terms” of the time-dependent dis-
tance cannot be estimated just by the initial distance growing exponentially in time ?

Remark 3. If d j ≡ e j satisfies the triangle inequality in addition, then the proper-
ties (H5) – (H7) can be concluded from Definition 2.5 and from Proposition 2.6 (on
page 72). Thus, the results of Chapter 2 prove to be a special case based merely on
the additional assumption of triangle inequality for d j ≡ e j.

Remark 4 (about separate real time components). In some examples, time is
recommendable to be taken into consideration explicitly. One of the easiest ways is
to consider tuples in Ẽ := R×E with the first real component representing the re-
spective time. In subsequent § 3.4 (on page 175), we formulate modified hypotheses
allowing the same conclusions as in § 3.2 and § 3.3.
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3.2 The essential features of transitions do not change

Using continuity assumptions (instead of the triangle inequality) and two families
of distance functions does not have any significant consequences on the features of
transitions. We now verify the essential aspects:

Lemma 5. Let ϑ1 . . . ϑK be finitely many transitions on
(
E,(d j),(e j),(�·� j)

)
with γ̂ j := sup

k∈{1 ...K}
γ j(ϑk) < ∞ for some j ∈I .

For any x0 ∈ E and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve

x(·) : [0, tK ]−→ E piecewise as x(0) := x0 and

x(t) := ϑk

(
t− tk−1, x(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . .K}.

Then, �x(t)� j ≤
(�x0� j + γ̂ j · t

) · eγ̂ j · t at every time t ∈ [0, tK ].

Proof results from exactly the same arguments as Lemma 2.4 (on page 71). �

The following lemma provides the first tool for applying Gronwall’s estimate (in
Proposition A.2 on page 352). Indeed, it is an immediate consequence of hypothe-
ses (H3) (o), (i) and guarantees that the distance between two continuous curves in
E is always continuous with respect to time.
An essential advantage of Gronwall’s inequality as presented in the appendix here
is that even lower semicontinuity is sufficient for concluding a global estimate from
local properties. (This will be relevant for proving subsequent Proposition 11 on
page 151.)

Lemma 6. Let x(·), y(·) : [0,T ] −→ E be continuous with respect to (di)i∈I

(or equivalently with respect to (e j) j∈I ) and bounded with respect to each �·� j

( j ∈I ). Then for each index j ∈I , the distance function

[0,T ] −→ [0,∞[, t �−→ d j

(
x(t), y(t)

)
is continuous. �

Proposition 7. Let ϑ ,τ ∈ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
, r ≥ 0, j ∈I and

t1, t2 ∈ [0,1[ be arbitrary. For any elements x,y ∈ E suppose �x� j ≤ r, �y� j ≤ r.
Then the following estimate holds at each time h∈ [0,1[ with max{t1 +h, t2 +h}≤ 1

d j

(
ϑ(t1+h,x), τ(t2+h,y)

) ≤ (d j

(
ϑ(t1,x), τ(t2,y)

)
+h · D̂ j(ϑ ,τ ;R j)

)
eα j(τ;R j)h

with the constant R j :=
(
r +max{γ j(ϑ), γ j(τ)}) · emax{γ j(ϑ), γ j(τ)} < ∞.
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Proof results from Gronwall’s inequality (in Proposition A.2 on page 352)
applied to the auxiliary function

φ j : h �−→ d j

(
ϑ(t1 +h,x), τ(t2 +h,y)

)
similarly to the proofs of Proposition 1.7 (on page 24) and Proposition 2.6 (on
page 72). Indeed, φ j is continuous according to preceding Lemma 6 and the time
continuity of transitions (in condition (4.’) of Definition 2). Moreover condition (5.)
of Definition 2 ensures �ϑ(h,x)� j ≤ R j, �τ(h,y)� j ≤ R j for each h ∈ [0,1].

Dispensing with the triangle inequality of d j in this chapter, however, we conclude
directly from hypothesis (H7) about D̂ j(·, ·; R j) (on page 146) for every t

φ j(t +h) − φ j(t) =

= d j

(
ϑ(t1+t+h, x), τ(t2+t+h, y)

) − d j

(
ϑ(t1+t, x), τ(t2+t, y)

)
≤ d j

(
ϑ(t1+t+h, x), τ(t2+t+h, y)

) − d j

(
ϑ(t1+t, x), τ(t2+t, y)

)
eα j(τ;R j)h

+d j

(
ϑ(t1+t, x)), τ(t2+t, y))

) · eα j(τ;R j)h− d j

(
ϑ(t1+t, x), τ(t2+t, y)

)
and thus, limsup

h↓0

φ j(t+h) − φ j(t)
h

≤ D̂ j(ϑ , τ; R j) + α j(τ; R j) · φ j(t) < ∞ .

Finally, Gronwall’s inequality (in form of Proposition A.2) provides the link to the
claimed estimate. �

3.3 Solutions to mutational equations

For any single-valued function f : E×[0,T ]−→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

a solution x(·) : [0,T ]−→ E to the mutational equation
◦
x(·) � f

(
x(·), · )

is expected to fulfill the same conditions as in Definition 2.9 (on page 73), i.e.,
it should satisfy for each j ∈I :

1.) x(·) is continuous with respect to d j

2.) for L 1-almost every t ∈ [0,T [: lim
h↓0

1
h
· d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

Due to the lack of triangle inequality for d j, however, it is much more difficult to
compare such a solution x(t + ·) with a transition starting in another “initial point”.
Indeed, there is no obvious way to draw conclusions about distances d j vanishing in
first order for h ↓ 0.
For the same (rather technical) reason, we have already introduced hypothesis (H7)
(on page 146) being motivated by the earlier estimate in Proposition 2.6 (on page 72)
and used in the proof of Proposition 7 here.
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Thus, we specify the term “solution” by a slightly stronger condition (2.′). It
is also motivated by the notion that the first-order properties of x(t + h) cannot be
distinguished from the features of f (x(t), t)(h,x(t)) for h ↓ 0. As the essential new
aspect, however, the direct comparison via d j, i.e.

h �−→ d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
,

is now replaced by the respective comparisons with h �−→ ϑ(s + h,z) ∈ E for
any transition ϑ ∈ Θ̂

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
and arbitrary initial point

ϑ(s,z) ∈ E.
So far the estimate in Proposition 7 and its counterparts in preceding chapters have
served as main tool for comparing the evolutions along transitions. Now we employ
it for specifying the notion of “being indistinguishable up to first order”:

Definition 8.
A single-valued function f : E × [0,T ] −→ Θ̂

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
is

given. x(·) : [0,T ]−→ E is called a solution to the mutational equation
◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if it satisfies for each j ∈I :

1.) x(·) is continuous with respect to e j, i.e.,
lim
s→ t

e j

(
x(s), x(t)

)
= 0 for every t ∈ [0,T ],

2.′) there exists α j(x; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d j(ϑ(s+h, z), x(t+h)) − d j(ϑ(s,z), x(t)) · eα j(x;R j) h

h
≤ D̂ j

(
ϑ , f (x(t), t); R j

)
is fulfilled for any ϑ ∈ Θ̂

(
E,(d j),(e j),(�·� j)

)
, s ∈ [0,1[, z ∈ E satisfying

�ϑ(·,z)� j,�x(·)� j ≤ R j,

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

The continuity with respect to (e j) j∈I is equivalent to the continuity with respect
to (d j) j∈I due to hypothesis (H3) (o) (on page 144).

Furthermore condition (2.′) always implies the preceding property (2.) because d j

and D̂ j(·, ·,r) are assumed to be reflexive. The inverse conclusion “(2.) =⇒ (2.′)”
holds if d j is a pseudo-metric (as in Chapter 2). Indeed, Proposition 2.6 (on page 72)
then ensures the equivalence of Definition 2.9 (on page 73) and Definition 8 here.

Using Gronwall’s inequality for lower semicontinuous functions again, essentially
the same arguments as for Proposition 7 guarantee that the local criterion (2.′)
implies a global estimate of the same type for comparing solutions and transitions:
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Lemma 9. Let x(·) : [0,T ]−→ E be a solution to the mutational equation
◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
according to Definition 8.

Suppose ϑ ∈ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
, z ∈ E, r ≥ 0, s ∈ [0,1[, t ∈ [0,T [,

j ∈I to be arbitrary with �z� j ≤ r and the abbreviation

R j := max
{

sup �x(·)� j,
(
r + γ j(ϑ)

) · eγ j(ϑ)} < ∞.

Then, d j

(
ϑ(s+h, z), x(t +h)

) ≤
≤
(

d j

(
ϑ(s,z), x(t)

)
+ h · sup

[t, t+h]
D̂ j

(
ϑ , f (x(·), ·); R j

)) · eα j(x;R j) h

for every h ∈ [0, 1] with s+h≤ 1 and t +h≤ T . �
In particular, the analogy of Lemma 9 and preceding Proposition 7 reflects

how we interpret the generalized conceptual goal that a solution x(t + ·) cannot be
“distinguished” from the curve f (x(t), t)( · , x(t)) : [0,1] −→ E along the transition
f (x(t), t) “up to first order”.

Finally, we focus on the Lipschitz continuity of solutions. For every transition
ϑ and initial point z ∈ E, the curve [0,1] −→ E, t �−→ ϑ(t,z) is assumed to be
Lipschitz continuous with respect to each e j. For solutions to mutational equations,
the same regularity with respect to d j ( j ∈I ) can be concluded from Lemma 9 by
means of the identity transition IdΘ̂ on E:

Corollary 10 (Sufficient conditions for Lipschitz continuity of solutions).
Assume that Θ̂

(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
contains the identity transition

IdΘ̂ : [0,1]×E −→ E, (h,x) �−→ x .

For f : E× [0,T ]−→ Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

)
let x(·) : [0,T ]−→E be a solution to

the mutational equation
◦
x(·)� f (x(·), ·) in

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I ,(D̂i)i∈I

)
such that some j ∈I and L j,R j ∈ R satisfy for all t ∈ [0,T ]

�x(t)� j ≤ R j, D̂ j

(
IdΘ̂ , f (x(t), t); R j

) ≤ L j.

Then x(·) is Lipschitz continuous with respect to d j.

Proof. We use arguments very similar to the proof of Lemma 2.10 (on page 73):
Fix s ∈ [0,T [ arbitrarily. Then, ψ j : [s,T ] −→ R, t �−→ d j

(
x(s), x(t)

)
is con-

tinuous due to hypotheses (H3) (o), (i) and, it satisfies for L 1-a.e. t ∈ [s,T ]

limsup
h↓0

ψ j(t+h)−ψ j(t)
h

= limsup
h↓0

1
h

(
d j

(
IdΘ̂ (h,x(s)), x(t +h)

) − d j

(
x(s), x(t)

))
≤ ψ j(t) · limsup

h↓0

e
α j(x; R j) h − 1

h
+ L j

= ψ j(t) · α j(x;R j) + L j .

Finally ψ j(t) ≤ L j eα j(x;R j) T · (t− s) for all t ∈ [s,T ] results from Gronwall’s
inequality (Proposition A.2 on page 352) and ψ j(s) = 0. �
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3.3.1 Continuity with respect to initial states and right-hand side

Dispensing with the triangle inequality of distance functions, we have already faced
several difficulties for identifying further distances vanishing “in first order” for
time h ↓ 0. So far the conclusions proved in preceding chapters have usually served
as motivation for adapting definitions so that we can bridge the gap due to lacking
metric structure.

Now the list of definitions is (almost) completed and, we have to find alternative
ways for investigating the continuity of solutions with respect to initial states and
right-hand side, for example.
The idea is very similar to our way from property (2.) of solutions to condition (2.′)
(in Definition 8): We do not compare two solutions directly by means of d j as in
Proposition 2.11 (on page 74), but we use the respective distances from one and
same (arbitrary) state z ∈ E, i.e. we are interested in an upper estimate of the auxil-
iary distance function [0,T ] −→ [0,∞[, t �−→ inf

z∈E: �z� j <ρ

(
d j

(
z,x(t)

)
+d j

(
z,y(t)

))
.

Proposition 11. Assume for f ,g : E × [0,T ] −→ Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

)
and

x,y : [0,T ] −→ E that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

and y(·) is a solution to the mutational equation
◦
y (·) � g(y(·), ·) in the tuple(

E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
.

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for L 1-a.e. t ∈ [0,T ]⎧⎪⎨⎪⎩
�x(t)� j, �y(t)� j < R j

α j (x; R j) , α j (y; R j) ≤ α̂ j

D̂ j ( f (x(t), t), g(y(t), t); R j) ≤ ϕ j(t).

Then, δ j : [0,T ] −→ [0,∞[, t �−→ inf
z∈E: �z� j <R j

(
d j

(
z,x(t)

)
+ d j

(
z,y(t)

))
fulfills δ j(t) ≤

(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · sds

)
eα̂ j · t for every t ∈ [0,T ].

Proof. Due to hypotheses (H3) (o), (i), the auxiliary function [0,T ]−→ [0,∞[,
t �−→ d j(z,x(t))+ d j(z,y(t)) is continuous for each element z ∈ E. Hence the infi-
mum δ j(·) with respect to all z ∈ E with �z�< R j is lower semicontinuous.

At L 1-almost every time t ∈ [0,T [, Lemma 9 and the reflexivity of d j, D̂ j(·, ·;R j)
imply for every z ∈ E with �z�< R j and any sufficiently small h≥ 0

δ j(t +h) ≤ d j

(
f (x(t), t)(h, z), x(t +h)

)
+ d j

(
f (x(t), t)(h, z), y(t +h)

)
≤ d j

(
z, x(t)

) · eα̂ j ·h +
(

d j

(
z, y(t)

)
+ sup

[t, t+h]
ϕ j ·h

)
· eα̂ j ·h .
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The infimum with respect to z ∈ E satisfying �z�< R j additionally leads to

δ j(t +h) ≤ δ j(t) · eα̂ j ·h + sup
[t, t+h]

ϕ j · h · eα̂ j ·h

limsup
h↓0

δ j(t+h)− δ j(t)
h

≤ δ j(t) · limsup
h↓0

e
α̂ j ·h − 1

h
+ ϕ j(t) · limsup

h↓0
eα̂ j ·h

= δ j(t) · α̂ j + ϕ j(t) .

Finally the claim results directly from Gronwall’s inequality (in Proposition A.2).
�

Remark 12. δ (t) ≤ d j(x(t),y(t)) results directly from the reflexivity of d j (due
to hypothesis (H1)). If d j is a pseudo-metric in addition, then this infimum δ (t) is
always equal to d j(x(t),y(t)).

3.3.2 Limits of graphically converging solutions:
Convergence Theorem

On our way to the existence of solutions, the next step focuses on the question which
kind of convergence preserves the solution property.

In preceding Theorem 2.13 (on page 76), pointwise convergence has already proved
to be appropriate under the assumptions that all solutions xn(·) : [0,T ] −→ E are
uniformly Lipschitz continuous and that d j is a pseudo-metric. Now we weaken the
conditions on convergence and admit perturbations with respect to time as specified
in subsequent assumption (4.) — although d j does not have to fulfill the triangle
inequality any longer.

Here the two families of distance functions (d j) j∈I , (e j) j∈I come into play
explicitly for the first time.
In the next theorem, we consider an appropriately converging sequence (xn(·))n∈N

of solutions, each of which is continuous with respect to every e j by definition.
Concluding the continuity of their limit function usually requires some form of
“equi-continuity”. For this purpose, the family (e j) j∈I is used instead of (d j) j∈I

and, we suppose uniform Lipschitz continuity with respect to each e j ( j ∈I ).
Strictly speaking, this Lipschitz continuity is a “quantitative” feature and, we now
separate its distance functions from the other quantitative properties of solutions
(such as condition (2.′) in Definition 8). “Qualitative” aspects like the topological
concepts of convergence and continuity, however, are not concerned — due to
hypothesis (H3) (o).
These separate families of distance functions and the continuity assumptions replac-
ing the triangle inequality are the two new aspects of the mutational framework in
this chapter.
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Theorem 13 (Convergence of solutions to mutational equations).
Suppose the following properties of

fn, f : E× [0,T ] −→ Θ̂
(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t

�xn(t)� j < ∞,

α̂ j(ρ) := sup
n

α j

(
xn; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,e j)

)
< ∞ for every j ∈I ,

2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 8 on page 149) for every n∈N,

3.) Equi-continuity of ( fn)n at (x(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j ( fn(x(t), t), fn(yn, tn); r) = 0 for

each j ∈I , r ≥ 0 and any (tn)n∈N, (yn)n∈N in [t,T ] and E respectively

satisfying lim
n→∞

tn = t and lim
n→∞

di

(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for each i,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞⎧⎪⎨⎪⎩
(i) D̂ j

(
f (x(t), t), fnm(x(t), t); r

) −→ 0 for all r ≥ 0, j ∈I ,

(ii) there is a sequence δm ↘ 0 : d j

(
x(t), xnm(t +δm)

) −→ 0 for all j,

(iii) there is a sequence δ̃m ↘ 0 : d j

(
x(̃t), xnm (̃t− δ̃m)

) −→ 0 for all j.

Then, x(·) : [0,T ]−→ E is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

in the tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Remark 14. Assumptions (4.ii) and (4.iii) admit small perturbations with respect
to time. This is much weaker than pointwise convergence (as in Theorem 2.13 on
page 76) and, it can be regarded as a generalized form of converging graphs.
In regard to the influence of index j ∈I , however, assumptions (3.) and (4) are
slightly stronger than in Theorem 2.13 because we have replaced the triangle in-
equality of distance functions by hypotheses (H3), (H6) which draw conclusions
only from convergence of sequences with respect to all i ∈I simultaneously.

Proof (of Theorem 13). Choose the index j ∈I arbitrarily.
Then x(·) : [0,T ] −→ (E,e j) is β̂ j–Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t̃ ∈ ]t,T ], assumption (4.) provides a subsequence(
xnm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying for each i ∈I{

di

(
x(t), xnm(t +δm)

) −→ 0

di

(
x(̃t), xnm (̃t− δ̃m)

) −→ 0
for m−→ ∞.
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The uniform β̂ j–Lipschitz continuity of xn(·),n ∈ N, with respect to e j and hypoth-
esis (H3) (i) (on page 144) imply

e j

(
x(t), x(̃t)

) ≤ limsup
m→∞

e j

(
xnm(t +δm), xnm (̃t− δ̃m)

)
≤ limsup

m→∞
β̂ j |̃t− δ̃m − t−δm|

≤ β̂ j |̃t− t| .
This Lipschitz inequality can be extended to any t, t̃ ∈ [0,T ] due to the lower semi-
continuity of e j (according to hypotheses (H3) (o), (i)). Moreover, hypothesis (H4)
about the lower semicontinuity of �·� j ensures

�x(̃t)� j ≤ liminf
m−→∞

�xnm (̃t)� j ≤ R j.

Finally we verify the solution property

limsup
h↓0

d j(ϑ(s+h, z), x(t+h)) − d j(ϑ(s,z), x(t)) · eα j(x;ρ) h

h
≤ D̂ j

(
ϑ , f (x(t), t); ρ

)
for L 1-almost every t ∈ [0,T [ and for any ϑ ∈ Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
,

s ∈ [0,1[, z ∈ E, ρ ≥ R j with �ϑ(·,z)� j ≤ ρ ,
Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
xnm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each i ∈I , r ≥ 0 and m−→ ∞⎧⎪⎪⎨⎪⎪⎩
D̂i

(
f (x(t), t), fnm(x(t), t); r

) −→ 0

di

(
x(t), xnm(t +δm)

) −→ 0

di

(
x(t+h), xnm(t+h− δ̃m)

) −→ 0.

Now we conclude from Lemma 9 (on page 150) and the continuity of d j (due to
hypothesis (H3) (i) on page 144) respectively

d j

(
ϑ(s+h, z), x(t +h)

)
= lim

m→∞
d j

(
ϑ(s+h− δ̃m, z), xnm(t +h− δ̃m)

)
≤ limsup

m−→∞

(
d j

(
ϑ(s+δm, z), xnm(t +δm)

)
+

+ h · sup
[t+δm, t+h−δ̃m]

D̂ j

(
ϑ , fnm(xnm(·), ·); ρ

)) · eα̂ j(ρ) ·(h−δm−δ̃m)

≤
(

d j

(
ϑ(s,z), x(t)

)
+ h · limsup

m−→∞
sup

[t+δm, t+h]
D̂ j

(
ϑ , fnm(xnm(·), ·); ρ

)) · eα̂ j(ρ) h.

(In fact, the last inequality justifies why (H3) (i) provides the continuity of d j and
not just its lower semicontinuity as for e j.) For completing the proof, we verify

limsup
h↓0

limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ , fnm(xnm(·), ·); ρ

) ≤ D̂ j

(
ϑ , f (x(t), t); ρ

)
for Lebesgue-almost every t ∈ [0,T [ and any subsequence

(
xnm(·))

m∈N
satisfying{

di

(
x(t), xnm(t +δm)

) −→ 0

D̂i

(
f (x(t), t), fnm(x(t), t); r

) −→ 0
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for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select some ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that{

D̂ j

(
ϑ , fnml

(xnml
(t + sl), t + sl); ρ

) ≥ D̂ j

(
ϑ , f (x(t), t); ρ

)
+ ε

δml
≤ sl ≤ hl ≤ 1

l
, ml ≥ l

for all l ∈ N.

Due to property (H3) (ii), the uniform Lipschitz continuity of (xnm(·))m∈N implies
lim
l→∞

di

(
x(t), xnml

(t + sl)
)

= 0

for each i ∈I . Thus at L 1-almost every time t ∈ [0,T [, assumptions (3.), (4.) (i)
and hypothesis (H6) about the continuity of D̂ j( · , · ; r) (on page 146) lead to a
contradiction because for any r ≥ 0,

lim
l→∞

D̂ j

(
ϑ , fnml

(xnml
(t + sl), t + sl); r

)
= D̂ j

(
ϑ , f (x(t), t); r

)
. �

3.3.3 Existence for mutational equations with delay and
without state constraints

In spite of the modified topological assumptions (H1)–(H7), Euler method in
combination with Euler compactness almost leads to the existence of solutions
to mutational equations without state constraints. We can even draw our conclu-
sions for mutational equations with delay in essentially the same way as in § 2.3.5
(on page 86 ff.). The proofs are again postponed to the end of this section.

Remark 15. (1.) The set BLip
(
I, E; (d j) j∈I , (�·� j) j∈I

)
consists of all “bounded”

and Lipschitz continuous functions I −→ E as in Definition 2.21 (on page 86).

(2.) The term “Euler compact” was introduced in Definition 2.15 (on page 78)
and does not have to be adapted significantly to the modified topological environ-
ment in this chapter.
Indeed,

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is called Euler compact if it satisfies the following condition for any initial element
x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→E constructed in the following piecewise way: Choosing an arbitrary
equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and transitions
ϑ1 . . .ϑn ∈ Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
with⎧⎪⎨⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as
y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈ N } ⊂ E has a
subsequence (znm)m∈N and some z ∈ E with lim

m→∞
d j(znm ,z) = 0 for each j ∈I .
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Since d j is now lacking the triangle inequality, we have to cope with a further
difficulty: Are curves defined by transitions in a piecewise way like

[0,2] −→ E, t �−→
{

ϑ1(t,x0) for t ∈ [0,1]
ϑ2
(
t−1, ϑ1(1,x0)

)
for t ∈ ]1,2]

still always Lipschitz continuous with respect to each d j ? In particular, Lemma 2.10
(on page 73) might fail if d j ≡ e j was not a pseudo-metric.
Corollary 10 (on page 150) has already provided a sufficient condition on the
transition set for verifying Lipschitz continuity with respect to d j, namely via iden-
tity transition. In regard to subsequent results about the existence of solutions, how-
ever, we prefer introducing a separate assumption focusing on Euler approximations
and the distance function e j ( j ∈I ):

Definition 16.
The tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is

called Euler equi-continuous if it satisfies the following condition for any initial
element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→ E constructed in the following piecewise way (as in Definition 2.15
on page 78): Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T

of [0,T ] (with n > T ) and transitions ϑ1 . . .ϑn ∈ Θ̂
(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
with ⎧⎪⎨⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j

(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as

y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each index j ∈I , there is a constant L j ∈ [0,∞[ such that every curve
y(·) ∈N is L j-Lipschitz continuous with respect to e j.

Remark 17. If d j ≡ e j is a pseudo-metric then Euler equi-continuity (with L j := β̂ j)
results directly from the triangle inequality and Lemma 2.10 (on page 73) in a piece-
wise way.

This additional hypothesis opens the door to selecting “pointwise converging” sub-
sequences of Euler approximations and, we obtain the counterpart of Lemma 2.17
(on page 79) — but with a weaker type of convergence. The subsequent main result
about existence is based on this pointwise convergence and specifies continuity as-
sumption (4.) in a stricter way than its counterpart in Proposition 2.22 (on page 86):
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Lemma 18 (Euler compact ∧ Euler equi-continuous =⇒ pointwise compact).
Assume

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be

Euler compact and Euler equi-continuous. Using the notation of Definition 16,

choose any initial element x0 ∈E, time T ∈ ]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ).

For every sequence (yn(·))n∈N of curves [0,T ] −→ E in N
(
x0,T,(α̂ j, β̂ j, γ̂ j) j∈I

)
,

there exists a subsequence (ynm(·))m∈N and a function y(·) : [0,T ] −→ E such that

for every j ∈I and t ∈ [0,T ],

d j

(
ynm(t), y(t)

) −→ 0 for m−→ ∞.

Furthermore if (yn(t0))n∈N is constant for some t0 ∈ [0,T ] then y(·) can be chosen

with the additional property y(t0) = yn(t0).

Theorem 19 (Existence of solutions to mutational equations with delay).
Suppose

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be

Euler compact and Euler equi-continuous. Moreover assume for some fixed τ ≥ 0,
the function

f : BLip
(
[−τ,0], E; (ei)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
E,(di)i,(ei)i,(�·�i)i

)
and each j ∈I , R > 0 :

1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f (z1

n(·), t1
n ), f (z2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(z1
n(·))n∈N, (z2

n(·))n∈N in BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
di

(
z1

n(s), z(s)
)

= 0 = lim
n→∞

di

(
z2

n(s), z(s)
)

sup
n∈N

sup
[−τ,0]

�z1,2
n (·)�i < ∞ .

For every function x0(·)∈BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
, there exists a curve

x(·) : [−τ,T ]−→ E with the following properties:

(i) x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
,

(ii) x(·)∣∣[−τ,0] = x0(·),
(iii) the restriction x(·)∣∣[0,T ] is a solution to the mutational equation

◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)
in the sense of Definition 8 (on page 149).
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Proof (of Lemma 18). Fix x0 ∈ E, time T ∈ ]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0
( j ∈I ) arbitrarily. Moreover without loss of generality, we assume the set of curves
N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) to be nonempty. Supposing Euler equi-continuity
provides a constant L j ∈ [0,∞[ for each index j ∈I such that every curve y(·)∈N
is L j-Lipschitz constant with respect to e j. Let (yn(·))n∈N be any sequence in N .

We focus on a pointwise converging subsequence and adapt the proof of Lemma 2.17
(on page 80):
For each t ∈ [0,T ], the assumption of Euler compactness ensures a subsequence
of
(
yn(t)

)
n∈N

converging with respect to each d j. Cantor’s diagonal construction
provides a subsequence

(
ynm(·))

m∈N
of functions [0,T ] −→ E with the additional

property that at every rational time t ∈ [0,T ], an element y(t) ∈ E satisfies

d j

(
ynm(t), y(t)

) −→ 0 for m−→ ∞

and each j ∈I since the subset Q∩ [0,T ] of rational numbers in [0,T ] is countable.
Now we consider any t ∈ [0,T ]\Q. Due to Euler compactness, there exists a sub-

sequence
(
ynml

(t)
)

l∈N
maybe depending on t, but converging to an element y(t)∈ E

with respect to each d j. Lacking the triangle inequality of d j, however, we conclude
from hypothesis (H3) (on page 144)

lim
m→∞

d j

(
ynm(t), y(t)

)
= 0 for each j ∈I .

Indeed, assumption (H3) (i) implies for every s ∈ [0,T ]∩Q and j ∈I

e j

(
y(s), y(t)

) ≤ limsup
l→∞

e j(ynml
(s), ynml

(t)
) ≤ L j |s− t| .

Now choose any sequence (sk)k∈N in [0,T ]∩Q with sk −→ t (k→∞). This implies

sup
n∈N

e j

(
yn(sk), yn(t)

) ≤ L j |t− sk| −→ 0 for k → ∞

and each index j ∈I . Together with

lim
m→∞

d j

(
ynm(sk), y(sk)

)
= 0 for every k ∈ N, j ∈I ,

we conclude from hypothesis (H3) (iii) directly

lim
m→∞

d j

(
ynm(t), y(t)

)
= 0 for each j ∈I .

�

Remark 20. In this proof of Lemma 18, we have applied hypothesis (H3) (iii)
for the first time. Indeed, all other conclusions are based on hypotheses (H3) (i) or
(H3) (ii) in combination with assumption (H3) (o).
For examples with a separate real time component, we are free to draw the same
conclusions under the additional assumption that either sk ≥ t for all k ∈ N or
sk ≤ t for every k∈N. This opens the door to taking a form of “time orientation” into
consideration as mentioned in Remark 4 (on page 146) and explained in subsequent
§ 3.4 (on page 175 ff.).
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Proof (of Theorem 19). As in the proof of Proposition 2.22 (on page 87 f.),
we use a sequence of Euler approximations on equidistant partitions of [0,T ].
For every n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(·)
∣∣
[−τ,0] := x0,

xn(t) := f (xn(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Due to Euler equi-continuity, there is a constant L j ∈ [0,∞[ for each index j ∈I
such that every curve xn(·) is L j-Lipschitz continuous with respect to e j. Setting
γ̂ j := sup γ j( f (·, ·)) < ∞ as further abbreviation, Lemma 5 (on page 147) pro-
vides for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I

�xn(t)� j ≤
(�x0(0)� j + γ̂ j T

) · eγ̂ j T =: R j .

Assumptions (1.)–(3.) are combined with Euler compactness and Euler equi-
continuity. Thus, Lemma 18 guarantees that a subsequence

(
xnm(·))

m∈N
converges

to a function x(·) : [−τ, T ]−→ E in the sense that for every j ∈I and t ∈ [−τ, T ],

d j

(
xnm(t), x(t)

) −→ 0 for m−→ ∞.

In particular, x(·) = x0(·) in [−τ, 0].

For every t ∈ [0,T ], the estimate �x(t)� j ≤ R j results from hypothesis (H4) about the
lower semicontinuity of �·� j (on page 144) and, x(·) : [−τ, T ]−→ (E,e j) is also L j–
Lipschitz continuous due to the lower semicontinuity of e j (in hypothesis (H3) (i)).
Hence we obtain

x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
.

Finally it is a consequence of Convergence Theorem 13 (on page 153) that

limsup
h↓0

d j

(
ϑ(s+h,z), x(t+h)

)
− d j

(
ϑ(s,z), x(t)

)
e

α̂ j(ρ)h

h
≤ D̂ j

(
ϑ , f

(
x(t + ·)∣∣[−τ,0], t

)
; ρ
)

holds for L 1-almost every t ∈ [0,T ] and arbitrary j ∈I , ρ ≥ R j, s ∈ [0,1[,
z ∈ E, ϑ ∈ Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
with �ϑ(·,z)� j ≤ ρ . Indeed, each

Euler approximation xn(·) : [0,T ]−→ E, n ∈ N, can be regarded as a solution of
◦
xn (·) � f̂n(·)

with the auxiliary function

f̂n : [0,T ]−→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

f̂n(t) := f
(
xn(·)

∣∣
[tk

n−τ, tk
n ], tk

n

)
for any t ∈ [tk

n , tk+1
n [, k < 2n.

Similarly set f̂ : [0,T ] −→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

t �−→ f
(
x(t + ·)∣∣[−τ,0], t

)
.
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At L 1-almost every time t ∈ [0,T ], assumption (4.) has two key consequences.
First, with the abbreviation tk

nm
:= [ t

hnm
]hnm ∈ N hnm ,

D̂ j

(
f̂ (t), f̂nm(t); ρ

)
= D̂ j

(
f (x(t + ·)|[−τ,0], t), f (xnm(tk

nm
+ ·)|[−τ,0], tk

nm
); ρ
)

m→∞−→ 0,

for every j ∈I and ρ ≥ R j because for any index i ∈I and t ∈ [0,T ], s ∈ [−τ,0],
the pointwise convergence of (xnm(·))m∈N and continuity property (H3) (ii) imply

di

(
x(t + s), xnm(tk

nm
+ s)
) m→∞−→ 0 .

Second, we obtain for any sequence tm −→ t in [0,T ] and for every j ∈I , ρ ≥ R j

D̂ j

(
f̂nm(t), f̂nm(tm); ρ

)
= D̂ j

(
f (xnm(tk

nm
+ ·)|[−τ,0], tk

nm
),

f (xnm(tlm
nm

+ ·)|[−τ,0], tlm
nm

); ρ
) m→∞−→ 0

with the abbreviations tk
nm

:= [ t
hnm

]hnm , tlm
nm

:= [ tm
hnm

]hnm because due to continuity
property (H3) (ii) again, the following convergence holds for any i ∈I , s ∈ [−τ,0]{

di

(
x(t + s), xnm(tk

nm
+ s)
) m→∞−→ 0

di

(
x(t + s), xnm(tlm

nm
+ s)
) m→∞−→ 0.

Hence the assumptions of Convergence Theorem 13 are satisfied by
◦
xn (·) � f̂n(·)

and thus, x(·)|[0,T ] solves the mutational equation
◦
x(·)� f̂ (·) in the tuple

(
E,(d j) j∈I,

(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
, i.e., x(·)|[0,T ] is a solution to the mutational equation
◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)
. �

3.3.4 Existence for systems of mutational equations with delay

Considering mutational equations with delay and without state constraints, the pre-
ceding results about existence and convergence of solutions can be extended easily
to systems. This feature is regarded as an important advantage in regard to applica-
tions as we have already pointed out.

Indeed, starting with the same assumptions as in § 3.3.3 (i.e. Euler compactness
and Euler equi-continuity) for each component, Euler method provides a sequences
of approximative solutions. Then Lemma 18 (on page 157) is applied to each com-
ponent successively so that we can extract a subsequence of approximative solutions
whose components converge pointwise respectively.
Finally it is to verify that each component of the limit solves the corresponding
mutational equation in the sense of Definition 8 (on page 149). For this purpose,
we regard the other components as additional, but known dependencies on time
respectively — as we have already done successfully in the proof of Theorem 2.19
(on page 84 ff.).
Now we formulate the results about two mutational equations in detail and then
restrict our considerations of proofs to the aspect of convergence again.
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Theorem 21 (Convergence of solutions to systems of mutational equations).
Let the tuples

(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1

j) j∈I1 , (D̂1
j) j∈I1

)
and

(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2

j) j∈I2 , (D̂2
j) j∈I2

)
satisfy the assumptions of § 3.1 (on page 144 ff.) respectively with nonempty sets

Θ̂
(
E1,(d1

j ) j∈I1 ,(e
1
j) j∈I1 ,(�·�1

j) j∈I1

)
and Θ̂

(
E2,(d2

j ) j∈I2 ,(e
2
j) j∈I2 ,(�·�2

j) j∈I2

)
.

Suppose the following properties of

f 1
n , f 1 : E1×E2× [0,T ] −→ Θ̂

(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1

i )i∈I1

)
(n ∈ N)

f 2
n , f 2 : E1×E2× [0,T ] −→ Θ̂

(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2

i )i∈I2

)
(n ∈ N)

x1
n, x1 : [0,T ] −→ E1 :

x2
n, x2 : [0,T ] −→ E2 :

1.) for each j1 ∈I1, j2 ∈I2 and every ρ ≥ 0,

R1
j1

:= sup
n,t

�x1
n(t)�1

j1
< ∞, α̂1

j1
(ρ) := sup

n,t,y1,y2
α1

j1

(
f 1
n (y1,y2, t); ρ

)
< ∞,

R2
j2

:= sup
n,t

�x2
n(t)�2

j2
< ∞, α̂2

j2
(ρ) := sup

n,t,y1,y2
α2

j2

(
f 2
n (y1,y2, t); ρ

)
< ∞,

β̂ 1
j1

:= sup
n

Lip
(
x1

n(·) : [0,T ]−→ (E,e1
j1
)
)

< ∞,

β̂ 2
j2

:= sup
n

Lip
(
x2

n(·) : [0,T [−→ (E,e2
j2
)
)

< ∞,

2.)
◦
x 1

n(·) � f 1
n (x1

n(·), x2
n(·), ·)◦

x 2
n(·) � f 2

n (x1
n(·), x2

n(·), ·) (in the sense of Definition 8 on p.149) for any n,

3.) for L 1-almost every t ∈ [0,T ] :

lim
n→∞

D̂1
j1

(
f 1
n (x1(t), x2(t), t), f 1

n (y1
n, y2

n, tn); ρ
)

= 0

lim
n→∞

D̂2
j2

(
f 2
n (x1(t), x2(t), t), f 2

n (y1
n, y2

n, tn); ρ
)

= 0

for each j1 ∈I1, j2 ∈I2, ρ ≥ 0 and any sequences (tn)n∈N, (y1
n)n∈N, (y2

n)n∈N

in [t,T ], E1 and E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
x1(t),y1

n

)
= 0, sup

n∈N

�y1
n�1

i ≤ R1
i for each i ∈I1,

lim
n→∞

d2
i

(
x2(t),y2

n

)
= 0, sup

n∈N

�y2
n�2

i ≤ R2
i for each i ∈I2,

4.) for Lebesgue-almost every t ∈ [0,T ] (t = 0 inclusive) and any t̃ ∈ ]t,T [, there

exist a sequence nm ↗∞ of indices and sequences δm ↘ 0, δ̃m ↘ 0 (depending

on t, t̃) satisfying for m−→ ∞ and each j1 ∈I1, j2 ∈I2, ρ ≥ 0⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) D̂1
j1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); ρ

) −→ 0

D̂2
j2

(
f 2(x1(t), x2(t), t), f 2

nm
(x1(t), x2(t), t); ρ

) −→ 0

(ii) d1
j1

(
x1(t), x1

nm
(t +δm)

) −→ 0, d2
j2

(
x2(t), x2

nm
(t +δm)

) −→ 0

(iii) d1
j1

(
x1(̃t), x1

nm
(̃t− δ̃m)

) −→ 0, d2
j2

(
x2(̃t), x2

nm
(̃t− δ̃m)

) −→ 0
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Then, x1(·) and x2(·) are solutions to the mutational equations

◦
x 1(·) � f 1

(
x1(·), x2(·), ·), ◦

x 2(·) � f 2
(
x1(·), x2(·), ·)

in
(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1

j) j∈I1 , (D̂1
j) j∈I1

)
and

(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2

j) j∈I2 , (D̂2
j) j∈I2

)
respectively.

Theorem 22 (Existence of solutions to systems with delay).
Suppose each of the tuples(

E1, (d1
j ) j∈I1 , (e1

j) j∈I1 , (�·�1
j) j∈I1 , Θ̂

(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1

i )i∈I1

))(
E2, (d2

j ) j∈I2 , (d2
j ) j∈I2 , (�·�2

j) j∈I2 , Θ̂
(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2

i )i∈I2

))
to be Euler compact and Euler equi-continuous. For some fixed τ ≥ 0, set

BL k := BLip
(
[−τ,0], E; (ek

j) j∈Ik
, (�·�k

j) j∈Ik

)
(k = 1,2).

Assume for the functions

f 1 : BL 1×BL 2× [0,T ] −→ Θ̂
(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1

i )i∈I1

)
f 2 : BL 1×BL 2× [0,T ] −→ Θ̂

(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2

i )i∈I2

)
and each j1 ∈I1, j2 ∈I2, R > 0 :

1.) sup
z1, z2, t

α1
j1
( f 1(z1,z2, t); R) < ∞, sup

z1, z2, t

α2
j2
( f 2(z1,z2, t); R) < ∞,

2.) sup
z1, z2, t

β 1
j1
( f 1(z1,z2, t); R) < ∞, sup

z1, z2, t

β 2
j2
( f 2(z1,z2, t); R) < ∞,

3.) sup
z1, z2, t

γ1
j1
( f 1(z1,z2, t)) < ∞, sup

z1, z2, t

γ2
j2
( f 2(z1,z2, t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] :

lim
n→∞

D1
j1

(
f 1(y1

n,y
2
n,sn), f 1(z1

n,z
2
n, tn); R

)
= 0

lim
n→∞

D2
j2

(
f 2(y1

n,y
2
n,sn), f 2(z1

n,z
2
n, tn); R

)
= 0

for every j1 ∈I1, j2 ∈I2, R > 0 and any sequences (sn, tn)n∈N, (y1
n,z

1
n)n∈N

(y2
n,z

2
n)n∈N in [0,T ], BL 1, BL 2 respectively satisfying for each k ∈ {1,2},

i ∈Ik, s ∈ [−τ,0],

lim
n→∞

sn = t = lim
n→∞

tn, lim
n→∞

dk
i

(
yk

n(s), zk(s)
)

= 0 = lim
n→∞

dk
i

(
zk

n(s), zk(s)
)

sup
n∈N

sup
[−τ,0]

{�yk
n(·)�k

i , �zk
n(·)�k

i } < ∞ .

Then for any initial functions x1
0 ∈BL 1,x2

0 ∈BL 2 given, there exist curves

x1(·) ∈ BLip
(
[−τ,T ], E; (e1

j) j∈I1 , (�·�1
j) j∈I1

)
x2(·) ∈ BLip

(
[−τ,T ], E; (e2

j) j∈I2 , (�·�2
j) j∈I2

)
with x1(·)|[−τ,0] = x1

0, x2(·)|[−τ,0] = x2
0 whose respective restrictions to [0,T ] solve
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the two mutational equations with delay⎧⎨⎩
◦
x 1(t) � f 1

(
x1(t + ·)|[−τ,0], x2(t + ·)|[−τ,0], t

)
◦
x 2(t) � f 2

(
x1(t + ·)|[−τ,0], x2(t + ·)|[−τ,0], t

)
in

(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1

j) j∈I1 , (D̂1
j) j∈I1

)
and

(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2

j) j∈I2 , (D̂2
j) j∈I2

)
.

Proof (of Theorem 21). We focus on x1(·) and choose the index j ∈I1 arbitrarily.
Then, x1(·) : [0,T ]−→ (E1,e

1
j) is β̂ 1

j –Lipschitz continuous as a consequence of as-
sumption (4.) and the lower semicontinuity of e1

j (hypothesis (H3) (i) on page 144).
Hypothesis (H4) about the lower semicontinuity of �·�1

j ensures �x1(̃t)�1
j ≤ R1

j .

Finally we verify the solution property

limsup
h↓0

1
h
·
(

d1
j

(
ϑ 1(s+h, z1), x1(t +h)

) − d1
j (ϑ 1(s,z1), x1(t)) · eα j(x1;ρ) h

)
≤ D̂1

j

(
ϑ 1, f 1(x1(t), x2(t), t); ρ

)
for Lebesgue-almost every t ∈ [0,T [ and for any ϑ 1 ∈ Θ̂

(
E1,(d1

j ),(e
1
j),(�·�1

j)
)
,

s ∈ [0,1[, z1 ∈ E1, ρ ≥ R1
j with �ϑ 1(·,z1)� j ≤ ρ ,

Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
xnm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each i1 ∈I1, i2 ∈I2, r ≥ 0 and m−→ ∞⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D̂1
i1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); r

) −→ 0

d1
i1

(
x1(t), x1

nm
(t +δm)

) −→ 0

d2
i2

(
x2(t), x2

nm
(t +δm)

) −→ 0

d1
i1

(
x1(t+h), x1

nm
(t +h− δ̃m)

) −→ 0

Now we conclude from Lemma 9 (on page 150) and the continuity of d1
j (due to

hypothesis (H3) (i)) respectively for each index j ∈I1

d1
j

(
ϑ 1(s+h, z1), x1(t +h)

)
= lim

m→∞
d1

j

(
ϑ 1(s+h− δ̃m, z1), x1

nm
(t +h− δ̃m)

)
≤ limsup

m−→∞

(
d1

j

(
ϑ 1(s+δm, z1), x1

nm
(t +δm)

)
+

+ h · sup
[t+δm, t+h−δ̃m]

D̂1
j

(
ϑ 1, f 1

nm
(x1

nm
, x2

nm
, ·); ρ

)) · e
α̂1

j (ρ) ·h

≤
(

d1
j

(
ϑ(s,z), x(t)

)
+ h · limsup

m−→∞
sup

[t+δm, t+h]
D̂ j

(
ϑ , fnm(x1

nm
,x2

nm
, ·); ρ

))
eα̂ j(ρ)h.
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For completing the proof, it is sufficient to verify

limsup
h↓0

limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ , fnm(x1

nm
,x2

nm
, ·); ρ

) ≤ D̂ j

(
ϑ , f (x1(t),x2(t), t); ρ

)
for Lebesgue-almost every t ∈ [0,T [ and any subsequence nm ↗ ∞ satisfying⎧⎪⎪⎨⎪⎪⎩

d1
i1

(
x1(t), x1

nm
(t +δm)

) −→ 0

d2
i2

(
x2(t), x2

nm
(t +δm)

) −→ 0

D̂1
i1

(
f 1(x1(t),x2(t), t), f 1

nm
(x1(t),x2(t), t); r

) −→ 0

for m−→ ∞ and each i1 ∈I1, i2 ∈I2, r ≥ 0.
Indeed, if this inequality was not correct then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N fulfilling for all l ∈ N

D̂ j

(
ϑ , fnml

(x1
nml

(t+sl), x2
nml

(t+sl), t+sl); ρ
) ≥ D̂ j

(
ϑ , f (x1(t), x2(t), t); ρ

)
+ ε,

δml
≤ sl ≤ hl ≤ 1

l
, ml ≥ l.

Due to property (H3) (ii), the uniform Lipschitz continuity of (x1
nm

(·))m, (x2
nm

(·))m

implies {
d1

i1

(
x1(t), x1

nml
(t + sl)

) −→ 0

d2
i2

(
x2(t), x2

nml
(t + sl)

) −→ 0

for l −→ ∞ and each i1 ∈I1, i2 ∈I2. Thus at L 1-almost every time t ∈ [0,T [,
assumptions (3.), (4.) (i) and hypothesis (H6) about the continuity of D̂1

j( · , · ; r)
would lead to a contradiction because for any r ≥ 0,

lim
l→∞

D̂1
j

(
ϑ , fnml

(x1
nml

(t+sl), x2
nml

(t+sl), t+sl); r
)

= D̂1
j

(
ϑ , f (x1(t), x2(t), t); r

)
.

�

3.3.5 Existence under state constraints for a single index

Similarly to § 2.3.6 (on page 89 f.), we restrict our considerations to the special case
that the index set I �= /0 consists of a single element: I = {0}.
Now the goal is to specify sufficient conditions for the existence of solutions to
mutational equations with state constraints. Aubin’s adaption of Nagumo’s Theorem
(about ordinary differential equations) formulated in Theorem 1.19 (on page 28)
serves as a starting point and provides the viability condition.

In contrast to the counterparts in preceding chapters, we now dispense with
assuming sequential compactness of all “closed balls” in (E,d0). Instead we focus
on the compactness properties of curves which are constructed via transitions in a
piecewise way. But this piecewise construction does not have to be restricted to an
equidistant partition of [0,T ] as in Definitions 2.15 and 16 about Euler compactness
and Euler equi-continuity respectively (on pages 78 and 156).
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Definition 23.
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i,(ei)i,(�·�i)i

))
is called nonequidistant Euler compact if it satisfies the following condition for
any initial element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j,L j > 0 ( j ∈I ):
Let PN = PN (x0,T,(α̂ j, β̂ j, γ̂ j,L j) j∈I ) denote the (possibly empty) subset of
all curves y(·) : [0,T [−→ E with the four following properties

(1.) y(0) = x0,

(2.) for each j ∈I , y : [0,T [−→ (E,e j) is L j-Lipschitz continuous,
(3.) for each j ∈I , sup �y(·)� j ≤ (�x0� j + γ̂ j T ) · eγ̂ j T =: R j.
(4.) for any t ∈ [0,T [, there are s ∈ ]t−1, t] and ϑ ∈ Θ̂

(
E,(di)i,(ei)i,(�·�i)i

)
with y(s+ ·) = ϑ( · , y(s)) in an open neighbourhood I ⊂ [0,1] of [0, t−s]
and α j(ϑ ; R j) ≤ α̂ j, β j(ϑ ; R j) ≤ β̂ j, γ j(ϑ) ≤ γ̂ j,

Then for each t ∈ [0,T [, every sequence (zn)n∈N in {y(t) | y(·) ∈PN } ⊂ E has a
subsequence (znm)m∈N and an element z ∈ E with d j(znm ,z)−→ 0 for each j ∈I .

The tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is called nonequidistant Euler equi-continuous if for any initial element x0 ∈E, time
T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ), there exists λ j > 0 for each j ∈I such
that

PN (x0, T, (α̂ j, β̂ j, γ̂ j, ∞) j∈I ) = PN (x0, T, (α̂ j, β̂ j, γ̂ j, λ j) j∈I ) ,

i.e., every curve y(·) : [0,T [−→ E satisfying preceding conditions (1.), (3.), (4.)
is λ j-Lipschitz continuous with respect to e j for each j ∈I .

Remark 24. We provide two simple implications for the special case I = {0}:

(1.) If for every r1,r2 > 0 and x0 ∈ E, the set {x ∈ E | e0(x0,x)≤ r1, �x�0 ≤ r2}
is sequentially compact, then the tuple

(
E, d0, e0, �·�0, Θ̂

)
is always nonequidistant

Euler compact.

(2.) If d0 ≡ e0 is a pseudo-metric, then all curves piecewise constructed by transi-
tions are Lipschitz continuous due to Lemma 2.10 (on page 73). Finally nonequidis-
tant Euler equi-continuity (with λ0 = β̂0) results from the triangle inequality.

Proposition 25 (Existence of solutions under state constraints for I = {0}).
In addition to I = {0}, let E �= /0 and

d0, e0 : E×E −→ [0,∞[ ,
�·�0 : E −→ [0,∞[ ,
D0 : E×E× [0,∞[ −→ [0,∞[

satisfy hypotheses (H1)–(H7). Assume
(
E, d0, e0, �·�0, Θ̂(E,d0,e0,�·�0)

)
to be

nonequidistant Euler compact and nonequidistant Euler equi-continuous.

For each r>0, suppose

f : (E,d0)−→
(
Θ̂
(
E, d0, e0, �·�0

)
, D0(·, ·;r)

)
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to be continuous with

α̂(r) := supz∈E α0( f (z);r) < ∞,

β̂ (r) := supz∈E β0( f (z);r) < ∞,
γ̂ := supz∈E γ0( f (z)) < ∞.

Let V ⊂ (E,d0) be a closed subset whose projection E � V has always nonempty

values and whose distance function dist(·,V ) : (E,d0)−→ [0,∞[, z �−→ inf
y∈V

d0(y,z)

is 1-Lipschitz continuous. Assume the following viability condition

f (z) ∈TV (z) for every z ∈ V ,

i.e. liminf
h↓0

1
h
· dist

(
f (z)(h,z), V

)
= 0 for every z ∈ V .

Then every state x0 ∈ V is the initial point of at least one solution x : [0,1]−→ E

to the mutational equation
◦
x(·) � f

(
x(·))

in
(
E, d0, e0, �·�0, D̂0

)
with the state constraint x(t) ∈ V for all t ∈ [0,1].

For proving this proposition, we first construct approximative solutions satis-
fying weakened forms of mutational equation and state constraints. Lemma 1.29
(on page 36) and Lemma 2.24 (on page 90) have the following counterpart with
λ0 > 0 denoting the appropriate Lipschitz constant resulting from nonequidistant
Euler equi-continuity and depending on γ̂, x0 essentially.

Lemma 26 (Constructing approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 25, there always exists a

λ0–Lipschitz continuous function xε(·) : [0,1]−→ (E,e0) satisfying

(a) xε(0) = x0,

(b) for all t ∈ [0,1], dist
(
xε(t), V

) ≤ ε eα̂

(c) for all t ∈ [0,1[, there exist ϑ ∈ { f (z)
∣∣ z ∈ E : d0(z, xε(t)) ≤ ε eα̂} ⊂

Θ̂(E,d0,�·�0) and s ∈ [0, t] with xε(s + ·) = ϑ(·,xε(s))
in an open neighbourhood I ⊂ [0,1] of [0, t−s],

(d) for all t ∈ [0,1], �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t .

Proof (of Lemma 26). For ε > 0 fixed, let Aε(x0) denote the set of all tuples
(Tx, x(·)) consisting of some Tx ∈ [0,1] and a λ0–Lipschitz continuous function
x(·) : [0,Tx]−→ (E,e0) such that

(a) x(0) = x0,

(b’) 1.) dist
(
x(Tx), V

) ≤ rε(Tx) with rε(t) := ε eα̂ t t,
2.) dist

(
x(t), V

) ≤ rε(1) for all t ∈ [0,Tx],

(c) for all t ∈ [0,Tx[, there exist ϑ ∈ { f (z)
∣∣z∈ E : d0(z, xε(t))≤ rε(1)

}⊂
Θ̂(E,d0,e0,�·�0) and s ∈ [0, t] with xε(s+ ·) = ϑ(·,xε(s)) in an open
neighbourhood I ⊂ [0,Tx[ of [0, t−s].

(d) for all t ∈ [0,Tx[, �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t .
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Obviously, Aε(x0) is not empty since it contains (0, x(·)≡ x0). Moreover, an order
relation � on Aε(x0) is specified by

(Tx, x(·)) � (Ty, y(·)) :⇐⇒ Tx ≤ Ty and x = y
∣∣
[0,Tx]

.

Hence, Zorn’s Lemma provides a maximal element
(
T, xε(·)

) ∈Aε(x0).
As all considered functions with values in E have been supposed to be λ0–Lipschitz
continuous, xε(·) : [0,T [−→ (E,e0) is also λ0–Lipschitz continuous. In particular,
xε(·) can always be extended to the closed interval [0,T ]⊂ [0,1] in a Lipschitz con-
tinuous way because the tuple

(
E, d0, e0, �·�0, Θ̂(E,d0,e0,�·�0)

)
is assumed to be

nonequidistant Euler compact (and for each k ∈N, we are free to extend x(·)|[0,T− 1
k
]

to [0,T ] by means of an arbitrarily fixed transition ϑ ).

Assuming T < 1 for a moment, we obtain a contradiction if xε(·) can be extended
to a larger interval [0,T +δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c), (d).
Due to the assumption about the set-valued projection on V ⊂ E, the closed set V
contains an element z ∈ E with d0(xε(T ),z) = dist(xε(T ), V ) ≤ rε(T ).
As a consequence of the viability condition, there is a sequence hm ↓ 0 in ]0,1−T [
such that dist

(
f (z)(hm,z), V

) ≤ ε hm for all m ∈ N.

Now set for each t ∈ [T, T +h1]

xε(t) := f (z)
(
t−T, xε(T )

)
.

Obviously, this extension of xε(·) satisfies the two conditions (c), (d) in [0, T +h1].
Furthermore, the estimate d0

(
z, xε(T )

) ≤ rε(T ) < rε(1) and the continuity of xε(·)
provide some sufficiently small δ ∈ ]0,h1] with

dist
(
xε(t), V

) ≤ d0
(
xε(t), z

) ≤ rε(1) for every t ∈ [T, T +δ ]

and thus, the extension x(·) fulfills condition (b’)(2.) in the interval [0, T +δ ].
For any index m ∈ N with hm < δ , we conclude from the 1-Lipschitz continuity of
dist( · ,V ) with respect to d0 and Proposition 7 (on page 147)

dist
(
xε(T +hm), V

) ≤ d0
(

f (z)(hm, xε(T )), f (z)(hm, z)
)

+ dist
(

f (z)(hm, z), V
)

≤ d0
(
xε(T ), z

) · eα̂ hm + ε ·hm

≤ ε eα̂ T T · eα̂ hm + ε ·hm

≤ rε(T +hm),

i.e. condition (b’)(1.) is also satisfied at time t = T +hm with any large m ∈ N.
Finally, xε(·)

∣∣
[0,T+hm] provides the wanted contradiction and thus, T = 1. �

Proof (of Proposition 25). Considering a sequence of approximative solutions
(x1/n(·))n∈N in the sense of Lemma 26, we can select a subsequence (x1/n j

(·)) j∈N

that is converging pointwise to a λ0-Lipschitz continuous curve x(·) : [0,T ] −→ E.
Indeed, this selection is based on the same arguments as Lemma 18 (on page 157 f.).
Moreover, x(·) has all its values in the closed set of constraints V ⊂ E.

Finally we have to verify that x(·) solves the mutational equation
◦
x (·) � f

(
x(·)).

It results from Convergence Theorem 13 (on page 153) and the continuity of f . �
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3.3.6 Exploiting a generalized form of “weak” compactness:
Convergence and existence without state constraints

In § 3.3.3 (on page 155 ff.), the combination of Euler compactness and Euler equi-
continuity has laid the foundations for the existence of solutions to the initial value
problem without state constraints (in Theorem 19).

This form of compactness with respect to (d j) j∈I , however, might be very difficult
to verify in many applications. In the simple example of a Banach space with affine-
linear transitions (extending Example 1.2 on page 2), we would have to assume that
all transitions have their values (after any positive time) in a finite dimensional sub-
space. Undoubtedly, it is a very severe restriction.

Similar obstacles have already led to the concepts of weak convergence and weak
compactness in functional analysis. They are closely related with linear forms in the
considered topological vector space, but such linear functions do not prove to be ap-
propriate for drawing any conclusions in the general tuple

(
E, (d j) j∈I , (e j) j∈I

)
.

In regard to extending the notion of weak convergence to such a tuple, we suggest
another well-known relation of linear functional analysis as starting point for bridg-
ing the gap between strong and weak topology: In every Banach space (X ,‖ · ‖X )
(with BX denoting its closed unit ball), the norm of any element z ∈ X satisfies

‖z‖X = sup
{

y∗(z)
∣∣ y∗ : X −→ R linear, continuous, supx∈BX

‖y∗(x)‖X ≤ 1
}
.

Skipping now any aspects of linearity, we realize that the metric on X is represented
as supremum of further pseudo-metrics. In particular, weak convergence focuses on
the convergence with respect to all these pseudo-metrics instead of their supremum.
Such a connection via supremum can be extended easily to

(
E, (d j) j∈I , (e j) j∈I

)
.

Additional assumptions for § 3.3.6.

In addition to the general hypotheses (H1)–(H7) about d j,e j : E × E −→ [0,∞[
specified in § 3.1 (on page 144 ff.), let J �= /0 be a further index set. Assume
d j,κ ,e j,κ : E×E −→ [0,∞[ ( j ∈I , κ ∈J ) to satisfy (H1)–(H3) (with index set
I ×J instead of I for distance functions) and additionally

(H8) d j(x, y) = sup
κ∈J

d j,κ(x,y),

e j(x, y) = sup
κ∈J

e j,κ(x,y) for all x,y ∈ E, j ∈I .

Moreover, we tighten up hypothesis (H4) in the following form:

(H4’) �·� j is lower semicontinuous with respect to (di,κ)i∈I ,κ∈J , i.e.,
�x� j ≤ liminf

n−→∞
�xn� j

for any x ∈ E and (xn)n∈N in E fulfilling for each i ∈I ,κ ∈J

lim
n→∞

di,κ(xn,x) = 0, sup
n∈N

�xn�i < ∞ .
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Definition 27 (weakly Euler compact).
The tuple

(
E, (d j) j∈I , (d j,κ) j∈I ,κ∈J , (e j) j∈I , (e j,κ) j∈I ,κ∈J , (�·� j) j∈I ,

Θ̂
(
E,(di),(ei),(�·�i)

))
is called weakly Euler compact if it satisfies the following

condition for any element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→ E specified in a piecewise way in Definition 2.15 (on page 78) and
equivalently in Remark 15 (2.) (on page 155).
Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈ N } ⊂ E has a
subsequence (znm)m∈N and an element z ∈ E with

lim
m→∞

d j,κ(znm ,z) = 0 for each j ∈I ,κ ∈J .

Theorem 28 (Existence due to weak Euler compactness).
Suppose

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be

Euler equi-continuous (in the sense of Definition 16 on page 156) and the tuple(
E, (d j) j, (d j,κ) j,κ , (e j) j, (e j,κ) j,κ , (�·� j) j, Θ̂

(
E,(di)i,(ei)i,(�·�i)i

))
to be

weakly Euler compact.

Moreover assume for some fixed τ ≥ 0, the function

f : BLip
(
[−τ,0], E; (ei)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
E,(di)i,(ei)i,(�·�i)i

)
and each j ∈I , R > 0 :

1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f (z1

n(·), t1
n ), f (z2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(z1
n(·))n∈N, (z2

n(·))n∈N in BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I , κ ∈J and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
di,κ
(
z1

n(s), z(s)
)

= 0 = lim
n→∞

di,κ
(
z2

n(s), z(s)
)

sup
n∈N

sup
[−τ,0]

�z1,2
n (·)�i < ∞ .

5.) for every z(·) and L 1-a.e. t ∈ [0,T ], the function f (z(·), t)(h, ·) : E −→ E is

“weakly” continuous in the following sense:

lim
n→∞

d j,κ
(

f (z(·), t)(h,y), f (z(·), t)(h,yn)
)

= 0

for each κ ∈J , h ∈ ]0,1], y ∈ E and any sequence (yn)n∈N in E satisfying

di,κ ′(y,yn)−→ 0, supn �yn�i < ∞ for any i ∈I ,κ ′ ∈J .

For every function x0(·)∈BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
, there exists a curve

x(·) : [−τ,T ]−→ E with the following properties:
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(i) x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
,

(ii) x(·)∣∣[−τ,0] = x0(·),
(iii) For L 1-a.e. t ∈ [0,T [, lim

h↓0
1
h
·d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t +h)

)
= 0.

If each d j ( j ∈ J) satisfies the triangle inequality in addition, the restriction

x(·)∣∣[0,T ] is a solution to the mutational equation
◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)
in the sense of Definition 8 (on page 149).

For constructing a candidate x(·) : [−τ,T ] −→ E, we can follow exactly the same
track as for Euler compactness in § 3.3.3 (on page 155 ff.). In particular, the
arguments for preceding Lemma 18 (presented on page 158) provide a subse-
quence of Euler approximations whose restrictions to [0,T ] converge to a function
x(·) : [0,T ]−→ E pointwise with respect to each d j,κ ( j ∈I , κ ∈J ).
Now we still have to focus on the solution property of x(·)∣∣[0,T ]:

Proposition 29 (about “weak” pointwise convergence of solutions).
Suppose the following properties of

fn, f : E× [0,T ] −→ Θ̂
(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t

�xn(t)� j < ∞,

α̂ j(ρ) := sup
n

α j

(
xn; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,e j)

)
< ∞ for every j ∈I ,

2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 8 on page 149) for every n∈N,

3.) Equi-continuity of ( fn)n at (x(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j ( fn(x(t), t), fn(yn, tn); r) = 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (yn)n∈N in [t,T ] and E respectively

satisfying lim
n→∞

tn = t, lim
n→∞

di,κ
(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for any i,κ ,

3’.) Weak continuity of each function f (x(t), t)(h, ·) : E −→ E in the following

sense at L 1-almost every time t ∈ [0,T ] :

lim
n→∞

d j,κ
(

f (x(t), t)(h,y), f (x(t), t)(h,yn)
)

= 0

for each κ ∈J, h ∈ ]0,1], y ∈ E and any sequence (yn)n∈N in E satisfying

di,κ ′(y,yn)−→ 0, supn �yn�i < ∞ for any i ∈I ,κ ′ ∈J .

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞⎧⎪⎨⎪⎩
(i) D̂ j

(
f (x(t), t), fnm(x(t), t); r

) −→ 0 for all r ≥ 0, j ∈I ,

(ii) for all j ∈I ,κ ∈J : d j,κ
(
x(t), xnm(t)

) −→ 0,

(iii) for all j ∈I ,κ ∈J : d j,κ
(
x(̃t), xnm (̃t)

) −→ 0.
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Then, x(·) is β̂ j-Lipschitz continuous with respect to e j for each index j ∈I and,

at L 1-almost every time t ∈ [0,T ],

lim
h↓0

1
h
· d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0

holds for every j ∈I .

If each d j ( j ∈ J) satisfies the triangle inequality in addition, then the curve

x(·) : [0,T ]−→ E is a solution to the mutational equation
◦
x(·) � f (x(·), ·) in the

tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Proof (of Proposition 29).

Similarly to the proof of Theorem 13 (on page 153 ff.), choose the index j ∈I
arbitrarily.

Then x(·) : [0,T ] −→ (E,e j) is β̂ j–Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t̃ ∈ ]t,T ], assumption (4.) provides a subsequence(
xnm(·))

m∈N
satisfying for each i ∈I , κ ∈J{

di,κ
(
x(t), xnm(t)

) −→ 0

di,κ
(
x(̃t), xnm (̃t)

) −→ 0
for m−→ ∞.

The uniform β̂ j–Lipschitz continuity of xn(·), n ∈N, with respect to e j and hypoth-
esis (H3) (i) about (ei,κ)i∈I ,κ∈J imply for every κ ∈J

e j,κ
(
x(t), x(̃t)

) ≤ limsup
m→∞

e j,κ
(
xnm(t), xnm (̃t)

) ≤ β̂ j |̃t− t|,
e j

(
x(t), x(̃t)

)
= sup

κ∈J
e j,κ
(
x(t), x(̃t)

) ≤ β̂ j |̃t− t|.

This Lipschitz estimate even holds at any points of time t, t̃ ∈ [0,T ] due to the lower
semicontinuity of e j,κ (hypotheses (H3) (o), (i)). Furthermore, hypothesis (H4’)
about the lower semicontinuity of �·� j guarantees the bound

�x(̃t)� j ≤ liminf
m−→∞

�xnm (̃t)� j ≤ R j.

Finally we verify at L 1-almost every time t ∈ [0,T [

limsup
h↓0

1
h
· d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0.

Indeed, for L 1-almost every t ∈ [0,T [ and any h∈ ]0, T−t[, assumption (4.) ensures
a subsequence

(
xnm(·))

m∈N
satisfying for each i ∈I , κ ∈J , r ≥ 0 and m−→ ∞⎧⎪⎨⎪⎩

D̂i

(
f (x(t), t), fnm(x(t), t); r

) −→ 0

di,κ
(
x(t), xnm(t)

) −→ 0

di,κ
(
x(t +h), xnm(t +h)

) −→ 0.

For any indices i ∈I and κ ∈J , we conclude from assumption (3’.)

lim
m→∞

di,κ
(

f (x(t), t)(h, x(t)), f (x(t), t)(h, xnm(t))
)

= 0.
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Now hypothesis (H3) (i) about (di,κ)i∈I ,κ∈J implies for every κ ∈J

d j,κ
(

f (x(t), t)(h, x(t)), x(t +h)
)

= lim
m→∞

d j,κ
(

f (x(t), t)(h, xnm(t)), xnm(t +h)
)

≤ limsup
m→∞

d j

(
f (x(t), t)(h, xnm(t)), xnm(t +h)

)
.

Lemma 9 (on page 150) provides an estimate with ρ ≥ 0 sufficiently large

d j,κ
(

f (x(t), t)(h, x(t)), x(t +h)
)

≤ h · limsup
m−→∞

sup
[t, t+h]

D̂ j

(
f (x(t), t), fnm(xnm(·), ·); ρ

) · eα̂ j(ρ) ·h.

For completing the proof, we verify

limsup
h↓0

limsup
m−→∞

sup
[t, t+h]

D̂ j

(
f (x(t), t), fnm(xnm(·), ·); ρ

)
= 0

for L 1-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))

m∈N
satisfying{

di,κ
(
x(t), xnm(t)

) −→ 0

D̂i

(
f (x(t), t), fnm(x(t), t); r

) −→ 0

for m−→∞ and each i ∈I , κ ∈J , r≥ 0. Indeed, if this equation was not correct
then we could select some ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that{

D̂ j

(
f (x(t), t), fnml

(xnml
(t + sl), t + sl); ρ

) ≥ ε
0 ≤ sl ≤ hl ≤ 1

l
, ml ≥ l

for all l ∈ N.

For each i ∈I , every curve xnm : [0,T ]−→ (E,ei) (m ∈N) is β̂i-Lipschitz continu-
ous. Hypothesis (H3) (ii) about (di,κ)i,κ , (ei,κ)i,κ implies for any i ∈I ,κ ∈J

lim
l→∞

di,κ
(
x(t), xnml

(t + sl)
)

= 0 .

Thus at L 1-almost every time t ∈ [0,T [, assumptions (3.), (4.) (i) and hypothe-
sis (H6) about the continuity of D̂ j( · , · ; r) (on page 146) lead to a contradiction
because for any r ≥ 0,

lim
l→∞

D̂ j

(
f (x(t), t), fnml

(xnml
(t + sl), t + sl); r

)
= 0 .

�
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3.3.7 Existence of solutions due to completeness:
Extending the Cauchy-Lipschitz Theorem

In general, many theorems about existence of solutions are based either on a form
of compactness or on a version of completeness. Now we prefer the latter analytical
basis and extend the Existence Theorem of Cauchy-Lipschitz to the current muta-
tional framework.
Aubin’s adaptation to mutational equations in metric spaces has already been pre-
sented in Theorem 1.15 (on page 26). It starts with a compactness assumption about
all closed bounded balls (in the metric space) though.
Now the main goal is to formulate its extension assuming merely an appropriate
form of completeness. In return for this weaker structural hypothesis, however, the
right-hand side of the mutational equation is supposed to be Lipschitz continuous –
in an appropriate sense.

Definition 30. The tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
is called complete

if for every sequence (xn)n∈N in E with⎧⎨⎩
lim

k→∞
sup

m,n≥k

d j(xm, xn) = 0

sup
n∈N

�xn� j < ∞ for each j ∈I ,

there exists an element x ∈ E fulfilling lim
n→∞

d j(xn,x) = 0 for every j ∈I .

Theorem 31 (Extended Cauchy-Lipschitz Theorem for mutational equations).
Suppose the tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
to be complete and the tuple(

E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂
(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be Euler

equi-continuous For f : E× [0,T ]−→ Θ̂
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
assume

(1.) For each j ∈I and R > 0,

α̂ j(R) := supx, t α j( f (x, t); R) < ∞,

β̂ j(R) := supx, t β j( f (x, t); R) < ∞,
γ̂ j := supx, t γ j( f (x, t)) < ∞,

(2.) the function f (·) is Lipschitz continuous w.r.t. state in the following sense:

for each tuple (r j) j∈I in [0,∞[I , there exist constants Λ j,μ j ≥ 0 ( j ∈I )
and moduli of continuity (ω j(·)) j∈I such that δ j : E×E −→ [0,∞[,

δ j(x,y) := inf
{

d j(x,z)+ μ j · e j(z,y)
∣∣ z ∈ E, ∀ i ∈I : �z�i ≤ ri

}
satisfies for every j ∈I

D̂ j

(
f (x,s), f (y, t); r j

) ≤ Λ j ·δ j(x,y)+ω j(|t− s|)
whenever (x,s), (y, t) ∈ E× [0,T ] fulfill max

{�x�i, �y�i

}≤ ri for each i.

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ]−→ E to the

mutational equation
◦
x (·) � f

(
x(·), ·) in the sense of Definition 8 (on page 149)

with x(0) = x0.
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Proof. We use Euler approximations on equidistant partitions of [0,T ] again, but
now we conclude their convergence to a candidate x(·) : [0,T ] −→ E (with respect
to each distance d j, j ∈I ) from completeness. Finally, Convergence Theorem 13
(on page 153) implies that x(·) is a solution to the mutational equation of interest.

For every n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(tk
n), tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Assuming Euler equi-continuity, we obtain a constant L j ∈ [0,∞[ for each index j

such that every curve xn(·) is L j-Lipschitz continuous with respect to e j. Moreover,
Lemma 5 (on page 147) guarantees for every t ∈ [0,T ], n ∈N (with 2n > T ), j ∈I

�xn(t)� j ≤
(�x0� j + γ̂ j T

) · eγ̂ j T =: R j .

Assumption (3.) provides constants Λ j,μ j ≥ 0 ( j ∈I ) related to the tuple (R j) j∈I

such that Lipschitz continuity with respect to the corresponding auxiliary function

δ j : E×E −→ [0,∞[,

(x,y) �−→ inf
{

d j(x,z)+ μ j · e j(z,y)
∣∣ z ∈ E, ∀ i ∈I : �z�i ≤ Ri

}
holds for every index j ∈I . In particular, we conclude from Proposition 7 about
estimating evolutions along any two transitions (on page 147) in a piecewise way:
For each j ∈I and every n > m, t ∈ ]tk

m, tk+1
m ] ∩ ]tl

n, tl+1
n ],

d j

(
xm(t), xn(t)

) · e− α̂ j(R j) ·(t−tl
n)

≤ d j

(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n) · D̂ j

(
f (xm(tk

m), tk
m), f (xn(tl

n), tl
n); R j

)
≤ d j

(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n) ·
(
Λ j δ j

(
xm(tk

m), xn(tl
n)
)
+ω j(|tl

n− tk
m|)
)

≤ d j

(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n) ·
(
Λ j

(
d j(xm(tk

m), xn(tk
m))+μ j · e j(xn(tk

m),xn(tl
n))
)

+ω j(hm)
)

≤ d j

(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n) ·
(
Λ j d j(xm(tk

m), xn(tk
m))+Λ j μ j ·L j hm + ω j(hm)

)
and thus, sup

s∈[0,t]
d j

(
xm(s), xn(s)

) ≤ const(μ j,L j,Λ j) · (hm +ω j(hm)) eΛ j · t

for every t ∈ [0,T ]. The sequence of Euler approximation
(
xn(·)

)
n∈N

is (even)
a uniform Cauchy sequence with respect to each d j, j ∈I .

Due to completeness, there exists an element x(t) ∈ E at every time t ∈ ]0,T ]
such that lim

n→∞
d j

(
xn(t), x(t)

)
= 0 holds for every index j ∈I . Setting x(0) := x0

is a rather obvious choice.
As a consequence of Convergence Theorem 13, x(·) : [0,T ] −→ E is a solution to
the mutational equation

◦
x(·) � f

(
x(·), ·) in the sense of Definition 8. This results

from essentially the same arguments as the proof of Theorem 19 (on page 159 f.).
�
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3.4 Considering tuples with a separate real time component

In some examples, it is useful to take time (or rather chronological differences)
into consideration explicitly. Then the product Ẽ := R×E is to play the role of
the basic set and, the first real component represents the respective time. The tilde
usually reflects that we consider such tuples in Ẽ. Now we sketch how this time
component can be implemented easily — without changing any essential aspect of
the preceding conclusions.

Adapting the hypotheses about the distance functions d̃ j, ẽ j ( j ∈I )

Reflexivity and symmetry of each distance function d̃ j, ẽ j : Ẽ×Ẽ −→ [0,∞[ ( j ∈I )
are still obligatory. Thus, hypotheses (H1) and (H2) are not changed.
Continuity hypothesis (H3), however, might be difficult to verify in examples
— particularly if d̃ j(x̃, ỹ) or ẽ j(x̃, ỹ) depend on the time components of x̃, ỹ ∈ Ẽ.
Thus we formulate the following modifications with π1 : Ẽ −→ R, x̃ = (t,x) �−→ t

always denoting the canonical projection on the real time component:

(H3) (̃i) d̃ j(x̃, ỹ) = lim
n→∞

d̃ j(x̃n, ỹn),

ẽ j(x̃, ỹ) ≤ limsup
n→∞

ẽ j(x̃n, ỹn)

for any x̃, ỹ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, x̃n) = 0 = lim
n→∞

d̃i(ỹn, ỹ), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞

and for all n ∈ N : π1 x̃n ≤ π1 ỹn .

(H3) (ĩi) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for any x̃ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in E fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, ỹn) = 0 = lim
n→∞

ẽi(ỹn, x̃n), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞ ,

π1 x̃ ≤ π1 ỹn ≤ π1 x̃n ∀ n ∈ N or π1 x̃ ≥ π1 ỹn ≥ π1 x̃n ∀ n ∈ N.

(H3) (ĩii) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 z̃k,n = π1 ỹk ≤ π1 x̃n = π1 x̃ for each k,n ∈ N,

lim
k→∞

ẽi(x̃, ỹk) = 0 for each i ∈I ,

lim
n→∞

d̃i(ỹk, z̃k,n) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ẽi(z̃k,n, x̃n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .
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These assumptions differ from their counterparts in § 3.1 (on page 144) in regard
to additional constraints about the time components. They are even “weaker” than
original hypotheses (H3) (i)–(iii). Hypothesis (H3) (o) about the equivalence of con-
vergence with respect to (d̃ j) j∈I and (ẽ j) j∈I is not changed.

The time components of transitions and solutions

Whenever we consider curves x̃(·) : [0,T ]−→ Ẽ, the time component is expected to
reflect the evolution of time properly. Hence we usually demand additivity in the
sense
of π1 x̃(t) = π1 x̃(0) + t

for every t ∈ [0,T ]. In particular, transitions and solutions are expected to fulfill this
condition, i.e., we always assume

π1 ϑ̃(h, x̃) = π1 x̃ + h

for every transition ϑ̃ on
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, time h∈ [0,1] and x̃∈ Ẽ.

Moreover, Definition 8 of solutions (on page 149) is enriched by a further condition:

Definition 32. Let f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

A curve x̃(·) : [0,T ]−→ Ẽ is called a timed solution to the mutational equation
◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if it satisfies for each j ∈I :

1.) x̃(·) is continuous with respect to ẽ j,

2.′) there exists α j(x̃; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃(s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃(s,z̃), x̃(t)) · eα j(x̃;R j) h

h
≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); R j

)
for any ϑ̃ ∈ Θ̂

(
Ẽ,(d̃ j),(ẽ j),(�·� j)

)
, s<1, z̃∈ Ẽ with �ϑ̃(·, z̃)� j,�x̃(·)� j ≤ R j,

3.) sup
t∈ [0,T ]

�x̃(t)� j < ∞ ,

4.) for every t ∈ [0,T ], π1 x̃(t) = π1 x̃(0) + t.

In our subsequent conclusions about existence and stability of solutions, however,
we are free to restrict all comparisons to states with identical time components. This
leads to a further definition of solution which is slightly weaker than the preceding
one and does not have to be equivalent to it:

Definition 33. Let f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

x̃(·) : [0,T ]−→ Ẽ is called a simultaneously timed solution of
◦
x̃(·) � f̃

(
x̃(·), ·)

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if for each j ∈I , it satisfies condi-

tions (1.), (3.), (4.) of Definition 32 and
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2.′′) there exists α j(x̃; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃(s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃(s,z̃), x̃(t)) · eα j(x̃;R j) h

h
≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); R j

)
for any ϑ̃ ∈ Θ̂

(
Ẽ,(d̃ j),(ẽ j),(�·� j)

)
, s∈ [0,1[ and z̃∈ Ẽ with s+π1 z̃ = π1 x̃(t)

and �ϑ̃(·, z̃)� j,�x̃(·)� j ≤ R j,

Reformulating some of the preceding results for timed solutions in Ẽ

Now we have laid the foundations for drawing exactly the same conclusions as in
the preceding sections 3.2 and 3.3. Some of the results are formulated here explicitly
for taking the time component into consideration properly, but we dispense with the
detailed proofs.
Furthermore, the step from timed solutions to simultaneously timed solutions just
requires restricting distance comparisons to states in Ẽ with identical time compo-
nents, but it does not have any significant influence on the proofs.

Hypothesis (H3)(̃i) implies directly the counterpart of Lemma 6 (on page 147):

Lemma 34. Let x̃(·), ỹ(·) : [0,T ]−→ Ẽ be continuous with respect to (d̃i)i∈I (or

equivalently with respect to (ẽi)i∈I ) and bounded with respect to each �·� j ( j ∈I ).
Assume π1 x̃(·) ≤ π1 ỹ(·) in [0,T ].

Then for each index j ∈I , the distance function

[0,T ] −→ [0,∞[, t �−→ d̃ j

(
x̃(t), ỹ(t)

)
is continuous. �

Proposition 35. Let ϑ̃ , τ̃ ∈ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, r≥ 0, j ∈I and

t1, t2 ∈ [0,1[ be arbitrary. For any elements x̃, ỹ ∈ Ẽ suppose �x̃� j ≤ r, �ỹ� j ≤ r.
Then the following estimate holds at each time h∈ [0,1[ with max{t1 +h, t2 +h}≤ 1

d̃ j

(
ϑ̃(t1+h, x̃), τ̃(t2+h, ỹ)

) ≤ (d̃ j

(
ϑ̃(t1, x̃), τ̃(t2, ỹ)

)
+h · D̂ j(ϑ̃ , τ̃ ;R j)

)
eα j(τ̃;R j)h

with the constant R j :=
(
r +max{γ j(ϑ̃), γ j(τ̃)}) · emax{γ j(ϑ̃), γ j(τ̃)} < ∞.

Proof is the same as for Proposition 7 (on page 147). �

Essentially the same inequality still holds for the comparison of timed solutions and
transitions on Ẽ — correspondingly to Lemma 9 (on page 150):
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Corollary 36 (comparing timed solution and curve along transition).
Let x̃(·) : [0,T ]−→ Ẽ be a timed solution to the mutational equation

◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
according to Definition 32.

Suppose ϑ̃ ∈ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, z̃ ∈ Ẽ, r ≥ 0, s ∈ [0,1[, t ∈ [0,T [,

j ∈I to be arbitrary with �z̃� j ≤ r and the abbreviation

R j := max
{

sup �x̃(·)� j,
(
r + γ j(ϑ̃)

) · eγ j(ϑ̃)} < ∞.

Then, d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) ≤
≤
(

d̃ j

(
ϑ̃(s, z̃), x̃(t)

)
+ h · sup

[t, t+h]
D̂ j

(
ϑ̃ , f̃ (x̃(·), ·); R j

)) · eα j(x̃;R j) h

for every h ∈ [0, 1] with s+h≤ 1 and t +h≤ T . �

For comparing two timed solutions, we formulate the counterpart of Proposition 11
(on page 151):

Proposition 37 (Continuity w.r.t. initial states and right-hand sides).
Assume for f̃ , g̃ : Ẽ × [0,T ] −→ Θ̂

(
Ẽ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
and x̃, ỹ : [0,T ] −→ Ẽ

that x̃(·) is a timed solution to the mutational equation
◦
x̃(·) � f̃ (x̃(·), ·) and

ỹ(·) is a timed solution to the mutational equation
◦
ỹ(·) � g̃(ỹ(·), ·)

in the tuple
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
.

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for L 1-a.e. t ∈ [0,T ]⎧⎪⎪⎨⎪⎪⎩
�x̃(t)� j, �ỹ(t)� j < R j

α j (x̃; R j) , α j (ỹ; R j) ≤ α̂ j

D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(t), t); R j

)
≤ ϕ j(t).

Then, the distance function

δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j

(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ Ẽ : �z̃� j < R j

}
fulfills δ j(t) ≤

(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · sds

)
eα̂ j · t for every t ∈ [0,T ].

�

Remark 38. All the preceding inequalities in Proposition 35, Corollary 36 and
Proposition 37 do not require identical time components (as long as we do not con-
sider simultaneously timed solutions instead). Thus we can even estimate perturba-
tions with respect to time – rather than state in E.
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A similar influence of time has already occurred in Convergence Theorem 13 (on
page 153) which we now adapt to timed solutions. In fact, the proof follows consists
of almost the same steps as before and, assumptions (4.ii), (4.iii) provide additional
properties which ensure π1 x̃(t) = π1 x̃(0) + t for every t ∈ [0,T ].

