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Mapping of Tissue Oxygenation using Quantitative BOLD Methods: Stability
under non-static conditions
A method to quantify the susceptibility difference (∆χ) between venous blood and sur-
rounding tissue by utilization of a tissue model has been previously used for simultaneous
estimation of relative blood volume fraction (ζ) and the blood oxygenation level. In this
work, the previously neglected effect of diffusion on the MR signal formation in the presence
of a cylinder network was studied in simulations and validated in phantom measurements.
To mimic a capillary network, phantoms were constructed by randomly coiling polyamide
fibers (� = 27 − 245µm, ∆χ = 1.0 − 1.3 ppm, ζ = 2 − 5 %). Additional measurements
of ∆χ between a single polyamide string and solutions of different NiSO4 concentrations
were performed. The relation found, ∆χ = 0.23 · [NiSO4] + 0.31 ppm, was used to vali-
date the results obtained with the network phantoms. Simulations showed that in order
to keep the relative error in ∆χ below 10 % a SNR of 600 is required. If, however, ζ is
previously known ∆χ can be estimated with 3.2 % error already at a SNR of 200. Fur-
thermore, it was found that neglecting the effect of diffusion causes an underestimation of
∆χ of approximately 13 %. The sensitivity of the method to variation in the oxygenation
level in vivo was demonstrated by modification of the oxygenation level using caffeine.
An increase in ∆χ of 0.12 ± 0.04 ppm could be measured, 1 hour after intake of 200mg
caffeine. This sensitivity to oxygenation changes is encouraging for further studies of the
the theoretical cylinder network model as a tool for MR-based in vivo quantification of
tissue oxygenation.

Bestimmung der Gewebe-Oxygenierung mittels quantitativer BOLD Metho-
den: Stabilität bei nicht-statischen Bedingungen
In vorherigen Arbeiten wurde eine Methode verwendet, um die Suszeptibilitätsdifferenz
(∆χ) zwischen venösem Blut und umgebendem Gewebe zu quantifizieren. Hierbei wurde
ein Gewebemodell zur gleichzeitigen Bestimmung des relativen Blutvolumen (ζ) und der
Gewebe-Oxygenierung verwendet. In dieser Arbeit wird der bisher vernachlässigte Effekt
der Diffusion auf die MR Signalbildung in der Gegenwart eines Zylindernetzwerks mit Hilfe
von Simulationen untersucht und in Phantommessungen validiert. Um ein Kapillarnetz
nachzubilden wurden Phantome aus zufällig orientierten Polyamidfäden (� = 27−245µm,
∆χ = 1.0−1.3 ppm, ζ = 2−5 %) konstruiert. Zusätzlich wurde ∆χ zwischen einem einzel-
nen Polyamid-Faden und Lösungen verschiedener NiSO4 Konzentrationen gemessen. Der
gefundene Zusammenhang, ∆χ = 0.23 · [NiSO4] + 0.31 ppm, wurde zur Validierung der
mit dem Netzwerk-Phantom gemessenen Resultate verwendet. Durch Simulationen wurde
gezeigt, dass ein SNR von 600 benötigt wird, um einen relativen Fehler von ∆χ kleiner
als 10 % zu erreichen. Wenn jedoch ζ vorher bekannt ist, kann ∆χ schon bei einem SNR
von 200 mit 3.2 % relativem Fehler bestimmt werden. Des Weiteren wurde gezeigt, dass
die Vernachlässigung der Diffusion eine Unterschätzung von ∆χ um etwa 13 % verursacht,
wenn der Gefässdurchmesser von der Größenordnung der Diffusionslänge ist. Die Sensitiv-
ität der Messmethode auf Änderung der Oxygenierung in vivo wurde durch Veränderung
der Oxygenierung mit Hilfe von Koffein demonstriert. Eine Stunde nach der Einnahme
von 200mg Koffein konnte ein Anstieg von ∆χ um 0, 12 ± 0.04 ppm gemessen werden.
Diese Sensitivität auf Veränderungen der Oxygenierung ist vielversprechend für weitere
Studien des theoretischen Zylinder-Netzwerk-Modells, als Werkzeug für eine MR-basierte
in vivo Quantifizierung der Gewebe-Oxygenierung.
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I
Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique used to produce,
spatially resolved, anatomical and functional images. The images are created using a
powerful magnetic field accompanied by a beam of radio waves. Positioned in an external
magnetic field, the hydrogen nuclei in the body behave like small magnets and line up
with the magnetic field. The successive radio waves supply energy to the nuclei that
disturbs their alignment. After the radio beam is switched off, the nuclei return to their
steady state. By doing so, the nuclei produce a faint signal which can be detected, and
subsequently localized.

One of the great advantages of MRI, compared to conventional x-ray or computed to-
mography scans, is the fact that exposure to x-ray radiation is avoided. During an x-ray
examination, high energetic photons are produced and used for imaging. A large part of
the energy is deposited in the examined object, which may lead to DNA damage. In MRI,
electromagnetic radiation, no more energetic than normal radio waves is used together
with a very strong magnetic field. Neither static magnetic fields nor radio waves have
any known side effects for humans1. Furthermore, MRI has the ability to give different
information about structures in the body than can be seen with an X-ray, ultrasound, or
computed tomography scan. One of the most important attributes of MRI, which dis-
tinguishes it from all other human imaging techniques, is the high quality of soft tissue
contrast. In standard MRI, the contrast is given by the difference in density of the ob-
served nucleus, and by the, so-called, relaxation times, which describes how fast the nuclei
return to their steady state after excitation. Those parameters can be arbitrarily mixed
using numerous imaging techniques, producing a great variety of contrasts.

The relaxation times of an atomic nucleus are determined by the local magnetic field it
experiences. In turn, the local magnetic field is affected by a large number of parameters,
including blood flow, diffusion and other physiological phenomena. Hence, MRI offers,
in addition to an anatomical imaging method, a noninvasive way to access functional
parameters. In 1988, Seiji Ogawa and his colleagues discovered that small veins in the
brain give extra contrast to the image. The phenomenon was named Blood Oxygenation

1Even though radio waves do not have any direct side effects, intensive RF exposure can cause heating
of the body. For this reason, limits that restrict radio frequency heating effects are present in the clinic.
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2 I. INTRODUCTION

Level Dependent (BOLD) effect, since the signal change were found to be dependent on the
oxygenation level in the veins. The explanation for this effect is that deoxyhemoglobin in
blood, as present in the veins, is paramagnetic, in contrast to the surrounding tissue, and
therefore distorts the magnetic environment of the surrounding water molecules. Hence,
information about the oxygenation of the tissue could be attained by quantification of
this distortion. Since its discovery, the dynamic properties of the BOLD effect have been
widely studied in, so-called, functional MRI experiments of the brain, i.e. to measure the
hemodynamic response related to neural activity. However, the BOLD effect during the
baseline, i.e., without stimulation, state of the brain has not received much attention.

However, quantitative mapping of oxygen supply in the brain during resting state is of great
interest since such maps can provide important information about tissue viability. Oxygen
partial pressure is an important parameter in the metabolic processes of cells and plays a
crucial role in many pathophysiological conditions. Oxygenation is known to be a central
factor for the aggressiveness and metastasis tendency of cancer tumors [Brown und Giaccia,
1998]. In addition, hypoxia is a major obstacle to tumor therapy and is associated with
poor outcome for cancer patients [Molls et al., 1998]. The practical diagnostic possibilities
for quantification of cerebral blood oxygenation are few although several measurement
methods exist. The available methods are either strongly invasive (oxygen electrodes) or
require a toxic contrast agent (19F ) and are therefore almost exclusively used in animal
experiments. Near infrared spectroscopy can be used for non-invasive measurements of
blood oxygenation, however, only to scan cortical tissue [Malonek et al., 1997]. Positron
Emission Tomography (PET) has problems with the short half-life of the tracers used for
oxygenation measurements. In addition, PET is expensive and may not be so commonly
available [Ito et al., 2004].

Yablonskiy und Haacke [1994] proposed a theoretical model predicting the MR signal
dephasing in brain parenchyma in presence of deoxyhemoglobin. The signal decay depends
on the vascular network, which can be characterized by its relative volume fraction, and
the amount of oxygen in the blood. Since then, this model has been extended to include
diffusion effects [Kiselev und Posse, 1999], as well as effects arising from extracellular fluid
and blood [He und Yablonskiy, 2007]. An independent verification of the practical use of
the diffusion theory has not been carried out yet.

The aim of this work was to verify and investigate the stability of the above mentioned
model under non-static dephasing conditions. Simulations and phantom experiments were
performed as well as initial in vivo measurements.



II
Basic principles

2.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) was independently discovered by Purcell et al.
and Bloch et al. in 1946 [Purcell et al., 1946; Bloch, 1946]. In 1973, Lauterbur found
how magnetic resonance could be used to produce spatially resolved images by application
of linear magnetic field gradients [Lauterbur, 1973]. His discovery builds the base for the
modern Magnetic Resonance Imaging (MRI). Both discoveries have been awarded with the
Nobel price. In this chapter, a brief introduction to the phenomena of Nuclear Magnetic
Resonance will be given. A more detailed description of the theory of NMR can be found
in the standard works of Abragam [1994] or Slichter [1992].

2.1.1 Nuclear Spin and Magnetic Moment

The physical basics of NMR are that all nuclei with an uneven number of nucleons posses
an inherent angular momentum, also referred to as nuclear spin, ~I. This nuclear spin has
a related magnetic moment ~µ, proportional to ~I,

~µ = γ~I. (2.1)

The proportionality constant γ is the so-called gyromagnetic ratio, a characteristic measure
for every nucleus (Table 2.1).

In theory, all nuclei with a non-zero spin can be used for NMR. In practice, however, the
hydrogen nucleus 1H(s = 1/2) is almost exclusively used for MRI on humans, even though
other nuclei, i.e. 23Na and 31P , have gained popularity during the last years. The favoring
of 1H over other nuclei results from the high abundance in the human body as well as the
very large gyromagnetic ratio of 1H (see Table 2.1). Henceforward, the discussion will be
mainly focused on imaging of hydrogen protons.

3



4 II. BASIC PRINCIPLES

.
Table 2.1. List of selected nuclear species with their spins (in units of ~), their associated magnetic
moments (in units of a nuclear magneton, µn), gyromagnetic ratios (in units of rad · s−1 · T−1), and
their concentrations in human body. Table adopted from Haacke et al. [1999]

Nucleus Spin Magnetic Moment γ Concentration in Human Bodya

1H 1/2 2.793 2.68 · 108 88M
23Na 3/2 2.216 0.71 · 108 80mM
31P 1/2 1.131 1.08 · 108 75mM
17O 5/2 −1.893 −0.36 · 108 16mM
19F 1/2 2.627 2.52 · 108 4µM

a The concentration of hydrogen (88M) refers to tissue with 80 % water content, as gray matter
in the brain, but will vary with tissue type.

The nuclear spin can be characterized by two dimensionless quantum numbers: The spin
quantum number s, and the spin magnetic quantum number ms. The spin quantum
number can be non-negative integers or half-integers, and is related to the magnitude of
the nuclear spin,

|~I| = ~
√
s (s+ 1) with s = 0,

1
2
, 1,

3
2
, ... (2.2)

where ~ is Planck’s constant (1.055 · 10−34m2kg/s). Furthermore, the spin magnetic
quantum number is related to the orientation of the nuclear spin. Given an arbitrary
direction z (usually determined by an external magnetic field), the z-projection of the
nuclear spin is given by,

Iz = ms~, (2.3)

where ms can have values between −s and s, in integer steps. This give rise to, in total,
2s+ 1 nuclear spin states. If no external field is present, those states are degenerate, i.e.,
they are the same. However, the degeneracy will disappear as soon as the nucleus interacts
with an external magnetic field ~B (Figure 2.1). The corresponding Hamiltonian for this,
so-called, Zeeman-effect is,

H = −~µ · ~B = −γ~I · ~B. (2.4)

With the external magnetic field in the z-direction, ~B = (0, 0, B0), the Hamiltonian reduces
to,

H = −γIzB0 (2.5)

In analogy with other angular momentum operators, 2s + 1 discrete, equidistant energy
levels Em arise as solutions to the eigenvalue equation of the Hamiltonian in Eq. 2.5
(Figure 2.1),

Em = −γms~B0. (2.6)

The energy difference ∆Em between two adjacent levels is given by,

∆Em = γ~B0 = ~ω0. (2.7)

Induction of transitions between the single Zeeman-levels can be achieved by application
of a, to main field perpendicular, alternating field with the so-called Larmor frequency ω0,

ω0 = γB0. (2.8)
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E₀ ΔE = γħB₀

ms = -½

ms = +½

B₀ = 0 B₀ ≠ 0

Figure 2.1. Zeemann splitting for a spin I = 1/2 system. When an external magnetic field
is applied, the degeneracy of the energy levels disappears and two discrete energy levels will be
present. The energy gap ∆E is determined by the magnetic field strength B0.

This phenomenon, which is based on interaction between high frequency fields and the
nuclear magnetic moment, is called nuclear magnetic resonance.

2.1.2 Macroscopic Magnetization

In medical magnetic resonance imaging the typical size of a measured volume is on the
order of 1mm3, a volume that contains about 7 · 1019 protons for water equivalent tissue.
For such a large number of spins, a macroscopic magnetization, ~M0, can be assumed as
the sum of the expectation-values for the single magnetic moments, 〈µi〉, per unit volume,
for all N spins in the measured volume,

M0 =
N∑
i=1

〈µi〉
V

=
N

V
·

s∑
ms=−s

pmγ~ms. (2.9)

The right of Eq. 2.9 expresses the magnetization in terms of the population probability,
pm, of the Zeeman levels. At thermal equilibrium, these probabilities are described by a
Boltzmann distribution,

pm =
1
Z
e−Em/kBT , Z =

∑
m

e−Em/kBT , (2.10)

where kB is the Boltzmann constant (1.38 · 10−23m2kg/s2K) and T is the absolute tem-
perature. If an external field is applied, there will be a slight polarization of the spin
angular momentum vector along the direction of the magnetic field. The surplus of spins
in this parallel orientation, ∆n, can be calculated as,

∆n = N · tanh
(
γ~B0

2kBT

)
. (2.11)

Since kBT >> γ~B0, Eq. 2.11 can be expanded to first order. The macroscopic magneti-
zation in thermal equilibrium can then be calculated as,

~M0 = ~µ ·∆n ≈ ~µN γ~B0

2kBT
. (2.12)

The population ratio between the two levels is of the order of 10−6 for protons at room
temperature.



6 II. BASIC PRINCIPLES

2.1.3 Motion of Magnetic Moment in an External Field

In case of thermal equilibrium, the macroscopic magnetization will be directed along the
main magnetic field and its temporal evolution will be zero. If the equilibrium is disrupted
the temporal evolution can be described with the following equation,

d ~M(t)
dt

= ~M(t)× γ ~B(t). (2.13)

The macroscopic magnetization describes a precession motion in a constant magnetic field,
like a spinning top in the gravitation field.

2.1.4 Resonance Absorption and Rotating Frame of Reference

By application of an electromagnetic, time dependent field, ~B1, transitions between the
Zeeman levels can be induced, providing that the oscillating frequency agrees with the
Larmor frequency ω0. The resulting change of the macroscopic magnetization is described
by Eq. 2.13.

B₁
B₁

B₀

x

y

z

x’

y’

M

Beff

M

z’ = z

x’ y’

α

Figure 2.2. Motion of the magnetization vector in the laboratory and rotating coor-
dinate system. In the laboratory system (left) the magnetization ~M precess around the total
magnetic field Beff which is the sum of the static magnetic field B0 and the time dependent B1

field. By implementation of a rotating system (right) with the same frequency as B1, the motion
of the magnetization can be described as a rotation around the B1 field.

With a main magnetic field, B0, in z-direction, a transverse, circularly polarized, alternat-
ing field B1 can be described by,

~B1(t) = B1 · (cos(ωRF · t), sin(ωRF · t), 0). (2.14)

By superposition of the main magnetic field and such an alternating field, Eq. 2.13 becomes
explicit time dependent,

d ~M(t)
dt

= ~M(t)× γ

B1 cos(ωRF · t)
B1 sin(ωRF · t)

B0

 . (2.15)
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The time dependency can be eliminated by introduction of a rotating frame of reference
(x′, y′, z′) that rotates around the z-axis (z = z′) with the frequency ωRF . Equation 2.15
then simplifies to (B1 is directed in x-direction, without loss of generality),

d ~M ′(t)
dt

= ~M ′(t)× γ

 B1

0
B0 − ωRF

γ

 = ~M ′(t)× γ ~Beff . (2.16)

Again, this is a precession according to Eq. 2.13, but now around the effective magnetic
field, Beff . If the frequency, ωRF , agrees with the Larmor-frequency, ω0, the contribution
in z-direction will disappear and Beff will be directed along the x’-axis. Hence, a precession
motion about the Beff field tips the magnetization vector by an angle α relative to the
direction of the main magnetic field (Figure 2.2). The flip angle α is given by the amplitude
and the duration of the B1-field,

α = γ

t∫
0

B1

(
t′
)
dt′. (2.17)

Typical durations for 90◦ or 180◦ flip angles are a few milliseconds.

2.1.5 Relaxation in a Homogeneous Magnetic Field

According to the equation of movement (Eq. 2.13), a macroscopic magnetization vector
rotating in the transversal plane should stay in this state without returning to the original
steady state. However, this is only the case for an ideal collection of spins. In a real
system, a return of the magnetization to the original state will be observed. Investigation
of this lead Bloch [1946] to the (phenomenological based) Bloch equations, which are an
extension of the classical equation of movement. It is assumed that the longitudinal and
transverse components of the magnetization, after a disturbance, strive after their steady
states M0 and 0, respectively. For the three components of the magnetization vector, the
following equations are valid,

dMx

dt
= γ

(
~M × ~B

)
x
− Mx

T2
, (2.18)

dMy

dt
= γ

(
~M × ~B

)
y
− My

T2
, (2.19)

dMz

dt
= γ

(
~M × ~B

)
z
− M0 −Mz

T1
. (2.20)

The two introduced time constants, T1 and T2, characterize the relaxation of the mag-
netization. The constant T1 is called longitudinal or spin-lattice relaxation time, and the
constant T2 is called transverse or spin-spin relaxation constant.
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2.1.5.1 Spin-Lattice Relaxation

After the longitudinal magnetization has been flipped into the transverse plane, it starts
to return to the original state. As the spin system exchanges the excess energy with the
surroundings (i.e., the lattice) during this process, it is referred to as spin-lattice relaxation
(T1 relaxation). The thermal motion of the molecules creates time fluctuating magnetic
fields, which induce transitions between the spin states whenever they agree with the
resonance frequency. The so-called spin-lattice relaxation rate R1 = 1/T1 is a measure
for the transition probability between the Zeeman-levels [Slichter, 1992].

Under the assumption of a homogeneous static magnetic field in the z-direction, the Bloch
equation for the longitudinal magnetization (Eq. 2.20) simplifies to a first order linear
differential equation,

dMz

dt
= −M0 −Mz

T1
. (2.21)

Solving Eq. 2.21 yields the following expression for the longitudinal magnetization,

Mz(t) = M0

(
1− e−t/T1

)
+Mz(t0)e−t/T1. (2.22)

Equation 2.22 describes the so-called free relaxation of the longitudinal component of the
magnetization in an ideal probe without intrinsic field inhomogeneities in a homogeneous
magnetic field. The relaxation process is shown schematically in Figure 2.3.

x’

y’

z’

Mz

z’

y’

x’

Mz

(1)

(2)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time (number of T1 periods)

M
z/M

z(0
)  Mz ∝ 1-e-t/T1

(1) (2)

Figure 2.3. Spin-Lattice Relaxation. Directly after a 90◦ excitation pulse, no longitudinal
magnetization is present. It returns to its equilibrium state with the spin-lattice relaxation time
constant, T1.

2.1.5.2 Spin-Spin Relaxation

The spin-spin relaxation (T2 relaxation) describes the dephasing of the transverse com-
ponent of the magnetization. Due to Brownian molecular movement, quickly varying field
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in the vicinity of every spin in a probe are created. As a result, not all spins precess with
the same frequency and the initial phase coherence will be lost over time. This will be
observed as an exponential decay of the macroscopic transversal magnetization. The char-
acteristic spin-spin relaxation rate R2 = 1/T2 is introduced as measure for the decrease
of the transversal component.

With a homogeneous magnetic field in the z-direction, the transverse relaxation can be
expressed as follows (cf. Eq. 2.18 and 2.19),

dMxy

dt
= −iγB0Mxy −

Mxy

T2
. (2.23)

The solution to this first order differential equation is given by,

Mxy(t) = Mxy(0)e−iγB0t−t/T2. (2.24)

Equation 2.24 describes the free relaxation of the transverse component of the magneti-
zation. The decay of the transversal component is called free induction decay (FID) and
is shown schematically in Figure 2.4.

x’

y’

z’

Mxy

z’

y’

x’
Mxy

(1)

(2)

0 1 2 3
-1

-0.5

0

0.5

1

Time (number of T2 periods)

M
xy

/M
xy

(0
)

Mxy ∝ e-t/T2

(1) (2)

Figure 2.4. Spin-Spin relaxation. Due to dephasing of the individual spins, the magnitude of
the transverse magnetization decreases after excitation. The time constant that describe the decay
of the transverse magnetization is called the spin-spin relaxation time, T2.

2.1.6 Measurement Signal in NMR experiments

The signal measured in an NRM experiment is directly proportional to the transverse
component of the magnetization, Mxy. The oscillating transverse component induces a
voltage proportional toMxy in a receiving coil positioned transversely to the main magnetic
field. The longitudinal component, Mz, cannot be directly measured, which means that
the signal is given by Eq. 2.24.
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The detection of the transverse magnetization is often performed by means of two coupled
coils with a constant phase relationship. Hence, it is convenient to represent the transverse
magnetization as a complex quantity,

Mxy = Mx + iMy ≡ |Mxy| eiφ. (2.25)

In reality, the signal is demodulated after detection by multiplication with a sine and
a cosine function, each synchronized with the Larmor frequency. As a result, only the
exponentially decaying envelope, as shown in Figure 2.4, is measured.

Since the spin density can fluctuate spatially, the signal is a function of position. However,
in an MRI experiment a mean signal from the whole measurement volume is detected,
which makes integration over the volume necessary,

S(t) ∝
∫
V

Mxy(t0)eiγB0t · e−t/T2d~r. (2.26)

2.1.7 Relaxation in Inhomogeneous Magnetic Fields

In addition to the quickly varying local fields that cause T2 relaxation, local magnetic
field variations can be present due to imperfections in the main magnetic field or due to
magnetic, non-homogeneous, probes that are placed in the field.

