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Zusammenfassung 
 

Die Genauigkeit radiologischer Bilder, sowie deren Verarbeitung, sind Voraussetzung 
für eine erfolgreiche Strahlentherapie. Diese Arbeit befasst sich mit der geometrischen 
Unsicherheit der Magnetresonanztomographie (MRT) sowie der elastischen 
Bildregistrierung. Es wurde ein neuartiges Phantom mit zugehöriger Auswertesoftware 
zur Erkennung von Verzeichnungen in MRT Bildern entwickelt. Die 
Phantommessungen resultieren in einem dreidimensionalen Verschiebungs-Vektorfeld, 
das zur Korrektur der Bilder herangezogen werden kann. Tests ergaben eine Reduktion 
der mittleren geometrischen Fehler von 3.0 ± 3.6 mm auf weniger als 1 mm im 
Durchschnitt. Zusätzlich wurden Verfahren zur Abschätzung der Unsicherheit von 
Verschiebungs-Vektorfeldern, resultierend aus B-Spine- sowie Demons-Registrierung, 
entwickelt. Im Fall der B-Spline-Registrierung wurde dies durch zufällige Variationen 
der resultierenden B-Spline-Koeffizienten realisiert. Eine Größe zur Erfassung der 
lokalen Empfindlichkeit der Metrik auf diese Variationen wurde eingeführt. Die 
signifikante statistische Abhängigkeit zwischen dieser Größe und dem lokalen 
Registrierungs-Fehler wurde demonstriert. Für den Demons-Algorithmus wurde die 
lokale Reproduzierbarkeit des Verschiebungs-Vektorfeldes als Unsicherheitsmaß 
betrachtet. Beide Verfahren wurden anhand künstlich verformter Lungenbilder 
getestet. Die Verfahren erlauben die Einteilung der Bilder in Sub-Regionen, die sich 
im Betrag ihres durchschnittlichen Registrierungsfehlers unterscheiden. 
 

Abstract 
 
Radiotherapy relies on the accuracy of radiological images and image processing 
procedures. Here, the geometric uncertainty of magnetic resonance imaging (MRI) and 
elastic image registration are investigated. A new type of phantom to measure MRI 
distortions and a corresponding evaluation software were developed. As a result of 
phantom measurement, a tree-dimensional displacement vector field is obtained to 
correct the images. In tests, the distortions were reduced from 3.0 ± 3.6 mm to less 
than 1 mm in average. In addition, methods to estimate the uncertainty of the 
displacement vector field (DVF) were developed for a b-spline and a demons 
registration algorithm . In case of the b-spline algorithm, this was done by random 
variations of the coefficients resulting from the registration. A quantity was introduced 
to characterize the local sensitivity of the similarity measure to these variations. The 
significant statistical dependence between this quantity and the local image registration 
error was demonstrated. For the demons algorithm, the reproducibility under multiple 
registrations was regarded as a measure of uncertainty. The algorithms were tested 
with artificially deformed lung images. Both methods have the potential to divide an 
image in sub-regions which differ in the magnitude of their average registration error. 
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1. Introduction 

 
The aim of radiation oncology is to achieve tumor control while sparing healthy tissue. 

This requires a conformal dose distribution, which is planned and delivered based on 

medical images. So radiotherapy essentially relies on the geometric accuracy of these 

images, which provide the geometrical patient model for treatment planning as well as 

for verification of the patient setup. Geometric uncertainties are therefore a limitation 

for the accuracy of dose delivery. 

As an example, data from magnetic resonance imaging (MRI), which is used for target 

delineation may be affected by geometric distortion and therefore may not represent a 

correct geometrical model of the patient. So there is need to measure and characterize 

distortion as part of the quality assurance procedure in order to find out whether the 

images need to be corrected. We propose a method to measure the geometric distortion 

of MRI images with the help of a newly developed phantom and evaluation software. 

Another example is the geometric accuracy of image registration. Due to the 

incorporation of multiple datasets into the treatment planning process as well as for the 

verification of the patient setup, registration of medical images plays an important role 

in the daily routine of radiation oncology, since it is essential to know the geometric 

correspondence between voxels of different images. This correspondence is obtained 

from image registration. 

Since rigid or affine registration techniques can not describe complex deformations, a 

number of algorithms have been developed to perform fast elastic image registration 

[1][2][3][4]. It is essential to characterize, compare and validate these approaches in 

terms of their geometric accuracy. 

This work focuses on elastic mono modal image registration and in particular on 

b-spline registration as well as on the demons algorithm. For each of these algorithms 

a method is proposed to automatically detect image regions where elastic image 

registration is likely to perform well and to distinguish those from regions of the same 

image where the registration is likely to be less accurate. 
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2. Material and Methods 
 

In this section we first give an introduction to MRI focusing on the geometric 

accuracy. It is followed by a description of the phantom which was developed to 

measure geometric distortion of MR images and by a description of the corresponding 

software, which was developed to detect and correct the distortions. 

Secondly an introduction to elastic image registration is given, followed by a 

description of two commonly used intensity based elastic registration algorithms: the 

b-spline registration and the demons algorithm. The description focuses on sources of 

error for each of the two algorithms. Then, new methods to automatically estimate the 

geometric uncertainty of the resulting displacement vectors are described for both 

algorithms. 

 

 

2.1. MRI distortion 
 

2.1.1 MRI image acquisition 
 
The MR image is a spatial representation of contributions of the nuclear magnetic 

moments to the amplitude of the magnetic resonance signal. The signal received by the 

antenna is called free induction decay (FID) and originates from transversal 

magnetization of the object being imaged. In the following we give a short 

introduction to MRI [5]. 

 

2.1.1.1. The MR signal 

The magnetic dipole moment of a proton due to its spin I
r

 is given by 

Ih rr ⋅
⋅

⋅=
π

γμ
2

 

where h  is the Planck’s constant and γ  the gyromagnetic ratio. 
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In case an object is exposed to an external magnetic field B
r

 the torque B
rr ×μ  

changes the orientation of the magnetic moment in time, depending on the angle 

between the field vector and the magnetization: 

Bm
dt
md rr
r

×⋅= γ    (A) 

Here mr  represents the magnetization: 

∑
=

=
N

i
iV

m
0

1 μrr
 

N is the number of nuclei in volume V. 

In equilibrium the resulting magnetization is in alignment with the external magnetic 

field. In case of the MR experiment this equilibrium is disturbed by excitation with a 

90o radio frequency pulse. This pulse is a circular polarized magnetic field B1 with 

orientation perpendicular to the static magnetic field and with Larmor frequency ω L. 

The torque on the magnetic momentum caused by B1 changes the orientation of the 

magnetization. After the time t, the angle α  between the magnetic moment and the 

static magnetic field is given by 

tB ⋅⋅= 1γα  . 

A 180o pulse flips the magnetization by 180o around an axis within the x-y-plane. 

Adding relaxation terms ( ) 10 /Tmm z−  as well as 2, /Tm yx  phenomenologically 

in equation (A) leads to the Bloch equations: 

 

( ) ( ) 10 /TmmBm
dt

dm
zz

z −+×⋅=
rrγ  

( ) 2,,
, /TmBm

dt
dm

yxyx
yx −×⋅=

rrγ  

 

T1 is the longitudinal relaxation time and accounts for spontaneous transitions of the 

magnetic moments due to interactions with the surrounding molecular grid. T2 is the 

transverse relaxation time and accounts for dephasing of the magnetic moments due to 

local inhomogeneity of the magnetic field. 

The solutions of the Bloch equations are: 
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( ) 2

0,
T
ttBi

yx

z

emtm
−−

⋅=
γ

 

( ) )1( 1

0
T
t

z emtm
−

−⋅=  

 

The FID is induced by the change of the magnetization in time, after excitation.  

 

2.1.1.2. Spatial encoding 
 

Since all excited spins contribute to the FID, spatial encoding is necessary to obtain the 

spatial contributions to the amplitude of the magnetic resonance signal. This can be 

done by slice selection, phase encoding and frequency encoding. In the following the 

principle of spatial encoding is described for a spin echo sequence. 

 

1. Slice selection 

 

To excite a transversal slice of finite thickness, the 90° RF pulse is modulated with a 

sinc function tttf /)sin()( =  while a gradient Gz in axial direction is present [5]. Since 

the resonance frequency is a linear function of the magnetic field and the Fourier 

transformed of the sinc function is rectangular, this results in the excitation of a 

transversal slice. Selective excitation of transversal slices reduces the dimension of the 

encoding problem from three to two. 

 

2. Frequency encoding Gx 

 

In case of frequency encoding, the encoding gradient is present during readout and 

results in a spatial modulation of the magnetic resonance frequency. Due to the 

gradient xG  two voxels in distance d along the frequency encoding direction have a 

relative frequency shift of: 

dGx ⋅⋅=Δ γω  
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The Fourier Transformation of the FID provides the information on the contribution of 

each frequency, and therefore of each strip perpendicular to the frequency encoding 

gradient [5]. 

 

3. Phase encoding Gy 

 

In case of phase encoding, the spectra of the image is recorded in k space [5]. This is 

done by multiple repetition of the sequence while each repetition differs in the strength 

of the phase encoding gradient and therefore in the wave number k: 

0tGk y ⋅⋅= γ  

yG  is the phase encoding Gradient, and t0 the duration in which yG  is switched on. 

Let us regard a voxel which is located in distance d along the phase encoding direction, 

relative to some arbitrary reference voxel. The phase encoding Gradient yG  leads to a 

frequency shift with respect to the reference voxel: 

dGy ⋅⋅=Δ γω  

after t0 this results in a phase shift of: 

0tdGy ⋅⋅⋅=Δ γϕ  

Therefore, the amplitude of the magnetic resonance signal which originates from a 

voxel in distance d from the reference point becomes: 

( ) dikeds ⋅~  

with 0tGk y ⋅⋅= γ . 

Variation of k allows to measure the Fourier transformed m(k) of the amplitude of the 

spatial contribution to the magnetic resonance signal M(d). So M(d), which represents 

the image intensities can be obtained by Fourier transformation of m(k). Note that 

M(d) is not equal to any specific s(d). 
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4. Acquisition of a 3D MR image 

 

In case of a typical spin echo sequence, three dimensional encoding is performed by 

slice selection in z dimension, frequency encoding in x direction and phase encoding in 

y direction. 

For each slice the image )),(( yxI ω  is finally reconstructed by Fourier transformation. 

