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Summary 

Summary 

  To investigate mechanisms of the dendritic cell (DC) dysfunction during tumor 

progression, a transgenic murine model of spontaneous melanoma was used. Ret 

transgenic mice overexpress the human proto-oncogene ret in melanin containing 

cells and develop skin malignant melanoma which closely resembles human 

melanoma with respect to tumor genetics, histopathology and clinical development.  

Numbers of total DCs (MHCII+ CD11c+ cells) and mature DCs (DCs expressing 

CD40, CD80, or CD86) were found to be significantly decreased in the spleen, lymph 

nodes and bone marrow of tumor bearing mice as compared to ret transgenic tumor 

free or wild type mice (control groups). Moreover, tumors recruited more DCs during 

progression but the tumor infiltrating DCs were blocked at the immature stage. 

After stimulation in vitro, ex vivo isolated DCs or those generated from bone 

marrow precursors from tumor bearing mice produced significantly more IL-10 and 

less IL-12 than DCs from control mice, showing a tolerogenic cytokine pattern. DCs 

from tumor bearing mice displayed also significantly less capacity to stimulate CD8+ 

T cells to produce IFN-γ. Therefore, the phenotype and function of DCs in ret 

transgenic mice showed the characteristics of tolerogenic DCs. 

Melanoma-derived factors in ret transgenic mice were demonstrated to be involved 

in the acquisition of tolerogenic properties, since DCs generated from bone marrow 

precursors in medium supplemented with mouse melanoma cell conditioned medium 

produced significantly less IL-12. Moreover, when activity of VEGF, IL-6, or TGF-β 

was blocked with the respective neutralizing antibodies, IL-12 production by DCs was 

significantly upregulated.  

The p38 mitogen-activated protein kinase (MAPK) can be activated by different 

tumor-derived factors. A considerably elevated expression of the phosphorylated form 

of p38 MAPK was detected in DCs from tumor bearing mice. Suppression of p38 

MAPK activity in DCs from tumor bearing mice in vitro was found to lead to 

normalization of their cytokine expression pattern and T-cell stimulation capacity.  

Taken together, constitutive activation of p38 MAPK is responsible for turning of DCs 
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Summary 

to display a tolerogenic profile in the process of melanoma development. We have 

demonstrated that suppression of the p38 MAPK activity in DCs from ret tumor bearing 

mice can reconstitute their impaired cytokine secretion pattern and ability to stimulate T 

cells suggesting thereby that such normalization of signaling pathways in DCs could 

represent an effective immunotherapeutic strategy in melanoma patients. 
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Introduction 

I. Introduction  

 

1. Immune system and antitumor immune response 

  The immune system defends host against infection. Serving as the first line of 

defense, innate immunity is essential for the control of common bacterial infections. 

However, it lacks the ability to recognize certain pathogens and to provide the specific 

protective immunity that prevents reinfection.  

  In the adaptive immune response, lymphocytes, which express diverse 

antigen-specific receptors, enable the immune system to recognize any foreign antigen. 

Besides eliminating pathogens, the adaptive immune response can generate increased 

numbers of memory lymphocytes, which allow a more rapid and effective reaction 

upon reinfection.   

 

1.1. Innate immunity 

Phagocytes 

  The phagocytic cells of the immune system include macrophages, neutrophils, and 

dendritic cells (DCs). Macrophages are large phagocytic leukocytes, which are able to 

move outside of the vascular system by moving across the cell membrane of capillary 

vessels and entering the areas between cells in pursuit of invading pathogens. In 

tissues, organ-specific macrophages are differentiated from phagocytic cells present in 

the peripheral blood called monocytes. Macrophages are the most efficient phagocytes, 

and can phagocytose substantial numbers of bacteria or other cells or microbes. The 

binding of bacterial molecules to receptors on the surface of a macrophage triggers it 

to engulf and destroy the bacteria through the generation of a “respiratory burst”, 

causing the release of reactive oxygen species. Pathogens also stimulate macrophages 

to produce chemokines, which summon other cells to the site of infection. 

  Neutrophils eosinophils and basophils are known as granulocytes due to the 
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presence of granules in their cytoplasm, or as polymorphonuclear cells due to their 

distinctive lobed nuclei. Neutrophil granules contain a variety of toxic substances that 

kill or inhibit growth of bacteria and fungi. Similar to macrophages, neutrophils attack 

pathogens by activating a respiratory burst.   

  DCs are phagocytic cells locate in tissues that are in contact with the external 

environment, mainly in the skin (where they are often called Langerhans cells), and in 

the inner mucosal lining of the nose, lungs, stomach and intestines. They are named 

for their resemblance to neuronal dendrites, but DCs are not connected to the nervous 

system. DCs are very important in the process of antigen presentation, and serve as a 

link between the innate and adaptive immune systems. 

 

Natural killer (NK) cells  

  As a component of the innate immune system, NK cells attack host cells that have 

been infected by microbes, but do not directly attack invading microbes. For example, 

NK cells attack and destroy tumor and virus-infected cells through a process known as 

"missing-self" (1). This term describes cells with low level expression of major 

histocompatibility complex (MHC) class I, a situation that can arise in viral infections 

of host cells. They were named "natural killer" because of the initial notion that they 

do not require activation in order to kill cells that are "missing self." 

 

Mast cells 

  Mast cells reside in the connective tissue and mucous membranes, and are 

intimately associated with defense against pathogens, wound healing, but are also 

often associated with allergy and anaphylaxis (2). When activated, mast cells rapidly 

release characteristic granules, rich in histamine and heparin, along with various 

hormonal mediators, and chemokines, or chemotactic cytokines into the environment.  
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Basophils and eosinophils 

  Basophils and eosinophils are cells related to the neutrophils. When activated by a 

pathogen encounter, basophils releasing histamine is important in defense against 

parasites, and plays a role in allergic reactions such as asthma. Upon activation, 

eosinophils secrete a range of highly toxic proteins and free radicals that are highly 

effective in killing bacteria and parasites, but are also responsible for tissue damage 

occurring during allergic reactions.  

 

γδ T-cells 

  Like other 'nonconventional' T-cell subsets bearing invariant T-cell receptors (TCRs) 

such as CD1d-restricted NK T cells, γδ T cells exhibit characteristics that place them 

at the border between innate and adaptive immunity. On one hand, γδ T cells may be 

considered as a component of adaptive immunity since they rearrange TCR genes to 

produce junctional diversity and develop a memory phenotype. On the other hand, 

they may function as a part of the innate immune system where a restricted T-cell or 

NK receptors may be used as a pattern recognition receptor.  

 

Complement 

  The complement system is a biochemical cascade of the immune system that helps 

or “complements” the ability of antibodies to clear pathogens or mark them for 

destruction by other cells. The cascade is composed of many plasma proteins, 

synthesized in the liver, primarily by hepatocytes. The proteins work together to 1) 

trigger the recruitment of inflammatory cells; 2) "tag" pathogens for destruction by 

other cells via opsonizing the surface of the pathogen; 3) disrupt the plasma 

membrane of an infected cell, resulting in cytolysis of the infected cell, causing the 

death of the pathogen; 4) rid the body of neutralized antigen-antibody complexes.  
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1.2. Adaptive immunity 

CD8+ T lymphocytes 

  Cytotoxic T cells (CTL, CD8+ T cells) are a subgroup of T cells, which induce the 

death of cells that are infected with viruses (and other pathogens), or are otherwise 

damaged or dysfunctional. Naive CD8+ T cells are activated when their TCR strongly 

interacts with a peptide-bound MHC class I molecule. This affinity depends on the 

type and orientation of the antigen/MHC complex and keeps the CTL and infected 

cell bound together. Once activated, the CD8+ T cell undergoes a process called clonal 

expansion, in which it gains functionality and divides rapidly into effector cells. 

Activated CD8+ T cells will then travel throughout the body in search of cells bearing 

that unique MHC class I peptide. 

  When exposed to these infected or dysfunctional somatic cells, effector CD8+ T 

cells release perforin and granulysin, which form pores in the target cell plasma 

membrane allowing ions and water to flow into the infected cell and causing it to 

burst or lyse. CD8+ T cells release granzyme, a serine protease that enters cells via 

pores to induce apoptosis. To limit extensive tissue damage during an infection, CD8+ 

T cells activation is tightly controlled. 

  Upon resolution of the infection, most of the effector CD8+ T cells die and are 

removed away by phagocytes, but a few of these cells are retained as memory cells. 

Upon a later encounter with the same antigen, these memory cells quickly 

differentiate into effector cells, dramatically shortening the time required to mount an 

effective response. 

 

T helper (TH, CD4+ T) cells  

  CD4+ T cells are immune response mediators and play an important role in 

establishing and maximizing the capabilities of the adaptive immune response. These 

cells have no cytotoxic or phagocytic activity and can not kill infected cells or clear 

pathogens as CD8+ T cells, but they can direct other cells to perform these tasks. 

  CD4+ T cells express TCRs that recognize antigen bound to major 
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histocompatibility complex (MHC) class II molecules. The activation of a naive CD4+ 

T cell causes it to release cytokines, which influences the activity of many cell types. 

CD4+ T cells require a much milder activation stimulus than CTLs and can provide 

extra signals that "help" to activate cytotoxic cells. 

  Two types of effector CD4+ T cell responses can be induced by a professional 

antigen-presenting cell (APC) designated as TH1 and TH2 each designed to eliminate 

different types of pathogens. The TH1 response is characterized by the production of 

interferon (IFN)-γ, which activates the bactericidal activities of macrophages, induces 

B cells to make opsonizing antibodies and leads to cell-mediated immunity. The TH2 

response is characterized by the release of interleukin (IL)-4, which results in the 

activation of B cells to make neutralizing antibodies, leading to humoral immunity. 

Generally, TH1 responses are more effective against intracellular pathogens (viruses 

and bacteria that are inside host cells), while TH2 responses are more effective against 

extracellular bacteria, parasites and toxins. Like CTLs, most of the CD4+ T cells die 

upon resolution of infection with a few remaining as CD4+ memory T cells. 

 

Regulatory T cells (Tregs) 

  Tregs may control aberrant immune responses to self-antigens, in particular the 

development of autoimmune diseases, such as type 1 diabetes, and some chronic 

inflammatory diseases like asthma. However, Tregs also block beneficial responses by 

preventing sterilizing immunity to certain pathogens and limiting antitumor immunity 

(3). Accumulation and activation of Tregs was reported in both tumor patients and 

tumor animal models (4-8). From the functional perspective, the various potential 

suppression mechanisms used by Tregs can be grouped into four basic ‘modes of 

action’: 1) suppression by inhibitory cytokines like IL-10, IL-35 and TGF-β; 2) 

suppression by cytolysis via granzymes and perforin; 3) suppression by ‘metabolic 

disruption’ of effector T cells through adenosine or cyclic AMP; 4) suppression by 

modulation of DC maturation and function (9).  

 

 

12 



Introduction 

APCs 

  Host's cells express "self" antigens. These antigens are different from those on the 

surface of bacteria ("non-self" antigens) or on the surface of virally infected host cells 

(“missing-self”). The adaptive response is triggered by recognizing non-self and 

missing-self antigens. 

  With the exception of non-nucleated cells (including erythrocytes), all cells are 

capable of presenting antigen and of activating the adaptive immune response. Some 

cells are specially equipped to present antigen, and to prime naive T cells. DCs, 

macrophages and B cells are equipped with special immunostimulatory receptors for 

activation of T cells and are termed professional APCs.  

 

B cells 

  B cells are major cells involved in the creation of antibodies that circulate in blood 

plasma and lymph known as humoral immunity. Antibodies (or immunoglobulins, Ig), 

are large proteins used by the immune system to identify and neutralize foreign 

objects. In mammals, there are five types of antibody, namely IgA, IgD, IgE, IgG, and 

IgM, which differ in biological properties. Upon activation, B cells produce 

antibodies, each of which recognizes a unique antigen and neutralizes specific 

pathogens. 

  Like the T cells, B cells express a unique B cell receptor (BCR), which recognizes 

and binds to only one particular antigen. A critical difference between B cells and T 

cells is how each cell "sees" an antigen. T cells recognize their cognate antigen as a 

peptide in the context of an MHC molecule, while B cells recognize antigens in their 

native form. Once a B cell encounters its specific antigen and receives additional 

signals from TH2 cells, it further differentiates into an effector cell, a plasma cell. 

  Plasma cells are short lived cells (2-3 days), which secrete antibodies. These 

antibodies bind to antigens, making them easier targets for phagocytes, and trigger the 

complement cascade. About 10% of plasma cells will survive to become long-lived 

antigen specific memory B cells. Already primed to produce specific antibodies, these 
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cells can be called upon to respond quickly if the same pathogen re-infects the host. 

   

1.3. Evidences of antitumor immunity in animal models and cancer 

patients 

  The idea that the immune system may have a protective role during tumor growth 

was embodied in the cancer immunosurveillance hypothesis of Burnet and Thomas 

(10, 11). Large amount of data obtained from animal experiments demonstrated that 

the immune system was capable of recognizing and eliminating primary tumors and 

that lymphocytes and cytokines produced by these cells were important in the process. 

In humans, early follow-up studies of transplant patients who were 

immunosuppressed (12) and individuals with primary immunodeficiencies (13) 

showed that they had a significantly higher risk of cancer development. A review of 

data accumulated by the Cincinnati Transplant Tumor Registry from 1968 to 1995 

found a two fold greater risk in transplant patients for developing melanoma than that 

of the general population (14). In Australia and New Zealand, the tracking of 925 

patients who received renal transplants from 1965 to 1998 showed an increased risk of 

the development of colon, pancreatic, lung and endocrine tumors as well as malignant 

melanomas (15). In addition, assessment of 5,692 renal transplant patients from 1964 

to 1982 in Finland, Denmark, Norway and Sweden showed higher standardized 

cancer incidence ratios for colon, lung, bladder, kidney, ureter and endocrine tumors 

as well as malignant melanomas as compared with the general population (16).  

  A positive correlation between the presence of lymphocytes in the tumor and 

increased patient survival has also been shown by numerous studies (17-20). One of 

the most convincing evidence came from the study of cutaneous melanomas. Sorting 

more than 500 patients with primary melanoma who had 5-, 8- or 10-year follow-ups 

and comparing their survival statistics, it was shown that patients with tumor 

infiltrating lymphocytes survived 1.5-3 times longer than patients without tumor 

infiltrating lymphocytes (21). Similar correlations between the presence of tumor 

infiltrating lymphocytes and patient survival have been made that involved more than 

3,400 patients with cancer of the breast, bladder, colon, prostate, ovary or rectum 

cancer and for neuroblastoma (17-25). In some cases, the correlation has been refined 
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to show that CD8+ T cells are the relevant lymphocyte population that affects survival 

(20).   

  However, the immune surveillance in tumor patients is mostly insufficient to 

control tumor growth, which is attributed to tolerance induced by many cells and 

soluble factors, such as regulatory T cells, myeloid derived suppressor cells (MDSCs), 

immunosuppressive cytokines and growth factors derived from tumor and host cells, 

and dysfunctional NK cells and DCs. 

 

2. Dendritic cells  

DCs engulf exogenous pathogens, such as bacteria, parasites or toxins in the tissues 

and then migrate, via chemotactic signals, to the T-cell enriched lymph nodes. During 

migration, DCs undergo a process of maturation in which they lose most of their 

ability to engulf other pathogens and develop an ability to communicate with T cells. 

DCs use enzymes to chop the pathogen into antigens. In the lymph node, DC will 

display these "non-self" antigens on their surfaces by coupling them to a 

"self"-receptor called the MHC (also known in humans as human leukocyte antigen 

(HLA). This MHC:antigen complex is recognized by T cells passing through the 

lymph node. Exogenous antigens are usually displayed on MHC class II molecules, 

which activate CD4+ TH cells. Endogenous antigens are produced by viruses 

replicating within a host cell. The host cells use enzymes to digest virally associated 

proteins, and display these pieces on their surfaces to T cells by coupling them to 

MHC. Endogenous antigens are typically displayed on MHC class I molecules, and 

activate CD8+ cytotoxic T cells.  

Binding of MHC:antigen complex by TCR does not stimulate on its own the 

proliferation and differentiation of naive T cells into armed effector T cells. The 

antigen-specific clonal expansion of naive T cells requires a second or costimulatory 

signal, which is delivered by binding of CD80/CD86 on DCs to CD28 on T cells. 

CD40 is also a costimulatory molecule which binds to CD40 ligand (CD40L) on T 

cells, transmits signals to the T cell, activates DCs to express CD80 and CD86, and 

thus stimulates further T-cell proliferation. Costimulatory signals promote not only 
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transcription of IL-2 but also stabilize IL-2 mRNA. An autocrine mechanism is used 

by IL-2 to stimulate T-cell proliferation. In contrast, antigen recognition in the 

absence of costimulation leads to T-cell anergy, a state in which T cells are unable to 

produce IL-2 (26). In recent year, a cytokine profile secreted by DCs has been 

described as a “third signal” (27). For example, naive CD4+ T cells stimulated in the 

presence of IL-12 tend to develop into TH1 cells, whereas environmental IL-10 drives 

the generation of Tregs (28). It means that these three DC-derived signals together 

determine the stimulation or anergy of naive CD8+ T cells and the development of 

TH1, TH2 cells or Tregs. 

Different DC subsets are generated from different precursor cells. For example, 

myeloid DCs (MDCs) are differentiated from common myeloid precursors (CMPs), 

whereas plasmacytoid DCs (PDCs) are from common lymphoid precursors (CLPs). 

MDCs are the main IL-12 producer (26) and the most efficient APCs able to prime 

directly naïve T cells and can be immunogenic or tolerogenic under different 

conditions (29). It is assumed that MDCs are important for the induction of the 

specific cytotoxic T-cell responses as well as TH1 polarized responses which are more 

efficient in anti-tumor immune response (30). De Vries et al. demonstrated that for the 

generation of an effective antimelanoma T-cell response, high numbers of sufficient 

activated MDCs are essential (31). Moreover, local priming of melanoma-specific 

CD8+ T cells, in stage I melanoma patients is associated with a high MDC content in 

the sentinel lymph node (32).  

  PDCs can produce large amounts of type I IFNs in response to viruses and other 

pathogens. Under steady-state conditions, PDCs appear to play a key role in 

maintaining peripheral immune tolerance, and may be considered as naturally 

occurring tolerogenic DCs (26). For example, activating-PDC-TLR ligands 

upreguated the expression of inducible costimulator ligand (ICOS-L), which led to the 

generation of IL-10 producing T regulatory cells (33). However, if stimulated with 

microbial pathogens, PDCs differentiate into potent APCs with type I IFN production 

capacity (34, 35). After viral stimulation, murine PDCs take part in both innate and 

adaptive immune responses by directly priming naive CD8+ T cells in vivo (36). 

Zuniga et al. reported that bone marrow PDCs can differentiate into MDCs upon virus 

infection (37). Moreover, PDCs help other DC subsets to induce T-cell responses. It 
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has been demonstrated that PDCs synergize with MDCs in the induction of 

antigen-specific antitumor immune responses in vivo (38). PDCs can also improve the 

activity of lymph node DCs to stimulate CTLs (39). 

 

3. Tolerogenic dendritic cells and tumor escape 

  Numerous clinical studies reported a dramatic decrease in DC numbers in the 

peripheral blood of patients with different types of tumors such as squamous cell 

carcinoma of the head and neck, lung cancer, myeloma, invasive breast cancer, 

hepatocellular carcinoma and leukemia (40-46). Moreover, the presence of metastases 

resulted in a more profound decrease in numbers of circulating peripheral blood DCs 

in cancer patients (46, 47).  

  Furthermore, impaired capacity of DCs to prime effective antitumor responses has 

also been observed, which is due to the lack of an efficient immune synapse between 

DCs and T cells (48).  

 

3.1 Generation of tolerogenic dendritic cell  

  DC functions in tumor patients are quite often found to be abnormal and such DCs 

induce normally immune tolerance to tumor cells. Therefore, understanding the 

mechanism of the generation of tolerogenic DCs in tumor progression will benefit the 

current immunotherapies in particular DC vaccination in tumor patients.  

 

3.1.1. Alteration of DC functions in cancer 

  Tumor cells can directly modulate DC function through different mechanisms, 

among which an induction of DC apoptosis and a blockade of DC differentiation are 

mostly investigated.  

  Tumor induced DC apoptosis has been reported to be mediated by cytochrome c 

release, which further leads to cytoplasm shrinking, caspase-3 activation, upregulation 
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of pro-apoptotic protein Bax and down-regulation of anti-apoptotic proteins Bcl-xL 

and Bcl-2 (49-51). Furthermore, growth of RM-1 prostate cancer cells could be 

significantly inhibited in mice treated intratumorally with DCs which were transduced 

with murine Bcl-xL gene (50). Other anti-apoptotic molecules are also shown to be 

able to inhibit tumor-mediated DC apoptosis, such as Fas associated death domain 

(FADD)-like ICE inhibitory proteins (FLIP) which blocks binding of procaspase-8 to 

FADD (52). 

   Numerous studies have shown that DCs in tumor patients or tumor animal models 

are phenotypically or functionally immature. CD83+ DCs obtained from progressing, 

chemotherapy-resistant melanomas revealed a marked downregulation of CD86 

expression and induced syngeneic CD4+ T-cell anergy (53). In breast cancer, DCs 

failed to stimulate proliferation of allogeneic T cells (54). Human basal cell carcinoma 

associated DCs were deficient in CD80 and CD86 expressions as well as in their 

ability to stimulate T-cell proliferation (55). Moreover, DCs isolated from human 

non-small cell lung cancer were blocked at immature stage (56). Similar data have 

also been shown in patients, such as multiple myeloma, colon carcinoma, head and 

neck cancer, and lung cancer (57-59). 

  Tumors can also affect the process of DC differentiation from their precursor cells. 

