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Abstract

In this paper we present a solution where only one
FPGA is needed in a host coupled system, in which
the FPGA can be reconfigured by a user application
during run-time without loosing the host link connec-
tion. A hardware infrastructure on the FPGA and the
software framework ACCFS (ACCelerator File System)
on the host system is provided to the user which allow
easy handling of reconfiguration and communication
between the host and the FPGA. Such a system can
be used for offloading compute kernels on the FPGA
in high performance computing or exchanging func-
tionality in highly available systems during run-time
without loosing the host link during reconfiguration.

The implementation was done for a HyperTransport
coupled FPGA. The design of a HyperTransport cave
was extended in such a way that it provides an infra-
structure for run-time reconfigurable (RTR) modules.

1. Introduction

With the emergence of dynamically and partially
reconfigurable (DPR) FPGAs, the possibility to re-
configure partially reconfigurable regions (PRR) with
run-time reconfigurable modules has appeared. This
feature enables FPGA customers to change the design
of a certain region of the FPGA during run-time while
maintaining the full functionality of the remaining part.
This new degree of freedom also facilitates system
designers to develop single FPGA chip solutions where
additionally required hardware, e.g. a peripheral inter-
connect, is also located inside the FPGA.

For host coupled FPGA systems, solutions are con-
ceivable where a static part of the FPGA covers the
host interface core and the remainder of the device
can be reconfigured during run-time with one or more
user specific application modules.

Such a FPGA system would offer continuous host
link connectivity during the time of partial reconfig-
uration and would not depend on exclusive hot plug
solutions, where the board, the BIOS and the operating
system must support hot plug functionality, which is
currently not the case for standard motherboards with
operating systems like Linux and Windows.

Two distinct options for connecting FPGA acceler-
ators to a host system do exist, either via a peripheral
bus (e.g. PCI Express) or processor bus. Well suited
for direct processor bus coupled FPGA systems are
the AMD CPUs because of the open standard and low
latency HyperTransport (HT) protocol.

Sharing the resources of a single FPGA between
users is also imaginable. In a multi user or multi
process environment several modules could be run
simultaneously on the same FPGA if resources are
sufficient.

Partial reconfiguration offers the chance of reducing
implementation time of FPGA designs (rapid prototyp-
ing) if supported by the FPGA synthesis tools. Already
functional parts could be left on the FPGA and only
functionality under test is exchanged. It should be
noted that this requires a strict modular overall design.

For highly available and real-time processing sys-
tems with host connection, run-time reconfiguration
enables to exchange or to add functionality during
system operation.

In the field of high performance computing nodes
with FPGAs used as accelerators, run-time reconfigura-
tion can be utilized to change offload compute kernels
and to share FPGA device capacity.

Using FPGAs for acceleration, due to the creation
of specialized processing engines utilizing the highly
parallel nature of FPGAs, can lead to a significant
reduction of compute time. A speedup of more than 50
compared to a CPU was achieved by Woods et al. [1]
accelerating a Quasi-Monte Carlo financial simulation.
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Zhang et al. [2] gained a speedup of 25 for another
Monte-Carlo simulation.

To run such compute kernels on a single chip FPGA
solution making use of the run-time reconfigurability,
three main components have to be provided to the
user. The first one is the operational infrastructure for
running run-time reconfigurable modules (RTRM) on
a host interface on the same FPGA. The second part
consists of a framework which allows the user to build
its own RTRMs. Last but not least, an generic interface
must be provided to a user which offers functions for
reconfiguration and communication between the host
and the RTRM located inside the FPGA.
The rest of the paper is organized as follows:

Section 2 is devoted to related work. In section 3
capabilities of run-time reconfigurable FPGAs and the
principles of creating partial configuration bit stream
files are shown.

Section 4 describes the run-time reconfiguration
support for a FPGA directly connected to AMD’s
processor bus. The enhancement for a HyperTransport
cave implemented as host interconnect is shown. The
infrastructure needed on the FPGA for the support of
run-time reconfigurable modules and their creation is
presented.