∫∫ ⋅⋅∝ ⋅⋅⋅+⋅−
y

tyGti
y dkdtektFIDyxI yy )(),()),(( γωω  

Note that ),( yktFID  is a set of measured FID signals for many different values of 

ky.  

 

2.1.2 Geometric distortion 
 
The source of distortions in MRI is a deviation of the actual from the specified 

magnetic field. This can be due to inhomogeneity of the static magnetic field, due to 

local susceptibility effects or due to non-linearity of the encoding gradients. 

In the following we assume that the magnetic field B in position 0x  differs from the 

specified field B0 by BΔ  

BBB Δ+= 0  

Let G  be the frequency or phase encoding gradient. For simplicity we regard just one 

dimension in space. The frequency shift due to BΔ  in 0x  can not be distinguished 

from the one that appears in case of an ideal field and encoding gradient G  in the 

position  

xxx Δ+= 0 . 

The consequence is the distortion xΔ of 

G
Bx Δ

=Δ .  

Note that the distortion is large in case of small encoding gradients. This issue will be 

discussed in more detail in the following. 
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Several ways to correct images for distortions have been proposed in the past: 

 

2.1.2.1 Application of spin echos 
 

In case of phase encoding it is possible to remove the effects of field non-uniformities 

on the FID by a spin echo. This is performed by 180 degrees pulses between excitation 

and readout of the FID [6] [7]. In that way phase shifts due to inhomogeneity of the 

static magnetic field or local susceptibility effects are refocused since the perturbation 

of the magnetic field is present throughout the repetition time - before as well as after 

the 180 degrees flip. Therefore the flip of the spins reverses the influence of the local 

field inhomogeneities. Phase shifts induced by the encoding gradient remain present 

since the encoding gradients are not present throughout the whole repetition time, but  

are switched on for a limited time t0. However, the spin-echo-technique is time 

consuming which is a draw back of this method. 

 

2.1.2.2 Distortion maps 
 

Distortion maps can be obtained with the help of physical phantoms such as described 

by [8][9][10][11]. The distortion is measured by determining the location of control 

points within a phantom of well defined geometry. The MR images can then be 

corrected based on the distortion map.  

 

2.1.2.3 Altered gradients 
 

A method to correct MR images for distortion without involvement of a physical 

phantom was proposed by [12]. This method requires acquisition of two images with 

altered gradients and aims to correct images for geometric as well as intensity 

distortions due to static field inhomogeneity. A drawback of this method is that it does 

not account for gradient non-linearity which was found to be the major source of 

geometric distortion in MR images according to [11]. 
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2.1.2.4 Characterization of BΔ  and post processing of the images 
 

Another way to geometrically correct MR images is to calculate the ground field 

inhomogeneities as well as the gradient non linearity from the geometry of the scanner 

coils. The influence of the perturbation on the images is then calculated and the images 

are corrected in a post processing step after the image acquisition. Nevertheless 

phantom measurements are necessary to validate the calculated corrections. 

 

2.1.3 The phantom design 
 
The phantom was developed in-house as a quality assurance tool for the application of 

MRI in radiotherapy. It consists of five water-filled modules, which can be handled 

separately. The modules are made of PMMA (Polymethylmethacrylat). Each module 

contains three PET (Polyethylenterephthalat) slices with a regular grid of holes, each 

with a diameter of 15 mm. The distance of the holes is 24.5 mm in plane and 30 mm in 

axial direction (within each module as well as between slices of neighbouring 

modules). As the modules are water-filled the holes form a regular grid of control 

points in the MR image. The software detects these control points from the images and 

calculates the distortion as deviation between the measured and the mechanically 

defined positions of the control points. 

The axial component of the distortion can be expected to be very small in the central 

slice of the phantom, since in this central region the inhomogeneity of the ground field 

can be expected to be small and the axial gradient of the magnetic field can be 

expected to be closer to linear than elsewhere. Deviations between the measured axial 

positions of central control points and those defined by the geometry of the phantom 

are therefore likely to be due to imperfect positioning of the phantom. Therefore the 

axial distortion is assumed to be zero in the central slice. The axial distortion in a 

control point of another slice is calculated by comparing the measured position of this 

point with the mechanically defined distance of the respective control point in the 

central slice. In plane distortions are obtained by comparing the measured control point 

position with the mechanically defined distance from the control point which is closest 

to the center of the scanner. 
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The PET slices are 6 mm thick as shown in Fig. 1 (a) and the control point grid covers 

245 mm in lateral and 392 mm in the vertical direction as shown in Fig. 1 (b) and 

Fig. 2. The field of view in axial direction is 420 mm. Fig. 2 shows how all five 

modules can be positioned in a frame which is attached to the couch of the MRI 

scanner during the measurements. The central slice of the central module is positioned 

to the middle of the MRI-device by aligning the MRI-lasers to marks on the phantom.    

 

 

 

 

 

 

  

 

(a) (b) 
 

Fig. 1 : Drawing of one module (a) in sagital view and (b) from the front side 

(distances in mm).  
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(a) 

 

 
 

(b) 
Fig. 2 :  a) one of the modules  b) all five modules positioned in the frame 
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2.1.4 Software to evaluate the distortion 
 
In the following the software to evaluate the image distortions is described. It was 

developed under Linux using C++ and Qt. It aims to detect the centers of the water 

filled holes of the PET slices and to determine a distortion map by comparing their 

locations with the mechanically defined positions. It then corrects the geometry of the 

MR images based on this map. The description starts with the acquisition technique, 

followed by the detection of the control points and the correction process. 

 

2.1.4.1 Shifted data acquisition 
 

Since the slice distance affects the distortion, the acquisition of data to measure image 

distortion has to be done with slice distances as used in clinic, which are typically 3 to 

5 mm and hence significantly larger than the voxel sizes in the transversal plane. This 

may lead to a low accuracy in the estimation of control point positions in the axial 

direction due to low sampling of the intensity profile.   

This problem can be solved by acquisition of several images which are shifted relative 

to one another in the axial direction. The central positions of these images differ by 

small offsets. These datasets are then combined to one dataset with a smaller virtual 

slice distance by sorting all slices of all the acquired images according to their SI 

position. 

One data set is acquired without any offset in SI direction. The other images are 

recorded with offsets in SI and minus SI direction such that all slices of the 

reconstructed virtual data set have the same slice distance. In this way, the SI position 

of the slice number i+1 of the virtual data set is differs by an offset Δ  from next slice i 

in with  

 

=Δ  (original slice distance) / (number of recorded datasets)  

 

Using this technique, the center of the control points in axial direction can be 

determined with a higher accuracy. 
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2.1.4.2 In plane detection of control points 
 

The location of the control points in plane is obtained by thresholding. The region of 

the hole is brighter than the PMMA background and can therefore be separated by 

applying a threshold. Fig. 3 (a) shows the in plane intensity throughout an image of the 

phantom. Fig. 3 (b) demonstrates the separation by thresholding. The red area 

represents the detected holes. The center of mass of each red area is considered as the 

position of the control point. 

Since intensity inhomogeneities throughout the slices are present, it is not possible to 

use one single threshold throughout the slice. This problem can be solved by applying 

several thresholds. For each threshold that allows the separation of the control point 

area from the background, a result for the control point position is obtained.  

Most of the control points are detected for several thresholds. The average of all the 

results that were obtained for the same control point and different thresholds is then 

considered the true position. In case the result obtained for a specific threshold differs 

from the average by more than 2 mm it is considered an outliner and is therefore 

disregarded.   

As each hole is visible in several slices of the image, the control point detection is 

done for each slice and the final position of the control point in the transversal plane is 

the average over the results obtained for all slices in which the control point is visible. 

Due to the spatial extend of the phantom some phantom areas are in large distance 

from the antenna that receives the FID. This causes large variations of the intensity 

throughout the image. As intensity distortion may affect the control point detection, the 

intensity distortion is considered to be a two dimensional linear function in the area 

around each control point and the threshold used for the detection of the control points 

is adapted accordingly. 

It is important to make sure that each of the resulting positions actually represents a 

control point of the phantom. Therefore, each highlighted area is checked whether it 

represents a circular shaped object. For this purpose a circle with center in the detected 

center of mass position is regarded. The distance between the circle and the edge of the 

highlighted area along each row and column is then evaluated. The average distance 

between the detected edge and circle is required to be below a threshold of 1.5 voxels. 

If this is not the case, the highlighted area is not considered to be a control point of the 
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phantom. As geometric distortion may change the size of the holes representing the 

control points, this procedure is carried out for circles of different radius. If any circle 

fits the highlighted area the detected point is accepted.  

 
Fig. 3 : (a) slice of the MRI image, (b) holes detected by threshholding, (c) detected in-

plane positions of the control points. 
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2.1.4.3 Cross plane detection of control points 
 

After the position of a control point in plane is detected, its location in the axial 

direction is determined. For this purpose image intensity profiles in axial direction are 

evaluated in the virtual data outside the detected holes. 

At the in-plane position of the control point there is only water and hence the axial 

intensity profile varies solely due to intensity distortion within the images. In areas 

outside the holes, the axial intensity profile perpendicular to the PET plate has local 

maxima outside the PET in the region of the water. The difference between both 

intensity profiles is evaluated and the center of this difference profile is regarded as the 

axial position of the control point. The center of the intensity difference profile was 

defined as the point between the two positions with values at half the maximum height 

and was determined by linear interpolation. The difference profile (Fig. 4) is evaluated 

at different in plane positions around the hole and the final axial position of the control 

point is defined as the average over these results. In case a result obtained for a single 

difference profile differs more than 2 mm from the average it is considered an outliner 

and is therefore disregarded. 

Fig. 5 shows the resulting positions for some control points. Due to the axial 

distortions, the control points for one phantom slice are in different slices of the MR 

image. 
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Fig. 4 : Axial intensity difference profile between center and neighbourhood of a hole 

(see text).  
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Fig. 5 : Display of the detected control point positions 

 

2.1.5 Measurements 
 

Mesurements were done with a 1.5 T scanner (Magnetom Symphony, Siemens 

Medical Solutions, Erlangen, Germany), using two surface coils. The coils integrated 

in the couch were removed in order to position the phantom closer to the couch and to 

measure the distortion in this region. The phantom was imaged with a spin echo as 

well as a flash 3D sequence.  

Tab. 1 shows the parameters of these two sequences.  

