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Abstract

This work includes some new aspects of motion estimation by the optic flow method in scale
spaces. The usual techniques for motion estimation are limited to the application of coarse to
fine strategies. The coarse to fine strategies can be successful only if there is enough informa-
tion in every scale. In this work we investigate the motion estimation in the scale space more
basically.

The wavelet choice for scale space decomposition of image sequences is discussed in the
first part of this work. We make use of the continuous wavelet transform with rotationally
symmetric wavelets. Bandpass decomposed sequences allow the replacement of the structure
tensor by the phase invariant energy operator. The structure tensor is computationally more
expensive because of its spatial or spatio-temporal averaging. The energy operator needs in
general no further averaging. The numerical accuracy of the motion estimation with the energy
operator is compared to the results of usual techniques, based on the structure tensor. The
comparison tests are performed on synthetic and real life sequences.

Another practical contribution is the accuracy measurement for motion estimation by adap-
tive smoothed tensor fields. The adaptive smoothing relies on nonlinear anisotropic diffusion
with discontinuity and curvature preservation. We reached an accuracy gain under properly
chosen parameters for the diffusion filter.

A theoretical contribution from mathematical point of view is a new discontinuity and
curvature preserving regularization for motion estimation. The convergence of solutions for
the isotropic case of the nonlocal partial differential equation is shown.

For large displacements between two consecutive frames the optic flow method is sys-
tematically corrupted because of the violence of the sampling theorem. We developed a new
method for motion analysis by scale decomposition, which allows to circumvent the system-
atic corruption without using the coarse to fine strategy. The underlying assumption is, that in a
certain neighborhood the grey value undergoes the same displacement. If this is fulfilled, then
the same optic flow should be measured in all scales. If there arise inconsistencies in a pixel
across the scale space, so they can be detected and the scales containing this inconsistencies
are not taken into account.

Zusammenfassung

Diese Arbeit beinhaltet einige neue Aspekte zur Bewegungsbestimmung mittels der Meth-
ode des optischen Flusses in Skalenräumen. Übliche Ansätze für die Bewegungsanalyse
beschränken sich auf die Anwendung von grob-zu-fein Strategien, die aber nur erfolgreich
sein kann, wenn in allen Skalen genügend Information vorhanden ist. In dieser Arbeit wird
die Bewegunganalyse im Skalenraum grundlegender untersucht.

Der erste Teil der Arbeit beschäftigt sich mit der Frage, welche Wavelets sich für die
Skalenzerlegung bei Bildfolgen am besten eignen. Wir setzen die kontinuierliche Wavelet-
transformation mit rotationsinvariante Wavelets ein. Bandpasszerlegungen bieten die Möglichkeit
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den Strukturtensor, der wegen der notwendigen räumlichen Mittelung recht rechenaufwändig
ist, durch den phasenunabhängigen Energieoperator zu ersetzen, der keine weitere Mittelung
benötigt. Die numerische Genauigkeit der Bewegungsschätzung im Vergleich zu den Stan-
dardverfahren, die auf dem Strukturtensor basieren, wird im Detail anhand von synthetischen
und realen Bildfolgen untersucht.

Ein weiterer praktischer Beitrag ist die Messung der Genauigkeit von Bewegungsschätzung
aus adaptiv geglätteten Tensorfeldern. Die adaptive Glättung beruht auf nichtlinearer anisotropier
Diffusion mit Unstetigkeits- und Krümmungserhaltung. Dabei wurde eine Steigerung der
Genauigkeit erreicht, wenn die Parameter für die Diffusionsfilter korrekt eingestellt werden.

Theoretisch mathematischer Natur ist eine neuartige Regularisierung für Bewegungss-
chätzung mit Unstetigkeits- und Krümmungserhaltung. Die Konvergenz von Lösungen für
den isotropen Spezialfall der nichtlokalen partiellen Differentialgleichung wird gezeigt.

Die Methode des optischen Flusses wird bei hohen Verschiebungen von Bild zu Bild wegen
der Verletzung des Abtasttheorems systematisch verfälscht. Die in dieser Arbeit entwickelte
Skalenzerlegung der Bewegungsanalyse erlaubt einen neuen Ansatz der es gestattet ohne die
übliche Grob-Fein-Strategie, diese systematischen Fehler zu vermeiden unter der Annahme,
dass in einer Nachbarschaft die gleiche Bewegung stattfindet auf allen Skalenebenen stat-
tfinden muss. Treten bei der Bewegungsanalyse Inkonsistenten über der Skala auf, so können
detektiert und die entsprechenden Skalen aus der Synthese der Bewegungsschätzung über alle
Skalen eliminiert werden.
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Chapter 1

Introduction

1.1 PDE based image processing
Partial differential equations are a fundamental mathematical tool for description and model-
ing of processes in natural sciences, life sciences and engineering. In image processing it is
possible to enhance, denoise, restore, inpaint, segment and even classify an image by means of
partial differential equations, [Aubert and Kornprobst, 2002]. In the variational approach, the
segmentation, registration, motion estimation or denoising of an image is expressed in terms of
an energy functional according to the desired properties of the model. The energy functional
consists of fidelity term, smoothness term and possibly additional constraints term, depending
on the task to be solved. The minimization requirement for the energy functional leads to the
Euler-Lagrange equations. The Euler-Lagrange equations together with the initial conditions
can be solved numerically by grid discretization, finite element methods, level sets or some
other integration scheme, which exploits the structure of the equations. Applications of PDE
for motion estimation are described in subsection 1.3.2 and chapter 3.

Partial differential equations can also be used to generate a scale space for an image or an
image sequence.

1.2 Scale spaces in computer vision
Structure and motion are important features for the human visual system and for digital image
processing. The human beings are able to detect boundaries of objects by means of different
structures without any other information, as shown in [Jähne, 2002, figure 13.1, Page 358]
or [Jähne, Bernd, 2004, color plates 25–27]. Recognizing the ego motion and the motion
of other objects is fundamental for our interaction with the rest of the world. Both, motion
estimation and structure extraction from image data can be tackled by methods, which rely
on computation of image derivatives. In mathematical analysis there is a nice definition for
derivatives in the continuous formulation. In digital image processing the computation of
derivatives is a question of scale, since we have discretized data on a rectangular grid and
in the most practical applications the data is corrupted by noise. When solving an image
processing task it is common to take into consideration the noise scale, the scale of the objects,
the displacement scale, the structure scale, the texture scale etc.

Let’s assume that we have to solve some image processing task for a given image u0.
The image processing task can be denoising, restoration, segmentation, inpainting, motion
estimation, classification or whatever. One possible approach to handle the scale problem is to
generate a stack of images at several scales and to solve our image processing task. Afterward



2 1.3 Scale spaces in computer vision

we can select the best result. The creation of the image family for the multi scale analysis
should be made by taking into account some invariance properties for the generator. A good
mathematical formulation for the natural invariance properties was stated by [Alvarez, L. et al.,
1993]. They start from a set of axioms and prove that the filtered image must be the viscosity
solution of a PDE. The multiscale analysis is defined in [Alvarez, L. et al., 1993] as a family
of operators Ttt≥0, where t is the scale parameter. Applied to a given image u0(x), T generates
a sequence of images u(t, x) := T [u0](x).

Let
Tt : C∞b (R2)→ C∞b (R2) ∀t ≥ 0,

where Cb is the space of bounded continuous functions.
The axioms for the A-G-L-M scale space theory are

• Recursivity
T0(u) = u, Ts ◦ Tt(u) = Ts+t(u) ∀u ∈ C∞0 .

• Regularity

‖Tt(u + hv) − Tt(u) + hv‖L∞ ≤ cht
∀h, t ∈ [0, 1], ∀u, v ∈ C∞0 .

• Locality

(Tt(u) − Tt(v))(x) = o(t), t → +0
∀u, v ∈ C∞0 : Dαu = Dαv, ∀α .

• Comparison principle

Tt(u) ≤ Tt(v) on R2,∀t ≥ 0 and u, v ∈ C∞0 : u ≤ v on R2 .

• Gray-level shift invariance

Tt(0) = 0, Tt(u + c) = Tt(u) + Tt(c) ∀u ∈ C∞0 .

• Translation invariance

Tt(τh ◦ u) = τh ◦ T (u) ∀h ∈ R2, t ≥ 0 .

As examples for scale-spaces we can mention

• the linear diffusion,

• the continuous wavelet transform,

• the total variation flow and

• other curvature driven flows as discussed in chapter 3.
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1.3 Optic flow and motion estimation

1.3.1 Fundamentals
Optic flow is the apparent motion of intensity patterns in an image sequence [Horn, 1986;
Aubert and Kornprobst, 2002]. The optic flow is in general different from the projected motion
field of the scene objects [Verri, A. and Poggio, T., 1987, 1989], [Aubert and Kornprobst,
2002, figure 5.3, page 185]. Determining the optic flow is a preprocessing step or a sub-task
of motion estimation , segmentation from motion, reconstruction of 3D structure, separation
of motion layers and other practical applications. Some image sequences and illustrations of
magnitude and direction of the optic flow field are depicted below.

Figure 1.1: A real life test sequence and a synthetic sequence with ground truth.

Figure 1.2: Absolute value of the velocity and visualization by Line Integral Convolution
(LIC). LIC was introduced by [Cabral and Leedom, 1993].

In a number of natural scenes the problem of estimating motion is increasingly difficult,
as commonly not only one motion of objects can be perceived. Many phenomena can cause
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multiple motions . Among them occlusion and transparent motion are the most important in
terms of their occurrence and significance in realistic imagery.

In this introduction first the different techniques for optic flow computation will be pre-
sented. Algorithms for estimating multiple motions will generally depend on these techniques
by varying degrees. In the following section the general framework for computing multiple
motions will be presented.

Techniques for the estimation of optical flow

Interesting reviews about different methods for recovering optic flow and motion estimation
are [Beauchemin, S. S. and Barron, J. L., 1995]. Comparisons of these with error analysis can
be found in [Barron, J. L. et al., 1994], [Mitiche, A. and Bouthemy, P., 1996] and [Haußecker,
H. et al., 1999]. A good classification of motion estimation techniques can be found in [Jähne,
2002, chapter 14, page 395] and [Aubert and Kornprobst, 2002, section 5.1, pages 181–195].
Basic concepts of image motion, affine motion by the structure tensor and the relationship
between motion and direction in image sequences are described in [Bigun, 2006, Chapter 12,
page 245]. The methods for optic flow computation can be categorized into three groups:

• The class of gradient based techniques rely on computing spatio-temporal derivatives
of image intensity, which can either be first order [Fennema, C. and Thompson, W.,
1979; Horn, B. K. P. and Schunk, B., 1981] or second order [Nagel, 1983; Tretiak, O.
and Pastor, L., 1984]. The gradient based methods yield good results with respect to
accuracy and density of the flow field and they are widely used in practical applications.

• Region-based matching may be employed when under certain circumstances, aliasing,
small number of frames, etc. it is inappropriate to compute derivatives of grey values. In
this approach the velocity is defined as a shift giving the best fit between image regions
at different times [Anandan, 1989; Glazer, F. et al., 1983; Little, J. J. and Verri, A., 1989].
The region based methods can be applied to data in which the optic flow between two
frames has to be estimated or the time derivative can not be computed by filter masks.

• Feature-based methods rely on computation of the optic flow on a feature extracted from
the sequence. The features can be corners, edges, phase level contours, curvature of the
edges etc. As a representative of the feature-based approaches we will discuss the phase-
based method. The phase based method is insensitive to light variations and intensity
changes in the image data.

Gradient Based

A number of different gradient based techniques have been conceived. These methods are also
termed differential approaches, as motion is locally modelled by constraint equations based
on differentials of image intensities. The underlying assumption is that local changes in image
intensities are due to image translation, there can be no occlusion, unless this is modeled,
cf. section 1.3.2 and all objects in the scene are rigid. The optic flow equation for an image
sequence g = g(~x, t), ~x ∈ Rn is

g(~x, t) = g(~x − ~vt, 0), (1.1)

where g(~x, t) is the image intensity at image location ~x and time t. In first-order methods
[Fennema, C. and Thompson, W., 1979; Horn, B. K. P. and Schunk, B., 1981] the right hand
side of Equation (1.1) is expanded as a Taylor series about (~x, t) and discard the terms higher
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than first-order. This leads to the brightness change constraint equation (BCCE) also known
as the gradient constraint equation:

d
dt

g(~x, t) = gx(~x, t)v1 + gy(~x, t)v2 + gt(~x, t) = 0. (1.2)

Here v1 and v2 are the velocities in x and y direction and gn the derivative of g in n-direction.
This equation can of course be equally well extended to problems of higher dimensionality,
such as volumetric data sets.