DCs derived from monocytes of myeloma patients expressed significantly lower 

levels of CD40, CD80, and HLA-DR and were not able to activate alloreactive and 

autologous antigen-specific T cells (60). In vitro studies showed that myeloma cells or 

myeloma cell conditioned medium could inhibit differentiation and function of 

murine bone-marrow derived DCs (61). The blockade of DC differentiation at the 

level of immature myeloid cells, an immune suppressive population, which comprises 

of immature macrophages, granulocytes, DCs and myeloid cells at early stages of 

differentiation has been found in a large number of different tumors including breast, 

lung, and head and neck cancer (40).   
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3.1.1. Tumor-derived factors and impairment of DC functions in cancer 

  In addition to the modulation of DC functions induced by tumors through cell-cell 

contact, tumors produce several immunosuppressive factors, which can also affect DC 

functions.  

 

TGF-β 

  TGF-β is involved in the regulation of numerous processes including hematopoiesis, 

cell proliferation, differentiation and activation (62). It is also known as the most 

potent immunosuppressive cytokine described to date. TGF-β can be secreted by 

many types of tumor cells. It is associated consistently with an aggressive tumor 

phenotype. For example, transfection of a regressor skin tumor cell with the gene for 

TGF-β enabled evasion of immunological destruction resulting in tumor progression 

in vivo (63). By modulating activity of NK cells, T cells, macrophages, and DCs, 

TGF-β affects initiation and effetor phases of both primary and secondary immune 

responses (64).  

Mechanisms of TGF-β in regulating DC functions have been described in several 

studies. Although it has been shown that TGF-β promoted the generation of 

Langerhans cells (65), data from most studies demonstrated TGF-β as a negative 

regulator for the immunogenic function of DCs. TGF-β induced the generation of 

DCs with an immature phenotype both in human and murine studies (66, 67). When 

added to LPS-stimulated DC culture, TGF-β inhibited the expression of MHC class II 

and costimulatory molecules on DCs (69). In addition, TGF-β could also suppress DC 

maturation and IL-12 production induced by IL-1 and TNF-α but not by CD40 ligand 

or anti-CD40 antibody (69, 70). Moreover, Byrne et al. showed that TGF-β producing 

progressive tumor recruited tumor infiltration of macrophages while the number of 

tumor-infiltrating DCs decreased, altering thereby proportion of APCs in favor of 

macrophages that enables tumor evasion of the host immune system (68).  
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IL-10 

  Various tumor cells express and release IL-10. This cytokine is also produced by 

tumor-infiltrating lymphocytes and macrophages (71). DC dysfunction in tumor 

bearing mice was shown to be induced by tumor-derived IL-10, whereas improvement 

of DC function was observed in tumor-bearing IL-10-deficient mice (72). IL-10 can 

convert immature DC into tolerogenic DC through decreased expression of 

costimulatory molecules (73). Moreover, DCs derived from transgenic mice which 

overexpress IL-10 markedly suppressed allogeneic T-cell responses and IL-12 

production (74). Human DCs generated from CD34+ hematopoietic progenitors were 

sensitive to IL-10 treatment at all stages of differentiation and IL-10 inhibited the 

primary and secondary proliferative responses of both CD4+ and CD8+ T cells 

induced by allogeneic CD1a+ DCs (75). Steinbrink et al. reported that IL-10-treated 

human DCs induced CD4+ and CD8+ T cells that suppressed antigen-specific 

proliferation of other T cells (76). Notably, IL-10 worked also as a mediator of 

prostaglandin E2 (PGE2), which could suppress IL-12 production by DCs (77). 

Finally, IL-10 was reported to skew the differentiation of monocytes into 

macrophages instead of DCs (78). 

 

Vascular endothelial growth factor (VEGF) 

  VEGF is produced by most tumors and promotes tumor development, in particular 

tumor angiogenesis (79). A correlation between VEGF expression and microvessel 

density could be observed in many malignancies (79). Increased plasma levels of 

VEGF were reported in tumor patients compared with healthy donors; high VEGF 

levels were associated with a poor outcome in small cell lung carcinoma and breast 

cancer patients (80-82). Production of VEGF by human tumors inhibits the functional 

maturation of DCs from precursors and affects the function of relatively mature DCs 

(83). Saito et al. reported an inverse correlation between the DC density and the 

VEGF expression within tumor tissue and peripheral blood of cancer patients (84).  

  The role of tumor-derived VEGF in DC differentiation have been demonstrated by 

in vitro experiments, in which neutralizing antibody against VEGF abrogated the 

negative effect of tumor cell conditioned medium on DC differentiation from their 
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precursors (83), and the in vivo data further confirmed this conclusion (85). Moreover, 

continuous infusion of VEGF into naïve animals resulted in a dramatic inhibition of 

DC development and an increase in numbers of B cells and immature myeloid cells 

(85). Consistent with these observations, administration of neutralizing 

VEGF-specific antibody to tumor-bearing mice improved DC differentiation and 

increased the number of mature DCs (86, 87). Furthermore, an inhibitory effect of 

VEGF on DC differentiation has been shown in patients with gastric cancer or 

non-small-cell lung cancer (88). 

Mechanism of VEGF-induced DC dysfunction remains unclear. More recent 

studies indicated that VEGF receptor 1 is the primary mediator of the VEGF 

inhibition of DC maturation (89), whereas VEGF receptor 2 is crucial for early 

hematopoietic differentiation, and only marginally affects final DC maturation. 

Although several inhibitors of VEGF receptors are undergoing clinical trails (90), a 

recent study showed that the defective differentiation of DCs in advanced cancer 

patients could not be normalized by blocking VEGF signaling through VEGF receptor 

inhibitors (88). 

 

IL-6 

  IL-6 is a pleotropic cytokine that can be produced by several malignant tumors (91). 

In plasmocytoma and chronic lymphatic leukemia patients who showed 

overproduction of IL-6, the development and functional maturation of DCs was 

impaired (92). In the recent study, IL-6 was found to suppress DC maturation in vivo 

(93). 

  IL-6 skewed in vitro differentiation of monocytes into phenotypically mature but 

functionally impaired DCs and inhibited the chemotactic response of DCs through 

blocking the upregulation of CCR7 expression on their surfaces (94). IL-6 secreted by 

stroma cells upregulated the expression of macrophage-colony stimulating factor 

(M-CSF) receptors on monocytes, and together with M-CSF, it could directed 

monocyte differentiation rather to macrophages than to DCs (95). Involvement of 

IL-6 in the inhibition of DC differentiation has also been shown in multiple myeloma 

patients (53). Human renal cell carcinoma cells released large amounts of M-CSF and 
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IL-6, which inhibited myeloid progenitor cell to differentiate into DCs (96). 

Bharadwaj et al. reported that IL-6 and G-CSF in human pancreatic cancer cell 

conditioned medium are responsible for the suppression of DC differentiation, 

maturation, and antigen presentation due to the aberrant activation of STAT3 (97). 

 

M-CSF 

  The inhibition of DC differentiation by renal-cell carcinoma cells conditioned 

medium was preceded by inducing M-CSF receptor and losing 

granulocyte-macrophage colony stimulating factor (GM-CSF) receptor α expression 

at the surface of CD34+ cells (96). Interestingly, IL-4 and IL-13 could reverse such 

inhibitory effect of IL-6 and M-CSF on the phenotypic and functional differentiation 

of CD34+ cells into DCs (98). The protecting effect of IL-4 on DC differentiation was 

found to be due to the down-regulation of M-CSF receptor on surface of DC 

progenitors, the decrease in M-CSF production, and the maintenance of GM-CSF 

receptor α expression. 

 

GM-CSF 

  In the physiologic situation, GM-CSF is required for normal myelopoiesis and DC 

differentiation. However, excessive amounts of GM-CSF can mediate 

immunosuppression via induction of tolerogenic DCs and immature myeloid cells (99, 

100, 104). Gaudreau et al. reported that GM-CSF could prevent diabetes development 

in NOD mice by inducing tolerogenic DCs, which sustain the suppressive function of 

CD4+ CD25+ regulatory T cells (99). Chronic administration of GM-CSF to mice 

resulted in the generation of immunosuppressive Gr-1+ CD11b+ cell population which 

resembled morphology of granulocyte-monocyte progenitors (100). These cells could 

further differentiate to fully mature APCs in the presence of IL-4 and GM-CSF.  

  In mice bearing Lewis lung carcinoma, the administration of anti-GM-CSF and 

anti-IL-3 antibodies abrogated the accumulation of tumor-induced immune 

suppressive granulocyte/macrophage progenitor cells (101). Interestingly, GM-CSF 
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has shown its therapeutic potential as a component of cancer vaccines (102). In a 

randomized trial in patients with high-risk melanoma, GM-CSF treatment was 

associated with a transient increase in mature DCs (103). However, it seems that 

production of large amounts of GM-CSF by some tumors is detrimental to the host 

immune system. Serafini et al. (104) showed that vaccination of mice with tumor cells 

producing large amounts of GM-CSF generated a large number of Gr-1+ 

immunosuppressive cells which consequently have a negative impact on vaccination. 

 

3.1.3. Role of regulatory T cells in the impairment of DC functions in cancer 

  It has been reported that the co-culture of mouse CD4+ CD25+ Tregs with mouse 

bone marrow-derived DCs prevented upregualtion of costimulatory molecules and 

resulted in downregulation of DC-mediated T-cell function (105). In vivo, the function 

of mature DCs is also under the control of naturally occurring CD4+ CD25+ Tregs. 

Thus, depletion of CD4+ CD25+ Tregs enhanced the development of MHC class I and 

II restricted IFN-γ producing cells and induced higher cytotoxic activity of CD8+ T 

cells (106). In a murine melanoma model, depletion of CD4+ CD25+ Tregs elicited 

long-lasting protective tumor immunity induced by DCs loaded with stressed tumor 

cells (107). In humans, the coculture of CD4+ CD25+ Tregs with monocyte-derived 

DCs rendered DC inefficient as APCs despite of their prestimulation with CD40 

ligand. Moreover, DCs cultured with Tregs were prevented from maturation (108) and 

produced more IL-10 (109). Accumulation of immunosuppressive DCs and regulatory 

T cells has been found in melanoma and other tumor patients (110). In the peripheral 

blood of patients with squamous cell carcinoma of the head and neck, expression 

levels of HLA-DR on myeloid and total DCs positively correlated with the ratios of 

TH1 and TH2, and the percentage of total circulating DCs inversely correlated with 

that of CD4+ CD25+ Tregs (111).  

Although the cellular and molecular events that play a role in the DC regulation by 

CD4+ CD25+ Tregs are still not completely clear, it seems that cell-cell contacts and 

immunoregulatory cytokines are involved. For example, CTLA-4 on CD4+ CD25+ 

Tregs could upregulate indoleamine 2,3-dioxygenase (IDO) expression in DCs (112). 

Larmonier et al. (113) demonstrated that CD4+ CD25+ Tregs derived from a leukemia 
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mouse model suppressed DC functions, which required TGF-β and IL-10 and was 

associated with induction of Smad signaling pathway and activation of STAT3. 

 

3.1.4. Transcription factors in tolerogenic DCs 

STAT3 

  STAT3 was found to be activated in diverse cancers (114). Constitutively activated 

STAT3 enhanced tumor cell proliferation and prevented apoptosis (115). Inactivation 

of STAT3 by certain platinum compounds inhibited tumor cell growth and induced 

apoptosis (115). It is important to note that constitutive STAT3 activity in tumors 

induced the release of factors such as VEGF and IL-10 that inhibited DC maturation 

through activation of STAT3 in DCs (116). Inhibiting STAT3 signaling in DC 

progenitors has been shown to reduce accumulation of immature DCs by 

tumor-derived factors in vitro (117). Ablation of STAT3 in hematopoietic cells 

enhanced DC maturation in tumor-bearing mice and resulted in a multicomponent 

antitumor immunity (118). 

 

Extracellur signal regulated kinase-1/2 mitogen-activated protein kinase (Erk 1/2 

MAPK) 

  Erk, a member of MAPK family, regulates essential cellular functions like 

proliferation, differentiation, cell survival, and cell death (119, 120). Constitutive 

activation of Erk pathway has been described in cell lines derived from pancreas, 

colon, lung, ovary, and kidney cancers (120). In melanoma, Erk1/2 activation was 

observed in 54% of primary and 33% of metastatic melanomas (121). Furthermore, 

Erk protected melanoma cells from cisplatin-mediated apoptosis and was shown to be 

essential for melanoma-immune evasion (122,123).  

  Activation of Erk in DCs has been demonstrated to promote IL-10 production and 

mediated negative feedback regulation of IL-12 production (124). Moreover, Jackson 

et al. (125)vshowed that melanoma lysate could suppress IL-12 production by DCs 

through activating Erk1/2 MAPK in DCs and blockade of Erk1/2 activation restored 
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IL-12 production and generation of TH1 cells by DCs. Inhibition of Erk function could 

also promote the phenotypic and functional maturation of murine resident Langerhans 

cells (126).  

 

p38 MAPK 

  A significant role of p38 MAPK has been reported in several types of tumors, such 

as follicular lymphoma, chronic B cell lymphocytic leukemia, and melanoma 

(127-129). Activation of p38 in malignant B lymphoma cells upregulated IL-10 gene 

expression and promoted lymphomagenesis (130). In addition, human malignant 

glioma cells secret high level of VEGF through constitutive activation of p38 MAPK 

(131).    

  It was reported that blocking p38 MAPK pathway could significantly up-regulate 

IL-12 production in mature DCs (132, 133). Wang et al. (60) reported that the 

impaired function of monocyte-derived DC from multiple myeloma patients could be 

restored by inhibiting p38 MAPK in progenitor cells. In addition, inhibition p38 

MAPK activity in the bone marrow (BM) cells cultured in the presence of tumor 

culture conditioned medium restored the generation of functional BMDCs (61). 

Importantly, regulatory T-cell induction could be attenuated by inhibiting p38 MAPK 

signaling in DCs (134).  

 

3.2. Tolerogenic DCs induce T-cell tolerance 

  DC maturation in tumor patients is often blocked at the immature stage which may 

tolerize peripheral CD4+ and CD8+ T cells by inducing deletion, anergy or regulation 

(135-138). This was attributed to the lack of costimulatory molecules on DC surface. 

  However, the CD80 and CD86 molecules could also limit the activation of T cells 

by binding with CTLA4 expressed on T cells. In these DCs, activity of indoleamine 

2,3-dioxygenase (IDO) was upregulated by the autocrine secretion of IFN-γ following 

the engagement of CD80/CD86 by CTLA4 (139). IDO is an enzyme that exists in 

DCs within mouse and human lymphoid tissues and catalyzes the depletion of the 
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essential amino acid tryptophan, resulting in the inhibition of T-cell proliferation and 

produces tryptophan-derived metabolites that promote T-cell apoptosis (140). In mice, 

PDCs could downregulate T-cell responses through the upregulation of IDO (141). 

Moreover, Baban et al. have characterized a small subpopulation of DCs in mouse 

spleen that synthesized large amounts of IDO and downregulate T-cell function (142). 

Such IDO+ CD19+ DCs increased IDO production following CD80/CD86 ligation by 

CTLA4 or TLR9 ligation.  

In addition, a role of B7-H1 and B7-H4 molecules (inhibitory members of B7 

family) on DCs has been recently studied. Investigations in patients with breast cancer, 

colon cancer, melanoma and multiple myeloma showed that the overexpression of 

B7-H1 and B7-H4 led to the inhibition of T-cell function and was associated with 

poor prognosis (143). Furthermore, MDCs in human tumors and tumor-draining 

lymph nodes expressed a high level of B7-H1 (144, 56). The interaction between 

B7-H1+ MDCs and tumor-associated T cells led to the downregulation of IL-12 and 

upregulation of IL-10 production by MDCs in a B7-H1-dependent manner. Blockade 

of B7-H1 on tumor-infiltrating MDCs resulted in the increase of IFN-γ production by 

T cells (144). Adoptive transfer of such T cells improved the clearance of human 

tumors in xenotransplanted mice, supporting the idea that B7-H1 plays a role in the 

downregulation of DC-mediated tumor immunity (144).   

 

3.3. Tolerogenic DCs induce the differentiation of TH2 cells or Tregs  

  Steinman et al. reported that immature DCs may maintain the immune tolerance by 

inducing TH2 response (145). In cancer patients, the TH1 skewing has been correlated 

with improved clinical outcomes (146-148). Investigations on tumor-specific T-cell 

immunity in renal cell carcinoma (RCC) and melanoma patients have demonstrated 

that patients with active melanoma or RCC displayed strongly polarized TH2-type 

reactivity, whereas healthy donors and patients that were disease-free following 

therapeutic intervention exhibited either weak mixed TH1/TH2 or strongly-polarized 

TH1 (146).  

  Immature DCs may also induce expansion of IL-10 producing Treg (Tr1) and CD4+ 

CD25+ Tregs (149-151). Furthermore, tumor-associated immature DCs induced CD4+ 
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CD25+ Tregs from naïve T cells, and suppress T-cell proliferation of both CD4+ and 

CD8+ T cells (152). It has been shown that DCs induced Tr1 through IL-10 (149, 153, 

154). Finally, TGF-β secreted by a DC subpopulation has also been implicated in the 

generation of CD4+ regulatory T cells (155).  

 

4. Malignant melanoma 

  Melanoma is a malignant tumor due to the uncontrolled growth of transformed 

melanocytes, which are found predominantly in skin but also in the bowel and the 

eye.  

 

4.1. Epidemiology and diagnosis 

4.1.1. Risk factors  

  Major risk factors for melanoma development include excessive sun exposure, 

number of melanocytic nevi, cutaneous phenotype, and family history of melanoma. 

Unlike the more common skin cancers that are associated with high cumulative doses 

of ultraviolet light, most melanomas appear to be associated with intense, intermittent 

exposure, particularly during childhood and adolescence.  

  Epidemiologic studies have repeatedly shown an increased risk of melanoma in 

persons with large numbers of melanocytic nevi (156). Individuals with clinically 

atypical or "dysplastic" nevi have a higher risk, particularly in the setting of a positive 

family history of melanoma. In one study, the risk of melanoma was double in 

individuals with 50 to 99 small nevi compared to those with less nevi’s numbers (157). 

About 10% of all melanoma patients have a positive family history. Genetic linkage 

studies have identified a gene CDKN2 on chromosome 9p21, which encodes the 

tumor suppressor protein p16 and is involved in melanoma development. Mutations in 

this gene have been documented in 50% of familial melanoma patients (158).  
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4.1.3. Clinical presentation, diagnosis, and prognosis  

  Melanoma generally arise from preexisting nevi and demonstrate asymmetry, 

pigment variegation, and irregular borders. Nodular melanomas are the second most 

common form of melanoma. They may be evenly pigmented and have regular borders 

and be easily mistaken for a basal cell carcinoma, seborrheic keratosis, or a benign 

nevus. Lentigo maligna melanoma occurs on sun-exposed skin, especially the face of 

elderly patients. In contrast to superficial spreading and nodular melanomas, this 

subtype is associated with high cumulative doses of the ultraviolet light. They tend to 

grow slowly and often are confined to the epidermis (lentigo maligna) for years before 

dermal invasion occurs (lentigo maligna melanoma). 

  The prognosis of melanoma is related to tumor thickness. Melanoma that is 

confined to the epidermis (in-situ) is greater than 99% curable, and patients with thin 

lesions (< 0.75 mm) have a 5-year survival rate of greater than 98%. This is in 

contrast to patients with thicker lesions (> 4 mm) who have 5-year survival rate of 

less than 50%.  

  

4.2. Melanoma therapies 

4.2.1 Surgery 

  Complete surgical excision with adequate margins and assessment for the presence 

of detectable metastatic disease along with short- and long-term followup is a 

standard procedure.  

 

4.2.2. Chemotherapy  

   Various chemotherapeutic regimens have been tried without significantly 

increasing overall survival rates of metastatic melanoma patients (159). An increasing 

number of small molecules have been developed in the last years, which may be 

promising for melanoma therapy (160-162). They aimed to specifically target 

different specific features of melanoma cells like proliferation, metastasis, 
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angiogenesis and in particular apoptosis deficiency. MAPK and PI3K/AKT 

(phosphatidylinositol 3-kinase/protein kinase B) signalling pathways appear to be 

especially promising targets for the treatment of advanced melanoma (163). 

 

4.2.3. Radiotherapy 

  Melanoma has long been considered to be relatively radio-resistant and therefore the 

mainstay of treatment has been surgery. Although radiotherapy has a relatively low 

probability of achieving long-term control in patients with incompletely resectable 

locoregional disease, it has been increasingly employed postoperatively to improve 

locoregional control in patients at a high risk for residual subclinical disease after 

surgery (164). 

 

4.2.4. Immunotherapy  

  Immunotherapy has a long history in patients with melanoma, including a number 

of different strategies of vaccines utilizing whole tumor cells, peptides, DCs, DNA 

and RNA, and antibodies. To date, IL-2 and IFN-α2b are the only approved 

immunotherapeutic agents for melanoma. Studies have demonstrated that IL-2 

allowed a complete and long-lasting remission in this disease, although only in a 

small percentage of patients (165). For patients who are at a high risk of developing 

recurrent disease, the treatment with IFN-α2b in the adjuvant setting has been shown 

to improve the overall survival from 2.8 to 3.8 years (166).  

 

4.2.5. DC vaccination 

  Earlier small clinical trials using DCs showed promising results, with frequent 

induction of anti-cancer immune reactivity and clinical responses (167). In recent 

years, additional trials have been carried out in melanoma patients.  
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DC sources 

  The addition of DCs to the adjuvants for cancer immunotherapy has been possible 

due to the introduction of new methods of DC isolation and generation. A 

breakthrough was achieved after the discovery that DCs might be generated from 

peripheral monocytes or CD34+ bone marrow precursors in the presence of GM-CSF 

and IL-4 (168). The most commonly used factors for DC maturation are cytokine 

cocktails, including PGE2, IL-1β, IL-6 and TNF-α (169). PGE2 is believed to 

enhance the migratory/homing capacity of the DC (170) by upregulating the 

expression of chemokine receptor CCR7. However, PGE2 possibly also mediated TH2 

polarisation and secretion of the immunosuppressive cytokine IL-10 (171). 

Furthermore, Banerjee et al. (172) showed that cytokine production of DCs matured 

by these cytokine cocktail were more prone to expand immunosuppressive T 

regulatory cells than immature DCs.   