The software framework provided to the user is
based on ACCFS (Accelerator File System) which is
explained in section 5.

As proof of concept we have implemented two
distinct compute kernel offload functions as run-time
reconfigurable modules in section 6. The first RTR
module acts as an offload function which finds patterns
in a bit stream (pattern matcher) and the second module
a Mersenne Twister generates pseudo random numbers
at high output frequency.

Section 7 concludes the results of this paper.

2. Related Work

Utilizing RTR capabilities of FPGAs and building
CPU coupled systems have been proposed under var-
ious aspects. Some are dealing with internal commu-
nication structures while others concentrate more on
system integration.

A tool-flow for homogeneous communication infra-
structure for RTR capable FPGAs was presented by
Hagemeyer et al. [3] built upon the Xilinx design flow.
In contrast Koch et al. [4] designed a framework named
ReCoBus-builder without applying Xilinx’s partial re-
configuration flow. Only Virtex-II and Spartan-3 FPGA
are supported by the builder so far. Switch architec-
tures with routers between RTR modules have been
examined also in [5] [6].
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Figure 1. Schematic view of Xilinx XC4VFX60
FPGA

On the matter of integration of FPGA modules or
threads for embedded systems different models have
been proposed. ReconOS [7], a real time operating sys-
tem implemented with static FPGA threads, is based
on memory mapping and is used in embedded systems.
Another model, BORPH [8], is based on the UNIX
IPC mechanism and utilizes the integrated PowerPC
as host.

For the integration of host coupled accelerators we
proposed and implemented the Accelerator File System
(ACCFS) [9]. This framework is based on the concept
of a virtual file system. We have already shown the
integration of the Cell/B.E. processor. In this paper we
will show that ACCFS is best suited for the integration
of FPGAs, even RTR capable FPGAs, into a host
system.

3. Run-Time Reconfiguration on FPGAs

This section addresses the conditions which must be
fulfilled, when using the feature of run-time reconfig-
uration on Xilinx FPGAs. These are important for the
implementation of a HT cave which supports run-time
reconfigurable modules.

3.1. Dynamic Partial Reconfiguration for
FPGAs

This subsection is devoted to the dynamic par-
tial reconfiguration (DPR) of Virtex-4 and Virtex-5
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P
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R

P
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R
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connection
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Figure 2. Infrastructure of HT cave with RTR support

FPGAs [10] from Xilinx which is one of the few
manufacturers which offer DPR. The granularity of a
partially reconfigurable region (PRR) is directly related
to the configuration frames [11], which describe the
function or contents of the slice containing LUTs or
block RAM for example. The granularity in the height
of a PRR matches the height of a clock region for
Virtex-4 (16 CLBs) and Virtex-5 (20 CLBs). In the hor-
izontal direction a PRR must begin with an even and
end with a odd slice number. Figure 1 is a schematic
view of the Virtex-4 XC4VFX60 FPGA used for the
implementation of a HyperTransport cave supporting
RTRMs described in the next sections. Note that we
have a total of 16 clock regions available. For run-time
reconfiguration three different interfaces are available,
which are able to read the configuration bit stream of
a RTRM. One of these is the JTAG port, which is
a bidirectional serial host-clocked link. It is generally
used for prototyping and debugging, working up to the
speed of 24 MHz with available JTAG programmers.
Another mode is SelectMAP, which works on a parallel
interface connected to the physical IO pins of the
FPGA achieving high throughputs. The third variant
is the internal configuration access port (ICAP). It is
an internal version of the external SelectMap working
at a clock speed of up to 100 MHz at 32 bits width.
For host coupled systems it is best suited, because it
does not depend on external IOs and allows the shortest
reconfiguration time.