The BCCE of Equation (1.2) presents one constraint equation for two unknowns. As such
only the normal velocity of contours of constant intensity ~vn = vn~n, where ~n is the direction of
the spatial gradient, can be computed. The normal speed and direction are given by

vn =
−gt(~x, t)

‖gt(~x, t), gt(~x, t)‖
, (1.3)

~n =
(gx(~x, t), gy(~x, t))>

‖(gx(~x, t), gy(~x, t))‖
. (1.4)

In order to attain the full velocity field further constraints or regularity assumptions are needed.
Instead of using the brightness function g(~x, t), in multi-constraint methods other functions

invariant to motion can be used [Mitiche, A. et al., 1987]. From n such functions a system of
n equations can be written and solved.

∇gi(~x, t)~v + gi
t(~x, t) = 0, i = 1, . . . , n, (1.5)

where ~v = (v1, v2)> is the image velocity. Example of such functions:

• Multi-spectral images [Markandey, V. and Flinchbaugh, B. E., 1990]

• Operators (spatial operators, differential operators, linear spatio-temporal filters, wavelet
transform) [Srinivasan, 1990; Sobey, P. and Srinivasan, M. V., 1991; Weber, J. and Ma-
lik, J., 1995]

• Multiple illumination sources [Woodham, 1990]

Second-order methods exploit second-order derivatives of the image intensities g(~x, t) to
introduce further constraints [Nagel, 1983, 1987; Tretiak, O. and Pastor, L., 1984; Uras, S.
et al., 1988; Girosi, F. et al., 1989; Simoncelli, 1993; Bainbridge-Smith, A. and Lane, R. G.,
1997]. One possible constraint is given by [Uras, S. et al., 1988][

gxx(~x, t) gyx(~x, t)
gxy(~x, t) gyy(~x, t)

] (
v1

v2

)
+

(
gtx(~x, t)
gty(~x, t)

)
= 0. (1.6)

This constraint can be deducted from the assumption that ∇g(~x, t) is conserved, that is

d∇g(~x, t)/dt = 0 .

This type of constrain is a special case of the multi-constraint technique were the n functions
are just the second derivatives of the grey values.

Another way of solving the aperture problem is assuming a single motion pattern locally
in a spatio-temporal neighborhood. It is assumed that all parameters of the constraint equa-
tion are constant in the neighborhood. This leads to an over-determined system of equations
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(one equation for each pixel in the neighborhood) which can be solved numerically. For ex-
ample, [Lucas, B. and Kanade, T., 1981; Lucas, 1984] solve this system of equations as a
weighted least squares problem, where weights are dependent on the pixel location in the
spatio-temporal neighborhood. [Chu, C. H. and Delp, E. J., 1989] also use a local least squares
approach but solve the system of equations in a total least squares framework [Van Huffel, S.
and Vandewalle, J., 1991], that accounts for the errors in all the image intensity gradients gx,
gy and gt. The drawback of these local model is their poor performance in the presence of
multiple motions within the neighborhood. This problem can be solved by employing a robust
framework such as M-estimators [Huber, 1981; Hampel, F. R. et al., 1986] or the Least Median
Squared of orthogonal distances [Rousseeuw, P. J. and Leroy, A., 1987](LMSOD) Estimator.
These estimators have been successfully applied by a number of authors (eg. [Rousseeuw, P.
J. and Van Aelst, S., 1999; Bab-Hadiashar, A. and Suter, D., 1997, 1998; Black, 1992; Black,
M. J. and Anandan, P., 1996]).

Correlation Based Matching

Gradient based methods presuppose differentiability of time-varying image grey values. How-
ever, due to strong noise, severe aliasing or availability of only a small number of frames,
accurate numerical differentiation may not always be possible. In this cases region-based
matching techniques are often employed. These methods aim to find the best match between
image regions in one frame with neighboring regions in subsequent frames. The degree of fit
is formulated on some sort of correlation measure. Essentially, finding the best match is an
optimization problem. One might maximize the normalized cross-correlation

S (g0(~x), g1(~x; ~s)) =
〈
g0(~x), g1(~x; ~s)

〉
‖g0(~x)‖ ‖g1(~x; ~s)‖

, (1.7)

or minimize the sum of squared difference (SSD)

S S D(g0(~x), g1(~x; ~s)) =
(
g0(~x) − g1(~x; ~s)

)2
. (1.8)

Some disadvantages of the technique include

• Exhaustive two-dimensional search

• Sensitive to illumination change

• Geometric distortions are problematic

It should be noted that the SSD in Equation (1.8) can be viewed as a first-order approx-
imation to ∆tW(~x − ~x0)dg(~x, t)/dt. Therefore, minimizing Equation (1.8) yields an average
solution to the BCCE over the windowing function W(~x − ~x0) [Anandan, 1989].

Edges can be extracted by one of several edge detection methods [Marr, D. and Hildreth, E.
C., 1980; Canny, 1986]. From this relatively sparse collection of features the image velocity
can be deducted from one image to the next. This type of approach is often referred to as
feature-based. From the correspondence of features in one image to the ones in the next, the
velocity is commonly defined as the perpendicular distance from corresponding contours in
consecutive frames. The accuracy can be refined by iterative approaches [Wu, J. et al., 1989].
Due to the simplicity of the approach, considerable attention has been given to the theory of
the motion of curves [Waxman, A. M. and Wohn, K., 1985; Bergholm, 1988; Faugeras, 1990].

There are several problems with contour-based approaches as well as specific problems
with the approach suggested by [Waxman, A. M. et al., 1988]. The approaches assume that
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features including edge locations can be well localized and are stable in subsequent images
over time. Also, it is assumed that the edges are well enough isolated that they facilitate the
correspondence process. Due to this isolation the velocity fields estimated from this technique
are very sparse.

There are explicit methods such as least-squares fit to a parametric model [Waxman, A.
M. and Wohn, K., 1985] and iterative methods such as those based on smoothness assumption
[Hildreth, 1984; Gong, 1989] and [Jähne, 2002, p. 430].

A technique of this class is the motion estimation by using the Census transform [Stein,
2004]. By this method the images are transformed into binary images according to the sign of
its first derivative. Then block matching is performed on the binary images. In this manner the
computational speed is enhanced for real time applications, although the method yields sparse
flow fields.

Feature-Based Techniques

Feature based techniques presume, that certain image features such as edges, corners, level
phase contours are conserved in consecutive frames of the image sequence. Some features are
relatively insensitive to illumination changes, for example the phase. As a representative of
the feature-based methods, we can discuss the phase-based techniques.

The method developed by [Fleet, D. J. and Jepson, A. D., 1990] defines component velocity
in terms of the instantaneous motion of level phase contours in the output of band-pass velocity
tuned Gabor filters. These filters are used to decompose the input signal according to scale,
speed and orientation. Each filter output is complex-valued and can be expressed as

R(x, t) = ρ(x, t)eiφ(x,t), (1.9)

where ρ(x, t) and φ(x, t) are the amplitude and phase part of the output signal. The component
2d velocity in the direction normal to level phase contours is given by

~v⊥ =
−φt(x, t)∇φ(x, t)
‖∇φ(x, t)‖22

. (1.10)

Here φt(x, t) is the temporal derivative of the phase and ∇φ(x, t) is the spatial gradient. Phase
derivatives are computed using the identity

∇φ(x, t) =
Im[R∗(x, t)∇R(x, t)]

|R(x, t)|2
, (1.11)

where R∗(x, t) is the complex conjugate of R(x, t) and Im denotes the imaginary part of a com-
plex number. [Fleet, D. J. and Jepson, A. D., 1990] relate velocity to local phase information
because of the relative insensitivity of the phase signal to amplitude variations due to changes
in scene illumination.

Examples for complex motion

Examples for complex motion are listed in [Jähne, 1993, section 4.7.3, page 103]. The most
important types of complex motion in image processing are

• occlusion,

• transparent motion,
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• motion with illumination changes and

• disappearing or arising of moving objects.

Occlusion is a classical example for multiple motion. Even when we handle models for
single motion estimation, it’s possible to preserve the discontinuities on occlusion points to
some extent.

1.3.2 Discontinuity and curvature preserving optical flow

In this section we give an overview of the computation of optic flow using discontinuity-
preserving and curvature-preserving PDE’s. Under the assumption of gray level constancy of
the image features over time, the optical flow problem is ill-posed. To overcome this ambigu-
ity called the aperture problem , we can add a piecewise smoothness constraint which respects
the flow discontinuities. Combining the gray level constancy and the piecewise smoothness
into a single energy functional leads to a classical minimization problem in the sense of cal-
culus of variation. We investigate the existence and uniqueness of the solution under proper
assumptions for image processing tasks. We propose a curvature-preserving PDE for optic
flow computation to avoid over-smoothing on trajectory intersections or points of interest.

Related work:
[Horn, B. K. P. and Schunk, B., 1981] introduces a regularization scheme for variational

optic flow computation with a quadratic smoothness term. This is an important work in flow
field regularization. A lot of discontinuity-preserving methods for motion estimation are ex-
tensions of the method, described in this article.

[Snyder, 1989] derives a general form of the smoothness constraint under (i) Cartesian
coordinate system invariance, (ii) positive definiteness and (iii) non-coupling different compo-
nents of the optical flow. For quadratic terms depending on the first or second-order derivatives
of the gray values and quadratic terms in the first-order derivative of the flow field, there are
only four generic smoothness constraints. All other other possible constraints for quadratic
regularizers are linear combinations of the four basic constraints. The smoothness term of
[Horn, B. K. P. and Schunk, B., 1981], mentioned above, is just a special case.

[Schnörr, 1991] investigates the minimization of quadratic functionals, described in [Horn,
B. K. P. and Schunk, B., 1981]. A proof is given for the existence, uniqueness and well
posedness of the solution in Sobolev spaces. The author proposes the Ritz method for the
discretization of the Euler-Lagrange equation.

[Proesmans, M. et al., 1994] introduces a nonlinear flow-driven modification of the energy
functional. The spatial smoothness of the flow field is taken into account. A bidirectional flow
field with inconsistency measures for the flow discontinuities lead to a system of six coupled
reaction-diffusion equations.

[Schnörr, 1994] stated a general nonlinear formulation of the minimization problem for
optic flow estimation.

The goal of [Weickert, J. et al., 1998] is the investigation of stable schemes for arbitrary
time steps. The proposed linear-implicit updating rule is based on additive operator splitting.
It ensures stability for arbitrary time step sizes.

[Weickert, 1998] introduces nonlinear rotationally invariant coupled reaction-diffusion equa-
tions for the optical flow problem.

[Aubert et al., 1999] proves the existence and uniqueness of the optical flow problem in the
space of the functions of bounded variation BV(Ω) for Lipschitz data and in [Aubert and Korn-
probst, 1999] they give a proof of existence and uniqueness for non-Lipschitz data. [Weickert,



1 Introduction 9

J. and Schnörr, C., 1999] introduces a spatio-temporal regularization exploiting the coherency
of the flow field in time.

[Weickert, J. and Schnörr, C., 2001a] presents a systematic classification of regularizers
for optic flow with respect to their rotation invariance and their dependence on the image or
the optic flow. A proof of the existence and uniqueness of the solution in H1,2(Ω) is given.

[Weickert, J. and Schnörr, C., 2001b] spatio-temporal regularization exploiting the co-
herency of the flow field in time. The authors suggest a finite-difference approximation.

[Aubert and Kornprobst, 2002, pages 190-193] is a very good introduction to discontinu-
ity preserving regularization. The book discusses the foundations of the PDE-based image
processing.

[Bruhn, A. et al., 2005b] describe a combined local-global method for optic flow estima-
tion. To circumvent the ill posedness of the problem, they introduce a mixed regularizer. The
weight between the local and global term is set by the user.

[Bruhn, A. et al., 2005a] reveals insights in real-time implementation issues of isotropic
discontinuity-preserving optic flow problem by using multi-grid techniques.

[Tschumperle, 2002, 2005; Tschumperle, D. and Deriche, R., 2005] developed a nice uni-
fied expression for a generic curvature-preserving regularization PDE for vector valued im-
ages.

Flow-Driven Smoothness Term

Let Ω ∈ R3. We will denote the image data by f , f ∈ L2(Ω) and the displacement field by
u : Ω→ R2.

