

A general purpose HyperTransport-based Application Accelerator Framework

David Kramer Thorsten Vogel Rainer Buchty Fabian Nowak
and Wolfgang Karl

Institute of Computer Science & Engineering
Universität Karlsruhe (TH)

Zirkel 2
76131 Karlsruhe, Germany

{kramer, thorsten.vogel, buchty, nowak, karl}@ira.uka.de

Abstract

HyperTransport provides a flexible, low latency and high
bandwidth interconnection between processors and also
between processors and peripheral components. There-
fore, the interconnection is no longer a performance bot-
tleneck when integrating application specific accelerators
in modern computing systems. Current FPGAs providing
huge computational power and permit the acceleration of
compute-intensive kernels. We therefore present a general
purpose architecture based on HyperTransport and modern
FPGAs to accelerate time-consuming computations. Fur-
ther, we present a prototypical implementation of our archi-
tecture. Here we used an AMD Opteron-based system with
the HTX Board [6] to demonstrate that common applica-
tions can benefit from available hardware accelerators. A
cryptographic example showed that the encryption of files,
larger then 50 kByte, can be successfully accelerated.

1 Introduction

We still see Moore’s Law [10] being valid with the
transistor count on a single chip doubling every 18 to 24
months. This further increase in technology density has two
significant implications: for processor architectures, the fur-
ther increase in integration does, due to technological con-
straints, not lead to increased individual processor speed,
but rather the creation of multicore processor architectures.
For reconfigurable logic, in term, it results in comparably
large units being able to hold complex systems on chips or
a multitude of dedicated hardware accelerators.

In the past, the use of such hardware accelerators was
mainly hampered by the absence of appropriate intercon-
nection technology. Since the demise of dedicated co-
processor interfaces, which enabled a fine-granular integra-

tion of hardware accelerators into the system, only periph-
eral buses remained as the only way of connection, impos-
ing huge limitations on transfer speed and, therefore, data
exchange between host system and accelerator.

HyperTransport is an example of current interconnec-
tion technology, serving for either CPU/CPU communica-
tion or the connection to peripheral subsystems. It therefore
not only provides necessary speed and bandwidth numbers
to not become a significant communication bottleneck, but
furthermore enables tight integration of arbitrary computa-
tion units into the host system.

This interconnection technology combined with current
FPGA technology enables the development and use of dy-
namically configurable hardware accelerators for vertical
migration of algorithms, i.e. offloading dedicated or oth-
erwise time-consuming computations such as e.g. numer-
ical simulations, cryptographic algorithms, or processing of
streaming media to specialized accelerator units.

In this paper we describe the design and use of an
FPGA-based general-purpose hardware accelerator unit for
HyperTransport-equipped systems. This accelerator unit
comprises up to 6 individual accelerator cores and accord-
ing circuitry providing interfacing with the HyperTransport
bus and higher-level functions such as DMA data transfer
and Monitoring.

This accelerator unit is part of an integrated platform
consisting of a controlling host system, individual hardware
accelerators, and a runtime system [3], enabling dynamic
resolution of computation routines to be executed either in
software on the host processor or offloaded to one or more
accelerators. The platform also features a currently devel-
oped C/C++ language extension to generate control infor-
mation enabling automation of the dynamic function reso-
lution and general automatic optimization in the scope of
Self-X and adaptive systems.

The remainder of this paper is therefore structured as
follows: we will first present related work in Section 2,

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 30 -

shortly introducing other architectures and approaches with
their advantages and drawbacks. In Section 3, we give an
overview of our proposed accelerator architecture and how
it integrates into HyperTransport systems. Section 4 present
the first implementation of our architecture using the HTX
Board from the University of Heidelberg. Section 5 con-
tains an application case study demonstrating the usability
and general applicability of our architecture. An outlook of
ongoing and future is given in Section 6 and the paper is
concluded with Section 7.

2 Related Work

In the past, different approaches for integrating hardware
acceleration into existing systems were introduced, rang-
ing from simple accelerator cards to dedicated co-processor
solutions and completely dynamic processor architectures.
Especially the latter employ FPGA technology to enable on-
demand reconfiguration, therefore leading to increased use
of the silicon area. The existing approaches can be roughly
divided into two categories by granularity, i.e. fine-grained
instruction set extension and coarse-grained extension as
co-processors.