Theorem 39 (Convergence of timed solutions to mutational equations).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t

�x̃n(t)� j < ∞,

α̂ j(ρ) := sup
n

α j

(
x̃n; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 32 on page 176) for every n,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃n(x̃(t), t), f̃n(ỹn, tn); r

)
= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

satisfying lim
n→∞

tn = t and lim
n→∞

d̃i

(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞

(i) D̂ j

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); r

) −→ 0 for all r ≥ 0, j ∈I ,

(ii) ∃ δm↘0 : ∀ j : d̃ j

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm)↘π1 x̃(t)

(iii) ∃ δ̃m↘0 : ∀ j : d̃ j

(
x̃(̃t), x̃nm (̃t− δ̃m)

) −→ 0, π1 x̃nm (̃t− δ̃m)↗π1 x̃(̃t)

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Finally we formulate the counterpart of Existence Theorem 19 (on page 157).
As the time component of each timed solution grows at a constant speed of 1, we
introduce a further abbreviation:

B̃Lip
(
I, Ẽ; (ẽi)i, (�·�i)i

)
consists of all functions x̃(·) ∈ BLip

(
I, Ẽ; (ẽi)i, (�·�i)i

)
satisfying π1 x̃(b) = π1 x̃(a) + b−a for all a,b ∈ I in addition.
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Theorem 40 (Existence of timed solutions to mutational equations with delay).
Suppose

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to be

Euler compact and Euler equi-continuous. Moreover assume for some fixed τ ≥ 0,
the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

)
and each j ∈I , R > 0 :

1.) supz̃(·), t α j( f̃ (z̃(·), t); R) < ∞,

2.) supz̃(·), t β j( f̃ (z̃(·), t); R) < ∞,

3.) supz̃(·), t γ j( f̃ (z̃(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃ (z̃1

n(·), t1
n ), f̃ (z̃2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(z̃1
n(·))n∈N, (z̃2

n(·))n∈N in B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i

(
z̃1

n(s), z̃(s)
)

= 0 = lim
n→∞

d̃i

(
z̃2

n(s), z̃(s)
)

sup
n∈N

sup
[−τ,0]

�z̃1,2
n (·)�i < ∞ .

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
.

Remark 41. For verifying the existence of solutions to this mutational equation
(via Euler approximatives), all the transitions f̃

(
z̃(·), t)∈ Θ̂

(
Ẽ,(d̃i),(ẽi),(�·�i)

))
are

required as functions merely on the subset [0,1]×{ỹ ∈ Ẽ
∣∣ π1 ỹ≥ t

} ⊂ [0,1]× Ẽ.

Implementing the aspects of “weak” convergence in Ẽ

Finally, we adapt the concept of weak Euler compactness and its consequences
in regard to existence of solutions. Correspondingly to § 3.3.6 (on page 168 ff.),
let J �= /0 denote a further index set. For each index ( j,κ) ∈I ×J , the functions

d̃ j,κ , ẽ j,κ : Ẽ× Ẽ −→ [0,∞[

are assumed to fulfill in addition to hypotheses (H1), (H2) and (H3)
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(H4’) �·� j is lower semicontinuous with respect to (d̃i,κ)i∈I ,κ∈J , i.e.,
�x̃� j ≤ liminf

n−→∞
�x̃n� j

for any x̃ ∈ Ẽ and (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,κ ∈J

lim
n→∞

d̃i,κ(x̃n, x̃) = 0, sup
n∈N

�x̃n�i < ∞ .

(H8) d̃ j(x̃, ỹ) = sup
κ∈J

d̃ j,κ(x̃, ỹ),

ẽ j(x̃, ỹ) = sup
κ∈J

ẽ j,κ(x̃, ỹ) for all x̃, ỹ ∈ Ẽ, j ∈I .

In a word, the separate time component does not have any significant influence
on the proofs of the main results in § 3.3.6, i.e., Existence Theorem 28 (on page 169)
and Proposition 29 about converging sequences of solutions (on page 170). Just for
subsequent references, we give the formulation in detail:

Theorem 42 (Existence due to weak Euler compactness).
Suppose

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to be

Euler equi-continuous (in the sense of Definition 16 on page 156) and the tuple(
Ẽ, (d̃ j) j, (d̃ j,κ) j,κ , (ẽ j) j, (ẽ j,κ) j,κ , (�·� j) j, Θ̂

(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be

weakly Euler compact (in the sense of Definition 27 on page 169).

Moreover assume for some fixed τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

)
and each j ∈I , R > 0 :

1.) sup
z̃(·), t

α j( f̃ (z̃(·), t); R) < ∞,

2.) sup
z̃(·), t

β j( f̃ (z̃(·), t); R) < ∞,

3.) sup
z̃(·), t

γ j( f̃ (z̃(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃ (z̃1

n(·), t1
n ), f̃ (z̃2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(z̃1
n(·))n∈N, (z̃2

n(·))n∈N in B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I , κ ∈J and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i,κ
(
z̃1

n(s), z̃(s)
)

= 0 = lim
n→∞

d̃i,κ
(
z̃2

n(s), z̃(s)
)

sup
n∈N

sup
[−τ,0]

�z̃1,2
n (·)�i < ∞ .
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5.) for every z̃(·) and L 1-a.e. t ∈ [0,T ], the function f̃ (z̃(·), t)(h, ·) : Ẽ −→ Ẽ is

“weakly” continuous in the following sense:

lim
n→∞

d̃ j,κ
(

f̃ (z̃(·), t)(h, ỹ), f̃ (z̃(·), t)(h, ỹn)
)

= 0

for each κ ∈J , h ∈ ]0,1], ỹ ∈ Ẽ and any sequence (ỹn)n∈N in Ẽ satisfying

d̃i,κ ′(ỹ, ỹn)−→ 0, supn �ỹn�i < ∞ for any i ∈I ,κ ′ ∈J , π1 ỹ≤ π1 ỹn.

For every function x̃0(·)∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists a curve

x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),

(iii) For L 1-a.e. t ∈ [0,T [, lim
h↓0

1
h
· d̃ j

(
f̃
(
x̃(t + ·)∣∣[−τ,0], t

)
(h, x̃(t)), x̃(t +h)

)
= 0.

If each d̃ j ( j ∈ J) satisfies the triangle inequality in addition, x̃(·)∣∣[0,T ]

is a timed solution to the mutational equation
◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
in the sense of Definition 32 (on page 176).

Proposition 43 (about “weak” pointwise convergence of timed solutions).

Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t

�x̃n(t)� j < ∞,

α̂ j(ρ) := sup
n

α j

(
x̃n; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 32 on page 176) for every n∈N,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃n(x̃(t), t), f̃n(ỹn, tn); r

)
= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

satisfying lim
n→∞

tn = t, lim
n→∞

d̃i,κ
(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for any i,κ ,
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3’.) Weak continuity of each function f̃ (x̃(t), t)(h, ·) : Ẽ −→ Ẽ in the following sense

at L 1-almost every time t ∈ [0,T ] :

lim
n→∞

d̃ j,κ
(

f̃ (x̃(t), t)(h, ỹ), f̃ (x̃(t), t)(h, ỹn)
)

= 0

for each κ ∈J , h ∈ ]0,1], ỹ ∈ Ẽ and any sequence (ỹn)n∈N in Ẽ satisfying

d̃i,κ ′(ỹ, ỹn)−→ 0, supn �ỹn�i < ∞ for any i ∈I ,κ ′ ∈J , π1 ỹ≤ π1 ỹn.

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞⎧⎪⎪⎨⎪⎪⎩
(i) D̂ j

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); r

) −→ 0 for all r ≥ 0, j ∈I ,

(ii) ∀ j ∈I ,κ ∈J : d̃ j,κ
(
x̃(t), x̃nm(t)

) −→ 0, π1 x̃nm(t) ↘π1 x̃(t),

(iii) ∀ j ∈I ,κ ∈J : d̃ j,κ
(
x̃(̃t), x̃nm (̃t)

) −→ 0, π1 x̃nm (̃t) ↗π1 x̃(̃t),

Then, x̃(·) is β̂ j-Lipschitz continuous with respect to ẽ j for each index j ∈I and,

at L 1-almost every time t ∈ [0,T ],

lim
h↓0

1
h
· d̃ j

(
f (x̃(t), t)(h, x̃(t)), x̃(t +h)

)
= 0

holds for every j ∈I .

If each d̃ j ( j ∈ J) satisfies the triangle inequality in addition, then the curve

x̃(·) : [0,T ]−→ Ẽ is a timed solution to the mutational equation
◦
x̃(·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Extending the Cauchy-Lipschitz Theorem to timed solutions

Similarly the results of § 3.3.7 (on page 173 f.) are rather easy to extend to timed
solutions in Ẽ. The counterpart of Cauchy-Lipschitz Theorem concludes the exis-
tence of a timed solution to a given mutational equation from an appropriate form of
completeness. In particular, using this property for Euler approximations at a fixed
time respectively, we are free to restrict the completeness assumption to sequences
in Ẽ with constant time component.

Definition 44. The tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
is called timed com-

plete if for every sequence (x̃n)n∈N in Ẽ with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

k→∞
sup

m,n≥k

d̃ j(x̃m, x̃n) = 0

sup
m,n∈N

∣∣π1 x̃m − π1x̃n

∣∣ = 0

sup
n∈N

�x̃n� j < ∞

for each j ∈I ,

there exists x̃ ∈ E fulfilling lim
n→∞

d̃ j(x̃n, x̃) = 0 for every j ∈I and π1 x = π1 xn.



184 3 Continuity of distances replaces the triangle inequality

Theorem 45 (Extended Cauchy-Lipschitz Theorem for timed solutions).
Suppose the tuple

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
to be timed complete and(

Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂
(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to be Euler

equi-continuous For f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
assume

(1.) For each j ∈I and R > 0,

α̂ j(R) := supx̃, t α j( f̃ (x̃, t); R) < ∞,

β̂ j(R) := supx̃, t β j( f̃ (x̃, t); R) < ∞,

γ̂ j := supx̃, t γ j( f̃ (x̃, t)) < ∞,

(2.) the function f̃ (·) is Lipschitz continuous w.r.t. state in the following sense:

for each tuple (r j) j∈I in [0,∞[I , there exist constants Λ j,μ j ≥ 0 ( j ∈I )
and moduli of continuity (ω j(·)) j∈I such that δ j : Ẽ× Ẽ −→ [0,∞[,

δ j(x̃, ỹ) := inf
{

d̃ j(x̃, z̃)+ μ j · ẽ j(z̃, ỹ)
∣∣ z̃ ∈ Ẽ, π1 z̃ ≤ min{π1 x̃, π1 ỹ},
∀ i ∈I : �z̃�i ≤ ri

}
satisfies for every j ∈I

D̂ j

(
f̃ (x̃,s), f̃ (ỹ, t); r j

) ≤ Λ j ·δ j(x̃, ỹ) + ω j(|t− s|)
whenever the tuples (x̃,s), (ỹ, t) ∈ Ẽ× [0,T ] fulfill π1 x̃≤ π1 ỹ, s≤ t and

max
{�x̃�i, �ỹ�i

} ≤ ri for each index i ∈I .

Then for every initial element x̃0 ∈ Ẽ, there exists a timed solution x̃(·) : [0,T ]−→ Ẽ

to the mutational equation
◦
x̃(·) � f̃

(
x̃(·), ·)

in the sense of Definition 32 (on page 176) with x̃(0) = x̃0.

Remark 46. This existence result can also be extended to systems easily.
Now completeness has joined compactness for providing (timed or simultaneously
timed) solutions to mutational equations.
With regard to systems of mutational equations, however, the preceding Cauchy-
Lipschitz Theorem is difficult to combine with Peano-like Existence Theorem 40.
Indeed, for guaranteeing the componentwise convergence of Euler approximations,
we should assume either Euler compactness for all components (as in § 3.3.4) or
completeness in combination with Lipschitz continuity for each component.
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3.5 Example: Strong solutions to some stochastic functional
differential equations

Stochastic differential equations in R are usually considered in combination with
the L2 norm on the corresponding vector space of adapted stochastic processes (with
bounded second moments).
Applying the mutational framework, however, our attempts are likely to fail because
the Itô integral implies asymptotic properties of

√
h for short periods h > 0. This ob-

stacle has now motivated us to choose the square deviation E(| · − · |2) as distance
function (instead of its square root). Admittedly, this alternative does not satisfy the
triangle inequality, but we obtain strong solutions to stochastic functional differen-
tial equations with fixed diffusion coefficient rather easily – like, for example

dXt = h1
(
t, E(|Xt |), E(|Xt |2)

) · h2(Xt) dt + b(t) dWt

with Lipschitz continuous functions h j(·). The main existence result of this example
is formulated in subsequent Theorem 50 (on page 191).

3.5.1 The general assumptions for this example

(Ω ,A ,P) is assumed to be a probability space. W = (Wt)t≥0 is a Wiener process
and, (At)t≥0 denotes an increasing family of sub–σ–algebras of A such that for all
0≤ s≤ t, Wt is At -measurable with

E(Wt |At) = 0, E(Wt −Ws |As) = 0 with probability 1.

Following the remarks in [81, § 3.2], the σ–Algebra At may be thought of as a
collection of events that are detectable prior to or at time t ≥ 0, so that the At–
measurability of Zt for a stochastic process (Zt)t≥0 indicates its nonanticipativeness
with respect to the Wiener process W .
For T ∈ ]0,∞[, we define a class L 2

A ([0,T ]) of functions f : [0,T ]×Ω −→ R with

(1.) f is jointly L 1×A –measurable,

(2.)
∫

[0,T ]
E
(| f (t, ·)|2) dt < ∞,

(3.) for every t ∈ [0,T ], E
(| f (t, ·)|2) < ∞ and

(4.) for every t ∈ [0,T ], f (t, ·) : Ω −→ R is At–measurable.

In addition, we consider two functions in L 2
A ([0,T ]) to be identical if they are equal

for all (t,ω) ∈ [0,T ]×Ω except possibly on a subset of L 1×P–measure 0. Then
with the norm

‖ f‖L 2
A ([0,T ]) :=

(∫
[0,T ]

E
(| f (t, ·)|2) dt

) 1
2
,

L 2
A ([0,T ]) (together with the identification mentioned before) is a Banach space.

As Kloeden and Platen have already pointed out [81], the characterizing conditions
on f ∈L 2

A ([0,T ]) are stronger than f ∈ L2([0,T ]×Ω ,L 1×A ,L ×P). Indeed,
Fubini’s Theorem guarantees E

(| f (t, ·)|2) < ∞ only for Lebesgue-almost every t.
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3.5.2 Some standard results about Itô integrals and strong
solutions to stochastic ordinary differential equations

In this subsection, we summarize some well-known properties of the Itô integral and
strong solutions. All these results are just quoted and serve as tools for specifying
transitions in the mutational framework later on. The proofs can be found in stan-
dard references such as the monographs of Friedman [66], Øksendal [112], Karatzas
and Shreve [77] or Kloeden and Platen [81].

Proposition 47 ([66, § 4], [81, Theorem 3.2.3], [112, § 3.2]).

The Itô stochastic integral I( f ) : Ω −→ R, ω �−→
∫ T

0
f (s,ω) dWs(ω) has the

following properties for every f ,g ∈L 2
A ([0,T ]) and λ1,λ2 ∈ R:

(a) I( f ) is AT –measurable,

(b) E
(
I( f )
)

= 0,

(c) I(λ1 f +λ2 g) = λ1 I( f )+λ2 I(g) with propability 1.

(d) Itô isometry: E
(|I( f )|2) =

∫ T

0
E
(| f (t, ·)|2) dt,

(e) E
(
I( f ) I(g)

)
=
∫ T

0
E
(

f (t, ·) g(t, ·)) dt,

(f) Martingale property: E
(
I( f )

∣∣At

)
=
∫ t

0
f (s, ·) dWs for any t ∈ [0,T ].

Proposition 48 (Existence, uniqueness of strong solutions and a priori estimates
[81, Theorems 4.5.3, 4.5.4]). Suppose

(i) a,b : [0,T ]×R−→ R are jointly L 2–measurable,

(ii) there exists a constant Λ > 0 such that for all t ∈ [0,T ], x,y ∈ R,{ |a(t,x) − a(t,y)| ≤ Λ |x− y|
|b(t,x) − b(t,y)| ≤ Λ |x− y|

(iii) there exists a constant γ̂ < ∞ such that for all t ∈ [0,T ], x ∈ R,

|a(t,x)|+ |b(t,x)| ≤ γ̂ (1+ |x|),
(iv) X0 : Ω −→ R is A0–measurable with E

(|X0|2
)

< ∞.

Then the stochastic differential equation

d Xt = a(t,Xt) dt + b(t,Xt) dWt

has a pathwise unique strong solution (Xt)0≤ t≤T on [0,T ] with initial value X0 and

sup
0≤ t≤T

E
(|Xt |2

)
< ∞,
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i.e., there exists a function [0,T ]×Ω −→ R, (t,ω) �−→ Xt(ω) in L 2
A ([0,T ]) with

(1.) for every t ∈ [0,T ], Xt = X0 +
∫ t

0
a(s,Xs) ds +

∫ t

0
b(s,Xs) dWs,

(2.) for every solution Yt of this preceding integral equation with Y0 = X0,

P
(

sup
0≤ t≤T

|Xt −Yt |> 0
)

= 0.

Moreover, for every t ∈ [0,T ], it fulfills following estimates with constants C1,C2,C3
depending only on γ̂,Λ ,T

E
(|Xt |2

) ≤ (
E
(|X0|2

)
+C2 t

)
eC1 t

E
(|Xt −X0|2

) ≤ C3
(
E
(|X0|2

)
+1
)

eC1 t · t .

3.5.3 Stochastic ordinary differential equations induce transitions

For taking the filtration (At)t≥0 into consideration properly, we use a separate real
component indicating time and thus, we choose as basic set

ẼA :=
{
(t,X)

∣∣ t ≥ 0, X : Ω −→ R is At–measurable, E(|X |2) < ∞
}

.

Furthermore the last estimate in preceding Proposition 48 indicates that Lipschitz
continuity with respect to time is ensured merely for the square deviation (and not
for the typical L2 norm). This observation motivates the following choice:

d̃A,P : ẼA × ẼA −→ [0,∞[,
(
(s,X), (t,Y )

) �−→ |t− s| + E
(|X −Y |2)

�·�A,P : ẼA −→ [0,∞[, (t,X) �−→ |t| + E
(|X |2) .

Then Proposition 48, applied to stochastic differential equations with autonomous

drift and fixed diffusion coefficient, implies (almost) all the features we need for
timed transitions on ẼA .
In fact, the only relevant obstacle to Definition 2 (of transitions on page 145) and its
timed counterpart is that the comparison estimate for evolving random variables
(specified in subsequent statement (5.)) is restricted to simultaneous starts, i.e.,
in other words, to identical time components. As a consequence, we will have to
consider simultaneously timed solutions in the next section.

Lemma 49. Let a, â : R−→R be Λ -Lipschitz continuous with max{|a|, |â|} ≤
γ̂ · (1+ | · |) in R and, suppose b : [0,∞[−→ R to be L 1-measurable and bounded.

Then the solutions to the initial value problem{
d Xt = a(Xt) dt + b(t) dWt in [t0, t0 +1]
Xt0 = X̂0 given

(∗)

induce a unique map ϑ̃A,a,b : [0,1]× ẼA −→ ẼA ,
(
h, (t0, X̂0)

) �−→ (t0 +h, Xt0+h)
with the following properties for all X̃ ,Ỹ ∈ Ẽ, R≥ 0, t,h1,h2 ∈ [0,1] (h1 +h2 ≤ 1)
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(1.) ϑ̃A,a,b(0, ·) = Id
ẼA

(2.) ϑ̃A,a,b

(
h1 +h2, ·

)
= ϑ̃A,a,b

(
h2, ϑ̃A,a,b(h1, ·)

)
(3.) d̃A,P

(
X̃ , ϑ̃A,a,b(t, X̃)

) ≤ const(γ̂,Λ) · (�X̃�A ,P + 1) · t

(4.) �ϑ̃A,a,b(t, X̃)�A,P ≤ e const(γ̂,Λ) · t · (�X̃�A ,P + const(γ̂,Λ) · t)

(5.) ∃C = C(γ̂,Λ ,R) : if π1 X̃ = π1 Ỹ and max
{�X̃�A,P, �Ỹ�A,P

}≤ R,

lim
h↓0

d̃A,P(ϑ̃A,a,b(h,X̃), ϑ̃A, â,b(h,Ỹ )) − d̃A,P(X̃ ,Ỹ ) · eC h

h
≤ C · sup

R

|a− â|
1+ | · | .

Proof. Statements (1.) and (2.) are obvious because the Itô integral is additive
with respect to the interval of integration. Furthermore, statements (3.), (4.) result
from the upper bounds of E

(|Xt −X0|2
)

and E
(|Xt |2

)
in preceding Proposition 48.

Finally, we focus on property (5.) for X̃ = (t0,X), Ỹ = (t0,Y ) ∈ ẼA with Xt and Yt

denoting the unique solutions to the initial value problems{
d Xt = a(Xt) dt + b(t) dWt , Xt0 = X ,

dYt = â(Yt) dt + b(t) dWt , Yt0 = Y.

respectively. In addition, set

Zt := X +
∫ t

t0

a(Ys) ds +
∫ t

t0

b(s) dWs .

Minkowski inequality and Cauchy-Schwarz inequality imply for every t ∈ [t0, t0+1]√
E
(|Zt −Yt |2

)
≤ (

E
(|X −Y |2)) 1

2 +
(
E
(∣∣∫ t

t0

(a(Ys)− â(Ys)) ds
∣∣2)) 1

2

≤ (
E
(|X −Y |2)) 1

2 +
(
E
(|t− t0| ·

∫ t

t0

|a(Ys)− â(Ys)|2 ds
)) 1

2

≤ (
E
(|X −Y |2)) 1

2 + sup
R

|a− â|
1+ | · | ·

(
(t− t0) ·

∫ t

t0

E
(
(1+ |Ys|)2

)
ds
) 1

2
.

A priori estimates in Proposition 48 guarantee a constant C = C(γ̂,Λ ,E(|Y |2)) > 0
such that for all t ∈ [t0, t0 +1],√

E
(|Zt −Yt |2

) ≤ √E
(|X −Y |2) + C · sup

R

|a− â|
1+ | · | · (t− t0) .

Similarly, we conclude from the Λ -Lipschitz continuity of a(·)√
E
(|Xt −Zt |2

)
=
(
E
(∣∣∫ t

t0

(a(Xs)−a(Ys)) ds
∣∣2)) 1

2

≤ Λ · √t− t0 ·
(∫ t

t0

E
(|Xs−Ys|2

)
ds
) 1

2
.
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By means of Minkowski inequality, we can now estimate the square deviation of Xt

and Yt for every t ∈ [t0, t0 +1] implicitly:

E
(|Xt −Yt |2

) ≤ (√E
(|Xt −Zt |2

)
+
√

E
(|Zt −Yt |2

))2

≤
(

Λ · √t− t0

(∫ t

t0

E
(|Xs−Ys|2

)
ds
) 1

2 +√
E
(|X −Y |2) + C · sup

R

|a− â|
1+ | · | (t− t0)

)2

E
(|Xt −Yt |2

) ≤ E
(|X −Y |2) + C2 · sup

R

( |a− â|
1+ | · |

)2
(t− t0)2

+ Λ 2 |t− t0| ·
∫ t

t0

E
(|Xs−Ys|2

)
ds

+ 2 ·
√

E
(|X −Y |2) · C sup

R

|a− â|
1+ | · | |t− t0|

+ 2 ·
√

E
(|X −Y |2) · Λ

√
t− t0

(∫ t

t0

E
(|Xs−Ys|2

)
ds
) 1

2

+ 2 · C · 2 γ̂ |t− t0| · Λ
√

t− t0

(∫ t

t0

E
(|Xs−Ys|2

)
ds
) 1

2
.

In particular, there exists a constant Ĉ = Ĉ(γ̂, Λ , E(|X |2), E(|Y |2)) > 1 such that
for all t ∈ [t0, t0 +1],

E
(|Xt −Yt |2

) ≤ E
(|X −Y |2) + Ĉ · sup

R

|a− â|
1+ | · | · (t− t0)

+ Ĉ · (t− t0)
∫ t

t0

E
(|Xs−Ys|2

)
ds

+ Ĉ ·
√

(t− t0)
∫ t

t0

E
(|Xs−Ys|2

)
ds
(√

E
(|X −Y |2) + |t− t0|

)
and E

(|Xt −Yt |2
) ≤ 4 ·max

{
E(|Xt |2), E(|Yt |2)

} ≤ Ĉ (due to Proposition 48).
The last bound leads to an inequality appropriate for Gronwall’s Lemma (in Propo-
sition A.1 on page 351):

E
(|Xt −Yt |2

) ≤ E
(|X −Y |2) + Ĉ · sup

R

|a− â|
1+ | · | · (t− t0)

+ Ĉ · (t− t0)
∫ t

t0

E
(|Xs−Ys|2

)
ds

+ Ĉ ·
√

Ĉ |t− t0|
(√

E
(|X −Y |2) + |t− t0|

)
and thus, for every t ∈ [t0, t0 +1], we obtain the explicit estimate

E
(|Xt −Yt |2

)
≤ E

(|X −Y |2)+Ĉ2 |t− t0|
(

sup
R

|a− â|
1+ | · | +E

(|X −Y |2) 1
2 + | t− t0|

)
+

+
∫ t

t0

(
E
(|X −Y |2)+Ĉ2 |s− t0|

(
sup
R

|a− â|
1+ | · | +E

(|X −Y |2) 1
2 + |s− t0|

)
·

eĈ (t−s) · Ĉ (t− t0) ds .
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Finally, substituting this right-hand side in the last but one implicit inequality for
E
(|Xt −Yt |2

)
provides an upper bound ϕ(t) = ϕ

(
t; Ĉ, sup

R

|a− â|
1+ | · | , E

(|X −Y |2))
at each time t ∈ [t0, t0 +1] with the following properties:

E
(|Xt −Yt |2

) ≤ ϕ(t)

lim
t↘ t0

ϕ(t) = E
(|X −Y |2)

lim
t ↓ t0

ϕ(t)− E(|X−Y |2) ·eĈ |t−t0|
t−t0

= Ĉ · sup
R

|a− â|
1+ | · | . �

3.5.4 The step to stochastic functional equations:
Existence of strong solutions

For every t ≥ 0, the vector space of At -measurable functions X : Ω −→ R with
E(|X |2) < ∞ is known to be complete with respect to its L2 norm

√
E(| · − · |2).

As an obvious consequence, the tuple
(
Ẽ, d̃A,P, d̃A,P, �·�A,P

)
is timed complete

in the sense of Definition 44 (on page 183). Moreover, Proposition 48 implies Euler
equi-continuity. Hence, these two features are good starting points for concluding
the existence of solutions from Cauchy-Lipschitz Theorem.

First, however, we should clarify what kind of stochastic differential equations is
considered within the mutational framework and what type of solution is obtained.

Indeed, after fixing a bounded L 1-measurable diffusion coefficient b : [0,∞[−→R,
we use the transitions ϑ̃A, ,a,b : [0,1]× ẼA −→ ẼA induced by any Lipschitz con-
tinuous function a : R−→R and specified in Lemma 49 (on page 187), i.e., for any
initial state (t0, X̂0) ∈ ẼA given, the second component of ϑ̃A, ,a,b

(
h, (t0, X̂0)

) ∈ ẼA

results from the solution Xt to the stochastic differential equation{
d Xt = a(Xt) dt + b(t) dWt in [t0, t0 +h]
Xt0 = X̂0

or, equivalently, Xt = X̂0 +
∫ t

t0

a(Xs) ds +
∫ t

t0

b(s) dWs for every t ∈ [t0, t0+h].

In this integral formulation, the stochastic process X(·)(·) : [t0, t0 +h]×Ω −→R has
a pointwise influence on the right-hand side by means of composing with a(·).
In regard to a mutational equation, however, we prescribe the autonomous drift
a ∈ Lip(R,R) as a function of time t and At -measurable random variable Ω −→ R

with bounded second moment in an appropriately continuous way:

f̃ : ẼA −→ Lip(R,R) .

In particular, for any X̃ = (t,X)∈ ẼA given, f̃ (X̃)∈ Lip(R,R) might depend on the
first or second moment of X : Ω −→ R, for example. We interpret such a depen-
dence as a functional relationship and thus, our subsequent initial value problems
deal with stochastic functional differential equations.
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Furthermore, the comparative estimate in Lemma 49 (5.) is restricted to states
X̃ ,Ỹ ∈ ẼA with identical time components π1 X̃ = π1 Ỹ — essentially for preserving
the characteristic dependence on “initial error” and “transitional error”.
As a consequence, any bounds of distances between Euler approximations are avail-
able only at identical points of time and, this constraint leads to simultaneously timed

solutions to mutational equations in the sense of Definition 33 (on page 176).
The aspect of required simultaneity concerns only the distances between states in
ẼA , but not the distances between transitions when assuming Lipschitz continuity,
for example, as the detailed proof of Cauchy-Lipschitz Theorem 31 (on page 174)
clarifies.

Theorem 50. Assume for f̃ : ẼA −→ Lip(R,R)

(1.) sup
Ỹ∈ẼA

(| f̃ (Ỹ )(0)| + Lip f̃ (Ỹ )(·)) < ∞ ,

(2.) f̃ is locally Lipschitz continuous in the following sense:

For every R > 0, there exists a constant λR > 0 such that for all Ỹ , Z̃ ∈ ẼA

with max
{�Ỹ�A,P, �Z̃�A,P

}
< R,

sup
R

| f̃ (Ỹ )(·)− f̃ (Z̃)(·)|
1+ | · | ≤ λR · d̃A,P

(
Ỹ , Z̃
)
.

Then for every initial tuple X̂0 = (t0,X0) ∈ ẼA and period T > 0, there exists a

simultaneously timed solution [t0, t0 + T ] −→ ẼA , t �−→ X̃t = (t,Xt) to the

mutational equation
◦

X̃ � f̃
(
X̃
)

in the sense of Definition 33 (on page 176) with X̃t0 = X̂0.

In particular, the stochastic process
(
Xt

)
t0≤ t≤ t0+T

is a strong solution to the

stochastic functional differential equation{
d Xt = f̃ (t,Xt)(Xt) dt + b(t) dWt in [t0, t0 +T ]
Xt0 = X̂0

and, it belongs to L 2
A ([t0, t0 +T ]).

Proof. As mentioned briefly in § 3.4, the existence of simultaneously timed so-
lutions results from exactly the same arguments as Cauchy-Lipschitz Theorem 31
— after restricting the structural estimate (for distances between states evolving
along two transitions) in Proposition 7 to simultaneous states in ẼA .
Due to the transition properties in Lemma 49, there exists a simultaneously timed
solution [t0, t0 +T ] −→ ẼA , t �−→ X̃t = (t,Xt) to the mutational equation

◦
X̃ � f̃

(
X̃
)

in the sense of Definition 33 (on page 176) with X̃t0 = X̂0 and supt �X̃t�A,P ≤ R < ∞.
In particular, assumption (1.) provides a constant L > 0 with

d̃A,P

(
X̃s, X̃t

) ≤ L |t− s| for all s, t ∈ [t0, t0+T ].
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Now the composition

a : [0,T ]×R −→ R, (t,z) �−→ f̃ (X̃t)(z)

and the bounded L 1-measurable function b : [0,∞[−→ R satisfy the hypotheses of
Proposition 48 (on page 186). Hence, there exists a pathwise unique strong solution
(Yt)t0≤ t≤ t0+T to the stochastic differential equation

dYt = a(t,Yt) dt + b(t) dWt

with the same initial value X0 as (Xt)t0≤ t≤ t0+T and supt �Ỹt�A,P ≤ R̂ < ∞.
Then, [t0, t0 +T ]−→ ẼA, , t �−→ Ỹt := (t,Yt) is a simultaneously timed solution
to the mutational equation

◦
Ỹ � f̃

(
X̃
)
.

Indeed, choosing any t ∈ [t0, t0 +T [ and At -measurable Zt : Ω −→R with bounded
second moment, let

(
Zs)t≤ s≤ t0+T denote the pathwise unique strong solution to the

auxiliary problem

dZs = f̃ (X̃t)(Zs) ds + b(s) dWs

= f̃ (t,Xt)(Zs) ds + b(s) dWs.

Starting now with the equivalent integral formulations for Ys and Zs, exactly the
same arguments as in the proof of Lemma 49 (5.) (on page 188 ff.) provide a con-
stant C > 0 depending explicitly just on �(t0, X̂0)�A,P, �(t0,Z0)�A,P, T, L and the
supremum in assumption (1.) such that

limsup
h↓0

1
h
·
(

d̃A,P

(
ϑ̃A, f̃ (X̃t ),b

(h, (t,Zt)), (t+h, Yt+h)
)
− d̃A,P

(
Zt , Yt

) · eC h
)

≤ C · limsup
H ↓0

sup
R

| f̃ (X̃t )(·)− f̃ (X̃t+H )(·)|
1+ | · |

≤ C · limsup
H ↓0

λR d̃A,P

(
X̃t , X̃t+H

)
≤ 0 .

The “simultaneously timed” counterpart of Proposition 37 (on page 178) implies
that the auxiliary distance

[t0, t0 +T ] −→ [0,∞[,

t �−→ inf
{

d̃A,P

(
Z̃, X̃t

)
+ d̃A,P

(
Z̃,Ỹt

) ∣∣ Z̃ ∈ ẼA : π1 Z̃ = t,

�Z̃�A,P < 1+max {R, R̂}}
is identical to 0 and thus, Xt satisfies the claimed stochastic functional differential
equation in the strong sense.

�
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3.6 Example: Nonlinear continuity equations with coefficients of
bounded variation for L N-absolutely continuous measures

The continuity equation
d
dt

μ + divx (b̃ μ) = 0 (in RN× ]0,T [)

is the classical analytical tool for describing the conservation of some real–valued
quantity μ = μ(t,x) while “flowing” (or, rather, evolving) along a given vector field
b̃ : RN × [0,T ]−→ RN . Thus, it is playing a key role in many applications of mod-
elling like fluid dynamics and, it has been investigated under completely different
types of assumptions about b̃(·, ·).

In § 2.5 (on page 97 ff.), we have already focused on the nonlinear transport
equation for Radon measures on RN . Its coefficients were bounded and Lipschitz
continuous vector fields on RN prescribed as a function of time and the current
Radon measure.
The main goal now is to weaken the regularity conditions on the vector fields con-
sidered as coefficients in the continuity equation. In particular, spatial vector fields
b(·) of bounded variation have aroused interest for weakening the assumption of
(local) Lipschitz continuity.

Recent results of Ambrosio [2, 3] make a suggestion how to specify a flow
X : [0,T ]×RN −→RN along certain vector fields of bounded (spatial) variation in a
unique way. This uniqueness is based on an additional condition of regularity, i.e. the
absolute continuity with respect to Lebesgue measure L N is preserved uniformly:
For any nonnegative function ρ ∈ L1(RN)∩ L∞(RN), the measure μ0 := ρ L N

satisfies X(t, ·)� μ0 ≤ C L N for all t ∈ [0,T ] with a constant C independent of t.

This result of Ambrosio about the so-called Lagrangian flow serves as starting point
of this example and thus, it motivates to replace the set M (RN) of finite Radon
measures by

L∞∩1(RN) :=
{

ρ L N
∣∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}
.

After summarizing some features of the Lagrangian flow, we exploit the corre-
sponding vector fields of (locally) bounded spatial variation for inducing transitions
on these measures. It allows us to deal with nonlinear continuity equations in the
mutational framework.
The main conclusions presented in subsequent § 3.6.4 consist in sufficient conditions
for existence, uniqueness and stability of distributional solutions μ(·) : [0,T ] −→
L∞∩1(RN) to the Cauchy problem{

d
dt

μ + divx (f(μ, ·) μ) = 0 in RN× ]0,T [
μ(0) = ρ0 L N ∈ L∞∩1(RN)

for a given functional relationship in the form of

f : L∞∩1(RN)× [0,T ] −→ BVloc(RN ,RN)∩L∞(RN ,RN).
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3.6.1 The Lagrangian flow in the sense of Ambrosio

Considering the linear continuity equation
d
dt

μ + divx (b̃ μ) = 0 (in RN× ]0,T [),

the regularity of the coefficient b̃ : RN × [0,T ] −→ RN plays the decisive role in
the question if the method of characteristics provides an explicit solution directly.
Proposition 2.46 (on page 102), for example, guarantees such a solution if b̃ is
bounded, Lipschitz continuous with respect to space and Lebesgue integrable with
respect to time.
Motivated by the results of DiPerna and Lions [51], Ambrosio has suggested how
to specify characteristics under weaker assumptions about spatial regularity [2, 3].
Now we summarize the properties relevant for our subsequent conclusions in the
following proposition:

Proposition 51 (Ambrosio [2, 3]).
Assume b̃ : [0,T ]×RN −→ RN to be in L1

(
[0,T ], BVloc(RN ,RN)

)
satisfying

(1.) |b̃|
1+|x| ∈ L1

(
[0,T ], L1(RN)

)
+L1

(
[0,T ], L∞(RN)

)
,

(2.) divx b̃(t, ·) L N " L N for L 1–almost every t ∈ [0,T ],
(3.) [divx b̃]− ∈ L1

(
[0,T ], L∞(RN)

)
.

Then there exists a so-called Lagrangian flow X : [0,T ]×RN −→ RN such that

(a) X(·,x) : [0,T ]−→RN is absolutely continuous for L N-almost every x ∈RN,

X(t,x) = x+
∫ t

0
b̃
(
s, X(s,x)

)
ds for all t ∈ [0,T ],

(b) there is a constant C > 0 satisfying X(t, ·)� (σ L N) ≤ C ‖σ‖∞ L N

for all σ ∈ L1(RN)∩L∞(RN), σ ≥ 0, and t ∈ [0,T ].

X(t, ·) : RN −→ RN is unique up to L N–negligible sets for every t ∈ [0,T ] and,

μ(t) := X(t, ·)� μ0 is the unique distributional solution to the continuity equation

d
dt

μ + divx (b̃ μ) = 0 in RN× ]0,T [

for every initial measure μ0 := σ L N with σ ∈ L1(RN)∩L∞(RN), σ ≥ 0.

Mollifying each μ(t) with a joint Gaussian kernel ρ ∈C1(RN , ]0,∞[), the measures

μδ (t) := μ(t)∗ρδ solve the continuity equation

d
dt

μδ + divx (b̃δ μδ ) = 0 (in the distributional sense)

with b̃δ (t, ·) := (b̃(t,·) μ(t))∗ρδ
μδ (t) being in L1

(
[0,T ], W

1,∞
loc (RN ,RN)

)
.

In particular, at every time t ∈ [0,T ], μδ (t) −→ μ(t) narrowly (i.e. with respect to

the duality of bounded continuous functions) for δ ↓ 0.
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Remark 52 (about the proof of Proposition 51). This proposition collects several
results of Ambrosio in [2, 3], but it is not formulated in this summarizing form there.
The arguments of its proof are rather widespread in the lecture notes [2].

Indeed, extending [2, Theorem 4.3] to vector fields of locally bounded spa-
tial variation (as stated in the end of [2, § 5]), there exists a Lagrangian flow
X : [0,T ]×RN −→RN with properties (a),(b) and, it is unique (up to L N–negligible
sets).

The proof of [2, Theorem 3.5] bridges the gap between the Lagrangian flow and
the measure-valued solution to the continuity equation (by means of push-forward).
The uniqueness of μ(·) results from the comparison principle of the continuity equa-
tion (due to the assumptions about b̃) according to [2, Theorem 4.1].

Finally the proof of [2, Theorem 3.2] implies the narrow sequential compactness
of ηδ :=

(
x,Xb̃δ

(·,x))
�
μδ (0) (using Prokhorov compactness theorem). In particular,

its equation (3.3) implies the narrow convergence of μδ (t) to its unique limit μ(t).

Similarly, [2, Theorem 4.4] and the remarks at the end of [2, § 5] guarantee:

Proposition 53 (Stability of Lagrangian flows, Ambrosio [2]).
Assume b̃, b̃n : [0,T ]×RN −→ RN (n ∈ N) to be in L1

(
[0,T ], BVloc(RN ,RN)

)
satisfying conditions (1.)–(3.) of Proposition 51. Furthermore suppose

(i) b̃n −→ b̃ in L1
loc(]0,T [×RN) for n−→ ∞,

(ii) there exists a constant C > 0 such that for all n ∈ N, |b̃n| ≤C,

(iii)
{

[divx b̃n]−
∣∣ n ∈ N

}
is bounded in L1

(
[0,T ], L∞(RN)

)
.

Let Xb̃,Xb̃n
(n ∈ N) denote the Lagrangian flows relative to b̃, b̃n respectively and,

choose μ = ρ L N with ρ ∈ L1(RN),ρ ≥ 0 arbitrarily.

Then, lim
n→∞

∫
RN

max
[0,T ]

min
{∣∣Xb̃n

(·,x) − Xb̃(·,x)∣∣, ρ(x)
}

dL N x = 0.

Remark 54. In comparison with the nonlinear transport equation investigated in
§ 2.5 (on page 97 ff.), it is remarkable that the linear problem here is stable with
respect to L1 perturbations of the coefficient field whereas all estimates in § 2.5 are
taking the L∞ norm into consideration (see e.g. Lemma 2.48 (f) on page 103 and
consequently Theorem 2.52 on page 106).

Corollary 55. In addition to the hypotheses of Proposition 53, let t ∈ [0,T ] and

μ0 = σ0 L N be arbitrary with σ0 ∈ L1(RN). Then,

Xb̃n
(t, ·)� μ0 −→ Xb̃(t, ·)� μ0 narrowly for n−→ ∞,

i.e., for any bounded and continuous ψ : RN −→ R,∫
RN

ψ
(
Xb̃n

(t,x)
)

σ0(x) dL Nx −→
∫

RN
ψ
(
Xb̃(t,x)

)
σ0(x) dL Nx . �
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3.6.2 Specifying the subset L∞∩1(RN) of measures and
its pseudo-metrics

In this example, Proposition 51 of Ambrosio is to provide the measure-valued so-
lutions to the linear continuity equation. It motivates our choice of both coefficient
functions and measures on RN .

Definition 56. Set L∞∩1(RN) :=
{

ρ L N
∣∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}
.

In regard to distance functions on L∞∩1(RN), we suggest the weighted total varia-
tion – with a countable family (ϕ j) j∈I of smooth positive weight functions whose
gradient can be estimated by the function itself. In comparison with the W 1,∞ dual
metric used in § 2.5, this last property proves to be particularly useful for estimating
the effects of distributional derivatives via initial data.

Lemma 57. There exists a countable family (ϕ j) j∈I of smooth Schwartz func-

tions RN −→ [0,∞[ with the following properties

(1.) (ϕ j) j∈I is dense in
(
C0

0(RN , [0,∞[), ‖ · ‖∞
)
,

(2.) C∞
c (RN , [0,∞[) is contained in the closure of (ϕ j) j∈I w.r.t. the C1 norm

(3.) for each j ∈I , there exists λ j > 0 with |∇ϕ j(·)| ≤ λ j ·ϕ j(·) in RN,

Definition 58. Let (ϕ j) j∈I be a family of Schwartz functions as described in
Lemma 57 and, J ⊂I denotes the subset of all indices κ ∈I with 0 < ϕκ ≤ 1.
For each indices j ∈I and κ,κ ′ ∈J , define

d j,L∞∩1 , d j,κ,κ ′,L∞∩1 : L∞∩1(RN)×L∞∩1(RN) −→ [0,∞[
as

d j,L∞∩1(μ, ν) :=
∣∣ϕ j · (μ−ν)

∣∣(RN)
Def.= sup

{ ∞

∑
k=0

∣∣∫
Ek

ϕ j d(μ−ν)
∣∣ ∣∣∣ (Ek)k∈N pairwise disjoint

Borel sets, RN =
⋃

k∈N

Ek

}
,

d j,κ,κ ′,L∞∩1(μ, ν) :=
∣∣∣∫

RN
ϕ j (ϕκ1 −ϕκ2) d (μ−ν)

∣∣∣ .
Remark 59. Obviously, Gronwall’s Lemma implies ϕ j > 0 in RN unless ϕ j ≡ 0.
Assuming ϕ j �≡ 0 for all j ∈I from now on, each d j,L∞∩1 takes all points of RN

into consideration – in a weighted form.
Moreover, all functions d j,L∞∩1 , d j,κ,κ ′,L∞∩1 ( j∈I , κ,κ ′ ∈J ) are pseudo-metrics
on L∞∩1(RN), i.e. in particular, they satisfy the triangle inequality.
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Before presenting lacking proofs, we specify the relation between the functions
d j,L∞∩1 , d j,κ,κ ′,L∞∩1 ( j ∈I , κ,κ ′ ∈ J ) and more popular topologies of Radon
measures mentioned in § 2.5.1 (on page 97 ff.). The next lemma enables us to apply
the existence results of § 3.3.6 (concluded from a generalized form of “weak” com-
pactness on page 168 ff.) later on.

Lemma 60. For every finite Radon measure μ ∈M (RN) and open set A ⊂ RN ,
the total variation satisfies

|μ|(A) = sup
{∫

RN
ψ d μ

∣∣∣ ψ ∈C0
c (A), ‖ψ‖∞ ≤ 1

}
and thus, for all μ,ν ∈ L∞∩1(RN),

d j,L∞∩1(μ,ν) = sup
κ,κ ′∈J

d j,κ,κ ′,L∞∩1(μ,ν).

Lemma 61. (i) Let (μn)n∈N be in L∞∩1(RN) with bounded total variation.

(μn)n∈N converges weakly* to μ ∈ L∞∩1(RN) with respect to
(
C0

0(RN), ‖ · ‖sup
)

if and only if for every indices j∈I , κ,κ ′ ∈J ,

lim
n→∞

d j,κ,κ ′,L∞∩1
(
μn, μ) = 0.

Assuming in addition that {μn | n ∈ N} is tight (in the sense of Definition 2.39),

this equivalence can be extended to narrow convergence of (μn)n∈N (in the sense of

Definition 2.38 on page 97).

(ii) Let (μn = σn L N)n∈N be a tight sequence in L∞∩1(RN) with bounded total

variation and consider μ = σ L N ∈ L∞∩1(RN).
Then, σn −→ σ in L1

loc(R
N) for n−→ ∞ if and only if for every index j ∈I ,

lim
n→∞

d j,L∞∩1
(
μn, μ) = 0.

Proof (of Lemma 57). Such a family of functions ϕ j ∈C∞(RN , [0,∞[) can be
generated by means of convolution.
Indeed, C∞

0 (RN, [0,∞[) is known to be separable with respect to ‖·‖∞. Now consider
a countable dense subset ( fk)k∈N of C∞

c (RN, [0,∞[) together with

ψδ : RN −→ ]0,∞[, x �−→ cδ ,N · exp(−δ |x|2
1+|x| )

for arbitrarily large δ > 0 and the constant cδ ,N > 0 such that ‖ψδ‖L1(RN) = 1.

Then, each convolution fk ∗ψδ : RN −→ R is smooth, nonnegative and satisfies

|∇( fk ∗ψδ )| = | fk ∗ (∇ψδ )| ≤ δ fk ∗ψδ

since the auxiliary function ψ̂δ : [0,∞[ −→ ]0,1], r �−→ cδ ,N · exp(−δ r2

1+r
) is

smooth with
d
dr

ψ̂δ (r) = −δ r (r+2)
(r+1)2 ψ̂δ (r) ∈ [−δ ,0] · ψ̂δ (r)

and thus, d
dr

ψ̂δ (r) = O(r) for r −→ 0+.



198 3 Continuity of distances replaces the triangle inequality

Furthermore, fk ∗ψδ is a Schwartz function because so is ψδ and fk is assumed to
have compact support. ( fk ∗ψδ )k,δ ∈N is dense in

(
C0

0(RN , [0,∞[), ‖ · ‖∞
)

since so
is ( fk)k∈N and (ψδ )δ ∈N is a Dirac sequence.
Finally it satisfies the second required property because for any g ∈C∞

c (RN , [0,∞[)
and subsequence ( fk j

) j∈N with ‖g− fk j
‖∞ −→ 0 ( j −→ ∞), we obtain for j −→ ∞

∇( fk j
∗ψδ ) = fk j

∗ (∇ψδ ) −→ g∗ (∇ψδ ) = (∇g)∗ψδ uniformly

and, the last convolution converges uniformly to ∇g for δ −→ ∞. �

Proof (of Lemma 60). The representation of total variation as supremum is
proven in [4, Proposition 1.47], for example.
As a consequence of Lemma 57, the set {ϕκ |κ ∈J } is dense in C0

0(RN , [0,1])
with respect to the supremum norm. Thus, {ϕκ − ϕκ ′ | κ,κ ′ ∈ J } is dense in
C0

0(RN , [−1,1]) with respect to the supremum norm. Finally the first equality im-
plies for every finite Radon measure μ ∈M (RN)∫

RN
ϕ j d |μ| = sup

κ,κ ′ ∈J

∫
RN

ϕ j (ϕκ1 −ϕκ2) dμ. �

Proof (of Lemma 61). (i) Due to Lemma 57, {ϕκ −ϕκ ′ |κ,κ ′ ∈J } is dense
in C0

0(RN , [−1,1]) with respect to the supremum norm and thus, {ϕ j (ϕκ −ϕκ ′) |
j ∈I , κ,κ ′ ∈J } is dense in

(
C0

0(RN), ‖ · ‖sup
)
.

Hence the first claimed equivalence is just a special case of a well-known character-
ization of weak* convergence (see e.g. [143, Theorem V.1.10]). The equivalence of
narrow and weak* convergence for tight sequences has already been mentioned in
Remark 2.40 (1.) (on page 98).

(ii) It is a direct consequence of tightness and Lemma 57. �

3.6.3 Autonomous linear continuity problems induce transitions
on L∞∩1(RN) via Lagrangian flows

Motivated by Proposition 51 of Ambrosio (on page 194) again, we introduce an ab-
breviation for suitable autonomous vector fields on RN and specify candidates for
their associated transitions on L∞∩1(RN):

Definition 62.
BV∞,div

loc (RN) denotes the set of all functions b ∈ BVloc(RN ,RN)∩ L∞(RN ,RN)
satisfying D ·b = div b L N " L N and div b ∈ L∞(RN).

For each vector field b ∈ BV∞,div
loc (RN), define

ϑL∞∩1,b : [0,1]×L∞∩1(RN)−→ L∞∩1(RN), (h,μ0) �−→ Xb(h, ·)� μ0

with Xb(·, ·) denoting its Lagrangian flow according to Proposition 51.
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Now we first investigate the regularity features of ϑL∞∩1,b(·, ·) for more regular
vector fields b ∈ W

1,∞
loc (RN ,RN)∩ L∞ with respect to each pseudo-metric d j,L∞∩1

( j ∈I ). Afterwards the approximation via convolution and Ambrosio’s stability
result in preceding Proposition 53 lead to the estimates for b ∈ BV∞,div

loc (RN) in
Proposition 65 below.

Lemma 63. Suppose b,b1,b2 ∈W
1,∞
loc (RN ,RN)∩L∞.

Then, for any μ0 = ρ L N , ν0 ∈ L∞∩1(RN) and j ∈I , s, t,h ∈ [0,1] with t +h≤ 1,

(1.) ϑL∞∩1,b(0, ·) = IdL∞∩1(RN),

(2.) ϑL∞∩1,b
(
h, ϑL∞∩1,b(t,μ0)

)
= ϑL∞∩1,b(t +h, μ0)

(3.) limsup
h↓0

d
j,L∞∩1

(
ϑ

L∞∩1,b(h,μ0), ϑ
L∞∩1,b(h,ν0)

)
− d

j,L∞∩1 (μ0,ν0)
h d

j,L∞∩1 (μ0,ν0) ≤ λ j ‖b‖∞,

(4.)
∣∣ϕ j ϑL∞∩1,b(t,μ0)

)∣∣(RN) ≤ ∣∣ϕ j μ0
∣∣(RN) · eλ j ‖b‖∞ · t ,

(5.) d j,L∞∩1
(
ϑL∞∩1,b(s,μ0), ϑL∞∩1,b(t,μ0)

) ≤ |t− s| ·λ j ‖b‖∞ eλ j ‖b‖∞
∣∣ϕ j μ0

∣∣(RN)

(6.) limsup
h↓0

d
j,L∞∩1(ϑb1 (h,μ0), ϑb2 (h,μ0))

h
≤ λ j

∣∣ϕ j |b1−b2| μ0
∣∣(RN)

≤ λ j ‖ρ‖∞ · ∥∥ϕ j |b1−b2|
∥∥

L1(RN)

In regard to the choice of �·� j ( j ∈I ), there are even two candidates now.
The first one is the weighted total variation (as mentioned here in Lemma 63 (4.)).
Dispensing with the weight function ϕ j, however, we find the total variation as an
alternative whose growth also proves to be bounded in the required way. State-
ment (6.) in Lemma 63 motivates us to take the L∞ norm into consideration (if
possible) and thus, we introduce for μ = σ L N ∈ L∞∩1(RN)

�μ� := |μ|(RN) +
∥∥ μ

L N

∥∥
∞ = ‖σ‖L1(RN) + ‖σ‖L∞(RN) .

Supplying L∞∩1(RN) with the weak* topology (w.r.t. C0
0(RN)), this functional �·�

is lower semicontinuous and thus, hypothesis (H4’) (on page 168) is fulfilled.

Lemma 64. For every vector field b ∈ BV∞,div
loc (RN) and initial measure μ =

σ L N ∈ L∞∩1(RN), the Radon–Nikodym derivative σt of ϑL∞∩1,b(t,μ) with re-

spect to Lebesgue measure L N satisfies

‖σt‖∞ ≤ ‖σ‖∞ e‖div b‖∞ t ,∣∣ϑb(t,μ)
∣∣(RN) = ‖σt‖L1 ≤ ‖σ‖L1 e2 ‖div b‖∞ t .

The gap between vector fields in W
1,∞
loc (RN ,RN)∩L∞ (as assumed in Lemma 63) and

BV∞,div
loc (RN) can be bridged by means of mollifying as indicated in Proposition 51.

The stability result presented in Corollary 55 implies about the limit for δ ↓ 0:
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Proposition 65. For every vector field b ∈ BV∞,div
loc (RN), the function

ϑL∞∩1,b : [0,1]×L∞∩1(RN) −→ L∞∩1(RN)

is a transition on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�) with

α(ϑL∞∩1,b; r) := λ j ‖b‖∞

β (ϑL∞∩1,b; r) := λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ · r

γ(ϑL∞∩1,b) := 2 ‖div b‖∞

D̂ j(ϑL∞∩1,b, ϑ
L∞∩1, b̂; r) := λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |b− b̂|∥∥

L1(RN) .

Moreover, for every h ∈ [0,1] and indices j ∈I , κ,κ ∈J , the function

ϑL∞∩1,b(h, ·) :
(
L∞∩1(RN), weakly* w.r.t.C0

0
) −→ (

L∞∩1(RN), d j,κ,κ ′,L∞∩1
)

is continuous. From now on, the set of these transitions is abbreviated as

Θ̂
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�).

The lacking proofs in detail are to complete this section:

Proof (of Lemma 63).

The measure–valued flow ϑL∞∩1,b : [0,1]×L∞∩1(RN)−→ L∞∩1(RN) still satisfies
the semigroup property and thus statements (1.), (2.).
For any μ0 = ρ L N , ν0 = σ L N∈L∞∩1(RN), the definitions of total variation and
push-forward imply

d j,L∞∩1
(
ϑL∞∩1,b(h,μ0), ϑL∞∩1,b(h,ν0)

)
=

∣∣ϕ j ·
(
Xb(h, ·)� μ0 − Xb(h, ·)� ν0

)∣∣(RN)

≤
∫

RN
ϕ j(Xb(h, ·)) |ρ−σ | d L N

≤
∫

RN

∣∣ϕ j(Xb(h, ·))−ϕ j

∣∣ |ρ−σ | d L N +
∣∣ϕ j · (μ0−ν0)

∣∣(RN).

The choice of ϕ j (in Lemma 57) has the consequence

limsup
h↓0

1
h
· (d j,L∞∩1

(
ϑL∞∩1,b(h,μ0), ϑL∞∩1,b(h,ν0)

) − d j,L∞∩1(μ0,ν0)
)

≤ limsup
h↓0

1
h
·
∫

RN

∣∣ϕ j(Xb(h, ·))−ϕ j

∣∣ |ρ−σ | d L N

≤
∫

RN
|∇ϕ j(x) · b(x)| |ρ−σ | d L N

≤ ‖b‖∞

∫
RN

λ j ϕ j |ρ−σ | d L N

≤ ‖b‖∞ λ j · d j,L∞∩1(μ0,ν0).

Applying this estimate to ν0 ≡ 0 and ϑL∞∩1,b(t,μ0) (instead of μ0), we conclude
property (4.) from Gronwall’s inequality (in Proposition A.2 on page 352) because
the lower semicontinuous auxiliary function

δε : [0,1]−→ R, t �−→ ∣∣ϕ j ϑL∞∩1,b(t,μ0)
∣∣(RN) =

∣∣ϕ j(Xb(t, ·)) μ0
∣∣(RN)

is one-sided differentiable and satisfies d+

dt+
δε(·) ≤ λ j ‖b‖∞ ·δε(·).
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Correspondingly we obtain statement (5.) by estimating the auxiliary function

δ̂ε : [s,1]−→ R, t �−→∣∣ϕ j

(
ϑL∞∩1,b(t,μ0)− ϑL∞∩1,b(s,μ0)

)∣∣(RN) =∣∣(ϕ j(Xb(t−s, ·))−ϕ j) ϑL∞∩1,b(s,μ0)
∣∣(RN)

with s ∈ [0,1[ fixed and
d+

dt+
δ̂ε(t) ≤ λ j ‖b‖∞

∣∣ϕ j ϑL∞∩1,b(t,μ0)
∣∣(RN) ≤ λ j ‖b‖∞ eλ j ‖b‖∞

∣∣ϕ j μ0
∣∣(RN).

In regard to property (6.), choose any b1,b2 ∈W
1,∞
loc (RN ,RN)∩ L∞ and initial

measure μ0 = ρ L N ∈ L∞∩1(RN). Then, for every h ∈ [0,1],

limsup
h↓0

1
h
· d j,L∞∩1

(
ϑL∞∩1,b1

(h,μ0), ϑL∞∩1,b2
(h,μ0)

)
≤
∫

RN
limsup

h↓0

|ϕ j(Xb1 (h,·))−ϕ j(Xb2 (h,·))|
h

|ρ| d L N

≤
∫

RN
λ j ϕ j |b1−b2| |ρ| d L N

≤ λ j ‖ρ‖∞ ·
∥∥ϕ j |b1−b2|

∥∥
L1(RN). �

Proof (of Lemma 64). As mentioned in Proposition 51, mollifying with a Gaus-
sian kernel leads to approximating vector fields bδ ∈W

1,∞
loc (RN ,RN), δ > 0, with

div bδ ∈ L∞. [3, Remark 6.3] implies for all t ≥ 0 and L N-a.e. x ∈ RN

exp
(−t

∥∥ [divx bδ ]−
∥∥

∞
) ≤ det Dx Xbδ (t,x) ≤ exp

(
t
∥∥ [divx bδ ]+

∥∥
∞
)
.

Now we conclude from the area formula and the transformation of Lebesgue inte-
grals that for any μ = σ L N with σ ∈ L1(RN)∩L∞(RN),∣∣ϑL∞∩1,bδ

(t,μ)
∣∣(RN) =

∣∣Xbδ (t, ·)� μ
∣∣(RN)

=
∫

RN

∣∣∣ σ
|det Dx Xbδ (t,·)| ◦Xbδ (t, ·)−1

∣∣∣ dL N

≤
∫

RN

∣∣σ ◦ (Xbδ (t, ·)−1)∣∣ dL N · exp
(
t
∥∥ [divx bδ ]−

∥∥
∞
)

≤
∫

RN
|σ | dL N · ∥∥det Dx Xbδ (t, ·)∥∥∞· exp

(
t
∥∥ [divx bδ ]−

∥∥
∞
)
.

According to Corollary 55, ϑL∞∩1,bδ
(t,μ) converges narrowly to ϑL∞∩1,b(t,μ) for

δ ↓ 0. In particular, the total variation is lower semicontinuous with respect to weak*
convergence (see e.g. [4, Theorem 1.59]) and thus,∣∣ϑL∞∩1,b(t,μ)

∣∣(RN) ≤ liminf
δ ↓0

∣∣ϑL∞∩1,bδ
(t,μ)

∣∣(RN) ≤ ‖σ‖L1 e2 ‖div b‖∞ t .

For proving the first statement, we exploit first the duality relation between L1

and L∞ and then use the area formula. Indeed, the L∞ norm of σt is equal to
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sup
{ ∫

ψ σt dL N
∣∣∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

= sup
{

limsup
δ↓0

∫
ψ d ϑL∞∩1,bδ

(t,μ)
∣∣∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

= sup
{

limsup
δ↓0

∫
ψ
(

σ
det Dx Xbδ (t,·)

)∣∣∣
Xbδ (t,·)−1

dL N
∣∣∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

≤ sup
{

limsup
δ↓0

∫
ψ ‖σ‖∞ e‖div bδ ‖∞ t dL N

∣∣∣ ψ ∈C∞
0 (RN), ‖ψ‖L1 ≤ 1

}
≤ ‖σ‖∞ e‖div b‖∞ t . �

Proof (of Proposition 65). Choose a Gaussian kernel ρ ∈ C1(RN , ]0,∞[) and
set ρδ (x) := δ−N ρ( x

δ ) for δ > 0. Each vector field bδ := b ∗ ρδ belongs to
W

1,∞
loc (RN ,RN) and satisfies ‖bδ‖∞ ≤ ‖b‖∞ < ∞, ‖divx bδ‖∞ ≤ ‖divx b‖∞ < ∞.

Hence, for each b∈BV∞,div
loc (RN) and δ > 0, Lemma 63 implies the transition prop-

erties of ϑL∞∩1,bδ
(·, ·) : [0,1]×L∞∩1(RN)−→ L∞∩1(RN) with the parameters

α(ϑL∞∩1,bδ
; r) := λ j ‖bδ‖∞ ≤ λ j ‖b‖∞,

β (ϑL∞∩1,bδ
; r) := λ j ‖bδ‖∞ ‖ϕ j‖∞ eλ j ‖bδ ‖∞ r, ≤ λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ r

γ(ϑL∞∩1,bδ
) := 2 ‖div bδ‖∞ ≤ 2 ‖div b‖∞.

Moreover for arbitrary b, b̂ ∈ BV∞,div
loc (RN), μ1,μ2 ∈ L∞∩1(RN) and δ , δ̂ > 0,

h ∈ [0,1], we conclude

d j,L∞∩1
(
ϑL∞∩1,bδ

(h, μ1), ϑ
L∞∩1, b̂δ̂

(h, μ2)
) ≤

≤
(

d j,L∞∩1
(
μ1,μ2

)
+ λ j · sup

[0,1]

∥∥ϑ
L∞∩1,bδ

(·,μ1)

L N

∥∥
∞·
∥∥ϕ j |bδ − b̂δ̂ |

∥∥
L1(RN)

)
eλ j ‖bδ ‖∞ h

≤
(

d j,L∞∩1
(
μ1,μ2

)
+ λ j · �μ1� e‖div b‖∞ ·∥∥ϕ j |bδ − b̂δ̂ |

∥∥
L1(RN)

)
eλ j ‖bδ ‖∞ h

from Lemma 63 (6.), Lemma 64 and Gronwall’s inequality in exactly the same way
as for Proposition 2.6 (on page 72). In particular, this estimate motivates

D̂ j(ϑL∞∩1,bδ
, ϑ

L∞∩1, b̂δ̂
; r) := λ j · r e3 ‖div bδ ‖∞ · ∥∥ϕ j |bδ − b̂δ̂ |

∥∥
L1(RN)

≤ λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |bδ − b̂δ̂ |
∥∥

L1(RN) .

For arbitrary vector fields b, b̂∈BV∞,div
loc (RN) and measures μ1,μ2 ∈L∞∩1(RN),

we now consider the limit for δ ↓ 0 and conclude from the narrow convergence men-
tioned in Corollary 55

d j,L∞∩1
(
ϑL∞∩1,b(h, μ1), ϑ

L∞∩1, b̂(h, μ2)
)

=

= sup
κ,κ ′∈J

d j,κ,κ ′,L∞∩1
(
ϑL∞∩1,b(h, μ1), ϑ

L∞∩1, b̂(h, μ2)
)

= sup
κ,κ ′∈J

lim
δ ↓0

d j,κ,κ ′,L∞∩1
(
ϑL∞∩1,bδ

(h, μ1), ϑ
L∞∩1, b̂δ̂

(h, μ2)
)

≤ limsup
δ ↓0

d j,L∞∩1
(
ϑL∞∩1,bδ

(h, μ1), ϑ
L∞∩1, b̂δ̂

(h, μ2)
)

≤
(

d j,L∞∩1
(
μ1,μ2

)
+ λ j · �μ1� e‖div b‖∞ ·∥∥ϕ j |b− b̂|∥∥

L1(RN)

)
eλ j ‖b‖∞ h .
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As a consequence of Lemma 64, ϑL∞∩1,b(·, ·) : [0,1]×L∞∩1(RN) −→ L∞∩1(RN)
fulfills all conditions on a transition with

α(ϑL∞∩1,b; r) := λ j ‖b‖∞

β (ϑL∞∩1,b; r) := λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ · r

γ(ϑL∞∩1,b) := 2 ‖div b‖∞

D̂ j(ϑL∞∩1,b, ϑ
L∞∩1, b̂; r) := λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |b− b̂|∥∥

L1(RN) .

Finally, we have to verify that for every h ∈ [0,1] and indices j ∈I , κ,κ ∈J ,
the function

ϑL∞∩1,b(h, ·) :
(
L∞∩1(RN), weakly* w.r.t.C0

0
) −→ (

L∞∩1(RN), d j,κ,κ ′,L∞∩1
)

is continuous.
Let

(
μn = σn L N

)
n∈N

be any sequence in L∞∩1(RN) converging weakly* to μ =
σ L N ∈ L∞∩1(RN). Choose h ∈ ]0,1], δ > 0 and ϕ ∈C0

0(RN) arbitrarily.
Using a smooth Gaussian kernel ρ as described in Proposition 51 (on page 194),

the mollified measure μδ (t) := ϑL∞∩1,b(t,μ)∗ρδ solves the nonautonomous conti-
nuity equation

d
dt

μδ + divx (b̃δ μδ ) = 0 (in the distributional sense)

with the time-dependent vector field b̃δ (t, ·) := (b̃ μ(t))∗ρδ
μδ (t) belonging to the func-

tion space L1
(
[0,T ], W

1,∞
loc (RN ,RN)

)
. In comparison to the Lagrangian flow of

b∈BV∞,div
loc (RN), the flow Xb̃δ

: [0,T ]×RN −→RN along b̃δ has the supplementary
advantage of being continuous and, the solution can be represented as push-forward

μδ (t) = Xbδ (t, ·)� (μ(0)∗ρδ ).

Now we conclude from the well-known features of convolution∫
RN

ϕ ∗ρδ d ϑL∞∩1,b(h,μ) =
∫

RN
ϕ d

(
ϑL∞∩1,b(h,μ)∗ρδ

)
=

∫
RN

ϕ d μδ (h)

=
∫

RN
ϕ
(
Xbδ (h, ·))∗ρδ σ dL N

= lim
n→∞

∫
RN

ϕ
(
Xbδ (h, ·))∗ρδ σn dL N = ...

= lim
n→∞

∫
RN

(ϕ ∗ρδ ) d ϑL∞∩1,b(h,μn),

i.e.,
∫

RN
ψ d ϑL∞∩1,b(h,μ) = lim

n→∞

∫
RN

ψ d ϑL∞∩1,b(h,μn)

for all functions ψ in a dense subset of
(
C0

0(RN), ‖·‖sup
)
. Due to the uniform bound

of total variation, i.e. supn |ϑL∞∩1,b(h,μn)|(RN) ≤ supn |μn|(RN) · e2 ‖div b‖∞ < ∞,

we obtain ϑL∞∩1,b(h,μn) −→ ϑL∞∩1,b(h,μ) weakly* with respect to C0
0(RN)

and, thus the claimed continuity of ϑL∞∩1,b(h, ·) w.r.t. every d j,κ,κ ′,L∞∩1 . �
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3.6.4 Conclusions about nonlinear continuity equations

Now we specify sufficient conditions on the functional coefficient

f : L∞∩1(RN)× [0,T ] −→ BV∞,div
loc (RN)

for the nonlinear Cauchy problem{
d
dt

μ + divx (f(μ, ·) μ) = 0 in RN× ]0,T [
μ(0) = ρ0 L N ∈ L∞∩1(RN)

being well-posed in the distributional sense. The transitions introduced in Defini-
tion 62 (on page 198) and the general results of § 3.3.6 (about solving mutational
equations via a generalized form of “weak” compactness) are to provide the required
tools for existence. In particular, the additional hypothesis (H4’) (on page 168)
results from the lower semicontinuity of total variation.
After formulating the main results of this example, we collect all proofs at the end.

Lemma 66. (1.) The tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,κ,κ ′,L∞∩1) j,κ,κ ′ ,

(d j,L∞∩1) j∈I , (d j,κ,κ ′,L∞∩1) j,κ,κ ′, �·�, Θ̂
(
L∞∩1(RN), (d j,L∞∩1), (d j,L∞∩1), �·�

))
with the pseudo-metrics specified in Definition 58 (on page 196) and the transitions

of Proposition 65 (on page 200) is weakly Euler compact (in the sense of Defini-

tion 27 on page 169).

(2.) The tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I, �·�) in combination

with the transitions in Θ̂
(
L∞∩1(RN), (d j,L∞∩1), (d j,L∞∩1), �·�

)
is Euler equi-con-

tinuous (in the sense of Definition 16 on page 156).

Theorem 67 (Existence of L∞∩1(RN)-valued solutions).
For f : L∞∩1(RN)× [0,T ]−→ BV∞,div

loc (RN) suppose

(i) supμ,t

(∥∥f(μ, t)
∥∥

L∞ +
∥∥divx f(μ, t)

∥∥
L∞

)
< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and any

sequences (tm)m∈N, (μm = σm L N)m∈N in [0,T ], L∞∩1(RN) respectively with⎧⎪⎨⎪⎩
tm −→ t for m−→ ∞,

μm −→ μ weakly* with respect to C0
0(RN) for m−→ ∞,

sup
m∈N

(‖σm‖L1 +‖σm‖L∞
)

< ∞,

it fulfills f(μm, tm) −→ f(μ, t) in L1
loc(R

N ,RN) for m−→ ∞.

Then for every initial measure μ0 = σ0 L N ∈ L∞∩1(RN), there exists a solution

μ(·) : [0,T ]−→ L∞∩1(RN) to the mutational equation
◦
μ (·) � ϑL∞∩1, f(μ(·), ·)

on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
satisfying

μ(0) = μ0 and, all its values in L∞∩1(RN) are tight.
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Moreover every solution μ(·) : [0,T ] −→ L∞∩1(RN) (to this mutational equation)
with tight values in L∞∩1(RN) is a narrowly continuous distributional solution to

the nonlinear continuity equation

∂t μt + divx (f(μt , t) μt) = 0 in RN× ]0,T [
in the sense that for every t ∈ [0,T ] and any test function ϕ ∈C∞

c (RN ,R),∫
RN

ϕ dμt −
∫

RN
ϕ dμ0 =

∫ t

0

∫
RN

∇ϕ(x) · f1(μs,s)(x) dμs(x) ds.

Remark 68. In § 3.3.6, Theorem 28 (on page 169) states the existence of solu-
tions to mutational equations with delay. Strictly speaking, we can even handle
L∞∩1(RN)-valued solutions to nonlinear continuity equations with delay.

The uniqueness of L∞∩1(RN)-valued solutions to the linear, but nonautonomous
continuity equation is guaranteed by Proposition 51 of Ambrosio and, it is the start-
ing point for the opposite implication:

Proposition 69 (Distributional solutions satisfy mutational equation).
For f : L∞∩1(RN)× [0,T ]−→ BV∞,div

loc (RN) suppose

(i) supμ,t

(∥∥f(μ, t)
∥∥

L∞ +
∥∥divx f(μ, t)

∥∥
L∞

)
< ∞,

(ii’) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and

any sequences (tm)m∈N, (μm = σm L N)m∈N in [0,T ], L∞∩1(RN) respectively,

μ = σ L N ∈ L∞∩1(RN) with⎧⎪⎨⎪⎩
tm −→ t for m−→ ∞,

σm −→ σ in L1
loc(R

N) for m−→ ∞,
sup
m∈N

(‖σm‖L1 +‖σm‖L∞
)

< ∞,

it fulfills f(μm, tm) −→ f(μ, t) in L1
loc(R

N ,RN) for m−→ ∞.

Let μ(·) = σ(·)L N : [0,T ]−→ L∞∩1(RN) be a distributional solution of

∂t μt + divx (f(μt , t) μt) = 0
with the properties

(a) {μ(t) | 0≤ t ≤ T} ⊂ L∞∩1(RN) is tight,

(b) σ(·) : [0,T ] −→ L1
loc(R

N) is continuous,

(c) ‖σ(·)‖L1(RN) +‖σ(·)‖L∞(RN) is bounded in [0,T ].

Then, μ(·) solves the mutational equation
◦
μ (·) � ϑL∞∩1, f(μ(·), ·)

on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

Uniqueness and stability result directly from the general statements about muta-
tional equations (in § 3.3.1 on page 151 f.) and the local specification of transitions
in Proposition 65 (on page 200). Thus we even dispense with their proofs in detail.
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Theorem 70 (Uniqueness of solution to nonlinear continuity equation).
For f : L∞∩1(RN)× [0,T ]−→ BV∞,div

loc (RN) suppose

(i) supμ,t

(∥∥f(μ, t)
∥∥

L∞ +
∥∥divx f(μ, t)

∥∥
L∞

)
< ∞,

(ii’) f is continuous in the sense specified in assumption (ii’) of Proposition 69.

(iii) f is Lipschitz continuous with respect to state in the following sense: For each

j ∈I , there exists a constant Λ j > 0 such that for L 1-almost every t ∈ [0,T ]
and every ν1,ν2 ∈ L∞∩1(RN),∥∥ϕ j |f(ν1, t) − f(ν2, t)|

∥∥
L1(RN) ≤ Λ j · d j,L∞∩1(ν1, ν2).

Then for every μ0 ∈L∞∩1(RN), the distributional solution [0,T ]−→L∞∩1(RN),
t �−→ μt = σ(t)L N to the nonlinear continuity equation

∂t μt + divx

(
f(μt , t) μt

)
= 0 in RN× ]0,T [

being continuous w.r.t. L1
loc(R

N), bounded w.r.t. ‖ · ‖L1(RN) +‖ · ‖L∞(RN), having ini-

tial measure μ0 at time t = 0 and tight values in L∞∩1(RN) is unique.

Theorem 71 (Stability of solutions to nonlinear continuity equations).
For f, g : L∞∩1(RN)× [0,T ]−→ BV∞,div

loc (RN) suppose

(i) supμ,t

(∥∥ f(μ, t)
∥∥

L∞ +
∥∥divx f(μ, t)

∥∥
L∞

)
< ∞,

supμ,t

(∥∥g(μ, t)
∥∥

L∞ +
∥∥divx g(μ, t)

∥∥
L∞

)
< ∞,

(ii) f and g are continuous in the sense specified in assumption (ii) of preceding

Existence Theorem 67.

(iii) f is Lipschitz continuous with respect to state as in Uniqueness Theorem 70.

Let μ(·) : [0,T ]−→ L∞∩1(RN), t �−→ ρ(t)L N be a distributional solution of

∂t μt + divx

(
f(μt , t) μt

)
= 0 in RN× ]0,T [

being continuous w.r.t. L1
loc(R

N), bounded w.r.t. ‖ · ‖L1(RN) +‖ · ‖L∞(RN) and having

tight values in L∞∩1(RN).

For any parameter R > 0, there exist constants Cj > 0 ( j ∈I ) depending only

on f, g, �μ0�, R with the following property:

For every measure ν0 = σ0 L N ∈ L∞∩1(RN) with ‖σ0‖L1(RN) + ‖σ0‖L∞(RN) ≤ R,

there is a narrowly continuous distributional solution ν(·) : [0,T ]−→ L∞∩1(RN),
t �−→ σ(t)L N to the continuity equation

∂t νt + divx

(
g(νt , t) νt

)
= 0 in RN× ]0,T [

being bounded w.r.t. ‖ · ‖L1(RN) +‖ · ‖L∞(RN), having initial measure ν0 at time t = 0
and satisfying for every t ∈ [0,T ] and j ∈I additionally∥∥ϕ j (ρ(t)−σ(t))

∥∥
L1 ≤

(∥∥ϕ j (ρ0−σ0)
∥∥

L1(RN)+Cj · sup
∥∥ϕ j (f−g)

∥∥
L1(RN)

)
eCj t .
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Proof (of Lemma 66). (1.) In regard to Definition 27 (on page 169) and
Lemma 61 (on page 197), choose μ0 ∈ L∞∩1(RN), T > 0 and R > 0 arbitrarily and
let N = N (μ0,T,R) denote the subset of all curves μ(·) : [0,T ] −→ L∞∩1(RN)
constructed in the following piecewise way: Choosing an arbitrary equidistant par-
tition 0 = t0 < t1 < .. . < tn = T of [0,T ] (n > T ) and b1 . . . bn ∈ BV∞,div

loc (RN) with

max
{‖bk‖L∞ , ‖divx bk‖L∞

∣∣ 1≤ k ≤ n
} ≤ R,

define μ(·) : [0,T ]−→ L∞∩1(RN), t �−→ μt as

μt := ϑL∞∩1,bk

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then we have to verify at each time t ∈ [0,T ] : The set {μt |μ(·)∈N }⊂L∞∩1(RN)
⊂ M (RN) is relatively sequentially compact with respect to the weak* topology
(w.r.t. (C0

0(RN),‖ · ‖sup)).

Due to Lemma 64 (on page 199), the total variation |ν |(RN) is uniformly
bounded for all measures ν ∈ {μt | t ∈ [0,T ], μ(·) ∈N } ⊂M (RN) :

|ν |(RN) ≤ e2 R T |μ0|(RN).

Finally, all these measures are tight as a consequence of the inequality∣∣Xbk
(t,x) − x

∣∣ ≤ R t

(for a.e. x ∈ RN and all t ∈ [0,T ]) and essentially the same arguments as the proof
of Lemma 2.51 (on page 108) although the Lagrangian flow Xbk

(t, ·) : RN −→ RN

does not have to be continuous.

(2.) Euler equi-continuity with respect to the pseudo-metrics (d j,L∞∩1) j∈I is a di-
rect consequence of Proposition 65 (on page 200) and the triangle inequality of each
d j,L∞∩1 . This implication has already been pointed out in Remark 17 (on page 156).

�

Proof (of Existence Theorem 67).

The existence of a solution to the mutational equation results from Theorem 28
(on page 169) due to the preparations in Lemma 61 (on page 197), Proposition 65
(on page 200) and Lemma 66 (on page 204).

In addition, with R > 0 denoting the bound in assumption (i), the proof of
Lemma 66 (1.) implies that the values of all Euler approximations in N (μ0,T,R),{

νt

∣∣ t ∈ [0,T ], ν(·) ∈N (μ0,T,R)
}⊂ L∞∩1(RN),

are tight. Thus for every ε > 0, there exists a compact set Kε ⊂ RN satisfying

|νt |(RN \Kε) < ε for all t ∈ [0,T ] and ν(·) ∈N (μ0,T,R).

Since the solution μ(·) : t �−→ μt is constructed by means of Euler approximations,
each measure μt is weak* limit of a sequence in

{
νt

∣∣ ν(·) ∈N (μ0,T,R)
}

due to
Lemma 61. The lower semicontinuity of total variation implies |μt |(RN \Kε) < ε.
Therefore, {μt | t ∈ [0,T ]} ⊂ L∞∩1(RN) ⊂ M (RN) is tight.
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Now we verify the claimed distributional property of any solution t �→ μt =
σ(t, ·)L N to the mutational equation

◦
μ (·) � ϑL∞∩1, f(μ(·), ·)

on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

Indeed, due to Definition 8 (on page 149), μ(·) is continuous with respect to each
pseudo-metric d j,L∞∩1 ( j ∈I ) and satisfies for each index j ∈I

lim
h↓0

1
h
· ∣∣ϕ j ·

(
Xf(μt ,t)(h, ·)� μt − μt+h

)∣∣(RN) = 0.

at L 1-almost every time t ∈ [0,T [.
Assuming tight values in addition implies continuity of μ(·) with respect to narrow
convergence as a consequence of Lemma 61.
Furthermore, the Lagrangian flow Xf(μt ,t) : [0,1]×RN −→ RN of the vector field

f(μt , t) ∈ BV∞,div
loc (RN) satisfies for L N– almost every x ∈ RN

Xf(μt ,t)(h,x) = x+
∫ h

0
f(μt , t)

(
Xf(μt ,t)(s,x)

)
ds for all h ∈ [0,1]

according to Proposition 51 (a) (on page 194). Hence there exists a set I ⊂ [0,T ] of
L 1 measure 0 such that for every t ∈ I, the following right Dini derivative exists
and is uniformly bounded in I

d+

dt+

∫
RN

ϕ j d μt
Def.= lim

h↓0
1
h
·
∫

RN

(
ϕ j(Xf(μt , t)(h,x)) − ϕ j(x)

)
σ(t,x) dL Nx

=
∫

RN
∇ϕ j(x) · f(μt , t)(x) σ(t,x) dL Nx.

The continuous function [0,T [−→ R+
0 , t �−→

∫
RN

ϕ j d μt is even Lipschitz con-

tinuous as a consequence of Gronwall’s estimate (in Proposition A.2 on page 352)
and, its weak derivative is

d
dt

∫
RN

ϕ j d μt =
∫

RN
∇ϕ j(x) · f(μt , t)(x) d μt (x).

Now every nonnegative test function ϕ ∈C∞
c (RN), ϕ ≥ 0, can be approximated by

(ϕ j) j∈I with respect to the C1 norm due to Lemma 57 (on page 196). Thus,

[0,T [ −→ R+
0 , t �−→

∫
RN

ϕ dμt

is also absolutely continuous and satisfies at L 1-almost every time t ∈ [0,T [

d
dt

∫
RN

ϕ d μt =
∫

RN
∇ϕ(x) · f(μt , t)(x) d μt (x) .

Moreover the condition ϕ ≥ 0 is not required, i.e., the same features are guaran-
teed for any ϕ ∈ C∞

c (RN). Indeed, choosing any nonnegative auxiliary function
ξ ∈C∞

c (RN) with ξ ≡‖ϕ‖∞ +1 in B1(suppϕ)⊂RN , we apply the previous results
(about absolute continuity and its derivative) to both ϕ(·)+ξ (·)≥ 0 and ξ (·)≥ 0.

�
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Proof (of Proposition 69). Let μ(·) = σ(·)L N : [0,T ]−→ L∞∩1(RN) be any
distributional solution to the nonlinear continuity equation

∂t μt + divx (f(μt , t) μt) = 0

with the additional properties

(a) {μ(t) | 0≤ t ≤ T} ⊂ L∞∩1(RN) is tight,
(b) σ(·) : [0,T ] −→ L1

loc(R
N) is continuous,

(c) ‖σ(·)‖L1(RN) +‖σ(·)‖L∞(RN) is bounded in [0,T ].

Hence μ(·) is continuous with respect to each of the weighted L1 distances d j,L∞∩1

( j ∈I ) due to Lemma 61 (on page 197).
Continuity assumption (ii’) and the transitional distances D̂ j(·, ·;r) ( j ∈I ) speci-
fied in Proposition 65 (on page 200) imply that the function of time

τ : [0,T ] −→
(

Θ̂
(
L∞∩1(RN), (di,L∞∩1)i∈I , (di,L∞∩1)i∈I , �·�), D̂ j(·, ·; r)

)
t �−→ ϑL∞∩1, f(μt ,t)(·, ·)

is continuous for each radius r > 0 and index j ∈I . Theorem 67 (on page 204)
thus provides a solution ν(·) : [0,T ]−→ L∞∩1(RN) to the mutational equation

◦
ν (·) � τ(·)

on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
with initial

measure ν0 = μ0 and tight values in L∞∩1(RN). Furthermore, it is a narrowly con-
tinuous distributional solution to the nonautonomous, but linear equation

∂t νt + divx (f(μt , t) νt) = 0 in RN× ]0,T [.

Proposition 51 of Ambrosio (on page 194) guarantees that the Cauchy problem of
such a nonautonomous linear continuity equation always has unique solutions with
values in L∞∩1(RN) and thus, ν(·)≡ μ(·), i.e. μ(·) solves the mutational equation

◦
μ (·) � ϑL∞∩1, f(μ(·), ·)

on the tuple
(
L∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

�
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3.7 Example: Semilinear evolution equations
in arbitrary Banach spaces

Now we consider semilinear evolution equations again
d
dt

u(t) = A u(t) + f
(
u(t), t

)
with a fixed generator A of a strongly continuous semigroup (S(t))t≥0 on a Banach
space X . The goal is to specify sufficient conditions on the semigroup and the func-
tion f : X× [0,T ]−→X so that initial value problems can be solved in the mutational
framework.
In contrast to § 2.4 (on page 91 ff.), however, we dispense with any hypotheses about
Banach space X (such as reflexivity and separability) and, we prefer topological
assumptions about the semigroup or the image of f instead. In particular, a single
distance function on X is to cover the strong continuity of the semigroup appropri-
ately. For this purpose, we consider tuples with a separate real time component as
discussed in § 3.4 (on page 175 ff.).