The gray level constancy implies the optical flow constraint

fxu1 + fyu2 + ft = 0 (1.12)

The optical flow problem is ill-posed, because of the aperture problem. One can use regu-
larization techniques for the displacement field u, in order to obtain a solution. We can assume,
that the velocity u is piecewise smooth. The discontinuities of the optic flow should represent
the object edges or occlusion boundaries.

An appropriate regularization model for the optic flow can be described by the minimiza-
tion of the energy functional E(u1, u2)

E(u1, u2) :=
∫
Ω

( fxu1 + fyu2 + fθ)2 + λV(∇ f ,∇u1,∇u2) dxdy→ min. (1.13)

The term V(∇ f ,∇u1,∇u2) is referred to as the regularizing term and λ denotes the regular-
ization parameter. By choosing different values for λ we can steer the smoothness of the
displacement field in our model for different applications.

The regularization part determines the behavior of the motion estimator. Let’s consider the
construction of the regularization term. There are several possibilities to design the regulariza-
tion part. We can choose between image-driven or flow driven regularization on the one side
and isotropic or anisotropic regularization on the other side. The classification of regularizers
for optic flow models has been done in [Weickert, J. and Schnörr, C., 2001a, page 252] and is
depicted in table 1.2. The key idea is to prevent smoothing across discontinuities.

Let’s start with the simple case of isotropic smoothing. The corresponding terms in the
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Euler-Lagrange equations to the functional in 1.13 are

‖∇ui‖
2 ∼ 2 4 ui i = 1, 2

Ψ(‖∇ui‖) ∼ div
(
Ψ′(‖∇ui‖)
‖∇ui‖

∇ui

)
i = 1, 2 .

We introduce local coordinates η and ξ according to the gradient direction, η := ∇u
‖∇u‖ , ξ⊥η.

Locally the divergence term can be decomposed as a sum of two weighted directional deriva-
tives in order to see the action of the diffusion operator along the directions ξ and η

div
(
Ψ′(‖∇u‖)
‖∇u‖

∇u
)
=
Ψ′(‖∇u‖)
‖∇u‖

uξξ + Ψ′′(‖∇u‖)uηη .

Isotropic smoothing condition inside homogeneous regions requires to encourage the desired
diffusion behavior in gradient direction η and to prevent the smoothing across flow discontinu-
ities. This leads to the following conditions on the weights.

• In regions of low gradients we have

Ψ′(0) = 0 and lim
‖∇u‖→0

Ψ′(‖∇u)
‖∇u‖

= lim
∇‖u‖→0

Ψ′′(‖∇u‖) = Ψ′′(0) > 0.

• Near discontinuities the weights in both orthogonal directions should be set as:

lim
‖∇u‖→∞

Ψ′′(‖∇u‖) = 0 and lim
‖∇u‖→∞

Ψ′(‖∇u‖)
‖∇u‖

= β > 0.

The last two conditions near discontinuities are incompatible. For practical implementations,
we can make a compromise on Ψ. For instance, Ψ′′(s) and Ψ′(s)/s can both converge to
zero as s → ∞ but at different rates. Many functions Ψ can be found, which satisfy this
compromise. Some of the functions, which have been used in the literature for regularization
and computation of discontinuous flow fields are listed in the table below.

Name Ψ(s)
Geman & Reynolds s2

1+s2

Perona & Malik log (1 + s2)
Green 2 log cosh s
Aubert 2

√
1 + s2 − 2

Schnörr & Weickert εs2 + (1 − ε)κ
√

1 − s2

κ2

Table 1.1: Functions Ψ preserving discontinuities.

Let Ψ(s2) be an increasing smooth convex function, for instance

Ψ(s2) := εs2 + (1 − ε)κ
√

1 − s2/κ2 .

Let A ∈ Rn×n be a matrix with orthonormal eigenvectors w1, ...,wn and corresponding eigen-
values σ1, ..., σn. We define a function of a matrix by

Ψ(A) :=
∑

i

Ψ(σi)wiwT
i .
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Remark: Ψ′ =
∑
Ψ′(σi)wiwT

i .

V(∇ f ,∇u1,∇u2) := tr Ψ(∇u1∇uT
1 + ∇u2∇uT

2 )

J := ∇u1∇uT
1 + ∇u2∇uT

2

The reaction-diffusion system for E(u) in 1.13 is given in the next proposition.

P 1.1. The reaction-diffusion system to

E(u) =
∫
Ω

( fxu1 + fyu2 + fθ)2 + λ tr Ψ(J) dxdy

is given by

∂tu1 = div (Ψ′(J)∇u1) −
1
λ

fx( fxu1 + fyu2 + fθ)

∂tu2 = div (Ψ′(J)∇u2) −
1
λ

fy( fxu1 + fyu2 + fθ)

Proof. By calculating the Euler-Lagrange equations. The computation steps can be seen in
detail in [Weickert, J. and Schnörr, C., 2001a, page 251, Proposition 1]. �

Remarks:

1. If J is a symmetric and positive semi-definite 2x2 matrix then there exist orthonormal
eigenvectors v1, v2 ∈ R

2 of J and corresponding eigenvalues µ1, µ2 ∈ R. The eigenvalues
µ1, µ2 specify the contrast of the vector valued image (u1, u2) in the directions v1 and v2.

2. In [Zeidler, 1990b] there is a nice discussion about the interpretation of the time axis
and the unknown function u(x, y) in partial differential equations. It is just a question
of interpretation, whether we treat the time axis equally with the spatial axis. We can
compute the optic flow by spatio-temporal regularizers by introducing homogeneous
coordinates and setting u := (u1, u2, 1). The energy functional E = E(u) for the entire
space-time image volume is defined by

E(u1, u2) :=
∫

Ω×[0,T ]

(( fx + fy + fθ) · u)2 + λV(∇ f ,∇u1,∇u2) dxdydθ.

The table below gives a classification of regularizers for optic flow models. The image-
driven smoothing of the optic flow field leads to over-segmentation which is dependent on the
object texture. If we compare the methods listed in the table, the best results are obtained with
the anisotropic flow-driven regularization. This kind of smoothing depends on the solution u
itself and is more elaborate and produces less over-segmentation on strongly textured image
data.

Existence and Uniqueness of Solutions in H1,2(Ω) and BV(Ω)

First we discuss the well posedness in L2.
LetH := H1,2(Ω) × H1,2(Ω) (u, v)H :=

∫
Ω

uT v + tr∇u∇vT dx.

T 1.2. Assumptions:
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Isotropic Anisotropic

Image-Driven g(|∇ f |2)
∑
|∇ui|

2 ∑
∇uiD(∇ f )∇ui

Flow-Driven Ψ(
∑
|∇ui|

2) tr Ψ(
∑
∇ui∇uT

i )

Table 1.2: Classification of image and flow-driven regularizers.

1. Ψ is differentiable and increasing.

2. Ψ(s2) is strictly convex in s.

3. ∃c1, c2 > 0 : c1s2 ≤ Ψ(s2) ≤ c2s2, ∀s ∈ R

Under these assumptions the functional E(u) admits unique minimizer in H . This minimizer
depends continuously on the image sequence f .

Proof. The complete proof of the theorem can be found in [Weickert, J. and Schnörr, C.,
2001a, page 253, Theorem 1]. The proof of the theorem can be split into two basic steps.

1. If u is solution of the minimum problem, then u is solution of the operator equation

E′(u) = 0. (Abstract Euler Equation)

P   1:[Zeidler, 1990a, Proposition 25.11, Page 510]

2. If E′ is strongly monotone and Lipschitz continuous on H , then for each b ∈ H∗, the
operator equation

E′u = b, u ∈ H

has a unique solution. The solution depends continuously on b.

P   2:[Zeidler, 1990a, Theorem25.B ,Page504]

�

Let’s now consider the choice of the regularization parameter λ. There is an optimal value
for the regularization parameter λ, depending on the discontinuity preserving function V , the
noise level in the data set and some technical details about derivative computation, e.g. filter
size, amount of pre- and post-smoothing. The optimality means, that an error measure is
minimal. In practice, the optimality of λ can be shown on image sequences with ground
truth. Usually, the value of the regularization parameter is chosen manually and affects the
optic flow measurements. The optimal choice of the regularization paraneter is discussed in
citekrajsek2006. Under isotropic and homogeneous conditions one can compute the optimal
value for the regularization parameter λ based on the maximum entropy principle.

λ ∼
σ2

t

3σ2
u
,

where σt is the standard deviation of the time component of the image gradient and σu is the
standard deviation of the optical flow u. Under anisotropic and non-homogeneous assumptions
the value of λ can be determined numerically.
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BV(Ω) Regularization for Non-Lipschitz data. The Algorithm for half-quadratic mini-
mization

There is a variational formulation of the optic flow problem in BV(Ω)

E(u) :=
∫
Ω

(∇ f · u + fθ + λr[Ψ(Du1) + Ψ(Du2)] + λhc(x)‖u‖2) dx

The effect of the term ∫
Ω

c(x)‖u‖2 dx

is, that no visible motion should be detected in homogeneous regions.

Working with images requires discontinuous functions along curves, where the object
boundaries are. A suitable choice can be the space of functions of bounded variation BV(Ω).

BV(Ω) := { f ∈ L1(Ω)|sup
∫
Ω

f divϕ dx < ∞ : ϕ ∈ C1
0(Ω), |ϕ| ≤ 1}

The next theorem states an existence result for the optic flow regularization problem in
BV(Ω).

T 1.3. Let

• the data f ∈ H1,∞(Ω × [0,T ]) be Lipschitz,

• Ψ : R 7→ R+odd, convex and non decreasing,

• ∃ b1, b2 > 0 : b1x + b2 ≤ Ψ(x) ≤ b1x + b2,∀x ∈ R+,

• c ∈ C∞(Ω),∃ mc : c(x) ∈ [mc, 1],∀x ∈ Ω

Then the minimization problem has a solution in BV(Ω).

Proof. • E(u) is coercive

• E(u) is lower semi continuous for the BV-weak∗ topology

• ⇒ ∃ u ∈ BV(Ω) : u minimizes E.
�

For non-Lipschitz data there arise two main difficulties:

• ∫
Ω

u · D f dx

where the derivative D f to the set of the Radon measuresM(Ω) belongs.

What is the product of an integrable function and a measure ?
A  K give an integral representation in [Aubert and Kornprobst,
1999] .
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• The global Energy E(u) is no longer low semi continuous for the weak∗ topology of
BV(Ω). One has to search for the relaxed problem.

[Aubert and Kornprobst, 1999] developed a convergent algorithm for half-quadratic mini-
mization.

Figure 1.3: Half-quadratic minimization according to [Aubert and Kornprobst, 2002, Section
3.2.4], [Aubert et al., 1999, Section 4.2]

• New functional Eε: unique solution in H1,2(Ω).

uε → u in L2 (Γ − convergence)

• For a fixed ε [Aubert and Kornprobst, 1999, 2002] propose a suitable numerical scheme:
“ half-quadratic minimization“.
Convergence in L2 to the minimizer of Eε.

Design principle and examples for anisotropic regularizers

[Weickert, J. and Schnörr, C., 2001a] proposed a design principle for anisotropic regularizers.

• The motivation arises from the observation, that the regularizer

Ψ(µ1) + Ψ(µ2)

anisotropic is, while the discontinuity preserving function

Ψ(µ1 + µ2)

is an isotropic one. Here µ1, µ2 are the eigenvalues of the diffusion tensor.

• The design principle states:
Let Ψ(

∑
‖∇ui‖

2) be an isotropic regularizer with a non quadratic function Ψ and let∑
‖∇ui‖

2 =
∑

ρ j

be a decomposition of its argument where ρ j is rotationally invariant for all j. Then the
regularizer

∑
(Ψ(ρ j)) is rotationally invariant and anisotropic.

Examples: Design of anisotropic regularizers
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1. J := ∇u1∇uT
1 + ∇u2∇uT

2 .
Let σ(J) = {µ1, µ2}. ⇒ Ψ(trJ) = Ψ(µ1 + µ2) is an isotropic flow-driven regularization
term.
⇒ VAF := Ψ(µ1) + Ψ(µ2) is an anisotropic one.

2. Using the Helmholtz decomposition of a flow: flow = laminar + rot + div or the identity

‖∇u1‖
2 + ‖∇u2‖

2 =
1
2

(div2u + rot2u + shear2u)

we can apply the design principle and derive the regularizer

V := Ψ(div2u) + Ψ(rot2u) + Ψ(shear2u) .

This regularizer is suitable for motion estimation of fluid flow. A sophisticated approach
with direct estimates for the divergence and vorticity rates is presented in [Corpetti, T.
et al., 2002].