An early research project for using reconfigurable logic
for instruction set extension is PRISM (Processor Re-
configuration Through Instruction-Set Metamorphosis) [2].
PRISM consists of a general purpose processor and an
FPGA, which is connected through a dedicated bus sys-
tem. PRISM focuses on transparent hardware generation
and acceleration of standard C code for single applications
running on a general purpose processor. A configuration
compiler splits the application into a software image and
a hardware image. The software image is a regular binary
which runs on the general purpose processor. This binary
contains code that coordinates the execution of the gener-
ated hardware accelerators. The hardware accelerators are
suggested by the compiler, generated by external synthesis
tools, and included in the hardware image. This image runs
on the connected FPGA. A similar concept is used by Garp
[7], which also relies on compiler-generated predefinition of
a reconfigurable logic section; in contrast to PRISM, how-
ever, a dedicated array enabling easy on-demand reconfig-
uration was used. According instructions were added into
the processor instruction set to enable dynamic loading and
unloading of hardware configurations.

While in PRISM the instruction set is fixed for a specific
application, the instruction set in the DISC (Dynamic In-
struction Set Computer) [16] is completely dynamic. Here,
instructions are implemented as modules which can be
loaded onto an FPGA at runtime. Since the FPGA has a
limited size it can hold only a restricted number of instruc-
tions. In DISC, unused instructions can be replaced at run-
time with the help of Partial Dynamic Reconfiguration. If

not enough FPGA resources are available, LRU strategy is
used to select instruction modules which are removed. A
DISC application consists of instruction modules and soft-
ware which defines their execution order.

The MOLEN Polymorphic Processor [15] is another ap-
proach for a processor which is capable of custom com-
puting. Like Garp, it uses the reconfigurable co-processor
scheme. In contrast to Garp, MOLEN allows parallel exe-
cution of several independent hardware operations. Addi-
tionally it uses standard FPGAs for the reconfigurable co-
processor. Therefore, high-level hardware description lan-
guages can be used to develop the custom configured units
(CCUs).

Although the clock frequency of current FPGA technol-
ogy is a magnitude slower than that of recent CPUs, several
approaches target integration of FPGAs as co-processors in
high-performance computing systems. Common to all ap-
proaches is that they do not accelerate single instruction, but
rather coarse-grained parts of the application as fine-grained
acceleration of individual instructions is not feasible. This
is due to latencies occuring from configuration, data trans-
fer, and triggering computation which limit effectively limit
the granularity of FPGA-based acceleration. Being usually
just peripherals, they are rather loosely coupled to the re-
maining system so that e.g. it is not possible to stall the
processor pipeline when executing a special instruction.

An example for such an architecture is the Cray XD1 [9]
computing platform featuring AMD Opteron processors for
general purpose processing and Xilinx Virtex FPGAs for
accelerating compute intensive kernels. HyperTransport is
used as the interconnection technology between CPU and
FPGA. The bit-streams for the FPGAs are created using a
high-level hardware description language and the standard
Xilinx development tools. An API is provided for accessing
the application accelerators from within the application.

SGI offers the SGI RASC RC100 Blade [12] for accel-
erating HPC applications. The blade features two Xilinx
Virtex 4 LX200 FPGAs and 80 MB of SRAM. It is di-
rectly connected to the system’s shared memory via the pro-
prietary NUMALink interconnection. Intel Itanium CPUs
are used as general-purpose processing units. The provided
software solution allows to run the reconfigurable comput-
ing elements in a multi-user and multi-process environment.
The application accelerators can be developed using a high
level language like Impulse-C.

Our approach, as outlined in the next section, follows
the latter design principles, i.e. enhancing a host system by
a dedicated accelerator board, merging in the parallel as-
pects of MOLEN by providing several individual acceler-
ator units which may be used and configured individually.
Likewise, dynamic reconfiguration of individual accelera-
tor units is possible. Using HyperTransport interconnection
technology enables a tight integration into current state-of-

- 31 -

the-art workstations.