The dependency of the magnetization, ~M , on the magnetic field strength, ~B0, can be
described by the susceptibility, χ,

~M = χ ~B0. (2.27)

For most materials, χ is on the order of a few parts per million (ppm), and may be either
negative (diamagnetic materials) or positive (paramagnetic materials).

In the case of probes that consist of areas with different magnetic properties, disconti-
nuities in the susceptibility will be present, and the magnetic field inside the probe will
be position dependent. The exact form of the magnetic field distribution, Bs(~r), depends
on the geometrical position of the areas with different magnetic properties within the
medium, and can be described as a function of the susceptibility difference, ∆χ, between
the compartments,

Bs(~r) = f(~r,∆χ). (2.28)

Those field variations leads to an additional phase in the local magnetization, Mxy, pro-
portional to the local magnetic field and, assuming that no diffusion effects are present,
linearly increasing with time,

φ(~r, t) = γBs(~r)t. (2.29)

This creates a phase distribution within the probe. According to Eq. 2.26, the total
measured signal is then given by,

S(t) ∝
∫
V

Mxy(t0)eiγBs(~r)t · e−t/T2d~r. (2.30)
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Hence, in a magnetic inhomogeneous medium, an additional dephasing of the spins is
present, which shortens the relaxation time. This supplementary relaxation is described
by the time constant T2’. Equation 2.30 now reduces to,

S(t) ∝ e−t/T2′ · e−t/T2. (2.31)

The time constant T2’ is referred to as the reversible relaxation time since the signal decay
it describes can be reversed if the magnetization is inverted using a 180◦-pulse (see section
2.1.8). The effective relaxation time, T2∗ is defined as,

1
T2∗

=
1
T2

+
1
T2′

. (2.32)

This mono-exponential signal decay is only valid for a Lorentzian distribution of resonance
frequencies, which for instance is produced by randomly distributed magnetic dipoles
[Brown, 1961]. Other geometries such as vascular networks or single blood vessels lead to
non-mono-exponential signal decays and will be discussed later in this work.

2.1.8 Spin Echo

In the beginning of MR history, it was difficult to get a measurable signal due to inhomo-
geneous magnetic fields that caused very short T2∗ relaxation times. However, the two
dephasing processes that destroy the measurement signal (spin-spin interaction and field
inhomogeneities) are fundamentally different. The spin-spin interaction is a random and
irreversible process. On the contrary, the magnetic field inhomogeneities have a constant
static influence on the spin system and can theoretically be accounted for. In the year
1950, Hahn published the first spin echo (SE) measurement [Hahn, 1950], and offered with
this a tool to correct the influence of static inhomogeneities. A 180◦ RF pulse is applied
at some point in time (TE/2) after the magnetization has been flipped into the transverse
plane by a 90◦-pulse. In the transverse plane, the individual magnetic moments immedi-
ately start to dephase. The subsequent 180◦-pulse flips the individual spins around one of
the transverse axes, in a mirror-like fashion. After an additional time, the spins once again
are back in phase, rebuilding the FID and resulting in an echo at a time TE . The result
is a measurement insensitive to magnetic field inhomogeneities and a measurement signal
that is dependent on the local T2 of the probe. This sequence of events is summarized in
Figure 2.5.
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Figure 2.5. Spin Echo formation. The effect of a 180◦ refocusing pulse on the spin system
during spin echo generation. The figure is explained in the text.

2.2 Magnetic Resonance Imaging

In this section, the techniques used to produce spatially resolved images with magnetic
resonance are briefly outlined. For further reading Haacke et al. [1999] and Vlaardinger-
broek und den Boer [2003] are recommended.

2.2.1 Spatial encoding

In order to reconstruct an image, it is necessary to encode the emitted signal so that
its components can be related to the spatial position of the nuclei that contribute to
them. This is achieved by a position dependent modification of the signal phase. As
described in section 2.1.3, the precession frequency has a linear dependence on the external
magnetic field. Hence, a position dependent modification of the phase can be achieved
using additional linear gradient fields superimposed on the main magnetic field. The
electromagnetic fields used for this purpose are parallel to the external magnetic field,
but have a linear field strength gradient in one spatial direction. Consequently, they are
referred to as gradient fields, ~G, or just gradients. In MRI three gradients are generally
used, each with a gradient strength that changes along one spatial direction (x,y,z),

~G =
(
δBz
δx

,
δBz
δy

,
δBz
δz

)
. (2.33)
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This gives the following resonance condition,

ω(~r) = γB(~r) = γ(B0 + ~r · ~G). (2.34)

By application of gradient fields, the resonance frequency for every sub-volume, voxel,
becomes dependent on its position. The individual voxel signal can then be reconstructed
using frequency analysis of the NRM signal. Due to the use of frequency analysis, such an
imaging method is entitled Fourier imaging. 2D Fourier imaging has three spatial encoding
steps, one for every spatial direction. They are often referred to as slice selection, phase
encoding and frequency encoding.

2.2.1.1 Slice Selection

The slice selection gradient is used to selectively excite a two-dimensional slice in the
three-dimensional measurement volume. This is done by simultaneous application of a
gradient field, Gz, perpendicular to the slice orientation, and a radio frequency (RF) pulse
with a narrow bandwidth ∆ωRF . The magnetic field along the slice selection direction
(here z-direction) is then,

Bz(z) = B0 + z ·Gz. (2.35)

Since the angular frequency of the two fields is superimposed,

ω(z) = ω0 + ωG(z) = γ · (B0 + z ·Gz), (2.36)

the Larmor frequency will be dependent on the position along the z-axis. Hence, the
resonance condition from Eq. 2.36 is satisfied only for spins that precess with a frequency
that is contained in the bandwidth of the excitation pulse (Figure 2.6). The slice thickness,
∆z, is controlled by the amplitude of the gradient field and the bandwidth of the RF pulse,
and is given by,

∆z =
|ω(z1)− ω(z2)|

γGz
=

∆ωRF
γGz

. (2.37)

The method described above is called slice selective excitation. If the RF pulse is applied
without an applied slice selection gradient, the whole volume is excited, a method referred
to as global excitation.

2.2.1.2 Phase Encoding

In order to spatially resolve the excited slice to generate an image, a gradient is applied
for a certain time, ty, in a direction parallel to the slice (here y-direction). During this
time the precession frequency, and with this the accumulated phase, is dependent on the
position along the y-axis. For constant gradients, the following is valid,

ω(y) = γ · (B0 + y ·Gy). (2.38)

After the gradient is switched off, the magnetization continues to precess with the initial
Larmor frequency. However, the accumulated phase remains,

Mxy = |Mxy| · e
i

ty∫
0

ω(t)dt
= |Mxy| · eiφ. (2.39)
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Figure 2.6. Slice selective excitation. A RF pulse with bandwidth, ∆ωRF , together with the
slice selection gradient, Gz, defines the slice thickness ∆z.

The signal cannot be spatially resolved using only one phase encoding step, because the
signal will not contain different frequencies in y-direction. To overcome this, the phase
encoding step has to be repeated many times with different Gy.

2.2.1.3 Frequency Encoding

During the signal readout an additional gradient is switched in the last spatial direction
(here x-direction). The precession frequency now depends on the location along the x-
direction,

ω(x) = γ(B0 + x ·Gx). (2.40)

The signal received during the readout time contains several frequencies, which allows
positioning of the signal origin along the x-axis using Fourier analysis (Figure 2.7).

2.2.2 Image reconstruction and k-space

The measured signal in a slice selective 2D imaging experiment can be described in total
analogy to the free induction decay in a NMR experiment (Eq. 2.26). The signal is propor-
tional to the volume integral of the complex transverse magnetization in the measurement
volume, know represented by the excited slice. Furthermore, the phase factors from the
phase and frequency-encoding gradients have to be considered,

S(t, G) = S0

x

slice

Mxy(t0)e
iγ

(
ty∫
0

Gy(τ)ydτ+
tx∫
0

Gx(τ)xdτ

)
dxdy. (2.41)

Let us define two wave numbers, ky and kx, as

ky = γ

ty∫
0

Gy(τ)dτ, (2.42)
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Figure 2.7. Frequency encoding. By application of the frequency encoding gradient, Gx,
the local precession frequency is dependent on the position along the x-direction while the signal
amplitude (A) is proportional to the total amount of protons in each sample. The measured signal
is the sum of the signal coming from all samples, but when applying Fourier analysis the individual
components can be isolated.

kx = γ

tx∫
0

Gx(τ)dτ. (2.43)

Combining Eq. 2.42 and Eq. 2.43 with Eq. 2.41 yields the following signal expression for
a 2D MRI experiment,

S(t,~k) = S0

x

slice

Mxy(t0)ei(ky ·y+kx·x)dxdy. (2.44)

According to Eq. 2.44, the data that are sampled using frequency and phase encoding
can be interpreted as sampling of the wave numbers ky and kx in the Fourier space,
frequently referred to as the k-space [Brown et al., 1982; Ljunggren, 1983; Twieg, 1983].
The trajectory in k-space is determined by the time modulation of the gradients, according
to Eq. 2.42 and Eq. 2.43. The desired spatial distribution of the transverse magnetization
can be obtained by taking the inverse Fourier transform of the raw data (Eq. 2.44)

Mxy(~r) =
1

S0 · (2π)2
·
x

slice

S(t,~k) · e−i(kxx+kyy)dkxdky. (2.45)

This is the fundamental equation of the spatially resolved MRI. Since Mxy is a complex
quantity, it is possible to reconstruct magnitude images as well as phase images.

2.2.2.1 k-space characteristics

In practice, it is not possible to cover the whole k-space in a continuous manner, but a
discrete number of points have to be sampled. The discrete sampling can be described
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as multiplication of the continuous signal with a discrete sampling function u(k). The
convolution theorem in Fourier theory states that the Fourier transform of a product equals
the convolution of the Fourier transforms. Hence, the reconstructed image, Msample(~r), is
the convolution of the inverse Fourier transform, U(~r), of the sampling function and the
original object, M(~r),

Msample(~r) = M(~r)⊗ U(~r). (2.46)

Cartesian sampling of Nx data points with a distance ∆kx of one line in k-space is accom-
plished using a frequency encoding gradient with constant amplitude Gx and equidistant
sampling time ∆t. Furthermore, the discrete sampling in phase encoding direction is
carried out, as mentioned in 2.2.1.2, by changing the amplitude of the phase encoding
gradient stepwise with ∆Gy. The sampling density in k-space is then given by

∆kx = γGx∆tx (2.47)

∆ky = γ∆Gyty (2.48)

The sampling function can be described by an infinite set of equally spaced δ-functions,
the Dirac comb. The measured signal is then,

Ssample(t,~k) = S(t,~k)
+∞∑

n=−∞
δ(k − n∆k). (2.49)

The Fourier transform of a Dirac comb with period ∆k is yet another Dirac comb, but
now with the period 1/∆k. This results in the following expression for the reconstructed
distribution of the magnetization,

Msample(~r) = Mxy(~r)⊗
+∞∑

n=−∞
δ(x− m

∆k
). (2.50)

Hence, the image reconstruction results in an infinite series of images, reoccurring at
the positions corresponding to the positions (1/∆k) of the δ-functions. To avoid image
overlapping (so-called aliasing), 1/∆k has to be chosen larger than the field of view (FOV),

∆k ≤ 2π
FOV

. (2.51)

Combining Eq. 2.47 and 2.48 with Eq. 2.51, and using FOVx = Nx∆x and FOVy = Ny∆y,
yields the following sampling criteria,

∆tx ≤
2π

γGxNx∆x
(2.52)

∆Gy ≤
2π

γtyNy∆y
(2.53)
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These requirements are equivalent to the Nyquist sampling theorem, stating that exact
reconstruction of a function is possible only when the function is sampled at a rate larger
than, or equal, twice the maximal signal frequency [Shannon, 1949]. Hence, the resolution
is determined by the maximum value of the k-space vector. The image pixel size is given
by,

∆x =
2π

γGx∆txNx
(2.54)

∆y =
2π

γ∆GytyNy
(2.55)

The image resolution can be increased by using a stronger readout gradient Gx or by
increasing the sampling time ∆tx, and if the number of samples Nx is kept constant,
this will reduce the FOVx. Similarly, FOVy will be reduced if ty or Gy is increased
while keeping Ny constant. Hence, to avoid aliasing, the number of samples has to be
increased accordingly with image resolution. The characteristics of k-space are presented
in Figure 2.8.

0

0

0

0

FOVx ∝ 1/∆kx

∆x ∝ 1/(2kx,max)∆kx
+ kx,max  - kx,max

+ ky,max

- ky,max

∆ky

FOVy ∝ 1/∆ky

∆y ∝ 1/(2ky,max)

FFT

Figure 2.8. Schematic view of the concept of k-space. The signal measured at specific
values of kx and ky is arranged in a matrix, the so-called k-space. Fourier analysis transforms the
k-space to the image space.

2.2.2.2 Point Spread Function

In addition to the discrete sampling, we have to work with finite spatial frequencies instead
of covering the k-space in an infinite manner. Again, this can be expressed mathematically
as multiplication of the, in theory, infinite raw data with a certain window function, hω(k),

Ssample(k) = S(k) · hω(k). (2.56)

The reconstructed magnetic field distribution is then,

Msample(~r) = M(~r)⊗Hω(~r). (2.57)
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The inverse Fourier transformation of the window function is the so-called point spread
function (PSF). Using a rectangular window function, having the width of the sampled
frequency interval, results in a sinc-shaped PSF. This means that each point of the mea-
suring volume is imaged as its convolution with a sinc-function. The distinct side lobes
of the sinc-function can appear as Gibbs ringing artifacts at sharp edges in the image
[Folland, 1992].

2.2.3 Imaging Methods

The wave numbers (Eq. 2.42) that build up the k-space can be sampled in, basically,
any desired trajectory by variation of the strength and the duration of the gradients.
However, most of the pulse sequences used, samples the data on a Cartesian grid because
this enables simple and fast image reconstruction. There are two fundamental types of
MR pulse sequences; the spin echo and the gradient echo. All other MR sequences are
variations of these two. The basic methods behind the two sequence types are presented
in the following sections.

2.2.3.1 Spin Echo

Figure 2.9 shows a standard spin echo imaging sequence (left picture). The combination
of the 90◦ pulse and the slice selection gradient define the image slice, and flips the magne-
tization in this slice to the transverse plane. Subsequently, the phase encoding gradient is
switched in phase encoding direction (Gy) simultaneously as the so-called dephasing gra-
dient is switched in frequency encoding direction (Gx). The 180◦-pulse is the refocusing
pulse given at time TESE/2. The maximum echo signal occurs at a time TESE . The signal
read-out is accomplished using a rephasing gradient in frequency encoding direction. The
sequence is repeated Ny times, with Ny different values for the phase encoding gradient.
The time between successive excitations is called repetition time (TR) . After the readout,
the longitudinal magnetization has to recover to its equilibrium state before the sequence
is repeated. Therefore, the major disadvantage of T2 weighted spin echo sequences is the
demand of long TR, resulting in long acquisition times.

To the right in figure 2.9, a schematic description of how k-space is mapped during a
SE acquisition is shown. The 90◦ pulse brings us to the k-space center (A). The phase
encoding gradient lets us travel in ky direction in k-space, and by choosing a specific
gradient strength, one particular ky-line can be selected. Simultaneously, the frequency-
encoding gradient transports us in kx direction in k-space and brings us to the far end of
the selected ky-line (B). The 180◦ pulse that reverses the effect of field inhomogeneities
also reverses the effect of the gradients (B → C). The read out gradient following the
180◦ pulse initiate the sampling of this k-space line (C → D). Repeating this sequence for
different amplitudes of the phase encoding gradient results in a fully sampled k-space.



2.2. MAGNETIC RESONANCE IMAGING 19

90o
180o

RF

Gz

Gy

Gx

Signal

TESE

TR

90o

kx

ky

0

0
A

B

C D

Figure 2.9. Schematical Spin Echo timing sequence (left) with corresponding k-space
map (right). The figure is explained in the text.

2.2.3.2 Gradient Echo

Instead of using a 180◦-pulse to rephase the spins into an echo, it is possible detect the
signal direct in the FID domain. In a gradient echo (GRE) sequence, the signal is dephased,
by means of gradients, before the signal readout, and subsequently refocused during the
signal readout, creating an echo at time TE. Since the additional phase accumulated by a
spin packet is direct proportional to the time integral of the gradient, the echo will turn
up when the areas under the gradient-time curve equals zero. One major advantage of
the GRE technique is that an RF excitation pulse that partly flips the net magnetization
vector into the transverse plane can be used. As a result, the longitudinal magnetization
will recover to equilibrium much more rapidly, and a faster imaging procedure is possible.
However, the gain in time is on the expense of SNR since a smaller flip angle produces
less transverse magnetization and therefore less signal.

Figure 2.10 shows a standard GRE imaging sequence together with a schematic description
of how k-space is mapped during a GRE acquisition. A slice selective excitation is accom-
plished using a slice selection gradient and a RF pulse, which typically has a rotation angle
between 10◦ and 90◦. Subsequently, a phase encoding gradient is applied, varied between
Gy and −Gy in several steps. The dephasing gradient in frequency encoding direction is
applied simultaneously as the phase encoding gradient, and literally destroys the signal
by dephasing it. The rephasing frequency encoding gradient, with inverted polarity with
respect to the dephasing gradient, is turned on during the data acquisition and produces
an echo because it refocuses the previous dephasing. The echo time is defined as the time
between the excitation pulse and the maximum of the signal. The sequence is repeated
every TR seconds. The TR period could be as short as milliseconds.
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Figure 2.10. Schematical Gradient Echo timing sequence (left) with corresponding
k-space map (right). The figure is explained in the text.

2.3 Physiological Properties of Blood

The methods examined in this work aim to measure the oxygenation of human tissue
using MRI. The physical basics of such a measurement are that the magnetic properties of
the blood are dependent on its oxygenation level. The magnetic susceptibility difference
that arises between venous blood and tissue creates an inhomogeneous magnetic field that
can be detected since the created field variations induce associated signal losses in gradient
echo images. In this section, the basic physiological processes that affect this effect are
compiled.

2.3.1 Microscopic vascular anatomy of the brain

The sizes of the blood vessels in human brain are on the order of 120 − 240µm for large
intracortical supplying arteries, and 80 − 120µm for draining veins. The arterioles and
venules that are in connection with the capillary network have a size of 30−40µm whereas
the capillary network itself has a radius distribution that ranges from 20µm down to 4µm
[Duvernoy et al., 1981]. A dense capillary network guarantees the oxygen supply to the
gray matter in the brain. The network continues into the white matter but shows there
a lower density. Figure 2.11 shows the vessel structure inside gray matter in the human
cortex. As can be seen in the figure, the capillaries forms an equally, spatially, distributed
vessel network. The relative volume fraction of blood has been measured using positron
emission tomography (PET) to 4.3 ml blood/ml in gray matter and 2.1 blood/ml in white
matter [Yamaguchi et al., 1986]. Additionally, several MR studies have aimed to measure
the blood volume. Their results, however, are not always consistent with each other or with
the PET results. Nevertheless, all studies showed a consistent blood volume ratio between
gray and white matter of about 2:1. The venous part of the blood vessel network has been
measured, in dogs, to a volume fraction of 0.7 to the total blood volume [Moskalenko,
1980]. This part is the deoxygenated blood volume fraction, ζ, which is used in the MR
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signal calculations of this work.

Figure 2.11. a) Overview of the cortical blood vessels. (1) Artery of gray matter, (2) vein of
gray matter, (3) artery of white matter, (4) smaller vessels of the white matter. b) Detailed view
of the capillary structure in the gray matter. (1) Arteriole, (2) venule. (Figures from Duvernoy
et al. [1981])

.

2.3.2 Oxygen Transport in the Brain

The blood is an essential transport and communication medium for all mammals. The
energy needed by cells in order to maintain their vital functions comes, almost exclusively,
from oxidative degradation of nutrients, a process that requires the presence of glucose,
proteins and enough molecular oxygen. The blood covers the glucose as well as the oxygen
demands of the organ. The human blood consists primarily of aqueous plasma, which
contains dissolved proteins, electrolytes, water-soluble nutrients, vitamins, gases and blood
cells. The essential blood cells present are red blood cells (erythrocytes), white blood cells
(leukocytes) and thrombocytes. The volume fraction of erythrocytes in the blood is called
Hematocrit (Hct) and amounts to 0.44− 0.46 for healthy grown up males, and 0.40− 0.43
for healthy grown up females [Schmidt und Thews, 1995].

The erythrocytes main task is oxygen transport. For this purpose, hemoglobin is present
in the cells. Hemoglobin is an assembly of four globular protein subunits that bind to
each other. Each subunit contains a, so-called, heme, a Fe2+ contained in an organic
molecule, to which oxygen can bind reversible during oxygen transport. Hemoglobin with
bound oxygen is called oxyhemoglobin (HbO2) and hemoglobin without bound oxygen is
called deoxyhemoglobin (Hb). The oxygen saturation of hemoglobin, also called blood
oxygenation level (Y ), is defined as the fraction of the overall bounding sites that are
saturated with oxygen,

Y =
HbO2

Hb+HbO2
. (2.58)

The hemoglobin oxygen saturation is dependent on the oxygen partial pressure (pO2) in
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the blood and shows a (empirically found) sigmoid behavior [Stryer, 1998]

Y =
(pO2)2.8

(pO2)2.8 + (p0.5)2.8
(2.59)

p0.5 is the oxygen partial pressure at half oxygen saturation (Y = 0.5) and is equal to
3.6 kPa under normal physiological conditions. The typical shape of the oxygenation
saturation curve of hemoglobin can be seen in Figure 2.12. The values emphasized in the
figure represent normal values for arterial blood, mixed venous blood and the half oxygen
saturation value for a healthy adult.
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Figure 2.12. Oxygen saturation curve of hemoglobin. The oxygen saturation curve for
a healthy grown up under normal physiological conditions (pH = 7.4, T = 37◦C). The marked
values highlight the typical pO2 values for arterial blood, mixed venous blood and venous blood in
the brain.

The partial pressure of oxygen in air is approximately 20 kPa under normal conditions.
This is reduced to about 16 kPa in the gas mixture found in the alveoli. Furthermore, in
arterial blood, values of 13 kPa are found for healthy humans, which corresponds to an
oxygen saturation of 97−98%. In the capillaries, the oxygen is released to the surrounding
tissue. Hence, dependent on the oxygen demand of the respective tissue, the oxygen
partial pressure in the veins drops to a value of 3.5− 5.5 kPa, corresponding to an oxygen
saturation of 50− 75%.