Assumptions for § 3.7.
(1.) (X , ‖ · ‖X ) is a real Banach space.

Set X̃ := R×X and π1 : X̃ −→ R, (t,x) �−→ t.

(2.) The linear operator A generates a C0 semigroup (S(t))t≥0 on X .

(3.) (S(t))t≥0 is ω-contractive, i.e., there exists a constant ω > 0 such that
‖S(t) x‖X ≤ eω t ‖x‖X for all x ∈ X , t ≥ 0.

3.7.1 The distance functions (d̃ j) j∈R+,(ẽ j) j∈R+ on X̃ = R×X

In this example, the essential aspect is to take the strong continuity of (S(t))t≥0 into
consideration properly. This regularity has influence on the chronological features
and thus on the family (ẽ j) j of distance functions (rather than (d̃ j) j). In particular,
it is the main motivation for considering tuples with separate time component, i.e.,
X̃ instead of X . As abbreviations, set R+

0 := [0,∞[ and R+ :=]0,∞[.

Definition 72.
Under the general assumptions of § 3.7, we define for each index j ∈ R+

0

d̃ j : X̃ × X̃ −→ [0,∞[,
(
(s,x), (t,y)

) �−→ |t− s| +
∥∥S( j) x − S( j) y

∥∥
X

‖ · ‖
X̃

: X̃ −→ [0,∞[, (t,x) �−→ |t| + ‖x‖X .

and

ẽ j : X̃ × X̃ −→ [0,∞[,(
(s,x), (t,y)

) �−→ |t− s| +
{∥∥S( j + t−s) x− S( j) y

∥∥
X

if s < t∥∥S( j) x− S( j + s−t) y
∥∥

X
if s≥ t
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Obviously, d̃0(·, ·)≡‖·−·‖X̃
holds in X̃× X̃ . In fact, the convergence of norm

bounded sequences with respect to (d̃ j) j∈R+ is equivalent to norm convergence in
X̃ as proved in following Proposition 73. The detour via j ∈ R+ (instead of j = 0)
serves merely the purpose of concluding the convergence with respect to d̃0 from ẽ0.

Proposition 73. For every element x̃ ∈ X̃ and any bounded sequence (x̃n)n∈N

in (X̃ , ‖ · ‖
X̃
), the following properties are equivalent:

(i) lim
n→∞

‖x̃ − x̃n‖X̃
= 0

(ii) ∀ j ∈ R+ : lim
n→∞

d̃ j(x̃, x̃n) = 0

(iii) ∀ j ∈ R+ : lim
n→∞

ẽ j(x̃, x̃n) = 0

(iv) lim
n→∞

ẽ0(x̃, x̃n) = 0 .

This equivalence and subsequent Lemmas 75 – 77 imply directly

Corollary 74. The tuple (X̃ , d̃0, ẽ0) satisfies hypotheses (H1), (H2), (H3) (o), (H4)

(on page 144) and hypotheses (H3) (̃i)–(ĩii) (on page 175). �

Proof (of Proposition 73). “(i) =⇒ (ii)” and “(iv) =⇒ (iii)” are obvious
consequences of Definition 72 since each linear operator S( j) : X −→ X ( j ∈ R+

0 )
is continuous.

“(ii) =⇒ (i)” Assume for x̃ = (t,x) and the bounded sequence
(
x̃n = (tn,xn)

)
n∈N

in X̃ that d̃ j(x̃, x̃n)
Def.= |t− tn| +

∥∥S( j) x − S( j) xn

∥∥
X
−→ 0 (n−→ ∞)

holds for every j ∈ R+. The resolvent R(λ ,A) of the generator A of (S(t))t≥0 is
known to have the representation as limit of Bochner integrals

R(λ ,A) y = lim
τ→∞

∫ τ

0
e−λ t S(t) y dt

for every y ∈ X and λ ∈C with Re λ > ω (see [60, Theorem II.1.10], for example).
As a consequence, Lebesgue’s Theorem about dominated convergence leads to∥∥R(ω +2, A)

(
x− xn

)∥∥
X
−→ 0 for n−→ ∞.

It implies ‖x− xn‖X −→ 0 since R(ω +2, A) : X −→ X is a bijective contraction
with ‖R(ω +2, A)‖ ≤ 1

2 .

“(iii) =⇒ (iv)” It also results from the integral representation of the resolvent
R(ω +2, A). Indeed, assuming for a norm bounded sequence

(
x̃n = (tn,xn)

)
n∈N

ẽ j(x̃, x̃n)
Def.= |t− tn| +

∥∥S( j +(tn−t)+) x − S( j +(t−tn)+) xn

∥∥
X

n→∞−→ 0

for every j ∈ R+ implies∥∥R(ω +2, A)
(
S((tn−t)+) x − S((t−tn)+) xn

)∥∥
X

n→∞−→ 0

and thus, ẽ0(x̃, x̃n)
Def.= |t− tn| +

∥∥S((tn−t)+) x − S((t−tn)+) xn

∥∥
X

n→∞−→ 0 .
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“(ii) =⇒ (iii)” Let the sequence
(
x̃n = (tn,xn)

)
n∈N

and x̃ = (t,x) ∈ X̃ be arbi-
trary with d̃ j(x̃, x̃n) −→ 0 for each j ∈ R+.
First we assume tn ≥ t for all n ∈ N in addition. Then,

ẽ j(x̃, x̃n) = |t− tn| +
∥∥S( j + tn− t) x − S( j) xn

∥∥
X

≤ |t− tn| +
∥∥S( j) x − S( j) xn

∥∥
X

+
∥∥S( j) x − S( j + tn− t) x

∥∥
X

= d̃ j(x̃, x̃n) + eω j
∥∥x − S(tn− t) x

∥∥
X

−→ 0 for n−→ ∞ and each j ∈ R+.

Similarly we obtain under the additional assumption tn ≤ t for all n ∈ N

ẽ j(x̃, x̃n) = |t− tn|+
∥∥S( j) x − S( j+t−tn) xn

∥∥
X

≤ |t− tn|+
∥∥S( j+t−tn) x −S( j+t−tn) xn

∥∥
X
+
∥∥S( j) x − S( j+t−tn) x

∥∥
X

≤ |t− tn|+eω (t−tn)
∥∥S( j) x − S( j) xn

∥∥
X

+ eω j
∥∥x − S(t− tn) x

∥∥
X

≤ eω |t−tn| d̃ j(x̃, x̃n) + eω j
∥∥x − S(t− tn) x

∥∥
X

−→ 0 for n−→ ∞ and each j ∈ R+.

Applying these cases to subsequences, we conclude without additional assumptions

ẽ j

(
x̃, x̃n) −→ 0 for n−→ ∞ and each j ∈ R+.

“(iii) =⇒ (ii)” Let the sequence
(
x̃n = (tn,xn)

)
n∈N

and x̃ = (t,x) ∈ X̃ be arbi-
trary with ẽ j(x̃, x̃n) −→ 0 for each j ∈ R+.
First we suppose tn ≥ t for all n ∈ N in addition. Then,

d̃ j(x̃, x̃n) = |t− tn| +
∥∥S( j) x − S( j) xn

∥∥
X

≤ |t− tn| +
∥∥S( j + tn− t) x − S( j) xn

∥∥
X

+
∥∥S( j) x − S( j + tn− t) x

∥∥
X

= ẽ j(x̃, x̃n) + eω j
∥∥x − S(tn− t) x

∥∥
X

−→ 0 for n−→ ∞ and each j ∈ R+.

Complementarily we conclude under the additional assumption tn ≤ t for all n ∈ N

d̃ j(x̃, x̃n) = |t− tn| +
∥∥S( j) xn − S( j) x

∥∥
X

≤ |t− tn| +
∥∥S( j

2 − t + tn)
∥∥ ∥∥S( j

2 +t−tn) xn − S( j
2 +t−tn) x

∥∥
X

≤ |t− tn| + eω ( j
2−t+tn)

(∥∥S( j
2 +t−tn) xn − S( j

2 ) x
∥∥

X
+∥∥S( j

2 +t−tn) x − S( j
2 ) x
∥∥

X

)
≤ eω ( j

2 +|t−tn|)
(

ẽ j
2
(x̃, x̃n) +

∥∥S( j
2 +t−tn) x − S( j

2 ) x
∥∥

X

)
−→ 0 for n−→ ∞ and each j ∈ R+.

Hence, d̃ j

(
x̃, x̃n) −→ 0 holds for n−→ ∞ and every index j ∈ R+ in general.

�
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Lemma 75. The tuple (X̃ , d̃0, ẽ0) fulfills hypothesis (H3) (̃i) (on page 175).

Proof. Choose any x̃ = (s,x), ỹ = (t,y) ∈ X̃ and sequences
(
x̃n = (sn,xn)

)
n∈N

,(
ỹn = (tn,yn)

)
n∈N

with

lim
n→∞

d̃0(x̃, x̃n) = 0 = lim
n→∞

d̃0(ỹ, ỹn).

Obviously, d̃0 satisfies the triangle inequality and thus,

d̃0(x̃, ỹ) = lim
n→∞

d̃0
(
x̃n, ỹn

)
.

For verifying the same continuity property of ẽ0, we assume sn ≤ tn for all n ∈ N

sufficiently large. Then, s ≤ t and, we conclude from the semigroup property and
ω-contractivity of (S(·))∣∣ẽ0(x̃, ỹ) − ẽ0(x̃n, ỹn)

∣∣
≤ ∣∣|s−t|− |sn−tn|

∣∣ + ∣∣‖S(t−s) x − y‖X −
‖S(tn−sn) xn − yn‖X

∣∣
≤ ∣∣s−t− (sn−tn)

∣∣ +
∥∥S(tn−sn) xn − S(t−s) x

∥∥
X

+∥∥ yn − y
∥∥

X

≤ |s−sn| + |t−tn| +
∥∥S(tn−sn) xn − S(tn−sn) x

∥∥
X

+∥∥S(tn−sn) x − S(t−s) x
∥∥

X
+∥∥ yn − y

∥∥
X

≤ eω |tn−sn| d̃0(x̃, x̃n) + d̃0(ỹ, ỹn) +
∥∥S(tn−sn) x − S(t−s) x

∥∥
X

−→ 0 for n−→ ∞ .

Finally, property (H3) (̃i) is fulfilled.
�

Lemma 76. The distance functions d̃ j, ẽ j : X̃ × X̃ −→ [0,∞[ ( j ∈ R+) fulfill

hypothesis (H3) (ĩi) (on page 175).

Proof. Let x̃ = (s,x)∈ X̃ and the sequences
(
x̃n = (sn,xn)

)
n∈N

,
(
ỹn = (tn,yn)

)
n∈N

in X̃ be arbitrary with

lim
n→∞

d̃ j(x̃, ỹn) = 0 = lim
n→∞

ẽ j(ỹn, x̃n) for every j ∈ R+.

In particular, tn −→ s and thus, sn −→ s for n−→ ∞.
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Under the additional assumption s≤ tn ≤ sn for all n∈N, we obtain for every j ∈ R+

d̃ j(x̃n, x̃) = sn− s +
∥∥S( j) xn − S( j) x

∥∥
X

≤ sn− tn +
∥∥S( j) xn − S( j + sn− tn) yn

∥∥
X

+
∥∥S( j + sn− tn) yn − S( j + sn− tn) x

∥∥
X

+ tn− s +
∥∥S( j + sn− tn) x − S( j) x

∥∥
X

≤ ẽ j(x̃n, ỹn) + eω |sn−tn| · d̃ j(ỹn, x̃)
+ tn− s +

∥∥S( j + sn− tn) x − S( j) x
∥∥

X

−→ 0 for n−→ ∞ .

Correspondingly, the supplementary hypothesis s≥ tn ≥ sn for all n ∈ N leads to

d̃ j(x̃n, x̃) = s− sn +
∥∥S( j) xn − S( j) x

∥∥
X

≤ s− sn + ‖S( j
2 + sn− tn)‖L (X ,X) ·

∥∥S( j
2 + tn− sn) xn − S( j

2 ) yn

∥∥
X

+ ‖S( j
2 + sn− tn)‖L (X ,X) ·

∥∥S( j
2 ) yn − S( j

2 ) x
∥∥

X

+
∥∥S( j + sn− tn) x − S( j) x

∥∥
X

≤ s− sn + eω j/2
(
ẽ j/2(x̃n, ỹn) + d̃ j/2(ỹn, x̃)

)
+
∥∥S( j + sn− tn) x − S( j) x

∥∥
X

−→ 0 for n−→ ∞ .

Finally, property (H3) (ĩi) also holds.
�

Lemma 77. The tuple (X̃ , d̃0, ẽ0) fulfills hypothesis (H3) (ĩii) (on page 175).

Proof. Choose any element x̃ ∈ X̃ and sequences (x̃n)n∈N, (ỹk)k∈N, (z̃k,n)k,n∈N

in X̃ fulfilling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 z̃k,n = π1 ỹk ≤ π1 x̃n = π1 x̃ for each k,n ∈ N,

lim
k→∞

d̃0(x̃, ỹk) = 0,

lim
n→∞

d̃0(ỹk, z̃k,n) = 0 for each k ∈ N,

lim
k→∞

sup
n>k

ẽ0(z̃k,n, x̃n) = 0,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ .

As abbreviations, set x̃ = (t,x), x̃n = (t,xn), ỹk = (tk,yk), z̃k,n = (tk,zk,n) ∈ X̃ .
Then, lim

k→∞
tk = t results directly from lim

k→∞
d̃0(x̃, ỹk) = 0. The auxiliary elements

ξ̃n = (tn,xn) ∈ X̃ (n ∈ N) fulfill



3.7 Example: Semilinear evolution equations in any Banach spaces 215

ẽ0(ξ̃n, x̃) = |tn− t| + ∥∥S(t− tn) xn − x
∥∥

X

≤ t− tn +
∥∥S(t− tn) xn − S(2(t−tn)) zk,n

∥∥
X

+∥∥S(2(t−tn)) zk,n − S(2(t−tn)) yk

∥∥
X

+∥∥S(2(t−tn)) yk − S(2(t−tn)) x
∥∥

X
+∥∥S(2(t−tn)) x − x

∥∥
X

≤ eω |t−tn| ẽ0(x̃n, z̃k,n)

+ eω 2 |t−tn| (d̃0(z̃k,n, ỹk) + d̃0(ỹk, x̃)
)

+
∥∥S(2(t−tn)) x − x

∥∥
X

.

Choosing first k ∈ N and then n ∈ N sufficiently large leads to

lim
n→∞

ẽ0(ξ̃n, x̃) = 0

and due to Proposition 73, limsup
n→∞

d̃0(x̃n, x̃) ≤ lim
n→∞

d̃0(ξ̃n, x̃) = 0. �

3.7.2 The variation of constants induces transitions on X̃

Similarly to the preceding example in § 2.4 (on page 91 ff.), a simple affine-linear
initial value problem motivates the choice of candidates for transitions. Defini-
tion 2.27 is now extended to tuples in X̃ = R×X :

Definition 78. For each v ∈ X , the function τv : [0,1]×X −→ X is defined as
mild solution to the initial value problem d

dt
u(t) = A u(t)+ v, u(0) = x ∈ X , i.e.

τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds.

Furthermore, set τ̃v : [0,1]× X̃ −→ X̃ ,
(
h, (t,x)

) �−→ (
t +h, τv(h,x)

)
.

Lemma 79. For every vector v,w ∈ X, the functions τ̃v, τ̃w : [0,1]× X̃ −→ X̃

have the following properties for every j ∈R+
0 , x̃, ỹ∈ X̃ and s,h∈ [0,1] with s+h≤ 1

(1.) τ̃v(0, x̃) = x̃

(2.) τ̃v(s+h, x̃) = τ̃v

(
h, τ̃v(s, x̃)

)
(3.) ẽ j

(
x̃, τ̃v(h, x̃)

) ≤ h · (1+ eω ( j+1) ‖v‖X

)
(4.) ‖τ̃v(h, x̃)‖

X̃
≤ (‖x̃‖

X̃
+ h · (1+‖v‖X )

)
eω h

(5.) d̃ j

(
τ̃v(h, x̃), τ̃w(h, ỹ)

) ≤ d̃ j

(
x̃, ỹ) · eω h + h · eω ( j+h) ‖v−w‖X .
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Postponing its proof for a moment, we conclude directly from these estimates in
combination with the semigroup property of τ̃v:

Proposition 80. For each vector v ∈ X , the function τ̃v : [0,1]× X̃ −→ X̃ speci-

fied in Definition 78 is a transition on
(
X̃ , (d̃ j) j∈R+ , (ẽ j) j∈R+ , (‖ · ‖

X̃
) j∈R+

)
in the

sense of Definition 2 (on page 145) with

α j(τ̃v; r) := ω
β j(τ̃v; r) := 1 + ‖v‖X · eω ( j+1)

γ j(τ̃v) := max
{

1+‖v‖X , ω
}

and the additional property π1 τ̃v(h, x̃) = π1 x̃+h for all x̃ ∈ X̃ , h ∈ [0,1]. �

Inequality (5.) in Lemma 79, applied to j = 0, however, reveals an alternative to the
countable family (d̃ j) j∈R+ , which is even more popular: the norm of X̃ .
In fact, we even have transitions on the simpler tuple

(
X̃ , d̃0, ẽ0, ‖·‖X̃

)
and, the norm

instead of the family (d̃ j) j∈R+ will provide a direct link between timed solutions
(to mutational equations) and mild solutions (to semilinear evolution equations) in
subsequent § 3.7.3. In regard to the preceding topological results of § 3.7.1, the hy-
potheses (H1) – (H4) are also fulfilled by the latter tuple — due to the equivalence
of convergence in Proposition 73 (on page 211).

Corollary 81. For each vector v ∈ X , the function τ̃v : [0,1]× X̃ −→ X̃ specified

in Definition 78 is a transition on the tuple
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
with

α0(τ̃v; r) := ω
β0(τ̃v; r) := 1 + ‖v‖X · eω

γ0(τ̃v) := max
{

1+‖v‖X , ω
}

and the additional property π1 τ̃v(h, x̃) = π1 x̃+h for all x̃ ∈ X̃ , h ∈ [0,1].
Furthermore setting

D̂0
(
τ̃v, τ̃w, r

)
:= ‖v−w‖X

for any vectors v,w∈ X and radius r≥ 0, the function D̂0( · , · ; r) is a metric of these

transitions on X̃ and, hypotheses (H5) – (H7) (on page 146) are fulfilled.

�

Proof (of Lemma 79). Statements (1.) and (2.) result from the semigroup prop-
erty of (S(t))t≥0 in a quite obvious way.
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(3.) For every x̃ = (t,x) ∈ X̃ , h ∈ [0,1] and j ∈ R+
0 ,

ẽ j

(
(t,x), τ̃v(h, (t,x))

)
= t +h− t +

∥∥∥S( j)
(

S(h) x+
∫ h

0
S(h− r) v dr

)
− S( j + t +h− t) x

∥∥∥
X

= h +
∥∥∥∫ h

0
S( j +h− r) v dr

∥∥∥
X

≤ h + h eω ( j+h) ‖v‖X

(4.) In regard to the norm ‖ · ‖
X̃

, we obtain for every x̃ = (t,x) ∈ X̃ , h ∈ [0,1]∥∥ τ̃v(h, x̃)
∥∥

X̃
= |t +h| +

∥∥∥S(h) x +
∫ h

0
S(h− r) v dr

∥∥∥
X

≤ |t|+h + eω h ‖x‖X + h eω h ‖v‖X

≤ eω h
(‖x̃‖

X̃
+ h · (1+‖v‖X )

)
.

(5.) Finally, the definitions imply for any x̃ = (s,x), ỹ = (t,y) ∈ X̃ and h ∈ [0,1]

d̃ j

(
τ̃w(h, (s,x)), τ̃w(h, (t,y))

)
= |t− s| +

∥∥∥S( j)
(

S(h) x +
∫ h

0
S(h− r) v dr

)
−

S( j)
(

S(h) y +
∫ h

0
S(h− r) w dr

) ∥∥∥
X

≤ |t− s| + eω h
∥∥S( j) (x− y)

∥∥
X

+ h eω ( j+h) ‖v−w‖X

≤ d̃ j

(
x̃, ỹ
) · eω h + h eω ( j+h) ‖v−w‖X . �

3.7.3 Mild solutions to semilinear evolution equations in X

— using an immediately compact semigroup

The recently proposed transitions on
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
are based on autonomous

linear evolution equations. Now the mutational framework provides the tools for the
step to nonautonomous semilinear evolution equations and their mild solutions.
For this purpose, we first prove the existence of timed solutions to the correspond-
ing mutational equations by means of Theorem 40 (on page 180). Then we focus on
the connection between these timed solutions and the more popular concept of mild
solutions (to the underlying semilinear evolution equation in X).

Existence Theorem 40 is based on assuming Euler compactness and Euler equi-
continuity. For the tuple

(
X̃ , d̃0, ẽ0, ‖·‖X̃

)
, however, even the nonequidistant coun-

terparts of these two properties (specified in Definition 23 on page 165) are not
difficult to verify because the variation of constants formula provides a useful inte-
gral representation of every (nonequidistant) Euler approximation.
If the contractive C0 semigroup (S(t))t≥0 on X is immediately compact in addition,
then nonequidistant Euler compactness also holds.
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Lemma 82 (Characterization of nonequidistant Euler approximations).
Suppose for x̃0 = (t0,x0)∈ X̃ , γ̂ ≥ 0 and a ‖·‖

X̃
-continuous curve ỹ(·) : [0,T [−→ X̃

(1.) ỹ(0) = x̃0,

(2.) for any t ∈ [0,T [, there exist s ∈ ]t−1, t] and v ∈ X with ‖v‖X ≤ γ̂ and

ỹ(s+ ·) = τ̃v( · , ỹ(s)) in an open neighbourhood I ⊂ [0,1] of [0, t−s].

Then there exists v(·) ∈ L∞([0,T ], X) with ‖v‖L∞ ≤ γ̂ and for every t ∈ [0,T [,

ỹ(t) =
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) v(r) dr

)
This representation of an Euler approximation in combination with the proof of
Lemma 79 (3.) implies directly its Lipschitz continuity with respect to each ẽ j:

Corollary 83 (nonequidistant Euler equi-continuous).
Every ‖ · ‖

X̃
-continuous curve ỹ : [0,T [−→ X̃ satisfying conditions (1.), (2.) in

Lemma 82 is Lipschitz continuous with respect to ẽ j (for each j ∈ R+
0 ) and, its

Lipschitz constant is ≤ 1+ γ̂ · eω ( j+T ).

Thus,
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with all the transitions of Corollary 81 is

nonequidistant Euler equi-continuous in the sense of Definition 23 (on page 165).�

Lemma 84 (nonequidistant Euler compact).
Assume in addition that (S(t))t≥0 is immediately compact, i.e., for every t > 0, the

linear operator S(t) : X −→ X is compact.

Then the tuple
(
X̃ , d̃0, ẽ0, ‖ ·‖X̃

)
together with all the transitions of Corollary 81 is

nonequidistant Euler compact in the sense of Definition 23 (on page 165).

Now preceding Theorem 40 (on page 180) provides the existence of timed solutions
to mutational equations in

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
. They prove to induce mild solutions

to the underlying semilinear evolution equation in X :

Theorem 85 (Existence of mild solutions to semilin. evolution equations in X).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on the

second component and, A denotes the generator of an immediately compact, con-

tractive C0 semigroup (S(t))t≥0 on X. Assume for f : X × [0,T ]−→ X

(i) supx,t ‖ f (x, t)‖X < ∞,

(ii) for L 1-almost every t ∈ [0,T ], the function f (·, t) : X −→ X is continuous

with respect to ‖ · ‖X .

Then for every x̃0 = (t0,x0) ∈ X̃ , there exists a timed solution x̃(·) : [0,T ] −→ X̃

to the mutational equation
◦
x̃(·) � τ̃ f (π2 x̃(·), ·) in

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
.

Moreover if x̃(·) : [0,T ] −→ X̃ is a timed solution to this mutational equation, then

x(·) := π2 x̃(·) : [0,T ]−→ X is a mild solution to the semilinear evolution equation

d
dt

x(·) = A x(·) + f
(
x(·), · ) .
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In fact, Theorem 40 takes even delays into consideration. Its full generality and the
preceding relation to mild solutions (mentioned in Theorem 85) lead to the follow-
ing existence result.

Corollary 86 (Existence of mild solutions to semilinear equations with delay).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on the

second component and, A denotes the generator of an immediately compact, con-

tractive C0 semigroup (S(t))t≥0 on X. Moreover assume for some fixed τ ≥ 0 and

f : C0
(
[−τ,0], (X , ‖ · ‖X )

) × [0,T ] −→ X

(i) supz(·),t ‖ f (z(·), t)‖X < ∞,

(ii) for L 1-almost every t ∈ [0,T ], lim
n→∞

∥∥ f (z1
n(·), t1

n ) − f (z2
n(·), t2

n )
∥∥

X
= 0

for any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and (z1
n(·))n∈N, (z2

n(·))n∈N in

C0
(
[−τ,0], (X , ‖ · ‖X )

)
satisfying for every s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞

∥∥z1
n(s) − z(s)

∥∥
X

= 0 = lim
n→∞

∥∥z2
n(s) − z(s)

∥∥
X

sup
n∈N

sup
[−τ,0]

‖z1,2
n (·)‖X < ∞ .

For every Lipschitz continuous function x0(·) : [−τ,0]−→ (X ,‖·‖X ), there exists

a curve x̃(·) : [−τ,T ]−→ X̃ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], X̃ ; ẽ0, ‖ · ‖X̃

)
,

(ii) x̃(t) = (t, x0(t)) for every t ∈ [−τ,0],

(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation
◦
x̃(t) � τ̃

f
(

π2 x̃(t+·)
∣∣
[−τ,0]

, t
)

in the sense of Definition 32.

In particular, the projected restriction π2 x̃(·)∣∣[0,T ] : [0,T ] −→ X is a mild solution

to the semilinear evolution equation with delay

d
dt

x(t) = A x(t) + f
(
x(t + ·)∣∣[−τ,0], t

)
in [0,T ].

�
Remark 87. In comparison with standard literature about evolution equations,
neither Theorem 85 nor Corollary 86 are completely new results. The essential point
is, however, that these semilinear evolution equations are solved in the mutational
framework — just by adding a separate time component temporarily and introduc-
ing distance function ẽ0 suitable for handling the strong continuity of (S(t))t≥0.

In particular, we are free to combine this type of dynamical problem with any
other example fitting in this mutational framework. Correspondingly to Proposi-
tion 2.36 (on page 96), we conclude from Existence Theorem 22 about systems of
mutational equations and from the example in § 1.10 (on page 63 ff.) immediately:
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Corollary 88 (Existence of solutions to a system with semilinear evolution
equation and modified morphological equation).
Suppose A to be the generator of an immediately compact, contractive C0 semigroup

(S(t))t≥0 on X and, assume for

f : X ×K (RN)× [0,T ] −→ X ,
G : X ×K (RN)× [0,T ] −→ OSLIP(RN ,RN)

(i) sup
x,M,t

(‖ f (x,M, t)‖X + ‖G (x,M, t)‖∞ +max{0, Lip G (x,M, t)})< ∞ .

(ii) f and G are continuous in the following sense:{ ∥∥ f (yn,Mn, tn) − f (y,M, t)
∥∥

X
−→ 0

dl∞
(
G (yn,Mn, tn), G (y,M, t)

) −→ 0
for n−→ ∞

holds for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (Mn)n∈N and

(yn)n∈N in [0,T ],K (RN),X respectively satisfying tn −→ t, dl(Mn,M) −→ 0
and ‖yn− y‖X −→ 0 for n−→ ∞.

Then for every initial vector x0 ∈ X and set K0 ∈ K (RN), there exist curves

x(·) : [0,T ] −→ X and K(·) : [0,T ] −→ K (RN) with x(0) = x0, K(0) = K0 and

the following properties:

(1.) x(·) : [0,T ]−→ X is a mild solution to the evolution equation
d
dt

x(t) = A x(t) + f (x(t), K(t), t).

(2.) K(·) is Lipschitz continuous w.r.t. dl and satisfies for L 1-almost every t

lim
h↓0

1
h
· dl
(
ϑG (x(t),K(t), t)(h, K(t)), K(t +h)

)
= 0.

(3.) If, in addition, the set-valued map G (x(t),K(t), t) : RN � RN is continuous

for each t ∈ [0,T ], then the set K(t) ⊂ RN coincides with the reachable set

ϑG (x(·),K(·),·)(t,K0) of the nonautonomous differential inclusion

y′(·) ∈ G
(
x(·), K(·), · )(y(·))

at every time t ∈ [0,T ]. �

Finally, we close the gap of lacking proofs.

Proof (of Lemma 82). Due to assumption (2.) and the finite Lebesgue measure of
the domain [0,T [, there exists an (at most countable) set of pairs (sl , tl) (l ∈ N ⊂N)
with the following properties:

(i) for every l ∈ N, 0≤ sl < tl < T and tl − sl ≤ 1,
for some l0 ∈ N, sl0 = 0,

(ii) the intervals ]sl , tl [ (l ∈ N) are pairwise disjoint,
(iii)

⋃
l∈N

[sl , tl ] = [0,T [,

(iv) for every l ∈ N, there exists a vector vl ∈ X with ‖vl‖X ≤ γ̂ and
ỹ(·) = τ̃vl

( · −sl , ỹ(sl)
)

in [sl , tl [.
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Setting v(t) := vl for t ∈ [sl , tl [ (l ∈N), the function v(·) is well-defined Lebesgue-
almost everywhere in [0,T [ and belongs to L∞([0,T [,X). Then the definition of
τ̃vl

(·, ·) and the continuity of ỹ(·) (with respect to ‖ · ‖X by assumption) lead to the
claimed integral representation in [0,T [. �

Proof (of Lemma 84). We claim that
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
is nonequidistant Euler

compact in the sense of Definition 23 (on page 165).
Due to the integral representation in Lemma 82 (on page 218), it is sufficient to
verify the following statement:

Choose x0 ∈ X and T ∈ ]0,∞[ arbitrarily. Let (vn(·))n∈N be a bounded sequence
in L∞([0,T ],X) and, set

yn : [0,T ] −→ X , t �−→ S(t) x0 +
∫ t

0
S(t− r) vn(r) dr =

S(t) x0 +
∫ t

0
S(s) vn(t− s) ds

for each n∈N. Then for every t̂ ∈ ]0,T ], there exists a subsequence of
(
yn(̂t)

)
n∈N

converging strongly in X .

This proof is based on the supplementary assumption that the semigroup (S(t))t≥0
is immediately compact, i.e., for every t > 0, the operator S(t) : X −→ X is compact.
For each k ∈ N with 1

k
< t̂, the sequence

yn(̂t) −
∫ 1

k

0
S(s) vn(t− s) ds = S( 1

k
)
(∫ t̂

1
k

S(s− 1
k
) vn(t− s) ds

)
(n ∈ N)

has a subsequence converging with respect to ‖ · ‖X . Cantor’s diagonal construction
provides a strictly increasing sequence (nl)l∈N of indices and a sequence (zk)k∈N in
X such that for every k ∈ N with 1

k
< t̂,

ynl
(̂t) −

∫ 1
k

0
S(s) vnl

(t− s) ds −→ zk for l −→ ∞.

In particular,

limsup
l−→∞

∥∥ynl
(̂t) − zk

∥∥
X
≤ limsup

l−→∞

∥∥∥∫ 1
k

0
S(s) vnl

(t− s) ds

∥∥∥
X

≤ 1
k
· e

ω
k · supn ‖vn‖L∞ .

Furthermore, (zk)k∈N is a Cauchy sequence in X since for any k1,k2 ∈ N∩ ] 1
t̂
,∞[,

‖zk1 − zk2‖X

= lim
l→∞

∥∥∥ynl
(̂t) −

∫ 1
k1

0
S(s) vnl

(t− s) ds − ynl
(̂t) +

∫ 1
k2

0
S(s) vnl

(t− s) ds

∥∥∥
X

≤ sup
l∈N

( 1
k1

e
ω
k1 ‖vnl

‖L∞ + 1
k2

e
ω
k2 ‖vnl

‖L∞
)
.

Hence, (zk)k∈N converges to a limit z ∈ X and, ‖zk − z‖X ≤ eω · supn ‖vn‖L∞
k

for all
large k ∈ N. Finally we obtain ‖ynl

(̂t)− z‖X −→ 0 for l −→∞ simply by means of
the triangle inequality. �
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Proof (of Theorem 85).

The existence of a timed solution to the mutational equation
◦
x̃(·) � τ̃ f (π2 x̃(·), ·)

in
(
X̃ , d̃0, ẽ0, ‖·‖X̃

)
results from Theorem 40 (on page 180) due to Corollary 83 and

Lemma 84 (on page 218). Indeed, the projection π2 : (X̃ , ‖ · ‖
X̃
) −→ (X , ‖ · ‖X ) is

continuous and thus, the composition X̃ × [0,T ]−→ X , (z̃, t) �−→ f (π2 z̃, t) fulfills
the continuity assumptions of Theorem 40.

Now we focus on the second part of the claim: If x̃(·) : [0,T ] −→ X̃ is a timed
solution to this mutational equation, then x(·) := π2 x̃(·) : [0,T ] −→ X is a mild
solution to the semilinear evolution equation

d
dt

x(·) = A x(·) + f
(
x(·), · ) .

Indeed, the composition [0,T ] −→ (X ,‖ · ‖X ), t �−→ f (x(t), t) is continuous and,
[0,T ] −→L (X ,X), t �−→ S(t) is bounded with respect to the operator norm. Thus,
the auxiliary function

y(·) : [0,T ] −→ (X , ‖ · ‖X ), t �−→ S(t) x(0) +
∫ t

0
S(t− s) f

(
x(s), s

)
ds

is continuous, bounded and, it satisfies for every t ∈ [0,T [, h ∈ [0,1]

τ f (x(t), t)
(
h, y(t)

) Def.=

= S(h) y(t) +
∫ h

0
S(h− s) f (x(t), t) ds

= S(t +h) x(0) +
∫ t

0
S(t +h− s) f

(
x(s), s

)
ds +

∫ h

0
S(h− s) f (x(t), t) ds

= S(t +h) x(0) +
∫ t+h

0
S(t +h− s) f

(
x(max{s, t}), max{s, t}) ds .

It implies
1
h
· ∥∥y(t +h) − τ f (x(t), t)

(
h, y(t)

)∥∥
X

= 1
h

∥∥∥∫ t+h

t
S(t +h− s)

(
f
(
x(s), s

)− f
(
x(t), t

))
ds

∥∥∥
X

≤ eω (T+1) · sup
[t, t+h]

∥∥ f
(
x(·), ·)− f

(
x(t), t

)∥∥
X

−→ 0 for h ↓ 0.

As a consequence, this auxiliary function supplied with a real time component, i.e.,

ỹ(·) : [0,T ] −→ X̃ , t �−→
(

π1 x̃(0) + t, S(t) x(0) +
∫ t

0
S(t− s) f

(
x(s), s

)
ds
)

is a timed solution to the mutational equation
◦
ỹ(·) � τ̃ f (π2 x̃(·), ·)

in
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
. Finally Proposition 37 (on page 178) ensures

0 = inf
{∥∥z̃− x̃(t)

∥∥
X̃

+
∥∥z̃− ỹ(t)

∥∥
X̃

∣∣ z̃ ∈ X̃ : ‖z̃‖
X̃

< 1+ sup {‖x̃(·)‖
X̃
, ‖ỹ(·)‖

X̃
}}

=
∥∥x̃(t) − ỹ(t)

∥∥
X̃

for every t ∈ [0,T ], i.e., x(·)≡ y(·). �
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3.7.4 Exploiting weakly compact terms of inhomogeneity instead

Considering an immediately compact semigroups (S(t))t≥0 on X in the preceding
section 3.7.3 has served essentially one single purpose, namely to guarantee Euler
compactness (as formulated in Lemma 84 on 218 and proved on page 221).
In particular, all other conclusions like the connection between mutational equations
and mild solutions to semilinear evolution equations do not require this supplemen-
tary assumption explicitly.
Now we suggest an alternative aspect for compactness to come into play, i.e., the
image of the function f in the semilinear evolution equation

d
dt

x(·) = A x(·) + f
(
x(·), · ) .

Indeed, Ülger formulated a criterion sufficient for the relative weak compactness of
Bochner-integrable functions in the 1990s and, we quote it in Proposition A.65 here.
It is used for verifying the following lemma about Euler compactness:

Lemma 89 (nonequidistant Euler compact).
Let W �= /0 be a weakly compact subset of the Banach space X.

Then the tuple
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with the transitions τ̃v : [0,1]× X̃ −→ X̃

induced by any vector v ∈W as in Definition 78 is nonequidistant Euler compact

in the sense of Definition 23 (on page 165).

Proof. According to Lemma 82 (on page 218), every nonequidistant Euler ap-
proximation ỹ(·) : [0,T [−→ X̃ is characterized by a function w(·) ∈ L∞([0,T ], X)
satisfying ‖w‖L∞ ≤ γ̂ and for every t ∈ [0,T [,

ỹ(t) =
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) w(r) dr

)
.

Now we benefit from the additional property that the values of w(·) belong to the
weakly compact set W ⊂ X . Due to Proposition A.65 of Ülger (on page 392),{

w(·) ∈ L1([0,T ], X)
∣∣ for all t ∈ [0,T ] : w(t) ∈W

}
is relatively weakly compact in the space L1([0,T ],X) of Bochner-integrable func-
tions with values in Banach space X .
Hence, for any sequence

(
ỹn(·)

)
n∈N

of nonequidistant Euler approximations in

PN = PN (x̃0,T, α̂, β̂ , γ̂,L) �= /0, there always exists a sequence nk ↗ ∞ of
indices such that the corresponding characterizing functions wnk

(·), k ∈ N, in
L∞([0,T ],W ) converge weakly in L1([0,T ],X). Their weak limit is denoted by
w(·) ∈ L1([0,T ],X). In particular, Proposition A.66 implies ‖w‖L∞([0,T ],X) ≤ γ̂ .
Due to the strong continuity of (S(t))t≥0, the weak convergence of

(
wnk

(·))
k∈N

to
w(·) has the immediate consequence for each t ∈ [0,T ]∥∥∥∥ ỹnk

(t) −
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) w(r) dr

)∥∥∥∥
X̃

k→∞−→ 0 .
�
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In regard to existence of mild solutions, the consequences correspond exactly to
the results in § 3.7.3 and thus, we dispense with the proofs in detail here.

Theorem 90 (Existence of mild solutions to semilinear equations with delay).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on

the second component and, A denotes the generator of a contractive C0 semigroup

(S(t))t≥0 on X. Moreover assume for some fixed τ ≥ 0 and

f : C0
(
[−τ,0], (X , ‖ · ‖X )

) × [0,T ] −→ X

(i) the image of f is relatively weakly compact in X and (thus, in particular)
supz(·),t ‖ f (z(·), t)‖X < ∞,

(ii) for L 1-almost every t ∈ [0,T ], lim
n→∞

∥∥ f (z1
n(·), t1

n ) − f (z2
n(·), t2

n )
∥∥

X
= 0

for any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and (z1
n(·))n∈N, (z2

n(·))n∈N in

C0
(
[−τ,0], (X , ‖ · ‖X )

)
satisfying for every s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞

∥∥z1
n(s) − z(s)

∥∥
X

= 0 = lim
n→∞

∥∥z2
n(s) − z(s)

∥∥
X

sup
n∈N

sup
[−τ,0]

‖z1,2
n (·)‖X < ∞ .

For every Lipschitz continuous function x0(·) : [−τ,0]−→ (X ,‖·‖X ), there exists

a curve x̃(·) : [−τ,T ]−→ X̃ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], X̃ ; ẽ0, ‖ · ‖X̃

)
,

(ii) x̃(t) = (t, x0(t)) for every t ∈ [−τ,0],

(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation
◦
x̃(t) � τ̃

f (π2 x̃(t+·)
∣∣
[−τ,0]

, t)

in the sense of Definition 32.

In particular, the projected restriction π2 x̃(·)∣∣[0,T ] : [0,T ] −→ X is a mild solution

to the semilinear evolution equation with delay

d
dt

x(t) = A x(t) + f
(
x(t + ·)∣∣[−τ,0], t

)
in [0,T ].

�
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3.8 Example: Strong solutions to parabolic differential equations
with zero Dirichlet boundary conditions in noncylindrical
domains

Applying the previous examples of the mutational framework to partial differential
equations, we can usually handle problems in fixed domains in the Euclidean space.
In particular, the coupling with set evolutions has been restricted to the coeffi-
cients of lower order in the partial differential equation so far. Proposition 2.36 (on
page 96) and Corollary 88 (on page 220), for example, focus on the system{

d
dt

x(t) = A x(t) + f (x(t), K(t), t)
◦
K (t) � G

(
x(t), K(t), t

)
with mild solutions x(·) : [0,T ] −→ X to a semilinear evolution equation, but fixed
generator A of a C0 semigroup.

The next example is to consider coupling via time-dependent domain. Indeed, we
want to draw conclusions about strong solutions to the semilinear initial-boundary
value problem of parabolic type⎧⎪⎪⎪⎨⎪⎪⎪⎩
( N

∑
k,l =1

akl(t, ·) ∂ 2

∂xk ∂xl
+

N

∑
k=1

bk(t, ·) ∂
∂xk

+ c(t, ·) − ∂
∂ t

)
u = F (t,u) in Ω(t)

u = 0 on ∂Ω(t)

u(0, ·) = u0 in Ω(0)

with a set-valued map Ω(·) : [0,T ]� RN that might be determined by a morpho-
logical equation. In particular, the set Ω(t) ⊂ RN will be free to change some of
its topological properties while time t is increasing. The typical approach based on
time-dependent transformations (as in [26, 82, 90], for example) to a fixed reference
domain is to fail here.

3.8.1 The general assumptions for this example

The coefficients
akl : [S,T ]×RN −→ R (k, l = 1 . . . N)
bk : [S,T ]×RN −→ R (k = 1 . . . N)
c : [S,T ]×RN −→ ]−∞, 0]

are assumed to be bounded, continuous and uniformly elliptic, i.e., there is some
μ > 0 such that for any x,y ∈ RN and t ∈ [S,T ],

N

∑
k,l =1

akl(t,x) yk yl ≥ μ |y|2 .
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As an abbreviation set L :=
N

∑
k,l =1

akl
∂ 2

∂xk ∂xl
+

N

∑
k=1

bk
∂

∂xk
+ c − ∂

∂ t
.

Fixing p > N +2 arbitrarily, we define for any nonempty open set Ω̃ ⊂ [S,T ]×RN

Ω̃s := Ω̃ ∩ (]s,T ]×RN
)
,

Ω̃(s) :=
{

y ∈ RN
∣∣ (s,y) ∈ Ω̃

}
for s ∈ [S,T ],

W
1;2
p,loc(Ω̃S) :=

{
u ∈ L

p

loc(Ω̃S)
∣∣ ∀ Ṽ ⊂ Ω̃ ∩ (]S,T [×RN) with compact closure :

∂u
∂ t

, ∂u
∂xk

, ∂ 2u
∂xk ∂xl

∈ Lp(Ṽ ) for k, l = 1 . . .N
}

D(L,Ω̃S) :=
{

u ∈C0(Ω̃S)
∣∣ u ∈W

1;2
p,loc(Ω̃S) and ∃ g ∈C0(Ω̃S) : Lu = g

L N − a.e. in Ω̃ ∩ (]S,T [×RN)
}

3.8.2 Some results of Lumer and Schnaubelt about parabolic
problems in noncylindrical domains

In [103], Lumer and Schnaubelt present a very sophisticated approach for time-
dependent parabolic problems in noncylindrical domains. It is based on Lumer’s
earlier results about so-called local operators and provides a successive construction
of a so-called variable space propagator which can be regarded as a generalization
of strongly continuous evolution families (in the sense of [60, § VI.9]).

In this section, we summarize some of their results in regard to parabolic differential
equations on noncylindrical domains. They serve as tools for specifying transitions
in the mutational framework later.

Definition 91 ([103, Definition 4.8]). Let I ⊂ R be an interval and for each
t ∈ I, Y (t) denotes a real Banach space which is isomorphic to a subspace Y (t)� of
a fixed Banach space Y �.
A family of linear operators U(t,s) : Y (s) −→ Y (t), (s, t) ∈ I2, s ≤ t, is called
variable space propagator if it satisfies the following conditions:

(i) U(s,s) = IdY (s) for every s ∈ I,

(ii) U(t,s) = U(t,r) ◦U(r,s) for every r,s, t ∈ I with s≤ r ≤ t,

(iii) {(s, t) ∈ I2) | s ≤ t} −→ Y �, (s, t) �−→ (U(t,s) f (s)
)� is continuous

for any function t �→ f (t) ∈ Y (t) whose transformed counterpart
I −→ Y �, t �−→ f (t)� is continuous.

The propagator is called bounded if sup
s≤ t

‖U(t,s)‖L (Y (s),Y (t)) < ∞.
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Definition 92 ([103, special case of Definition 3.1]). A nonempty open set
Ω̃ ⊂ ]S,T ]×RN possesses a so-called Cauchy barrier with respect to L if there ex-
ist a compact set K̃ ⊂ Ω̃ and a function h ∈ D(L,Ω̃ \ K̃) satisfying

(i) h > 0 and (L−λ )h ≤ 0 in Ω̃ \ K̃ for some λ ≥ 0,

(ii) for every ε > 0, there exists a compact set K̃ε with K̃ ⊂ K̃ε ⊂ Ω̃ and
0 ≤ h ≤ ε in Ω̃ \ K̃ε .

Now we formulate a special case of [103, Theorem 6.1] restricted to bounded sub-
sets of [S,T ]×RN and Dirichlet boundary conditions:

Theorem 93 ([103]). Let Ω̃ be a bounded open subset of [S,T ]×RN, s ∈ [S,T [,
f ∈C0

0(Ω̃(s)) and the function F satisfy

(i) Ω̃ ∩ ({t}×RN
) �= /0 for every t ∈ [S,T ],

(ii) Ω̃S is the intersection of finitely many open subsets of ]S,T ]×RN each of

which admits a Cauchy barrier with respect to L,

(iii) F ∈C0
(
Ω̃s

)
, F = 0 on ∂Ω̃s \ ({s}× Ω̃(s)) if S < s < T,

F ∈C0
0
(
Ω̃S

)
if s = S.

Then there exists a unique function u ∈C0
(
Ω̃s

) ∩ W
1;2
p,loc(Ω̃s) solving⎧⎪⎪⎨⎪⎪⎩

L u = F in Ω̃s

u(s, ·) = f in Ω̃(s)⊂ RN

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

If F = 0 in addition, then ‖u‖sup ≤ ‖ f‖sup .
If f and −F are nonnegative in addition, then u is also nonnegative.

Furthermore, there exists a bounded variable space propagator (UΩ̃ (t,s))S≤s≤ t≤T

depending only on Ω̃ and L such that assuming an extension F0 ∈C0
0
(
Ω̃S

)
of F to

Ω̃S provides the representation

u(t, ·) = UΩ̃ (t,s) f −
∫ t

s
UΩ̃ (t,τ) F0(τ, ·) dτ in Ω̃(t)⊂ RN.

More generally, considering trivial extensions to RN by 0 respectively (and indi-

cating it via �), there is a bounded variable space propagator (U �

Ω̃
(t,s))S≤s≤ t≤T

depending just on L and Ω̃ such that the solution u ∈C0
(
Ω̃s

) ∩ W
1;2
p,loc(Ω̃s) is the

restriction of the continuous function

v : [s,T ]×RN −→ R

with

v(t, ·) = U
�

Ω̃
(t,s) f � −

∫ t

s
U

�

Ω̃
(t,τ) F�(τ, ·) dτ in RN.

�



228 3 Continuity of distances replaces the triangle inequality

Remark 94. According to [103, Proposition 4.18], this bounded variable space
propagator (U �

Ω̃
(t,s))S≤s≤ t≤T is related to a contractive C0 semigroup (S (τ))τ≥0

on the Banach space
(
C0

0(Ω̃S), ‖ · ‖sup
)

in the sense of

S (τ)F : Ω̃S −→ R, (t,x) �−→ U
�

Ω̃
(t, t− τ) F�(t− τ, ·)

for every function F ∈C0
0(Ω̃S) and its trivial extension F� : R×RN −→ R (by 0).

This close relation provides the link with the results of § 3.7.

For applying this existence theorem, a key question is how to guarantee Cauchy
barriers as required in hypothesis (ii). Lumer and Schnaubelt prove the following
sufficient geometric condition:

Proposition 95 ([103, Proposition 6.4]). In addition to the assumptions about

coefficients in § 3.8.1, let Ω̃ be a bounded open subset of [S,T ]×RN satisfying

(i) Ω̃ ∩ ({t}×RN
) �= /0 for every t ∈ [S,T ],

(ii) the boundary ∂Ω̃ is given by xi = φk(t,x1 . . . xi−1, xi+1 . . . xn) for some

i ∈ {1 . . . n} and finitely many functions φk that are defined on open sub-

sets of [S,T ]×RN−1, continuously differentiable with respect to t and twice

continuously differentiable with respect to x,

(iii) Ω̃ is locally on one side of its boundary.

Then, Ω̃S
Def.= Ω̃ ∩ (]S,T ]×RN

)
possesses a Cauchy barrier with respect to L. �

Their characterization of well-posed Cauchy problems by means of so-called exces-

sive barriers is the basis for concluding from [103, Corollary 3.26] directly:

Lemma 96 ([103]). If the nonempty open set Ω̃ is the intersection of finitely many

open sets each of which admits a Cauchy barrier with respect to L, then Ω̃ possesses

a Cauchy barrier with respect to L. �

In their joint publications [102, 103], however, Lumer and Schnaubelt do not specify
any method for extending such results to countably many intersections or to merely

local geometric criteria similar to the exterior cone condition, for example, which
has proved to be very useful for strong solutions to elliptic partial differential equa-
tions of second order (see e.g. [68, Theorem 9.30]).
Roughly speaking, the essential challenge is to construct a global function satisfy-
ing both the zero boundary condition and the differential inequality. For this reason,
we replace the assumption of Cauchy barriers by a weaker condition which serves
exactly the same purposes in the proofs of Lumer and Schnaubelt. The basic idea
is to guarantee the auxiliary “barrier” function not globally (as in Definition 92),
but depending on the special approximative features needed for the respective con-
clusions close to the boundary.
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Definition 97. A nonempty open set Ω̃ ⊂ ]S,T ]×RN is said to possess a family

of approximative Cauchy barriers with respect to L if there exists a compact set
K̃ ⊂ Ω̃ with the following property: For every compact set K̃′ with K̃ ⊂ K̃′ ⊂ Ω̃
and any scalar 0 < ε1 ≤ ε2, there exists a function h ∈ D(L,Ω̃ \ K̃) satisfying

(i) h > 0 and (L−λ )h ≤ 0 in Ω̃ \ K̃ for some λ ≥ 0,

(ii) h ≥ ε2 in K̃′,
(iii) there exists a compact set K̃′′ with K̃′ ⊂ K̃′′ ⊂ Ω̃ and h ≤ ε1 in Ω̃ \ K̃′′.

Studying the general proof of [103, Theorem 3.25] reveals that assuming a family of
approximative Cauchy barriers (instead of a single Cauchy barrier) also implies the
well-posedness of the linear homogeneous Cauchy problems considered in [103,
§ 3]. Finally we conclude from the same arguments as for preceding Theorem 93
quoting a special case of [103, Theorem 6.1]:

Corollary 98. Theorem 93 holds if its assumption (ii) is replaced by

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

�

Remark 99 (about the proof of Corollary 98). Strictly speaking, we have to verify
that a family of approximative Cauchy barriers enables us to draw essentially the
same conclusions as Lumer and Schnaubelt did in regard to well-posedness and its
consequences. Most of their steps are based on local approximation and comparison
and thus, it is to check whether their “global” Cauchy barrier can be adapted to the
required “accuracy” locally.
In particular, [103, Theorem 3.25] applied to our parabolic problem in a nonempty
bounded open set Õ ⊂ Ω̃S states that the Cauchy problem induced by L is well-posed
in C0

0(Õ) if and only if Õ has a Cauchy barrier with respect to L. We focus on the
sufficient aspect of Cauchy barriers (providing existence of solutions). Although all
sets under consideration here are bounded, we avoid applying [103, Lemma 3.24]
immediately and first select an expanding sequence W̃n ↑ Õ of open sets and func-
tions h̃n (n ∈ N) in the family of approximative Cauchy barriers in an alternating

way such that h̃n > n in W̃n and 0≤ h̃n < 1
n

in Ω̃ \ W̃n+1.
In a word, h̃n is to take the role of the “global” Cauchy barrier h whenever we
consider restrictions to W̃n+2 ⊂ Õ . Then we can follow essentially the conclu-
sions of Lumer and Schnaubelt for constructing so-called locally excessive barri-

ers as in [103, Lemma 3.24]. For initial functions with compact support in Õ , the
approximative solutions in [103, Corollary 3.9] form a Cauchy sequence due to
the parabolic maximum principle in [103, Theorem 2.29] and, its limit solves the
parabolic Cauchy problem of interest in [103, Theorem 3.25].
This existence of solutions due to approximative Cauchy barriers provides the tools
for verifying further statements in [103, Proposition 3.17 and Theorems 4.11 – 4.14].
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3.8.3 Semilinear parabolic differential equations
in a fixed noncylindrical domain

In this subsection, we consider S < 0 < T̂ < T and assume Ω̃ ⊂ [S,T ]×RN to be a
fixed open subset of [S,T ]×RN satisfying the assumptions (i), (ii’) of Theorem 93
and Corollary 98, i.e.,

(i) Ω̃ ∩ ({t}×RN) �= /0 for every t ∈ [S,T ],
(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

The results of Lumer and Schnaubelt focus on existence and uniqueness of solutions
u ∈C0

(
Ω̃s

) ∩ W
1;2
p,loc(Ω̃s) to the inhomogeneous linear parabolic problem⎧⎪⎨⎪⎩

L u = F in Ω̃s

u(s, ·) = f in Ω̃(s)⊂ RN

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

for given s ∈ [0,T [ , f ∈C0
0(Ω̃(s)), F ∈C0

(
Ω̃s

)
with F = 0 on ∂Ω̃s \ ({s}× Ω̃(s)).

Our goal is to obtain the similar results for the semilinear parabolic differential equa-
tions in the smaller time interval [0, T̂ ], i.e., the function F on the right-hand side
is prescribed as a function of time t and the current solution u(t, ·) : Ω̃(t) −→ R.
The results are essentially direct conclusions of § 3.7 about evolution equations.
Nevertheless we discuss the steps of proof in detail afterwards.

Theorem 100 (Existence of solutions to semilinear parabolic problem in Ω̃ ).
In addition to the hypotheses of § 3.8.1 (on page 225 f.) and S < 0 < T̂ < T , assume

for Ω̃ ⊂ [S,T ]×RN to be a nonempty bounded open subset of [S,T ]×RN satisfying

(i) Ω̃ ∩ ({t}×RN) �= /0 for every t ∈ [S,T ],

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

Furthermore, let F :
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃(t))

)−→C0
c (RN) fulfill

(iii) for all t ∈ [0, T̂ ] and v ∈C0
0(Ω̃(t)) : supp F (t,v) ⊂ Ω̃(t) ⊂ RN,

(iv) the image {F (t,v) | t ∈ [0, T̂ ], v ∈C0
0(Ω̃(t))

} ⊂C0
c (RN) is bounded, equi-

continuous and, there exist constants α ∈ ]0,1], CF ∈ [0,∞[ such that for all

(t,v) of the domain,

F (t,v) ≤ CF · dist
(
(t, ·), R1+N \ Ω̃S

)α
,

(v) F is continuous in the following sense:
∥∥F (t,v)�−F (tn,vn)�

∥∥
sup −→ 0

for any t ∈ [0, T̂ ], v ∈ C0
0(Ω̃(t)) and sequences (tn)n∈N, (vn)n∈N satisfying

vn ∈C0
0(Ω̃(tn)) for all n∈N and tn −→ t, ‖v

�
n− v�‖sup −→ 0 for n−→ ∞.
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Then, for every initial function u0 ∈ C0
0(Ω̃(0)), there exists a strong solution

u ∈C0
(
Ω̃0
) ∩ W

1;2
p,loc(Ω̃0) to the initial-boundary value problem of parabolic type⎧⎪⎪⎨⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈ ]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ RN ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).

Specifying the set ẼΩ̃ and its distances via the related semigroup (S (τ))τ≥0

Considering the vector spaces C0
0(Ω̃(t)) (t ∈ [0,T ]) supplied with the supremum

norm is a very obvious choice indeed.
Due to the obstacles of strong continuity and time-dependent domains Ω̃(t),
however, we would prefer a fixed Banach space supplied with a separate real time
component and use the results of § 3.7 (on page 210 ff.). This motivates the choice
of C0

0(Ω̃S) and the supremum norm, but it might lead to difficulties in regard to
defining transitions for all periods h ∈ [0,1] because t +h might be larger than T .

Hence, we return to Remark 94 (on page 228) and use the contractive C0 semigroup
(S (τ))τ≥0 on the Banach space

(
C0

0(Ω̃S), ‖ · ‖sup
)

specified by

S (τ)v : Ω̃S −→ R, (t,x) �−→
{

U
�

Ω̃
(t, t− τ) v�(t− τ, ·) if t− τ ≥ S

0 if t− τ < S

for every function v ∈ C0
0(Ω̃S) and its trivial extension v� : R×RN −→ R (by 0).

In other words, after defining

Ω̃(s′) := Ω̃(S) ⊂ RN for every s′ < S

additionally and extending the coefficients of L to ]−∞,S]× Ω̃(S) ⊂ R×RN con-
stantly (with respect to time), the respective function

(
S (τ) v

)
(t, ·) : Ω̃(t) −→ R

at time t ≤ T is induced by the unique solution u ∈ C0
(
Ω̃s

) ∩ W
1;2
p,loc(Ω̃s) to the

homogeneous linear parabolic problem starting at time s := t− τ ∈ ]−∞,T ]⎧⎪⎪⎨⎪⎪⎩
L u = 0 in Ω̃s

u(s, ·) = v�(s, ·) in Ω̃(s)⊂ RN

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

In the case of s
Def.= t−τ ≥ S, existence and uniqueness of this solution result directly

from Theorem 93 of Lumer and Schnaubelt and, otherwise (i.e. if t − τ < S), the
parabolic maximum principle excludes any alternative to the trivial solution.
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Strictly speaking, we consider the set

ẼΩ̃ := R × C0
0(Ω̃S)

supplied with the functions

| · |Ω̃ : ẼΩ̃ −→ [0,∞[,
ũ = (t,u) �−→ |t|+‖u‖sup ,

d̃Ω̃ : ẼΩ̃ × ẼΩ̃ −→ [0,∞[,(
(s,u), (t,v)

) �−→ |s− t| +
∥∥u − v

∥∥
sup ,

ẽΩ̃ : ẼΩ̃ × ẼΩ̃ −→ [0,∞[,(
(s,u), (t,v)

) �−→ |s− t| +
∥∥S ((t− s)+

)
u − S

(
(s− t)+

)
v
∥∥

sup .

using the general abbreviation r+ := max{r,0} for every r ∈ R.
Obviously, d̃Ω̃ satisfies the triangle inequality. Furthermore, ẽΩ̃ fulfills the so-called
timed triangle inequality, i.e. whenever ũ, ṽ, w̃∈ ẼΩ̃ satisfy π1 ũ ≤ π1 ṽ ≤ π1 w̃, then

ẽΩ̃ (ũ, w̃) ≤ ẽΩ̃ (ũ, ṽ) + ẽΩ̃ (ṽ, w̃).

The analytical “detour” via the contractive C0 semigroup (S (τ))τ≥0 on the fixed
Banach space

(
C0

0(Ω̃S), ‖ · ‖sup
)

has the essential advantage that we can apply the
results of § 3.7 (on page 210 ff.). In particular, the arguments for Corollary 74 ensure
that the tuple

(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)
fulfills hypotheses (H1), (H2), (H3), (H4) required

for the mutational framework in § 3.4 (on page 175 ff.).

Specifying transitions on ẼΩ̃

Due to a glance at mild solutions to semilinear evolution equations (in § 3.7), the
variation of constants formula serves as starting point for specifying transitions on
ẼΩ̃ . The results of § 3.7.2 (on page 215 ff.) lead to:

Definition 101. For any function F ∈C0
0(Ω̃S), define

ϑ̃Ω̃ ,F
: [0,1]× ẼΩ̃ −→ ẼΩ̃ ,

(
h, (t,u)

) �−→ (
t +h, ϑΩ̃ ,F

(h, (t,u))
)

with the function ϑΩ̃ ,F
(h, (t,u)) : Ω̃S −→ R,

ϑΩ̃ ,F
(h, (t,u)) := S (h) u +

∫ h

0
S (h− s) F ds .

Lemma 102. For every F ∈ C0
0(Ω̃S), the function ϑ̃Ω̃ ,F

: [0,1]× ẼΩ̃ −→ ẼΩ̃

is well-defined and, the continuous function ϑΩ̃ ,F
(h,(t,u)) : Ω̃S −→ R maps

(s,x) �−→
(

U
�

Ω̃
(s, s−h) u�(s−h, ·) −

∫ s

s−h
U

�

Ω̃
(s,τ) F�(τ, ·) dτ

)
(x).

with the variable space propagator (U �

Ω̃
(t,s))S≤s≤ t≤T mentioned in Theorem 93.
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It has the properties for all ũ, ṽ∈ẼΩ̃ , G∈C0
0(Ω̃S), h,h1,h2 ∈ [0,1] with h1 +h2 ≤ 1 :

(1.) ϑ̃Ω̃ ,F
(0, · ) = Id

ẼΩ̃
,

(2.) ϑ̃Ω̃ ,F

(
h1, ϑ̃Ω̃ ,F

(h2, ·)
)

= ϑ̃Ω̃ ,F
(h1 +h2, · ),

(3.) d̃Ω̃
(
ϑ̃Ω̃ ,F

(h, ũ), ϑ̃Ω̃ ,G
(h, ṽ)

) ≤ d̃Ω̃
(
ũ, ṽ
)

+ ‖F−G‖sup h,

(4.) ẽΩ̃
(
ũ, ϑ̃Ω̃ ,F

(h, ũ)
) ≤ (

1+‖F‖sup
)

h

(5.)
∣∣ ϑ̃Ω̃ ,F

(h, ũ)
∣∣
Ω̃ ≤ |ũ|Ω̃ + (1+‖F‖sup) h. �

Corollary 103. For every F ∈C0
0(Ω̃S), the function ϑ̃Ω̃ ,F

: [0,1]× ẼΩ̃ −→ ẼΩ̃ is

a transition on
(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)
in the sense of Definition 2 (on page 145) with

α(ϑ̃Ω̃ ,F
; r) := 0

β (ϑ̃Ω̃ ,F
; r) := 1 + ‖F‖sup

γ (ϑ̃Ω̃ ,F
) := 1 + ‖F‖sup

D̂(ϑ̃Ω̃ ,F
, ϑ̃Ω̃ ,G

; r) := ‖F−G‖sup

and the property π1 ϑ̃Ω̃ ,F
(h, ũ) = π1 ũ + h for all ũ ∈ ẼΩ̃ , h ∈ [0,1]. �

Remark 104. The timed triangle inequality of distance function ẽΩ̃ and semigroup
property (2.) in Lemma 102 imply directly: The tuple

(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)
together

with the transitions in Definition 101 is Euler equi-continuous in the sense of Defi-
nition 16 (on page 156).

Existence of a timed solution to the mutational equation

Up to now, we are lacking suitable global a priori estimates (for Ω̃ and L) implying
that the C0 semigroup (S (τ))τ≥0 is immediately compact. This gap prevents us
from applying the existence results of § 3.7.3 (on page 217 ff.) and thus, we prefer
the conclusions of § 3.7.4 (on page 223 f.).
Kisielewicz characterized weakly compact sets in the space of Banach-valued con-
tinuous functions. His result can be interpreted as a “weak counterpart” of the
Arzelà–Ascoli Theorem (Proposition A.63 on page 391). In regard to real-valued
continuous functions, we conclude immediately that equi-continuity and a global
bound imply weak compactness. Theorem 90 (on page 224) guarantees timed solu-
tions to the corresponding mutational equation.

Proposition 105 (Kisielewicz [79, Theorem 4]).
Let S be a compact Hausdorff space and X a Banach space.

A subset W ⊂ C0(S,X) is weakly compact in
(
C0(S,X), ‖ · ‖sup

)
if it is bounded,

equi-continuous and if for every s ∈ S, the set { f (s) | s ∈ S} is relatively weakly

compact in X.
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Proposition 106 (Existence of timed solutions to the mutational equation).
In addition to the hypotheses of § 3.8.1 (on page 225 f.) and S < 0 < T̂ < T , assume

for Ω̃ ⊂ [S,T ]×RN to be a nonempty bounded open subset of [S,T ]×RN satisfying

(i) Ω̃ ∩ ({t}×RN) �= /0 for every t ∈ [S,T ],
(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

(S (τ))τ≥0 denotes the contractive C0 semigroup on C0
0(Ω̃S) related to differential

operator L as specified on page 231. Furthermore, let f̃ : ẼΩ̃ −→C0
0(Ω̃S) fulfill

(iii) the image of f̃ is bounded in
(
C0

0(Ω̃S), ‖ · ‖sup
)

and equi-continuous,

(iv) f̃ :
(
ẼΩ̃ , d̃Ω̃

) −→ (
C0

0(Ω̃S), ‖ · ‖sup
)

is continuous.

Then for every initial element ũ0 = (t0,u0) ∈ ẼΩ̃ , there exists a timed solution ũ :

[0, T̂ ]−→ ẼΩ̃ to the mutational equation
◦
ũ(·) � ϑ̃Ω̃ , f̃ (ũ(·)) in

(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃ , D̂

)
with ũ(0) = ũ0. Its second component is a mild solution to the corresponding semi-

linear evolution equation in
(
C0

0(Ω̃S), ‖ · ‖sup
)
. �

The step from mutational equations to parabolic differential equations

Strictly speaking, we are taking more information into consideration than we need
for the semilinear initial-boundary value problem⎧⎪⎪⎨⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ RN

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0))

Indeed, the wanted functions u(t, ·) ∈C0
0(Ω̃(t)), t ∈ [0,T ], have been replaced by

the states in ẼΩ̃
Def.= R × C0

0(Ω̃S) providing information about the whole domain Ω̃
in space-time (and not just about the spatial set Ω̃(t)⊂ RN at time t ∈ [0,T ]).
Now the suitable “section” in the cylinder [0,T ]× Ω̃ ⊂ R2+N is to lay the basis
for the step “back” to the original parabolic problems in the noncylindrical domain
Ω̃ ∩ ([0,T ]×RN).

For identifying such an appropriate section, we focus on the approximative con-
struction leading to the timed solution in preceding Proposition 106. Indeed, the
proof of Theorem 90 starts with equidistant Euler approximations and, according
to Lemma 89, Ülger’s Proposition A.65 (about weak compactness of Bochner-
integrable functions) guarantees a subsequence of them converging at each time.

Similarly to Lemma 82 preparing mild solutions to semilinear evolution equations
(on page 218), the variation of constants formula provides an integral character-
ization of all Euler approximations. The proof uses exactly the same (piecewise)
conclusions as for Lemma 82 (on page 220 f.) and thus, it is skipped here.
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Lemma 107 (Characterization of nonequidistant Euler approximations).
Assume for ũ0 = (t0,u0) ∈ ẼΩ̃ , M ≥ 0 and a continuous curve ũ : [0, T̂ ]−→ ẼΩ̃
(1.) ũ(0) = ũ0,

(2.) for any t ∈ [0, T̂ ], there exist s ∈ ]t−1, t] and F ∈C0
0(Ω̃S) with ‖F‖sup ≤M,

ũ(s+ ·) = ϑ̃Ω̃ ,F
( · , ũ(s)) in an open neighbourhood I ⊂ [0,1] of [0, t−s].

Then there exists a piecewise constant function G(·) ∈ L∞([0, T̂ ], C0
0(Ω̃S)) with (at

most) countably many points of discontinuities in [0, T̂ ], ‖G‖L∞ ≤M and

ũ(t) =
(
t0 + t, u(t)

) ∈ ẼΩ̃

u(t)(s,x) =
(

U
�

Ω̃
(s, s−t) u

�
0(s−t, ·) −

∫ s

s−t
U

�

Ω̃
(s,τ) G(τ− (s−t))� (τ, ·) dτ

)
(x)

for every t ∈ [0, T̂ ] and (s,x) ∈ Ω̃ .

If, in addition, assumption (2.) holds with a finite partition of [0, T̂ ], then G(·)
is piecewise constant with respect to the same finite partition of [0, T̂ ], i.e.,

G(·) has at most finitely many points of discontinuity in [0, T̂ ].
�

Lumer and Schnaubelt’s characterization of unique solutions to the linear problem
(in Theorem 93 on page 227) can be applied to finitely many time intervals succes-
sively. Thus, it provides a link between Euler approximations with finite partition of
[0, T̂ ] on the one hand and parabolic initial-boundary value problems on the other
hand (by focusing on s− t = const, in short).

Corollary 108 (Euler approximations solve parabolic initial value problems).
For any initial state ũ0 ∈ ẼΩ̃ and bounds α̂, β̂ , γ̂ > 0 let N = N

(
ũ0, T̂ ,(α̂, β̂ , γ̂)

)
denote the (possibly empty) subset of all curves ũ(·) : [0, T̂ ]−→ ẼΩ̃ constructed via

transitions in the piecewise way as specified in Remark 15 (2.) (on page 155).

Then for each curve ũ(·)∈N
(
ũ0, T̂ ,(α̂, β̂ , γ̂)

)
and time parameter t0 ∈ ]−∞, T̂ [,

the function

Ω̃ ∩ ([t0, t0 + T̂ ]×RN) −→ R, (t,x) �−→ ũ(t− t0)(t,x)

is a strong solution u(·, ·) to the linear parabolic initial-boundary value problem⎧⎪⎪⎨⎪⎪⎩
L u(t,x) = G(t− t0)�(t,x) for almost every (t,x) ∈ Ω̃ ∩ (]t0, t0 + T̂ ]×RN)

u(t0, ·) = u
�
0(t0, ·) in Ω̃(t0)⊂ RN

u = 0 on ∂Ω̃t0 \
({t0}× Ω̃(t0)

)
with a piecewise constant function G : [0, T̂ ] −→ C0

0(Ω̃S), ‖G‖
L∞([0,T̂ ],L∞) ≤ γ̂ .

�
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Finally, we have to check whether such a relationship also holds for the limit as
the step size of Euler approximations is tending to 0. The main analytical tool is the
following local a priori estimate. In fact, the initial assumption p > N + 2 comes
into play here (again).

Proposition 109 (Interior a priori estimate [86, § IV.10], [88, Theorem VII.7.22]).
In addition to the general assumptions of § 3.8.1 (on page 225 f.), let Ω̃ ′ be any

bounded subdomain of Ω̃ with Ω̃ ′ ⊂ Ω̃ .

Then there exists a constant CΩ̃ ′ such that every function v ∈W
1;2
p,loc(Ω̃S)∩Lp(Ω̃)

satisfies

‖∂t v‖
Lp(Ω̃ ′) + ‖∂x v‖

Lp(Ω̃ ′) + ‖∂ 2
x v‖

Lp(Ω̃ ′) ≤ CΩ̃ ′ ·
(‖v‖

Lp(Ω̃) + ‖Lv‖
Lp(Ω̃)

)
.

Proposition 110. Suppose the assumptions of Proposition 106 (on page 234)
for Ω̃ , L and f̃ : ẼΩ̃ −→C0

0(Ω̃S).

Then for every initial element ũ0 = (0,u0) ∈ ẼΩ̃ , there exist a continuous curve

ũ = (·,u) : [0, T̂ ] −→ (
ẼΩ̃ , d̃Ω̃

)
and a strong solution ǔ ∈ C0

(
Ω̃0
) ∩ W

1;2
p,loc(Ω̃0)

to the initial-boundary value problem of parabolic type⎧⎪⎪⎨⎪⎪⎩
L ǔ(t, ·) = f̃ (ũ(t))(t, ·) in Ω̃(t) for a.e. t ∈]0, T̂ [,

ǔ(0, ·) = u0(0, ·) in Ω̃(0)⊂ RN

ǔ = 0 on ∂Ω̃0 \ ({0}× Ω̃(0))

with ǔ(t,x) = u(t)(t,x) for all t ∈ [0, T̂ ], x ∈ RN with (t,x) ∈ Ω̃ .

Proof (of Proposition 110). Let ũn(·) = (·,un(·)) : [0, T̂ ]−→ ẼΩ̃ , n ∈ N, denote
the sequence of equidistant Euler approximations starting in ũ0 = (0,u0) ∈ ẼΩ̃ and

related with step size hn := T̂
2n (as e.g. in the proof of Existence Theorem 19).

Then for each index n, Corollary 108 always provides a piecewise constant function
Gn ∈ L∞([0, T̂ ], C0

0(Ω̃S)
)

whose values belong to the image of f̃ .

For choosing appropriate subsequences, we start in a way similar to Lemma 89.
As a consequence of Proposition 105 of Kisielewicz, the set of trivial extensions{

f̃ (ṽ)�
∣∣
Ω̃S

∣∣∣ ṽ ∈ ẼΩ̃

}
is weakly compact in

(
C0(Ω̃S), ‖ · ‖sup

)
. Now Ülger’s Proposition A.65 guarantees

a sequence nk ↗ ∞ such that
(
Gnk

)
k∈N

converges weakly in L1
(
[0, T̂ ], C0

0(Ω̃S)
)
.

Its limit is denoted by G(·) ∈ L1
(
[0, T̂ ], C0

0(Ω̃S)
)
.
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The variation of constants formula (equivalent to the representation in Lemma 107)
implies for each t ∈ [0, T̂ ] that

(
unk

(t)
)

k∈N
converges uniformly to

w(t) := S (t) u0 +
∫ t

0
S (t− s) G(s) ds ∈ C0

0(Ω̃S) .

Assumption (iv) about the continuity of f̃ and the approach via Euler approxima-
tions imply G(t) = f̃ (t,w(t)) ∈ C0

0(Ω̃S) at every time t ∈ [0, T̂ ].

In particular, [0, T̂ ] �−→ ẼΩ̃ , t �−→ (t,w(t)) is exactly the timed solution to the
corresponding mutational equation mentioned in Proposition 106.

Further results about convergence, however, can be concluded from Mazur’s
Lemma about strong approximations of weak limits (e.g. [143, Theorem V.1.2])
and the interior a priori estimate in Proposition 109.
According to well-known Lemma of Mazur, there exists a sequence (Hk)k∈N in
L1
(
[0, T̂ ], C0

0(Ω̃S)
)

converging strongly to G(·) and satisfying

Hk(·) ∈ co
{

Gnk
(·), Gnk+1(·) . . .

} ⊂ L1
(
[0, T̂ ], C0

0(Ω̃S)
)
.

An appropriate subsequence (again denoted by) (Hk)k∈N instead ensures in addition
that for Lebesgue-almost every t ∈ [0, T̂ ],∥∥Hk(t) − G(t)

∥∥
sup −→ 0 for k −→ ∞.

As a consequence, each function Hk(·), k ∈ N, is also piecewise constant,

vk : [0, T̂ ] −→ C0
0(Ω̃S), t �−→ S (t) u0 +

∫ t

0
S (t− s) Hnk

(s) ds

belongs to the convex hull of Euler approximations unk
(·), unk+1(·) . . . for each k∈N

and thus, at every time t ∈ [0, T̂ ],
∥∥vk(t) − w(t)

∥∥
sup −→ 0 for k −→ ∞.

For the same reasons as in Corollary 108, the function

v̌k : Ω̃ ∩ ([0, T̂ ]×RN) −→ R, (t,x) �−→ vk(t)(t,x) (k ∈ N),
is a strong solution to the linear parabolic initial-boundary value problem⎧⎪⎪⎨⎪⎪⎩

L v̌k (t,x) = Hk(t)(t,x) for almost every (t,x) ∈ Ω̃ ∩ ([0, T̂ ]×RN)

v̌k(0, ·) = u0(0, ·) in Ω̃(0)⊂ RN

v̌k = 0 on ∂Ω̃0 \
({0}× Ω̃(0)

)
.

For k −→ ∞, the sequence
(
v̌k(·, ·))k∈N converges pointwise to

w̌ : Ω̃ ∩ ([0, T̂ ]×RN) −→ R, (t,x) �−→ w(t)(t,x). .
Finally the interior a priori estimate in Proposition 109 and Lebesgue’s Theorem
of Dominated Convergence guarantee for any bounded subdomain Ω̃ ′ of Ω̃ with
Ω̃ ′ ⊂ Ω̃ ∩ ([0, T̂ ]×RN) that the following Cauchy property holds

sup
k,l≥K

(∥∥∂t (v̌k− v̌l)
∥∥

Lp(Ω̃ ′) +
∥∥∂x (v̌k− v̌l)

∥∥
Lp(Ω̃ ′) +

∥∥∂ 2
x (v̌k− v̌l)

∥∥
Lp(Ω̃ ′)

)
K→∞−→ 0.

Thus, w̌ ∈C0
(
Ω̃0
)∩W

1;2
p,loc(Ω̃0) and for almost every (t,x) ∈ Ω̃ ∩ ([0, T̂ ]×RN),

L w̌(t,x) = G(t)(t,x) = f̃ (t,w(t))(t,x). �
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Extending the functions prescribed by F from a subset of C0
0(Ω̃(t)) to C0

0(Ω̃S)

The last essential gap between Existence Theorem 100 (on page 230) and Proposi-
tion 110 is due to the type of prescribed data.

Existence Theorem 100 focuses on strong solutions u ∈ C0
(
Ω̃0
) ∩ W

1;2
p,loc(Ω̃0) to

the semilinear initial-boundary value problem of parabolic type⎧⎪⎪⎨⎪⎪⎩
L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ RN ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).

Here for every t ∈ [0, T̂ ] and v∈C0
0(Ω̃(t)), we have to specify the function F (t,v)∈

C0
0(Ω̃(t)) for the right-hand side of the partial differential equation. Strictly speak-

ing, it is again a functional relationship because it does not have to be based on
pointwise composition.

In contrast, Proposition 110 assumes a function f̃ : ẼΩ̃ −→ C0
0(Ω̃S) for the right-

hand side of the corresponding mutational equation. The comparison of the values
reveals that more information (namely on whole Ω̃ ⊂R×RN instead of Ω̃(t)⊂RN)
is required here.

The following lemma suggests an very easy way to bridge this gap by extending. The
price to pay for its analytical simplicity, however, consists in stronger assumptions
about the decay close to the topological boundary of Ω̃S. Indeed, by assumption,
there exist constants α ∈ ]0,1] and CF ∈ [0,∞[ such that

F (t,v) ≤ CF · dist
(
(t, ·), R1+N \ Ω̃S

)α

holds for all t ∈ [0, T̂ ] and v ∈C0
0(Ω̃(t)). This very restrictive condition can surely

be weakened whenever an extension operator preserves boundedness and equi-
continuity in an appropriate way. We complete the proof of Existence Theorem 100.

Lemma 111. Let d�Ω̃S
(·) denote the Euclidean distance from the complement

of Ω̃S
Def.= Ω̃ ∩ (]S,T ]×RN), i.e.

d�Ω̃S
(·) : R×RN −→ R, (t,x) �−→ inf

{|(s,y)− (t,x)| ∣∣ (s,y) ∈ R1+n \ Ω̃S

}
.

For each α ∈ ]0,1] and C ≥ 0, the operator
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃(t))

) −→ C0
0
(
Ω̃S

)
mapping any (t, v) ∈ {t}×C0

0(Ω̃(t)) to the continuous function

Ω̃S −→ R, (s,y) �−→ max
{

v(y), C · d�Ω̃S
(s,y)α}

is continuous with respect to the supremum norm.

Whenever the trivial extensions of some functions (to RN) are uniformly bounded

or equi-continuous, the set of their images shares the respective property. �
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3.8.4 The tusk condition for approximative Cauchy barriers

Effros and Kazdan investigated sufficient conditions for the continuity of solutions
to the heat equation at the boundary in [61] and, they formulated a counterpart of
the classical cone condition known for elliptic differential equations of second order.
Later Lieberman took up their boundary condition geometrically similar to a tusk
and extended it to more general parabolic differential equations in 1989 [89].
His essential contribution was to construct a function serving as local barrier from

earlier time and vanishing (merely) at the peak of the tusk.

In this subsection, we use Lieberman’s local barrier function for concluding
such a family of approximative Cauchy barriers (with respect to L) merely from
the uniform exterior tusk condition.
Now we specify the so-called tusk condition equivalently to subsequent Defini-
tion A.42 (on page 382) and then formulate the main result of this subsection:

Definition 112 (Exterior tusk condition [88, § 3], [89]).
A nonempty subset M ⊂ R×RN is called tusk in (t0,x0) ∈ R×RN if there exist
constants R,τ > 0 and a point x1 ∈ RN with

M =
{
(t,x) ∈ R×RN

∣∣ t0− τ < t < t0,
∣∣(x− x0) − √

t0− t · x1
∣∣ < R

√
t0− t

}
.

A nonempty subset Ω̃ ⊂ R×RN satisfies the so-called exterior tusk condition

if for every point (t,x)⊂ ∂Ω̃ belonging to the parabolic boundary of Ω̃ (i.e.{
(s,y) ∈ R×RN

∣∣ |x− y| ≤ ε, t− ε < s < t
} \ Ω̃ �= /0 for any ε > 0),

there exists a tusk M ⊂ R×RN in (t,x) with M∩ Ω̃ = {(t,x)}.

A nonempty subset Ω̃ ⊂ R×RN is said to fulfill the uniform exterior tusk condi-

tion if it satisfies the exterior tusk conditions and if the scalar geometric parameters
R,τ > 0 of the tusks can be chosen independently of the respective points (t,x) of
the parabolic boundary of Ω̃ .

Proposition 113. Let Ω̃ be a nonempty open subset of [S,T ]×RN satisfying

(i) Ω̃ is bounded,

(ii) Ω̃ ∩ ({t}×RN
) �= /0 for every t ∈ [S,T ],

(iii) Ω̃S
Def.= Ω̃ ∩ (]S,T ]×RN

)
fulfills the uniform exterior tusk condition.

Then Ω̃S possesses a family of approximative Cauchy barriers with respect to L

(in the sense of Definition 97 on page 229).
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The proof of this proposition is based on subsequent Lemma 114.
In fact, [89, Lemma 12.2] implies the following existence of a local barrier function
for a single boundary point — even under weaker assumptions about the coefficients
than the hypotheses in § 3.8.1:

Lemma 114 (Tusk condition provides local barrier from earlier time [89]).
Let Ω̃ ⊂ ]−∞, 0[×RN be a nonempty bounded open set such that the complement

of Ω̃ contains a tusk in its boundary point (0,0).
Then for every σ > 0 sufficiently small, there exist positive constants η ,γ1,γ2 and a

continuous function w : Ω̃ \{(0,0)} −→R which is continuously differentiable with

respect to time and twice continuously differentiable with respect to space such that

for every (t,x) ∈ Ω̃ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lw(t,x) ≤ −η ·max{|x|, |t| 1

2 }σ−2

η · max{|x|, |t| 1
2 }σ ≤ w(t,x) ≤ max{|x|, |t| 1

2 }σ

|Dw(t,x)| ≤ max{|x|, |t| 1
2 }σ−1

w(0,y) = γ1 ·
(
1− e−γ2 |y|σ ) if (0,y) ∈ Ω̃ \{(0,0)} .

The successive choice of admissible σ > 0 and then of η ,γ1,γ2 > 0 depends only

on the supremum norms of the coefficients of L, its constant of uniform ellipticity,

the diameter of Ω̃ and the geometric parameters R,τ > 0 of the tusk in (0,0).
�

In [89], Lieberman then applies this local barrier from earlier time to parabolic prob-
lems with locally Hölder continuous coefficients for proving the existence of classi-
cal solutions to the first initial-boundary value problem by means of Perron method.
Now we leave this track of Lieberman and, we focus on merely continuous coeffi-
cients and solutions in C0∩W

1;2
p,loc instead.