  An improved protocols for maturation of DC inducing of TNF, IL-1β, PolyI:C, 

IFN-α and IFN-γ (αDC) has been proposed (173). αDC cocktail-matured DC 

displayed superior immunogenic abilities compared to standard cocktail-matured DC 

and have retained lymph node migratory capacities in vitro even though PGE2 was 

not added. Nevertheless, the published advantages of αDC1 maturation were not 

reproducible when DCs were prepared in plasma containing medium (174).  

  As an alternative to the well-defined but expensive cytokine cocktails 

monocyte-derived conditioned medium has been used for DC maturation (175). 

Presumably, this supernatant from activated monocyte cultures contains critical 

maturation factors (176).  

 

Critical issues for optimal DC vaccination 

  Apart from choosing the right source of DCs and the right method of DC 

maturation, critical issues for successful vaccination involved the choice of antigen, 

the antigen loading, and the route of administration. 

  A wide range of antigenic preparations are available for loading of DC, including 
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including peptides, whole proteins, tumor lysate, or apoptotic tumor cells. DCs could 

be transfected with mRNA or cDNA encoding tumor antigens or fused with whole 

tumor cells (177). 

  After pulsing with the tumor antigen, DCs need to be administered to the cancer 

patients. Several possible injection modes were used, such as intravenous (i.v.), 

intradermal (i.d.), subcutaneous (s.c.), intralymphatical (i.l.) or intranodal (i.n.) 

injections. Morse et al. (178) showed that DC injected i.v. primarily accumulated in 

the lungs and subsequently redistributed to the liver, spleen and bone marrow, while 

DC migrated to the regional lymph nodes after i.d. or s.c. injection. In another study, it 

was demonstrated that i.d. and i.l. administration induced a T-cell IFN-γ response, 

whereas i.v. injection resulted in a humoral response (179), suggesting that the nature 

of the immune response varied with the route of injection. Intranodal injections have 

been previously claimed to be superior to i.v. or i.d. injection (180). However, Kyte et 

al. (181) found i.d. injection to be significantly better in the inducing immune 

responses compared to i.n. inoculation. Thus, the most favourable combination of DC 

maturation status and routes of injection still need to be clarified. 

 

IL-2 and helper antigen 

  IL-2 was frequently used as the DC vaccination adjuvant. It can potently stimulate 

T-cell growth and was administered in combination with DCs for enhancement of 

T-cell proliferation and differentiation into effector cells to improve vaccine efficacy 

(182). On the other hand, high dose IL-2 therapy has been found to promote 

expansion of regulatory T-cells and could thereby potentially limit antigen specific 

immune responses (183). Even low doses of IL-2 for a period of two weeks were able 

to expand CD4+CD25+ Tregs in cancer patients (184).  

  Helper antigens in the form of microbial components such as keyhole limpet 

haemocyanin (KLH), tetanus toxoid (TT) and hepatitis B virus antigen (HBsAg) were 

also added to the vaccine. These compounds interact with the Toll like receptors and 

promote cytokine secretion and inflammation. In addition, KLH amplified a TH1-type 

cellular tumour-specific response when added to the lysate, suggesting that helper 

T-cell epitopes contained within KLH may enhance the ability of DCs to induce CTL 
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responses (185).  

 

DC clinical trials 

  During the past decade a large number of DC vaccination studies have been 

performed (186). Although no significant correlation with objective response was 

found, clinical responses (complete response, CR; partial response, PR; stable disease, 

SD) significantly correlated with an induction of vaccine specific T cells as measured 

by ELISPOT (187). These findings are very encouraging for the ongoing work to 

optimize immune monitoring in clinical vaccination trials including defined standards 

for monitoring CD8+ T-cell response against the used tumor antigen during 

vaccination (188, 189). However, it is still questionable if these T cells are really able 

to kill their tumor target in vivo, since it was demonstrated that vaccine specific 

memory CD8+ T cells could secrete IFN-γ and proliferated also in patients without 

objective clinical responses (190)  

  A few trials showed correlation between survival and immunologic response. For 

example, Kyte et al. (181) showed that DC vaccinated patients survived longer than 

non-vaccinated when retrospectively compared to a control group of patients 

receiving standard treatment. In addition, subgroup analyses indicated that vaccination 

treated HLA-A2+/HLA-B44− patients survived longer than dacarbazine treated 

patients (191). Even though the data lack sufficient statistical strength, they emphasize 

the importance of careful patient selection for these kinds of trials.    

  Taken together, there is no doubt that DC vaccines can prime and boost 

antigen-specific T-cell responses in patients. Although definite advantages in using 

DC vaccines still could not be observed, it is believed that the full potential of these 

potent immunostimulatory cells has not yet been entirely exploited. Larger clinical 

trials comparing DCs with other vaccination strategies in patients with similar stages 

of disease and using standardized immunomonitoring protocols would be beneficial 

for tumor immunotherapy.    
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5. Ret transgenic spontaneous melanoma mouse model 

  In contrast to human situation with a strong association between UV exposure and 

melanoma development (192), normal adult mice do not develop melanomas, even 

after chronic exposure to UV radiation. Shaved or hairless mice have been exposed to 

various acute (intense, short-term) and chronic (low level, long-term) UV treatments 

to simulate human sun exposure. These treatments promote various types of skin 

cancers including squamous cell carcinoma, papilloma, and fibrosarcoma, but not 

melanoma (193). Even a combined treatment with carcinogens like 

7,12-dimethylbenz[a]anthracene (DMBA) promoted little or even no melanoma 

development, although there was a significant increase in the frequency of other skin 

cancers (194).  

The conventional animal melanoma models are based on the transplantation of 

tumor cells (e.g., B16), in which the natural history of the disease and tumor-host 

interactions are not comparable with the clinical situation. In contrast to 

transplantation models, a recently described ret transgenic mouse model closely 

resembles human melanoma with respect to tumor genetics, histopathology and 

clinical development (195). 

  Ret transgenic mouse model (C57BL/6 background) was described by Kato et al. in 

1998 (195). By introducing the recombinant human proto-oncogene ret fused to 

mouse metallothionein-I (MT) promoter-enhancer, primary melanoma in ret 

transgenic mice develops subcutaneously. Tumors at the late stage of development 

metastasize to the lymph nodes, lung, brain, kidney, liver and spleen (195), which 

corresponds well to that in human skin malignant melanomas, in which the lymph 

nodes and lung are the most common sites of distant metastasis (196)  

  The mechanism of melanoma development in ret transgenic mice is still under 

investigation. Kato et al. (195) reported that the level of Ret protein expression and 

activity at the benign stage was much higher than those in the skin with melanosis at 

the tumor-free stage. And the expression level and kinase activity of Ret in tumors at 

the malignant stage were further elevated, which lead to the activation of its 

downstream signaling molecules, such as Erk2 and c-Jun. Tumors at the malignant 

stage showed also a high activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, 
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which are indicators of the potential capability for tumor invasion and metastasis 

(195). 

  Finally, Felbert et al. (197) showed that IL-6 gene ablation in ret transgenic mice 

could lead to a decrease of both melanoma incidence and tumor size. The mechanism 

of IL-6-induced tumor progression is probably due to constitutive activation of PI3K 

in tumors. 

 

6. Aims of the study 

  DC dysfunctions have been reported in many types of human tumors and tumor 

animal models. However, the mechanisms of the DC impairment during tumor 

progression are still not completely clear. The objective of this work was to 

investigate the mechanisms of the acquirement of tolerogenic properties by DCs in the 

process of melanoma development. Using ret transgenic mouse model of spontaneous 

melanoma, which closely resembles human melanoma as regard to tumor genetics, 

histopathology and clinical development, the following questions were addressed: 

1) whether DCs from ret transgenic tumor bearing mice display a tolerogenic 

pattern of phenotype and function during tumor progression; 

2) which tumor-derived cytokines and growth factors as well as transcription 

factors from their signaling pathways are involved in the driving of DCs to 

become tolerogenic; 

3) how to reconstitute the impaired function of DCs and to improve thereby 

anti-tumor immune responses in tumor bearing mice. 

  By addressing these questions, we hope to find a strategy which may benefit 

immunotherapy in melanoma patients. 
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II. Materials and methods 

 

7. Mice and cell lines 

  All mice were crossed and kept under specific pathogen-free conditions in the 

animal facility of German Cancer Research Center (Heidelberg). Experiments were 

performed in accordance with government and institute guidelines and regulations. 

 

7.1. Ret transgenic spontaneous melanoma mouse model 

  Ret transgenic mice (C57BL/6 background), which express human Ret 

proto-onkogene in melanocytes under the control of mouse metallothionein-I 

promoter-enhancer were kindly provided by Dr. I. Nakashima (Japan) (185). The 

survival and general performance of mice was monitored at least twice a week. 

Spontaneous tumor development was assessed macroscopically. 

 

7.2. OT-I transgenic mice 

  Homozygous OT-I mice, which express transgenic TCR (Vα2/Vβ5) specific for 

ovalbumin (OVA)-derived peptide SIINFEKL, were kindly provided by Dr. B. Arnold 

(Germany).  

 

7.3. Cell lines 

  Cells were all cultured in 5% CO2 at 37 °C. 

Ret melanoma cell line 

Ret melanoma cell line was established from the primary skin tumor of Ret 

transgenic mouse. Cells were cultured in RPMI-1640 medium supplemented with 
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10% FCS, 100 U/ml penicillin, 100 mg/ml streptomycin, L-glutamin and 5 x 10-5 

mol/L 2-mercaptoethanol (2-ME). 

Ret melanoma cells (2 x 105 cells/ml) were cultured in complete medium for 48h. 

Supernatants were then collected and stored at -20 °C. 

B16F10 cell line 

  B16F10 melanoma cell line was cultured in DMEM medium supplemented with 

10% FCS, 100 U/ml penicillin, 100 mg/ml streptomycin, and L-glutamin. 

 

8. Chemicals, buffers/medium, antibodies/cytokines 

8.1. Chemicals 

3-Amino-9-ethyl-carbazol (AEC) tablets     Sigma, Cat.#A6926 

Agarose                              Roth, Cat.#2267.2 

Ammonium chloride (NH4Cl)               Merck, Cat.#101141 

Bovine serum albumin (BSA)                 Sigma, Cat.#7030-50G 

Dimethylsulfoxid (DMSO)                    Merck, Cat.#109678 

GeneRuler™ 100bp DNA Ladder Plus           Fermentas, Cat.#SM0321 

EDTA disodium                        GERBU, Cat.#1034 

0,5M EDTA (pH 8.0)                         GIBCO, Cat. #15575-098 

100% Acetic acid (CH3COOH)                 Merck,  Cat.#100063 

1% Ethidium bromide                   Merck, Cat.#111608 

Fatal bovine serum (FBS) PAN Biotech GmbH,   

Cat.#3702-P260718 

30% Hydrogen peroxide (H2O2)                Sigma, Cat.#H1009 
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Isofluran                            DeltaSelect 

2-mercaptoethanol (2-ME)                     Merck, Cat.#444203 

Potassium hydrogen carbonate (KHCO3)          Roth, Cat. #P748 

Sodium acetate (CH3COONa)                  neoLab, Cat.#4720 

Sodium azide (NaN3)                         Roth, Cat.#K305 

Sodium carbonate (Na2CO3),                   AppliChem, Cat.#A3900 

Sodium chloride (NaCl)                       Fluka, Cat.#71379 

Sodium hydrogen carbonate (NaHCO3)          AppliChem, Cat.#A3084 

N,N – Dimethylformamid (DMF)               Sigma, Cat.#D-4551 

1x PBS                               PAA, Cat.#H15-002 

100x Penicillin / Streptomycin                   PAA, Cat.#P11-010 

Phenol / Chloroform                  Roth, Cat.#A156-1 

Potassium bicarbonate (KHCO3)                Sigma,  Cat.#P9144 

Sodium Dodecyl sulfate (SDS)                  Gerbu, Cat.#1212 

Proteinase K                            Sigma, Cat.#P6556 

Tris                                        Roth, Cat.#4855.1 

Trizol                             Invitrogen,  Cat.#15596-026 

0.4% Trypan blue solution              Sigma, Cat.#T8154 

Tween20                            Sigma, Cat.#P-2287 

Xylene                             J.T. Baker, Cat.#3410 

Goat serum                            GIBCO, Cat.#PCN5000 
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8.2. Buffers / medium 

Enzyme-linked immunosorbent assay (ELISA) 

Assay Diluent   

1x PBS containg 10% FBS (v/v) 

Wash buffer    

1x PBS containing 0.05% Tween20 (v/v) 

 

Enzyme-linked immunosorbent spot (ELISPOT) 

AEC buffer 

A tablet of AEC (20 mg) was dissolved into 2.5 ml dimethylformamide in a 50 ml 

Falcon tube. 8.4 ml 0.2 M sodium acetate, 3.5 ml 0.2 M acetate acid and 35.6 ml H2O 

were then added. After mixed well, solution was filtered with 0.45 μm filter and 25 μl 

H2O2 was added. The prepared AEC buffer should be kept in dark and used within one 

month after preparation.  

Coating buffer   

Buffer A: 1,59 g Na2CO3 dissolved in 100 ml H2O  

Buffer B: 2,93 g NaH2CO3 dissolved in 100 ml H2O 

Working coating buffer (pH 9.6) was prepared by adding 1 ml A, 1 ml B and 8 ml 

H2O into a 15 ml Falcon tube. 

Wash buffer 

1x PBS containing 0.05% Tween20 (v/v) 
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Flow cytometry (FACS) 

FACS 

1 x PBS containing 2% FBS and 0.2% NaN3 

FACS blood buffer 

1x PBS containing 2% FBS, 0.2% NaN3, and 0.02% Liquemin N 

Red blood cell lysis buffer    

8,29 g NH4Cl, 1 g KHCO3, and 37,2 mg EDTA were dissolved in 1 L H2O pH (7.2-7.4) 

as a 10-time stock solution. 1-time working buffer was prepared by diluting stock 

solution with H2O. 

 

Agarose gel electrophoresis 

DNA loading buffer 

6 x loading buffer (0.25% bromphenol blue and 30% glycerol) was diluted with H2O 

to make 1x loading buffer 

TAE-Puffer    

242 g Tris, 100 ml 0.5 M EDTA, and 57.1 ml pure acetic acid were mixed with H2O 

to reach a final volume of 1 liter. 

  

Immunhistochemistry 

Blocking buffer 

1x PBS containing 10% goat serum, 2% BSA and 0.05% Tween-20 

Antibody diluent 

1x PBS containing 2% goat serum, 2% BSA and 0.05% Tween-20 
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Wash buffer     

1x PBS containing 0.05% Tween-20 

 

Polymerase chain reaction (PCR) 

PCR Mix     

To prepare 50 μl PCR mix, 5 µl 10x Reaction Puffer, 1 µl 10 mM dNTPs, 2 µl of each 

primer stock, 0.5 µl Taq Polymerase, 3 µl templates and 37 µl ddH2O were mixed 

Digesting buffer 

50 mM Tris, 20 mM NaCl, 1 mM EDTA and 1% SDS in H2O 

 

Magnetic activated cell sorting (MACS) buffer 

PBS with 0.5% BSA and 2 mM EDTA 

 

8.3. Medium  

Complete culture medium 

  RPMI 1640 supplemented with 10% heat-inactivated FCS, 100 U/ml penicillin, 100 

mg/ml streptomycin, L-glutamin and 5 x 10-5 mol/L 2-mercaptoethanol (2-ME) was 

used for cell culture unless especially mentioned. 

DC medium      

RPMI 1640 supplemented with 10% heat-inactivated FCS, 100 U/ml penicillin, 100 

mg/ml streptomycin, L-glutamin, 5 x 10-5 mol/L 2-mercaptoethanol (2-ME), 10 ng/ml 

recombinant mouse GM-CSF, and 10 ng/ml recombinant mouse IL-4.  

10x Trypsin / EDTA   
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  10x Trypsin / EDTA was purchased from PAA (Cat.#L11-003) 

 

2.4. Antibodies 

  All antibodies for flow cytometry were purchased from BD Biosceiences: 

biotin-conjugated hamster anti-mouse CD11c (clone HL3); fluorescein isothiocyanate 

(FITC)-conjugated rat anti-mouse I-A/I-E (MHC class II, clone 2G9); 

R-phycoerythrin conjugated rat anti-mouse CD40 (clone 3/23), hamster anti-mouse 

CD80 (clone 16-10A1), rat anti-mouse CD86 (clone GL1); PerCP-Cy5.5 mouse 

anti-mouse CD45.2 (clone 104).  

  Rat monoclonal antibody against mouse interferon gamma (IFN-γ) (clone 

RMMG-1) was bought from Biosource. Stock concentration was 2.5 mg/ml. Aliquots 

were stored at -20 °C.  

  Rat anti-mouse IFN-γ (clone XMG1.2, BD Biosciences, Cat. #554410) was used as 

a detection antibody for ELISPOT. 

  Monoclonal antibody against IL-6 (Cat. #MAB406), TGF-β1 (Cat. #MAB240), and 

VEGF (Cat. #AF-493-NA) were purchased from R&D Systems.  

  Antibodies against phosphorylated p38 MAPK (Thr180/Tyr182) (Cat. #9215), 

phosphorylated STAT3 (Tyr705) (Cat. #9131), phosphorylated Smad3 (Ser423/425) 

(Cat. #9520), and phosphorylated Erk1/2 MAPK (Thr202/Tyr204) (Cat. #4377) were 

purchased from Cell Signaling Technology. 

 

2.5. Cytokines 

  Recombinant mouse granulocyte macrophage-colony stimulating factor (GM-CSF, 

eBiosciencee) was shipped as100 μg/ml stock and stored at -20 °C in 10 μl aliquots. 

  Recombinant mouse IL-4 (R&D systems) was reconstituted in sterile PBS 

containing 0.1% bovine serum albumin to reach a stock concentration of 100 μg/ml, 

and stored at -20 °C in 10 μl aliquots. 

41 



Materials and methods 

8.6. Other reagents  

  SIINFEKL peptide was synthesized in the core facility of German Cancer Research 

Center (Heidelberg).  

  Phosphothioate (PTO)-modified CpG ODN 1668 (5’-TCC ATG TTC CTG ATG 

CT-3’) and primer pairs for RT-PCR were obtained from MWG. 

  Lipopolysaccharide (LPS, Sigma-Aldrich, Cat. #L2654) was dissolved in PBS at a 

1mg/ml concentration and aliquots were stored at -20°C.  

  SB203580 (a specific p38 MAPK inhibitor, Sigma-Aldrich, Cat. #S8307) was 

dissolved in DMSO to make a 10 mM stock concentration and aliquots were stored at 

-20 °C. 

 

9. Reagent kits 

9.1 MACS kit 

  CD11c (N418) Microbeads (Cat. #130-052-001) and CD8a+ T-cell isolation kit (Cat. 

#130-090-859) were purchased from Miltenyi Biotec. 

 

9.2. ELISA kit 

  ELISA kits for mouse IL-12p70 (Cat. #555256), IL-10 (Cat. #555252), and IFN-γ 

(Cat. #555138) were BD OptEIATM Sets purchased from BD Biosciences. 

 

9.3. 3,3’,5,5’ tetramethylbenzidine (TMB) substrate reagent kit 

  TMB substrate reagent kit is used together with BD OptEIATM ELISA sets.  

Substrate Reagent A in the kit contains hydrogen peroxide, and Substrate Reagent B 

contains TMB. 
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9.4. Luminex cytokine assay  

  Kits for luminex cytokine assay include 23-plex Bio-Plex mouse cytokine (Bio-Rad, 

Cat. #171-F11241), single plex mouse cytokine for VEGF (Bio-Rad, Cat. 

#XD0000007B), M-CSF (Bio-Rad, Cat. #XD0000000G), and TGF-β1 (Millipore, Cat. 

#TGFB-64K-01). 

 

9.5. Immunhistochemistry 

Vectastain ABC-AP Kit                   Vector Laboratories, Cat.#AK-5000 

Alkaline Phosphatase Substrate Kit          Vector Laboratories, Cat.#SK-5100 

 

10. Routine laboratory materials  

10.1. Devices  

ELISA Reader             Rainbow Thermo (SLT) 

ELISPOT Reader         Bioreader 3000 (Biosys)  

FACS machine          FACSCalibur 4-Farben (BD) 

        FACSLSRII 6-Farben (BD) 

Fume hood         STA 120 1297 (Prutscher)  

Refrigerator (-80 °C)    HeraFreeze (Heraeus) 

Gel chamber           40-1214 (PeqLab) 

Gel chamber power supply unit   EC105 (Apparatus Corporation) 

Gel photo chamber        Gel Jet Imager INTAS (UV Systems) 

Warming block         Thermomixer compact (Eppendorf) 
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Incubator              HeraCell (Heraeus) 

Refrigerator (-20 °C)           Premium (LiebHerr) 

Microscopes              DMIL (Leica) 

                     DMRE (Leica) 

Microscope camera         DC500 (Leica) 

Microtome              RM 2125 RT (Leica) 

Microtome water bath      HI 1210 (Leica)  

Microwave oven        R-352 (Sharp) 

PCR-System              DNA-Engine DYAD (MJ Research) 

pH meter               766 (Calimatic) 

Photometer              UltroSpec 3100pro (Amersham) 

Laminar flow                Hera Safe (Thermo Electron Cooperation) 

Container for liquid nitrogen    Isotherm (KGW) 

Liquid nitrogen tank       Biosafe MD (Messer) 

Timer                 Oregon Scientific 

Vortex                 REAX top (Heidolph) 

                   Vortex Genie 2 (Scientific Industries) 

Weighing machine    BP 3100P (Sartorius) 

Water bath              DC3 (HAAKE / GFL) 

Centrifugers                Labofuge 400R (Heraeus) 

                   Biofuge pico (Heraeus) 
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                  Biofuge primo R (Heraeus) 

                  Varifuge K (Heraeus) 

                  RT 7 Plus (Thermo Electron Cooperation 

  

10.2. Routine laboratory materials 

ELISA Plates          MaxiSorp 96-well, Nunc, Cat.#442404 

ELISPOT Plates Silent Screen Plate 96-well clear w/o Lid,, Nunc,     

Cat.#256154  

Needles               0,4x19 mm Mikrolance (BD) 

                  0,3x13 mm Mikrolance (BD) 

Cryo tubes             Cryo.s (Greiner) 

Pipets witht adjustable volumes 

                     2-20 µl, 20-200 µl, 200-1000 µl; Rainin 

Objekt carrier          76x26 mm SuperFrostPlus 

                  (Menzel-Gläser) Cat. J1800AMNZ 

Coverglass                   24 x 24 mm  (Roth) 

Tubes 15 ml / 50 ml           Polypropylen (Falcon)      

0.5 ml Eppendorf tubes 

1.5 ml Eppendorf tubes 

2 ml Eppendorf tubes 

Syringes                 1 ml Plastipak (BD) 

                  5 ml (Terumo) 
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                  50 ml (Terumo) 

Cell culture plates         96-well-Platte (Greiner) 

                  24-well-Platte (TPP) 

                  6-well-Platte (Greiner) 

Cell strainer            100µm; Nylon (BD Falcon) 

   

11. Softwares for data analysis 

  Flowjo (Version 7.2.4), Tree Star, Inc., Ashland, USA 

  GraphPad PRISM (Version 4), GraphPad Software, Inc., San Diego, USA 

 

12. Methods 

12.1. Genotypization of ret transgenic mice 

  Each tail biopsy of ret transgenic mouse was digested in 20 µl Proteinase K 

digestion buffer at 56 °C for 3 h. Afterwards 300 µl ddH2O was added and tubes 

containing digested biopsies were put at 99 °C for 3 min to inactivate the enzyme 

activity. 3 µl freshly isolated DNA was added into 47 µl PCR Mix buffer and then 

PCR was performed. The PCR program was set as following: 

 - Step 1:  95 °C 5 min 

 - Step 2:    94 °C 1 min 

 - Step 3:    58 °C 1 min 

 - Step 4:    72 °C 1.5 min 

 - Step 5:    back to Step 1 for another 34 cycles 

 - Step 6:    72 °C  10 min 
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 - Step 7:  4 °C  for ever 

The primer sequences used for detecting ret gene expression in PCR mix were 

5’-AAA ATG CAG TCA GAT ATG GA-3’, 5’-ACT CGG GGA GGG GTT C-3’. 