 

Tab. 1 :  parameters of  the MRI sequences. 

Sequence Spin echo Flash 3D 

Slice distance [mm] 5 5 

TE [ms] 97.0 4.76 

TR [ms] 1000 361 
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2.1.6 Correction of the images 
 

To correct the MR images the distortion map is first tri-linearly interpolated to get a 

displacement vector field which represents the geometric correction in each voxel. 

This displacement verctor field is then applied to the MR-image. The intensities of the 

corrected images are obtained by linear interpolation [4]. 

 

2.1.7 Verification 
 

To verify the over all result of the distortion correction, the algorithm to detect image 

distortion was again applied to the corrected images of the phantom. The residual 

geometric distortion is regarded as a measure of the accuracy of the correction. 

 

 

2.2. Uncertainty of elastic image registration 

 
2.2.1. Elastic Image registration 
 

Let us regard two images, the test image 
tf  and the reference image 

rf :  

 

Nff rt →Ζ3:, . 

 

The aim of the image registration is to find a displacement vector field (DVF) such 

that anatomically corresponding voxels of the warped test image (indexed w) and the 

reference image reach alignment: 

 

( ) ( )( ) ( )xfxdfxf rtw ^=  

 

Elastic image registration differs from rigid as well as affine registration in the number 

of degrees of freedom of the transformation. In case of a rigid image registration the 
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transformation is fully characterized by translation in each direction of space as well as 

rotation around each of the three axes of the coordinate system. Therefore a rigid 

registration has 6 degrees of freedom. Affine registration has twelve degrees of 

freedom since scaling and shearing in all directions are taken into account [13]. The 

number of degrees of freedom of an elastic image registration is typically much higher 

than twelve which allows to model complex deformations of the patient anatomy. At 

the same time a large number of degrees of freedom allows for more possibilities to 

create wrong deformations. 

Some elastic image registration techniques are based on the alignment of contours or 

on matching landmarks while other approaches are intensity based. The latter group of 

registration algorithms is driven by intensity differences and intensity gradients. A 

similarity measure is optimized either directly [4] or in an indirect way [2][3].  

 
2.2.2. Two commonly used intensity based algorithms 
 

In this work we focused on b-spline registration as well as the demons algorithm which 

are both intensity based. 

 

2.2.2.1. B-spline registration 

 
The basic concept 

 

As proposed in [22] any polynomial spline can be regarded as a superposition of b-

spline basis functions. B-spline signal processing has been extensively discussed in 

[23][24] and its application to multidimensional elastic registration was described  

in [4]. 

In elastic b-spline registration the DVF at the voxel position 3Ζ∈x  is represented by 

 

( ) ∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

3

)(
Zk

nn
h k

h
xkcxd β , 
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where ( )xnβ  is the basis function of order n, h represents the knot spacing and c(k) 

represents the coefficients at knot k. In this notation, ( )xd n
h

 and c(k) represent three-

dimensional vectors. The spatial components of these vectors are denoted with an 

index i (1≤i≤3). 

 

A commonly used metric for mono modality image registration is the SSD (sum of the 

square differences): 

( ) ( )( )2∑
Ω∈

−=
x

wr xfxfSSD
, 

where Ω denotes the voxel space of the images. 

 

Sources of error 
 

In the following two major sources of errors in b-spline image registration are 

discussed. 

 

Source 1 : Ambiguity in homogeneous regions 

 

The first partial derivatives of the SSD with respect to the b-spline coefficients were 

given by [4]: 
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,

 

Note that both, the first as well as second partial derivatives in the coefficients contain 

components of spatial derivatives of the image intensity. This means that solely those 

voxels of the test image with nonzero intensity gradient drive the optimization process. 

Regions without intensity gradient follow passively due to changes of b-spline 

coefficients in the neighbourhood, but do not guide the deformation process. The 

metric is not sensitive to misalignments that occur within those homogeneous regions. 

This limits the registration accuracy as the DVF resulting from the optimization 

process may not be the only possible result which minimizes the metric and it may 

therefore deviate from the unknown ground truth. 



 30 

 

Source 2 : Misaligned edges 

 

In non-homogenous regions, errors may occur if the optimization does not lead to the 

global minimum of the SSD-metric. This is the case when the optimization problem is 

non-convex or if the optimization process ends untimely. In that case corresponding 

edges may not reach alignment. 

 

Misaligned edges may also occur due to a mismatch of the b-spline model. In this case, 

the true DVF, dtrue(x), is not included in the entity of possible b-spline DVFs 

{ })( xd n
h  with degree n and knot spacing h, i.e. ( ) 0≠− xdxd n

htrue )(  for 

the best approximation ( )xd n
h . 

 

2.2.2.2. The demons algorithm 
 

The basic concept 

 

The optical flow equation was first given by [25]. It is today often referred to as the 

demons algorithm due to an interpretation given by [2] where an analogy to Maxwell’s 

Demons is discussed and therefore the optical flow is interpreted as a diffusion 

process. 

Here, the change of the displacement vector ur  in one iteration of the registration 

process and in some regarded point P of the reference image is given by: 

22
)(

)(
rtr

rrtu
−+∇

∇
⋅−= r

r
r

 

where r represents the intensity of the reference image in P and t the intensity of the 

test image which is warped based on the actual displacement vector field (DVF). r∇
r

 

is the intensity gradient in the reference image. 

Note that ur  is non-zero only in voxels of the reference image with non-zero intensity 

gradient. These points drive the registration. To transfer the deformation to 
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homogenous regions of the image the DVF has to be smoothed. This is done with a 

Gaussian function after each iteration. 

In analogy to the Maxwell’s demons a contour can be seen as a membrane. Such a 

contour is represented by a gradient region which separates a brighter from a darker 

area of the reference image. 

A simple demonstration of the “demons” registration is displayed in Fig. 6. Fig. 6 (a) 

shows an artificially created reference image. It contains an edge representing a 

membrane which separates a bright from a dark image area. To demonstrate the 

registration a shifted version of the same image was created and it is displayed under 

Fig. 6 (b). It represents the test image. The registration should reverse the shift. 

The test image and the reference image are represented in a common coordinate 

system. So a voxel of the reference image is associated with the point in the warped 

test image which has identical coordinates. Fig. 6 (a) as well as Fig. 6 (b) represent the 

same plane in this system. In the region where the intensity gradient of the reference 

image is non-zero the test image is bright. The direction of ur  is displayed by the grey 

arrows. Note that an arrow pointing to the left corresponds to a displacement of the test 

image to the right and vice versa. 

The mechanism of the registration is obvious regarding the area where the membrane 

is located in the reference image. The DVF update ur  is defined such that voxels 

which belong to the bright area of the test image pass through the membrane solely 

towards the bright side of the reference image. After alignment is reached, each 

component of ur  remains zero in further iterations since )( rt −  is zero. Fig. 6 (c) 

shows the deformed test image after “demons registration”. To display the 

deformation, an overlaid regular grid was deformed with the test image according to 

the DVF. 

In case the test image had initially been shifted to the opposite side dark voxels of the 

test image would have been at the position of the membrane. In this case the sign of 

)( rt −  would have been reversed. Therefore the direction of ur  would have been 

reversed, such that the dark area in the test image would have passed through the 

membrane solely towards the dark side of the reference image. 

Please note that an initial overlap of corresponding structures is a precondition for a 

successful registration with the demons algorithm. This issue will be discussed in 

detail in the next sub-section. 
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Fig. 6 : demons registration: those bright voxels of the test image which are located on 

the left side of the membrane pass through the membrane consisting of a gradient 

region of the reference image. (a) displays the reference image. The grey arrows 

represent the direction of ur . (b) shows the test image and (c) represents the warped 

test image after registration. It was overlaid with a regular grid prior to the 

deformation. 
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Sources of error 

 

In the following two mayor sources of error in demons registration are discussed. 

 

Source 1 : Lack of initial overlap 

 

An initial overlap of corresponding structures is essential to ensure the right direction 

of the displacement ur  described in the previous sub-section.  

This is demonstrated in Fig. 7. In Fig. 7 (a) a circular shaped object is displayed. Its 

difference image with a shifted version of the same object is displayed in Fig. 7 (b). 

Fig. 7 (c) displays the difference image after 100 iterations of the registration. To 

display the deformation the test image was overlaid with a regular grid prior to the 

deformation. In this example the registration reaches alignment. Fig. 7 (d) shows a 

difference as in (b), but with a larger shift between corresponding structures such that 

there is no overlap. Fig. 7 (e) displays the difference image after 100 iterations of the 

“demons” registration. Again the test image was overlaid with a regular grid and then 

deformed. Alignment could not be reached since initial overlap of corresponding 

structures was missing. 
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Fig. 7 : (a) a circular shaped object; (b) difference image of (a) and a shifted version 

of itself; (c) difference image after 100 iterations; (d) again difference image of (a) 

and a shifted version of itself, but with larger shift; (e) difference image after 100 

iterations. Note: The difference images are calculated by ( ) ixrxtxI +−= )()()( , 

where x is a voxel of the reference image., t(x) and r(x) are the intensities of the 

reference and test image, respectively. i  is an offset of half the magnitude of the 

difference between the brightest and the darkest voxel  in any of the two images. 

 

It is possible that fine structures such as bronchi initially do not overlap, but reach a 

state of coarse overlap during the registration process as other larger and initially 

overlapping structures within the images guide the deformation. The diaphragm may 

typically be such a larger and initially overlapping structure. Once finer structures have 

reached coarse overlap the “diffusion process” can take place in the region of their 

edges and allow further alignment. Structures which do not reach coarse overlap 
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remain unaligned and are visible as poorly aligned regions in a color overlay or a split 

screen visualization. 

 

Source 2 : Lack of structure 

 

Voxels in homogenous regions of the reference image can not directly influence the 

deformation process as ur  is zero in these points due to missing intensity gradients. 

Still the displacement vectors may be non-zero after the registration due to Gaussian 

smoothing. The smoothing transfers driving forces that originate from structured 

regions of the image into the homogenous regions. In these homogenous areas larger 

registration errors have to be expected than in those voxels that actually guide the 

deformation process. This uncertainty is a consequence of missing information on the 

alignment encoded in the image intensities.  

This problem can be seen in Fig. 6. Assuming Fig. 6 (a) and Fig. 6 (b) represent the 

same object with a simple shift, the registration should result in a shift of the whole 

test image. So in case of a perfect registration the deformed grid in Fig. 6 (c) should be 

regular after the deformation. However, in further distance from the intensity gradient 

region the deformation is obviously not correct as the deformed grid is irregular. 