3.2. RTR Modules and Design Flow

In this subsection the design flow is introduced for
the creation of run-time reconfigurable modules. It
also covers challenges and limitations of dealing with
RTRMs. The design flow is based on ”Module based
Partial Reconfiguration” [12] for Xilinx FPGAs. As
a first step the HDL sources must be assigned either
to the static part, which is constantly available during

run-time, or the dynamical part. All communication
between the two distinct parts has to go through hard
macros, also known as bus macros. Clock resources
and the hard macros must be instantiated in the HDL
source and need to be assigned to a fixed location
inside the FPGA. The run-time reconfigurable mod-
ule itself is only instantiated as a black box, whose
interface (entity) can not be changed during run-time.
This means that a common interface must be created
if other modules should be loaded in the partially
reconfigurable region (PRR). The location and size of a
PRR must be specified for the place and route process
using the ”AREA GROUP” constraint. It should be
noted that for standard static design, neither PRR nor
bus macros need to be specified. The same applies
for the definition of the location of clock resources.
To conduct the partial reconfiguration flow a patch
is provided by Xilinx which must be applied to the
standard synthesis tools.

4. Run-Time Reconfiguration Support for
a HyperTransport Cave

For a single FPGA chip solution connected to a
host utilizing HyperTransport as interconnect, it is
essential not to loose the link during the time of
the reconfiguration of a RTRM. This implies that the
HyperTransport IP-core implementing a HT cave must
be kept inside the FPGA as static part. Hot plugging is
not supported so far by off the shelf systems. Even if
the hardware is capable of handling such requests, most
operating systems do not support this. Other RTRMs
inside the FPGA would suffer also from the link loss.
For that reason the HyperTransport cave is kept in
the static region. In this section the enhancement of
a HT cave is shown which provides an infrastructure
for dealing with RTRMs.
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e n t i t y r t r m i s
p o r t (
c rq c2m addr : i n STD LOGIC VECTOR(31 downto 0 ) ;
c rq c2m da ta : i n STD LOGIC VECTOR(31 downto 0 ) ;
c r q c 2 m r q v a l i d : i n STD LOGIC ;
c rq c2m s top : i n STD LOGIC ;
c rq m2c da ta : o u t STD LOGIC VECTOR(31 downto 0 ) ;
c r q m 2 c r p v a l i d : o u t STD LOGIC ;
c rq m2c s top : o u t STD LOGIC ;
crq c2m wr rd : i n STD LOGIC ;

mrq m2c addr : o u t STD LOGIC VECTOR(31 downto 0 ) ;
mrq c2m data : i n STD LOGIC VECTOR(31 downto 0 ) ;
mrq c2m rp va l id : i n STD LOGIC ;
mrq c2m stop : i n STD LOGIC ;
mrq m2c data : o u t STD LOGIC VECTOR(31 downto 0 ) ;
mrq m2c rq va l id : o u t STD LOGIC ;
mrq m2c stop : o u t STD LOGIC ;
mrq m2c wr rd : i n STD LOGIC ;

c2m clk : i n STD LOGIC ;
c2m res n : i n STD LOGIC ;
m 2 c i n t r : o u t STD LOGIC
)
end r t r m ;

Figure 3. Entity of RTRM

4.1. RTR Infrastructure

A run-time reconfigurable infrastructure for a
HyperTransport cave has to provide a communication
mechanism between the host and the RTRM and
perhaps between RTRMs themselves. It also has to
comply to the rules of partial reconfiguration and the
partial design flow. To ease porting the infrastructure to
other interconnects, e.g. PCI Express, the functionality
which must be implemented for a RTR infrastructure
should be divided into two parts. One covers the host
interconnect specific functions and the other the host
interconnect independent portions.