For each T ′ > 0 and any smooth cut-off function ψ ∈C∞
c (R, [0,1]), the problem{

Lw̃ = −1 in ]0,T ′]×RN

w̃(0,y) = γ1 ·
(
1− e−γ2 |y|σ ) · ψ(|y|2) for y ∈ RN

is known to have a solution w̃ ∈C0([0,T ′]×RN) ∩ W
1;2
p,loc(]0,T ′[×RN) vanishing

at infinity [103]. The parabolic maximum principle quoted in subsequent Proposi-
tion 116 and applied to the auxiliary function

(t,x) �−→ w̃(t,x) − ε1 t − ε2 |x|2 ψ(|x|2)
(with ε1,ε2 > 0 sufficiently small) provides a positive lower bound of w̃ locally.
In combination with the local barrier function from earlier time in Lemma 114,
we conclude:
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Corollary 115 (Tusk condition implies local barrier not just from earlier time).
Let Ω̃ ⊂ R×RN be a nonempty bounded open set such that the complement of Ω̃
contains a tusk in its boundary point (0,0).

Then there exist constants γ,δ ,η ,σ > 0 and a function w ∈ C0
(
Ω̃
) ∩ W

1;2
p,loc(Ω̃)

such that for Lebesgue-almost every (t,x) ∈ Ω̃ ,⎧⎪⎨⎪⎩
Lw(t,x) < 0

η · max{|x|, |t| 1
2 }σ ≤ w(t,x) ≤ max{|x|, |t| 1

2 }σ if t ≤ 0

γ · (|x|2 + t) ≤ w(t,x) if t > 0 .

The suitable choice of γ,δ ,η ,σ > 0 depends only on the supremum norms of the

continuous coefficients of L, its constant of uniform ellipticity, the diameter of Ω̃
and the geometric parameters R,τ > 0 of the tusk in (0,0).

For the sake of completeness, the following parabolic maximum principle on cylin-
drical domains has served as a tool:

Proposition 116 (Bony maximum principle for parabolic PDEs [55, Th.VII.28]).
Let O be a bounded domain in RN and Q :=]0,T ]×O. Suppose u ∈W

1;2
n+1, loc(Q),

L̂u :=
( N

∑
k,l =1

âkl(t, ·) ∂ 2

∂xk ∂xl
+

N

∑
k=1

b̂k(t, ·) ∂
∂xk

+ ĉ(t, ·) − ∂
∂ t

)
u

where âkl , b̂k, ĉ : Q −→ R are bounded measurable,
(
âkl

)
k,l =1 ...N

≥ 0 and ĉ ≤ 0.

If u attains a nonpositive minimum at (t0,x0) ∈ Q, then

lim ess inf(s,y)→(t0,x0) L̂u(s,y) ≥ 0 .
�

Proof (of Proposition 113). Due to the assumptions of Proposition 113, Ω̃S ful-
fills the uniform exterior tusk condition. Hence, there exist strictly increasing moduli
of continuity ω1(·),ω2(·) : ]0,∞[−→ ]0,∞[ (i.e. ω1(r)+ω2(r)−→ 0 for r ↓ 0) such
that for each boundary point x̃ = (t,x) ∈ ∂Ω̃ with t > S, Corollary 115 provides a

function wx̃ ∈C0
(
Ω̃
) ∩ W

1;2
p,loc(Ω̃) satisfying for Lebesgue-almost every (s,y) ∈ Ω̃ ,{

Lwx̃(s,y) < 0

ω1
(|y− x| + |s− t| 1

2
) ≤ wx̃(s,y) ≤ ω2

(|y− x| + |s− t| 1
2
)
.

In regard to a family of approximative Cauchy barriers with respect to L, choose
0 < ε1 ≤ ε2 and a compact subset K̃′ ⊂ [S,T ]×RN with K̃′ ⊂ Ω̃S arbitrarily.
The boundary of the bounded set Ω̃ is compact. As a consequence, firstly,

ρ := inf
{
|y− x|+ |s− t| 1

2

∣∣∣ (s,y) ∈ K̃′, (t,x) ∈ ∂Ω̃
}

> 0.
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Secondly we can select finitely many points x̃1 = (t1,x1) . . . x̃k = (tk,xk) ∈ ∂Ω̃ with

∂Ω̃ ⊂
k⋃

j=1

{
(s,y) ∈ R×RN

∣∣∣ ω2
(|y− x j|+ |s− t j| 1

2
) ≤ ε1

ω1(ρ)
ε2

}
=: N∂Ω̃ .

Then, w := ε2
ω1(ρ) · min

j=1 ...k
wx̃ j

: Ω̃ −→ [0,∞[ also belongs to C0
(
Ω̃
) ∩ W

1;2
p,loc(Ω̃)

and satisfies for Lebesgue-almost every (s,y) ∈ Ω̃ ,{
Lw(s,y) < 0

ε2
ω1(ρ) · ω1

(|y− x| + |s− t| 1
2
) ≤ w(s,y) ≤ ε2

ω1(ρ) · ω2
(|y− x| + |s− t| 1

2
)
.

In fact, w(s,y) ≥ ε2
ω1(ρ) · inf

j
ω1
(|y− x j| + |s− t j| 1

2
) ≥ ε2 for (s,y) ∈ K̃′

and w(s,y) ≤ ε2
ω1(ρ) · inf

j
ω2
(|y− x j| + |s− t j| 1

2
) ≤ ε1 for (s,y) ∈ Ω̃S∩N∂Ω̃ .

�

3.8.5 Successive coupling of nonlinear parabolic problem and
morphological equation

We restrict our consideration to a rather simple way of coupling an initial-boundary
value problem of parabolic type with a morphological equation.
If the morphological equation does not depend on the wanted solution to the
parabolic problem, we are free to solve it by means of § 1.9.6 first. This leads
to a time-dependent reachable set of a nonautonomous differential inclusion and,
then its graph provides a noncylindrical domain for the parabolic problem.

In regard to appropriate assumptions, however, we should prefer considera-
tions in the opposite direction. Indeed, Theorem 100 (on page 230) always guar-
antees a strong solution to the parabolic problem if the noncylindrical domain
Ω̃S ⊂ ]S,T ]×RN has an approximative Cauchy barrier with respect to L. Propo-
sition 113 (on page 239) provides a geometric condition sufficient for such an ap-
proximative Cauchy barrier, namely the uniform exterior tusk condition.

Finally we need an appropriate link between this tusk condition and reachable sets
of differential inclusions in RN because every solution to a morphological equation
is a reachable set of a nonautonomous differential inclusion (according to Proposi-
tion 1.70 on page 59).
In fact, Corollary A.44 (on page 383) provides conditions on the differential inclu-
sion sufficient for such a connection, but we obtain the exterior tusk condition for
the complements of graphs of reachable sets.
Moreover, their exterior tusks are guaranteed to be uniform only after the reachable
sets have evolved for an arbitrarily small period. For “imitating” such an evolution
in the past (i.e., before the initial time t0 = 0), we suppose the uniform exterior ball
condition on the open initial set Ω0 (whose complement starts deforming along a
differential inclusion at time t0 = 0).
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For the sake of transparency, we prefer summarizing this notion in terms of reach-
able sets of nonautonomous differential inclusions (rather than noncompact-valued
solutions to morphological equations). As in § 3.8.3, we suppose S < 0 < T̂ < T .

Proposition 117. Let Ω0 ⊂ RN be a nonempty bounded open subset satisfying

the uniform exterior ball condition at its boundary.

In regard to Corollary A.44 (on page 383), suppose for G̃ : [0,T ]×RN � RN

(a) every value of G̃ is nonempty, compact, convex and has positive erosion of

uniform radius ρ > 0 (see Definition A.22 on page 365),

(b) the Hamiltonian of G̃(t, ·) at each time t ∈ [0,T ]
H

G̃
(t, ·, ·) : RN ×RN −→ R, (x, p) �−→ sup

z∈ G̃(t,x) p · z
is twice continuously differentiable in RN × (RN \{0})

(c) there exists λ
G̃

> 0 such that for L 1-almost every t ∈ [0,T ],
‖H

G̃
(t, ·, ·)‖C1,1(RN× ∂B1) < λ

G̃

(iv) for every t ∈ [0,T ], the reachable set ϑ
G̃
(t, RN \Ω0) is not identical to RN.

Then the complement of the graph t �−→ ϑ
G̃
(t, RN \Ω0) induces the set

Ω̃ :=
(
[S,0]×Ω0

) ∪ ⋃
t∈ [0,T ]

({t}× (RN \ ϑ
G̃
(t, RN \Ω0))

) ⊂ [S,T ]×RN

fulfilling the uniform exterior tusk condition with respect to L and thus, Ω̃ satisfies

the assumptions (i), (ii’) of Existence Theorem 100 (on page 230).

In addition, let F :
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃(t))

) −→ C0
c (RN) satisfy the hypotheses

(iii) – (v) of Theorem 100.

Then, for every initial function u0 ∈ C0
0(Ω̃(0)), there exists a strong solution

u ∈C0
(
Ω̃0
) ∩ W

1;2
p,loc(Ω̃0) to the initial-boundary value problem of parabolic type⎧⎪⎪⎨⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈ ]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ RN ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).
�





Chapter 4
Introducing distribution-like solutions to
mutational equations

In this chapter, we focus on examples of evolving compact sets in the Euclidean
space and draw them on new useful aspects for generalizing the mutational frame-
work.

Now the normal cones of the compact sets are to have an explicit influence on
the geometric evolution. Reachable sets of differential inclusions still induce the
transitions on K (RN), but we leave the typical metric space of K (RN) supplied
with the Pompeiu-Hausdorff metric dl (as in the preceding sections 1.9, 1.10, 2.7).
Additionally we take the graphs of limiting normal cones into consideration.

This type of problems reveals two obstacles which motivate the main aspects
of generalizing in comparison with Chapter 3. Analytically speaking, these exten-
sions have a weakening effect on how “uniform” the continuity parameters α j(ϑ ;r),
β j(ϑ ;r) of transitions have to be.

For the regularity in time : Distance functions do not have to be symmetric

Let us consider first the consequences of the boundary for the continuity of ϑF :
[0,1]×K (RN)−→K (RN) with respect to time.
The key aspect is illustrated easily by an annulus
K� expanding isotropically at a constant speed.
After a positive finite time t3, the “hole” in the
center has disappeared of course.

In general, the topological boundary of a time-dependent reachable set ϑF(·,K) :
[0,∞[� RN (with K ∈K (RN)) is not continuous with respect to dl. Furthermore,
the normals of later sets find close counterparts among the normals of earlier sets,
but usually not vice versa.

For this reason, we dispense with the symmetry condition (H2) on distance func-
tions. Whenever we consider distances in this chapter, their first arguments refer to
the earlier state and their second arguments to the later state. For the sake of trans-
parency, all general results about mutational equations are formulated for tuples
with separate real time component.

245
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For the regularity with respect to initial states : the distributional notion

Applying now the typical steps of mutational analysis, we encounter analytical ob-
stacles soon. In particular, [0,1] −→ [0,∞[, t �−→ d j

(
ϑ(t,x1), ϑ(t,x2)

)
does not

have to be continuous for arbitrary initial elements x1,x2.

Consider e.g. reachable sets ϑF(t,K1), ϑF(t,K2)
of a differential inclusion x′(·) ∈ F(x(·)) with
initial sets K1,K2 ∈ K (RN) and a given map
F ∈ LIP(RN ,RN). The figure on the right-hand
side sketches a situation in which the distance
between topological boundaries

[0,1] −→ R+
0 ,

t �−→ dist(∂ϑF(t,K2), ∂ϑF(t,K1))
cannot be continuous.

Even if we do not take normal cones into account explicitly, it is difficult to find a
(possibly nonsymmetric) distance function on K (RN) depending on the boundary,
but without such a lack of continuity.

As a first important consequence, we require a form of Gronwall’s inequality
which starts from weaker assumptions than its continuous counterpart in standard
textbooks like [9, 73, 140]. The essential advantage of Proposition A.2 (on page 352)
is that only lower semicontinuity of the real-valued function is supposed.
For estimating the distance d j between transitions and (e j) j∈I -continuous curves,
we will use an additional semicontinuity condition on transitions rather than a gen-
eral hypothesis about distances.

Nevertheless, we have to exclude such a discontinuity of evolving boundaries
– for short times at least. In the first subsequent geometric example (in § 4.4 on
page 273 ff.), additional assumptions about K1 are needed. Suitable conditions on
F ∈ LIP(RN ,RN) can guarantee that compact sets with C1,1 boundary preserve this
regularity for short times (see Appendix A.5.3 on page 367 ff.) and, their topologi-
cal properties do not change.

Assuming restrictive conditions on one of the sets K1,K2 ∈ K (RN) prevents us
from applying the recent mutational framework, though. Thus we want to introduce
a form of distributional solution in the mutational framework.

For a set with families of distance functions, however, there are no obvious gen-
eralizations of linear forms or partial integration and hence, distributions in their
widespread sense cannot be introduced. This gap makes a more general interpreta-
tion of distributional solutions indispensable. In fact, their basic idea is to select an

important property and preserve it (only) for all elements of a given fixed “test set”

– instead of the whole “basic set”.

Usually this important feature is the rule of partial integration and, it is preserved
for smooth test functions with compact support (or Schwartz functions).
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In the mutational framework, one of the most important properties so far has been
the estimate comparing two states while evolving two transitions, i.e., according to
Proposition 3.7 (on page 147)

d j

(
ϑ(t1+h,x), τ(t2+h,y)

) ≤ (d j

(
ϑ(t1,x), τ(t2,y)

)
+h · D̂ j(ϑ ,τ ;R j)

)
eα j(τ;R j)h

with the constant R j :=
(
r +max{γ j(ϑ), γ j(τ)}) · emax{γ j(ϑ), γ j(τ)} < ∞.

As explained in the beginning of § 3.3, it has even laid the foundations for adapting
the definition of solution to a mutational equation in Definition 3.8 (on page 149)
— in form of the condition

2.′) there exists α j(x; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d j(ϑ(s+h, z), x(t+h)) − d j(ϑ(s,z), x(t)) · eα j(x;R j) h

h
≤ D̂ j

(
ϑ , f (x(t), t); R j

)
is fulfilled for any ϑ ∈ Θ̂

(
E,(d j),(e j),(�·� j)

)
, s ∈ [0,1[, z ∈ E satisfying

�ϑ(·,z)� j,�x(·)� j ≤ R j,

These key estimates should be preserved while comparing with all elements z of
a given fixed “test set” D �= /0 (instead of all z ∈ E as in Chapter 3). It is plausible
to demand that such an element z ∈D stays in the test set D for a short time while
evolving along a transition so that the comparison is feasible for this short period
(at least). This notion leads to a form of distributional solution in the mutational
framework and, it still dispenses with any linear structure.

In addition, it opens the door to making the continuity parameter α j and the transi-
tional distance D̂ j “less uniform” — in the sense that they are free to depend on the
respective test element of D . In other words, candidates for transitions can now be
“less regular” than in Chapter 3.

Motivated by the finite element methods of Petrov–Galerkin in numerics (e.g. [18]),
we do not assume that the fixed test set D has to be a subset of the basic set E.
This additional aspect of freedom will be very useful in the second subsequent geo-
metric example in § 4.5 (on page 285 ff.).
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4.1 General assumptions of this chapter

D and E are always nonempty sets and, D̃ := R×D , Ẽ := R×E. (D ⊂ E is not
required in general.) Moreover, I �= /0 denotes an index set. For each index j ∈I ,

d̃ j, ẽ j : (D̃ ∪ Ẽ)× (D̃ ∪ Ẽ) −→ [0,∞[,

�·� j : D̃ ∪ Ẽ −→ [0,∞[

are supposed to satisfy the following conditions:

(H1) d̃ j and ẽ j are reflexive, i.e. for all x̃ ∈ D̃ ∪ Ẽ: d̃ j(x̃, x̃) = 0 = ẽ j(x̃, x̃).

(H3’) (d̃ j) j∈I and (ẽ j) j∈I induce the same concept of convergence in E and are
(semi-) continuous in the following sense:

(õl)
(∀ j ∈I : lim

n→∞
d̃ j(x̃, x̃n) = 0

)
⇐⇒ (∀ j ∈I : lim

n→∞
ẽ j(x̃, x̃n) = 0

)
for any x̃ ∈ D̃ ∪ Ẽ and (x̃n)n∈N in D̃ ∪ Ẽ with π1 x̃ ≤ π1 x̃n for all n

and sup
n∈N

�x̃n�i < ∞ for each i ∈I .

(õr)
(∀ j ∈I : lim

n→∞
d̃ j(x̃n, x̃) = 0

)
⇐⇒ (∀ j ∈I : lim

n→∞
ẽ j(x̃n, x̃) = 0

)
for any x̃ ∈ D̃ ∪ Ẽ and (x̃n)n∈N in D̃ ∪ Ẽ with π1 x̃n ≤ π1 x̃ for all n

and sup
n∈N

�x̃n�i < ∞ for each i ∈I .

(̃i’) d̃ j(x̃, ỹ) ≤ limsup
n→∞

d̃ j(x̃n, ỹn),

ẽ j(x̃, ỹ) ≤ limsup
n→∞

ẽ j(x̃n, ỹn)

for any x̃, ỹ∈ D̃∪Ẽ and (x̃n)n∈N, (ỹn)n∈N in D̃∪Ẽ s.t. for each i ∈I

lim
n→∞

d̃i(x̃, x̃n) = 0 = lim
n→∞

d̃i(ỹn, ỹ), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞

and for all n ∈ N : π1 x̃ ≤ π1 x̃n ≤ π1 ỹn ≤ π1 ỹ .

(̃i”) d̃ j(z̃, ỹ) ≥ limsup
n→∞

d̃ j(z̃, ỹn),

for any z̃ ∈ D̃ , ỹ ∈ Ẽ and (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(ỹ, ỹn) = 0, sup
n∈N

�ỹn�i < ∞

and for all n ∈ N : π1 z̃ ≤ π1 ỹ ≤ π1 ỹn .

(ĩil) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for any x̃ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, ỹn) = 0 = lim
n→∞

ẽi(ỹn, x̃n), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞ ,

π1 x̃ ≤ π1 ỹn ≤ π1 x̃n for all n ∈ N.



4.1 General assumptions of this chapter 249

(ĩiil) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 x̃ ≤ π1 z̃k,n = π1 ỹk ≤ π1 x̃n for each k,n ∈ N,

lim
k→∞

d̃i(x̃, ỹk) = 0 for each i ∈I ,

lim
n→∞

d̃i(ỹk, z̃k,n) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ẽi(z̃k,n, x̃n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .

(ĩiir) 0 = lim
n→∞

d̃ j(x̃n, x̃)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 x̃n ≤ π1 z̃k,n = π1 ỹk ≤ π1 x̃ for each k,n ∈ N,

lim
k→∞

d̃i(ỹk, x̃) = 0 for each i ∈I ,

lim
n→∞

d̃i(z̃k,n, ỹk) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ẽi(x̃n, z̃k,n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .

(H4) �·� j is lower semicontinuous with respect to (d̃i)i∈I , i.e.,
�x̃� j ≤ liminf

n−→∞
�x̃n� j

for any element x̃ ∈ Ẽ and sequence (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,

lim
n→∞

d̃i(x̃n, x̃) = 0, π1 x̃n ↗ π1 x̃ for n→ ∞ and sup
n∈N

�x̃n�i < ∞ .

Now we adapt the definition of transition and admit different properties of the time
component for elements of basic set Ẽ and the test set D̃ :
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Definition 1. A function ϑ̃ : [0,1]×(D̃ ∪ Ẽ)−→ (D̃ ∪ Ẽ) is called timed transition

on the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
if it satisfies for each j ∈I :

1.) for every x̃ ∈ Ẽ : ϑ̃(0, x̃) = x̃

3.′) for every z̃ ∈ D̃ , there are T j = T j(ϑ̃ , z̃) ∈ ]0,1], α j(ϑ̃ ; z̃, ·) : [0,∞[−→ [0,∞[
such that for any ỹ ∈ Ẽ, t ∈ [0,T j[ with �ỹ� j ≤ r and t + π1 z̃ ≤ ỹ :

limsup
h↓0

d j(ϑ̃(t+h, z̃), ϑ̃(h,y))− d j(ϑ̃(t, z̃), ỹ)
h

≤ α j(ϑ̃ ; z̃, r) · d j

(
ϑ̃(t, z̃), ỹ

)
4.′) there exists β j(ϑ̃ ; ·) : [0,∞[−→ [0,∞[ such that for any r ≥ 0, s, t ∈ [0,1] and

x̃ ∈ Ẽ with �x̃� j ≤ r : e j

(
ϑ̃(s, x̃), ϑ̃(t, x̃)) ≤ β j(ϑ̃ ;r) · |t− s|

5.) there exists γ j(ϑ̃) ∈ [0,∞[ such that for any t ∈ [0,1] and x̃ ∈ Ẽ :

�ϑ̃(t, x̃)� j ≤ (�x̃� j + γ j(ϑ̃) t
) · eγ j(ϑ̃) t ,

limsup
h↓0

sup
z̃∈D̃

(�ϑ̃(h, z̃)� j − �z̃� j eγ j(ϑ̃)h
) ≤ 0,

6.) for every z̃ ∈ D̃ : ϑ̃(h, z̃) ∈ D̃ for all h ∈ [0, T j(ϑ̃ , z̃)[, sup
[0,T j [

⌊
ϑ̃(·, z̃)⌋ j < ∞

7.) for every ỹ ∈ Ẽ : ϑ̃(h, ỹ) ∈ {h+π1 ỹ
}×E ⊂ Ẽ for all h ∈ [0,1],

for every z̃ ∈ D̃ : π1 ϑ̃(h′, z̃) ≤ π1 ϑ̃(h, z̃) ≤ h + π1 z̃ for all h′ ≤ h≤ 1

8.) for every z̃ ∈ D̃ , t < T j(ϑ̃ , z̃) : d̃ j

(
ϑ̃(t, z̃), ỹ

) ≤ limsup
n→∞

d̃ j

(
ϑ̃(t−hn, z̃), ỹn)

for any (hn)n∈N, (ỹn)n∈N in R+
0 , Ẽ and ỹ ∈ Ẽ with hn −→ 0, ei(ỹn, ỹ)−→ 0

for each i ∈I and π1 ϑ̃(t−hn, z̃) ≤ π1 ỹn ↗ π1 ỹ.

Remark 2. (i) Four additional assumptions lead to almost the same environ-
ment as in Chapter 3 (see § 3.4 on page 175 ff. in particular):

(i) D̃ = Ẽ,
(ii) T j(·, ·)≡ 1,

(iii) each function d̃ j, ẽ j ( j ∈I ) is symmetric,
(iv) continuity parameter α j(ϑ̃ ; z̃,r)≥ 0 does not depend on z̃ ∈ D̃ .

Indeed, the only relevant difference is that condition (3.’) here is restricted to
comparisons with merely earlier test elements. This is indicated by the constraint
t + π1 z̃ ≤ ỹ and, it is consistent with our general intention to sort the arguments of
distances by time.
There is no corresponding condition on time components in Definition 3.32 of timed
solutions (on page 176), for example. Hence, all variants of the mutational frame-
work presented in preceding chapters prove to be a special case.

(ii) Hypothesis (H3’) is to make the timed triangle inequality (p. 232) dispensable.
Condition (8.), however, does not result directly from the timed triangle inequality.
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Θ̂
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
denotes a nonempty set of timed transitions

on
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
and, for each j ∈I , the function

D̂ j : Θ̂
(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)2 × D̃ × [0,∞[ −→ [0,∞[

is assumed to satisfy the following conditions:

(H5’) for each z̃∈ D̃ ,r≥ 0, D̂ j( · , · ; z̃, r) is reflexive (but possibly nonsymmetric)

(H6’) for each z̃ ∈ D̃ and any r ≥ 0,

D̂ j(·, · ; z̃, r) : Θ̂
(
Ẽ,(d̃ j),(ẽ j),(�·� j)

)×Θ̂
(
Ẽ,(d̃ j),(ẽ j),(�·� j)

) −→ [0,∞[
is continuous with respect to (D̂i)i∈I in the following sense:

(i) D̂ j(ϑ̃ , τ̃; z̃, r) = lim
n−→∞

D̂ j(ϑ̃n, τ̃n; z̃, r)

for any transitions ϑ̃ , τ̃ and sequences (ϑ̃n)n∈N, (τ̃n)n∈N satisfying
for every i ∈I , z̃′ ∈ D̃ and R≥ 0

lim
n→∞

D̂i(ϑ̃ , ϑ̃n; z̃′, R) = 0 = lim
n→∞

D̂i(τ̃n, τ̃; z̃′, R) .

(ii) lim
n−→∞

D̂ j(ϑ̃ , τ̃n; z̃, r) = 0

for any transition ϑ̃ and sequences (ϑ̃n)n∈N, (τ̃n)n∈N satisfying for
every i ∈I , z̃′ ∈ D̃ and R≥ 0

lim
n→∞

D̂i(ϑ̃ , ϑ̃n; z̃′, R) = 0 = lim
n→∞

D̂i(ϑ̃n, τ̃n; z̃′, R) .

(H7’) limsup
h↓0

d̃ j

(
ϑ̃(t1+h,z̃), τ̃(t2+h,ỹ)

)
− d̃ j(ϑ̃(t1,z̃), τ̃(t2,ỹ)) ·eα j(τ̃; z̃,R j)·h

h
≤ D̂ j(ϑ̃ , τ̃; z̃, R j)

for any ϑ̃ , τ̃ ∈ Θ̂
(
Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

)
, z̃ ∈ D̃ , ỹ ∈ Ẽ, t1, t2 ∈ [0,1[,

r ≥ 0, j ∈I with t1 < T j(ϑ̃ , z̃), t1 + π1 z̃ ≤ t2 + π1 ỹ, �ỹ� j ≤ r and
R j :=

(
r + γ j(τ̃)

) · eγ j(τ̃).

Remark 3. In this chapter, all general results about mutational equations are
formulated for elements in Ẽ and D̃ respectively, i.e. for states with a separate real
time component.
If this time component is not relevant to distances or transitions, however, we are
free to skip it. Indeed, the step from transitions on (E,D) to (Ẽ,D̃) by means of

ϑ̃
(
h, (t,x)

)
=
(
t +h, ϑ(h,x)

)
has already been indicated in § 3.4 (on page 175 ff.). For the sake of consistency,
we then skip the adjective “timed” as well. In particular, we will benefit from this
simplification in the geometric example of § 4.4 (on page 273 ff.), but not in the
second example in § 4.5 (on page 285 ff.).



252 4 Introducing distribution-like solutions to mutational equations

4.2 Comparing with “test elements” of D̃ along timed transitions

Following the typical “mutational track” similarly to § 3.2 (on page 147 f.), we
first mention briefly that the “absolute value” of states in Ẽ evolving along finitely
many transitions is bounded in exactly the same way because the generalizations do
not have any effect on the simple arguments having proved Lemma 2.4 (on page 71).

Lemma 4. Let ϑ̃1 . . . ϑ̃K be finitely many timed transitions on
(
Ẽ, D̃ , (d̃ j) j∈I ,

(ẽ j) j∈I , (�·� j) j∈I

)
with γ̂ j := sup

k∈{1 ...K}
γ j(ϑ̃k) < ∞ for some j ∈I .

For any x̃0 ∈ Ẽ and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve

x̃(·) : [0, tK ]−→ Ẽ piecewise as x̃(0) := x̃0 and

x̃(t) := ϑ̃k

(
t− tk−1, x̃(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . . K}.

Then, �x̃(t)� j ≤
(�x̃0� j + γ̂ j · t

) · eγ̂ j · t at every time t ∈ [0, tK ]. �

Due to the possible lack of symmetry of d̃ j ( j ∈I ), we now conclude from con-
dition (8.) on timed transitions (in Definition 1) – instead of the global hypothesis
(H3’) about continuity of distance functions:

Lemma 5. Let x̃(·) : [0,T ]−→ Ẽ be any curve satisfying π1 x̃(t) = t +π1 x(0),
lim
h↓0

ẽ j(x̃(t−h), x̃(t)) = 0 for every t ∈ ]0,T ], j ∈I .

Choose any timed transition ϑ̃ on
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
, element

z̃ ∈ D̃ and points of time t1 ∈ [0,T j(ϑ̃ , z̃)[, t2 ∈ [0,T [ with t1 +π1 z̃ ≤ π1 x̃(t2).

Then each distance function[
0, min{T j(ϑ̃ , z̃)− t1, T − t2}

[ −→ [0,∞[,

s �−→ d̃ j

(
ϑ̃(t1 + s, z̃), x̃(t2 + s)

)
( j ∈I ) fulfills the following condition of lower semicontinuity at every time s

d̃ j

(
ϑ̃(t1 + s, z̃), x̃(t2 + s)

) ≤ liminf
h↓0

d̃ j

(
ϑ̃(t1 + s−h, z̃), x̃(t2 + s−h)

)
. �

Proposition 6. Let ϑ̃ , τ̃ ∈ Θ̂
(
Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, r ≥ 0, j ∈I

and t1, t2 ∈ [0,1[ be arbitrary. For any elements ỹ ∈ Ẽ and z̃ ∈ D̃ suppose �ỹ� j ≤ r,

t1 ≤ T j(ϑ̃ , z̃) and t1 +π1 z̃ ≤ t2 +π1 ỹ. Set R j :=
(
r + γ j(τ)

) · eγ j(τ) < ∞.

Then at each time h≥ 0 with t1 +h≤ T j(ϑ̃ , z̃) and t2 +h≤ 1,

d̃ j

(
ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ)

) ≤ (d̃ j

(
ϑ̃(t1, z̃), τ̃(t2, ỹ)

)
+h · D̂ j(ϑ̃ , τ̃; z̃,R j)

)
eα j(τ̃; z̃,R j)h.
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Proof. It is based on essentially the same arguments as corresponding Proposi-
tion 3.7, but now the rather weak regularity assumptions of Gronwall’s inequality in
Proposition A.2 (on page 352) are exploited to their (almost) full extent.
Consider the auxiliary function

φ j :
[
0, min{T j(ϑ̃ , z̃)− t1, 1− t2}

] −→ R, h �−→ d̃ j

(
ϑ̃(t1 +h, x̃), τ̃(t2 +h, ỹ)

)
.

Indeed, φ j satisfies φ j(t) ≤ limsuph↓0 φ j(t−h) according to preceding Lemma 5.
Furthermore condition (5.) of Definition 1 ensures �τ̃(h, ỹ)� j ≤ R j for each h∈ [0,1]
and due to condition (7.) on timed transitions,

π1 ϑ̃(t1 +h, z̃) ≤ t1 +h+π1 z̃ ≤ t2 +h+π1 ỹ = π1 τ̃(t2 +h, ỹ).

Hypothesis (H7’) about D̂ j(·, ·; R j) (on page 251) implies for every t in the interior
of the domain of φ j

φ j(t +h) − φ j(t) =

= d̃ j

(
ϑ̃(t1+t+h, z̃), τ̃(t2+t+h, ỹ)

) − d̃ j

(
ϑ̃(t1+t, z̃), τ̃(t2+t, ỹ)

)
≤ d̃ j

(
ϑ̃(t1+t+h, z̃), τ̃(t2+t+h, ỹ)

) − d̃ j

(
ϑ̃(t1+t, z̃), τ̃(t2+t, ỹ)

)
eα j(τ̃;z̃,R j)h

+ d̃ j

(
ϑ̃(t1+t, z̃)), τ̃(t2+t, ỹ))

) · eα j(τ̃;z̃,R j)h− d̃ j

(
ϑ̃(t1+t, z̃), τ̃(t2+t, ỹ)

)
and thus, limsup

h↓0

φ j(t+h) − φ j(t)
h

≤ D̂ j(ϑ̃ , τ̃; z̃, R j) + α j(τ̃; z̃,R j) · φ j(t) < ∞ .

Finally, the claimed inequality results directly from Gronwall’s inequality (in form
of Proposition A.2). �

4.3 Timed solutions to mutational equations

In comparison with Definition 3.32 of timed solutions (on page 176) in the muta-
tional framework of Chapter 3, the essential differences are based on two aspects:
First, the arguments of distances are sorted by time and second, only “test elements”
of D̃ evolving along transitions are admissible for comparing distances.
This leads to the following definition:

Definition 7. Let f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

A curve x̃(·) : [0,T ]−→ Ẽ is called a timed solution to the mutational equation
◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
if it satisfies for each j ∈I :
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1.′) x̃(·) is continuous with respect to ẽ j in the sense that there exists a modulus
of continuity ω j(x̃; ·) : [0,∞[−→ [0,∞[ with lim

ρ ↓0
ω j(x̃;ρ) = 0 and

ẽ j

(
x̃(s), x̃(t)

) ≤ ω j(x̃, t− s) for every 0≤ s≤ t ≤ T ,

2.′′) for each element z̃ ∈ D̃ , there exists α j(x̃; z̃, ·) : [0,∞[−→ [0,∞[ such that
for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃(s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃(s,z̃), x̃(t)) · eα j(x̃;z̃,R j) h

h
≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)
for any ϑ̃ ∈ Θ̂

(
Ẽ,D̃ ,(d̃ j),(ẽ j),(�·� j)

)
, s ∈ [0, T j(ϑ̃ , z̃)

[
with �x̃(·)� j < R j

and s+π1 z̃ ≤ π1 x̃(t),

3.) sup
t∈ [0,T ]

�x̃(t)� j < ∞ ,

4.) for every t ∈ [0,T ], π1 x̃(t) = π1 x̃(0) + t.

In combination with Lemma 5, the same arguments at L 1-almost every time as for
Proposition 6 (on page 253) lead to the following estimate:

Lemma 8 (comparing timed solution and curve in D̃ along transition).
Let x̃(·) : [0,T ]−→ Ẽ be a timed solution to the mutational equation

◦
x̃(·) � f̃

(
x̃(·), · )

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Suppose ϑ̃ ∈ Θ̂
(
Ẽ, D̃ , (d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i

)
, j ∈I , z̃∈ D̃ , s∈ [0, T j(ϑ̃ , z̃)

[
,

t∈ [0,T [ to be arbitrary with s+π1 z̃ ≤ π1 x̃(t) and set R j := 1+sup �x̃(·)� j < ∞
as an abbreviation.

Then,

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) ≤
≤
(

d̃ j

(
ϑ̃(s, z̃), x̃(t)

)
+ h · sup

[t, t+h]
D̂ j

(
ϑ̃ , f̃ (x̃(·), ·); z̃, R j

)) · eα j(x̃; z̃,R j) h

for every h ∈ [0, 1] with s+h≤ T j(ϑ̃ , z̃) and t +h≤ T . �
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4.3.1 Continuity with respect to initial states and right-hand side

In § 3.3.1 (on page 151 f.), we suggested the auxiliary distance function

[0,T ] −→ [0,∞[, t �−→ inf
z∈E: �z� j <R j

(
d j

(
z,x(t)

)
+ d j

(
z,y(t)

))
for comparing two solutions x(·), y(·) : [0,T ] −→ E to mutational equations.
For taking the separate time component into consideration, this proposal was modi-
fied in Proposition 3.37 (on page 178):

[0,T ] −→ [0,∞[, t �−→ inf
{

d̃ j

(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ Ẽ : �z̃� j < R j

}
Now we have to obey in addition that arguments of distances are sorted by time and
that timed solutions are characterized by comparing with evolving test elements of
D̃ shortly. Thus, it is plausible to consider the auxiliary distance function

t �−→ inf
{

d̃ j

(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ D̃ : �z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}}.
This infimum at time t ∈ [0,T [ is approximated by a minimal sequence (z̃n)n∈N in
D̃ whose elements evolve along the transition f̃

(
x̃(t), t

)
characterizing x̃(t + ·).

An additional assumption about its time parameters
T j

(
f̃
(
x̃(t), t

)
, z̃n

)
, n ∈ N, however, is required so that

we can compare the evolutions for a sufficiently long
time. Indeed, without such a lower bound providing
a form of uniformity, the typical approach to a global
estimate by means of Gronwall’s inequality might fail
because two limit processes are exchanged.
The detailed analysis leads to the following versions:

Proposition 9.
Assume for f̃ , g̃ : Ẽ× [0,T ]−→ Θ̂

(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
and x̃, ỹ : [0,T ]−→ Ẽ

that x̃(·) is a timed solution to the mutational equation
◦
x̃(·) � f̃ (x̃(·), ·) and

ỹ(·) is a timed solution to the mutational equation
◦
ỹ(·) � g̃(ỹ(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

For some j ∈I , let α̂ j, γ̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for every t ∈ [0,T ]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x̃(t)� j, �ỹ(t)� j < R j

sup
z̃∈D̃ : �z̃� j <R j

{
α j (x̃; z̃, R j) , α j (ỹ; z̃, R j)

} ≤ α̂ j

γ j

(
f̃ (x̃(t), t)

) ≤ γ̂ j

limsup
h↓0

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(t+h), t+h); z̃, R j

)
≤ ϕ j(t)

limsup
h−→0

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
f̃ (x̃(t), t), f̃ (x̃(t+h), t+h); z̃, R j

)
= 0
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For some ϑ̃ ∈ Θ̂
(
Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

)
assume inf

z̃∈D̃ : �z̃� j <R j

T j(ϑ̃ , z̃) > 0.

Considering the distance function

δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j

(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃∈D̃ : �z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}},
suppose at L 1-almost every time t ∈ [0,T ] that the infimum of δ j(t) can be approx-

imated by a minimal sequence (z̃n)n∈N in D̃ satisfying

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{

π1 x̃(t), π1 ỹ(t)
}

for every n ∈ N,

inf
n∈N

T j( f̃ (x̃(t), t), z̃n) > 0 .

Then, δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · sds

)
eα̂ j · t for every t ∈ [0,T ].

Proposition 10.
Let f̃ , g̃ : Ẽ × [0,T ] −→ Θ̂

(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
, x̃, ỹ : [0,T ] −→ Ẽ, j ∈I ,

α̂ j, γ̂ j,R j > 0 and ϕ j ∈C0([0,T ]) fulfill the same assumptions as in Proposition 9.

Considering the same distance function

δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j

(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃∈D̃ : �z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}},
suppose at every time t ∈ [0,T ] that the infimum of δ j(t) can be approximated by a

minimal sequence (z̃n)n∈N in D̃ satisfying

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{

π1 x̃(t), π1 ỹ(t)
}

for every n ∈ N,

d̃ j(z̃n, x̃(t)) + d̃ j(z̃n, ỹ(t)) − δ j(t)

T j( f̃ (x̃(t), t), z̃n)
−→ 0 for n−→ ∞ .

Furthermore assume the local equi-continuity of the distance family

d̃ j(z̃, ·) : ]π1 z̃, ∞[ × E −→ R (z̃ ∈ D̃ , �z̃� j < R j)

in the following sense: Every sequence (ξ̃n)n∈N in Ẽ and element ξ̃ ∈ Ẽ with

lim
n→∞

ẽi(ξ̃n, ξ̃ ) = 0 for each i ∈I and π1 ξ̃n ≤ π1 ξ̃n+1 ↗ π1 ξ̃ for n −→ ∞
have the asymptotic property

lim
n→∞

sup
{

d̃ j(z̃, ξ̃ ) − d̃ j(z̃, ξ̃n)
∣∣∣ z̃ ∈ D̃ : π1 z̃ < π1 ξ̃n, �z̃� j < R j

}
= 0.

Then, δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · sds

)
eα̂ j · t for every t ∈ [0,T ].
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Remark 11. On the basis of Remark 2 (i) (on page 250), Proposition 9 implies the
estimate of Proposition 3.11 (on page 151) as a special case.

Advantageously, Proposition 10 dispenses with supposing a positive bound of the
time parameters like T j( f̃ (x̃(t), t), z̃n), but it makes assumptions about the relative
asymptotic features of T j( f̃ (x̃(t), t), z̃n) and d̃ j(z̃n, x̃(t)) + d̃ j(z̃n, ỹ(t)) − δ j(t)
for n−→ ∞.
This conclusion, however, results from another semicontinuous version of Gron-
wall’s inequality specified in Proposition A.4 (on page 354) and thus, it requires fur-
ther assumptions about the equi-continuity of d̃ j(z̃, ·) : Ẽ −→R (z̃ ∈ D̃ , �z̃� j < R j).
Note that the timed triangle inequality of d̃ j(·, ·), i.e.

d̃ j(ũ, w̃) ≤ d̃ j(ũ, ṽ) + d̃ j(ṽ, w̃)

whenever ũ, ṽ, w̃ ∈ Ẽ satisfy π1 ũ ≤ π1 ṽ ≤ π1 w̃, is always sufficient for this
supplementary hypothesis.

Proof (of Proposition 9). It is based on the same notion as Proposition 3.11.
Choosing a timed transition ϑ̃ with τϑ̃ := inf

z̃∈D̃ :�z̃� j<R j
T j(ϑ̃ , z̃) > 0, Lemma 8 (on

page 254) provides a constant C = C(t, j, f̃ , z̃) < ∞ for each t ∈ ]0,T [ and z̃ ∈ D̃
with �z̃�i < Ri such that for every h ∈ ]0, τϑ̃ [ with h+π1 z̃ < min{π1 x̃(t), π1 ỹ(t)},{

d̃ j

(
ϑ̃(h, z̃), x̃(t)

) ≤ (
d̃ j

(
z̃, x̃(t−h)

)
+ C h

) · eC h

d̃ j

(
ϑ̃(h, z̃), ỹ(t)

) ≤ (
d̃ j

(
z̃, ỹ(t−h)

)
+ C h

) · eC h

Due to property (5.) of timed transitions, it implies δ (t) ≤ limsup
h↓0

δ j(t−h).

At L 1-a.e. time t ∈ [0,T [, we can choose a sequence (z̃n)n∈N in D̃ and τ > 0 with⎧⎪⎨⎪⎩
supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{

π1 x̃(t), π1 ỹ(t)
}
,

T j( f̃ (x̃(t), t), z̃n) ≥ τ .

Lemma 8 (on page 254) implies for each n ∈ N and h ∈ [0, T j( f̃ (x̃(t), t), z̃n)
[

d̃ j

(
f̃ (x̃(t), t)(h, z̃n), x̃(t +h)

) ≤
≤
(

d̃ j

(
z̃n, x̃(t)

)
+ h · sup

[t, t+h]
D̂ j

(
f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃n, R j

)) · eα̂ j h

and
d̃ j

(
f̃ (x̃(t), t)(h, z̃n), ỹ(t +h)

) ≤
≤
(

d̃ j

(
z̃n, ỹ(t)

)
+ h · sup

[t, t+h]
D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃n, R j

)) · eα̂ j h .

Hence, we obtain an upper bound of

δ j(t +h) ≤ d̃ j

(
f̃ (x̃(t), t)(h, z̃n), x̃(t +h)

)
+ d̃ j

(
f̃ (x̃(t), t)(h, z̃n), ỹ(t +h)

)
for every h ∈ [0,τ[⊂ [0, T j( f̃ (x̃(t), t), z̃n)

[
and, n−→ ∞ leads to
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δ j(t+h) ≤
(

δ j(t)+h · sup
[t, t+h]

sup
z̃∈D̃

D̂ j

(
f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃, R j

)
+h · sup

[t, t+h]
sup
z̃∈D̃

D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃, R j

))
eα̂ j h.

Thus,

limsup
h↓0

δ j(t+h)− δ j(t)
h

≤ α̂ j · δ j(t) + 0 + ϕ j(t) < ∞ .

Finally Gronwall’s inequality in Proposition A.2 (on page 352) implies the claim.
�

Proof (of Proposition 10). It draws conclusions very similarly to the preceding
proof of Proposition 9, but cannot rely on uniform positive bounds of the transi-
tion parameter T j(·, ·). For this reason, it uses the modified Gronwall’s inequality in
Proposition A.4 (on page 354) for the first time so far.

Choosing any sequence hn ↓ 0, the assumption about local equi-continuity of d̃ j(z̃, ·)
ensures for every t ∈ ]0,T [⎧⎪⎪⎨⎪⎪⎩

lim
n→∞

sup
z̃∈D̃

{
d̃ j(z̃, x̃(t)) − d̃ j(z̃, x̃(t−hn))

∣∣∣ π1 z̃ < π1 x̃(t)−hn, �z̃� j < R j

}
= 0

lim
n→∞

sup
z̃∈D̃

{
d̃ j(z̃, ỹ(t)) − d̃ j(z̃, ỹ(t−hn))

∣∣∣ π1 z̃ < π1 ỹ(t)−hn, �z̃� j < R j

}
= 0

and, it implies δ j(t) ≤ liminf
h↓0

δ j(t−h) for every t ∈ ]0,T [.

At every time t ∈ [0,T [, we can choose a sequence (z̃n)n∈N in D̃ with⎧⎪⎨⎪⎩
supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{

π1 x̃(t), π1 ỹ(t)
}
,

d̃ j(z̃n, x̃(t)) + d̃ j(z̃n, ỹ(t)) − δ j(t) ≤ 1
n2 · T j( f̃ (x̃(t), t), z̃n) .

In exactly the same way as for Proposition 9, Lemma 8 (on page 254) provides an
upper bound of

δ j(t +h) ≤ d̃ j

(
f̃ (x̃(t), t)(h, z̃n), x̃(t +h)

)
+ d̃ j

(
f̃ (x̃(t), t)(h, z̃n), ỹ(t +h)

)
for every h ∈ [0, T j( f̃ (x̃(t), t), z̃n)

[
now still depending on n ∈ N though:

δ j(t+h) ≤
(

δ j(t)+ T j( f̃ (x̃(t),t), z̃n)
n2 +h · sup

[t, t+h]
D̂ j

(
f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃n, R j

)
+h · sup

[t, t+h]
D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃n, R j

))
eα̂ j h.

Setting h := T j( f̃ (x̃(t),t), z̃n)
n

≤ 1
n

for each n ∈ N respectively, the assumptions about
(z̃n)n∈N ensure for n−→ ∞

liminf
h↓0

δ j(t+h)− δ j(t)
h

≤ α̂ j · δ j(t) + 0 + ϕ j(t) < ∞ .

Gronwall’s inequality in Proposition A.4 (on page 354) bridges the gap to the
claimed bound for every t ∈ [0,T ]. �
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4.3.2 Convergence of timed solutions

In spite of all the conceptual generalizations presented in Chapter 4 so far, the char-
acterization of timed solutions is stable with respect to the same type of graphical
convergence as in § 3.3.2 (on page 152 ff.) and § 3.4 (on page 175 ff.).

The following theorem lays the foundations for constructing timed solutions to ini-
tial value problems by means of Euler approximations in the subsequent section.

Theorem 12 (Convergence of timed solutions to mutational equations).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t

�x̃n(t)� j + 1 < ∞,

α̂ j(z̃,ρ) := sup
n

α j

(
x̃n; z̃, ρ

)
< ∞ for each z̃ ∈ D̃ , ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 7 on page 253) for every n,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for any z̃∈D̃ and L 1-a.e. t∈ [0,T ] : lim
n→∞

D̂ j

(
f̃n(x̃(t), t), f̃n(ỹn, tn); z̃, r

)
= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

satisfying lim
n→∞

tn = t and lim
n→∞

d̃i

(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t ′ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t ′) that satisfies for m−→ ∞

(i) D̂ j

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0 for all z̃ ∈ D̃ , r ≥ 0, j ∈I ,

(ii) ∃ δm↘0 : ∀ j : d̃ j

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm)↘π1 x̃(t)

(iii) ∃ δ̃m↘0 : ∀ j : d̃ j

(
x̃nm(t ′− δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′− δ̃m)↗π1 x̃(t ′)

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.
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Proof. In comparison with the proof of Theorem 3.13 (on page 153 ff.), we just
have to take two key aspects into consideration properly: Arguments of distances
are sorted by time and, timed solutions are characterized by means of comparisons
with evolving earlier test elements of D̃ .
For the sake of transparency, the analogous formulation is to underline the parallels.

Choose the index j ∈I arbitrarily.
Then x̃(·) : [0,T ] −→ (Ẽ, ẽ j) is β̂ j–Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t ′ ∈ ]t,T ], assumption (4.) provides a subsequence(
x̃nm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying for each index i ∈I{

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm) ↘ π1 x̃(t)

d̃i

(
x̃nm(t ′ − δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′ − δ̃m) ↗ π1 x̃(t ′)
for m→ ∞.

Firstly, we conclude π1 x̃(t ′) = t ′ − t + π1 x̃(t) = π1 x̃nm(t ′) for each m ∈ N.
Secondly, the uniform β̂ j–Lipschitz continuity of x̃n(·),n∈N, with respect to ẽ j and
hypothesis (H3’) (̃i’) (on page 248) imply

ẽ j

(
x̃(t), x̃(t ′)

) ≤ limsup
m→∞

ẽ j

(
x̃nm(t +δm), x̃nm(t ′ − δ̃m)

)
≤ limsup

m→∞
β̂ j |t ′ − δ̃m − t−δm|

≤ β̂ j |t ′ − t| .
This Lipschitz inequality can be extended to any t, t ′ ∈ [0,T ] due to the lower semi-
continuity of ẽ j (in the sense of hypotheses (H3’) (õl), (õr), (̃i’)). Moreover, hypo-
thesis (H4) about the lower semicontinuity of �·� j ensures

�x̃(t ′)� j ≤ liminf
m−→∞

�x̃nm(t ′ − δ̃m)� j ≤ R j−1.

Finally we verify the solution property

limsup
h↓0

d̃ j(ϑ̃(s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃(s,z̃), x̃(t)) · eα j(x̃;ρ) h

h
≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
for L 1-almost every t ∈ [0,T [ and any ϑ̃ ∈ Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

)
,

z̃ ∈ D̃ , s ∈ [0, T j(ϑ̃ , z̃)[ with s+π1 z̃ ≤ π1 x̃(t).
Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
x̃nm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each z̃ ∈ D̃ , i ∈I , r ≥ 0 and m−→ ∞⎧⎪⎪⎨⎪⎪⎩
D̂i

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0,

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm) ↘ π1 x̃(t),

d̃i

(
x̃nm(t+h− δ̃m), x̃(t+h)

) −→ 0, π1 x̃nm(t+h− δ̃m) ↗ π1 x̃(t+h) .
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For every test element z̃ ∈ D̃ and each time s ≥ 0 with s + π1 z̃ ≤ π1 x̃(t) and
s + h < T j(ϑ̃ , z̃), we conclude from condition (8.) on timed transitions that for all
k ∈ ]0,h[ sufficiently small (depending on h,s, t, z̃)

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) ≤ d̃ j

(
ϑ̃(s+h− k, z̃), x̃(t +h)

)
+ h2.

Lemma 8 (on page 254) and the semicontinuity of d̃ j (in the sense of hypothesis
(H3’) (̃i’) on page 248) imply

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) − h2

≤ d̃ j

(
ϑ̃(s+h− k, z̃), x̃(t +h)

)
≤ limsup

m−→∞

(
d̃ j

(
ϑ̃(s, z̃), x̃nm(t + k− δ̃m)

)
+

(h− k) · sup
[t+k−δ̃m, t+h−δ̃m]

D̂ j

(
ϑ̃ , f̃nm(x̃nm , ·); z̃,R j

)) · eα̂ j(z̃,R j) ·(h−k).

Choosing now suitable subsequences (δml
)l∈N, (δ̃ml

)l∈N and a sequence (kl)l∈N

such that the preceding limit superior for m→ ∞ coincides with the limit for l → ∞
and δml

< kl − δ̃ml
< 1

l
for each l ∈ N, we obtain successively

lim
l→∞

d̃ j

(
x̃(t), x̃nml

(t + kl − δ̃ml
)
)

= 0,

limsup
l→∞

d̃ j

(
ϑ̃(s, z̃), x̃nml

(t + kl − δ̃ml
)
) ≤ d̃ j

(
ϑ̃(s, z̃), x̃(t)

)
as consequences of hypotheses (H3’) (ĩil), (̃i”) (on page 248). Now l −→ ∞ leads to

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) − 2 h2 − d̃ j

(
ϑ̃(s, z̃), x̃(t)

) · eα̂ j(z̃,R j) h

≤ h · limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) · eα̂ j(z̃,R j) h.

For completing the proof, we verify

limsup
h↓0

limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) ≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)
for L 1-almost every t ∈ [0,T [ and any subsequence

(
x̃nm(·))

m∈N
satisfying{

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0
D̂i

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0
for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N s.t. for all l∈N,{

D̂ j

(
ϑ̃ , f̃nml

(x̃nml
(t + sl), t + sl); z̃, R j

) ≥ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
+ ε,

δml
≤ sl ≤ hl ≤ 1

l
, ml ≥ l .

Due to property (H3’) (ĩil), the uniform Lipschitz continuity of (x̃nm(·))m∈N implies
lim
l→∞

d̃i

(
x̃(t), x̃nml

(t + sl)
)

= 0

for each i ∈I . Hence, at L 1-a.e. time t, assumptions (3.), (4.) (i) and hypothesis
(H6’) (on page 251) lead to a contradiction with regard to D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, r

)
for any r ≥ 0. �
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4.3.3 Existence for mutational equations with delay and
without state constraints

Euler approximations in combination with a suitable form of sequential compact-
ness have proved to be very useful for verifying the existence of solutions to muta-
tional equations.

The concept of Euler compactness as specified in Definition 2.15 (on page 78) and
Remark 3.15 (2.) (on page 155) focuses on pointwise sequential compactness, i.e.,
the convergence of Euler approximations is considered at an arbitrary, but fixed
point of time t ∈ [0,T ].

Preceding Convergence Theorem 12, however, admits vanishing perturbations with
respect to time. In general, this notion of convergence is weaker than pointwise
convergence if we dispense with the symmetry of distances and, it may be rather
associated with “graphical” convergence of curves in Ẽ.

Assuming compactness of Euler approximations with respect to this modified con-
vergence can be of particular interest whenever the transitions have “smoothen-
ing” effects on the elements of Ẽ instantaneously. Indeed, in subsequent § 4.4 (on
page 273 ff.), we consider geometric evolutions along reachable sets of differential
inclusion which exploit such an effect.

Definition 13 (transitionally Euler compact).(
E, D̃ , (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,D̃ ,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is called

transitionally Euler compact if it satisfies the following condition for any element
x̃0 ∈ Ẽ, time T ∈]0,∞[ and bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
ỹ(·) : [0,T ]−→ Ẽ constructed in the following piecewise way: Choosing an arbitrary
equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and timed
transitions ϑ̃1 . . . ϑ̃n ∈ Θ̂

(
Ẽ, D̃ , (di)i∈I , (ei)i∈I , (�·�i)i∈I

)
with⎧⎪⎨⎪⎩

supk γ j(ϑ̃k) ≤ γ̂ j

supk α j

(
ϑ̃k; z̃, (�x̃0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j(z̃)
supk β j

(
ϑ̃k; (�x̃0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I and test element z̃ ∈ D̃ , define ỹ(·) : [0,T ]−→ Ẽ as

ỹ(0) := x̃0, ỹ(t) := ϑ̃k (t− tk−1, ỹ(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

⎧⎪⎪⎨⎪⎪⎩
π1 ỹnm(t) = t +π1 x̃0 = π1 x̃

lim
m→∞

d̃ j

(
ỹnm(t), x̃

)
= 0

lim
k→∞

sup
m≥ k

d̃ j

(
x̃, ỹnm(t +hk)

)
= 0

Then for each time t ∈ [0,T [ and sequence hm ↓ 0, every sequence (ỹn(·))n∈N in N
has a subsequence (ỹnm(·))m∈N and some element x̃ ∈ Ẽ satisfying for each j ∈I ,
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Remark 14. If each distance function d̃ j ( j ∈I ) is symmetric in addition, then
Euler compactness (in the form of Remark 3.15 (2.)) always implies transitional
Euler compactness — due to hypothesis (H3’) (ĩil) (on page 248).

Just for avoiding misunderstandings, we reformulate the definition of “Euler
equi-continuous” for the current case of possibly nonsymmetric distance functions.
The main idea coincides with Definition 3.16 (on page 156), but now the arguments
of ẽ j are always sorted by time.

Definition 15.(
E, D̃ , (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,D̃ ,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is called

Euler equi-continuous if it satisfies the following condition for any element x̃0 ∈ Ẽ,

time T ∈]0,∞[ and bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset specified
in preceding Definition 13. Then, for each index j ∈I , there exists a constant
L j ∈ [0,∞[ such that every curve ỹ(·) ∈N satisfies for all s, t ∈ [0,T ] with s≤ t

ẽ j

(
ỹ(s), ỹ(t)

) ≤ L j · (t− s).

In this particular sense of Lipschitz continuity (i.e. always with the arguments of ẽ j

sorted by time), we also consider B̃Lip
(
I, Ẽ; (ẽi)i, (�·�i)i

)
from now on.

Finally the counterpart of Existence Theorem 3.40 (on page 180) states:

Theorem 16 (Existence of timed solutions to mutational equations with delay).
Suppose

(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to be transitionally Euler compact and Euler equi-continuous. Moreover assume for

a fixed period τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ, D̃ , (d̃i)i, (ẽi)i, (�·�i)i

)
and each z̃ ∈ D̃ , j ∈I , R > 0 :

1.) supỹ(·), t α j( f̃ (ỹ(·), t); z̃, R) < ∞,

2.) supỹ(·), t β j( f̃ (ỹ(·), t); R) < ∞,

3.) supỹ(·), t γ j( f̃ (ỹ(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃ (ỹ1

n(·), t1
n ), f̃ (ỹ2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(ỹ1
n(·))n∈N, (ỹ2

n(·))n∈N in B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i

(
ỹ(s), ỹ1

n(s)
)

= 0 = lim
n→∞

d̃i

(
ỹ(s), ỹ2

n(s)
)

sup
n∈N

sup
[−τ,0]

�ỹ1,2
n (·)�i < ∞ .
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For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
in the sense of Definition 7 (on page 253 f.).

Proof. Similarly to the proof of Theorem 3.19 (on page 159 f.), we use a sub-
sequence of Euler approximations for constructing a limit curve x̃ : [−τ,T ] −→ Ẽ

and, Convergence Theorem 12 (on page 259) ensures that the restriction x̃(·)|[0,T ] is
a timed solution to the given mutational equation.

For every n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

x̃n(·)
∣∣
[−τ,0] := x̃0,

x̃n(t) := f̃ (x̃n(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n , x̃n(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Due to Euler equi-continuity, there is a constant L j ∈ [0,∞[ for each index j ∈I
such that every curve x̃n(·) is L j-Lipschitz continuous with respect to e j. Setting
γ̂ j := sup γ j( f̃ (·, ·)) < ∞, Lemma 4 (on page 252) guarantees for every t ∈ [0,T ],
n ∈ N (with 2n > T ) and each j ∈I

�x̃n(t)� j ≤
(�x̃0(0)� j + γ̂ j T

) · eγ̂ j T =: R j .

The next step focuses on selecting subsequences (x̃nm(·))m∈N, (hn′m)m∈N such that
some x̃(·) : [−τ,T ]−→ Ẽ satisfies x̃(·)|[−τ,0] = x̃0 and for every t ∈ [0,T ], j ∈I⎧⎪⎨⎪⎩

lim
m→∞

d̃ j

(
x̃nm(t−hn′m), x̃(t)

)
= 0

lim
m→∞

d̃ j

(
x̃(t), x̃nm(t +hn′m)

)
= 0

π1 x̃(t) = t + π1 x̃0(0).

Indeed, at every time t ∈ [0,T [, transitional Euler compactness provides a sequence
nk ↗ ∞ of indices and an element x̃(t) ∈ Ẽ satisfying for every index j ∈I⎧⎨⎩ lim

k→∞
d̃ j

(
x̃nk

(t), x̃(t)
)

= 0

lim
k→∞

sup
l≥ k

d̃ j

(
x̃(t), x̃nl

(t +hk)
)

= 0.

Now Cantor’s diagonal construction lays the foundations for extending this selection
to countably many points of time simultaneously. In particular, there exists a joint
sequence nk ↗ ∞ and a function x̃(·) : [0,T ]∩Q −→ Ẽ such that for every rational
t ∈ [0,T ] and each index j ∈I ,
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lim

k→∞
d̃ j

(
x̃nk

(t), x̃(t)
)

= 0

lim
k→∞

sup
l≥ k

d̃ j

(
x̃(t), x̃nl

(t +hk)
)

= 0

π1 x̃(t) = t + π1 x̃0(0).

Choose t ∈ [0,T [\Q arbitrarily. As a consequence of transitional Euler compactness
again, there exists a subsequence nkl

↗ ∞ possibly depending on t such that an
element x̃(t) ∈ Ẽ fulfills for every index j ∈I⎧⎪⎪⎨⎪⎪⎩

lim
l→∞

d̃ j

(
x̃nkl

(t), x̃(t)
)

= 0

lim
l→∞

sup
l′ ≥ l

d̃ j

(
x̃(t), x̃nk

l′
(t +hl)

)
= 0.

π1 x̃(t) = t + π1 x̃0(0).

Hypothesis (H3’) (on page 248 f.) even ensures the convergence of
(
x̃nk

(·))
k∈N

at
this time t ∈ [0,T ]\Q in the following sense for each index j ∈I⎧⎨⎩ lim

k→∞
d̃ j

(
x̃nk

(t−hk), x̃(t)
)

= 0

lim
k→∞

d̃ j

(
x̃(t), x̃nk

(t +2hk)
)

= 0.
(∗)

Indeed, assumption (H3’) (̃i’) implies for every s ∈ [0, t[ ∩Q and j ∈I

ẽ j

(
x̃(s), x̃(t)

) ≤ limsup
l→∞

ẽ j(x̃nkl
(s+hkl

), x̃nkl
(t)
) ≤ L j |s− t| .

Choosing any sequence (sl)l∈N in [0, t[ ∩Q with t − hl < sl < t for all l ∈ N,
we obtain for every index j ∈I

lim
l→∞

d̃ j

(
x̃(sl), x̃(t)

)
= 0,

lim
k→∞

d̃ j

(
x̃nk

(sl), x̃(sl)
)

= 0 for each l ∈ N,

lim
l→∞

sup
k∈N

ẽ j

(
x̃nk

(t−hl), x̃nk
(sl)
) ≤ lim

l→∞
L j hl = 0.

and thus, hypothesis (H3’) (ĩiir) (on page 249) guarantees

lim
l→∞

d̃ j

(
x̃nl

(t−hl), x̃(t)
)

= 0 for each j ∈I .

Similarly any sequence (s′l)l∈N in ]t,T ]∩Q with t < s′l < t +hl for all l∈N leads to

lim
l→∞

d̃ j

(
x̃(t), x̃(s′l)

)
= 0,

lim
k→∞

d̃ j

(
x̃(s′l), x̃nk

(s′l +hl)
)

= 0 for each l ∈ N,

lim
l→∞

sup
k∈N

ẽ j

(
x̃nk

(s′l +hl), x̃nk
(t +2hl)

) ≤ lim
l→∞

L j hl = 0.

for every index j ∈I and thus, hypothesis (H3’) (ĩiil) (on page 249) implies

lim
l→∞

d̃ j

(
x̃(t), x̃nl

(t +2hl)
)

= 0 for each j ∈I .

In a word, preceding statement (∗) about the convergence of
(
x̃nk

(·))
k∈N

holds at
every time t ∈ [0,T [.
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For every t ∈ [0,T ], the estimate �x̃(t)� j ≤R j results from hypothesis (H4’) about
the lower semicontinuity of �·� j (on page 249) and, x̃(·) : [0,T ] −→ (E,e j) is also
L j–Lipschitz continuous (in time direction) due to the lower semicontinuity of e j

(in hypothesis (H3’) (̃i’)). Defining x̃(·)∣∣[−τ,0] := x̃0(·), we obtain

x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
.

Finally, Convergence Theorem 12 (on page 259) is to guarantee that x̃(·)|[0,T ] is
a timed solution to the mutational equation

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
in the tuple

(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Indeed, each shifted Euler approximation x̃n(·+ 3hn) : [0,T−3hn] −→ Ẽ, n ∈ N,

can be regarded as a timed solution of
◦
ỹ(·) � f̂n(·) with the auxiliary function

f̂n : [0,T ]−→ Θ̂
(
Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
,

f̂n(t) := f̃
(
x̃n(·)

∣∣
[tk+3

n −τ, tk+3
n ], tk+3

n

)
for any t ∈ [tk

n , tk+1
n [, k < 2n.

(The time shift here is caused by convergence statement (∗) and ensures that all ar-
guments below are sorted by time properly.)
Similarly set f̂ : [0,T ] −→ Θ̂

(
Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
,

t �−→ f̃
(
x̃(t + ·)∣∣[−τ,0], t

)
.

At L 1-almost every time t ∈ [0,T ], assumption (4.) has two essential consequences.
First, with the abbreviation tl

nk
:=
(
[ t

hnk
]+3

)
hnk

∈ ]t +2hnk
, t +3hnk

],

D̂ j

(
f̂ (t), f̂nk

(t); z̃, ρ
)

= D̂ j

(
f̃ (x̃(t + ·)|[−τ,0], t), f̃ (x̃nk

(tl
nk

+ ·)|[−τ,0], tl
nk

); z̃, ρ
)

k→∞−→ 0,

for every j ∈I , z̃ ∈ D̃ and ρ > 0 because for any i ∈I and t ∈ [0,T ], s ∈ [−τ,0],
statement (∗) about the convergence of (x̃nk

(·))m∈N and hypothesis (H3’) (ĩil) imply

d̃i

(
x̃(t + s), x̃nk

(tl
nk

+ s)
) k→∞−→ 0 .

Second, we obtain for any sequence tk −→ t in [t,T ] and z̃ ∈ D̃ , j ∈I , ρ ≥ 0

D̂ j

(
f̂nk

(t), f̂nk
(tk); z̃, ρ

)
= D̂ j

(
f̃ (x̃nk

(tl
nk

+ ·)|[−τ,0], tl
nk

),

f̃ (x̃nk
(tlk

nk
+ ·)|[−τ,0], t

lk
nk

); z̃, ρ
) k→∞−→ 0

with the abbreviations tl
nk

:=
(
[ t

hnk
]+3

)
hnk

≤ t
lk
nk

:=
(
[ tk

hnk
]+3

)
hnk

because due

to hypothesis (H3’) (ĩil) and statement (∗) again, the following convergences hold
for any i ∈I , s ∈ [−τ,0]

d̃i

(
x̃(t + s), x̃nk

(tl
nk

+ s)
) k→∞−→ 0, d̃i

(
x̃(t + s), x̃nk

(tlk
nk

+ s)
) k→∞−→ 0.

Hence, the assumptions of Convergence Theorem 12 are satisfied and, x̃(·)|[0,T ]

solves the mutational equation
◦
x̃(·) � f̂ (·). �
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4.3.4 Existence of timed solutions without state constraints
due to another form of “weak” Euler compactness

Now we formulate the counterparts of the results in § 3.3.6 (on page 168 ff.).
The main idea is again that firstly, each distance function d̃ j, ẽ j ( j ∈I ) can be
represented as supremum of further distance functions d̃ j,κ , ẽ j,κ (κ ∈J ) and
secondly, the assumptions about sequential compactness focus on the right con-
vergence with respect to d̃ j,κ ( j ∈I ,κ ∈J ).

In contrast to § 3.3.6, however, we consider the left convergence with respect to
each d̃ j ( j ∈I ). This difference in regard to topology is particularly useful for
proving the adapted Convergence Theorem (in subsequent Proposition 20) and,
it motivates the term “strongly-weakly” for the current form of transitional Euler
compactness in subsequent Definition 17.

Additional assumptions for § 4.3.4.

In addition to the general hypotheses (H1), (H3’), (H5’)–(H7’) about the distance
functions d̃ j, ẽ j : (D̃ ∪E)× (D̃ ∪E) −→ [0,∞[ specified in § 4.1 (on page 248 ff.),
let J �= /0 denote a further index set. For each index ( j,κ) ∈I ×J , the functions
d̃ j,κ , ẽ j,κ : Ẽ× Ẽ −→R+

0 are assumed to fulfill in addition to hypotheses (H1),(H3’)

(H4’) �·� j is lower semicontinuous with respect to (d̃i,κ)i∈I ,κ∈J , i.e.,
�x̃� j ≤ liminf

n−→∞
�x̃n� j

for any x̃ ∈ Ẽ and (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,κ ∈J

lim
n→∞

d̃i,κ(x̃n, x̃) = 0, π1 x̃n ↗ π1 x̃ for n→ ∞, sup
n∈N

�x̃n�i < ∞ .

(H8’) d̃ j(·, ·) = sup
κ∈J

d̃ j,κ(·, ·), ẽ j(·, ·) = sup
κ∈J

ẽ j,κ(·, ·) for all j ∈I .

Definition 17 (strongly-weakly transitionally Euler compact).
The tuple

(
E, D̃ , (d̃ j) j∈I , (d̃ j,κ) j∈I,κ∈J , (ẽ j) j∈I , (ẽ j,κ) j∈I,κ∈J , (�·� j) j∈I ,

Θ̂
(
E,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
is called strongly-weakly transitionally Euler

compact if it satisfies the following condition for any x̃0 ∈ Ẽ, time T ∈]0,∞[ and
bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset specified in
preceding Definition 13 (on page 262). Then for each time t ∈ [0,T [ and sequence
hm ↓ 0, every sequence (ỹn(·))n∈N in N has a subsequence (ỹnm(·))m∈N and some
element x̃ ∈ Ẽ satisfying for each j ∈I and κ ∈J ,⎧⎪⎪⎨⎪⎪⎩

π1 ỹnm(t) = t +π1 x̃0 = π1 x̃

lim
m→∞

d̃ j,κ
(
ỹnm(t), x̃

)
= 0

lim
k→∞

sup
m≥ k

d̃ j

(
x̃, ỹnm(t +hk)

)
= 0
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Remark 18. The essential difference between Definition 17 and its counterpart
in Definition 3.27 (on page 169) used in Theorem 3.42 and Proposition 3.43 (on
page 181 ff.) is that d̃ j,κ is considered only for the right convergence, i.e. for all j,κ,

lim
m→∞

d̃ j,κ
(
ỹnm(t), x̃

)
= 0,

whereas the left convergence is formulated with respect to d̃ j, i.e. for all j ∈I ,

lim
k→∞

sup
m≥ k

d̃ j

(
x̃, ỹnm(t +hk)

)
= 0.

The main advantage of this stronger type of convergence is that we obtain exis-
tence and convergence results about timed solutions to the mutational equations
— without assuming the triangle inequality for each d̃ j ( j ∈I ) in addition (like in
Theorem 3.42). In the geometric example of subsequent § 4.5 (on page 285 ff.),
this special form of compactness proves to be appropriate indeed.

Theorem 19 (Existence due to strong-weak transitional Euler compactness).
Suppose the tuple

(
E, D̃ , (d̃ j) j∈I, (d̃ j,κ) j∈I,κ∈J, (ẽ j) j∈I, (ẽ j,κ) j∈I,κ∈J, (�·� j) j,

Θ̂
(
E,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be strongly-weakly transitionally Euler compact and(

Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂
(
Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be Euler equi-

continuous (in the sense of Definition 15 on page 263).

Moreover assume for a fixed period τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ, D̃ , (d̃i)i, (ẽi)i, (�·�i)i

)
and each z̃ ∈ D̃ , j ∈I , R > 0 :

1.) supỹ(·), t α j( f̃ (ỹ(·), t); z̃, R) < ∞,

2.) supỹ(·), t β j( f̃ (ỹ(·), t); R) < ∞,

3.) supỹ(·), t γ j( f̃ (ỹ(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃ (ỹ1

n(·), t1
n ), f̃ (ỹ2

n(·), t2
n ); R

)
= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and

(ỹ1
n(·))n∈N, (ỹ2

n(·))n∈N in B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i

(
ỹ(s), ỹ1

n(s)
)

= 0 = lim
n→∞

d̃i

(
ỹ(s), ỹ2

n(s)
)

sup
n∈N

sup
[−τ,0]

�ỹ1,2
n (·)�i < ∞ .

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution of

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
.
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The proof of this Existence Theorem is based on exactly the same conclusions as the
one of preceding Theorem 16 (on page 264 ff.). Indeed, the first key difference is
due to considering d̃ j,κ ( j ∈I ,κ ∈J ) for any statements about right convergence.
Second, we need an adapted form of Convergence Theorem:

Proposition 20 (about “strong-weak” convergence of timed solutions).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t

�x̃n(t)� j + 1 < ∞,

α̂ j(z̃,ρ) := sup
n,t

α j

(
x̃n; z̃, ρ

)
< ∞ for each z̃ ∈ D̃ , ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 7 on page 253) for every n,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for any z̃∈D̃ and L 1-a.e. t∈ [0,T ] : lim
n→∞

D̂ j

(
f̃n(x̃(t), t), f̃n(ỹn, tn); z̃, r

)
= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

with lim
n→∞

tn = t and lim
n→∞

d̃i

(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞,

4’.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t ′ ∈ ]t,T [, there is a

sequence nm ↗ ∞ of indices (depending on t < t ′) that satisfies for m−→ ∞

(i) D̂ j

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0 for all z̃ ∈ D̃ , r ≥ 0, j ∈I ,

(ii) ∃δm↘0 : ∀ j : d̃ j

(
x̃(t), x̃nm(t+δm)

)−→ 0, π1 x̃nm(t+δm) ↘π1 x̃(t)

(iii)∃ δ̃m↘0 : ∀ j,κ : d̃ j,κ
(
x̃nm(t ′−δ̃m), x̃(t ′)

)−→ 0, π1 x̃nm(t ′− δ̃m)↗π1 x̃(t ′)

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Proof (of Proposition 20). It imitates the proof of Convergence Theorem 12 (on
page 260 f.), but takes the right convergence with respect to d̃ j,κ (κ ∈J ) into con-
sideration appropriately.

Choose the index j ∈I arbitrarily.
Then x̃(·) : [0,T ] −→ (Ẽ, ẽ j) is β̂ j–Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t ′ ∈ ]t,T ], assumption (4’.) provides a subsequence



270 4 Introducing distribution-like solutions to mutational equations(
x̃nm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying for any indices i ∈I ,κ ∈J{

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm) ↘ π1 x̃(t)

d̃i,κ
(
x̃nm(t ′ − δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′ − δ̃m) ↗ π1 x̃(t ′)
for m→ ∞.

Firstly, we conclude π1 x̃(t ′) = t ′ − t + π1 x̃(t) = π1 x̃nm(t ′) for each m ∈ N.
Secondly, the uniform β̂ j–Lipschitz continuity of x̃n(·),n∈N, with respect to ẽ j and
hypothesis (H3’) (̃i’) about (ẽ j,κ) j∈I ,κ∈J (on page 248) imply for each κ ∈J

ẽ j,κ
(
x̃(t), x̃(t ′)

) ≤ limsup
m→∞

ẽ j,κ
(
x̃nm(t +δm), x̃nm(t ′ − δ̃m)

)
≤ limsup

m→∞
β̂ j |t ′ − δ̃m − t−δm|

≤ β̂ j |t ′ − t| ,
ẽ j

(
x̃(t), x̃(t ′)

) ≤ β̂ j |t ′ − t| .
This Lipschitz inequality can be extended to any t, t ′ ∈ [0,T ] due to the lower semi-
continuity of ẽ j,κ (in the sense of hypotheses (H3’) (õl), (õr), (̃i’)). Moreover, hypo-
thesis (H4’) about the lower semicontinuity of �·� j ensures

�x̃(t ′)� j ≤ liminf
m−→∞

�x̃nm(t ′ − δ̃m)� j ≤ R j−1.

Finally we verify the solution property

limsup
h↓0

d̃ j(ϑ̃(s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃(s,z̃), x̃(t)) · eα j(x̃;ρ) h

h
≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
for L 1-almost every t ∈ [0,T [ and any ϑ̃ ∈ Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

)
,

z̃ ∈ D̃ , s ∈ [0, T j(ϑ̃ , z̃)[ with s+π1 z̃ ≤ π1 x̃(t).
Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
x̃nm(·))

m∈N
and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each z̃ ∈ D̃ , i ∈I , κ ∈J , r ≥ 0 and m−→ ∞⎧⎪⎪⎨⎪⎪⎩
D̂i

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0,

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0, π1 x̃nm(t +δm) ↘ π1 x̃(t),

d̃i,κ
(
x̃nm(t+h− δ̃m), x̃(t+h)

) −→ 0, π1 x̃nm(t+h− δ̃m) ↗ π1 x̃(t+h) .

For every test element z̃ ∈ D̃ and each time s ≥ 0 with s + π1 z̃ ≤ π1 x̃(t) and
s + h < T j(ϑ̃ , z̃), we conclude from condition (8.) on timed transitions that for all
k ∈ ]0,h[ sufficiently small (depending on h,s, t, z̃)

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) ≤ d̃ j

(
ϑ̃(s+h− k, z̃), x̃(t +h)

)
+ h2

2 .

Due to Lemma 8 (on page 254) and the semicontinuity of d̃ j,κ (in the sense of hy-
pothesis (H3’) (̃i’) on page 248), the index κ ∈J depending on h,k,s, t, z̃ can be
selected such that
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d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) − h2

≤ d̃ j

(
ϑ̃(s+h− k, z̃), x̃(t +h)

) − h2

2

≤ d̃ j,κ
(
ϑ̃(s+h− k, z̃), x̃(t +h)

)
≤ limsup

m−→∞

(
d̃ j,κ
(
ϑ̃(s+h− k, z̃), x̃nm(t +h− δ̃m)

)
≤ limsup

m−→∞

(
d̃ j

(
ϑ̃(s, z̃), x̃nm(t + k− δ̃m)

)
+

(h− k) · sup
[t+k−δ̃m, t+h−δ̃m]

D̂ j

(
ϑ̃ , f̃nm(x̃nm , ·); z̃,R j

)) · eα̂ j(z̃,R j) ·(h−k).

From now on, the influence of the index κ ∈J is of no further relevance and,
we continue exactly as in the proof of Convergence Theorem 12:

Indeed, choosing suitable subsequences (δml
)l∈N, (δ̃ml

)l∈N and a sequence (kl)l∈N

such that the preceding limit superior for m→ ∞ coincides with the limit for l → ∞
and δml

< kl − δ̃ml
< 1

l
for each l ∈ N, we obtain successively

lim
l→∞

d̃ j

(
x̃(t), x̃nml

(t + kl − δ̃ml
)
)

= 0,

limsup
l→∞

d̃ j

(
ϑ̃(s, z̃), x̃nml

(t + kl − δ̃ml
)
) ≤ d̃ j

(
ϑ̃(s, z̃), x̃(t)

)
as consequences of hypotheses (H3’) (ĩil), (̃i”) (on page 248). Now l −→ ∞ leads to

d̃ j

(
ϑ̃(s+h, z̃), x̃(t +h)

) − 2 h2 − d̃ j

(
ϑ̃(s, z̃), x̃(t)

) · eα̂ j(z̃,R j) h

≤ h · limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) · eα̂ j(z̃,R j) h.

For completing the proof, we verify

limsup
h↓0

limsup
m−→∞

sup
[t+δm, t+h]

D̂ j

(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) ≤ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)
for L 1-almost every t ∈ [0,T [ and any subsequence

(
x̃nm(·))

m∈N
satisfying{

d̃i

(
x̃(t), x̃nm(t +δm)

) −→ 0

D̂i

(
f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r

) −→ 0

for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N s.t. for all l∈N,{

D̂ j

(
ϑ̃ , f̃nml

(x̃nml
(t + sl), t + sl); z̃, R j

) ≥ D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
+ ε,

δml
≤ sl ≤ hl ≤ 1

l
, ml ≥ l .

Due to property (H3’) (ĩil), the uniform Lipschitz continuity of (x̃nm(·))m∈N implies

lim
l→∞

d̃i

(
x̃(t), x̃nml

(t + sl)
)

= 0

for each i ∈I . At L 1-a.e. time t ∈ [0,T [, assumptions (3.), (4.’) (i) and hypothesis
(H6’) (on page 251) lead to a contradiction with regard to D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, r

)
for any r ≥ 0. �
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4.4 Example: Mutational equations for compact sets in RN

depending on the normal cones

K (RN) consists of all nonempty compact subsets of RN . One of the main goals in
this chapter is to take the normal cones at the topological boundary of the respective
compact set into consideration explicitly. The introduction has already revealed that
there are some obstacles which we want to overcome by means of nonsymmetric
distance functions and the notion of distribution-like (timed) solutions.
In this section, we present a geometric example in detail. It also uses reachable
sets of autonomous differential inclusions for inducing transitions. A separate time
component, however, is of no additional use here and thus, we simply skip it.

4.4.1 Limiting normal cones induce distance dK,N on K (RN)

The so-called Pompeiu–Hausdorff excess is an example of a nonsymmetric distance
function on K (RN) that is very similar to Pompeiu–Hausdorff distance dl:

�e⊂(K1,K2) := sup
x∈K1

dist(x,K2)

�e⊃(K1,K2) := sup
y∈K2

dist(y,K1).

for K1,K2 ∈K (RN). Obviously, the link to the Pompeiu–Hausdorff distance is

dl(K1,K2) = max{ �e⊂(K1,K2), �e⊃(K1,K2)}
(see also [9, § 3.2] and [124, § 4.C], for example).

In the following, we prefer taking the boundaries into consideration explicitly.
The Pompeiu–Hausdorff excess �e⊃(K1,K2), however, does not distinguish between
boundary points and interior points of the compact sets K1,K2. Thus, a new distance
function dK,N on K (RN) is defined in a moment. Strictly speaking, we even use
the first–order approximation of the boundary represented by the limiting normal
cones of a set. Following the well-known definitions as in [124, 139], the proximal
normal cone NP

C (x) and the limiting normal cone NC(x) of any nonempty closed
subset C ⊂ RN are introduced in Definition A.21 (on page 364).
As a further abbreviation, we set �NC(x) := NC(x)∩B = {v ∈ NC(x) : |v| ≤ 1}.

Definition 21. Set dK,N : K (RN)×K (RN)−→ [0,∞[ ,

dK,N(K1,K2) := dl(K1,K2) + �e⊃(Graph �NK1 , Graph �NK2).

Obviously, the function dK,N is a quasi–metric on the set K (RN), i.e., it is positive
definite and satisfies the triangle inequality, but in general, it is not symmetric.
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The properties of dK,N with respect to convergence depend on the relation be-
tween the normal cones of compact sets Kn (n∈N) and their limit K = Limn→∞ Kn

in the sense of Painlevé–Kuratowski (if it exists).
In general, they do not coincide of course, but each limiting normal vector of
K can be approximated by limiting normal vectors of a subsequence (Kn j

) j∈N.
This asymptotic inclusion is formulated in the next proposition and, its proofs re-
sults from Proposition A.53 (on page 387), [13, Theorem 8.4.6], [38, Lemma 4.1]
or [124, Example 6.18], for example. But the inclusion might be strict.

Proposition 22. Let (Mk)k∈N be a sequence of closed subsets of RN and

set M := Limsupk→∞ Mk in the sense of Painlevé–Kuratowski. Then,

(1.) Graph NP
M ⊂ Limsupk→∞ Graph NP

Mk
,

(2.) Graph NM ⊂ Limsupk→∞ Graph NMk
.

Corollary 23. Let (Mk)k∈N be a sequence of closed subsets of RN whose limit

M := Limk→∞ Mk exists in the sense of Painlevé–Kuratowski. Then

Graph NM ⊂ Liminfk→∞ Graph NMk
.

In particular, ∂M ⊂ Liminfk→∞ ∂Mk.

Proof is an indirect consequence of Proposition 22 due to M = Limk→∞ Mk. �

4.4.2 Reachable sets of differential inclusions provide transitions

Now we focus on reachable sets of a differential inclusion
x′(·) ∈ F(x(·)) and the evolution of limiting normal cones
at the topological boundary. In particular, we use the Hamil-

ton condition as a key tool. It implies that roughly speaking,
every boundary point x0 of ϑF(t0,K) and normal vector ν ∈
NϑF (t0,K)(x0) have a solution of x′(·) ∈ F(x(·)) and an adjoint
arc linking x0 to some z∈∂K and ν to NK(z), respectively.

Furthermore the solution and its adjoint arc fulfill a system of partial
differential equations with the so–called (upper) Hamiltonian of the
set-valued map F : RN � RN ,

HF : RN ×RN −→ RN , (x, p) �−→ sup
y∈F(x)

p · y.