 

2.2.3. Estimation of the registration uncertainty 
 

We consider ( ) ( ) ( )xdxdxerr itrueii ,−=  to be the local registration error in the spatial 

dimension i ( 31 ≤≤ i ), where ( )xd i  is the calculated DVF and ( )xd itrue ,  the 

ground truth, which is generally unknown. 

In the following two new methods are described to estimate ( )xerri . One method refers 

to the b-spline registration and one method for the demons algorithm. 
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2.2.3.1. B-spline registration 
 

The basic idea 

 

The uncertainty of the elastic registration is estimated by evaluating the sensitivity of 

the local metric to moderate and randomly performed variations of the b-spline 

coefficients which are obtained as result of the b-spline registration. 

The local contribution to the global SSD can be calculated from a small region around 

each voxel. Let Ω⊂Δ  be a sub-region of the reference image. The contribution 

ΔSSD of Δ to the global ΩSSD is: 

( ) ( )( )2∑
Δ∈

Δ −=
δ

δδ wr ffSSD . 

The aim is to determine the range of geometric deviations which can be performed 

without increasing the local contribution ΔSSD  to the overall metric ΩSSD . In our 

study =⋅⋅=Δ zyx 181212 ⋅⋅ mm. 

Let }{ Ncc 31,..., be the set of 3N coefficients resulting from the registration, where N is 

the number of knots and 3 is the dimension of space. Let }{ Nrr 31,...,  be the set of 3N 

random variables with the boundaries bl and bu: unl brb ≤≤  for Nn 31 ≤≤ . 

In this study mmbl 10−= and mmbu 10= were used. The random value 

was obtained with the C/C++ function rand(). 

To generate random test deformations, the coefficients nc  obtained from the 

registration are replaced by randomly modified coefficients nn rc + . For each set of 

modified coefficients, the corresponding DVF is calculated and the test image is 

deformed accordingly. In the next step the spatial deviation between the randomly 

modified and the initial deformation is calculated for each dimension of space and 

each voxel and the local contribution to the global SSD metric is calculated for a 

region around each voxel. This procedure is repeated K times using different sets of 

random variations rn.  
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For each voxel and dimension, the largest deviation between the initial result of the b-

spline registration and one of the K test deformations, for which the local SSD is 

smaller than or equal to the initial local SSD, is stored as a measure of the uncertainty: 

{ })()(max)()( ,1max, xdxdxdxyuncertaint iik

K

kii −==
=

  

 

where )(, xd ik  is one of the K test DVFs and )(xd i  is the result of the b-spline 

registration. i denotes the dimension of space (1≤i≤3). 

 

The underlying idea of this approach is that an additional random deformation may 

locally improve the result of the initial registration, which may be affected by the 

errors described in the following. The maximum spatial deviation of the modified 

DVFs, which does not increase the local SSD is therefore regarded as a measure of the 

local registration uncertainty. 

 

The registration error in image sub-regions 

 

We do not expect a deterministic dependence between idmax,  and )(xerri  in a specific 

voxel as the algorithm may have estimated the displacement vector correctly by chance 

although no image structure is present. In case of statistical dependence, however, the 

values of id max,  may allow the estimation of the average of )(xerri  for a larger entity 

of voxels with similar id max,  values. Here we explain how to exploit the information 

that 
idmax
 contains on )(xerri  to divide a dataset in sub-regions that differ in their 

average local image registration error )(xerri . To do so, the 
idmax
-values are grouped 

in several intervals and the voxels are classified accordingly. We expect that the 

average registration error increases with increasing 
idmax
. 
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The statistical dependence between 
id max,
 and )(xerri  

 

The Statistical dependence between 
id max,
 and )(xerri  was investigated with the help 

of artificially created test data, where the ground truth of the deformation and hence 

)(xerri  is known. The creation of the test data is described in the next section. 

We demonstrate the statistical dependence between 
idmax,
 and )(xerri  by calculating 

the mutual information (MI) from their marginal and joint distributions. For this, a 

histogram of equally-sized bins is created for the 
idmax,
- as well as for the )(xerri -

values. Let pd(n) be the probability that a id max,  value belongs to the n-th bin of the 

histogram of idmax, -values and perr(m) the probability that )(xerri  belongs to the m-th 

bin of the histogram of )(xerri  values. Let p(m,n) be the probability of the joint event 

that idmax,  contributes to bin n and )(xerri  to bin m. 

The mutual information is then calculated by 

 

( ) ( )
( ) ( )∑

= ⋅
⋅=

MN

mn errd mpnp
nmpnmpMI

,

1,
2

,log, .  

 

N is the number of bins of the idmax,  histogram and M the number of bins of the 

)(xerri  histogram. 

If there is no statistical dependence, the MI should be equal to zero. To demonstrate 

the statistical dependence, we use the artificially deformed test images for which the 

ground truth on the deformation is known: 

After registering these with the un-deformed images and applying the algorithm 

described above, a field of 
idmax,
values is obtained for each dimension of space i. As 

the deformation of the test data was pre-defined, the ground truth of the deformation 

( )xd itrue ,  and hence the local registration error )(xerri  is known. Subsequently, the 

initial MI is calculated. 

As we are dealing with real world data and therefore with probability distributions that 

are estimated based on a limited sample, it is not justified to interpret any deviation of 
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the MI from zero as a statistical dependence. To demonstrate the significance of the 

increase, the initial idmax, -values are randomly re-distributed over the voxels, 

conserving the number of entries per bin and hence the shape of the distribution pd(n). 

Then the joint probability distribution p(m,n) as well as the MI are recalculated. After 

this process, no statistical dependence between idmax,  and )(xerri  can be expected and 

any deviation of the MI from zero is to be regarded as noise. This procedure was 

repeated 200 times and so the random distribution of the MI-values for the case of 

statistical independence is estimated. idmax,  and )(xerri
 are considered to be 

statistically dependent, if the initial MI-value is very unlikely to occur according to the 

distribution of MI-values obtained for the case of statistical independence. 

 

2.2.3.1. Demons algorithm 
 

Since the demons algorithm is a non-parameterized method the approach described in 

the previous section can not be applied. Therefore we propose a second method to 

capture the uncertainty of the registration which takes both types of errors discussed in 

the section 2.2.2.2 into account. 

The basic idea is to regard the reproducibility of the deformation field as a local figure 

of merit for the geometric accuracy of the image registration. The approach consists of 

three steps: 

 

Step 1: Initial registration 

 

First an initial registration is done resulting in a DVF which is stored and later on used 

for any purpose which the registration is needed for. 

 

Step 2: Repeated registrations from different starting points 

 

In a second step, after the initial registration an offset is added to each component of 

each displacement vector which resulted from the initial registration (step 1). The 

offset is the same in each voxel and for each component of the displacement vector. 

Therefore, warping the test image with the modified DVF results in a simple shift, 
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compared to warping with the initial DVF and without modification. The registration 

is then continued. 

Since the demons algorithm warps the test image with the current DVF in each 

iteration step this process can be regarded as one registration during which the 

deformation field was perturbed by adding an offset. 

The resulting DVF is stored. This process is repeated eight times with offsets that 

differ in their direction. Each time the resulting DVF is stored. In our study the 

magnitude of the offset was 3mm for each component of the DVF and in each voxel. 

 

Step 3: Calculation of the standard deviation of the displacement vector 

components 

 

After these eight registrations are finished the standard deviation of each component of 

the displacement vector is calculated in each voxel. All nine registrations, including 

the initial one are taken into account. 

 

Practical application 

 

We propose to divide the image into sub regions that differ in the magnitude of their 

average registration error by classifying the voxels according to the standard deviation 

of the resulting displacement vector components. The larger the standard deviation, the 

less reproducible the result and the more likely are large registration errors. This can 

either be due to missing initial overlap of corresponding structures which may lead to 

misaligned edges or due to missing structure in the images. 

The image sub-regions of different average registration error in direction i of the space 

30 ≤< i  are obtained by binning the voxels in a histogram of standard deviation 

values. The voxels of one bin represent one region. This region is not necessarily 

spatially connected. 

In the results section we demonstrate that the average local registration error of all the 

voxels in one bin increases with increasing standard deviation and hence with the bin 

number. 
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2.2.4 Test of the algorithms 
 

2.2.4.1. Generation of test data 

 
The algorithms were tested on lung datasets. To generate test data with known ground 

truth of the deformation, 5 clinical lung data sets were artificially deformed. This 

deformation aims to model the transition of the exhale to the inhale breathing phase. 

To take the main physiological aspects of breathing into account, the artificial 

deformations consist of the following components: 

 

1) Extension of the chest in the transversal plane 

2) Decompression of the lung in cranio-caudal direction 

3) Random deformation 

4) Tissue sliding between lung and rip cage 

 

Although these four steps cannot be considered to fully describe all aspects of lung 

motion, it is regarded as a model, which describes the main physiological components, 

while providing the ground truth of the deformation. 

In the following, the realization of the deformation is described. For each of the steps a 

DVF is generated and the total DVF is calculated as a superposition of these 

components. To model tissue sliding, two DVFs are generated. One aims to model the 

deformation in regions within the chest wall and a second one aims to model the 

deformation outside the chest wall. An additional step is necessary to combine both 

deformation fields without folding or tearing in the boundary region. 

 

1) Extension of the chest in the transversal plane 

 

The extension was performed by linear scaling. Let z0 be a position in the region of the 

diaphragm. Scaling with the factor 
01 sg xy +=  was applied for all z < z0 where 

0zz −  is the distance from the diaphragm in cranial direction. For z0≤z<z0+Δ , the 

scaling factor was 
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where R∈α  is a constant, and Δ  is the range over which gxy(z) decays. For 

Δ+≥ 0zz , we use 1=)(, zg yx
. So the magnitude of gxy (z) is largest in the region of the 

diaphragm and decreases in cranial direction. 

 

2) Decompression of the lung in cranio-caudal direction 

 

During the transition between inhale and exhale breathing phase, the diaphragm is 

moved in caudal direction. In the model, this is described by a displacement q(z) in 

caudal direction:  

0)( tzq =  for all z < z0 , 
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for z0≤z< Δ+0z , and 

0)( =zq for Δ+≥ 0zz  

 

The closer to the diaphragm, the larger is the displacement. In distance Δ from the 

diaphragm, the displacement is zero. 