3. V := Ψ(‖∇u1‖
2) + Ψ(‖∇u2‖

2)

∂tu1 = div(Ψ′(‖∇u1‖
2)∇u1) −

1
λ

fx(( fx, fy, fθ) · u)

∂tu2 = div(Ψ′(‖∇u2‖
2)∇u2) −

1
λ

fy(( fx, fy, fθ) · u)

This regularization term V leads to discontinuities at different locations for each channel
u1 and u2.

To our best knowledge the most general formulation for nonlinear anisotropic diffusion
PDE’s with discussion of the coupling between the different channels is proposed in [Tschumperle,
2005].

Curvature-Preserving PDE’s for optic flow estimation

The following discussion about curvature-preserving PDE’s leans on [Tschumperle, 2002,
2005; Tschumperle, D. and Deriche, R., 2005].

Let D describe the local geometry, we want to smooth along. There are three possible for-
mulations, which express the smoothing behavior in a model for image enhancement or optic
flow regularization. The formulation can be expressed in terms of functionals, divergences and
oriented Laplacians.

1. Functional minimization.

2. Diffusion equation.

3. Oriented Laplacians.

They are not equivalent. The relation is

(1)⇒ (2)⇒ (3).

Contras against the divergence formulation

∂ui

∂t
= div(D∇ui), i = 1, ..., n :
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• The PDE implicitly depends on the spatial variations of D.

• The PDE does not fully respect the geometry D.

There is a counterexample by [Tschumperle, 2005] , which shows, that the divergence PDE
does not fully respect the underlying smoothing geometry D. Suppose we want to anisotrop-
ically smooth an image u : Ω → R along the gradient direction. We can define the local
geometry tensor D as

D(x) :=
∇u
‖∇u‖

∇u
‖∇u‖

T

.

This leads to the diffusion equation

∂u
∂t
= div

(
1
‖∇u‖2

∇u∇uT∇u
)
= div∇u = 4u .

The same action can be caused by choosing D := Id, thus different tensor fields with different
shapes determine the same regularization behavior. Anisotropic tensor D leads to an isotropic
smoothing.

Let’s now analyze the advantages and drawbacks of the trace-based PDE’s. The trace-
based PDE

∂ui

∂t
= trace(DHi), H : Hessian i = 1, ..., n

respects better the local smoothing geometry D.
The trace is not a differential operator and it follows, that there is no a dependence on the

spatial variations of D like in the divergence case. Two different tensors D1 , D2 lead to
different smoothing. The interpretation is an oriented Gaussian smoothing whose strength and
orientation is related to D.

There are some disadvantages of the trace-based PDE like its behavior on curved structures
like corners. The effect is an over-smoothing on corners, which is typical for the mean curva-
ture flow. Figure 1.4 illustrates this drawback. illustrates this disadvantage of the trace-based
PDE’s for image and flow regularization.

To avoid over-smoothing on corners we can use curvature-preserving PDE’s for our image
processing task. First we consider an image regularization along a vector field w : Ω→ R2 and
not along a tensor field. Curvature-preserving regularization can be constructed as follows. Let
Cx(a) be an integral curve of w starting from x parameterized by a. This is a one dimensional
heat flow equation constrained on Cx(a)

∂ui(Cx(a))
∂t

=
∂ui(C(a))
∂a2 , i = 1, ..., n .

The constrained equation on the curve leads to

∂ui

∂t
= trace(wwT Hi) + ∇ui · Jww, Jw : Jacobian of the vector w .

In the next step we will analyze the difference between trace and divergence formulation
and we will formulate a curvature-preserving diffusion equation. Let D := wwT describes the
local geometry of the smoothing process.

div(D∇ui) = ... = trace(wwT Hi) + ∇uT
i Jww + div(w)∇uT

i w
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Figure 1.4: Action of trace-based PDE’s: Mean Curvature Flow, figures from [Aubert and
Kornprobst, 2002; Tschumperle, 2005; Petrovic, A. et al., 2004]

div(D∇ui) = div
 u2 ∂ui

∂x + uv∂ui
∂y

uv∂ui
∂x + v2 ∂ui

∂y

 =
=

(
u2∂

2ui

∂x2 + 2uv
∂ui

∂x∂y
+ v2∂

2ui

∂y2

)
+ ∇uT

i

(
2u∂u

∂x + u∂v
∂y + v∂u

∂y
2v∂v

∂y + u ∂v
∂x + v∂u

∂x

)
=

= trace(wwT Hi) + ∇uT
i

[(
u∂u
∂x + v∂u

∂y
u ∂v
∂x + v∂v

∂y

)
+

(
u∂u
∂x + v∂u

∂y
u ∂v
∂x + v∂v

∂y

)]
=

= trace(wwT Hi) + ∇uT
i Jww + div(w)∇uT

i w

On the right hand side of the last equation there are three different terms.

1. The first term defines a trace PDE, that smoothes locally along w.

2. The two first terms can be considered as a curvature-constrained regularization PDE,
that smoothes along w while taking the curvature of integral curves of w into account.

3. The three terms together represent a classical divergence PDE this is local diffusion
along w.

The tree terms together produce perturbations of the effective smoothing direction, cf.
counterexample in this section.

This behavior is not desirable for curvature-preserving image regularization.

Now we can formulate a curvature-preserving optic flow equation. Let D describes the local
geometry of the desired smoothing behavior, for instance

D := ∇u1∇uT
1 + ∇u2∇uT

2
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or
D := Ψ(λ−, λ+, θ−, θ+),

where λ+−, θ+− are the spectral elements of the Gaussian smoothed version of the structure
tensor of the flow field u.

The generic energy functional is given by

E(u) :=
∫
Ω

(( fx, fy, fθ) · u)2 dx + λ
∫
Ω

Ψ(λ+, λ−) dx .

The Euler-Lagrange equations to E(u) can be thought of as the steady state of the reaction-
diffusion system

∂ui

∂t
= div(D(u)∇ui) −

1
λ

fxi(( fx, fy, fθ) · u), i = 1, 2

or equivalently

∂ui

∂t
= trace(DHi) + ∇uT

i Juu + div(u)∇uT
i u −

1
λ

fxi(( fx, fy, fθ) · u), i = 1, 2 . (1.14)

The term div(u)∇uT
i u introduces perturbations and causes over-smoothing on points of interest.

To avoid over-smoothing on trajectory intersections we propose the curvature-preserving PDE

∂ui

∂t
= trace(DHi) + ∇uT

i Juu −
1
λ

fxi(( fx, fy, fθ) · u) i = 1, 2 . (1.15)

The function Ψ can be chosen to respect the discontinuities of the optical flow u.

Nonlocal formulation in the mathematical sense:

Assuming the dependency of the tensor D on the neighborhood of the evaluated pixel in the
space-time volume, the last two equations can be viewed as a nonlocal PDEs. The nonlocality
is introduced by the smoothing of the structure tensor of u. A proof of the convergence of
the asymptotic solution to a stationary solution in H1,2(Ω) for (1.14) in the isotropic case D =
D(‖∇u‖) can be found in [Chipot, 2004, Theorem 1.1, Page 2]. In terms of image processing,
this smoothing is a local or a neighborhood operation. Usually a nonlocal operator in image
processing is meant to depend on the whole image or at least on a bigger subregion of the
image. An example for a nonlocal operator in image processing is the Hilbert transform.

1.3.3 Multiple motion estimation
A good introduction to multiple motion and multiple orientations estimation can be found in
[Stuke, 2006, pages 5–10].

Techniques that compute multiple motion can be classified into methods which separate
motion by segmentation and those, that require no segmentation. Dependent on the space in
which the analysis of multiple motion is fulfilled there are image domain methods, frequency
domain methods and parametric space approaches. In the image domain one can use the
gradient based method, described in section 1.3.1.

Occlusion and transparency are the most important and significant phenomena in realistic
image processing. Their information content is useful for later steps of processing such as
motion segmentation, depth ordering and 3D surface reconstruction. Occlusion causes motion
discontinuities, so that the derivatives on occlusion border are not well defined. Correlation-
based techniques are also sensitive to occlusion, since image structure may appear or disappear
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in time. Therefore the issue of choosing a strategy for estimating discontinuous optical flow
is crucial in motion analysis. Transparency is some kind of superposition of motion patterns.
[Shizawa, M. and Mase, K., 1990] introduced a superposition principle to multiple motion and
extended existing algorithms for optical flow to handle many motion distributions simultane-
ously.

In some sense the opposite approach to the superposition principle is to segment iteratively
the image using the displacement information . One can use particular motion models for the
different image regions. Each iteration step consists of motion parameter estimation and seg-
mentation, where the motion models vary depending on the obtained segmentation. Pixels are
aligned to coherent moving regions according to the Bayesian classifier, convergence speed of
the prediction error or other probabilistic criteria. Segmentation can be fulfilled by considering
each pixel together with its velocity as an element of an multidimensional space and grouping
together the regions with similar features such like curvature, orientation and distance between
the elements in the multidimensional space. One can segment an image sequence into regions
by using level sets. The level sets are obtained according to partial differential equations. In
this manner the motion boundaries are computed without relying on intensity discontinuities
and this process is purely motion based.

Analysis of multiple motion without segmentation has been suggested using the dominant
motion approach. The dominant motion can be estimated in a coarse-to-fine manner and then
the dominant motion is suppressed in order to detect the next moving object. By repeating
recursively this steps one can extract the motion information from the video data. To recover
transparencies the detected objects can be tracked throughout long image sequences. Then one
can segment the regions by classifying the pixels as moving or stationary.

Multiple motion in the spatial domain corresponds to multiple surfaces in the frequency
domain, hence motion analysis converts to detecting orientation of structure in the Fourier
space. There are several different methods based on directional filtering, outliers detection
and orientation analysis for multiple motion estimation in the frequency domain. In case of
transparency [Stuke,I. et al., 2003] separate the motion layers by solving a linear system in the
Fourier space.

Layered representation of video data is another possible way to treat the problem of mul-
tiple motion. The image is decomposed into a set of layers, where possibly disconnected
regions of similar motion are grouped together and represent one single layer. Regularization
assumptions can be used to produce a smoothed layered motion representation.

Parametric space methods allow us to combine the advantages of probabilistic and ana-
lytic motion estimation techniques in order to develop computationally efficient and robust
algorithms for motion feature description and detection of occlusion boundaries. Parametric
models can describe discontinuous optical flow and the motions of large image regions may
be described with a single set of parameters.

Error Metrics and Statistics

A good description of error metrics for optic flow measurements can be found in [McCane,
B. et al., 2001, page 133]. There are a lot of error metrics defined in the literature. The most
importan ones are
• The angular error e:

e := arccos(ucorrect · uestimated)

in homogeneous coordinates, i.e. u = (ux, uy, 1).

• The normalized magnitude of the vector difference.
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Also some statistics are used to benchmark the accuracy of motion estimation methods.

• Average or variance of the angular error or normalized magnitude.

• Cumulative histogram graphs, [McCane, B. et al., 2001, pages 135–140, figures 6,7,9–
11].

Numerical experiments for the model in BV(Ω) are depicted in the table below.

Ψ(s) E(ang.error) σ2(ang.error) SNR

2
√

1 + s2 − 2 3.87 9.20 12.27

log 1 + s2 4.32 9.24 12.51

Table 1.3: Error estimates for the model proposed in [Aubert et al., 1999]

The next table represents state of the art results for different types of regularizers for motion
estimation.

2D 2D 3D 3D
Sequence Linear Nonlin. Linear Nonlin

Marble 5.30 5.14 2.06 1.70
Office 4.33 4.13 3.60 3.24
Yosemite 7.14 6.03 6.18 5.18

Table 1.4: Average angular error for linear and nonlinear combined local-global methods ac-
cording to [Bruhn, A. et al., 2005b]

Discontinuity-Preserving Real-Time Computations

In [Bruhn, A. et al., 2005a] the authors achieved real-time performance for an isotropic flow-
driven regularization.

E(u) :=
∫
Ω

(∇ f · u + fθ)2 + λ
√
|∇u1|

2 + |∇u2| + ε2 dx

The image size is 160×120 pixel. The obtained flow fields are dense with a computational
speed of 12 frames per second.

1.4 Time-frequency signal analysis

1.4.1 Uncertainty principles for the continuous wavelet transform
D 1. A function ψ ∈ L2(R), which fulfills the admissibility condition

0 < cψ := 2π
∫
R

|ψ̂(ω)|2

|ω|
dω < ∞
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is called a wavelet . The wavelet transform Lψ[ f ] of a function f ∈ L2(R) associated with a
wavelet ψ is given by

Lψ[ f ](a, b) :=
1
√cψ
|a|−1/2

∫
R

f (t)ψ
(
t − b

a

)
dt, a ∈ R \ {0}, b ∈ R .