Although the Hamilton condition is known in much more general forms (consider
e.g. [139, Theorem 7.7.1] applied to proximal balls), we use only the following
“smooth” version — due to later regularity conditions on F.
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Proposition 24. Suppose for the set–valued map F : RN � RN

1. F(·) has nonempty convex compact values,

2. HF(·, ·) is continuously differentiable on RN× (RN \{0}),
3. the derivative of HF has linear growth on RN× (RN \B1), i.e.

‖DHF(x, p)‖ ≤ const · (1+ |x|+ |p|) for all x, p ∈ RN , |p|> 1.

Let K ∈K (RN) be any initial set and t0 > 0.
For every boundary point x0 ∈ ∂ ϑF(t0,K) and normal ν ∈ NϑF (t0,K)(x0)\{0},

there exist a solution x(·) ∈C1([0, t0],RN) and its adjoint arc p(·) ∈C1([0, t0],RN)
with{

x′(t) = ∂
∂ p

HF(x(t), p(t)) ∈ F(x(t)), x(t0) = x0, x(0) ∈ ∂K,

p′(t) = − ∂
∂x

HF(x(t), p(t)), p(t0) = ν , p(0) ∈ NK(x(0)).

These assumptions give a first hint about adequate conditions on F : RN � RN

for inducing forward transitions with respect to dK,N . Supposing DHF to be Lip-
schitz continuous (in addition) provides some technical advantages such as global
existence of unique solutions of the Hamiltonian system (see also Remark 29 (a)
below).

Definition 25. For any λ > 0, the set LIP(H )
λ (RN ,RN) contains all set-valued

maps F : RN � RN with
(1.) F : RN � RN has nonempty compact convex values,
(2.) HF(·, ·) ∈ C1,1(RN× (RN \{0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ .

The Lipschitz continuity with respect to time is a first (and still rather simple) exam-
ple how the Hamiltonian system in combination with the bounds on the Hamiltonian
can be exploited:

Lemma 26. For every F ∈ LIP(H )
λ (RN ,RN) and K ∈K (RN), 0≤ s≤ t ≤ T,

dK,N

(
ϑF(s,K), ϑF(t,K)

)
≤ λ (eλ T + 2) · (t− s).

Proof. Obviously, the Pompeiu–Hausdorff distance satisfies for every s, t ≥ 0

dl (ϑF(s,K), ϑF(t,K)) ≤ sup
RN

‖F(·)‖∞ · (t− s) ≤ λ (t− s).

Proposition 24 guarantees that for every 0 ≤ s < t, x ∈ ∂ ϑF(t,K) and p ∈
�NϑF (t,K)(x) \ {0}, there exist a solution x(·) ∈ C1([s, t],RN) and its adjoint arc
p(·) ∈C1([s, t],RN) satisfying{

x′(τ) = ∂
∂ p

HF(x(τ), p(τ)) ∈ F(x(τ)), x(t) = x, x(s) ∈ ∂ϑF(s,K),

p′(τ) = − ∂
∂x

HF(x(τ), p(τ)), p(t) = p, p(s) ∈ NϑF (s,K)(x(s)).
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Obviously, HF is (positively) homogeneous with respect to its second argument
and thus, |p′(τ)| ≤ λ |p(τ)| for all τ. Moreover |p| ≤ 1 implies that the projection
of p on any cone is also contained in B1. Finally we obtain

dist
(
(x, p), Graph �NϑF (s,K)

)
≤ |x− x(s)| + |p− p(s)|
≤ sup

s≤τ≤ t

(
| ∂

∂ p
HF | + | ∂

∂x
HF |

)∣∣∣
(x(τ),p(τ))

· (t− s)

≤
(

λ + λ eλ t
)

· (t− s). �

Now the next question considers the choice of suitable “test sets”.
The difficulties in regard to regularity usually occur when the topological boundary
of the reachable set is not continuous. This rather qualitative observation motivates
the question for which type of compact subsets and differential inclusions we can
exclude such discontinuities — within short periods at least.
In subsequent Appendix A.5 (on page 364 ff.), the regularity of reachable sets is
investigated. Let us summarize some results which are of special interest here:

Definition 27. KC1,1(RN) abbreviates the set of all nonempty compact N–
dimensional C1,1 submanifolds of RN with boundary.
A closed subset C ⊂ RN is said to have positive erosion of
radius ρ > 0 if there exists a closed set M ⊂ RN with{

C = {x ∈ RN |dist(x,M) ≤ ρ },
M = {x ∈C |dist(x,∂C)≥ ρ }.

K
ρ
◦ (RN) consists of all sets with positive erosion of radius

ρ > 0 and, set K◦(RN) :=
⋃

ρ >0

K ρ
◦ (RN) .

Proposition 28. Let F : RN �RN be a map of LIP(H )
λ (RN ,RN). For every

compact N–dimensional C1,1 submanifold K of RN with boundary, there exist a

time T = T(ϑF ,K) > 0 and a radius ρ > 0 such that for all t ∈ [0,T[,

(1.) ϑF(t,K) ∈ KC1,1(RN) with radius of curvature ≥ ρ,

(2.) K = RN
∖

ϑ−F(t, RN \ϑF(t,K)).

Remark 29. (a) A complete proof is presented in Propositions A.28 and A.30.
For statement (1.), we use the evolution of Graph (NK(·)∩∂B)⊂RN ×RN along
the Hamiltonian system with HF .
Indeed, Lemma A.29 (on page 367) specifies sufficient conditions on the system
so that graphs of Lipschitz continuous functions preserve this regularity for short
times. Applying this lemma to unit normals to reachable sets of K∈KC1,1(RN) re-
quires the Hamiltonian HF to be in C1,1(RN× (RN \{0})) instead of C1.
In fact, this Lemma A.29 is an analytical reason for choosing KC1,1(RN) as “test
subset” of K (RN) — instead of compact sets with C1 boundary, for example.

(b) Together with Proposition 24, statement (2.) provides a connection between the
boundaries ∂K and ∂ ϑF(t,K) — now in both forward and backward time direction.
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Lemma 30. Assume for F, G ∈ LIP(H )
λ (RN ,RN), K1, K2 ∈ K (RN) and T > 0

that all the sets ϑF(t,K1) ∈KC1,1(RN) (0≤ t ≤ T ) have uniform positive reach.

Then, for every t ∈ [0,T [,

dK,N

(
ϑF(t,K1), ϑG(t,K2)

) ≤
≤ e(ΛF +λ ) t ·

(
dK,N(K1, K2) + 6 N t ‖HF −HG‖C1(RN×∂B1)

)
with ΛF := 9 e2λ T ‖HF‖C1,1(RN×∂B1) ≤ 9 e2λ T λ < ∞.

Postponing the proof for a moment, we now obtain all the parameters needed for a
transition on K (RN):

Proposition 31. For every λ ≥ 0, the reachable sets of the set-valued maps

in LIP(H )
λ (RN ,RN) induce transitions on (K (RN), KC1,1(RN), dK,N , dK,N , 0)

in the sense of Definition 1 and Remark 3 (on page 250 f.) with

α(ϑF ; · , · ) Def.= 10 λ ,

β (ϑF ; · ) Def.= λ (eλ + 2),

γ(ϑF) Def.= 0,

D̂(ϑF ,ϑG; · , · ) Def.= 6 N ‖HF −HG‖C1(RN×∂B1) .

Proof (of Lemma 30). Proposition 1.50 (on page 46) concludes the following
estimate of the Pompeiu–Hausdorff distance from Filippov’s Theorem A.6 about
differential inclusions (with Lipschitz continuous right-hand side)

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ dl(K1,K2) · eλ t + sup
RN

dl
(
F(·),G(·)) · eλ t −1

λ

≤ dl(K1,K2) · eλ t + sup
RN×∂B1

|HF −HG| · t eλ t .

Now we still need an upper bound of �e⊃
(
Graph �NϑF (t,K1), Graph �NϑG(t,K2)

)
.

Choose x ∈ ∂ ϑG(t,K2), p ∈ NϑG(t,K2)(x) ∩ ∂B1 and δ > 0 arbitrarily. According
to Proposition 24 (on page 275), there exist a solution x(·) ∈C1([0, t],RN) relative
to G and its adjoint arc p(·) ∈C1([0, t],RN) with⎧⎨⎩

x′(·) = ∂
∂ p

HG(x(·), p(·)) ∈ G(x(·)), p′(·) = − ∂
∂x

HG(x(·), p(·)) ∈ λ |p(·)| ·B
x(0) ∈ ∂K2, p(0) ∈ NK2(x(0)),
x(t) = x, p(t) = p.

Gronwall’s inequality guarantees

0 < e−λ t ≤ |p(·)| ≤ eλ t

and hence, p(0) e−λ t ∈ �NK2(x(0))\{0}.
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Now let (y0, q̂0) denote an element of
Graph �NK1 with q̂0 �= 0 and∣∣(y0, q̂0) −

(
x(0), p(0) e−λ t

)∣∣ ≤
≤ �e⊃

(
Graph �NK1 , Graph �NK2

)
+ δ .

Assuming that all sets ϑF(s,K1) ∈
K (RN) (s∈ [0, t]) have uniform pos-
itive reach implies the reversibility
in time due to Proposition A.30 (on
page 370):
RN \K1 = ϑ−F(t, RN\ϑF(t,K1)).

In particular, y0 is a boundary point of the (not bounded) N–dimensional C1,1

submanifold RN\ ◦
K1 = ϑ−F(t, RN \ϑF(t,K1)) with boundary and, − q̂0 belongs

to its limiting normal cone at y0. As a consequence of Proposition 24 again and due
to H−F(z,v) = HF(z,−v) for all z,v, we obtain a solution y(·) ∈C1([0, t],RN)
and its adjoint arc q(·) satisfying⎧⎨⎩

y′(·) = ∂
∂ p

HF(y(·), q(·)), q′(·) = − ∂
∂y

HF(y(·), q(·)),
y(0) = y0, q(0) = q̂0 eλ t �= 0,
y(t) ∈ ∂ ϑF(t,K1), q(t) ∈ NϑF (t,K1)(y(t)).

According to subsequent Lemma 32, the derivative of HF is ΛF –Lipschitz continu-

ous on RN × (Beλ T \
◦
Be−λ T ). Thus, the Theorem of Cauchy–Lipschitz leads to

dist
(
(x, p), Graph �NϑF (t,K1)

)
≤ ∣∣(x, p) − (y(t), q(t))

∣∣
≤ eΛF · t · ∣∣(x(0), p(0)) − (y0, q̂0 eλ t)

∣∣ + eΛF · t−1
ΛF

· sup
0≤s≤ t

|DHF −DHG|
∣∣∣
(x(s), p(s))

.

HF and HG are positively homogeneous with respect to the second argument and
thus, ∣∣ ∂

∂x j
(HF −HG)|(x(s), p(s))

∣∣ ≤ eλ t ‖DHF −DHG‖C0(RN×∂B1),∣∣ ∂
∂ p j

(HF −HG)|(x(s), p(s))
∣∣ ≤ 3 · ‖HF −HG‖C1(RN×∂B1).

as the partial derivatives in the subsequent proof of Lemma 32 reveal. Now we ob-
tain

dist
(
(x, p), Graph �NϑF (t,K1)

)
≤ e(ΛF +λ ) t

∣∣(x(0), p(0) e−λ t) − (y0, q̂0)
∣∣+ eΛF tt ·6 N eλ t ‖HF −HG‖C1(RN×∂B1)

and, since δ > 0 is arbitrarily small and |p|= 1,

�e⊃
(
Graph �NϑF (t,K1), Graph �NϑG(t,K2)

)
≤ e(ΛF +λ ) t ·

{
�e⊃
(
Graph �NK1 , Graph �NK2

)
+ 6 N t · ‖HF −HG‖C1(RN×∂B1)

}
.

�
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Lemma 32. For every F ∈ LIP(H )
λ (RN ,RN) and radius R > 1, the product

9R2 λ is a Lipschitz constant of the derivative DHF restricted to RN× (BR\
◦
B 1

R
).

Proof (of Lemma 32). It results from the fact that HF(x, p) is positively homo-
geneous with respect to p:

For every (x, p) ∈ RN × (BR\
◦
B 1

R
), we conclude from HF(x, p) = |p|HF(x, p

|p| )

∂ HF (x,p)
∂ p j

= ∂
∂ p j

|p| · HF(x, p
|p| ) + |p| ·

N

∑
k=1

∂
∂ pk

HF |(x, p
|p| )

· ∂
∂ p j

pk

|p|

= p j

|p| · HF(x, p
|p| ) + |p| ·

N

∑
k=1

∂
∂ pk

HF |(x, p
|p| )

·
(
− p j pk

|p|3 + δ jk

|p|
)

= p j

|p| ·
(
HF(x, p

|p| ) − p
|p| · ∂

∂ p
HF |(x, p

|p| )

)
+ ∂

∂ p j
HF |(x, p

|p| )
.

Thus, the Lipschitz constant of p �−→ ∂
∂ p j

HF(x, p) has the upper bound

Lip (p �→ p j

|p| ) ·
(
‖HF‖C0(RN×∂B1)+ 1 · ‖ ∂

∂ p
HF‖C0(RN×∂B1)

)
+ 1 · Lip (p �→ p

|p| )
(

LipHF |RN×∂B1
+ ‖ ∂

∂ p
HF‖C0(RN×∂B1)

+ 1 · Lip ∂
∂ p

HF |RN×∂B1

)
+ Lip (p �→ p

|p| ) · Lip ∂
∂ p

HF |RN×∂B1

≤ R ‖HF‖C1(RN×∂B1) + 2 R ‖DHF‖C0(RN×∂B1) + 2 R · Lip ∂
∂ p

HF |RN×∂B1

≤ 3 R ‖HF‖C1,1(RN×∂B1) .

Correspondingly the Lipschitz constant of x �−→ ∂
∂ p j

HF(x, p) is bounded from
above by 3 ‖DHF‖C0,1(RN×∂B1) ≤ 3 λ .

Furthermore, ∂
∂x j

HF(x, p) = |p| · ∂
∂x j

HF |(x, p
|p| )

has the consequence

Lip
(

x �→ ∂HF (x,p)
∂x j

)
≤ R ·λ ,

Lip
(

p �→ ∂HF (x,p)
∂x j

)
≤ R ·λ +R ·λ R

R>1≤ 2 R2 λ .

�

Proof (of Proposition 31 on page 277).

The semigroup property of reachable sets implies again

dK,N

(
ϑF(h, ϑF(t,K)), ϑF(t +h, K)

)
= 0,

dK,N

(
ϑF(t +h, K), ϑF(h, ϑF(t,K))

)
= 0

for all F ∈ LIP(H )
λ (RN ,RN), K ∈K (RN), h, t ≥ 0 since dK,N is a quasi–metric.
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According to Proposition 28 (on page 276), every map F ∈ LIP(H )
λ (RN ,RN) and

initial set K1 ∈KC1,1(RN) lead to a time T(ϑF ,K1) > 0 and a radius ρ > 0 such
that ϑF(t,K1)∈KC1,1(RN) has positive reach of radius ≥ ρ for any t < T(ϑF ,K1).
Lemma 30 guarantees for all K1 ∈KC1,1(RN) and K2 ∈K (RN) with K1 �= K2

limsup
h↓0

(
dK,N(ϑF (h,K1), ϑF (h,K2)) − dK,N(K1,K2)

h dK,N(K1,K2)

)+

≤ limsup
h↓0

1
h

(
e(9 e2λ h λ +λ) · h − 1

)
= 10 λ Def.= α(ϑF ; · , · )

and for every F,G ∈ LIP(H )
λ (RN ,RN)

limsup
h↓0

1
h

(
dK,N (ϑF(h, K1), ϑG(h, K2)) − dK,N (K1, K2) · e10 λ h

)
≤ limsup

h↓0

(
dK,N(K1, K2) · 1

h

(
e(9 e2λ h λ +λ) · h − e10 λ h

)
+ 6 N · ‖HF −HG‖C1(RN×∂B1) · e(9 e2λ h λ +λ) · h

)
= 6 N · ‖HF −HG‖C1(RN×∂B1).

This estimate justifies the definition

D̂(ϑF , ϑG; · , · ) Def.= 6 N · ‖HF −HG‖C1(RN×∂B1) .

Moreover Lemma 26 (on page 275) states the uniform Lipschitz continuity with
respect to time

dK,N

(
ϑF(s,K), ϑF(t,K)

)
≤ λ (eλ + 2) · (t− s)

for any 0≤ s≤ t ≤ 1 and K ∈K (RN).

Finally we have to verify

limsup
h↓0

dK,N

(
ϑF(t−h, K1), K2

) ≥ dK,N

(
ϑF(t,K1), K2

)
for all F ∈LIP(H )

λ (RN ,RN), K1 ∈KC1,1(RN), K2 ∈K (RN) and 0 < t < T(ϑF ,K1).
Proposition A.30 (on page 370) ensures the reversibility in time in [0,T(ϑF ,K1)[ ,
i.e. for every 0 < h < t < T(ϑF ,K1),

RN
∖

ϑF(t−h,K1) = ϑ−F

(
h, RN \ ϑF(t,K1)

)
.

Assuming F ∈ LIP(H )
λ (RN ,RN) (in the sense of Definition 25 on page 275), the

flow of the Hamiltonian system even induces a Lipschitz homeomorphism between
Graph NϑF (t−h,K1) and Graph NϑF (t,K1) since each limiting normal cone contains
exactly one direction and NϑF (t,K1)(·) = − N

RN \ϑF (t,K1) (·).
Thus, Corollary 23 (on page 274) implies

Graph NϑF (t,K1) = Limh↓0 Graph NϑF (t−h,K1)

and finally, dK,N

(
ϑF(t,K1), ϑF(t−h, K1)

) −→ 0 for h ↓ 0.

The last claim results from the triangle inequality of dK,N . �
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4.4.3 Existence of solutions due to transitional Euler compactness

For applying the existence results of § 4.3.3 (on page 262 ff.), we now have to
focus on an essential question: What are sufficient conditions on set-valued maps
F ∈ LIP(H )

λ (RN ,RN) for transitional Euler compactness with respect to dK,N ?

Definition 33. For any λ > 0 and ρ > 0 , the set LIP(H ρ◦ )
λ (RN ,RN) consists

of all set–valued maps F : RN � RN satisfying

(1.) F : RN � RN has compact convex values in K
ρ
◦ (RN).

(2.) HF(·, ·) ∈ C2(RN× (RN \{0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ .

Remark 34. LIP(H ρ◦ )
λ (RN ,RN) is a subset of LIP(H )

λ (RN ,RN) introduced in
Definition 25 (on page 275).
Its set-valued maps, however, even fulfill standard hypothesis (H̃ ρ

◦ ) (specified in
Definition A.33 on page 373). In particular, they make points evolve into convex
reachable sets of positive erosion for short times according to Proposition A.35.
This is the “geometrically smoothening” effect on reachable sets which we are now
using for verifying transitional Euler compactness.

Proposition 35.
For any λ ,ρ > 0, consider the maps F ∈ LIP(H ρ◦ )

λ (RN ,RN) (i.e. their reachable

sets, strictly speaking) as transitions on (K (RN), KC1,1(RN), dK,N , dK,N , 0)
in the sense of Definition 1 and Remark 3 (on page 250 f.).

Then,
(
K (RN), KC1,1(RN), dK,N , dK,N , 0, LIP(H ρ◦ )

λ (RN ,RN)
)

is transitionally

Euler compact in the following sense (see Definition 13 on page 262) :

Suppose each Gn : [0,1] −→ LIP(H ρ◦ )
λ (RN ,RN) to be piecewise constant (n ∈ N)

and set with arbitrarily fixed K0 ∈K (RN)

G̃n : [0,1]×RN � RN , (t,x) �−→ Gn(t)(x),

Kn(h) := ϑ
G̃n

(h,K0) for h≥ 0.

Furthermore let (h j) j∈N be a sequence in ]0,1[ with h j ↓ 0 and choose t ∈ ]0,1[ .

Then there exist a sequence nk ↗ ∞ of indices and a set K(t) ∈K (RN) satisfying

limsup
k−→∞

dK,N

(
Knk

(t), K(t)
)

= 0,

limsup
j−→∞

sup
k≥ j

dK,N

(
K(t), Knk

(t +h j)
)

= 0.
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In fact, we obtain as an immediate consequence of Theorem 16 (on page 263 f.):

Corollary 36 (Existence of compact-valued solutions w.r.t. dK,N).

Let f : K (RN)× [0,T ]−→ LIP(H ρ◦ )
λ (RN ,RN) satisfy∥∥H f (K1,t1) −H f (K2,t2)

∥∥
C1(RN×∂B1) ≤ ω(dK,N(K1,K2) + t2− t1)

for all K1,K2 ∈ K (RN) and 0 ≤ t1 ≤ t2 ≤ T with a modulus ω(·) of continuity

and consider the reachable sets of maps in LIP(H ρ◦ )
λ (RN ,RN) as transitions on

(K (RN), KC1,1(RN), dK,N , dK,N , 0) according to Proposition 31 (on page 277).

Then for every initial compact set K0 ∈K (RN), there always exists a solution

K : [0,T ]−→K (RN) to the mutational equation
◦
K (·) � f (K(·), ·) (in the sense

of Definition 7 on page 253 and Remark 3 on page 251) with K(0) = K0, i.e. here,

(a) limsup
h↓0

1
h
· (dK,N

(
ϑ f (K(t), t) (h, M), K(t+h)

) − dK,N(M, K(t)) · e10 λ h
) ≤ 0

for every compact N–dimensional submanifold M ⊂ RN with C1,1 boundary

and L 1-almost every t ∈ [0,T [.

(b) dK,N(K(s), K(t)) ≤ const(λ ,T ) · (t− s) for all 0≤ s < t < T.
�

Corollary 37 (Existence of compact-valued solutions to equations with delay).
Let τ > 0 be a fixed period, λ > 0 and assume for

f : BLip
(
[−τ,0], K (RN); dK,N , 0

)× [0,T ] −→ LIP(H ρ◦ )
λ (RN ,RN)

and L 1-almost every t ∈ [0,T [ :

lim
n→∞

∥∥H f (Mn(·),tn) −H f (M(·),t)
∥∥

C1(RN×∂B1) = 0

holds for any curve M(·) ∈ BLip
(
[−τ,0], K (RN); dK,N , 0

)
and sequences (tn)n∈N,

(Mn(·))n∈N in [0,T ] and BLip
(
[−τ,0], K (RN); dK,N , 0

)
respectively satisfying

lim
n→∞

tn = t, lim
n→∞

dK,N

(
M(s), Mn(s)

)
= 0 for every s ∈ [−τ,0].

For every function K0(·) ∈ BLip
(
[−τ,0], K (RN); dK,N , 0

)
, there exists a curve

K(·) ∈ BLip
(
[−τ,T ], K (RN); dK,N , 0

)
with K(·)∣∣[−τ,0] = K0(·) and

limsup
h↓0

1
h
·
(

dK,N

(
ϑ f (K(t+·)|[−τ,0], t) (h, M), K(t+h)

)− dK,N(M, K(t)) ·e10 λ h
)
≤ 0

for L 1-almost every t ∈ [0,T [ and any compact N–dimensional submanifold M of

RN with C1,1 boundary.

�
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Remark 38. We hesitate using the term “morphological equations” here because
we have usually reserved it for mutational equations in the metric space (K (RN),dl)
with transitions induced by LIP(RN ,RN) — as introduced by Aubin (see § 1.9 on
page 44 ff.). In this section, however, K (RN) is supplied with the other distance
function dK,N and we apply the mutational framework with “test elements”.
The characterization reveals that every solution to a mutational equation in this re-
cent generalized sense solves the morphological equation in the sense of Aubin
(see § 1.9.6 on page 58 ff.) whenever all its values are in KC1,1(RN).

Proof (of Proposition 35).

Every closed bounded ball in (K (RN),dl) is compact accord-
ing to Proposition 1.47 (on page 44). Hence, there exist a se-
quence of indices nk ↗ ∞ and a set K(t) ∈K (RN) with

dl(Knk
(t), K(t))−→ 0 (k −→ ∞).

Thus, dl(K(t),Knk
(t +h)) ≤ dl(K(t),Knk

(t)) + λ h −→ λ h

for k → ∞. Furthermore Corollary 23 (on page 274) implies

dK,N(Knk
(t), K(t)) −→ 0.

Now we want to prove that K(t) satisfies the claim by selecting subsequences of
(nk)k∈N for countably many times and finally applying Cantor’s diagonal construc-
tion.

An important tool is Proposition A.35 (on page 373). After choosing radius r̂ > 0
sufficiently large with

⋃
t∈[0,T ]

n∈N

Kn(t)⊂Br̂−1(0)⊂RN , it ensures the existence of σ =

σ(λ ,ρ, r̂) > 0 and ĥ = ĥ(λ ,ρ, r̂) > 0 such that the reachable set ϑ− G̃n(t+h−· , ·)(h, z)

is convex and has positive erosion of radius σ h for every h ∈ ]0, ĥ] and z ∈ Br̂(0).
In the following, we assume 0 < h j < ĥ for all j ∈ N without loss of generality.
Moreover, each set Kn(t) at time t > 0 is the closed r–neighbourhood of a compact
set with a sufficiently small radius r = r(n, t) > 0.

Now the asymptotic properties of

�e⊃
(

Graph �NK(t), Graph �NKnk
(t+h)

)
(k −→ ∞)

have to be investigated for each h ∈ ]0, ĥ].
According to Definition A.21 (on page 364), every limiting normal cone results from
the neighbouring proximal normal cones, i.e.

NC(x) Def.= Limsup y→x
y∈C

NP
C (y)

for every nonempty set C ⊂ RN and point x ∈ ∂C. Thus, Graph NC = Graph NP
C

and from now on, we confine our considerations to the excess

�e⊃
(

Graph �NK(t), Graph �NP
Knk

(t+h)

)
for any h ∈ ]0, ĥ].
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Pn,h := Kn(t) ∩ ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t + h))
is a subset of ∂Kn. More precisely, it consists of
all points x ∈ Kn(t) such that a solution of G̃n

starts in x at time t and reaches ∂ Kn(t + h) at
time t +h. In addition, every boundary point y

of Kn(t +h) is attained by such a solution.

By means of boundary solutions and their adjoint arcs, the Hamiltonian system in
Proposition 24 (on page 275) leads to the following estimate for every n ∈ N (sim-
ilarly to Lemma 26)

�e⊃
(

Graph �NKn(t)

∣∣∣Pn,h
, Graph �NP

Kn(t+h)

)
≤ const(λ ) · h.

In fact, whenever such an adjoint arc traces a proximal normal vector of Kn(t + h)
back to the boundary of Kn(t) is ends up in a proximal normal vector to Kn(t) (and
not just a limiting normal vector) because each point of the corresponding boundary
solution has evolved into convex sets of positive erosion shortly while time is going
back. Hence, we even obtain the estimate

�e⊃
(

Graph �NP
Kn(t)

∣∣∣Pn,h
, Graph �NP

Kn(t+h)

)
≤ const(λ ) · h.

The proximal normal cones NP

RN\Kn(t)
(x) = −NP

Kn(t) (x) contain exactly one

direction for every point x ∈ Pn,h as a consequence of [35, Lemma 6.4].

Indeed, NP

RN\Kn(t)
(x) �= /0 for all x ∈ ∂Kn(t) as Kn(t) is r-neighbourhood.

In particular, NP
Kn(t) (x) �= /0 for all x ∈ Pn,h

since ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t + h)) is a closed σ h–neighbourhood of a compact

set (Proposition A.35) and Kn(t) ∩
(
ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t +h))

)◦ = /0.

For the same reason, the proximal radius of Kn(t) at each x∈Pn,h (in its unique prox-
imal direction) is ≥ σ h. As this lower bound of proximal radius does not depend
on n ∈ N (but merely on h, λ ,ρ,K), Proposition A.53 (1.) (on page 387) ensures

�e⊃
(

Graph �NK(t), Graph �NP
Knk

(t)

∣∣∣Pn,h

)
−→ 0 (k −→ ∞)

for every h ∈ ]0, ĥ]. The triangle inequality of �e⊃ leads to the estimate for every h,

limsup
k−→∞

�e⊃
(

Graph �NK(t), Graph �NP
Knk

(t+h)

)
≤ const(λ ) · h.

For completing the proof of transitional Euler compactness, a sequence (h j) j∈N

in ]0, ĥ] with h j −→ 0 is given. By means of Cantor’s diagonal construction, we
obtain a subsequence (again denoted by) (nk)k∈N satisfying for every j ∈N, k ≥ j

�e⊃
(
Graph �NK(t), Graph �NP

Knk
(t+h j)

) ≤ const(λ ) · h j + 1
k
,

and thus, limsup
j−→∞

sup
k≥ j

dK,N(K(t), Knk
(t +h j)) = 0.

�
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4.5 Further example: Mutational equations for compact sets
depending on the normal cones

In the preceding section 4.4, we consider a geometric example with the evolution of
compact subsets of RN depending on their respective normal cones. Indeed, the set
K (RN) of all nonempty compact subsets of RN is supplied with the quasi-metric

dK,N(K1,K2)
Def.= dl(K1,K2) + �e⊃(Graph �NK1 , Graph �NK2).

KC1,1(RN) consisting of all nonempty compact subsets with C1,1 boundary is used
for “test elements”. Then for any parameter λ > 0 fixed, the set–valued maps
F : RN � RN satisfying

(1.) F : RN � RN has nonempty compact convex values,
(2.) HF(x, p) Def.= supv∈F(x) p · v belongs to C1,1(RN × (RN \{0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ

induce transitions on
(
K (RN), KC1,1(RN), dK,N , dK,N ,0

)
by means of their reach-

able sets of differential inclusions.
Under stronger assumptions about the Hamiltonian HF , the required properties of
transitional Euler compactness are also verified in Proposition 35 (on page 281) and
thus, we obtain the existence of solutions to the corresponding mutational equations
(in the sense of Definition 1 and Remark 3 on page 250 f.)

The estimates between solutions (presented in § 4.3.1 on page 255 ff.) do not
provide uniqueness though. Indeed, the smooth sets of KC1,1(RN) stay smooth
for short times while evolving along such a differential inclusion, but there is
no obvious lower bound of this period satisfying the approximating hypotheses of
Proposition 9 or 10 (on page 255 f.).
Lacking results about uniqueness are the key obstacle motivating a further example.

In this section, we introduce another distance function for describing evolutions
of compact subsets of RN in subsequent Definition 40. In contrast to the preceding
example of § 4.4, the substantial idea is now to

1. use all nonempty compact subsets as “test elements” (instead of KC1,1(RN)), but

2. take only the proximal normals with an exterior ball of radius
≥ j into consideration simultaneously. Choosing the parameter
j here as positive real number induces a family of distance func-
tions specified in subsequent Definition 40.
The essential geometric advantage is that Proposition A.40 (on page 379) pro-
vides an upper estimate how fast these exterior balls can shrink (at most) and
thus, the corresponding time parameter T j(·, ·) may depend on j, but not on the
“test set”.
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3. “record” the period h > 0 how long the compact set K(s+h)⊂ RN and the “test
set” ϑF(h,K(s)) have been evolving while being compared. This period deter-
mines the radii of exterior balls that are related with each other for calculating
the “distance” between these two sets.
The separate time component is to provide in-
formation about period h : The compact set
K(s+h) is supplied with a linearly increasing
time component whereas all “test sets” pre-
serve their initial time components. Then the
wanted period results from their difference.

For implementing this notion in the mutational
framework, we introduce an additional compo-
nent being either 0 (for “test sets”) or 1 (oth-
erwise) and indicating the growth of the time
component while evolving (see Definition 43
on page 288 below).

4.5.1 Specifying sets and distance functions

Now we consider

E := {1}×K (RN),
D := {0}×K (RN) and thus,

Ẽ := R×{1}×K (RN),
D̃ := R×{0}×K (RN).

In comparison with the earlier geometric example in § 4.4, the main advantage
of this second approach is the uniqueness stated in subsequent Proposition 50 (on
page 295).
From now on, fix the parameter Λ > 0 arbitrarily. It is used for both the distance
function d̃K, j in Definition 40 and the set–valued maps (whose reachable sets in-
duce candidates for timed transitions) in Definition 42.

Definition 39. Let C ⊂ RN be a nonempty closed set.

For any ρ > 0, the set NP
C,ρ(x) ⊂ RN consists of all proximal

normal vectors η ∈ NP
C (x) \ {0} with the proximal radius ≥ ρ

(and thus might be empty). Furthermore �NP
C,ρ(x) := NP

C,ρ(x)∩B.

Definition 40. Set
K̃ �(RN) := R×{1}×K (RN),

K̃ �−(RN) := R×{0}×K (RN).
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For each index j,κ ∈ [0,1], define

d̃K, j,κ : (K̃ �−(RN)∪ K̃ �(RN))× (K̃ �−(RN)∪ K̃ �(RN))−→ [0,∞[ ,

by

d̃K, j,κ
(
(s,μ,C), (t,ν ,D)

)
:=

dl(C,D) +
∫ ∞

j
ψ(ρ+κ+200Λ |t− s|) · �e⊂

(
Graph �NP

D, (ρ+κ+200Λ |t−s|),

Graph �NP
C,ρ

)
dρ

with a fixed nonincreasing weight function ψ ∈C∞
0 ([0,2[), ψ ≥ 0. Furthermore set

d̃K, j

(
(s,μ,C), (t,ν ,D)

)
:= sup

κ∈ ]0,1]
d̃K, j,κ

(
(s,μ,C), (t,ν ,D)

)
= limsup

κ ↓0
d̃K, j,κ

(
(s,μ,C), (t,ν ,D)

)
.

In fact, the second component (being either 0 or 1) does not have any influence on
d̃K, j and d̃K, j,κ . Its purpose will only be to determine the evolution of time com-
ponents for “test elements” and “normal” elements in a different way (as specified
in subsequent Definition 43).

Lemma 41. For each j ∈ [0,1], the function d̃K, j is reflexive and satisfies the

timed triangle inequality on K̃ �−(RN)∪ K̃ �(RN). Moreover, (d̃K, j,κ)κ∈ ]0,1]
satisfies the following generalization of the timed triangle inequality:

d̃K, j,κ+κ ′
(
K̃1, K̃3

) ≤ d̃K, j,κ ′
(
K̃1, K̃2

)
+ d̃K, j,κ

(
K̃2, K̃3

)
for any κ,κ ′ ∈ ]0,1], K̃1, K̃2, K̃3 ∈ K̃ �−(RN)∪K̃ �(RN) with π1 K̃1 ≤ π1 K̃2 ≤ π1 K̃3.

Thus, (d̃K, j) j∈ ]0,1] and (d̃K, j,κ) j,κ∈ ]0,1] satisfy the hypotheses (H1), (H3’) of § 4.1.

Proof. Reflexivity is obvious. For verifying the timed triangle inequality, choose
any (t1,μ1,K1), (t2,μ2,K2), (t3,μ3,K3) ∈ R×{0,1}×K (RN) with t1 ≤ t2 ≤ t3.
Then, we obtain for every κ,κ ′ > 0

�e⊂
(

Graph �NP
K3, (ρ+κ+κ ′+200Λ (t3−t1)), Graph �NP

K1,ρ

)
≤ �e⊂

(
Graph �NP

K3, (ρ+κ+κ ′+200Λ (t3−t1)), Graph �NP
K2, (ρ+κ+200Λ (t2−t1))

)
+ �e⊂

(
Graph �NP

K2, (ρ+κ+200Λ (t2−t1)), Graph �NP
K1,ρ

)
.

With regard to the weighted integral in d̃K, j,κ+κ ′
(
(t1,μ1,K1), (t3,μ3,K3)

)
, a simple

translation of coordinates (for the first distance term) and the monotonicity of ψ
(related with the second distance term) imply

d̃K, j,κ+κ ′
(
(t1,μ1,K1), (t3,μ3,K3)

) ≤
≤ d̃K, j,κ ′

(
(t1,μ1,K1), (t2,μ2,K2)

)
+ d̃K, j,κ

(
(t2,μ2,K2), (t3,μ3,K3)

)
≤ d̃K, j

(
(t1,μ1,K1), (t2,μ2,K2)

)
+ d̃K, j

(
(t2,μ2,K2), (t3,μ3,K3)

)
. �
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4.5.2 Reachable sets induce timed transitions on
(K̃ �(RN), K̃ �−(RN))

The Hamilton condition specified in Proposition 24 (on page 275) is to bridge the
gap between the geometric evolution of proximal normal cones and its analytical
description. In particular, Corollary A.41 (on page 379) gives a bound how fast the
exterior ball in a proximal direction can change its radius at most. For applying this
result as a tool in a moment, we choose the following class of set-valued maps:

Definition 42. For Λ > 0 fixed, the set LIP(C2)
Λ (RN ,RN) consists of all set–

valued maps F : RN � RN satisfying

1.) F : RN � RN has nonempty compact convex values,
2.) HF(x, p) := sup

v∈F(x)
p · v is twice continuously differentiable in RN× (RN\{0}),

3.) ‖HF‖C2(RN× ∂B1) < Λ .

These set–valued maps of LIP(C2)
Λ (RN ,RN) induce the candidates for timed transi-

tions on (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1],(d̃K, j) j∈ ]0,1], 0) in the following sense:

Definition 43. For any set–valued map F ∈LIP(C2)
Λ (RN ,RN), element (t,μ,K)∈

R×{0,1}×K (RN) = K̃ �−(RN) ∪ K̃ �(RN) and time h > 0, set

ϑ̃F

(
h, (t,μ,K)

)
:= (t + μ h, μ, ϑF(h,K))

with the reachable set ϑF(h,K)⊂RN of the differential inclusion x(·)∈ F(x(·)) a.e.

Proposition 44. The maps

ϑ̃F : [0,1] × (K̃ �−(RN)∪ K̃ �(RN)
) −→ K̃ �−(RN)∪ K̃ �(RN)

of all F ∈ LIP(C2)
Λ (RN ,RN) introduced in Definition 43 induce timed transitions on

the tuple (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0) with

α j(ϑ̃F ; · , ·) Def.= 10 Λ e2Λ ·τ( j,Λ),

β j(ϑ̃F ; ·) Def.= Λ (1+‖ψ‖L1 (eΛ +1)),

γ j(ϑ̃F) Def.= 0,

T j(ϑ̃F , ·) Def.= min{τ( j,Λ), 1} (mentioned in Corollary A.41),

D̂ j(ϑ̃F , ϑ̃G; · , ·) Def.= (1+6N ‖ψ‖L1) · ‖HF −HG‖C1(RN×∂B1) .

The proof consists of several steps which we first summarize and then verify
in detail. They are very similar to the proofs in § 4.4.2 indeed, but take the prox-
imal radii into consideration additionally.
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Lemma 45. For every set–valued map F ∈ LIP(C2)
Λ (RN ,RN), initial element

K̃ = (b,1,K) ∈ K̃ �(RN) and any times 0 ≤ s < t ≤ 1,

d̃K, j

(
ϑ̃F

(
s, K̃
)
, ϑ̃F

(
t, K̃
)) ≤ Λ (1+‖ψ‖L1 (eΛ +1)) · |t− s|.

Lemma 46. For any j ∈ ]0,1], let τ( j,Λ) > 0 denote the time period mentioned

in Corollary A.41 (on page 379). Choose any maps F, G ∈ LIP(C2)
Λ (RN ,RN), initial

elements K̃1 = (t1,0,K1) ∈ K̃ �−(RN), K̃2 = (t2,1,K2) ∈ K̃ �(RN) with t1 ≤ t2.

Then for all h ∈ [0,τ( j,Λ)[,

d̃K, j

(
ϑ̃F(h, K̃1), ϑ̃G(h, K̃2)

)
≤

≤ e(λH +Λ) h ·
(

d̃K, j(K̃1, K̃2) + (1+6N ‖ψ‖L1) · h · ‖HF −HG‖C1(RN×∂B1)

)
with the abbreviation λH := 9Λ e2Λ ·τ( j,Λ).

Corollary 47. Under the assumptions of Lemma 46,

d̃K, j

(
ϑ̃F(t+h, K̃1), ϑ̃G(h, K̃2)

)
≤

≤ e(λH +Λ) h ·
(

d̃K, j(ϑ̃F(t, K̃1), K̃2) + (1+6N ‖ψ‖L1) h ‖HF −HG‖C1(RN×∂B1)

)
for all h, t ≥ 0 with t +h < τ( j,Λ) and

K̃1 = (t1,0,K1) ∈ K̃ �−(RN), K̃2 = (t2,1,K2) ∈ K̃ �(RN) with t1 ≤ t2.

Proof (of Lemma 45). Obviously, the Pompeiu–Hausdorff distance satisfies for
every s, t ≥ 0

dl
(
ϑF(s,K), ϑF(t,K)

) ≤ sup
RN

‖F(·)‖∞ · (t− s) ≤ Λ (t− s).

Let τ( j,Λ) > 0 denote the time period mentioned in Corollary A.41 (on page 379).
Without loss of generality, we can now assume 0 < t − s < 1

200Λ τ( j,Λ) as a
consequence of the timed triangle inequality.

For any (x, p) ∈Graph �NP
ϑF (t,K), (ρ+200Λ (t−s)) and ρ ≥ j with ρ+200Λ (t− s)≤ 2,

Corollary A.41 and Proposition 24 (on page 275) provide both a solution x(·) ∈
C1([s, t],RN) and its adjoint arc p(·) ∈C1([s, t],RN) satisfying{

x′(σ) = ∂
∂ p

HF(x(σ), p(σ)) ∈ F(x(σ)), x(t) = x, x(s) ∈ ∂ϑF(s,K),

p′(σ) = − ∂
∂x

HF(x(σ), p(σ)), p(t) = p, p(s) ∈ NP
ϑF (s,K)(x(s))

and, p(s) has proximal radius ≥ ρ +200Λ (t− s) − 81Λ (t− s) > ρ.
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Obviously, HF is positively homogeneous with respect to its second argument and
thus, its definition implies |p′(σ)| ≤ Λ |p(σ)| for all σ . Moreover |p| ≤ 1 im-
plies that the projection of p on any cone is also contained in B1. So finally, we
obtain similarly to Lemma 26 (on page 275)

�e⊂
(
(x, p), Graph �NP

ϑF (s,K),ρ

)
≤ |x− x(s)| + |p− p(s)|
≤ sup

s≤σ≤ t

(
| ∂

∂ p
HF | + | ∂

∂x
HF |

)∣∣∣
(x(σ),p(σ))

· (t− s)

≤
(

Λ + Λ eΛ t
)

· (t− s).
�

Proof (of Lemma 46). Proposition 1.50 (on page 46) concludes the following
estimate of the Pompeiu–Hausdorff distance from Filippov’s Theorem A.6 about
differential inclusions (with Lipschitz continuous right-hand side)

dl
(

ϑF(h,K1), ϑG(h,K2)
)
≤ dl(K1,K2) · eΛ h + sup

RN

dl
(

F(·),G(·)
)

· eΛ h−1
Λ

≤ dl(K1,K2) · eΛ h + sup
RN×∂B1

|HF −HG| · h eΛ h .

According to Definition 43,

ϑ̃F(h, K̃1) ∈ {t1}×{0}×K (RN) ⊂ K̃ �−(RN),

ϑ̃G(h, K̃2) ∈ {t2 +h}×{1}×K (RN) ⊂ K̃ �(RN).

Now for any κ ∈ ]0,1] and ρ ≥ j with ρ + κ + 200Λ (t2 − t1 + h) ≤ 2, we need
an upper bound of �e⊂

(
Graph �NP

ϑG(h,K2), (ρ+κ+200Λ (t2−t1+h)), Graph �NP
ϑF (h,K1), ρ

)
:

Choose any δ > 0, x ∈ ∂ ϑG(h,K2) and p ∈ NP
ϑG(h,K2)(x) ∩ ∂B1 with proximal

radius ≥ ρ + κ + 200Λ (t2 − t1 + h) arbitrarily. According to Corollary A.41 and
Proposition 24, there exist a solution x(·) ∈ C1([0,h],RN) and its adjoint arc
p(·) ∈C1([0,h],RN) fulfilling⎧⎨⎩

x′(·) = ∂
∂ p

HG(x(·), p(·)) ∈ G(x(·)), p′(·) = − ∂
∂x

HG(x(·), p(·)) ∈Λ |p(·)| ·B
x(0) ∈ ∂K2, p(0) ∈ NP

K2
(x(0)),

x(h) = x, p(h) = p,

and, the proximal radius at x(0) in direction p(0) is

≥ ρ +κ +200Λ (t2−t1+h)−81Λ h > ρ +κ +100Λ h+200Λ (t2−t1).

Gronwall’s inequality ensures e−Λ h ≤ |p(·)| ≤ eΛ h in [0,h] and hence,

p(0) e−Λ h ∈ �NP
K2

(x(0))\{0}.
Now let (y0, q̂0) denote an element of Graph �NP

K1, (ρ+100Λ h) with q̂0 �= 0 and∣∣∣(y0, q̂0) −
(
x(0), p(0) e−Λ h

)∣∣∣ ≤
≤ �e⊂

(
Graph �NP

K2, (ρ+κ+100Λ h+200Λ (t2−t1)), Graph �NP
K1, (ρ+100Λ h)

)
+ δ .



4.5 Further example: Mutational equations for compact sets depending on normal cones 291

As another consequence of Corollary A.41, we get a solution y(·) ∈C1([0,h],RN)
and its adjoint arc q(·) satisfying⎧⎪⎨⎪⎩

y′(·) = ∂
∂ p

HF(y(·), q(·)), q′(·) = − ∂
∂y

HF(y(·), q(·)) ∈Λ |q(·)| ·B
y(0) = y0, q(0) = q̂0 eΛ h �= 0,
y(h) ∈ ∂ ϑF(h,K1), q(h) ∈ NP

ϑF (h,K1)(y(h))

and the proximal radius at y(h) in direction q(h) is ≥ ρ +100Λ h − 81Λ h > ρ.
HF is assumed to be twice continuously differentiable with ‖HF‖C2(RN× ∂B1) < Λ .

Moreover, HF(x, p) is positively homogeneous with respect to p and thus, the

derivative of HF is λH –Lipschitz continuous in RN × (B
eΛ ·τ( j,Λ) \

◦
Be−Λ ·τ( j,Λ) )

with the abbreviation λH := 9 Λ e2Λ ·τ( j,Λ) (due to Lemma 32 on page 279).
Correspondingly to the proof of Lemma 30 (on page 277), the Theorem of Cauchy–
Lipschitz applied to the Hamiltonian system leads to

�e⊂
(
(x, p), Graph �NP

ϑF (h,K1),ρ

)
≤
∣∣∣(x, p) − (y(h), q(h))

∣∣∣
≤ eλH ·h ·

∣∣∣(x(0), p(0)) − (y0, q̂0 eΛ h)
∣∣∣ + eλH ·h−1

λH
·sup
[0,h]

|DHF −DHG|
∣∣∣
(x(·),p(·))

.

HF and HG are positively homogeneous with respect to the second argument and
thus, ∣∣∣ ∂

∂x j
(HF −HG)|(x(s), p(s))

∣∣∣ ≤ eΛ h ‖DHF −DHG‖C0(RN×∂B1),∣∣∣ ∂
∂ p j

(HF −HG)|(x(s), p(s))

∣∣∣ ≤ 3 · ‖HF −HG‖C1(RN×∂B1).

We obtain

�e⊂
(
(x, p), Graph �NP

ϑF (h,K1),ρ

)
≤ e(λH +Λ) h

(∣∣∣(x(0), p(0) e−Λ h) − (y0, q̂0)
∣∣∣ + h ·6 N ‖HF −HG‖C1(RN×∂B1)

)
and, since δ > 0 is arbitrarily small and |p|= 1,

�e⊂
(

Graph �NP
ϑG(h,K2), (ρ+κ+200Λ (t2−t1+h)), Graph �NP

ϑF (h,K1), ρ

)
≤ e(λH +Λ) h ·

{
�e⊂
(

Graph �NP
K2, (ρ+κ+100Λ h+200Λ (t2−t1)), Graph �NP

K1, (ρ+100Λ h)

)
+ 6 N h · ‖HF −HG‖C1(RN×∂B1)

}
.

With regard to d̃K, j,κ

(
ϑ̃F(h, K̃1), ϑ̃G(h, K̃2)

)
, integrating over ρ and the mono-

tonicity of the weight function ψ (supposed in Definition 39) leads to the claimed
estimate for all h ∈ [0,τ( j,Λ)[. �

Proof (of Corollary 47). It results directly from Lemma 46 since

ϑ̃F(t+h, K̃1) = {t1}×{0}×ϑF(t+h,K1) = ϑ̃F

(
h, ϑ̃F(t, K̃1)

)
,

ϑ̃F(t, K̃1) = {t1}×{0}×ϑF(t,K1) ∈ K̃ �−(RN). �
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Proof (of Proposition 44). The semigroup property

ϑ̃F(h, ϑ̃F(t, K̃)) = ϑ̃F(t +h, K̃)

holds for all F ∈ LIP(C2)
λ (RN ,RN), K̃ ∈ K̃ �−(RN)∪ K̃ �(RN), h, t ≥ 0.

Moreover, Definition 43 has the immediate consequences for every K̃ ∈ K̃ �(RN),
Z̃ ∈ K̃ �−(RN) and h ∈ [0,1]

ϑ̃F(0, K̃) = K̃

ϑ̃F(h, Z̃) ∈ {π1 Z̃}×{0}×K (RN)⊂ K̃ �−(RN)
ϑ̃F(h, K̃) ∈ {h+π1 K̃}×{1}×K (RN)⊂ K̃ �(RN)

i.e., conditions (1.), (6.), (7.) of Definition 1 (on page 250) are also satisfied.

Set T j(ϑ̃F , ·) Def.= min{τ( j,Λ),1} with the time parameter τ( j,Λ) > 0 men-
tioned in Corollary A.41 (on page 379). Then, Corollary 47 guarantees for all
Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN), t ∈ [0,T j(ϑ̃F , Z̃)[ with t +π1 Z̃ ≤ π1 K̃

limsup
h↓0

(
d̃K, j

(
ϑ̃F (t+h, Z̃), ϑ̃F (h, K̃)

)
− d̃K, j(ϑ̃F (t,Z̃), K̃)

h d̃K, j(ϑ̃F (t,Z̃), K̃)

)+

≤ λH +Λ ≤ 10Λ e2Λ ·τ( j,Λ).

Lemma 45 implies condition (4.’) of Definition 1 with the Lipschitz constant

β j(ϑ̃F ; ·) Def.= Λ (1+‖ψ‖L1 (eΛ +1)) .

Setting for all Z̃ ∈ K̃ �−(RN) and F,G ∈ LIP(C2)
Λ (RN ,RN),

D̂ j(ϑ̃F , ϑ̃G; Z̃, ·) Def.= (1+6N ‖ψ‖L1) ‖HF −HG‖C1(RN×∂B1) .

hypotheses (H5’) – (H7’) (on page 251) are fulfilled due to Corollary 47.

Finally condition (8.) of Definition 1 has to be verified, i.e.,

limsup
h↓0

d̃K, j

(
ϑ̃F(t−h, Z̃), K̃

) ≥ d̃K, j

(
ϑ̃F(t, Z̃), K̃

)
for all Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN), t ∈ [0,T j(ϑ̃F , Z̃)] with t +π1 Z̃ ≤ π1 K̃.
Indeed, dl

(
ϑF(t−h,Z), ϑF(t,Z)

)−→ 0 holds for h ↓ 0 and any set Z ∈K (RN).
According to Proposition A.53 (1.) (on page 387),

Limsuph↓0 Graph �NP
ϑF (t−h,Z),ρ ⊂ Graph �NP

ϑF (t,Z),ρ

and thus, we obtain for every Z̃ = (a,0,Z) ∈ K̃ �−(RN), K̃ = (b,1,K) ∈ K̃ �(RN),
ρ > 0, κ ∈ ]0,1] and t ∈ [0,T j(ϑ̃F , Z̃)] with a+ t ≤ b

limsup
h↓0

�e⊂
(

Graph �NP
K, (ρ+κ+200Λ |b−a|), Graph �NP

ϑF (t−h,Z),ρ

)
≥ �e⊂

(
Graph �NP

K, (ρ+κ+200Λ |b−a|), Graph �NP
ϑF (t,Z),ρ

)
.

Due to π1 ϑ̃F(t − h, Z̃) = a = π1 ϑ̃F(t, Z̃), this inequality implies the wanted
relation with respect to d̃K, j. �
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4.5.3 Existence due to strong-weak transitional Euler compactness

In §§ 4.3.3, 4.3.4, the results about existence of timed solutions to mutational
equations are based on two appropriate forms of transitional Euler compactness
(see Definitions 13, 17). Considering a converging sequence of compact sets, some
features of their proximal cones are summarized in Appendix A.7 (on page 387 f.).
In particular, the inclusion

Graph NP
K,ρ ⊂ Limsupn→∞ Graph NP

Kn,ρ
does not hold for every radius ρ > 0 in general. This rather technical aspect is the
obstacle why we now prefer the second approach of § 4.3.4 using “strongly-weakly
transitionally Euler compact” and Existence Theorem 19 (on page 268).
In fact, each timed solution K̃(·) = (·,1,K(·)) : [0,T ] −→ K̃ �(RN) induces a
solution to the underlying morphological equation in the sense of Aubin (due to
K̃ �−(RN)∼= K̃ �(RN)).

Lemma 48.
The tuple (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j,κ) j,κ∈ ]0,1], (d̃K, j) j∈ ]0,1],

(d̃K, j,κ) j,κ∈ ]0,1], 0, LIP(C2)
Λ (RN ,RN)) is strongly-weakly transitionally Euler com-

pact (in the sense of Definition 17 on page 267), i.e. here:

Suppose each function Gn : [0,1] −→ LIP(C2)
Λ (RN ,RN) (n ∈ N) to be piecewise

constant and set with some arbitrarily fixed K̃0 = (t0,1,K0) ∈ K̃ �(RN)
G̃n : [0,1]×RN � RN , (t,x) �−→ Gn(t)(x),
K̃n(h) := {t0 +h}×{1}×ϑ

G̃n
(h,K0) ∈ K̃ �(RN) for h ∈ [0,1].

For any t ∈ [0,1[ and sequence hm ↘ 0, there exist a sequence nk ↗ ∞ of indices

and an element K̃ = (t,1,K) ∈ K̃ �(RN) satisfying for every j,κ ∈ ]0,1]
lim

k→∞
d̃K, j,κ(K̃nk

(t), K̃) = 0,

lim
m→∞

sup
k≥m

d̃K, j(K̃, K̃nk
(t+hm)) = 0.

Proposition 49.
Regard the maps ϑ̃F of all set–valued maps F ∈ LIP(C2)

Λ (RN ,RN) (as in Definitions

42, 43) as timed transitions on (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0)
according to Proposition 44.

For f̃ : K̃ �(RN)× [0,T ]−→ LIP(C2)
Λ (RN ,RN), suppose continuity in the sense that

‖H
f̃ (K̃,t)−H

f̃ (K̃m,tm)‖C1(RN×∂B1)
m→∞−→ 0

whenever tm ↘ t and d̃K,0(K̃, K̃m)−→ 0 (K̃, K̃m ∈ K̃ �(RN), π1 K̃ ≤ π1 K̃m).

Then for every initial element K̃0 ∈ K̃ �(RN), there exists a timed solution K̃ :

[0,T ]−→ K̃ �(RN) to the mutational equation

◦
K̃ (·) � f̃ (K̃(·), ·) with K̃(0) = K̃0.

In particular, limsup
h↓0

1
h
·dl
(

ϑ
f̃ (K̃(t), t) (h, K(t)), K(t+h)

)
= 0 for L 1-a.e. t.
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Proof (of Lemma 48). It is very similar to the proof of Proposition 35 (on
page 283 ff.), but takes the proximal radii into consideration additionally.

Each closed bounded ball in (K (RN),dl) is compact due to Proposition 1.47 (on
page 44). Hence, there exist a sequence nk ↗ ∞ of indices and K̃ = (t,1,K) ∈
K̃ �(RN) with dl(Knk

(t), K)−→ 0 (k−→∞). Proposition A.53 (3.) (on page 387)
ensures for all ρ,κ > 0

�e⊂
(
Graph �NP

K,ρ+κ , Graph �NP
Knk

(t),ρ
) −→ 0 (k −→ ∞)

and thus, d̃K, j,κ
(
K̃nk

(t), K̃
) −→ 0 for every j,κ ∈ ]0,1].

Now we prove sup
k≥m

d̃K, j

(
K̃, K̃nk

(t +hm)
) −→ 0 for m−→ ∞,

i.e. in particular, the convergence is uniform in κ ∈ ]0,1].

Indeed, �e⊂
(

Graph �NP
Knk

(t),ρ , Graph �NP
K,ρ

)
−→ 0 (k −→ ∞)

results from Proposition A.53 (1.) (on page 387) for every ρ > 0 and hence,
Lebesgue’s Theorem of Dominated Convergence guarantees∫ 2

0
�e⊂
(

Graph �NP
Knk

(t),ρ , Graph �NP
K,ρ

)
dρ −→ 0 (k −→ ∞).

Thus,
d̃K, j

(
K̃, K̃nk

(t)
) ≤

≤ dl
(
K, Knk

(t)
)

+ ‖ψ‖L∞ ·
∫ 2

0
�e⊂
(

Graph �NP
Knk

(t),ρ , Graph �NP
K,ρ

)
dρ

−→ 0 (k −→ ∞).

Finally the timed triangle inequality of d̃K, j (according to Lemma 41 on page 287)
and the uniform Lipschitz continuity in time (according to Lemma 45 on page 289)
imply for any sequence hm ↘ 0

sup
k≥m

d̃K, j

(
K̃, K̃nk

(t +hm)
) −→ 0 (m−→ ∞). �

Proof (of Proposition 49). It results from Existence Theorem 19 (on page 268).
Indeed, d̃K,0 and d̃K, j ( j ∈ ]0,1]) satisfy

dl(K1,K2) ≤ d̃K, j(K̃1, K̃2) ≤ d̃K,0(K̃1, K̃2)

≤ d̃K, j(K̃1, K̃2) + ‖ψ‖L∞ (‖K1‖∞+‖K2‖∞+2) j

for all K̃1 = (t1,μ1,K1), K̃2 = (t2,μ2,K2) ∈ K̃ �(RN)∪ K̃ �−(RN).
For any sequence

(
K̃m = (tm,1,Km)

)
m∈N

in K̃ �(RN) and K̃ = (t,1,K)∈ K̃ �(RN)
suppose tm ↘ t and d̃K, j(K̃, K̃m)−→ 0 (m→ ∞) for each j ∈ ]0,1]. Then,

d̃K,0(K̃, K̃m) = limsup
j↓0

d̃K, j(K̃, K̃m) m→∞−→ 0

and finally ‖H
f̃ (K̃,t)−H

f̃ (K̃m,tm)‖C1(RN×∂B1)
m→∞−→ 0 – as needed for Theorem 19.�
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4.5.4 Uniqueness of timed solutions

In comparison with the preceding geometric example in § 4.4, an essential advan-
tage of the current tuple

(K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0)

is that Proposition 9 (on page 255) leads to sufficient conditions (on the right-hand
side f̃ ) for the uniqueness of timed solutions to the mutational initial value problem.

Proposition 50. For f̃ : (K̃ �(RN)∪K̃ �−(RN))× [0,T ]−→LIP(C2)
Λ (RN ,RN),

suppose that there exist a modulus ω̂(·) of continuity and a constant L≥ 0 with

‖H
f̃ (Z̃,s)−H

f̃ (K̃,t)‖C1(RN×∂B1) ≤ L · d̃K,0(Z̃, K̃) + ω̂(t− s)

for all 0≤ s≤ t ≤ T and Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN) (π1 Z̃ ≤ π1 K̃).

Then for every initial K̃0 ∈ K̃ �(RN), the timed solution K̃ : [0,T ]−→ K̃ �(RN)

of the mutational equation

◦
K̃ (·) � f̃ (K̃(·), ·) with K̃(0) = K̃0 is unique.

Proof. It results from Proposition 9 (on page 255) in combination with the
Lipschitz continuity of f̃ :

For any element K̃0 = (t0,1,K0) ∈ K̃ �(RN) fixed, let K̃1(·) = (t0 + ·,1,K1(·))
and K̃2(·) = (t0 + ·,1,K2(·)) denote two timed solutions [0,T ] −→ K̃ �(RN) to

the mutational equation
◦

K̃n (·) � f̃ (K̃n(·), ·) with K̃1(0) = K̃0 = K̃2(0).

Then the continuity of K̃1(·), K̃2(·) with respect to each d̃K, j (in forward time di-
rection) implies the continuity of K1(·),K2(·) : [0,T ] −→K (RN) w.r.t. dl. Hence,
R > 1 can be chosen sufficiently large with

K1(t) ∪ K2(t) ⊂ BR−1(0) ⊂ RN for all t ∈ [0,T [.

Set R̂ := 4 (R+1) (‖ψ‖L1 +1) > R as an additional abbreviation.

Without loss of generality, we can restrict our considerations to compact subsets
M1,M2 of the closed ball B

R̂
(0)⊂ RN . In particular, for all j ∈ ]0,1], we obtain

d̃K,0 ((t1,0,M1), (t2,1,M2)) ≤ d̃K, j ((t1,0,M1), (t2,1,M2))+‖ψ‖L∞ 2(R̂+1) j

implying∥∥H
f̃ (Z̃,s)−H

f̃ (K̃,t)

∥∥
C1(RN×∂B1) ≤ L · d̃K, j(Z̃, K̃) + L‖ψ‖L∞ 2 (R̂+1) · j + ω̂(t−s)

for all s≤ t ≤ T, Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN) with π1 Z̃ ≤ π1 K̃, Z,K ⊂ B
R̂
(0).



296 4 Introducing distribution-like solutions to mutational equations

In regard to Proposition 9, the auxiliary function δ j : [0,T ]−→ [0,∞[

δ j(t) := inf
Z̃∈K̃ �− (RN ),

π1 Z̃ < t0+t

(
d̃K, j(Z̃, K̃1(t)) + d̃K, j(Z̃, K̃2(t))

)
has the obvious upper bound

δ j(t) ≤ dl(K1(t),K2(t))+‖ψ‖L1 (2R+2) < 1
2 R̂

as the choice of “test set” Z̃ := (t0+t−δ , 0, K1(t)) with any small δ > 0 shows.
Thus, δ j(t) can be described as infimum of “test sets” Z̃ = (s,0,Z) ∈ K̃ �−(RN)
satisfying Z ⊂ B

R̂
(0)⊂ RN additionally:

δ j(t) = inf
Z̃∈ K̃ �− (RN ):

π1 Z̃ < t0+t, ‖Z‖∞≤ R̂

(
d̃K, j(Z̃, K̃1(t)) + d̃K, j(Z̃, K̃2(t))

)
.

Furthermore, the time parameter T j(·, ·) (specified in Proposition 44 on page 288
and characterized in Corollary A.41 on page 379) depends only on j ∈ ]0,1] and
Λ . Due to K̃1(0) = K̃2(0), Proposition 9 and the Lipschitz continuity of H

f̃ ( · ,s)
mentioned before guarantee for each t ∈ [0,T ] and j ∈ ]0,1]

δ j(t) ≤ 2 · L‖ψ‖L∞ 2 (R̂+1) j · t e(L+10Λ e2Λ ) · t j↓0−→ 0

in the same way as we have already proved Proposition 1.24 (on page 32).
Finally, the triangle inequality of the Pompeiu-Hausdorff distance dl implies

dl(K1(t), K2(t)) ≤ inf
j>0

δ j(t) = 0 .

�



Chapter 5
Mutational inclusions in metric spaces

After specifying sufficient conditions for the existence of solutions to mutational
equations (in the successively generalized framework of the preceding chapters),
the next step of interest is based on the notion of admitting more than just one tran-
sition for the mutation of the wanted curve at (almost) every state of the basic set Ẽ.
This goal corresponds to the step from ordinary differential equations to differential
inclusions in the Euclidean space, for example.

In this chapter, we are going to discuss two situations.
First we investigate mutational inclusions with continuous right-hand side in § 5.1.
This direction is motivated by the classical results of Antosiewicz and Cellina [7],
but has to make the challenging step beyond the traditional border of vector spaces.
To be more precise, we extend the conclusions of Kisielewicz from separable Ba-
nach spaces in [80] to metric spaces here. In particular, the existence of measurable
selections of set-valued maps is a key tool and thus, we restrict these considerations
to the mutational framework with transitions in a metric space.

Second we provide existence results for solutions to inclusions with state constraints
in § 5.2. Following the classical approximation of Haddad for differential inclusions
in RN , we need more “structure” of “transition curves”. Indeed, this concept uses
weak sequential compactness of curves whose values are transitions. For this rather
technical reason, we focus on morphological inclusions in (K (RN),dl) and find a
counterpart for the well-known viability theorem about differential inclusions in RN

[13].

Whenever sufficient conditions on the existence of solutions with state constraints
are available, it is not really difficult to formulate and solve control problems whose
states are not in vector spaces. Subsequent § 5.3 gives more details about the special
case of morphological control problems in (K (RN),dl).

297
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5.1 Mutational inclusions without state constraints

In a word, we return to the topological environment of metric spaces and in contrast
to Chapter 2, we take only one metric on E into consideration:

General assumptions for § 5.1

Let (E,d) be a nonempty separable metric space. �·� : E −→ [0,∞[ is supposed to
be lower semicontinuous with respect to d.
Θ(E,d,�·�) denotes a set of transitions in the sense of Definition 2.2 (on page 70).
Supply the transition set Θ(E,d,�·�) with the topology induced by

(
D(·, ·;r)

)
r≥0,

i.e., ϑn −→ ϑ (n−→ ∞) is equivalent to lim
n→∞

D(ϑn,ϑ ;r) = 0 for each r ≥ 0.

In addition, Θ(E,d,�·�) is supposed to be Hausdorff, separable and complete.

Due to Definition 2.5 (on page 71), each function D(ϑ1,ϑ2; ·) : [0,∞[−→ [0,∞[(
ϑ1,ϑ2 ∈Θ(E,d,�·�)) is nondecreasing and thus, the topology of Θ(E,d,�·�) is

induced by a pseudo–metric like, for example,

Ď(ϑ1,ϑ2) :=
∞

∑
n=1

2−n D(ϑ1,ϑ2; n)
1 + D(ϑ1,ϑ2; n)

.

The supplementary hypothesis about the Hausdorff separation property implies that
Ď(·, ·) is positive definite in addition and thus, Ď(·, ·) is a metric on Θ(E,d,�·�).
Finally, Θ(E,d,�·�) is a complete separable metric space.

5.1.1 Solutions to mutational inclusions: Definition and existence

Solutions to mutational inclusions extend Definition 2.9 (on page 73) about solu-
tions to mutational equations. In particular, they are to satisfy the same conditions
with respect to continuity and boundedness.

Definition 1. Let the set-valued map F : E× [0,T ] � Θ(E,d,�·�) be given.
A curve x : [0,T ]−→ E is called a solution to the mutational inclusion

◦
x(·) ∩ F

(
x(·), · ) �= /0

in
(
E,d,�·�) if it satisfies the following conditions:

(1.) x(·) is continuous with respect to d,

(2.) for L 1-almost every t ∈ [0,T [, there exists a transition ϑ ∈ F (x(t), t) ⊂
Θ(E,d,�·�) with

lim
h↓0

1
h
· d
(
ϑ (h, x(t)), x(t +h)

)
= 0,

(3.) sup
t∈ [0,T ]

�x(t)� < ∞ .
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At first glance, the term “inclusion” and the symbol ∩ might make a contradic-
tory impression, but the mutation

◦
x (t) is defined as set of all transitions providing

a first-order approximation (in Definition 2.7 on page 72). The curve of interest,
x(·) : [0,T ]−→ E, is characterized by the existence of a joint transition in both

◦
x(t)

and the prescribed transition set F (x(t), t)⊂Θ(E,d,�·�) at L 1-almost every time t

— reflected correctly by an intersection condition.

Every solution x(·) : [0,T ] −→ E to a mutational inclusion can be characterized by
an appropriate measurable selection of F (x(·), ·) : [0,T ]�Θ(E,d,�·�).

Proposition 2. Suppose the set-valued map F : E× [0,T ]� Θ(E,d,�·�) to have

the image set F (E × [0,T ]) contained in a compact subset C ⊂Θ(E,d,�·�) with

sup
ϑ∈C

α(ϑ ;R) < ∞ for each R > 0 and sup
ϑ∈C

γ(ϑ) < ∞.

x : [0,T ] −→ E is a solution to the mutational inclusion
◦
x (·) ∩ F

(
x(·), · ) �= /0

in
(
E,d,�·�) if and only if it has the following properties:

(1.) x(·) is continuous with respect to d,

(2.) there exists a measurable function ϑ(·) : [0,T ]−→Θ(E,d,�·�) with{
ϑ(t) ∈ ◦

x(t) for L 1-almost every t ∈ [0,T [

ϑ(t) ∈ F
(
x(t), t

)
for every t ∈ [0,T ]

(3.) sup
t∈ [0,T ]

�x(t)� < ∞ .

The equivalence results from Selection Theorem A.55 of Kuratowski and Ryll-
Nardzewski (on page 389) if the intersection

[0,T ] � Θ(E,d,�·�), t �→ ◦
x(t) ∩ F

(
x(t), t

)
proves to be measurable. This feature can be concluded from Proposition A.58 and
the next lemma:

Lemma 3. Assume for the curve x(·) : [0,T ]−→ E

(1.) x(·) is continuous with respect to d,

(2.) R := 1+ sup
t∈ [0,T ]

�x(t)� < ∞ .

Let C be a compact subset of
(
Θ(E,d,�·�), Ď

)
with sup

ϑ∈C

{
α(ϑ ;R), γ(ϑ)

}
< ∞.

Then the mutation of x(·) induces a set-valued map

[0,T ] � Θ(E,d,�·�), t �→ ◦
x(t) ∩ C

which is Lebesgue-measurable in the sense of Definition A.54 (on page 389).

Its detailed proof is postponed to § 5.1.3 (on page 307 ff.).
The main result of this section 5.1 is the following existence theorem for mutational
inclusions without state constraints:
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Theorem 4. Assume
(
E, d, �·�, Θ(E,d,�·�)) to be Euler compact in the sense

of Definition 2.15 (on page 78). Let F : E× [0,T ]�Θ(E,d,�·�) be an integrably

bounded Carathéodory map in the following sense:

(i) all values of F are nonempty, compact and satisfy for each r ≥ 0
sup
{

α(ϑ ;r), β (ϑ ;r), γ(ϑ)
∣∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞ ,

(ii) for every x ∈ E, F (x, ·) : [0,T ]�Θ(E,d,�·�) is measurable,

(iii) for L 1-almost every t ∈ [0,T ], F (·, t) :
(
E,d
)
�Θ(E,d,�·�) is continuous,

(iv) there exist m̂(·) ∈ L1([0,T ]) and ϑ0 ∈Θ(E,d,�·�) such that for L 1-a.e. t,

sup
{

Ď(ϑ0,ϑ)
∣∣ ϑ ∈F (x, t), x ∈ E

} ≤ m̂(t).

Then for every initial state x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E

to the mutational inclusion
◦
x(·) ∩ F

(
x(·), · ) �= /0

in the tuple
(
E,d,�·�) with x(0) = x0.

5.1.2 A selection principle generalizing the Theorem of
Antosiewicz–Cellina

In their classical paper [7] in 1975, Antosiewicz and Cellina showed for differential
inclusions x′ ∈ G(x, ·) in finite space dimensions that the Carathéodory regularity
of the set-valued map G(·, ·) is sufficient for the existence of useful selections on
the way of proving existence of solutions. Indeed, their new essential aspect was to
focus on continuous functions g : RN −→ L1([0,T ],RN) with g(x)(t) ∈ G(x, t) for
L 1-almost every t and every x.
Later in 1982, Kisielewicz extended their results to separable Banach spaces in [80].
Now we generalize it to the mutational framework in a metric space (E,d) and adapt
essentially the arguments of Kisielewicz:

Proposition 5. Let the set-valued map F : E × [0,T ]� Θ(E,d,�·�) fulfill the

following conditions:

(i) all values of F are nonempty, compact and satisfy for each r ≥ 0
sup
{

α(ϑ ;r), β (ϑ ;r), γ(ϑ)
∣∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞ ,

(ii) for every x ∈ E, F (x, ·) : [0,T ]�Θ(E,d,�·�) is measurable,

(iii) for L 1-almost every t ∈ [0,T ], F (·, t) :
(
E,d
)
�Θ(E,d,�·�) is continuous,

(iii’) the family (F (·, t))t∈[0,T ] of maps E�Θ(E,d,�·�) is equi-continuous,

(iv) there exist m̂(·) ∈ L1([0,T ]) and ϑ0 ∈Θ(E,d,�·�) such that for L 1-a.e. t,

sup
{

Ď(ϑ0,ϑ)
∣∣ ϑ ∈F (x, t), x ∈ E

} ≤ m̂(t).
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Then there exists a single-valued function f : E× [0,T ]−→Θ(E,d,�·�) satisfying

(a) f (x, t) ∈ F (x, t) for every x ∈ E and L 1-almost every t ∈ [0,T ],

(b) for every x ∈ E, f (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
n→∞

∫
[0,T ]

Ď
(

f (x, t), f (xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.

Corollary 6. If the set-valued map F : E × [0,T ]�Θ(E,d,�·�) satisfies the

Carathéodory conditions (i)–(iv) of Theorem 4, then there exists a single-valued

function f : E× [0,T ]−→Θ(E,d,�·�) with

(a) f (x, t) ∈ F (x, t) for every x ∈ E and L 1-almost every t ∈ [0,T ],

(b) for every x ∈ E, f (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
n→∞

∫
[0,T ]

Ď
(

f (x, t), f (xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.

The proof follows the approximative argumentation initiated by Antosiewicz-Cellina
and continued by Kisielewicz. All these subsequent conclusions do not require the
linear structure of a Banach space and thus, we can apply them in the metric spaces
(E,d),

(
Θ(E,d,�·�), Ď):

Lemma 7. Suppose the assumptions of Proposition 5 about F (·, ·).
For each ε > 0, there exists a function fε : E× [0,T ]−→Θ(E,d,�·�) satisfying

(a) dist
(

fε(x, t), F (x, t)
) Def.= inf

ϑ ∈F (x,t)
Ď
(

fε(x, t), ϑ
) ≤ ε for every x∈ E and

L 1-almost every t ∈ [0,T ],

(b) for every x ∈ E, fε(x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
n→∞

∫
[0,T ]

Ď
(

fε(x, t), fε(xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.

Proof (of Lemma 7). Fix ε > 0 and choose x∈E arbitrarily. As in the proof of [80,
Lemma 3.2], the equi-continuity of the set-valued maps F (·, t) : E �Θ(E,d,�·�),
t ∈ [0,T ], provides some δ (x,ε) > 0 with

dlĎ

(
F (x, t), F (y, t)

)
< ε for all t ∈ [0,T ], y ∈ Bδ (x,ε)(x)⊂ E.

Here dlĎ denotes the Pompeiu–Hausdorff distance between nonempty subsets of
Θ(E,d,�·�) with respect to the metric Ď specified in § 5.1 (on page 298), i.e.,
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dlĎ

(
M1, M2

) Def.= max
{

sup ϑ1∈M1 inf ϑ2∈M2 Ď(ϑ1,ϑ2),

sup ϑ2∈M2 inf ϑ1∈M1 Ď(ϑ1,ϑ2)
}

for any nonempty sets M1,M2 ⊂Θ(E,d,�·�).
The open balls B◦δ (x,ε)(x) ⊂ E (with respect to d), x ∈ E, cover E. As a conse-
quence of Stone’s Theorem, there exists a continuous and locally finite partition of
unity subordinated to this open cover. Furthermore, (E,d) is separable by assump-
tion (on page 298) and thus, we can focus on (at most) countably many continuous
functions ζm : E −→ [0,1] (m ∈ N) inducing such a locally finite partition of unity.
Now select an element xm ∈ E for each index m ∈ N such that the support of ζm is
contained in the ball Bδ (xm,ε)(xm) ⊂ E. In particular, E =

⋃
m∈N B◦δ (xm,ε)(xm).

This lays the basis for a countable partition of the interval [0,T [ depending on
the element x ∈ E in a continuous way. Indeed, we set for x ∈ E and m = 1, 2 . . . ,

t0(x) := 0,

tm(x) := tm−1(x) + ζm(x) · T

Jm(x) :=
[
tm−1(x), tm(x)

[
.

For each index m∈N, Selection Theorem A.55 of Kuratowski and Ryll-Nardzewski
(on page 389) provides a measurable function

ϑm : [0,T ] −→ Θ(E,d,�·�)
satisfying the condition ϑm(t) ∈ F (xm, t) for L 1-almost every t ∈ [0,T ]
due to assumption (ii) about the measurability of each F (x, ·) : [0,T ]�Θ(E,d,�·�)
and the general hypothesis that the metric space (Θ(E,d,�·�), Ď) is complete and
separable.

Now define fε : E× [0,T ] −→ Θ(E,d,�·�) in a piecewise way with respect to time:

fε(x, t ) := ϑm(t) if t ∈ Jm(x),

fε(x,T ) := ϑM(T ) with M := inf
{

m ∈ N
∣∣ tm(x) = T

}
< ∞ .

Obviously, fε(x, ·) : [0,T ] −→ Θ(E,d,�·�) is measurable for every x ∈ E and,
in combination with transition ϑ0 mentioned in assumption (iv), we obtain

sup
x∈E

Ď
(
ϑ0, f (x, t)

) ≤ m̂(t) for L 1-a.e. t ∈ [0,T ].

Furthermore, dist
(

fε(x, t), F (x, t)
) ≤ ε holds for every x ∈ E and t ∈ [0,T [.

Indeed, we can choose the unique index m ∈ N with t ∈ Jm(x) = [tm−1(x), tm(x)[.
This implies x ∈ Bδ (xm,ε)(xm) and fε(x, t) = ϑm(t) ∈ F (xm, t). Now we conclude
from the triangle inequality of Ď

dist
(

fε(x, t), F (x, t)
) ≤ dist

(
fε(x, t), F (xm, t)

)
+ dlĎ

(
F (xm, t), F (x, t)

)
≤ 0 + ε ,

i.e., fε(·, ·) satisfies the claimed property (a).
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We still have to verify property (c), i.e.,

lim
n→∞

∫
[0,T ]

Ď
(

fε(x, t), fε(xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.
Indeed, as the partition of unity (ζm)m∈N is locally finite, there exist a neighbour-
hood Ux of x and finitely many indices {m1 . . . mηx} ⊂ N with

ηx

∑
k=1

ζmk
(·) = 1 in Ux.

Due to the continuity of each auxiliary function tm : E −→ [0,T ] (m∈N), we obtain
for every sequence (xn)n∈N converging to x

sup
{|tmk

(x)− tmk
(xn)|

∣∣ k ∈ {1 . . . ηx}
} −→ 0 for n−→ ∞.

Then, assumption (iv) and the triangle inequality of Ď imply for all large n ∈ N∫
[0,T ]

Ď
(

fε(x, t), fε(xn, t)
)

dt

≤
∫

[0,T ]

ηx

∑
k=1

(
χJmk

(x)\Jmk
(xn)(t) + χJmk

(xn)\Jmk
(x)(t)

)
Ď
(

fε(x, t), fε(xn, t)
)

dt

≤
ηx

∑
k=1

(∫
Jmk

(x)\Jmk
(xn)

2 m̂(t) dt +
∫

Jmk
(xn)\Jmk

(x)
2 m̂(t) dt

)
−→ 0 for n−→ ∞ .

�

Proof (of Proposition 5 on page 300). For every ε > 0, Lemma 7 guarantees a
function fε : E× [0,T ]−→Θ(E,d,�·�) satisfying both

dist
(

fε(x, t), F (x, t)
) Def.= inf

ϑ ∈F (x,t)
Ď
(

fε(x, t), ϑ
) ≤ ε

for every x ∈ E and L 1-almost every t ∈ [0,T ], the measurability of each fε(x, ·) :
[0,T ]−→Θ(E,d,�·�) and the continuity condition that for every x ∈ E and δ > 0,
there exists a positive radius ρ(x,δ ) > 0 such that all y ∈ Bρ(x,δ )(x)⊂ E fulfill

L 1
({t ∈ [0,T ] | Ď( fε(x, t), fε(y, t)) > δ}) < δ .

In particular, the preceding proof of Lemma 7 motivates the following inductive
construction of approximative selections ( fk)k∈N:

There exists such a function f1 : E× [0,T ]−→Θ(E,d,�·�) with

dist
(

f1(x, t), F (x, t)
) ≤ 1

22

for every x ∈ E and L 1-almost every t ∈ [0,T ]. In combination with assumption
(iii’) about the equi-continuity of F (·, t), t ∈ [0,T ], we can even find a radius
δ1(x) > 0 for each x ∈ E with{

dlĎ

(
F (x, t), F (y, t)

)
< 1

23 for all y∈Bδ1(x)(x), t∈ [0,T ],

L 1
({t ∈ [0,T ] | Ď( f1(x, t), f1(y, t)) > 1

22 }
)

< 1
22 for all y∈Bδ1(x)(x).
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The same arguments as in the proof of Lemma 7 lead now to a locally finite partition
of unity (ζ 1

m)m∈N and a sequence (x1
m)m∈N such that the support of ζ 1

m(·) ∈C0(E) is
contained in Bδ1(x

1
m)⊂ E for each index m ∈ N.

Due to Proposition A.61 (on page 390), there exists a measurable selection ϑ 1
m(·) :

[0,T ]−→Θ(E,d,�·�) for each m ∈N satisfying at L 1-almost every time t ∈ [0,T ],{
ϑ 1

m(t) ∈ F (x1
m, t)

Ď
(
ϑ 1

m(t), f1(x1
m, t)
)

= dist
(

f1(x1
m, t), F (x1

m, t)
)

because each F (x1
m, ·) : [0,T ]�Θ(E,d,�·�) is measurable with nonempty compact

values by assumption.

Now we set for x ∈ E and m = 1, 2 . . . successively

t1
0 (x) := 0,

t1
m(x) := t1

m−1(x) + ζ 1
m(x) · T

J1
m(x) :=

[
t1
m−1(x), t1

m(x)
[

and define f2 : E× [0,T ] −→ Θ(E,d,�·�) in a piecewise way again

f2(x, t ) := ϑ 1
m(t) if t ∈ J1

m(x),

f2(x,T ) := ϑ 1
M(T ) with M := inf

{
m ∈ N

∣∣ t1
m(x) = T

}
< ∞ .

Obviously, f2(x, ·) : [0,T ] −→ Θ(E,d,�·�) is measurable for every x ∈ E and,
in combination with transition ϑ0 mentioned in assumption (iv), we obtain

sup
x∈E

Ď
(
ϑ0, f2(x, t)

) ≤ m̂(t) for L 1-a.e. t ∈ [0,T ].

The arguments of the preceding proof even imply continuity property (c) for this
auxiliary function f2(·, ·), i.e.,

lim
n→∞

∫
[0,T ]

Ď
(

f2(x, t), f2(xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.

Moreover, dist
(

f2(x, t), F (x, t)
) ≤ 1

23 holds for every x ∈ E and t ∈ [0,T [.
Indeed, there always exists a unique index m ∈ N with t ∈ J1

m(x) = [t1
m−1(x), t

1
m(x)[.

Thus, x ∈ Bδ1(x1
m)(x

1
m), f2(x, t) = ϑ 1

m(t) ∈F (x1
m, t) and last, but not least,

dist
(

f2(x, t), F (x, t)
) ≤ dist

(
f2(x, t), F (x1

m, t)
)

+ dlĎ

(
F (x1

m, t), F (x, t)
)

≤ 0 + 1
23 .

Finally,

Ď
(

f2(x, t), f1(x, t)
) ≤ Ď

(
ϑ 1

m(t), f1(x1
m, t)
)

+ Ď
(

f1(x1
m, t), f1(x, t)

)
≤ dist

(
f1(x1

m, t), F (x1
m, t)
)

+ Ď
(

f1(x1
m, t), f1(x, t)

)
for L 1-almost every t ∈ [0,T ] has the consequence

L 1
({t ∈ [0,T ] | Ď( f2(x, t), f1(x, t)) > 1

2}
)

< 1
22 .
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By means of induction, we now construct a sequence ( fn)n∈N of functions
E× [0,T ]−→Θ(E,d,�·�) with properties (b), (c) and{

dist
(

fn(x, t), F (x, t)
) ≤ 1

2n+1 for all x and L 1-a.e. t,

L 1
({t ∈ [0,T ] | Ď( fn(x, t), fn−1(x, t)) > 1

2n−1 }
)

< 1
2n for all x ∈ E .