3 Overview

This section describes the structure of our architecture.
Besides the hardware components, our architecture also in-
cludes a software stack for easy use of application accel-
erators form within normal C code and additional monitor-
ing and steering components. The monitors provide sta-
tus information of the hardware to the steering components,
which can use these information, for example, to guide the
reconfiguration process.

3.1 Hardware Components

The overview of the hardware components is depicted in
Figure 1. The hardware consists of seven main parts: the
HT Core, the Command- and Status-Bus (CSB), the Data
Bus, the DMA Unit, the Monitoring Infrastructure, the Re-
configuration Controller, and the Application Accelerators
itself.

3.1.1 HT Core

The HT Core connects our architecture to a
HyperTransport-bus. It provides the application ac-
celerators including the DMA Unit an efficient way to
access the system’s main memory. All protocol handling re-
garding HyperTransport is handled within this component.
The HT Core provides an interface to the HyperTransport
link signals and an uniform, queue-based interface to the
application accelerators and the CSB. Further, the I/O area
of the HT Core is memory-mapped into the virtual memory
of the host system to enable easy usage of the application
accelerators from within application code.

3.1.2 Command- and Status-Bus (CSB)

Components which are connected to the CSB receive com-
mands from and provide status information to the software.
Parallel read and write requests are enabled by using two
separate buses. The CSB has an interface to the HT Core
and the reconfiguration controller and interfaces to the mon-
itors and the application accelerators.

Part of the CSB are two so-called Request Coder. The
Request Coders act as a bridge between HT and CSB and
are used to convert internal messages to HT messages and
vice versa; this is necessary as both buses may be of differ-
ent width.

3.1.3 Data Bus

Like the CSB, the Data Bus is also divided into a write bus
and a read bus. This separation allows handling data reads

and writes independently. The data bus has an interface to
the DMA Unit and interfaces to the application accelerators.
An arbiter is used to grant access rights to the individual
components.

3.1.4 DMA Unit

Our architecture features a Direct Memory Access-Unit to
avoid Programmed Input/Output (PIO). Accounting for the
independent read and write buses, read and write requests
are handled by two distinct components, not only simplify-
ing the design but also allowing concurrent read and write
operations.

The DMA Unit hides HyperTransport-specific details.
HyperTransport does only allow memory access aligned to
a 64 byte boundary [1]. Unaligned accesses or accesses of
more than 64 byte are split by the DMA Unit into multiple
accesses adhering to the bus restrictions.

3.1.5 Monitoring Infrastructure

To support software-based control daemons, a monitoring
infrastructure was introduced. This infrastructure consists
of several, independent monitors, more precisely, one mon-
itor for each application accelerator. The monitor itself con-
sists of multiple 32-bit counters. It monitors the state of the
accelerator. The counter corresponding to the current state
is increased every clock cycle. The monitors provide an in-
terface to the CSB and, upon request, deliver information to
higher control instances.

3.1.6 Reconfiguration Controller

The reconfiguration controller can be used to reconfigure
independent accelerator slots. For this purpose, it has an
interface to both, on-chip bus systems and, if available, an
interface to a reconfiguration port of the FPGA.

3.1.7 Application Accelerators

The application accelerators consists of two main parts,
the Accelerator Interface (AI) and an Accelerator Wrapper
(AW). The latter consists of a Parameter and Result Bridge
(PRB) and the application accelerator itself.

The AI has two main objectives: it provides a uniform
interface to CSB and Data Bus, and forwards commands,
parameters, and data to the AW. The uniform interface en-
sures compatibility among different accelerators, as every
accelerator uses the same interface. The uniform interface is
achieved by parameter serialization, i.e. all parameters for
an application accelerator are serialized on software side.
As a result of this approach, only one parameter per clock
cycle can be passed to the accelerator.

- 32 -

Bus
Data

Mon.

Mon.

Command &

Status Bus

P
R

B

Accelerator

P
R

B

Accelerator

Accelerator Wrapper

Accelerator Wrapper

Accelerator Slot

Accelerator Slot

DMA Unit

HT Core

Interface

Accel.

Accel.