2.3.3 Tissue Oxygen Consumption

The consumption of oxygen in the tissue can be quantified by the, so-called, metabolic
rate of oxygen MRO2, which is defined as,

MRO2 =
Oconsumption2

tissue mass
[
mol/s

g
] (2.60)
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While the MRO2 represents a measure for the absolute oxygen consumption, the oxygen
extraction fraction (OEF) describes the relation between the oxygen consumption in the
tissue and the oxygen delivery by the blood [Golay et al., 2001]. This important measure
quantifies the oxygen utilization of the tissue and is defined as,

OEF =
Oconsumption2

Odelivery2

. (2.61)

The required oxygen is extracted from the blood in the capillaries. Hence, the OEF can be
calculated as the difference in oxyhemoglobin content between arterial and venous blood,

OEF =
HbO2,arterial −HbO2,venous

HbO2,arterial
= 1− Yvenous

Yarterial
. (2.62)

As previously mentioned, the oxygen saturation in arterial blood is approximately 100 %.
Hence, the OEF can be approximated as,

OEF = 1− Yveneous. (2.63)

The OEF is organ dependent and varies with the stress state. In healthy myocardium
and skeletal muscle, the OEF is about 0.4 to 0.6 during resting state. However, this
can rise up to 0.9 in case of very high physical stress [Schmidt und Thews, 1995]. The
OEF in a resting human brain is approximately 40 − 50 % [Hoogenraad et al., 1998].
Pathophysiological conditions can give rise to a considerable increase in the OEF, for
instance if there is a deficiency in the concentration of dissolved oxygen in arterial blood
(e.g., arterial hypoxemia) or if the oxygen demand is increased (e.g., in tumor).

The OEF and the MRO2 are correlated by the absolute oxygen delivery,

MRO2 = OEF ·BF ·HbO2,arterial, (2.64)

where BF represents the blood flow, and HbO2,arterial the oxyhemoglobin concentration
of the arterial blood. Hence, during physical stress, the oxygen supply can be adjusted by
either increasing the OEF or increasing the tissue perfusion.

2.3.4 Oxygenation Dependent Magnetic Properties of Blood

The physiological basic of the oxygen sensitive imaging is that the hemoglobin changes
its permanent dipole moment dependent on the oxygenation status. In deoxygenated
hemes, only five of the six coordinating positions of the Fe2+-ion are occupied. As a
result, unpaired electrons are present which give rise to a permanent magnetic dipole
moment and, consequently, to paramagnetic properties. When oxygen is bound to the
last coordinating position, the iron changes its electron configuration. Spin coupling is
then energetically favorable and the heme becomes diamagnetic [Pauling und Coryell,
1936]. Macroscopically, the successive occupation of the coordinating positions appears
as a continuous change of the magnetic susceptibility of the blood. The total magnetic
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susceptibility of the blood is proportional to the magnetic susceptibility of the erythrocytes
(χery) and the blood plasma (χplasma),

χblood = Hct · χery + (1−Hct) · χplasma. (2.65)

The value of χery depends linearly on the amount of oxygenated and deoxygenated hemoglobin
[Spees et al., 2001],

χblood = Hct · (Y · χery,ox + (1− Y ) · χery,deox) + (1−Hct) · χplasma. (2.66)

where χery,ox and χery,deox denote the magnetic susceptibility of completely oxygenated
and completely deoxygenated erythrocytes.

The volume susceptibility of blood plasma and fully oxygenated blood are approximately
−9.05 ppm [Schenk, 1996] and −9.25 ppm [Weisskoff und Kiihne, 1992], respectively. Due
to the small difference in the magnetic susceptibility, they can be approximated to be equal.
With the susceptibility difference between fully oxygenated, and fully deoxygenated blood
given by,

∆χdo = χery,deox − χery,ox, (2.67)

Eq. 2.66 simplifies to,

χblood = χery,ox +Hct · (1− Y ) ·∆χdo. (2.68)

Since the blood vessels generally are embedded in the tissue matrix, the susceptibility
difference between parenchyma and the blood, ∆χ, is particularly interesting for in vivo
measurements. Assuming that the susceptibility of the tissue is approximately the same as
for fully oxygenated blood, Eq. 2.68, together with Eq. 2.63, gives the following expression
for the susceptibility difference between the tissue and the veins,

∆χ = Hct · (1− Y ) ·∆χox ≈ Hct ·OEF ·∆χdo (2.69)

Under assumption that Hct and ∆χdo are known parameters, this relation reduces the
estimation of the oxygen extraction to a measurement of the volume susceptibility of
the venous blood. Two values of ∆χdo appears in the literature.Weisskoff und Kiihne
[1992] measured a value of 4π · 0.18 ppm while later Spees et al. [2001] obtained a value of
4π · 0.27 ppm. The Hct in small vessels is assumed to be 85 % of that in larger vessels [An
und Lin, 2000].



III
Materials and Methods

3.1 Modeling blood vessels

3.1.1 Single Vessel in Homogeneous Tissue

A single capillary embedded in the tissue can be approximated as an infinitely long, ho-
mogeneous, magnetic cylinder (Figure 3.1) with a susceptibility difference ∆χ to the sur-
rounding medium. Such a cylinder causes a frequency shift ∆ω dependent on the vessel
orientation θ and the cylinder radius R [Ogawa et al., 1993],

∆ω =

 δωR
2

r2
cos 2ϕ sin2 θ r > R

δω 1
3

(
3 cos2 θ − 1

)
r < R.

(3.1)

Here r and ϕ are the distance and the azimuthal angle in a plane orthogonal to the cylinder,
as shown in Figure 3.1, and the value δω is the characteristic frequency shift,

δω =
∆χγB0

2
, (3.2)

which characterizes the maximum field offset at the surface of the cylinder. The magnitude
of the field offset at the surface of the cylinder will only be dependent on ∆χ, not on the
cylinder radius. The spatial extent of the field distortion, however, is proportional to the
radius. In Figure 3.2 (a) the field distribution around a magnetized cylinder orientated
perpendicular to the magnetic field can be seen.

An analytical expression for the MR signal from a voxel containing a single cylinder,
occupying a volume fraction ζ of the total voxel volume, has been derived by Yablonskiy
und Haacke [1994] and is given by,

S(t) = S(0) ·
(

1− ζ

1− ζ
· fc(δωθ · t) +

1
1− ζ

· fc(ζ · δωθ · t)
)
, (3.3)

where δωθ is the characteristic frequency shift for the cylinder, here defined as,

25
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Figure 3.1. Single cylinder in an external magnetic field. (Figure adopted from Sedlacik
[2007]

).

δωθ = γ · ∆χ
2
·B0 · sin2 θ, (3.4)

and fc is the characteristic function given by,

fc(ϕ) =

1∫
0

du · 1− J0(ϕ · u)
u2

, (3.5)

where J0 is the zeroth order Bessel function. This equation, however, is derived for single
cylinder coaxial with a cylindrical voxel and is therefore not expected to be consistent with
a measurement where square voxels are used. Sedlacik et al. [2007] performed numerical
simulations and phantom measurements to investigate the signal behavior for arbitrary
voxel geometry and found that even considering square voxels was not enough to simulate
a real measurement. As mentioned in section 2.2.2.2, using a rectangular sampling window
when sampling the k-space results in a sinc-shaped PSF, which has to be considered in
the signal simulation.

An alternative mathematical expression for the MR signal from a voxel containing a single
magnetized cylinder is given by [Sedlacik et al., 2007] (c.f. Eq. 2.26),

S(t) =
∫
~r

W (~r) · S0(~r) · e−i·∆ω(~r)·te−t/T2(~r)d~r, (3.6)

whereW (~r) is a weighting function used to describe the shape of the voxel. The weighting
function for a cylindrical voxel, a square voxel, and a square voxel with PSF can be seen
in Figure 3.2 (b-d). S0(~r) is the local signal direct after excitation, which depends on the
local spin density as well as on T1 and the sequence parameter used.
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a b

c d

Figure 3.2. a) Field distribution around a magnetized cylinder oriented perpendicular to the
main magnetic field, together with the weighting function (c.f. Eq. 3.6) for b) cylindrical voxel, c)
quadratic voxel, and d) quadratic voxel with point spread function.

Partial Volume Effect

A partial volume effect arises when the imaging voxel contains more than one tissue type,
e.g. tissues containing both water and fat, or blood vessels embedded in the tissue. The
resulting voxel signal will then be a superposition of the signal from the different tissue
types. For instance, the signal from a homogeneous voxel containing a single venous vessel,
or a capillary network, occupying a volume fraction ζ, can be written as the sum of the
signal originating from the intra and extra vascular space respectively,

~S = ζ · ~Sint + (1− ζ) · ~Sext (3.7)

3.1.2 Vessel Network in Homogeneous Tissue

Analogous to using a single cylinder to simulate a single vessel, a collection of randomly
oriented cylinders can be used to approximate a blood vessel network. When averaging
over randomly spatially distributed and oriented cylinders, the histogram of the field dis-
tribution approaches a Lorentzian distribution and the signal decay is close to exponential.
Since the extent of the field distortion is scaled down with the cylinder radius, the signal is
independent on the size of the cylinders, and depends only on the susceptibility difference
and the volume fraction occupied by the cylinders. However, this is only valid if spin
motion during the experiment is neglected (e.i., no diffusion is present). The effect of
diffusion is discussed in section 3.1.2.2.

The following model, derived by Yablonskiy und Haacke [1994], considers a macroscopically
homogeneous voxel that does not contain large vessels or any other structures on the scale
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of the voxel size. The statistical approach is justified by a vascular network formed by a
large number of microscopic vessels inside the voxel. The capillary network is described as
a set of statistically independent cylinders with random positions, orientations, and radii.
The distributions of the cylinder positions and orientation are uniform. Furthermore,
the smallness of the relative volume fraction of cylinders to the total voxel volume, ζ, is
one of the basic assumptions of the statistical approach, and justifies the neglecting of
intravascular signal contribution. In addition, the model is derived in the so-called static
dephasing regime. The static dephasing regime assumes that the NMR signal dephasing
due to susceptibility induced field inhomogeneities must occur before molecular diffusion
averages out the phases. High magnetic fields, large ∆χ, and large vessels favor the static
dephasing regime.

3.1.2.1 Statistical Averaging of Cylinders

The calculation of an analytical expression for the MR signal from a voxel containing a
set of randomly distributed cylinders is based on statistical averaging. In this section, the
derivation of the analytical expression is presented. The following equations were derived
with reference to Yablonskiy und Haacke [1994]; Kiselev und Posse [1999]; Sedlacik [2007].

The MR signal from a voxel may be represented as,

S(t) = e−t/T2

∫
~r

S0(~r)e−i·∆ω(~r)·td~r, (3.8)

where S0(~r) is the basic signal fraction of each point, which depends on the local spin
density as well as T1 and the sequence parameters used, and ∆ω(~r) is the local deviation
from the read out frequency. For a cylinder, ∆ω(~r) is given by Eq. 3.1. For the following
derivations, only the external signal is considered, and a uniform spin distribution is
assumed, in which case S0(~r) = S0,ext. The total influence on the signal from a given
configuration of cylinders is the averaged effect over all N objects,

Sext(t) = (1− ζ) · S0,ext · e−t/T2
N∏
n=1

〈Ψn〉. (3.9)

In the static dephasing regime, the magnetization density as a function of time can be
found from the Bloch equations,

Ψ = e−i·∆ω(~r)·t. (3.10)

The averaged effect of each object on the external signal 〈Ψn〉 is calculated by integration
over the orientation and position of the cylinder,

〈Ψn〉 =

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

∞∫
R

dr
r

A
· e−i·∆ω(~r)·t. (3.11)

The first integration represents the averaging over the cylinder tilt angle θ with isotropic
distribution (sin θ) /2. Furthermore, the cylinder position is averaged by integration over
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ϕ and r with uniform distribution 1/(A− πR2) where A is the cross-sectional area of the
voxel and πR2 is the cross-sectional area of the cylinder [Kiselev und Posse, 1999]. The
cylinder volume is excluded from the integration for calculation of the external signal.
Equation 3.11 can be rewritten as,

〈Ψn〉 = 1− πR2

A

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

∞∫
R

dr
r

πR2
·
(

1− e−i·∆ω(~r)·t
)
. (3.12)

If the volume fraction of the cylinder to the total volume is small,

〈Ψn〉 = 1− πR2

A

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

∞∫
R

dr
r

πR2
·
(

1− e−i·∆ω(~r)·t
)
≈ 1, (3.13)

Eq. 3.13 can be expressed as an exponential function,

〈Ψn〉 = exp

−πR2

A

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

∞∫
R

dr
r

πR2
·
(

1− e−i·∆ω(~r)·t
) ≈ 1. (3.14)

Combining Eq. 3.14 with Eq. 3.9 yields the following signal equation,

ln
[

Sext

(1− ζ) · S0,ext · e−t/T2

]
= −ζ

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

∞∫
R

dr
r

πR2
·
(

1− e−i·∆ω(~r)·t
)

(3.15)

where ζ = πR2N/A is the total volume fraction occupied by the cylinders. Further
calculations are enabled by the following substitution,

u =
R2

r2
, (3.16)

which gives,

dr = − r3

2R2
du. (3.17)

Equation 3.15 may now be expressed as (r = R⇒ u = 1, r =∞⇒ u = 0),

ln
[

Sext

(1− ζ) · S0,ext · e−t/T2

]
= −ζ

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

0∫
1

r3

−2R2
du

r

πR2
·
(

1− e−i·∆ω(~r)·t
)
.

(3.18)
Using the variable substitution r4 = R4/u2, the signal equation can be written as,

ln
[

Sext

(1− ζ) · S0,ext · e−t/T2

]
= −ζ

π∫
0

dθ
sin θ

2

2π∫
0

dϕ

1∫
0

du
1

2πu2
·
(

1− e−i·∆ω(~r)·t
)
. (3.19)

Hence, the external signal can be expressed as,

Sext = (1− ζ) · S0,ext · e−t/T2 · e−ζ·fc(δω̄·t), (3.20)
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where fc(δω̄ · t) is the, so-called, characteristic function for a set of randomly distributed
cylinders. The expression for this characteristic function has been further simplified by
Yablonskiy und Haacke [1994] to allow faster numerical integration. The resulting equation
is given by,

fc(δω̄ · t) =
1
3
·

1∫
0

du · (2 + u) ·
√

1− u · 1− J0(1.5 · δω̄ · t · u)
u2

, (3.21)

where J0 is the zeroth-order Bessel function. The, in the argument for fc appearing, δω̄
is the mean characteristic frequency shift for the cylinder system and is given by,

δω̄ =
4π
3
γ ·∆χ ·B0. (3.22)

The signal equation in 3.20 does not have an analytical solution for a FID experiment.
However, two distinct time periods of signal behavior have been identified. For short times,
the signal amplitude was predicted to be Gaussian (quadratic exponential) suggesting a
Gaussian field distribution inside the voxel. For long times the signal amplitude displays
a linear exponential behavior, implying that the magnetic field in the voxel is Lorentz
distributed;

St = (1− ζ) · St(0) · e−0.3·ζ·(δω̄·t)2 · e−t/T2t |δω̄ · t| < 1.5 (3.23)
St = (1− ζ) · St(0) · e−ζ(δω̄·t−1) · e−t/T2t |δω̄ · t| > 1.5. (3.24)

The characteristic time where the short-term asymptotic behavior changes to the long-
term behavior is given by,

tc =
1.5
δω̄

(3.25)

3.1.2.2 Diffusion

The previously mentioned tissue model is based on the assumption that spin motion due
to self-diffusion, can be neglected during the experiment (static dephasing). This is valid
when the spins can be assumed to remain in fixed positions and the field inhomogeneity
they experience is time-invariant. The static dephasing assumption is valid if,

δω−1 <<
R2

D
(3.26)

where δω−1 is the characteristic signal decay time (c.f. Equation 3.2), R is the cylinder
radius, and D is the apparent diffusion coefficient. D amount to about 207 · 10−5mm2/s
for pure water at a room temperature of 21◦C [Price et al., 1999]. A cylinder network with
a susceptibility difference of 1 ppm to the surrounding media has a characteristic frequency
shift of 200Hz at 1.5T (Eq. 3.2) and, hence, a characteristic signal decay time of 5ms.
This would correspond to a characteristic radius of 3.2µm. To assure the static dephasing
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regime, the cylinder radius has to be much larger than this, which is the case if the radius
is on the order of hundreds of microns.

The measured diffusion coefficient in human brain tissue is smaller than that of free wa-
ter due to the presence of cell walls and membranes. As a result of those barriers, the
movement of water molecules cannot be described as free diffusion, and the measured diffu-
sion coefficient is called apparent diffusion coefficient (ADC). The self-diffusion of water is
about 80 ·10−5mm2/s for gray and 64−107 ·10−5mm2/s for white brain matter [Le Bihan
et al., 1995]. The range of white matter diffusion coefficients results from the anisotropic
diffusion, with higher diffusion along fibers and lower perpendicular to them [Hirsch et al.,
1999]. Due to the lower diffusion coefficients in vivo, the static dephasing regime can be
assumed for vessels much smaller than 100µm. It has been speculated that static dephas-
ing under in vivo conditions can be assumed for a vessel radius down to 10µm for 1.5T
[Yablonskiy und Haacke, 1994]. However, a comparison with Monte Carlo simulations
show that this equality rather should be a simple inequality, R > 10µm, and Kiselev und
Posse [1999] concluded that the model can be applied with a reasonable accuracy to a
radius of 25µm. The smallest capillaries in the brain have a radius of 6− 8µm [Duvernoy
et al., 1981]. Boxerman et al. [1995] showed by means of simulations that diffusion would
cause a reduction of the relaxation rate of about 15 % for a 5µm vessel. Hence, the part
of the capillaries with small radii causes a systematic underestimation of ∆χ, if this is not
accounted for. An exact estimation of the uncertainties caused by diffusion in vivo has to
consider the true amount of small vessels.

Kiselev und Posse [1999] extended the previously described tissue model to include dif-
fusions effects. Allowing for molecular diffusion, the Bloch-Torrey equation has to be
considered,

∂Ψ
∂t

= D∆Ψ− i∆ω(~r)Ψ. (3.27)

In case of slow diffusion an approximate solution to Eq. 3.27 is given by [Kiselev und
Posse, 1999],

Ψ = e−i·∆ω(~r)·t−D
3

[∇(∆ω(~r))]2·t3 . (3.28)

Statistical averaging of this function yields a characteristic function that not only depends
on δω · t but on an additional, dimensionless parameter λ that in turn depends on the
diffusion coefficient D and the cylinder radius R,

λ =
D

R2 · δω
. (3.29)

With the signal expression given by Eq. 3.20, the characteristic function, including diffu-
sion, is given by,

fc(δω · t;λ) =

π∫
0

dθ
sin θ

2

1∫
0

du

u2
·
[
1− exp

(
4
3
λ(δω · t)3u3 sin4 θ

)
J0

(
(δω · t)u sin2 θ

)]
,

(3.30)
where J0 is the zero-order Bessel function. The, in the argument for fc appearing, δω is
the characteristic frequency shift given by Eq. 3.2. The major problem using this model
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for in vivo experiments is that the vessel radius distribution inside the voxel has to be
known.

The effect of diffusion in a spin echo experiment is shown exemplary in Figure 3.3. The
diffusion causes a decrease of the maximal signal intensity as well as a shift of the spin
echo toward shorter echo times. The effect is not very pronounced for the FID signal.
Hence, the effect can be reduced by choosing short echo times.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 S

ig
n

a
l (

a
.u

.)

Time (s)

D = 0

D = 1µm2/s

Figure 3.3. Signal time course in a spin echo experiment from a voxel containing a
microvascular network with consideration of diffusion. In presence of diffusion (dashed
line) the position of the spin echo is shifted toward shorter echo times and the maximal signal
intensity at the spin echo is decreased compared to the case where no diffusion is present (solid
line). The effect is more pronounced after the spin echo than for the FID part of the signal.

3.2 Measurement Techniques

3.2.1 MR Scanners

The measurements were carried out on two Siemens MR scanners situated at the German
Cancer Research Center (DKFZ) in Heidelberg, Germany. One scanner has a magnetic
field strength of 1.5T (Magnetom Avanto, Siemens Medical Solutions, Erlangen) and the
other has a magnetic field strength of 3T (Magnetom Trio, Siemens Medical Solutions,
Erlangen). All systems share the same sequence-developing environment named IDEA
(Integrated Development Environment for Applications).
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3.2.2 MR Sequences

The two fundamental types of MR pulse sequences, the spin echo and the gradient echo,
were described in section 2.2.3. In this section, the specific sequences used in this work are
presented. The sequences used in this work were either provided by Siemens or developed
using a C++ based development environment provided by the MR device manufacturer
(IDEA, Siemens, Erlangen).

3.2.2.1 CPMG

The standard technique to measure the R2 relaxation rate in the presence of diffusion and
magnetic field inhomogeneities is to use a Carr-Purcell-Meiboom-Gill (CPMG) sequence
[Carr und Purcell, 1954; Meiboom und Gill, 1958]. The CPMG sequence is a spin echo
sequence consisting of a 90◦ RF pulse followed by an echo train induced by successive 180◦

pulses. A 90◦ phase shift between the 90◦ and the subsequent 180◦ pulses is included to
minimize effects of pulse imperfections.

3.2.2.2 Diffusion-weighted EPI

Diffusion-weighted images can be obtained by implementation of, so-called, diffusion gra-
dients into the sequence. The diffusion gradients are a pair of bipolar gradients switched
before the signal readout. The process of diffusion-weighted imaging is described briefly
below.

After excitation, all spins precess with the same frequency and have the same phase.
During the switching of the first diffusion gradient, the spins located at different positions
experience a different magnetic field, and therefore precess with different frequencies. After
the gradient is switched off, again all spins precess with the same frequency, but they
now have different phases. For stationary spins, the switching of a second gradient with
inverted polarity results in a total rephasing, i.e., all spins once again have the same phase.
However, if an incoherent motion of the water molecule is present during the time between
the gradients, the molecule experiences another magnetic field during the second gradient
switching and no complete rephasing is achieved. Hence, a diffusion-weighted signal can
be obtained.

The amount of diffusion weighting is determined by the strength and the duration of the
diffusion gradients as well as on the distance between them. In order to measure the ADC,
usually two scans are performed, one with diffusion weighting and one without. By making
a linear regression to the logarithm of the normalized signal as a function of the strength
of the diffusion weighting (so-called b-value), the ADC can be found from the slope.

Diffusion gradients are commonly implemented in an EPI sequence [Mansfield, 1977]. The
important feature of the EPI sequence is the extremely short measurement time which
helps to reduce errors due to pulsation effects. During an EPI scan, the whole k-space is
sampled after one single RF excitation. After the excitation, an outer point in k-space
is reached by switching of one gradient in frequency direction and one gradient in phase
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direction. After the first k-space line is read, a small phase gradient is used to reach the
next line in k-space which is read “backwards”, using a read out gradient with inverted
polarity. This procedure continues until the whole k-space is sampled. The effective TE
is defined as the time when the k-space center is sampled.