In particular, due to
N

∑
k=n

2−k = 21−n−2−N for all n < N, the inequality

L 1
({

t ∈ [0,T ]
∣∣ Ď( fN(x, t), fn(x, t)) > 1

2n−2

})
≤ L 1

( N⋃
k=n+1

{
t ∈ [0,T ]

∣∣ Ď( fk(x, t), fk−1(x, t)) > 1
2k−1

})
≤

N

∑
k=n+1

1
2k ≤ 1

2n

holds for every element x ∈ E and all indices n < N. As a consequence, there exists

f : E× [0,T ] −→ Θ(E,d,�·�)
such that for every element x ∈ E, a subsequence of

(
fn(x, ·)

)
n∈N

converges to
the measurable function f (x, ·) : [0,T ] −→ Θ(E,d,�·�) L 1-almost everywhere.
The values of F are assumed to be closed and thus, f (x, t) ∈F (x, t) for all x ∈ E

and L 1-almost every t ∈ [0,T ].

Finally we have to verify continuity property (c) of f (·, ·), i.e.,

lim
n→∞

∫
[0,T ]

Ď
(

f (x, t), f (xn, t)
)

dt = 0

whenever a sequence (xn)n∈N in E converges to x ∈ E with respect to d.
Indeed, each function fn(·, ·) (n ∈ N) has this feature by construction. Considering
the last inequality for N −→ ∞ leads to the estimate

L 1
({

t ∈ [0,T ]
∣∣ Ď( f (x, t), fn(x, t)) > 1

2n−2

}) ≤ 1
2n

being uniform with respect to x ∈ E. This implies the current claim about continuity
of f (·, t) : E −→Θ(E,d,�·�) due to the integrable bound of F in assumption (iv).

�

Proof (of Corollary 6 on page 301).

The assumptions of this corollary differ from their counterparts of Proposition 5
(on page 300) in just one relevant respect: We dispense with hypothesis (iii’), i.e.,
the family

(
F (·, t))

t∈ [0,T ] of set-valued maps E �Θ(E,d,�·�) is not supposed to
be equi-continuous.
Now Scorza-Dragoni Theorem quoted in Proposition A.9 (on page 358) provides
the tool for bridging this gap approximatively.
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Indeed, for every ε > 0, Proposition A.9 guarantees a closed subset Iε ⊂ [0,T ]
with L 1

(
[0,T ]\ Iε

)
< ε such that the restriction

F (·, ·)|E×Iε : (E, d)× Iε −→ (
K (Θ(E,d,�·�)), dlĎ

)
is continuous. As Iε is compact, we conclude easily that the family

(
F (·, t))

t∈ Iε
of

set-valued maps E�Θ(E,d,�·�) is equi-continuous.

This construction leads to an increasing sequence (In)n∈N of closed subsets of [0,T ]
with L 1

(
[0,T ]\ In

)
< 2−n such that each family

(
F (·, t))

t∈ In
is equi-continuous.

Setting now S1 := I1, Sn+1 := In+1 \ In for each n ∈ N and choosing an arbitrary
transition ϑ0 ∈Θ(E,d,�·�), the auxiliary maps Fn : E× [0,T ]�Θ(E,d,�·�), n∈N,
with

Fn(x, t) :=
{

F(x, t) if t ∈ In,
{ϑ0} if t ∈ [0,T ]\ In

fulfill the assumptions of Proposition 5. For each n ∈ N, there exists a selection
fn : E× [0,T ]−→Θ(E,d,�·�) of Fn(·, ·) satisfying measurability condition (b) and

lim
k→∞

∫
[0,T ]

Ď
(

fn(x, t), fn(xk, t)
)

dt = 0

whenever a sequence (xk)k∈N in E converges to some element x ∈ E.
Now the function f : E× [0,T ]−→Θ(E,d,�·�) defined by

f (·, t) :=
{

fn(·, t) if t ∈ Sn for some n ∈ N

ϑ0 if t ∈ [0,T ]\ ⋃n∈N Sn = [0,T ]\ ⋃n∈N In

shares property (b) of measurability with each fn and fulfills condition (c) of conti-
nuity as well. Indeed, the construction of (In)n∈N and (Sn)n∈N ensures

L 1
(
[0,T ]

∖ ⋃
n∈N

Sn

)
≤ limsup

n−→∞
L 1([0,T ]\ In) = 0

and thus, for any ε > 0, we can select an index Nε ∈ N such that∫
[0,T ]\⋃Nε

n=1 Sn

m̂(t) dt ≤ ε
2

with m̂(·) ∈ L1([0,T ]) denoting the integrable bound in assumption (iv). Finally, we
obtain for every converging sequence (xk)k∈N in E and its limit x ∈ E

limsup
k−→∞

∫
[0,T ]

Ď
(

f (x, t), f (xk, t)
)

dt

≤ limsup
k−→∞

( Nε

∑
n=1

∫
Sn

Ď
(

f (x, t), f (xk, t)
)

dt +
∫

[0,T ]\⋃Nε
n=1 Sn

2 m̂(t) dt
)

≤ limsup
k−→∞

Nε

∑
n=1

∫
Sn

Ď
(

fn(x, t), fn(xk, t)
)

dt +
∫

[0,T ]\⋃Nε
n=1 Sn

2 m̂(t) dt

≤
Nε

∑
n=1

0 + ε .
�
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5.1.3 Proofs on the way to Existence Theorem 5.4

Now we give two proofs missing in this section 5.1. In particular, we focus on
Lemma 3 (on page 299) stating that the intersection of the mutation and a fixed
compact transition set is always a measurable set-valued map [0,T ]�Θ(E,d,�·�)
and Existence Theorem 4 (on page 300).

Proof (of Lemma 3 on page 299).

The curve x(·) : [0,T ] −→ (E,d) is supposed to be continuous and to satisfy
R := 1+ sup

t∈ [0,T ]
�x(t)� < ∞ . Moreover, C is a compact subset of

(
Θ(E,d,�·�), dlĎ

)
with α̂ := sup

ϑ∈C
α(ϑ ;R) < ∞ and γ̂ := sup

ϑ∈C
γ(ϑ) < ∞.

Without loss of generality, we can assume in addition that there exists a transition
ϑ0 ∈Θ(E,d,�·�)\C . From now on, we mostly consider the union of transition sets
with {ϑ0} so that all closed sets are nonempty and thus, the general results about
measurability in Appendix A.8 (on page 389 f.) can be applied directly.

Now for each m,n∈N, define the set-valued map Mm,n : [0,T ]� Θ(E,d,�·�) in
the following way: Mm,n(t) consists of ϑ0 and all transitions ϑ ∈ C ⊂Θ(E,d,�·�)
such that

d
(
ϑ(h, x(t)), x(t +h)

) ≤ 1
m

h for all h ∈ [0, 1
n
].

The graph of Mm,n is closed. Indeed, let ((tk,ϑk))k∈N be any convergent sequence
in Graph Mm,n ⊂ [0,T ]×Θ(E,d,�·�) with the limit (t,ϑ). If ϑ = ϑ0, then we
conclude ϑk = ϑ0 for all large k ∈ N. Hence, we can restrict our considerations to
{ϑk,ϑ | k ∈ N} ⊂ C and in particular, for each k ∈ N,

d (ϑk(h, x(tk)), x(tk +h)) ≤ 1
m

h for all h ∈ [0, 1
n
].

The standard estimate about two solutions in Proposition 2.11 (on page 74) implies

d (ϑ(h, x(t)), x(t +h)) = lim
k→∞

d (ϑk(h, x(tk)), x(tk +h)) ≤ 1
m

h for all h ∈ [0, 1
n
],

i.e. ϑ ∈Mm,n(t). Thus, Graph Mm,n is closed in [0,T ]×Θ(E,d,�·�).

Furthermore, all values of Mm,n are nonempty, closed and contained in the compact
subset C ∪{ϑ0} ⊂Θ(E,d,�·�). According to [16, Proposition 1.4.8],

Mm,n : [0,T ] � Θ(E,d,�·�)
is upper semicontinuous (in the sense of Bouligand and Kuratowski). Finally, it
implies the measurability of Mm,n for each m,n ∈ N due to Corollary A.57 (on
page 389).
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Now we bridge the gap between the countable family (Mm,n)m,n∈N of measurable
set-valued maps and [0,T [�Θ(E,d,�·�), t �→ ◦

x(t)∩C considered in the claim:
Due to the definition of Mm,n,⋃

n∈N

Mm,n(t) ⊂
{

ϑ ∈ C
∣∣∣ limsup

h↓0

1
h
·d(ϑ(h,x(t)), x(t+h))≤ 1

m

}
∪ {ϑ0}⋃

n∈N

Mm,n(t) ⊃
{

ϑ ∈ C
∣∣∣ limsup

h↓0

1
h
·d(ϑ(h,x(t)), x(t+h)) < 1

m

}
∪ {ϑ0} .

Furthermore, the standard estimate about evolutions along transitions in Proposi-
tion 2.6 (on page 72) guarantees

d (ϑ1(h,x(t)), ϑ2(h,x(t))) ≤ ε h eα̂ h

for any transitions ϑ1,ϑ2 ∈ C with D(ϑ1,ϑ2; R) ≤ ε and every small h ≥ 0
(depending on R, γ̂). Thus, for any sufficiently small ε̃ > 0 (depending on m, t,C ),
we obtain an inclusion about balls with respect to the metric Ď on Θ(E,d,�·�)

C ∩ Bε̃

( ⋃
n∈N

Mm,n(t)
)
⊂
{

ϑ ∈ C
∣∣∣ limsup

h↓0

1
h
·d(ϑ(h,x(t)), x(t+h))≤ 2

m

}
.

Hence, the closure of the union on the left-hand side satisfies for every t ∈ [0,T [

C ∩
⋃

n∈N

Mm,n(t) ⊂
{

ϑ ∈ C
∣∣∣ limsup

h↓0

1
h
·d(ϑ(h,x(t)), x(t+h))≤ 2

m

}
.

We conclude (again) for each t ∈ [0,T [

C ∩
⋂

m∈N

⋃
n∈N

Mm,n(t) =
{

ϑ ∈ C
∣∣∣ limsup

h↓0

1
h
·d(ϑ(h,x(t)), x(t+h))≤ 0

}
=

◦
x(t) ∩ C .

Finally, Proposition A.58 (on page 390) ensures that the closure of a countable union
and the countable intersection preserve measurability of set-valued maps. This com-
pletes the proof of Lemma 3.

�

Proof (of Existence Theorem 4 on page 300).

In a word, we use the selection principle in Corollary 6 (on page 301) for bridging
the gap between the mutational inclusion here and the mutational equation discussed
in § 2.3 (on page 70 ff.).
The tuple

(
E, d, �·�, Θ(E,d,�·�)) is Euler compact by assumption.

Let f : E × [0,T ] −→ Θ(E,d,�·�) denote the selection of the set-valued map
F : E× [0,T ]�Θ(E,d,�·�) whose existence is stated in Corollary 6.
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Strictly speaking, just one obstacle is preventing us from applying Peano’s Existence
Theorem 2.18 for nonautonomous mutational equations (on page 80) immediately,
namely its assumption (4.) about continuity:
For each R > 0, there is a set I⊂ [0,T ] of L 1 measure 0 such that for any t ∈ [0,T ]\I,

lim
n→∞

D
(

f (xn, tn), f (x, t); R
)

= 0

holds for any sequences (tn)n∈N in [0,T ] and (xn)n∈N in E satisfying lim
n→∞

tn = t and

lim
n→∞

d(xn,x) = 0, sup
n∈N

�xn�< ∞. (In particular, I should not depend on x ∈ E.)

Similarly to the proof of Corollary 6, Scorza-Dragoni Theorem (in Proposi-
tion A.9 on page 358) ensures for each ε > 0 that there exists a closed subset
Iε ⊂ [0,T ] with L 1

(
[0,T ]\ Iε

)
< ε such that the restriction f (·, ·)|E×Iε : E×Iε −→

Θ(E,d,�·�) is continuous (with respect to the metric Ď on Θ(E,d,�·�)).

Now fε : E× [0,T ] −→ Θ(E,d,�·�) is defined as the extension of f (·, ·)|E×Iε with

fε(x, t) := f (x,st) for x ∈ E, t ∈ [0,T ]\ Iε and st := sup{s ∈ Iε | s≤ t} ∈ Iε .

Obviously, this extension fε is continuous in the open subset E × ([0,T ] \ ∂ Iε)
(with respect to the metric Ď on Θ(E,d,�·�) again). As a consequence, fε satis-
fies continuity assumption (4.) of Peano’s Theorem 2.18.

Fixing the initial state x0 ∈ E arbitrarily, there exists a solution xε : [0,T ] −→ E to
the mutational equation

◦
xε (·) � fε

(
xε(·), ·

)
in the tuple

(
E,d,�·�) with xε(0) = x0 and

sup
[0,T ]

�xε(·)� ≤ (�x0�+ γ̂ T ) eγ̂ T =: R

using the abbreviation γ̂ := sup
{

γ(ϑ)
∣∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞.

Finally we choose any sequence (εn)n∈N in ]0,1[ with ∑∞
n=1 εn < ∞. Then Proposi-

tion 2.11 about the continuity of solutions with respect to data (on page 74) implies
that

(
xεn(·)

)
n∈N

is a Cauchy sequence in C0([0,T ],E) w.r.t. the uniform topology.
As the metric space (E,d) is assumed to be complete, there exists a continuous limit
function x(·) : [0,T ]−→ E.

The lower semicontinuity of �·� : (E,d)−→ [0,∞[ (by assumption) ensures

sup
[0,T ]

�x(·)� ≤ sup
ε∈ ]0,1[

sup
[0,T ]

�xε(·)� ≤ R < ∞ .



310 5 Mutational inclusions in metric spaces

x(·) is a solution to the mutational equation
◦
x(·) � f

(
x(·), ·) in the tuple

(
E,d,�·�).

Indeed, Proposition 2.11 (on page 74) (extended to Lebesgue-integrable distances
between transitions approximatively) implies for every m ∈ N, t ∈ [0,T [ and h ∈
[0,1] with t +h≤ T and Jm :=

⋂
n≥m Iεn ⊂ [0,T ]

d
(

f (x(t), t)(h, x(t)), x(t +h)
)

= lim
n→∞

d
(

f (x(t), t)(h, x(t)), xεn(t +h)
)

≤ liminf
n−→∞

(
d
(
x(t), xεn(t)

)
+
∫ t+h

t
D
(

f (x(t), t), fεn(xεn(s),s); 2R
)

ds
)

eα̂ h

≤ liminf
n−→∞

const(R) ·
( ∫

[t, t+h]\ Jm

m̂(s) ds +∫
[t, t+h]∩ Jm

Ď
(

f (x(t), t), f (xεn(s),s)
)

ds
)

eα̂ h.

The continuity of the restriction f (·, ·)|E×Jm guarantees for all m ∈ N, t ∈ [0,T [ and
h ∈ [0,1] with t +h≤ T

d
(

f (x(t), t)(h, x(t)), x(t +h)
)

≤ const(R) ·
(∫

[t, t+h]\ Jm

m̂(s) ds +
∫

[t, t+h]∩ Jm

Ď
(

f (x(t), t), f (x(s),s)
)

ds
)

eα̂ h.

Moreover, the set Ĵm of all Lebesgue points of the integrable product χ[0,T [\Jm
m̂ :

[0,T ]−→ R has full Lebesgue measure due to [144, Theorem 1.3.8] and, these two
properties imply for every m ∈ N and t ∈ Jm∩ Ĵm,⎧⎪⎪⎨⎪⎪⎩

lim
h↓0

1
h
·
∫

[t, t+h]\ Jm

m̂(s) ds = χ[0,T [\Jm
(t) · m̂(t) = 0,

lim
h↓0

1
h
·
∫

[t, t+h]∩ Jm

Ď
(

f (x(t), t), f (x(s),s)
)

ds = 0.

In combination with
Jm ⊂ Jm+1 for each m ∈ N,

L 1
(
[0,T ]\ Jm) ≤

∞

∑
n=m

L 1([0,T ]\ Iεn) ≤
∞

∑
n=m

εn
m→∞−→ 0,

we obtain for L 1-almost every t ∈ [0,T ]

limsup
h↓0

1
h
· d
(

f (x(t), t)(h, x(t)), x(t +h)
) ≤ 0.

�
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5.2 Morphological inclusions with state constraints:
A Viability Theorem

In this section, we focus on the geometric example of the metric space (K (RN),dl)
and consider transitions induced by reachable sets of differential inclusions whose
set-valued right-hand sides belong to LIP(RN ,RN). The corresponding mutational
equations are usually called morphological equations and, they are discussed in
§ 1.9 (on page 44 ff.).

Now morphological inclusions are based on the goal to admit more than just one
transition for each compact subset of RN . In contrast to the preceding § 5.1, however,
additional state constraints K(t) ∈ V on the wanted tube K(·) : [0,T ] −→K (RN)
are to come into play. This difficulty is handled just by means of the supplementary
“structure” of the morphological transition set LIP(RN ,RN).

The problems of invariance and viability have already been investigated for transi-
tions induced by bounded Lipschitz vector fields (instead of the set-valued maps in
LIP(RN ,RN)).

Indeed, Doyen [59] has given sufficient and some necessary conditions on F (·)
and V ⊂K (RN) for the invariance of V (i.e. all continuous solutions starting in V
stay in V ). His key notion is first to extend Filippov’s existence theorem from differ-
ential inclusions (in RN) to morphological inclusions in K (RN) [59, Theorem 7.1]
and then to verify dist(K(·),V ) ≤ 0 (under the assumption that the values of F (·)
are contained in the respective contingent transition set to V ) [59, Theorem 8.2].

The corresponding question about viability of V (i.e. at least one continuous
solution has to stay in V ) was pointed out as open by Aubin in [9, § 2.3.3]. A first
answer was given in [93] – but only for transitions induced by bounded Lipschitz
vector fields.
Now we consider the viability problem for morphological inclusions with transi-
tions in LIPco(RN ,RN) in their full generality (as in [92]).

Definition 8. LIPco(RN ,RN) consists of all set-valued maps F ∈ LIP(RN ,RN)
whose values are convex in addition, i.e., every map F : RN�RN in LIPco(RN ,RN)
satisfies the following conditions:

1.) F has nonempty compact convex values that are uniformly bounded in RN ,
2.) F is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl.

In fact, the main result of this section, i.e. Theorem 11 (on page 313) below, is
very similar to the viability theorem for differential inclusions in RN (discussed in
[13] and quoted here in Theorem 10).



312 5 Mutational inclusions in metric spaces

5.2.1 (Well-known) Viability Theorem for differential inclusions

The situation has already been investigated intensively for differential inclusions in
RN (see e.g. [13, 14]). For clarifying the new aspects of morphological inclusions,
we now quote the corresponding result from [13, Theorems 3.3.2, 3.3.5].

Definition 9 ([13, Definition 2.2.4]). Let X and Y be normed vector spaces. A
set–valued map F : X � Y is called Marchaud map if it has the following proper-
ties:
1. F is nontrivial, i.e. Graph F �= /0,
2. F is upper semicontinuous, i.e. for any x ∈ X and neighbourhood V ⊃ F(x),

there is a neighbourhood U ⊂ X of x: F(U)⊂V,
3. F has compact convex values,
4. F has linear growth, i.e. sup

y∈F(x)
|y| ≤ C (1+ |x|) for all x ∈ X .

Theorem 10 (Viability theorem for diff. inclusions [13, Theorems 3.3.2, 3.3.5]).
Consider a Marchaud map F : RN � RN and a nonempty closed subset V ⊂ RN

with F(x) �= /0 for all x ∈ V. Then for any finite time T ∈ ]0,∞[, the following two

statements are equivalent:

1. For every point x0 ∈V, there is at least one solution x(·) ∈W 1,1([0,T ], RN)
of x′(·) ∈ F(x(·)) (almost everywhere) with x(0) = x0 and x(t) ∈V for all t.

2. F(x)∩TV (x) �= /0 for all x ∈V.

The implication (1.) =⇒ (2.) is rather obvious. For proving (2.) =⇒ (1.), a standard
approach uses an “approximating” sequence

(
xn(·)

)
n∈N

in W 1,∞([0,1],RN) such
that supt dist(xn(t), V )−→0 (n → ∞) and

(
xn(t), d

dt
xn(t)

)
is close to Graph F ⊂

RN×RN for almost every t. Then the theorems of Arzelà–Ascoli and Alaoglu pro-
vide a subsequence

(
xn j

(·))
j∈N

and limits x ∈ C0([0,1],RN), w ∈ L∞([0,1],RN)
with

xn j
(·)−→ x(·) uniformly, d

dt
xn j

(·)−→ w(·) weakly* in L∞([0,1],RN).

Due to the continuous embedding L∞([0,1],RN) ⊂ L1([0,1],RN), we even obtain
the convergence d

dt
xn j

(·) −→ w(·) weakly in L1([0,1],RN). Thus, w(·) is the weak
derivative of x(·) in [0,1] and, x(·) is Lipschitz continuous. Finally Mazur’s Lemma
implies

w(t) ∈
⋂
ε>0

co
( ⋃

z∈Bε (x(t))

F(z)
)

= F(x(t)) for almost every t.

Considering now morphological inclusions on (K (RN),dl) (instead of differ-
ential inclusions), an essential aspect changes: The derivative of a curve is not
represented as a function in L1([0,1],RN) any longer, but rather as a function
[0,1]−→ LIP(RN ,RN). Now the classical theorems of Arzelà–Ascoli, Alaoglu and
Mazur might have to be replaced by their counterparts concerning functions with
their values in a Banach space (instead of RN).
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5.2.2 Adapting this concept to morphological inclusions:
The main theorem.

Now F : K (RN)� LIP(RN ,RN) and a constrained set V ⊂K (RN) are given.
Correspondingly to Theorem 10 about differential inclusions, we focus on the so-
called viability condition demanding from each compact set K ∈ V that the value
F (K) and the contingent transition set TV (K) ⊂ LIP(RN ,RN) have at least one
morphological transition in common. Lacking a concrete counterpart of Aumann
integral in the metric space (K (RN),dl), the question of its necessity (for the exis-
tence of “in V viable” solutions) is more complicated than for differential inclusions
in RN and thus, we skip it here deliberately.
The main result of this section 5.2 is that in combination with appropriate assump-
tions about F (·) and V , the viability condition is sufficient.

Convexity comes into play again, but we have to distinguish between (at least)
two respects:
First, assuming F to have convex values in LIP(RN ,RN) and second, suppos-
ing each set-valued map G ∈ F (K) ⊂ LIP(RN ,RN) (with K ∈ K (RN)) to have
convex values in RN . The latter, however, does not really provide a geomet-
ric restriction on morphological transitions. Indeed, Relaxation Theorem A.17 of
Filippov–Ważiewski (on page 363) implies ϑG(t,K) = ϑco G(t,K) for every map
G ∈ LIP(RN ,RN), initial set K ∈K (RN) and time t ≥ 0.
Thus, we suppose the values of F to be in LIPco(RN ,RN) :

Theorem 11 (Viability theorem for morphological inclusions).
Let F : K (RN) � LIPco(RN , RN) be a set-valued map and V ⊂ K (RN) a

nonempty closed subset satisfying :

1.) all values of F are nonempty and convex (i.e. for any G1,G2 ∈ F (K) ⊂
LIPco(RN ,RN) and λ ∈ [0,1], the set–valued map

RN � RN , x �→ λ ·G1(x)+(1−λ ) ·G2(x)
also belongs to F (K)),

2.) A := sup
M∈K (RN)

sup
G∈F (M)

Lip G < ∞,

B := sup
M∈K (RN)

sup
G∈F (M)

‖G‖∞ < ∞,

3.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN)),
4.) TV (K) ∩ F (K) �= /0 for all K ∈ V .

Then for every initial set K0 ∈ V , there exists a compact-valued Lipschitz con-

tinuous solution K(·) : [0,1]� RN to the morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0

with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
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Remark 12. In assumption (3.), the topology on LIP(RN ,RN) is specified.
A sequence (Gn)n∈N in LIP(RN ,RN) is said to converge “locally uniformly” to
G ∈ LIP(RN ,RN) if for every nonempty compact set M ⊂ RN ,

dl∞(Gn(·)|M, G(·)|M) Def.= sup
x∈M

dl(Gn(x),G(x))−→ 0 for n−→ ∞

using here the Pompeiu–Hausdorff distance dl on K (RN). This topology can be
regarded as an example induced by the metric Ď in § 5.1 (on page 298).

Due to the uniform bounds in assumption (2.), the image F (K (RN)) is sequen-
tially compact in LIPco(RN ,RN) with respect to this topology (as we prove in sub-
sequent Lemma 18). Hence, F is upper semicontinuous (in the sense of Bouligand
and Kuratowski) according to [16, Proposition 1.4.8].

Now Viability Theorem 11 is applied to two very special forms of constraints:
V1 :=

{
K ∈K (RN)

∣∣ K∩M �= /0
}

V2 :=
{

K ∈K (RN)
∣∣ K ⊂M

}
with some (arbitrarily fixed) nonempty closed subset M ⊂ RN . Indeed, Gorre has
already characterized the corresponding contingent transition sets — as quoted in
Propositions 1.65 and 1.66 (on page 55) and thus, we conclude directly:

Corollary 13 (Solutions having nonempty intersection with fixed M ⊂ RN).
Let F : K (RN)� LIPco(RN , RN) be a set–valued map and M ⊂ RN a closed

subset satisfying :

1.) all values of F are nonempty, convex with global bounds (as in Theorem 11),
2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN)),
3.) for any K∈K (RN) with K ∩M �= /0, there exist G ∈F (K), x ∈ K∩M with

G(x)∩PK
M(x) �= /0.

Then for every compact set K0 ⊂ RN with K0∩M �= /0, there exists a compact–

valued Lipschitz continuous solution K(·) : [0,1]� RN to the morphological in-

clusion
◦
K(·) ∩ F (K(·)) �= /0 with K(0) = K0 and K(t) ∩ M �= /0 for all t.

Corollary 14 (Solutions being contained in fixed M ⊂ RN).
Let F : K (RN)� LIPco(RN , RN) be a set–valued map and M ⊂ RN a closed

subset satisfying :

1.) all values of F are nonempty, convex with global bounds (as in Theorem 11),
2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN)),
3.) for any compact set K ⊂ M, there exist G ∈F (K) with G(x) ⊂ TM(x) for

every x ∈ K.

Then for every nonempty compact set K0 ⊂ M, there exists a compact–valued

Lipschitz continuous solution K(·) : [0,1]� RN to the morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0 with K(0) = K0 and K(t)⊂M for all t ∈ [0,1].
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5.2.3 The steps for proving the morphological Viability Theorem

The proof of Viability Theorem 11 uses a concept of approximation developed by
Haddad and others for differential inclusions in RN (and sketched in § 5.2.1).

For any given “threshold” ε > 0, we verify the existence of an approximative
solution Kε(·) : [0,1] −→ K (RN) such that its values have distance ≤ ε from the
constrained set V ⊂K (RN).
In addition, each Kε(·) is induced by a piecewise constant function

fε(·) : [0,1[−→ LIPco(RN ,RN)

of morphological transitions such that (Kε(t), fε(t)) is close to Graph F at every
time t ∈ [0,T [ (Lemma 15). Proposition A.62 about parameterization (on page 391)
bridges the gap between fε(·) : [0,1[−→ LIPco(RN ,RN) and the auxiliary function
f̂ε(·) : [0,1[−→ Lip(RN×B1, RN) whose single values are in the Banach space(
C0(RN×B1, RN), ‖ · ‖∞

)
additionally.

Then, letting ε > 0 tend to 0, we obtain subsequences (Kn(·))n∈N ,
(

f̂n(·)
)

n∈N
that

are converging to some K(·) : [0,1]−→K (RN) and f̂ : [0,1[−→Lip(RN×B1, RN),
respectively, in an appropriate sense – due to compactness (see Lemma 17).

Last, but not least, we prove that these limits satisfy for L 1-almost every t ∈ [0,T [

f̂ (t)(·,B1) ∈
◦
K(t) ∩ F (K(t)) �= /0.

Indeed, Lemma 19 concludes f̂ (t)(·,B1)∈F (K(t)) for L 1-almost every t ∈ [0,T [
from Lemma 18 stating that the graph of F is sequentially compact. Furthermore,
K(·) can be characterized as reachable set, i.e. ϑ

f̂ (·)(·,B1)(t,K0) = K(t) for every t

(Lemma 20). Finally, preceding Proposition 1.57 (on page 50) implies

f̂ (t)(·,B1) ∈
◦
K(t) for L 1-almost every t ∈ ]0,1[.

Let us now formulate these steps in detail and then prove them.

Lemma 15 (Constructing approximative solutions). Choose any ε > 0.
Under the assumptions of Viability Theorem 11, there exist a B–Lipschitz continuous

function Kε(·) : [0,1] −→K (RN) and a function fε(·) : [0,1[−→ LIPco(RN , RN)
satisfying with Rε := ε eA

a) Kε(0) = K0,

b) dist
(
Kε(t), V

) ≤ Rε for all t ∈ [0,1],

c) fε(t) ∈
◦
Kε(t) ∩ F

(
BRε(Kε(t))

) �= /0 for all t ∈ [0,1[,

d) fε(·) is piecewise constant in the following sense: for each t ∈ [0,1[,
there exists some δ > 0 such that fε(·)|[t, t+δ [ is constant.
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Remark 16. As a direct consequence of property (d), the function fε : [0,1[−→
LIPco(RN ,RN) can have at most countably many points of discontinuity. This
enables us to apply preceding results about autonomous morphological equations
(§ 1.9 on page 44 ff.) to the approximations Kε(·), fε(·) in a “piecewise” way.

Now the “threshold of accuracy” ε > 0 is tending to 0. The “detour” of parameteriza-
tion (Proposition A.62) and the subsequent statements about sequential compactness
lay the basis for extracting subsequences with additional features of convergence:

Lemma 17 (Selecting an approximative subsequence).
Under the assumptions of Viability Theorem 11, there are a constant c = c(N,A,B),
sequences Kn(·) : [0,1] −→ K (RN), f̂n(·) : [0,1[−→ Lip(RN×B1, RN) (n ∈ N)
and K(·) : [0,1]−→K (RN), f̂ (·) : [0,1[−→ Lip(RN×B1, RN) such that for every

j,n ∈ N, t ∈ [0,1[, x ∈ RN , u ∈ B1 ⊂ RN

a) K0 = Kn(0) = K(0),
b) K(·) and Kn(·) are B–Lipschitz continuous w.r.t. dl,

c) f̂n(·)(x,u) is piecewise constant (in the sense of Lemma 15 (d)),
‖ f̂n(t)(·, ·)‖∞ +Lip f̂n(t)(·, ·) ≤ c < ∞,

d) dist
(
Kn(t), V

) ≤ 1
n

e) f̂n(t)(·,B1) ∈
◦
Kn(t) ∩ F

(
B1/n(Kn(t))

) �= /0

f) dl
(
Km(·), K(·))−→ 0 uniformly in [0,1] for m→ ∞,

g) f̂m(·)|
K̃ j×B1

−→ f̂ (·)|
K̃ j×B1

weakly in L1
(
[0,1],C0(K̃ j×B1,R

N)
)

for m→ ∞,

h) ‖ f̂ (t)(·, ·)‖∞ +Lip f̂ (t)(·, ·) ≤ c < ∞,
i) K(t) ∈ V

with the abbreviation K̃j := B j+B(K0)
Def.=
{

x ∈RN
∣∣ dist(x,K0)≤ j+B

} ∈K (RN).

Lemma 18 (Sequential compactness in the image and graph of F (·)).
In addition to the hypotheses of Viability Theorem 11, let (Gk)k∈N be an arbitrary

sequence in the image F (K (RN)) =
⋃

M∈K (RN) F (M) ⊂ LIPco(RN ,RN).

Then, there exist a subsequence (Gk j
) j∈N and a map G ∈ LIPco(RN ,RN) such

that for any compact set M ⊂ RN , sup
x∈M

dl(Gk j
(x), G(x)) −→ 0 ( j −→ ∞) and

Lip G≤ A, ‖G‖∞ ≤ B.

Let now (Kk)k∈N be an arbitrary sequence in K (RN) such that
⋃

k∈N Kk ⊂RN

is bounded and Gk ∈ F (Kk) for each k ∈ N. Then there exist subsequences

(Kk j
) j∈N, (Gk j

) j∈N, a set K ∈K (RN) and a map G ∈F (K)⊂ LIPco(RN ,RN)
with

dl(Kk j
, K)

j→∞−→ 0 sup
x∈M

dl(Gk j
(x), G(x))

j→∞−→ 0 for any M ∈K (RN).
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Lemma 19.
Let the sequences Kn : [0,1] −→K (RN), f̂n : [0,1[−→ Lip(RN×B1, RN) (n∈N)
and the functions K(·) : [0,1]−→K (RN), f̂ (·) : [0,1[−→ Lip(RN×B1, RN) be as

in preceding Lemma 17.

Then, for L 1-almost every t ∈ [0,1[,

dist
(

f̂ (t)(x,B1), co
{

f̂n(t)(x,B1), f̂n+1(t)(x,B1) . . .
}) n→∞−→ 0

locally uniformly in x ∈ RN and, the coefficients of the approximating convex com-

binations can be chosen independently of t,x.

In particular, f̂ (t)(·,B1) ∈ F (K(t)) ⊂ LIPco(RN ,RN).

Last, but not least, we have to prove f̂ (t)(·,B1) ∈
◦
K(t) at L 1-almost every time t.

Due to Proposition 1.57 (on page 50), we can restrict our considerations to describ-
ing K(t) as reachable set of a nonautonomous differential inclusion, i.e.

ϑ
f̂ (·)(·,B1)(t,K0) = K(t) for every t ∈ ]0,1].

Lemma 20 (K(t) as a reachable set of f̂ (·)(·,B1)).
Let the sequences Kn : [0,1]−→K (RN), f̂n : [0,1[−→ Lip(RN×B1, RN) (n ∈ N)
and the functions K(·) : [0,1]−→K (RN), f̂ (·) : [0,1[−→ Lip(RN×B1, RN) be as

in Lemma 17.

Then, for any x(·) ∈C0([0,1],RN) and Lebesgue measurable set J ⊂ [0,1],

dl
(∫

J
f̂n(s)(x(s),B1) ds,

∫
J

f̂ (s)(x(s),B1) ds
)

n→∞−→ 0.

In particular, ϑ
f̂ (·)(·,B1)(t,K0) = K(t) for every t ∈ ]0,1].

The next proposition serves as tool for proving Lemma 20 and focuses on solutions
of nonautonomous differential inclusions in RN . In a word, this earlier theorem of
Stassinopoulos and Vinter [136] characterizes perturbations (of the set-valued right-
hand side) that have vanishing effect on the sets of continuous solutions.

Proposition 21 (Stassinopoulos and Vinter [136, Theorem 7.1]).
Let D : [0,1]×RN � RN and each Dn : [0,1]×RN � RN (n ∈ N) satisfy the

following assumptions:

1. D and Dn have nonempty convex compact values,

2. D(·,x), Dn(·,x) : [0,1]� RN are measurable for every x ∈ RN,

3. there exists k(·) ∈ L1([0,1]) such that D(t, ·), Dn(t, ·) : RN � RN are k(t)–
Lipschitz for L 1-almost every t ∈ [0,1],

4. there exists h(·) ∈ L1([0,1]) such that sup
y∈D(t,x)∪Dn(t,x)

|y| ≤ h(t) for every

x ∈ RN and L 1-almost every t ∈ [0,1].
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Fixing the initial point a ∈ RN arbitrarily, the absolutely continuous solutions of{
y′(·) ∈ Dn(·,y(·)) a.e. in [0,1]
y(0) = a

and

{
y′(·) ∈ D(·,y(·)) a.e. in [0,1]
y(0) = a

respectively form compact subsets of
(
C0([0,1],RN), ‖ ·‖∞

)
denoted by Dn (n ∈N)

and D .

Then, Dn converges to D (w.r.t. the Pompeiu–Hausdorff metric on compact subsets

of C0([0,1],RN)) if and only if for every solution d(·)∈D , Dn(·,d(·)) : [0,1]�RN

converges to D(·,d(·)) : [0,1]� RN weakly in the following sense

dl
(∫

J
Dn(s, d(s)) ds,

∫
J

D(s, d(s)) ds
)

n→∞−→ 0

for every measurable subset J ⊂ [0,1]. �

Now let the proofs begin:

Proof (of Lemma 15 on page 315). It imitates the proof of Lemma 1.29 (on
page 36 f.) and uses Zorn’s Lemma: For ε > 0 fixed, let Aε(K0) denote the set
of all tuples (τK , K(·), f (·)) consisting of some τK ∈ [0,1], a B–Lipschitz con-
tinuous function K(·) : [0,τK ] −→ (K (RN),dl) and a piecewise constant function
f (·) : [0,1[−→ LIPco(RN , RN) such that

a) K(0) = K0,

b’) 1.) dist
(
K(τK), V

) ≤ rε(τK) with rε(t) := ε eAt t,
2.) dist

(
K(t), V

) ≤ Rε for all t ∈ [0,τK ],

c) f (t) ∈ ◦
K(t) ∩ F

(
BRε(K(t))

) �= /0 for all t ∈ [0,τK [.
Obviously, Aε(K0) �= /0 since it contains (0, K(·) ≡ K0, f (·) ≡ f0) with arbitrary
f0 ∈ LIPco(RN , RN). Moreover, an order relation � on Aε(K0) is specified by

(τK , K(·), f (·)) � (τM, M(·), g(·)) :⇐⇒ τK ≤ τM, M
∣∣
[0,τK ] = K, g

∣∣
[0,τK [ = f .

Hence, Zorn’s Lemma provides a maximal element
(
τ, Kε(·), fε(·)

) ∈Aε(K0).
As all considered functions with values in K (RN) have been supposed to be B–
Lipschitz continuous, Kε(·) is well-defined on the closed interval [0,τ]⊂ [0,1].

Assuming τ < 1 for a moment, we obtain a contradiction if Kε(·), fε(·) can be ex-
tended to a larger interval [0,τ +δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c).
Since closed bounded balls of (K (RN),dl) are compact, the closed set V contains
an element Z ∈K (RN) with dl(Kε(τ),Z) = dist(Kε(τ), V ) ≤ rε(τ) and, assump-
tion (4.) of Viability Theorem 11 provides a set-valued map

G ∈ TV (Z) ∩ F (Z) ⊂ LIPco(RN , RN).

Due to Definition 1.16 of the contingent transition set TV (Z), there is a sequence
hm ↓ 0 in ]0,1−τ[ such that dist(ϑG(hm,Z), V )≤ ε hm for all m ∈ N. Now set

Kε(t) := ϑG

(
t− τ, Kε(τ)

)
, fε(t) := G for each t ∈ [τ, τ +h1[.
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Obviously, Proposition 1.50 (on page 46) implies G ∈ ◦
Kε (t) for all t ∈ [τ, τ +h1[.

Moreover, it leads to

dl
(
Kε(t), Z

) ≤ dl
(
ϑG(t− τ, Kε(τ)), Kε(τ)

)
+ dl
(
Kε(τ), Z

)
≤ B · (t− τ) + ε eAτ τ ≤ Rε

for every t ∈ [τ, τ +δ [ with δ := min
{

h1, ε eA 1− τ
1+B

}
, i.e. conditions (b’)(2.)

and (c) hold in the interval [τ,τ +δ ]. For any index m ∈ N with hm < δ ,

dist
(
Kε(τ+hm), V

) ≤ dl
(
ϑG(hm, Kε(τ)), ϑG(hm, Z)

)
+ dist

(
ϑG(hm, Z), V

)
≤ dl

(
Kε(τ), Z

) · eA hm + ε ·hm

≤ ε eAτ τ · eA hm + ε ·hm ≤ rε(τ +hm),

i.e. condition (b’)(1.) is also satisfied at time t = τ +hm with any large m ∈ N.
Finally, Kε(·)

∣∣
[0, τ+hm] and fε(·)

∣∣
[0, τ+hm[ lead to the wanted contradiction, i.e. τ = 1.

�

Proof (of Lemma 17 on page 316).

For each n ∈ N, Lemma 15 provides
Kn(·) : [0,1] −→ K (RN),
fn(·) : [0,1[ −→ LIPco(RN , RN)

corresponding to ε := 1
n

e−A. Now according to Proposition A.62 (on page 391),
the set–valued map [0,1[×RN � RN , (t,x) �→ fn(t)(x) has a parameterization
[0,1[×RN× B1 −→ RN that we interprete as f̂n : [0,1[−→ Lip(RN×B1,R

N).
Obviously, they satisfy the claimed properties (a) – (e).
In particular, these features stay correct whenever we consider subsequences instead
and again abbreviate them as (Kn(·))n∈N, ( f̂n(·))n∈N respectively.

For property (f) about uniform convergence of (Kn(·)) with respect to dl :

The B–Lipschitz continuity of each Kn(·) has two important consequences, i.e.
1. all Kn(·) : [0,1]−→ (K (RN),dl

)
(n ∈ N) are equi-continuous and

2.
⋃

n∈N
t ∈[0,1]

{
Kn(t)

}
is contained in the compact subset BB(K0) of

(
K (RN), dl

)
.

Theorem A.63 of Arzelà–Ascoli (on page 391) provides a subsequence (again de-
noted by) (Kn(·))n converging uniformly to a function K(·) : [0,1]−→ (K (RN),dl).
In particular, K(·) is also B–Lipschitz continuous with K(0) = K0, i.e. properties
(a) – (f) are fulfilled completely.

For property (g) about weak convergence of fn(·)|K̃ with a fixed compact K̃ ⊂ RN :

We cannot follow the same steps as for differential inclusions in RN any longer.
Indeed, the functions f̂n(·) of morphological transitions have their values in
Lip(RN×B1, RN) which cannot be regarded as a dual space in an obvious way.
Thus, Alaoglu’s Theorem (stating that closed balls of dual Banach spaces are
weakly* compact) cannot be applied similarly to differential inclusions (§ 5.2.1).
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Alternatively, we restrict our considerations to a compact neighbourhood K̃ of⋃
n∈N
t ∈[0,1]

Kn(t)⊂ RN and use a sufficient condition on relatively weakly compact sets

in L1
(
[0,1], C0(K̃×B1, RN)

)
. Here C0(K̃×B1, RN) (supplied with the supremum

norm ‖·‖∞) denotes the Banach space of all continuous functions K̃×B1 −→RN .
According to Proposition A.65 of Ülger (on page 392), if W ⊂C0(K̃×B1, RN) is
weakly compact then the subset{

h ∈ L1
(
[0,1], C0(K̃×B1, RN)

) ∣∣∣ h(t) ∈W for L 1-almost every t ∈ [0,1]
}

is relatively weakly compact in L1
(
[0,1], C0(K̃×B1, RN)

)
.

In fact, the set
{

f̂n(t)
∣∣n ∈N, t ∈ [0,1]

}⊂C0(RN×B1, RN) is uniformly bounded
and equi-continuous (due to property (c)). Due to Theorem A.63 of Arzelà–Ascoli,
the set of their restrictions to the compact set K̃×B1 ⊂ RN ×RN

W :=
{

f̂n(t)
∣∣
K̃×B1

∣∣∣ n ∈ N, t ∈ [0,1]
}
⊂ C0(K̃×B1, RN)

is relatively compact with respect to ‖·‖∞. Thus,
{

f̂n(·)|K̃×B1

∣∣n ∈N
}

is relatively

weakly compact in L1
(
[0,1], C0(K̃×B1, RN)

)
and, we obtain a subsequence (again

denoted by) ( f̂n(·))n∈N and some g(·) ∈ L1
(
[0,1], C0(K̃×B1, RN)

)
with

f̂n(·)|K̃×B1

n→∞−→ g(·) weakly in L1
(
[0,1], C0(K̃×B1, RN)

)
.

For property (g) about fn(·)|K̃ j
with every compact K̃ j

Def.= B j+B(K0)⊂ RN ( j ∈ N) :

Now this construction of subsequences is applied to

K̃ j
Def.= B j+B(K0) =

{
x∈RN

∣∣dist(x,K0)≤ j+B
}

for j = 1,2,3 . . . successively.
By means of Cantor’s diagonal construction, we obtain a subsequence (again de-
noted by) ( f̂n(·))n∈N and some g j(·)∈ L1

(
[0,1], C0(K̃ j×B1, RN)

)
(for each j ∈N)

such that for every index j ∈ N,

f̂n(·)|K̃ j×B1

n→∞−→ g j(·) weakly in L1
(
[0,1], C0(K̃ j×B1, RN)

)
.

As restrictions to K̃ j×B1 of one and the same subsequence ( f̂n(·))n∈N converge
weakly for each j ∈ N, the inclusion K̃ j ⊂ K̃ j+1 implies for any indices j < k

g j(t)(·) = gk(t)(·)|K̃ j×B1
∈C0(K̃ j×B1, RN) for L 1-a.e. t ∈ [0,1].

Hence, (g j(·)) j∈N induces a single function f̂ : [0,1[−→C0(RN×B1,R
N) defined

as

f̂ (t)(x,u) := g j(t)(x,u) for x ∈ K̃ j, u ∈ B1 and L 1-a.e. t ∈ [0,1[.
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For property (h) about Lipschitz continuity and bounds of limit function f (·):
Finally, we verify f̂ (t) ∈ Lip(RN×B1, RN), ‖ f̂ (t, ·, ·)‖∞ + Lip f̂ (t, ·, ·) ≤ c for
almost every t ∈ [0,1[. Indeed, as in the case of differential inclusions (§ 5.2.1),
Mazur’s Lemma (e.g. [143, Theorem V.1.2]) ensures for each fixed index j ∈ N

f̂ (·)|
K̃ j×B1

∈
⋂

n∈N

co
{

f̂n(·)|K̃ j×B1
, fn+1(·)|K̃ j×B1

. . .
}

in L1
(
[0,1],C0(K̃ j×B1,R

N)
)
.

Thus, f̂ (·)|
K̃ j×B1

can be approximated by convex combinations of
{

f̂1(·)|K̃ j×B1
,

f̂2(·)|K̃ j×B1
. . .
}

with respect to the L1 norm. A further subsequence (of these

convex combinations) converges to f̂ (·)|
K̃ j×B1

L 1-almost everywhere in [0,1].

For L 1-almost every t ∈ [0,1], f̂ (t)|
K̃ j×B1

belongs to the same compact con-

vex subset of
(
C0(K̃ j×B1, RN), ‖ · ‖∞

)
as f̂1(t)|K̃ j×B1

, f̂2(t)|K̃ j×B1
. . . , namely{

w ∈ Lip(K̃ j×B1, RN)
∣∣‖w‖∞ +Lip w≤ c

}
. As the index j ∈N is fixed arbitrarily,

we obtain property (h).

Property (i), i.e. K(t) ∈ V for every t ∈ [0,1], results directly from statements (d),
(f) and the assumption that V is closed in

(
K (RN),dl

)
. This completes the proof

of Lemma 17. �

The last step is to verify at L 1-almost every time t ∈ [0,1[ that f̂ (t)(·,B1) :

RN � RN belongs to both F (K(t)) and the morphological mutation
◦
K(t).

First we interprete the weak convergence of f̂n(·)|K̃ j×B1
−→ f̂ (·)|

K̃ j×B1
(in L1)

with respect to the corresponding set–valued maps [0,1[×K̃ j � RN and meet the
topology of locally uniform convergence in LIP(RN ,RN).
As a rather technical tool, Lemma 18 (on page 316) clarifies how the uniform Lip-
schitz bounds of F (K (RN)) ⊂ LIPco(RN ,RN) (due to assumption (2.)) imply
useful compactness features which ensure that the limit map f̂ (t)(·,B1) : RN�RN

is related to F (K(t)) at L 1-almost every time t.

Proof (of Lemma 18 on page 316).

Applying Parameterization Theorem A.62 (on page 391) to the autonomous maps
Gk : RN�RN provides a sequence (gk)k∈N of Lipschitz functions RN×B1 −→RN

with gk(·,B1) = Gk for each k ∈ N and supk (‖gk‖∞ +Lip gk)≤ const(A,B) < ∞.

For any nonempty compact set K ⊂ RN , Theorem A.63 of Arzelà–Ascoli guar-
antees a subsequence (gk j

) j∈N converging uniformly in K×B1. In combination
with Cantor’s diagonal construction, we obtain even a subsequence (again denoted
by) (gk j

) j∈N converging uniformly in each of the countably many compact sets
Bm(0)×B1 ⊂ RN ×RN (m ∈ N).
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Let hm : RN ×B1 −→ RN denote an arbitrary Lipschitz function with

sup
Bm(0)×B1

|gk j
(·)−hm(·)| j→∞−→ 0.

Then we obtain the unique function h : RN×B1 −→RN by setting h(x, ·) := hm(x, ·)
for all x ∈ Bm(0), m ∈ N and, gk j

−→ h ( j → ∞) locally uniformly in RN×B1.

In particular, h(·) is also Lipschitz continuous and has the same global Lipschitz
bounds as (gk)k∈N. Hence, G := h(·,B1) : RN � RN provides a set-valued map
being Lipschitz continuous and satisfying

sup
x∈M

dl(Gk j
(x), G(x)) ≤ sup

x∈M

sup
u∈B1

|gk j
(x,u)−h(x,u)| −→ 0 ( j → ∞)

for any M ∈K (RN). This convergence of (Gk j
) j∈N implies directly Lip G ≤ A,

‖G‖∞ ≤ B and the convexity of all values of G. Now the first claim is proved.

For verifying the second claim, we extract a convergent subsequence (Kkl
)l∈N as

all sets Kk,k ∈N, are contained in one and the same compact subset of RN . Hence,
there is K ∈K (RN) with dl(Kkl

, K) l→∞−→ 0. The same arguments as in the first part
lead to subsequences (again denoted by) (Kk j

) j∈N, (Gk j
) j∈N such that in addition,

the latter converges to a map G ∈ LIPco(RN ,RN) locally uniformly. According to
assumption (3.) of Viability Theorem 11, Graph F ⊂ K (RN)×LIPco(RN ,RN)
is closed with respect to these topologies and thus, it contains (K,G).

�

Proof (of Lemma 19 on page 317).

Lemma 17 (g) specifies the convergence resulting directly from construction

f̂n(·)|K̃ j×B1

n→∞−→ f̂ (·)|
K̃ j×B1

weakly in L1
(
[0,1],C0(K̃ j×B1, RN)

)
for each j∈N with the abbreviation K̃ j := B j+B(K0)

Def.=
{

x∈RN
∣∣dist(x,K0)≤ j+B

}
.

Fixing the index j∈N of compact sets arbitrarily, Mazur’s Lemma provides a se-
quence

(
h j,n(·)

)
n∈N

with

h j,n(·) ∈ co
{

f̂n(·)|K̃ j×B1
, f̂n+1(·)|K̃ j×B1

. . .
} ⊂ L1

(
[0,1],C0(K̃ j×B1, RN)

)
,

h j,n(·) −→ f̂ (·)|
K̃ j×B1

(n→ ∞) strongly in L1
(
[0,1],C0(K̃ j×B1, RN)

)
.

For a subsequence
(
h j,nk

(·))
k∈N

, we even obtain convergence for L 1-a.e. t ∈ [0,1],

h j,nk
(t) −→ f̂ (t)|

K̃ j×B1
(k → ∞) in

(
C0(K̃ j×B1,R

N), ‖ · ‖∞
)
,

i.e. uniformly in K̃ j×B1 ⊂ RN ×RN . Now the first claim is proved.
In particular, all values of f̂ (t)(·,B1) : RN � RN are convex since each map
f̂n(t)(·,B1) ∈ im F ⊂ LIPco(RN ,RN) has convex values.



5.2 Morphological inclusions with state constraints: A Viability Theorem 323

Furthermore, we obtain the following inclusions for L 1-almost every t ∈ [0,1] (and
each index j ∈ N) in a pointwise way

f̂ (t)( · ,B1)
∣∣
K̃ j

∈
⋂

n∈N

h j,n(t)( · ,B1)
∣∣
K̃ j
∪ h j,n+1(t)( · ,B1)

∣∣
K̃ j
∪ . . .

⊂
⋂

n∈N

co
⋃

m≥n

f̂m(t)( · ,B1)
∣∣
K̃ j

⊂
⋂

n∈N

co
⋃

m≥n

F
(
B1/m(Km(t))

)∣∣
K̃ j

⊂
⋂

ε >0

co F
(
Bε(K(t))

)∣∣
K̃ j

due to Lemma 17 (e) and dl(Km(t),K(t)) −→ 0 for m → ∞ respectively. Here, to
be more precise, the closed convex hull (in the last line) denotes the following set–
valued map

K̃ j � RN , x �→ co
⋃

M∈K (RN )
dl(K(t),M)≤ε

⋃
G∈F (M)

G(x).

Fixing now j ∈ N and δ > 0 arbitrarily, we introduce the abbreviation

Bδ

(
F (K(t)); K̃ j

)
:=
{

G ∈ LIPco(RN ,RN)
∣∣∣

δ ≥ dist
(

G(·)|
K̃ j

, F (K(t))|
K̃ j

)
Def.= inf

Z∈F (K(t))
sup

x∈ K̃ j

dl(G(x), Z(x))
}

for the “ball” around the set F (K(t)) containing all maps G ∈ LIPco(RN ,RN)
whose restriction to K̃ j has the “uniform distance” ≤ δ from F (K(t)).

For any δ > 0 and each j ∈ N, there exists a radius ρ > 0 with

F
(
Bρ(K(t))

) ⊂ Bδ
(
F (K(t)); K̃ j

)
because otherwise there would exist sequences (Mk)k∈N, (Gk)k∈N in K (RN)
and LIPco(RN ,RN) with dl (Mk, K(t)) ≤ 1

k
, Gk ∈ F (Mk) \Bδ

(
F (K(t)); K̃ j

)
for each k ∈ N and, Lemma 18 would lead to a contradiction (similarly to [16,
Proposition 1.4.8] about closed graph and upper semicontinuity of set-valued maps
between metric spaces).
Obviously, Bδ

(
F (K(t)); K̃ j

) ⊂ LIPco(RN ,RN) is closed with respect to locally
uniform convergence. Moreover, it is convex with regard to pointwise convex com-
binations because F (K(t)) is supposed to be convex.
Thus, we even obtain the inclusion co F (Bρ(K(t))) ⊂ Bδ

(
F (K(t)); K̃ j

)
, i.e.

f̂ (t)( · ,B1)
∣∣
K̃ j
∈
⋂

δ >0

Bδ
(
F (K(t)); K̃ j

)
for L 1-a.e. t and each j ∈ N.

In particular, there exists some Z j ∈F (K(t)) satisfying

sup
x∈ K̃ j

dl ( f (t)(x,B1), Z j(x))≤ 1
j

and, the compactness property of Lemma 18 implies for L 1-almost every time t

f̂ (t)( · ,B1) ∈ F (K(t)). �
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Proof (of Lemma 20 on page 317).

According to the definition of Aumann integral (e.g. [16, § 8.6]),∫
J

f̂ (s)(x(s),B1) ds
Def.=
{∫

J
f̂ (s)(x(s),u(s)) ds

∣∣∣ u(·) ∈ L1(J,B1)
}

.

Fixing u(·) ∈ L1(J,B1) and x(·) ∈ C0([0,1],RN) arbitrarily, we conclude from
Lemma 17 (g)∫

J
f̂n(s)(x(s),u(s)) ds −→

∫
J

f̂ (s)(x(s),u(s)) ds for n→ ∞

since L1
(
[0,1],C0(K̃ j×B1, RN)

)−→ R, h �−→
∫

J
h(s)(x(s),u(s)) ds

is continuous and linear whenever x([0,1])⊂ K̃ j. This implies

both dist
(∫

J
f̂n(s)(x(s),B1) ds,

∫
J

f̂ (s)(x(s),B1) ds
)
−→ 0

and dist
(∫

J
f̂ (s)(x(s),B1) ds,

∫
J

f̂n(s)(x(s),B1) ds
)
−→ 0.

Hence, the first claim holds.

Due to Lemma 17 (c), each f̂n(·)(x,B1) : [0,1[ � RN (n ∈ N, x ∈ RN) is
piecewise constant and thus, it has at most countably many points of discontinuity.
We conclude from Proposition 1.57 (about the equivalence between morphological
primitives and reachable sets on page 50)

ϑ
f̂n(·)(·,B1)(t,K0) = Kn(t) for every t ∈ ]0,1] and n ∈ N.

dl(Kn(t), K(t)) −→ 0 has already been mentioned in Lemma 17 (f). Now we still
have to verify

dl
(

ϑ
f̂n(·)(·,B1)(t,K0), ϑ

f̂ (·)(·,B1)(t,K0)
)
−→ 0 for every t ∈ ]0,1] and n→∞.

If K0 ⊂ RN consists of only one point, then this convergence results directly
from Proposition 21 of Stassinopoulos and Vinter (on page 317).

For extending it to arbitrary initial sets K0 ∈K (RN), we exploit two features:
first, the reachable set of a union is always the union of the corresponding reach-
able sets and second, the Lipschitz dependence (of reachable sets) on the initial sets
in the sense of Proposition 1.50 (on page 46), i.e., for any M1,M2 ∈ K (RN) and
t ∈ [0,1] {

dl
(
ϑ

f̂n(·)(·,B1)(t,M1), ϑ
f̂n(·)(·,B1)(t,M2)

) ≤ eA dl(M1,M2)

dl
(
ϑ

f̂ (·)(·,B1) (t,M1), ϑ
f̂ (·)(·,B1) (t,M2)

) ≤ eA dl(M1,M2) .

This second general property for nonautonomous differential inclusions is covered
by Filippov’s Theorem A.6 (on page 355 f.) correspondingly to Proposition 1.50.

�
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5.3 Morphological control problems for compact sets in RN

with state constraints

Similarly to classical control theory in RN , a metric space (U,dU ) of control param-
eter and a single-valued function f : K (RN)×U −→ LIP(RN ,RN) of state and
control are given. For each initial set K(0) ∈ K (RN), we are looking for a Lip-
schitz continuous curve K(·) : [0,T ] −→ (K (RN), dl

)
solving the following non-

autonomous morphological equation
◦
K (t) � f (K(t),u(t)) in [0,T [

with a measurable control function u(·) : [0,T ]−→U, i.e. by definition

lim
h↓0

1
h
· dl
(
ϑ f (K(t),u(t))(h, K(t)), K(t +h)

)
= 0 for L 1-a.e. t ∈ [0,T ].

This is an open-loop control problem in the metric space (K (RN),dl).

The existence of solutions is closely related to the corresponding morphological
inclusion for which we take all admitted controls into consideration simultaneously.
We introduce the set-valued map

FU : K (RN) � LIP(RN ,RN), K �→ { f (K,u) |u ∈ U} ⊂ LIP(RN ,RN)

and consider the morphological inclusion
◦
K(·) ∩ FU (K(·)) �= /0 in [0,T [.

In § 5.3.2, Proposition 24 (on page 328) specifies sufficient conditions on U and f

such that solutions to this morphological inclusion solve the morphological control
problem and vice versa.
The step from inclusion to control problem requires the existence of a measurable
control function and, it is concluded here from a well-known selection principle of
Filippov whose Euclidean special case is usually applied to differential inclusions
in RN and classical control theory.

All available results about morphological inclusions can be used for solving mor-
phological control problems. In the following, Viability Theorem 11 (on page 313)

plays a key role. It concerns a morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0 with

state constraints K(t) ∈ V ⊂K (RN) at every time t.
This viability theorem specifies sufficient conditions on F and the nonempty set
V ⊂ K (RN) of constraints such that at least one solution K(·) : [0,1] −→ V ⊂
K (RN) starts at each initial set K(0) ∈ V . In § 5.3.3 (on page 330 ff.), the close
relationship between morphological inclusions and control problems provides di-
rectly sufficient conditions on a morphological control system with state constraints
for the existence of solutions (Proposition 27).
In § 5.3.4, essentially the same approach is then used for solving relaxed control
problems in the morphological framework. They are based on replacing the metric
space U of control parameters by the set of Borel probability measures on U (sup-
plied with the linear Wasserstein metric). As immediate analytical benefit, we can
weaken some conditions of convexity in Proposition 34 (on page 334).
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The step to closed-loop control problems for compact sets in RN

Consider morphological control problems with state constraints{ ◦
K (·) � f (K(·),u), u ∈U a.e. in [0,T [
K(t) ∈ V for every t ∈ [0,T [.

The metric space (U,dU ) of control, function f : K ×U −→ LIP(RN ,RN) and
the closed set V ⊂ K (RN) of constraints are given. The morphological viability
condition mentioned before indicates where candidates for a closed-loop control
u : V −→ U can be found, namely among those controls u ∈ U whose reachable
sets ϑ f (K,u)(·,K) are “contingent” to V . This reflects the notion of regulation maps

defined by Aubin for control problems in finite-dimensional vector spaces [13, § 6].

In § 5.3.7 (on page 348 ff.), we specify sufficient conditions on U, f ,V such that
Michael’s famous selection theorem implies the existence of a continuous closed-
loop control (Proposition 51 on page 348). Michael’s selection theorem (quoted
here in Proposition 52), however, focuses on lower semicontinuous set-valued maps.
Now we need information about the semicontinuity properties of these regulation
maps.

In this regard, the classical results about finite-dimensional vector spaces serve
as motivation again. The Clarke tangent cone TC

V (x) ⊂ RN , x ∈ V, to a nonempty
closed set V ⊂RN (alias circatangent set, see Definition 36) is known to have closed
graph whereas the Bouligand contingent cone to the same set does not have such a
semicontinuity feature in general [16, 124]. Furthermore, Rockafellar characterized
the interior of the convex Clarke tangent cone TC

V (x)⊂RN by a topological criterion
leading to the so-called hypertangent cone ([123, Theorem 2], [34, § 2,4] and quoted
here in § 5.3.6). The set-valued map of hypertangent cones to a fixed set V ⊂ RN is
lower semicontinuous whenever all these cones are nonempty.

These two concepts, i.e. Clarke tangent cone and hypertangent cone to a given
closed set, are extended to the morphological framework where the metric space
(K (RN),dl) has replaced the Euclidean space.
In § 5.3.5, we apply Aubin’s definition of “circatangent transition set” [9, Defini-
tion 1.5.4] to (K (RN),dl) together with reachable sets of differential inclusions.
The result proves to be a nonempty closed convex cone in LIP(RN ,RN).
In § 5.3.6, the so-called hypertangent transition set is introduced for a nonempty
closed subset V ⊂K (RN). Its graph is identical to the interior of the graph of cir-
catangent transition sets in V ×LIP(RN ,RN).
In particular, this topological characterization proves to be helpful for construct-
ing closed-loop controls on the basis of Michael’s selection principle in subsequent
Proposition 51 (on page 348).
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5.3.1 Formulation

Now a control parameter is to come into play. Indeed, the so-called control problems{
d
dt

x(t) = f (x(t),u)
u ∈ U

(5.1)

have been studied thoroughly both in finite-dimensional and in infinite-dimensional
vector spaces. Our contribution now is to formulate the corresponding problem in
the metric space (K (RN),dl) using the morphological framework for derivatives.

Definition 22.
Let (U,dU ) denote a metric space and f : K (RN)×U −→ LIP(RN ,RN) be given.
A tube K : [0,T ]� RN is called a solution to the morphological control problem{ ◦

K (·) � f (K(·),u) a.e. in [0,T ]
u ∈ U

(5.2)

if there exists a measurable function u(·) : [0,T [−→ U such that K(·) solves the

nonautonomous morphological equation
◦
K (·) � f (K(·),u(·)), i.e. satisfying

1. K(·) : [0,T ]� RN is continuous with respect to dl and

2. for L 1-almost every t ∈ [0,T [, f (K(t),u(t)) ∈ LIP(RN ,RN) belongs to
◦
K(t)

or, equivalently, lim
h↓0

1
h
· dl
(
ϑ f (K(t),u(t))(h, K(t)), K(t +h)

)
= 0.

Proposition 23 (Solutions as reachable sets).
Assume the metric space (U,dU ) to be complete and separable and, consider

LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose f :
K (RN)×U −→ LIPco(RN ,RN) to be continuous with

sup
M∈K (RN )

u∈U

(‖ f (M,u)‖∞+Lip f (M,u)) < ∞.

Let K : [0,T ]� RN be any compact-valued solution to the morphological control

problem (5.2).
Then there is a measurable function u(·) : [0,T ] −→ U such that at every

time t ∈ [0,T ], the compact set K(t) ⊂ RN coincides with the reachable set

ϑ f (K(·),u(·))(t, K(0))⊂ RN of the nonautonomous differential inclusion

d
dτ x(τ) ∈ f (K(τ),u(τ))

(
x(τ)
) ⊂ RN L 1-a.e.

Proof. It results from Proposition 1.57 (on page 50) stating the equivalence
between morphological primitives and reachable sets because the composition

f (K(·),u(·)) : [0,T ] −→ LIPco(RN ,RN)

is Lebesgue measurable. �
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5.3.2 The link to morphological inclusions

In vector spaces, the close relationship between control problem (5.1) and the cor-
responding differential inclusion

d
dt

x(t) ∈
⋃

u∈U

f (x(t),u) L 1− a.e.

had been realized soon. A measurable selection provides the same link now for
morphological inclusions. In a word, the classical techniques using appropriate mea-
surable selections (which had been developed for differential inclusions in the Eu-
clidean space) can also be used in the morphological framework because the transi-
tions are in a complete separable metric space, namely LIP(RN ,RN).
A main result of this section is the following equivalence:

Proposition 24. Assume the metric space (U,dU ) to be complete and separable.

Consider the set LIP(RN ,RN) with the topology of locally uniform convergence.

Let f : K (RN)×U −→ LIP(RN ,RN) be a Carathéodory function (i.e. continuous

in the first argument and measurable in the second one) satisfying

sup
M∈K (RN )

u∈U

(‖ f (M,u)‖∞ +Lip f (M,u)) < ∞.

Set FU : K (RN) � LIP(RN ,RN), K �→ { f (K,u) |u ∈ U} ⊂ LIP(RN ,RN).

A tube K(·) : [0,T ]� RN is a solution to the morphological control problem{ ◦
K (·) � f (K(·),u) a.e. in [0,T ]

u ∈ U

if and only if K(·) is a solution to the morphological inclusion
◦
K(·) ∩ FU (K(·)) �= /0

(in the sense of Definition 1 on page 298).

Obviously, every morphological control problem leads to a morphological inclusion.
For proving Proposition 24, we require the inverse connection (i.e. from inclusion
to control problem). In the literature about differential inclusions in vector spaces,
it is usually based on a selection result that is said to go back to Filippov.

Lemma 25 (Filippov [16, Theorem 8.2.10]). Consider a complete σ -finite mea-

sure space (Ω ,A,μ), complete separable metric spaces X ,Y and a measurable set-

valued map H : Ω � X with closed nonempty images. Let g : X ×Ω −→ Y be a

Carathéodory function.

Then for every measurable function k : Ω −→ Y satisfying

k(ω) ∈ g(H(ω),ω) for μ-almost all ω ∈Ω ,

there exists a measurable selection h(·) : Ω −→ X of H(·) such that

k(ω) = g(h(ω),ω) for μ-almost all ω ∈Ω .
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For applying Lemma 25 to morphological inclusions, we focus on two aspects:
First, LIP(RN ,RN) is regarded as a separable metric space. Indeed, we supply
LIP(RN ,RN) with the topology of locally uniform convergence as in § 5.2. Simi-
larly to the beginning of § 5.1 (on page 298), this topology can be metrized by

dLIP : LIP(RN ,RN)×LIP(RN ,RN) −→ [0,1],

(G,H) �−→
∞

∑
j=1

2− j
dl∞
(
G(·)|B j(0), H(·)|B j(0)

)
1 + dl∞

(
G(·)|B j(0), H(·)|B j(0)

)
with the abbreviation dl∞

(
G(·)|B j(0), H(·)|B j(0)

) Def.= sup
x∈RN ,
|x|≤ j

dl(G(x), H(x)) < ∞.

Moreover, LIP(RN ,RN) is separable with respect to dLIP due to the (global) Lips-
chitz continuity of each of its set-valued maps and because both domains and values
belong to the separable Euclidean space RN .

Second, we study measurability of the “derivatives” for any compact-valued so-
lution K(·) : [0,T ]� RN . Indeed for real-valued functions, it is well-known that
Lipschitz continuity implies a Lebesgue-integrable weak derivative and, the latter
coincides with the differential quotient at Lebesgue-almost every time (as a con-
sequence of Rademacher’s Theorem [124, Theorem 9.60]). In the morphological
framework, however, the derivative is described as a subset of LIP(RN ,RN), i.e.,
the mutation (in the sense of Definition 1.10 on page 25).
In combination with Arzelà–Ascoli Theorem A.63 in metric spaces, we conclude
directly from Lemma 3 (on page 299):

Lemma 26 (Measurability of compact mutation subsets).
For every threshold B ∈ [0,∞[ and continuous tube K(·) : [0,T ]� RN with values

in K (RN), the following set-valued map of transitions

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩ {G ∈ LIP(RN ,RN) | ‖G‖∞ +Lip G≤ B}

is Lebesgue-measurable. �

Proof (of Proposition 24).

“⇐=” Let the compact-valued tube K(·) : [0,T ]� RN be solution to the mor-

phological inclusion
◦
K(·) ∩ FU (K(·)) �= /0 (in the sense of Definition 1), i.e.

1.) K(·) : [0,T ]� RN is continuous with respect to dl and

2.) FU (K(t))∩ ◦
K(t) �= /0 for L 1-almost every t, i.e. there is some u ∈U such

that the set-valued map f (K(t),u) ∈ FU (K(t)) ⊂ LIP(RN ,RN) belongs to

the mutation
◦
K(t) or, equivalently,

lim
h↓0

1
h
·dl (K(t+h), ϑ f (K(t),u)(h, K(t))

)
= 0.
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Setting B := sup
M∈K (RN), u∈U

(‖ f (M,u)‖∞ +Lip f (M,u)) < ∞, the set-valued map

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩{G ∈ LIP(RN ,RN) | ‖G‖∞ +Lip G≤ B}

is Lebesgue-measurable according to Lemma 26. As a consequence of Proposi-
tion A.58 and Selection Theorem A.55 (on page 389 f.), the intersection

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩FU (K(t))

is also Lebesgue-measurable (with nonempty values at L 1-almost every time) and
thus, it has a measurable selection

k(·) : [0,T ] −→ (
LIP(RN ,RN), dLIP

)
.

Finally, Lemma 25 of Filippov provides a measurable selection u(·) : [0,T ] −→U

of the constant map H(·) ≡ U : [0,T ] � U such that k(t) = f (K(t),u(t)) for
L 1-almost every t ∈ [0,T ]. �

5.3.3 Application to control problems with state constraints

The relationship between morphological control problems and morphological in-
clusions opens the door to applying Viability Theorem 11. Now we can specify
sufficient conditions on a morphological control problem with state constraints for
having at least one viable solution:

Proposition 27 (Viability theorem for morphological control problems).
Assume the metric space (U,dU ) to be compact and separable and, consider the

set LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose for

f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty closed subset V ⊂K (RN):

1.) for any K ∈ K (RN), the set { f (K,u) | u∈U} ⊂ LIPco(RN ,RN) is convex,

i.e. for any u1,u2 ∈U and λ ∈ [0,1], there exists some u ∈ U such that

f (K,u) ∈ LIPco(RN ,RN) is identical to the set-valued map

RN � RN , x �→ λ · f (K,u1)(x)+(1−λ ) · f (K,u2)(x),

2.) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞ +Lip f (K,u)) < ∞,

3.) f is continuous,

4.) for each K ∈ V , there exists some u ∈U with f (K,u) ∈ TV (K).

Then for every initial set K0 ∈ V , there exists a compact–valued Lipschitz

continuous solution K(·) : [0,1] � RN to the morphological control problem
◦
K(·) � f (K(·),u), u ∈U with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
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Proof. Define the set-valued map

FU : K (RN)� LIPco(RN ,RN), K �→ { f (K,u) |u∈U}.
Obviously, it has nonempty convex values due to assumption (1.). Moreover, the
graph of FU is a closed subset of K (RN)×LIP(RN ,RN) because f is continuous
and U is compact. Hence, FU satisfies the assumption of Viability Theorem 11 and
thus, for every initial set K0 ∈ V , there exists a compact–valued Lipschitz contin-
uous solution K(·) : [0,1]� RN to the morphological inclusion

◦
K(·) ∩ FU (K(·)) �= /0

with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
Due to Proposition 24, K(·) is solution to the morphological control problem

◦
K(·) � f (K(·),u), u ∈U. �

For a given closed subset M ⊂ RN , we conclude from Gorre’s characterization in
Proposition 1.66 (on page 55) directly:

Corollary 28.
Assume the metric space (U,dU ) to be compact and separable and, consider the

set LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose for

f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty closed subset M ⊂ RN:

1.) for any K ∈ K (RN), the set { f (K,u) | u∈U} ⊂ LIPco(RN ,RN) is convex

(as in Proposition 27),
2.) sup

K∈K (RN )
u∈U

(‖ f (K,u)‖∞ +Lip f (K,u)) < ∞,

3.) f is continuous,

4.) for each nonempty compact set K ⊂M, there exists u ∈U with

f (K,u)(x)⊂ TM(x) for all x ∈ K.

Then for every nonempty compact subset K0 ⊂M, there exists a compact–valued

Lipschitz continuous solution K : [0,1]�RN to the morphological control problem{ ◦
K (·) � f (K(·),u)

u ∈ U

with K(0) = K0 and K(t)⊂M for all t ∈ [0,1]. �
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5.3.4 Relaxed control problems with state constraints

Considering the morphological control problem{ ◦
K (·) � f (K(·),u) in [0,T [

u ∈ U

(and the statements in Proposition 27 or Corollary 28, for example), the convexity
of { f (K,u) |u ∈U} ⊂ LIPco(RN ,RN) is a hypothesis that can be difficult to verify.
For basically the same reason, the concept of “relaxed control” has been established
for classical control problems in vector spaces. In a word, it is based on replacing
the metric space U of control parameters by the set of Borel probability measures
on U, from now on denoted by P(U).
Now the goal is to adapt “relaxed controls” to the morphological framework.

Definition 29. Let (U,dU ) be a metric space and consider LIP(RN ,RN) with the
topology of locally uniform convergence (metrized by dLIP as in § 5.3.2). Suppose
g : U −→ LIP(RN ,RN) to be continuous.

For any probability measure μ ∈P(U), the integral
∫

U
g(u) dμ(u) is defined

as set-valued map by∫
U

g(u) dμ(u) : RN � RN , x �→
∫

U
g(u)(x) dμ(u).

Remark 30. Using the notation of Definition 29, for each point x ∈ RN fixed, the
set-valued map U � RN , u �→ g(u)(x) is compact-valued and continuous in the

sense of Bouligand and Kuratowski. Thus the integral
∫

U
g(u)(x) dμ(u) ⊂ RN

is well-defined in the sense of Aumann.

Definition 31.
Let (U,dU ) denote a metric space and f : K (RN)×U −→ LIP(RN ,RN) be given.
K(·) : [0,T ]� RN with values in K (RN) is called a solution to the morphological

relaxed control problem{ ◦
K (·) � f (K(·),u) a.e. in [0,T ]

u ∈ U

if there is a measurable function μ : [0,T [−→P(U), t �−→ μt such that K(·) solves

the nonautonomous morphological equation
◦
K (t) �

∫
U

f (K(t),u) dμt(u) in [0,T ],

i.e., satisfying

1.) K(·) : [0,T ]� RN is continuous with respect to dl and

2.) for L 1-a.e. t ∈ [0,T ], the closure
∫

U
f (K(t),u) dμt(u) ∈ LIP(RN ,RN)

belongs to the mutation
◦
K(t).
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The first question is now: Which effects do probability measures (on U) instead
of U have on the corresponding set-valued map FU : K (RN)� LIP(RN ,RN) ?

Proposition 32. Assume the metric space (U,dU ) to be compact and separable.

Consider the set LIPco(RN ,RN) with the topology of locally uniform convergence

and the set P(U) of Borel probability measures on U with the topology of nar-

row convergence (i.e. the dual setting with continuous and thus bounded functions

U −→ R). Let f : K (RN)×U −→ LIPco(RN ,RN) be continuous with

sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+Lip f (K,u)
)

< ∞

and, set for each K ∈K (RN)

FU (K) :=
{

f (K,u)
∣∣ u ∈U},

F̃U (K) :=
{∫

U
f (K,u) dμ(u)

∣∣∣ μ ∈P(U)
}

.

Then,

1.) F̃U (·) is a set-valued map K (RN)�LIPco(RN ,RN) with FU (K)⊂ F̃U (K)
for every K∈K (RN).

2.) F̃U (·) has closed convex values with co FU (K) = F̃U (K)⊂ LIPco(RN ,RN)
for every K∈K (RN).

3.) The graph of F̃U (·) is closed.

The proof of this proposition uses some tools about Borel probability measures and
Aumann integrals. It is postponed to the end of this section 5.3.4.
The main notion is now to consider P(U) as control set instead of U. For applying
Proposition 24 about the relationship between control problem and morphological
inclusion, however, the parameter space has to be metric. We need the following
lemma for obtaining the counterparts to Proposition 27 and Corollary 28.
Proposition 34 and Corollary 35 are the main results of this section.

Lemma 33 ([5, §§ 5.1, 7.1]).
Let U �= /0 be a Polish space (i.e. complete and separable metric space) with a

bounded metric dU .

Then the set P(U) of Borel probability measures on U supplied with the topology of

narrow convergence is metrizable and separable. An example for a suitable metric

on P(U) is the linear Wasserstein distance (in its dual representation)

dP(U)
(
μ, ν

)
:= sup

{∫
U

ψ d(μ−ν)
∣∣∣ ψ : U −→ R 1–Lipschitz continuous

}
.

A subset M ⊂P(U) is relatively compact in P(U) if and only if M is tight, i.e.

for every ε > 0, there exists a compact subset C ⊂ U with μ(U \C) ≤ ε for all

μ ∈M (known as Prokhorov’s Theorem).
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Proposition 34 (Viability theorem for morphological relaxed control problems).
Assume the metric space (U,dU ) to be compact and separable. Consider the set

LIPco(RN ,RN) with the topology of locally uniform convergence and the set P(U)
of Borel probability measures on U with the topology of narrow convergence.

Suppose for f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty closed subset

V ⊂K (RN):

(i) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞ +Lip f (K,u)) < ∞,

(ii) f is continuous,

(iii) TV (K) ∩ co { f (K,u) |u ∈U} �= /0 for each K ∈ V .

Then for every initial set K0 ∈ V , there exists a compact–valued Lipschitz con-

tinuous solution K(·) : [0,1]� RN to the morphological relaxed control problem
◦
K(·) � f (K(·),u), u ∈U

(in the sense of Definition 31) with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].

Proof. Considering
(
P(U), dP(U)

)
as metric parameter space instead of (U,dU ),

the set-valued map

F̃U : K (RN) � LIPco(RN ,RN), K �→
{∫

U
f (K,u) dμ(u)

∣∣∣ μ ∈P(U)
}

satisfies the assumptions of Viability Theorem 11 according to Proposition 32.
For each K0 ∈ V , there exists a compact–valued Lipschitz continuous solution

K(·) : [0,1]� RN to the morphological inclusion
◦
K(·) ∩ F̃U (K(·)) �= /0 with

K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
Finally Proposition 24 guarantees that K(·) is solution to the morphological control
problem

◦
K(·) �

∫
U

f (K(·),u) dμ(u), μ ∈P(U),

i.e., it solves the relaxed control problem. �

Corollary 35. Assume the metric space (U,dU ) to be compact and separable.

Consider the set LIPco(RN ,RN) with the topology of locally uniform convergence

and the set P(U) of Borel probability measures on U with the topology of narrow

convergence. Suppose for f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty

closed subset M ⊂ RN:

(i) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞ +Lip f (K,u)) < ∞,

(ii) f is continuous,

(iii) for each compact K⊂M, there is a set-valued map G∈ co { f (K,u)|u∈U}⊂
LIPco(RN ,RN) satisfying G(x)⊂ TM(x) for every x ∈ K.



5.3 Morphological control problems for compact sets in RN with state constraints 335

Then for every nonempty compact subset K0 ⊂M, there exists a compact–valued

Lipschitz continuous solution K(·) : [0,1] � RN to the morphological relaxed

control problem
◦
K (·) � f (K(·),u), u ∈ U (in the sense of Definition 31) with

K(0) = K0 and K(t)⊂M for all t ∈ [0,1].
�

Now we close this section with the proof of Proposition 32.

Proof (of Proposition 32). (1.) As mentioned in Remark 30, the integral∫
U

f (K,u) dμ(u) is a well-defined set-valued map RN�RN for each K ∈K (RN),

u ∈U and μ ∈P(U).
Moreover, its closure is convex since all set-valued maps f (K,u) ∈ LIPco(RN ,RN)
have convex values and due to the general properties of Aumann integral (see e.g.
[108, Theorem 2.1.17] or for the special case of nonatomic measures, [16, § 8.6]).
Due to the assumption B := supK,u

(‖ f (K,u)‖∞+Lip f (K,u)
)

< ∞, all nonempty
compact sets f (K,u)(x)⊂ RN (with K ∈K (RN),u ∈U, x ∈ RN) are contained in
the closed convex ball {y ∈ RN | |y| ≤ B} and so are all values of the closures of∫

U
f (K,u) dμ(u).

Finally we prove that
∫

U
f (K,u) dμ(u) : RN � RN is B–Lipschitz continuous

for each K ∈K (RN). For any x1,x2 ∈ RN , the inclusion

f (K,u)(x1) ⊂ f (K,u)(x2)+BB·|x1−x2|(0) ⊂ RN

holds for every u ∈U and we conclude from [16, Proposition 8.6.2]∫
U

f (K,u)(x1) dμ(u) ⊂
∫

U

(
f (K,u)(x2) + BB·|x1−x2|(0)

)
dμ(u)

⊂
∫

U
f (K,u)(x2) dμ(u) + BB·|x1−x2|(0).

(2.) The convexity of F̃ (K)⊂ LIPco(RN ,RN) (with respect to pointwise con-
vex combinations as in Theorem 11, assumption (1.) on page 313) results from the
convexity of P(U). Furthermore, co F (K) ⊂ F̃ (K) ⊂ co F (K) can be con-
cluded easily from the fact that finite convex combinations of Dirac masses are dense
in P(U) (since U is compact separable and due to [22, Corollary 30.5]).

Now we prove that F̃ (K) ⊂ LIPco(RN ,RN) is closed (with respect to locally
uniform convergence) for every K ∈K (RN). Indeed, let (μn)n∈N be any sequence
in P(U) such that∫

U
f (K,u) dμn(u) n→∞−→ G ∈ LIPco(RN ,RN) locally uniformly in RN .
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As U is assumed to be compact, the sequence (μn)n∈N is tight and thus relatively
compact in P(U) according to Lemma 33. Hence, a subsequence (μn j

) j∈N con-
verges narrowly to a measure μ∞ ∈P(U). We want to verify for every x ∈ RN∫

U
f (K,u)(x) dμ∞(u) = G(x) ⊂ RN .

Indeed, the set-valued map f (K, ·)(x) : U � RN is continuous with nonempty
compact convex values. Both the closed integral in the recent claim and G(x) are
nonempty, compact and convex. For any vector p∈RN and any measure ν ∈P(U),
[16, Proposition 8.6.2] states

sup
(

p ·
∫

U
f (K,u)(x) dν(u)

)
=
∫

U
sup (p · f (K,u)(x)) dν(u).

Here the single-valued function sup (p · f (K, ·)(x)) : U −→ R is continuous and
bounded. On the one hand, we conclude from the narrow convergence μn j

−→ μ∞
for each p ∈ RN

sup
(

p ·
∫

U
f (K,u)(x) dμn j

(u)
)

j→∞−→ sup
(

p ·
∫

U
f (K,u)(x) dμ∞(u)

)
.

On the other hand, the initial assumption of locally uniform convergence to G(·)
implies for each p ∈ RN

sup
(

p ·
∫

U
f (K,u)(x) dμn j

(u)
)

j→∞−→ sup (p ·G(x)) .

Hence, the two following convex sets coincide for every x ∈ RN∫
U

f (K,u)(x) dμ∞(u) = G(x) ⊂ RN .

Finally we have verified that F̃ (K)⊂ LIPco(RN ,RN) is closed.

(3.) For proving that Graph F̃ ⊂ K (RN)×LIPco(RN ,RN) is closed, let
(Kn)n∈N, (μn)n∈N be any sequences in K (RN) and P(U) respectively such that⎧⎪⎨⎪⎩

Kn
n→∞−→ K∈K (RN) with respect to dl,∫

U
f (Kn,u) dμn(u) n→∞−→ G∈ LIP(RN ,RN) locally uniformly in RN .