The infrastructure designed for a HyperTransport
cave supporting RTRMs consists of two host interface
specific, i.e. HT Cave Core and HT Packet Engine, and
four host independent parts, an Internal Routing Unit,
a RTRM Controller, a Reconfig Unit and one or more
RTRMs. The design of this infrastructure of a HT cave
with RTR support is depicted in Figure 2. The HT cave
design for the HyperTransport interconnect originates
from [13]. The task of the HT Package Engine is
to decode the HT packets coming from the host and
to convert these into appropriate actions targeting the
units inside the FPGA. This includes the creation of
responses to requests from the host by injecting valid
packets to the HT Cave Core. The Internal Routing
Unit routes requests to and from internal units, e.g.
RTRM Controller and Reconfig Unit. For fast run-
time reconfiguration of RTRMs it is recommended to
make use of an internal reconfiguration port. This is
done by the Reconfig Unit which controls the internal

configuration access port (ICAP) for Xilinx FPGAs.
The Reconfig Unit itself is controlled by the vendor
specific driver on the host, which validates if requests
concerning the creation of new RTRMs can be served.
The allocation of RTRMs to available RTR regions is
also decided by the host system.

4.2. RTRM

Each RTRM has its virtual address space which is
implemented 32 bits wide. This means that a global
address space is not divided between the RTRMs using
fixed addresses. It would be very difficult to resolve
a request when two RTRMs demand the same fixed
physical address for their memory regions which are
exported to the user application using an entry in the
virtual file system implemented on the host system.

The interface (entity) of a RTRM serves as an
interconnect to the RTRM controller. Communication
in both directions, i.e. controller requests (crq) and
module requests (mrq), are possible using a stop and
valid protocol. The entity of a RTRM in VHDL is
shown in Figure 3.

4.3. RTRM-Controller

The RTRM controller handles requests coming from
the HT Core originated by the user application or from
the RTRM itself. It converts physical addresses for
directly accessing the RTRM, e.g. through direct load
and store operations from the host to virtual RTRM
addresses. The controller can also be used for RTRM
to RTRM communication if desired.

4.4. Framework for a HT Cave supporting
RTR

For generating the static part, i.e. the HT cave with
RTR support, and the dynamical RTR modules, scripts
are provided. The intention is to ease the creation
of RTRMs for an application developer who is not
so familiar with FPGA IP-core designs and run-time
reconfiguration.

The top VHDL module is synthesized with the
instantiated HT core, the HT packet engine, the internal
routing unit, the RTRM controller and the Reconfig
Unit by the build_static script. The RTRM mod-
ule is only instantiated as a black box module. Then the
static part is implemented with the partial flow option.
While the user constraints file (ucf) normally contains
location (LOC) constraints for external IO pins, this
file must also contain additional LOC constraints for
the PR flow covering all clock resources, in particular
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Figure 4. ACCFS - Layered Structure

clock buffers and digital clock managers (DCMs). The
resulting placed and routed design represents the basis
for creating the dynamic configuration bit stream.

For the dynamic part, the user must supply an
interface-compliant RTR module with the top entity
name ”rtrm” and a description of the file entries
which should be exported by ACCFS. This description
consists of the type, the size and the virtual address
which are essential to export the functionality to the
user application. This additional information is added
later to the final ACCFS configuration bit stream as a
part of the header.

Using the build_dynamic script the user-
supplied RTRM module is implemented with the par-
tial flow option. Next, the Xilinx tools PR_verify
and PR_assemble are used to build the partial bit
stream file. Then the ACCFS RTRM bit stream file is
created by adding header information containing the
HT cave version, the FPGA board version and the
user-supplied module description. Due to this header
information, it is possible to transfer ACCFS RTRM
bit stream files to other hosts which contain the same
FPGA accelerator board and use the identical HT cave
version.

5. ACCFS for Host System Integration

Different solutions exist for operating system in-
tegration of a FPGA. For example, BORPH [8] or
ReconOS [7] provide a hardware process/thread ab-
straction which coexist beside ”normal” software pro-
cesses. However, deep modifications of the Linux
kernel are necessary to implement them. Furthermore,

it is required to run Linux on the processing unit of
the FPGA.

Due to the mentioned disadvantages we pro-
posed and implemented the Accelerator File System
(ACCFS) [9]. In this section we describe the major
aspects of ACCFS for the integration of FPGAs into
a host system. We start with a brief overview in
subsection 5.1. Subsection 5.2 depicts the concepts of
ACCFS. Thereafter, we present the integration steps
for the HT-coupled Virtex-4 card in subsection 5.3.