3.2.2.3 Gradient Echo Sampled Spin Echo (GESSE)

In section 3.1.2, a theory describing the MR signal over time as a function of the frequency
shift induced by deoxygenated blood in a capillary network embedded in a tissue matrix
was presented. In order to estimate the frequency shift (i.e., the tissue oxygenation),
knowledge of the MR signal intensity as a function of time in the vicinity of a spin echo is
required. This can be achieved by a, so-called, gradient echo sampled spin echo (GESSE)
sequence as proposed by Yablonskiy und Haacke [1997]. The GESSE sequence is a slightly
changed version of the GESFIDE (Gradient Echo Sampling of FID and Echo) presented
by Ma und Wehrli [1996], which can be used for simultaneous measurement of R2 and R2∗.
The GESSE sequence is a standard spin echo sequence combined with a multi contrast
gradient echo sequence, as shown in Figure 3.4. A large number of successive gradient
echoes are generated before and after the echo time of the single spin echo sequence,
resulting in a series of image contrasts, each with different echo time, which renders the
rephasing and dephasing parts of the spin echo signal. The refocusing of the magnetization
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Figure 3.4. GESSE Sequence. Exemplary scheme of the implemented gradient echo sampled
spin echo sequence (GESSE). The spin echo occurs at a time TESE which coincide with one of the
gradient echoes.

using a 180◦-pulse, however, is not always complete. An incomplete refocusing entails a
mixing of R2∗ and R2 for the signal development between the refocusing pulse and the
spin echo [Ma und Wehrli, 1996], which is not desirable since the deciphering of the
oxygenation is dependent on a clear separation of those two relaxation rates. Therefore,
spoiler gradients, that dephase the R2∗-component, are switched in slice selection direction
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before and after the 180◦ pulse.

A mono directional readout, i.e., always with the same gradient polarity, is used in order
to minimize effects of phase shifts in k-space [Haacke et al., 1999]. The minimum time
interval between two adjacent echoes depends on the maximum gradient strength (Gmax)
and maximum slew rate for the system used, as well as the resolution (∆x) and band
width (BW) chosen for the measurement [Bongers, 2004],

∆TEmin =
1

BW
+

1
γ ·∆x ·Gmax

+
3Gmax

SlewRate
+

BW

γ ·∆x · SlewRate
. (3.31)

To realize a smaller ∆TE while keeping the resolution constant, the bandwidth has to be
increased resulting in a poorer SNR.

3.2.3 Measurement Phantoms

3.2.3.1 Single Cylinder Phantoms

Custom-built phantoms (Figure 3.5) with two different string diameters (245µm and
194µm) were used for the single string measurements. Four phantoms with 1, 3, 5, and,
7 g/l NiSO4 · 6H2O and 5 g/l NaCl were constructed.

All single string scans were performed with a gradient echo sampled spin echo (GESSE)
sequence (chapter 3.2.2.3). Scan parameters can be seen in Table 3.1 together with the
string data. All measurements were performed at the 1.5T scanner using a small loop coil
and with TR = 1000ms, and a B0 to string angle of π/2. A 256× 256 matrix and a slice
thickness of 3mm were used for both string diameters.

Figure 3.5. Single String Phantom. The singles string phantoms are constructed of polyamide
strings, with two different string diameters (245µm and 194µm), in a NiSO4 solution
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Table 3.1. Sequence parameters used for the single string phantom measurements.
ζ is the calculated relative volume fraction for each string diameter.

String diameter (µm) FOV (mm) ∆TE (ms) Bw (Hz/px) ζ (%)

245 100 6.0 340 30.9
194 82 7.0 280 28.8

3.2.3.2 Cylinder Network Phantoms

A measurement phantom used to investigate the practical influence of diffusion in a cylin-
der network should reflect the properties of the model, i.e., statistically distributed and
randomly oriented cylinders in a homogeneous medium. The model proposed by [Yablon-
skiy und Haacke, 1994] predicts a signal that is independent on the capillary radius.
Schröder [2005] showed in phantom experiment that this is not true for small radii. One
probable explanation is that diffusion plays an important role in the signal formation,
especially for small radii. In order to investigate the diffusion effect further, measurement
phantoms were constructed which aimed to simulate capillary networks of different vessel
radii. The phantoms are a further development of the, in this working group, previously
developed phantoms, and is constructed of randomly coiled polyamide strings immersed in
a NiSO4 solution. Monofilamentous polyamide strings were used (Polyamide 6-6.6 black,
Fa. Krahmer GmbH, Buchholz). The string diameter was in the range of 27 − 245µm
which covers the largest part of the capillary diameters that exist in vivo. The string was
immersed in a solution composed of NiSO4 · 6H2O and NaCl. NiSO4 was chosen due
to its paramagnetic properties. Polyamide is slightly more diamagnetic than water and
adding NiSO4 to the water results in a more paramagnetic solution. Hence, the higher
the NiSO4 concentration, the larger susceptibility difference between the strings and the
solution. Furthermore, the T2 of the NiSO4 solution corresponds roughly to that in vivo,
at a susceptibility difference expected in vivo.

Figure 3.6. String network phantom. The spherical compartment contains a randomly coiled
polyamide string of a certain diameter. The whole phantom is filled with a NiSO4 solution.
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Since the method aims to measure the relatively small field inhomogeneities that are
caused by the strings, it is very important to avoid background field inhomogeneities.
The phantoms were constructed using a completely spherical geometry, which prevent
distortions of the magnetic field inside the probe. Hollow plastic balls with a diameter of
150mm were used as outer containers. Smaller plastic balls, with a diameter of 48mm,
were perforated, to allow inflow of liquid, and used as an inner containers. The inner
container was filled with randomly coiled polyamide stings (Figure 3.6). The string radius,
the volume fraction of the inner container occupied by polyamide strings and the NiSO4 ·
6H2O concentration in respective phantom are presented in Table 3.2.

Table 3.2. String network phantom specifications.

Phantom String diameter Volume fraction Concentration NiSO4

I 27µm 2 % 4.00 g/l
II 63µm 3 % 3.75 g/l
III 89µm 5 % 3.00 g/l
IV 245µm 3 % 3.00 g/l

When the phantoms are filled with the NiSO4 solution, air bubbles get trapped in the
string filled compartments. Those bubbles cause unwanted magnetic field inhomogeneities
if present, and must be removed. The removal is achieved in a degassing process where the
phantom is placed in strong vacuum during a certain time period. The higher the partial
vapor pressure the more gas can be solved in a liquid. By lowering of the atmospheric
pressure, the thermal equilibrium at the boundary between liquid and air is disturbed. To
restore it, solved gases go up in the gas phase. Since those continuously are pumped of, a
complete degassing of the liquid can be achieved.

For the phantom measurements with the string network phantoms, two different GESSE
scans were used. Both scans have a distance between two adjacent echoes of 1.6ms and
a TR of 2000ms. The first sequence variant has the spin echo positioned at the 7th echo
with an echo time of 37ms and the second sequence variant has the spin echo positioned
at the 16th echo with an echo time of 68ms. Measurements were performed at both 1.5T
and 3T using a standard head coil. All are sequence parameters are shown in Table 3.3
and Table 3.4.

Table 3.3. Summary of the GESSE sequences used for the network phantom measurements

Sequence variant Number of Spin echo Echo Time (ms) ∆TE (ms) Number of Echoes

1 7 37 1.6 32
2 16 68 1.6 32
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Table 3.4. Sequence parameters used for all
network phantom measurements

Field of View (mm) 192
Matrix 64× 64
Resolution (mm2) 3.0× 3.0
Slice Thickness (mm) 6
TR (ms) 2000
Bandwidth (Hz/pixel) 1530
Number of Acquisitions 16
Measurement Time (minutes) 34 : 08

3.2.3.3 Calculation of the susceptibility of NiSO4 solutions

In Schenk [1996], a reference value for the susceptibility of NiCl2 in water can be found.
This value can be used to calculate the expected susceptibility of the NiSO4 · 6H2O
solutions used during the measurements in this work. The mole mass and density of
NiCl2 and NiSO4, anhydrous and hexahydrate, can be seen in Table 3.5.

The magnetic susceptibility of an aqueous solution with 23.15wt.% NiCl2 at 20◦ is
116 ppm and the density of such a solution is 1.26 g/cc. Hence, there are 1.26·0.2315=0.29 g/cc
NiCl2 in the solution. Using the mole masses of NiCl2 and NiCl2 ·6H2O from Table 3.5,
the corresponding concentration of NiCl2 · 6H2O can be calculated,

NiCl2 ·H2O (g/l) = ρNiCl2 (g/cc)
MNiCl2 hexahydr

(g/mol)
MNiCl2 anhydr

(g/mol)
· 1000. (3.32)

A specific concentration of NiCl2 ·6H2O can be recalculated into concentration of NiSO4 ·
6H2O using,

CNiCl2 (g/l) =
CNiSO4 (g/l)

MNiSO4 (g/mol)
·MNiCl2 (g/mol). (3.33)

Using the susceptibility of water of −9.04 ppm, the susceptibility of aqueous solutions with
different NiSO4 · 6H2O concentrations can be calculated. Calculated susceptibilities can
be seen in Table 3.6.

Table 3.5. Mole mass and density of some substances.

Substance Molecular weight (g/mole) Density (g/cc)

NiSO4 · 6H2O 262.85 2.07
NiSO4 154.75 3.68
NiCl2 · 6H2O 237.68 1.92
NiCl2 129.60 3.55
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Table 3.6. Calculated susceptibili-
ties of solutions with different NiSO4 ·
6H2O concentrations.

[NiSO4 · 6H2O] (g/l) χ (ppm)

1.0 −8.82
2.0 −8.61
3.0 −8.40
4.0 −8.18
5.0 −7.97

3.3 Evaluation Techniques

3.3.1 Macroscopic Inhomogeneity Correction

The modeling of the blood vessels described in section 3.1 assumes that deoxyhemoglobin
is the only source of magnetic field inhomogeneities that influence the MR signal formation
(except the fluctuating microscopic field inhomogeneities that causes T2 relaxation). In
general, this is not true. Additional macroscopic field inhomogeneities can be present
due to imperfections in the main magnetic field, or can be caused by tissue-air interfaces.
Those inhomogeneities will affect the signal as well, and may influence the parameter
quantification if they are not properly acknowledged.

The total magnetic field can be calculated as the sum of the magnetic field caused by the
deoxyhemoglobin (BHb) and the macroscopic field (Bmacro),

Bs = BHb +Bmacro (3.34)

The signal equation (cf. Eq. 2.30) is then,

S(t) ∝
∫
V

Mxy(t0)eiγ·(BHb(~r)+Bmacro(~r))·t · e−t/T2d~r. (3.35)

Because of the difference in spatial scale of the macroscopic and mesoscopic field inhomo-
geneities, the total signal can be represented as a product of the signal that would exist in
the absence of macroscopic field inhomogeneities, multiplied with a function F (t), which
represents contributions to the signal attenuation caused by macroscopic field inhomo-
geneities,

F (t) =
1
V

∫
V

eiγ·Bmacro(~r)·t · d~r. (3.36)

Hence, if the magnetic field distribution inside the voxel is known, Eq. 3.36 can be solved,
and the macroscopic part of the signal can be removed.

As mentioned in section 2.1.6, the measured signal can be expressed as a complex quantity
(cf. Eq. 2.25),

Mxy(~r, t) = |Mxy(~r, t)| · eiφ(~r,t), (3.37)
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where t is the time from the center of the excitation pulse. The phase, φ, is linearly related
to the intra-voxel mean magnetic field [Bonny et al., 2000],

φ(~r, t) = −γ∆B(~r) · t+ φ0(~r) = −γ (Bmacro(~r)−Brec) · t+ φ0(~r), (3.38)

where φ0 is the phase at t = 0, and γBrec is the readout frequency used for detection.
Hence, sampling of the time course of the complex MR signal can provide information
about the field inhomogeneities, Bmacro(~r).

When the inhomogeneities are small compared to the main magnetic field, the macroscopic
field can be described as a Taylor series,

Bmacro(r) = B0
macro +

∂Bmacro(r0)
∂r

(r − r0) +
1
2
∂2Bmacro(r0)

∂r2
(r − r0)2 + ... (3.39)

The constant term leads to a constant phase in the measured signal, but does not cause
any phase dispersion. The higher order terms, however, give rise to a dephasing of the
signal. The main contribution comes from the linear term, and therefore the macroscopic
field inhomogeneities can be modeled as a linear field across the voxel of interest. Such a
gradient causes a sinc-shaped signal decay (here in x-direction) [Haacke et al., 1999],

Fx(t) = sinc(γ ·Gmacro,x/2 ·∆x · TE). (3.40)

Bmacro can be estimated by means of linear regression to the phase evolution over time,

Bmacro =
1
γ

dφ

dt
. (3.41)

This method, where several echo times are used and the phase difference between the
measurements are considered, instead of using the phase of one measurement, reduces the
influence of hardware imperfections such as gradient delays or phase errors of array coils.

Gradients in all spatial directions can be calculated by fitting the Bmacro map for each
voxel in the original sequence into a polynomial model taking also the quadratic terms
into consideration. The total correction function is then the product of the correction
functions (Eq. 3.40) for all three spatial dimensions,

Ftot = Fx · Fy · Fz, (3.42)

using the calculated gradients and the dimensions and echo times for the original sequence.

The distribution Bmacro(~r) (c.f. Eq. 3.36) inside a voxel in the GESSE measurement
was estimated using phase maps acquired with a high-resolution 3D multi echo GRE
pulse sequence, where the signal loss due to macroscopic inhomogeneities can be assumed
negligible. The standard technique for multi echo acquisitions (e.i., T2* GRE [Gati et al.,
1997]) generally uses both positive and negative read out gradients. The presence of
macroscopic field gradients, however, would differently distort images collected in the
presence of positive and negative readout gradients [Schmitt et al., 1998].

The signal was sampled only in the presence of positive readout gradients to avoid phase
errors caused by the alternation of the read gradient polarity. Bmacro was estimated by
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means of linear regression to the phase evolution over time for each voxel of the GRE
images. Gradients in all spatial directions were calculated by fitting the Bmacro map for
each GESSE voxel into a quadratic polynomial model using base functions x, y, z, xy,
yz, xz, x2 − y2, and z2 − x2 − y2. The correction function was calculated according to
Eq. 3.42, using the calculated gradients and the dimensions and echo times for the GESSE
sequence. The echo times for the 3D GRE sequence were selected so that fat and water
were in phase. For both 3T and 1.5T systems, 5 echoes were used with a time difference
between two subsequent echoes (∆TE) of 9.52ms. Since the slice thickness typically is
much larger than the in-plane resolution, the largest inhomogeneity effect will be found
in slice selection direction. In order to perform inhomogeneity correction in slice selection
direction, the slice thickness has to be accurately known. The requested slice thickness
was monitored using slice profile images, acquired with a spin echo sequence where the
readout analog-to-digital converter is placed along the slice select direction.

The discrete and wrapped nature of phase images can spoil the reconstruction of the
field inhomogeneity and gradient maps. Hence, a 3D phase unwrapping [Abdul-Rahman
et al., 2007] was applied to all acquired 3D data sets. Furthermore, since the signal is
sampled at certain echo times with a constant echo distance ∆TE, the measurable range
of frequency offsets is limited by ±(2 ·∆TE)−1 (cf. Eq. 2.52 and 2.53). The assumption
that this bandwidth is enough to map the magnetic field inhomogeneities without aliasing
is equivalent to considering that the signal phase jump between two adjacent echoes is less
than π. Since it cannot be assumed that this is always the case, phase unwrapping of the
phase-time course was performed, using the built in MATLAB function unwrap.

3.3.2 Single Cylinder Measurements

Since the integral in Eq. 3.6 does not have an analytical expression for other voxel geome-
tries than cylindrical (Eq. 3.3), numerical simulations have to be performed. The signal
of a MR voxel containing a single cylindrical vessel can be numerically simulated using a
large matrix where every matrix element, n, represents a small spin packet. The value of
∆ω(~r) can be calculated for every matrix point using Eq. 3.1. The complex values of the
matrix points are then added together to get the total signal from the voxel at a certain
echo time TE,

S(TE) =
N∑
n=1

Wn · S0,n · e−i∆ωn·TE−TE/T2,n . (3.43)

According to the theory, the cylinder has to be positioned in the center of the voxel. This
may not always be the situation in a real measurement. To solve this problem, Sedlacik
et al. [2007] proposed a method where a phase gradient is applied in the k-space before
reconstruction. According to the Fourier transform shift theorem, a shift in one domain
leads to a linear phase change in the other domain, and vice versa. Hence, a subvoxel
shift can be achieved that positions the cylinder in the center of the voxel. The shift is
applied until the symmetry of the signal in the neighboring voxels indicates that the string
is located in the center of the voxel.

To obtain the susceptibility difference between the cylinder and the surrounding medium,
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the numerical simulation of the signal behavior for a square voxel with PSF is fitted to
the measured signal curve in an iterative manner. The measured signal is normalized to a
homogeneous area near the evaluated voxel prior to the curve fitting in order to eliminate
the effect of T2 decay. Hence, T2 is set to one for all matrix elements. Furthermore,
S0 is set to one outside the cylinder and to zero inside the cylinder. The SNR for each
measurement point is estimated as the standard deviation of the signal in the homogeneous
ROI, and used as weighting factors during the curve fitting procedure. All evaluations
were performed using the MATLAB lsqcurvefit function and self-written MATLAB code.
A non-linear Levenberg-Marquardt algorithm was used for optimization. No corrections
for the angle were performed subsequent to the measurements, hence all signals were
computed for a vessel oriented perpendicular to ~B0 (θ = 90◦). Due to the restricted
spatial resolution of the whole-body scanner, the smallest string diameter examined with
this method was 194µm.

3.3.3 Cylinder Network Measurements

In order to obtain a quantitative measure of Y, δω has to be extracted from Eq. 3.20.
The characteristic function that appears in the equation does not have an analytical so-
lution. Hence, one have to use either the analytical expressions that are available for the
asymptotic forms of the characteristic function or numerical methods in order to extract
the desired parameter.

3.3.3.1 Analytical method

One technique to estimate δω is to use the analytical expressions that exist for the asymp-
totic forms of Eq. 3.20. Combining Eq. 2.32 with Eq. 3.24 yields the following expression
for the reversible relaxation rate (R2′ = 1/T2′),

R2′ = ζ · δω̄ = ζ · 4π
3

∆χ ·B0. (3.44)

Hence, there is a direct relationship between the reversible relaxation rate and the induced
frequency shift. The latter part of the equation above, obtained by using the expression
for δω̄ given by Eq. 3.22, displays R2′ as a function of ζ ·∆χ. Thus, once R2′ and ζ are
known, the mean susceptibility difference is known and Y can be calculated according to
Eq. 2.69.

Both R2′ and ζ can be estimated if the MR signal-time course is sampled using the GESSE
sequence (section 3.2.2.3). By measuring the long time asymptotic forms, before and after
a spin echo, respectively, R2′ can be estimated. In case of a spin echo, the argument in
Eq. 3.24 has to be replaced by t − TE. Using R2′ as above, the signal equation for the
long time asymptotic form can be written as,

St = (1− ζ) · St(0) · eζ · e−R2′·|t−TE| · e−R2t·(t−TE). (3.45)

This depicts that the signal decay in the vicinity of a spin echo is dependent on the phase
dispersion due to magnetic inhomogeneities while the signal amplitude at the spin echo is
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thoroughly unaffected by those inhomogeneities. Before the spin echo, the reversible and
irreversible relaxation counteracts each other whereas after the spin echo their effect is
adding up. Consequently, measuring the relaxation rate before the spin echo would give a
measure of R2t − R2′ and measuring the relaxation rate after the spin echo would give a
measure of R2t +R2′. When combining those two relaxation rates, both R2t and R2′ can
be calculated. Furthermore, the dependence of the long time behavior on ζ allows one to
extract information on the volume fraction occupied by the susceptibility inclusions in a
tissue matrix. By placing t = TE into Eq. 3.45, the volume fractions of the susceptibility
inclusions can be found as,

ζ = ln(Sextrapolated(TESE)/S(TESE)). (3.46)

When both R2′ and ζ are known, Y can be calculated according to,

Y = 1− 3
4πγB0

· R2′

ζ
· 1

∆χdo
(3.47)

However, fitting the signal time course before and after the spin echo independently, even
though the parameters have a clear dependence can give rise to unnecessary unstable
parameter estimation. Bongers [2004] proposed a modified version of the analytical ap-
proach where the two asymptotes is fitted simultaneously. Using this combined method,
one fit parameter can be eliminated and the true extrapolation is avoided, which make the
method more robust. Bongers [2004] found that for the same SNR, the combined method
reduces the parameter error by 30−50 % compared to the independent analytical method.

3.3.3.2 Numerical method

An alternative approach to the analytical method of using the asymptotic forms of the sig-
nal is to numerically calculate the signal and, in an iterative manner, fit the sampled data
to the whole signal model. By doing so, no restriction to the simplified two-compartment
model is required, but models that are more realistic can be used since analytical ex-
pressions for the long and short time asymptotes are no longer needed. He et al. [2008]
extended the previously described model to incorporate the multi-component MR behavior
of brain tissue. The extended model includes contributions from parenchymal tissue (gray
and white matter), cerebrospinal fluid (CSF), or interstitial fluid (ISF) and intravascular
blood.

The parenchymal signal is the signal given by Eq. 3.20 but now with ζ = κ + ζ ′ where κ
and ζ ′ is the signal fraction from ISF/CSF and blood at the spin echo, respectively.

The extra cellular fluid (ISF and CSF) might have a frequency (∆f) and phase (ϕ) shift
from the parenchyma signal and hence this part of the signal is given by,

Se(t) = κ · S0 · e−R2e·t−2πi·∆f ·t−iϕ, (3.48)

where R2e is the transverse relaxation rate for ISF/CSF.
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The intravascular blood signal can be modeled as [Sukstanskii und Yablonskiy, 2001],

Sb(t) = ζ ′·S0·
(

π

3 · |δω̄ · t|

)1/2

ei·δω̄·t/2−R2b·t·
[
C
(
|3δω̄ · t/2|1/2

)
− i · sign(t) · S

(
|3δω̄ · t/2|1/2

)]
.