T 1.4. The Fourier Transform

f̂ (ω) = (2π)−
1
2

∫
R

f (x)e−iωx dx

for any f ∈ L1(R) exists as an ordinary Lebesgue integral with the following properties

1. ‖ f̂ ‖∞ ≤ ‖ f ‖1(2π)−
1
2 ,

2. f̂ ∈ C(R),

3. ‖ f |_2 = lim|ω| → ∞ f̂ (ω) = 0,

4. F ( f ∗ g) =
√

2π f̂ ĝ,

5. f̂ = 0⇔ f = 0 .

Proof. [Prassad, L. and Iyengar, S.S., 1997, Theorem 4.18, page 97] �

The Fourier transform ψ̂ is continuous by the theorem 1.4. From the admissibility condition
in the wavelet definition it follows, that ψ̂(0) = 0, otherwise there will be a contradiction. This
means, that a wavelet is zero mean, because

0 = ψ̂(0) = (2π)−1/2
∫
R

ψ(t) dt.

In certain applications in physics, signal and image processing there is a need of informa-
tion about the frequency distribution of a function over time. For a one dimensional signal f
we would like to associate a function D[ f ](t, ω), which shows the frequency ω at time t of the
signal f . For multidimensional signals f the distribution D[f](t, ω) describes the wavenumber
vector ω at time t. The set of all pairs {(t, ω) | t, ω ∈ R} is called the phase space and D is
called the phase space representation of f . Sometimes, for one dimensional signals the phase
space is referred to as the time-frequency plane.

D 2. Let g ∈ L2(R). The quantities∫
R

(t − t0) |g(t)|2 dt

and ∫
R

(ω − ω0) |ĝ(ω)|2 dt

are called the duration and the bandwidth of the signal g(t).
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T 1.5. (Uncertainty principle) Let g ∈ L2(R), ‖g‖L2(R) = 1. Then∫
R

(t − t0)2 |g(t)|2 dt
∫
R

(ω − ω0)2 |ĝ(ω)|2 dω ≥
1
4
.

Proof. [Neumann, 1968] �

D 3. Let g ∈ L2(R), ‖g‖L2(R) = 1 of duration t0 and bandwidth ω0. Then we say, that g
is localized around the point (t0, ω0) with the uncertainty

µ(g) :=
∫
R

(t − t0)2 |g(t)|2 dt
∫
R

(ω − ω0)2 |ĝ(ω)|2 dω.

The motivation for the uncertainty relation and localization comes from quantum mechan-
ics. The interpretation of the uncertainty principle in signal processing is, that a signal can
not be localized arbitrarily well in time and frequency. Some interesting remarks about the
interpretation of the uncertainty principle can be found in [Cohen, 1989, pages 970–971]. The
relation between operators in quantum mechanics and signal processing is listed in [Cohen,
1989, table 4, page 970].

Linear time-invariant techniques and the short time Fourier transform

The Fourier transform yields no localization in time. Usually, time invariant techniques for
signal analysis like the Fourier transform change differential equations into algebraic equa-
tions. Then the linear algebra methods are used to solve the equations. The eigenfunctions of
the linear time-invariant differential operators are of the form

c e−i ωt, c ∈ R .

The next step in signal and image analysis is investigation of signals with frequency con-
tent, which vary with time. As the eigenfunctions e−i ωt characterize only the frequency ω and
not the time t or equivalently, the Fourier transform yields no localization in time, we need
another analysis tool to study the phase space representation D[ f ] of a signal f . Historically,
the short time Fourier transform was first introduced to investigate the behavior of a signal in
the phase space. The short time Fourier transform is defined by

Fψ[ f ](p, q) =
1
√

2π

∫
R

f (x) e−i qx h(x − p) dx,

where h is a windowing function.

The wavelet transform

The magnitude squared short time Fourier transform is called the spectrogram. The spec-
trogram often represents serious difficulties. If the analysis window h is made small enough
to capture rapid changes in the signal, it becomes impossible to resolve signal components
that are close in frequency within the analysis frequency duration. An alternative approach
with variable resolution in the phase space is the wavelet transform. Let ψ be a wavelet with
‖ψ‖L2(R) = 1 and ∫

R

t |ψ| dt = 0.
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We introduce the central frequency ω+ of the wavelet by

ω+ :=

∞∫
0

ω | ˆψ(ω)| dω.

The dilated and shifted version

ψab := a−1/2ψ

(
t − b

a

)
of a wavelet ψ is a localization around

tab
0 =

1
a

∫
R

t (ψ
(
t − b

a

)
)2 dt

ωab
0 = a

∞∫
0

ω |ψ̂(aω)|2 dω

With (a, b) ∈ R2 a , 0 we can interpret

Lψ[ f ](a, b) = D[ f ]
(
b,
ω0t
a

)
as a phase space localization of f.
The inversion formula for the wavelet transform is given by the following lemma.

L 1.6. The adjoint operator

L∗ψ : L2(R) → L2(R)

g 7→ c−1/2
ψ

∫
R2

|a|−1/2ψ

(
t − b

a

)
g(a, b)

dadb
a2

gives the inversion of the wavelet transform onto its range.

Proof. [Alfred Karl Louis et al., 1994, page 22, theorem 1.19] �

Remark: The function with the minimal uncertainty, centered around (t0, ω0) is

gt0ω0(t) = π
−1/4 e−iω0t e−(t−t0)2/2

and
µ(gt0ω0) = 1/4 .

If a wavelet has a maximum in ω0, then Lψ[ f ](a, b) and F[Lψ f ](a, ω) are determined by
the contribution of the frequencies around ω0/a to the function f .

The information about f is contained in D[ f ](t, ω). It is possible to reconstruct f from its
phase space representation∫

R2

D f (s, ω) fsω(t)dsdω = ω0

∫
R2

Lψ f (a, b)a−1/2ψ

(
t − b

a

)
dadb

a2 .

In the following, we introduce the notion of scale for the wavelet transform.
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D 4. The scale a is the inverse frequency with respect to a reference frequency ω0.

a :=
ω0

ω

Here the ω0 is the central frequency of the wavelet.
Forω , 0 the phase space can be transformed into a time scale plane by using the definition

for scale. The extension of wavelet transforms to time-scale energy distributions is discussed
in [Rioul, Olivier and Flandrin, Patrick, 1992]. At the intersection of the time -frequency
and time-scale distributions is the Wigner-Ville transform. It is known also as the Cohen’s
class or the quadratic class of transforms. The Wigner-Ville transform is a classical tool for
time-frequency signal analysis.

Cohen’s class of transforms

The Cohen’s class of transforms or the quadratic class of time-frequency transforms is defined
with respect to a kernel Φ(θ, τ). By varying the kernel, we can obtain different time-frequency
transforms of the quadratic class such as Wigner-Ville, Richczek, Page and Choi-Williams
transform. The kernels for some transforms are listed in [Cohen, 1989, table 1, page 952].

D 5. For a signal f the Cohen’s class of transforms C[ f ](t, ω;Φ) is defined by

C[ f ](t, ω;Φ) :=
1

2π

∫
R3

ei(θt−τω+θu)Φ(θ, τ) f (u + τ/2) f ∗(u − τ/2)dudτdθ ,

where Φ(θ, τ) is the kernel of the transform.

The Wigner-Ville transform W[ f ] can be obtained from the last definition by setting the
kernel Φ(θ, τ) := 1.

W[ f ](t, ω) :=
1
√

2π

∫
R

f (t + τ/2) f ∗(t − τ/2)e−i ωτ dτ

The quadratic class can be interpreted as the Fourier transform of the signal’s autocorrela-
tion function with respect to the delay variable. This interpretation is suitable for the analysis
and design of reduced inference transforms of the Cohen’s class. Usually, the Wigner-Ville
transform of a signal contains phantom answers in regions between two real peaks. The re-
duced inference transforms suppress to some extent the phantom answers and localizes better
the real peaks. To sketch out the idea of reduced inference time-frequency transforms we
need the definition of the autocorrelation and ambiguity function, because the suppression of
interferences is fulfilled in the ambiguity domain.

The instantaneous autocorrelation R[ f ](t, τ) of a complex signal f is defined as

R[ f ](t, τ) := f (t + τ/2) f ∗(t − τ/2) .

In terms of the autocorrelation function R, the Wigner-Ville transform W[ f ](t, ω) can be
expressed as the Fourier transform of R with respect to the variable τ.

W[ f ](t, ω) := F [ f (t + τ/2) f ∗(t − τ/2)] = F [R[ f ](t, τ)]

The symmetrical ambiguity function A[ f ](θ, τ) is introduced as the inverse Fourier trans-
form of the instantaneous autocorrelation R(t, τ) with respect to the time variable t.

A[ f ](θ, τ) := F −1[ f (t + τ/2) f ∗(t − τ/2)] = F −1[R(t, τ)]
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In the ambiguity domain, the contributions to the phantom answers come from regions far
away from the origin. To suppress these interferences, [Debnath, 2001, pages 381–418] pro-
poses to convolve the ambiguity function by a two dimensional binomial or Gaussian kernel,
centered at the origin. [R. Hamila et al., 1997, 1999] reveal a relation between the ambiguity
function and the energy operator, cf. chapter 4.

Uncertainty principles for the continuous wavelet transform

In the previous sections we discussed some aspects of the Heisenberg uncertainty principle in
time-frequency and time-scale signal analysis. As a consequence it follows, that a nonzero
signal cannot be arbitrarily well localized simultaneously in time and frequency domain or in
time and scale domain as well. Our aim of wavelet decomposition is optic flow and motion
estimation. This means, it would be desirable to use wavelets, which minimize the uncertainty
relation. Therefore, when working with wavelet decomposed image data, the question of
optimally localized wavelets arise.

The minimizing function of an affine uncertainty principle in one and two dimensions was
stated in [Dahlke, S. and Maass, P., 1995]. As a main result of the analysis therein, it was
found, that for the wavelet transform the equivalent of the Gaussian function in the windowed
Fourier transform is the Mexican hat function. We give the following statement for the wavelet
choice with respect to minimization of the uncertainty relation.

S 1.7. When there is no a priori information about the signal, it can be decomposed
by using the continuous wavelet transform with the Mexican hat wavelet, because in two di-
mensions it is optimal with respect to minimization of the uncertainty principle, [Dahlke, S.
and Maass, P., 1995].

Further uncertainty inequalities of Heisenberg type are stated in [Singer, 1999] and [Wilczok,
2000].

On the existence of optimally localized wavelets

The optimal localization properties of wavelets can be formulated in terms of the reproducing
kernel of the wavelet analysis. For example, the Heisenberg uncertainty principle means,
that there is no wavelet such that the associated reproducing kernel is compactly supported.
In [Holschneider and Teschke, 2005] the authors defined optimality criteria and proved the
existence of optimally localized reproducing kernel. The cost functional to be minimized is
weak lower semi-continuous and possesses a minimum over any weak * compact set. Since
the problem to solve is nonlinear and there is no closed form analytical solution, the authors
provided a numerical strategy to compute a critical point of the functional. If the algorithm is
initialized with a function, which is not far away from the expected solution, the method yields
at least a critical point. Under additional assumptions on the solution and on the functional
itself, the critical point is a global minimizer.

1.5 Conclusion
The goal of this chapter was to introduce the common methods for optic flow computation
and regularization by parabolic PDE’s, which respect the discontinuity of the solution. We
sketched out the construction of the discontinuity-preserving regularization term and showed
the existence and uniqueness of the solution in L2(Ω) and BV(Ω). Real-time discontinuity-
preserving computation is possible.
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The smoothness assumption models in optic flow and motion estimation with discontinuity
preservation lead to parabolic PDEs.

Parabolic PDEs can be used to generate a scale-space for an image sequence. According
to the scale-space axioms of [Alvarez, L. et al., 1993], the scale-space can be generated only
by parabolic PDEs.

The Mexican hat wavelet yields in two dimensions the best localization in the phase space.
If there is no a priori knowledge about the image data, the data can be decomposed by the
Mexican hat wavelet.

At the end we mention two open questions. Are there other more useful rotation invariant
convex regularizers? How can we prove the existence of solutions for the curvature-preserving
PDE (1.15)?



