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Summary 
Determination of cell shape is an essential mechanism for cells like neurons, 

epithelial and fungal. In general, these cells are able to control their shape by 
positioning mechanisms that regulate cell growth and cell polarity. One key element 
for such a process is the microtubule cytoskeleton, which is organized into higher 
order assemblies in polarized cells. Therefore, an important question is to 
understand how these assemblies are established and maintained during interphase.  

We addressed this question by making use of mutants of the fission yeast 
Schizosaccharomyces pombe to study the organization of Interphase Microtubule 
Assemblies in high ultra-structural detail, using a new emerging technology – 
electron tomography. Mto1p, Ase1p and Klp2p are key Microtubule Associated 
Proteins required for the organization of microtubules into interphase microtubule 
arrays (IMAs). We reconstructed high resolution 3D volumes of mto1, ase1 and 
klp2 deletion strains (and all double mutants) in order to study the formation and 
organization of IMAs. 

We show that all mutants lacking ase1 maintain microtubule overlap regions 
but with altered inter-microtubule spacing. In addition, in ase1∆ klp2∆ cells the 
microtubules appear to have lost their connection to the spindle pole body. 
Interphase microtubule arrays in klp2∆ cells are mostly composed of only two 
microtubules instead of 2 to 9 in wild type. A similar phenotype is found in cells 
lacking Mto1p protein and cells lacking Mto1p and Klp2p proteins. Cells lacking 
Ase1p and Mto1p proteins form an interphase microtubule arrays composed of 
three microtubules, which extend the whole cell length. Both mto1Δ and mto1Δ 
ase1Δ cells present intra-nuclear microtubules but with a different organization. 
Finally, we show that impaired interphase microtubule arrays affect the 
mitochondria network structure in these deletion strains.  

The electron tomography analysis of the Ase1p deletion strains suggest the 
existence of other putative proteins involved in the microtubule bundling process. 
We show that most microtubules ends in mto1Δ cells have open end structures 
allowing microtubules to show treadmilling behavior. Furthermore, cells lacking 
Mto1p and/or Klp2 show IMAs with only two MTs, suggesting a role of Klp2p in 
microtubule nucleation. We propose a mechanistic model to tentatively explain the 
formation of stable IMAs. Finally we discussed the effects of defective IMAs at the 
cellular level by showing how the mitochondria network is affected in the deletion 
mutants compared with wild type cells. 





 

Zusammenfassung  
Die Bestimmung der Zellform ist ein entscheidender Mechanismus für viele 

Zellen wie zum Beispiel Neurone, Epithel und Pilzzellen. Im Allgemeinen sind 
diese Zellen in der Lage, ihre Form zu kontrollieren, indem sie die Position der 
Mechanismen von Zellwachstum und Zellpolarität steuern. Hierbei spielt das 
Microtubuli Zytoskelett eine wichtige Rolle. Dieses ist in polarisierten Zellen in 
Zusammenschlüsse höherer Ordung organisiert. Es ist deshalb von zentraler 
Bedeutung zu verstehen, wie diese Zusammenschlüsse während der Interphase 
gebildet und aufrechterhalten werden. Wir haben uns mit dieser Frage befasst, 
indem wir die “Interphase Mikrotubuli Zusammenschlüsse” (IMAs) in 
verschiedenen Mutanten der Spalt-Hefe, Schizosaccharomyces pombe genauer 
untersuchten. Hierbei verwendeten wir eine der modernsten Technologien für die 
Darstellung ultrastruktureller Details, die Elektronentomographie. Mto1p, Ase1p 
und Klp2p sind wichtige “Microtubuli Assoziierte Proteine” (MAPs) welche für 
den Zusammenschluss von Microtubuli in IMAs benötigt werden. Wir 
rekonstruierten hoch auflösende 3D Volumina von Hefezellen welche kein Mto1p, 
Ase1p oder Klp2p Protein besitzen, sowie alle möglichen Variationen dieser 
Doppelmutanten.  

Wir zeigen, dass Zellen welche kein Ase1p besitzen zwar noch überlappende 
microtubuli Regionen haben, jedoch einen veränderten inter-microtubuli Abstand 
aufweisen. Des Weiteren scheinen die microtubuli von Zellen, welche weder Ase1p 
noch Klp2p besitzen ihre Verbindung zum Spindelpolkörper (SPB) verloren zu 
haben. Die IMAs von Zellen ohne Klp2p bestehen meistens nur aus zwei- anstelle 
von zwei bis neun microtubuli im Wildtypen. Ein ähnlicher Phänotyp zeigte sich 
auch in mto1 mutierten Zellen und in der mto1, klp2 Doppelmutante. Die mto1, 
ase1 Doppelmutante bildete IMAs welche aus drei microtubuli bestanden, die sich 
interessanter Weise über die gesamte Zell-Länge erstreckten. Sowohl mto1- als 
auch mto1, ase1 mutierte Zellen besitzen intra-nukleare microtubuli welche eine 
besondere Organisation besitzen. Des Weiteren zeigen wir, dass die von wild 
typischen Zellen abweichenden IMA Strukturen in den oben genannten Mutanten 
das Mitochondriennetzwerk beeinflussen.  

Die elektronentomographische Analyse der ase1 mutierten Zellen zeigt, dass 
die IMAs immer noch überlappende microtubuli Regionen besitzen, jedoch einen 
veränderten inter-microtubuli Abstand aufweisen. Diese Beobachtungen weisen auf 
die Existenz weiterer Proteine hin, die für den Bündelungsprozess von microtubuli 
mitverantwortlich sind. Wir zeigen, dass die meisten microtubuli in mto1 mutierten 
Zellen offene Endstrukturen besitzen. Diese offenen Endstrukturen können zum 
sogenannten “Treadmilling” von microtubuli führen, bei welchem hinten Tubulin 
ab- und vorne angebaut wird. Ausserdem weist die Tatsache, dass die IMAs von 
Zellen ohne Mto1p und/oder Klp2p nur zwei microtubuli besitzen darauf hin, dass 
Klp2 am Bildungsprozess neuer microtubuli beteiligt ist. Wir präsentieren ein 
Modell in dem wir versuchen die Bildung stabiler IMAs zu erklären. Abschließend 
wird der Effekt der vom Wildtypen abweichenden IMA Strukturen auf das 
Mitochondriennetzwerk diskutiert. 
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The cytoskeleton is a major component of the cell. It allows 

chromosome segregation and cell division. It helps to determine cell 

polarity, which is essential for cell morphology. It acts as a structural 

support and provides mechanical strength. It is involved in the transport of 

molecules and molecular complexes. Cell organelles are able to anchor 

and/or move along it. It is responsible for cell motility, and plays a role in 

sensory functions and in transport processes across membranes. 

The eukaryotic cytoskeleton is composed of microtubules (MTs), actin 

and intermediate filaments. I first introduce some short general evolutionary 

concepts about the cytoskeleton. I subsequently describe MTs in more 

detail, including their organization into assemblies and proteins regulating 

their dynamics. Finally, I introduce the questions that guided this study, the 

model organism chosen, and the ultra-molecular complex that our study 

infringed upon. 
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1.1 Cell Polarity 
Cell polarity is a fundamental feature of cells from unicellular to 

multicellular organisms. It is essential in most basic cellular processes, such 

as growth, development and migration. Cell polarity can refer to overall cell 

shape, or the non-symmetrical arrangement of cellular components. Both 

can be established with the use of positional values that cells acquire and 

interpret in terms of a genetically determined programme (Wolpert 1996). 

Positional values can originate from external cues or from internal 

signals. Although establishment and maintenance of cell polarity are 

inherently complex processes, they can be depicted in a simple hierarchical 

pathway of events. First a specific site provides a positional value which is 

transmitted to the cell cytoskeleton and to the vesicle transport machinery. 

As a consequence determined physiological activities are directed to that 

site leading to pattern emergence. Later on, feedback loops involving the 

cytoskeleton and associated proteins, as well as membrane components 

allow for the maintenance of polarization (Nelson 2003; Harris 2006). 

1.2 Cytoskeleton Evolution 
Until the 1990’s, the cytoskeleton was believed to have evolved only 

the eukaryotes. In 1992, several studies discovered a bacterial tubulin 

homolog, FtsZ, that like tubulin, hydrolyzes guanoside triphosphate (GTP) 

and has a seven amino-acid sequence, GGGTGTG, virtually identical to the 

“tubulin signature sequence” (de Boer et al. 1992; RayChaudhuri and Park 

1992; Mukherjee et al. 1993). In the same year, a study using a sophisticated 

structure-based alignment (Bork et al. 1992) found three bacterial proteins 

possibly related to actin – FtsA, MreB and ParM. This early study was only 

followed up nine years later, when it was shown that MreB assembles into 

actin-like filaments (Jones et al. 2001; van den Ent et al. 2001). Bacterial 

intermediate filaments like genes (crescentin) are only known in a single 
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bacterial species, C. crescentus. However, this gene was acquired by a 

recent horizontal transfer (Ausmees et al. 2003), making it more likely that 

intermediate filaments originated only in eukaryotes. 

The evolution of bacterial and eukaryotic cytoskeleletons is a true 

enigma. On one hand, the divergence between bacterial and eukaryotic 

tubulins is so great that they are practically unrecognizable. On the other 

hand, the FtsZ sequence is poorly conserved across bacterial and archaea 

species (40% to 50% identical sequences), while eukaryotic tubulins are 

some of the most conserved proteins known (Doolittle 1995). Interestingly, 

the only amino acids that are conserved between FtsZ and tubulin are those 

involved in GTP binding and hydrolysis (Erickson 1998; Nogales et al. 

1998). The same is true for MreB and actin. While MreB is moderately 

conserved across diverse species (~40% identical sequence), the sequence 

identity with actin is less than 15 % (Doolittle and York 2002). 

It is believed that FtsZ is a very ancient protein, evolving as a 

functional protein even before the emergence of the genetic code as we 

know it (Davis 2002). This is supported by the very early necessity of a cell 

division mechanism that FtsZ provided, and still does today. As such, it is 

believed that FtsZ was present in a common ancestor and was passed to 

bacteria and euryarchaea. One explanation for the large divergence between 

FtsZ and tubulin, might be the evolution of an actin based machine for 

cytokinesis, allowing FtsZ to undergo large evolutionary changes, evolving 

into tubulin and the totally new function of building MTs (Doolittle 1995; 

Doolittle and York 2002). 

Likewise, MreB probably evolved from a common ancestor of bacteria 

and eukaryotes, providing the cell with a mechanism to determine its shape 

and in some species the segregation of chromosomes (Kruse et al. 2006; 

Dye and Shapiro 2007). It is though that during evolution of eukaryotes 

MreB lost its function and evolved into a protein capable of forming 

machineries responsible for cell division, motile functions and phagocytosis 

(Erickson 2007). 
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1.3 Actin: an overview 
The core constituent of actin cytoskeleton is monomeric globular (G) – 

actin associated with an adenosine triphosphate hydrolase (ATPase) that 

can self-assemble into a ~ 6 nanometers (nm) right-handed helical filament 

(F)-actin of two intertwined strands (Steinmetz et al. 1997a). G-actin is a 

polar molecule which determines the polarity of the filament with a highly 

dynamic plus end (barbed) where G-actin is added up to 12 times faster to 

the F-actin than at the less dynamic minus end (pointed; Kabsch and 

Vandekerckhove 1992). 

 

Figure 1.1. Examples of actin networks.  
(A) Transmission electron micrograph of a keratocyte prepared by Triton fixation. Adapted from 
Pollard and Borisy (2003) (B) Negatively stained ragged and branched F-actin filaments imaged in 
transmission electron microscope. Bar, 100 nm. Adapted from Steinmetz et al. (1997a). 

 

The polymerization of actin is tightly linked with adenosine 

triphosphate (ATP) hydrolysis. When an actin molecule is incorporated into 

a filament the ATP associated with it is hydrolyzed to adenosine 

diphosphate (ADP). Since the release of the phosphate is slower than the 

formation of the filament, actin filaments have an ATP cap at their barbed 

end, while monomers containing ADP transiently accumulate in the 
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remaining filament. Such a process leads to a phenomenon of treadmilling 

(Kabsch and Vandekerckhove 1992; Steinmetz et al. 1997b). 

In cells, actin filaments function as force-generating polymer motors, 

structural scaffolds and tracks for motor proteins (Figure 1.1). In muscle 

cells, actin is the main component of sarcomeres, where together with the 

motor protein myosin, is responsible for muscle contraction (Squire 1997). 

In migrating cells, actin is essential for the formation of protrusions at the 

leading edge that determine the movement direction. Finally several 

examples of actin based intracellular movement are also known (Pollard and 

Borisy 2003).  

In S. pombe actin performs essential functions in the regulation of cell 

growth and polarity (Feierbach and Chang 2001; Pelham and Chang 2001; 

Bretscher 2005; Chang et al. 2005; see section 1.8.3).  

 

1.4 Intermediate filaments: an overview 
Intermediate filaments are flexible, rod-shape fibers with ~ 10nm in 

diameter, a size ‘intermediate’ between the thin and thick filaments of 

chicken muscle cells (Ishikawa et al. 1968) which exist only in eukaryotes. 

Intermediate filaments form extensive networks that appear to connect the 

cell surface with the nucleus. The fact that intermediate filaments interact 

with desmosomes, hemidesmosomes, focal adhesions and the extracellular 

matrix, suggest that it forms a continuous link between the exterior and the 

nucleus surface through which signals can be transmitted (Goldman et al. 

2008).  

A well know example of intermediate filaments are the nuclear 

laminas. These form a fibrous network beneath the inner nuclear envelope 

membrane, which provides support to the interphase nuclear envelope and 

provides anchoring sites for the chromatin (Parnaik 2008). Other examples 

of intermediate filaments are vimentin and keratin (Figure 1.2). Vimentin is 

present in smooth muscle cells, endothelial cells and neurons. In this latter, 
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vimentin was reported has being essential for signal transduction after 

sciatic nerve crush injury (Goldman et al. 2008). Keratins are the major 

constituent of nails and hair, and are also found in axons and neurons. 

Intermediate filaments form a large protein family whose members are 

composed by a conserved central α-helical rod domain flanked by a non- α-

helical N-(head) and C-terminal (tail) domains. The head and tail domains 

are variable in size and sequence, which contributes to the diversity of this 

super family (Parry et al. 2007). Intermediate filaments polymerize by self-

association of monomers into dimers, which then associate in a parallel 

fashion to form the filaments. These filaments do not posses an intrinsic 

polarity. Nonetheless they can be highly dynamic with phosphorylation 

playing a major role (Helfand et al. 2004). 

No intermediate filament protein is known in S. pombe. 

 

Figure 1.2. Examples of intermediate filaments networks.  
(A) Keratin filament network of a rat kangaroo kidney epithelial cell (PtK2). Adapted from Goldman et 
al. (2008). (B) Differentiated PC12 cells fixed and stained from actin (red) and peripherin (green), a 
neuronal intermediate filament. Adapted from Helfand et al. (2004). 
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1.5 Microtubules: an introduction 
MTs are mainly composed of three types of tubulins: α, β and γ-

tubulin. Both α and β-tubulin are monomers of about 450 amino acids, have 

a mass of ~50 kilo (k) Daltons (Da), and share ~50% identical sequence at 

the amino acid level (Valiron et al. 2001). Both α and β-tubulin form a 

heterodimer with two binding sites for GTP, one exchangeable and the other 

not (Mitchison and Kirschner 1984).  

A MT is a hollow left-handed helical tube of approximately 25 nm 

diameter with walls made of tubulin heterodimers (αβ-tubulin) stacked 

head-to-tail to form protofilaments that run lengthwise along the wall of the 

tube (Wade 2007). This polarity of the tubulin dimers dictates the polarity of 

the MT, which is essential for their dynamic behavior (see section 1.5.1). As 

a consequence MTs are characterized by having a ‘plus’ more dynamic end 

and a ‘minus’ less dynamic one (Mitchison and Kirschner 1984). 

The MT in vivo has a total of 13 protofilaments with a predominant B-

lattice, where each tubulin homodimer from the neighbouring protofilament 

forms lateral contacts. Due to the fact that each protofilament is shifted 

slightly lengthwise by ~0.9 nm with respect to its neighbour, when the first 

and thirteen protofilaments close the tube there is a mismatch in the B-

lattice and α and β-tubulin interact laterally forming a A-lattice (Nogales et 

al. 1999; Figure 1.3A – B). 

In addition to the α-tubulin and β-tubulin monomers, the third most 

predominant tubulin is γ-tubulin which shares ~30% similarity with α and β-

tubulin (Oakley and Oakley 1989). γ-tubulin belongs to a different 

subfamily of tubulin  and appears to exist in all eukaryotes being involved in 

MT nucleation and stabilization (Dutcher 2003). 

. 
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Figure 1.3. MT structure and dynamics. 
MTs are composed of α/β-tubulin dimers stack head-to-tail forming a protofilament. Each dimer has 4 
nm of width and 8 nm of height (A). An in vivo MT is typically a cylindrical and helical structure 
composed of 13 protofilaments. The helical pitch of 12 nm in combination with the 8 nm dimer height 
generates a lattice seam (red dashed line) (B). MT nucleation is believed to occur in the γ-TuRC 
complex which acts as a template for the MT. Some species do not possess the full γ-TuRC but a 
small version comprising only three proteins called γ-tubulin small complex - γ-TUSC (C). A growing 
MT is characterized by a fountain-like array of protofilaments structures (D). MTs can reach a steady 
state in which polymerization at the plus ends is negatively compensated by depolymerization at the 
minus end (E). See text for more details. A, B and D adapted from Akhmanova and Steinmetz (2008). 
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In all cell types so far examined, γ-tubulin associates with one or more 

proteins which are also highly conserved, forming the γ-tubulin ring 

complex (γ-TuRC; Figure1.3C; Dictenberg et al. 1998), a oligomer of more 

than 2 mega (M) Da in higher eukaryotes (Moritz et al. 2000). The γ-TuRC 

is believed to be essential for MT nucleation in vivo by providing a template 

where αβ heterodimers are added.  

Other tubulins recently identified ( δ, ε, ζ and η-tubulin) all seem to 

localize to the centrosomes and basal bodies (Ruiz et al. 1987; Dutcher and 

Trabuco 1998; Chang and Stearns 2000; Ruiz et al. 2000; Vaughan et al. 

2000) 

1.5.1 Dynamic behavior and treadmilling 
The large spectrum of functions that MTs are able to perform is largely 

dependent of their dynamic properties. 

The term dynamic instability was first used to describe the process of 

growth and shrinkage of MTs by Mitchison and Kirchner (1984). Dynamic 

instability comprises all MT stages: growth or polymerization; catastrophe 

or depolymerization; pause and rescue (Figure 1.3D; Walker et al. 1988). 

This behavior allows MTs to respond to external cues modifying their 

network as to better perform their function. 

In vivo, MTs grow by addition of αβ-tubulin dimers to the γ-TuRC, 

forming protofilaments that interact with each other laterally. As previously 

mention, both α and β-tubulin bind GTP, but while GTP is attached 

permanently to α-tubulin, the β-tubulin is a GTP hydrolase (GTPase), 

hydrolyzing the GTP into guanosine diphosphate (GDP) at the moment the 

next αβ-tubulin docks to the protofilament (Nogales et al. 1999). This 

causes MTs to be composed mostly β-tubulin – GDP except at its growing 

end where it is believed that MTs possess a ‘GTP-cap’, which stabilizes the 

MT growth (Mitchison and Kirschner 1984; Carlier et al. 1988). The 

hydrolysis of GTP is necessary only for the disassembly of MTs, since MTs 

still grow in the presence of non-hydrolysable GTP analogue, guanosine-5’-

([α,β]-methyleno)-triphosphate (GMPCPP; Muller-Reichert et al. 1998). 
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While β-tubulin – GTP as a straight configuration, the GDP form is curved. 

Nonetheless this latter form is constrained to be straight within the MT wall. 

This provides a large amount of potential energy to disassembly the MT 

(Wade 2007).  

The transition from growth to shrinkage is a stochastic event called 

catastrophe, where it is believed that the GTP hydrolysis rate overcomes the 

αβ-tubulin incorporation at the plus end rate. This leads to the loss of the 

GTP-cap, which destabilizes the MT leading to shrinkage. (Mitchison and 

Kirschner 1984; Desai and Mitchison 1997; Amos and Schlieper 2005). The 

passage from shrinkage to growth is termed rescue and is still an event not 

well understood. Finally MTs can also pause, a state where no growth or 

shrinkage occurs (Mitchison and Kirschner 1984) 

Besides dynamic instability, MTs also exhibit another behavior know 

as treadmilling (Figure 1.3E). This behavior was first discovered in vitro by 

the continuous uptake of GTP by a polymer population at steady state 

(Margolis and Wilson 1978).  Treadmilling is possible due to the different 

behavior of both MT ends at steady state. On the plus ends new tubulin 

dimers are continuously incorporated, while the minus end continuously 

looses them (Valiron et al. 2001). Even though it was believed that 

treadmilling would only occur in vitro it was later shown that treadmilling is 

present in vivo, for example, in the Xenopus leavis were it is responsible for 

chromosome migration (Margolis and Wilson 1998).  

 

1.5.2 Microtubule nucleation 
In vitro MTs can spontaneously polymerize without γ-tubulin due to 

the high concentrations of purified α and β- tubulin. In vivo, the 

concentration of these is smaller and γ-tubulin is needed to overcome the 

kinetic barrier of MT nucleation (Oakley and Oakley 1989). 

γ-tubulin normally associates with several other proteins, known as 

Dgrips in Drosophila, to form the γ –TURC (Figure 1.3C and for a list γ–

TURC complexes in the various species please view Annex I). It is believed 
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that γ-tubulin controls the MT nucleation by providing a 13 protofilament 

basal template. This model is supported by the observation that γ–TURCs 

form a capped structure of ~ 25 nm rings diameter in centrosomes (Moritz et 

al. 2000).  Furthermore in vitro studies showed that γ–TURCs form a cap 

structure at the minus end of MTs (Zheng et al. 1995; Moritz et al. 2000), 

and latter in vivo studies supported this observation (O'Toole et al. 2003b). 

Several proteins are known to interact with γ–TURCs targeting them to 

specific locations inside the cell like the centrosome or the cortex in plants 

(Gunawardane et al. 2000; Wiese and Zheng 2006). 

 

1.5.3 Microtubule organizing center 
MT nucleation is generally localized to specific structures in cells 

called microtubule organizing centers (MTOCs). Their shape, size and 

occurrence vary greatly between species and even within a cell at different 

stages of cell cycle (Schiebel 2000). The most intensively studied MTOC is 

the centrosome of vertebrate cells. The centrosome consists of a pair of 

centrioles, cylinders assembled from nine MT triples, and pericentriolar 

material that contains the γ –TURC. Other proteins function to target and 

tethering the γ –TURC to the centrosome. MTs are then nucleated and 

anchored to the centrosomes forming the MT array (Dictenberg et al. 1998; 

Megraw et al. 1999; Moritz et al. 2000; Bartolini and Gundersen 2006)}. 