Our goal is to verify G ∈ F̃ (K).

Due to the compactness of U, the set {μn | n ∈ N} ⊂ P(U) is tight and, there
exists a subsequence (again denoted by) (μn)n∈N converging narrowly to some
μ∞ ∈ P(U). In the proof of statement (2.), we have already drawn the conclu-
sion for each x ∈ RN∫

U
f (K,u)(x) dμn(u) n→∞−→

∫
U

f (K,u)(x) dμ∞(u) ⊂ RN
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Now it is sufficient to verify for each x ∈ RN∫
U

f (Kn,u)(x) dμ(u) n→∞−→
∫

U
f (K,u)(x) dμ(u) uniformly in μ ∈P(U)

since it ensures the wanted convergence for every x ∈ RN∫
U

f (Kn,u)(x) dμn(u) n→∞−→
∫

U
f (K,u)(x) dμ∞(u) ⊂ RN

Indeed, the continuous function f : K (RN)×U −→ LIPco(RN ,RN) (between met-
ric spaces) is uniformly continuous on the compact product set {K,Kn |n ∈N}×U.
Evaluating the set-valued maps at a fixed point x ∈ RN respectively, we obtain for
each ε > 0 that a small radius δ = δ (ε) > 0 satisfies

dl(Kn,K) + dU (u1,u2) ≤ δ =⇒ dl
(

f (Kn,u1)(x), f (K,u2)(x)
) ≤ ε.

In particular, there is some m = m(ε) ∈ N with

dl
(

f (Kn,u)(x), f (K,u)(x)
) ≤ ε for all n≥ m, u ∈U.

Since f (Kn,u)(x) and f (K,u)(x) are compact convex subsets of RN , it implies
for the closure of the Aumann integral with respect to any probability measure
μ ∈P(U) [108, Theorem 2.1.17 (i)]

dl
(∫

U
f (Kn,u) dμ(u),

∫
U

f (K,u) dμ(u)
)
≤ ε for all n≥ m(ε).

�
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5.3.5 Clarke tangent cone in the morphological framework:
The circatangent transition set.

The invariance condition of Nagumo (in Theorem 1.19 on page 28) has already
served Aubin as motivation for extending the contingent cone TV (x) in a normed
vector space to the mutational framework (see Definition 1.16 on page 27).

In this section, we start with the classical definition of Clarke tangent cone in-
troduced by Frank H. Clarke in the seventies (see [34] for details) and extend it to
the morphological framework. Following the alternative nomenclature of Aubin and
Frankowska in [16, Definition 4.1.5 (2)], its counterpart will be called circatangent

transition set – just because this term fits to the established “contingent transition
set”.

Indeed, Aubin introduced circatangent transition sets in the more general frame-
work of metric spaces in [9, Definition 1.5.4] and, Definition 37 below is equivalent
to the special case of (K (RN),dl) and morphological transitions.
Murillo Hernández applied this concept to tuples (v,K) ∈RN ×K (RN) with v ∈ K

and proved an asymptotic relationship between their contingent and circatangent
transition set implying that the latter is closed [109, Theorem 4.6].
In this section we generalize further features from the Euclidean space to the metric
space (K (RN),dl).

Definition 36 ([34, § 2.4],[16, § 4.1.3], [124, § 6.F]). Let K be a nonempty subset
of a normed vector space X and x ∈ X belong to the closure of K.
The Clarke tangent cone or circatangent cone TC

K (x) is defined (equivalently) by

TC
K (x) := Liminf h↓0,

y−→
K

x

K−y
h

=
{

v ∈ X

∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : dist
(
v, K−yn

hn

) n→∞−→ 0
}

=
{

v ∈ X

∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : dist(yn+hn·v, K)
hn

n→∞−→ 0
}

.

Definition 37. For a nonempty subset V ⊂K (RN) and any element K ∈ V ,

T C
V (K) :=

{
F ∈ LIP(RN ,RN)

∣∣∣ ∀ hn ↓ 0, Kn → K with Kn ∈ V ⊂K (RN) :
1
hn
· dist

(
ϑF(hn,Kn), V

) n→∞−→ 0
}

is called circatangent transition set of V at K (in the metric space (K (RN),dl)).

In fact, we do not have to restrict our considerations to arbitrary sequences (Kn)n∈N

in V ⊂ K (RN). An equivalent characterization of T C
V (K) uses all sequences in

K (RN) converging to K :
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Lemma 38. For every nonempty closed subset V ⊂ (K (RN),dl
)

and K ∈ V ,

T C
V (K) =

{
F ∈ LIP(RN ,RN)

∣∣∣ ∀ hn ↓ 0, Kn → K :

limsup
n−→∞

dist(ϑF (hn,Kn), V ) − dist(Kn,V )
hn

≤ 0
}

.

So far, the circatangent transition set has been characterized by two sequences pro-
viding the arbitrarily fixed link between “step size” hn > 0 and neighboring sets
Kn ∈ K (RN). The following condition proves to be equivalent and avoids count-
ability as essential feature:

Lemma 39. Let K ∈K (RN) be any element of the closed set V ⊂ (K (RN),dl
)
.

Then, a set-valued map F ∈ LIP(RN ,RN) belongs to the circatangent transition set

T C
V (K) if and only if there is a function ω : [0,∞[−→ [0,∞[ with lim

δ →0
ω(δ ) = 0,

1
h
· (dist

(
ϑF(h,M), V

) − dist(M, V )
) ≤ ω

(
dl(M,K)+h

)
for all h ∈ ]0,1], M ∈K (RN).

The next proposition indicates further properties which the circatangent transition
set shares with the Clarke tangent cone in normed vector spaces. Indeed, it is a
nonempty closed cone in LIP(RN ,RN).
Convexity, however, is verified here only for morphological transitions in T C

V (K)
which are induced by Lip(RN ,RN), i.e. bounded Lipschitz continuous vector fields
RN −→RN and their ordinary differential equations (rather than set-valued maps in
LIP(RN ,RN) and reachable sets of their respective differential inclusions).

Proposition 40. For every element K ∈K (RN) of a closed set V ⊂ (K (RN),dl
)
,

1. the circatangent transition set T C
V (K) ⊂ LIP(RN ,RN) is a nonempty cone,

i.e., for any G∈T C
V (K) and λ ≥ 0, the set–valued map RN�RN , x �→ λ ·G(x)

(in the Minkowski sense) also belongs to T C
V (K).

2. for every threshold B ∈ [0,∞[, the intersection

T C
V (K) ∩ {G ∈ LIP(RN ,RN) | ‖G‖∞ +Lip G≤ B}

is closed in LIP(RN ,RN) with the topology of locally uniform convergence.

Proposition 41. Let K ∈K (RN) be in the closed set V ⊂ (K (RN),dl
)
.

Then, T C
V (K) ∩ Lip(RN ,RN) is convex,

i.e., for any g1,g2 ∈T C
V (K)∩Lip(RN ,RN) and λ ∈ [0,1], the Lipschitz continuous

function RN −→ RN , x �−→ λ ·g1(x)+(1−λ ) ·g2(x) also belongs to T C
V (K).
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Now we provide the missing proofs in regard to the circatangent transition set.

Proof (of Lemma 38). “⊃” is an obvious consequence of Definition 37.
“⊂” For any F ∈T C

V (K)⊂LIP(RN ,RN) choose the arbitrary sequences (hn)n∈N,
(Kn)n∈N in ]0,∞[ and K (RN) respectively with hn −→ 0, dl(Kn,K) −→ 0 for
n −→ ∞. Since closed balls in (K (RN),dl) are known to be compact, there exists
a set Mn ∈ V ⊂K (RN) for each n ∈ N satisfying

dl(Kn,Mn) = dist
(
Kn,V ) −→ 0 .

F ∈T C
V (K) implies 1

hn
·dist

(
ϑF(hn,Mn), V

) −→ 0 for n−→ ∞
and, Proposition 1.50 ensures dl

(
ϑF(hn,Kn), ϑF(hn,Mn)

) ≤ dl(Kn,Mn) · eLip F ·hn

for each n ∈ N. Finally, we obtain

1
hn
·
(

dist
(
ϑF(hn,Kn), V

) − dist
(
Kn, V

))
≤ 1

hn
·
(

dl
(
ϑF(hn,Kn), ϑF(hn,Mn)

)
+ dist

(
ϑF(hn,Mn), V

) − dl(Kn,Mn)
)

≤ dl(Kn,Mn) · eLip F ·hn −1
hn

+ dist(ϑF (hn,Mn), V )
hn

and thus, its limit superior for n−→ ∞ is nonpositive. �

Proof (of Lemma 39 on page 339).

“⇐=” is an immediate consequence of Lemma 38.
“=⇒” The triangle inequality of dl and Lemma 1.51 (on page 47) guarantee

dist
(
ϑF(h,M), V

) − dist(M, V ) ≤ dl
(
M, ϑF(h,M)

) ≤ ‖F‖∞ h

for all h > 0 and M ∈K (RN). Hence the auxiliary function ω : [0,∞[−→ [0,∞[,

ω(δ ) := sup
{

1
h
· (dist

(
ϑF(h,M), V

) − dist(M, V )
) ∣∣∣

M ∈K (RN), h ∈]0,1], dl(M,K)+h ≤ δ
}

is well-defined and bounded for any set-valued map F ∈ LIP(RN ,RN).
For F ∈T C

V (K), however, we still have to verify ω(δ )−→ 0 for δ −→ 0.
If this asymptotic feature was not correct, there would exist some ε > 0 and se-
quences (hn)n∈N, (Mn)n∈N in ]0,1], K (RN) respectively satisfying for all n ∈ N{

dl(Mn,K)+hn ≤ 1
n

1
hn
· (dist

(
ϑF(hn,Mn), V

) − dist(Mn, V )
) ≥ ε > 0.

Due to hn ↓ 0 and Mn −→ K, it would contradict F ∈T C
V (K) due to Lemma 38. �

Proof (of Proposition 40 on page 339).

(1.) Obviously, the constant set-valued map G0(·) := {0} : RN � RN belongs to
both LIP(RN ,RN) and T C

V (K) because ϑG0(h,K) = K for every K ∈K (RN) and
h≥ 0. Thus, T C

V (K) �= /0.
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For proving the cone property, choose any K ∈ V ⊂ K (RN), G ∈ T C
V (K) ⊂

LIP(RN ,RN) and λ > 0. Moreover, let (hn)n∈N and (Kn)n∈N be arbitrary sequences
in ]0,∞[ and V ⊂K (RN) respectively with hn −→ 0, dl(Kn,K)−→ 0 (n→ ∞).
Every solution x(·) ∈ W 1,1([0,hn],RN) of x′(·) ∈ λ G(x(·)) induces a solution
y(·) ∈ W 1,1([0, hn

λ ],RN) of y′(·) ∈ G(y(·)) (and vice versa) by time scaling, i.e.
x(t) = y(λ · t). Hence,

ϑλ G(hn,Kn) = ϑG( hn

λ ,Kn).

The assumption G ∈T C
V (K) guarantees now

1
hn
· dist

(
ϑλ G(hn,Kn), V

)
= 1

λ
λ
hn
· dist

(
ϑG( hn

λ ,Kn), V
) −→ 0 for n→ ∞.

(2.) Let (G j) j∈N be a sequence in T C
V (K) with ‖G j‖∞ + Lip G j ≤ B for each

j ∈ N and converging to G(·) ∈ LIP(RN ,RN) locally uniformly in RN .
Obviously, ‖G‖∞ +Lip G≤ B holds. Our aim is to verify G ∈T C

V (K).

Let (hn)n∈N and (Kn)n∈N be any sequences in ]0,1] and V ⊂K (RN) respectively
with hn −→ 0 and dl(Kn,K)−→ 0 (for n→∞). The last convergence implies that
all Kn, n ∈ N, and K ∈K (RN) are contained in a ball BR(0) ⊂ RN of sufficiently
large radius R < ∞. Due to sup

n
hn ≤ 1,⋃

j,n∈N

⋃
0≤ t≤hn

(
ϑG j(t,Kn) ∪ ϑG(t,Kn)

) ⊂ BR+B(0) ⊂ RN .

On the basis of Proposition 1.50 (on page 46), we obtain the estimate for all j,n∈N

1
hn
·dist

(
ϑG(hn,Kn), V

)
≤ 1

hn
·dl(ϑG(hn,Kn), ϑG j(hn,Kn)

)
+ 1

hn
·dist

(
ϑG j(hn,Kn), V

)
≤ eB hn · sup

|x|≤R+B

dl(G(x), G j(x)) + 1
hn
·dist

(
ϑG j(hn,Kn), V

)
.

For any ε > 0 given, we can fix j ∈ N sufficiently large with

sup
|x|≤R+B

dl(G(x), G j(x)) < ε

and, G j ∈T C
V (K) guarantees

limsup
n−→∞

1
hn
·dist

(
ϑG(hn,Kn), V

) ≤ ε

with arbitrarily small ε > 0, i.e.,

limsup
n−→∞

1
hn
·dist

(
ϑG(hn,Kn), V

)
= 0. �

The subsequent proof of Proposition 41 uses the following auxiliary result about
representing a constant λ as integral mean. A similar result cannot hold for the L1

deviation because any integrable function μ : [0,1] −→ {0,1} satisfies for every
t ∈ ]0,1] and λ ∈ [0,1]

1
t
·
∫ t

0
|μ(s)−λ | ds ≥ min{λ ,1−λ}.
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Lemma 42. For every λ ∈ ]0,1[, there exists μ ∈ L1([0,1]) satisfying⎧⎨⎩ 1
t
·
∫ t

0
(μ(s)−λ ) ds −→ 0 for t ↓ 0,

μ(·) ∈ {0,1} piecewise constant in ]0,1[.

Proof (of Lemma 42). μ(·) is defined piecewise in each interval
[ 1√

n+1
, 1√

n

[
.

Set μ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n

≤ t < 1√
n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(μ(s)−λ ) ds = 0 and thus,
∫ 1√

n

0
(μ(s)−λ ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|μ(s)−λ | ds = 2 λ (1−λ )
(

1√
n
− 1√

n+1

)
implies

sup
1√
n+1

≤ t≤ 1√
n

1
t
·
∣∣∣∣∫ t

0
(μ(s)−λ ) ds

∣∣∣∣ ≤ √
n+1 ·

∫ 1√
n

1√
n+1

|μ(s)−λ | ds
n→∞−→ 0.

�

Proof (of Proposition 41 on page 339).

For any functions g1,g2 ∈T C
V (K)∩Lip(RN ,RN) and λ ∈ ]0,1[, we verify that

g : RN −→ RN , x �−→ λ ·g1(x)+(1−λ ) ·g2(x)

also belongs to T C
V (K).

Obviously, g is bounded, Lipschitz continuous and thus, g ∈ Lip(RN ,RN). Accord-
ing to Lemma 42, there exists μ ∈ L1([0,1]) satisfying⎧⎨⎩ 1

t
·
∫ t

0
(μ(s)−λ ) ds −→ 0 for t ↓ 0,

μ(·) ∈ {0,1} piecewise constant in ]0,1[.

First we compare the evolution of an arbitrary set M ∈ K (RN) along the auto-
nomous differential equation with the right-hand side

g : RN −→ RN , x �−→ λ ·g1(x) + (1−λ ) ·g2(x)

and along the nonautonomous differential equation with the right-hand side

f : RN × [0,1] −→ RN , (x, t) �−→ μ(t) ·g1(x) + (1−μ(t)) ·g2(x).

In particular, we prove

lim
t↓0

1
t
· dl
(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

Let x(·) ∈ C1([0,1],RN) denote any solution to the nonautonomous differential
equation x′(·)∈ f (x(·), ·). There exists a unique solution y(·)∈C1([0,1],RN) to the
initial value problem y′(·) = g(y(·), ·), y(0) = x(0) and, we estimate the difference
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|y(t)− x(t)|

=
∣∣∣∫ t

0

(
λ g1

(
y(s)
) − μ(s) g1

(
x(s)
)

+

(1−λ ) g2
(
y(s)
) − (1−μ(s)) g2

(
x(s)
) )

ds

∣∣∣
≤

∣∣∣∫ t

0

(
(λ −μ(s)) g1

(
y(s)
)

+ (μ(s)−λ ) g2
(
y(s)
))

ds

∣∣∣
+
∫ t

0
μ(s) ·Lip g1 · |x(s)− y(s)| ds +

∫ t

0
(1−μ(s)) ·Lip g2 · |x(s)− y(s)| ds

≤
∣∣∣∫ t

0
(λ −μ(s)) · (g1(x(0))−g2(x(0))

)
ds

∣∣∣
+
∫ t

0

∣∣λ −μ(s)
∣∣ (Lip g1+Lip g2) |y(s)− x0| ds

+ max{Lip g1, Lip g2} ·
∫ t

0
|x(s)− y(s)| ds

≤ c ·
(∣∣∣∫ t

0
(λ −μ(s)) ds

∣∣∣ +
∫ t

0
‖g‖sup · s ds +

∫ t

0
|x(s)− y(s)| ds

)
with a constant c > 0 depending only on g1(·), g2(·). Due to Gronwall’s inequality,
|x(t)− y(t)| ≤ o(t) for t ↓ 0 uniformly with respect to the initial point x0 ∈ RN .
(In particular, the estimate of Filippov’s Theorem is difficult to be applied here
directly as the integral mean of μ(·)−λ tends to 0 for t ↓ 0, but not of |μ(·)−λ |.)
Thus, for any initial set M ∈K (RN), the reachable sets satisfy

lim
t↓0

1
t
· �e⊂
(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

The same uniform estimates hold for �e⊂
(
ϑg(t,M), ϑ f (t,M)

)
since the preceding

solutions x(·) and y(·) have required only the joint initial point at time 0. Hence,

lim
t↓0

1
t
· dl
(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

Finally, we focus on the asymptotic features of ϑ f (·, ·) in regard to the circa-
tangent transition set T C

V (K), i.e. for any ε > 0, we verify the existence of a radius
r > 0 such that all h ∈ ]0,r] and sets M ∈K (RN) with dl(M,K)≤ r satisfy

dist
(
ϑ f (h,M), V

) − dist(M, V ) ≤ ε h.

Then, for any sequences hn ↓ 0 and (Kn)n∈N in V ⊂K (RN) converging to K

1
hn
· dist

(
ϑ f (hn,Kn), V

)−→ 0 for n−→ ∞

and in combination with the uniform convergence mentioned before, we conclude
1
hn
· dist

(
ϑg(hn,Kn), V

)−→ 0 for n−→ ∞,

i.e., g ∈T C
V (K) due to Definition 37.
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Indeed, applying Lemma 39 (on page 339) to g1,g2 ∈ T C
V (K)∩Lip(RN ,RN), we

obtain a joint function ω : [0,∞[−→ [0,∞[ satisfying limδ →0 ω(δ ) = 0 and
1
h
· (dist

(
ϑg j

(h,M), V
) − dist(M, V )

) ≤ ω
(
dl(M,K)+h

)
for all j ∈ {1,2}, h ∈ ]0,1] and M ∈K (RN).
Fixing ε > 0 arbitrarily small, there exist a radius R > 0 with sup[0,R] ω(·) ≤ ε
and additionally, some r ∈ ]0, R

2 ] such that r · (1+‖g1‖∞ +‖g2‖∞
)≤ R

2 .

Then, each j ∈ {1,2} and every h ∈ ]0,r], M ∈K (RN) with dl(M,K)≤ r satisfy{
dl
(
ϑg j

(h,M),K
) ≤ dl(M,K) + ‖g j‖∞ h ≤ R

2

dist
(
ϑg j

(h,M), V
) − dist(M, V ) ≤ ω

(
dl(M,K)+h

) ·h ≤ ε h.

For drawing now conclusions about ϑ f (h,M), we exploit the piecewise constant
structure of auxiliary function μ(·) : [0,1] −→ {0,1} (introduced in Lemma 42).
Indeed, there is a sequence (tk)k∈N tending to 0 monotonically such that μ(·) is
constant in every interval [tk+1, tk[, k ∈ N. The last estimate in each of these sub-
intervals leads to the following inequalities for every h ∈ ]0,r], M ∈K (RN) with
dl(M,K)≤ r and sufficiently large k ∈ N with tk+1 < h≤ tk

dist
(
ϑ f (h,M), V

) − dist(M, V )

≤ dist
(
ϑ f (h− tk+1,ϑ f (tk+1,M)), V

) − dist
(
ϑ f (tk+1,M), V

)
+ dist

(
ϑ f (tk+1,M), V

) − dist
(
ϑ f (tk+2,M), V

) ± . . .

− dist(M, V )

≤ ε · (h− tk+1) + ε · (tk+1− tk+2) + . . .

≤ ε · h.
�
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5.3.6 The hypertangent transition set

For any closed subset of the Euclidean space, the interior of the Clarke tangent cone
has been characterized by Rockafellar in 1979 [123]. Indeed,

Proposition 43 (Rockafellar [123, Theorem 2], [124, Theorem 6.36]). Let K ⊂
RN be a closed set and x ∈ K. Then the interior of Clarke tangent cone to K at x

satisfies

T C
K (x)◦ = {v ∈ RN | ∃ ε > 0 : (K∩Bε(x)) + ]0,ε[ ·Bε(v)⊂ K}

= {v ∈ RN | ∃ ε > 0 ∀ y ∈ K∩Bε(x), w ∈ Bε(v), τ ∈ ]0,ε[: y+ τ w ∈ K}
with Bε(v) abbreviating the closed ball Bε(v) := {w ∈ RN | |w− v| ≤ ε} and

U◦ denoting always the interior of a set U.

This equivalence serves as motivation for introducing “hypertangent cones”:

Definition 44 ([34, § 2, 4]). A vector v in a Banach space X is said to be
hypertangent to the set K ⊂ X at the point x ∈ K if for some ε > 0, all vectors
y ∈ Bε(x)∩K, w ∈ Bε(v)⊂ X and real t ∈ ]0,ε[ satisfy y+ t ·w ∈ K.

We now focus on a similar description in the morphological framework. To be more
precise, we are going to specify subsets T H

V (K)⊂ LIP(RN ,RN) of the circatangent
transition sets T C

V (K), K ∈ V , whose graph V � LIP(RN ,RN), K �→ T H
V (K) is

identical to the interior of the graph of T C
V (·) in V ×LIP(RN ,RN).

There is an essential difference between the vector space RN and the metric space
(K (RN),dl), however, preventing us from applying Definition 44 directly.
Indeed, considering the neighbourhood of a vector y + t · v (with y,v ∈ RN , t > 0),
each of its points can be represented as y+t w with a “perturbed” vector w close to v.
The corresponding statement does not hold for reachable sets of differential inclu-
sions in general: For given F ∈ LIP(RN ,RN), K ∈K (RN), t > 0, not every com-
pact set M ⊂ RN with arbitrarily small Hausdorff distance from ϑF(t,K) can be
represented as reachable set ϑ

G̃
(t,K) with some G̃ ∈ LIP(RN ,RN) “close to” F.

As a typical example, we can consider M := ϑF(t,K) \ Bε(x0)◦ ∈ K (RN) with an
interior point x0 of ϑF(t,K) and sufficiently small ε > 0.

For this reason, we prefer a different approach to the interior of Graph T C
V (·),

but use the terminology of hypertangents:

Definition 45. Consider the set LIP(RN ,RN) with the topology of locally uni-
form convergence. For a nonempty subset V ⊂K (RN) and any element K ∈ V ,

T H
V (K) :=

{
F ∈ LIP(RN ,RN)

∣∣∣ ∃ ε > 0, neighbourhood U ⊂ LIP(RN ,RN) of F

∀ G ∈U : lim
h↓0

1
h
· dist

(
ϑG(h,M), V

)
= 0

uniformly in M ∈ V ∩Bε(K)
}

is called hypertangent transition set of V at K (in the metric space (K (RN),dl)).
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Lemma 46. Let K ∈K (RN) be in the nonempty closed set V ⊂ (K (RN),dl
)
.

Then, a set-valued map F ∈ LIP(RN ,RN) belongs to the hypertangent transi-

tion set T H
V (K) if and only if there exist a radius ε > 0 and a neighbourhood

U ⊂ LIP(RN ,RN) of F such that for each map G ∈ U, a modulus of continuity

ω : [0,1]−→ [0,∞[ (i.e. limδ →0 ω(δ ) = 0) satisfies

1
h
·dist

(
ϑG(h,M), V

) ≤ ω(h)

for all h ∈ ]0,1] and M ∈ Bε(K)∩V ⊂K (RN).

The proof results from essentially the same arguments as Lemma 39 about the circa-
tangent transition set (on page 339). Furthermore, in combination with Lemma 39,
we conclude immediately:

Lemma 47. For every nonempty closed subset V ⊂K (RN) and element K ∈ V ,
the hypertangent transition set T H

V (K) is contained in the interior of the circa-

tangent transition set T C
V (K). �

For the same reason, we obtain an even more general result:

Lemma 48. Consider the set LIP(RN ,RN) with the topology of locally uniform

convergence. For every nonempty closed subset V ⊂K (RN), the graph of hyper-

tangent transition sets

V � LIP(RN ,RN), K �→ T H
V (K)

is contained in the interior of the graph of V � LIP(RN ,RN), K �→ T C
V (K). �

In fact, also the opposite inclusion holds and thus, we have a complete characteriza-
tion of the interior of Graph T C

V (·) in V ×LIP(RN ,RN) :

Proposition 49. Let V ⊂K (RN) be nonempty and closed with respect to dl.
Then, Graph T H

V (·)⊂ V ×LIP(RN ,RN) is equal to the interior of Graph T C
V (·)

in V ×LIP(RN ,RN).

Proof. Due to Lemma 48, we just have to show: If (K,F) belongs to the interior
of Graph T C

V (·) in V ×LIP(RN ,RN), then F ∈T H
V (K).

There exist a radius ρ > 0 and a neighbourhood U ⊂LIP(RN ,RN) of F (with respect
to locally uniform convergence) such that all tuples (M,G) ∈ (V ∩Bρ(K)

)×U ⊂
K (RN)×LIP(RN ,RN) belong to Graph T C

V (·). For an arbitrary set-valued map
G ∈U, we now prove indirectly

limsup
h↓0

1
h
· dist

(
ϑG(h,M), V

)
= 0 uniformly in M ∈ V ∩Bρ(K).
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Otherwise there exist δ > 0 and sequences (hn)n∈N, (Mn)n∈N in ]0,1[ and
V ⊂K (RN) respectively satisfying for all n ∈ N,⎧⎪⎨⎪⎩

dist
(
ϑG(hn,Mn), V

) ≥ δ ·hn,

0 < hn < 1
n
,

dl(Mn,K) ≤ ρ.

In the metric space (K (RN),dl), all bounded closed balls are compact according
to Proposition 1.47 (on page 44). Thus, there is a subsequence (Mn j

) j∈N converg-
ing to a compact set M ∈ V ∩Bρ(K). Due to the choice of ρ and U, we obtain
G ∈T C

V (M) in particular. This contradicts, however,⎧⎨⎩ liminf
j→∞

1
hn j
·dist

(
ϑG(hn j

,Mn j
), V

) ≥ δ > 0

lim
j→∞

dl
(
Mn j

, M
)

= 0

completing the indirect proof.
�

Remark 50. Circatangent transition set T C
V (K) and hypertangent transition set

T H
V (K) differ from each other in an essential feature:

The condition on a map F ∈T C
V (K) depends on V ⊂K (RN) close to K, of course,

but only on reachable sets of the set-valued map F. In particular, it does not have
any influence on this condition if we replace such a map F ∈ LIP(RN ,RN) by its
pointwise convex hull RN � RN , x �→ co F(x) – due to Relaxation Theorem A.17
of Filippov-Ważiewski and its Corollary A.19 (on page 363).

The condition on F ∈T H
V (K), however, takes all set-valued maps G∈ LIP(RN ,RN)

in a neighbourhood of F into account. Considering the topology of locally uniform
convergence in LIP(RN ,RN), the values of these neighboring set-valued maps G do
not have to be convex even if F belongs to LIPco(RN ,RN).
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5.3.7 Closed control loops for problems with state constraints

In this section, we specify sufficient conditions on the morphological control sys-
tem and state constraints for the existence of a closed-loop control, i.e., a continuous
function u(·) : V −→U is to provide a feedback law such that for any initial set
K0 ∈ V ⊂K (RN), every solution K(·) : [0,T ]�RN to the morphological equation{ ◦

K (·) � f (K(·), u(K(·))) L 1− a.e. in [0,T ]
K(0) ∈ K0

solves the morphological control problem with state constraints{ ◦
K (·) � f (K(·),u), u ∈U L 1− a.e. in [0,T ]
K(t) ∈ V for every t ∈ [0,T ].

Corresponding to Aubin’s notion of regulation maps [13, § 6], Nagumo’s Theo-
rem 1.74 (on page 60) motivates us to construct the wanted closed-loop control
u(·) : V −→U as a continuous selection of the set-valued map

V �U, K �→ {u ∈U | f (K,u) ∈ TV (K)}
indicating “consistent” control parameters for preserving values in V .

Applying Michael’s famous selection theorem for lower semicontinuous, this ap-
proach has been developed for constrained control problems in the Euclidean space
[13, § 6.6.1]. Our contribution now is to extend it to the morphological framework.

The key challenge is to specify appropriate subsets of the contingent transition set
TV (K)⊂ LIP(RN ,RN) so that “convenient” assumptions about them ensure the ex-
istence of a closed-loop control. For this purpose, we use circatangent transition set
T C

V (K) and hypertangent transition set T H
V (K) introduced in § 5.3.5 and § 5.3.6.

There is a close relation between these two subsets of the contingent transition set:
Graph T H

V (·) is the interior of the graph of T C
V (·) : V � LIP(RN ,RN) due to

Proposition 49.

Now we can formulate the main result of this section:

Proposition 51 (Closed-loop control for morphological equations).
Let U be a separable Banach space and, consider the set LIP(RN ,RN) with

the topology of locally uniform convergence. For a nonempty closed set V ⊂
(K (RN),dl) and f : K (RN)×U −→ LIP(RN ,RN) suppose:

(1.) f is continuous und bounded in the sense that

sup
{‖ f (M,u)‖∞ +Lip f (M,u)

∣∣M ∈K (RN), u ∈U
}

< ∞.

(2.) RH : V �U, K �→ {u∈U | f (K,u)∈T H
V (K)} has nonempty convex values.
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Then, the pointwise closure R
H : V �U, K �→RH(K) has a selection u∈C0(V ,U).

In particular, every continuous and compact-valued solution K(·) : [0,T ]� RN to

the morphological equation{ ◦
K (·) � f (K(·), u(K(·))) a.e. in [0,T [
K(0) ∈ K0

with initial set K0 ∈ V is viable in V , i.e. K(t) ∈ V for all t ∈ [0,T ].

In combination with Nagumo’s theorem 1.74 (on page 60), Michael’s well-known
selection theorem lays the analytical basis. In particular, it requires a Banach space
for the control set U (instead of a metric space as in the preceding subsections of
§ 5.3).

Proposition 52 (Michael [107],[14, Theorem 1.11.1], [16, Theorem 9.1.2]).
Let R : X � Y be a lower semicontinuous set-valued map with nonempty closed

convex values from a compact metric space X to a Banach space Y .

Then R has a continuous selection, i.e. there exists a continuous single-valued func-

tion r : X −→ Y with r(x) ∈ R(x) for every x ∈ X .

Proof (of Proposition 51).

Similarly to the proof of [13, Proposition 6.3.2], we first verify the lower semi-
continuity of

RH : V �U, K �→ {u ∈U | f (K,u) ∈T H
V (K)}

(in the sense of Bouligand and Kuratowski).
Indeed, choose any K ∈ V and u ∈ RH(K). Graph T H

V is open in V ×LIP(RN ,RN)
as a direct consequence of Definition 45. Hence, there is a radius r > 0 with(

Br(K)×Br

(
f (K,u)

)) ∩ (V ×LIP(RN ,RN)
) ⊂ Graph T H

V ,

i.e. Br

(
f (K,u)

) ⊂ T H
V (M) for all M ∈ Br(K)∩V ⊂K (RN).

Finally the continuity of f provides a smaller radius ρ ∈ ]0,r[ with

f (M,v) ∈ Br

(
f (K,u)

) ⊂ T H
V (M)

for all v ∈Bρ(u)⊂U and M ∈Bρ(K)∩V ⊂K (RN). In particular, the intersection
of the sets RH(M) Def.= {v ∈U | f (M,v) ∈T H

V (M)} for all M ∈ Bρ(K)∩V contains
the ball Bρ(u)⊂U and thus, it is a neighbourhood of u ∈ RH(K).
As a consequence, RH(·) : V �U is lower semicontinuous.

Now we consider the pointwise closure of RH , i.e.

R
H : V �U, K �→ {u ∈U | f (K,u) ∈T H

V (K)}.
Obviously, R

H(·) has nonempty closed convex values in the Banach space U.
Additionally, it inherits lower semicontinuity from RH(·) as the topological cri-
terion of lower semicontinuity (via neighbourhoods) reveals easily.
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For any nonempty compact ball B ⊂ (K (RN),dl
)
, Michael’s Theorem (quoted in

Proposition 52) provides a continuous selection uB : B∩V −→U of the set-valued
restriction R

H
∣∣∣
B∩V

: B∩V �U.

Finally we cover the metric space
(
K (RN),dl

)
with countably many balls and,

a locally finite continuous partition of unity leads to a selection u ∈ C0(V ,U) of
R

H : V �U because all values of R
H are convex.

�



Appendix A
Tools

A.1 The Lemma of Gronwall and its generalizations

Gronwall’s estimate plays a key role whenever the growth of a function is bounded
by linear terms of the function itself. Such a bound of the growth can be described
by an integral inequality or a differential inequality.
First we consider the estimate resulting from an integral inequality. It is very popular
indeed for continuous functions and thus can be found in many standard textbooks
such as [9, 73, 140]. Subsequent Proposition A.1, however, provides a similar es-
timate (almost everywhere) for any nonnegative function being merely Lebesgue
integrable.

Proposition 1 (Lemma of Gronwall : Integral version).
Let ψ, g ∈ L1([a,b],R), f ∈C0([a,b]) satisfy ψ(·), f (·)≥ 0 and

ψ(t) ≤ g(t) +
∫ t

a
f (s) ψ(s) ds for L 1-almost every t ∈ [a,b].

Then, for L 1-almost every t ∈ [a,b],

ψ(t) ≤ g(t) +
∫ t

a
eμ(t)−μ(s) f (s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.

Assuming in addition that g(·) is upper semicontinuous and that ψ(·) is lower semi-

continuous or monotone, then this inequality holds for any t ∈ ]a,b[.

Proof. The function ϕ : [a,b] −→ R, t �−→
∫ t

a
f (s) ψ(s) ds is absolutely

continuous and satisfies for almost every t ∈ [a,b] (since f (·)≥ 0)
ϕ ′(t) = f (t) ψ(t) ≤ f (t) g(t) + f (t) ϕ(t).

Thus, t �−→ e−μ(t) ϕ(t) is also absolutely continuous and has the weak derivative

351
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d
d t

(
e−μ(t) ϕ(t)

)
= e−μ(t) (ϕ ′(t) − f (t) ϕ(t)

) ≤ e−μ(t) f (t) g(t).
Now we obtain for any t ∈ [a,b]

e−μ(t) ϕ(t) ≤ e−μ(a) ϕ(a) +
∫ t

a
e−μ(s) f (s) g(s) ds

ϕ(t) ≤ 0 +
∫ t

a
eμ(t)−μ(s) f (s) g(s) ds

and this estimate implies the assertion for almost every t ∈ [a,b].
Now suppose that g(·) is upper semicontinuous and that ψ(·) is lower semicon-

tinuous or monotone. Then for every t ∈ ]a,b[, there exists a sequence (tn)n∈N in
]a,b[ such that tn −→ t (n−→ ∞)

ψ(t) ≤ limsup
n−→∞

ψ(tn),

ψ(tn) ≤ g(tn) +
∫ tn

a
eμ(tn)−μ(s) f (s) g(s) ds

for each n ∈ N. As an easy consequence, we obtain

ψ(t) ≤ limsup
n−→∞

(
g(tn) +

∫ tn

a
eμ(tn)−μ(s) f (s) g(s) ds

)
≤ g(t) +

∫ t

a
eμ(t)−μ(s) f (s) g(s) ds. �

This integral version of Gronwall’s Lemma now leads to a subdifferential ver-
sion which has two new aspects: First, the nonnegative function ψ(·) does not have
be continuous, but just lower semicontinuous (as in [100]). Second, the hypothesis
considering an affine-linear bound of the upper Dini derivative is not required in the
whole time interval, but just at Lebesgue-almost every time. The proof is based on
a connection to Proposition A.1 by means of a nondecreasing auxiliary function (in
combination with Fatou’s Lemma):

Proposition 2. Let ψ : [a,b] −→ R and f ,g ∈ C0([a,b],R) satisfy f (·),g(·) ≥ 0
and

0 ≤ ψ(t) ≤ limsup
h↓0

ψ(t−h), for every t ∈ ]a, b],

ψ(t) ≥ limsup
h↓0

ψ(t +h), for every t ∈ [a, b[,

limsup
h↓0

ψ(t+h)−ψ(t)
h

≤ f (t) · limsup
h↓0

ψ(t−h) + g(t) for almost every t ∈ ]a, b[.

Then, for every t ∈ [a,b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eμ(t) +
∫ t

a
eμ(t)−μ(s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.
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Proof. Obviously, the auxiliary function ξ : [a,b] −→ R, t �−→ sup[a,t] ψ(·)
is nonnegative and nondecreasing. The second assumption about ψ(·) implies the
continuity of ξ (·). Furthermore, it satisfies for L 1-almost every t ∈ ]a,b[

limsup
h↓0

ξ (t+h)−ξ (t)
h

≤ f (t) ·ξ (t) + g(t).

Indeed, choose any t ∈ ]a,b[ for which the third assumption about ψ is satisfied.
Then for any δ > 0, there exists some h0 ∈ ]0,b− t[ such that for all h ∈ ]0,h0],

ψ(t+h)−ψ(t)
h

≤ f (t) · ξ (t) + g(t) + δ

i.e. ψ(t +h) ≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ψ(t)

≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ξ (t).

Hence, ξ (t+h) = max
{

ξ (t), sup
[t,t+h]

ψ(·)} fulfills this estimate for all h ∈ ]0,h0] :

ξ (t +h) ≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ξ (t)

ξ (t+h)−ξ (t)
h

≤ f (t) · ξ (t) + g(t) + δ .

As δ > 0 was chosen arbitrarily, we obtain the claimed estimate for the upper Dini
derivative of ξ (·) at t.

In particular, the first two assumptions about ψ(·) ensure that both ψ(·) and ξ (·)
are bounded on the compact interval [a,b]. The auxiliary function

[a,b[ −→ [0,∞[, t �−→ limsup
h↓0

ξ (t+h)−ξ (t)
h

is Lebesgue measurable and bounded almost everywhere. The well-known Lemma
of Fatou implies for every T ∈ [a,b[

limsup
h↓0

∫ T

0

ξ (t+h)−ξ (t)
h

dt ≤
∫ T

0
limsup

h↓0

ξ (t+h)−ξ (t)
h

dt

and thus lays the basis for estimating ξ (T )−ξ (0) :

limsup
h↓0

∫ T

0

ξ (t+h)−ξ (t)
h

dt = limsup
h↓0

1
h
·
(∫ T

0
ξ (t +h) dt −

∫ T

0
ξ (t) dt

)
= limsup

h↓0

1
h
·
(∫ T+h

T
ξ (t) dt −

∫ h

0
ξ (t) dt

)
= ξ (T ) − ξ (0)

due to the continuity of ξ (·). Now we obtain an estimate for ξ (T ) for every T ∈ [a,b[

ξ (T ) − ξ (0) ≤
∫ T

0
limsup

h↓0

ξ (t+h)−ξ (t)
h

dt ≤
∫ T

0

(
f (t) ·ξ (t) + g(t)

)
dt.

Finally, the claim results from Proposition A.1. �
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Remark 3. 1. If limsup
h↓0

ψ(t− h) < ∞ for all t ∈ ]a,b[ then the second as-

sumption in ]a,b[ results from the third condition on ψ .

2. This subdifferential versions of Gronwall’s Lemma also holds if the func-
tions f ,g : [a,b[−→ R are only upper semicontinuous (instead of continuous).
The proof is based on upper approximations of f (·), g(·) by continuous functions.

3. The condition limsup
h↓0

ψ(t+h)−ψ(t)
h

≤ f (t) ·ψ(t) + g(t) (supposed in the

widespread forms of Gronwall’s Lemma) is stronger than the third assumption of
Proposition A.2 due to the semicontinuity condition ψ(t) ≤ limsup

h↓0
ψ(t−h).

A similar statement holds with limits inferior replacing the limits superior — under
the additional assumption, however, that the growth condition is fulfilled at every

time (instead of L 1-almost every time). The proof presented by the author in [100]
is based on a simple indirect argument and thus, it is completely independent of the
integral version in Proposition A.1:

Proposition 4. Let ψ : [a,b]−→ R and f ,g ∈C0([a,b],R) satisfy f (·)≥ 0 and

0 ≤ ψ(t) ≤ liminf
h↓0

ψ(t−h), for every t ∈ ]a, b],

ψ(t) ≥ liminf
h↓0

ψ(t +h), for every t ∈ [a, b[,

liminf
h↓0

ψ(t+h)−ψ(t)
h

≤ f (t) · liminf
h↓0

ψ(t−h) + g(t) for every t ∈ ]a, b[.

Then, for every t ∈ [a,b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eμ(t) +
∫ t

a
eμ(t)−μ(s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.

Proof. Let δ > 0 be arbitrarily small. The proof is based on comparing ψ with
the auxiliary function ϕδ : [a,b] −→ R that uses ψ(a) + δ , g(·) + δ instead of
ψ(a), g(·) :

ϕδ (t) :=
(
ψ(a)+δ

)
eμ(t) +

∫ t

a
eμ(t)−μ(s) (g(s)+δ ) ds.

Then, ϕ ′
δ (t) = f (t) ϕδ (t)+g(t)+δ in [a,b[,

ϕδ (sn) > ψ(sn) for some sequence sn ↓ a.

Assume now that there exists some t0 ∈ ]a,b] such that ϕδ (t0) < ψ(t0). Setting
t1 := inf

{
t ∈ [a, t0]

∣∣ ϕδ (·) < ψ(·) in [t, t0]
}

> a,
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we conclude t1 < t0 from the condition ψ(t0) ≤ liminf
h↓0

ψ(t0−h) and the conti-

nuity of ϕδ (·). Moreover, ϕδ (t1) = ψ(t1) is a consequence of

ϕδ (t1) = lim
h↓0

ϕδ (t1−h) ≥ liminf
h↓0

ψ(t1−h) ≥ ψ(t1),

ϕδ (t1) = lim
h↓0

ϕδ (t1 +h) ≤ liminf
h↓0

ψ(t1 +h) ≤ ψ(t1).

Thus, the definition of t1 implies

liminf
h↓0

ϕδ (t1 +h)−ϕδ (t1)
h

≤ liminf
h↓0

ψ(t1 +h)−ψ(t1)
h

ϕ ′
δ (t1) ≤ f (t1) · liminf

h↓0
ψ (t1−h) + g(t1)

f (t1)ϕδ (t1)+g(t1)+δ ≤ f (t1) · limsup
h↓0

ϕδ (t1−h) + g(t1)

≤ f (t1) · ϕδ (t1) + g(t1)

— a contradiction. Thus, ϕδ (·)≥ ψ(·) for any δ > 0. �

A.2 Filippov’s Theorem for differential inclusions

Following the well–known convention, we define the solutions to a differential in-
clusion in the sense of Carathéodory as it is described e.g. in [14, 16]. The Theorem
of Filippov represents the counterpart of the well-known Cauchy–Lipschitz Theo-
rem about ordinary differential equations.

Definition 5. Let F̃ : [0,T ]×RN � RN be a set–valued map.
A function x : [0,T ] −→ RN is called solution to the differential inclusion x′(·) ∈
F̃(·,x(·)) a.e. if x(·) is absolutely continuous and its (weak) derivative x′(·) satisfies
x′(t) ∈ F̃(t,x(t)) for Lebesgue–almost every t ∈ [0,T ].

The reachable set of F̃ and a nonempty initial set M ⊂ RN at time t ∈ [0,T ]
contains the points x(t) of all solutions x(·) of x′(·) ∈ F̃(·,x(·)) a.e. starting in M,
i.e.

ϑ
F̃
(t,M) :=

{
x(t) ∈ RN

∣∣∣ x(·) ∈ W 1,1([0, t], RN), x(0) ∈M,

x′(·) ∈ F̃(·,x(·)) L 1-almost everywhere in [0, t]
}

.

Theorem 6 (Generalized Theorem of Filippov).
Let O be a relatively open subset of [0,T ]×RN . Take a set–valued map F̃ : O�RN ,
an arc y(·) ∈W 1,1([0,T ],RN), a point η ∈ RN and δ ∈ ]0,∞] such that

N (y,δ ) :=
⋃

0≤ t≤T

{t}×Bδ (y(t)) ⊂ O.



356 A Tools

Assume that

(i) F̃(t,z) �= /0 is closed for every (t,z) ∈N (y,δ ) and

Graph F̃ is L 1×BN measurable,

(ii) there exists k(·) ∈ L1([0,T ]) such that F̃(t,z1) ⊂ F̃(t,z2)+ k(t) |z1− z2| ·B1
for all z1,z2 ∈ Bδ (y(t)) and almost every t ∈ [0,T ].

Suppose further

e‖k‖
L1 ·

(
|η− y(0)| +

∫ T

0
dist
(

y′(t), F̃(t,y(t))
)

dt
)
≤ δ .

Then there exists a solution x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F̃(·, x(·)) a.e. satis-

fying x(0) = η and

‖x− y‖L∞ ≤ |η− y(0)| e‖k‖
L1 +

∫ T

0
e
∫ T
t k(s)ds dist

(
y′(t), F̃(t,y(t))

)
dt .

Now assume that (i) and (ii) are replaced by the stronger hypotheses:

(i′) F̃(t,z) �= /0 is convex and compact for every (t,z) ∈N (y,δ ),
(ii′) there exist ω(·) : [0,∞[−→ [0,∞[ and k∞ ∈ ]0,∞[ such that lim

h↓0
ω(h) = 0,

F̃(t1,z1) ⊂ F̃(t2,z2) +
(

k∞ |z1− z2| + ω(|t1− t2|)
)

B1

for all (t1,z1), (t2,z2) ∈N (y,δ ).
If y(·) is continuously differentiable, then the solution x(·) can be chosen as a

continuously differentiable function too.

Proof is given in [139, Theorem 2.4.3], for example.

For applying Filippov’s Theorem to compact reachable sets in RN , we combine
some global properties of a multivalued map F̃ : [0,T ]×RN � RN of space and
time and coin the new term “Filippov continuous”. It reflects the gist of the feature
“measurable/Lipschitz” defined in [16, Definition 9.5.1] – but in a more detailed
formulation.

Definition 7. A set-valued map F̃ : [0,T ]×RN � RN is called Filippov continu-

ous if it satisfies the following conditions:
1.) all values of F̃ are nonempty closed subsets of RN ,

2.) Graph F̃ ⊂ [0,T ]×RN ×RN belongs to L 1⊗L N ⊗BN ,

3.) F̃ has at most linear growth, i.e. sup
(t,x)∈[0,T ]×RN

sup
v∈F̃(t,x)

|v|
|x|+|t|+1 < ∞.

4.) there is λ (·) ∈ L1([0,T ],R) such that at Lebesgue-almost every time t ∈ [0,T ],
the set-valued map F̃(t, ·) : RN � RN is λ (t)–Lipschitz w.r.t. dl.

Here L N consists of all Lebesgue subsets of RN and, BN denotes the set of all
Borel subsets of RN . Condition (2.) is equivalent to the measurability of the set-
valued map F̃ as shown in [16, § 8.1]. Furthermore, the linear growth condition (3.)
implies first that all values of F̃ are compact and second that Gronwall’s Lemma
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provides locally uniform bounds for solutions to the corresponding nonautonomous
differential inclusion.
These conditions are slightly stronger than the assumptions of Theorem A.6.
Indeed, Theorem A.6 does not assume the linear growth condition (3.) and, Lip-
schitz continuity with respect to space is supposed only locally. These distinctions
result from different emphases: Theorem A.6 focuses on spatially local aspects of
existence of solutions to a differential inclusion. We, however, aim for conclusions
about reachable sets in the whole Euclidean space. The additional linear growth
condition (3.), for example, is to ensure that we can restrict our geometric consider-
ations to compact neighbourhoods of compact initial sets.

Proposition 8 (Invariance Theorem). Let F̃ : [0,T ]×RN � RN be Filippov

continuous. Assume the nonempty closed set K ⊂ RN to satisfy

F(t,x) ⊂ TK(x) for every x ∈ K and L 1-almost every t ∈ [0,T ].

with TK(x)⊂ RN denoting the contingent cone of K at x in the sense of Bouligand.

Then every solution x(·) ∈W 1,1([t1, t2],RN) to the differential inclusion x′(·) ∈
F̃(·,x(·)) a.e. with [t1, t2]⊂ [0,T ] and x(t1) ∈ K has all its values in K.

Proof. It adapts the standard proof of [13, Theorem 5.3.4] that deals with auto-
nomous differential inclusions.
Every solution x(·) ∈ W 1,1([t1, t2],RN) of x′(·) ∈ F̃(·,x(·)) a.e. is even Lipschitz
continuous due to the linear growth condition on F̃ (and Gronwall’s Lemma). The
auxiliary distance function δ : [t1, t2]−→ R, t �−→ dist

(
x(t), K

)
is Lipschitz con-

tinuous. Whenever x(·) and δ (·) are differentiable at time t ∈ [t1, t2], it satisfies with
a projection point yt ∈ K of x(t) (i.e. |x(t)− yt |= dist(x(t),K)) and any v ∈ RN

δ ′(t) ≤ liminf
h↓0

1
h
· ( dist(x(t +h), K) − |x(t)− yt |

)
≤ liminf

h↓0
1
h
· dist

(
yt +

∫ t+h

t
x′(s) ds, K

)
≤ liminf

h↓0
1
h
·
(

dist
(
yt +h v, K

)
+
∣∣h v −

∫ t+h

t
x′(s) ds

∣∣)
≤ liminf

h↓0
1
h
· dist

(
yt +h v, K

)
+
∣∣v − x′(t)

∣∣ .
Selecting now v ∈ F̃(t,yt) with |x′(t)− v| ≤ dl(F̃(t,x(t)), F̃(t,yt)), we conclude
from F̃(t,yt)⊂ TK(yt) and the λ (t)–Lipschitz continuity of F̃(t, ·) the estimate

δ ′(t) ≤ 0 + dl(F̃(t,x(t)), F̃(t,yt)) ≤ λ (t) |x(t)− yt | = λ (t) δ (t)

for L 1-almost every t ∈ [t1, t2]. According to Gronwall’s Lemma (Proposition A.2),
δ (0) = 0 implies δ (·)≡ 0 and thus, every value x(t) belongs to the closed set K.

�
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A.3 Scorza-Dragoni Theorem and applications to reachable sets

The classical theorem of Scorza–Dragoni [129] can be extended to functions be-
tween metric spaces as shown by Ricceri and Villani. A so-called Carathéodory
function depends on two arguments, namely “time” (in a topological space like R)
and “state” (in a metric space). By definition, it is measurable with respect to time
and continuous with respect to state. The key point of Scorza-Dragoni is to guaran-
tee continuity with respect to both arguments on “almost” the whole domain in the
following sense:

Proposition 9 ([122, Theorem 1]). Let S be a compact Hausdorff topological

space, μ a Radon measure on S and X ,Y metric spaces. Suppose X to be sepa-

rable.

Then every Carathéodory function g : S×X −→ Y satisfies the so–called Scorza–

Dragoni property, i.e. for every ε > 0, there exists a closed subset Sε ⊂ S with

μ(S\Sε) < ε such that the restriction f |Sε×X is continuous.

Now this proposition can be regarded as a counterpart of well-known Lusin’s
Theorem (relating measurability to continuity almost everywhere) – but now for
functions with two arguments.
In 1977 Jarnik and Kurzweil published an extension of the Scorza-Dragoni Theo-
rem to set-valued maps which are measurable in time and upper semicontinuous in
space [76]:

Proposition 10 ([65, Corollary 2.2], [76]).
Let X be a separable metric space. Suppose that F̃ : [0,T ]×X � RN has convex

closed values and for almost all t ∈ [0,T ], F̃(t, ·) is upper semicontinuous. Assume

that F̃ is measurably bounded, i.e. there is a measurable function β : [0,T ] −→ R

such that for almost all t ∈ [0,T ] and every x ∈ X , sup
v∈ F̃(t,x)

|v| ≤ β (t).

Then there exists a set-valued map F̂ : [0,T ]×X�RN with closed convex values

satisfying the following conditions :

1. For almost all t ∈ [0,T ] and for all x ∈ X , F̂(t,x) ⊂ F̃(t,x).

2. For every measurable set Λ ⊂ [0,T ] and every measurable maps u : Λ −→ X ,

v : Λ −→ RN with v(·) ∈ F̃( · ,u(·)) a.e. in Λ , we have v(·) ∈ F̂( · ,u(·)) a.e.

3. For any ε > 0, there is a closed set Jε ⊂ [0,T ] such that L 1([0,T ] \ Jε) < ε
and F̂ |Jε×X is upper semicontinuous.

This proposition provides a useful tool for investigating nonautonomous differential
inclusions with set-valued maps being measurable in time and upper semicontinuous
in space. Indeed, it bridges the gap to differential inclusions with upper semicontin-
uous right-hand side. Motivated by the nomenclature of Aubin, we introduce the
following abbreviating term for this type of set-valued maps:
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Definition 11. A set-valued map F̃ : [0,T ]×RN � RN , (t,x) �→ F̃(t,x) is
called nonautonomous Marchaud map if it has the following properties :

1. F̃ is nontrivial (i.e. Graph F �= /0),
2. F̃(t, ·) is upper semicontinuous for Lebesgue-almost every t ∈ [0,T ],
3. F̃( · ,x) is measurable for every x ∈ RN ,
4. F̃ has compact convex values and
5. there exists μ(·) ∈ L1([0,T ]) such that F̃(t,x) ⊂ μ(t) (1+ |x|) B for all x ∈RN

and Lebesgue-almost every t ∈ [0,T ].

Such a Scorza-Dragoni type theorem also holds for set-valued maps being con-
tinuous with respect to space at Lebesgue-almost every time. Frankowska, Plaskacz
and Rzeżuchowski concluded the following version from their counterpart of Propo-
sition A.10 by means of a single-valued parameterization [65]. Alternatively, it can
be regarded as special case of Proposition A.9 with values in the metric space
Y := (K (RN),dl).

Proposition 12 ([65, Theorem 2.4]). Let the set-valued map F̃ : [0,T ]×RN � RN ,
(t,x) �→ F̃(t,x) have nonempty compact values, be measurable with respect to t and

continuous with respect to x.
Then for every ε > 0, there exists a closed set Jε ⊂ [0,T ] with L 1([0,T ] \ Jε) < ε
for which the restriction F̃ |Jε×RN is continuous.

Applications to reachable sets: Integral funnel equation

Considering a nonautonomous differential inclusion, the set-valued map on its right-
hand side provides a first-order approximation of the reachable set starting in an
arbitrary point. For various nonautonomous differential inclusions with continuous
right-hand side, this result is well-known as integral funnel equation due to papers
of Kurzhanski, Filippova, Panasyuk, Tolstonogov and others (e.g. [85, 116]).

In [65], Frankowska, Plaskacz and Rzeżuchowski extended such approximating
results to differential inclusions whose right-hand sides are just measurable in time.
Their detailed estimates of the Hausdorff distances, however, are formulated for an
arbitrary initial point in space (rather than initial sets). Now we verify that these
estimates hold even locally uniformly in space and time:

Proposition 13. Let the set-valued map F̃ : [0,T ]×RN � RN satisfy

1. F̃ has nonempty closed convex values,

2. for L 1-almost all t ∈ [0,T ], the map RN � RN , x �→ F̃(t,x) is continuous,

3. for every x ∈ RN , the map [0,T ]� RN , t �→ F̃(t,x) is measurable,

4. there exists μ(·) ∈ L1([0,T ]) with sup
v∈F̃(t,x)

|v| ≤ μ(t) for all x ∈ RN and a.e. t.
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Then, there exists a set J ⊂ [0,T ] of full Lebesgue measure (i.e. L 1([0,T ]\J) = 0)
such that for every t ∈ J and K ∈K (RN),

1
h
· dl
(

ϑ
F̃(t+· , ·)(h, K),

⋃
x∈K

(
x + h · F̃(t,x)

)) −→ 0 for h ↓ 0.

Proof consists of subsequent Corollary A.15 and Lemma A.16 focusing on the
distances

h �−→ dist
(

ϑ
F̃(t+· , ·)(h, K),

⋃
x∈K

(
x + h · F̃(t,x)

))
,

h �−→ dist
( ⋃

x∈K

(
x + h · F̃(t,x)

)
, ϑ

F̃(t+· , ·)(h, K),
)

respectively. Indeed, the subsequent inclusions are locally uniform with respect to
the initial point x ∈ K and small time h > 0.

Lemma 14. Let F̃ : [0,T ]×RN �RN be a nonautonomous Marchaud map with

nonempty (compact convex) values.

Then there exists a set J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the

following property: For every t0 ∈ J, x0 ∈ RN and ε ∈ ]0,1[, there are t1 > 0 and

δ > 0 satisfying for all x ∈ Bδ (x0), h ∈ ]0, t1[.

ϑ
F̃(t0+ · , ·)(h,x) ⊂ x + h

(
F̃(t0,x0)+ ε B

)
.

Applying this result to every time t0 ∈ J ⊂ [0,T ] at which F̃(t, ·) : RN � RN is
continuous in addition, we obtain directly:

Corollary 15. Under the assumptions of Proposition A.13, there exists a sub-

set J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the following property:
For every t0 ∈ J, x0 ∈ RN and ε ∈ ]0,1[, there are t1 > 0 and δ > 0 satisfying

ϑ
F̃(t0+ · , ·)(h,x) ⊂ x + h

(
F̃(t0,x)+2 ε B

)
for all x ∈ Bδ (x0), h ∈ ]0, t1[. �

Before proving Lemma A.14 in detail, we formulate the opposite inclusion correctly.
This completes the proof of Proposition A.13.

Lemma 16. Under the assumptions of Proposition A.13, there exists a subset

J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the following property:
For every t0 ∈ J, x0 ∈ RN and ε ∈ ]0,1[, there are t1 > 0 and δ > 0 satisfying

x + h F̃(t0,x) ⊂ ϑ
F̃(t0+ · , ·)(h,x) + ε h B

for all x ∈ Bδ (x0), h ∈ ]0, t1[.

Finally we now discuss the missing proofs of Lemmas A.14 and A.16:



A.3 Scorza-Dragoni Theorem and applications to reachable sets 361

Proof (of Lemma A.14). It follows the same arguments of [65, Lemma 2.6] and
thus uses the basic idea of Rzeżuchowski in [128].
Let F̂ : [0,T ]×RN � RN denote the set-valued map according to Scorza-Dragoni
type Proposition A.10. For any γ > 0, there exists a closed subset J̃γ ⊂ [0,T ] with
L 1([0,T ]\ J̃γ) < γ such that F̂ |

J̃γ×RN is upper semicontinuous and

Graph F̂ |
J̃γ×RN ⊂ Graph F̃ .

Now let Jγ ⊂ J̃γ denote the set of density points of J̃γ that are also Lebesgue points
of μ(·) ·χ[0,T ]\J̃γ

(·) : [0,T ]−→R. It satisfies L 1(Jγ) = L 1(J̃γ) because Lebesgue
points of each Lebesgue-integrable function always have full Lebesgue measure
[144, Theorem 1.3.8] and thus, in particular, density points of any measurable set
also have full Lebesgue measure.

For arbitrary t0 ∈ Jγ , x0 ∈RN and ε ∈ ]0,1], the upper semicontinuity of F̂ |Jγ×RN

and the construction of Jγ provide r,δ , t1 > 0 satisfying for every t ∈ [t0, t0+t1]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̂
(
[t0, t], Br(x0)

) ⊂ F̂(t0,x0) + ε
3 B ⊂ F̃(t0,x0)+ ε

3 B,

ϑ
F̃(t0+ · , ·)

(
t− t0, Bδ (x0)

) ⊂ x0 + r B,

L 1([t0,t]∩ J̃γ )
t− t0

F̃(t0,x0) ⊂ F̃(t0,x0) + ε
3 B,

1
t− t0

∫
[t0,t]\ J̃γ

μ(s) ds ≤ ε
3 · (1+ |x0|+ r)−1.

Then for any x ∈ Bδ (x0) and h ∈ [0, t1], we obtain

ϑ
F̃(t0+ · , ·)(h,x) − x ⊂
⊂
∫

[t0,t0+h]∩ J̃γ
F̂
(
s, Br(x0)

)
ds +

∫
[t0,t0+h]\ J̃γ

F̂
(
s, Br(x0)

)
ds

⊂ L 1([t0, t0+h] ∩ J̃γ) ·
(

F̃(t0,x0)+ ε
3 B

)
+
∫

[t0,t0+h]\ J̃γ
μ(s) (1+|x0|+r) ds ·B

⊂ h
(

F̃(t0,x0) + ε
3 B + ε

3 B

)
+ ε

3 h B

= h
(
F̃(t0,x0) + ε B

)
�

Proof (of Lemma A.16). Choosing γ > 0 arbitrarily small, Proposition A.12
(on page 359) provides a closed subset J̃γ ⊂ [0,T ] with L 1([0,T ]\ J̃γ) < γ such that
the set-valued restriction F̃ |

J̃γ×RN is continuous.

As in the proof of Lemma A.14, let Jγ ⊂ J̃γ denote the set of density points of J̃γ
that are Lebesgue points of μ(·) ·χ[0,T ]\J̃γ

(·)∈ L1([0,T ]) in addition. It also satisfies

L 1(Jγ) = L 1(J̃γ) > T − γ.

For arbitrary t0 ∈ Jγ , x0 ∈RN and ε ∈ ]0,1], the continuity of F̃ |Jγ×RN and the con-
struction of Jγ guarantee parameters r,δ , t1 ∈ ]0,1] successively such that for every
t ∈ [t0, t0+t1], x ∈ Bδ (x0), y ∈ Br(x0)
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dl
(
F̃(t,y), F̃(t0,x0)

) ≤ ε
4

x + (t− t0) · F̃(t0,x) ⊂ x0+ r B,

L 1([t0,t]\ J̃γ )
t− t0

F̃(t0,x0) ⊂ ε
4 B,

1
t− t0

∫
[t0,t]\ J̃γ

μ(s) ds ≤ ε
4 .

Choose now any x ∈ Bδ (x0) and v ∈ F̃(t0,x) and we want to verify for all h ∈ [0, t1]

x + h v ∈ ϑ
F̃(t0+ · , ·)(h, x) + ε h B.

Since all values of F̃ are assumed to be convex, the projection of v on F̃(·, ·)
[0,T ]×RN � RN , (t,y) �→Π

F̃(t,y)(v)
Def.=
{

w ∈ F̃(t,y)
∣∣ dist(v, F̃(t,y)) = |w−v|}

is single-valued and thus denoted by f : [0,T ]×RN −→ RN .
Moreover, f (·,y) : [0,T ] −→ RN is measurable for every y ∈ RN due to Proposi-
tion A.61 (on page 390). Whenever F̃(t, ·) : RN � RN is continuous, its composi-
tion with the projection mapping is upper semicontinuous in the sense of Painlevé–
Kuratowski according to [124, Proposition 4.9] and thus, the single-valued function
f (t, ·) : RN −→ RN is continuous. As a consequence, f is a Carathéodory function
and, its restriction f |Jγ×RN is continuous because F̃ |Jγ×RN is continuous.
There exists an absolutely continuous solution y(·) : [t0, t0 + t1] −→ RN to the
ordinary differential equations y′(·) = f

( · ,y(·)) a.e. with y(t0) = x. Then, y(·)
solves the differential inclusion y′(·) ∈ F̃( · ,y(·)) a.e. and satisfies for all h ∈ [0, t1]∣∣x+h v − y(t0+h)

∣∣
≤
∫

[t0, t0+h]∩Jγ

∣∣v− f (s, y(s))
∣∣ ds +

∫
[t0, t0+h]\Jγ

(|v| + μ(s)) ds

≤
∫

[t0, t0+h]∩Jγ
dist
(
v, F̃(s, y(s))

)
ds +

∫
[t0, t0+h]\Jγ

(|v| + μ(s)) ds

≤ ε
4 ·h + 2 ε

4 ·h + ε
4 ·h

= ε ·h . �

A.4 Relaxation Theorem of Filippov-Ważiewski for differential
inclusions

The so-called Relaxation Theorem bridges the gap between a differential inclusion
x′(·) ∈ F̃(·, x(·))

and its relaxed counterpart with (pointwise) convexified values on the right-hand
side, i.e., y′(·) ∈ co F̃(·, y(·)).
In particular, it provides sufficient conditions on the set-valued map F̃ : [0,T ]×RN

�RN which make the additional assumption of convex values dispensable in regard
to compact reachable sets.
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Theorem 17 (Relaxation Theorem of Filippov-Ważiewski). Suppose for the

set-valued map F̃ : [0,T ]×RN � RN and the curve y(·) ∈W 1,1([0,T ],RN)

(1.) the values F̃ are nonempty closed subsets of RN,

(2.) for every x ∈ RN , F(·,x) : [0,T ]� RN is measurable,

(3.) there exist ρ > 0 and λ (·) ∈ L1([0,T ],R+
0 ) such that for L 1-almost every

t ∈ [0,T ], the restriction F(t, ·)∣∣
Bρ (y(t)) : Bρ(y(t)) � RN is λ (t)-Lipschitz

continuous w.r.t. dl,

(4.) there exists μ(·)∈ L1([0,T ]) with sup
v∈F̃(t,y(t))

|v| ≤ μ(t) for L 1-almost every t.

(5.) [0,T ]−→ R, t �−→ dist
(
y′(t), F̃(t, y(t))

)
is Lebesgue-integrable,

(6.) e‖k‖
L1 ·

∫ T

0
dist
(

y′(t), F̃(t,y(t))
)

dt ≤ ρ ,

(7.) y′(t) ∈ co F̃(t, y(t)) for L 1-almost every t ∈ [0,T ].

Then for every δ > 0, there exists a solution x(·) ∈W 1,1([0,T ],RN) to the differen-

tial inclusion x′(·) ∈ F(·,x(·)) a.e. satisfying x(0) = y(0) and ‖x(·)−y(·)‖L∞ ≤ δ .

Proof is given in [63, Theorem 1.36], for example, as a consequence of Filippov’s
Theorem A.6 and an appropriate selection principle. The autonomous counterpart
and its proof can be found in [14, Theorem 2.4.2].

Aubin and Frankowska have already pointed out a well-known consequence in [16,
Theorem 10.4.4]:

Corollary 18. In addition to the hypotheses of Relaxation Theorem A.17 with ρ =∞,

assume that R(·) ∈ L1([0,T ]) satisfies F̃(t,x)⊂ R(t) B for every x ∈ RN and a.e. t.

Then the solutions to the differential inclusion x′(·) ∈ F̃(·, x(·)) a.e. are dense in

the set of solutions to the relaxed inclusion y′(·) ∈ co F̃(·, y(·)) a.e. with respect to

the supremum norm. �

Considering now reachable sets of differential inclusions, we obtain

Corollary 19. Let F̃ : [0,T ]×RN � RN be Filippov continuous (according to

Definition A.7 on page 356).

Then, ϑ
F̃
(t,K) = ϑco F̃

(t,K) for every K ∈K (RN) and t ∈ [0,T ].

Proof. Relaxation Theorem A.17 implies
ϑ

F̃
(t,M) = ϑco F̃

(t,M)

for every nonempty (not necessarily closed) subset M ⊂ RN and any t ∈ [0,T ].
In addition, the reachable set ϑ

F̃
(t,K) ⊂ RN is closed as a consequence of Filip-

pov’s Theorem A.6 (on page 355). Finally, co F̃ : [0,T ]×RN � RN has Filippov
continuity in common with F̃ and thus, ϑco F̃

(t,K)⊂ RN is also closed. �
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A.5 Regularity of reachable sets of differential inclusions

In this section, we focus on the boundary of reachable sets of differential inclusions.
Adjoint arcs are used for describing the time-dependent limiting normal cones. They
serve as tools for specifying sufficient conditions on the differential inclusion for
preserving smooth boundaries shortly, for example.
First we prove in Proposition A.28 that C1,1 boundaries are preserved for short times.
Then according to Proposition A.30, the same hypothesis guarantees that the evolu-
tion of smooth sets is reversible in time. Afterwards, the conditions on the Hamilto-
nian function HF are supposed to be stronger for guaranteeing that points evolve
into sets of positive erosion (see Proposition A.35). Finally, we estimate the maxi-
mal shrinking of exterior or interior balls and focus on exterior tusks.

Definition 20. For any set-valued map F̃ : [0,T ]×RN � RN , the support function

H
F̃

: [0,T ]×RN ×RN �−→ R

(t,x, p) �−→ σ
(

p, F̃(t,x)
) Def.= sup

{〈p,v〉 ∣∣ v ∈ F̃(t,x)
}

is called (upper) Hamiltonian of F̃ .

A.5.1 Normal cones and compact sets: Definitions and Notation

This section serves only the simple purpose of clarifying the notation in regard to
normal cones and compact subsets of RN .

Definition 21. Let C ⊂ RN be a nonempty closed set.
A vector η ∈ RN , η �= 0, is said to be a proximal normal vector to
C at x ∈C if there exists ρ > 0 with Bρ(x+ρ η

|η | ) ∩ C = {x}.
The supremum of all ρ with this property is called proximal radius

of C at x in direction η . The cone of all these proximal normal vec-
tors is called the proximal normal cone to C at x and is abbreviated
as NP

C (x).
The so-called limiting normal cone NC(x) to C at x consists of all vectors η ∈RN

that can be approximated by sequences (ηn)n∈N, (xn)n∈N satisfying
xn −→ x, xn ∈ C,
ηn −→ η , ηn ∈ NP

C (xn),

i.e. NC(x) Def.= Limsup y−→x
y∈C

NP
C (y) (in the sense of Painlevé–Kuratowski).

As a further abbreviation, we set �NC(x) := NC(x)∩B = {v ∈ NC(x) : |v| ≤ 1}.

Convention. In the following we restrict ourselves to normal directions at bound-
ary points, i.e. strictly speaking, Graph NC and Graph �NC are the abbreviations
of Graph NC|∂C and Graph �NC|∂C, respectively.
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Definition 22. KC1,1(RN) abbreviates the set of all nonempty compact N–
dimensional C1,1 submanifolds of RN with boundary.
A nonempty closed subset C ⊂ RN is said to have positive erosion of radius ρ > 0
if there exists a closed set M ⊂ RN with{

C = {x ∈ RN |dist(x,M) ≤ ρ },
M = {x ∈C |dist(x,∂C)≥ ρ }.

K
ρ
◦ (RN) consists of all sets with positive erosion of radius ρ > 0 and, set

K◦(RN) :=
⋃

ρ >0

K ρ
◦ (RN) .

Remark 23. The morphological term “erosion” is motivated by the fact that a set
C =C◦ ⊂RN has positive erosion if and only if the closure RN \C of its complement
has positive reach (in the sense of Federer [42, 62]).
The relationship between positive reach and positive erosion implies a collection of
interesting regularity properties presented (for closed subsets of a Hilbert space) in
[35, 36, 121].

A.5.2 Adjoint arcs for the evolution of limiting normal cones to
reachable sets

The so-called Hamilton condition is known under very mild assumptions using the
tools of nonsmooth functions. First we quote the version of Vinter’s monograph
[139]. Applying these results to proximal balls leads to a necessary condition on
boundary points of reachable sets and their proximal normal vectors. Approximat-
ing sequences then lay the basis for extending this result to limiting normal vectors
in subsequent Proposition A.26. In particular, it is formulated only for Hamiltonian
functions with continuous partial derivatives ∂xHF̃

,∂yHF̃
because we exploit the

regularity of solutions to ordinary differential equations in the next sections.

Proposition 24 (Extended Hamilton Condition).
Let x(·) ∈W 1,1([S,T ],RN) be a local minimizer (with respect to perturbations in

W 1,1([0,T ],RN)) of the problem

g(y(S),y(T )) −→ min
over y(·) ∈W 1,1([S,T ],RN) satisfying

y′(t) ∈ F̃(t,y(t)) for almost every t ∈ [S,T ],
(y(S), y(T )) ∈C ⊂ RN ×RN .

Assume also that

(G1) g is locally Lipschitz continuous;

(G2)′ F̃(t,x) �= /0 is convex for each (t,x), F̃ is L 1+N ×BN measurable, and

Graph F̃(t, ·) is closed for each t ∈ [S,T ].
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Suppose, furthermore, that either of the following hypotheses is satisfied :

(a) There exist k ∈ L1([S,T ]) and ε > 0 such that for almost every t

F̃(t,x1) ∩
(
x′(t) + ε k(t)B

) ⊂ F̃(t,x2) + k(t) |x1− x2|B
for all x1,x2 ∈ Bε(x(t)).

(b) There exist k ∈ L1([S,T ]), K > 0 and ε > 0 such that the following two

conditions are satisfied for almost every t ∈ [S,T ] and all x1,x2 ∈ Bε(x(t))
F̃(t,x1) ∩

(
x′(t) + ε B

) ⊂ F̃(t,x2) + k(t) |x1− x2|B,

inf
{ |v− x′(t)| ∣∣ v ∈ F̃(t,x1)

} ≤ K |x1− x(t)| .

Then there exist an arc p(·) ∈W 1,1([S,T ],RN) and a constant λ ≥ 0 such that

(i) (p(·), λ ) �= (0,0),
(ii) p′(t) ∈ co

{
η ∈ RN

∣∣ (η , p(t)) ∈ NGraph F̃(t, · )(x(t), x′(t))
}

for a.e. t

(iii)
(

p(S), − p(T )
) ∈ λ ∂ L g(x(S), x(T )) + NC(x(S), x(T )).

Condition (ii) implies

(iv) p(t) · x′(t) = sup
(

p(t) · F̃(t,x(t))
)

for a.e. t

(v) p′(t) ∈ co
{−q ∈ RN

∣∣ (q,x′(t)) ∈ ∂ L H
F̃
(t, ·, ·)|(x(t),p(t))

}
for a.e. t.

Proof is presented in [139, Theorem 7.7.1], for example.

Remark 25. This adjoint p(·) also satisfies |p′(t)| ≤ k(t) |p(t)| for almost every t

as an immediate consequence of statement (ii) and the so-called Mordukhovich

criterion (see e.g. [124, Theorem 9.40]).

Proposition 26. Suppose for the set-valued map F̃ : [0,T ]×RN � RN

1. F̃(·) is measurable with nonempty convex compact values,

2. for L 1-almost every t ∈ [0,T ], H
F̃
(t, ·, ·) is continuously differentiable on

RN× (RN \{0}),
3. there exists k(·) ∈ L1([0,T ] such that for L 1-almost every t ∈ [0,T ],

‖∂(x,p)HF̃
(x, p)‖ ≤ k(t) · (1+ |x|+ |p|) for all x, p ∈ RN , |p|> 1.

Let K ∈K (RN) be any initial set and t0 > 0.

For every boundary point x0 ∈ ∂ ϑ
F̃
(t0,K) and normal ν ∈ Nϑ

F̃
(t0,K)(x0)\{0},

there exist a solution x(·)∈W 1,1([0, t0],RN) and its adjoint p(·)∈W 1,1([0, t0],RN)
with{

x′(t) = ∂
∂ p

H
F̃
(t, x(t), p(t)) ∈ F̃(t, x(t)), x(t0) = x0, x(0) ∈ ∂K,

p′(t) = − ∂
∂x

H
F̃
(t, x(t), p(t)), p(t0) = ν , p(0) ∈ NK(x(0)).

�
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A.5.3 Hamiltonian system helps preserving C1,1 boundaries shortly

Definition 27. For a set-valued map F̃ : [0,T ]×RN � RN , the standard hypo-
thesis (H̃ ) comprises the following conditions on H

F̃
(t,x, p) := sup p · F̃(t,x)

1. F̃ is measurable and has nonempty compact convex values,

2. H
F̃
(t, ·, ·) : RN × (RN\{0})−→ R is continuously differentiable for every t,

3. for every R > 1, there exists λR(·) ∈ L1([0,T ]) such that the derivative of

H
F̃
(t, ·, ·) restricted to BR × (BR\

◦
B 1

R
) is λR(t) –Lipschitz continuous for

almost every t ∈ [0,T ],

4. there is k
F̃
∈ L1([0,T ]) such that for a.e. t ∈ [0,T ] and all x, p ∈RN (|p| ≥ 1),∥∥∂(x,p) HF̃

(t,x, p)
∥∥

L (RN×RN ,R) ≤ k
F̃
(t) · (1+ |x|+ |p|).

Proposition 28. Assume standard hypothesis (H̃ ) for F̃ : [0,T ]×RN � RN .

For every initial compact set K ∈ KC1,1(RN), there exist τ = τ(F̃ ,K) > 0 and

ρ = ρ(F̃ ,K) > 0 such that ϑ
F̃
(t,K) is also a N–dimensional C1,1 submanifold of

RN with boundary for all t ∈ [0,τ] and, its radius of curvature is ≥ ρ at every

boundary point. In particular, ϑ
F̃
(t,K) has both positive reach and erosion.

The proof of Proposition A.28 is based on the following lemma :

Lemma 29. Suppose for H : [0,T ]×RN ×RN −→ R, ψ : RN −→ RN and the

Hamiltonian system{
y′(t) = ∂

∂q
H(t, y(t), q(t)), y(0) = y0

q′(t) = − ∂
∂y

H(t, y(t), q(t)), q(0) = ψ(y0)
(∗)

the following properties:

1. H(t, ·, ·) is differentiable for every t ∈ [0,T ],
2. for every R > 0, there exists kR ∈ L1([0,T ]) such that the derivative of

H(t, ·, ·) is kR(t)–Lipschitz continuous on BR×BR for almost every t,
3. ψ is locally Lipschitz continuous,

4. every solution (y(·),q(·)) to the Hamiltonian system (∗) can be extended to

[0,T ] and depends continuously on the initial data in the following sense:

Let each (yn(·),qn(·)) be a solution satisfying yn(tn) −→ z0, qn(tn) −→ q0
for some tn −→ t0, z0,q0 ∈ RN .
Then (yn(·),qn(·))n∈N converges uniformly to a solution (y(·),q(·)) to the

Hamiltonian system with y(t0) = z0, q(t0) = q0.

For a compact set K ⊂ RN and t ∈ [0,T ], define

M �→
t (K) :=

{
(y(t), q(t))

∣∣ (y(·), q(·)) solves system (∗), y0 ∈ K
} ⊂ RN ×RN .

Then there exist δ > 0 and λ > 0 such that M �→
t (K) is the graph of a λ–Lipschitz

continuous function for every t ∈ [0,δ ].
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Proof (of Lemma A.29). It is based on the indirect proof of [63, Lemma 5.5]
about the same Hamiltonian system with y(T ) = yT , q(T ) = qT given (without
mentioning the uniform Lipschitz constant λ explicitly).

Suppose that the claim is false. Then there exists a sequence (tn)n∈N in ]0,T ]
with tn −→ 0 such that either M �→

tn
(K) is not the graph of a Lipschitz function or

the corresponding Lipschitz constants converge to ∞. In both cases, we can find dis-
tinct solutions (y1

n(·), q1
n(·)), (y2

n(·), q2
n(·)), n ∈ N, to the Hamiltonian system (∗)

with

εn :=
|y1

n(tn) − y2
n(tn) |

|q1
n(tn)− q2

n(tn) |
−→ 0 for n−→ ∞.

Assumption (4.) and K ∈K (RN) imply
⋃

0≤ t≤T

M �→
t (K) ⊂ BR×BR for some R > 0.

Assumption (2.) provides the estimate

|y1
n(t)− y2

n(t)|
≤ |y1

n(tn)− y2
n(tn)| +

∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+ |q1

n(s)−q2
n(s)|

)
ds

≤ εn |q1
n(tn)−q2

n(tn)| +
∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+ |q1

n(s)−q2
n(s)|

)
ds

for all t ∈ [0, tn], and the integral version of Gronwall’s inequality (Proposition A.1)
leads to a constant C1 > 0 (independent of n) with

|y1
n(t)− y2

n(t)| ≤ C1

(
εn |q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s) |q1

n(s)−q2
n(s)| ds

)
.

Due to supn εn < ∞, we obtain a constant C2 > 0 such that for all n ∈N, t ∈ [0, tn],

|q1
n(t)−q2

n(t)|
≤ |q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+|q1

n(s)−q2
n(s)|

)
ds

≤ C2

(
|q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s) |q1

n(s)−q2
n(s)| ds

)
.

As a consequence of Gronwall’s Proposition A.1 again, there is constant C3 > 0
(independent of n) with |q1

n(t)−q2
n(t)| ≤ C3 |q1

n(tn)−q2
n(tn)| for all n, t ∈ [0, tn].

In particular,

ε ′n := sup
0≤ t≤ tn

|y1
n(t) − y2

n(t) |
|q1

n(tn)−q2
n(tn) | ≤ C1

(
εn + C3

∫ tn

0
kR(s) ds

)
n→∞−→ 0.

Similarly we get a constant C4 = C4(‖kR‖L1) > 0 fulfilling

|q1
n(tn) − q2

n(tn)| ≤ C4 |q1
n(0) − q2

n(0)| = C4 |ψ(y1
n(0)) − ψ(y2

n(0))|
for all n ∈ N sufficiently large. Indeed, for all t ∈ [0, tn], assumption (2.) ensures

|q1
n(t)−q2

n(t)|
≤ |q1

n(0)−q2
n(0)| +

∫ t

0
kR(s)

(
|y1

n(s) − y2
n(s) | + |q1

n(s)−q2
n(s)|

)
ds

≤ |q1
n(0)−q2

n(0)| +
∫ t

0
kR(s)

(
ε ′n |q1

n(tn)−q2
n(tn)| + |q1

n(s)−q2
n(s)|

)
ds

and Gronwall’s inequality (Proposition A.1) provides C5 = C5(‖kR‖L1) > 0 such
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that for every n ∈ N,

|q1
n(tn) − q2

n(tn)| ≤ C5
2 |q1

n(0) − q2
n(0)| + const(‖kR‖L1) ε ′n |q1

n(tn) − q2
n(tn)| .

Due to ε ′n −→ 0, we obtain |q1
n(tn) − q2

n(tn)| ≤ C5 |q1
n(0) − q2

n(0)| for all
n ∈ N large enough. Finally,

|ψ(y1
n(0)) − ψ(y2

n(0)) |
|y1

n(0) − y2
n(0) | =

|q1
n(0) − q2

n(0) |
|q1

n(tn) − q2
n(tn) |

· |q
1
n(tn) − q2

n(tn) |
|y1

n(0) − y2
n(0) |

≥ 1
C5

· 1
ε ′n

−→ ∞ for n−→ ∞

— contradicting the local Lipschitz continuity of ψ at each cluster point of (y1
n(0))n.

�

Proof (of Proposition A.28). Standard hypothesis (H̃ ) for F̃ : [0,T ]×RN�RN

implies conditions (1.), (4.) of the preceding Lemma A.29 for the Hamiltonian H
F̃
.

Assuming that K∈K (RN) is a N–dimensional C1,1 submanifold of RN with bound-
ary, the unit exterior normal vectors of K (restricted to ∂K) can be extended to a
Lipschitz continuous function ψ : RN −→ RN . Choosing some cut-off function
ϕ ∈C∞([0,∞[, [0,1]) with ϕ|[0, 1

4 ] ≡ 0, ϕ|[ 1
2 ,∞[ ≡ 1, H(t,x, p) := H

F̃
(t,x, p) ·ϕ(|p|)

satisfies condition (2.) of Lemma A.29 in addition.