5.1. Overview

ACCFS is an open generic system interface for
the integration of different accelerator types into the
Linux operating system. It is based on SPUFS (Syn-
ergistic Processing Unit File System) [14] which is
used to access the Synergistic Processing Units of the
Cell/B.E. processor. The goal of ACCFS is to replace
the different character device based interfaces (cf.
Figure 4a) with a generic file system based interface
(cf. Figure 4b).

In the case of character devices the hardware func-
tionalities are usually exported through the ioctl
system call. However, this system call has the dis-
advantage of a non-standardized interface. Hence, the
usage differs from one vendor to another.

In contrast, ACCFS defines a well structured
ioctl-free interface based on a Virtual File System
(VFS) approach. In Figure 4b the parts of ACCFS
are shown as gray boxes. To be customizable when
integrating new hardware ACCFS was split into two
parts. Part one (”accfs”), provides the user interface,

- 58 -



and the other parts (”device handlers”) integrate the
hardware.

Device vendors as well as library programmers ben-
efit from ACCFS. Only the lowest abstraction levels
have to be implemented inside the device handlers. The
whole user interface is already provided by accfs. Thus
integrating a new accelerator requires less device driver
programming costs. The library programmer benefits
from basic design concepts introduced in the next
subsection.

5.2. Basic Concepts

In the previous subsection we already described the
concept of functionality separation which eases the
integration of new hardware. Another concept was the
usage of a VFS which maps the accelerator to normal
files. This enables us to implement a ioctl free
and hence a nearly standard conform approach. All
supported file I/O operations are POSIX conform with
some exceptions. For example, it is not possible to
write beyond the end of a file or to change the position
of the current file pointer on some files.

ACCFS is designed to support the virtualization
of the accelerators. We abstract the physical accel-
erator with an accelerator context. The context is
the operational data set of the accelerator. It includes
all information which are necessary to describe the
current hardware state in such a way that the operation
can be interrupted and resumed later without data
loss. During the interruption another context is able to
utilize the physical hardware. Virtualization optimizes
the resource usage of the accelerators. Contexts which
do not make use of the hardware at a given time are
not scheduled on the physical accelerator.

Each context is bounded on a directory inside the
VFS under the ACCFS mount point. The files inside
this directory represent the functionalities of the ac-
celerator. To support reconfigurable hardware the file
set is dynamically exported and can change during
runtime. For example, an additional memory can be
exported due to reconfiguration of the FPGA with a
new RTR module.

To interact with the accelerator several methods are
feasible. One is the simple memory mapped IO with
standard load/store machine instructions. In this direct
memory access (DMA) method the host is the active
part who issues a read/write for every memory access.
Another method is DMA-bulk transfer. Here the ac-
celerator needs a DMA unit capable of moving the
data asynchronously to the host processor execution.
In cases where the accelerator is able to initiate these
transfers by itself, the DMA unit has to handle virtual

s t r u c t a c c f s v e n d o r
{

i n t v e n d o r i d ;
i n t (∗ c r e a t e ) ( . . . ) ;
i n t (∗ d e s t r o y ) ( . . . ) ;
i n t (∗ run ) ( . . . ) ;

. . .

s s i z e t (∗memory sdma ) ( . . . ) ;
s s i z e t (∗ c o n f i g r e a d ) ( . . . ) ;
s s i z e t (∗ c o n f i g w r i t e ) ( . . . ) ;

} ;

Figure 5. struct accfs vendor

memory managing issues, too. However, not every
accelerator supports virtual memory. For this reason
we restrict our solution to host initiated DMA, where
the host setups the memory management unit and
initializes the data transfer. The actual data movement
is done asynchronously by the accelerator.

Finally, ACCFS supports asynchronous context ex-
ecution based on an explicit synchronization primitive.
This concept eases the software development because
multi-threading is not required when using multiple
accelerator units. Every context runs asynchronously to
the host system. The finish status can be read through
a ”status” file.