β-actin is used as house keeping gene to qualify PCR process. The sequences for 

β-actin primers are 5’-CAC CGG AGA ATG GGA AGC CGA A-3’, 5’-TCC ACA 

CAG ATG GAG CGT CCA G-3’. 

Results for PCR were tested by 1.5% agarose gel electrophoresis. The gel was 

prepared by dissolving 1.5% agarose in 100 ml TAE buffer in microwave oven and 4 

µl ethidiumbromid was added to the heated agarose containing TAE buffer before 

watering the buffer to gel chamber. 

10 µl PCR product from each sample was loaded to prepared gel after mixed with 3 

µl 6x loading buffer and DNA marker was used to locate ret and β-actin genes. 

Potential of power adaptor is set at 100 V. PCR results were then photographed by gel 

photo chamber. 

 

12.2. Preparation of single cell suspension from mouse organs 

  Mice were killed by cervical dislocation after anestesy with isofluran.   

 

12.2.1 Spleen 

  Single cell suspension from mouse spleen was prepared using 9 cm petri dishes 

with 8-10 ml cold PBS. Spleens were damaged by a 5 ml syringe plunger and filtered 

through cell strainer (100 µm). Cells were washed once with cold PBS at 400 g for 5 

min. Red blood cells were lyzed with 1ml lysis buffer at room temperature for 3 min 

followed by adding 9 ml PBS to stop the reaction. After centrifugation (400 g, 5 min), 

cell pellets were resuspended in appropriate buffers to perform different assays. 
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12.2.2 Lymph nodes 

Freshly isolated mouse lymph nodes were smashed between two object carriers. 

The object carriers were then washed with cold PBS to completely remove the 

remaining cells. Cells were then washed once with cold PBS at 400 g for 5 min and 

resuspended in FACS buffer for the following flow cytometry. 

 

12.2.3 Bone marrow 

Bone marrow cells were obtained from femurs and tibiae and lyzed with 1 ml lysis 

buffer after centrifugation. Then 9 ml PBS was added to stop the reaction. After 

centrifugation (400 g, 5 min), cell pellet was resuspended in appropriate buffers to 

perform different assays. 

 

12.2.4 Tumor 

  Freshly removed tumor mass was pressed by a 5 ml syringe plunger through a 

cell strainer into a 50 ml Falcon tube. Cells were washed with cold PBS at 400 g for 5 

min. Cell pellet was resuspended in appropriate buffers to perform different assays. 

 

12.3. Flow cytometry 

  For phenotype analysis of DCs in lymphoid organs and primary tumors, single cell 

suspensions were treated with Fc-block solution followed by incubation with mAbs 

against MHC classII-FITC, biotinylated CD11c, CD40-PE, CD80-PE, and CD86-PE 

for 20 min at 4 °C. After washing with FACS buffer, cells were treated with 

streptavidin-APC for 10 min at 4 °C. If measurements need to be performed on other 

day, cells were fixed in 2% paraformaldehyde (PFA) until measurement. Before 

measured in flow cytometer, cells were washed and resuspended in PBS. 

  To test phosphorylation levels of p38, Erk1/2, STAT3, and Smad3 ex vivo, freshly 

isolated splenocytes were fixed in 2% PFA for 10 min at 37 °C and permeabilized in 
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100% methanol for 30 min on ice followed by extensive washing with PBS. Purified 

rabbit anti-mouse antibody against p38, Erk1/2, Stat3, or Smad3 were added to the 

cell suspension together with biotinylated CD11c mAbs for 1 h at room temperature. 

After being washed, cells were incubated with goat anti-rabbit antibodies labeled with 

Alexa Fluor 488 and streptavidin-APC antibodies for 30 min at room temperature. 

Afterwards, cells were washed and measured in flow cytometer. 

  Acquisition was performed by four-color flow cytometry using a FACSCalibur with 

CELL-Quest software (BD Biosciences) or FACSCantoII with Diva software. Dead 

cells were excluded based on scatter profile or propidium iodide inclusion. FlowJo 

software (Tree Star) was used to analyze at least 100,000 events. Data were expressed 

as dot plots or histograms. 

 

12.4. Bone marrow-derived DC culture 

  Bone marrow cells were cultured in complete culture medium supplemented with 

10 ng/ml GM-CSF and 10 ng/ml IL-4 in 9 cm petri dishes (2 x 106 cells in 10 ml 

medium). On day 3, another 10 ml fresh medium was added. On day 6 and 8, 10 ml of 

supernatant from each plate was collected and centrifuged followed by resuspending 

cell pellet with 10 ml fresh medium. Cells were ready to be used as immature DCs at 

day 8-10.  

 

12.5. Isolation of DCs from spleen  

  DCs were isolated from spleens using CD11c magnetic beads according to 

manufacturer’s instroction. Cells were centrifuged at 400 g for 5min, resuspended in 1 

ml ice cold sterile PBS containing 2% FCS, 25 μl 40 mg/ml collagenase IV, 250 μl 20 

mg/ml DNAse and incubated for 25 min at room temperature. Then, 5 ml PBS 

containing 2% FCS was added to stop the reaction. Cells were then passed through 

cell strainer and carefully overlayed on 3 ml Lymphoprep solution in a 15 ml tube. 

After 30 min centrifugation (400 g, no shake), supernatant from upper phase and 

interphase was transfered into a 15 ml tube and centrifuged at 300 g for 8 min at 4°C. 
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Cell pellets were resuspended in 400 μl MACS buffer and 100 μl CD11c Microbeads 

and incubated for 15 min at 4℃. After washing with 2 ml MACS buffer (400 g, 8 min, 

4°C), cells were resuspended in 500 μl MACS buffer and put onto pre-washed 

mini-columns. After the unlabeled cells flew through, columns were washed three 

times to completely remove unbounded cells. The magenetically labeled cells were 

flushed out by firmly applying the plunger supplied with the column. After 

centrifugation (400 g, 8 min, 4°C), cells were resuspended in the complete culture 

medium. 

 

12.6. DC cytokine secretion 

  For investigating cytokine secretion by bone marrow derived DCs, cells (5 x 105 

cells/ml) were stimulated with 1 μg/ml LPS for 24 h at 37 °C.   

  To study cytokine secretion by freshly isolated spleen DCs, cells (5 x 105 cells/ml) 

were stimulated with 3 μg/ml CpG 1668 for 24 h at 37 °C.  

  Supernatants were collected and stored at -20 °C in aliquots. IL-12p70 and IL-10 

levels in supernatants were tested by ELISA kit. 

 

12.7. T-cell priming and restimulation 

  Ex vivo isolated spleen DCs were loaded with SIINFEKL (100 ng/ml) for 1h at 

37°C, then washed and co-cultured with T cells (T cell/DC ratio = 10:1). In some 

experiments, DCs were co-incubated with naive CD8+ T cells isolated from spleens of 

OT-1 mice (1 x 105 T cells/well) for 3-4 days. In another set of experiments, DCs 

were co-cultured with OVA-specific CD8+ T cells for 40 h.  

  To test effect of SB203580, a p38 MAPK inhibitor, on the DC capacity to activate 

T cells, spleen DCs isolated using CD11c+ magnetic beads were loaded with 

SIINFEKL (100 ng/ml) with or without 10 μM SB203580 for 1 h at 37 °C. Then cells 

were washed for 3 times with complete culture medium to remove extra peptide. 
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Isolated CD8+ T cells from spleen of OT-I mouse (1x105 cells in 200 μl medium) were 

cocultured with peptide-loaded DCs at 1:5 ratio in U-bottom 96-well plate for 3 days 

at 37 °C. Supernatants were collected and stored at -20 °C in aliquots. IFN-γ level in 

supernatant was detected by ELISA kit. 

 

12.8. ELISA 

Mouse IL-12p70, IL-10, and IFN-γ ELISA assays were performed according to 

manufacturer’s instructions. ELISA plates were precoated with capture antibodies 

overnight at 4 °C, washed 3 times with the washing buffer (PBS with 0.05% 

Tween-20) and blocked with assay diluent (PBS with 10% FCS) at room temperature 

for 1 h. After next washing, standard and samples were incubated at room temperature 

for 2 h followed by 5 times washing with the wash buffer. Afterwards, detection 

antibodies and streptavidin-HRP reagent were added to each well, and incubated at 

room temperature for 1 h followed by 7 times washing with wash buffer. Then 

substrate solution was added to each well, and plates were incubated in dark around 

10-30 min. To stop the reaction, a stop solution (1 M H3PO4) was added to each well. 

Extension was measured using spectrophotometer at 450 nm. 

 

12.9. IFN-γ ELISPOT 

ELISPOT assays employ the sandwich ELISA technique. Either monoclonal or 

polyclonal antibodies specific for the particular cytokine was pre-coated onto a 

polyvinylidene difluoride (PVDF)-backed microplate. Appropriately stimulated cells 

were pipetted into the wells and the microplate was placed into a humidified 37 °C 

CO2 incubator for a certain period of time. During this incubation period, the 

immobilized antibody binds secreted cytokines in the immediate vicinity of the 

secreting cells. After washing away cells and unbound substances, biotinylated 

polyclonal antibodies specific for the chosen cytokine was added to the wells. After 

washing, alkaline-phosphatase conjugated to streptavidin was added. Unbound 

enzyme was subsequently removed by washing, and a substrate solution (AEC) was 
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added. A red colored precipitate forms and appears as spots at the sites of cytokine 

localization, with each individual spot representing an individual analyte-secreting 

cell. The spots can be counted with an automated ELISPOT reader system. 

In the present work, IFN-γ ELISPOT assay was performed as following. First, 

ELISPOT plates were coated with 50 μl diluted anti-IFN-γ antibody (10 μg/ml) 

overnight at 4 °C. After 5 times washing with sterile PBS, plates were blocked with 

complete culture medium (200 μl/well) at 37 °C for 1 h. Then, block medium was 

removed and 100 μl cell suspension containing 1 x 105 naive OT-I CD8 T cells or 

1x104 OVA-specific T-cell line was pipetted to each well followed by adding peptide 

loaded DCs in 1:5 or 1:10 DC/T ratio. Cells were cultured for another 3-4 days (naive 

OT-I T cells) or 40 h (OVA-specific CD8+ T cell line esatablished upon peptide 

immunization of C57BL/6 mice via SIINFEKL together with T-helper peptide 

(aa128-140) derived from HBV core antigen). After co-culture, supernatants were 

removed and plates were washed 3 times with the wash buffer (PBS with 0.05% 

Tween-20). 50 μl biotinjulated anti-mouse IFN-γ antibody was added to each well and 

plates were incubated at room temperature for 2 h followed by 3 times washing with 

wash buffer. Then, 50 μl 1:100 diluted streptavidin-horseradish peroxidase was added 

to each well and plates were incubated at room temperature for 2 h followed by 3 

times washing with wash buffer and another 3 times washing with PBS. 100 μl AEC 

buffer was added to each well. Plates were incubated in dark for 5-20 minutes until 

clear red spots can be seen. To stop the reaction, plates were washed with tap water. 

After air dried, plates were read in Bioreader 3000. Spots measured in the presence of 

unpulsed DCs were considered as non-specific background (negative control). 

Samples were considered to contain OVA-reactive T cells producing IFN-γ when spot 

numbers in experimental triplicates were significantly higher than the numbers in 

negative control triplicates (p < 0.05). 

 

12.10. Reverse transcription (RT)-PCR 

RT-PCR is a process of converting RNA to DNA followed by PCR amplification of 

the reversely-transcribed DNA. First, complementary DNA (cDNA) is made from an 

mRNA template using dNTPs and reverse transcriptase. After the reverse transcriptase 
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reaction is complete, cDNA has been generated from the original single strand mRNA 

and standard PCR is initiated.  

In the current work, total RNA from investigated cells (freshly isolated spleen DCs, 

bone marrow derived DCs, and tumor cell lines) was extracted by using TRIZOL 

reagent according to the manufacturer’s instruction. RNA was reverse-transcribed to 

cDNA using Moloney murine leukaemia virus reverse transcriptase and random 

hexamers for 2 h at 42 °C. 3 μl cDNA was then amplified with 2.5 U of Tag 

polymerase in PCR reaction buffer using specific primer pairs. PCRs for β-actin were 

run to normalize the levels of mRNA in the samples. Primers used were: IL-10, 

5’-TCA AAC AAA GGA CCA GCT GGA CAA CAT ACT G-3’, 5’-CTG TCT AGG 

TCC TGG AGT CCA GCA GAC TCA-3’; TGF-β1, 5’-CTC CCA CTC CCG TGG 

CTT CTA G-3’, 5’-GTT CCA CAT GTT GCT CCA CAC TTG-3’; TLR4, 5’-AGT 

GGG TCA AGG AAC AGA AGC A-3’, 5’-CTT TAC CAG CTC ATT TCT CAC C-3’; 

IL-6, 5’-CCC AAC AGA CCT GTC TAT ACC-3’, 5’-CAG CTT ATC TGT TAG GAG 

AGC-3’; VEGF, 5’-TTA CTG CTG TAT CTC CAC C-3’, 5’-ACA GGA CGG CTT 

GAA GAT G-3’; β-actin, 5’-CAC CGG AGA ATG GGA AGC CGA A-3’, 5’-TCC 

ACA CAG ATG GAG CGT CCA G-3’.
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III. Results 

13. Genotypization and tumor development of ret transgenic mice  

  As shown in Fig. 13.1, the sample from mouse, which expressesed ret gene showed 

a clear band around 600kb (line S2), whereas the sample from non-transgenic 

littermate showed no band at this position (line S1).  

 

 

Figure 13.1. A typical genotypization result 
after agarose gel electrophoresis. Lines from 
left to right: DNA marker (Marker), positive 
control (p.c., cDNA from ret transgenic 
mouse), negative control (n. c., PCR product 
without adding cDNA template), sample 1 (S1), 
sample 2 (S2). 

   

After genotypization, tumor development of ret transgenic mice was monitored 

macroscopically twice a week. After a short latency (20-70 days of age), around 25% 

of all transgenic mice develop skin tumors subcutaneously on the face (nose, ears, 

eyes and neck), back or on the tail (Fig.13.2 A, B). Tumor bearing mice developed 

metastases in the lymph nodes (Fig. 13.2 C), lungs, liver and brain (data not shown).  

 

Tumor 

 

 

Figure 13.2. Melanoma development in ret 
transgenic mice. (A) Tumor localization in ret 
transgenic mouse (ret tu, right) is indicated with 
arrows. (B) Hematoxilin and eosin staining of 
the subcutaneous primary tumor. Magnification 
x 200. (C) Metastatic lymph nodes in ret 
transgenic mouse with macroscopical tumors. 
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14. Phenotype analysis of dendritic cells in lymphoid organs of ret 

transgenic mice 

  Phenotype of DCs from the spleen, bone marrow and lymph nodes of ret transgenic 

mice were analyzed using flow cytometry. MHC class II+ CD11c+ cells from above 

mentioned organs were considered as DCs. Expression of CD40, CD80 and CD86 

costimulatory molecules were used to investigate DC maturation status.  

 

14.1. Analysis of total DC numbers 

  Gating strategy used for the DC analysis is shown in Fig. 14.1 A. A significant 

reduction of DC number was found in both spleen and bone marrow (BM) of ret 

transgenic mice with macroscopical tumors (tumor bearing mice) as compared to 

non-transgenic littermates (wild type) or ret transgenic mice without macroscopical 

tumors (tumor free mice) (Fig. 14.1 B).  
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Figure 14.1. Analysis of DCs in the lymphoid organs of ret transgenic mice. Cells from ret 
transgenic mice with macroscopical tumors (ret tu) or without them (ret) as well as from 
non-transgenic littermates (WT) were stained with mAbs for CD11c, MHC class II, and 
leukocyte marker CD45.2 followed by flow cytometry. (A) Dot plots are representative of 
tumor bearing mice. CD11c+ MHC class II+ cells are defined as DCs. (B) Accumulative data 
for DCs in spleens and BM are expressed as the percentage within leukocytes. (C) 
Accumulative data for DCs in lymph nodes with macroscopic metastases (ret tu met) and 
without visible metastatic lesions (ret tu non-met) expressed as the percentage within 
leukocytes. Data are means ± SEM from 5-20 mice. * P < 0.05, significant differences 
between groups indicated with the lines.   

   

Similar to the spleen and BM, there was a significant decrease in total DC numbers 

in lymph nodes with metastasis (ret tu met) as compared to lymph nodes without 

visible metastases from the same tumor bearing mice (ret tu non-met), lymph nodes 

from tumor free or from wild type mice (Fig. 14.1 C). 

 

 

 

56 



Results 

14.2. Analysis of DC maturation status in spleen, BM and lymph nodes of 

ret transgenic mice 

  Next, we investigated the numbers of mature DCs in the spleen, BM and lymph 

nodes. A profound reduction in numbers of DCs expressing CD40, CD80 or CD86 

molecule was observed in all investigated lymphoid organs as compared to control 

groups (P < 0.05, Fig. 14.2 A-C).  

Figure 14.2. Decreased levels of mature DCs in 
lymphoid organs of ret transgenic tumor bearing 
mice. Cells from tumor bearing (ret tu), tumor 
free (ret) and wild type (WT) mice were analyzed 
by flow cytometry using mAbs for CD11c, MHC 
class II, CD45.2 and costimulatory molecules 
CD40, CD80 and CD86. Results (means ± SEM) 
from 4-16 animals are expressed as the 
percentage of CD40+, CD80+ or CD86+ DCs 
among CD45.2+ leukocytes. * P < 0.05, 
differences between indicated groups. 

 

These data indicated a systemic decrease in numbers of total and mature DCs in 

lymphatic organs from ret transgenic mice with macroscopical tumors. No statistical 

correlation between observed alterations and mouse age, tumor weight or the 

dynamics of tumor growth was found (data not shown). 

 

15. Phenotype analysis of tumor infiltrating DCs  

  Furthermore, phenotype of tumor infiltrating dendritic cells (TIDCs) was 

investigated in primary tumors. There are two ways to get a single cell suspension of 
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tumor tissue: 1) to destroy tumor tissue mechanically; 2) to digest tissue with enzymes, 

such as collagenase and DNase. In our experiments, single cell suspension from tumor 

samples was prepared mechanically to exclude the possibility to damage the 

expression of surface markers by the enzyme treatment. TIDC numbers were 

examined within alive CD45.2+ cells. CD45.2+ was used as a marker of tumor 

infiltrating leukocytes (TILs, Fig. 15 A). Tumor progression in ret transgenic mice 

with macroscopical tumors was evaluated by the tumor weight measurement after 

mice have been sacrificed. 

 

Figure 15. Tumor infiltration with DCs is dependent on tumor progression. Single cell 
suspensions prepared from tumors of ret transgenic mice were stained with mAbs for CD11c, 
MHC class II, CD45.2, and CD40. (A) Representative dot plots are shown. (B and C) The 
weight of each tumor sample are plotted against the percentage of tumor infiltrating DCs 
(TIDCs) within CD45.2+ tumor infiltrating leukocytes (TILs) (B) or against the percentage of 
CD40+ mature DCs within TIDCs (C). The correlation between the two variables was 
calculated using a linear regression analysis. 

 

  Elevating proportions of TIDCs among TILs were found to correlate with 

increasing weight of primary melanomas (r2=0.18; P <0.05; Fig. 15 B). Although 

more DCs infiltrated into larger tumors, obviously they did not correlate with a better 
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prognosis in ret transgenic mice. Therefore, we further investigated the relationship 

between the maturation status of TIDCs and tumor progression. Notably, in larger 

tumors, significantly higher amounts of TIDCs displayed immature phenotype 

according to the CD40 expression profile as compared to DCs infiltrating smaller 

tumors (r2=0.31; P <0.05; Fig. 15 C).  

This data implied that tumor attracted DC but blocked DC maturation at a more 

immature stage. The outcome of such effect was an accumulation of immature DCs in 

tumors leading thereby to the failure in the initiation of effective anti-tumor T-cell 

responses. 