Two types of arrays are normally present during the cell cycle. An 

interphase radial array where all the MTs derive from duplicated and 

tethered centrosomes, and a mitotic one where two anti-parallel MT arrays 

derive from the two separated centrosomes, which are now at each pole of 

the spindle (Hyman and Karsenti 1998; Andersen 1999; Bettencourt-Dias 

and Glover 2007). 

Centrioles are not essential for the existence of centrosomes. Indeed 

both budding and fission yeasts and have no centrioles but still possess the 

spindle pole body (SPB; centrosome equivalent) where the MTs are 

nucleated from. 
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1.5.4 Centrosomal vs. non-centrosomal microtubule arrays 
The existence of centrosomes is not a requirement for the existence of 

organized MT arrays. Indeed, differentiated animal cell types, including 

muscle, epithelia and neuronal cells, as well as most fungi and vascular 

plants, possess non-centrosomal arrays that are non-radial (Figure 1.4). Two 

unifying characteristics of these cell types are that they are all axially 

polarized and non migratory (Bartolini and Gundersen 2006).  

 

 

Figure 1.4. Cells with non-centrosomal MT arrays. 
Most polarized epithelial cells mainly have a non-centrosomal MT array aligned along the apical-basal 
axis of the cell, while in myotubes the non-centrosomal MT arrays are arranged along the cell long 
axis. Somatic plant cells lack an MTOC and normally present MT bundles of mixed polarity aligned 
perpendicular to the cell growth axis. Finally, fully differentiated neurons present both centrosomal 
arrays and non-centrosomal arrays. Dendrites have MT bundles of mixed polarity while axons have 
MT bundles of uniform polarity. Adapted from Bartolini and Gundersen (2006). 
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These non-radial MT arrays are less well understood. There are two 

major differences in these arrays compared to centrosomal arrays: 1) usually 

linear; 2) and in differentiated cells many MTs become stabilized 

(Gundersen and Bulinski 1986; Gundersen et al. 1989; Chapin et al. 1991). 

A model for generating such non-centrosomal arrays has been proposed by 

Bartolini and Gundersen (2006) and comprises three steps: 1) generation of 

non-centrosomal MTs; 2) movement of non-centrosomal MTs to the sites of 

assembly and; 3) assembly of non-centrosomal MTs into higher order 

arrays. Later, the Schizosaccharomyces pombe MT cytoskeleton and the 

formation of both centrosomal and non-centrosomal arrays in interphase 

cells will be described in greater detail. 

 

1.6 Microtubule Associated Proteins 
In cells the dynamics of MTs are normally modulated by a number of 

proteins that interact with the MTs. They are called microtubule associated 

proteins (MAPs). Indeed, MAPs influence the cell MT dynamics in all their 

stages. MAPs are known to be essential for MT nucleation (see section 

1.5.2) and to promote MT assembly rates and stability of MT plus ends in 

specific contexts. Furthermore, MAPs are also known to promote MT 

catastrophe, rescue, treadmilling and even MT severing (Amos and 

Schlieper 2005) 

MAPs can be generally divided into four main classes: stabilizers, 

destabilizers, motors and bundlers. 

 

1.6.1 Microtubule stabilizers 
The group of MT stabilizing MAPs is composed by several protein 

families, namely, the Dis1/XMAP215 family, the EB1 family and the 

CLIP170 family and several others. All these families have been grouped 
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according to prominent structural elements that are conserved throughout 

their members (Akhmanova and Steinmetz 2008). 

1.6.1.1 Dis1/XMAP215 family 
The Dis1/XMAP215 family is characterized by the existence of 

repeating units of ~200 amino acids at their N-terminal, known as Tumor 

Overexpressed Gene (TOG) domains which bind to tubulin and MTs (Gard 

and Kirschner 1987). Each of these TOG-like domains comprises several 

HEAT repeats, a module containing 37 to 47 amino acids. Arrays of HEAT 

repeats form a rod-like helical structure that participates in protein-protein 

interactions (Slep and Vale 2007).  

The main functions of Dis1/XMAP215 family proteins are MT 

stabilization, promotion of MT growth and MT-cortex interaction. 

Interestingly S. pombe is so far the only organism in which two members of 

the Dis1/XMAP215 exist: Alp14p and Dis1p (Nabeshima et al. 1995; 

Garcia et al. 2001). 

 

1.6.1.2 +TIPs 
Since the discovery of the first +TIP – Cytoplasmic Linker Protein of 

170 kDa (CLIP170; Diamantopoulos et al. 1999; Perez et al. 1999) – several 

families of +TIPs have been identified, namely, the end binding proteins 

(EB1) family, the adenomatous polyposis coli (APC) and karyogamy 

protein 9 (Kar9) family (Groden et al. 1991; Miller and Rose 1998), the 

CLASP family (see section 1.6.1.2.3), and several others (see Annex II for a 

complete listing of +TIPs proteins). Despite structurally unrelated, these 

proteins share a common localization and several similar activities. 

Furthermore +TIPs seem to be constituted by a limited set of evolutionary 

conserved modular binding domains, repeat sequences and linear motifs 

(Akhmanova and Steinmetz 2008). 
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1.6.1.2.1 CLIP170 family  
CLIP170 was identified as a linker between endocytic vesicles and 

MTs. They are characterized by a cytoskeleton-associated protein Glycine-

rich (CAP-Gly) domain at their N-terminal. These are responsible for the 

interaction with MTs and EB proteins Furthermore, CLIPs contain a coiled-

coil domain that allows the formation of parallel dimers, and a cargo-

binding domain at their C-terminal, characterized by two tandemly repeated 

metal-binding motifs and a C-terminal EEY/F motif (Pierre et al. 1994). 

Besides linking vesicles to MTs, CLIP proteins also promote MT 

rescue and stability. They target dynein to MT ends and promote MT 

interaction with the cell cortex and kinetochores (Pierre et al. 1992; 

Akhmanova et al. 2001).  

The protein Tip1p is the member of this family in S. pombe (Brunner 

and Nurse 2000). It is transported along MTs by the kinesin motor Tea2 and 

its accumulation at the cell tips depends of the EB1 homologue Mal3 (Busch 

and Brunner 2004; Busch et al. 2004; Bieling et al. 2007).Tip1 is important 

for the spatial regulation of interphase MTs, stabilizing MTs that contact the 

cell cortex, allowing them to reach the cell poles where they deposit the 

polarity factors (Brunner and Nurse 2000). 

 

1.6.1.2.2 EB1 family  
The EB1 protein family is conserved from yeast to mammals. It is 

characterized by highly conserved N and C-terminal domains that are 

separated by a less conserved linker sequence. The N-terminal domain is 

necessary and sufficient for MT binding (Hayashi and Ikura 2003). It is a 

globular domain characteristic of the calponin homology (CH) domain, 

normally found in actin-binding and signaling proteins (Gimona et al. 

2002). The C-terminal part contains a coiled-coil domain which allows for 

homo-dimerization of EB1. This coiled-coil domain partially overlaps with 

the end-binding homology domain (EBH) which is unique to this family 

(Slep et al. 2005).  
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This family of proteins acts mainly in promoting MT growth and 

dynamicity, has an anti- MT catastrophe activity and targets several others 

+TIPs to the MT plus end. 

In S. pombe, the EB1 homologue is Mal3p. Its deletion leads to shorter 

MTs that do not reach the cell ends (Busch and Brunner 2004). Furthermore 

it was shown in vitro that Mal3p binds the MT lattice, likely contributing to 

its stabilization (Sandblad et al. 2006). More recently it was shown also in 

vitro that Mal3p promotes the formation of 13 protofilament MTs with A-

lattice (des Georges et al. 2008), reviving the discussion of the MT structure 

in vivo.  

 

1.6.1.2.3 CLASP family 
CLIP-associated proteins (CLASPs; Akhmanova et al. 2001) are 

characterized by the presence of TOG-like domains and domains enriched in 

basic and Ser residues. CLASPs also show MT plus tip localization, but this 

localization is normally restricted to the leading edge in a migratory cell. 

Furthermore they also localize to the Golgi apparatus where they may be 

involved in the nucleation of MTs (Efimov et al. 2007).  

In S. pombe Peg1p/Cls1p is the member of the CLASP family (Grallert 

et al. 2006; Bratman and Chang 2007). Since is protein is involved in this 

study it will be discussed later (see section 1.8.5.3.1). 

 

1.6.2 Microtubule destabilizers 
The existence of MT destabilizers is very important since it allows a 

quick response from the MT network to external signals. Protein families of 

this class of MAPs include the Stathmin or Oncoprotein 18 (Op18), the 

Katanin and Spastin family and the Kinesin 13 family. 
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1.6.2.1 Stathmin family 
Stathmin or Oncoprotein 18 (Op18) was initially identified as a 

protein phosphorylated in response to several extracellular signals and 

associated with several forms of cancer. Its function as a MT destabilizing 

agent was determined later on (Belmont and Mitchison 1996).  

This protein family is characterized by a highly conserved N-terminal 

polyproline II helix domain. The rest of the N-terminal is unstructured with 

most of the protein having a predicted α-helical structure. Stathmin 

destabilizes MTs by either sequestering tubulin dimers or by stimulating 

plus end catastrophes (Howell et al. 1999a; Howell et al. 1999b). 

 

1.6.2.2 Katanin and Spastin family 
This family is a member of the ATPases associated with various 

cellular activities (AAA) family. They are characterized by a microtubule 

interacting and an endosomal trafficking (MIT) domain at the N-terminus 

and the AAA domain at the C-terminus (Salinas et al. 2007).  

These proteins destabilize MTs by severing them creating a new MT 

minus end without a γ-TuRC associated and therefore more prone to 

depolymerize. (Salinas et al. 2005). 

 

1.6.2.3 Kinesin 13 family 
Kinesin 13 (or Kin 1) family members use the hydrolysis of ATP to 

bind to MTs and peel the protofilaments apart (Moores et al. 2006; Moores 

and Milligan 2006; 2008). This family of proteins is characterized by a 

motor domain, which contains the MT and ATP-binding sites, in the middle 

of the amino acid sequence (Moores and Milligan 2006).  

 

1.6.3 Motors 
All the families of MT motors (with the exception of Kinesin I family) 

use the hydrolysis of ATP to move along MTs. The cellular functions of 
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motors range from vesicular transport, to chromosome oscillation by spatial 

regulation of MT dynamics (Gardner et al. 2008).  

Three types of motors exist: kinesins and dyneins which move along 

MTs, and myosins which move along actin filaments.  

 

1.6.3.1 Kinesins 
Kinesins are characterized by a ~360-residue globular motor domain 

that contains both the catalytic pocket for the hydrolysis of the ATP and the 

binding sites for MTs. This motor domain is normally followed by a flexible 

region and a coiled-coil domain which allows the oligomerization. 

According to sequence alignments of the motor domain there are 14 families 

of kinesis (Goodson et al. 1994). 

Kinesins ‘walk’ along MTs in different ways. Some kinesins are 

processive, which means they give several steps before dissociating (Song et 

al. 2001; Marx et al. 2008), while others are non-processive, giving one to 

two steps before dissociating (Yildiz and Selvin 2005).  

In S. pombe eight kinesins are known to exist according to sequence 

alignments and experimental data: Klp2p, Klp6p, Cut7p, Tea2p, Klp8p, 

Klp5p, Klp3p, Pkl1p and an uncharacterized member. Klp2p is a major 

subject on this thesis and will be discussed later.  

Klp6p forms a complex with Klp5p (both are from Kinesin 8 family) 

and are responsible for coordinate bipolar chromosome attachment 

(Sanchez-Perez et al. 2005). cut7 (Kinesin 5 family) is an essential gene that 

localizes to the SPB. Its absence blocks spindle formation (Hagan and 

Yanagida 1992). Tea2p forms a complex with Tip1 which it transports to the 

MT plus tips and is essential to generate polarized growth in fission yeast 

(Browning et al. 2000). The association and loading of the complex to the 

MT lattice is dependent on Mal3p (see section 1.6.1.2.2; Bieling et al. 

2007). Klp8p and Klp3p (Kinesin 1 family) are still largely uncharacterized 

but the latter when overexpressed leads to mitotic growth inhibition (Jeong 

et al. 2002). Finally, Pkl1p (kinesin 14 family) is localized only in the 
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nucleus of S. pombe where it is involved in the organization of the spindle 

(Pidoux et al. 1996; Troxell et al. 2001).  

1.6.3.2 Dynein 
Dyneins like the Katanin and Spastin family are members of the AAA 

ATPase. They are minus-end directed motors characterized by the dynein 

heavy chain (DHC) which contains a large motor domain composed of 6 

AAA+ ATPase-like domains. From here a coiled-coil domain extends links 

to a small globular domain that mediates the attachment to MTs (Vale 

2003). 

Dynein functions in higher eukaryotes range from vesicular transport 

and nuclear positioning to mitotic chromosome movement and spindle 

positioning (Bloom 2001).  

In S. pombe the loss of dynein function (by deleting the dynein heavy 

chain, dhc 1, or the light chain, dlc1) leads to altered chromosome 

segregation (Courtheoux et al. 2007; Grishchuk et al. 2007). 

 

1.6.4 Microtubule bundlers: Map65/Ase1/PRC1 family 
The organization of MT arrays as well as the proper function of such 

arrays depend not only on proteins that altered MT dynamics but also on 

proteins that allow MTs to be ‘loosely fixed’ in between each other, keeping 

an regular spacing and orientation in relation to each other. 

The main responsibles for this function are the members of the family 

Map65/Ase1/PRC1 (Table 1.1). These proteins are ‘professional’ MT 

bundlers. First discovered in Saccharomyces cerevisiae (Pellman et al. 

1995), these proteins are conserved through out the eukaryotes. They are 

characterized by a MT binding domain that occupies most of the protein 

sequence. 

As this subject is a major theme in this thesis, it will be discussed in 

more detail later on. 
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Table 1.1. Members of the MAP65/Ase1/PRC1 family. 
 

Protein Species 
Molecular 

characteristics 
(in vitro) 

Sub-cellular 
localization 

Putative function 
(in vivo) References 

NtMAP65-1a Tobacco 

MT binding 
MT bundling 
MT polymerization, 
phosphorylation by 
MPAK and CDKs 

Cortical MTs, 
PPBs, mitotic 
spindles and 
phragmoplast 
expansion 

Stabilization of MT-
based structures, 
phragmoplast 
expansion 

(Chang-Jie and 
Sonobe 1993; 
Smertenko et al. 
2000; Sasabe et al. 
2006) 

NtMAP65-1b Tobacco 
MT binding 
MT bundling, 
phosphorylation by 
MPAK  

Not analyzed Stabilization of MT-
based structures 

(Wicker-Planquart 
et al. 2004) 

MAP65 Carrot MT binding 
MT bundling 

Cortical MTs, 
PPBs, mitotic 
spindles, 
phragmoplast 

Stabilization of MT-
based structures 

(Chan et al. 1996; 
Chan et al. 1999) 

AtMAP65-1 Arabidopsis 

MT binding 
MT bundling, 
phosphorylation by 
MPAK 

Cortical MTs,PPBs, 
mitotic spindles, 
phragmoplast 

Stabilization of MT-
based structures 

(Ubersax et al. 
2003; Smertenko et 
al. 2004; Van 
Damme et al. 
2004a; Van 
Damme et al. 
2004b; Mao et al. 
2005) 

AtMAP65-3 
/PLE Arabidopsis MT binding 

MT bundling 

Cortical MTs, 
PPBs, 
phragmoplast 
midzone 

Stabilization of 
phragmoplast 
midzone 

(Muller et al. 2004; 
Van Damme et al. 
2004a) 

AtMAP65-4 Arabidopsis Not analyzed 
Nucleus MTs, 
spindle pole, 
mitotic spindles 

Spindle dynamics (Van Damme et al. 
2004b) 

AtMAP65-5 Arabidopsis Not analyzed 
Cortical MTs, early 
phragmoplasts, cell 
plates 

Formation of 
plasmodesmate 

(Van Damme et al. 
2004a; Van 
Damme et al. 
2004b) 

AtMAP65-6 Arabidopsis MT binding 
MT bundling Mitochondria Organelle 

positioning (Mao et al. 2005) 

AtMAP65-8 Arabidopsis Not analyzed 

Cortical MTs, 
spindle pole, 
mitotic spindles, 
phragmoplast MT 
minus-ends 

MT dynamics at 
minus-ends 

(Van Damme et al. 
2004a) 

PRC1 Mammals 
MT binding 
MT bundling 
phosphorylation by 
CDK 

Nucleus, mitotic 
spindle, central 
spindle midzone 

Stabilization of 
central spindle 
midzone 

(Jiang et al. 1998; 
Mollinari et al. 
2002; Zhu and 
Jiang 2005; Zhu et 
al. 2006) 

SPD1 C. elegans Not analyzed 
Nucleus around 
centrosomes, 
central spindle 
midzone 

Stabilization of 
central spindle 
midzone 

(Verbrugghe and 
White 2004) 

Feo Drosophila Not analyzed Central spindle 
midzone 

Stabilization of 
central spindle 
midzone 

(Verni et al. 2004) 

Ase1 S. 
cerevisiae 

MT binding 
MT bundling 
phosphorylation by 
CDK 

Mitotic spindles, 
anaphase spindle 
midzone 

Stabilization of 
anaphase spindle 
midzone 

(Pellman et al. 
1995; Juang et al. 
1997; Schuyler et 
al. 2003) 

Ase1p S. pombe MT binding 
MT bundling 

Cytoplasmic MTs, 
mitotic spindles, 
spindle pole 
bodies, anaphase 
spindle midzone 

Stabilization of 
anaphase spindle 
midzone, nuclear 
positioning 

(Loiodice et al. 
2005; Yamashita et 
al. 2005; Janson et 
al. 2007) 

Adapted from Sasabe and Machida (2006). 
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1.7  Cytoskeleton: dynamics to disease 
The important roles that the cytoskeleton plays in mitosis, cell 

signaling, motility and mechanical integrity are highlighted by a growing list 

of diseases whose occurrence are directly associated with MTs, actin or 

intermediate filaments (Table 1.2).  

The large majority of diseases in which MTs and actin are involved are 

the ones caused by molecules that interact directly with either the MT or the 

actin cytoskeleton. As such, both MTs and actin are targets for a growing 

number of drugs, specifically anti-cancer drugs. In this field, the use of the 

drugs that suppress MT dynamics leading to arrest of cell proliferation by 

apoptosis, have been in medical use since the 1960’s (Zelnak 2007). While 

MT-targeting drugs are routinely used in cancer therapy, very few actin-

targeting drugs have so far been characterized and none are used in the 

clinic. Nonetheless, several compounds that affect the dynamics of the actin 

cytoskeleton with high therapeutic value have been identified and efforts to 

evaluate its clinical potential are underway (Giganti and Friederich 2003). 

 

Table 1.2. Examples of diseases associated with the cytoskeleton or 
interacting proteins. 

Microtubules1 Actin2 
Intermediate 
Filaments3 

Alzheimer’s disease Actin myopathy Epidermolysis 
bullosa simplex 

Down’s syndrome Nemaline myopathy Amyotrophic 
disease 

Multiple system atrophy Intra-nuclear rod myopathy Parkinson disease 
Pick’s disease Rod-core disease Neuronal IF 

inclusion disease 
Extraskeletal myxoid 

chondrosarcoma Congenital fiber type disproportion Amyotrophic lateral 
sclerosis 

 

1Source: (Hisaoka et al. 2003; Robert and Mathuranath 2007) 
2Source: (Laing and Nowak 2005) 
3Source: (Godsel et al. 2008) 
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1.8 Schizosaccharomyces pombe 
 

1.8.1 A model organism 
 

In 1893, P. Lindner was the first to describe fission yeast 

Schizosaccharomyces pombe (Leupold 1950). He isolated the yeast from 

East African beer, and chose as its epithet the Swahili word for beer, 

‘pombe’. His isolate was a homothallic strain containing cells of both the h+ 

and h- mating type, which can mate pair-wise and form asci containing four 

ascospores (Wixon 2002). S. pombe, being a distant relative from the 

baker’s yeast S. cerevisiae, did benefit from the classical genetic 

biochemical and molecular biology methods developed for S. cerevisiae 

(Glick 1996), as well as with the sequence and annotation of its genome 

(Wood et al. 2002). Furthermore, in some aspects S. pombe resembles 

mammalian cells more closely than does S. cerevisiae, and if a process is 

similar in S. pombe and S. cerevisiae, it is likely to be conserved throughout 

eukaryotes (Moreno et al. 1991). 

Most of the research work in S. pombe aimed at understanding the cell 

cycle (Nurse 2000) and its regulation (Moser and Russell 2000). It also 

provided greater understanding in diverse areas of research as MT arrays 

formation (Hagan and Petersen 2000), meiotic differentiation (Yamashita et 

al. 1997), cellular morphogenesis (Brunner and Nurse 2000) and cell 

polarity (Bahler and Peter 2000). In these latter fields, genetic studies have 

enabled the study and characterization of several genes that control cell 

morphogenesis and polarity (Snell and Nurse 1994; Verde et al. 1995).  

1.8.2 The fission yeast cell cycle 
Fission yeast is a rod shape organism, with a rigid cell wall (Figure 

1.5A). It grows in a polarized manner by extension at its ends and divides by 

medial fission to generate two equal sized daughter cells (Hayles and Nurse 

2001). Initially, the new cells only grow at the old end which existed before 
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division. Later in the cell cycle, they initiate growth at the new end, derived 

from the septation, becoming bipolar. This process is known as new-end-

take-off or (NETO; Mitchison and Nurse 1985). The position of the two 

growth sites at opposite ends of S. pombe determines the long cell axis, and 

likewise its shape. 

 

1.8.3 The fission yeast actin cytoskeleton 
 

Actin in fission yeast is encoded by a single gene (act1) and exists in 

two states: G-actin, a minority form, and polymerized or F-actin. Actin 

patches, cables and the contractile ring are comprised of F-actin (Marks et 

al. 1986; Arai et al. 1998; Arai and Mabuchi 2002). Actin patches are the 

primary sites of actin nucleation. The maintenance of both actin patches and 

cables requires continuous actin polymerization. Normally actin patches 

concentrate at the cell tips or at the septum, exhibiting non-directed 

movement or moving away from those sites (Figure 1.5A; Pelham and 

Chang 2001).  

Actin cables have their barbed end facing the cell tips, and extend to 

the interior of the cell along its long axis (Kamasaki et al. 2005). This 

orientation is essential to maintain the polarized cell growth, since it allows 

the transport of actin patches, secretory vesicles and polarity factors to the 

growth sites. (Arai et al. 1998; Feierbach and Chang 2001; Pelham and 

Chang 2001).  