5.3. FPGA Support

To support HyperTransport coupled FPGA boards
within ACCFS a new device handler has to be writ-
ten. This device handler has to provide the structure
accfs vendor (cf. Figure 5). The first four entries has
to be set and the others are optional. For example, if the
callback function for the DMA-bulk transfer is not set
(memory_sdma), accfs will use the internal routines
to copy the data from/to the FPGA.

Further details of the device handler implementation
are described in the reset of this subsection with
the help of the typical FPGA usage model shown in
Figure 6. An example code fragment using this model
is shown in Figure 7 of section 6, where the case study
is conducted.

5.3.1. Create Context. ACCFS enforces an accelera-
tor based programming model. The main program is
running on the host system and executes the compute
kernel on the accelerator. To outsource such a kernel
the application has to create a context by invoking the
acc_create system call.

Currently our device handler does not support vir-
tualization hence we can only exclusively provide the
FPGA to one application.
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Figure 6. FPGA usage

5.3.2. Configuration. Loading the design is triggered
by a write system call on the ”config” file. The data
has to be a valid ACCFS bit stream. To ensure that
the RTRM matches the RTR infrastructure we provide
a tool chain which generates such a bit stream file by
writing a special header before the bit stream data. The
header contains all necessary information describing
the bit stream such as the RTR capable core and FPGA
board version. If the validation is successful, the FPGA
is programmed with the configuration bit stream file
using the internal reconfiguration port ICAP for Xilinx
FPGAs or through an external JTAG programming
device, e.g. Xilinx USB platform cable. After a suc-
cessfully configuration the exported memories of the
FPGA design are visible in the context directory.

5.3.3. Data Exchange. The access of FPGA memory
is possible with the read and write system calls.
In a later development stage these calls start a host
initiated DMA-bulk transfer. If the memory is exported
as memory mapped IO, the mmap system call will map
the memory into the address space of the application.

The ”data exchange” operation is always possible
after the configuration no matter whether the context
is in execution or not.

5.3.4. Execute Design. To start the RTR module the
application has to invoke the acc_run system call.
The execution happens asynchronously, meaning that
acc_run returns immediately. This enables the ap-
plication to execute more than one context in parallel
without using threads.

When the application needs to check the execution
status, e.g. if the FPGA has finished its work, the
”status” file can be read. Unless this file was opened
with O NONBLOCK the read system call will block
until the RTRM inside the FPGA has finished its task.

5.3.5. Destroy Context. When the application closes
the file handle returned by acc_create the context
gets destroyed.

6. Case Study of RTRMs for a HT Cave
supporting RTR

6.1. Overview

As proof of concept we designed two different com-
pute kernels as RTRMs for a HyperTransport coupled
Xilinx Virtex-4 FPGA plug-in card [15]. The user
program using the virtual file system ACCFS is able
to configure and access the two RTRMs consecutively
during the run-time of the user program at the time
when they are needed. The first RTRM acts as an
offload function which finds patterns in a byte stream
(pattern matcher) and the second module, a Mersenne
Twister, generates pseudo random numbers at high
output frequency. For generating the appropriate partial
bit stream files of the RTRMs the framework presented
in subsection 4.4 is applied.

As hardware for the host system an Iwill DK8-HTX
motherboard with two Opteron processors is utilized.
The pre-installed BIOS is replaced by a customized
LinuxBios version to get the HTX-card enumerated
by the host system. The FPGA on the HTX card is a
Xilinx Virtex-4 XC4VFX60.

6.2. RTRMs - Pattern Matcher and Mersenne
Twister

Two RTRMs have been implemented, which are
described in this subsection, a pattern matcher and
a Mersenne twister based on the MT19937 algorithm
[16].