(3.49)
The functions C(x) and S(x) are the Fresnel cosine and sine integral functions, sign is
a sign function which equals −1 for negative arguments and +1 for positive arguments.
The transverse relaxation rate for blood depends on the blood oxygen saturation and is,
at 3T , given by [He und Yablonskiy, 2007],

R2b = 5.0 + 173 · (1− Y )2. (3.50)

The total voxel signal is given as the sum of all the contributions,

S(t) = St(t) + Se(t) + Sb(t). (3.51)

The evaluation of the signal measured with the network phantoms, were performed using
MATLAB lsqcurvefit with a non-linear Levenberg-Marquardt algorithm and self-written
MATLAB code.

3.3.3.3 Error estimation

Signal noise is one of the limiting factors for parameter estimation. The signal noise
originates mainly from random fluctuations in the receiving coil and inductive losses in
the sample, and can be described by a Gaussian distribution. However, by taking the
magnitude of the real and imaginary part of the signal, the noise is no longer Gaussian
but rather described by a Rician distribution. For large SNR the Rician distribution
approaches the Gaussian distribution and, hence, a Gaussian noise can be assumed in
image regions with large SNR. In image regions where only noise is present, a special
case of the Rician distribution, the Rayleigh distribution, is obtained. The mean, M̄ , and
the variance, σ2

M , for this distribution is associated with the standard deviation of the
Gaussian distribution, σ [Gudbjartsson und Patz, 1995],

M̄ = σ

√
π

2
, (3.52)

σ2
M = (2− π/2)σ2. (3.53)

Hence, the uncertainty in a single measurement point can be obtained by measuring the
mean signal, or the variance, in a signal free ROI in the image.
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Results

In section 3.3.3, methods were presented that allow quantitative estimations of the oxy-
gen extraction in brain tissue. In the following sections, the evaluation of the methods is
presented. Non-static dephasing conditions were simulated in phantom experiments. Dif-
fusion effects were investigated and compared with the theory. Furthermore, the stability
of the evaluation techniques was tested by means of simulations. Finally, the practical use
was considered using in vivo measurements.

4.1 Phantom Measurements

4.1.1 Macroscopic inhomogeneities

Tissue oxygenation measurements using MRI are equivalent with the problem of estimating
the volume susceptibility of the venous blood. The volume susceptibility of the venous
blood can be determined by measuring the field distortion introduced by the paramagnetic
vessels. This is performed by evaluation of the MR signal decay over time. However, any
other source of inhomogeneities affects the signal as well, and their susceptibility effects
add to the desired effect and, thus, spoil the estimation. The modeling of macroscopic
field inhomogeneities was described in section 3.3.1.

The correction method was tested in phantom measurements. A syringe containing water
doped with contrast agent was attached to the bottom of a bottle phantom, inducing
macroscopic field inhomogeneities. The dimensions of the 3D GRE voxels was chosen
smaller than the dimensions of the GESSE voxels, i.e. 1 × 1 × 2mm3. A TR of 100ms,
and a flip angle of 20◦ was used.

An original GESSE magnitude image can be seen in Figure 4.1 (a), together with the
inhomogeneity corrected image (b) and the calculated correction function (c). The signal
obliteration in the center of the phantom caused by the contrast agent is fully corrected for
in the corrected magnitude image (b). In Figure 4.2, the natural logarithm of the signal-
time development for the pixel marked with a blue ROI in Figure 4.1 can be seen, before

45
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and after correction. Since the phantom contains pure water doped with NiSO4 and
NaCl, a mono-exponential decay is expected. Before correction, the signal decays much
faster than would be expected by pure T2 decay, and not in a mono-exponential manner.
After the correction, however, a more mono-exponential decay is present, indicating that
the macroscopic inhomogeneity correction was successful. For all GESSE measurements
presented in this work, an accompanying 3D GRE scan was acquired and used to calculate
a correction function with the approach presented in section 3.3.1. The macroscopic
inhomogeneity correction was applied before further evaluation.

4.1.2 Single Cylinder

The network phantoms mentioned in section 3.2 were constructed using polyamide strings
and a NiSO4 solution. In order to verify the results obtained with the network phan-
toms, independent measurements of the magnetic susceptibility difference between the
polyamide string and NiSO4 solutions of different concentrations were carried out. The
measurements were performed using the single polyamide string phantoms presented in
section 3.2.3.1, according to the method presented in Sedlacik et al. [2007] (c.f. section
3.1.1).

Single string measurements were performed for a NiSO4 · 6H2O concentration of 1, 3,
5 and 7 g/l. In Figure 4.3, the measured signal curves, normalized to a surrounding
homogeneous ROI, for each NiSO4 concentration can be seen together with the fitted
signal curves. The large uncertainty of the last measurement points for the 5 g/l and 7 g/l
measurements arises due to extremely low SNR. Those points, however, become a very low
weighting factor during curve fitting due to their large relative error. The signal decay is
almost identical for the two different string diameters, which is expected since the relative
volume fraction is nearly the same. The obtained calibration curves for the susceptibility
difference between strings and solution as a function of NiSO4 · 6H2O concentration are
shown in Figure 4.4 (a). A strong linear relationship exists for both string diameters.
However, the absolute susceptibility difference differs for the two string types for a given
NiSO4 · 6H2O concentration. The calibration curve for R2, measured with the CPMG
sequence at 3T , as a function of NiSO4 ·6H2O concentration can be seen in Figure 4.4 (b).

The aim of the single string measurements was to characterize the network phantoms. In
Table 4.1, the specifications for the four network phantoms as obtained from the single
string measurements are shown. The R2 for each network phantom was measured at 3T
and 1.5T using the CPMG sequence. The R2 value obtained at 3T was converted to
a NiSO4 · 6H2O concentration using the R2 calibration curve (Figure 4.4). This step
was performed because uncertainties in the NiSO4 concentration are introduced during
the phantom filling and degassing process. The obtained NiSO4 · 6H2O concentration,
however, was comparable to the projected ones. The susceptibility difference between the
polyamide strings and the surrounding solution could be subsequently established for each
phantom using the calculated NiSO4 ·6H2O concentrations and the ∆χ calibration curve.
The ∆χ values obtained with the single string method differ somewhat for the two string
diameters used. In Table 4.1 the reference ∆χ for each phantom is specified as the range
between the two calibration curves.
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Figure 4.1. Macroscopic inhomogeneity correction. A syringe containing contrast agent
doped water induces macroscopic field inhomogeneities. a) The macroscopic field inhomogeneities
cause signal cancellation in the center of the phantom in the uncorrected GESSE image. b)
After the macroscopic inhomogeneity correction is applied, the signal obliteration has vanished.
c) The calculated correction function is the product of the correction of the macroscopic field
inhomogeneities in all three spatial direction, here shown exemplarily.
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Figure 4.2. Uncorrected and macroscopic inhomogeneity corrected signal. Natural
logarithm of the signal intensity over time in a ROI positioned in an inhomogeneous region of
the phantom. In absence of macroscopic field inhomogeneities, a mono-exponential behavior is
expected due to the T2 decay. Before the correction (squares), the signal-time course clearly
deviates from the expected mono-exponential behavior. The solid line represents a linear regression
to all measured points after macroscopic inhomogeneity correction. After correction, the signal
shows a mono-exponential decay

.
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Figure 4.3. Measured signal from voxels containing a single polyamide string surrounded by a)
1 g/l NiSO4 · 6H2O + 5 g/l NaCl, b) 3 g/l NiSO4 · 6H2O + 5 g/l NaCl, c) 5 g/l NiSO4 · 6H2O +
5 g/l NaCl and d) 7 g/l NiSO4 · 6H2O + 5 g/l NaCl. The signal is normalized to a homogeneous
ROI to eliminate the T2 signal decay. The uncertainties in each measurement point are obtained
from the standard deviation of the signal in a homogeneous ROI in the phantom. The susceptibility
difference between a single string and the surrounding solution is obtained by fitting the simulated
signal decay to the measured signal. The fitted signal is marked as black solid lines, and agrees
well with the measured signal for all measurements.

Table 4.1. Network phantoms specifications as obtained from the single string measurements

String diameter (µm) R2a at 1.5T (s−1) R2a at 3T (s−1) Concentration
NiSO4

b (g/l) ∆χc (ppm)

27 10.84 13.56 4.11 1.19− 1.28
63 10.20 12.43 3.76 1.11− 1.20
89 8.18 10.06 3.01 0.95− 1.03
245 8.54 10.28 3.08 0.96− 1.04

a Measured with the CPMG sequence.
b NiSO4 · 6H2O concentration calculated using the R2 calibration curve.
c The range of ∆χ values corresponds to the distance between the two calibration curves measured using a

194µm string and a 245µm string respectively.
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Figure 4.4. a) Calibration curve of susceptibility difference (∆χ) as a function of NiSO4 concen-
tration, obtained with single string measurements using a string diameter of 194µm and 245µm.
A linear relationship between ∆χ and the NiSO4 · 6H2O concentration was found for both string
diameters. The ∆χ obtained for the thinner string was approximately 0.1 ppm larger than the
∆χ obtained for the thicker string for all NiSO4 concentrations. b) Calibration curve of R2 as
a function of NiSO4 concentration. The R2 values was measured at 3T using a CPMG sequence
with 12 echoes. Error bars are smaller than symbols when not visible.
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4.1.3 Network Phantom

The single string measurements aimed to produce calibration curves that can be used to
characterize the cylinder network phantoms. When the susceptibility difference between
the polyamide strings and the NiSO4 solution in the network phantoms is known, they can
be used to examine the theoretical models. All phantom measurements were performed
using the custom-built network phantoms as presented in section 3.2.
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ζ = 0.98 ± 0.11%
R2 = 10.00 ± 0.03 s-1

R2’ = 3.24 ± 0.20 s-1

∆χ = 1.23 ± 0.16 ppm

ζ = 0.07 ± 0.87%
R2 = 9.88 ± 0.27 s-1

R2’ = 1.95 ± 0.50 s-1

∆χ = 10.4 ± 129 ppm

ζ = 1.18 ± 0.01%
R2 = 9.99 ± 0.03 s-1

∆χ = 1.05 ± 0.07 ppm

ζ = 0.44 ± 0.28%
R2 = 9.85 ± 0.10 s-1

∆χ = 1.81 ± 1.02 ppm

Analytical fit
SNR = 334

Analytical fit
SNR = 90

Numerical fit
SNR = 334

Numerical fit
SNR = 90

Figure 4.5. Evaluation of signal from one voxel in the string filled compartment in the
cylinder network phantom with a string diameter of 245µm. The spin echo is emphasized
with a black unfilled square. a) SNR of 334 and analytical evaluation method. A susceptibility
difference (∆χ) comparable to the expected value of 1 ppm is obtained. The parameter estimation
is stable. b) SNR of 334 and numerical evaluation method. A ∆χ very close to the expected
value of 1 ppm is obtained. The parameter estimation is more stable than when the analytical
evaluation method is used at the same SNR. c) SNR of 90 together with the analytical evaluation
method. A relative volume fraction (ζ) very close to zero and with large uncertainty is obtained.
This is reflected in the calculated ∆χ which is much larger than the expected value and has a
relative parameter error of 1240 %. d) SNR of 90 and numerical evaluation method. The obtained
∆χ deviates from the expected value. Although the relative parameter error of 56 % is high it is
substantially smaller than for the analytical method at the same SNR.
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4.1.3.1 Evaluation Technique

In section 3.3.3, two evaluation techniques for data sampled with a GESSE sequence
were mentioned. The analytical method takes advantage of the asymptotic forms that
exist for the characteristic function for long and short echo times. In contrast, with the
numerical method, the signal is calculated numerically and fitted to the measured points
in an iterative manner.

In Figure 4.5, the voxel signal measured with a GESSE sequence and the 245µm cylinder
network phantom is shown for a SNR of 334 (upper row) and a SNR of 90 (lower row).
The fitted curves obtained with the analytical method are shown in (a) and (c), together
with the fitting results. The combined analytical method yields reasonable results in case
of higher SNR, where the achieved susceptibility difference is on the same order as the
expected value of about 1 ppm. However, when the SNR is low the evaluation shows
extremely unstable results. The volume fraction is now very close to zero and has a
huge uncertainty that is reflected by the enlarged susceptibility difference achieved and
its enormous relative parameter error of approximately 140 %. The fits to the same signal
data, when using the numerical method are shown in Figure 4.5 (b) and (d), for the higher
and lower SNR, respectively. At high SNR, the numerical method yields more accurate
results than the analytical method. However, the largest difference is seen in case of low
SNR. Even though the estimated ∆χ deviates from the true value, the stability compared
to the analytical method is substantially improved. This speaks in favor for the numerical
method. Besides, it is not straightforward to derive asymptotic forms for more complex
models including diffusion, intravascular signal or a multi-compartment system. Since
the aim of this thesis is to investigate the possibility to quantify the BOLD effect under
non-static dephasing conditions, a model including diffusion effects has to be accessible.
Consequently, the numerical method is the better choice for further investigation.

4.1.3.2 Network phantom measurement

The effect of diffusion is assumed large for small cylinder diameters, long echo times and
low field strengths. GESSE scans were made with all four string network phantoms at
both 3T and 1.5T . The high-resolution 3D GRE images, also used for inhomogeneity
correction, were used to define ROIs inside the string-containing compartment of the
phantoms. The average signal in each ROI was used for evaluation. All measured signal
curves along with the evaluated parameter when three (∆χ, ζ and R2), two (∆χ and ζ or
∆χ and R2) and one (∆χ) fit parameter is used can be found in Appendix A.

Figure 4.6 (a-b) shows typical magnitude and phase images, acquired with the high-
resolution 3D GRE sequence. The evaluation ROI is marked with a yellow circle. Fig-
ure 4.6 (c) shows the signal curves measured using the 89µm network phantom at 3T for
the shorter and the longer spin echo time (TESE). The shape of the signal curves mea-
sured at different echo times can be compared if the signal curves are normalized to the
spin echo signal and plotted against the time from spin echo. The resulting plot is shown
in Figure 4.6 (d). According to the static dephasing theory, the signal decay around a spin
echo should be independent of the echo time. As seen in Figure 4.6 (d) there is a clear
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difference in signal decay between two measured signal curves, both before and after the
spin echo. The difference, however, is more pronounced before the spin echo. This effect
was seen for all network phantoms and was more pronounced for smaller string diameters.
The diffusion model predicts similar unsymmetrical signal decay dependent on the echo
time. Hence, the effect seen in the phantom measurements is likely to be a diffusion effect.

All phantom measurements were evaluated using both the static dephasing model and the
water diffusion model. The ∆χ and ζ values obtained from the evaluation using three fit
parameters (∆χ, ζ and R2) are shown in the upper half of Table 4.2. The ADC measured
with the diffusion weighted EPI was used as input to the water diffusion model, together
with the string radius as specified from the manufacturer. Hence, both models have the
same number of free parameters.

Examination of the results obtained with the static dephasing model reveals that only large
string diameters in combination with a short echo time results in ∆χ values comparable
to the ∆χ known from the single string measurements. For smaller string diameters and
longer echo time, the deviation from the expected parameter values is substantial. In
general, the obtained ∆χ values are lower than anticipated. The results are somewhat
closer to the expected values for the measurements performed at lower field strength. The
errors displayed in the table are the standard deviation obtained using MATLAB function
nlparci.

The ∆χ values obtained for small string diameters using the static dephasing model are
obviously incorrect. If this is due to the effect of diffusion, accurate results should be
obtained when the evaluation is performed using the water diffusion model. The parame-
ters estimated using the water diffusion model can be seen in the lower half of Table 4.2
for both 3T and 1.5T . Surprisingly, the evaluation using the water diffusion model does
not yield any reasonable results except for the measurements performed with the 245µm
phantom. In general, ∆χ is underestimated for the measurement with a shorter spin echo
time and overestimated for the measurement with a longer spin echo time.

To conclude, for all network phantoms with strings thinner than 245µm, the evaluation
of the measured data using the static dephasing model yields incorrect values of ∆χ.
However, if the water diffusion model is used, the evaluation still fails. Either the water
diffusion model is incapable of describing the measurement system or there is some great
instability in the evaluation method.
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Figure 4.6. Measurement using the 89µm phantom. a) 3D GRE magnitude image with
evaluation ROI marked as a yellow circle. The inhomogeneous packing of the polyamide strings is
visualized by the varying signal intensity in the ROI. Darker areas represent regions with higher
volume fraction of polyamide strings. b) The to (a) corresponding 3D GRE phase image. c) Signal
as function of echo time, measured with the GESSE sequence using one shorter spin echo time
(TESE) of 34ms and one longer TESE of 68ms. d) The measured signal shown in (c), but now
normalized at the spin echo signal intensity and plotted against the time from the spin echo. A
clear deviation between the two signal curves can be seen, which is not in agreement with the static
dephasing model. Since the water diffusion model predicts such an unsymmetrical signal behavior,
the effect is likely to be a diffusion effect. Absence of error bars indicates that the standard error
interval was smaller than the size of the data symbol.
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Resemblance between measured and theoretical signal curves

To investigate the evaluation method further, the root mean squared error (RMSE) be-
tween a measured signal curve and a set of theoretical curves was calculated. Theoretical
signal curves were computed, with the static dephasing model and the water diffusion
model, by changing ζ from 0 to 10 % in steps of 0.05 % and ∆χ from 0.5 to 2 ppm in steps
of 0.0075 ppm. The similarity between every theoretical signal curve and the measured
signal curve was examined by calculation of the RMSE. A low RMSE value indicates that
the calculated signal curve is very similar to the measured signal curve. The result can
be seen in Figure 4.7 for the signal curve measured with the 245µm phantom at 3T ,
using an echo time of 37ms. Figure 4.7 (a) shows the natural logarithm of the RMSE
between the measured signal curve and theoretical signal curves calculated with the water
diffusion model and a number of combinations of ζ and ∆χ. The expected parameter
set (ζ = 3 % and ∆χ = 1 ppm) is marked with a white cross. The corresponding RMSE
plot when the water diffusion model is used to calculate the signal curves can be seen in
Figure 4.7 (b). Figure 4.7 (c) shows the RMSE profiles at the relative volume fraction
marked with a black, dashed line in (a) and (b). Using a large string diameter and short
echo time, no large diffusion effect is expected. Not surprisingly, the RMSE plots for the
static dephasing model and the water diffusion model are almost identical. Furthermore,
the minimum RMSE at a relative volume fraction of 3 % is located at a ∆χ of 0.99 ppm
and 1.00 ppm for the static dephasing method and the water diffusion method, in that
order. Those values are close to the expected value of approximately 1 ppm, indicating
that both models manage to describe this system well.

Figure 4.8 shows the RMSE plots for a measurement performed at 1.5T using the 27µm
phantom and an spin echo time of 68ms. Under those conditions, the effect of diffusion
should be extensive. Figure 4.8 (a-b) shows the corresponding RMSE plots for the static
dephasing model and the water diffusion model, respectively. The expected volume frac-
tion of 2 % is marked with a dashed line. Now, a large discrepancy between the two RMSE
plots is present. The plot for the water diffusion model is similar to the ones obtained
for the 245µm phantom whereas for the static dephasing model, the valley of low RMSE
is shifted to smaller values of ζ. When studying those RMSE plots, it is straightforward
to conclude that if the static dephasing model is used for evaluation, accurate results will
never be achieved. In Figure 4.8 (c) the corresponding RMSE profiles are shown. At the
expected volume fraction of 2 %, the static dephasing model has a RMSE minimum at a
∆χ of 0.53 ppm while the water diffusion model has its minimum at a ∆χ of 1.22 ppm.
The latter is in good agreement with the expected value. Hence, the water diffusion model
appears to be able to predict the measured signal curve. However, studying the RMSE
plots, a dark band, representing low RMSE values appears across the plots, providing an
explanation for the evaluation failure. All signal curves located in this valley are very sim-
ilar to the measured signal curve. Furthermore, the RMSE intensity along this track is not
continuous but darker spots can be seen along the line, indicating local RMSE minimum.
The position of those minima is presumably dependent on the image noise and, hence, the
value obtained at evaluation can turn up as whichever value located in or in the vicinity
of the valley.
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Figure 4.7. RMSE plots for the 245µm phantom using a short echo time. a) Natural
logarithm of the root mean squared error (RMSE) between the measured signal curve and the-
oretical signal curves calculated using the static dephasing model. The expected set of ζ (3 %)
and ∆χ (1 ppm) is marked with a white cross. A low RMSE value at a certain combination of ζ
and ∆χ indicates that the signal curve calculated using those parameter values is similar to the
measured signal curve. A curved band of low RMSE values can be seen across the plot indicating
a set of curves almost identical to the measured signal curve. Along this band, local minima with
lower RMSE than at the expected set of ζ and ∆χ can be seen. At evaluation, the curve fitting
routine searches for the point with the lowest RMSE. Hence, this band of low RMSE values with
local minima explains the incorrect outcome of the evaluation of the phantom measurements. b)
Natural logarithm of the root mean squared error (RMSE) between the measured signal curve
and theoretical signal curves calculated using the water diffusion model. The expected set of ζ
(3 %) and ∆χ (1 ppm) is marked with a white cross. Using the water diffusion model results in
essentially the same RMSE plot as for the static dephasing model (a) indicating that the effect of
diffusion the signal formation is minimal as expected for a large string diameter and short echo
time. The same band of low RMSE values is seen across the plot demonstrating that is difficult
to achieve simultaneous estimation of ζ and ∆χ. c) Profiles of the natural logarithm of the root
mean squared error RMSE at the volume fraction of 3 % marked with a black, dashed line in (a)
and (b), for the static dephasing model (solid line) and the water diffusion model (dashed line).
For a fixed ζ of 3 %, there is a clear RMSE minimum at a ∆χ corresponding to the expected value
of 1 ppm. This indicates that both models manage to describe the system well
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Figure 4.8. RMSE plots for the 27µm phantom using a long echo time. a) Natural
logarithm of the root mean squared error (RMSE) between the measured signal curve and theo-
retical signal curves calculated using the static dephasing model. The expected set of ζ (2 %) and
∆χ (1.25 ppm) is marked with a white cross. A low RMSE value at a certain combination of ζ
and ∆χ indicates that the signal curve calculated using those parameter values is similar to the
measured signal curve. A curved band of low RMSE values can be seen across the plot indicating
a set of curves almost identical to the measured signal curve. However, none of the low RMSE
values correspond to a signal curve calculated using the expected parameter set. This shows that
the static dephasing model does not manage to describe the measured curve. Hence, a correct
outcome of the evaluation will never be achieved when the static dephasing model is used. This is
expected since a substantial diffusion effect is predicted for small string diameters and large spin
echo times. b) Natural logarithm of the root mean squared error (RMSE) between the measured
signal curve and theoretical signal curves calculated using the water diffusion model. The expected
set of ζ (2 %) and ∆χ (1.25 ppm) is marked with a white cross. A large discrepancy between the two
RMSE plot calculated using the static dephasing model and the water diffusion model is present.
The water diffusion model has a low RMSE for the expected parameter set, indicating that this
model manage to describe the measured signal curve well. However, the band of low RMSE values
with local minima precludes a simultaneous estimation of ζ and ∆χ. c) Profiles of the natural
logarithm of the root mean squared error RMSE at the volume fraction of 2 %, marked with a
black, dashed line in (a) and (b), for the static dephasing model (solid line) and the water diffusion
model (dashed line). For a fixed ζ of 2 %, clear RMSE minima can be found for both models. The
∆χ value corresponding to those RMSE minima, however, differs for the two models. In contrast
to the static dephasing model, the water diffusion model has a RMSE minimum at a ∆χ value
very close to the expected value of 1.25 ppm, indicating that this model manage to describe the
system well.
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Reduced number of fit parameters

The band of low RMSE values indicating similar signal curves is relatively narrow. Hence,
if ∆χ or ζ is previously known, it should be possible to accurately estimate the other of the
two parameters. In Table 4.3, the results when evaluating the network phantom measure-
ments using the expected value of ζ as fix parameter are presented. Now the obtained ∆χ
values are much closer to the reference values. When using the static dephasing model,
the obtained ∆χ values are in general lower than the reference value. On the contrary,
when using the water diffusion model the obtained ∆χ values are rather a bit higher than
the expected values. The deviation from the expected ∆χ is larger for smaller string di-
ameters. The ∆χ values obtained for the 245µm phantom are not as close to the expected
values as when both ζ and ∆χ were used as fit parameters (Table 4.2). The simultaneous
fit of ζ and ∆χ for the short echo time both resulted in volume fractions larger than 3 %.
Hence, the incorrect result when using a fix ζ could be a consequence of that the imaging
slice during the measurement at the 1.5T system was positioned so that the volume frac-
tion of strings inside the ROI was somewhat higher than the anticipated 3 %. When using
a fix volume fraction of 4 % a ∆χ of 1.11 ppm is obtained for both the static dephasing
model the water diffusion model for the shorter echo time. For the longer echo time the
corresponding ∆χ values are 0.94 ppm for the static dephasing model and 0.98 ppm for
the water diffusion model. Those values agree well with the expected 1 ppm. However,
this further illustrates the instability of the evaluation method and how important it is to
have previous knowledge of the exact value of ζ.