At the onset of mitosis, the actin cables re-orient such that the barbed 

ends face the mid-region of the cell. This allows the transport of the required 

materials to the formation site of the contractile ring and septum (Kamasaki 

et al. 2005). Later on, the actin cables accumulate in the middle of the cell 

and together with myosin form the contractile ring (Arai and Mabuchi 

2002).  

After septation, actin patches concentrate at the old end and only at 

NETO are they visible at both cell ends (Figure 1.5A; Marks et al. 1986). 
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Figure 1.5. S. pombe cytoskeleton organization during cell cycle. 
(A) In this case polarized localization of Tea3p is shown as an example of proteins that influence 
polarized growth in S. pombe. Also note the very short G1 and S phase of S. pombe, having a longer 
G2 phase. See text for more details of A. Adapted from (La Carbona et al. 2004). 
(B) This panel shows the MT cytoskeleton of S. pombe expressing an integrated allele of GFP-α-
tubulin (the native gene is still present) during cell cycle. 1, Pre-NETO; 2, Pos-NETO; 3, beginning of 
Mitosis; 4, Metaphase; 5, Early anaphase; 6, Late anaphase; 7, Post-anaphase array; 8, Cytokinesis. 
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1.8.4  Fission yeast microtubule cytoskeleton  
 

Interphase cells are characterized by having 3 to 6 interphase 

microtubule arrays (IMAs; Figure 1.5A and B; Hagan 1998; Drummond and 

Cross 2000). These are MT bundles composed of 2 to 9 MTs (Hoog et al. 

2007) that extend from the cell center to the cell tips. At the cell tips, they 

deposit polarity markers, namely Tea1p, responsible for the correct 

positioning of the growth zones (Mata and Nurse 1997).  

IMAs are characterized by a stable medial MT overlap region, (also 

called interphase microtubule organizing center – [iMTOC]), where the MT 

minus ends are localized, and a distal part, where the MT plus ends undergo 

repeated cycles of MT growth and shrinkage. Two different types of 

iMTOCs exist in S. pombe. The SPB-associated iMTOC, which is in direct 

contact with the SPB, and the non SPB iMTOCs which do not contact the 

SPB but the nuclear envelope (Tran et al. 1999; Brunner and Nurse 2000; 

Drummond and Cross 2000). 

The SPB iMTOC is connected to the nuclear envelope by a network of 

membrane proteins, which link the SPB to the heterochromatin (King et al. 

2008). Among this network of proteins is Sad1p, a SUN domain protein 

(Miki et al. 2004) which is embedded in the inner nuclear membrane and 

links the inner nucleus with the cytoplasm via Kms1p and Kms2p KASH 

domain proteins (Miki et al. 2004). Although poorly characterized, Sad1p is 

present also at the non-SPB iMTOCs (Tran et al. 2001) raising the 

possibility that all iMTOCs that are in contact with the nuclear envelope are 

connected to the heterochromatin. How the MTs are connected to the KASH 

proteins remains to be elucidated. 

As cells enter mitosis, the IMAs that are not connected to the SPB are 

progressively depolymerized. Only the IMA that is connected to the already 

duplicated SPBs undergoes additional cycles of growth and shrinkage 

(Sagolla et al. 2003). At this point, a fenestra in the nuclear envelope 

membrane appears underneath the SPBs through were the SPBs are 
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progressively embedded in the nuclear membrane (Ding et al. 1997). 

Concomitantly, an intra-nuclear mitotic spindle forms (Hagan 1998; Sagolla 

et al. 2003). Before the SPBs separate and the mitotic spindle is formed, 

short highly dynamic intra-nuclear MTs are visible extending from the SPB 

intra-nuclear region into the center of the nucleus. These MTs are no longer 

observed as the SPBs separate and move to opposite sites of the nucleus 

with the mitotic spindle assembled between them.  

As mitosis progresses with the spindle elongation, new cytoplasmic 

MTs called ‘astral’ MTs appear at the onset of anaphase A. These originate 

from the cytoplasmic face of the SPB (Sagolla et al. 2003). At the end of 

anaphase B, both nuclei have reached the opposite ends of the cell and the 

mitotic spindle breaks down. Cytokinesis occurs and two identical daughter 

cells are formed. At this point the MTs are nucleated from the SPB and from 

the equatorial microtubule organizing center (eMTOC), which localizes at 

the septation site and forms the MT post-anaphase-array (PAA). At the end 

of septation, the eMTOC disappears and the IMAs are reestablished (Sagolla 

et al. 2003). 

 

1.8.5 IMAs generation: a three step model 
 

The generation and maintenance of IMAs is achieved by three main 

events: localization of MT nucleation, formation of antiparallel MT overlap 

regions and regulation of MT catastrophe (Figure 1.6).  

1.8.5.1 Microtubule nucleation 
The MAPs Mto1p (Table 1.3; also known as Mbo1p or Mod20p; 

Sawin et al. 2004; Venkatram et al. 2004; Zimmerman and Chang 2005) 

and Mto2p (Table 1.3; Janson et al. 2005; Samejima et al. 2005; Venkatram 

et al. 2005) have been implicated in MT nucleation and its localization 

during interphase.  
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By associating with the γ-TuRC, the Mto1p/Mto2p complex form what 

we subsequently refer to as a nucleation seed. This nucleation seed allows 

MT nucleation to be targeted to the SPB, the nuclear surface, the lattice of 

other MTs and occasionally to the cytoplasm (Sawin et al. 2004; Janson et 

al. 2005). This greatly facilitates the formation and maintenance of IMAs 

(Figure 1.6: number 1). 

1.8.5.1.1 Mto1p and Mto2p 
While Mto2p shows no similarity with other proteins, Mto1p has 

significant similarity with S. pombe Pcp1p (Flory et al. 2002), a protein 

homologous to S. cerevisiae Scp110, and with S. cerevisiae Scp110 itself, 

which interacts with and anchors the γ-TuRC to the nuclear face of the S. 

cerevisiae SPB (Knop and Schiebel 1998; Vinh et al. 2002). Furthermore, 

Mto1p also shows a similarity with proteins in the fungus Neurospora 

crassa and the protein apsB from Aspergillus nidulans. Finally, the N-

terminal of Mto1p has a small region of sequence similarity shared in higher 

eukaryotes including the Drosophila melanogaster centrosomin (Sawin et 

al. 2004) which plays a role in MT nucleation and recruitment of γ-TuRC to 

the centrosome (Megraw et al. 1999; Vaizel-Ohayon and Schejter 1999; 

Terada et al. 2003). 

Cells in which mto1 or mto2 are deleted show severe defects in 

cytoplasmic MT nucleation. In the case of mto1Δ cells, cytoplasmic 

nucleation is completely absent and these cells lack both eMTOC and 

iMTOCs (Sawin et al. 2004; Venkatram et al. 2004; Zimmerman and Chang 

2005). In fact, cytoplasmic MTs normally originate from the MTs of the 

spindle midzone which fail to disassemble at late anaphase and are broken 

by cell fission leading to the release of MTs into the cytoplasm. In addition, 

in some cases the spindle does not disassemble even after fission and 

cytoplasmic MTs originate by intra-nuclear MTs that grow and pierce the 

nuclear envelope escaping into to the cytoplasm (Zimmerman and Chang 

2005).  
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In mto2Δ cells the phenotype is less severe. These cells have an 

eMTOC, albeit less focused than in the wild type, and present one IMA, 

presumably originated from nucleation at the cytoplasmic face of the SPB 

(Janson et al. 2005; Samejima et al. 2005; Venkatram et al. 2005).  

 

 

Figure 1.6. Latest model of IMA organization. 
The formation of an IMA in S. pombe and its maintenance involves several steps and numerous 
proteins. 1 – Targeting of nucleation to the MT lattice. 2 – Determination of antiparallel orientation 
between adjacent MTs by MT selective bundling and targeting of stabilizing agent. 3 and 4 – 
Focusing of MT overlap region by MT sliding. 5 – MT overlaps maintenance by stabilization of 
depolymerizing MT and subsequent growth rescue. See text for more details. 
 

1.8.5.2 Formation of antiparallel microtubule overlap regions. 
Upon new nucleation of MTs, antiparallel MT overlap regions are 

believed to be formed mainly by the action of two MAPs: Ase1p and Klp2p 

(Table 1.3). 

During interphase, Ase1p localizes to the MT overlap regions where it 

bundles adjacent MTs with an antiparallel orientation (Loiodice et al. 2005). 

In vitro work showed that Ase1p favors by ~9 fold the bundling of 

antiparallel MTs. Due to this, it is believed that the bundling action of Ase1p 

is responsible for determining the antiparallel orientation of a MT newly 

nucleated along the lattice of a preexisting one (Figure 1.6: number 2). 
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Following, Klp2p, a member of the minus-end-directed Kinesin–14 

family (Troxell et al. 2001), is believed to attach to the growing MT plus 

ends via its non-motor domain such that the motor domain is free to move 

along the lattice of another MT. Like this, Klp2p pulls a newly nucleated 

growing MT towards the minus end of an adjacent and antiparallel MT, 

stabilizing the MT overlap region (Janson et al. 2007; Figure 1.6: numbers 3 

and 4). 

 

1.8.5.2.1 Ase1p 
Ase1p is a member of the MAP65/PRC1/ASE1 family of MT bundling 

proteins (Loiodice et al. 2005). In S. cerevisiae Ase1 stabilizes the spindle 

midzone, allowing anaphase spindle elongation (Schuyler et al. 2003). In 

Caenorhabditis elegans, SPD-1 has similar function in stabilizing the 

spindle midzone (Verbrugghe and White 2004) while in D. melanogaster, 

Feo organizes the central spindle which is essential for subsequent 

cytokinesis (Verni et al. 2004). Likewise, PRC1 in humans organizes the 

spindle midzone which is essential for the subsequent cytokinesis (Mollinari 

et al. 2002). In plants, MAP65 has several isoforms, some of which function 

during mitosis while others function during interphase in the organization of 

cortical arrays of MTs (Chan et al. 1999; Muller et al. 2004). In fact, it was 

shown in vitro that MAP65 in carrot forms electron-dense bridges in 

between MTs with average inter- MT spacing of 25nm to 30 nm (Chan et al. 

1999). Interestingly, even though only one member of Ase1 family exists in 

S. pombe, it functions both in mitosis and interphase, unlike its plant 

homologs (Loiodice et al. 2005). 

Cells lacking ase1 show severe defects in the organization of IMAs. 

These defects include an increased number of IMAs per cell, which are very 

unstable and were reported to lack a medial region of higher fluorescent 

intensity. This suggested that the observed IMAs in ase1Δ cells are in fact 

single MTs (Loiodice et al. 2005). As a consequence, ase1Δ cells grow 
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more slowly and display aberrant cell shapes and have defects in nuclear 

positioning during interphase (Loiodice et al. 2005). 

1.8.5.2.2 Klp2 
S. pombe has a second member of the Kinesin-14 family, Pkl1p which 

localizes to the nucleus during interphase (Troxell et al. 2001). Other 

members of this family include the S. cerevisiae Kar3, protein that 

destabilizes MTs preferably at the minus ends and is also required for 

karyogamy (Endow et al. 1994; Maddox et al. 2003), and D. melanogaster 

Ncd that, together with a the bipolar kinesin motor Klp61F, is responsible 

for mitotic spindle integrity (Sharp et al. 1999). 

Cells lacking Klp2p have IMAs with multiple and unstable MT 

overlap regions and aberrant polarities, i. e., an excess of MTs growing 

towards the nucleus region instead of away from it (Carazo-Salas et al. 

2005). Moreover, computer simulations predicted that cells without Klp2p 

often possess IMAs with a wider overlap region, reduced to two antiparallel 

MTs (Janson et al. 2007). These simulations also suggested that the 

combined function of Ase1p and Klp2p is sufficient to generate stable 

bipolar bundles (Janson et al. 2007). 

1.8.5.3 Regulation of microtubule catastrophe. 
Finally, the maintenance of an IMA is achieved by controlling MT 

catastrophe at the overlap regions. It was recently shown that Ase1p targets 

the protein Peg1p/Cls1p (Table 1.3 and Figure 1.6: number 2) to the MT 

overlap regions where it stabilizes a subset of MTs by stopping their full 

depolymerization and allowing an overlap region to be maintained (Figure 

1.6: number 5; Bratman and Chang 2007). 

1.8.5.3.1 Peg1p/Cls1p 
Peg1p/Cls1p belongs to the conserved CLASP protein family (see 

section 1.6.1.2.3). In vertebrates they are required for ordered cell migration 

and for the local modulation of MT dynamics (Mathe et al. 2003). In 

vertebrates, CLASPs are require for local modulation of MT dynamics, 
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while in mammals CLASP stabilizes the association of MTs with the cell 

cortex (Lee et al. 2004). 

It should be noted that the exact function of Peg1p/Cls1p in S. pombe 

interphase is still subject of debate. Two independent groups determined 

different cellular localizations and different functions for this protein. 

Grallert et al (2006) found that Peg1p/Cls1p localizes to the MT plus ends 

where it induces MT instability and slows polymerization at cell ends. 

Conversely, Bratman and Chang (2008) found that Peg1p/Cls1p localizes to 

the MT overlap regions where it stabilizes MTs and allows the rescue of a 

depolymerizing MT to a growing state. Additionally, a third group has 

found a new role for Peg1p/Cls1p in the organization of the interphase 

mitochondria network (Chiron et al. 2008).  
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Table 1.3. Characteristics of the proteins involved in the generation and maintenance of IMAs. 
 

Mto1p / Mod20p / Mbo1p 
Protein characteristics/domains1 Phenotype of deletion mutant in interphase and mitosis Family/Homology2 Reference 

128.4 kD 
1115 amino acids 

 
 

More curved cells; 
Fewer and ticker IMAs; 
Lack of astral MTs in mitosis; 
Mitotic spindle fails to breakdown after anaphase;  
Lack of eMTOC; 
MT bundles curve around cell tips and exhibit bent-and-break phenotype; 
IMAs do not connect the SPB;  
MTs exhibit treadmilling. 
 

An apsB 
Sp pcp1 
Dm centrosomin 
Hs myomegalin 
Hs_CDK5RAP2 
Sc_Scp110p 
 

Acronym Localization in interphase Protein interactions 
Microtubule organizer 1 
Morphology  defective 20 
Microtubule organizer 1 
 

SPB; nuclear surface; satellites along IMAs; eMTOC Mto2p 
 

(Sawin et al. 2004; 
Vanoosthuyse et 
al. 2004; 
Zimmerman and 
Chang 2005) 

 
Mto2p 

Protein characteristics/domains1 Phenotype of deletion mutant in interphase and mitosis Family/Homology2 Reference 

44.0 kDa; 
347 amino acids 

 

MT bundles curve around cell tips and exhibit bent and break phenotype; 
Mostly one IMA in interphase, possibly originated from the SPB;  
MTs exhibit treadmilling. 

Non observed 

Acronym Localization in interphase Protein interactions 

Microtubule organizer 2 
iMTOC 
eMTOC  
Actinmyosin ring 
 

Mto1p 
Alp4p 
Alp6p 

(Janson et al. 
2005; Samejima et 
al. 2005; 
Venkatram et al. 
2005) 

(continues) 
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Ase1p 
Protein characteristics/domains1 Phenotype of deletion mutant in interphase and mitosis Family/Homology2 Reference 
83.1 kDa; 
731 amino acids 

Higher number of IMAs;  
Loss of medial zone of higher fluorescence intensity in IMAs;  
Slower anaphase II;  
Nuclear and septum position defects;  
Spindle elongation defects and premature breakdown. 
 

ASE1/PRC1/MAP65 
family  
(see text) 

Acronym Localization in interphase Protein interactions 
Anaphase spindle elongation 1 MT overlap regions Peg1/Cls1p 

(Loiodice et al. 
2005; Yamashita 
et al. 2005) 

 
Klp2p 

Protein characteristics/domains1 Phenotype of deletion mutant in interphase and mitosis Family/Homology2 Reference 
91.0 kDa; 
817 amino acids; 

IMA decrease stability; 
Lack of fusion of MT overlap; 
Aberrant polarity of MTs; 
 Lack of MT sliding in IMAs.  

 
 

Kinesin 14 family (see 
text) 

Acronym Localization in interphase Protein interactions 
Kinesin like protein Along MT lattice and MT plus end Tubulin 

(Troxell et al. 
2001; Carazo-
Salas et al. 2005; 
Janson et al. 2007) 

 
Peg1p/Cls1p 

Protein characteristics/domains1 Phenotype of deletion mutant in interphase and mitosis Family/Homology2 Reference 
164.0 kDa 
1462 amino acids 

Heat repeats  
Basic serine-rich stretch 
 

Mitosis terminal arrests at metaphase plate formation; 
Less and more stable IMAs; 
Altered MT dynamics; 
Unstable MT overlap regions; 
Mitochondria network collapse. 

Clip170 Associated 
Proteins Family  
(see text) 

Acronym Localization in interphase Protein interactions 
Unknown MT plus tips or MT overlap regions Tip1p or Ase1p 

(Grallert et al. 
2006; Bratman 
and Chang 2007; 
Chiron et al. 
2008) 
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1 Source: S. pombeGB (http://www.genedb.org/genedb/pombe/) and SMART (http://smart.embl-heidelberg.de/). 
1 An, Aspergillus nidulans, Sp, Schizosaccharomyces pombe, Dm, Drosophila melonogaster, Hs, Homo sapiens, Sc, Saccharomyces cerevisiae 
Legend of SMART domains: 

 Segments of low compositional complexity determined by the SEG program. 
 Coiled coil region determined by the Coils2 program. 

Pfam domain Microtubule-associated (PF07989). 

 Pfam domain Microtubule associated protein MAP65/ASE1 family (PF03999). 

 Kinesin motor, catalytic domain, ATPase (SM00129). 
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1.9 Electron Tomography 
Electron tomography is a method of generating 3D images from 

multiple 2D projection images of a 3D object, obtained over a wide range of 

viewing directions. For generating a 3D image, a set of 2D projection 

images are recorded while tilting the object incrementally round an axis 

(Figure 1.7A). Each 2D image is subsequently back-projected, with the 

appropriated weighting, to form a 3D density distribution of the original 

object (Figure 1.7B; Baumeister et al. 1999). Since macromolecules are 

slightly denser than the solvent in which they are prepared, they will interact 

more strongly than the solvent with the electrons in the beam path – a 

process known as ‘electron scattering’ (McIntosh et al. 2005).  

The resulting reconstructions can be view in 2D image planes at 

selected values of the third dimension. Such electronic slices are only a few 

nanometers thick (2 to 4nm) allowing to determine the position of complex 

features relative to the other slices (McIntosh et al. 2005). 

 

1.9.1 Automated electron tomography 
 

With the computerization of transmission electron microscopes and the 

development of large-area charge-coupled camera devices (CCD), complex 

image-acquisition schemes can be run fully automated (Koster et al. 1992). 

This makes recording of tomography data sets much less time consuming as 

well as allowing for new developments in the acquisition to be integrated. 

One of these developments was brought by the software SerialEM 

(Mastronarde 2005), which offers the possibility of recording a montage 

micrograph at each increment. Such a feature allows capturing two to nine 

adjacent overlapping images of an area. Furthermore, the possibility of 

joining tomograms from serial sections was also implemented in the 

software package IMOD (Kremer et al. 1996; Mastronarde 1997). Together 
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these advances have enabled the reconstruction of large cell volumes (Hoog 

and Antony 2007). 

 

 

Figure 1.7. Principle of electron tomography and the missing wedge 
effect. 
A biological specimen can be imaged from several orientations by tilting the holder in the microscope 
(A). Later by computed back-projection, each tilted view is used to contribute to the reconstruction of 
the original structure (B). Due to physical limitations the specimen cannot be tilted to 90º, creating the 
missing wedge effect (C). Both images represent a schematic of the missing Fourier domain in a 
single-axis tilting (left) – a missing wedge, and in a double-axis tilting (right) – a missing pyramid. 
Bellow are illustrated the real space information. Adapted from Lucic et al. 2005; McIntosh et al. 
(2005). 

 

1.9.2 Sample preparation 
 

The amount of detail that can be extracted from a tomogram has 

evolved along with the microscope developments as well as with the 

improvements in sample preparation. Indeed the first cellular samples 

visualized by electron tomography were prepared by chemical fixation, 

dehydration and embedding (McEwen et al. 1986; Belmont et al. 1987). 

Although such samples provided information at the cellular level, the ultra-

structural details could not be interpreted due to fixation artifacts – a 

constant cause for concern in electron microscopy. 

In recent years, major efforts in sample preparation techniques have 

allowed the development of several methods to prepare samples for electron 

tomography while preserving the native structure of the organism. These 

include ultra-rapid freezing and high-pressure freezing (HPF). In the first 

the specimen is plunged into liquid ethane to drop their temperature rapidly 
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enough to preserve the native structure (McIntosh 2001). This method, 

albeit successful, only works on cells that are thin enough to be frozen 

without forming ice crystals. Unfortunately, most cells are too thick and can 

not be frozen using this method. HPF deals with this problem by using high 

hydrostatic pressure as a physical cryoprotectant. As water expands when it 

freezes, if the pressure is increased quickly followed by rapid freezing, the 

water in the sample will vitrify preserving the native structure and avoiding 

the formation of ice crystals (Giddings et al. 2001).   

 

1.9.3 Electron tomography in the study of the microtubule 
cytoskeleton 

 
Electron tomography has been a very useful tool in the study of the 

organization of the MT cytoskeleton in different organisms (O'Toole et al. 

1999; O'Toole et al. 2003a; O'Toole et al. 2003b; Hoog et al. 2007). One of 

the major advantages of this technique is the ability to track MTs through a 

volume. Contrary to the classical technique of serial sectioning where the 

resolution is anisotropic and limited to the thickness of the section (normally 

> 40 nm; Ding et al. 1993), the ability to section a volume electronically in 

slices of ~ 2 nm, with isotropic resolution allows the visualization of the MT 

end structures from which one can infer the polarity of the MT. Indeed, a 

previous study (O'Toole et al. 2003b) showed that the MT ends at the 

mitotic centrosome of C. elegans have a distinct structure ( in the form of a 

cap) to those found away from the centrosome. This capped structure was 

attributed to the presence of the γ-TuRC at the MT minus end (see section 

1.5.2). 
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Figure 1.8. Microtubule end structures classes and color scheme used in 
models. 
Arrows point to the MT ends.  
(A) Example of a capped end structure. Marked with a red sphere in our models. 
(B) Example of a blunt end structure. Marked with a blue sphere in our models. 
(C) Example of a flared end structure. Marked with a cyan sphere in our models. 
(D) Example of a sheet end structure. Marked with a green sphere in our models. 
(B) Example of an ambiguous end structure. Marked with a white sphere in our models. 
 

Based on previous studies (O'Toole et al. 2003b; Hoog et al. 2007) we 

classified our MT end structures in five classes in accordance to the scheme 

used in Hoog et al. (2007): capped, blunt, flared, sheet and ambiguous 

(Figure 1.8). To allow the reader to immediately know the MT end structure 

in the models we used colored spheres positioned at the end of MTs. 
 