Chapter 2

Motivation: Scale-spaces for motion
estimation

There are some major limitations of optical flow analysis which can be overcome by processing
a scale-space stack of the given image sequence.

One of this limitations is, that only small displacements can be estimated by local differ-
ential techniques, otherwise temporal aliasing can occur. The conditions for temporal aliasing
appearance are discussed in section 5.1, page 67.

Another limitation is, that the standard coarse-to-fine strategy does not work for many
types of complex motion. At points of occlusion, transparent motion, disappearing or arising
objects it doesn’t make much sense to warp the image by the estimated flow field because the
flow field itself is inaccurate or can not be estimated at those points.

An open issue is the optimal degree of smoothing for the local structure tensor. Some
other orientation estimation operators like the energy operator are defined only for a narrow
band signals and have some nice properties with respect to phase invariance compared to the
structure tensor. The scale-space decomposition of an image sequence allows us to use the
energy operator instead of the simple local structure tensor.

An intermediate step in the spatio-temporal differential based optic flow and motion esti-
mation is the computation of a tensor field for the entire image sequence. Since this tensor
field is calculated from the partial derivatives of the image data it contains noise. By a proper
denoising of the tensor field we can improve the accuracy of the estimated flow field. The
denoising can be fulfilled on the manifold SO(n) of the special orthogonal group. If we use
some kind of nonlinear diffusion to denoise the tensor field, this can be viewed as a scale-space
of the feature extracted from the image data. By generating the scale-space on the Riemannian
manifold SO(n) we introduce an additional constraint for the scale space computation and re-
spect better the properties of the tensor field by using the natural Riemann metrics. Another
manifold, which respects the properties of the linear model for motion estimation by local dif-
ferential techniques is the manifold of matrices with given set of eigenvalues. The scale space,
restricted on this manifold can be generated by the isospectral flow and it represents a trade-off
between accuracy and computational complexity.

The scale-space analysis of the image data offers a possible method for detection of tempo-
ral aliasing. The main reason for temporal aliasing occurrence is leakage of high frequencies
into the low frequency part of the Fourier spectrum of the spatio-temporal image data. In the
scale-space stack there are only narrow band images. By estimating the optic flow in parallel
we can search for inconsistencies in the flow field across the scales. In this manner we can
detect regions of the image sequence, where temporal aliasing occurs.
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2.1 Related Work
Here are some important developments in motion estimation in the scale-space and motion
estimation with wavelet-based techniques from mathematical and image processing point of
view.

• [Simoncelli, 1993] introduced a coarse-to-fine strategy with warping techniques

• [Martin Lefébure and Laurent D. Cohen, 2001]
Theoretical results on warping with applications to

– motion estimation

– image registration

– rigidity and non rigid deformations

• [Bernard, 2001]
Discrete wavelet analysis for optic flow computation

• [Demonceaux and Kachi-Akkouche, 2004]
Motion detection using wavelet analysis and robust techniques

• [Mujica et al., 2000]
Continuous wavelet transform for motion parameter estimation

The coarse-to-fine strategy is well described in [Simoncelli, 1993, pages 60–65]. The
technique is inspired by a biological visual system, where the sensors can track a given object
in the imagery scene. By the tracking, the object velocity decreases or vanishes completely.
This mechanism can be used only in an interactive setting. For already acquired sequences we
can warp the image in a direction opposite to the motion. The motion field for the warping
can be computed at a coarser scale. This step is called motion compensation . If the motion
compensation is done by the velocity vector with the biggest magnitude, then this simple
correction step is called linear motion compensation or motion compensation without warping
.

The coarse-to-fine strategy suffers from a serious drawback. If the coarse-scale estimates
are missing or incorrect we can neither warp the image nor correct the errors. This situation
can occur at points of complex motion such as occlusion, transparency, appearing or vanishing
objects.

[Bernard, 2001] developed a more elaborated coarse-to-fine strategy for motion estimation
based on compactly supported wavelets. In the following there is a brief overview of the
proposed method, which is inspired by the concept of the weak derivatives and the distribution
theory.

Let Ω ⊂ R2,T ∈ R. Given f ∈ L2(Ω, [0,T ]) we have to estimate the velocity v ∈ C2.
Let {ψk}0<k<K be a family of complex mother wavelets with compact support.

ψk
u,s(x) :=

1
s
ψk

( x1 − u1

s
,

x2 − u2

s

)
Assumption:

v(x, t) = v(u, t) + ε | supp ψk
u,s

where ε is an error term .

∇ f · v = −
∂ f
∂t

optical flow equation
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〈
f ,
∂ψk

u,s

∂x1

〉
v1 +

〈
f ,
∂ψk

u,s

∂x2

〉
v2 =

∂

∂t
〈 f , ψk

u,s〉 + εs(u, t) ∀k = 0..K〈
f , ∂ψ

k
u,s

∂xi

〉
are the wavelet coefficients of f in a basis, consisting of derivatives.

[Bernard, 2001] proved, that if v ∈ C2 and if f is Lipschitz at u, then εs → 0 with
s→ 0,∀u, t.

To overcome problems with temporal aliasing, the assumption is made, that the displace-
ment between two consecutive frames is small compared to the wavelet support.

Discrete differential quotient

∂

∂t
〈 f , ψ〉 =

1
∆t
〈 fp+1 − fp, ψ〉 .〈

fp + fp+1

2
,
∂ψk

u,s

∂x1

〉
v1 +

〈
fp + fp+1

2
,
∂ψk

u,s

∂x2

〉
v2 =

∂

∂t
〈 f , ψk

u,s〉 ∀k

For the estimate of the velocity vu,s we obtain the K by 2 system

Wu,svu,s = Du,s . (2.1)

Least squares solution of (2.1) yields the estimated optic flow field. Eigenvalue analysis of

Real(W∗
u,sWu,s)

is also performed.
Five separable analytic wavelets calculated with Daubechies conjugate mirror filters are

used.
The method of [Bernard, 2001] is a multi-scale approach with motion compensation with-

out warping between the different scales.
[Demonceaux and Kachi-Akkouche, 2004] extended this technique to an algorithm with

warping and robust M-estimator.
[Mujica et al., 2000] proposed a frame-to-frame tracking technique. The motion estimation

takes place in the Fourier domain. The algorithm works as described below.
A linear motion defines a velocity plane

(kT ω) · (v 1)T = 0 .

Let ψ be a mother wavelet used to derive the wavelet basis by a set of parameters.
Transformation of the wavelet basis to match the motion characteristics of the tracked

object.
Transformations: spatio-temporal translation T b, τ

scaling D a
speed adaptation Λ c
rotation R θ

We can make a suitable choice of the parameters p := (b, τ, a, c, θ) to have a norm preserv-
ing map

ψ 7→ DaΛcRθT b,τ ψ =: ψp.

The continuous wavelet transform of input image f is defined by

Wp f :=
1
√

c
〈ψp, f 〉 =

∫
R3

ψp(x, t) f (x, t) dx dt .
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If c = 1 then

‖ f ‖2 = ‖F ( f )‖2 =
∫
R5

Wp f dp .

Energy densities which can be used to derive local estimates of the motion parameters:

E1
a0,τ0

(c, θ) : speed orientation energy density
E2

a0,c0,θ0,τ0
(b) : spatial energy density

E3
c0,θ0,τ0

(a) : scale energy density

For instance E1
a0,τ0

(c, θ) :=
∫
B

| Wp f |2 db .

Minimization of the energies is performed to update the state vector L(ti) := (vti , xti , ati).
The wavelets can be seen as filters controlled by the motion parameters.
Separable Morlet wavelets were used: ψ(k, ω) = K(k)Ω(ω) .

2.2 Scale-Space Analysis with 2D Rotationally Invariant Wavelets

The Continuous Wavelet Transform

Definition: A wavelet is a function ψ ∈ L2(R), centered in the neighborhood of 0 with

∫
R

ψ(t) dt = 0

and
‖ψ‖L2 = 1 .

The continuous wavelet transform is defined by

ψu,s(t) :=
1
√

s
ψ

( t − u
s

)

W f (u, s) := 〈 f , ψu,s〉 :=
∫
R

f (t)
1
√

s
ψ∗

( t − u
s

)
dt .

The continuous wavelet transform offers us optimal spatial smoothing and a continuous
scale space representation.

Rotationally Invariant Wavelets in the discrete case

A classical decomposition scheme, with separable 2D Wavelets is given by [Mallat, 1999] or
[Heijmans and Goutsias, 2000]. The wavelet transform with separable wavelets is direction
dependent.
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Figure 2.1: Separable 2D wavelets, classical decomposition scheme.

We can illustrate the direction dependence by decomposing the picture above by the sepa-
rable wavelet transform and compare the results for the coefficient d1 at different scales.

Figure 2.2: Direction dependence in the co-set d1 at wavelet scales 4, 5, 6 and 7. The horizontal
direction is preferred

If we pick up the coefficients d2 for this scheme
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we obtain results, which show high pixel values only at vertical edges.

Figure 2.3: Direction dependence in the co-set d2 at wavelet scales 4, 5, 6 and 7. The vertical
direction is preferred



2 Motivation: Scale-spaces for motion estimation 33

Figure 2.4: Fourier transform of separable 2D Wavelets

Separable wavelets lead to preferred directions.
Motion estimation needs isotropic image decomposition. Otherwise there will be a bias in

the computed motion field because of the anisotropic wavelet transform.
There are different ways to obtain isotropic or nearly isotropic wavelets for the wavelet

transform.

• new non-separable almost symmetric wavelets
[Belogay and Wang, 1999] describe an algorithm for construction of arbitrarily smooth
wavelets in R2. Some of the computed wavelets are rather symmetric, see figure 2.5.

• optimization of separable wavelets
[Lemaur, 2003]: optimality criteria and optimization algorithms

• by generalization of the 1D case: rotation around the z-axis
Pet-hat wavelet, Wheel wavelet, 2D Mexican-hat wavelet

[Belogay and Wang, 1999] computed a smooth scaling function ∈ C7.
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Figure 2.5: [Belogay and Wang, 1999]: Scaling function ∈ C7

The scaling function shows better rotation invariance properties than the separable 2D
wavelet transform.

[Lemaur, 2003] optimizes separable wavelets with respect to isotropy. This is a sketch of
the idea in the thesis of [Lemaur, 2003].

We are only interested in separable functions of the form

F(x, y) = Fx(x)Fy(y) with Fx = Fy ,

otherwise the function F cannot be isotropic. The function should represent a FIR-filter.

T 2.1. All solutions of our problem are of the form Fx(x) := ae−
x2
σ .

We are searching for a filter as close as possible to a Gaussian, where the closeness is the
usual scalar product in L2(R)(Rn).

closeness measure :
〈Fx,Gx〉

‖Fx‖ · ‖Gx‖

The optimization is fulfilled by genetic algorithms, random walk algorithms or hill climb-
ing.

2.2.1 Non separable wavelet bases
When we deal with optic flow and motion estimation from image sequences, we should en-
counter the rotation invariance of the scale decomposition method. Isotropic decomposition
can be achieved by the non separable discrete wavelet transform or by the continuous wavelet
transform, both with rotationally invariant wavelets.
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T 2.2. Let {V}m∈Z be a multi resolution analysis of Ł2(R2) with dilation matrix A. Then
there exist |det A|-1 wavelets, which build an orthonormal basis of the orthogonal compliment
of V0 in V1.

Proof. [Meyer, 1992] �

Image analysis requires isotropy and small number of wavelets. It will be good, if |det A|=2.
In this case for the scaling function ψ and the mother wavelet function ψ the following relation
holds.

ψ(x) = |detA|
1
2

∑
k∈Z2

hkφ(Ax − k)

φ(x) = |detA|
1
2

∑
k∈Z2

gkφ(Ax − k)

If we choose

gk := (−1)ε(k)hz−k, where ε(k) :=
{

0, f or k ∈ AZ2

1, f or k < AZ2

it can be shown, that this will lead to an orthogonal function

ψ(x) = |detA|
1
2

∑
k

gkφ(Ax − k),

for which

span{ψ(· − k)}k∈Z2 = W0 .

For |det A|=2 there are only 3 possible grid patterns in R2.

• Row grid AZ2 = {(z1, z2) ∈ Z2 | z2 is even}

• Column grid AZ2 = {(z1, z2) ∈ Z2 | z1 is even}

• Quincunx AZ2 = {(z1, z2) ∈ Z2 | z1 + z2 is even}

By mirroring along the diagonal of the grid one can prove that the row and column grids
are equivalent.

Simple not equivalent dilation matrices with |det A|=2 are

R :=
(

1 −1
1 1

)
S :=

(
1 1
1 −1

)
.