For arbitrary x0 ∈ ∂K, consider the differential equations{
x′(t) = ∂

∂ p
H(t, x(t), p(t)), x(0) = x0,

p′(t) = − ∂
∂x

H(t, x(t), p(t)), p(0) = ψ(x0).
(∗∗)

Due to |ψ(·)|= 1 on ∂K and H ∈C1,1, there exists some τ1 > 0 such that |p(t)|> 1
2

for any t ∈ [0,τ1] and all solutions (x(·), p(·)) of (∗∗) with x0 ∈ ∂K. Thus, H = HF

close to (x(t), p(t)). Now Proposition A.26 can be reformulated as

Graph NϑF (t,K)(·) ⊂
{

(x(t), λ p(t))
∣∣ (x(·), p(·)) solves system (∗∗),
x0 ∈ ∂K, λ ≥ 0

}
,

for all t ∈ [0,τ1]. Lemma A.29 yields τ ∈ ]0,τ1[ and λM > 0 such that

M �→
t (∂K) :=

{
(x(t), p(t))

∣∣ (x(·), p(·)) solves system (∗∗), x0 ∈ ∂K
}

is the graph of a λM–Lipschitz continuous function for each t ∈ [0,τ].

Then for every point z ∈ ∂ϑ
F̃
(t,K), the limiting normal cone Nϑ

F̃
(t,K)(z) contains

exactly one direction and, its unit vector depends on z in a Lipschitz continuous
way. (The Lipschitz constant is uniformly bounded by a constant depending on λM

because the choice of τ1 ensures |p(·)|> 1
2 on [0,τ1] for each solution of (∗∗).)

Hence, the compact set ϑ
F̃
(t,K) is N–dimensional C1,1 submanifold of RN with

boundary for all t ∈ [0,τ] and its radius of curvature has a uniform lower bound. �
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A.5.4 How to guarantee reversibility of reachable sets in time

The Hamilton condition has led to a necessary condition on boundary points
x ∈ ∂ ϑ

F̃
(t,K) and their limiting normal cones in Proposition A.26 (on page 366).

If each set ϑ
F̃
(t,K) (0 ≤ t ≤ T ) has positive reach of radius ρ, then standard

hypothesis (H̃ ) turns adjoint arcs into sufficient conditions and, we conclude that
the evolution of reachable sets is reversible with respect to time — in the following
sense:

Proposition 30. Suppose standard hypothesis (H̃ ) for F̃ : [0,T ]×RN �RN .
Assume for K0 ∈K (RN) and ρ > 0 that every compact reachable set Kt :=
ϑ

F̃
(t,K0) (0≤ t ≤ T ) has positive reach of radius ρ.

Then for every 0≤ s≤ t < T, Ks = RN
∖

ϑ−F̃(t−·,·)(t− s, RN\Kt).

Remark 31. 1. K (RN)� RN , K0 �−→ RN \ ϑ−F̃(t−·,·)(t, RN \ϑ
F̃
(t,K0))

generalizes the morphological operation of closing (of sets in K (RN)) that was
introduced by Minkowski and is usually defined as

P(X) � X , K �−→ (K− t B)% (−t B) Def.= {y ∈ X | y− t B⊂ K− t B}
for a vector space X and fixed B⊂ X , t > 0 (see e.g. [9, Definition 3.3.1]).

2. In [21], viscosity solutions to the Hamilton–Jacobi–Bellman equation
∂t u+H(t,x,Du) = 0 are investigated and in a word, the continuous differentiability
of u is concluded from the reversibility in time:
If u ∈C0([0,T ]×RN ,R) is a viscosity solution of ∂t u + H(t, · ,Du) = 0
and v(t,x) := u(T − t,x) is a viscosity solution of ∂t v − H(T−t, ·,Dv) = 0
then adequate assumptions of H ensure u ∈C1(]0,T [×RN).
Referring to the relation between reachable sets and level sets of viscosity solutions,
we draw an inverse conclusion since we assume smoothness and obtain reversibility
in time.

3. The reversibility in time (in the sense of Proposition A.30) can also be re-
garded as recovering the initial data. Further results about this problem have already
been published by Rzeżuchowski in [126, 127], for example, but they usually as-
sume other conditions. Either the initial set consists of only one point or the Hamil-
tonian function HF is of class C2.

In Proposition 30, we even suppose a uniform radius ρ of positive reach for
Kt

Def.= ϑ
F̃
(t,K0). The essential advantage for the proof is the relation between the

boundaries of Kt ⊂ RN and Graph (t �−→ Kt) ⊂ R×RN stated in the next lemma:
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Lemma 32. Suppose for F̃ : [0,T ]×RN �RN , K ∈K (RN) and ρ > 0 that the

map [0,T ]�RN , t �−→ ϑ
F̃
(t,K) is λ–Lipschitz continuous (with respect to dl) and

each set ϑ
F̃
(t,K) (0≤ t ≤ T ) has positive reach of radius ρ.

Then the topological boundary of Graph ϑ
F̃
(·,K)|[0,T ] in R×RN is({0}×K

) ∪ ⋃
0< t <T

({t}×∂ϑ
F̃
(t,K)

) ∪ ({T}×ϑ
F̃
(T,K)

)
.

Proof (of Lemma 32). The inclusion({0}×K
) ∪ ⋃

0< t <T

({t}×∂ϑ
F̃
(t,K)

) ∪ ({T}×ϑ
F̃
(T,K)

) ⊂ ∂ Graph ϑ
F̃
(·,K)

is obvious. Due to the Lipschitz continuity of ϑ
F̃
(·,K), we only have to show

∂ Graph ϑ
F̃
(·,K) ∩ (]0,T [×RN) ⊂

⋃
0< t <T

({t}×∂ ϑ
F̃
(t,K)

)
.

Every z ∈ ∂ ϑ
F̃
(t,K) (0 ≤ t ≤ T ) and any unit vector

pz ∈ NP
ϑ

F̃
(t,K)(z) = Nϑ

F̃
(t,K)(z) satisfy

◦
Bρ (z+ρ pz) ∩ ϑ

F̃
(t,K) = /0

and thus,({t}× ◦
Bρ (z+ρ pz)

) ∩ Graph ϑ
F̃
(·,K) = /0.

The λ–Lipschitz continuity of ϑ
F̃
(·,K) implies

ζ (t,z, pz) ∩ Graph ϑ
F̃
(·,K) = /0

for the open set ζ (t,z, pz) :=
{

(s,y) ∈ R1+N
∣∣ |z+ρ pz − y|< ρ−λ |s− t|}.

Now choose (t,x) ∈ ∂ Graph ϑ
F̃
(·,K) with 0 < t < T arbitrarily. The continuity

of ϑ
F̃
(·,K) guarantees that Graph ϑ

F̃
(·,K) is closed and thus, it contains (t,x).

Moreover there are sequences (tn)n∈N, (xn)n∈N in ]0,T [ , RN , respectively, with

(tn,xn) /∈ Graph ϑ
F̃
(·,K) for every n ∈ N,

(tn,xn) −→ (t,x) for n−→ ∞.

For each n∈N, let zn be an element of the projection Πϑ
F̃
(tn,K)(xn) ⊂ ∂ϑ

F̃
(tn,K).

Then, 0 < |xn− zn| = dist(xn, ϑ
F̃
(tn,K)) ≤ |xn−x|+dist(x, ϑ

F̃
(tn,K)) −→ 0

and pn := xn−zn

|xn−zn | ∈ NP
ϑ

F̃
(tn,K)(zn) ∩ ∂B1.

As mentioned before, we obtain ζ (tn,zn, pn) ∩ Graph ϑ
F̃
(·,K) = /0 for each n∈N.

Adequate subsequences (again denoted by) (tn)n∈N, (xn)n∈N, (pn)n∈N lead to the
additional convergence pn −→ p ∈ ∂B1 (n−→ ∞). Finally,

ζ (t,x, p) ∩ Graph ϑ
F̃
(·,K) = /0.

In particular,
◦
Bρ (x+ρ p) ∩ ϑ

F̃
(t,K) = /0 implies x ∈ ∂ ϑ

F̃
(t,K).

�
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Proof (of Proposition A.30). ϑ
F̃
(s,K0) ⊂ RN \ϑ−F̃(t−·,·)(t− s, RN\Kt) is an

easy indirect consequence of definitions since it is equivalent to

ϑ
F̃
(s,K0) ∩ ϑ−F̃(t−·,·)(t− s, RN\Kt) = /0.

For proving the inverse inclusion indirectly at time s = 0 (w.l.o.g.), we assume
the existence of t ∈ [0,T [ and y0 ∈ RN with y0 /∈ K0 ∪ ϑ−F̃(t−·,·)(t, RN\Kt).
As an immediate consequence of y0 /∈ ϑ−F̃(t−·,·)(t, RN \Kt), the reachable set

ϑ
F̃
(t,y0) is contained in Kt

Def.= ϑ
F̃
(t,K0). Now set

τ := inf
{

s ∈ [0, t]
∣∣ ϑ

F̃
(s,y0) ⊂ ϑ

F̃
(s,K0)

}
.

In particular, τ > 0 due to y0 /∈ K0.
and ϑ

F̃
(τ,y0) ⊂ ϑ

F̃
(τ,K0) due to the continuity of the reachable sets.

There are sequences τn ↗ τ and (xn(·))n∈N in W 1,1([0,T ],RN) satisfying

x′n(·) ∈ F(xn(·)) a.e., xn(0) = y0, xn(τn) /∈ ϑ
F̃
(τn,K0).

Standard hypothesis (H̃ ) and the compactness of solutions (as formulated in [139,
Theorem 2.5.3]) lead to subsequences (again denoted by) (τn)n∈N, (xn(·))n∈N and
a solution x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F(x(·)) (almost everywhere) with

xn(·)−→ x(·) uniformly in [0,T ], x′n(·)−⇀ x′(·) in L1([0,T ], RN).

In particular, (τ,x(τ)) has to be in the boundary of Graph ϑ
F̃
(·,K0). Lemma A.32

and 0 < τ ≤ t < T ensure xτ := x(τ) ∈ ∂Kτ
Def.= ∂ ϑ

F̃
(τ,K0).

Moreover, Kτ
Def.= ϑ

F̃
(τ,K0) is supposed to have positive reach. Its limiting and

proximal normal cone coincide at each boundary point [36, Corollary 4.15].

Thus, /0 �= Nϑ
F̃
(τ,K0)(xτ) = NP

ϑ
F̃
(τ,K0)(xτ) ⊂ NP

ϑ
F̃
(τ,y0)(xτ).

For every unit normal vector ν ∈ Nϑ
F̃
(τ,K0)(xτ), Proposition A.26 provides a solu-

tion z(·) ∈W 1,1([0,τ],RN) and its adjoint arc q(·) ∈W 1,1([0,τ],RN) satisfying the
corresponding Hamiltonian system and z(0) ∈ K0, z(τ) = xτ , q(τ) = ν .
The same Cauchy problem is solved by x(·) and its adjoint arc as well. Stan-
dard hypothesis (H̃ ) implies the uniqueness of solutions and, its consequence
z(0) = x(0) = y0 /∈ K0 leads to a contradiction. �

A.5.5 How to make points evolve into convex sets of positive erosion

Our aim consists in sufficient assumptions for the interior ball condition on ϑF(t,K)
— without any regularity assumptions about the initial set K ∈K (RN). In particu-
lar, we focus on K consisting just of a single point. For this purpose, we are willing
to tolerate stronger assumptions about the set–valued map F̃ : [0, t]×RN � RN

than standard hypothesis (H̃ ) (specified in Definition A.27 on page 367).
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Definition 33. For any ρ > 0, a set-valued map F̃ : [0,T ]×RN�RN satisfies
the so-called standard hypothesis (H̃ ρ

◦ ) if it has the following properties:

1. F̃ is measurable and, all its values are nonempty convex compact subsets of
positive erosion of radius ρ ,

2. for every t ∈ [0,T ], H
F̃
(t, ·, ·) ∈ C2(RN × (RN \{0})),

3. for every R > 1, there exists λR(·) ∈ L1([0,T ]) such that the derivative of

H
F̃
(t, ·, ·) restricted to BR× (BR\

◦
B 1

R
) is λR(t) –Lipschitz continuous for

almost every t ∈ [0,T ],

4. there is k
F̃
∈ L1([0,T ]) such that for a.e. t ∈ [0,T ] and all x, p ∈RN (|p| ≥ 1),∥∥∂(x,p) HF̃

(t,x, p)
∥∥

L (RN×RN ,R) ≤ k
F̃
(t) · (1+ |x|+ |p|).

Remark 34. Standard hypothesis (H̃ ρ
◦ ) differs from its counterpart (H̃ ) in two

respects: The values of F̃ have uniform positive erosion (additionally) and, its
Hamiltonian H

F̃
(t, ·, ·) is even twice continuously differentiable in RN×(RN \{0}).

This second restriction has the advantage that we can apply the tools of matrix
Riccati equation (mentioned in subsequent Lemmas A.37 and A.38).

Proposition 35. In addition to standard hypothesis (H̃ ρ
◦ ), assume for the set-

valued map F̃ : [0,T ]×RN � RN that some λ (·) ∈ L1([0,T ]) satisfies

‖H
F̃
(t, ·, ·)‖C1,1(RN× ∂B1)

Def.= ‖H
F̃
(t, ·, ·)‖C1(RN× ∂B1) + Lip ∂H

F̃
(t, ·, ·)|RN× ∂B1

< λ (t)

at L 1-almost every time t ∈ [0,T ]. Choose K ∈K (RN) arbitrarily.

Then there exist σ > 0 and a time τ̂ ∈ ]0,T ] (depending only on ‖λ‖L1 ,ρ,K)
such that the reachable set ϑ

F̃
(t,x0) is convex and has positive erosion of radius σ t

for any t ∈ ]0, τ̂[, x0 ∈ K.

As a direct consequence, the reachable set ϑ
F̃
(t,K1) is the closed (σ t)-neighbour-

hood of a compact set for all t ∈ ]0, τ̂[ and each nonempty compact subset K1 ⊂ K.

The proof of this proposition uses matrix Riccati equations for Hamiltonian systems,
but these tools of subsequent Lemma A.37 consider initial values induced by a Lip-
schitz function ψ. First we specify how to exchange the two components (x(·), p(·))
(of a solution and its adjoint arc) for preserving the Hamiltonian structure of their
differential equations:

Lemma 36. Assume the Hamiltonian system for x(·), p(·) ∈W 1,1([0,T ],RN){
x′(t) = ∂

∂ p
H1(t, x(t), p(t))

p′(t) = − ∂
∂x

H1(t, x(t), p(t))
a.e. in [0,T ]

with sufficiently smooth H1 : [0,T ]×RN ×RN −→ R. Moreover set

y(t) := − p(t), q(t) := x(t), H2(t, ξ , ζ ) := H1(t, ζ ,−ξ ).
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Then the absolutely continuous functions (y(·),q(·)) satisfy the Hamiltonian system{
y′(t) = ∂

∂q
H2(t, y(t), q(t))

q′(t) = − ∂
∂y

H2(t, y(t), q(t))
a.e. in [0,T ]

�

Lemma 37.
In addition to the assumptions (2.)–(4.) of Lemma A.29 (on page 367), suppose for

ψ : RN −→ RN , H : [0,T ]×RN ×RN −→ R and the Hamiltonian system{
y′(t) = ∂

∂q
H(t, y(t), q(t)), y(0) = y0

q′(t) = − ∂
∂y

H(t, y(t), q(t)), q(0) = ψ(y0)
(∗)

1’. H(t, ·, ·) is twice continuously differentiable for every t ∈ [0,T ].

Then for every initial set K ∈K (RN), the following statements are equivalent:

(i) For all t ∈ [0,T ], M �→
t (K) :=

{
(y(t), q(t))

∣∣ (y(·), q(·)) solves (∗), y0 ∈ K
}

is the graph of a locally Lipschitz continuous function,

(ii) For any solution (y(·),q(·)) : [0,T ] −→ RN×RN to initial value problem (∗)
and each cluster point Q0 ∈ Limsupz→y0

{∇ψ(z)} ⊂ RN×N , the following

matrix Riccati equation has a solution Q(·) on [0,T ]⎧⎪⎨⎪⎩
∂t Q + ∂ 2 H

∂ p ∂x
(t, y(t), q(t)) Q + Q ∂ 2 H

∂x ∂ p
(t, y(t), q(t))

+ Q ∂ 2 H
∂ p2 (t, y(t), q(t)) Q + ∂ 2 H

∂x2 (t, y(t), q(t)) = 0,

Q(0) = Q0.

If one of these equivalent properties is satisfied and if ψ is (continuously) differen-

tiable, then M �→
t (K) is even the graph of a (continuously) differentiable function.

Proof is given in [63, Theorem 5.3], for the same Hamiltonian system but with
y(T ) = yT , q(T ) = qT given. Hence, this lemma is a direct consequence consider-
ing −H(T −· , · , ·) and (y(T − ·), q(T − ·)). �

For preventing singularities of Q(·), the following comparison principle provides a
bridge to a scalar Riccati equation.

Lemma 38 (Comparison theorem for the matrix Riccati equation, [125, Th.2]).
Let A j,B j,Cj : [0,T [−→ RN×N ( j = 0,1,2) be bounded continuous matrix–valued

functions such that each Mj(t) :=
(

A j(t)
B j(t)T

B j(t)
Cj(t)

)
is symmetric.

Assume that U0, U2 : [0,T [−→ RN×N are solutions to the matrix Riccati equation
d
dt

Uj = A j + B j Uj + Uj BT
j + Uj Cj Uj

with M2(·)≥M0(·) (i.e. M2(t)−M0(t) is positive semi–definite for every t).

For symmetric U1(0)∈RN×N with U2(0)≥U1(0)≥U0(0), M2(·)≥M1(·)≥M0(·),
given, there exists a solution U1 : [0,T [−→ RN×N to the Riccati equation with

matrix M1(·). Moreover, U2(t) ≥ U1(t) ≥ U0(t) for all t ∈ [0,T [. �
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Proof (of Proposition A.35).

The integrable bound of t �→ ‖H
F̃
(t, ·, ·)‖C1,1(RN× ∂B1) and Gronwall’s Lemma lead

to a radius R = R(‖λ‖L1 ,K) > 1 and a time T̂ = T̂ (‖λ‖L1 ,K) ∈ ]0,T ] such that

1. ϑ
F̃
(t,K) ⊂ BR for all t ∈ [0,T ],

2. for every solution x(·) of x′(·) ∈ F̃(·,x(·)) starting in K and each adjoint p(·)
with 1

2 ≤ |p(0)| ≤ 2 fulfills 1
R

< |p(·)|< R, |p(·)− p(0)|< 1
4R

on [0, T̂ ].

A smooth cut–off function provides a map H1 : [0, T̂ ]×RN ×RN −→ R again that
fulfills the assumptions of Lemma A.37 and

H1 = H
F̃

in [0, T̂ ]×RN × (RN\B 1
2R

).

Using the transformation of the preceding Lemma A.36, the auxiliary function

H2 : [0,T ]×RN ×RN −→ R, (t,ξ ,ζ ) �−→ H1(t, ζ ,−ξ )

is still holding the conditions of Lemma A.37. As a consequence, we obtain for any
initial point x0 ∈K and time τ ∈ ]0, T̂ ] that the following statements are equivalent :

(i) For all t ∈ [0,τ], the set M1
t of all points (p(t), x(t)) with solutions

(x(·), p(·)) ∈W 1,1([0, t],RN ×RN) of{
x′(s) = ∂

∂ p
H1(s, x(s), p(s)), x(0) = x0

p′(s) = − ∂
∂x

H1(s, x(s), p(s)), p(0) ∈ B2 \
◦
B 1

2

is the graph of a continuously differentiable function ft .

(ii) For all t ∈ [0,τ], the set M2
t of all points (y(t), q(t)) with solutions

(y(·),q(·)) ∈W 1,1([0, t],RN ×RN) of⎧⎨⎩ y′(s) = ∂
∂q

H2(s, y(s), q(s)), y(0) ∈ B2 \
◦
B 1

2

q′(s) = − ∂
∂y

H2(s, y(s), q(s)), q(0) = x0

is the graph of a C1 function gt (and gt(ξ ) = ft(−ξ )) .

(iii) For any solution (y,q) : [0, t]−→ RN×RN to the initial value problem (ii)
(t ≤ τ), there is a solution Q : [0, t]−→ RN×N to the Riccati equation⎧⎪⎪⎨⎪⎪⎩

Q′ + ∂ 2 H2
∂q ∂y

(s, y(s), q(s)) Q + Q
∂ 2 H2
∂y ∂q

(s, y(s), q(s))

+ Q
∂ 2 H2
∂q2 (t, y(s), q(s)) Q + ∂ 2 H2

∂y2 (s, y(s), q(s)) = 0,

Q(0) = 0.
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(iv) For any solution (x, p) : [0, t]−→ RN×RN to the initial value problem (i)
(t ≤ τ), there is a solution Q : [0, t]−→ RN×N to the Riccati equation⎧⎪⎪⎨⎪⎪⎩

Q′ − ∂ 2 H1
∂x ∂ p

(s, x(s), p(s)) Q − Q
∂ 2 H1
∂ p ∂x

(s, x(s), p(s))

+ Q
∂ 2 H1
∂x2 (s, x(s), p(s)) Q + ∂ 2 H1

∂ p2 (s, x(s), p(s)) = 0,

Q(0) = 0.

Now we give a criterion for the choice of τ̂ ∈ ]0, T̂ ]. Setting

μ(t) := sup
|x| ≤ R

1
R ≤ |p| ≤ R

∥∥∥∥∥
(

∂ 2

∂ p2 H
F̃
(t,x, p) − ∂ 2

∂x ∂ p
H

F̃
(t,x, p)

− ∂ 2

∂ p ∂x
H

F̃
(t,x, p) ∂ 2

∂x2 H
F̃
(t,x, p)

)∥∥∥∥∥
L (R2N ,R2N)

the comparison theorem for matrix Riccati equations (Lemma A.38 extended to
integrable coefficients via Lusin’s Theorem and approximation, see also [63, § 5.2])
guarantees existence and uniqueness of such an solution Q∈W 1,1([0, t], RN×N) for
every t < min{T, π

2‖μ‖
L1
}. Indeed, for a(·) =±μ(·) ∈ L1([0,T ]), the scalar Riccati

equation
d
dt

u(t) = a(t)+a(t) u(t)2, u(0) = 0

has the solution u(t) = tan
(∫ t

0
a(s) ds

)
on [0, π

2‖a‖
L1

[. Furthermore we obtain

the upper bound ‖Q(t)‖ ≤ tan ‖μ|[0,t] ‖L1 .

All values of F̃ are compact convex sets with positive erosion of radius ρ due to
standard hypothesis (H̃ ρ

◦ ). It implies a constant σ̂ = σ̂(ρ,K,R) > 0 with

ξ · ∂ 2

∂ p2 H
F̃
(t,x, p) ξ ≥ 7 σ̂

∣∣∣ξ − ξ · p

|p|2 p

∣∣∣2
for all t ∈ [0,T ], |x| ≤ R, 1

R
≤ |p| ≤ R, ξ . Using the matrix abbreviation

D(t,x, p) := − ∂ 2 H
F̃

∂x ∂ p
(t,x, p) Q(t) − Q(t)

∂ 2 H
F̃

∂ p ∂x
(t,x, p)

+ Q(t)
∂ 2 H

F̃

∂x2 (t,x, p) Q(t),

choose τ̂ = τ̂(‖λ‖L1 ,ρ,K) > 0 small enough such that{
τ̂ < min{ T̂ , π

2‖μ‖
L1

, 1
3 ‖λ‖

L1
},

‖D(t,x, p)‖ ≤ σ̂ for every t ∈ [0, τ̂], |x| ≤ R, 1
R
≤ |p| ≤ R.

As a next step, we conclude that the solution Q(t) of (iv) (restricted to [0, τ̂])
satisfies Q(t)≤− σ̂ t ·Id in the (N−1)–dimensional subspace of RN perpendicular
to p(t). Indeed, let (x(·), p(·)) ∈W 1,1([0, τ̂], RN×RN) be a solution to the Hamil-
tonian system (i) and choose an arbitrary unit vector ξ ∈RN with |ξ · p(0)|< 1

4R
.

Then the auxiliary function

ϕ : [0, τ̂] −→ RN , t �−→ ξ ·Q(t) ξ + σ̂ t

∣∣∣ξ − ξ · p(t)
|p(t)|2 p(t)

∣∣∣2
satisfies ϕ(0) = 0 and is absolutely continuous with ϕ(·)≤ 0. Indeed,
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ϕ ′(t) = ξ ·Q′(t) ξ+σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣2−2 σ̂ t

(
ξ − ξ · p(t)

|p(t)|2 p(t)
)
· d

dt

(
ξ · p(t)
|p(t)|2 p(t)

)
= ξ ·Q′(t) ξ+σ̂

∣∣∣ξ − ξ · p(t)
|p(t)|2 p(t)

∣∣∣2−2 σ̂ t
(

ξ − ξ · p(t)
|p(t)|2 p(t)

)
· ξ · p(t)

|p(t)|2 p′(t)

because ξ − ξ · p(t)
|p(t)|2 p(t) is perpendicular to p(t).

Now |p(t)− p(0)| < 1
4R

, 1
R
≤ |p(t)| ≤ R and |ξ · p(0)| < 1

4R
imply ξ · p(t)

|p(t)| < 1
2

and 1
2 |ξ |2 = 1− 1

2 ≤
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣ ≤ 1+ 1

2 . Thus,

ϕ ′(t) ≤ (−7+2+1) σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣2+ 2 σ̂ t

∣∣∣ξ − ξ · p(t)
|p(t)|2 p(t)

∣∣∣ |ξ | |p(t)|
|p(t)|2 |p′(t)|

≤ −4 σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣2+ 2 σ̂ t

∣∣∣ξ − ξ · p(t)
|p(t)|2 p(t)

∣∣∣ λ (t)

≤ 2 σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣ ·(−2

∣∣∣ξ − ξ · p(t)
|p(t)|2 p(t)

∣∣∣ + λ (t) t
)

≤ 2 σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣ ·(−2

(
1− ξ · p(t)

|p(t)|
)

+ λ (t) t
)

≤ 2 σ̂
∣∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣ ·(−2

(
1− 1

2

)
+ λ (t) t

)
≤ σ̂

( − 1 + 3 λ (t) t
)
.

Now we obtain ϕ(t)≤ 0 for all t ∈ [0, τ̂] and as a consequence, Q(t) ≤ − σ̂ t ·Id
is fulfilled in the subspace of RN perpendicular to p(t).

Finally we need the geometric interpretation for concluding convexity and posi-
tive erosion of ϑ

F̃
(t,x0) (of radius σ̂ t) for each t ∈ ]0, τ̂[ and x0 ∈ K.

As mentioned before, the existence of the solution Q(·) on [0, τ̂[ implies for all
t ∈ [0, τ̂[ that the set M1

t is the graph of a C1 function ft . Moreover Proposi-
tion A.26 (on page 366) guarantees

Graph Nϑ
F̃
(t,x0) ⊂ {

(x(t), λ p(t))
∣∣(x(·), p(·)) solves (i), λ ≥ 0

}
Def.=

⋃
λ ≥0

Graph (λ f−1
t ).

Now we obtain at every time t ∈ ]0, τ̂[ that each p∈RN \{0} belongs to the limiting
normal cone of a unique boundary point z ∈ ∂ ϑ

F̃
(t,x0) and, z = z(p) is continu-

ously differentiable. In particular, the projection on ϑ
F̃
(t,x0) is a single–valued

function in RN and thus, ϑ
F̃
(t,x0) is convex for all t ∈ ]0, τ̂[ (see e.g. [36, Corol-

lary 4.12]). Hence, it is sufficient to consider the limiting normal cones of ϑ
F̃
(t,x0)

locally at every boundary point.

Well–known properties of variational equations (see e.g. [63]) and the uniqueness of
solutions to the matrix Riccati equation (iv) imply that −Q(s) is the derivative of the
C1 function fs for 0 < s ≤ t < τ̂. Indeed, for each solution (x(·), p(·)) to the
Hamiltonian system (i), set (y(·),q(·)) := (− p(·), x(·)) again and let (U(·),V (·)) :
[0, t]−→ RN×N ×RN×N denote the solution to the linearized system
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U ′(s) = ∂ 2

∂y ∂q
H2(s, y(s), q(s)) U(s) + ∂ 2

∂q2 H2(s, y(s), q(s)) V (s),

V ′(s) = − ∂ 2

∂y2 H2(s, y(s), q(s)) U(s) − ∂ 2

∂q ∂y
H2(s, y(s), q(s)) V (s),

U(0) = IdRN×N , V (0) = 0.

Then for any s∈ ]0, t] and initial direction u0 ∈RN \{0}, (U(s)u0, V (s)u0) belongs
to the contingent cone of M2

s ⊂ RN ×RN at (y(s),q(s)) (due to the variational
equations, see e.g. [63]).
Since M2

s is the graph of a continuously differentiable function gs, we conclude that
firstly, this cone TC

M2
s
(y(s),q(s)) is a N–dimensional subspace of RN×RN and

secondly, |V (s)u0| ≤ const ·λ (s) · |U(s)u0| (due to Remark 25 on page 366).
The latter property and the uniqueness of the linearized system ensure U(s)u0 �= 0
for all u0 �= 0 and thus, U(s) is invertible. Comparing the dimensions leads to

TC
M2

s
(y(s),q(s)) = (U(s), V (s)) RN

and V (s) U(s)−1 is the derivative of gs at y(s).
Hence, −V (s) U(s)−1 is the derivative of fs = gs(−·) at p(s) =−y(s).
Moreover it is easy to check that V (s) U(s)−1 satisfies the matrix Riccati equa-
tion (iii) and thus, its uniqueness implies V (s) U(s)−1 = Q(s) for 0 < s≤ t < τ̂.

Thus for every time t ∈ ]0, τ̂[, the derivative of ft at p(t) is bounded by σ̂ t

from below in a (N−1)–dimensional subspace of RN .
Since ϑ

F̃
(t,x0) is convex, it implies that ϑ

F̃
(t,x0) has positive erosion of radius

increasing (at least) linearly in time. �

A.5.6 Reachable sets of balls and their complements

In this section, we investigate the proximal radius of boundary points while sets are
evolving along differential inclusions. Compact balls and their complements exem-
plify the key features for short times (as stated in subsequent Proposition A.40).
They lead to the main results about proximal radii in both forward and backward
time direction as a corollary.
The proofs are based on the Hamiltonian system and its regularity — in the same
way as in § A.5.5.

Definition 39. For Λ > 0 fixed, the set LIP(C2)
Λ (RN ,RN) consists of all set–

valued maps F : RN � RN satisfying

1. F : RN � RN has nonempty compact convex values,
2. HF(x, p) := sup

v∈F(x)
p · v is twice continuously differentiable in RN× (RN\{0}),

3. ‖HF‖C2(RN× ∂B1) < Λ .
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Proposition 40. Let F be any set–valued map of LIP(C2)
Λ (RN ,RN) and

B := Br(x0)⊂ RN a compact ball of positive radius r.
Then there exists a time τ = τ(r,Λ) > 0 such that for all times t ∈ [0,τ(r,Λ)[ ,
1.) ϑF(t,B) is convex and has radius of curvature ≥ r−9Λ (1+ r)2 t,

2.) ϑF(t, RN \B) is concave and has radius of curvature ≥ r−9Λ (1+ r)2 t.

Restricting ourselves to 0 < r ≤ 2, the time τ(r,Λ) > 0 can be chosen as an in-
creasing function of r. The claim of Proposition A.40 does not include, however,
that r−9Λ (1+ r)2 t ≥ 0 for all t ∈ [0,τ(r,Λ)[ (because then it is not immediately
clear how to choose τ(r,Λ) > 0 as increasing with respect to all r ∈ ]0,2]).

As an equivalent formulation of statement (1.), the convex set ϑF(t,B) has posi-

tive erosion of radius ρ(t) ≥ r− 9 Λ (1 + r)2 t, i.e. there is some Kt ⊂ RN with
ϑF(t,B) = Bρ(t)(Kt).

Strictly speaking, statement (2.) is of more interest here: ϑF(t, RN \B) ⊂ RN has
positive reach of radius ρ(t)≥ r−9Λ (1+ r)2 t (in the sense of Federer [62]), i.e.,
for each point y∈ ∂ ϑF(t, RN \B), there exists an exterior ball Bρ(t)(y0)⊂RN with

y ∈ ∂ Bρ(t)(y0) and ϑF(t, RN \B)∩ ◦
Bρ(t)(y0) = /0.

Roughly speaking, the proofs of these two statements just differ in a sign and thus,
both of them are mentioned here.

Applying Proposition A.40 to adequate proximal balls, the inclusion principle of
reachable sets and Proposition A.26 (on page 366) have the immediate consequence:

Corollary 41. For every map F ∈ LIP(C2)
Λ (RN ,RN) and radius r0 ∈ ]0,2], there

exists some τ = τ(r0,Λ) > 0 such that for any K ∈ K (RN), r ∈ [r0,2] and

t ∈ [0,τ[ ,

1. each x1 ∈ ∂ϑF(t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius r are linked to

some x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius ≥ r−81Λ t

by a solution to x′(·) ∈ F(x(·)) and its adjoint arc, respectively.

2. each x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius r are linked to

some x1 ∈ ∂ϑF(t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius ≥ r−81Λ t

by a solution to x′(·) ∈ F(x(·)) and its adjoint arc, respectively. �

For describing the time–dependent limiting normals, we use adjoint arcs and ben-
efit from the Hamiltonian system they are satisfying together with the solutions (as
formulated in preceding Proposition A.26 on page 366).
In short, the graph of normal cones at time t, Graph NϑF (t,K)(·)|∂ ϑF (t,K), can be
traced back to the beginning by means of the Hamiltonian system with HF .
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As in § A.5.5, we take the next order into consideration and, the matrix Ric-
cati equation provides an analytical access to geometric properties like curvature.
In particular, Lemma A.37 (on page 374) motivates the assumption that HF is twice

continuously differentiable in RN×(RN \{0})) for all maps F ∈ LIP(C2)
Λ (RN ,RN).

For preventing singularities of the matrix solution Q(·) to the Riccati equation, the
comparison principle in Lemma A.38 (on page 374) provides a bridge to solutions
to a scalar Riccati equation again.

Proof (of Proposition A.40). Similarly to Proposition A.35 (on page 373), state-
ment (1.) is based on applying Lemma A.37 (on page 374) to the boundary K :=
∂ Br(0) and its exterior unit normals, i.e. ψ(x) := x

r
, after assuming B = Br(0)

without loss of generality. Obviously, ψ can be extended to ψ ∈C1(RN ,RN).
(Statement (2.) of Proposition 40 is shown in the same way – just with inverse signs,
i.e. ψ̂(x) :=− x

r
instead. Hence, we do not formulate this part in detail.)

For every point y0 ∈ ∂ Br, there exist a solution y(·) ∈ C1([0,∞[,RN) and its
adjoint q(·) ∈C1([0,∞[,RN) satisfying⎧⎨⎩ y′(t) = ∂

∂q
HF(y(t), q(t)) ∈ F(y(t)), y(0) = y0,

q′(t) = − ∂
∂y

HF(y(t), q(t)), q(0) = ψ(y0)
(∗)

and, F∈LIP(C2)
Λ (RN ,RN) implies the a priori bounds

|y(t)− y0| ≤ Λ t,
e−Λ t ≤ |q(t)| ≤ eΛ t .

After restricting to the finite time interval Ir = [0, tr[ (specified explicitly later),
a simple cut-off function provides a twice continuously differentiable extension
H : RN ×RN −→ R of HF |RN×(RN\B◦exp(−Λ tr)(0)) and finally, Lemma A.37 can be

applied to ∂Br, ψ and HF .

Furthermore HF(x, p) Def.= supv∈F(x) p · v is positively homogeneous with respect to

p and thus, the second derivatives of HF are bounded by 9Λ R2 on RN× (BR\
◦
B 1

R
)

(according to Lemma 4.32 on page 279). Together with the preceding a priori
bounds, we obtain ∥∥D2 HF(y(t),q(t))

∥∥
L (R2N ,R2N) ≤ 9Λ e2Λ t .

Let Q(·) denote the solution to the matrix Riccati equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t Q + ∂ 2 HF

∂ p ∂x
(y(t), q(t)) Q + Q ∂ 2 HF

∂x ∂ p
(y(t), q(t))

+ Q ∂ 2 HF

∂ p2 (y(t), q(t)) Q + ∂ 2 HF

∂x2 (y(t), q(t)) = 0,

Q(0) = ∇ψ(y0) = 1
r
· IdRN .
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Due to the comparison principle in Lemma A.38 (on page 374), Q(·) exists (at least)
as long as the two scalar Riccati equations

∂t u± = ±9Λ e2Λ t ± 9Λ e2Λ t u2±, u±(0) = 1
r

have finite solutions and within this period, they fulfill

u−(t) · IdRN ≤ Q(t) ≤ u+(t) · IdRN .

In fact, we get the explicit solutions in Ir :=
[

0, 1
2Λ · log

(
1 + π

9 − 2
9 · arctan 1

r

)[
,

namely u±(t) = tan
(± 9

2 (e2Λ t −1) + arctan 1
r

)
,

Hence, Q(t) is positive definite with eigenvalues ≥ u−(t) at every time t of the
(maybe smaller) interval I′r := Ir ∩ [0, 1

2Λ · log
(
1 + 2

9 · arctan 1
r

)[
.

Now we focus on the geometric interpretation of Q(·).
Due to Lemma A.37 (on page 374),

M �→
t (∂ Br) :=

{
(y(t), q(t))

∣∣ (y(·), q(·)) solves system (∗), |y0|= r
}

is graph of a continuously differentiable function and, Q(t) is related to its derivative
at y(t) as we clarified in the proof of Proposition A.35 (on page 375 ff.). Further-
more the Hamilton condition of Proposition A.26 (on page 366) ensures

Graph NϑF (t,Br)(·) ⊂
{

(y(t), λ q(t))
∣∣∣(y(·), q(·)) solves (∗), |y0|= r, λ ≥ 0

}
and thus, the graph property of M �→

t (∂ Br) implies that each q(t) is normal vector
to the smooth reachable set ϑF(t,Br) at y(t).
As q(t) �= 0 might not have norm 1, the eigenvalues of Q(t) are not always iden-
tical to the principal curvatures (κ j) j=1...N of ϑF(t,Br) at y(t), but they provide
bounds:

e−Λ t · u−(t) ≤ κ j ≤ eΛ t · u+(t)

due to e−Λ t ≤ |q(t)| ≤ eΛ t . Thus, ϑF(t,Br) is convex for all times t ∈ I′r
and, the local properties of principal curvatures have the nonlocal consequence that
ϑF(t,Br)⊂ RN has positive erosion of radius

ρ(t) ≥ 1
eΛ t ·u+(t) ≥ r−9Λ (1+ r)2 t for all t ∈ I′r.

Indeed, the linear estimate at the end is shown by means of the auxiliary function
t �−→ 1

eΛ t ·u+(t) − r +9Λ (1+ r)2 t

that is 0 at t = 0, has positive derivative at t = 0 and is convex (due to nonnegative
second derivative in I′r).

The time τ(r,Λ) > 0 is chosen as minimum of 1
2Λ · log

(
1 + π

9 − 2
9 · arctan 1

r

)
,

1
2Λ · log

(
1 + 2

9 · arctan 1
r

)
. The linear estimate does not have to be positive in

[0,τ(r,Λ)[ though. �
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A.5.7 The (uniform) tusk condition for graphs of reachable sets

The so-called exterior tusk condition is an essential tool for verifying the boundary
regularity of solutions to parabolic differential equations of second order. Indeed, its
role is comparable to the exterior cone condition for elliptic differential equations of
second order. Effros and Kazdan investigated it in connection with the heat equation
in [61] and, Lieberman extended it to more general parabolic equations in [89].

Definition 42 ([88, § 3], [89]). A nonempty subset M ⊂ R×RN is called tusk in
(t0,x0) ∈ R×RN if there exist constants R,τ > 0 and a point x1 ∈ RN with

M =
{
(t,x) ∈ R×RN

∣∣ t0− τ < t < t0,
∣∣(x− x0) − √

t0− t · x1
∣∣ < R

√
t0− t

}
.

A nonempty subset Ω ⊂ R×RN satisfies the so-called exterior tusk condition

if for every point (t,x)⊂ ∂Ω belonging to the parabolic boundary of Ω (i.e.

Ω ∩ {(s,y) ∈ R×RN
∣∣ |x− y| ≤ ε, t− ε < s < t

} �= /0 for any ε > 0),

there exists a tusk M ⊂ R×RN in (t,x) with M∩Ω = {(t,x)}.

A nonempty subset Ω̃ ⊂ R×RN is said to fulfill the uniform exterior tusk condi-

tion if it satisfies the exterior tusk conditions and if the scalar geometric parameters
R,τ > 0 of the tusks can be chosen independently of the respective points (t,x) of
the parabolic boundary of Ω̃ .

Now we focus on the exterior tusk condition for graphs of reachable sets.
In particular, its uniform version can be verified for parts of the complement if the
differential inclusion makes every point evolve into convex sets with positive erosion
of increasing radius for short times. Thus, Proposition A.35 (on page 373) provides
sufficient conditions on the nonautonomous differential inclusion — independently
of the compact initial set.

Proposition 43. For F̃ : [0,T ]×RN � RN suppose standard hypothesis (H̃ )
with uniform linear growth of ∂(x,p)HF̃

(t, ·, ·) (i.e. k
F̃
∈L∞([0,T ]) in Definition A.27)

and the following property:

For every set K̃ ∈ K ([0,T ]×RN), there exist τ̂ ∈ ]0,T ] and some nondecreasing

σ : [0, τ̂]−→ [0,∞[ such that the reachable set ϑ
F̃(t0+·, ·)(s,x0) ⊂ RN is convex and

has positive erosion of radius σ(s)> 0 for any s∈ ]0, τ̂], (t0,x0)∈ K̃ with t0 +s≤T .

Then for every initial set K0 ∈ K (RN) and any time parameter τmin ∈ ]0,T [,
the complement of the graph of [0,T ]�RN , t �→ ϑ

F̃
(t,K0) (as a subset of R×RN)

satisfies the uniform exterior tusk condition in all boundary points in ]τmin,T [×RN.
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Corollary 44. In addition to standard hypothesis (H̃ ρ
◦ ), assume for the map

F̃ : [0,T ]×RN � RN that some λ (·) ∈ L∞([0,T ]) satisfies

‖H
F̃
(t, ·, ·)‖C1,1(RN× ∂B1)

Def.= ‖H
F̃
(t, ·, ·)‖C1(RN× ∂B1) + Lip ∂H

F̃
(t, ·, ·)|RN× ∂B1

< λ (t)

at L 1-almost every time t ∈ [0,T ].

Then for every initial set K0 ∈ K (RN) and any time parameter τmin ∈ ]0,T [,
the complement of the graph of [0,T ]�RN , t �→ ϑ

F̃
(t,K0) (as a subset of R×RN)

satisfies the uniform exterior tusk condition in all boundary points in ]τmin,T [×RN.

�

For proving Proposition A.43, we conclude the exterior tusk condition from a similar
property about truncated cones (alias conical frustums). In particular, the possibility
of choosing geometric parameters uniformly does not depend on the shape of a tusk
or a conical frustum. The latter condition, however, is easier to verify for graphs of
reachable sets by means of boundary solutions and their adjoints (in the sense of
Proposition A.26 on page 366).

Lemma 45 (Conical frustum provides suitable tusk).
Let Ω ⊂R×R be nonempty. Assume (t0,x0) ∈ ∂Ω and x1 ∈RN , h,λ > 0 to satisfy

λ h < |x0− x1| and

Ω ∩ {(s,y)∈R×RN
∣∣t0−h≤ s≤ t0, |y−x1| ≤ |x0−x1|−λ (t0−s)

}
=
{
(t0,x0)

}
.

Then there exists a tusk in (t0,x0) whose closure has only (t0,x0) in common with Ω .

Furthermore the scalar geometric parameters of this tusk depend merely on h,λ .

Lemma 46 (Graphs of reachable sets have interior conical frustums).
Under the assumptions of Proposition A.43, every accumulation point (t0,x0) of

∂
(
Graph ϑ

F̃
(·,K0)

∣∣
[0,T ]

) ∩ (]0,T [×RN
)

with t0 > 0 has an open conical frustum{
(s,y) ∈ R×RN

∣∣ t0−h < s < t0, |y− x1|< |x0− x1|−λ (t0− s)
}

(with suitable parameters h,λ > 0 and x1 ∈ RN) whose closure has only (t0,x0) in

common with the closed complement of Graph ϑ
F̃
(·,K0)

∣∣
[0,T ] ⊂ R×RN.

If t0 > τmin with an arbitrarily fixed parameter τmin in addition, the parameters

h,λ > 0 can be chosen independently of (t0,x0), but just depending on K0, F̃ ,T,τmin.

Proof (of Lemma A.45). Consider the following tusk with R := |x0−x1|−λ h√
h

> 0

M :=
{
(s,y)∈R×RN

∣∣ t0−h < s < t0,
∣∣(y−x0) − √

t0− s · x1−x0√
h

∣∣ < R
√

t0− s
}
.

As a simple consequence of the triangle inequality in RN , M is contained in the given
conical frustum and thus, Ω ∩M = {(t0,x0)}. �
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Proof (of Lemma A.46). As an accumulation point, (t0,x0)∈ ]0,T ]×RN can be
approximated by a sequence of points in ∂

(
Graph ϑ

F̃
(·,K0)

∣∣
[0,T ]

) ∩ (]0,T [×RN
)
.

Applying preceding Proposition A.26 (on page 366) to each of these boundary
points, an appropriate subsequence reveals a solution x(·) ∈ W 1,1([0, t0],RN) and
its adjoint p(·) ∈W 1,1([0, t0],RN) satisfying{

x′(t) = ∂
∂ p

H
F̃
(t, x(t), p(t)) ∈ F̃(t, x(t)), x(t0) = x0,

p′(t) = − ∂
∂x

H
F̃
(t, x(t), p(t)), |p(t0)| = 1

and the additional properties for every s ∈ [0, t0[{
x(s) ∈ ∂ ϑ

F̃
(s,K0)

p(s) ∈ Nϑ
F̃
(s,K0)

(
x(s)
)∖{0}

due to regularity and uniqueness of the Hamiltonian initial value problem.

Choose any compact neighbourhood C̃ of the graph of ϑ
F̃
(·,K0) : [0,T ]�RN in

[0,T ]×RN . Due to the assumption of Proposition A.43, there exist τ̂ ∈ ]0,T ] and a
nondecreasing function σ : [0, τ̂]−→ [0,∞[ such that ϑ

F̃(t+·, ·)(s,y)⊂RN is convex

and has positive erosion of radius σ(s) for any s ∈ ]0, τ̂], (t,y) ∈ C̃ with t + s ≤ T .
(If some τmin > 0 with τmin ≤ t0 is fixed additionally, replace τ̂ by min{τ̂,τmin}> 0.)
Without loss of generality, we assume τ̂ < t0, (t0− τ̂, x(t0− τ̂)) ∈ C̃.

Set t1 := t0− τ̂ > 0 and t2 := t0− τ̂
2 ∈ ]t1, t0[.

At every time s ∈ [t2, t0[, the point x(s) belongs to the topological boundary of the
convex set ϑ

F̃(t1+·, ·)
(
s− t1, x(t1)

)
with positive erosion of radius ≥ σ( τ̂

2 ) =: ρτ̂ .
Furthermore the inclusion ϑ

F̃(t1+·, ·)
(
s− t1, x(t1)

) ⊂ ϑ
F̃
(s,K0) and the convexity

of the reachable set ϑ
F̃(t1+·, ·)

(
s− t1, x(t1)

)
imply

p(s) ∈ Nϑ
F̃
(s,K0)

(
x(s)
)∖{0} ⊂ NP

ϑ
F̃(t1+·, ·)(s−t1, x(t1))

(
x(s)
)
.

Now the aspects of (uniform) positive erosion and continuity ensure

Bρτ̂

(
x(s)−ρτ̂

p(s)
|p(s)|

) ⊂ ϑ
F̃(t1+·, ·)

(
s− t1, x(t1)

) ⊂ ϑ
F̃
(s,K0)

for every s ∈ [t2, t0]. Moreover, due to the uniform linear growth of ∂(x,p)HF̃
(t, ·, ·),

the set-valued map [t2, t0]� RN , s �→ Bρτ̂

(
x(s)−ρτ̂

p(s)
|p(s)|

)
is Lipschitz continuous

with convex values and, its Lipschitz constant Λ depends only on C̃, F̃ ,T, τ̂ .

Finally comparing graphs of Lipschitz set-valued maps implies for any γ > Λ
that the truncated cone

Cγ :=
{

(s,y) ∈ R1+N
∣∣∣ t0− ρτ̂

γ ≤ s < t0,
∣∣x0−ρτ̂

p(t0)
|p(t0)| − y

∣∣< ρτ̂ − γ · (t0− s)
}

is a subset of
⋃

s∈ [t2,t0]
({s}×Bρτ̂

(
x(s)−ρτ̂

p(s)
|p(s)|

)) ⊂ R×RN .

Obviously the modified truncated cone C2γ is contained in the interior of its coun-
terpart Cγ and thus, C2γ belongs to the interior of Graph ϑ

F̃
(·,K0)|[0,T ] ⊂ R×RN .

�
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A.6 Differential inclusions with one-sided Lipschitz continuous
maps

In [54], Donchev and Farkhi prove the existence of solutions to another type of
differential inclusions – with a stability estimate as in Filippov’s Theorem A.6 (on
page 355) included. Their essential aspect is to replace the classical Lipschitz condi-
tion with respect to space by a weakened form (called one-sided Lipschitz condition)
in combination with upper semicontinuity and convex values:

Definition 47 ([54, Definition 2.1]). A set-valued map F̃ : [0,T ]×RN � RN ,
(t,x) �→ F(t,x) is called one-sided Lipschitz continuous with respect to x if there is
a function L(·) ∈ L1([0,T ]) such that for every x,y ∈ RN , t ∈ [0,T ] and v ∈ F̃(t,x),
there exists an element w ∈ F̃(t,y) satisfying

〈x− y, v−w〉 ≤ L(t) |x− y|2.

Remark 48. 1. As Donchev has already pointed out in several of his papers,
F̃ : [0,T ]×RN�RN is one-sided Lipschitz continuous with respect to x if and only
if some L(·) ∈ L1([0,T ]) satisfies

H
F̃

(
x− y, F̃(t,x)

) − H
F̃

(
x− y, F̃(t,y)

) ≤ L(t) |x− y|2
for every x,y ∈ RN and t ∈ [0,T ].

2. Obviously, every Lipschitz continuous map is also one-sided Lipschitz con-
tinuous, but not vice versa in general. In particular, one-sided Lipschitz continuous
maps do not have to be upper or lower semicontinuous.

3. The function L(·) ∈ L1([0,T ]) is assumed to be real-valued, but we do not
restrict our considerations to L(·) ≥ 0. The special case of strictly negative L(·)
admits interesting conclusions about asymptotic features which usually do not have
counterparts of the (classically) Lipschitz continuous maps.

Theorem 49 (Filippov-like existence for one-sided Lipschitz maps [54, Th. 3.2]).
Let F̃ : [0,T ]×RN � RN , (t,x) �→ F̃(t,x) be a nonautonomous Marchaud map

(in the sense of Definition A.11 on page 359) being one-sided Lipschitz continuous

with respect to x. For y(·) ∈W 1,1([0,T ],RN) and g(·) ∈ L1([0,T ]) suppose

dist
(
y′(t), F̃(t, y(t))

) ≤ g(t)

at Lebesgue-almost every time t ∈ [0,T ].

Then for every initial point x0 ∈RN , there exists a solution x(·)∈W 1,1([0,T ],RN)
of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and for every t ∈ [0,T ]∣∣x(t)− y(t)

∣∣ ≤ |x0− y(0)| e
∫ t

0 L(r) dr +
∫ t

0
e
∫ t

s L(r)dr g(s) ds .
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Remark 50. The existence results of preceding Theorem A.49 and Filippov’s
Theorem A.6 differ from each other in an essential aspect:
Under the assumptions of Theorem A.49, not every point x0 ∈ RN and vector v0 ∈
F̃(0,x0) has to be related to a solution x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F̃(·,x(·))
satisfying x(0) = x0 and

lim
h↓0

1
h
· (x(h)− x(0)

)
= v0.

An example is given by the following map F̃ and the initial data x0 := 0∈R, v0 := 1
2

F̃ : [0,1]×R � R, (t,x) �→
⎧⎨⎩

−1 for x > 0
[−1,1] for x = 0

1 for x < 0

Proposition 51. As in Theorem A.49, let F̃ : [0,T ]×RN � RN , (t,x) �→ F̃(t,x)
be a nonautonomous Marchaud map (in the sense of Definition A.11 on page 359)

being one-sided Lipschitz continuous with respect to x.

In addition suppose F̃(·, ·) to be lower semicontinuous at each (t,x) ∈ {0}×RN .

Then for any x0 ∈ RN and v0 ∈ F̃(0,x0), there is a solution x(·) ∈W 1,1([0,T ],RN)
of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and

lim
h↓0

1
h
· (x(t)− x0

)
= v0.

Proof. Theorem A.49 applied to y(t) := x0 + t v0 provides a solution x(·) ∈
W 1,1([0,T ],RN) of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and∣∣x(h) − x0 − h v0

∣∣ ≤ ∫ h

0
e
∫ h

s L(r)dr dist
(
v0, F̃(s,x0 + s v0)

)
ds

≤ e
‖L‖

L1([0,T ])

∫ h

0
dist
(
v0, F̃(s,x0 + s v0)

)
ds .

In particular, assuming lower semicontinuity of F̃ implies

dist
(
v0, F̃(s,x0 + s v0)

)−→ 0 for s↘ 0

and thus, limsup
h↓0

1
h
· ∣∣x(h) − x0 − h v0

∣∣ ≤ 0. �
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A.7 Proximal normals of set sequences in RN

Comparing the proximal normals of a converging sequence (Kn)n∈N in (K (RN),dl)
with the normals of its limit K ∈K (RN), the following inclusion is not difficult to
prove by means of exterior balls and, it has already been quoted in Proposition 4.22
(on page 274)

Graph NP
K ⊂ Limsupn→∞ Graph NP

Kn

(see e.g. [38, Lemma 4.1]). Of course, the equality here is not fulfilled in general. A
key advantage of the subset NP

K,ρ (ρ > 0) specified equivalently in Definition 4.39
(on page 286) is that an inverse inclusion is satisfied.
The following proposition provides the inclusions in both directions and their
proofs.

Definition 52. Let C ⊂ RN be a nonempty closed set.
For any ρ > 0, the set NP

C,ρ(x) ⊂ RN consists of all proximal
normal vectors η ∈ NP

C (x) \ {0} with the proximal radius ≥ ρ
(and thus might be empty).
Furthermore �NP

C,ρ(x) := NP
C,ρ(x)∩B.

Proposition 53. Let (Kn)n∈N be a converging sequence in K (RN) and K its

limit. ΠKn , ΠK : RN � RN denote the projections on Kn, K (n ∈ N) respectively,

i.e., ΠK : RN � RN , x �→ {
y ∈ K

∣∣ |y− x| = dist(x,K)
} ⊂ RN .

Then,

(1.) Limsupn→∞ Graph �NP
Kn,ρ ⊂ Graph �NP

K,ρ for any ρ > 0,

(2.) Limsup y→x
n→∞

ΠKn(y) ⊂ ΠK(x) for any x ∈ RN ,

(3.) Graph �NP
K,ρ ⊂ Liminfn→∞ Graph �NP

Kn, r for any 0 < r < ρ.

Proof.

(1.) Choose any converging sequence
(
(xn j

, pn j
)
)

j∈N
with pn j

∈NP
Kn j

,ρ(xn j
)∩∂B

and set x := lim
j→∞

xn j
∈ K, p := lim

j→∞
pn j

∈ ∂B. According to Definition A.21

(on page 364), each Kn j
is contained in the complement of the open ball with center

xn j
+ρ pn j

and radius ρ,

Kn j
⊂ RN \ ◦

Bρ
(
xn j

+ρ pn j

)
.

As an indirect consequence, j −→ ∞ leads to

K ⊂ RN \ ◦
Bρ(x+ρ p) ,

i.e. p ∈ NP
K,ρ(x).
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(2.) Let r > 0 and n∈N be arbitrary. For y∈Br(x) given, choose any z∈ΠKn(y)
and ξ ∈ΠK(z). Then,

|ξ − z| ≤ dl(Kn,K)
and

|x−ξ | ≤ |x− y| + |y− z| + |z−ξ |
≤ |x− y| + dist(y,K) + dl(K,Kn) + |z−ξ |
≤ |x− y| + |y− x| + dist(x,K) + dl(K,Kn) + dl(Kn,K)
≤ 2 r + dist(x,K) + 2 dl(Kn,K).

Thus, ΠKn(y) ⊂ Bdl(Kn,K)

(
K ∩ B2 r + dist(x,K)+2 dl(Kn,K)(x)

)
for any y ∈ Br(x).

The set–valued map [0,∞[�RN , r �→ K∩Br(x) is upper semicontinuous (due
to [16, Corollary 1.4.10]) and in the closed interval [dist(x,K),∞[, it has nonempty
compact values. For every η > 0, there exists ρ = ρ(x,η) ∈ ]0,η [ such that

K ∩ Br′(x) ⊂ Bη
(
ΠK(x)

)
for all r′ ∈ [dist(x,K), dist(x,K)+2ρ

]
. Due to dl(Kn,K)−→ 0 (n−→ ∞), there

is an index m∈N with dl(Kn,K)≤ ρ
4 for all n≥m. Thus we obtain for every point

y ∈ Bρ/4(x) ∩ Br(x) and index n≥ m

ΠKn(y) ⊂ B ρ
4

(
K ∩ B2 ρ

4 +dist(x,K)+2 ρ
4
(x)
)

= B ρ
4

(
K ∩ Bdist(x,K)+ρ(x)

)
⊂ B ρ

4

(
Bη(ΠK(x))

) ⊂ B2 η
(
ΠK(x)

)
,

i.e. Limsup y→x
n→∞

ΠKn(y) ⊂ ΠK(x).

(3.) Choose any x ∈ ∂K and p ∈ NP
K,ρ(x) �= /0 with |p|= 1.

Then x is the unique projection of x + δ p on the set K for every δ ∈ ]0,ρ[.
Considering now a sequence (xn)n∈N with xn ∈ ΠKn(x + δ p) ⊂ Kn, the preced-
ing statement (2.) implies xn −→ x and, the definition of proximal normal ensures

pn :=
x+δ p − xn

|x+δ p − xn| ∈
�NP

Kn
(xn)

converging to p for n−→ ∞.
Finally the proximal radius of pn is ≥ |x+δ p − xn| ≥ δ −|x− xn|, and thus,

(x, p) ∈ Liminfn→∞ Graph �NP
Kn, r for every 0 < r < δ < ρ.

�
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A.8 Tools for set-valued maps

A.8.1 Measurable set-valued maps

In this section we summarize some useful results about set-valued maps in regard to
measurability. The monograph of Castaing and Valadier [30] is usually regarded as
a standard reference providing many of the well-known results. Here we quote the
corresponding theorems from the monograph of Aubin and Frankowska [16].

Definition 54 ([16, Definition 8.1.1]). Consider a measurable space (Ω ,A ),
a complete separable metric space E and a set-valued map F : Ω � E with closed
images.
F is called measurable if the inverse image of each open set is a measurable set,
i.e., for every open set O⊂ E,

F−1(O) Def.=
{

ω ∈Ω
∣∣ F(ω)∩O �= /0

} ∈ A .

Theorem 55 (Kuratowski and Ryll-Nardzewski [84], [16, Theorem 8.1.3]).
Let E be a complete separable metric space, (Ω ,A ) a measurable space, F : Ω�E

a measurable set-valued map with nonempty closed values.

Then there exists a measurable selection of F, i.e., a measurable single-valued func-

tion f : Ω −→ E satisfying f (ω) ∈ F(ω) for every ω ∈Ω .

Theorem 56 (Characterization Theorem [16, Theorem 8.1.4]). Let (Ω ,A ,μ)
be a complete σ -finite measure space, E a complete separable metric space and

F : Ω � E a set-valued map with nonempty closed values.

Then the following properties are equivalent:

(i) F is measurable.

(ii) The graph of F belongs to A ⊗B.

(iii) F−1(C) ∈A for every closed set C ⊂ E.

(iv) F−1(B) ∈A for every Borel set B⊂ E.

(v) For each element x∈E, the function dist(x,F(·)) : Ω −→ [0,∞[ is measurable.

(vi) There exists a sequence ( fn)n∈N of measurable selections of F such that

F(ω) =
⋃

n∈N

fn(ω) for every ω ∈Ω .

Corollary 57 (Upper and lower semicontinuous maps [16, Proposition 8.2.1]).
Consider a metric space Ω and a complete σ -finite measure space (Ω ,A ,μ) such

that A contains all open subsets of Ω . Let E be a complete separable metric space

and F : Ω � E a set-valued map with nonempty closed images.

If F is upper semicontinuous, then F is measurable.

If F is lower semicontinuous, then F is measurable.
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Proposition 58 (Closed union and intersection [16, Theorem 8.2.4]).
Let (Ω ,A ,μ) be a complete σ -finite measure space, E a complete separable metric

space and Fn : Ω � E (n ∈ N) set-valued maps with nonempty closed values.

Then the set-valued maps

Ω � E, ω �→
⋃

n∈N

Fn(ω)

Ω � E, ω �→
⋂

n∈N

Fn(ω)

are measurable.

Proposition 59 (Direct image [16, Theorem 8.2.8]).
Let (Ω ,A ,μ) be a complete σ -finite measure space, E1,E2 complete separable

metric spaces and F : Ω � E1 a measurable set-valued map with nonempty closed

values. Consider a Carathéodory set-valued map G : Ω ×E1� E2, i.e.,

for every x ∈ E1, the map G( · , x) : Ω � E2 is measurable and

for every ω ∈Ω , the map G(ω, ·) : E1� E2 is continuous.

Then the set-valued map

Ω � E2, ω �→ G(ω, F(ω))
is measurable.

Proposition 60 (Inverse image [16, Theorem 8.2.9]).
Consider a complete σ -finite measure space (Ω ,A ,μ), complete separable metric

spaces E1,E2 and a measurable set-valued map F : Ω � E1 with nonempty closed

values. Let g : Ω ×E1 −→ E2 be a single-valued Carathéodory function.

Then the set-valued map

Ω � E2, ω �→ {
x ∈ F(x)

∣∣ g(ω,x) ∈ G(ω)
}⊂ E1

is measurable.

Consequently, if g(ω,F(ω))∩G(ω) is nonempty for every ω ∈Ω , then there exists

a measurable selection f : Ω −→ E1 of F such that for every ω ∈ Ω , the element

g(ω, f (ω)) belongs to G(ω).

Proposition 61 (Marginal map [16, Theorem 8.2.11]).
Consider a complete σ -finite measure space (Ω ,A ,μ), a complete separable met-

ric space E, a measurable set-valued map F : Ω � E with nonempty closed values

and a real-valued Carathéodory function f : Ω ×E −→ R.

Then the so-called marginal function

Ω −→ R∪{−∞}, ω �−→ inf
x∈F(ω)

f (ω,x)

is measurable. Furthermore the so-called marginal map

Ω � E, ω �→
{

x ∈ F(x)
∣∣∣ f (ω,x) = inf

y∈F(ω)
f (ω,y)

}
⊂ E

is measurable.
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A.8.2 Parameterization of set-valued maps

Proposition 62 ([16, Theorem 9.7.2]).
Consider a metric space X and a set–valued map G : [a,b]×X � RN satisfying

1. G has nonempty compact convex values,

2. G(·,x) : [a,b]� RN is measurable for every x ∈ X ,
3. there exists k(·) ∈ L1([a,b]) such that for every t ∈ [a,b], the set–valued

map G(t, ·) : X � RN is k(t)–Lipschitz continuous.

Then there exists a single-valued function g : [a,b]×X×B1 −→RN (with the closed

unit ball B1 ⊂ RN) fulfilling for all t ∈ [a,b], x ∈ X , u,v ∈ B1 respectively

1. G(t,x) =
⋃

u∈B1
g(t,x,u),

2. g(·,x,u) : [a,b]−→ RN is measurable,

3. g(t, ·,u) : X −→ RN is c · k(t)–Lipschitz continuous

4. |g(t,x,u)−g(t,x,v)| ≤ c ‖G(t,x)‖∞ |u− v|
with a constant c > 0 independent of G.

A.9 Compactness of continuous functions between metric spaces

The essential compactness result about continuous functions between metric spaces
is the Arzelà–Ascoli Theorem. We use it in the following version of Green and
Valentine:

Theorem 63 (Arzelà–Ascoli in metric spaces [69]).
Let (E1,d1), (E2,d2) be precompact metric spaces, i.e. for any ε > 0, each set Ei

(i = 1,2) can be covered by finitely many ε-balls with respect to metric di. More-

over, suppose the sequence ( fn)n∈N of functions E1 −→ E2 to be uniformly equi-

continuous (i.e. with a common modulus of continuity in E1).

Then there exists a subsequence ( fn j
) j∈N being Cauchy sequence with respect to

uniform convergence. If (E2,d2) is complete in addition, then ( fn j
) j∈N converges

uniformly to a continuous function E1 −→ E2.

A.10 Bochner integrals and weak compactness in L1

The so-called Bochner integral extends the familiar concept of integration from real-
valued functions to Banach-valued functions on the basis of “simple” functions.
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Definition 64 ([50]). Let (Ω ,Σ ,μ) be a finite measure space and X a Banach
space. A function f : Ω −→ X is called simple if there exist x1,x2 . . .xn ∈ X and
E1,E2 . . .En ∈ Σ such that f = ∑n

j=1 x j χE j
with χE j

: Ω −→ {0,1} denoting the
characteristic function of E j ⊂Ω .
A function f : Ω −→ X is called μ–measurable if there exists a sequence ( fn)n∈N of
simple functions Ω −→ X with ‖ f − fn‖X −→ 0 μ–almost everywhere for n→ ∞.
A μ–measurable function f : Ω −→ X is called Bochner integrable if there exists a
sequence ( fn)n∈N of simple functions Ω −→ X such that

lim
n→∞

∫
Ω
‖ f − fn‖X dμ = 0.

Then, the Bochner integral of f over E ∈Σ is defined by
∫

E
f dμ := lim

n→∞

∫
E

fn dμ.

Let L1(μ,X) denote the Banach space of Bochner integrable functions Ω −→ X

equipped with its usual L1 norm.

In the nineties, Ülger proved that restricting the values of Bochner integrable
functions to a weakly compact subset of X implies the relative weak compactness
of these functions in L1(μ,X). For real-valued Lebesgue integrable functions, this
is closely related with Alaoglu’s Theorem and a compact embedding.

Proposition 65 ([138, Proposition 7]). Let (Ω ,Σ ,μ) be a probabilistic space, X

an arbitrary Banach space. For any weakly compact subset W ⊂ X , the set{
h ∈ L1(μ,X)

∣∣ h(ω) ∈W for μ–almost every ω ∈Ω
}

is relatively weakly compact.

An earlier version of this result is presented in [48] and, [49] considers weak com-
pactness of Bochner integrable functions with values in an arbitrary Banach space
under weaker assumptions (see also [19]). The next proposition of Ülger provides a
“weakly pointwise” characterization of weakly convergent sequences in L1(μ,X).

Proposition 66 ([138, Corollary 5]). Let (Ω ,Σ ,μ) be a probabilistic space and

X an arbitrary Banach space as in preceding Proposition A.65.

Set W :=
{

g ∈ L1(μ,X)
∣∣ |g(ω)| ≤ 1 for μ–almost every ω ∈Ω

}
.

A sequence
(
gn(·)

)
n∈N

in W ⊂ L1(μ,X) converges weakly to g ∈ L1(μ,X) if and

only if for any subsequence
(
gnk

(·))
k∈N

given, there exists a sequence
(
hk(·)

)
k∈N

with hk ∈ co
{

gnk
, gnk+1 . . .

}
such that for μ–almost every ω ∈Ω ,
hk(ω) −→ g(ω) (k −→ ∞) weakly in X .
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Bibliographical Notes

Chapter 1

This chapter reflects the theory of mutational equations as it was introduced by Jean-
Pierre Aubin in the 1990s [9, 11, 12]. It extends earlier results about integral funnel
equations – for describing set evolutions with feedback. Similar concepts have been
introduced by Russian mathematicians in the 1980s and 1990s. Among the more
popular examples for metric spaces are the so-called quasidifferential equations of
Panasyuk (see [114, 117] and references there). Further approaches to generalized
differential equations in metric spaces are suggested in [25, 83, 87, 111] later.
Both the structure and the proofs in Chapter 1 are adapted to the generalizations in
subsequent chapters so that the new aspects there are easier to identify.

§ 1.9.3 provides new results in comparison with Aubin’s monograph [9]: The link
between morphological primitives and reachable sets of nonautonomous differential
inclusions. The analytical tools are presented and partly explained in Appendix A.3.
Following a strategy close to the one of Frankowska, Plaskacz and Rzeżuchowski in
[65], the author has proved this connection in 2006 and reused these arguments
in [92, Corollary 3.14] and [93] later. He developed these proofs independently
from earlier results of Tolstonogov [137], which the author found while writing
this monograph.

The examples of morphological primitives in § 1.9.4 are motivated by several
questions of Robert Baier during our joint research stay at the Hausdorff Research
Institute for Mathematics (HIM) in Bonn in spring 2008.
§ 1.9.5 is mostly based on earlier results of Anne Gorre mostly quoted in Aubin’s

monograph [12]. Proposition 69 provides a partial answers to an open question that
Jean-Pierre Aubin posed the author in November 2007. The closely related conclu-
sions are drawn in Corollary 78.

§ 1.10 was developed during the stay at HIM in Bonn after the author had learned
more about one-sided Lipschitz maps in the survey lectures of Tzanko Donchev.
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Chapter 2

This chapter provides the first extensions of the mutational framework in compari-
son with Aubin’s monograph [9]. They are based on the key notion that the param-
eters of transitions are just locally uniform.
Continuity parameters with linear growth were introduced in the first version of
preprint [99] about transport equations for Radon measures in 2005. Later the linear
growth condition was weakened to locally uniform bounds as in this chapter. These
details were presented in the preprint [97] for the first time and then used in [72].
The results about existence with delay and under state constraints in § 2.3.5 and
§ 2.3.6 respectively have been developed here in this monograph.

The example in § 2.4 dealing with semilinear evolution equations in the muta-
tional framework has already been suggested in the author’s Ph.D. thesis [100].
The Cauchy problem of nonlinear transport equations for Radon measures on RN

was discussed in the preprint [97] with the same kind of transitions, but another
metric and restricted to positive Radon measures with compact support. Hence the
results of § 2.5 using the W 1,∞ dual metric and solutions in the mutational frame-
work are new.
The nonlinear structured population model in § 2.6 provides the main conclusions
of [72], which was jointly elaborated with Piotr Gwiazda (Warsaw) and Anna
Marciniak-Czochra (Heidelberg).
In § 2.7, morphological equations are modified in a very “natural” way as transitions
on K (RN) are now induced by reachable sets of differential inclusions with linear

growth. In particular, this opens the door to applying the mutational framework to
reachable sets of linear differential inclusions for the first time.

Chapter 3

It provides two new contributions of this monograph to mutational analysis:
1. Continuity conditions on distances make the triangle inequality dispensable,
2. continuity of transitions with respect to state and time are handled by separate

families of distances.

Currently the author is not aware of any other approach similar to quasidifferential

equations beyond metric spaces.

The results about stochastic differential equations by means of mutational analysis
are presented in § 3.5 for the first time. So are the conclusions about semilinear
evolution equations in § 3.7 and about parabolic differential equations in § 3.8 re-
spectively.
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During the Czech-German-French Conference on Optimization in Heidelberg
in September 2007 and a workshop at HIM Bonn in March 2008, José Alberto
Murillo Hernández (Cartagena, Spain) reported about the heat equation in a domain
governed by a morphological equation — similarly to § 3.8.5.
His conclusions were based on the results [90] of Lı́maco, Medeiros and Zuazua
and thus, the noncylindrical domain had to obey bi-Lipschitz transformations to a
reference domain. As a consequence, the morphological transitions were restricted
to bounded Lipschitz continuous vector fields (instead of the set-valued maps in
LIP(RN ,RN)).

In regard to § 3.6, nonlinear continuity equations with coefficients of bounded
variation were investigated as examples of mutational equations in preprint [99]
after attending the lectures of Prof. Ambrosio in a C.I.M.E. summer school in
June 2005.

Chapters 4 and 5

The author suggested the notion of distribution-like solutions in his Ph.D. thesis
[100], but still for tuples with non-symmetric distance functions which fulfill the
triangle inequality. The example in § 4.4 was also presented in [100]. The second
geometric example here in § 4.5 was introduced in [91] in 2008.

In regard to mutational inclusions, the existence results of § 5.1 have been developed
in connection with this monograph recently. § 5.2 about the viability theorem for
morphological inclusions was published in [92]. The corresponding approach to
control problems (here in § 5.3) has its origin in preprint [95] and was motivated by
conversations with Zvi Artstein at Weizmann Institute of Science in Rehovot (Israel)
in summer 2007.
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Ď(ϑ1,ϑ2), 298
D̂ j(ϑ ,τ; r), 145
D̂ j(ϑ̃ , τ̃; z̃, r), 251
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Adjacent cone, 56
Adjoint arc, 365
Approximative Cauchy barriers, 229

Barrier
approximative Cauchy ∼, 229
Cauchy ∼, 227

Bochner integrable, 392
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Bochner integral, 392
Bony maximum principle for parabolic

equations, 241
Bouligand’s cones to sets in RN

adjacent cone, 56
contingent cone, 27, 42, 54, 357
paratingent cone, 55

Boundary
Parabolic, 239, 382

Carathéodory function, 358, 390
Carathéodory set-valued map, 300, 390
Cauchy barrier, 227
Cauchy-Lipschitz Theorem in(

E, (d j) j, (e j) j, (�·� j) j

)
, 173

Cauchy-Lipschitz Theorem in(
Ẽ, (d̃ j) j, (ẽ j) j, (�·� j) j

)
, 184

Circatangent transition set, 326, 338
Clarke tangent cone, 326, 338
Compact

Euler ∼, 78
Nonequidistant Euler ∼, 165
Strongly-weakly transitionally Euler ∼, 267
Transitionally Euler ∼, 262
Weakly Euler ∼, 169

Complete, 173, 183
Condition

Exterior tusk ∼, 239, 382
Uniform exterior tusk ∼, 239, 382

Contingent cone, 27, 42, 54, 357
Contingent transition set, 27, 39
Continuity equation

Nonlinear ∼ for L N -abs.cont. measures,
193

Convergence Theorem
for systems in

(
E,(di)i∈I ,(�·�i)i∈I

)
, 83

for systems in
(
E,(di),(ei),(�·�i),(D̂i)

)
,

161
in
(
E,(di)i∈I ,(�·�i)i∈I

)
, 76

in
(
E,(di),(ei),(�·�i),(D̂i)

)
, 153

in
(
Ẽ,(d̃i),(ẽi),(�·�i),(D̂i)

)
, 179

in
(
Ẽ,D̃ ,(d̃i),(ẽi),(�·�i),(D̂i)

)
, 259, 269

in metric space, 36

Dilation
morphological, 49

Distance
Pompeiu–Hausdorff, 22, 44, 273

Dual metric
W 1,∞ ∼ on Radon measures, 98

Dubovitsky-Miliutin tangent cone, 40
Dubovitsky-Miliutin transition set, 39

Equi-continuous
Euler ∼, 156, 263
Nonequidistant Euler ∼, 165

Erosion
Set of positive ∼ of radius ρ , 276, 365

Euler compact, 78, 155
Nonequidistant ∼, 165
Strongly-weakly transitionally ∼, 267
Transitionally ∼, 262

Euler equi-continuous, 156, 263
Nonequidistant ∼, 165

Excess
Pompeiu–Hausdorff, 273

Exterior tusk condition, 239, 382

Family of approximative Cauchy barriers, 229
Filippov

-like Theorem about one-sided Lipschitz
differential inclusions, 385

Generalized Theorem of ∼, 355
Filippov continuous map, 356
Flow
∼ along vector field, 101
Lagrangian ∼, 194

Fundamental matrix, 52

Gronwall estimate, 351, 352, 354

Hamilton Condition, Extended, 365
Hamiltonian, 274, 364
Hypertangent cone, 326, 345
Hypertangent transition set, 326, 345

Identity transition, 150
Integral funnel equation, 359

Lagrangian flow, 194
Lipschitz continuous

Locally one-sided ∼, 134
One-sided, 134
one-sided, 63, 385

Locally one-sided Lipschitz continuous, 134

Marchaud map, 312
nonautonomous, 359

Marginal map, 390
Maximum principle for parabolic equations,

241
Measurable selection, 389
Measurable set-valued map, 389
Metric

W 1,∞ dual ∼ on Radon measures, 98
Morphological control problem

solution, 327
Morphological equation, 58

Cauchy-Lipschitz Theorem, 59
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Nagumo’s Theorem, 60
Peano’s Theorem, 59
solution, 58

Morphological relaxed control problem
Solution, 332
Viability theorem, 334

Mutation
in
(
E,(d j) j∈I ,(�·� j) j∈I

)
, 72

in metric space, 25
Mutational equation

Cauchy-Lipschitz Theorem, 26
Convergence Theorem for systems in(

E,(di)i∈I ,(�·�i)i∈I

)
, 83

Convergence Theorem for systems in(
E,(di),(ei),(�·�i),(D̂i)

)
, 161

Convergence Theorem in(
E,(di)i∈I ,(�·�i)i∈I

)
, 76

Convergence Theorem in(
E,(di),(ei),(�·�i),(D̂i)

)
, 153

Convergence Theorem in(
Ẽ,(d̃i),(ẽi),(�·�i),(D̂i)

)
, 179

Convergence Theorem in(
Ẽ,D̃ ,(d̃i),(ẽi),(�·�i),(D̂i)

)
, 259,

269
Convergence Theorem in metric space, 36
Nagumo’s Theorem in metric space, 28, 35
Peano’s Theorem, 28, 80
Peano’s Theorem for systems, 32, 84
simultaneously timed solution in(

Ẽ,(d̃ j),(ẽ j),(�·� j),(D̂ j)
)
, 176

solution in
(
E,(d j),(�·� j)

)
, 148

solution in
(
E,(d j),(e j),(�·� j),(D̂ j)

)
, 149

Solution in
(
E,(d j) j∈I ,(�·� j) j∈I

)
, 73

solution in metric space, 26
systems in metric space, 32
timed solution in

(
Ẽ,(d̃ j),(ẽ j),(�·� j),(D̂ j)

)
,

176
timed solution in(

Ẽ,D̃ ,(d̃ j),(ẽ j),(�·� j),(D̂ j)
)
,

253
Weak Convergence Theorem in(

E,(di),(di,κ ),(ei),(ei,κ ),(�·�i),(D̂i)
)
,

170
Weak Convergence Theorem in(

Ẽ,(d̃i),(d̃i,κ ),(ẽi),(ẽi,κ ),(�·�i),(D̂i)
)
,

182
Mutational inclusion

Solution in
(
E,d,�·�), 298

Narrow convergence in M (RN), 97
Nonequidistant Euler compact, 165
Nonequidistant Euler equi-continuous, 165

Nonlinear continuity equation for L N -
abs.cont. measures, 193

Nonlinear transport equation for Radon
measures, 97

Normal cone
Proximal ∼, 286, 364, 387

One-sided Lipschitz continuous, 63, 134, 385

Parabolic boundary, 239, 382
Paratingent cone, 55
Pompeiu–Hausdorff distance, 22, 44, 273
Pompeiu–Hausdorff excess, 273
Positive erosion of radius ρ , 276, 365
Primitive

in metric space, 25
Morphological ∼, 50

Prokhorov Theorem, 333
Proximal normal cone, 286, 364, 387
Pseudo-metric, 70

Quasi-metric, 273

Radon measures, 97
Reachable set

of set-valued map, 22, 46, 355
of vector field, 22

Relaxation Theorem of Filippov-Ważiewski,
363

Scorza-Dragoni Theorem
for set-valued maps, 358
in metric space, 358

Selection
Measurable ∼, 389

Semilinear evolution equations, 91
Set

of positive erosion, 276, 365, 379
of positive reach, 365, 379

Set-valued map
Measurable ∼, 389

Simple function, 392
Speed method, 22
Standard hypothesis

(H̃ ), 367
(H̃ ρ

◦ ), 373
Stochastic functional differential equation

Strong solution, 185
Strongly-weakly transitionally Euler compact,

267
Structured population model, 111

Tangent cone
Clarke ∼, 326, 338
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Hyper∼, 326, 345
Theorem

Cauchy-Lipschitz ∼ in (K (RN),dl), 59, 65
Cauchy-Lipschitz ∼ in(

E, (d j) j, (e j) j, (�·� j) j

)
, 173

Cauchy-Lipschitz ∼ in(
Ẽ, (d̃ j) j, (ẽ j) j, (�·� j) j

)
, 184

Cauchy-Lipschitz ∼ in RN , 42
Cauchy-Lipschitz ∼ in metric space, 26
Convergence ∼ for systems in(

E,(di)i∈I ,(�·�i)i∈I

)
, 83

Convergence ∼ for systems in(
E,(di),(ei),(�·�i),(D̂i)

)
, 161

Convergence ∼ in
(
E,(di)i∈I ,(�·�i)i∈I

)
,

76
Convergence∼ in

(
E,(di),(ei),(�·�i),(D̂i)

)
,

153
Convergence∼ in

(
Ẽ,(d̃i),(ẽi),(�·�i),(D̂i)

)
,

179
Convergence ∼ in(

Ẽ,D̃ ,(d̃i),(ẽi),(�·�i),(D̂i)
)
, 259,

269
Convergence ∼ in metric space, 36
Filippov ∼ about differential inclusions, 355
Filippov-like ∼ about one-sided Lipschitz

differential inclusions, 385
Nagumo ∼ in (K (RN),dl), 60, 65
Nagumo ∼ in RN , 42
Nagumo ∼ in metric space, 28, 35
Peano ∼ for systems in(

E,(d j) j∈I ,(�·� j) j∈I

)
, 84

Peano ∼ for systems in metric space, 32
Peano ∼ for systems with delay, 162
Peano ∼ in

(
E,(d j) j∈I ,(�·� j) j∈I

)
, 80

Peano ∼ in (K (RN),dl), 59, 64
Peano ∼ in RN , 43
Peano ∼ in metric space, 28
Peano ∼ with delay, 86, 157, 180, 263, 268
Prokhorov ∼, 100, 333
Relaxation ∼ of Filippov-Ważiewski, 363
Scorza-Dragoni ∼ for set-valued maps, 358
Scorza-Dragoni ∼ in metric space, 358
Selection ∼ of Kuratowski and Ryll-

Nardzewski, 389
Viability ∼ for morphological relaxed

control problem, 334

Weak Convergence ∼ in(
E,(di),(di,κ ),(ei),(ei,κ ),(�·�i),(D̂i)

)
,

170
Weak Convergence ∼ in(

Ẽ,(d̃i),(d̃i,κ ),(ẽi),(ẽi,κ ),(�·�i),(D̂i)
)
,

182
Tight sets, 333
Tight subsets of M (RN), 97
Tightness

condition on Radon measures, 97
Timed triangle inequality, 232, 257, 287
Transition

Identity, 150
in
(
E,(d j),(e j),(�·� j)

)
, 145

in
(
E,(d j) j∈I ,(�·� j) j∈I

)
, 70

in metric space, 20
Morphological, 136
morphological, 23, 48, 64
Timed ∼ in

(
Ẽ,D̃ ,(d̃ j),(ẽ j),(�·� j)

)
, 250

Transition set
Circatangent ∼, 326
Contingent ∼, 27, 39
Hypertangent ∼, 326

Transitionally Euler compact, 262
Strongly-weakly, 267

Transport equation
Nonlinear ∼ for Radon measures, 97

Tube, 50
Tusk, 239, 382

Uniform exterior tusk condition, 239, 382

Variable space propagator, 226
Variation of constants formula, 52, 92, 215
Velocity method, 22, 49
Viability theorem
∼ for morphological relaxed control

problem, 334

Weak Convergence Theorem
in
(
E,(di),(di,κ ),(ei),(ei,κ ),(�·�i),(D̂i)

)
,

170
in
(
Ẽ,(d̃i),(d̃i,κ ),(ẽi),(ẽi,κ ),(�·�i),(D̂i)

)
,

182
Weakly Euler compact, 169