1.9.4 Problems in electron tomography 
 

Like all techniques, electron tomography has some disadvantages. 

Most of these are related with the preparation of the sample and/or data 

acquisition.  

In order to avoid fixation artifacts by post freezing treatments, cryo-

electron tomography was developed, where the sample is kept at -160ºC 

after being frozen. This allows the imaging of cells close to native structure. 

Nonetheless such samples are very sensitive to the electron dose that they 

are subjected to under the microscope beam. This means that the sample is 
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not always stable enough for large areas reconstructions (Steven and Aebi 

2003).  

To reconstruct large areas of a cell, HPF combined with freeze-

substitution is normally used. This technique relies on HPF for keeping the 

native structure of the specimen, and substitution of the water in the sample 

by adequate plastics at very low temperatures (Giddings et al. 2001) – a 

method known as HPF/freeze-substitution (HPF/FS). With this method the 

biological samples are stained with heavy metals salts to increase the signal 

to noise ratio which raises some problems. First, since the sample is stained, 

what is visualized in the micrographs is not the actual cellular structures but 

the stain. Secondly, most of these heavy metals salts show aggregation 

events which limit the resolution to ~ 6nm (Lucic et al. 2005). Finally, even 

though such samples are much less sensitive to the electron dose applied, 

they still shrink perpendicularly to the axis of the beam path, which may 

cause artifacts in the reconstruction of tomogram (albeit software algorithms 

can already compensate in part of such artifacts [Mastronarde 1997]). 

Furthermore, due to the physical impossibility of tilting the specimen over a 

range of 180º, the reconstruction misses data – normally called the missing 

wedge data (Figure 1.7C). To tackle this latter problem, one can remove the 

sample and rotate it by 90 º. Subsequently, a new tilt-series at the same 

position is acquired and both tomograms can be combined without loss of 

resolution – refered as dual-axis tomography. This technique allows for 

reduce the loss of data due to the missing wedge effect and increases the 

contrast of structures that were orthogonal to the beam path in the first tilt-

series acquired (Mastronarde 1997).  
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1.10 Motivation 
1.10.1 The questions behind this study 

 
MT assembly into IMAs has so far only been analyzed by careful 

visualization and quantification of a combination of biochemistry, 

molecular, genetic and fluorescent live imaging methods. Despite great 

advances in the understanding of IMA organization, several questions of 

great importance remain unanswered mostly due to the limitations in 

resolution of optical microscopes.  

Electron tomography has been successfully applied to study the 

differences between a wild type organism and several mutant strains 

(O'Toole et al. 1999; O'Toole et al. 2003a), specifically to yeast cells 

(O'Toole et al. 2002). Indeed, the early reconstruction of the wild type 

spindle of S. pombe by classical serial sectioning technique showed that S. 

pombe is a very good organism for electron microscopy studies (Ding et al. 

1993). Furthermore, the reconstruction of large cell volumes of wild type S. 

pombe by electron tomography has demonstrated the potential of this 

technique to answer questions related to the ultra-structural organization of 

IMAs (Hoog and Antony 2007). Indeed, only electron tomography can 

reveal exact numbers of MTs per IMA, their orientation in relation to other 

MTs, the relation between MTs and SPB and the relation between MTs and 

cell organelles (Hoog et al. 2007). 

We decided to use electron tomography to investigate a number of 

open questions regarding the function of several proteins involved in the 

formation of IMAs. One of the first questions we addressed was if cells 

lacking Ase1p possessed MT overlap regions, and if these existed, what was 

their MT pairing orientation and their inter-MT distance. Secondly we 

wanted to assess the in silico predictions made for klp2Δ mutants, regarding 

the type of IMA and MT orientation (see section 1.8.5). Third, we asked if 

mto1Δ cells would possess IMAs or only single MTs. Finally we sough to 
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explain how single MTs or IMAs would show a treadmilling behavior in 

mto1Δ cells. 
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2.1 Cells lacking Ase1p contain microtubule 
overlap regions 
A recent study showed that the microtubule (MT) overlap regions of 

fission yeast interphase microtubule arrays (IMAs) are composed of MTs 

paired in both parallel and antiparallel directions (Hoog et al. 2007). 

Previous reports, based on fluorescence microscopy data, proposed that MT 

overlap regions are virtually absent in cells lacking Ase1p (Loiodice et al. 

2005; Yamashita et al. 2005). Moreover, in vitro data showed that the 

probability that Ase1p bundles antiparallel MTs was 9.4 times higher than 

that of bundling parallel MTs (Janson et al. 2007). So far, these studies have 

been limited by the impossibility to resolve single MTs.  

We generated tomograms and 3D models to describe the exact MT 

cytoskeleton in ase1∆ cells. The reconstructed partial volumes of ase1∆ 

cells (Figure 2.1; see Annex III for a complete list of volumes acquired) 

showed striking differences in the organization of the MT cytoskeleton 

compared to wild type. The observed number of IMAs per volume varied 

from 0 to 3 (1.89 ± 0.93 on average; n = 17 in 9 volumes; see Annex IV for 

a comparison of bundles per cell in wt and all the analysed mutants). Single 

MTs were observed, as proposed in previous reports (Loiodice et al. 2005), 

and varied from 1 to 6 per volume (3.1 ± 1.54 on average; n = 28). Several 

single MTs, likely to emanate from the nucleus surface, were observed 

while others were disconnected from the nucleus and dispersed in the 

cytoplasm (Figure 2.1A). The average length of MTs was very similar to the 

published wild type values (Table 2.1).  

 

Table 2.1. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type and ase1Δ cells. 

 
MT lengths (micrometers [μm]) Relative polymerized 

tubulin(μM μm-1) 
Electron-dense bridges 

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641  1.431   6.01  701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found. 
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Figure 2.1. Overlap MT regions are present in ase1Δ cells.  
(A) Reconstruction of a partial volume of ase1Δ mutant, where two IMAs crossing the SPB (yellow) in 
perpendicular orientations (arrowhead) are visible. Note that the MT perpendicular to the cell long 
axis seems to have emanated from the nuclear envelope surface (arrow).  
(B) Non SPB-associated IMA with two small MT overlap regions. Arrowhead points to a MT spreading 
apart from the lattice of an adjacent MT. Note the capped end of the MT spreading apart next to the 
lattice of the adjacent MT. 
(C) Tomographic slice of a close-up from the delineated area in B showing a small MT spreading 
apart from the MT lattice of the adjacent microtuble. Note the MT blunt end close to the adjacent MT 
lattice. Arrow points to the capped end. Colored circles indicate the end structure of the MT not visible 
in the image.  
(D) Detail from a tomographic slice in which a capped end (minus) is visible in the vicinity of another 
MT lattice. An electron-dense bridge is visible linking the capped end and the MT lattice (arrow). 
(E) Tomographic slice of the only MT lattice laterally attached to the SPB (S), with its capped end in 
the vicinity of the SPB (arrow). 
(F) SPB-associated IMA with the overlap region shifted away from the SPB, and a MT that appears to 
have emanated from the SPB (arrow).  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure).Nucleus (N) and nuclear 
envelope (NE). SPB (S). White bars: 250 nm. Black bars: 100 nm. 
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Overlap MT regions were observed in most reconstructed volumes 

(Figure 2.1A, B, and F). We analyzed the orientation of overlapping MTs by 

determining their polarity according to the MT end structure. We 

characterized the MT end structures in four types: capped, blunt, flared and 

ambiguous (Figure 1.8).  

We found 10 MTs spreading apart from the lattice of a neighbour MT 

(Figure 2.1B to D; MTs obliquely orientated to the MT lattices adjacent to 

it). For 8 such cases we could determine the polarity of the MT spreading 

apart. Of these, 6 had their capped (minus) end as the closest point to the 

lattice of the neighbor MT (Figure 2.1B and D) while 2 had their plus ends 

(Figure 2.1C). 

To determine if the analyzed mutants had altered inter-MT spacing 

within the MT overlap regions, compared with the wild type, we performed 

neighbor density analysis (Ding et al. 1993). The major density peak for the 

global inter-MT distribution in ase1∆ mutants had a centroid (the center of 

mass of the peak) at 11.8 nanometers (nm; Figure 2.2A). This is 

significantly below the globally prefered inter_MT values of 25 to 30 nm in 

wild type (Hoog et al. 2007). We refined our analysis by measuring MT 

overlap regions only if we could determine the MT orientations (n = 4). This 

revealed a preferred inter-MT spacing between antiparallel MTs with a 

centroid at 12.7 nm (Figure 2.2B).  

The presence of electron-dense bridges between MTs of an IMA has 

been documented for Ase1p homologs (Chan et al. 1999; Mollinari et al. 

2002). More recently, electron-dense bridges were visualized in vivo in wild 

type fission yeast cells, but have so far not been attributed to a specific 

protein (Hoog et al. 2007). To search for such electron-dense bridges, we 

generated dual axis tomograms of wild type cells and ase1Δ mutant cells. 

Indeed, we could observe such electron-dense bridges not only in wild type 

but also in ase1∆ cells (Figure 2.2C and D). Since in the latter case the inter-

MT spacing is significantly reduced compared to wild type, we measured the 

smallest angle of these bridges with respect to the MT walls. Interestingly, 
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ase1Δ cells electron-dense bridges had an average angle smaller than wild 

type (Table 2.1). This suggests that the altered inter-MT spacing might 

influence the type of cross bridge formed in between MTs.  

 

 
Figure 2.2. Neighbor density analysis showing MT – MT distances and a 
gallery of electron-dense bridges in ase1Δ cells.  
(A and B) Global inter-MT distances and distances of antiparallel MTs in IMAs for ase1Δ cells, 
respectively. Triangles points to the centroid of each major density peak. 
(C1 and C2) wild type selected longitudinal tomographic slices of two adjacent MTs showing electron-
dense bridges (arrows). Volumes were rotated into the MT lattice plane. (C3 and C4) Cross slice of 1 
and 2, respectively, in the plane of red and blue arrows. Note the two MT walls and lumen (asterisk) 
as well as the density connecting both MT walls. 
(D) Similar to (C) for ase1Δ cells.  
Bars: 25 nm. 

 

To see if ase1∆ had an influence in the amount of polymerized tubulin, 

we estimated the amount of total polymerized tubulin relative to the total 

volume reconstructed (see Materials and Methods), for all the reconstructed 

ase1∆ mutant cell volumes and additional wild type volumes. We found a 

reduction of 26% in the relative amount of polymerized tubulin in ase1∆ 

mutant compared to wild type (Table 2.1). 

We next wanted to see if there is a difference between spindle pole 

body (SPB)-associated and non SPB-associated IMAs, as observed in wild 

type (Hoog et al. 2007). In all reconstructed ase1∆ volumes, the SPB-
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associated IMAs had a higher number of MTs (4.86 ± 2.48 on average; n = 

7) than the non-SPB-associated IMAs (3.4 ± 1.5 on average; n = 10). Two of 

the IMAs observed (one SPB-associated and one non-SPB-associated) as 

well as four single MTs were orientated perpendicular to the long cell axis 

(Figure 2.1A). We also observed, in three cases, IMAs and/or single MTs in 

the SPB region orientated perpendicular to each other (Figure 2.1A). 

Strikingly, in most cases there was no MT lattice laterally connected to the 

SPB, as observed in wild type cells (Hoog et al. 2007). Instead, MTs 

appeared to emanate from the SPBs with the closest MT end to the SPB 

being a capped end (Figure 2.1F, arrow). Only in one case of the seven SPB-

associated IMAs, was a MT lattice connected to the SPB. However, the 

capped end of this MT was located very close to the contact point between 

the SPB and the MT lattice (Figure 2.1E). 

These data clearly show that in the absence of Ase1p, antiparallel MT 

overlap regions are still present. ase1Δ cells have a reduced number of 

IMAs and a higher number of individual MTs, compared to wild type cells. 

ase1∆ IMAs have a significantly reduced inter-MT spacing compared to 

wild type values, which seems to affect the angles of the electron-dense 

bridges observed in ase1∆ cells.  Furthermore, the electron tomography 

analysis of ase1∆ cells confirmed that MTs emanate from the SPB surface 

(Hoog et al. 2007), and also from other MT lattices. In both cases the 

capped end was located proximal to the SPB surface or to the lattice of the 

other MT.  

 

2.2 klp2Δ cells predominantly display IMAs 
with only two MTs 
Klp2p is believed to stabilize IMAs by focusing their MT overlap 

regions. It pulls a newly nucleated MT along another antiparallel MT 

towards its minus end (Carazo-Salas et al. 2005; Janson et al. 2007) IMAs 

in klp2∆ cells were reported to possess multiple MT overlap regions and to 
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be less stable than in wild type cells (Carazo-Salas et al. 2005). Furthermore, 

in silico experiments predicted that without Klp2p, IMAs tend to form wide 

MT overlap regions reduced to two antiparallel MTs (Janson et al. 2007).  

Similarly to ase1∆ cells, we generated tomograms and modeled large 

partial volumes in klp2Δ cells. The reconstructed volumes possess 1 to 5 

IMAs (3.5 ± 1.4; n = 21 in 5 different cells; see Annex IV for a comparison 

of bundles per cell in wt and all the analysed mutants) and 1 to 3 single MTs 

(1.83 ± 0.98; n = 11). Most IMAs consisted of two MTs (53.1% of total 

number of IMAs; Figure 2.3A to D) with a maximum of 5 MTs in one IMA 

(single occurrence). The average MT length was slightly smaller than in 

wild type or ase1Δ cells (Table 2.2). The IMAs displayed overlapping 

regions where MTs were paired in antiparallel orientations (Figure 2.3D).  

Only in one case did we observe MTs which were bundled with 

parallel orientations (Figure 2.3A and B). Single MTs with one end in close 

proximity to the nuclear envelope were also observed (Figure 2.3A).  

In this mutant, the SPB-associated IMAs had on average more MTs 

(3.5 ± 1.73; Figure 2.3F) than the non SPB-associated IMAs (2.29 ± 0.85). 

Similarly to ase1Δ volumes, we observed MTs that seemed to emanate from 

the SPB with their capped end adjacent to the cytoplasmic surface of the 

SPB (Figure 2.3E). 

Table 2.2. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type, ase1Δ and klp2Δ cells. 

 
MT lengths (μm) Relative polymerized 

tubulin(μM μm-1) 
Electron-dense bridges  

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641 1.431 6.01 701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 
klp2Δ 1.30 1.43 3.4 44 0.12 0.04 75.1 9.5 14 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found. Data relative to this section in bold. 
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Figure 2.3. IMAs with two MTs prevail in klp2Δ cells.  
(A) Reconstruction of a partial cell volume of a klp2Δ mutant with MT overlap regions consisting of 
only two MTs. MTs that appear to emanate from the nuclear surface and from the SPB are also 
visible.  
(B) Tomographic slice of the non SPB-associated IMA from the delineated area in (A) showing the 
only parallel MT pair found in klp2Δ cells. Notice the lateral association of the MT with the 
mitochondria (M). Arrow points to the capped end of the small MT. Colored circles indicate the MT 
end structures which are not visible in the image. 
(C) Tomographic slice showing a non SPB-associated IMA with only two antiparallel MTs. Once 
more, the lateral contact with the mitochondria can be seen. Arrow points to the capped end of 
smaller MT.  
(D) Example of a non SPB-associated IMA with two antiparallel MTs.  
(E) MT that appears to have emanated from the SPB.  
(F) SPB-associated IMA with a large overlapping region.  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). Mitochondria (M).  
White bars: 250 nm. Black bars: 100 nm. 
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Figure 2.4. Neighbor density analysis showing MT – MT distances and a 
gallery of electron-dense bridges in klp2Δ cells.  
(A and B) Global inter-MT distances and distances of antiparallel MTs, respectively, in IMAs for klp2Δ 
cells. Triangles points to the centroid of each major density peak. 
 (C1 and C2) klp2Δ selected longitudinal tomographic slices of two adjacent MTs showing electron-
dense bridges (arrows). Volumes were rotated into the MT lattice plane. (C3 and C4) Cross slice of 1 
and 2, respectively, in the plane of red and blue arrows.  
Bar: 25 nm. 

 

We wondered if klp2Δ would affect the inter-MT spacing of MT 

overlap regions, knowing that Ase1p was present in these cells. We 

performed neighbor density analysis on the MT overlap regions of klp2Δ 

cells and found a single peak for the global inter-MT spacing with a centroid 

at 16.8 nm (Figure 2.4A). Once more, we refined our neighbor density 

analysis by taking into consideration only MT overlaps were we could 

determine the MT orientation (n=7). The density distribution for antiparallel 

MT overlaps (n=6) showed two peaks, one with a centroid at 18.7 nm and 

the other with a centroid at 35.5 nm (Figure 2.4B). The only parallel MT 

pair had an inter-MT spacing of 35 to 40 nm. 
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In order to visualize inter-MT electron-dense bridges, we calculated 

dual axis tomograms. We could visualize such electron-dense bridges  in 

klp2Δ cells (Figure 2.4C). These had an average angle similar to the value of 

wild type (Table 2.2), reinforcing the idea that these angles are dependent on 

the inter-MT spacing. 

To see if klp2Δ affected the amount of polymerized tubulin, we 

estimated the relative total amount of polymerized tubulin for all the 

reconstructed volumes and found that the value obtained for klp2Δ cells was 

36% lower than the wild type value (Table 2.2). 

In agreement with the in silico data (Janson et al. 2007) we could 

clearly show that the IMAs and the MT overlap regions in klp2Δ cells are 

mostly limited to 2 MTs, but not exclusively, with MTs appearing as 

antiparallel pairs. Furthermore, the inter-MT spacing was sightly decreased 

compared to wild type, while the angles of the electron-dense bridges were 

similar to wild type. 

 

2.3 IMAs in mto1Δ also have only two MTs 
mto1Δ is known to severely affect MT nucleation (Sawin et al. 2004; 

Venkatram et al. 2004; Zimmerman and Chang 2005). Interphase MTs 

normally originate from the spindle midzone MTs which fail to disassemble 

at late anaphase and are broken by the cell fission leading to release of MTs 

into the cytoplasm. In addition, in some cases the spindle does not 

disassemble, even after fission, and cytoplasmic MTs originate by intra-

nuclear MTs that grow and pierce the nuclear envelope escaping into to the 

cytoplasm (Zimmerman and Chang 2005). Once in the cytoplasm, no MT 

nucleation seems to occur (Sawin et al. 2004). 

The fact that only a small MT piece seems to “escape” the nuclear 

envelope into the cytoplasm, made us wonder if mto1Δ IMAs, as visualized 

by fluorescence microscopy, were single MTs or indeed IMAs. In addition, 

if they were IMAs, could we visualize MTs spreading apart from the lattice 
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of another MT? Furthermore, we asked if electron-dense bridges were 

visible between the capped end and the lattice of the adjacent MT, as 

observed in ase1Δ cells. To investigate this we applied the same procedure 

as previously to mto1Δ cells. 

 

 
Figure 2.5. mto1Δ cells have fewer IMAs. 
(A) Reconstruction of a partial cell volume of an mto1Δ mutant with only three IMAs. All the MT 
overlap regions consist of two MTs, as visualized in klp2Δ mutant volumes. This was the only volume 
where MTs appeared in contact with the SPB density (framed). Note that all the MT end structures 
identified are open structures. 
(B) Partial volume of an mto1Δ mutant with a single IMA (model) curling around the cell end 
(tomographic slice). The cell bends at the tip where the MT is curling (arrow). Several vacuoles (V) 
and mitochondria (MT) are visible in the tomographic slice. 
(C) Tomographic slice of the framed area in (A) showing the MT lattice in direct contact with the SPB 
density (dashed line). Also visible is the MT end sheet structure (arrow), the nucleolus (N) and the 
nuclear envelope (NE) with nuclear pore complexes.  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). Vacuole (V), mitochondria (M), 
nucleus (N), nuclear envelope (NE). Bars, 250 nm. 
 

We did not find any MTs spreading apart from a neighboring MT in 

mto1Δ cells. Instead, we observed distinct IMA organizations (Figure 2.5). 

As in klp2Δ volumes, all IMAs observed were composed of two MTs (n = 5; 

Figure 2.5A to C). In one case, the cell seemed to possess only one IMA and 
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no single MTs (Figure 2.5B; see Annex IV for a comparison of bundles per 

cell in wt and all the analysed mutants). This IMA had a MT that spanned 

the whole cell length, curling at one of the poles. The curling was at the 

same pole where the cell was bent (Figure 2.5C). The other partial volumes 

had between 0 to 3 IMAs per volume (n = 4 partial volumes) while the 

number of single MTs also varied from 0 to 2 (n =4 partial volumes). Since 

Mto1p has a function in MT nucleation (Sawin et al. 2004; Venkatram et al. 

2004; Zimmerman and Chang 2005) we estimated the relative amount of 

polymerized tubulin in our volumes. We found a drastic decrease of 68% in 

the relative amount of polymerized tubulin compared with wild type (Table 

2.3).  

 

Table 2.3. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type, ase1Δ, klp2Δ and mto1Δ  cells. 

 
MT lengths (μm) Relative polymerized 

tubulin (μM μm-1) 
Electron-dense bridges 

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641 1.431 6.01 701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 
klp2Δ 1.30 1.43 3.4 44 0.12 0.04 75.1 9.5 14 
mto1Δ 2.29 1.83 6.97 12 0.07 0.02 62.53 17.66 10 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found. Data relative to this section in bold. 

 

We measured the inter-MT distance in the IMAs and obtained a 

distribution with two peaks. The main peak had values between 0 nm and 35 

nm with the centroid at 15.3 nm (Figure 2.6A). When we analyzed the MT 

end structures to determine the MT orientation in the bundles, we 

discovered that several MTs showed open (flared, blunt or sheet like) 

structures at both ends (Figure 2.5A). Only in one single MT could we 

visualize a capped end structure. Finally, we measured the angle of electron-

dense bridges and obtained an average angle similar to that in ase1Δ cells 

(Table 2.3).  

Only in one case of the four partial volumes calculated, we observed 

an IMA laterally associated with a density that we believed to be the SPB 
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(Figure 2.5C).  This is consistent with 71% of SPBs previously observed 

that do not localize with an IMA (Zimmerman and Chang 2005). The SPB 

that we observed was different from previously observed SPBs by us and 

others (Ding et al. 1993; Ding et al. 1998; Zheng et al. 2006; Hoog et al. 

2007; Toya et al. 2007). It appeared to be a duplicated SPB that continued to 

enlarge becoming deformed. Also this SPB was protruding from the nucleus 

surface, as if it was being pushed away from it. 