Table 4.3. ∆χ values obtained when evaluating the network phantom measurements using
a fixed value of ζ, for both the static dephasing (SD) model and the water diffusion (WD)
model.

String diameter
245µm 89µm 63µm 27µm

B0 (T) Modela Echo
Time

∆χ (ppm) ∆χ (ppm) ∆χ (ppm) ∆χ (ppm)

3.0 SD 34ms 1.068± 0.005 0.894± 0.005 1.191± 0.036 0.881± 0.023
68ms 0.996± 0.008 0.770± 0.014 0.911± 0.026 0.648± 0.019

1.5 SD 34ms 1.359± 0.034 0.960± 0.006 1.361± 0.019 1.128± 0.024
68ms 1.148± 0.007 0.893± 0.009 1.126± 0.020 1.036± 0.018

3.0 WD 34ms 1.093± 0.006 1.044± 0.010 1.552± 0.034 1.567± 0.050
68ms 1.076± 0.003 0.972± 0.011 1.240± 0.019 0.989± 0.030

1.5 WD 34ms 1.404± 0.034 1.122± 0.021 1.774± 0.043 2.053± 0.086
68ms 1.211± 0.007 1.007± 0.015 1.440± 0.024 1.474± 0.062

Reference valuesb 0.96− 1.04 0.95− 1.03 1.11− 1.20 1.19− 1.28
a Theoretical model used for the evaluation. SD - Static dephasing model, WD - Water diffusion
model.

b Reference values for ∆χ as obtained in the single string measurement.
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4.2 Simulations

To investigate the stability of the evaluation method, simulations were performed.
Non-static dephasing data, i.e., data calculated with the water diffusion model, were eval-
uation using the static dephasing model. The result was explored to establish if the pattern
observed in the phantom measurements could be associated with diffusion. Furthermore,
as seen in the previous chapters several set of ζ and ∆χ yields very similar signal curves.
This causes problems since the evaluation process is based on non-linear, least square
curve fitting. The parameters that affect the appearance of the static dephasing signal
curve, apart from ∆χ and ζ, are the relaxation rate R2, the sequence parameters chosen
for the GESSE scan and the SNR. Next, the influence of those parameters is investigated.

4.2.1 Static Evaluation of Non-static dephasing Data

Theoretical signal curves were calculated using the water diffusion model and the param-
eters expected in the phantoms (c.f. Table 3.2 and Table 4.1). An ADC of 2.1 · 10−9m2/s
was used for all calculations. The diffusion influenced signal curves were subsequently
evaluated using the static dephasing model. The results from the evaluation using both
∆χ and ζ as fit parameters can be seen Table 4.4. Table 4.5 shows the obtained ∆χ when
ζ is used as a fix parameter.

The values obtained for the long spin echo time sequence are very consistent with the
corresponding values obtained at evaluation of the network phantom measurements. For
the short spin echo time sequence, however, ∆χ is overestimated when evaluating the
simulated data in contrast to the evaluation of the measured data where ∆χ in general
was underestimated. Using a fixed value of ζ results in ∆χ values lower than the true value.
The deviation is larger for smaller string diameters. Those results are fairly consistent with
the outcome of the phantom measurements. However, there is a difference between the
results obtained with the sequence using a longer spin echo time and the results obtained
with the sequence using a shorter spin echo time. In the next section, the dependence
of the stability of the parameter evaluation on SNR and sequence parameters used is
examined.

The simulated non-static dephasing data together with the parameters obtained from the
evaluation using the static dephasing model can be found in Appendix B.

4.2.2 Dependence on SNR and Sequence Parameters

Figure 4.9 shows surface plots of the RMSE between a signal curve calculated using ∆χ =
0.58 ppm and ζ = 3 % at 3T and all other curves with ∆χ = 0−1.2 ppm and ζ = 0−10 %.
A ∆χ of 0.58 ppm corresponds to a oxygenation saturation of about 50 % in vivo, which
approximately is the level that is expected in the brain. Furthermore, a volume fraction
of about 3 % is the value found in gray matter. The RMSE plot is shown for an ideal
case, where no signal noise is present. In a linear scale, it is not possible to detect a clear
minimum. However, observing the logarithmic values, a narrow peak corresponding to the
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true parameter set is clearly visible. As seen in the phantom measurements, this peak will
be masked in case of signal noise, and the minimum RMSE will be found somewhere else
in the valley. The statistical errors in the parameter estimation will be dependent on the
signal noise and possibly on the sequence parameters used.

Table 4.4. ∆χ and ζ values obtained when evaluating calculated non-static
dephasing data using the static dephasing (SD) model.

String diameter
245µm 89µm

B0 (T) Echo Time ∆χ (ppm) ζ (%) ∆χ (ppm) ζ (%)

3.0 34ms 0.961± 0.015 3.06± 0.06 0.935± 0.055 4.51± 0.31
68ms 0.742± 0.029 3.92± 0.19 0.440± 0.091 11.38± 3.72

1.5 34ms 1.018± 0.009 2.84± 0.03 1.226± 0.041 3.27± 0.13
68ms 0.976± 0.061 2.96± 0.28 0.734± 0.260 6.73± 4.02

Reference values 1.000 3.00 1.000 5.00

String diameter
63µm 27µm

B0 (T) Echo Time ∆χ (ppm) ζ (%) ∆χ (ppm) ζ (%)

3.0 34ms 1.000± 0.085 2.65± 0.26 1.121± 0.181 1.17± 0.22
68ms 0.336± 0.128 11.60± 7.65 0.214± 0.251 15.83± 35.71

1.5 34ms 1.525± 0.090 1.60± 0.11 2.069± 0.338 0.55± 0.10
68ms 0.663± 0.287 5.31± 4.00 0.570± 0.603 4.23± 8.07

Reference values 1.150 3.00 1.250 2.00

Table 4.5. ∆χ values obtained when evaluating theoretical non-static dephasing data
using the static dephasing (SD) model and a fix value of ζ.

String diameter
245µm 89µm 63µm 27µm

B0 (T) Echo
Time

∆χ (ppm) ∆χ (ppm) ∆χ (ppm) ∆χ (ppm)

3.0 34ms 0.974± 0.003 0.856± 0.011 0.899± 0.016 0.716± 0.024
68ms 0.924± 0.008 0.784± 0.022 0.839± 0.033 0.756± 0.047

1.5 34ms 0.971± 0.004 0.864± 0.018 0.903± 0.027 0.688± 0.039
68ms 0.964± 0.006 0.880± 0.019 0.937± 0.027 0.880± 0.041

Reference values 1.000 1.000 1.150 1.250



4.2. SIMULATIONS 61

Figure 4.9. Surface plots of root mean squared errors (RMSE) between the signal curve obtained
with ∆χ = 1 ppm, ζ = 3 % and R2 = 10 s−1 at 3T , and all other curves for ζ = 0 − 0.1 % and
∆χ = 0− 2 ppm in a) linear scale, and b) log-scale.

The choice of sequence parameters could be essential for the outcome of the measurement.
For example, it has been previously shown [Bongers, 2004] that a long spin echo time, i.e.,
compared to T2∗, results in more accurate parameter estimation. Using a longer spin echo
time results in a more prominent susceptibility weighting, and when using the analytical
evaluation method, it allows for larger fitting intervals. However, when using the numerical
evaluation method, there is no need to sample the long time asymptote before the spin
echo. Hence, there could be a disadvantage to use a longer spin echo time since the SNR
is decreasing with increasing spin echo time. During previous attempts to map the oxygen
extraction using the method presented in this work, a variety of sequence parameters has
been used. However, no definite solution to the optimal sequence parameters has been
presented.

To investigate the dependence of the sequence parameters on the possibility to separate
∆χ and ζ, without influence of diffusion effects, the static dephasing model was adopted.
The MR signal-time development was calculated according to Eq. 3.20 with ∆χ set to 0.58
ppm, a ζ of 0.03 and a R2 of 12 s−1. Fifteen sequence parameter setups were implemented.
The total number of echoes was set to 32 or 64. The number of the gradient echo that
coincides with the spin echo was chosen to 8, 12, or 16 in case of 32 echoes, and 8, 16 or
24 in case of 64 echoes. Furthermore, the distance between two adjacent echoes was 2 or 4
ms when 32 echoes was used and 1, 2 or 4 when 64 echoes was used. Noise corresponding
to a SNR between 100 and 600 (varied in steps of 100) was added to the calculated signal,
which was subsequently evaluated using least square curve fitting. The evaluation was
performed using three (∆χ, ζ and R2), two (∆χ and ζ) and one (∆χ) fit parameters.
The parameters that were not fitted were given to the fitting routine. The procedure was
repeated 500 times for every parameter set.
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Dependence on spin echo position

In Figure 4.10, the effect of shifting the position of the spin echo is demonstrated. The
results correspond to a GESSE measurement, sampling 64 echoes at an echo distance of
2ms with the spin echo number chosen to 8, 16 and 24. The SNR was set to 200. Every
point in the scatter plots represents a parameter set obtained when one noisy signal was
evaluated. A distribution of parameters is obtained, with the parameter sets located near
the valley of low RMSE values. When the number of the spin echo is increased, the
obtained parameters are positioned closer toward the bottom of the corresponding valley
indicating that the relation between ∆χ and ζ can be established with increased confidence.
However, when looking at the histogram of the obtained ∆χ values, the distribution of
the parameter does not show any considerable difference when changing the number of the
spin echo. If a Gaussian function is fitted to the obtained ∆χ distribution, the standard
deviation is 0.13 ppm when the number of the spin echo is 8, 0.11 ppm when the spin
echo is the 16th echo, and 0.12 ppm when spin echo is assigned to the 24th echo. This
corresponds to a relative parameter error of 18− 22 %. To conclude, when both ∆χ and ζ
are used as fit parameters, the relative parameter error is insensitive to the position of the
spin echo. However, if one of the parameters is known, increasing the number of the spin
echo will cause a reduction of the uncertainty in the estimation of the other parameter. In
the results shown here, the SNR is kept at a constant value of 200. In a real measurement,
choosing a later gradient echo as the spin echo often requires the use of a larger echo time
and, hence, the SNR would drop if the measurement time were not increased accordingly.

Dependence on the distance between two adjacent echoes

In Figure 4.11, the consequence of changing the distance between two adjacent echoes is
demonstrated. The results are related to a GESSE measurement using 64 echoes with a
echo distance of 1ms, 2ms and 4ms. The 16th gradient echo is chosen as the spin echo,
and the SNR is 200. Essentially the same effect is seen as when the position of the spin
echo was altered. Using a small echo distance is equivalent with sampling a small time
period, and yields the most spread results. The longer the sampling interval, the more
tightly the obtained parameters are positioned in the bottom of the minimum RMSE
valley, indicating a less uncertain relationship between the two parameters. However, the
distribution of fitted ∆χ values does not change substantially. Fitting a Gaussian function
to the ∆χ distribution, an echo distance of 1ms gives a standard deviation of 0.14 ppm
while 2ms and 4ms both yields a standard deviation of 0.11ms. This corresponds to a
relative parameter error of 18− 24 %.

Dependence on the total number of echoes

The effect of changing the total number of echoes can be seen in Figure 4.12. The results
are pure theoretical and associated with a GESSE measurement using the 16th echo as
a spin echo at a SNR of 200. Using 64 echoes instead of 32 while keeping the distance
between two adjacent echoes constant (Figure 4.12 (b-c)), results in a lower uncertainty
of the relation between ∆χ and ζ, but has no major effect on the uncertainty of the
individual parameters. Using 32 echoes with a echo distance of 2ms results in a relative
parameter error of 23 % while using 64 echoes with a echo distance of 2ms results in a
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relative parameter error of 18 %. However, using 62 echoes with and echo distance of
1ms yields an relative parameter error of 25 %, the same result as using 32 echoes with
and echo distance of 2ms. Furthermore, using 32 echoes with and echo distance of 4ms
gives a relative parameter error of 18 %, matching the error obtained for 64 echoes with
an echo distance of 2ms. In other words, when comparing 64 echoes with 32 echoes
with the double echo distance, i.e. if the total sampling time is constant, the effect on
the parameter stability is minimal. Hence, the important parameter seems to be the
total sampling period. A large sampling period somewhat increases the stability of the
parameter estimation. However, the maximal sampling period and the number of sampling
points is limited by the time between the 180◦ pulse and the spin echo. A longer sampling
period requires a longer spin echo time, which would result in a reduced SNR. Hence,
the error reduction achieved by using a large fitting area opposes the decreasing SNR.
Furthermore, the minimal distance between two adjacent measurement points is dependent
on the bandwidth used. Using a small echo distance causes a SNR reduction due to the
requirement of increased bandwidth.

Dependence on SNR

Using a later spin echo with a large sampling window stabilize the parameter estimation.
Those actions, however, have to be taken at the expense of SNR. Hence, in order to opti-
mize the sequence parameters, different SNR has to be further considered. In Figure 4.13,
the parameters obtained using 64 echoes at an echo distance of 2ms and the spin echo
at the 16th echo, for SNR values of 200, 400 and 600 are shown. A clear improvement in
the distribution of the obtained parameters is seen at higher SNR. For ∆χ, the relative
parameter error decreases from 18 % at a SNR of 200 to 7 % at a SNR of 600.

In figure 4.14, the relative error of ∆χ, ζ and R2 is shown as a function of SNR (32
echoes, echo distance 4ms, spin echo occurred at 12th echo). The relative error in ∆χ
and ζ shows a strong SNR dependence. For both parameters, a SNR of 500 is required
in order to keep the relative parameter error under 10 %. R2 can be estimated with small
relative uncertainty (< 1 %) already at a SNR of 100. However, as can be seen from
the scatter plots, if ζ is known, ∆χ can be determined with relatively low uncertainty.
In conclusion, an accurate value of the susceptibility difference can only be extracted
from the measured data if certain conditions are fulfilled. A large uncertainty lays in the
simultaneous estimation of ∆χ and ζ. To estimate both those parameters at once, an
unreasonable large SNR is required. However, if one of the parameters is known the other
can be accurately estimated also at low SNR.

Figure 4.15 shows the relative parameter error in ∆χ as a function of SNR when ζ is previ-
ously known, and used as input parameter to the fitting routine. With prior knowledge of
ζ, ∆χ can be estimated with a lower uncertainty at a SNR of 100 than could be obtained
at a SNR of 600 when both ∆χ and ζ were used as fit parameters. At a SNR of 200, which
is commonly achieved in a GESSE scan using a measurement time of 15 − 20minutes,
the relative error in ∆χ would be 3.2 %. The measurement time required to achieve suffi-
cient SNR to facilitate simultaneous estimation of ζ and ∆χ is not accessible in the clinic.
Hence, a solution to the problem would be to make a shorter GESSE scan accompanied
by an independent measurement of ζ.
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Figure 4.10. Demonstration of the effect on parameter estimation of changing the number of the
gradient echo used as spin echo (NoSE). For all simulations the SNR was set to 200 and 64 echoes
with an echo distance of 2ms was used. a) The obtained sets of ζ and ∆χ when evaluating 500
noisy signals and the 8th gradient echo is used as the spin echo. b) The obtained sets of ζ and
∆χ when evaluating 500 noisy signals and the 16th gradient echo is used as the spin echo. c) The
obtained sets of ζ and ∆χ when evaluating 500 noisy signals and the 24th gradient echo is used
as the spin echo. d) Histograms of obtained ∆χ values when NoSE = 8 (solid line), NoSE = 16
(dashed line), and NoSE = 24 (dotted line). As the number of the gradient echo used as the spin
echo is increased, the relation between ζ and ∆χ becomes less uncertain. However, when looking at
the histogram of the obtained ∆χ values, no improvement in the estimation of the single parameter
can be seen. Hence, when using both ∆χ and ζ as fit parameters, the position of the spin echo is
of minor importance. Nevertheless, if one of the parameters is known, the other can be estimated
with lower uncertainty by using a later gradient echo as spin echo, under assumption that the SNR
is kept constant.
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Figure 4.11. Demonstration of the effect on parameter estimation of changing the distance
between two adjacent echoes (∆TE). For all simulations, the SNR was set to 200. 64 echoes
where used and the spin echo occurred at the 16th echo. a) The obtained sets of ζ and ∆χ when
evaluating 500 noisy signals and ∆TE = 1ms. b) The obtained sets of ζ and ∆χ when evaluating
500 noisy signals and ∆TE = 2ms. c) The obtained sets of ζ and ∆χ when evaluating 500 noisy
signals and ∆TE = 4ms. d) Histograms of obtained ∆χ values when ∆TE = 1ms (solid line),
∆TE = 2ms (dashed line), and ∆TE = 4ms (dotted line). Increasing the echo distance results
in a less uncertain relation between ζ and ∆χ. The histogram in (d) shows that the estimation
of ∆χ is somewhat stabilized when a larger echo distance is used. This improvement, however,
is marginal. On the contrary, if one of the parameters is known beforehand, using a larger echo
distance substantially improve the estimation of the other parameter. The previous discussion is
only valid if the SNR at the spin echo is kept constant.
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Figure 4.12. Effect on parameter estimation of changing the total number of echoes. For all
simulations a SNR of 200 was used. a) The obtained sets of ζ and ∆χ when evaluating 500 noisy
signals calculated using 32 echoes and an echo distance of 1ms. b) The obtained sets of ζ and
∆χ when evaluating 500 noisy signals calculated using 32 echoes and an echo distance of 2ms. c)
The obtained sets of ζ and ∆χ when evaluating 500 noisy signals calculated using 64 echoes and
an echo distance of 2ms. d) The obtained sets of ζ and ∆χ when evaluating 500 noisy signals
calculated using 64 echoes and an echo distance of 1ms. Using a smaller echo distance for a fixed
number of echoes results in a less uncertain relation between ∆χ and ζ. Increasing the number
of echoes while the echo distance is kept constant has the same effect on the relation between the
two parameters as using the double echo distance. However, using the double amount of echoes
with half the echo distance does not substantially improve the obtained parameter distribution.
Hence, the important parameter is the total sampling time rather than the total number of echoes.
However, increasing the sampling time only improves the estimation of the relation between ∆χ
and ζ. The uncertainty in the single parameters is not significantly improved.
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Figure 4.13. Effect on parameter estimation of changing the SNR. For all simulations 64 echoes
with an echo distance of 2ms was used. The spin echo occurred at the 16th gradient echo. a) The
obtained sets of ζ and ∆χ when evaluating 500 noisy signals with SNR = 200. b) The obtained
sets of ζ and ∆χ when evaluating 500 noisy signals with SNR = 400. c) The obtained sets of ζ
and ∆χ when evaluating 500 noisy signals with SNR = 600. d) Histograms of obtained ∆χ values
when SNR = 200 (solid line), SNR = 400 (dashed line), and SNR = 600 (dotted line). Increasing
the SNR does not drastically changes the uncertainty in the relation between ∆χ and ζ. However,
the SNR increase causes a sharp decrease of the uncertainty in the single parameters. Hence, in
order to obtain an accurate simultaneous estimation of ∆χ and ζ, the SNR has to be increased.
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Figure 4.14. Relative parameter error as a function of SNR when ∆χ and ζ is fitted simultane-
ously. (NoSE = 12, ∆TE = 4ms, 32 echoes).
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Figure 4.15. Relative parameter error in ∆χ as a function of SNR when ζ is previously known.
Both bars at a certain SNR refers to the same relative error in ∆χ. However, the size of the blue
bars, which belongs to the left scale, is comparable to the bars shown in Figure 4.14. The grey bars
should be used together with the right scale and is added to simplify the reading of the diagram.
(NoSE = 12, ∆TE = 4ms, 32 echoes).
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4.2.3 Expected Effect in vivo

Diffusion has a clear effect on the MR signal in string network phantom experiments under
the conditions used in this work. At a commonly used echo time of 68ms, a diffusion effect
is seen also for a large string diameter of 245µm. However, the self-diffusion of water is
smaller in vivo than in the phantoms used and, hence, the effect is expected to be smaller.

Model the human brain is not trivial. The two-compartment model, describing venous
blood vessels as infinitely long paramagnetic cylinders immersed in a homogeneous tissue
matrix is undoubtedly an oversimplification. As previously mentioned, several attempts
have been made to find models that are more realistic. Intravascular signal as well as a
long T2 component, presumably originating from ISF and CSF, has been implemented
with promising results [He und Yablonskiy, 2007; He et al., 2008]. However, in addition
to signal from ISF/CSF and the intravascular space, diffusion is present and although
the effect is small, it will most likely change the outcome of the experiment if it is not
accounted for. The major difficulty in modeling diffusion effects is that it depends on
the size and distribution of the objects that are causing the field distortions. The true
vessel size distribution is in general not known during an in vivo measurement, which
complicates the attempt to correct for diffusion effects.