Interface

Reconfiguration
Controller

Request
Coder

Figure 1. Hardware Composition

typedef struct acc_mgnt_struct
{
controller_t controller;
read_access_t read_access;
accel_slot_t slots[SLOT_COUNT];
accel_monitor_t mon[SLOT_COUNT];

} acc_mgnt_struct

Figure 2. Accelerator Management Structure

The PRB, in term, is the interface specific to the individ-
ual application accelerator, transforming serialized uniform
representation into the accelerator’s native format. The PRB
hence deserializes the parameters and stores them inter-
nally, providing all required parameters simultaneously to
the accelerator.

The AW packages the accelerator and its according PRB
into an exchangeable modular entity.

3.2 Software Components

3.2.1 Accelerator Management Structure

To avoid error-prone pointer arithmetic, we provide a con-
venient interface for accessing the application accelerators
from within C Code. We therefore map a supporting accel-
erator management structure (see Figure 2) into the memory
area of the HT Core.

This structure reflects the order of the hardware compo-
nents connected to the CSB. The first item of this structure
is the structure for steering the reconfiguration controller.
The second item can be used to configure the number of
concurrent reads of the DMA Unit. The third structure is
an array for controlling the individual accelerators. The last
array is for status queries to the accelerator monitors.

To access the individual accelerators the application de-
veloper must use the accel_slot_t structure. This
structure contains variables like a parameter sink for pass-
ing the parameter to the accelerator or a command structure
for triggering the computation.

3.2.2 Driver

A kernel driver is required to permit mapping of the HT
Core memory range into the address space of user pro-
cesses. This driver creates two character devices which
can be opened and used with the mmap system call. The
first device represents the HT Core memory range, the latter
the DMA memory range. Additionally, the DMA memory
range can be read for obtaining the overall size and its loca-
tion. Before user processes may map both types of memory
into their address space, they must already be mapped into
the kernel space.

In order to be able to easily use a dedicated DMA mem-
ory area, we must prevent the kernel from managing all
available physical memory. This simplifies the communi-
cation between HT Core and application as no translation

- 33 -

between virtual and physical memory address must be per-
formed. This is done by passing the mem parameter to the
kernel at boot time. The remainder of the main memory
must be made available for handing out to user space. This
is achieved through the ioremap system call.

Furthermore, the driver provides runtime information
and a command interface through the virtual proc file sys-
tem (procfs), supplying monitoring and controlling possi-
bilities to the Control Daemon. All information provided
by the Monitoring Infrastructure can be obtained via procfs.

3.2.3 Control Daemon

The Control Daemon is a central resource manager. It man-
ages both, accelerators and DMA memory. It consists of a
device handler, an accelerator manager, a memory manager
and a notification broker.

The device handler is used to abstract the kernel driver
interface and handles communication with the driver via its
device nodes. It provides functions for mapping and un-
mapping the Accelerator Management Structure and DMA
memory area into the user address space.

The accelerator manager is responsible for finding
and reserving accelerators of a specific type. The
get_accelerator() function iterates through the ac-
celerator slots and compares their loaded accelerator type to
the requested. The first accelerator with the correct accel-
erator type and unoccupied status is assigned to the thread.
To ensure a clean initial starting environment, a reset fol-
lowed by a request command are sent to newly acquired
accelerators. Likewise, appropriate functions for releasing
accelerators are provided.

The memory manager handles accesses to the DMA
memory area, i.e. requests with sizes being multiples of
the systems page size. This restriction is introduced as
only complete pages can be mapped into the user address
space. The memory manager performs bookkeeping regard-
ing memory areas being already mapped or being free for
further request. Two functions are provided for allocating
and freeing memory. To minimize fragmentation, an ap-
proach similar to free list [11] is used.

Notifying threads when an appropriate application accel-
erator is finished is the task of the notification broker (NB).
It monitors the status of the accelerators slots and calls the
corresponding thread upon status changes to finished or
error. Being a pure software solution, the NB polls the
accelerator status registers periodically. As such a PIO ap-
proach fully utilizes one host processor for busy-waiting,
we therefore instantiated a POSIX message queue between
the NB and the calling thread. These queues support a
blocking mode, i.e. reading from an empty or writing to a
full queue results in the calling thread being blocked. The
NB iterates periodically through the status of each accel-

erator slot and identifies status changes. For each status
change, an event is submitted into the corresponding no-
tification queue. Threads can subscribe to their notification
queue and receive according notifications. If no notification
is available, the thread will be blocked.