 

 
Figure 2.6.  Neighbor density analysis showing MT – MT distances and a 
gallery of electron-dense bridges in mto1Δ cells. 
(A) Global inter-MT distances in IMAs for mto1Δ cells. Triangles point the centroid of each major 
density peak. 
 (B1 and B2) mto1Δ selected longitudinal tomographic slices of two adjacent MTs showing electron-
dense bridges (arrows). Volumes were rotated into the MT lattice plane. (B3 and B4) Cross slice of 1 
and 2, respectively, in the plane of red and blue arrows.  
Bar: 25 nm. 

 
These results show that mto1Δ cells form IMAs with predominantly 

two MTs, even though single MTs are also present. The IMAs have a global 

preferred inter-MT distance of ~15 nm and the MTs pair with another MT 

along their entire length. MT pairing orientation was not possible to 

determine due to the fact that most MTs had open structures at both ends. In 

addition, in the only case where an IMA was associated with the SPB, this 

was larger and deformed compared to wild type SPBs. 
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2.4 klp2Δ cells and mto1Δ cells have similar or 
higher MT pairing length to wild type cells 
but show less MT overlap length 
The restriction of two MTs per IMA observed in klp2Δ mutants 

prompted us to try and find out how this could correlate with the predicted 

widening of the MT overlap regions on klp2Δ cells (Janson et al. 2007). 

We measured the length of MT pairs in IMAs for wild type and the 

analyzed mutants by estimating for each MT the summed absolute length 

over which MTs would be closer than 35nm to one another (Figure 2.7A).  

We found that wild type cells showed an average MT pairing length of 

~ 0.88 μm (Table 2.4), roughly half the average length of a MT. ase1Δ 

mutant volumes showed the most significant decrease in the MT pairing 

length, while klp2Δ mutants had similar values to wild type. In mto1Δ, we 

found this value to be higher than the one obtained for wild type and all the 

previous mutants. In fact, the length of the pairing was defined by the 

smallest MT in the IMA. 

In order to rule out the possibility that the higher MT pairing lengths 

observed were due to higher individual MT lengths, we compared them and 

found no evidences for a correlation between the MT length and its MT 

pairing length in ase1 and/or klp2 mutants (Figure 2.7B to E). On the 

contrary, the mto1 mutants showed a slight correlation (Figure 2.7F and G). 

 

Table 2.4. MT pairing and IMA MT overlap region in wild type, and all the 
analyzed mutants. 

 MT pairs (μm) IMA overlap (μm) 
 Average SD MAX Average SD MAX 
wt 0.88 0.8 3.3 2.00 1.50 4.98 
ase1Δ 0.48 0.6 2.58 0.99 0.62 2.23 
klp2Δ 0.74 0.92 3.98 1.00 0.95 3.52 
mto1Δ 1.21 1.04 3.13 1.30 1.10 3.22 
ase1Δ klp2Δ 0.59 0.59 2.25 1.00 1.00 3.8 
mto1Δ klp2Δ 2.1 1.72 4.8 1.65 1.30 4.00 
mto1Δ ase1Δ 8.43 3.19 11.24 6.50 0.55 6.88 

SD, standard deviation; MAX, maximum length observed. 
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Figure 2.7. MT pairing length and IMA MT overlap region length, and MT 
pairing length does not correlate with MT length. 
(A) Schematic to illustrate the difference between MT pairing length and IMA MT overlap region 
length. MT pairing length refers to single MTs, while IMA MT overlap region refers to IMAs.  
In this example the MT pairing lengths for MT2 = X2, for MT3 = X3 and for MT4 = X4. Notice that the 
MT pairing length of MT1 is the sum of X2, X3 and X4 fractions, i.e., the summed absolute length of 
MT1 pairing. Also, the MT pairing length of MT4 equals only to X4 since the MT spreads apart of MT1 
and in Y1 it is more than 35 nm apart of MT1. The IMA MT overlap region is determined by the 
overlap of 2 or more MTs closer than 200 nm. In this IMA the MT overlap region would be Y3 = Y1 + 
Y2. 
(B to E) The length of a MT does not influence its pairing length in either wild type (B), ase1Δ (C), 
klp2Δ (D) or ase1Δ klp2Δ cells (E). No correlation is seen between the MT length increase and the 
MT pairing length increase. In mto1Δ (F) there is a slightly correlation between MT length and MT 
pairing length, which is more pronounced in mto1Δ klp2Δ (G). In the mutant mto1Δ ase1Δ a similar 
effect was observed (see text for details). 

 

Having analyzed the MT pairing lengths, we estimated the MT overlap 

region lengths of the IMAs by measuring for each discrete IMA the distance 

over which two or more MTs would overlap, within 200nm of each other 

(Figure 2.7A). We found that the measured value for wild type (Table 2.4) 
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correlated with the published value for the MT overlap regions of wild type 

cells (Daga et al. 2006), hence validating our measurements. In both ase1Δ 

and klp2Δ mutants, we observed a clear decrease in the average IMA MT 

overlap region lengths (Table 2.4). For mto1Δ cells, as expected, the MT 

overlap region lengths average was similar to the length of the MT pairing. 

This value was higher than for ase1Δ and klp2Δ mutants, but still 

smaller than wild type (Table 2.4). 

We show here that ase1Δ volumes display a significant decrease in the 

MT pairing length as well as in the length of IMA MT overlap regions. 

klp2Δ mutant volumes show similar MT pairing lengths to wild type values, 

while the IMA MT overlap region length is smaller. mto1Δ mutants have a 

higher MT pairing length than wild type, but a smaller IMA MT overlap 

region length. 

 

2.5 ase1Δ klp2Δ cells have MT overlap regions 
Several studies have suggested that the Klp2p homologs in C. elegans 

and D. melanogaster are not only involved in MT sliding, but also in MT 

bundling (Sharp et al. 1999; Segbert et al. 2003; Furuta and Toyoshima 

2008). Having observed a decrease in the length of MT overlap regions in 

klp2Δ cells, we next asked if Klp2p could also contribute to MT bundling in 

S. pombe and could account for the MT overlap regions which we observed 

in the ase1Δ mutant cells.  

We therefore analyzed tomograms and generated 3D models of ase1Δ 

klp2Δ cells (gift from P. Tran). We also observed MT overlap regions in the 

double mutant. For the first time, we observed a MT spanning the entire 

length of a cell which was part of an IMA with a significantly extended MT 

overlap region (Figure 2.8A, D). The number of IMAs per reconstructed 

volume varied from 0 to 2 (1.2 ± 1.1; n=6, in 5 partial volumes; see Annex 

IV for a comparison of bundles per cell in wt and all the analysed mutants), 

while the number of single MTs per volume varied from 1 to 7 (3.6 ± 2.4, n 
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= 18). The average MT length for this mutant was slightly increased 

compared to wild type (Table 2.5). The estimated relative amount of 

polymerized tubulin for all reconstructed volumes showed a similar decrease 

to the ase1Δ mutant in comparison with the wild type value (Table 2.5).  

Confirming our previous results, ase1Δ klp2Δ cells displayed features 

similar to both single mutants, such as single MTs apparently originating 

from the nucleus surface (Figure 2.8A), IMAs with only two MTs and MTs 

perpendicular to the long cell axis (Figure 2.8B). Small MTs could also be 

observed spreading apart from a neighbor MT lattice with both minus and 

plus ends as the closest point to the adjacent MT lattice (Figure 2.8B).  

 

Table 2.5. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type, ase1Δ, klp2Δ, mto1Δ and ase1Δ klp2Δ cells. 

 
MT lengths (μm) Relative Polymerized 

tubulin(μM μm-1) 
Electron-dense bridges 

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641 1.431 6.01 701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 
klp2Δ 1.30 1.43 3.4 44 0.12 0.04 75.1 9.5 14 
mto1Δ 2.29 1.83 6.9 12 0.07 0.02 62.53 17.66 10 
ase1Δ klp2Δ 1.80 1.90 6.4 21 0.19 0.12 62.23 13.1 16 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found. Data relative to this section in bold. 

Furthermore, MT overlap regions showed a decrease in the inter-MT 

spacing, with the centroid of the peak distribution at 12.6 nm, similar to 

ase1Δ cells (Figure 2.9A). The same was also observed when we only 

analyzed MT overlap regions where we could determine the MT 

orientations (n=2; Figure 2.9B). In ase1Δ klp2Δ, all the MT overlap regions 

where we could determine the MT orientations were composed of parallel 

MTs. The average angle of the electron-dense bridges observed in the dual 

axis tomograms calculated for the double mutant (Figure 2.9C) was also 

similar to the value observed in ase1Δ cells (Table 2.5). Finally, the MT 

pairing length for ase1Δ klp2Δ cells showed a significant decrease 

compared with wild type, as did the IMA MT overlap region lengths (Table 

2.4 at page 61). 
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Figure 2.8. The ase1Δ klp2Δ mutant has MT overlap regions.  
(A) Reconstruction of a quasi full cell volume showing a capped end structure close to the plasma 
membrane (arrow) belonging to a MT that crosses the whole cell length.  
(B) All the non SPB-associated IMAs in a partially reconstructed cell volume were MTs spreading 
apart from another MT lattice are visible; long cell axis indicated by two heads arrow). This cell did not 
have a SPB-associated IMA. 
(C) Tomographic slice of the only case of a SPB-associated IMA found in the reconstructed volumes 
of ase1Δ klp2Δ cells. Both MTs show their capped end in close proximity to the SPB as can be seen 
in the model image in the upper right corner.  
(D) Longest non SPB-associated IMA from (A) which shows a MT spanning the distance between the 
two cell tips (arrowheads) and a small MT spreading apart from a MT lattice (arrow). Five other MTs 
form a MT overlap region surprisingly organized. 
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). Nucleus (N), nuclear envelope 
(NE), SPB (S). White bars: 250 nm. Black bars: 100 nm. 
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Concerning SPB-associated IMAs, only one could be identified 

(Figure 2.8C). However, this IMA was uncharacteristic, as it had two MTs 

that seemed to emanate from the SPB with the capped end as the closest 

point to the SPB in both cases. The fact that ase1Δ klp2Δ mutant mostly 

lacked SPB attached MTs led us to consider whether Ase1p together with 

Klp2p could mediate the connection between the MTs and the SPB. To 

investigate this hypothesis, we decided to measure the minimal distance 

from the SPB to the closest MT in all mutants. In wild type, the closest point 

of a MT to the SPB is normally a MT lattice that lies in directed contact 

with the SPB density (Hoog et al. 2007). We therefore assumed a distance 

of zero between the SPB and the MT lattice in wild type cells. 

We discovered that in general, for ase1Δ, klp2Δ and ase1Δ klp2Δ, the 

closest points of MTs to the SPB were MT ends (Figures 2.1F, 2.3E, 2.8C) 

while the closest MT wall was 21 nm away from the SPB (excluding one 

SPB-associated bundle in ase1Δ volumes; Figure 2.1E). Furthermore we 

performed an in vivo analysis by live-imaging of cells expressing the SPB 

marker Cut11-mCherry and the MT marker GFP-atb2 (see Material and 

Methods). Indeed, we observed a small increase (~4%) in the number of 

ase1Δ cells in which no connection between the SPB and the MTs was 

visible  and a significant increase (~24%) in ase1Δ klp2Δ cells (Figure 

2.10A and 2.10B).  

We believed that this analysis confirms our results since the values 

obtained for SPB - MT mis-localization are highly underestimated, due to 

low resolution in the XY plane (~ 200 nm limited by the technique) and loss 

of Z axis resolution in the analysis. 
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Figure 2.9. Neighbor density analysis showing MT – MT distances and a 
gallery of electron-dense bridges in ase1Δ klp2Δ cells.  
(A and B) Global inter-MT distances and distances of parallel MTs, respectively, in IMAs 
for ase1Δ klp2Δ cells. Triangles points to the centroid of each major density peak. 
 (C1 and C2) ase1Δ klp2Δ selected longitudinal tomographic slices of two adjacent MTs 
showing electron-dense bridges (arrows). Volumes were rotated into the MT lattice plane. 
(C3 and C4) Cross slice of 1 and 2, respectively, in the plane of red and blue arrows.  
Bars: 25 nm. 

 

Our results clearly show the existence of MT overlap regions in cells 

lacking both Ase1p and Klp2p. Most of the MTs were not bundled, as 

previously observed in ase1Δ mutants. Interestingly, the double mutant 

showed features visualized in both single mutants. These included IMAs 

with only two MTs similar to the ones visualized in klp2Δ cells, 

perpendicular MTs to the long cell axis and MTs spreading apart from 

another MT lattice. Furthermore, we also observed a decrease in the 

preferred global inter-MT spacing, the average angle of electron-dense 

bridges, MT pairing length and IMA MT overlap region length. 

SPB-associated IMAs were underrepresented compared to single 

mutant cells this being a unique characteristic of the double deletion mutant.  



Dissertation of Hélio Roque________________________________________________ 

68 

 
Figure 2.10. ase1Δ klp2Δ mutants have lost the connection between SPB 
and MTs.  
(A) Maximum projection images of strains co-expressing Cut11-mCherry (arrows point to 
the brighter spot which indicates the SPB) and GFP-atb2. The merged images show the 
localization of the SPB with respect to the IMAs. Bars: 2 μm  
(B) Graph showing the percentage of SPB fluorescent dots that colocalize (white bars) or 
not (black bars) with IMAs. 

 

 

2.6 mto1Δ klp2Δ cells are similar to mto1Δ cells  
Having observed that similar to klp2Δ cells, most IMAs in mto1Δ cells 

are also composed of two MTs, we further analyzed the double deletion 

mutant lacking both genes. 

In the reconstructed volumes the observed phenotypes were very 

similar to those seen in mto1Δ cells. In the 5 partial reconstructed volumes 

we found 1 to 3 IMAs (1.6 ± 0.89 average, n = 8; see Annex IV for a 

comparison of bundles per cell in wt and all the analysed mutants) and 1 to 3 

single MTs (1.5 ± 1.29 average, n = 6; Figure 2.11A and B). The average 
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length of MTs was close to double of the wild type, while the relative 

amount of polymerized tubulin was ~ 40 % less than in wild type (Table 

2.6). 

 

Table 2.6. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type, ase1Δ, klp2Δ,  mto1Δ, ase1Δ klp2Δ and mto1Δ klp2Δ 
cells. 

 
MT lengths (μm) Relative Polymerized 

tubulin(μM μm-1) 
Electron-dense bridges 

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641 1.431 6.01 701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 
klp2Δ 1.30 1.43 3.4 44 0.12 0.04 75.1 9.5 14 
mto1Δ 2.29 1.83 6.9 12 0.07 0.02 62.53 17.66 10 
ase1Δ klp2Δ 1.80 1.90 6.4 21 0.19 0.12 62.23 13.1 16 
mto1Δ klp2Δ 2.26 1.50 5.5 27 0.13 0.04 57.39 19.85 14 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found. Data relative to this section in bold. 

The inter-MT distance in the IMAs observed showed one peak 

between 5 nm and 40 nm with a centroid at 16 nm (Figure 2.17E). This 

distribution was very similar to wild type cells (Hoog et al. 2007). As for the 

other mutants, we found electron-dense bridges between MT pairs (Figure 

2.17F). These had the smallest average angle of all the mutants analyzed, 

but also the highest standard deviation (Table 2.6). Similar to mto1Δ cells, 

most of the MTs had open structures at both ends (Figure 2.11A and 2.11D). 

For this reason, we were not able to determine the orientation of most MTs. 

Nonetheless, we found one MT that was spreading apart from the lattice of 

another adjacent MT (Figure 2.11C). This MT had a capped end as the 

closest point to the adjacent MT. Finally, in one instance we observed that 

the MTs seemed to congregate/derive all from a single region in the cell tip 

(Figure 2.11B). 
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Figure 2.11.  mto1Δ klp2Δ cells show different IMA organizations.  
(A) Reconstruction of a partial volume of an mto1Δ klp2Δ cell showing two IMAs. The right IMA has a 
long MT overlap region with a MT lattice laying on the SPB surface. Note that one of the MTs of this 
IMA curls at the cell tip. The left IMA has a short MT overlap region and it reaches both cell tips. 
(B) Partial volume where all the IMAs and single MTs seem to originate/congregate to one single 
locus in the cell. 
(C) Even though most of the MTs had open end structures, some capped ends were visible. In this 
example the MT was spreading apart from the lattice of the adjacent MT with the capped end as the 
closest point to the lattice of that MT.  
(D) Two pairing MTs with different end structures. The above MT has a capped end structure (arrow) 
while the lower MT has a flared end structure (arrowhead). 
(E) Global inter-MT distances in IMAs for mto1Δ klp2Δ cells. Triangles points to the centroid of each 
major density peak. 
 (F1 and F2) mto1Δ klp2Δ selected longitudinal tomographic slices of two adjacent MTs showing 
electron-dense bridges (arrows). Volumes were rotated into the MT lattice plane. (F3 and F4) Cross 
slice of 1 and 2, respectively, in the plane of red and blue arrows.  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). White bars, 250 nm. Black 
bars: 25 nm. 

 
 

When we measured the MT pairing lengths and the length of the IMA 

MT overlap region, we discovered that the value for MT pairing was higher 

than the MT overlap region. We were puzzled and wonderer why this was 

the case. We realized that such a result was due to the organization of the 
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IMAs with three MTs. These presented what we called a triangle formation; 

the MTs were packed together in a triangle shape (Figure 2.11F-3). Thus, 

any MT was closer to both of the others by less than 35 nm. This led to MT 

pairing lengths higher than the MT lengths themselves (Table 2.4 at page 

61). 

The only SPB-associated IMA visualized had one of its three MTs, 

laterally associated with the SPB surface similar to wild type (Hoog et al. 

2007). The shape of the SPB was abnormal, seeming bigger and slightly 

projecting out from the nuclear surface. 

We show here that the phenotypes seen in mto1Δ cells are also 

prevalent in cells lacking both Mto1p and Klp2p. The differences observed 

were in the relative amount of polymerized tubulin and MT pairing length 

(Table 2.4 at page 61). In both cases mto1Δ klp2Δ cells had slightly higher 

values than mto1Δ cells. 

 

2.7 mto1Δ ase1Δ cells form a hyper IMA  
The observation that cells lacking ase1Δ have less MT overlap, 

together with the observation that mto1Δ cells have only one to two IMAs 

per cell and single MTs, made us wonder whether mto1Δ ase1Δ cells (gift of 

P. Tran) would be totally devoid of IMAs.  

In fact, we found not only IMAs but what we term hyper-IMA. In the 

volumes acquired from this mutant that had cytoplasmic MTs, only one had 

a single MT, while the two others had an IMA with three MTs that extended 

from cell tip to cell tip (Figure 2.12A). None of the IMAs contacted the 

nuclear envelope or the SPB (Figure 2.12A). We estimated the relative 

amount of polymerized tubulin and observed a drastic reduction of the 

polymerized tubulin, ~ 64 % compared to wild type (Table 2.7). 
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Figure 2.12. mto1Δ ase1Δ cells show hyper-IMAs. 
(A) Model of a partial volume reconstruction of an mto1Δ ase1Δ cell with a cytoplasmic hyper IMA 
composed of three MTs that reach both cell ends. Note that the IMA is very compact during its whole 
length. Also visible is the SPB (yellow) with no MT in close proximity.  
(B) Tomographic slice showing the area in the top frame in (A). Both MTs contact the plasma 
membrane with flared end structures (arrowheads). The colored circles indicate the MT end structure 
not visible in the image.  
(C) Tomographic slice of the area in the bottom frame in (A). All three MTs align in the same plane to 
each other. A capped end is visible with an electron-dense bridge that connects it to the lattice of the 
adjacent MT (arrowhead). 
(E) Global inter-MT distances in IMAs for mto1Δ ase1Δ cells. Triangles point the centroid of each 
major density peak. 
 (E1 and E2) mto1Δ ase1Δ selected longitudinal tomographic slices of two adjacent MTs showing 
electron-dense bridges (arrows). Volumes were rotated into the MT lattice plane. (E3 and E4) Cross 
slice of 1 and 2, respectively, in the plane of red and blue arrows.  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure).  

 

 

We measured the global inter-MT distance in the two hyper-bundles. 

Similar to the previously analyzed ase1Δ mutants, the density distribution 

had a broad peak (between 0 nm and 35 nm) with a centroid at 11.3 nm 

(Figure 2.12D). 

When we analyzed the MT end structures in both hyper bundles we 

discovered that most MTs had open structures at both ends (Figure 2.12A 
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and B). Nonetheless, we were able to identify two capped ends in one hyper-

bundle (Figure 2.12C) which allowed us to verify that parallel pairing 

occurs in this mutant. Finally, we found electron-dense bridges (Figure 

2.12E) that had and average angle similar to the one observed in wild type 

(Table 2.7). As for the mto1Δ klp2Δ volumes, the MT pairing length was ~ 

1.3 fold higher than the MT overlap region length. This is two fold higher 

than in wild type (Table 2.4 at page 61). 

 

Table 2.7. MT lengths, polymerized tubulin and electron-dense bridges 
angles of wild type, and all the mutants analyzed. 

 
MT lengths (μm) Relative Polymerized 

tubulin(μM μm-1) 
Electron-dense bridges 

(degrees) 
 Average SD MAX n Average SD Average SD n 
wt 1.641 1.431 6.01 701 0.22 0.15 73.94 8.08 11 
ase1Δ 1.62 1.61 6.8 35 0.16 0.13 62.53 9.95 22 
klp2Δ 1.30 1.43 3.4 44 0.12 0.04 75.1 9.5 14 
mto1Δ 2.29 1.83 6.9 12 0.07 0.02 62.53 17.66 10 
ase1Δ klp2Δ 1.80 1.90 6.4 21 0.19 0.12 62.23 13.1 16 
mto1Δ klp2Δ 2.26 1.50 5.5 27 0.13 0.04 57.39 19.85 14 
mto1Δ ase1Δ 5.77 2.03 6.9 6 0.07 0.02 72.22 11.7 19 

1(Hoog et al. 2007); SD, standard deviation; MAX, maximum MT length found.  Data relative to this section in bold. 

 

Our data show that cells lacking both Ase1p and Mto1p can form 

hyper-IMAs that extend from cell tip to cell tip. These are composed of 

three MTs that also extend along the whole length of the IMAs. Interestingly 

both hyper-IMAs had one MT with open structures at both ends. In one case 

we could verify that MT parallel pairing does occur. The inter-MT distance 

was similar to ase1Δ mutants.  
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2.8 mto1Δ cells and mto1Δ ase1Δ cells have 
different intra-nuclear MT assemblies 
As we already had the samples, we decided to also investigate how 

cytoplasmic IMAs originate in mto1Δ and mto1Δ ase1Δ cells. 

A previous study (Zimmerman and Chang 2005) has shown that after 

cold shock, which depolymerizes all MTs, most mto1Δ cells nucleate new 

MTs only inside the nucleus. Occasionally, stable MTs extend, deform the 

nuclear envelope and are able to pierce through it originating cytoplasmic 

MTs which will then form the IMAs.  

Furthermore, this and other studies (Sawin et al. 2004; Zimmerman 

and Chang 2005), suggested that interphase MTs originate MTs that escape 

from the spindle midzone to the cytoplasm after the formation of the 

contractile ring. 