 

3) Random deformation 

 

In order to obtain an additional deformation which is not regular throughout each slice, 

an additional three dimensional DVF is randomly created and added to the sum of the 

deformations which resulted form step one and two. For this, Gaussian functions, were 

used as base functions and the coefficients were generated randomly. This DVF cannot 

generally be described as a superposition of b-spline basis functions and hence a model 

mismatch can be expected. 
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4) Tissue sliding between lung and rip cage 

 

The deformation inside the chest wall, DVFinternal, is created as a superposition of the 

deformation steps one to three. It is considered to describe the internal deformation of 

the lung from exhale to inhale. Due to tissue sliding, however, DVFinternal does not 

describe the deformation outside the chest wall. Therefore, a second deformation field, 

DVFexternal, is obtained from DVFinternal by setting the cranio-caudal component to zero 

in each voxel. DVFexternal is considered to describe the external deformation in the 

region of the rips as well as outside the chest wall. DVFexternal does not describe the 

deformation of the lung tissue. 

 

To create a combined DVF which approximates the deformation of the anatomy all 

over the image without folding or tearing, a third step is necessary. In the following we 

describe an approach to modify DVFinternal such that the boundary surface of the lung 

after warping with DVFinternal gets mapped to the same surface as after warping the 

image based on DVFexternal. This modification allows a simple combination of both 

DVFs just by using DVFinternal for the deformation of the inside and DVFexternal for the 

deformation outside the chest wall. 

To realize this concept, a mask is created to distinguish the regions inside and outside 

of the chest wall. The mask is a binary image and allows the calculation of intensity 

gradients. In a first step, this mask is deformed based on DVFinternal and registered with 

the mask deformed based on DVFexternal. As a result, the deformation field DVFmask is 

obtained. 

This registration was done with the ITK demons implementation. We chose this non-

parameterized method, as b-spline deformations should not be involved in creating the 

test data. 

Finally, DVFinternal is replaced by DVFinternal+ DVFmask. After this slight modification, a 

simple combination of DVFinternal  and DVFexternal is possible without folding or tearing 

in the boundary region. Nevertheless, the resulting DVF contains a discontinuity in the 

region of the pleura which represents tissue sliding. 
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2.2.4.2. Application of the algorithms on test data 

 
The developed algorithms were tested using five lung cases. To generate the test data, 

the exhale breathing phase from a 4D-CT was used as a starting point and the DVF 

described above was created using the parameters of Tab. 2. This DVF was then used 

to simulate the inhale image from the exhale image. For the test of the algorithm, the 

exhale and simulated inhale images were registered using the inhale image as reference 

and 
idmax
 was calculated for each voxel. As the underlying ground truth of the 

deformation is given by the artificially created DVF, the relation between 
idmax
 and 

the local registration error )(xerri  can be analyzed. 

 

Tab. 2 : Parameters used for the generation of the test cases 
 
Parameter Value 
t0 20 mm 
Δ ≈Extension of lung 
α 1.3/Δ 
s0 ≈0.12 
Spacing of Gaussian 
Functions 

16 voxels 
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3. Results 
 

3.1. MRI distortion correction 
 

A method to detect and correct distortion in MRI was developed and tested for 

different sequences. 

 

3.1.1 The spin echo sequence 
 

Fig. 8 shows the distribution of the magnitude of the 3D-distortions measured in the 

control points. In 59% of the control points the distortion was less than 3 mm and in  

75 % of the control points the distortion was less than 5 mm however, distortions 

larger than 20 mm were detected in some control points. The average 3D distortion 

measured to be 2.9 ± 3.6 mm. 
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Fig. 8 : The distribution of the magnitude of the3D distortions for the spin echo 
sequence. 
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Tab. 3 displays the distortions measured for the spin echo sequence before and after 

correction. For a compact presentation only the values for the control points of the 

central slice of each module are shown. In module one and five, which are located in 

the largest distance from the center of the MRI-device, the distortions were largest 

with values up to 32.6 mm. In the central slice of the central module distortions larger 

than 2 mm were not detected. The axial component of the distortion is zero by 

definition in this central slice.  

 

Tab. 3 : Comparison of the distortions measured for the spin echo sequence before and 

after geometric correction of the images for the central slice of each module of the 

phantom. The z-coordinate denotes the axial position relative to the center of the MRI 

device. 

 

Distortion[mm] 
Mean±SD (maximum) 

 
 
 Before correction After correction 

Module 1 ( z = -180 mm ) 
3D 7.6 ± 5.9 (32.6) 0.8 ± 1.3 (15.8) 
Lateral 4.2 ± 5.1 (25.5) 0.4 ± 1.0 (12.6) 
Vertical 2.6 ± 2.9 (18.3) 0.4 ± 0.7 (7.8) 
Axial  4.8 ± 3.5 (14.2) 0.3 ± 0.5 (5.4) 
Module 2 ( z = -90 mm ) 
3D 1.7 ± 1.7 (10.5) 0.4 ± 0.3 (1.7) 
Lateral 0.7 ± 0.5 (4.3) 0.1 ± 0.1 (0.7) 
Vertical 0.6 ± 0.5 (3.9) 0.3 ± 0.2 (0.9) 
Axial 1.1 ± 1.7 (9.4) 0.2 ± 0.2 (1.3) 
Module 3 ( z = 0 mm ) 
3D 0.5 ± 0.3 (1.4) 0.2 ±  0.1 (1.2) 
Lateral 0.2 ± 0.2 (0.8) 0.1 ± 0.1 (0.3) 
Vertical 0.4 ± 0.3 (1.4)  0.2 ± 0.1 (1.2) 
Axial 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) 
Module 4 ( z = 90 mm ) 
3D 1.8 ± 1.7 (10.2) 0.3 ± 0.2 (2.0) 
Lateral 0.5 ± 0.6 (4.3) 0.1 ± 0.1 (0.8) 
Vertical 0.9 ± 0.5 (4.2) 0.2 ± 0.2 (1.9) 
Axial 1.2 ± 1.8 (9.0) 0.2 ± 0.2 (1.2) 
Module 5 ( z = 180 mm ) 
3D 7.5 ± 5.3 (26.7) 0.9 ± 1.4 (13.0) 
Lateral 3.5 ± 4.3 (20.6) 0.4 ± 1.0 (9.1) 
Vertical 2.7 ± 2.6 (14.5) 0.5 ± 0.8 (7.5) 
Axial   5.2 ± 3.5 (14.6)    0.5 ± 0.7 (5.5) 
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Tab. 4 compares the distortions measured for the spin echo sequence before and after 

geometric correction as a function of the radial distance from the center of the MRI-

device. The magnitude of the distortions increases with increasing distance from the 

isocenter. 

 

 Tab. 4 : Distortions measured for the spin echo sequence before and after geometric 

correction as a function of the radial distance from the isocenter.  

 

Distortion[mm] 
Mean±SD (maximum) 

 

Before correction After correction 

Distance < 100 mm  
3D 0.6 ± 0.3 (1.2) 0.2 ± 0.1 (0.6) 
Lateral 0.2 ± 0.2 (0.7) 0.0 ± 0.0 (0.2) 
Vertical 0.5 ± 0.3 (1.2) 0.1 ± 0.1 (0.6) 
Axial 0.1 ± 0.1 (0.4) 0.0 ± 0.0 (0.3) 
Distance < 200 mm   
3D 1.4 ± 1.0 (5.7) 0.3 ± 0.2 (2.0) 
Lateral 0.6± 0.7(5.5) 0.1 ± 0.1 (0.7) 
Vertical 0.8± 0.6 (4.4) 0.2 ± 0.2 (1.9) 
Axial 0.8 ± 0.8 (3.9) 0.2 ± 0.2 (1.1) 
Distance < 300 mm  
3D 2.9 ± 3.6 (32.6) 0.4 ± 0.6 (15.8) 

Lateral 1.4 ± 2.7 (25.5) 0.2 ± 0.4 (12.6) 
Vertical 1.2 ± 1.5 (18.3) 0.3 ± 0.3 (7.8) 
Axial 1.7 ± 2.3 (14.6) 0.2 ± 0.3 (5.5) 
 

 

Fig. 9 shows examples of overlays of the undistorted control point grid defined by the 

physical phantom (green) with the measured grid (red). Fig. 9 (a) displays the central 

slice of the first module of the phantom where the magnitude of the distortions are 

large compared to the central slice of the central module (Fig. 9 (b) ). The distortions  

measured for the central slice of the last module ( Fig. 9 (c) ) are similar to those found 

in the first module ( Fig. 9 (a) ) due to the symmetry of the magnetic fields. The 

distortions in the transversal plane increase with the axial as well as the lateral distance 

from the isocenter. 
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Fig. 9 : Transversal view of the distortion map for the central slice of the first (a), 

central (b) and last (c) module of the phantom. In addition, the sagital view for the 

central (e) plane as well as for planes, shifted laterally by 12.5 cm to the left (d) and to 

the right (f) are shown. 
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Fig. 10 : Uncorrected (left) and corrected (right) image of the central slice of the first 

(a), central (b) and last (c) module of the phantom. 
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Fig. 10 shows the uncorrected and corrected CT-images for different slices of the 

phantom. After geometric correction, the distortions are mainly removed. The 

corrected images show a regular grid of control points. 

 
3.1.2 The flash 3D sequence 
 

Fig. 11 shows the distribution of the magnitude of the 3D distortion which was 

measured in the control points for the flash 3D image. The distribution looks very 

similar to the one obtained from the spin echo sequence. 

 
In 57 % of the control points the distortion was less than 3 mm and in 74 % of the 

control points the distortion was less than 5 mm. 

The average 3D distortion was 3.0 ± 3.6. 

 

 
Fig. 11 : The distribution of the magnitude of the3D distortion over the control points 
obtained for the flash 3D sequence. 
 

Tab. 5 displays the distortions measured in the flash 3D sequence before and after 

geometric correction. For a compact presentation only the values for control points of 

the central slice of each module are shown. Like in the spin echo sequence the 

Flash 3D sequence

- 

200 
400 

600 

800 

1 000 
1 200 

1 400 

1 4 7 10 13 16 19 22 25 28 31

3D distortion [mm]

N
um

be
r o

f c
on

tr
ol

 p
oi

nt
s

w
ith

 d
is

to
rt

io
n

< 
3D

 d
is

to
rt

io
n



 51

distortion was largest in modules with the largest distance from the center of the MRI-

device. 
 