4 Prototypical Implementation

In this section we describe the prototype implementation
of our framework based on the HTX Board [6], using the
HT Core [14, 13] provided by the University of Heidelberg.
We present implementational details of our framework as
well as first latency and bandwidth measurements.

4.1 Hardware

The testbed for our prototypical implementation is a sys-
tem comprising an AMD Opteron 870 dual-core processor,
2 GB of main memory, and a HTX slot[8]. The HTX slot
enables the usage of HyperTransport interconnection tech-
nology to extend systems which are based on a processor
that is HyperTransport-capable. This slot is used to connect
a HTX Board with the system, featuring a Xilinx Virtex-4
FX100 FPGA, 128 MB SDRAM, Gigabit Ethernet connec-
tivity, and up to 6 transceiver sockets. An EEPROM is used
to store the initial bitstream for initialization after power-on.
The FPGA’s PowerPC cores are not used in this design.

The protocol handling of the HyperTransport channel is
done by the HT Core [14]. The HT Core, provided by the
University of Heidelberg, is a soft-core and written in the
Verilog hardware description language. In our current syn-
chronous design the HT Core runs at 100MHz clock fre-
quency and provides a 16 bit wide link to the AMD Opteron
processor, resulting in a peak bandwidth of 800MB/s for
each direction. The HT Core uses 4868 slices, equalling
11.5% of the available slices. Due to I/O constraints, the HT
Core is located in the FPGA’s lower right corner (see Figure
3). Our current implementation is completely synchronous
to the 100 MHz board clock, simplifying communication
between individual components.

The floorplan of our current implementation is depicted
in Figure 3. The six available hardware accelerators are lo-
cated on top. The PRBs are already included in this area.
Due to the physical design of the FPGA, the accelerators
slots vary in size and available additional resources. The
size and available resources are listed in Table 1.

Beneath the accelerators are their AIs and AWs. Both
are connected to the CSB, which has a width of 8 bits, and
the Data Bus, which has a width of 64 bits. The DMA
Unit, bus arbiter, and reconfiguration controller are located
in the lower left corner of the floorplan. All hardware com-
ponents, except HT Core and the accelerators themselves,

- 34 -

Figure 3. Floorplan

Table 1. Available Resources per slot

Slot Slices BRAM FIFOs DSPs
1 3944 40 40 -
2 3656 40 40 46
3 4136 23 23 -
4 4136 23 23 46
5 4136 46 46 -
6 4136 46 46 -

occupy 5213 slices, equalling 12.3% of the available slices.
Table 2 shows the resource usage of each component.

4.2 Software

For easing the use of the application accelerators, we de-
veloped a library containing individual functions for system
initialization, acquiring and releasing the accelerators and
DMA memory, starting the accelerators, and for NB com-
munication. In its current implementation, the library can
be used with C and C++ applications.

4.3 Bandwidth and Latency Measure-
ments

We developed a simple accelerator for measuring the
bandwidth from and to main memory. This accelerator
reads and writes a predefined number of QWords (64 Byte)

Table 2. Occupied Resources
Component Slices FF Carry Mux LUTs
Request Coder 201 234 - 34 252
DMA-Unit 1468 943 1043 312 2249
Accel. Interface 600 618 372 204 762
Accel. Monitor 2928 3138 6132 1296 5466
Reconf. Controller 16 15 - - 19
Overall 5213 4948 7547 1846 8748
HT Core 4868 5257 719 209 7382
Complete Design 10081 10205 8266 2055 16130

from/to the main memory. The accelerator monitor is used
to measure the duration of the operations. Because Hyper-
Transport requests are limited to eight QWords, the DMA
Unit prevents sole sequential read requests, but rather per-
forms multiple concurrent read requests. Figure 4 depicts
the achieveable read bandwidth when using multiple con-
current requests. A sole request achieves a bandwidth of
103MB/s. The maximum is reached when using five or
more concurrent requests. A sustained bandwidth of about
311MB/s can be achieved. The write bandwidth is much
higher, as no response from main memory is needed. Us-
ing only one write request, a bandwidth of 763MB/s can be
achieved.