One of our mto1Δ cells had an intra-nuclear interphase MT like array. 

This IMA like structure was composed of 5 MTs and extended from cell tip 

to cell tip (Figure 2.13). It formed two protrusions in the nuclear envelope 

(Figure 2.13A and D) while in the main body of nucleus it curved around 

the nuclear envelope, passing at the intra-nuclear region opposite to where 

the SPB was located.  

The SPB was clearly on the outside of the nuclear envelope, since the 

double membrane layers of the nuclear envelope were visible below the SPB 

density, with no discontinuities observed (Figure 2.13E). Thus the cells were 

in interphase (Ding et al. 1997). We also observed that the bundle formed an 

elbow shape, at the site where the MTs would leave the nucleolus and enter 

the nuclear envelope protrusion. In fact, it seemed to us that the MT was 

broken at that site (Figure 2.13B). No MTs were observed in the cytoplasm.  
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Figure 2.13. mto1Δ cells have an intra-nuclear IMA that forms protrusions 
in the nuclear envelope. 
(A) Partial reconstruction of an mto1Δ cell with intra-nuclear MTs arranged like an IMA, forming two 
protrusions in the nuclear envelope. Both protrusions have “balloon” shaped ends. 
(B) Tomographic slice of the top framed area in (A). MTs exiting the nucleus (N) and entering the 
nuclear envelope protrusion are visible. One MT seems to be broken at the transition local between 
nucleus and protrusion (arrow). This MT has a break on one side of the MT wall, while the other side 
makes an angle of ~ 90º. 
(C) Tomographic slice of the nucleus (N) of the cell in (A) showing the two unknown structures 
enclosed by the nuclear envelope (arrows). 
(D) Tomographic slice of the bottom framed area in (A). The “balloon” shape protrusion end with a MT 
inside of it is visible. The MT capped end structure is not surrounded by the nuclear envelope (arrow), 
being in apparent contact with the cytoplasm (C).  
(E) Tomographic slice in the area of the SPB (S) of cell (A) showing an intact nuclear envelope 
separating the SPB from the nucleolus.  
 (F) Global inter-MT distances in IMAs for mto1Δ ase1Δ cells. Triangles points to the centroid of each 
major density peak. 
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). Nucleus (N), nuclear envelope 
(NE), SPB (S), cytoplasm (C). Bars in A to C, 250 nm. Bars in D and E, 25 nm. 

 

We decide to measure the inter-MT distance to see if they are more 

similar to IMAs or to the inter-MT distances in the wild type spindle. The 

distribution of inter-MT distances presented one peak (Figure 2.13F). It 
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comprised values between 0 nm and 25 nm with a centroid of 16.4 nm. 

These values were more similar to wild type than to ase1Δ values. 

In one of the protrusions we could see a MT with the capped end at the 

level of the nuclear envelope and the cytoplasm. In fact, no nuclear envelope 

membrane was visible separating the MT end and the cytoplasm (Figure 

2.13D). Nuclear pore complexes were visible on the nuclear envelope 

protrusions that wrapped around the bundle. At the tips of the protrusion we 

could see that the nuclear envelope did not wrap tightly around the MTs 

(when present) but instead, formed a “balloon” shape around the MT tips 

(Figure 2.13A and D). In one of the protrusions this “balloon” shape form 

was devoid of MTs.  

When analyzing the volume we noticed that the nucleus possessed two 

unknown structures inside the nucleus. One was vacuole like and the other a 

close single membrane bound structure (Figure 2.13C). The vacuole like 

structure had a non electron dense spherical form, while the membrane like 

structure had a single membrane layer, was also of a spherical form and 

presented a darker density in one region.   

We further pursued the issue of intra-nuclear MT origin in mto1Δ cells 

by looking at cells lacking both Mto1p and Ase1p. In the cell volumes 

acquired that had intra-nuclear MTs we did not observe an IMA like 

structure, such as that seen in the mto1Δ volume, but a MT aster-like 

structure. In one case this structure was more organized, forming a quasi 

bundle that protruded the nuclear envelope (Figure 2.14A). All the asters 

seemed to loosely focus in the intra-nuclear region in the vicinity of the SPB 

density (Figure 2.14B). Nonetheless, in all cases we could clearly see the 

SPB density outside the nuclear envelope (Figure 2.14D). In some cases the 

capped ends of the MTs were away from the region where the aster was 

more focused, while in other cases they were in this region (compared 

Figure 2.14A with B). 
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Figure 2.14. Intra-nuclear MTs in mto1Δ ase1Δ cells do not form an IMA 
like structure. 
(A) Partial volume of an mto1Δ ase1Δ cell with intra-nuclear MTs that form a quasi bundle that 
protrudes the nuclear envelope (lower-left corner shows a close up of this bundle). The MTs have 
capped end structures away from the nucleus region facing the SPB. 
(B) Example of another intra-nuclear MT structure. The MTs seem to concentrate in the nucleus 
region that faces the SPB (which is clearly outside the nuclear envelope). 
(C) Tomographic slice of a nucleus with intra-nuclear MTs (arrows; N, nucleus; C, cytoplasm). 
(D) Tomographic slice of a nucleus with intra-nuclear MTs (arrow) where the SPB is visible outside 
the nuclear envelope (dashed line).  
MT ends structures are represented by colored spheres: red (capped structure), blue (blunt 
structure), cyan (flared structure) and white (undetermined structure). Nucleus (N), nuclear envelope 
(NE), cytoplasm (C). Bars, 250 nm. 
 

Indeed, our results suggest that mto1Δ cells are able to form an intra-

nuclear IMA-like bundle that is able to form protrusions in the nuclear 

envelope and pierce it (Figure 2.13), allowing the passage of MTs fragments 

into the cytoplasm (Zimmerman and Chang 2005). This IMA-like bundle 

has an inter-MT distance in between wild type and ase1Δ cells. On the 

contrary, we found no evidence for an IMA-like structure in mto1Δ ase1Δ 

cells (Figure 2.14). Instead we observed a MT aster-like structure that was 

also able to form protrusions in the nuclear envelope. In all cases the SPB 

was on the cytoplasmic side of the nuclear envelope and did not appear to be 
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directly nucleating the intra-nuclear MTs. Finally, we observed a vacuole 

like structure and a membrane compartment inside the nucleus of an mto1Δ 

cell. 

 

2.9  Disorganized IMAs affect the 
mitochondrial network 
The association of MTs with mitochondria has been well documented 

in previous studies (Yaffe et al. 1996; Yaffe et al. 2003; Weir and Yaffe 

2004), demonstrating how a correct positioning and normal morphology is 

dependent on MT organization. Indeed, mitochondria seem to elongate by 

connecting to the growing MT tips, and to retract with depolymerizing MT 

ends (Yaffe et al. 2003). Moreover, Höög et al (2007) have shown that a 

morphological relationship exists between MTs and mitochondria; 

mitochondria are laterally stretched along IMAs and display extensive 

branching, fitting the IMAs. 

Having reconstructed mutant volumes in which the organization of 

IMAs was affected we investigated the effect of our mutants on the 

mitochondria morphology. By considering the published model (Hoog et al. 

2007) and comparing it with the ones we produced, we found that the 

mitochondria network in our mutants seemed to be less branched and more 

compact than in wild type. Furthermore, our mutants had a smaller number 

of separate mitochondrial volumes per similar total volume of mitochondria 

(Table 2.8).  

To quantify these observations, we calculated the ratio of volume to 

surface in a wild type cell de novo reconstructed and in our mutant strains, in 

order to determine if the mitochondria network was indeed less stretched 

and branched in the mutants. If this were the case, we would expect to see a 

higher ratio in the mutants compared to wild type. This was observed and we 

found that the ratio of volume to surface significantly increased in all our 
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mutants compared to wild type (Table 2.8), with the exception of the mto1Δ 

klp2Δ mutant. This mutant had a similar value to wild type. The 

mitochondria network in this volume was mostly aggregated in one region, 

but several branches extended along the cell, most of them associated with 

the IMAs of this cell. 
 

Table 2.8. Volume, number and ratio of volume to surface area for 
mitochondrial network in wild type and all analyzed mutants. 

Mitochondria 
curvature (μm-1)  Volume (μm3) 

Discrete 
mitochondria 

volumes 
Ratio 

volume/surface Average SD 
wt 1.231 121 0.052 6.9 2.8 
ase1Δ 1.23 4 0.074 5.9 2.7 
klp2Δ 1.32 5 0.08 5.3 1.3 
ase1Δ klp2Δ 1.13 2 0.075 6.0 1.7 
mto1Δ in* 0.44 - 0.08 5.2 2.7 
mto1Δ ex* 0.97 1 0.066 6.3 2.7 
mto1Δ klp2Δ 0.81 4 0.054 7.1 2.3 
mto1Δ ase1Δ in* 1.54 4 0.068 6.2 2.2 
mto1Δ ase1Δ ex* 1.37 5 0.071 5.7 2.7 

1(Hoog et al. 2007); SD, standard deviation; * in, intra-nucelar MTs, ex, cytoplasmic MTs 

 
Next, we measured the curvature of our mitochondria volumes 

expecting to confirm the previous result and better understand the structural 

organization of the mitochondria network (Figure 2.15). 

As expected, we showed that higher curvature values were measured 

in the wild type mitochondria than in the analyzed mutants, except for the 

mto1Δ klp2Δ mutant (Table 2.8). Moreover, we decided to measure the 

distance of the MTs to the mitochondria network and marked where the MT 

was in less than 35 nm from the mitochondria. We found that the MTs 

seemed to associate with the mitochondria in regions of higher 

mitochondrial surface curvature (Figure 2.15). Interestingly, no 

mitochondrial surfaces were ever observed in association with MTs 

perpendicular to the longitudinal cell axis (Figure 2.15B). 
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Figure 2.15. Curvature of the mitochondrial network.  
Reconstruction of the mitochondria network and MTs for wild type (A), ase1Δ (B), klp2Δ (C), mto1Δ 
(D), ase1Δ klp2Δ (E), mto1Δ ase1Δ (F) and mto1Δ klp2Δ cells (G). The mitochondria network is 
colored in accordance to the curvature that it possesses. Red corresponds to lower curvature values 
and magenta to high curvature values (see scale bars for color key, representing a curvature range 
from 1/μm to 10/μm). White lines connecting MTs to the mitochondria network correspond to 10 nm 
MT pieces that are at 35 nm or less from the MT. As mention in the text, MTs are laterally associated 
in higher curvature areas. Bars: 500 nm. 

 
These data clearly show the effect of the disorganization of IMAs on 

the shape of the mitochondrial network. Indeed, in almost all our mutants, 

the mitochondrial network was less stretched and branched compared to 

wild type, presenting values of lower curvature. Finally, we showed that the 

lateral association of MTs seemed to occur in zones of higher curvature in 

the mitochondria. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 DISCUSSION 
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3.1 MT overlap regions remain in ase1Δ, ase1Δ 
klp2Δ and ase1Δ mto1Δ cells 
In depth analysis of the organization of fission yeast interphase 

microtubule arrays (IMAs) has previously been restricted to the resolution 

of fluorescence microscopy. A recent study using electron tomography 

showed that IMAs in wild type cells have three to four IMAs composed of 

two to nine microtubules (MTs; Hoog et al. 2007). Interestingly, previous 

studies showed that IMAs in ase1Δ cells lacked a central region of higher 

fluorescence intensity, suggesting that these were in fact single MTs 

(Loiodice et al. 2005). 

Several questions arose from these studies, namely do ase1Δ cells 

have MT overlap regions? Is the amount of polymerized tubulin identical to 

wild type? If they do have MT overlap regions, how are they organized? We 

took advantage of the high resolution of electron tomography to answer 

these questions and provide a clearer image of the organization of MT 

cytoskeleton in fission yeast.  

We show that cells lacking Ase1p have indeed mostly single MTs, but 

still possess MT overlap regions (Figure 2.1A, B and F). This was an 

intriguing finding since Ase1p is the only known bundling protein in fission 

yeast and led us to believe that additional factors contribute to the bundling 

of MTs. For this reason, we decided to analyze klp2Δ and mto1Δ cells, since 

both proteins are known to link MTs to the lattice of an adjacent MT, 

possibly accounting for the observed MT overlap regions.  

Klp2p is involved in generating and stabilizing the MT overlap region 

of IMAs (Carazo-Salas et al. 2005). It attaches to the plus end of MTs by its 

non-motor domain while the motor domain moves along the lattice of an 

adjacent MT in a minus end direction (Janson et al. 2007). It was suggested 

that IMAs in klp2Δ cells have multiple MT overlap regions (Carazo-Salas et 

al. 2005). 
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We started by analyzing klp2Δ cells and found that these cells have a 

reduced number of MTs per IMA (Figure 2.3A to D and F; see section 3.4). 

Nonetheless, we mainly observed IMAs rather than single MTs, an 

indication that MT bundling was not affected in klp2Δ cells. This was 

expected since Ase1p is present. We therefore analyzed the double deletion 

ase1Δ klp2Δ and still found MT overlap regions (Figure 2.8) to a similar 

extent as observed in ase1Δ cells, suggesting the presence of additional 

bundling proteins in S. pombe. 

Mto1p forms a complex with Mto2p that associates with the γ-tubulin 

ring complex  (γ-TuRC), targeting it to the MT lattice where the γ-TuRC 

can nucleate MTs (Sawin et al. 2004; Janson et al. 2005). This complex 

attaches two MTs to each other and may allow the formation of IMAs in 

ase1Δ cells. Since mto1Δ cells have defective cytoplasmic MT nucleation, 

and the only source of new cytoplasmic MTs, when at least one is already 

present, appears to be the events of bend and break, (Sawin et al. 2004; 

Venkatram et al. 2004; Zimmerman and Chang 2005) one can assume that 

MT pairs would be expected only form when two MTs (assuming that only 

one pierces trough the nuclear envelope at one time) would come close 

enough to be held together by Ase1p. Consequently, cells without Ase1p 

and Mto1p would be expected not to form MT pairs or IMAs. 

Similar to the IMAs in klp2Δ cells, all IMAs in mto1Δ cells were 

composed of two MTs (Figure 2.5; see section 3.4). All analyzed cells 

showed more than one IMA per cell, indicating that the formation of MT 

pairs in mto1Δ may be easier than we expected. Most intriguing was the 

visualization in ase1Δ mto1Δ cells of what we called a hyper-IMA. Indeed, 

we found that these cells possess IMAs with three equally sized MTs that 

extend through the whole length of the cell (Figure 2.12A). Remarkably, 

these MTs were extremely regularly spaced apart from each other (Figure 

2.12C and D).  

Taken together, these results indicate that additional bundling proteins 

must exist in S. pombe to account for the MT overlap regions observed in 
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cells lacking Ase1p. The observation of MT overlap regions in ase1Δ klp2Δ 

and ase1Δ mto1Δ hints that this protein bundles MTs more effectively when 

competition for the MT lattice is decrease in the absence of other 

microtubule associated proteins (MAPs).  

 

3.2 Parallel MT pairs are only observed in 
ase1Δ klp2Δ cells 
An interesting question in the formation of IMAs, is how the 

orientation of a newly nucleated MT, relative to the MT lattice on which it is 

being nucleated, is determined. Recently it was shown that wild type IMAs 

are composed of parallel and antiparallel MTs (Hoog et al. 2007). In 

addition, Janson et al. (2007) showed that Ase1p preferentially bundles 

antiparallel MTs. This led to the proposal that upon nucleation, Ase1p 

determines the orientation of the newly nucleated MT and subsequently 

Klp2p can bind to the MT plus end.  

If Ase1p is the only protein determining the orientation of a newly 

nucleated MT and IMAs are composed of parallel and antiparallel paired 

MTs (Hoog et al. 2007), then one would expect that in ase1Δ cells the 

amount of parallel MT pairing would be identical to the antiparallel MT 

pairing. 

In fact this was not what we observed in ase1Δ cells. All the MT pairs 

where we could determine the orientation of both MTs were antiparallel 

pairs (Figure 2.1A and B), pointing to a more complex system of 

determining the orientation of the newly nucleated MT. One possibility is 

that Klp2p has a role in this process by connecting to the MT plus end 

(Janson et al. 2007), and with its minus end directed movement also 

determines the MT orientation. This would explain the antiparallel 

orientation of the MT pairs observed in ase1Δ cells. 

We started by looking at klp2Δ reconstructed volumes and as 

expected, since Ase1p is present, we found that most MT pairs were 
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composed of antiparallel MTs (Figure 2.3A, C and D). In one case we 

confirmed the existence of a parallel MT pair with higher inter-MT spacing 

than the antiparallel pairs (Figure 2.3B). We believe this pair not to be 

bundled by Ase1p. When we analyzed the double deleted ase1 klp2 cells we 

confirmed only parallel MT pairs (Figure 2.8C and D). Taken together, 

these results show that both Ase1p and Klp2p can determine the antiparallel 

orientation of a newly nucleated MT along the lattice of an adjacent MT.  

We believe that only in the absence of both Ase1p and Klp2p, the 

orientation of MTs in IMAs can be parallel. We support this conclusion with 

three main observations: (1) antiparallel and parallel MT pairs exist in wild 

type (Hoog et al. 2007); (2) we only confirmed antiparallel pairs in ase1Δ 

and klp2Δ single mutant cells; and (3) we only confirmed parallel pairs in 

ase1Δ klp2Δ cells. In our view, these observations do not reflect an all-or-

nothing effect of the mutants in terms of MT pair orientations, but simply an 

increase of parallel MT pairs due to the absence of Ase1p and Klp2p. This 

argues in favor of a putative bundling protein that cross-bridges MTs 

regardless of their orientation. Unfortunately, we were not able to confirm 

most MT pairs orientations in mto1Δ containing mutants, since most MTs 

had open structures in both ends.  

 

3.3 Nucleation regions in the cell 
In several cases, in ase1Δ and ase1Δ klp2Δ cells and in one case in 

mto1Δ klp2Δ cells, we observed single MTs spreading apart from the lattice 

of an adjacent MT (MT obliquely orientated to the MT lattice adjacent to it; 

Figures 2.1B to D, 2.8B and D, and 2.11C). In most cases the minus end of 

the MT spreading apart was the closest point to the adjacent MT lattice. 

Occasionally electron-dense bridges between the capped end and the MT 

lattice were observed (Figure 2.1D).  

Several studies demonstrated that the proteins Mto1 and Mto2 regulate 

MT nucleation (Sawin et al. 2004; Janson et al. 2005; Samejima et al. 2005; 
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Zimmerman and Chang 2005) by targeting the γ-TuRC complex to various 

locations in the fission yeast cell, including the MT lattice where it can 

nucleate MTs (Janson et al. 2005). According to our findings, one can 

assume that the spreading MTs are most likely attached by the γ-TuRC and 

the Mto1/Mto2 complex to the adjacent MT lattice. 

Surprisingly, despite studies suggesting that cytoplasmic MT 

nucleation is absent in cells lacking Mto1p (Sawin 2004; Venkatram et al. 

2004; Zimmerman et al. 2004), we observed a few MTs with capped ends in 

cells lacking Mto1p (Figures 2.11C, and 2.12A to C). One possibility is that 

MTs that pinch through the nuclear envelope have done so with the γ-TuRC 

still attached at the minus end, as we seemed to observe in one case (Figure 

2.13D). This would then represent an intra-nuclear nucleation event rather 

than a new cytoplasmic nucleation. However, in one case, we observed a 

MT spreading apart from the lattice of an adjacent MT, similar to the ones 

observed in ase1Δ and ase1Δ klp2Δ volumes (Figure 2.11C). Due to these 

observations, we believed that cytoplasmic MT nucleation still occurs in 

mto1Δ cells but at a very low frequency.  

In the ase1Δ, klp2Δ and ase1Δ klp2Δ mutants, we often observed 

single MTs that seemed to emanate from the nuclear surface with their 

minus ends adjacent to the nuclear envelope (Figures 2.1A, 2.3A and 2.8A). 

We believe these MTs originated from nucleation seeds localized on the 

nuclear surface, which is in agreement with the localization of the γ-TuRC 

and Mto1p/Mto2p complexes to the nuclear envelope surface (Sawin et al. 

2004). Due to lack of Ase1p and/or Klp2p function, these MTs are not 

incorporated into an IMA, and their MT minus end position reflects most 

likely, their nucleation origin. 

The localization of MT nucleation to both the MT lattice and the 

nuclear envelope is of great advantage to the cell. Having MT nucleation 

around the surface of the nucleus allows for several MTs to quickly come 

together and form an IMA. This positions the MT overlap region adjacent to 

the nucleus surface. As most MTs are orientated in an antiparallel fashion, it 
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guarantees that MTs grow outwards to the cell ends, allowing both the 

correct deposition of polarity factors and centering of the nucleus in cases of 

misplacement. Additionally, having the MT overlap regions adjacent to the 

nucleus might be important in the loading of protein cargoes onto the MTs. 

Once an IMA is formed, MTs newly nucleated on the nucleus surface 

are quickly incorporated into the IMAs by the action of Ase1p and Klp2p. 

Moreover, IMAs ensure their own maintenance due to targeting of MT 

nucleation seeds to lattices of the MTs from which they are composed 

(Janson et al. 2005). Thus IMAs, once formed, promote a positive feedback 

loop of localized MT nucleation that ensures their maintenance and MT 

turnover. 

Finally, in ase1Δ, klp2Δ and ase1Δ klp2Δ mutants, we observed MTs 

with their minus end in close proximity to the spindle pole body (SPB; 

Figures 2.1E and F, 2.3E, and 2.8C). However, their capped ends were never 

in direct contact with the SPB density. Our results indicate that MT 

nucleation events occur at the cytoplasmic surface of the SPB, which is 

consistent with previous studies showing SPB-associated MT nucleation 

components (Horio et al. 1991; Masuda et al. 1992; Fujita et al. 2002; 

Sawin et al. 2004). In this context, we believe that newly nucleated MTs are 

not firmly attached to the SPB during interphase, being at some point 

released from it and incorporated into the closest IMA.  

This local increase in MT nucleation at the cytoplasmic surface of the 

SPB explains the existence in all wild type cells of a SPB-associated IMA 

and the higher number of MTs observed in SPB-associated versus non SPB-

associated IMAs. The SPB-associated IMA has MTs originating from the 

lattice of other MTs, the nuclear surface and from the SPB surface. All types 

of newly nucleated MTs are incorporated into the IMA by the action of 

Ase1p and Klp2p. The formation of an SPB-associated IMA might be 

essential to ensure a MT lattice laterally connected to the SPB. Without 

Ase1p and/or Klp2p, the SPB-associated IMA formation is altered or absent 

and no MT lattice – SPB connection can be established. In addition, the 



______________________________________________________________ Discussion 

89 

local increase of MT nucleation at the SPB surface, may also explain why 

upon entry into mitosis, the SPB-associated IMA is the last to fully 

disassemble (Sagolla et al. 2003). If nucleation seeds are attached to the 

cytoplasmic surface of the SPB, they may be less easily transported into the 

nucleus than the cytoplasmic nucleation seeds (Sato and Toda 2007).  