The latter uses the MT32 [17] implementation,
which is able to provide a new 32 bits pseudo random
number each clock cycle. When the host performs a
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i n t m a t c h e r r u n ( vo id ∗ s e a r c h d b i n , i n t d b s i z e
vo id ∗ p a t t e r n s i n , i n t p a t t e r n c o u n t ,
vo id ∗ r e s u l t s o u t , i n t r e s u l t s s i z e ) {

i n t r e t ;
c h a r b u f s t a t u s [ 1 2 ] ;
/ / c r e a t e c o n t e x t o f our s t a t i c FPGA d e s i g n
i n t f d c t x = ( i n t ) a c c c r e a t e ( ” example ” , V ID ,

D ID , 0750 , NULL ) ;

/ / c o n f i g u r e t h e d e s i g n
i n t f d c f g = o p e n a t ( f d c t x , ” c o n f i g ” , O WRONLY) ;
c o n f i g u r e f p g a ( fd c fg , MATCHER RTRM BITSTREAM ) ;

/ / open memory and s t a t u s
i n t fd mem = o p e n a t ( f d c t x , ”memory / FPGA MEM1” ,

O RDWR) ;
i n t f d s t a t u s = o p e n a t ( f d c t x , ” s t a t u s ” ,

O RDONLY ) ;

/ / f i l l memory wi th d a t a (DMA bu lk t r a n s f e r )
p w r i t e ( fd mem , s e a r c h d b i n , d b s i z e , DB OFFSET ) ;
p w r i t e ( fd mem , p a t t e r n s i n , 4 ∗ p a t t e r n c o u n t ,

PATTERN OFFSET ) ;

/ / s t a r t t h e ma tche r
a c c r u n ( f d c t x , 0 ) ;

/ / check s t a t u s
/ / ( w a i t u n t i l c o n t e x t e x e c u t i o n f i n i s h e d )
r e a d ( f d s t a t u s , b u f s t a t u s , 1 2 ) ;

/ / r e a d r e s u l t s o f o p e r a t i o n (DMA bulk t r a n s f e r )
r e t = p r e a d ( fd mem , r e s u l t s o u t ,

r e s u l t s s i z e , RESULTS OFFSET ) ;

/ / c l o s e f i l e s
c l o s e ( fd mem ) ; c l o s e ( f d s t a t u s ) ; c l o s e ( f d c f g ) ;

r e t u r n r e t ;
}

Figure 7. Pattern matcher user program

read request on an arbitrary RTRM address, a new 32
bits number is provided.

The RTRM pattern matcher simultaneously com-
pares several 32 bits patterns against a search database.
The module consists of a finite state machine (FSM),
four 32 bits comparators for each pattern, one control
register, one status register as well as dual-port block
RAMs for the search database, the search patterns
and the results. Additionally, a 56 bits window is
superimposed over the search database.

The registers and memories are mapped into the
lower 27 bits addresses of the RTRM’s address space
and can be accessed by the host.

After the host has set the start bit in the control
register, the FSM reads the search patterns from the
pattern memory, the window is set to the beginning of
the search database and the comparators are enabled.

Then, the first comparator of each search pattern
tests the first 32 bits of the window, the second one 32
bits shifted by one byte, the third one 32 bits shifted by
two bytes and the fourth the last 32 bits of the window
against the search pattern. Hereby, the window can be

i n t r u n c o m p u t e k e r n e l ( dou b l e ∗ r e s u l t s o u t ,
i n t r e s u l t s c o u n t ) {

/ / c r e a t e c o n t e x t o f our FPGA d e s i g n
i n t f d c t x = ( i n t ) a c c c r e a t e ( ” example ” , V ID ,

D ID , 0750 , NULL ) ;

/ / c o n f i g u r e t h e d e s i g n
i n t f d c f g = o p e n a t ( f d c t x , ” c o n f i g ” , O WRONLY) ;
c o n f i g u r e f p g a ( fd c fg , MERSENNE RTRM BITSTREAM ) ;

/ / open memory
i n t fd mem = o p e n a t ( f d c t x , ”memory / FPGA MEM1” ,

O RDWR) ;