 

16. Functional assay of dendritic cells of ret transgenic mice 

  To determine if DCs in ret transgenic mice with macroscopical tumors showed the 

functional impairment, spleen DCs were investigated for their cytokine production 

and the capacity to activate T cells. 

16.1. Cytokine profile of DCs 

  First, cytokine profile of DCs was tested at the mRNA level. Spleen DCs were 

isolated using CD11c+ magnetic positive selection kit and mRNA was extracted 

immediately after cell sorting. Expressions of TGF-β1 and IL-10 mRNAs in spleen 

DCs were shown in Fig. 16.1 A. Compared to ret transgenic mice without 

macroscopical tumors or non-transgenic littermates, DCs from ret transgenic mice 

with macroscopical tumors showed a tendency to express higher levels of TGF-β1 and 

IL-10 mRNAs.  

Next, we analyzed the cytokine production profile of DCs at the protein level. Two 

cytokines were investigated in these experiments: the pro-inflammatory cytokine 

IL-12p70 and the anti-inflammatory cytokine IL-10. However, due to very low 

production of cytokines in the steady state ex vivo, we did not detect IL-12 or IL-10 

producing DCs in the spleen, BM or lymph nodes by intracellular FACS staining (data 

not shown). Therefore, ex vivo isolated spleen DCs were stimulated with CpG 1668 (a 

TLR9 ligand) for 24 h. Supernatants were then collected and the production of 

59 



Results 

IL-12p70 and IL-10 was detected by ELISA in supernatants. DCs from ret transgenic 

mice with macroscopical tumors secreted significantly less IL-12p70 than DCs from 

mice of both control groups (P < 0.05; Fig. 16.1 B). Moreover, the amount of IL-10 

produced by tumor DCs was significantly increased as compared to DCs from 

non-transgenic littermates (P < 0.05; Fig. 16.1 C). In addition, the ratio between 

IL-12p70 and IL-10 produced by DCs from tumor bearing animals was found to be 

higher than by DCs isolated from wild type mice (P < 0.05; Fig. 16.1 D). 

 

Figure 16.1. DCs from tumor bearing mice (ret tu) display tolerogenic pattern of cytokine 
production as compared to tumor free (ret), and non-transgenic mice (WT). (A) TGF-β1 and 
IL-10 mRNA in freshly isolated spleen DCs was tested by RT-PCR. Results are representative 
of two independent experiments. Spleen DCs were stimulated with CpG1668 for 24h ex vivo 
followed by detection of IL-12p70 (B) and IL-10 (C) in supernatants using ELISA as well as 
calculation of IL-12p70/IL-10 ratio (D). Data are mean ± SEM from 10 mice per 
experimental group. 
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16.2. T cell stimulation capacity of DCs 

  To address the question whether the T cell stimulating capacity of DCs from ret 

transgenic mice with macroscopical tumors was also impaired, ex vivo isolated spleen 

DCs were loaded with ovalbumin (OVA) derived peptide, SIINFEKL, and cocultured 

with naive CD8+ T cells isolated from spleen of OT-I mice. These T cells can be 

specifically activated by SIINFEKL. After 3 days of co-culture, numbers of IFN-γ 

producing cells in ELISPOT assay were measured to evaluate capacity of DCs for T 

cell activation. As shown in Fig. 16.2 A, we detected significantly lower amounts of 

IFN-γ producing T cells in the presence of DCs from transgenic mice with 

macroscopical tumors than in samples with DCs from wild type mice (P < 0.05). 

  T-cell stimulation capacity of DCs from ret transgenic mice with macroscopical 

tumors was also investigated using an OVA-specific CD8+ T-cell line, which is 

established from OVA-immunized C57BL/6 mice. Data in Fig. 16.2 B indicated that 

DCs from tumor bearing mice are less potent for T cell stimulation when compared to 

tumor free or non-transgenic littermates.  

 

Figure 16.2. DCs from tumor bearing mice fail to promote a strong T cell stimulation. CD11c+ 

DCs were isolated using positive selection, loaded with the peptide SIINFEKL at 37oC for 1h 
and co-cultured for 3 days with CD8+ T cells isolated from spleens of OT-I mice (A), or 
co-cultured with an OVA-specific T cell line for 40h (B). T cell activation was evaluated by 
spot numbers in the IFN-γ ELISPOT assay. Means ± SEM from 4 animals per experimental 
group are shown. * P < 0.05, differences between indicated groups. 
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Taken together, the data on phenotype analysis showed that tumor bearing mice 

contained reduced numbers of total DCs as well as mature DCs in the lymphoid 

organs. Accumulation of immature DCs was found in the tumors, suggesting that in 

the process of tumor progression the suppressive tumor microenvironment blocked 

DC development at the immature stage. Moreover, DCs from tumor bearing mice 

showed their functional impairment. Such DCs secreted a less IL-12 and more IL-10 

after stimulation, and were less potent to activate T cells, suggesting that DCs from ret 

transgenic mice with macroscopical tumors displayed a tolerogenic pattern. 

 

17. Mechanisms of tolerogenic DC generation in ret transgenic mice 

  DCs from ret transgenic mice with macroscopical tumors were shown to display a 

tolerogenic pattern. It has been previously reported that tumor cells or tumor-derived 

factors could induce dysfunctional DCs in both carcinoma patients and tumor animal 

models (68, 70, 80, 88, 97).  

Therefore, we aimed to further study 1) at which level of DC differention can 

tumor-derived factors influence DC function, 2) which tumor-derived factors may be 

particularly important in tolerogenic DC generation during melanoma progression in 

ret transgenic mouse model, and 3) which transcription factors could play a crucial 

role in the turning of DCs to acquire tolerogenic functions during melanoma 

progression in ret transgenic mouse model. 

17.1. Generation of tolerogenic DCs from BM precursors of ret transgenic 

mice in vitro 

DCs were generated from precursor cells derived from the BM of ret transgenic 

mice with macroscopical tumors in the presence of recombinant mouse IL-4 and 

GM-CSF in vitro. As shown in Fig. 17.1.1, DCs generated from precursor cells 

derived from ret transgenic mice with macroscopical tumors showed significantly 

lower expression of MHC class II molecule as compared to non-transgenic littermates, 

although the total number of generated CD11c+ cells was not changed. This indicated 

that the tumor microenvironment in vivo changed the ability of precursor cells to 

differentiate into mature DCs. 
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 isotype 
sample 

 

Figure 17.1.1. Phenotype analysis of DCs generated from precursors derived from bone 
marrow of ret transgenic mice with macroscopical tumors (ret tu). Immature DCs were 
stimulated 1μg/ml LPS for maturation. After 24h, phenotypes of mature DCs were tested by 
antibodies against MHC classII, CD40, CD80, and CD86. CD11c is used as DC marker. Data 
are representative for five experiments.  

 

Furthermore, we observed a stronger expression of IL-10 and TGF-β1 mRNA after 

LPS stimulation in DCs generated from BM precursors from ret transgenic mice with 

macroscopical tumors than from non-transgenic littermates. This may not be due to 

the different expression level of LPS receptor, TLR4, on DCs, because the expression 

of TLR4 mRNA was found to be comparable between the groups (Fig. 17.1.2A). 

Testing cytokine secretion by in vitro generated DCs after stimulated with LPS, we 

also revealed a significant decreased IL-12p70 production by DCs from tumor bearing 

group as compared to wild type group (P < 0.05; Fig. 17.1.2 B). In this experimental 

setting, IL-10 production in supernatant was under the detection level (data not 

shown).  
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Figure 17.1.2. The profile of cytokine and growth factor expression in DCs generated from 
bone marrow precursors of ret transgenic mice with macroscopical tumors (ret tu). Generated 
DCs were stimulated 1 μg/ml LPS for 24h. (A) mRNA was extracted from DCs and 
expression of IL-10 and TGF-β1 were examined by RT-PCR. Data are representative for five 
experiments. (B) Supernatants were collected and IL-12p70 expression level was tested by 
ELISA. Data are expressed as means ± SEM from four experiments (*, P <0.05).  

 

  Our data indicated that tumors suppressed the ability of BM precursor cells to 

differentiate into mature DCs, which led to the generation of DCs with more 

immature phenotype and suppressed IL-12 production in vitro. 

 

17.2. Production of immunosuppressive cytokines and growth factors in tumor 

bearing mice in vivo and by Ret melanoma cells in vitro 

To investigate which tumor-derived factors could be involved in the development 

of DCs with a tolerogenic profile, we first examined the expression of some cytokines 

and growth factors like IL-6, IL-10, VEGF, and TGF-β1 by RT-PCR at the mRNA 

level in the melanoma cell line, which was established from primary skin melanomas 

in ret transgenic mice (Ret melanoma cells), and in B16F10 melanoma cells used as a 

control. As shown in Fig. 17.2 A, IL-6, VEGF and TGF-β1 mRNAs were detected in 

both cell lines, whereas the IL-10 mRNA expression was not detectable (data not 

shown). Considerable amounts of VEGF and TGF-β1 proteins were demonstrated in 

supernatants from cultured Ret melanoma cells by the single-plex technology (data 

not shown).  
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Next we analyzed the expression of all four above mentioned factors in primary 

tumors freshly isolated from ret transgenic mice both at mRNA and protein levels. 

Similar to above mentioned cell lines, primary cutaneous melanomas expressed IL-6, 

VEGF, and TGF-β1 mRNAs; however IL-10 mRNA was not found (Fig. 17.2 A). At 

the protein level, we observed IL-6, VEGF and TGF-β1 production in primary tumors 

using multiplex and single-plex technology. Notably, level of VEGF in primary 

tumors were found to correlate with the tumor weight (r2=0.54; P <0.05; Fig. 17.2 B). 

Moreover, concentrations of IL-6 and VEGF were significantly elevated in the serum 

of ret transgenic mice with macroscopical tumors as compared to non-transgenic 

littermates (P < 0.05; Fig. 17.2 C). 

To investigate a direct effect of these tumor-derived factors on DCs, supernatants 

from cultured Ret melanoma cell (Ret conditioned medium, Ret-CM) was mixed with 

the culture medium (50%, v/v) and used for the DC generation from the BM 

precursors of wild type mice. As shown in Fig. 17.2 D, DCs generated under these 

conditions secreted significantly lower amounts of IL-12p70 (P < 0.05) upon LPS 

stimulation than DCs generated in the presence of normal DC medium. Furthermore, 

after adding neutralizing antibodies for IL-6 or VEGF or TGF-β1 to the DC medium 

supplemented with Ret-CM, we found a significant increase in IL-12p70 production 

by LPS-stimulated DCs as compared to DCs generated in the absence of these 

antibodies (P < 0.05; Fig. 17.2 D). 
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Figure 17.2. Tumor-derived cytokines and growth factors promote downregulation of IL-12 
production by DCs. (A) Total RNA was extracted from primary tumors, Ret melanoma cells 
and B16F10 melanoma cells. IL-6, TGF-β1 and VEGF expression was determined via 
RT-PCR using corresponding specific primers. Results from one representative experiment of 
three are shown. (B-D) Concentrations of IL-6 and VEGF at the protein level in tumor lysates 
and murine serum were measured using multiplex technology. Values in tumor lysates (B and 
C) expressed as pg/mg protein are plotted against the weight of each tumor sample. The 
correlation between the two variables was calculated using a linear regression analysis. Data 
in serum (D) are expressed as pg/ml and means ± SEM from 6-12 mice per group are depicted. 
* P < 0.05, differences between indicated groups. (E) DCs were generated from BM 
precursors of non-transgenic mice in the presence of supernatants from cultured Ret 
melanoma cells (Ret conditioned medium, Ret-CM; 50%, v/v) and of neutralizing antibodies 
for IL-6 (α-IL-6) or VEGF (α-VEGF) or TGF-β1 (α-TGF-β1) followed by LPS stimulation 
for 24h. IL-12p70 levels were tested in supernatants via ELISA. Results (means ± SEM) of 4 
independent experiments are expressed as pg/106 cells. * P < 0.05, differences between 
indicated groups.  
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17.3. p38 MAPK is strongly activated in DCs of ret transgenic mice with 

macroscopical tumors 

  Having demonstrated a critical importance of IL-6, VEGF and TGF-β1 for the 

acquirement of tolerogenic properties by DCs from tumor bearing mice, we then 

addressed the question which transcription factors regulating functions of these 

factors are responsible for the observed impairments. Phosphorylation levels of p38 

MAPK, STAT3, Smad3 and Erk1/2 MAPK were examined in freshly isolated spleen 

DCs by flow cytometry (Fig. 17.3 A). To prevent any artificial effect introduced 

during preparation, spleen cells were immediately fixed in PFA and permeabilized in 

ice-cold methanol after single cell suspension was made.  

 

Figure 17.3. Expression of transcription 
factors in DCs from melanoma bearing 
transgenic mice. Spleen cells from tumor 
bearing (ret tu), tumor free (ret) or wild type 
mice (WT) were fixed in paraformaldehyde and 
permeabilized in ice-cold methanol. (A) 
Expression of phosphorylated p38 MAPK 
(p-p38), STAT3 (p-STAT3), Smad3 (p-Smad3) 
and Erk1/2 MAPK (p-Erk1/2) was evaluated in 
CD11c+ DCs after staining with respective 
primary and secondary mAbs using flow 
cytometry. As a negative control (con), CD11c+ 
DCs stained only with secondary mAbs were 
used. Results from one representative 
experiment of three are shown. (B) 
Accumulative data for the transcription factor 
expression in spleen DCs (mean ± SEM) are 
expressed as mean fluorescence intensity (MFI) 
ratio (MFI of experimental samples/MFI of 
respective negative controls. *, P < 0.05, 
differences between indicated groups. 
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  We found that DCs from mice with macroscopical tumors displayed a significant 

upregulation in the expression of phosphorylated p38 MAPK, STAT3 and Smad3 as 

compared to those in DCs from wild type mice (P < 0.05), whereas the level of 

phosphorylated Erk1/2 MAPK remained unchanged (Fig. 17.3 A, B). Notably, p38 

MAPK activity shows the highest upregulation among studied factors. Therefore, we 

suspected that p38 MAPK might be a key regulator of the DC dysfunction in ret 

transgenic mice with macroscopical tumors. 

 

17.4. Inhibition of p38 MAPK activity normalized functions of DCs from 

tumor bearing ret transgenic mice 

We next assessed whether the inhibition of p38 MAPK activity could reverse the 

altered pattern of cytokine production shown by DCs from ret transgenic mice with 

macroscopical tumors. Ex vivo isolated spleen DCs were incubated in the presence of 

the p38 MAPK inhibitor SB203580 followed by stimulation with CpG. Suppression of 

the p38 MAPK activity was found to lead to the profound decrease of IL-10 

production (P < 0.05) as compared to untreated cells (Fig. 17.4 B). Furthermore, the 

IL-12/IL-10 ratio was also markedly increased (P < 0.01; Fig. 17.4 C). Thus, the 

cytokine secretion profile observed after treatment of DCs from tumor bearing mice 

with the p38 MAPK inhibitor was comparable to that for DCs from non-transgenic 

littermates. 
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Figure 17.4. Inhibition of p38 MAPK in DCs from tumor bearing mice restores their pattern 
of cytokine production and ability to stimulate T cells. (A-C) Spleen CD11c+ DCs were ex 
vivo isolated from tumor bearing (ret tu) or wild type mice (WT) using MicroBeads isolation 
kit, incubated with o without an inhibitor of p38 MAPK SB203850 (10 μM) for 1h and 
stimulated with CpG1668 for another 24h followed by measurement of IL-12p70 (A) and 
IL-10 (B) in supernatants using ELISA as well as calculation of IL-12p70/IL-10 ratio (C). 
Data are mean ± SEM from five independent experiments. *P < 0.05, differences between 
indicated groups. (D) Ex vivo isolated spleen DCs were incubated with or without SB203580 
during the loading with the OVA-peptide SIINFEKL for 1h. After extensive washing, DCs 
were co-cultured with CD8+ T cells isolated from OT-I mice for 3 days followed by 
measurement of IFN-γ levels in supernatants by ELISA. Means ± SEM from three 
independent experiments are depicted. *P < 0.05, differences between indicated groups. 

 

We further examined if the p38 MAPK inhibitor could restore impaired capacity of 

DCs from ret transgenic mice with macroscopical tumors to stimulate T cells. Freshly 

isolated spleen DCs were loaded with the peptide SIINFEKL in the presence of 

SB203580. After washing out the inhibitor, tumor DCs were co-cultured for 3 days 

with CD8+ T cells isolated from spleens of OT-I mice followed by the measurement of 

IFN-γ in the supernatant by ELISA. As shown in Fig. 17.4 D, DC pretreatment with 
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the p38 MAPK inhibitor was found to reconstitute IFN-γ production by T cells to the 

level detected after stimulation with normal DCs. Therefore, inhibition of p38 MAPK 

in DCs from tumor bearing mice resulted in the normalization of IL-12 and IL-10 

production as well as in the restoration of DC ability to stimulate OT-I CD8+ T cells.  

  In conclusion, our findings provide evidence that DC dysfunction in ret transgenic 

spontaneous melanoma mouse model can be induced by tumor-derived factors such as 

VEGF, IL-6 and TGF-β. Constitutive activation of p38 MAPK by these factors may 

result in a tolerogenic cytokine profile of DCs with low IL-12 and high IL-10 

secretion levels, which led to the impairment of antitumor T-cell mediated responses. 

Suppression of the p38 MAPK activity in DCs from tumor bearing mice can 

reconstitute their impaired cytokine pattern and capability to stimulate T cells 

suggesting a crucial role of p38 MAPK activity in the generation of tolerogenic DCs 

in ret transgenic tumor bearing mice. 
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IV. Discussion 

 

18. Reduction of DCs in lymphoid organs and accumulation of 

immature DCs in primary tumors of ret transgenic mice 

A significant decrease in total DC numbers was observed in the spleen and bone 

marrow of ret transgenic mice during tumor progression as compared to wild type 

mice or tumor free ret transgenic mice. The earliest report demonstrating a decline in 

Langerhans cells (skin DCs) during human melanoma progression is given by Stene et 

al. in 1988 (198). Later on, numerous publications showed that the number of DCs 

could be dramatically reduced in the periphery blood of patients with different types 

of tumors, such as lung cancer, squamous cell carcinoma of the head and neck, 

myeloma, invasive breast cancer, leukemia and hepatocellular carcinoma (40, 41, 43, 

46, 199, 200). Moreover, the presence of metastases resulted in a more profound 

decrease in numbers of circulated peripheral blood DCs in cancer patients (46, 47). In 

agreement with these reports, we demonstrated a significant decrease in DC amounts 

in metastatic lymph nodes from ret transgenic tumor bearing mice as compared to 

those in non-metastatic lymph nodes from the same mice or animals of control 

groups. 

A decrease of DC numbers in cancer patients can be induced by several 

mechanisms. One of them is the induction of apoptosis in DCs and their precursors. In 

vitro and in vivo studies demonstrate that DCs undergo apoptosis after interacting with 

cancer cells or soluble tumor-derived factors (49-52). Tumor induced DC apoptosis 

has been reported to be mediated by cytochrome c release, which further leads to 

cytoplasm shrinking, caspase-3 activation, upregulation of pro-apoptotic protein Bax 

and down-regulation of anti-apoptotic proteins Bcl-xL and Bcl-2 (49-51). Furthermore, 

growth of RM-1 prostate cancer cells could be significantly inhibited in mice treated 

intratumorally with DCs which were transduced with murine Bcl-xL gene (50). Other 

anti-apoptotic molecules are also shown to be able to inhibit tumor-mediated DC 

apoptosis, such as Fas associated death domain (FADD)-like ICE inhibitory proteins 

(FLIP) which blocks binding of procaspase-8 to FADD (52). In addition to the 
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cell-cell contact mechanism, induction of DC apoptosis can be induced by some 

tumor-derived factors, like IL-10, nitric oxide (NO), TGF-β, and gangliosides. For 

example, tumor-derived TGF-β1 can induce apoptosis of DCs in sentinel lymph nodes 

without evidence of metastasis in patients with non-small cell lung carcinoma and 

thereby facilitate metastasis within those lymph nodes (201, 202). In our experiments 

with co-incubation of normal spleen DCs with Ret melanoma cell conditioned 

medium from these cells, we were not able to demonstrate a substantial apoptosis rate 

in DCs (data not shown). 

Decreased numbers of total DCs could also be attributed to the inhibition of their 

generation from precursors. Impairment of differentiation from hematopoietic 

progenitor cells can be induced by tumor-derived factors. It has been reported that 

growth factors and cytokines like VEGF, M-CSF, TGF-β, IL-6 and IL-10 produced by 

human and mouse tumor cells could suppress maturation of DCs from CD34+ 

precursors in vitro (66, 67, 75, 85, 95). In particular, tumor-derived VEGF affected 

early stage of DC maturation in the bone marrow in vivo (85). IL-10, IL-6 and TGF-β 

profoundly affected phenotype and function of DCs in patients with advanced 

pancreatic carcinoma (203). 

Therefore, DC differentiation could be blocked at a certain stage. It is known that 

mature DCs are characterized by high levels of costimulatory molecules like CD80, 

CD86 and CD40. Investigating these markers on DCs from tumor bearing transgenic 

mice, we found a significant decrease in numbers of mature DCs expressing CD40, 

CD80 and CD86 in all studied lymphoid organs. Moreover, the growth of primary 

melanomas correlated with the accumulation of TIDCs with the immature phenotype. 

Blocking of normal DC differentiation and maturation may lead to the accumulation 

of cells with properties of myeloid derived suppressor cells (MDSCs). This 

heterogeneous population of myeloid cells consisting of monocytes/macrophages, 

granulocytes and DCs at different stages of differentiation and expressing various 

surface markers has been recently found to induce a dramatic suppression of T cell 

functions in mouse tumor models and in cancer patients (204-207). However, it still 

remains to be determined if the enrichment of MDSCs can directly lead to the loss of 

DCs in lymphoid organs of ret transgenic tumor bearing mice.  

  Another explanation of decreased DC numbers in lymphoid organs could be their 
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migration to tumors. After antigen uptake, immature DCs are activated and gain the 

mature phenotype and function. In addition to the DC elimination by apoptosis, tumor 

cells utilize other mechanisms to escape from DC-mediated immununosurveillance. 