Tab. 5 : Comparison of the distortion measured for the flash 3D sequence before and 

after geometric correction for the central slice of each module of the phantom. The  

z-coordinate denotes the axial position relative to the center of the MRI device. 

 

Distortion[mm] 
Mean±SD (maximum) 

 

Before correction After correction 

Module 1 ( z = -180 mm ) 
3D 7.7 ± 5.3 (27.5) 0.9 ± 1.4 (14.7) 
Lateral 3.8 ± 4.5 (22.2) 0.5 ± 1.1 (11.1) 
Vertical 2.5 ± 2.4 (13.6) 0.5 ± 0.7 (7.1) 
Axial 5.2 ± 3.6 (13.2) 0.4 ± 0.6 (6.6) 
Module 2 ( z = -90 mm ) 
3D 1.8 ± 1.7 (10.0) 0.5 ± 0.2 (2.3) 
Lateral 0.6 ± 0.5 (3.6) 0.2 ± 0.1 (0.4) 
Vertical 0.6 ± 0.6 (4.8) 0.3 ± 0.1 (0.8) 
Axial 1.4 ± 1.7 (8.7) 0.2 ± 0.3 (2.2) 
Module 3 ( z = 0 mm ) 
3D 0.6 ± 0.3 (1.4) 0.4 ± 0.1 (0.7) 
Lateral  0.2 ± 0.2  (1.0) 0.2 ± 0.1 (0.5) 
Vertical 0.5 ± 0.3 (1.4) 0.3 ± 0.1 (0.7) 
Axial 0.0 ± 0.0 (0.0) 0.0 ± 0.0 (0.0) 
Module 4 ( z = 90 mm ) 
3D 1.7 ± 1.7 (10.7) 0.5 ± 0.2 (1.7) 
Lateral 0.6 ± 0.6 (3.7) 0.2 ± 0.1 (0.5) 
Vertical 0.7 ± 0.6 (4.9) 0.3 ± 0.1 (0.7) 
Axial 1.1 ± 1.7 (8.8) 0.2 ± 0.2 (1.7) 
Module 5 ( z = 180 mm ) 
3D 8.0 ± 5.6 (30.1) 0.7 ±  0.4 (2.9) 
Lateral 3.5 ± 4.2 (19.1) 0.3 ± 0.3 (1.6) 
Vertical 2.7 ± 3.0 (18.0) 0.4 ± 0.3 (1.4) 
Axial   5.7 ± 4.0 (15.2)    0.4 ± 0.3 (2.6) 
 

 

Tab. 6 shows the distortion measured in the flash 3D sequence before and after 

geometric correction as a function of the radial distance from the center of the MRI-

device. The distortion increases with increasing distance from the center. 

 



 52 

Tab. 6 : Comparison of the distortions measured in the flash 3D sequence before and 

after geometric correction as a function of the distance from the isocenter 

 

Distortion[mm] 
Mean±SD (maximum) 

 

Before correction After correction 

Distance < 100 mm 
3D 0.5 ± 0.2 (0.9) 0.4 ± 0.1 (0.6) 
Lateral 0.1 ± 0.1 (0.5) 0.1 ± 0.0 (0.3) 
Vertical 0.5 ± 0.2 (0.8) 0.3 ± 0.1 (0.6) 
Axial 0.1 ± 0.1 (0.6) 0.1 ± 0.1 (0.4) 
Distance < 200 mm 
3D 1.4 ± 1.0 (5.5) 0.4 ± 0.1 (2.3) 
Lateral 0.5 ± 0.7 (5.0) 0.1 ± 0.1 (0.5) 
Vertical 0.7 ± 0.6 (4.5) 0.3 ± 0.1 (1.0) 
Axial 0.8 ± 0.9 (3.9) 0.2 ± 0.2 (2.3) 
Distance < 300 mm 
3D 3.0 ± 3.6 (30.1) 0.5 ± 0.5 (14.7) 
Lateral  1.3 ± 2.5 (22.2) 0.2 ± 0.3 (11.1) 
Vertical 1.1 ± 1.5 (18.0) 0.4 ± 0.2 (7.1) 
Axial 1.9 ± 2.5 (15.2) 0.2 ± 0.3 (6.6) 

 

 

3.2. Elastic image registration 

 
3.2.1. The test data 

 
Fig. 12 shows an exhale (a) and a simulated inhale (b) image in comparison to a real 

inhale image from the 4D-CT (c). The displacement of the diaphragm as well as the 

tissue sliding between lung and chest wall is similar in the true and the simulated 

inhale image. 
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Fig. 12 : Exhale image from the 4D-CT (a) and inhale image (b) simulated on the 

basis of the exhale image (a) using the method described in section 2.2.4.1. For 

comparison an inhale image from the 4D-CT  is shown in (c). 

 

Fig. 13 displays the difference image between the mask deformed based on DVFinternal  

and the mask deformed based on DVFexternal (a). After applying the final deformation 

DVFmask (b), both masks coincide in the region of the chest wall. So the chest wall is 

mapped to the same surface by both deformation fields. 

 

 

 

Fig. 13 : (a) Difference image of the masks for the regions inside and outside the chest 

wall after deformation with DVFinternal and DVFexternal, respectively. (b) The same 

difference after modifying DVFinternal by adding DVFmask. (see section 2.2.4.1.  ). 
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3.2.2. Estimation of the registration uncertainty 

 
3.2.2.1. The b-spline algorithm 

 
Implementation of the algorithm 

 

The b-spline algorithm was implemented using C++ under Linux. It is a dkfz in house 

implementation of the algorithm described in [4]. This algorithm was enhanced to 

estimate the registration uncertainty as described above.  

The registrations took around 3 minutes for lung data sets with about 256x256x80 

voxels that were processed on image resolutions four to two. The final spacing of the 

b-spline basis functions was 8 voxels in plane and 4 voxels cross plane. 

The time for the estimation of the registration uncertainty is proportional to the number 

of test deformations. In this study we applied 400 test deformations. It took 15 minutes 

on a PC with a 1.85 GHz processor and without parallel computing. 

 

Validation of the b-spline registration with test data – actual registration errors 

 

After registration of the simulated inhale image with the initial exhale image, the 

resulting DVF was compared with the ground truth and the local registration error was 

calculated in each point. Tab. 7 shows the average registration error over the voxels of 

the complete body region for each of the five test cases. 

 

Tab. 7 : Average registration error and standard deviation for each of the test cases 
 

 
 
 

 

 

 

 

 

Test 
case  

Mean±SD [mm] 

 lateral anterior-
posterior 

Caudal-
cranial 

1 2.2±2.1 2.2±2.1 3.8±4.1 
2 2.0±2.0 2.1±1.9 3.3±3.4 
3 2.7±2.6 2.6±2.5 3.6±3.9 
4 2.8±2.5 2.4±2.3 3.8±3.9 
5 2.6±2.2 2.7±2.4 3.7±3.7 
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Estimation of the registration error for sub regions 

 

Fig. 14 shows the combined histogram for the dmax-values and the corresponding true 

local registration error for case 1. The brightness of the entries represents the number 

of voxels with the respective combination of dmax and err.. The histograms 

demonstrate, how the proposed quantity dmax should be interpreted: Although large 

registration errors may occur for large dmax-values, small errors are very likely as well, 

since the algorithm may have estimated the deformation correctly by chance although 

no image structure is available. Large errors, however, are very unlikely in voxels with 

small dmax-values. 
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Fig. 14 : Combined histogram for the dmax-values and the corresponding true local 

registration error for case 1. 
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As a typical example, the left side of Fig. 15 displays the average local registration 

errors obtained from the ground truth for case 1 as a function of dmax using 15 

intervals. It shows that the average registration error increases with increasing values 

of dmax. This was found for each dimension of space. 

The right side Fig. 15 displays the standard deviation of the local registration error for 

the same case and the same intervals of dmax. Large dmax–values correspond to large 

standard deviations. 

 

Fig. 15 : 

left side: Average registration error (ground truth) as a function of dmax for case 1.  

right side: Standard deviation of the registration error as a function of dmax for case 1. 

Note: To obtain equal number of entries per bin, the intervals were selected non-

equidistantly. The bars are centered in the respective interval. 
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Tab. 8 summarizes the average registration errors for all test cases investigated in this 

study. For a compact presentation, dmax was binned in 3 intervals only. This data shows 

that separating dmax into three intervals allows separation of voxel entities with 

different average registration errors. The larger dmax (i.e. the bin number), the larger are 

the average true registration errors as well as the corresponding standard deviations. 

 

Tab. 8 : Average local registration error for 3 dmax-bins and al cases. Note: Each bin 

contains the same number of entries. 

 

dmax-
bin 

Lateral Anterior-
posterior 

caudal-cranial 

 Mean±SD 
[mm] 

Mean±SD 
[mm] 

Mean±SD  
[mm] 

Case 1 
1 1.2±1.2 1.1±1.1 1.7±2.3 
2 2.2±1.9 2.2±2.0 4.1±4.1 
3 3.2±2.6 3.4±2.5 5.8±4.8 

Case 2 
1 1.0±1.0 1.1±1.2 1.8±2.1 
2 2.0±1.7 2.1±1.7 3.5±3.6 
3 3.2±2.5 3.0±2.1 4.7±3.8 

Case 3 
1 1.4±1.5 1.3±1.4 1.6±2.1 
2 2.9±2.6 2.7±2.4 3.8±3.7 
3 3.8±2.9 3.9±2.9 5.6±4.4 

Case 4 
1 1.6±1.7 1.3±1.5 1.8±2.1 
2 2.9±2.5 2.6±2.2 3.9±3.7 
3 3.9±2.7 3.5±2.6 5.7±4.6 

Case 5 
1 1.7±1.6 1.5±1.6 2.0±2.4 
2 2.9±2.2 2.9±2.4 4.0±3.5 
3 3.4±2.4 3.7±2.6 5.4±4.2 

 

 

Fig. 16 shows how a color overlay of dmax with the CT image can guide the user of a b-

spline algorithm. In the regions displayed in green a user can probably trust in the 

result of the image registration while in those regions that appear in red, large image 

registration errors have to be expected. 
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probably                    probably 

well          poorly 

registered         registered 

 

Fig. 16 : A color overlay between the lateral component of dmax and the CT image. 