/ / a l l o c a t i n g b u f f e r
i n t 3 2 t ∗ b u f f e r = ( i n t 3 2 t ∗) mmap(NULL,

MEM SIZE , PROT READ | PROT WRITE ,
MAP SHARED, fd mem , 0 ) ;

i n t 3 2 t ∗ mt32 numbers = b u f f e r + NUMBERS OFFSET;

/ / s t a r t t h e Mersenne t w i s t e r MT32
a c c r u n ( f d c t x , 0 ) ;

/ / Example C f u n c t i o n t h a t u s e s random numbers
c k e r n e l f u n c t i o n ( r e s u l t s o u t , r e s u l t s c o u n t ,

mt32 numbers ) ;

/ / unmap b u f f e r
munmap ( ( vo id ∗) b u f f e r , MEM SIZE ) ;
/ / c l o s e f i l e s
c l o s e ( fd mem ) ; c l o s e ( f d c f g ) ;
r e t u r n 0 ;

}

Figure 8. Example that uses MT32 pseudo ran-
dom numbers

shifted by 32 bits each clock cycle.
When the end of the search database has been

reached, the results are written to the results memory.
Afterwards, the ’finished’ bit is set in the status reg-
ister. Next, the host can read the matcher results from
the results memory.

6.3. User Application accessing RTRMs

The user function matcher_run (cf. Figure 7)
demonstrates the usage of the RTRM pattern matcher.
First, this function creates a new context and
partially reconfigures the FPGA by the function
configure_fpga. Then, the search database and
search patterns are written to the RTRM’s database
and patterns memory using the pwrite system call.
Next, the matcher is started using acc_run and the
user function waits until the execution has finished.
After that, the results are read from the FPGA into the
buffer results_out by the pread system call.

The user function run_compute_kernel (cf.
Figure 8) uses the pseudo random numbers generated
by the RTRM Mersenne twister for the computation
kernel c_kernel_function. This RTRM is ini-
tialized using the same functions like in the previous
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Figure 9. Placed and routed design of the HT cave
with RTR support and the pattern matcher RTRM

example. In contrast to the previous one, the random
numbers are not read using file handles, but can be
accessed by the computation kernel via the memory-
mapped buffer mt32_numbers.

6.4. Results of Case Study

The infrastructure for RTR modules based on the
HT cave with RTR support was successfully im-
plemented and verified. Furthermore, the virtual file
system ACCFS was utilized for the integration and
management of RTR modules on a HyperTransport
plug-in card with a Xilinx Virtex-4 FPGA by using
two example RTR modules which can be loaded onto
the FPGA during run-time. For the implementation of
the HT cave with RTR support at least 4 clock regions
have to be reserved as static part.

The first RTR module acting as a offload function
which finds patterns in a byte stream (pattern matcher)
consists of 290 pattern matcher units resulting in a total
of up to 116 billion 32 bits comparisons per second.

This module nearly occupies all slices available within
the clock regions designated for the RTRM. The place-
ment is shown in Figure 9.

The second module implemented is a Mersenne
Twister which generates pseudo random numbers at
high output frequency.

For generating the partial bit stream file the frame-
work presented in subsection 4.4 was applied.

7. Conclusion

By using the ability of run-time reconfiguration of
FPGAs it is possible to build a single FPGA chip solu-
tion as a host coupled accelerator without loosing the
host link connection during the reconfiguration of RTR
modules. The design of a RTR infrastructure inside the
FPGA was shown which allows to manage RTR mod-
ules during run-time. The implementation was done
for FPGAs coupled directly to the HyperTransport
processor bus of the host system. The concepts pro-
vided are applicable to other processor and peripheral
bus coupled FPGAs. The software framework ACCFS,
based on a virtual file system, provides a generic
interface to user applications which is able to satisfy
the demands of run-time reconfigurable computing.

8. Future Work

To speed up communication with high throughput
between the host and a RTRM a memory transfer con-
troller supporting bulk transfer between the different
address spaces of the host and the RTRM should be
implemented.
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