For example, tumor-derived VEGF and β-defensins recruited immature DCs from BM 

to the tumor microenvironment and transformed them into endothelial-like cells that 

engaged in vasculogenesis and functioned as promoters of tumor progression (208). 

TGF-β and IL-10 secreted by tumor-derived CD4+ CD25+ Tregs could block the 

maturation of tumor infiltrating DCs by markedly down-regulating their costimulatory 

molecule expressions (113). In ret transgenic mice with macroscopical tumors, it was 

found using flow cytometry that the percentage of TIDCs showed a positive linear 

correlation with the tumor weight (r2=0.18, P <0.05), indicating an accumulation of 

DCs in tumors during melanoma progression. However, in agreement with the above 

mentioned publications TIDC maturation was blocked at the immature stage, because 

the percentage of CD40 expressing DCs in TIDCs decreased with the elevation of 

tumor weight (r2=0.31, P <0.05). Further immunohistochemistry study needs to be 

done to investigate the localization of TIDCs and their interaction with other host 

cells. 

In ret transgenic mice with macroscopical tumors, numbers of DCs in metastatic 

lymph nodes decreased significantly compared to non-metastatic ones. One 

explanation of these findings is that tumor microenvironment in metastatic lymph 

nodes induces DC apoptosis in situ. Another reason could be the link to the disability 

of DC homing to lymph nodes. After taking up tumor associated antigen from tumor 

regions, homing of mature DCs to tumor draining lymph nodes depends on the 

surface expression of certain chemokines and chemokine receptors (209). Therefore, 

further work needs to be done to investigate whether chemokine receptors, such as 

CCR7, are differently expressed on DCs from metastatic lymph nodes as compared to 

non-metastatic lymph nodes from ret transgenic mice with macroscopical tumors.  

 

19. Tolerogenic cytokine profile and impaired T cell stimulation 

  DCs from ret transgenic mice with macroscopic tumors were found to be impaired 

not only quantitatively but also qualitatively. When stimulated ex vivo, DCs from ret 
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transgenic mice with macroscopic tumors showed higher expression of IL-10 and 

lower expression of IL-12p70. IL-12 has been described during last years to be a 

critical cytokine for T-cell stimulation and to promote DC maturation and survival 

(210). However, production of IL-12 by DCs could be downregulated by different 

tumor-derived factors. Bombesin-like peptide (BLP) secreted by human lung cancer 

cells downregulated IL-12 production by DCs (211). Gangliosides produced by 

various human tumor cells suppressed DC maturation and function by reducing IL-12 

secretion (212-214). Moreover, tumor-derived IL-10, IL-6 and TGF-β profoundly 

affected the function of DCs in patients with advanced pancreatic carcinoma in favor 

of DCs showing immature phenotype and impaired IL-12 production (203). 

  Function of DC precursors in ret transgenic mice with macroscopical tumors has 

also been affected by tumor cells or tumor-derived factors. Even being incubated in 

the medium for DC generation in vitro, these cells differentiated into DCs which 

expressed much lower levels of MHC class II molecule and produced significantly 

less IL-12 after LPS stimulation as compared to non-transgenic littermates. Similar 

data has also been shown in multiple myeloma patients (60). 

  Consistent with the data from cancer patients (48, 201, 211), DCs from ret 

transgenic mice with macroscopic tumors showed impaired capacity to stimulate 

naïve CD8+ cells from OT-I mice. Mechanisms of the suppressed T-cell activation by 

DCs from ret tumor bearing mice are still unclear and need to be further investigated. 

Zou et al. (143) reported that some DC subsets suppressed T-cell function by 

delivering inhibitory signals through binding of B7-H1, B7-H2 or B7-H3 molecules to 

their receptors on T cells. In addition, several research groups showed that the IDO+ 

DCs could suppress T-cell activation. For example, mouse PDCs downregulated T-cell 

responses through the upregulation of IDO (141). Moreover, Baban et al. (142) 

characterized the IDO+ CD19+ DCs suppressed T-cell function following CD80/CD86 

ligation by CTLA4 or TLR9 ligation. 
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20. Activation of p38 MAPK drives DCs to display tolerogenic 

pattern during melanoma development 

Having established that DCs in ret transgenic mice with macroscopic tumors were 

functionally tolerogenic, we focused on studying the mechanisms of the generation of 

tolerogenic DCs in ret transgenic mice. Using a multiplex technology, we found that 

primary tumors from ret transgenic mice produced several immunosuppressive 

cytokines and growth factors like IL-6, IL-10, VEGF, and TGF-β1 and all of them 

were detectable in cell lysate of tumor tissues. Moreover, level of VEGF in primary 

tumors showed a positive linear correlation with the tumor weight (r2=0.56, P <0.05). 

In addition, VEGF and IL-6 were found to be expressed at the mRNA level both in 

primary tumors isolated from ret transgenic mice and Ret melanoma cells, and both 

factors were detected in the culture medium of Ret melanoma cells. We observed also 

significantly upregulated serum levels of IL-6 and VEGF in transgenic tumor bearing 

mice. von Felbert et al. showed that IL-6 knockout in ret transgenic mice induced 

decrease of melanoma incidence as well as tumor sizes, indicating the role of IL-6 in 

tumor progression in ret transgenic mouse model (197). In our experiments, the 

application of neutralizing antibodies against IL-6, VEGF or TGF-β1 significantly 

reconstituted IL-12 production by DCs generated under Ret melanoma cell 

conditioned medium.  

Although a list of tumor-derived factors involved in the impairment of DC 

functions is getting longer, they may utilize similar transcription factors and protein 

kinases in their signaling pathways. Therefore, we investigated some key transcription 

factors involved in ΙL-6, VEGF and TGF−β signaling pathways in DCs. Compared to 

non-transgenic littermates or ret transgenic mice without macroscopic tumors, DCs 

from tumor bearing mice showed significantly higher levels of phosphorylated-p38 

MAPK, STAT3 and Smad3. In agreement with our data, Wang et al. showed that 

tumor-derived VEGF and IL-10 inhibited DC maturation through activation of STAT3 

in DCs (116). Moreover, inhibiting STAT3 signaling in DC progenitors has been 

shown to reduce accumulation of immature DCs by tumor-derived factors in vitro 

(117). Finally, ablation of STAT3 in hematopoietic cells enhances DC maturation in 

tumor-bearing mice and results in a multicomponent antitumor immunity (118). 

Erk1/2 MAPK has also been shown to play an important role in the upregulation of 
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IL-10 and the suppression of IL-12 production by DCs (124, 125). In addition, 

inhibition of Erk function restored the impaired function of DCs (125, 126). However, 

in DCs from ret transgenic mice, the expression of phosphorylated Erk1/2 MAPK 

were not changed significantly, suggesting the involvement of mechanisms other than 

Erk1/2 activation in the tolerogenic function of DCs in this mouse model.  

Constitutively activated p38 MAPK contributed to the high IL-10 production of ex 

vivo activated DCs from ret transgenic mice with macroscopical tumors, which 

resulted in impaired T-cell responses. Inhibition of p38 MAPK activity by its inhibitor 

in DCs from ret transgenic mice with macroscopical tumors significantly 

down-regulated IL-10 expression and normalized the imbalanced IL-12/IL-10 ratio. 

Furthermore, p38 MAPK inactivation in DCs from ret transgenic mice with 

macroscopical tumors up-regulated IFN-γ production by primed OT-I T cells. A role 

of p38 MAPK in DCs during tumor progression has been controversially discussed in 

recent publications. Escors et al. (215) demonstrated that constitutive activation of 

p38 MAPK in mouse DCs resulted in their maturation and in the stimulation of T-cell 

responses against clinically relevant tumor antigens. On the other side, in agreement 

with the findings reported here, Wang et al. (60) found that the phenotype and T-cell 

stimulatory capacity of monocyte-derived DCs in patients with multiple myeloma 

were considerably impaired and that they could be restored by inhibiting p38 MAPK 

activity in progenitor cells. In addition, suppression of p38 MAPK signaling in murine 

DCs enhanced their ability to produce IL-12, attenuated regulatory T cell induction 

and stimulated the antitumor therapeutic efficacy of DCs pulsed with tumor-specific 

antigens (134).  

Application of p38 MAPK inhibitors for melanoma immunotherapy in vivo will 

require a thorough examination of their effects on host T-cell anti-tumor reactions, 

since the role of p38 MAPK in these cells is not completely clear. While the p38 

activation was shown to be important for T-cell development and effector functions (), 

other publications demonstrated that its activity was a prerequisite for the induction of 

Treg suppressor functions (217) or for apoptotic CD8+ T-cell death (218). Anti-tumor 

effects of the p38 MAPK inhibitor in our melanoma murine model in vivo are 

currently under investigation. 
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21. Summary  

  In the present work, we investigated the mechanisms of DC dysfunction during 

spontaneous melanoma development in ret transgenic mice. Animals with 

macroscopical tumors showed significantly reduced numbers of total DCs and mature 

DCs in the lymphoid organs, which may lead to insufficient stimulation of anti-tumor 

T-cell responses. An accumulation of immature DCs in tumors suggests that tumor 

microenvironment could block DC maturation and their migration to draining lymph 

nodes. Not only the phenotype but also DC functions were affected during tumor 

progression. DCs from tumor bearing mice displayed a tolerogenic cytokine profile 

(higher level of IL-12 and lower level of IL-10) and showed the impaired capacity of 

T-cell stimulation. Moreover, function of DC precursors in BM of tumor bearing mice 

was affected by tumors, and DCs generated in vitro from these precursors showed a 

tolerogenic pattern.  

Changes of DC functions in tumor bearing mice could be induced by tumor-derived 

factors such as IL-6, VEGF and TGF-β through activation of p38 MAPK. 

Suppression of p38 MAPK activity by a specific inhibitor could down-regulate IL-10 

production and reconstitute T-cell stimulation capacity of DCs from ret transgenic 

mice with macroscopical tumors. 

  In conclusion, our findings provide evidence that constitutive activation of p38 

MAPK is responsible for turning of DCs to display a tolerogenic profile in the process 

of melanoma development. Suppression of the p38 MAPK activity in DCs from ret 

tumor bearing mice can reconstitute their impaired cytokine secretion pattern and 

ability to stimulate T cells suggesting thereby that such normalization of signaling 

pathways in DCs could represent an effective immunotherapeutic strategy in 

melanoma patients.  



References 

V. References:  
 
 
1. Kärre, K. 2008. Natural killer cell recognition of missing self. Nat. Immunol. 9, 477-480. 
 
2. Galli, S. J., Grimbaldeston, M., Tsai, M. 2008. Immunomodulatory mast cells: negative, as 

well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478-486. 
 
3. Sakaguchi, S., Sakaguchi, N., Shimizu, J., Yamazaki, S., Sakihama, T., Itoh, M., Kuniyasu, 

Y., Nomura, T., Toda, M., and Takahashi, T. 2001. Immunologic tolerance maintained by 
CD25+ CD4+ regulatory T-cells: their common role in controlling autoimmunity, tumor 
immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32. 

 
4. Liyanage, U. K., Moore, T. T., Joo, H. G., and et al. 2002. Prevalence of regulatory T cells 

is increased in peripheral blood and tumor microenvironment of patients with pancreas or 
breast adenocarcinoma. J. Immunol. 169, 2756-61. 

 
5. Ormandy, L. A., Hillemann, T., Wedemeyer, H., and et al. 2005. Increased populations of 

regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 
65, 2457-64. 

 
6. Liu, J. Y., Zhang, X. S., Ding, Y., and et al. 2005. The changes of CD4+ CD25+/CD4+ 

propotion in spleen of tumor-bearing BAL/c mice. J. Transl. Med. 3, 5. 
 
7. Ghiringhelli, F., Larmonier, N., Schmitt, E., and et al. 2004. CD4+CD25+ regulatory T 

cells suppress tumor immunity but are sensitive to cyclophosphamide which allows 
immunotherapy of established tumors to be curative. Eur. J. Immunol. 34, 336-344. 

 
8. Sutmuller, R. P., van Duivenvoorde, L. M., van Elsas, A., and et al. 2001. Synergism of 

cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T 
cells in antitumor therapy reveals alternative pathways for suppression of autoreactive 
cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823-832. 

 
9. Vignali, D. A., Collison, L. W., and Workman, C. J. 2008. How regulatory T-cells work. Nat. 

Rev. Immunol. 8, 523-532. 
 
10. Burnet, F. M. 1957. Cancer-a biological approach. Brit. Med. J. I, 841-847. 
 
11. Thomas, L. 1959. Cellular and Humoral Aspects of the Hypersensitive States, ed. 

Lawrence, H. S. Hoeber-Harper, New York, 529-532. 
 
12. Penn, I. 1970. Malignant Tumors in Organ Transplant Recipients. Springer-Verlag, New 

York. 
 
13. Gatti, R. A., and Good, R. A. 1971. Occurrence of malignancy in immunodeficiency 

diseases. A literature review. Cancer 28, 89-98. 
 
14. Penn, I. 1996. Malignant melanoma in organ allograft recipients. Transplantation 61, 

274−278. 
 
15. Sheil, A. G. R. 2001. Kidney Transplantation, ed. Morris, P. J. Saunders, Philadelphia, 

78 



References 

558−570. 
 
16. Birkeland, S. A., Storm, H. H., Lamm, L. U., Barlow, L., Blohmé, I., Forsberg, B., Eklund, 

B., Fjeldborg, O., Friedberg, M., Frödin, L., and et al. 1995. Cancer risk after renal 
transplantation in the Nordic countries, 1964-1986. Int. J. Cancer 60, 183−189. 

 
17. Rilke, F., Colnaghi, M. I., Cascinelli, N., Andreola, S., Baldini, M. T., Bufalino, R., Della, 

P. G., Ménard, S., Pierotti, M. A., and Testori, A. 1991. Prognostic significance of 
HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int. J. 
Cancer 49, 44−49.  

 
18. Lipponen, P.K., Eskelinen, M.J., Jauhiainen, K., Harju, E., and Terho, R. 1992. Tumour 

infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder 
cancer. Eur. J. Cancer 29A, 69−75.  

 
19. Nacopoulou, L., Azaris, P., Papacharalampous, N., and Davaris, P. 1981. Prognostic 

significance of histologic host response in cancer of the large bowel. Cancer 47, 930−936. 
 
20. Naito, Y., Saito, K., Shiiba, K., Ohuchi, A., Saigenji, K., Nagura, H., and Ohtani, H. 1998. 

CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal 
cancer. Cancer Res. 58, 3491−3494.  

 
21. Clark, W. H. Jr., Elder, D. E., Guerry, D. 4th., Braitman, L. E., Trock, B. J., Schultz, D., 

Synnestvedt, M., and Halpern, A. C. 1989. Model predicting survival in stage I melanoma 
based on tumor progression. J. Natl. Cancer Inst. 81, 1893−1904. 

 
22. Epstein, N. A., and Fatti, L. P. 1976. Prostatic carcinoma: some morphological features 

affecting prognosis. Cancer 37, 2455−65.  
 
23. Deligdisch, L., Jacobs, A. J., and Cohen, C. J. 1982. Histologic correlates of virulence in 

ovarian adenocarcinoma. II. Morphologic correlates of host response. Am. J. Obstet. 
Gynecol. 144, 885−889.  

 
24. Jass, J. R. 1986. Lymphocytic infiltration and survival in rectal cancer. J. Clin. Pathol. 39, 

585−589.  
 
25. Palma, L., Di Lorenzo, N., and Guidetti, B. 1978. Lymphocytic infiltrates in primary 

glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 
operated cases. J. Neurosurg. 49, 854−861. 

 
26. Liu, Y. J. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid 

dendritic cell precursors. Annu. Rev. Immunol. 23, 275-306. 
 
27. Kalinski, P., Hilkens, C. M., Wierenga, E. A., and Kapsenberg, M. L. 1999. T-cell priming 

by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 
20, 561-567. 

 
28. Kapsenberg, M. L. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. 

Rev. Immunol. 3, 984-993. 
 
29. Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. 2003. Tolerogenic dendritic cells. 

79 



References 

Annu. Rev. Immunol. 21, 685-711. 
 
30. Moser, M., and KM, M. 2000. Dendritic cell regulation of TH1-TH2 development. Nat. 

Immunol. 1, 199. 
 
31. De Vries, I. J., Krooshoop, D, J,. Scharenborg, N. M, and et al. 2003. Effective migration 

of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by 
their maturation state. Cancer Res. 63, 12-17. 

 
32. Vuylsteke, R., Molenkamp, B. G., van Leeuwen, P. A. M., Meijer, S., Wijnands, P., 

Haanen, J., Scheper, R. J., and de Gruijl, T. D. 2006. Tumor-specific CD8+ T cell reactivity 
in the sentinel lymph node of GM-CSF-treated stage I melanoma patients is associated with 
high myeloid dendritic cell content. Clin. Cancer Res. 12, 2826-33. 

 
33. Ito, T., Yang, M., Wang, Y. H., Lande, R., Gregorio, J., Perng, O. A., Qin, X. F., Liu, Y. J., 

and Gilliet, M. 2007. Plasmacytoid dendritic cells prime IL-10–producing T regulatory cells 
by inducible costimulator ligand. J. Exp. Med. 204, 105-115. 

 
34. Martin, P., del Hoyo, G. M., Anjuere, F., Arias, C. F., Vargas, H. H., Fernandez-L, A., 

Parrillas, V., and Ardavin, C. 2002. Characterization of a new subpopulation of mouse 
CD8a+ B220+ dendritic cells endowed with type I interferon production capacity and 
tolerogenic potential. Blood. 100, 383-390. 

 
35. O’Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J. L., Anders, E. M., Wu, 

L., Lahoud, M. H., Henri, S., Scott, B., Hertzog, P., Tatarczuch, L., and Shortment, K. 2002. 
Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and 
function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J. Exp. 
Med. 196, 1307-19. 

 
36. Schlecht, G., Garcia, S., Escriou, N., Freitas, A. A., Leclerc, C., and Dadaglio, G. 2004. 

Murine plasmacytoid dendritic cells induce effector/memory CD8+ T cell responses in vivo 
after viral stimulation. Blood. 104, 1808-15. 

 
37. Zuniga, E. I., McGavern, D. B., Pruneda-Paz, J. L., Teng, C., and Oldstone, M. B. A. 2004. 

Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells 
upon virus infection. Nat. Immunol. 5, 1227-34. 

 
38. Lou, Y., Liu, C., Kim, G. J., Liu, Y. J., Hwu, P., and Wang, G. 2007. Plasmacytoid dendritic 

cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor 
immune responses. J. Immunol. 178, 1534-41. 

 
39. Yoneyama, H., Matsuno, K., Toda, E., Nishiwaki, T., Matsuo, N., Nakano, A., Narumi, S., 

Lu, B., Gerard, C., Ishikawa, S., and Matsushima, K. 2005. Plasmacytoid DCs help lymph 
node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425-35. 

 
40. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., 

Carbone, D. P., Gabrilovich, D. I. 2000. Clinical significance of defective dendritic cell 
differentiation in cancer. Clin. Cancer Res. 6, 1755-66. 

 
41. Ratta, M., F. Fagnoni, A. Curti, R. Vescovini, P. Sansoni, B. Oliviero, M. Fogli, E. Ferri, 

G.R. Della Cuna, S. Tura, M. Baccarani, and R.M. Lemoni. 2002. Dendritic cells are 

80 



References 

functionally defective in multiple myeloma: the role of interleukin-6. Blood. 100:230-237. 
 
42. Hoffmann, T. K., Müller-Berghaus, J., Ferris, R. L., Johnson, J. T., Storkus, W. J., and 

Whiteside, T. L. 2002. Alterations in the frequency of dendritic cell subsets in the peripheral 
circulation of patients with squamous cell carcinomas of the head and neck. Clin. Cancer 
Res. 8, 1787-93. 

 
43. Maecker, B., Mougiakakos, D., Zimmermann, M., Behrens, M., Hollander, S., Schrauder, 

A., Schrappe, M., Welte, K., and Klein, C.. 2006. Dendritic cell deficiencies in pediatric 
acute lymphoblastic leukemia patients. Leukemia. 20, 645-649. 

 
44. Sakakura, K., Chikamatsu, K., Takahashi, K., Whiteside, T. L., and Furuya, N. 2006. 

Maturation of circulating dendritic cells and imbalance of T-cell subsets in patients with 
squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother. 55, 151-159. 

 
45. Ormandy, L. A., Farber, A., Cantz, T., Petrykowska, S., Wedemeyer, H., Horning, M., 

Lehner, F., Manns, M. P., Korangy, F., and Greten, T. F. 2006. Direct ex vivo analysis of 
dendritic cells in patients with hepatocellular carcinoma. World  J. Gastroenterol. 12, 
3275-82. 

 
46. Pinzon-Charry, A., Ho, C. S., Maxwell, T., McGuckin, M. A., Schmidt, C., Furnival, C., 

Pyke, C. M., and López, J. A.. 2007. Numerical and functional defects of blood dendritic 
cells in early- and late-stage breast cancer. Br. J. Cancer. 97:1251-59. 

 
47. Bellik, L., Gerlini, G., Parenti, A., Ledda, F., Pimpinelli, N., Neri, B., and Pantalone, D.. 

2006. Role of conventional treatments on circulating and monocyte-derived dendritic cells 
in colorectal cancer. Clin. Immunol. 121, 74-80. 

 
48. Kim, R., Emi, M., and Tanabe, K. 2006. Functional roles of immature dendritic cells in 

impaired immunity of solid tumor and their targeted strategies for provoking tumor 
immunity. Clin. Exp. Immunol. 146, 189-196. 

 
49. Esche, C., Lokshin, A., Shurin, G. V., Gastman, B. R., Rabinowich, H., Watkins, S. C., 

Lotze, M. T., and Shurin, M. R. 1999. Tumor’s other immune targets: dendritic cells. J. 
Leukoc. Biol. 66, 336-344. 