 

 

The Statistical dependence between 
id max,
 and )(xerri  

 

Tab. 9 shows the MI-values for the dmax- and err-values obtained from the analysis of 

the test cases (MIalg.) as well as the largest MI-values obtained for the 200 

redistributions (MIindep.) described above. This shows that the probability to obtain 

MIalg. by chance is less than 005.0
200
1

=  and hence the dmax can be regarded as 

statistically dependent on the true local registration error. 
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Tab. 9 : MI for the dmax- and err-values obtained for the test cases (MIalg/MIindep: prior 

to/after redistribution, see text) 

 
 Lateral Anterior-

posterior 
Caudal-
cranial 

Case 1 
MIalg. 0.20 0.19 0.18 

MIindep. 0.0003 0.0003 0.0004 
Case 2 

MIalg. 0.21 0.23 0.25 
MIindep. 0.0002 0.0002 0.0002 

Case 3 
MIalg. 0.17 0.18 0.22 

MIindep. 0.0003 0.0002 0.0004 
Case 4 

MIalg. 0.17 0.22 0.24 
MIindep. 0.0003 0.0002 0.0003 

Case 5 
MIalg. 0.14 0.18 0.20 

MIindep. 0.0003 0.0002 0.0003 

 
 

3.2.2.2. The demons algorithm 

 
Implementation of the algorithm 

 

For this study the ITK implementation of the demons algorithm was integrated in an 

in-house developed registration framework. The registration took less than two 

minutes for lung data sets with about 256x256x80 voxels that were processed on 

image resolutions four to two. 

 

The registration results 

 

After registration of the simulated inhale image with the initial exhale image, the 

resulting DVF was compared with the ground truth and the local registration error was 
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calculated in each point. Tab. 10 shows the average registration error over all voxels of 

the complete body region for each of the five test cases. 

 

Tab. 10 : Average registration error and standard deviation for each of the test cases 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: (a) difference image between simulated inhale and real exhale before and 

after the registration for patient 1; (b) displays the same for the real inhale and the 

real exhale image 

Test case  Mean±SD [mm] 
 Lateral anterior-

posterior 
caudal-cranial 

1 2.3±2.3 2.0±2.0 3.1±4.2 
2 1.8±1.8 1.8±1.9 2.7±3.5 
3 2.2±2.5 1.9± 2.0 3.3±4.9 
4 2.9±2.7 2.5±2.6 4.2±5.5 
5 2.5±2.4 2.7±2.8 3.1±4.5 
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Fig. 17 (a) displays the difference image between the exhale and the simulated inhale 

dataset before and after the registration for patient 1. 

Fig. 17 (b) displays the same for a registration of the exhale with the real inhale from 

the 4DCT. Probably the registration of the simulated exhale with the inhale image and 

the registration of the exhale with the real inhale image from the 4DCT are similar 

challenging for the registration algorithm. 

 

In Fig. 18 (a) the magnitude of the local registration error in caudal-cranial direction is 

displayed as brightness. Black stands for a small local error and white a large local 

error.  

In Fig. 18 (b) the standard deviation of the caudal-cranial component of the 

displacement vector is displayed. Fig. 18 (c) displays the difference image between 

simulated inhale and exhale after registration in the same slice. 

Regarding Fig. 18 it is obvious that the standard deviation of the displacement vector 

component (in Fig. 18 the caudal-cranial component) is not identical with the local 

registration error. In Fig. 19 some regions where the estimation is rather well are 

highlighted and distinguished from areas where the estimation performs poorly. 

However, in regions with large standard deviation large errors are more likely than in 

those regions where the standard deviation is small. See next sub section for details. 
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Fig. 18  : (a) magnitude of the local registration error in caudal-cranial direction, 

displayed as brightness. Black stands for a small local error and white a large local 

error. (b) standard deviation of the caudal-cranial component of the displacement 

vector. (c) difference image between simulated inhale and exhale after registration in 

the same slice. 
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Fig. 19 : (a) magnitude of the local registration error in caudal-cranial direction, 

displayed as brightness. Black stands for a small local error and white a large local 

error. (b) standard deviation of the caudal-cranial component of the displacement 

vector. In those regions marked in green the estimation of the uncertainty performs 

rather well. Those regions marked in red show that there may be disagreement 

between the estimation and the ground truth in other areas. 
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The registration error in sub-regions 

 

As a typical example, Fig. 20 displays the results obtained for test case 1. The standard 

deviation of the displacement vector components under multiple registrations, as 

described in section 2.2.3.1, is binned in 7 intervals. Remember that this standard 

deviation is regarded as a measure of uncertainty. The bounds of the intervals are 

chosen non-equidistant, in a way such that the same number of voxels contribute to 

each bin. In (a), on the left side, the average local registration error in lateral direction 

is displayed for each bin. Note that the average registration error increases with 

increasing standard deviation and therefore with increase of the proposed measure of 

uncertainty. This increase demonstrates that large registration errors are likely to 

appear in regions where the registration result is not reproducible under multiple 

registrations. 

On the right side the standard deviation of the local registration error within each of 

the bins is displayed. This standard deviation is rather larger than the average 

registration error within each bin. This indicates that, regarding a specific voxel the 

estimation is not reliable while at the same time the estimation of the local registration 

error is valuable regarding a larger entity of voxels with similar estimation of the 

registration uncertainty. Fig. 20 (b) displays the same for the anterior-posterior 

direction. Fig.20 (c) represents the caudal-cranial component. 
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Fig. 20 :  

left side: After binning of the standard deviation of the displacement vector 

components in 7 intervals the average local registration error is displayed for each 

bin.  

 right side : Standard deviation of the registration error within each bin. 

Note: To obtain equal number of entries per bin, the intervals were selected non-

equidistantly. The bars are centered in the respective interval. 
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Tab. 11 summarizes the average registration errors for all test cases investigated in this 

study. For a compact representation the standard deviation was binned in 3 intervals 

only. This data shows that separating the standard deviation into three intervals allows 

separation of voxel entities with different average registration error. The larger the 

standard deviation (i.e. the bin number), the larger is the average local registration 

error as well as the corresponding standard deviation. 

 
Tab. 11 : Average local registration error for 3 bins of the standard deviation of the 
vector component and all cases. Note: Each bin contains the same number of entries. 
 
 

 Mean±SD [mm] Mean±SD [mm] Mean±SD  
[mm] 

Bin lateral anterior-posterior caudal-cranial 
Case 1 

1 1.4±1.5 1.4±1.6 1.4±2.6 
2 2.0±2.0 1.7±1.7 2.1±3.5 
3 3.4±2.8 2.8±2.4 5.8±4.8 

Case 2 
1 1.1±1.2 1.1±1.3 1.1±1.7 
2 1.5±1.5 1.5±1.5 1.8±2.4 
3 2.7±2.3 2.7±2.4 5.3±4.3 

Case 3 
1 1.4±1.7 1.3±1.5 1.1±2.3 
2 2.0±2.1 1.7±1.7 1.8±3.3 
3 3.4±3.0 2.8±2.4 7.0±5.9 

Case 4 
1 2.1±2.2 1.8±2.0 1.9±3.7 
2 2.8±2.7 2.3±2.2 3.1±4.7 
3 3.9±3.0 3.6±3.0 7.6±6.2 

Case 5 
1 1.9±2.0 2.0±2.2 1.5±2.5 
2 2.3±2.1 2.5±2.6 2.0±3.2 
3 3.3±2.8 3.8±3.2 5.9±6.0 
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4. Discussion 

 
4.1. Detection of MRI distortion 
 

A physical phantom in combination with an evaluation software was developed to 

determine and correct distortions in MR images used for treatment planning in 

radiation oncology. Compared to previously described phantoms which are mostly 

developed for intracranial applications, it detects distortions over a much larger field of 

view. In addition, the representation of the control points differs from that of other 

phantoms. The phantom and the evaluation software were successfully tested for two 

frequently applied MR sequences. After correction of the distortions the magnitude of 

the residual average distortion measured in the control points was significantly reduced 

for all slices of the phantom. 

The magnitude of the distortion and the principal shape of the distortion map is similar 

for the flash 3D and the spin echo sequence. Since the distortion depends on the 

homogeneity of the ground field and the linearity of the gradients, this was expected. 

In module one as well as module five of the phantom, which have the largest distance 

from the center of the MRI-device, there are still large distortions in a few control 

points, even after the geometric correction. Fig. 21 shows that these control points, are 

located in the lower left and right corner of the module. The failure of the correction in 

these points is due to problems with the detection of the control points. Since there is a 

large change of the distortion throughout these control points, the bright area of the 

hole actually appears in elliptical rather than circular shape. Since the software expects 

circular shaped objects, the detection is not accurate for these control points.  

Tab. 12, demonstrates, however, that this problem concerns just the two control points 

in the corners of these slices. Even in slices of module one and five there is no other 

point with a similar large distortion after the geometric correction. In all other control 

points the distortion is mainly eliminated after correction. The clear reduction of the 

average distortion, detected after geometric correction of the images, demonstrates 

this.   
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Fig. 21 : The central slice of module number five. The red arrow points to one of the 

control points with the largest distance from the center of the MRI-device. 

 

Tab. 12 : Residual magnitude of the distortion after correction in those control points 

with largest failure of the distortion correction.  

magnitude of the 3D 

distortion 

Position of the first module 

z = -180 mm  

Position of the last module 

z = +180 mm 

Largest value [mm] 15.8 13.0 

Second largest value [mm] 1.8 11.3 

third largest value [mm] 1.6 1.8 

 

Since the slice distance affects the distortion, images acquired for quality assurance 

must have the same slice distances as the images used in the clinical situation. To 

achieve an acceptable image resolution in the axial dimension, a shifted test data 

acquisition technique was introduced. For this, the acquisition of several datasets and 

the construction of a virtual data set with reduced slice distances is necessary, although 

it is time consuming. 

Finally, it should be noted, that a physical phantom can not capture distortions which 

are due to susceptibility changes induced by the patient. Phantom measurements can 

solely account for distortion due to ground field inhomogeneity as well as non-linearity 

of the gradient system. However, since these distortions are present in any image of 
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any patient, it is necessary to measure and remove this part of the image distortion. In 

case the manufacturer of the MRI scanner provides post-processing software for this 

purpose, the geometric accuracy of the resulting images should still be controlled with 

phantom measurements. 