The eigenvalues of R are different from the eigenvalues of S , consequently R is not equiv-
alent to S .

S is equivalent to
(

1 1
1 −1

)
and leads to separable wavelets.

Thus R :=
(

1 −1
1 1

)
is interesting as dilation matrix. R causes a rotation by an angle of

−π4 and a dilation by a factor of
√

2.

Norm equivalence between discrete Besov norms and weighted sequences of discrete wavelet
coefficients in the non separable case is established in [Lindemann, 2005].
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Isotropic Wavelets

After extensive study of different approaches for nearly isotropic wavelet transforms we de-
cided to use the continuous wavelet transform with rotationally symmetric wavelets. To ensure
optimal localization in space and frequency domain, the two dimensional Mexican hat wavelet
can be used. Depending on the desired bandpass form alternatives can be the two dimensional
Pethat-Wavelet or the two dimensional Wheel-Wavelet. The Fourier transforms of the chosen
wavelets are depicted on figures 2.6 and 2.7.

Figure 2.6: Mexican Hat-Wavelet, ψ̂(k) := −|k|2e−
1
2 |Ak|2

The Mexican hat wavelet can be defined by its transfer function

ψ̂(k) := −|k|2e−
1
2 |Ak|2 .

When there is no a priori knowledge about the images, the Mexican hat wavelet can be used to
decompose the image data. [Dahlke, S. and Maass, P., 1995] show that it is optimally localized
in space and frequency.

The Fourier transform of the pethat wavelet is given by

ψ̂(k) := − cos2
(
π

2
log2

(
|k|
√

2

))
.

When a narrow bandpass with sharp cut-off border is needed, one can use the pethat wavelet.
The wheel wavelet has a smooth transition towards the high frequency and a sharp cut off

border towards the low frequency. The wheel wavelet is defined by its transfer function

ψ̂(k) := − cos2 π

2
log2(|k|)
log2(σ)

.
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Figure 2.7: Pethat-Wavelet and Wheel-Wavelet
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2.3 Conclusion
To our best knowledge there is no method for detection of temporal aliasing in the literature.
We studied approaches for optic flow and motion estimation in the scale space and particularly
wavelet-based optic flow computation. We decided to make use of the continuous wavelet
transform with rotationally invariant wavelets for motion estimation in the scale space in our
experiments in chapters 4 and 5. The rotation symmetry of the wavelets is important for
direction independent optic flow computation.

The discrete wavelet transform is suitable for compression of multidimensional signal and
image data. For analysis purposes, the continuous wavelet transform is a better tool than the
discrete one, because it generates a continuous scale representation of the image sequence. It
is easy to construct a fully isotropic multidimensional wavelet just by rotation of the a one
dimensional one. Additionally, we have the freedom to choose the cut-off behavior of the
wavelet filter according to the desirable properties for the image processing task. In the discrete
case of the multidimensional wavelet transform based on tensor products there is a trade-off
between the frequency response of the wavelet and the isotropy of the scaling function, [Feilner
et al., 2005]. The anisotropy is available even for the case of the quincunx decomposition grid,
which ensures more isotropic scores than the classical dyadic scheme. The cut-off is coupled
with the rotation invariance of the scaling function, [Feilner et al., 2005, fig. 3, fig. 4].



Chapter 3

Tensor scale space on a Riemannian
manifold for complex motion analysis

The structure tensor reveals information about the orientation in image data. Optic flow can
be estimated by means of the structure tensor. Under the assumption of the gray value con-
servation, the apparent motion takes place in the direction of the eigenvector to the smallest
eigenvalue. This differential technique is widely used in practice and yields good results with
respect to accuracy. Also some weaker assumptions for the intensity conservation over time
can be made. In heat flux measurements it is physically funded to make the assumption, that
the gray level decays over time according to a diffusion process. This model is discussed in
[Garbe, 2001, pages 115–117]. The tensor method for optic flow estimation works well with
this kind of weakened assumptions for the intensities and has wide application in heat flux
measurement at the sea surface and water transport in plant leaves.

Because of the ill posedness of the optic flow problem for a single pixel, the tensor should
be smoothed out or alternatively some regularization techniques should be applied. Combined
local-global strategies are proposed in [Andrés Bruhn et al., 2002; Bruhn, A. et al., 2005b]. In
this chapter we will discuss local strategies for integration of the structure tensor.

Although the motion estimation problem is quite mature, maybe even one of the best inves-
tigated in image processing, the amount of smoothing for the structure tensor is still an open
issue. The smoothing region determines the scale, at which some feature is extracted from the
tensor. Too small smoothing radius won’t supply enough structure information, on the other
hand too large smoothing regions will smear out edges, corners and motion boundaries.

Hence it is desirable to integrate the tensor field in an adaptive manner along spatio-
temporal tubes representing the object trajectories.

We will investigate a method for adaptive integration of tensor fields with respect to motion
estimation. The smoothing is fulfilled by a suitable nonlinear diffusion strategy, which is then
applied on the manifold of matrices with given set of eigenvalues, cf. [Tschumperle, 2002].

3.1 Related work

As already discussed in 1.3.2 and [Tschumperle, 2002, 2005; Tschumperle, D. and Deriche, R.,
2005] there is a general smoothing on corners, when we use the nonlinear diffusion, based on
total variation flow. In order to circumvent this drawback, [Brox, Thomas et al., 2006] defines
a coherence dependent map, which stops the diffusion near corners. For optic flow estimation,
we propose the formalism of curvature preserving PDE’s for the tensor field, [Tschumperle, D.
and Deriche, R., 2005] to avoid over-smoothing on corners. This is just a result of the analysis

39
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in [Tschumperle, 2002, 2005; Tschumperle, D. and Deriche, R., 2005]. It is a direct approach
simply following the formalism for the heat flow equation, constrained on a curve. The adap-
tive, curvature dependent metrics drives the diffusion according to the desired behavior by
itself.

The next theoretical part of this chapter is to choose a proper integration scheme, which
constraints the diffusion flow on the manifold SO(3) of the orthogonal matrices. We represent
different flows and conduct experiments with the isospectral flow . In optic flow and motion es-
timation not only the computation of the flow field is important, but also the confidence of the
estimated flow. The most of the confidence measures rely on the eigenvalues The isospectral
flow leaves the eigenvalues of second order tensors untouched. This is an intrinsic property of
the flow, at least analytically. This means it preserves the confidence measure locally. That’s
why we decided to employ an integration scheme, based on the isospectral flow . Additionally
it should be mentioned, that the isospectral flow represents a good trade-off between perfor-
mance and computational costs, [Tschumperle, 2002, page 149].

The interested reader is encouraged to take a look in [Brox, Thomas et al., 2006] , where
a good overview of adaptive and nonlinear smoothing techniques for the structure tensor is
presented.

3.2 Tensor field regularization by diffusion
Diffusion tensor regularization can be used to general symmetric and semi-positive definite
matrices such as structure tensors or covariance matrices.

Let Ω ∈ Rn. T : Ω→ Pn×n, P: positive semi-definite matrices. Multi-valued regularization
process in variational, divergence and trace-based formulation.∫

Ω

φ(‖∇T‖) dx→ min!

∂Ti

∂t
= div

(
φ′‖∇Ti‖

‖∇Ti‖
∇Ti

)
, (i = 1, ..., n)

∂Ti

∂t
= trace(DHi), (i = 1, ..., n)

Direct approach

Direct approach for tensor field regularization Analogy with cromaticity denoising in color
images.

∂Ti

∂t
= trace(DHi) Hi : Hessian of Ti

D is the smoothing geometry, for instance

D :=
1
√∑

λi
, λi ∈ spec(∇Ti ⊗ ∇Ti).

The PDE intrinsically preserves the matrix symmetry. Application only on the upper right
triangular part of T . Numerical preservation of the semi-positive definiteness: reprojection
into the semi-positive cone after each PDE iteration.

Preservation of the semi-positive definiteness

T = U Γ UT , U ∈ SO(n), Γ := diag(λ1, ..., λn)
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Projection of T into the semi-positive cone.

P(T ) := U diag(λ̃1, ..., λ̃n) UT , λ̃i := λi, λi ≥ 0
λ̃i := 0, λi < 0

P 3.1. The projection P minimizes the distance between T and P(T ) in the sense of
the Frobenius norm.

Proof. Cf. [Tschumperle, 2002, Page 139]. �

Some PDE flows preserve the semi-positive definiteness, cf [Weickert, 1996]
There are some drawbacks of the direct approach.

• The reprojection requires a time consuming spectral decomposition of T .

• There isn’t any direct control on the spectral elements of T , which are the essential
features of interest. Orientation U and diffusivity Γ are the relevant data and decompose
the tensor information.

As a consequence of the direct approach we can mention, that the PDE regularizes the orien-
tations and the diffusivities in a coupled way. Orthogonal neigbour tensors swell instead of
aligning themselves. This leads to an eigenvalue swelling effect as a result of the regurarisa-
tion, which is not desirable. Orthogonal neigbour tensors converge to identity matrices and in
this way essential orientation information may be lost.

Figure 3.1: Positive definite flow in two dimensions: Orientation map, hue:=angle, satura-
tion:=anisotropy, luminance:=diffusivity.



42 3.2 Tensor field regularization by diffusion

Figure 3.2: Positive definite flow in 2 dimensions: Diffusivity map with an anisotropy=0.8.

Figure 3.3: Two dimensional orientation representation as a height map. The same height
represents the same orientation.
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Figure 3.4: Two dimensional orientation representation after an anisotropic integration of the
structure tensor for the column top of the Marble sequence. Left half: initial structure tensor
orientation, right half: after an anisotropic integration. Discontinuities are well preserved,
while the background noise is suppressed.

Figure 3.5: Two dimensional orientation representation after an anisotropic integration of the
structure tensor for the column border of the Marble sequence. Left: initial value for the
structure tensor orientation, right: after anisotropic integration.
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Figure 3.6: Two dimensional orientation representation after an anisotropic integration of the
structure tensor for the column border of the Marble sequence. Left: initial value for the
structure tensor orientation, right: after anisotropic integration.

Figure 3.7: Two dimensional orientation representation after an anisotropic integration of the
structure tensor for the bottom of the Marble sequence. Left: initial value for the structure
tensor orientation, right: after anisotropic integration. The structure of the bottom is well
preserved.
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Figure 3.8: Three dimensional orientation representation and the resulting diffusion tensors,
computed from the original tensor field. The duffusion tensors are represented in grey. The
orientation is color coded. Red: x-axis, green: y-axis, blue: z-axis.

Our application of interest is motion estimation by adaptive smoothing of the underlying
tensor field. Retrieving the trajectories of the objects by following the main directions of a
tensor field defined on Ω ⊂ R3 is important. Using direct regularization would loose some tra-
jectory directions, which is an undesired property. There are two other approaches to adaptive
integration of tensor fields. These are the spectral approach and the orthonormal preserving
flow.

Spectral approach

The spectral approach relies on direct processing on the spectral decomposition.

T = U Γ UT , U ∈ SO(n), Γ := diag(λ1, ..., λn)

For structure tensors of multichannel images, Γ and U measure the channel variations and their
corresponding directions.

The method consists of two constrained and coupled regularizations acting on Γ and U,
[Tschumperle, 2002].

For the smoothing of the tensor diffusivities there are several strategies. Tensor diffusivity
integration schemes can be described as follows.
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• Don’t change the eigenvalues! Leave them untouched!

• Each eigenvalue is processed separately.

• Vector-valued diffusion PDE’s for the vector (λi)i.

• A-priori spectral information inside the diffusion equation for specific applications.

Orthonormal preserving flow

The regularization of orthonormal vector sets can be derived from the unconstrained regular-
ization scheme by adding constraints for the orthogonal group SO(n). Minimization of

E(T k) :=
∫
Ω

α‖T k − T k
0‖ + ψ(λk

i ) dx, λk
i ∈ σ(Gk)

leads by computaion of the Euler-Lagrange equations to the system of PDE’s

T k = T k
0 |t=0 (k = 1...n)

∂T k

∂t
= α(T k

i − T k
0) + div

(∑ ∂ψ

∂λk
i

θk
i ⊗ θ

k
i∇T k

i

)
(k = 1...n).

This PDE system is decoupled and doesn’t preserve the orthonormal properties.
The regularization of orthonormal vector sets can be fulfilled by constrained minimization:∑

E(T k)→ min!

subject to the orthonormal constraint

T p · T q = δpq (Kronecker delta)

We introduce Lagrange multipliers λpq and perform unconstrained minimization of

E∗(T0, λ) := E(T′) +
∫
Ω

∑
λpq(Ip · Iq − δpq) dx.