 

3.4 mto1Δ cells and klp2Δ cells have two to three 
MTs per IMA 
While looking for small MTs spreading apart from the lattice of an 

adjacent MT in mto1Δ containing mutants, we found that, similar to klp2Δ 

cells, most, if not all their IMAs were composed of two or three MTs 

(Figures 2.3A to D, and 2.5A and B).  

Mto1p is known to severely affect MT nucleation during interphase 

(Sawin et al. 2004; Venkatram et al. 2004; Zimmerman and Chang 2005). In 

fact, Sawin et al (2004) did not observe any “de novo” nucleation events in 

mto1Δ cells in over 10 cumulative hours of observations. They found that 

most of the new MTs appearing derived from bend and break events. 

klp2Δ cells showed similar IMA organization to the cells lacking 

Mto1p. Most IMAs were composed of two antiparallel MTs, as previously 

predicted, but multiple IMA MT overlap regions were not observed (Figure 

2.3). One possible explanation for this observation might be the increase in 

the rate of IMA separation (Carazo-Salas et al. 2005). Such a hypothesis 

explains the higher number of IMAs per cell but does not fully account for 

the low number of MTs per IMA. 

The fact that the IMAs observed in klp2Δ, similarly to mto1Δ cells, 

were mostly composed of two MTs, made us consider that Klp2p might 

have a function in MT dynamics (Troxell et al. 2001; Grishchuk et al. 2007) 

or MT nucleation targeting. Regarding MT dynamics, Klp2p might affect 

the stability of a MT by binding to the growing tip. This effect could be 

direct or indirect, trough an interaction with other +TIPs. Regarding 
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targeting of MT nucleation, by attaching to the plus end of a MT, Klp2p 

might aid in the targeting of a newly nucleated MT. Klp2p may grab the 

plus end of a very small MT composed only by the nucleation seed and a 

few short protofilaments. If this MT is not yet attached to a MT lattice, 

Klp2p could also function in its targeting to an adjacent MT lattice. This 

hypothesis can explain the low number of MTs per IMA and consequently 

the low MT overlap region length observed in klp2Δ cells (Table 2.4 at page 

63), as well as the higher number of IMAs per cell (Carazo-Salas et al. 

2005). In support of this hypothesis, a recent paper showed that Pkl1p, the 

other Kinesin 14 of S. pombe, binds directly to γ-tubulin (Rodriguez et al. 

2008). 

An apparent contradiction between the phenotypes of klp2Δ cells and 

mto1Δ cells is the MT pairing length. If both present similar IMA 

organization, one would expect that they would also present similar MT 

pairing lengths (Table 2.4 at page 61). We believe that such a disparity is 

explainable by the fact that MTs in mto1Δ cells possess open structures in 

both ends. Without a nucleation seed at the minus end, a MT can slide along 

an adjacent MT lattice, when its plus end hits the cell tip and pushes. This 

would allow adjacent MTs to form long stretches of pairing. 

 

3.5 Less polymerized tubulin is found in all the 
analyzed mutants 
To allow a comparison of the amount of polymerized tubulin among 

the different strains and reconstructed volumes, we estimated the relative 

amount of polymerized tubulin for each strain. The data shows that all our 

mutants had reduced values of polymerized tubulin compared to wild type 

(the percentage of reduction observed range from 14% in ase1Δ klp2Δ cells 

to 68% in mto1Δ and mto1Δ ase1Δ cells; Table 2.7 at page 73). In the 

mto1Δ mutants, the observed reduction in the relative amount of 
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polymerized tubulin was expected, since these mutants have an extremely 

impaired cytoplasmic MT nucleation capability (Sawin et al. 2004; 

Venkatram et al. 2004; Zimmerman et al. 2004).  

Regarding the remaining mutants, in cells lacking Ase1p this result 

can be attributed to the lack of MT stabilization. Most MTs in ase1Δ cells 

are not part of an IMA and therefore cannot be stabilized by the action of 

Peg1p/Cls1p. This means that the probability of that MT fully depolymerize 

is higher. Due to the fact that the velocity of growth is much smaller that the 

velocity of shrinkage (Drummond and Cross 2000), the net result of reduced 

MT stabilization is less polymerized tubulin.  

Interestingly, this does not fully account for the fact that mto1Δ ase1Δ 

cells have a similar value of polymerized tubulin to the mto1Δ single 

mutant. As the nucleation process in mto1Δ is already affected, one would 

expect that losing MT stabilization by the loss of Peg1p/Cls1p function 

would further impair the formation of IMAs, hence decreasing the relative 

amount of polymerized tubulin. The question of how there is still MT 

stabilization in mto1Δ ase1Δ cells remains to be elucidated (see section 3.8). 

In cells lacking Klp2p, the relative low amount of polymerized tubulin 

can be explained in three ways: first, the lack of MT sliding would allow 

more molecules of Ase1p (and therefore Peg1/Cls1p) to bind in between two 

MTs. This would provoke a lack of MT stabilization by Peg1p/Cls1p (due to 

Ase1p sequestration) on other MTs nucleated along an IMA. Second, if 

Klp2p does play a role in MT nucleation targeting (see section 3.4), isolated 

newly nucleated MTs will not be targeted to a MT lattice and form a MT 

overlap region by Ase1p action. This means that they will also not be 

stabilized by Peg1p/Cls1p and will have a high probability of fully 

depolymerizing. Finally, Klp2p might play a role in MT dynamics (Troxell 

et al. 2001; Grishchuk et al. 2007); see section 3.4). 
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3.6 Ase1p is essential for MT spacing 
From the onset of this study, an important question was whether MT 

spacing would change, if MT overlap regions were present in the absence of 

Ase1p.  

Indeed, our data shows that cells lacking Ase1p have a significant 

decrease in the global inter-MT spacing, compared to wild type (Figures 

2.2A, 2.9A, 2.12D). Interestingly, this decrease was visible also in 

antiparallel MT pairs (in ase1Δ cells; Figures 2.2B) and parallel MT pairs 

(in ase1Δ klp2Δ cells; Figures 2.9B). In klp2Δ, mto1Δ and mto1Δ klp2Δ 

cells we observed a slight decrease in the global inter MT spacing (Figures 

2.4A, 2.6A, and 2.11E). The refined analysis for the klp2 mutant showed 

that antiparallel MT pairs had two peaks in the inter-MT spacing distribution 

while the only parallel MT pair had an inter-MT distance of 35-40 

nanometers (nm; Figure 2.4B).  

Careful analysis of the published wild type data reveals that most of 

these distances fall within the major distribution peak seen for wild type 

(between ~10 and ~ 50 nm; Hoog et al. 2007). Additionally, we know that 

wild type bundles contain both parallel and antiparallel MT pairs (Hoog et 

al. 2007), and that Ase1p preferably bundles antiparallel MTs (Janson et al. 

2005). One can therefore assume that different classes of inter-MT distances 

exist in wild type cells, and that Ase1p is responsible for a prevalent class, 

possibly corresponding to middle – higher spacing class (between the values 

of 20 to 40 nm). Its absence would eliminate such a class, possibly reducing 

the peak amplitude and shifting its centroid to lower values, as observed in 

our ase1Δ mutants. This hypothesis would also explain the two peaks 

observed in our refined analysis of klp2Δ MT overlap regions (Figure 2.4B), 

since antiparallel MT pairs may be bundled not only by Ase1p, but also by 

additional bundling factors as our results suggest. 

The altered MT spacing in all our mutants prompted us to look for 

electron-dense bridges similar to the ones previously observed in wild type 
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(Hoog et al. 2007). Even though we cannot determine the protein (or 

complex) forming such bridges due to the impossibility of labels to 

penetrate in the thick sections used in tomography, their presence confirms 

the existence of links in between MTs. Furthermore, we can visualize how 

these links change in response to altered inter-MT spacing. 

Both wild type and all the studied mutants showed similar electron-

dense bridges (Figures 2.2C and D, 2.4C, 2.6B, 2.9C, 2.11F, and 2.12E). 

The smaller longitudinal angle of these bridges in relation to the MT walls 

showed that cells lacking Ase1p or Mto1p had smaller average angles than 

wild type (Table 2.7 at page 73). This is consistent with the idea that the 

electron-dense bridges observed are affected by the different inter-MT 

spacing in the mutants. Intriguingly`, the double deletion of mto1 ase1 

seemed to restore these angles to wild type values (Table 2.9 at page 73).  

 

3.7 The origin of MTs in mto1Δ cells 
As previously mention, it was suggested that cells lacking Mto1p do 

not nucleate MTs de novo in the cytoplasm. In fact, it was shown that in 

mto1Δ mutants the mitotic spindle does not fully breakdown after anaphase 

and septation. Instead MTs continue to grow inside the nucleus, which 

deform the nuclear envelope and at some point pinch trough it and are 

released into the cytoplasm (Sawin 2004; Venkatram et al. 2004; 

Zimmerman et al. 2004).  

Consistent with these previous findings we reconstructed an mto1Δ 

volume that presented intra-nuclear MTs (Figure 2.13). The first question is 

from where are these MTs being nucleated in the nucleus? We localized 

capped ends in the intra-nuclear MTs, thus we infer that intra-nuclear γ-

TuRC complexes are responsible for MT nucleation. However, another 

question arises: what is allowing intra-nuclear MT stabilization and 

bundling?  
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This mto1Δ cell had an IMA like structure in the nucleus, which 

formed protrusions in the nuclear envelope. In one of those protrusions we 

visualize what we believe to be a MT capped end in direct contact with the 

cytosol (Figure 2.13D). We know this cell was not in mitosis as its SPB was 

fully outside the nuclear envelope (Ding et al. 1997). Equally, we also 

visualized intra-nuclear MTs in mto1Δ ase1Δ cells (Figure 2.14). In this 

case we did not observe an IMA like structure but instead asters-like 

structures, which we attributed to the absence of Ase1p. Once more, all the 

cells had their SPBs fully outside the nuclear envelope (Figure 2.14C and 

D). Even do we did not visualize MT bundling in these asters, they were still 

able to form protrusions in the nuclear envelope.  

The visualization of intra-nuclear MT bundling in mto1Δ cells and not 

mto1Δ ase1Δ cells, suggests that our putative bundling protein is not present 

in the nucleus of interphase S. pombe cells. In these cases, only upon release 

of MTs from the nucleus were MTs bundled. 

Once in the cytoplasm, mto1Δ MTs show altered MT dynamics such 

as treadmilling and a severe defect in MT catastrophe, which leads to MTs 

bending around the cell tips. At this point, the major source of “new” MTs is 

believed to be the bend and break events of MTs, were one MT bends until 

it breaks into two parts (Sawin 2004; Venkatram et al. 2004; Zimmerman et 

al. 2004). Again, our results are in agreement with these studies. In fact we 

found that most MTs in cells lacking Mto1p have open structures at both 

ends, explaining the treadmilling behavior observed in these cells. 

Nonetheless, we also found MTs with capped ends associated with other 

MTs (Figure 2.11C), raising the question, if indeed mto1Δ cells are 

completely devoid of cytoplasmic MT nucleation? We believe that 

cytoplasmic MT nucleation still occurs at very low levels in these cells, 

possibly by a residual function of Mto2p. 
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3.8 A remaining question: how are IMAs 
formed and maintained in mto1Δ ase1Δ 
cells? 
A surprising phenotype that we encountered was the existence of 

IMAs in cells lacking both Mto1p and Ase1p. Indeed, we were puzzle by the 

existence of IMAs with extremely organized and tightly packed (Figure 

2.18), in cells that barely have any cytoplasmic MT nucleation (see section 

3.7).  

As we previously suggested, this IMA formation must be dependent 

on an additional bundling protein in S. pombe. Several proteins are known to 

populate the MT overlap regions which could provide a bundling action. 

Among these proteins are the two S. pombe members of the Dis1/XMAP215 

family, Alp14p and Dis1p (Nabeshima et al. 1995; Garcia et al. 2001); 

Mal3p, member of the EB1 family (Beinhauer et al. 1997; Busch and 

Brunner 2004; Sandblad et al. 2006; Bieling et al. 2007); and also 

Peg1p/Cls1p (Grallert et al. 2006; Bratman and Chang 2007). However, this 

latter option is a conundrum, since Peg1p/Cls1p is dependent on Ase1p for 

MT overlap localization (Bratman and Chang 2007).  

In fact all the MAPs that populate the MT lattices could play a role in 

bundling MTs. For example, a protein that has several MT binding sites 

could connect to two MTs and transiently link them. Furthermore, even a 

protein that only has one MT binding site, if it forms homodimers, may also 

be able to transiently bundle MTs. 

Nevertheless, one question prevails: how is a bundle in mto1Δ ase1Δ 

maintained? 

In this case, Peg1p/Cls1p is a possible candidate to maintain the IMAs. 

Peg1p/Cls1p localizes to the nucleus in the absence of Ase1p (Bratman and 

Chang 2007). As MTs in mto1Δ cells are at first intra-nuclear, when they 

pinch out from the nucleus Peg1p/Cls1p may come attached to them. In 

accordance to this, Bratman and Chang (2007) showed that ~55 % of mto1Δ 
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cells loose all their MTs if Peg1p/Cls1p function is affected. We believe that 

this might also be due to most MTs presenting open structures at both ends, 

making them extremely dependent on Cls1p stabilization.  

 

3.9 A unified model 
Based on our results, and taking into consideration all the available 

data on the subject, we propose a unified model for the formation, 

stabilization and maintenance of interphase MT arrays. 

We believe that newly nucleated MTs arise from nucleation seeds in 

several regions of the cell. As we mention previously, nucleation seeds are 

compose of the γ-TuRC and the Mto1p/Mto2p complex. As previously 

visualized by fluorescence live imaging (Sawin et al. 2004; Venkatram et al. 

2004; Janson et al. 2005; Samejima et al. 2005; Venkatram et al. 2005; 

Zimmerman and Chang 2005; Carazo-Salas and Nurse 2006; Daga et al. 

2006), and now shown by us by analysis of MT ends, interphase MT 

nucleation seeds are present at the nuclear surface, the cytoplasmic surface 

of the SPB, in the cytosol and along the lattice of MTs. The targeting of 

these nucleation seeds is mainly, but no exclusively, performed by Mto1p 

and Mto2p (Figure 3.1-1; Sawin et al. 2004; Venkatram et al. 2004; Janson 

et al. 2005; Samejima et al. 2005; Venkatram et al. 2005; Zimmerman and 

Chang 2005).  

Following MT nucleation, the next step in the formation of an IMA is 

to bring MTs together to form MT overlap regions. In this step, both Klp2p 

and Ase1p have an important function. We suggest that in cases were MTs 

are nucleated in the cytosol or on the nuclear envelope, Klp2p aids the 

localization of these MTs by binding to the growing ends and with its motor 

domain brings the newly nucleated MT in close proximity to a MT lattice 

(Figure 3.1-6). In this case, Klp2p will also help to establish the antiparallel 

orientation between both MTs. Once both MT lattices are close together, 
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Ase1p will be able to bridge them and form a stable overlap zone (Figure 

3.1-7).  

 

 
 

Figure 3.1. A unified model for IMA formation in S. pombe. 
The formation of an IMA in S. pombe and its maintenance involves several steps and numerous 
proteins. 1 – Targeting of nucleation to the MT lattice. 2 and 7 – Determination of antiparallel 
orientation between adjacent MTs by MT selective bundling of Ase1p or Klp2p cross-linking. 
Targeting of stabilizing agent. 3 and 4 – Focusing of MT overlap region by MT sliding. 5 – MT 
overlaps maintenance by stabilization of depolymerizing MT and subsequent growth rescue. 6 – 
Newly nucleated MT in the cytosol is targeted by Klp2p to a neighbor MT lattice. See text for more 
details. 
 

In cases were a MT is nucleated along a MT lattice it is subject to a 

dual polarity bias to establish the antiparallel orientation (Figure 3.1-2). We 

believe that both Klp2p and Ase1p can independently establish an 

antiparallel MT orientation. If Klp2p attaches to the newly nucleated MT 

before Ase1p, Klp2p can establish the antiparallel orientation between both 

MTs. Likewise, the preferential binding of antiparallel MTs by Ase1p will 

determine an antiparallel orientation between a newly nucleated MT and the 

adjacent MT (Janson et al. 2007). After the establishment of antiparallel 

orientation, Klp2p can focus the MT overlap region by sliding MTs along 

each other (Janson et al. 2007). 

In addition to Ase1p, we suggest that a known protein with an 

unknown function (e.g. kinesins that may also contribute to the formation of 



Dissertation of Hélio Roque________________________________________________ 

98 

MT pairs and therefore IMAs), or a yet unknown protein also bundles MTs 

independently of their orientation.  

Finally an IMA must be stabilized in order to perform its function. 

This is accomplished by Peg1p/Cls1p which hinders full MT 

depolymerization at the MT overlap regions (Bratman and Chang 2007).  

 

3.10 The mitochondria network is affected by 
altered IMAs 
The interaction between the mitochondria network and MTs is well 

documented, not only in yeast (Yaffe et al. 1996; Yaffe et al. 2003; Weir 

and Yaffe 2004) but also in higher organisms (Yaffe 1999). This mechanism 

of positioning of the mitochondria by the MTs may be necessary to support 

the essential mitochondrial metabolic functions. 

Indeed, we showed that in cells where the IMA organization is 

deficient the mitochondria network appears less stretched and branched than 

in wild type (Table 2.8 at page 79).  

Moreover, MTs seem to preferentially associate with the mitochondria 

in zones of higher curvature (Figure 2.15). Therefore, we believe that the 

stretching and branching of the mitochondria network depends on the 

specific wild type IMA organization, which provides a higher number of 

MTs and more force generation compared with the analyzed mutants. As a 

result the overall mitochondrial surface area in contact with the cytosol is 

increased, which might be important for the cell respiratory function. 
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3.11 Future directions 
This work opens several new questions which should be addressed in 

future studies.  

Our observations of the presence of MT overlap regions even in the 

absence of ase1, ase1 and klp2, and ase1 and mto1, provide conclusive 

evidence that Ase1p is not the only bundling protein in S. pombe. Further 

studies are now necessary to identify the protein that together with Ase1p 

bundles MTs during interphase.  

Such an endeavor will require, among other experiments, a genetic 

screen for mutants that, in an ase1Δ genetic background, will aggravate the 

phenotype visualized in ase1Δ cells. In order to avoid losing several 

candidates due to synthetical lethality, such an approach might have to be 

correlated with an overexpression genetic screen, once more in an ase1Δ 

genetic background, for rescue of the ase1Δ phenotype. 

Another interesting question arising from this study is why are klp2Δ 

cell IMAs only formed by two MTs? 

We proposed that this might be due to a defect on MT nucleation 

targeting. To assess this hypothesis, MT nucleation events and their 

localization in the cell, will have to be assessed by fluorescent live imaging 

in both wild type and klp2Δ deletion mutants. Furthermore, quantification of 

MT dynamics both in vivo and in vitro would be valuable in order to 

properly understand the klp2Δ phenotype. 

Finally, in our mto1Δ mutants we visualized MT capped ends, which is 

an evidence for the existence of interphase MT nucleation even in the 

absence of Mto1p. Detailed studies on the exact appearance of interphase 

MTs in these mutants are lacking and would provide a better insight into the 

regulation of MT nucleation in interphase. 
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4.1 S. pombe cell culture techniques. 
Standard methods were used for maintenance of fission yeast strains 

(Table 4.1; Moreno et al. 1991). Cells were either grown in rich yeast 

extract medium (YE5’S) or Edinburgh Minimal Medium 2 (EMM2) 

containing the appropriate amino acid supplements (Forsburg and Rhind 

2006). Briefly, yeast cells were stored in glycerol-containing medium and 

then woken on YE5’S or EMM2 agar plates and incubated at 25°C or 30°C 

for 1-3 days until colonies formed. Liquid pre-cultures (10ml) of the 

appropriate medium were inoculated and grown for 8-16 hours with 

constant agitation and then used to inoculate a larger culture volume. These 

cultures were grown for 16-20 hours to an optical density OD595 of 0.4 to 

0.7 to ensure cells were in exponential growth phase and subsequently used 

for strain construction or imaging experiments. All medium and solutions 

used for cell culture were autoclaved or filter sterilized before use. 

 

 

Table 4.1.  List of strains and plasmids used in this study. 
 

Strain Genotype Source 
DB 707 h- klp2-D25::ura4+, ade6-M210, his3-D1, leu1-32, ura4-

D18 (Troxell et al. 2001) 
DB 1165 h-, mto1Δ::kanMX6, ade6-M210, leu1-32, ura4-D18 (Sawin et al. 2004) 
DB 1197 h-, lys1+::nmt1-GFP- α2tub (Sagolla et al. 2003) 
DB 1487 h+, ase1Δ::KanMX6, leu1.32, ura4.D18   

 (Loiodice et al. 2005) 
DB 1539 h-, ase1Δ::kanMX6, klp2Δ:ura4+, leu1.32 (Janson et al. 2007) 
DB 1540 h-, ase1Δ::kanMX6, mto1Δ::ura4+, leu1.32 This study 
DB 1574 h-, Cut11-mCherry::KanMX6 This study 
DB 2074 h+, ase1Δ ::KanMX6, lys1+::nmt1-GFP- α2tub, Cut11-

mCherry::KanMX6  This study 
DB 2075 h+,  mto1Δ::kanMX6, klp2-D25::ura4+, ura4-D18 This study 
DB 2080 h-, Cut11-mCherry::KanMX6, lys1+::nmt1-GFP-α2tub This study 
DB 2082 h?, klp2-D25::ura4+, lys1+::nmt1-GFP- α2tub, Cut11-

mCherry::KanMX6 This study 

DB 2094 h+, ase1Δ ::KanMX6, klp2-D25::ura4+, lys1+::nmt1-
GFP- α2tub, Cut11-mCherry::KanMX6 This study 

 
Plasmid 

 
Genotype 

 
Source 

DL 332 pFA6a-mCherry-kanMX6 (Snaith et al. 2005) 
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4.1.1 Strains under control of the nmt1 promoter 
 

When strains containing green fluorescence protein (GFP)-atb2 under 

the control of the nmt1 promoter were used the strains were grown and 

imaged in the presence of 15µM thiamine to repress over-expression from 

this promoter.  

 

4.1.2 Construction of strains by crossing  
 

Strains were crossed by mixing a toothpick of equal amounts of each 

parent strain of opposite mating type together on malt extract agar (MEA; 

(Forsburg and Rhind 2006) or minimal glutamate (EMMG; EMM2 

containing 1g/L sodium glutamate instead of Na4Cl) with 20 µl water. 