In order to estimate the inaccuracy of the parameter estimation for an in vivo measurement
when the effect of diffusion is neglected, simulations were performed using parameters
expected in vivo. The ADC was set to 0.8 · 10−9m2/s which is the value expected in
gray matter. Furthermore, ζ was set to 3 %, ∆χ to 0.6 ppm and R2 to 12 s−1. The vessel
diameter was set to 50µm which is larger than expected from known microvasculature
anatomy. However, if an effect is seen for 50µm vessels, it will be even more significant
for smaller vessels. The simulations were carried out for a 3T system and an SNR of 200
was assumed. Data were simulated using both the static dephasing model and the water
diffusion model and was subsequently evaluated using the static dephasing model.

The result of the evaluation of the simulated data is shown in Figure 4.16. (a-b) shows
the distribution of ∆χ and ζ obtained when evaluating static dephasing data (black dots)
and water diffusion data (red dots). In (a), the results when using a shorter spin echo
time is shown, and (b) shows the results when using a longer spin echo time. For the
shorter spin echo time ∆χ is 0.67± 0.17 ppm and ζ is 2.04± 0.69 % when diffusion effects
are present but not taken into account at evaluation. Those values can be compared to
a ∆χ of 0.59 ± 0.08 ppm and a ζ of 3.03 ± 0.61 %, which are the values obtained when
no diffusion effects are present. For the longer spin echo time ∆χ is 0.39± 0.10 ppm and
ζ is 4.11 ± 1.58 % when the effect of diffusion are not taken into account at evaluation,
compared to a ∆χ of 0.61 ± 0.12 ppm and a ζ of 2.85 ± 0.77 % which is the values found
for the static dephasing signal. Hence, as previously seen relative parameter errors of
approximately 20− 30 % are obtained when both ∆χ and ζ are simultaneously fitted.

In agreement with previous simulations, the relation between ∆χ and ζ is more well
determined when a longer spin echo time is used. In Figure 4.16 (c-d), the distribution of
∆χ and R2 values obtained when evaluating static dephasing data (black dots) and water
diffusion data (red dots) using a fix ζ are shown. In (c), the results when using a shorter
spin echo time and in (d), the results when using a longer spin echo time are presented.
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For the shorter spin echo time, the obtained ∆χ is 0.52±0.03 ppm when analysing the data
calculated with diffusion, using the static dephasing model. The corresponding evaluation
of static data yields a ∆χ value of 0.60 ± 0.03 ppm. Using a longer spin echo time and
data with diffusion results in a ∆χ value of 0.51± 0.02 ppm, compared to 0.60± 0.02 ppm
for the data without diffusion. The R2 values obtained for the non-static dephasing data
are 12.60±0.20 s−1 and 12.75±0.08 s−1 for the shorter spin echo time and the longer spin
echo time, respectively. Hence, when diffusion is present this is compensated for during
the curve fitting by a slight increase of R2, resulting in an underestimation of ∆χ. For
both GESSE sequences, the mean ∆χ is nearly the same. The distribution, however, is
much narrower in case of a later spin echo time, where the two distributions are clearly
separated. The obtained ∆χ values when the non-static dephasing data were evaluated
without taking the effect of diffusion into account and both ζ and R2 were fixed to their
true values was 0.60± 0.01 ppm for the shorter spin echo time and 0.54± 0.02 ppm for the
longer spin echo time.

4.3 In Vivo Measurements

Figure 4.17 shows parameter maps of ζ, ∆χ and R2 obtained at evaluation of a GESSE
scan performed at 3T using 32 echoes with an echo distance of 4ms. The spin echo
occurred at the 13th gradient echo corresponding to an echo time of 108ms. A TR of
1500ms and 6 averages resulted in a scan time of 19 minutes. The SNR was estimated
to approximately 100. ζ, which in vivo would correspond to the deoxygenated cerebral
blood volume (dCBV), is expected to be about 1.5 % and 3 % in white and gray matter,
respectively. However, in the map of ζ values shown in Figure 4.17 (a) no apparent contrast
between gray and white matter is visible. Furthermore, the obtained values of ζ are partly
much larger than the expected 1.5−3 %. In contrast, the ∆χ map shown in Figure 4.17 (b)
has large areas with values much lower than the anticipated 0.3− 0.5 ppm. Moreover, the
∆χ map is rather inhomogeneous which is not expected from the literature. The darker
areas in the ζ map, indicating low dCBV values, match the brighter central areas in the
∆χ map, and vice versa. This is in agreement with the simulations in section 4.2 which
showed that a signal curve calculated with a small ζ and a large ∆χ could be very similar
to a signal curve calculated using a large ζ and a small ∆χ.

The R2 values shown in Figure 4.17 (c) are approximately 15 − 20 % larger than the
values measured using the CPMG sequence. This inconsistency of T2 values is likely
to be caused by diffusion effects. The CPMG sequence has a very short TE of 12.6ms
and, hence, the R2 measurements carried out using this sequence should be practically
unaffected by diffusion. The simulations (c.f. figures in Appendix B) showed that when
diffusion is present but the evaluation still is performed using the static dephasing model,
the R2 is overestimated. The obtained R2 value will be dependent on the vessel size, the
diffusion coefficient and the echo time.

Figure 4.18 (a) shows the spin echo magnitude image from the GESSE scan used to
produce the parameter maps in Figure 4.17. In the image, an evaluation ROI is marked
with a white ellipse. The ROI was positioned in the white matter of the brain where
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Figure 4.16. Result of evaluation of data simulated with and without diffusion using parameters
expected in vivo (∆χ = 0.6 ppm, ζ = 3 %, R2 = 12 s−1) and an SNR of 200. All evaluations
were performed without taking the effect of diffusion into account, in order to estimate the error
introduced when signal curves that have a diffusion effect are evaluated using the static dephasing
model. a) Distribution of ∆χ and ζ when three parameters were used as fit parameters and a
shorter spin echo time was used. b) Distribution of ∆χ and ζ when three parameters was used as
fit parameters and a longer spin echo time was used. c) Distribution of ∆χ and R2 when ζ was
fixed at a value of 3 % and a shorter spin echo time was used. d) Distribution of ∆χ and R2 when
ζ was fixed at a value of 3 % and a longer spin echo time was used.

homogeneous ζ and ∆χ are expected. In Figure 4.18 (b), the sets of ζ and ∆χ obtained
at evaluation of each pixel inside the ROI in Figure 4.18 (a) are shown. The evaluation
results in a distribution of parameter sets, similar to the distributions observed during the
simulations (section 4.2), corresponding to the valley of low RMSE values. The smaller
plot in Figure 4.18 (b) shows a magnified view of the obtained ζ in the range of 0 to
5 %. In this view, it can be seen that the ζ values in the range of the expected 1 − 2 %,
corresponds to ∆χ values in the expected range of 0.3− 0.5 ppm. The distribution of ∆χ
values obtained when the evaluation is made pixel-by-pixel with a fixed ζ of 1.5 % are
shown with black unfilled squares in Figure 4.18 (c). The black filled diamonds represent
the distribution of ∆χ values from Figure 4.18 (a), i.e., the distribution obtained when
∆χ and ζ are fitted simultaneously. When ζ is fixed to 1.5 % the obtained ∆χ values are
almost exclusively found in a range of probable in vivo values.
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The mean signal intensity as a function of echo time in the ROI marked in Figure 4.18 (a)
is shown in Figure 4.18 (d). The black solid line represent the fitted curve when both ∆χ
and ζ are used as fit parameters. Such a small ∆χ value as the 0.17 ppm obtained when
∆χ and ζ are fitted simultaneously is not realistic in vivo. The value of 0.37 ppm obtained
when ζ is fixed at 1.5 % is more in agreement with the expected susceptibility difference.
Nevertheless, the plotted curves once again illustrate the disadvantageous feature that
several sets of ∆χ and ζ results in more or less identical signal curves. Even though ∆χ
differs with 0.2 ppm, it is not possible to distinguish between the two curves. Hence, a
simultaneous determination of the two parameters can be excluded with present in vivo
data.
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Figure 4.17. Parameter maps obtained when evaluating in vivo data acquired at 3T using 32
echoes with an echo distance of 4ms, the spin echo occurred at the 13th gradient echo (118ms).
The evaluation was done using the static dephasing model and 3 fit parameters. a) Deoxygenated
cerebral blood volume (dCVB) map, b) susceptibility difference (∆χ) map and, c) R2 map. The
dCBV is expected to be approximately 1.5 % in white matter and about 3 % in gray matter. The
dCBV map in (a) does not show any clear contrast between gray and white matter and has values
much larger than expected. The ∆χ map is expected to be homogeneous and have values in the
order of 0.3 − 0.5 ppm. Instead of a homogeneous ∆χ map, the evaluation results in a rather
inhomogeneous map with many pixels having a ∆χ value much lower than 0.3 ppm. The darker
areas in (a), indicating small dCBV values, agree with the bright areas in (b), indicating high ∆χ
values. This is in agreement with the simulations in section 4.2 that showed that many sets of
volume fraction and ∆χ produced very similar signal curves. The parameters that cause similar
signal curves corresponded to a low volume fraction and a large ∆χ, a high volume fraction and a
small ∆χ or an intermediate volume fraction and ∆χ. The R2 values obtained at evaluation are
approximately 15− 20 % larger
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Figure 4.18. a) Magnitude image from the GESSE sequence at the spin echo (TESE = 108ms),
with the evaluation ROI marked in white. b) Sets of ∆χ and ζ values obtained by individual
evaluation of every pixel in the ROI marked in (a). Although a constant ζ and ∆χ is expected, the
evaluation results in a distribution of values, similar to the distribution seen from the simulations
(section 4.2). The smaller plot offers a magnified view of ζ values from 0 to 5 %. In this magnified
view it can be seen that when ζ is in the range of the expected 1−2 %, the corresponding ∆χ takes
values of 0.3 − 0.5 ppm which are the values expected in the brain. c) Histogram of the obtained
∆χ values when using both ∆χ and ζ as fit parameters (filled diamonds) and when ζ is fixed to
1.5 % (squares). When ∆χ and ζ are fitted simultaneously, the majority of the found ∆χ values
does not correspond to the expected values of 0.3 − 0.5 ppm. If, however, ζ is fixed to 1.5 % the
obtained ∆χ values are almost exclusively found in the expected range. d) Mean signal from the
ROI marked in Figure 4.18 (a) and the fitted signal curves when both ∆χ and ζ are used as fit
parameters (black solid line) and when a fixed ζ of 1.5 % is used (red dashed line). Even though
there is a large difference between the two ∆χ values, the fitted curves are practically impossible
to tell apart. Hence, a stable simultaneous estimation of ∆χ and ζ is very hard to acomplish under
in vivo conditions.
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Modification of the oxygenation saturation

As alluded to above, many problems need to be solved in order establish a reliable method
for quantitative tissue oxygenation measurements. The major problem appears to be the
simultaneous estimation of ζ and ∆χ. To solve this, an independent measurement of ζ
has to be performed. Furthermore, diffusion is expected to influence the measurement.
In order to consider diffusion the vessel size distribution has to be estimated, which is
not a straightforward procedure. Another large difficulty in the validation of the in vivo
measurements is the absence of exact reference values. However, by modification of the
oxygenation saturation a relative change could be detected. Such a relative measurement
could give a suggestion of the sensitivity of the method.

Caffeine intake, reduces the cerebral blood flow in the brain [Cameron et al., 1990; Field
et al., 2003]. In order for the oxygen consumption of the brain to stay constant, more oxy-
gen has to be extracted from the blood. The result is an accumulation of deoxyhemoglobin
in the veins and, hence, a larger ∆χ.

A 27 years old male healthy volunteer was measured with the GESSE sequence (B0 = 3T ,
32 echoes, ∆TE = 4ms, NoSE = 13, TESE = 108ms, TR = 1500ms, 6 averages) before
and 1 hour after oral intake of 200mg caffeine (Coffeinum N 0,2 g tablets, Merck dura
GmbH, Darmstadt, Germany). Susceptibility weighted images were acquired directly after
each GESSE scan. Suceptibility weighted imaging (SWI) is an imaging technique that
combines both the magnitude and the phase information in the MR signal for noninvasive
cerebral venographic imaging. The method was first applied by Reichenbach et al. [1997]
and was later called SWI by Haacke et al. [2004]. In the SWI images, the effect of caffeine
on the amount of deoxyhemoglobin in the veins should be directly observable.

Figure 4.19 (a-b) shows the SWI images before and 1 hour after caffeine intake, respec-
tively. As indicated by the red arrows in Figure 4.19 (b), the veins are more distinct in the
SWI image acquired after caffeine intake, indicating that more deoxyhemoglobin is present
in the veins. An evaluation ROI was positioned in an area where strong susceptibility ef-
fects were seen. Larger veins were avoided. Figure 4.19 (c) shows the corresponding signal
decays, of the ROIs shown in (a) and (b), measured with the GESSE sequence. The signal
is shown in logarithmic scale to facilitate a comparison between the two curves. After
caffeine intake (unfilled squares), the signal has a higher relaxation rate, indicating an
increased amount of deoxyhemoglobin. Using a fix volume fraction of 3 %, evaluation of
the two signal curves results in a ∆χ change of 0.12 ppm. This result is in agreement with
measurements performed by Sedlacik et al. [In Press, Corrected Proof] who did quantita-
tive oxygenation measurements on a single vein using the single cylinder method presented
in section 3.3.2. Consequently, the method shows a sensibility to changes in the veneous
oxygen saturation which is promising for further studies.
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Figure 4.19. a) Susceptibility weighted image (SWI) of a healthy volunteer before caffeine intake.
b) Susceptibility weighted image (SWI) of a health volunteer after caffeine intake. A larger contrast
between the large veins and the surrounding tissue (red arrows) is present than before caffeine intake
(a). The extra contrast is due to the enhanced susceptibility effect caused by an increased amount
of paramagnetic blood in the veins. The increased susceptibility difference between the veins and
the surrounding tissue should affect the signal decay and, hence, be observable in a GESSE scan.
c) Measured signal decay in the ROI marked in (a-b) before caffeine intake (filled diamonds) and
after caffeine intake (squares). After caffeine intake a more rapid signal decays is present. This is
expected since the caffeine contributes to a higher oxygen extraction which, increases the amount
of paramagnetic blood in the veins.





V
Discussion

Network Phantom

The static dephasing model [Yablonskiy und Haacke, 1994] and the water diffusion model
[Kiselev und Posse, 1999], both assume statistically distributed and randomly oriented
cylinders in a homogeneous medium. In order to verify the models, measurement phan-
toms that mimic this geometry were constructed. Monofilamentous polyamide strings are
suitable for phantom construction since they are homogeneous and available in diameters
that cover a large range of the capillary diameters. However, even though a relatively
small string filled compartment (� = 48mm) was used in the phantoms, the string length
required for a reasonable volume fraction of 2−5 % is several kilometers in case of a string
with a diameter of 27µm. To coil the strings, obeying the properties of the model, i.e.,
statistically distributed and randomly orientated, is not straightforward. Hence, errors are
likely to be present due to dissimilarities between the measurement and the theoretical
geometry. Since the evaluation of the phantom measurements is performed in ROIs cover-
ing a large part of the string-filled compartment, the effect of the inhomogeneously coiled
strings is expected to be balanced out. However, this may be true for the static dephasing
situation but in case of water diffusion, the result is dependent on the exact vessel radius
distribution, and the effect of inhomogeneously coiled strings will not average out by using
the mean signal in a ROI. Hence, the errors introduced in the measurements due to in-
homogeneous coiling of the strings are likely to be more prominent for the measurements
where a strong water diffusion effect is present.

Macroscopic Field Inhomogeneities

The method presented in this work aims to estimate the oxygenation saturation in the veins
by measurement of the field gradients caused by the paramagnetic vessels inside a voxel.
Macroscopic field inhomogeneities could be assumed to cause an additional, constant mag-
netic field gradient in each measurement voxel. A constant field gradient applied during
the signal read out causes an additional sinc-shaped signal decay that will be overlaid on

77
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the MR signal. If this additional signal loss is not properly corrected for, incorrect values
of ζ and ∆χ will be obtained at the evaluation. A well-shimmed imaging slice, together
with proper positioning, is the best way to avoid macroscopic field inhomogeneities. Posi-
tioning the slice in a region unaffected by the field inhomogeneities caused by the frontal
sinuses and the nasal cavity can be done in case of pilot measurements. However, in the
event of patient measurements, the position of the slice cannot be arbitrarily chosen and
there is a risk that a scan has to be made in a region strongly affected by field inhomo-
geneities. Furthermore, careful shimming is very time consuming and, hence, improper
for the already long GESSE measurement. Correction of the inhomogeneity effect subse-
quent to the measurement would make a quick, basic shimming during the measurement
sufficient. Using a thin imaging slice helps to minimize the effect of macroscopic field
inhomogeneities but on the expense of SNR or measurement time.

If the field inhomogeneities are small, the sinc-shaped signal decay can be approximated
with a Gaussian function. Previous studies [Yablonskiy, 1998; Bongers, 2004] employed a
correction for macroscopic field inhomogeneities by combining this analytical expression
with the analytical expression that exist for the long time asymptotes of the static dephas-
ing model. However, this method can only be used if an analytical expression for the signal
decay is present, which is not the case for the water diffusion model or the extended model
including intravascular signal and signal from ISF/CSF. Furthermore, the correction using
the quadratic exponential term was shown to be extremely sensitive to low SNR [Bongers,
2004].

An alternative to the use of the analytical, quadratic exponential correction is to estimate
the macroscopic field inhomogeneities using high resolved phase images [Jezzard und Bal-
aban, 1995; Irarrazabal et al., 1996]. Such phase maps can be straightforwardly produced
using a 3D gradient echo sequence. When the macroscopic field inhomogeneities inside
the voxel are known, the expected, additional signal loss can be numerically estimated
and a correction of the original data can be achieved. In this work, investigation of this
correction method was performed in phantom measurements, which showed that signal
loss caused by macroscopic field inhomogeneities could be consistently corrected for.

The large advantage of the correction method used in this work is the use of a separate
3D GRE scan. Since the macroscopic inhomogeneity correction is preformed prior to the
data evaluation, it is independent on the evaluation method used. Hence, it can be used
together with any measurement technique or data evaluation technique. Since the water
diffusion model used in this work, does not have an analytical signal expression this is an
essential characteristic of the correction method.

Single Cylinder Measurements

The single string measurement performed in this work aimed to serve as a reference to
the network phantom measurements. While the exact cylinder network geometry can
be hard to accomplish in a phantom, the single cylinder geometry is uncomplicated to
mimic and the results obtained by the single cylinder measurements can be assumed
accurate. An analytical solution to the MR signal formation from a voxel containing a
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single magnetized cylinder can be found in Yablonskiy und Haacke [1994]. This solution,
however, is derived for a single cylinder coaxial with a cylindrical measurement voxel. To
derive an analytical solution for other voxel geometries is not straightforward. However,
in a standard measurement, square voxels are used and, hence, an alternative solution
has to be found. The numerical simulation used in this work, developed by Sedlacik
et al. [2007], allows for consideration of arbitrary voxel geometries. Furthermore, Sedlacik
et al. [2007] showed that considering square voxels is not enough to simulate an authentic
measurement. In a real measurement, the k-space cannot be sampled to infinity, which
means that the point spread function has to be considered as well. Discrepancy of up to
100 % can be found between results obtained using a cylindrical voxel or a square voxel
with PSF [Sedlacik et al., 2007]. The large advantage of this method is the applicability
for any object as long as the associated magnetic field disturbance can be calculated.
Sedlacik et al. [2007] showed that the method could be used with promising results in
estimating the oxygenation saturation in a single vein oriented perpendicular or parallel
to the imaging slice.

The numerically simulated signal was in good agreement with the measured signal for
all single string phantom measurements. To evaluate the outcome of the measurement,
the result can be compared with the literature values. Rákoš et al. [1966] measured the
susceptibility of polyamide strings to a value of −4π · 0.766 ppm. Furthermore, they found
that when the string is elongated its susceptibility decreases. For an elongation of 50 % the
susceptibility drops to −4π·0.811 ppm. In the single string measurements performed in this
work, a deviation between the two string diameters was seen. One explanation to this could
be that the thinner, 194µm, string becomes slightly more elongated when the phantom is
built. When the phantom is constructed the single strings is slipped through two holes at
the side of the bottle and tied together at the back. According to the manufacturer, the
difference in the average extension between the 245µm string and a 63µm string is 29 %.
Specification for the 194µm string was not available. However, it is reasonable to expect
a difference. Since the NiSO4 solution is more paramagnetic than the polyamide strings,
a decreased susceptibility of the strings would correspond to an increased susceptibility
difference between the strings and the solution, which is in agreement with the results.
If a linear relation between the elongation and the susceptibility change is assumed, the
difference between the result obtained by the 194µm sting and the 245µm string would
correspond to an elongation difference of 7 %. Another, more likely solution is that the two
strings simply have different susceptibility due differences in the bulk material (e.g. color
additives etc.). By using additional string diameters for the single string measurements,
it would have been straightforward to conclude if the variation in susceptibility between
the different string diameters is systematic or appears random. However, due to the
restricted spatial resolution of the whole-body scanner, the accuracy of a measurement
performed with a thinner string could be doubted. The better choice would have been to
perform additional measurement using a thicker string. However, when the experiments
were performed, no thicker string was available.

Using the literature value for the volume susceptibility of NiCl in water the susceptibility
of NiSO4 solutions of different concentrations can be calculated (c.f. section 3.2.3.3).
For a solution containing 3 g/l NiSO4 · 6H2O, as in phantom III and IV, the calculated
susceptibility would be−4π·0.664 ppm. Assuming a susceptibility of−4π·0.766 ppm for the
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polyamide strings, the expected susceptibility difference is 1.28 ppm. This value is 20−30 %
higher than the values obtained in the single string measurement. For a NiSO4 · 6H2O
concentration of 3.75 g/l (phantom II) the calculated susceptibility difference would be
1.39 ppm compared to the measured 1.11−1.20 ppm, and for 4 g/l NiSO4 ·6H2O (phantom
I) the calculated value is 1.44 ppm in contrast to the measured 1.19− 1.28 ppm.