The accelerator monitors are also used for measuring the
read request latency. In our current implementation, each
read request shows a latency of 52 cycles. The DMA Unit
needs three cycles to initiate a write request. But as Hyper-
Transport has no acknowledge signal for indicating a suc-

- 35 -

Figure 4. Achieved read bandwidth

cessful write, the entire write latency cannot be measured.

5 Evaluation

Our framework is designed for acceleration of compute-
intensive kernels, we therefore present in this section an il-
lustrative example. This example shows that even common
and widely used applications can benefit from hardware ac-
celeration.

We implemented a dedicated hardware accelerator per-
forming 3DES, an improved version of the standard DES
algorithm, performing three individual DES rounds, using a
different key for each round.

Along with the hardware accelerator, we implemented
a complete software application enabling en- and decryp-
tion of files. Besides en- and decryption with one or multi-
ple hardware accelerators, the application is capable of per-
forming multi-threaded en- and decryption in software us-
ing the OpenSSL [5] library.

The basis of the hardware accelerator is the freely avail-
able 3DES core provided by CoreTex Systems [4]. This
core is implemented in synthesizeable VHDL, performs op-
erations on blocks of data with a size of 64 bit as required
by DES, and has a maximum bandwidth of 581MBit/s at
162 MHz. We implemented a custom PRB for interfacing
this core to our hardware setup.

The software application can be controlled via command
line arguments at start time or through the control daemon
at runtime. Some parameters have to be specified at start
time, e.g. source and destination file, the individual keys, or
the number of concurrent threads or accelerators to be used.

In our first experiment we measured the time needed for
encryption using one thread or hardware accelerator for files
of varying size resulting in the runtimes shown in Figure 5.

Figure 5. 3DES: Encoding time for software
or hardware encryption

As we can clearly see, for smaller file sizes, the software
implementation is faster than the hardware accelerators due
to data transfer overhead resulting from copying data into
the accelerator and back to main memory.

Figure 6. 3DES bandwidth

Figure 6 shows the achieved bandwidth. The pure
software implementation has a peak bandwidth of about
14MB/s, the hardware accelerator of about 40MB/s.

We also conducted an experiment with multiple threads
or hardware accelerators. The results are shown in Fig-
ure 7 and Figure 8. To avoid interference from slow hard
drive accesses, all data is read from main memory and writ-
ten back to main memory. A file of 500 MB was used in
this experiment. As we can see, the hardware implemen-
tation scales almost perfectly with the number of used ac-

- 36 -

celerators. With six accelerators a peak bandwidth of about
241MB/s is achieved. As our test system has only two pro-
cessor cores, the software implementation scales only with
up to two threads. When using six threads the bandwidth
naturally increases only marginal to 29.7MB/s at most.

Figure 7. 3DES: Bandwidth – concurrent en-
cryption

Figure 8. 3DES: Duration – concurrent en-
cryption

6 Outlook

The achieved results in Section 5 showed the usefulness
of our architecture. Ongoing work focuses on security as-
pects and partial dynamic reconfiguration.

In our current implementation of the software stack, the
accelerator management structure, as shown in Figure 2,
is mapped completely into each user process. That im-
plies that all processes can access each available acceler-
ator, leading to incorrect results. Hence, we are currently
evaluating the possibility of mapping an accelerator spe-
cific management structure into the user process, granting
only access to the assigned accelerator. Other security con-
cerns arise with granting main memory access to the accel-
erators. Each accelerator has a direct access to the complete
main memory. Incorrect memory access could lead to incor-
rect results, or even worse to a corrupt system. Therefore,
we are currently extending our monitoring infrastructure to
observe the main memory accesses of the accelerators and
prevent them of accessing memory regions which are not
assigned to them.