 
50. Pirtskhalaishvili, G., Shurin, G. V., Gambotto, A., Esche, C., Wahl, M., Yurkovetsky, Z. R., 

Robbins, P. D., and Shurin, M. R. 2000a. Transduction of dendritic cells with Bcl-xL 
increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. 
J. Immunol. 165, 1956-64. 

 
51. Balkir, L., Tourkova, I. L., Makarenkova, V. P., Shurin, G. V., Robbins, P. D., Yin, X. M., 

Chatta, G., and Shurin, M. R. 2004. Comparative analysis of dendritic cells transduced with 
different anti-apoptotic molecules: sensitivity to tumor-induced apoptosis. J. Gene Med. 6, 
537-544. 

52. Duckett, C. S., Li, F., Wang, Y., Tomaselli, K. J., Thompson, C. B., and Armstrong, R. C. 
1998. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and 
cytochrome c. Mol. Cell Biol. 18, 608-615. 

 
53. Enk, A. H., Jonuleit, H., Saloga, J., and Knop, J. 1997. Dendritic cells as mediators of 

tumor-induced tolerance in metastatic melanoma. Int. J. Cancer. 73, 309-316. 

81 



References 

54. Gabrilovich, D. I., Corak, J., Ciernik, I. F., Kavanaugh, D., and Carbone, D. P. 1997. 
Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. 
Cancer Res. 3, 483-490. 

 
55. Nestle, F. O., Burg, G., Fah, J., Wrone-Smith, T., and Nickoloff, B. J. 1997. Human 

sunlight-induced basal cell carcinoma associated dendritic cells are deficient in T cell 
co-stimulatory molecules and are impaired as antigen-presenting cells. Am. J. Pathol. 150, 
641-651. 

 
56. Perrot, I., Blanchard, D., Freymond, N., Isaac, S., Gurbert, B., Pacheco, Y., and Lebecque 

S. 2007. Dendritic cells infiltrating human non-small cell lung cancer are blocked at 
immature stage. J. Immunol. 178, 2763-69. 

 
57. Ratta, M., Fagnoni, F., Curti, A., et al. 2002. Dendritic cells are functionally defective in 

multiple myeloma: the role of interleukin-6. Blood. 100, 230-237. 
 
58. Chaux, P., Favre, N., Martin, M., and Martin, F. 1997. Tumor-infiltrating dendritic cells 

are defective in their antigen-presenting function and inducible B7 expression in rats. Int. J. 
Cancer. 72, 619-624. 

 
59. Ishida, T., Oyama, T., Carbone, D., and Gabrilovich, D. I. 1998. Defective function of 

Langerhans cells in tumor-bearing animals is the result of defective maturation from 
hematopoietic progenitors. J. Immunol. 161, 4842-51. 

 
60. Wang, S., Hong, S., Yang, J., Qian, J., Zhang, X., Shpall, E., Kwak, L. W., and Yi, Q. 2006. 

Optimizing immunotherapy in multiple myeloma: restoring the function of patients’ 
monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and 
neutralizing interleukin-6 in progenitor cells. Blood 108, 4071-77. 

 
61. Wang, S., Yang, J., Qian, J., Wezeman, M., Kwak, L. W., and Yi, Q. 2006. Tumor evasion 

of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic 
cells in multiple myeloma. Blood. 107, 2432-39. 

 
62. De Visser, K. E., and Kast, W. M. 1999. Effects of TGF-β on the immune system: 

implications for cancer immunotherapy. Leukemia. 13, 1188-99 
 
63. Tprre-Amione, G., Beauchamp, R. D., Koeppen, H., Park, B. H., Schreiber, H., Moses, H. 

L., and et al. 1990. A highly immunogenic tumor transfected with a murine transforming 
growth factor type beta 1 cDNA escapes immune surveillance. Proc. Natl. Acad. Sci. USA. 
87, 1486-90. 

 
64. Teicher, B. A. 2007. Transforming growth factor-b and the immune response to malignant 

disease. Clin. Cancer Res. 13, 6247-51. 
 
65. Borkowski, T. A., Letterio, J. J., Farr, A. G., and Udey, M. C. 1996. A role for endogenous 

transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth 
factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417-22. 

 
66. Ronger-Salve, S., Valladeau, J., Claudy, A., Schmitt, D., Peguet-Navarro, J., et al. 2005. 

TGFβ inhibits CD1d expression on dendritic cells. J. Invest. Dermatol. 124, 116-118. 
 

82 



References 

67. Yamaguchi, Y., Tsumura, H., Miwa, M., and Inaba, K. 1997. Contrasting effects of 
TGF-β1 and TNF-α on the development of dendritic cells from progenitors in mouse bone 
marrow. Stem Cells. 15, 144-53. 

 
68. Byrne, S. N., Knox, M. C., and Halliday, G. M. 2008. TGF-β is responsible for skin tumor 

infiltration by macrophages enabling the tumors to escape immune destruction. Immunol. 
Cell Biol. 86, 92-97. 

 
69. Geissmann, F., Revy, P., Regnault, A., Leppelletier, Y., Dy, M., Brousse, N., Amigorena, S., 

Hermine, O., and Durandy, A. 1999. TGF-β1 prevents the noncognate maturation of human 
dendritic Langerhans cells. J. Immunol. 162, 4567-75. 

 
70. Tada, Y., Asahina, A., Fujita, H., Mitsui, H., Torii, H. Et al. 2004 Differential effects of 

LPS and TGF-β on the production of IL-6 and IL-12 by Langerhans cells, splenic dendritic 
cells, and macrophages. Cytokine. 25, 155-161. 

 
71. Seo, N., Hayakawa, S., Takigawa, M., and Tokura, Y. 2001. Interleukin-10 expressed at 

early tumor sites induces subsequent generation of CD4+ T regulatory cells and systemic 
collapse of antitumor immunity. Immunology. 103, 449-457. 

 
72. Yang, A., S., and Lattime, E. C. 2003. Tumor-induced interleukin 10 suppresses the ability 

of splenic dendritic cells to stimulate CD4 and CD8 T cell responses. Cancer Research. 63, 
2150-57. 

 
73. Steinbrick, K., Wolfl, M., Jonuleit, H., Knop, J., and Enk, A. 1997. Induction of tolerance 

by IL-10-treated dendritic cells. J. Immunol. 159, 4772-80. 
 
74. Sharma, S., Stolina, M., Lin, Y., Gardner, B., Miller, P., Kronenberg, M., and Dubinett, S. 

M.. 1999. T-cell derived IL-10 promotes lung cancer growth by suppressing both T cell and 
APC function. J. Immunol. 163, 5020-28. 

 
75. Caux, C., Massacrier, C., Vanbervliet, B., Barthelemy, C., Liu, Y. J., and Banchereau, J. 

1994. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Intern. 
Immunol. 6, 1177-85. 

 
76. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J., and Enk, A. 2002. CD4+ and CD8+ 

anergy T cells induced by interleukin-10-treated human dendritic cells display 
antigen-specific suppressor activity. Blood. 99, 2468-76. 

 
77. Harizi, H., Juzan, M., Pitard, V., Moreau, J., and Gualde, N. 2002. 

Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, 
which down-regulates dendritic cell functions. J. Immunol. 68, 2255-63. 

 
78. Allavena, P., Piemonti, L., Longoni, D., Bernasconi, S., Stoppacciaro, A., Ruco, L., and 

Mantovani, A. 1998. IL-10 prevents the differentiation of monocytes to dendritic cells but 
promotes their maturation to macrophages. Eur. J. Immunol. 28, 359–369. 

 
79. Hicklin, D. J., and Ellis, L. M. 2005. Role of the vascular endothelial growth gactor 

pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-27. 
 
80. Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., Inada, K., Imazawa, T., and et al. 1996. 

83 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Dubinett%20SM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Dubinett%20SM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


References 

Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer. 
77, 1101-06. 

 
81. Fox, S. B., Generali, D. G., and Harris, A. L. 2007. Breast tumour angiogenesis. Breast 

Cancer Res. 9, 216-26. 
 
82. Maeda K, Chung YS, Takatsuka S, Ogawa Y, Onoda N, Sawada T, et al. 1995. Tumor 

angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinoma. Br. 
J. Cancer 72, 319-323. 

 
83. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., 

Kavanaugh, D., and Carbone, D. P. 1996. Production of vascular endothelial growth factor 
by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine. 2, 
1096-03. 

 
84. Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M., and Kaibara, N. 1998. Relationship 

between the expression of vascular endothelial growth factor and the density of dendritic 
cells in gastric carcinoma tissue. Br. J. Cancer 78, 1573-77. 

 
85. Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., and et al. 1998. 

Vascular endothelial growth factor inhibits the development of dendritic cells and 
dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 
4150-66. 

 
86. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J., and Carbone, D. P. 1998. Antibodies to 

vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by 
improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963-70. 

 
87. Ishida, T., Oyama, T., Carbone, D., and Gabrilovich, D. I. 1998. Defective function of 

Langerhans cells in tumor-bearing animals is the result of defective maturation from 
hematopoietic progenitors. J. Immunol. 161, 4842-51. 

 
88. Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fujii, H., and Matsumoto, Y, 2004. 

Vascular endothelial growth factor inhibits maturation of dendritic cells induced by 
lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol. Immunother. 
53, 543-550. 

 
89. Dikov, M., Ohm, J., Ray, N., Tchekneva, E., Burlison, J., Moghanaki, D., and et al. 2005. 

Differential roles of vescular endothelial growth factor receptors 1 and 2 in dendritic cell 
differentiation. J. Immunol. 174, 215-222. 

 
90. Hanrahan, E. O., and Heymach, J. V. 2007. Vascular Endothelial Growth Factor Receptor 

Tyrosine Kinase Inhibitors Vandetanib (ZD6474) and AZD2171 in Lung Cancer. Clin. 
Cancer Res.13, 4617s-4622s. 

 
91. Barton, B. E. 2005. Interleukin-6 and new strategies for the treatment of cancer, 

hyperproliferative diseases and paraneoplastic syndromes. Expert Opin Ther Targets. 9, 
737-752. 

 
92. Orsini, E., Guarini, A., Chiaretti, S., Mauro, F. R., and Foa, R. 2003. The circulating 

dendritic cell compartment in patients with chronic lymphocytic leukemia is severely 

84 



References 

fefective and unable to stimulate an effective T-cell response. Cancer Research. 63, 
4497-4506. 

 
93. Park, S. J., Nakagawa, T., Kitamura, H., Atsumi, T., Kamon, H., Sawa, S., and et al. 2004. 

IL.6 regulates in vivo dendritic cell differentiation through STAT3 activation. J. Immunol. 
173, 3844-54. 

 
94. Hegde, S., Pahne, J., and Smola-Hess, S. 2004. Novel immunosuppressive properties of 

interleukin-6 in dendritic cells: inhibition of NF-kB binding activity and CCR7 expression. 
The FASEB J. 18, 1439-41. 

 
95. Chomarat, P., Banchereau, J., Davoust, J., and Palucka, A. K. 2000. IL-6 switches the 

differentiation of monocytes from dendritic cells to macrophages. Nature Immunol. 1, 
510-514. 

 
96. Menetrier-Caux, C., Montmain, G., Dieu, M., Bain, C., Favrot, M., Caux, C., and Blay, J. 

Y. 1998. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by 
tumor cells: role of interleukin-6 and macrophage-colony-stimulating factor. Blood 92, 
4778-91. 

 
97. Bharadwaj, U., Li, M., Zhang, R., Chen, C., and Yao, Q. 2007. Elevated interleukin-6 and 

G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell 
differentiation and activation. Cancer Res. 67, 5479-88. 

 
98. Menetrier-Caux, C., Thomachot, M. C., Alberti, L., Montmain, G. M. and Blay, J. Y. 2001. 

IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer 
Res. 61, 3096-3104. 

 
99. Gaudreau, S., Guindi, C., Menard, M., Besin, G., Dupuis, G., and Amrani, A. 2007. 

Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD 
mice by inducing tolerogenic dendritic cells that sustain the suppressive function of 
CD4+CD25+ regulatory T cells. J. Immunol. 179, 3638-47. 

 
100. Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., and et al. 

1999. Unopposed production of granulocyte-macrophage colony-stimulating factor by 
tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. 
J. Immunol. 162, 5728-37. 

 
101.Young, M., Wright, M., and Young M. 1991. Antibodies to colony-stimulating factors 

block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. 
Cancer Immunol. Immunother. 33, 146-152. 

 
102. Spitler, L. E., Grossbard, M. L., Ernstoff, M. S., and et al. 2000. Adjuvant therapy of 

stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating 
factor. J. Clin. Oncol. 18, 1614-21. 

 
103. Daud, A. I., Mirza, N., lenox, B., Andrews, S., Urbas, P., Gao, G. X., Lee, J., Sondak, V. 

K., Riker, A. I., DeConti, R. C., and Gabrilovich, D. 2008. Phenotypic and functional 
analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated 
with adjuvant granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol. 26, 
3235-41. 

85 



References 

104. Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Bronte, V. and Borrello, I. 2004. 
High-dose GM-CSF-producing vaccines impair the immune response through the 
recruitment of myeloid suppressor cells. Cancer Res. 64, 6337-43. 

 
105. Serra, P., Amrani, A., Yamanouchi, J., Han, B., Thiessen, S., Utsugi, T., Verdaguer, J., 

and Santamaria, P. 2003. CD40 ligation releases immature dendritic cells from the control 
of regulatory CD4+ CD25+ T cells. Immunity. 19, 877-889. 

 
106. Oldenhove, G., de Heusch, M., Urbain-Vansanten, G., Urbain, J., Mliszewski, C., Leo, O., 

and Moser, M. 2003. CD4+ CD25+ regulatory T cells control T helper cell type 1 responses 
to foreign antigens induced by mature dendritic cells in vivo. J. Exp. Med. 198, 259-266. 

 
107. Prasad, S. J., Farrand, K. J., Matthew, S. A., Cahng, J. H., McHugh, R. S., and Ronchese, 

F. 2005. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor 
immunity in mice depleted of CD4+ CD25+ regulatory T cells. J. Immunol. 174, 90-98. 

 
108. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D., and Kaveri, S. V. 2004. 

Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen-presenting 
function of dendritic cells. J. Immunol. 172, 4676-80. 

 
109. Veldhoen, M., Moncrieffe, H., Hocking, R. J., Atkins, C. J., and Stockinger, B. 2006. 

Modulation of dendritic cell function by naïve and regulatory CD4+ T cells. J. Immunol. 
176, 6202-10. 

 
110. McCarter, M. D., Barumgartner, J., Escobar, G. A., Richter, D., Lewis, K., Robinson, W., 

Wilson, C., Palmer, B. E., and Gonzalez, R. 2007. Annal. Surgical Oncol. 14, 2854-60. 
 
111. Sakakura, K., Chikamatsu, K., Takahashi, K., Whiteside, T. L., and Furuya, N. 2006. 

Maturation of circulating dendritic cells and imbalance of T cell subsets in patients with 
squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother. 55, 151-159. 

 
112. Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., 

Belladonna, M. L., Fioretti, M. C., Alegre, M. L. And Puccetti, P. 2003. Modulation of 
tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206-12. 

 
113. Larmonier, N., Marron, M., Zeng, Y., Cantrell, J., Romanoski, A., Sepassi, M., 

Thompson, S., Chen, X., Andreansky, S., and Katsanis, E. 2007. Tumor-derived CD4+ 
CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10. 
Cancer Immunol. Immunother. 56, 48-59. 

 
114. Dauer, D. J., Ferraro, B., Song, L., Yu, B., Mora, L., Buettner, R., Enkemann, S., Jove, R., 

and Haura, E. B. 2005. Stat3 regulates genes common to both wound healing and cancer. 
Oncogene. 24, 3397-3408. 

 
115. Turkson, J., Zhang, S., Palmer, J., Kay, H., Stanko, J., Mora, L. B., Sebti, S., Yu, H., and 

Jove, R. 2004. Inhibition of constitutive signal transducer and activator of transcription 3 
activation by novel platinum complexes with potent antitumor activity. Mol. Cancer 
Therapeutics 3, 1533-42. 

 
116. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., 

Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D., and Yu, H. 2004. 

86 



References 

Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. 
Nat. Med. 10, 48-54. 

 
117. Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M., and 

Gabrilovich, D. I. 2005. Regulation of dendritic cell differentiation and antitumor immune 
response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 
2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525-35. 

 
118. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., 

Kay, H., Mule, J., Kerr, W. G., Jove, R., Pardoll, D., and Yu, H. 2005. Inhibiting Stat3 
signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature 
Medicine. 11, 1314-21. 

 
119. Cowly, S., Paterson, H., kemp, P., and Marshall, C. J. 1994. Activation of MAP kinase is 

necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. 
Cell. 77, 841-52. 

 
120. Hoshino, R., Chatani, Y., Yamori, T., Tsuruo, T., Oka, H., Yoshida, O., and et al. 1999. 

Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling 
pathway in human tumors. Oncogene 18, 813-822. 

 
121. Jorgensen, K., Holm, R., Maelandsmo, G. M., and Florenes, V. A. 2003.Expression of 

activated extracellular signal-regulated kinases 1/2 in malignant melanomas: relationship 
with clinical outcome. Clin. Cancer Res. 9, 5325-31. 

 
122. Mirmohammadsadegh, A., Mota, R., Gustrau, A., Hassan, M., Nambiar, S., Marini, A., 

Bojar, H., Tannapfel, A., and Hengge, U. R. 2007. ERK1/2 is highly phosphorylated in 
melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. J. Inv. 
Dermatol. 127, 2207-15. 

 
123. Sumimoto, H., Imabayashi, F., Iwata, T., and Kawakami, Y. 2006. The BRAF-MAPK 

signaling pathway is essential for cancer immune evasion in human melanoma cells. J. Exp. 
Med. 203, 1651-56. 

 
124. Yi, A. K., Yoon, J. G., Yeo, S. J., Hong, S. C., English, B. K., and Krieg, A. M. 2002. 

Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 
production: central role of extracellular signal-regulated kinase in the negative feedback 
loop of the CpG DNA-mediated Th1 response. J. Immunol. 168, 4711-20. 

 
125. Jackson, A. M., Mulcahy, L. A., Zhu, X. W., O’Donnell, D., and Patel, P. M. 2008. 

Tumor-mediated disruption of dendritic cell function: inhibiting the MEK1/2-p44/42 axis 
restores IL-12 production and Th1-generation. Int. J. Cancer. 123, 623-632. 

 
126. Fujita, H. 2007. ERK inhibitior PD98059 promotes the phenotypic and functional 

maturation of murine resident Langerhans cells. J. Dermatol. 34, 403-406. 
 
127. Elenitoba-Johnson, K. S., Jenson, S. D., Abbott, R. T., Palais, R. A., Bohling, S. D., Lin, 

Z., Tripp, S., Shami, P. J., Wang, L. Y., Coupland, R. W., Buckstein, R., Perez-Ordonez, B-, 
perkins, S. L., Dube, I. D., and Lim, M. S. 2003. Involvement of multiple signaling 
pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a 
target for therapy. Proc. Natl. Acad. Sci. U.S.A. 100, 7259-64. 

87 



References 

128. Pedersen, I. M., Buhl, A. M., Klausen, P., Geisler, C. H., and Jurlander, J. 2002. The 
chimeric anti-CD20 antibody retuximab induces apoptosis in B-cell chronic lymphocytic 
leukemia cells through a p38 mitogen activated protein kinase dependent mechanism. Blood. 
99, 1314-19. 

 
129. Smalley, K. and Eisen, T. (2000) The involvement of p38 mitogen-activated protein 

kinase in the α-melanocyte stimulating hormone (α-MSH)-induced melanogenic and 
anti-proliferative effects in B16 melanoma cells. FEBS Lett. 476, 198–202. 

 
130. Horie, K., Ohashi, M., Satoh, Y., and Sairenji, T. 2007. The role of p38 mitogen-activated 

protein kinase in regulating interleukin-10 gene expression in Burkitt’s lymphoma cell lines. 
Microbiol. Immunol. 51, 149-161. 

 
131. Yoshino, Y., Aoyagi, M., Tamaki, M., Duan, L., Morimoto, T., and Ohno, K. 2006. 

Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in 
human malignant glioma cells. Int. J. Oncol. 29, 981-987. 

 
132. Yanagawa, Y. and Onoe, K. 2006. Distinct regulation of CD40-mediated interleukin-6 

and interleukin-12 productions via mitogen-activated protein kinase and nuclear factor 
κB-inducing kinase in mature dendritic cells. Immunol. 117, 526-535. 

 
133. Xie, J., Qian, J., Wang, S., Freemann, M. E., Epstein, J., and Yi, Qing. 2003. Novel and 

detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: 
involvement of mitogen-activated protein kinase p38. J. Immunol. 171, 4792-4800. 

 
134. Jarnicki, A. G., Conroy, H., Brereton, C., Donnelly, G., Toomey, D., Walsh, K., Sweeney, 

C., Leavy, O., Fletcher, J., Lavelle, E. C. Dunne, P., and Mills, K. H. G. 2008. Attenuating 
regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signalling in 
dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. 
J. Immunol. 180, 3797-3806. 

 
135. Schwartz, R. H., Mueller, D. L., Jenkins, M. K., and Quill, H. 1989. T cell clonal anergy. 

Cold Spring Harb. Symp. Quant. Biol. 54, 605-610. 
 
136. Fu, F., Li, Y., Qian, S., Lu, L., Chambers, F. D., Starzl, T. E., Fung, J. J., Thomson, A. W. 

1996. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, 
CD80dim, CD86-) prolong cardiac allograft survival in onoimmunosuppressed recipients. 
Transplantation. 62, 659-665. 

 
137. Lutz, M. B., Suri, R. M., Niimi, M., Ogilvie, A. L., Kukutsch, N. A., Rössner, S., Schuler, 

G., and Austyn, J. M. 2000. Immature dendritic cells generated with low doses of GM-CSF 
in the absence of IL-4 are maturation-resistant and prolong allograft survival in vivo. Eur. J. 
Immunol. 30, 1813-22. 

 
138. Hengartner, H., Odermatt, B., Schneider, R., Schreyer, M., Walle, G., and et al. 1988. 

Deletion of self-reactive T cells before entry into the thymus medulla. Nat. 336, 388-390. 
 