It is not straightforward to validate which value that corresponds to the true susceptibility
difference. The single string measurement has several potential error sources. The precise
angle between the string and the B0 field was always assumed 90◦. Careful positioning
of the phantom and supervision by means of localizer scans was employed to ensure that
this assumption holds. However, if this is not the case minor errors may be introduced.
Furthermore, the relaxation rate of the NiSO4 solution increases with the NiSO4 con-
centration. Hence, there are not much signal left during the last sample points for the
5 g/l and 7 g/l measurement. Since the signal from the string containing voxel is divided
by the surrounding, homogeneous signal, the signal appears to rebuild a maximum with
higher amplitude than the previous maximum. This is not true, but only an effect of
dividing two signals with extremely low amplitude. Those points, however, become a very
low weighting factor during curve fitting due to their large relative error and do not affect
the outcome of the evaluation. Additionally, numerical errors may be introduced because
of the discretization. This effect, though, has been shown to be negligible [Sedlacik et al.,
2007]. Finally, a potential error source could be the sub-voxel shift applied to position the
string in the center of the voxel. If this re-positioning fails, false results will be obtained.

Evaluation Technique

Previous attempt to measure tissue oxygenation and deoxygenated blood volume with the
GESSE approach have been made using the asymptotes of the MR signal around the spin
echo and at long GRE time [Yablonskiy, 1998; An und Lin, 2000; An et al., 2001; An und
Lin, 2002]. However, the analytical method has a number of disadvantages compared to
the numerical method. In the analytical method, only the measurement points located in
the long time area and the signal at the spin echo is used for parameter estimation. Con-
sequently, extrapolation is required in order to estimate the volume fraction, a procedure
that is highly SNR sensitive. The data sampled at long echo times can only determine the
R2′, which is proportional to the product of ζ and ∆χ. In order to separate the effect of ζ
and ∆χ, the signal intensity at the spin echo has to be accurately estimated. Hence, the
accuracy of the independent ζ and ∆χ measurement is determined mainly by the SNR and
the number of sampling points within the long time region. In contrast, in the numerical
method, all measurement points are included in the curve fit and no extrapolation or de-
tours over additional parameters are required. Additionally, the need to sample the long
time asymptote before the spin echo vanishes when using the numerical method, which
allows for shorter spin echo time and increased SNR. For both approaches, problems arise
when ζ is close to zero. In the analytical approach, the sought susceptibility difference is
calculated as the quotient of R2′ and ζ. When ζ is estimated to zero or very close to zero,
huge errors may result from this operation. The numerical method is more stable and does
not yield those enormous errors. However, since ζ and the characteristic function, which is
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dependent on ∆χ, appears as a product in the exponent, if one of them is set to zero, the
other one can be just any number. Hence, when no effect is present, the fitting routine will
give a value of zero for one of the parameters and some other number, probably the start
value, for the other. This can be misleading if the two parameter maps are not revised
simultaneously.

Nevertheless, the analytical method may work fine in phantom experiments at high SNR.
However, as emphasized by He und Yablonskiy [2007], during a in vivo measurement the
signal during a spin echo may be considerably contaminated by lipids and metabolites in
the tissue and, hence, substantial errors can be introduced into the estimation of ζ if this is
not modeled for. Since multiple R2 relaxation rates are present, this error would depend on
the spin echo time. Hence, when the analytical method is used in vivo without considering
multiple T2 decay components, the estimated R2

′ will depend on the chosen fitting interval
[Fujita et al., 2003], leading to errors in the estimated susceptibility difference.

The numerical method allows a more realistic brain model to be used. Since there are no
needs for analytical asymptotes, diffusion, intravascular signal and signal from ISF/CSF
can be modeled. The main disadvantage of the numerical method is that the evaluation
is extremely time-consuming due to the iterative process. However, if the progress in
hardware development continues at the same pace this should not be a problem in the
future

Cylinder Network

The evaluation of the cylinder network phantom measurements was performed using the
signal from a large ROI in the string-filled compartments. This was done in order to
achieve better statistics and to compensate for inhomogeneous packing of the strings. If
areas with artifacts from air bubbles were found, they were excluded from the ROI.

Using the static dephasing model for evaluation, measurements performed with the 89µm
and the 245µm phantom generally yield ∆χ values closer to the reference values than
measurements performed with the 27µm and the 63µm phantom (Table 4.2). Especially
for long echo times, the 27µm and the 63µm phantom generates unreasonable results. The
effect increases with decreasing string diameter, indicating that it probably is a diffusion
effect. Analyzing the results from the 245µm phantom, proper parameter values are
obtained for all measurements except when a longer spin echo time is used at 3T . For the
89µm phantom, both measurements using a shorter echo time results in proper results.
Using a longer spin echo time, none of the measurements produces accurate results. The
deviation from the reference value is larger for 3T than for 1.5T . For the 27µm and the
63µm phantom, short echo time and low magnetic field strength seems to yield reasonable
results, whereas the outcome from all other measurement seems illogical. The effect of
diffusion seems to be more prominent at higher field strengths. This contradicts the
statement of He und Yablonskiy [2007] that the effect of diffusion turns insignificant at
higher field strengths.

However, when using the water diffusion model for evaluation, no better results are ac-
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complished. Only for phantom IV, the incorrect estimation for long echo times at 3T is
corrected for. Looking at the measurements using the 89µm phantom, the results for short
echo times shows a to small ∆χ, whereas the results for the long echo time overestimates
∆χ when using the water diffusion model. The same effect is seen for the 63µm phantom,
only stronger. Evaluation of the measurements with the 27µm phantom, using the water
diffusion model, produces no consistent results.

Accurate results could not be achieved for all string diameters, even if the diffusion model
was used. However, the effects seen in the phantom measurements are similar to the
effects predicted by the water diffusion model. The RMSE between a measured signal
curve where a large diffusion effect is expected and the curves predicted by the static
dephasing model shows that the theoretical signal decay calculated with the expected
parameter shows small resemblance to the measured curve. On the other hand, when the
root mean squared error is calculated for the water diffusion model, a low RMSE value
is often obtained for the expected set of ∆χ and ζ. When evaluating the data using
the water diffusion model both the string diameter and the apparent diffusion coefficient
appears as input parameters to the routine. In order to compare the evaluation using the
static dephasing model with the evaluation using the water diffusion model, the number
of fit parameters should be kept constant. Hence, the string radius and the ADC have to
be given to the routine. The string radius used is the one provided by the manufacturer
for each string size and the ADC is measured as described in section 3.2.2.2. Hence, minor
deviations may be introduced via those parameters, but not to such extent that the results
can be explained. On the other hand, the water diffusion model may be more sensible to
the packing of the strings. Both methods assume statistically distributed strings than the
static dephasing model. If several strings clutch together they will appear as one thicker
string. If this is the case, the diffusion sensitive measurements (longer echo time, smaller
string diameter) will be most affected. Furthermore, when evaluating the signal curves
with shorter echo time a smaller parameter error is generally obtained than for the signal
curves with the longer echo time. This is because when diffusion is present, the deviation
from the static dephasing case is more prominent before the spin echo. For the shorter
echo time, fewer echoes are sampled before the spin echo and, hence, a smaller deviation
from the modeled curve is expected when comparing this curve with the static dephasing
model than for the longer echo time.

Despite the ambiguity in the parameter evaluation using the water diffusion model. The
phantom measurements performed in this work can be used as a verification of the water
diffusion model as it was proposed by Kiselev und Posse [1999].

Little consideration has been given to the obtained ζ values. This is because the subject
of this work is to find a method where ∆χ (should be read as “oxygenation saturation”)
can be estimated with enough accuracy. If there is a possibility to simultaneously obtain
ζ this is of course even more satisfying. However, from the results of this work it seems
that an independent estimation of ζ is required in order to accurately estimate ∆χ. The
ζ values present in Table 4.2 is rather close to the expected values when ∆χ is close to the
expected value. The true ζ in the ROI, however, is in practice not known. The relative
volume fraction to the whole compartment is known, but due to inhomogeneous packing
of the strings, the relative volume fraction is dependent on the positioning of measurement
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slice and how the ROI is drawn. In order for the volume fraction to be exactly known, a
multi slice acquisition has to be performed and a 3D ROI has to be defined covering the
whole compartment. However, ζ is assumed not do deviate too much from the accustomed
value.

Simulations

The simulations showed that a simultaneous evaluation of ∆χ and ζ only can be achieved
under very restricted conditions. Not surprisingly, the parameter found to be most impor-
tant for the possibility to separate the two parameters was image noise. The SNR required
in order to keep the relative parameter error under 10 % is many times higher than nor-
mally achieved in a GESSE measurement. In a GESSE measurement with a clinically
tolerable scan time (< 20 minutes) and a clinically relevant resolution (2 × 2 × 6mm3)
performed at 3T , the SNR normally is on the order of 150− 250, dependent on the echo
time used. For a SNR of 200, a relative error in ∆χ of about 21 % would be expected.
In order to increase SNR while keeping the resolution constant, the measurement time
has to be extended. Since, the SNR is proportional to the square root of the number of
measurements, increasing the SNR from 200 to 600 would require nine times the mea-
surement time. Hence, 20 minutes measurement having a SNR of 200 would have to be
extended to 3h to yield a SNR of 600. Such a measurement time is not applicable in the
clinic, and still the relative error in ∆χ would be about 10 %, which is higher than desir-
able. It should also be noticed, that this is valid for a simple two-compartment model. It
will be even more difficult for a real in vivo application where other parameters influence
the signal. In conclusion, it appears complex to accomplish a reliable estimation of ∆χ
under existing conditions, using this method. Going to higher field strengths could be a
solution to the problem. At higher field strengths SNR is increased and the susceptibility
effect is enlarged since δω is direct proportional to the magnetic field strength. However,
unwanted susceptibility effects also increase with the field strength, which may cause prob-
lems. But, as can be seen from Figure 4.10 – 4.13, if ∆χ or ζ is previously known, the
other parameter can be accurately estimated already at very low SNR. Hence, in order to
realize this method in the clinic, a separate blood volume measurement is required. With
a reliable blood volume measure, the simulations showed that a relative error in ∆χ of
approximately 3 % could be reached already at an SNR of 200.

The simulation of different GESSE sequence parameters showed that for a certain SNR,
the relation between ∆χ and ζ can be more accurately determined if a later gradient echo is
used as a spin echo. This is in agreement with the results from the phantom measurements,
where, when using the water diffusion model and a fixed ζ, better results were more
frequently occurring when a later spin echo was used. Furthermore, the simulations showed
that using a more frequent sampling does not notably improve the parameter estimations
when ∆χ and ζ is fitted simultaneously. This contradicts the prediction that a dense
sampling of the short time area will contribute to a better separation of ∆χ and ζ. The
central parameter was rather shown to be the total sampling time. In order to achieve
a more precise relation between ∆χ and ζ, the sampling time should be chosen as large
as possible, of course with consideration taken that enough signal remains at the last
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echo. Choosing a large sampling window additionally improved the accuracy in the single
parameters to some extent. The relaxation rate, R2, could be accurately estimated even
at very low SNR and does not influence the outcome of the evaluation in case of static
dephasing. In case of diffusion, however, R2 plays a significant role. When R2 is used
as a fit parameter, the fits obtained using the static dephasing method coincide well
with the measured data point even though the obtained ∆χ not at all agrees with the
authentic value. Hence, by adjusting R2, the static dephasing method can compensate for
the diffusion effect in the measure data, but the result will be misleading. Therefore, an
additional T2 measurement is recommended.

The practical influence of diffusion effects was investigated through simulations using pa-
rameters expected in vivo. It was found that by neglecting the effect of diffusion when pre-
dicting the MR signal-time course as expected in an in vivo measurement, the GESSE mea-
surement with the shorter spin echo time overestimated ∆χ with 12 % while the GESSE
measurement with the longer spin echo time underestimated ∆χ with 35 %. Hence, there
could exist an optimal spin echo time where the obtained mean value agrees with the true
mean value. This spin echo time, however, would depend on the radius and the apparent
diffusion coefficient, and still the relative parameter error would be large when ∆χ and
ζ is fitted simultaneously. When ζ is fixed but R2 is used as fit parameter, the obtained
∆χ is approximately 15 % smaller than the true value for both GESSE sequences, R2 is
correspondingly increased to fit the static dephasing model to the non-static dephasing
data.

Kiselev et al. [2005] estimated the vessel caliber in healthy human brain tissue to be in the
range of 21−51µm. This is slightly higher than expected from the known microvasculature
anatomy. During the simulations, a vessel diameter of 50µm was used. Hence, the effect
of diffusion seen in the simulations is presumable even stronger in vivo. Consequently,
modeling and consideration of diffusion effects are essential for an accurate estimation
of the tissue oxygenation using the model presented in this work. However, considering
the effect of diffusion requires prior knowledge of the vessel radius distribution within the
voxel. The simulations performed here considered a uniform vessel size. Further studies
are required where the influence of different radius distributions is examined. In addition,
utilization of a more realistic tissue model naturally results in a larger amount of unknown
parameters. Inclusion of intravascular signal, signal from ISF/CSF and diffusion gives a
signal expression composed of three exponential functions with 11 free parameters. It is
straightforward to conclude that it will be difficult to obtain stable results when fitting
such an expression to a signal decay as the one shown in Figure 4.18 (d). Thus, for the
method presented in this work to be a reliable oxygenation measurement method, several
parameters have to be predetermined by independent measurements or some other means.

In vivo Measurements

The problem with verification of in vivo measurements is the absence of exact reference
values. Instead presumed solutions have to be found in the literature. Although the
reported values of venous oxygenation saturation are fairly consistent they are normally
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found to be either in the range of 50 % or around 70 %. Moreover, even if a reference value
for the venous oxygenation saturation could be established, it it not straightforward to
estimate the expected value of ∆χ in vivo. As mentioned briefly in section 2.3.4, there exist
several values in the literature for the susceptibility difference between fully oxygenated
and fully deoxygenated blood (∆χox). An early measurement was performed by Pauling
und Coryell [1936], resulting in a value of 4π · 0.27 ppm. Later measurement resulted in
values of 4π · 0.20 ppm [Plyavin und Blum, 1983], 4π · 0.18 ppm [Weisskoff und Kiihne,
1992] and 4π · 0.27 ppm [Spees et al., 2001]. During previous attempts to quantify the
BOLD effect, the value measured by Weisskoff und Kiihne [1992] has been frequently used
[Haacke et al., 1997; Levin et al., 2001; An und Lin, 2002]. Later publications [He und
Yablonskiy, 2007; He et al., 2008] argues strongly for the value measured by Spees et al.
[2001]. However, the correct value is still unknown. A ∆χ of 0.4 ppm would correspond to
an oxygen saturation of 65 % if ∆χox is taken as 4π · 0.27 ppm but an oxygen saturation
of 48 % with a ∆χox of 4π · 0.18 ppm. If, however, 4π · 0.18 ppm would be confirmed as
the true value of ∆χox and the oxygen saturation rather is 70 %, the ∆χ would only be
0.23 ppm, and conversely, if 4π · 0.27 ppm is shown to be the correct ∆χox value but the
oxygen saturation only is 50 %, ∆χ would be 0.58 ppm. Thus, both the value of ∆χox
and the venous oxygen saturation has to be verified before a statement of the method’s
reliability can be made.

The pixel-by-pixel evaluation shown in Figure 4.17 showed a great instability. This, how-
ever, was anticipated due to the low SNR of 100. The low SNR was required since the
intention of the experiment was to demonstrate the effect seen during the simulations for
low SNR. Increasing the SNR by choosing a shorter spin echo time can be easily done in
case of patient measurements. However, a SNR higher than approximately 250 will be
problematic to achieve in 20 minutes. Furthermore, increasing the SNR by choosing a
larger number of averages will enlarge the risk of unwanted patient movements during the
scan. Consequently, without using higher magnetic field strengths or unreasonable long
measurement times it will be difficult to achieve a SNR much higher than 200− 300. As
shown in the simulations, the inherent instability of the method for simultaneous estima-
tion of ∆χ and ζ is extensive at such a low SNR. An independent measurement of the
deoxygenated blood volume fraction is most certainly required.

Non-MR Techniques available to measure regional cerebral blood volume in humans in-
clude positron emission tomography (PET) and single photon emission computed tomog-
raphy (SPECT) [Walovitch et al., 1990]. The disadvantage of those methods, except for
the use of radioactive tracers, is that large effort has to be put into the realization of com-
parable positioning of the patients, and exact localization of the measurement volume in
the two separate measurement systems. Available MR based methods to obtain cerebral
blood volume includes contrast-enhanced bolus tracking techniques and contrast-enhanced
steady-state techniques [Barbier et al., 2001]. The bolus tracking method is well suited
to obtain fast, low-resolution information of the relative cerebral blood volume. However,
in order to get a quantitative measure of the blood volume, the so-called arterial input
function has to be accurately estimated. The arterial input function can be estimated
by measuring signal changes around or inside a major blood vessel but several sources,
including correcting for small vessel Hct and partial volume effects, make an accurate
estimation difficult. In contrast to bolus tracking methods, steady state methods offer
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a higher SNR [Tropres et al., 2001] which can be used to increase the resolution, but at
the expense of longer acquisitions. Furthermore, the increase in the susceptibility differ-
ence between blood and tissue due to the injection of the contrast agent has to be known
in order to estimate the absolute cerebral blood volume. Moreover, both techniques are
invasive and they measure the whole blood volume. The blood volume needed for the
evaluation of the measure data obtained using the GESSE sequence is the venous part, or
rather the deoxygenated part, which then have to be estimated, a procedure that is likely
to introduce further errors. Furthermore, in brain lesions (for example, in tumors), the
blood-brain barrier can be disrupted, which allows for leakage of the contrast agent from
the intravascular space into the extravascular space[Østergaard et al., 1996b,a]. This may
preclude or introduce errors in the CBV mapping.

To facilitate a correction for diffusion effects in vivo, the vessel radius distribution in
every measurement voxel has to be known. The relation of contrast-enhanced transverse
relaxation rates R2* and R2 is a technique used for vivo mapping of the mean caliber of
cerebral vessels [Kiselev et al., 2005]. This method, however, is normally used to track
relative changes in vessel size rather than an absolute measure. Quantitative vessel size
imaging must include measurements of the diffusion coefficient as well as an absolute
determination of the regional cerebral blood volume.



VI
Conclusion and Outlook

The oxygen supply of the brain is of great interest because it is directly related to
the tissue viability. In particular, oxygenation is a central factor for the aggressiveness
and metastasis tendency of cancer tumors. Additionally, hypoxia is a major obstacle to
tumor therapy and associated with poor outcome for cancer patients. Unfortunately, the
practical diagnostic possibilities for quantitative mapping of cerebral blood oxygenation
are few.

An analytical model derived by Yablonskiy und Haacke [1994] describes the time course
of magnetic resonance signal relaxation due to magnetic field inhomogeneity induced by
a vascular network. Previous attempts to use this model to quantify tissue oxygenation
using magnetic resonance imaging have been made without taking the effect of diffusion
into account. The theoretical work of including the effect of diffusion into the model has
been previously made by Kiselev und Posse [1999].

In this work, the influence of diffusion on the MR signal formation in the presence of a
cylinder network was for the first time studied in phantom measurements. The task of
verifying of the analytical model in presence of diffusion, included construction of mea-
surement phantoms, which to the greatest extent possible were constructed to reflect the
properties of the model. The phantoms were constructed using randomly coiled polyamide
strings of different radius, immersed in a NiSO4 solution. To validate the results obtained
with the network phantoms, independent measurements of the susceptibility difference
between the polyamide strings and the NiSO4 solution were performed using single string
phantoms. Moreover, since the method used in this work to measure tissue oxygenation,
analyzes the signal relaxation caused by magnetic field inhomogeneities induced by the vas-
cular network, any other source of inhomogeneities will be superimposed on the effect and,
thus, spoil the estimation. A correction method based on acquisition and evaluation of
high resolved 3D phase maps was optimized and tested in phantom measurements. It was
shown that induced macroscopic field inhomogeneities can be successfully corrected for.
The prediction of the MR signal as a function of cylinder radius and diffusion coefficient,
as proposed by Kiselev und Posse [1999], was verified in network phantom measurements.

Furthermore, the practical influence of diffusion effects was investigated through simula-
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tions using parameters expected in vivo. It was found that by neglecting the effect of
diffusion when predicting the MR signal-time course expected in an in vivo measurement,
errors of approximately 13 % would be introduced into the parameter estimation. The
exact error, however, could potentially be much larger and is dependent on many factors
including the sequence parameters used as well as the radius distribution. Nevertheless,
considering the effect of diffusion requires prior knowledge of the vessel radius distribution
within the voxel. Further studies are required where the influence of different radius dis-
tributions examined. The simulations also revealed that a simultaneous evaluation of ∆χ
and ζ only can be achieved under very restricted conditions. The possibility to separate
the two parameters is exclusively determined by the image noise. In order to keep the
relative parameter error under 10 % a SNR of 600 is required. However, if one of the
parameters is previously known a SNR of 100 − 200 should be sufficient to accurately
estimate the other parameter.

The initial in vivo measurements confirmed the results obtained from the simulations.
By using known literature values for the blood volume fraction in the brain, oxygenation
levels that are in agreement with previous studies could be achieved. Furthermore, the
sensitivity to caffeine induced oxygenation changes is encouraging for further studies.
However, quantitative blood volume measurements and correction for diffusion effects have
to be performed in order to verify the practical use of the method in vivo. Nevertheless, if
this could be successfully accomplished, the theoretical cylinder network model will become
a tool for MR-based in vivo quantification of tissue oxygenation and will potentially replace
the invasive 15O PET technique used today.
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Appendix A
Capillary Network Phantom
Measurements

On the following pages, the signal time course measured in a ROI in the network
phantoms is shown together with the parameters obtained at evaluation. The magnetic
field strength and the specific phantom used are given below the figures on respective
page. Evaluations performed using three (∆χ, ζ and R2) fit parameters are labeled with
(a). Evaluations with two fit parameters are marked with (b) (∆χ and ζ) or (c) (∆χ and
R2). Evaluations made using one (∆χ) fit parameter are indicated with (d). Diagrams
marked with (i) correspond to curves and parameters obtained at evaluation using the
static dephasing model. Diagrams marked with (ii) correspond to curves and parameters
obtained when the water diffusion model was used for evaluation. For all measurement
points, the error bars are equal or smaller than the symbol sizes.
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Appendix B
Simulated Non-static Dephasing
Capillary Network Signal

On the following pages, signal time courses calculated using the water diffusion model
is shown. The signals are calculated using the network phantom specifications and the
GESSE sequences used during the phantom measurements. In every plot, the parameters
obtained at evaluation are specified together with the fitted signal curve (black line). The
magnetic field strength and the cylinder diameter are given below the figures on respective
page. Results from evaluations using three (∆χ, ζ and R2) fit parameters are marked with
(a), evaluations with two fit parameters are labeled with (b) (∆χ or ζ) and (c) (∆χ and
R2). The use of only one fit parameter (∆χ) is indicated with (d). All evaluations were
performed without taking the simulated effect of diffusion into account, i.e., using the
static dephasing model (i). For all measurement points, the error bars are equal or smaller
than the symbol sizes.
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