The extension of the reconfiguration controller and gen-
eration of partial bitstream is another ongoing work. The
reconfiguration controller will be extended by an interface
to the FPGAs Internal Configuration Access Port (ICAP).
ICAP can be used for partial reconfiguration of the FPGA.
In combination with the DMA Unit, the reconfigration con-
troller should be able to load upon request partial bitstream
from main memory and forward them to the ICAP port.

7 Conclusion

With the emergence of new interconnection technology
like HyperTransport, the interconnection between applica-
tion specific accelerators and the general-purpose proces-
sor is no longer a bottleneck. Older bus systems such as
PCI could not provide the required bandwidth or direct ac-
cess to the systems main memory to successfully accelerate
compute-intensive kernels. HyperTransport provides a flex-
ible, low-latency and high-bandwidth interconnection be-
tween both, invidiual processors as well as processors and
peripheral components.

In this paper, we presented a versatile HyperTransport-
based architecture providing application-specific hardware
accelerators. The concept itself, while implemented us-
ing standard PC technology and the HTX Reference Plat-
form as introduced in Section 4, is generally applicable and
may be applied to arbitrary HT-equipped embedded or high-
performance computing systems.

References

[1] HyperTransportTMI/O Link Specification Revision 3.10.
2008. http://hypertransport.org/docucontrol/HTC20051222-
00046-0028.pdf.

[2] P. Athanas and H. Silverman. Processor reconfigura-
tion through instruction-set metamorphosis. Computer,
26(3):11–18, Mar 1993.

- 37 -

[3] R. Buchty, D. Kramer, M. Kicherer, and W. Karl. A Light-
weight Approach to Dynamical Run-time Linking Support-
ing Heterogenous, Parallel, and Reconfigurable Architec-
tures. In Proceedings of the 22st International Conference
on Architecture of Computing Systems (ARCS 2009), pages
60–71. Springer, 2009.

[4] L. CoreTex Systems. Triple-DES Encryp-
tion+Decryption Core, November 2006. http:
//www.opencores.org/projects.cgi/web/
3des_vhdl/overview.

[5] Eric Young. OpenSSL Crypto Library Manual. The
OpenSSL Project. https://www.openssl.org/
docs/crypto/des.html.

[6] H. Fröning, M. Nüessle, D. Slogsnat, H. Litz, and U. Brün-
ing. The HTX-Board: A Rapid Prototyping Station. In 3rd
annual FPGAWorld Conference, 2006.

[7] J. Hauser and J. Wawrzynek. Garp: a MIPS processor with
a reconfigurable coprocessor. Field-Programmable Custom
Computing Machines, Annual IEEE Symposium on, 0:12,
1997.

[8] HTX3TMSpecification for HyperTransport 3.0 Daughter-
cards and ATX/EATX Motherboards. June 2008.
http://www.hypertransport.org/docs/uploads/HTX3_ Speci-
fications.pdf.

[9] C. Inc. Cray XD1 Supercomputer, 2004. http://www.

cray.com/downloads/Cray_XD1_Datasheet.pdf.
[10] G. E. Moore. Cramming more components onto integrated

circuits. Electronics, Volume 38, Number 8, 19. April 1965.
[11] Robert J. Baron and Linda G. Shapiro. Data Structures and

Their Implementation. PWS Publishing Co., Boston, MA,
USA, 1983.

[12] Silicon Graphics, Inc. SGI RASC RC100 Blade (Datasheet).
2008.

[13] D. Slogsnat, A. Giese, and U. Brüning. A versatile, low
latency HyperTransport core. In FPGA ’07: Proceedings
of the 2007 ACM/SIGDA 15th international symposium on
Field programmable gate arrays, pages 45–52, New York,
NY, USA, 2007. ACM.

[14] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open-
source HyperTransport core. ACM Trans. Reconfigurable
Technol. Syst., 1(3):1–21, 2008.

[15] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuz-
manov, and E. M. Panainte. The MOLEN Polymorphic
Processor. IEEE Transactions on Computers, 53(11):1363–
1375, 2004.

[16] M. Wirthlin and B. Hutchings. A dynamic instruction set
computer. FPGAs for Custom Computing Machines, 1995.
Proceedings. IEEE Symposium on, pages 99–107, Apr 1995.

- 38 -

	cover-03
	whtra09-paper14