139. Grohmann, U., Bianchi, R., Belladonna, M. L., Silla, S., Fallarino, F., Fioretti, M. C., 

and Puccetti, P. 2000. IFN-γ inhibits presentation of a tumor/self peptide by CD8α- 
dendritic cells via potentiation of the CD8α+ subset. J. Immunol. 165, 1357-63. 

 

88 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Grohmann%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bianchi%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Belladonna%20ML%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Silla%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fallarino%20F%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fioretti%20MC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Puccetti%20P%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


References 

140. Prendergast, G. C. I2008. mmune escape as a fundamental trait of cancer: focus on IDO. 
Oncogene. 27, 3889-3900. 

 
141. Fallarino, F., Asselin-Paturel, C., Vacca, C., Bianchi, R., Gizzi, S., Fioretti, M. C., 

Trinchieri, G., Grohmann, U., and Puccetti, P. 2004. Murine plasmacytoid dendritic cells 
initiated the immunosuppressive pathway of tryptophan catabolism in response to CD200 
receptor engagement. J. Immunol. 173, 3748-54. 

 
142. Baban, B., Hansen, A. M., Chandler, P. R., Manlapat, A., Bingaman, A., Kahler, D. J., 

Munn, D. H., and Mellor, A. L. 2005. A minor population of splenic dendritic cells 
expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling 
following B7 ligation. Int. Immunol. 17, 909-919. 

 
143. Zou, W., and Chen, L. 2008. Inhibitory B7-family molecules in the tumour 

microenvironment. Nat. Rev. Immunol. 8, 467-477. 
 
144. Curiel, T. J., Wie, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R., 

Knutson, K. L., Daniel, B., Zimmermann, M. C., David, O., Burow, M., Gordon, A., 
Dhurandhar, N., Myers, L., Berggren, R., Hemminki, A., Alvarez, R. D., Emilie, D., Curiel, 
D. T., Chen, L., and Zou, W. 2003. Blockade of B7-H1 improves myeloid dendritic 
cell-mediated antitumor immunity. Nat. Med. 21, 562-567. 

 
145. Steinman, R. M., Turley, S., Mellman, I., and Inaba, K. 2000. The induction of tolerance 

by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411-416. 
 
146. Tatsumi, T., Kierstead, L. S., Ranieri, E., Gesualdo, L., Schena, F. P., Finke, J. H., 

Bukowski, R. M., Mueller-Berghaus, J., Kirkwood, J. M., Kwok, W. W., and Storkus, W. J. 
2002. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against 
MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J. Exp. 
Med. 196, 619-628. 

 
147. Tatsumi, T., Herrem, C. J., Olson, W. C., and et al. 2003. Disease stage variation in 

CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with 
renal cell carcinoma. Cancer Res. 63, 4481–89. 

 
148. Tatsumi, T., Kierstead, L. S., Ranieri, E., and et al. 2003. MAGE-6 encodes 

HLA-DRß1*0401-presented epitopes recognized by CD4+ T cells from patients with 
melanoma or renal cell carcinoma. Clin. Cancer Res. 9, 947–954. 

 
149. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A. H. 2000. Induction fo 

interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by 
repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 
1213-22. 

 
150. Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., and Steinman, R. 

M. 2003. Direct expansion of functional CD25+ CD4+ regulatory T cells by 
antigen-processing dendritic cells. J. Exp. Med. 198, 235-247. 

 
151. Oldenhove, G., de Heusch, M., Urbain-Vansanten, G., Urbain, J., Maliszewski, C., Leo, 

O., and Moser, M. 2003. CD4+ CD25+ regulatory T cells control T helper cell type 1 
responses to foreign antigens induced by mature dendritic cells in vivo. J. Exp. Med. 198, 

89 



References 

259-266. 
 
152. Ghiringhelli, F., Puig, P. E., Roux, S., and et al. 2005. Tumor cells convert immature 

myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T 
cell proliferation. J. Exp. Med. 202, 919-929. 

 
153. McGuirk, P., McCann, C., and Mills, K. H. 2002. Pathogen-specific T regulatory 1 cells 

induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 
production by dendritic cells: a novel strategy for evasion of protective T helper type 1 
responses by Bordetella pertussis. J. Exp. Med. 195, 221-231. 

 
154. Wakkach, A., Fournier, N., Brun, V., Breittmayer, J. P., Cottrez, F., and Groux, H. 2003. 

Characterization of dendritic cells that induce tolerance and T regulatory 1 cell 
differentiation in vivo. Immunity 18, 605-617. 

 
155. Zhang, X. et al. 2005. CD4-CD8- dendritic cells prime CD4+ T regulatory 1 cells to 

suppress anti-tumor immunity. J. Immunol. 175, 2931-37. 
 
156. Marks, R. 2000. Epidemiology of melanoma. Clin. Exp. Dermatol. 25, 459-463. 
 
157. Tucker, M. A., Halpern, A., Holly, E. A., Hartge, P., Elder, D. E., Sagebiel, R. W., Guerry, 

D. 4th, and Clark, W. H. Jr. 1997. Clinically recognized dysplastic nevi: a central risk factor 
for cutaneous melanoma. JAMA. 277, 1439-44. 

 
158. Monzon, J., Liu, L., Brill, H., Goldstein, A. M., Tucker, M. A., From, L., McLaughlin, J., 

Hogg, D., and Lassam, N. J. 1998. CDKN2A mutations in multiple primary melanomas. N. 
Engl. J. Med. 338, 879-887. 

 
159. Bajetta E, Del Vecchio M, Bernard-Marty C, Vitali M, Buzzoni R, Rixe O, Nova P, 

Aglione S, Taillibert S, Khayat D. 2002. Metastatic melanoma: chemotherapy. Semin. Oncol. 
29, 427–45. 

 
160. Becker J C, Kirkwood J M, Agarwala S S, Dummer R, Schrama D, Hauschild A. 2006. 

Molecularly targeted therapy for melanoma – current reality and future options. Cancer 107, 
2317–27. 

 
161. Fensterle J. 2006. A trip through the signaling pathways of melanoma. J. Dtsch. 

Dermatol. Ges. 4, 205–217. 
 
162. Lejeune F J, Rimoldi D, Speiser D. 2007. New approaches in metastatic melanoma: 

biological and molecular targeted therapies. Expert Rev. Anticancer Ther. 7, 701–713. 
 
163. Meier F, Schittek B, Busch S et al. 2005. The Ras/Raf/MEK/ERK and PI3K/AKT 

signaling pathways present molecular targets for the effective treatment of advanced 
melanoma. Frontiers Biosci. 10, 2986–3001. 

 
164. Mendenhall, W. M., Amdur, R. J., Grobmyer, S. R., George, T. J., Werning, J. W., 

Hochwald, S. N., Mendenhall, N. P. 2008. Adjuvant Radiotherapy for Cutaneous Melanoma. 
Cancer 112, 1189–96. 

 
165. Buzaid, A. 2004. Management of metastatic cutaneous melanoma. Oncology (Williston 

90 



References 

Park) 18, 1443–50. 
 
166. Kirkwood, J. M., Strawderman, M. H., Ernstoff, M. S., and et al. 1996. Interferon alfa-2b 

adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative 
Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7-17.  

 
167. Ridolfi, R., Ridolfi, L., Petrini, M., Fiammenghi, L., and Riccobon, A. 2003. Dendritic 

cell vaccination and immunostimulation in advanced melanoma. Expert Rev. Vaccines. 2, 
825-833 

 
168. Sallusto, F., and Lanzavecchia, A. 1994. Efficient presentation of soluble antigen by 

cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating 
factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 
179, 1109-18. 

 
169. Jonuleit, H., Kuhn, U., Muller, G., and et al. 1997. Pro-inflammatory cytokines and 

prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal 
calf serum-free conditions. Eur. J. Immunol. 27, 3135-42. 

 
170. Scandella, E., Men, Y., Gillessen, S., Forster, R., and Groettrup, M. 2002. Prostaglandin 

E2 is a key factor for CCR7 surface expression and migration of monocyte-derived 
dendritic cells. Blood 100, 1354–61. 

 
171. Morelli, A. E., Thomson, A. W. 2003. Dendritic cells under the spell of prostaglandins. 

Trends Immunol 24, 108–111. 
 
172. Banerjee, D. K., Dhodapkar, M. V., Matayeva, E., Steinman, R. M., Dhodapkar, K. M. 

2006. Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) in vitro 
and after injection of cytokine-matured DCs in myeloma patients. Blood 108, 2655–61. 

 
173. Mailliard, R. B., Wankowicz-Kalinska, A., Cai, Q., and et al. 2004. Alpha-type-1 

polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. 
Cancer Res. 64, 5934–37. 

 
174. Trepiakas, R., Pedersen, A. E., Met, Ö., Hansen, M. H., and Svane, I. M. 2008. 

Comparison of alpha-type-1 polarizing and standard dendritic cell cytokine cocktail for 
maturation of therapeutic monocyte-derived dendritic cell preparation from cancer patients. 
Vaccine 26, 2824–32. 

 
175. O’Rourke, M. G., Johnson, M., Lanagan, C., and et al. 2003. Durable complete clinical 

responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. 
Cancer Immunol. Immunother. 52, 387–395. 

 
176. Romani, N., Reider, D., Heuer, M., and  et al. 1996. Generation of mature dendritic 

cells from human blood. An improved method with special regard to clinical applicability. J 
Immunol. Methods 196, 137–151. 

 
177. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M. A., Lallas, C. D., Dahm, P., 

Niedzwiecki, D., Gilboa, E., and Vieweg, J. 2002. Autologous dendritic cells transfected 
with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate 
tumors. J. Clin. Invest. 109, 409-417. 

91 



References 

178. Morse, M. A., Coleman, R. E., Akabani, G., Niehaus, N., Coleman, D., and Lyerly, H. K. 
1999. Migration of human dendritic cells after injection in patients with metastatic 
malignancies. Cancer Res. 59, 56–58. 

 
179. Fong, L., Brockstedt, D., Benike, C., Wu, L., and Engleman, E. G. 2001. Dendritic cells 

injected via different routes induce immunity in cancer patients. J. Immunol. 166, 4254–59. 
 
180. Bedrosian, I., Mick, R., Xu, S., and et al. 2003. Intranodal administration of 

peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in 
melanoma patients. J Clin. Oncol. 21, 3826–35. 

 
181. Kyte, J. A., and Gaudernack, G. 2006. Immuno-gene therapy of cancer with 

tumour-mRNA transfected dendritic cells. Cancer Immunol. Immunother. 55, 1432–42. 
 
182. Lotze, M. T., Hellerstedt, B., Stolinski, L., and et al. 1997. The role of interleukin-2, 

interleukin-12, and dendritic cells in cancer therapy. Cancer J Sci Am 3(Suppl 1), 
S109–S114. 

 
183. Ahmadzadeh, M., and Rosenberg, S. A. 2006. IL-2 administration increases CD4+ 

CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409–14. 
 
184. Svane, I. M., Pedersen, A. E., Nikolajsen, K., and Zocca, M-B. 2008 Alterations in p53 

specific T-cells and other lymfocyte subsets in breast cancer patients during immunotherapy 
with p53-peptide loaded dendritic cells and low-dose interleukin-2. Vaccine 26, 4716-24. 

 
185. Schnurr, M., Galambos, P., Scholz, C., and et al. 2001. Tumor cell lysate-pulsed human 

dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model 
for the assessment of tumor vaccines. Cancer Res. 61, 6445–50. 

 
186. Ridgway, D. 2003. The first 1,000 dendritic cell vaccines. Cancer Invest. 21, 873–886. 
 
187. Engell-Noeregaard, L., Hansen, T. H., Andersen, M. H., Straten, P., and Svane, I. M. 

2008. Review of clinical studies on dendritic cell-based vaccination of patients with 
malignant melanoma: assessment of correlation between clinical response and vaccine 
parameters. Cancer Immunol. Immunother. Epub ahead of print. 

 
188. Britten, C. M., Gouttefangeas, C., Welters, M. J., and et al. 2008. The CIMT-monitoring 

panel: a two-step approach to harmonize the enumeration of antigen-specific CD8(+) T 
lymphocytes by structural and functional assays. Cancer Immunol. Immunother. 57, 
289–302. 

 
189. Janetzki, S., Panageas, K. S., Ben-Porat, L., and et al. 2008. Results and harmonization 

guidelines from two large-scale international Elispot proficiency panels conducted by the 
Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol. Immunother. 57, 303–315. 

 
190. Banchereau, J., Ueno, H., Dhodapkar, M., and et al. 2005. Immune and clinical outcomes 

in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived 
from CD34+ progenitors and activated with type I interferon. J Immunother. 28, 505–516. 

 
191. Schadendorf, D., Ugurel, S., Schuler-Thurner, B., Nestle, F. O., Enk, A., Bröcker, E. B., 

Grabbe, S., Rittgen, W., Edler, L., Sucker, A., Zimpfer-Rechner, C., Berger, T., Kamarashev, 

92 



References 

J., Burg, G., Jonuleit, H., Tüttenberg, A., Becker, J. C., Keikavoussi, P., Kämpgen, E., and 
Schuler, G. 2006. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed 
dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a 
randomized phase III trial of the DC study group of the DeCOG. Ann. Oncol. 17, 563-570. 

 
192. Whiteman, D., Whiteman, C., and Green, A. 2001 Childhood sun exposure as a risk 

factor for melanoma. A systematic review of epidemiological studies. Cancer Causes 
Control. 12, 69–82. 

 
193. Gallagher, C., Canfield, P., Greenhoak, G., and Reeve, V. 1984. Characterization and 

histogenesis of tumors in the hairless mouse produced by low-dosage incremental 
ultraviolet radiation. J Invest. Dermatol. 83, 169–174. 

 
194. Walker, G. J., and Hayward, N. K. 2002. Pathways to melanoma development: lessons 

from the mouse. J. Invest. Dermatol. 119, 783-792. 
 
195. Kato, M., Takahashi, M., Akhand, A. A., Liu, W., Dai, Y., Shimizu, S., Iwamoto, T., 

Suzuki, H., and Nakashima, I. 1998. Transgenic mouse model for skin malignant melanoma. 
Oncogene 17, 1885-88. 

 
196. Balch, C. M., Houghton, A., and Peters, L. 1989. Principles and practice of oncology: 

cancer. De Vita, V. T. Jr, Hellman, S., and Rosenberg, S. A. (eds).  Lippincott: Philadelphia, 
pp. 1519-42. 

 
197. von Felbert, V., Córdoba, F., Weissenberger, J., Vallan, C., Kato, M., Nakashima, I., 

Braathen, L. R., and Weis, J. 2005. Interleukin-6 Gene Ablation in a Transgenic Mouse 
Model of Malignant Skin Melanoma. Am. J. Pathol. 166, 831-841. 

 
198. Stene, M. A., Babajanians, M., Bhuta, S., and Cochran, A. J. 1988. Quantitative 

alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of 
the skin. J. Invest. Dermatol. 91, 125-128. 

 
199. Tabarkiewicz. J., Rybojad, P., Jablonka, A., and Rolinski, J. 2008. CD1c+ and CD303+ 

dendritic cells in peripheral blood, lymph nodes and tumor tissue of patients with non-small 
cell lung cancer. Oncol. Rep. 19, 237-243. 

 
200. Della Bella, S., Gennaro, M., Vaccari, M., Ferraris, C., Nicola, S., Riva, A., Clerici, M., 

Greco, M., and Villa, M. L. 2003. Altered maturation of peripheral blood dendritic cells in 
patients with breast cancer. Br. J. Cancer 89, 1463-72. 

 
201. Cochran, A. J., Morton, D. L., Stern, S., Lana, A. M., Essner, R., and Wen, D. R. 2001. 

Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the 
paracortex: implications for tumor biology and treatment. Mod. Pathol. 14, 604-608. 

 
202. Ito, M., Minamiya, Y., Kawai, H., Saito, S., Saito, H., Nakagawa, T., Imai, K., Hirokawa, 

M., and Ogawa, J. 2006. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the 
sentinel lymph nodes. J. Immunol. 176, 5637-43. 

 
203. Bellone, G., Carbone, A., Smirne, C., Scirelli, T., Buffolino, A., Novarino, A., Stacchini, 

A., Bertetto, O., Palestro, G., Sorio, C., Scarpa, A., Emanuelli, G., and Rodeck, U. 2006. 
Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by 

93 



References 

pancreatic carcinoma cells. J. Immunol. 177, 3448-60. 
 
204. Kusmartsev, S., and Gabrilovich, D. I. 2003. Inhibition of myeloid cell differentiation in 

cancer: the role of reactive oxygen species. J. Leukoc. Biol. 74, 186-196. 
 
205. Gabrilovich, D. I., Velders, M., Sotomayor, E., and Kast, W. M. 2001. Machanism of 

immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 
5313-20. 

 
206. Kusmartsev. S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. 2004. Antigen-specific 

inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by 
reactive oxygen species. J. Immunol. 172, 989-999. 

 
207. Schmielau, J., and Finn, O. J. 2001. Activated granulocytes and granulocyte-derived 

hydrogen peroxide are the underlying mechanism of suppression of T-cell function in 
advanced cancer patients. Cancer Res. 61, 4756-60. 

 
208. Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., 

Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., 
Caroll, R., and Coukos, G. 2004. Tumor-infiltrating dendritic cell precursors recruited by a 
beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. 10, 
950-958. 

 
209. Förster, R., Davalos-Misslitz, A. C., Rot, A. 2008. CCR7 and its ligands: balancing 

immunity and tolerance. Nat. Rev. Immunol. 8, 362-371. 
 
210. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive 

immunity. Nat. Rev. Immunol. 3, 133-146. 
 
211. Makarenkova, V. P., Shurin, G. V., Tourkova, I. L., Balkir, L., Pirtskhalaishvili, G., Perez, 

L., Gerein, V., Siegfried, J. M., and Shurin, M. R. 2003. Lung cancer-derived bombesin-like 
peptides down-regulate the generation and function of human dendritic cells. J. 
Neuroimmunol. 145, 55-67. 

 
212. Shurin, M. R., and Gabrilovich, D. I. 2001. Regulation of dendritic cell system by tumor. 

Cancer Res. Ther. Control 11, 65-78. 
 
213. Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D., and Portoukalian, J. 

2003. Gangliosides from human melanoma tumors impair dendritic cell differentiation from 
monocytes and induce their apoptosis. J. Immunol. 170, 3488-94. 

 
214. Tourkova, I. L., Shurin, G. V., Chatta, G. S., Perez, L., Finke, J., Whiteside, T. L., Ferrone, 

S., and Shurin, M. R. 2005. Restoration by IL-15 of MHC class I antigen-processing 
machinery in human dendritic cells inhibited by tumor-derived gangliosides. J. Immunol. 
175, 3045-52. 

 
215. Escors, D., Lopes, L., Lin, R., Hiscott, J., Akira, S., Davis, R. J., and Collins, M. K. 2008. 

Targeting dendritic cell signaling to regulate the response to immunization. Blood. 111, 
3050-61. 

 
216. Ashwell, J.D. 2006. The many paths to p38 mitogen-activated protein kinase activation 

94 



References 

in the immune system. Nat. Rev. Immunol. 6:532-540. 
 

217. Adler, H.S, S. Kubsch, E. Graulich, S. Ludwig, J. Knop, and K. Steinbrink. 2007. 
Activation of MAP kinase p38 is critical for the cell-cycle-controlled suppressor function 
of regulatory T cells. Blood. 109:4351–4359. 

 
218. Merritt, C., H. Enslen, N. Diehl, D. Conze, R.J. Davis, and M. Rincón. 2000. Activation 

of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) 
but not CD4(+) T cells. Mol. Cell. Biol. 20:936-946. 

95 



Abbreviations 

VI. Abbreviations: 
 
A  
APC  antigen-presenting cell 
 
B 
BSA  bovine serum albumin 
bp  base pair 
 
C 
CCL  chemokine ligand 
CCR  chemokine receptor 
CD  cluster of differentiation 
cm  centimeter 
Con A  Concanavalin A 
CTL  cytotoxic T lymphocyte 
°C  degree Celsius 
 
D 
DC  dendritic cell 
DNA  deoxyribonucleic acid 
 
E 
EDTA  ethylenediaminetetraacetic acid 
ELISA  enzyme-linked immunosorbent assay 
ELISPOT enzyme-linked immunosorbent spot  
 
F 
FACS  fluorescent activated cell  sorting 
FCS  fetal calf serum 
FITC  fluorescein-5-isothiocyanate 
FSC  forward scatter 
 
G 
g  gramm 
g  acceleration due to gravity, 
  g = 9,81m/s2 

GM-CSF granulocyte/macrophage  colony stimulating factor 
 
H 
h  hour 
HRP  horseradish peroxidase 
H2O  water 
 
I 
IDO  indoleamine 2,3-dioxygenase 
IFA  incomplete Freund’s adjuvant 
IFN  interferon 
Ig  immunglobulin 
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IL  interleukin 
 
L 
l  liter 
 
M 
MAA  melanoma-associated antigen 
MDCs  myeloid dendritic cells 
MHC  major histocompatibility complex 
min  minute 
M  molar (mol/l) 
mM  millimolar 
ml  milliliter 
mg  milligramm 
mm  millimeter 
µl  microliter 
µg  microgramm 
mRNA  messenger RNA 
 
N 
NK cells natural killer cells 
nm  nanometer 
N  number 
 
O 
Ova  ovalbumin 
 
P 
%  procent 
PBS  Phosphate Buffered Saline  
PCR  Polymerase chain reaction 
PE  Phycoerythrin 
Pen/Strep Penicillin/Streptomycin 
PDCs  plasmacytoid dendritic cells 
pg  pikogramm 
 
R 
RNA  ribonucleic acid 
rpm  rounds per minutes 
RT  room temperature 
 
S 
SSC  side scatter 
 
T 
TCR  T-cell receptor 
TGF  transforming growth factor 
TNF  tumor necrosis factor 
Treg  regulatory T cell 
TRP  tyrosinase related protein 
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V 
VEGF  vascular endothelial growth factor 
V  volt 
v/v  volume per volume 
 
W 
WT  wild type 
w/v  weight per volume 
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