Plates were incubated at 25ºC. After 48 hours the presence of spores was 

checked by microscopy and tetrads were dissected using a micro-

manipulator on appropriate non-selective medium. Plates were incubated at 

25ºC or 30ºC until colonies were formed. Plates were replica-plated onto 

selective medium to assign markers and/or checked by colony polymerase 

chain reaction (PCR) where no appropriate selection markers could be used 

to determine genotypes. 

 

4.1.3 Construction of strains by homologous 
recombination 

4.1.3.1 Generation of PCR fragments for transformation 
 

Strains were constructed using the homologous recombination-based 

transformation method described by (Bahler et al. 1998). Briefly, ~100bp 

PCR primers (Thermo Fisher Scientific, Ulm, Germany) containing 80 base 

pairs (bp) gene-specific sequence followed by 20 to 24 bp sequence, 

corresponding to the plasmid template (Table 4.1) were used to amplify a 
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transformation cassette containing a selection marker (Uracil, Kanamycin 

resistance; (Bahler et al. 1998) and an additional tag sequence for 3’ 

modification of the target gene. See Table 4.2 for a list of primer sequences 

and plasmid templates. This PCR fragment was extracted using 

phenol/chloroform (AppliChem GmbH, Darmstadt, Germany) and 

resuspended in 10mM Tris-(hydroxymethyl)-aminomethane (Tris)-HCL at 

1µg/µl. 50ml exponentially-growing cells (OD595 ~ 0.5) cultured in rich 

medium were transformed.  

All the PCR reactions were run (Byozim Diagnostics GmbH, Pstfach, 

Germany) with the following steps: one initial step at 95ºC for 10 min, 

followed by 30 repeats of 1 min at 94ºC, 1 min at 48ºC and 2 min at 72ºC. 

The final step was of 10 min at 72ºC. Following this step the temperature 

was dropped to 4ºC until running the PCR reactions in a 1% agarose 

(Sigma-Aldrich, Hamburg, Germany) for 20 min at 120 volts. 

Each PCR reaction contained the final concetraction of the following 

reagents: 1x Buffer with magnesium; 2.5 milimolar (mM) of dNTPs; 2.5 

mM of magnesium sulfate; 1 micromolar (μM) of each primer; and 2.5 units 

of TAQ polymerase (all PCR products from Sigma-Aldrich Biochemie 

GmbH, Hamburg, Germany). 

 

4.1.3.2 Transformation protocol for S. pombe cells 
 

Cells were washed twice with an 50ml water, and the cell pellet was 

resuspended in 1 ml of 0.1M LiAc/TE (pH 7.5) and transferred to an 

Eppendorf tube, and resuspended in LiAc/TE at 2x109 cells/ml. 100 µl of 

the concentrated cells were mixed with 2µl sheared herring testes DNA (10 

mg/ml) and 10 µl of the transforming DNA. After 10 min incubation at 

room temperature, 260µl of 40% PEG/0.1M LiAc/TE was added. The cell 

suspension was mixed gently and incubated for 1 hour at 30ºC (or 25ºC for 

temperature sensitive strains). 43 µl of dimethylsulphoxide (DMSO) was 

added, and the cells were heat shocked for 5 min at 42ºC. Cells were then 
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washed once with 1 ml of water, resuspended in 0·5 ml of water, and plated 

onto two rich medium non-selective plates. These plates were incubated for 

1 day at 25ºC or 30ºC, resulting in a lawn of cells. The cells were then 

replica plated onto selective plates. Cells transformed with fragments 

carrying the kanMX6 marker were plated onto YE5’S containing 100 mg/l 

Geneticin. Cells transformed with fragments carrying the ura4+ marker were 

plated onto EMM2 plates without uracil. The replica plates were incubated 

for 2–3 days at 25ºC or 30ºC, and large colonies were re-streaked onto fresh 

selective plates.  

 

4.1.4 Screening transformants by colony PCR 
 

Single colonies were checked for stable integration of the DNA 

fragment by homologous recombination. A toothpick of cells was 

resuspended in the 50 µl of the PCR reaction. The PCR reaction targeted a 2 

to 3 kb region of DNA including the site of integration. One primer 

corresponded to a sequence within the transforming fragment. For modules 

containing kanMX6 we used primer: 

 5’-GCTAGGATACAGTTCTCACATCACATCCG-3’.  

For modules containing ura4+ we used primer: 

5’-CCAAGCCGATACCAGGGGACATAG-3’.  

The other fragment corresponded to a region of the targeted gene 

outside the sequences covered by the transforming fragment and is listed in 

Table 4.2. A PCR product was obtained only for strains in which the 

transformation fragment was stably integrated. As a negative control of non 

integration of the modules, a PCR reaction with primers targeting a ~ 1 Kb 

region of module target region was used (Table 4.2). 
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Table 4.2. Primers used in this study 
Name Primer sequence (5’  3’) 
Ase1del_rev GCG TCT AAA CGA GCC GTA TC 
DPE 690 TAG GTC CAT TCT ATG TTT GTG G  
Klp2_rev TTC AAG ATT GGC AGT GGA AA 
Ase1gene_for TTT GAA TCG TTT GTC AAT GG 
Ase1gene_rev AAC AGA GAA TCC CAA AGC TG 
Klp2gene_for GTC TGC CGA AGA ACA CTT TT 
Klp2gene_rev TTC AGG GGA AAA TAC ACG AT 
Mto1gene_for GGT TTC AGA GCC AAG AGC AG 
Mto1gene_rev CTT TTC TCA AAG CCG CAA AC 

DPE 589 CTC AAC TTA ACT TAT CTC CAA GGA TAG AGC GTC GCT GCT GGG TAT 
TGT TTC GAG AAT ACA AAA GCA ACT CCC GGA TCC CCG GGT TAA TTA A 

DPE 590 GGA TGC GTG TAT ATC GTT GGA CTA ACG AAC ATT TTT CAC AAA ATA 
GCA AGT GAA CAA ATC CCC TCT CTT CGA ATT CGA GCT CGT TTA AAC 

All the primers in this table were generated using the application Primer3 (http://fokker.wi.mit.edu/primer3/input.htm) with 
default parameters. 
All primers in this study were ordered from Thermo Fisher Scientific GmbH (Ulm, Germany). 

 

4.2 Live cell imaging  
4.2.1 Cell preparation 

 
Cells were grown from overnight pre-cultures to exponential phase 

(optical density (OD) absorvance (A)595 ~ 0.5) in 20 ml EMM2 containing 

the necessary amino acid supplements. Cells were transferred to glass 

bottom microwell dishes (MatTek, Ashland, MA, USA) coated with 1µl 

2mg/ml lectin BS-1 (Sigma-Aldrich, Hamburg, Germany) in H2O. Dishes 

were spun at 300 rpm for 1 min in a bench-top centrifuge to attach the cells 

to the bottom of the MatTek dish. Unattached cells were washed away and 

2ml fresh medium was added.  

 

4.2.2 Microscopes used for imaging 
 

A 488nm Argon Krypton dual laser line for GFP signals and 

dsRed/mCherry signals was used. A Perkin Elmer UltraView ERS dual 

spinning disc system (Waltham, MA, USA) coupled to a Carl Zeiss 

Axiovert 200 M microscope (München, Germany) with a 100X oil 

immersion objective (Plan Fluor, numerical aperture 1.3) was used to 
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acquire images. Images were acquired with a Hamamatsu C9199-02 

EMCCD camera (Hamamatsu , Japan) with a pixel size of 8 µm. Z-stacks 

were taken with 13-20 planes per stack, with a distance of 0.5µm between 

planes. 

 

4.2.3 Image analysis 
 

Images from the confocal spinning disc microscope systems were 

acquired using the Perkin Elmer software (Waltham, MA, USA). Data was 

analyzed using ImageJ (NIH, USA). Data acquired with the Perkin Elmer 

systems was imported into ImageJ using a plugin written by A. Seitz 

(EMBL, Heidelberg, Germany) and Z-stacks were maximum-projected 

using a custom routine written by T. Zimmerman (EMBL, Heidelberg, 

Germany). Quantification of MT/spindle pole body (SPB) colocalization 

was done by visual inspection. Plotting of numerical data was done with 

Sigma Plot 11.0 (SYSTAT, CA, USA). 

 

4.3 Electron microscopy 
4.3.1 High pressure freezing 

 
At the time of freezing, 10 ml of cell culture at OD595 ~0.5 was filtered 

using a Millipore 15 ml filtration set-up with a polycarbonate filter (0.4 

micrometers [μm] pore size; Millipore, MA, USA). Cell paste was loaded 

into a membrane carrier (Leica Mycrosystems GmbH, Wetzlar, Germany) 

and frozen in an EM PACTII high pressure freezer (Leica Mycrosystems 

GmbH, Wetzlar, Germany).  
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4.3.2 Fixation and freeze substitution 
 

Fixation occurred during freeze substitution using anhydrous acetone 

containing 0.1% dehydrated glutaraldehyde (Electron Microscopy Sciences, 

Hatfield, PA, USA), 0.25% uranyl acetate (UA; SERVA Electrophoresis 

GmbH, Heidelberg, Germany), and 0.01% osmium tetroxide (OsO4; 

SERVA Electrophoresis GmbH, Heidelberg, Germany). Substitution took 

place over 56 hours at -90ºC; the temperature was then increased 5ºC per 

hour to -45ºC. Plastic infiltration was carried out in steps (3:1 

acetone:lowicryl [HM20; Polysciences Inc, PA, USA] ratio and then 1:1, 

1:3, and finally two times Lowicryl, each step lasting 1–3 hr) at this 

temperature followed by UV polymerization in an EM AFS (Leica 

Mycrosystems GmbH, Wetzlar, Germany). Polymerization continued for 45 

hr at this temperature and then increased to room temperature at 10ºC per 

hour. Once room temperature had been reached then samples were then 

illuminated for a further 12 hours.  

 

4.3.3 Serial sectioning  
 

Serial semi-thick sections (210 to 300 nanometers [nm]) were cut with 

a Leica Ultracut UCT microtome (Leica Mycrosystems GmbH, Wetzlar, 

Germany). Sections were collected on Formvar-coated, palladium-copper 

slot grids (Agar Scientific GmbH, Wetzlar, Germany) and post-stained by 

putting the grid on a drop of 2% UA in 70% methanol (MERCK, Darmstadt, 

Germany) followed by touching a drop 50% methanol and passing to a drop 

of water for 2 min. Next, the grid was blotted to remove the water excess 

and was passed to a drop Reyonolds lead citrate (Electron Microscopy 

Sciences, Hatfield, Pa, USA) solution for 1 min. After being in a water drop 

for 2 mins, it was blotted and stored. Cationic gold particles (15 nm; Brittish 

Biocell, Cardiff, UK) were applied to both sides of the grid to be used as 

fiducial markers. 
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4.3.4 Tomogram acquisition and calculation 
 

For tomography, the grids were placed in either high-tilt holder 

(Model 2020; Fischione Instruments, Corporate Circle, PA) or high-tilt 

rotate holder (Model 650; Gatan, Pleasanton, CA). Cells were selected by 

low magnification visual inspection of the grids. Serial tilt series were 

acquired for the selected cells which spanned several serial sections. 

Montage tomographic datasets were collected using a FEI Tecnai TF20 or a 

FEI Tecnai TF30 (FEI Company, Oregon, USA) at a magnification of 

~14,500x or ~15,500x, respectively using the tilt-series acquisition software, 

SerialEM (Mastronarde 2005). Images were acquired every 1º over a ± 65º 

range using a Gatan 4K x 4K CCD camera. Image processing was 

performed on a Sun Opteron workstation (Sun Microsystems GmbH, 

Kirchheim, Germany). Images were aligned using the fiducial marker 

positions and tomograms computed using the R-weighted back-projection 

algorithm (Gilbert 1972) and joined using eTomo graphical interface 

(Mastronarde 1997). Sections shrinkness due to beam interaction was 

calculated according to the formula: (number of sections * thickness of 

section) / (number of slices * pixel size of slice). 

 

4.3.5 Tomogram modeling and analysis 
 

The IMOD software package (Kremer et al. 1996) was used to display, 

model, and analyze tomograms and models. Relevant structures were 

modeled as reported in Höög et al. (2007). MTs were tracked and ends 

morphology analyzed using the “slicer” tool. MT ends were marked in 

different colors to allow distinction (O'Toole et al. 2003b; Hoog et al. 2007). 

Membrane structures (nucleus and mitochondria) were modeled every tenth 

slice using closed contours. The cell wall was modeled every fiftieth section 

using also closed contours. MT lengths and organelle volumes were 

extracted from models using Imodinfo program. The Nda program was use 

to calculate the distance between MTs and the centroid of the major 
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distribution peaks, after converting the model to resemble a model from 

serial cross-sections, using the Resamplemod program (McDonald et al. 

1992). A serial section like model was also used to calculate MT pairing 

lengths using the Mtpairing program (Annex V), and MT overlap regions 

lengths with the program Mtoverlap (Annex V). The program Mtk was used 

to calculate the 3D distances between structures (Marsh et al. 2001). MT 

volumes were extracted and rotated in the MT lattice plane using the 

Mtrotlong program. The Imodcurvature program was used to calculate the 

mitochondria curvature angles by finding the cylinder that best fits the 

points around each location (Annex V).  

The number of moles of polymerized tubulin was estimated by 

calculating the number of polymerized tubulin subunits present in each 

volume and dividing this number by the Avogradro’s constant. The acquired 

cell volume was obtained with the program Imodinfo from a model of the 

edges of each final joined tomogram. The final polymerized tubulin 

concentration was calculated by dividing the number of moles by the 

acquired volume of each joined tomogram. Finally the relative concentration 

was obtained by dividing the concentration by the volume for each joined 

tomogram. 
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Annex I. γ-tubulin complexes in various species. 

Drosophila 
melanogaster 
γ-TuSC (9.8 S) 
γ -TuRC (36 S) 

Xenopus 
γ -TuRC 
(>25 S) 

Human 
γ -TuRC 
(32 S) 

Arabidopsis 
thaliana 
γ -TuC 

Saccharomices 
cerevisiae 

Tub4p complex 
(6-11S) (22S) 

Schizosaccharomices 
pombe 
γ -TuC 
(22S) 

Aspergillus 
nidulans 
γ -TuC 
(8-20S) 

Dyctiostelium 
discoideum 
γ -TuSC 

(ND) 

Caenorhabditis 
elegans* 

γ-tubulin 23C 
γ-tubulin 37CD γ-tubulin γ-tubulin 

(two genes) 
γ-tubulin 

(two genes) Tub4p$ Tubg1/Gtb1$ mipA γ-tubulin tbg-1 

Dgrip84 
(3 splicing 
variants) 

Xgrip110 hGCP2 AtSpc97p Spc97p$ Alp4p$ AnGCP2 DdSpc97p Ce-Grip-1 

Dgrip91 Xgrip109 hGCP3 AtSpc98p Spc98p$ Alp6p$ AnGCP3 DdSpc98p ? 

Dgrip75 Xgrip76 hGCP4 AtGCP4 - Gfh1p AnGCP4 -  

Dgrip128 Xgrip133 hGCP5 AtGCP5 
(five isoforms) - ? AnGCP5 -  

Dgrip163 Xgrip210 hGCP6 AtGCP6 - Alp6p AnGCP6 -  

Dgp71WD X-Nedd1 GCP-
WD/NEDD1 At-Nedd1 - ? ? -  

 
ND, not determined; *, γ-tubulin complex not yet characterized; -, Orthologs not present; $, essential gene. 
Adapted from (Wiese and Zheng 2006). 
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Annex II. Extensive table of +TIPs families and their characteristics. 

+TIP family Homologues Structural 
domains 

Interaction 
partners 

among +TIPs 
Main functions* 

 

NON-MOTOR PROTEINS 

EB family 
EB1, EB2, EB3 
 

Mal3 (Sp) 
Bim1 (Sc) 
 

CH, coiled coil, EBH, 
EEY/F 
 

Most known 
+TIPs 
(CAPGly 
domains, 
basic/serine 
rich stretches) 
 

Promotion of MT growth and 
dynamicity 
Anti-catastrophe activity 
Targeting of other +TIPs to MT 
ends 
 

CAP-Gly family 
CLIP170 
CLIP115 
 
 
 
 
 
 
p150glued(dynactin 
subunit) 

Tip1 (Sp) 
Bik1 (Sc) 
D-CLIP-190 (Dm) 
 
 
 
 
 
 
 
Ssm4 (Sp) 
Nip100(Sc) 
NudM (An) 

CAP-Gly, 
coiled coil, 
basic/serine rich 
 
 
 
 
 
 
 
Zinc finger, EEY/F 
(only in CLIP170) 
 

EB proteins 
CLASPs 
CLIP170 
p150Glued 
Stu2 
Kar9 
Tea1 
Tea2 (Kip2) 
LIS1 (Pac1) 
XKCM1 
 
Cytoplasmic 
dynein 
CLIP170 

MT rescue and stabilization 
Targeting of dynein to MT ends 
MT interaction with the cell 
cortex, kinetochores and 
vesicles 
 
 
 
 
 
 
 
Binding dynein to cargo 
Regulation of dynein 
processivity 

CLASPs 
CLASP1/2 

Orbit/MAST(Dm) 
Peg1(Sp) 
Stu1(Sc) 
Cls-2 (Ce) 

TOG-like, 
basic/serine rich 

EB proteins 
CLIP170 
CLIP115 

MT rescue and stabilization 
MT interaction with 
kinetochores, cell cortex and 
the Golgi 

APC  dAPC1/ 2 (Dm) 
Armadillo, SAMP 
repeats, coiled coil, 
basic/serine rich 

EB proteins 
XKCM1 

MT stabilization, anti-
catastrophe activity. 
Interactions with the cell cortex 
and kinetochores MT-unrelated 
functions in Wnt signaling, etc 

XMAP215/Dis1 
family 
ChTOG 

XMAP215(Xl), 
Dis1, Alp14 (Sp) 
Stu2(Sc) 
Msps (Dm) 
DdCP224 (Dd) 
ZYG-9 (Ce) 

TOG 
EB proteins 
Bik1 
Kar9 
XKCM1 

MT stabilization, promotion of 
MT growth MT-cortex 
interactions 

Spectraplakins 
MACF2 (ACF7) Shot/Kakapo (Dm) 

CH, plakin, coiled 
coil, 
spectrin, EF hand, 
GAS2,basic/serine 
rich 

EB proteins MT stabilization, linking MTs to 
actin and the cell cortex 

LIS1 Pac1(Sc) 
NudA (An) 

LisH, WD40, coiled 
coil 

CLIP170 
(Bik1) 
Dynein 
Dynactin 

Dynein activation, interaction 
with the cell cortex 

Melanophilin  coiled coil 
basic/serine rich EB1 Melanosome tansport 

Neuron 
Navigator Unc-53 (Ce) AAA-ATPase, coiled 

coil, basic/serine rich  Regulation of neuronal 
migration 
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Navigator-1,2,3 

Rho GEF2 (Dm) 
Many related Rho- 
GEFs, but no 
direct +TIP 
homologue 

PDZ, PKC conserved 
region1, RhoGEF, 
PH, basic/serine rich 

EB1 Regulation of Rho activity 

Tea1 (Sp)  Kelch repeat, coiled 
coil Tip1 

Control of actin polymerization 
and cell growth at the cell ends 
through interaction with formin 

Kar9 (Sc)  
unique Kar9 domain 
(helical), basic/serine 
rich 

Bim1 
Stu2 
Bik1 

MT capture and transport along 
actin filaments by myosin V 
homologue Myo2 

STIM1  
EF hand, SAM, 
transmembrane, 
ERM, basic/serine 
rich 

EB1 

Calcium sensing and activation 
of calcium channels in store-
operated calcium entry; 
Extension of ER tubules driven 
by microtubule growth. 

MICROTUBULE MOTOR PROTEINS 
Cytoplasmic 
dynein 
Dynein heavy 
chain 
 

Dyn1 (Sc) 
Dhc1(Sp) 

AAA-ATPase, coiled 
coil 

Dynactin 
(p150Glued) 
LIS1 

MT minus-end-directed 
transport of 
macromolecular complexes and 
organelles Pulling at MTs at the 
cortex, transport of MTs 

Kinesin-13 
MCAK (KIF2C) 

Klp10A (Dm) 
XKCM1 (Xl) 

Kinesin motor, coiled 
coil, basic/serine rich 

EB proteins 
XMAP215 
CLIP170 
APC 

MT depolymerization, induction 
of catastrophes 

Kinesin-14 
Ncd (Dm) 

Klp2 (Sp) 
ATK5 (At) 
Kar3 (in complex 
with Cik1) (Sc) 

Kinesin motor, coiled 
coil, basic/serine rich 
 

EB proteins 

MT minus-end-directed 
transport 
Antiparallel MT sliding 
 
MT depolymerization 
 

Tea2 (Sp) Kip2 (Sc) Kinesin motor, coiled 
coil, basic/serine rich 

Mal3 
Tip1 (Bik1) 

MT stabilization and creation of 
cortical asymmetry by 
transporting other +TIPs to MT 
plus ends 
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Annex III. Graphic representation of each partial volume 
acquired for all the mutants analyzed. 

 

 
 

*Red frame represents acquired volume. 
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Annex IV. Percentage of isolated MTs (x = 1) and number of 
MTs per IMA (x = 2 to 8) in association with the SPB (A) or not (B) for 
wild type and all the analysed mutants.  
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Wild type data from Hoog et al. (2007). 
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Annex V. Examples of program scripts used in this study 

 
MT PAIRING  

Input file example:  
{ 
: 1 
: [serial model name] 
: 
: 0   0 for all objects in model, or enter number of limiting regions 
: 1   listing of bundles to calculate pairing for 
: 1969,3186 lower and upper sections to calculate pairing  
: 4   number of sections shared 
: 1   number of kinds of pairs to compute pairing for 
: 0,0  two types for each pair in turn, 0,0 to refer to all types 
: 1   simple pairing calculation 
: .045  distance X/Y below pairing quantity equals 1 
: 0   minimal length to store pair 
: 1   plot per MT data 
: 1,2 columns x=MT length, y=absol. summed fractional pairing length 
: 1   symbol type 
: 0   0 for graphics plot, 1 to plot on terminal 
: -1   output to file graphic 
: [output name file] 
: 0   no plot 
} 
 

MT OVERLAP 

Input file example:  
{ 
:   no mapping of one type into another 
: 1  number of bundles to read from model file 
: [name of input model] 
:   no tilt file information  
: 0  take all of the objects in the model 
: 1   default format of types 
: 1  bundles to work with 
: 2  single Z center value for all bundles 
: 1 3D  overlap factor 
: 1  compute sum of overlap factors for each MT 
: .215 distance in X/Y plane below which overlap will equal 1  
: 1  plot all bundles in same graph 
: 14  plot the graph to a postscript file   
}  
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IMODCURVATURE 

Shell command line: 
$ imodcurvature –ob [object number] –zr 400 –wl 400 –rc 10,1000 –st –ka 

[input model] [output model] 
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