Due to legal requirements with the medical device directive, the application of the 

distortion correction to clinical MR images appears to be difficult. Nevertheless the 

developed system can be used to check the geometric accuracy of MR images within 

routine quality assurance procedures.  

 

4.2. Uncertainty of the elastic image registration 

 
Various methods to access the accuracy of image registration algorithms have been 

proposed such as tracking of landmarks [14][15][16][17], check of the alignment of 

contours [17][18], evaluation of the overlay of corresponding edges with a color wash 

technique or a split screen [1] as well an the investigation of the performance on 

artificially created test cases, where the ground truth on the deformation is known 

[3][19][4]. Each of these methods has its drawbacks. Visible landmarks consist of 

voxels that may drive the registration so that the measured accuracy differs from the 

accuracy achieved in homogeneous regions of the same dataset. The overlay of 

contours can only be evaluated in case the contours are available in each dataset. This 

is not the case when the algorithm is used to transfer contours from one dataset to 

another. Registration of artificially deformed images provides knowledge on the 

under-laying ground truth of the deformation. In a clinical setting, however, this 

information is missing and it is the task of the image registration to estimate it.  

The color wash or split screen visualization is helpful to display the alignment of 

corresponding edges, but severe registration errors may be present in homogeneous 

regions of the image. These errors are not visible in a color wash or split screen image. 

So there is need to further investigate registration errors and sources of error in 

medical image registration. Especially the lack of image structure needs to be taken 

into account, since this problem is not visible in a color overly and may affect the 

accuracy of the image registration and thus the accuracy of dose mapping, target 

delineation as well as anatomy mapping. In this work two different methods for two 
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different registration techniques are proposed to deal with this problem. 

A recently proposed method is based on evaluating the physical fidelity of the 

deformation field [20][21]. This method was quantitatively tested on a demons 

algorithm. The authors show that the unbalanced energy is correlated with the 

geometric registration error. However, the demons algorithm for which this method 

has been tested is likely to create deformation fields which do not fulfill requirements 

of physical fidelity, since demons algorithm can perform relatively large changes of 

the deformation field in regions with small intensity gradients. Due to its large number 

of degrees of freedom this algorithm is likely to be affected by noise and to create 

deformation fields which do not fulfill requirements of physical fidelity. Parameterized 

methods such as b-spline registration do not face the same problems since they are 

operating on a smaller number of degrees of freedom. For b-spline registration non-

fidelity is not likely to be a problem since non-linear as well as non-invertible 

deformations can be penalized [4]. Deformation of rigid structures has been penalized 

as well [28] and some authors consider b-spline deformation to be free of folding in 

case of a multi resolution approach [29]. Nevertheless a deformation field may fulfill 

requirements of physical fidelity and may still differ significantly from the under-

laying ground truth of the deformation due to missing structure or unaligned edges in 

the images. The method discussed in the next paragraph takes this into account. 

 
4.2.1. B-spline registration 
 

4.2.1.1. Interpretation of the results 

 
As it is probably impossible to exactly determine the actual registration error for each 

individual voxel, we focussed on a statistical evaluation. It is important to note that the 

dmax value is not the image registration error itself. In any specific voxel, the 

registration error is still unknown after running the proposed algorithm as dmax is an 

estimate of the average registration error over a larger entity of voxels. However, large 

errors are unlikely to appear in regions with small dmax values. 

The algorithm was tested on artificially deformed images as described in section 

2.2.4.1. Here the ground truth on the deformation is known. Such a test dataset is not 
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identical to a CT dataset reconstructed from a 4DCT. However, the main aspects of 

breathing motion are taken into account and so we consider the images to be a model 

for the lung motion, which is suitable to evaluate the proposed method.  

It is important to note that dmax depends on the choice of the boundaries bl and bu of the 

random variable rn (see section 2.2.3.1). Therefore an average dmax  over the complete 

dataset may be used as a quality estimate to compare different lung registrations only, 

if the same boundaries were used. The average dmax  in some sub-region is not identical 

with the expected average local registration error. The proposed method rather 

provides the information in which sub-region the mean errors are small or large 

compared to the range of the expected errors. The magnitude of the absolute value of 

the average local registration error in each sub-region may be known from clinical 

experience, as we do have a basic idea about the typical range of b-spline registration 

errors in the lung from studies such as [16][18][26][27]. 

Before clinical application of the proposed method it will be necessary to investigate 

how many test deformations are actually necessary in order to capture the sensitivity of 

the metric. A smaller number of test deformation could greatly reduce the calculation 

time. In case 50 test deformations are sufficient, the algorithm could run within less 

than two minutes on a PC with a 1.85 GHz processor rather than about 15 minutes as 

for the calculations shown in this study. There is great potential to speed up the 

calculation by parallel computing. 

Note that the method was tested solely in presence of deformation and not in presence 

of growing or shrinking tissue. 
 

4.2.1.2. Robustness 

 
The robustness of the algorithm to estimate the uncertainty of the b-spline registration 

as well as its potential to classify the quality of the registration result was investigated 

using three different deformations for case 1. These deformations differ in the 

magnitude and spatial variability of the DVF. This was achieved by using different 

spacing of the Gaussian functions that contribute to the random component of the 

DVF. For this, spacings of 20, 16 and 12 were applied. The smaller the spacing, the 

stronger is the spatial variability and the larger is the magnitude of the random 

component of the simulated deformation and hence the more challenging is the 
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registration problem for the b-spline algorithm. So spacing 20 represents a moderate 

and spacing 12 a rather challenging test dataset. With these different datasets we show 

that the proposed method is robust regarding the complexity of the deformations. It can 

be applied for challenging deformations as well as for rather simple deformations. 

 

Fig. 22 shows the average local registration error for 15 dmax,z bins for spacing 20 (a), 

16 (b) and 12 (c). This demonstrates that dividing the image in sub-regions of different 

average registration error works for varying quality of the registration result. 
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Fig. 22 :Aaverage local registration error in cranio-caudal direction for different 

spacings. Note: To obtain equal number of entries per bin, the intervals were selected 

non-equidistantly. The bars are centered in the respective interval. 



 75

 

Fig. 23 shows the difference image before and after each registration for case 1 and for 

spacings of 20 (a) and 12 (b), respectively, of the Gaussian functions. The figure 

demonstrates that the registration for spacing 12 results in a less homogeneous 

difference image after registration than for spacing 20. This indicates that the result of 

this registration is over all poorer than the result displayed under (a). Tab. 13 displays 

the average registration errors as obtained from the ground truth and it confirms this 

impression. The difference images of the real inhale and exhale images obtained from 

the 4D-CT before and after the registration are shown in (Fig . 23 (c) ). The 

homogeneity of this difference image is not clearly different from Fig. 23 (a) and 

Fig.23 (b). Most probably, the quality of the result of the registration between the real 

inhale and exhale images is comparable to the quality of the result of the test cases. 
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Fig. 23 : Difference images before (left) and after (right) the registration for case 1 

using simulated data ((a) spacing 20, (b) spacing 12) and real data from the  

4D-CT (c). 
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Tab. 13 shows the average dmax  and the average local registration error for case 1 for 

three different spacings. Both, the average dmax  as well as the average registration error 

increase with decreasing spacings. 

 

Tab. 13 : Average registration error and average dmax for different spacings 
 Lateral Anterior 

-posterior 
Caudal- 
Cranial 

Spacing dmax 
[mm] 

err±SD 
[mm] 

dmax 
[mm] 

err±SD 
[mm] 

dmax 
[mm] 

err±SD 
[mm] 

20 3.5 1.9 
±1.9 

3.3 1.8 
±1.8 

3.8 3.3 
±3.7 

16 3.8 2.2 
±2.1 

3.7 2.2 
±2.1 

4.1 3.8 
±4.1 

12 4.2 3.1 
±2.7 

4.2 3.1 
±2.6 

4.4 3.9 
±3.8 

 
4.2.2. Demons algorithm 
 

4.2.2.1 Interpretation of the results 
 

Since the approach proposed for b-spline registration can solely be applied for a 

parameterized method, a different approach is needed for the non-parametric demons 

algorithm. It is important to note that the calculated standard deviation is not the local 

image registration error in any specific voxel. Rather, the standard deviation identifies 

image regions where the algorithm is likely to perform poorly. In any specific voxel 

the true registration error is still unknown after application of the proposed method. 

We propose this stochastic approach to estimate the registration uncertainty as it is 

probably in general impossible to fully determine the actual local registration error. 

 

4.2.2.2 Calculation time 
 

The calculation time for nine registrations may be considered as a drawback of the 

proposed method. However, this method is most suitable for parallel computing. The 

demons algorithm runs very fast and although the calculation time was a limiting 
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factor for image registration in the past it may not be a limiting factor in the future as 

computers are getting faster every year.  

As only one of the nine different deformation fields and the standard deviation field 

need to be stored for further processing, the proposed approach does not extremely 

increase the effort in data administration. 

 
4.2.3. Outlook 
 

Both methods have the potential to distinguish areas where the registration is likely to 

be accurate from areas where the registration is likely to be less accurate. 

In our next study we are planning to investigate an extension of this approach to 

classify dose mapping errors that are due to registration uncertainties. 

 

4.2.3.1. B-splines 
 

In case that a given dose distribution is to be mapped from the test image to the 

reference image, we propose to evaluate the maximum dose deviation instead of the 

maximum spatial deviation. In that way the same method may be applied to estimate 

the error of the dose accumulation instead of the local registration error. 

So for each voxel and dimension in space, the largest dose deviation among the K test 

deformations, for which the local SSD is smaller than or equal to the initial local SSD, 

can be stored as a measure of the dose-accumulation uncertainty: 

 

{ })()(max)(
1max xdosexdosexdose k

K

kd −=
=

 

 

Where )( xdose  is the dose mapped to the voxel x based on the result of the b-spline 

registration and )(xdosek  is the dose mapped to the reference image voxel x based on 

a deformation with one of the K test DVFs. In our future work, we plan to investigate 

the statistical dependence between )(max xdosed  and the true dose accumulation error 

due to registration errors. 
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4.2.3.2. Demons algorithm 

 

Instead of the standard deviation of the displacement vector component the idea is to 

warp the dose matrix based on each of the nine resulting deformation fields. The 

standard deviation of the mapped dose can be calculated in each voxel. It may be 

interesting to investigate the statistical dependence between the resulting dose standard 

deviation, obtained from the warped dose distribution and the true dose mapping error.  
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