This leads to the system of PDE’s for the tensor channels T k, cf [Tschumperle, 2002]

∂T k

∂t
= Lk +

∑
l

(Ll · T k)T l, (k = 1, ..., n)

where Lk is the unconstrained diffusion force, acting on T k.
Remarks:

1. The last PDE system is a set of n coupled vector PDE’s with the coupling term∑
l

Ll · T kT l.

2. For unit norm vector sets, the PDE velocity is orthogonal to the vector and tangent to
the unit sphere.

3. A possible application is the regularization of structure tensors or covariance matrices.
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4. Equivalent matrix PDE notation for 3x3 matrices with bases B := I, J,K could be

∂R
∂t
= −L + R LT R with R := (I | J | K)L := (LI | LJ | LK).

When perfoming the smoothing of the tensor orientations

T = U diag(λ1, ..., λn) UT

the important part is the preservation of the orthogonality of U during the diffusion flow. This
yields in matrix notation the PDE

∂U
∂t
= −L + ULT U (3.1)

L is the matrix, corresponding to an unconstrained Lagrangian, describing the regularization
process.

Some suitable examples for L, which represent different diffusion straegies are, [Tschumperle,
2005]

•

Li j := trace(DHi j)

•

Li j := trace(DHi j) +
2
π
∇T T

i j

π∫
0

Ji j
√

Dα

√
Dα dα,

where H denotes the Hessian and J denotes the Jacobian of the tensor T .

The local alignment method for the orthonormal preserving flow

When implementing a straightforward iterative solution for (3.1), one have to consider, that
the PDE velocity is orthogonal to the current vector in each iteration step. The iteration step
is a rotation of the vector, cf [Tschumperle, 2002]. Some of the eigenvectors of the tensor can
change sign due to numerical computations. This may lead to artifitial discontinuities, althogh
neigbouring vectors are well aligned. This fact requires an additional local alignment step in a
vicinity of the processed tensor.

An alternative solution is to represent the rotation corresponding to the evolution equation
by the rotation vector

ω := (I × LI) + (J × LJ) + (K × LK).

For given ω the rotation matrix Γ is computed by the Rodriguez’ formula. This ensures

Rt ∈ S O(3)⇒ Rt+dt ∈ S O(3)

.
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A suitable numerical scheme for the isospectral flow

The isospectral flow is an evolution flow that preserves the tensor diffusivities, while regulariz-
ing the orientations. Let there is a given manifold N of the matrices with a set of eigenvalues.
Then the isospectral flow PDE on N is given by

∂T
∂t
= [T, [T,−L +LT ]] .

A suitable integration scheme is

Tt+dt := At(x)T Tt(x) At(x) (3.2)
At(x) := e−dt[L(x)L,T ] . (3.3)

The advantage is the direct application of the iterative step on the matrix coefficients. There
is no need of the eigenvalue and eigenvector computation of the tensor field and no local
alignment step is required. In the next section we present results of motion estimation by
adaptive integration af the tensor field by the isospectral flow.

3.3 Numerical Experiments

The motion estimation was fulfilled by total least squares estimation of the velocity from the
tensor filed. We compare the results of an isotropically smoothed against adaptive integrated
tensor field. The nonlinear diffusion is constrained on the manifold of matrices with given
set of eigenvalues by using the isospectral flow. The integration was computed by matrix
exponentials according to the scheme 3.2.

Intermediate visualization of the tensor fields is used to study the effect of the nonlinear
diffusion flow on the tensor fields. The tensor fields can be visualized by ellipsoids and by
color encoding, where the colors may represent either orientation or shape or both. For tensor
field visualization, the reader is referred to [Christopher R. Johnson and Charles D. Hansen,
2004].
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Figure 3.9: Optimal average angular error measurement. Dependence of the error on the
smoothing amount of the structure tensor. Red: best result for the isotropic smoothing, green:
Average angular error against smoothing scale.

First we measured the performance of both techniques on a synthetic sequence without
noise, containing a moving sinus pattern with discontinuity. The diffusion time or the scale
parameter is represented on the x-axis, the three dimensional average angular error on the
y-axis. Both methods reach the same accuracy. The dependence of the error on the scale
parameter for the nonlinear diffusion is colored in green.
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Figure 3.10: Average angular error against smoothing amount of the structure tensor. Red:
best result for the isotropic smoothing, green: nonlinear regularization of the structure tensor
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Figure 3.11: Average angular error against smoothing amount of the structure tensor after ex-
tensive search and tuning for the diffusion parameters. The accuracy improvement is marginal.
Red: best result for the isotropic smoothing, green: nonlinear regularization of the structure
tensor.
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Figure 3.12: Average angular error against smoothing amount of the structure tensor for the
Marbled Block sequence. Red: best result for the isotropic smoothing, green: nonlinear regu-
larization of the structure tensor
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Figure 3.13: x-component of the estimated velocity from the Marbled Block sequence after
nonlinear tensor regularization as height map. The spikes show, that the noise is enhanced.

Figure 3.14: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.
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Figure 3.15: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.

Figure 3.16: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.
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Figure 3.17: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.

Figure 3.18: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.
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Figure 3.19: x-component of the estimated velocity from a segment of the the Marbled Block
sequence after nonlinear tensor regularization as height map. Left half: isotropic smoothing,
right half nonlinear smoothing. The spikes show, that the noise is enhanced.

3.4 Conclusion
The goal of this chapter was to study methods for tensor field integration by parabolic PDE’s,
which respect not only the discontinuity, but also the curvature in the image data. Currently
known techniques for motion estimation stop the over-smoothing on corners by a coherence
dependent function, which inhibits the diffusion on positions with high curvature. We dis-
cussed the issue of tensor field regularization for optic flow computation and motion estima-
tion.

A practical contribution is the accuracy measurement for motion estimation by adaptive
smoothed tensor fields. The adaptive smoothing relies on nonlinear anisotropic diffusion with
discontinuity and curvature preservation. We reached an accuracy gain under properly chosen
parameters for the diffusion filter.

Here are some open questions concerning the regularization of tensor valued images.

1. Fair comparison between different diffusion flows?

Maybe a fair comparison of different smoothing methods will be possible in an invariant
metrics, cf [Xavier Pennec and Nicholas Ayache, 1998; Xavier Pennec et al., 2006].

2. Spatial gradient of tensor fields?

There could be an improvement of the method, if the derivatives of the tensor field are
computed on the manifold and not in the flat Euclidean metrics as done in our computa-
tions.



3 Tensor scale space on a Riemannian manifold 57

3. φ-function formalism in Riemannian metrics? Discontinuity preserving regularization
was introduced in section 1.3.2. The idea was to replace the regularization term∫

Ω

‖∇u‖2 dx

by a discontinuity preserving term ∫
Ω

′Psi(‖∇u‖) dx

with suitable Ψ. Under regularity assumptions for Ψ we end up with

div
(
Ψ′(‖∇u‖)
‖∇u‖

∇u
)

for the regularization term. An interesting open question is, how can we adapt this
formalism to a Riemannian or an invariant metrics.





Chapter 4

Optic flow with the energy operator

The energy operator was developed in 1983 by Herbert M. Teager and Shushan M. Teager
and later by James F. Kaiser to express the energy of the source, which generates a simple
sinusoidal signal or signal f = f (t) of the form

f (t) = a(t) cosϕ(t)

with a(t) being the amplitude or envelope and φ(t) := w0(t) + Φ(t) being the phase . The fre-
quency w0 can be viewed as the carrier frequency and w := dϕ

dt is the instantaneous frequency.

4.1 Related work in the literature
The whole story of the energy operator in signal processing is described in the wonderful thesis
[Kvedalen, 2003, Pages 3–7]. We give a brief overview of the historical development of the
energy operator in signal and image processing below.

4.1.1 Signal processing literature
The energy operator was first applied for speech modeling in 1983 by Herbert M. Teager and
Shushan M. Teager. That’s why it is also known as the Teager energy operator. James F. Kaiser
presented in [Kaiser, 1990a] an algorithm to compute the energy of a discrete signal. James
F. Kaiser called this algorithm "Teager’s energy algorithm" although he derived the algorithm
alone. Because of this fact the energy operator is also called the Teager-Kaiser energy operator.
The extension to continuous signals was published in [Kaiser, 1990b].

Further applications of the energy operator to speech and signal processing and important
theoretical results were presented at the ICASSP 1993. Some of them are [Maragos, P. et al.,
1993], [Alan C. Bovik et al., 1993] and [Kaiser, 1993]. [Maragos, P. et al., 1993] was the first
paper where the energy operator was deeply investigated with respect to its AM-FM demod-
ulation properties. [Alan C. Bovik et al., 1993] stated theorems that give approximations on
AM-FM demodulation. Some researchers like [Larkin, 2005, Page 7] call the energy operator
the Teager-Kaiser-Maragos-Quatieri-Bovik operator, in order to honer all of the inventors of
this computationally efficient tool for signal analysis. From now on we will stick to the name
energy operator when we mean an operator

E( f ) := D( f )2 − f · D2( f ) (4.1)

of Teager-Kaiser-Maragos-Quatieri-Bovik type in multidimensional signal or image process-
ing for discrete or continuous signals. Here D denotes an abstract derivative or pseudo-
derivative operator.

59
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[Larkin, 1996] applied the energy operator to parameter estimation of bandpass filtered
AM signals.

Another theoretical work is [A. Bovik et al., 1997], where error bounds for approximations
of system responses to AM-FM signals are derived and particularly for the energy operator.
One application is the selection of optimal bandpass filters for preprocessing of discrete AM-
FM signals. The optimality is in the sense of the uncertainty principle.

[Michael Moore et al., 1997] adjusted the sensitivity of the energy operator in dependence
of the local mean of the signal. In this manner one can develop an adaptive energy operator in
dependence of the local average intensity of the signal.

[Santhanam, 2004] discusses demodulation of wide-band signals.
The interested reader is encouraged to take a look in [Kvedalen, 2003, Pages 3–7] for more

detailed list of papers about the development of the energy operator in the early eighties and
nineties of the past century.

4.1.2 Applications in image processing
In 1991 the Teager-Kaiser energy operator was generalized to two dimensions as an image
processing operator in [Mitra, S.K. et al., 1991]. Thus the energy operator is known in the
image processing community at the latest since 1991. A very good review of the 2-D extension
considerations is given in [Larkin, 2005, Section 3.2, page 8].

[Maragos, P. et al., 1992] extended the energy operator to arbitrary dimensions with appli-
cations to texture analysis and multi-spectral images.

[Maragos and Bovik, 1995] estimated the parameters of texture images with the 2D energy
operator. The texture was modeled as two dimensional AM-FM image with slowly varying
amplitude and frequency.

[Larkin, 2001, Pages 121–131] discusses the relationship between the energy operator, the
Riesz transform, Wigner-Ville transform and the spiral phase transform as tools for estimation
of instantaneous frequency . For orientation estimation [Larkin, 2001, Page 131] recommends
the energy operator and tensor methods.

[Felsberg and Granlund, 2004], [Felsberg and Jonsson, 2005] have proposed a 2-D energy
tensor , where the differential operator D in (4.1) is replaced by the structure tensor, [Jähne,
Bernd, 2005, Page 364] and the differential operator of second order D2 is replaced by the Hes-
sian. Therein the dual frames for a discrete implementation of the energy operator have been
computed too and some basic performance comparison with respect to orientation estimation
have been presented.

Ullrich Köthe developed in his thesis [Köthe, 2000] the idea of reusable software in image
and signal processing. [Felsberg and Köthe, 2005] proposed the gradient energy tensor based
on Gaussian derivatives. So one can reuse derivative filters based on Gaussians to compute the
energy operator.

The relationship and differences between the gradient energy tensor and the boundary ten-
sor , a well known corner and edge operator, have been investigated in [Köthe and Felsberg,
2005]. It have been shown, that both operators yield similar results for properly chosen scales,
however, the gradient energy operator is computationally more efficient. The gradient energy
operator is theoretically phase invariant , see page 61 or [Larkin, 2005, page 7], while the uni-
formity of the boundary tensor relies on the phase congruence over many frequencies, [Kovesi,
1999] on edges and corners of natural images.

[Larkin, 2005] used the demodulation properties of the energy operator to estimate ori-
entation and phase in fringe patterns. A new phase invariant non-local energy operator for
real and complex signals is proposed in the paper. Besides the very good introduction to the
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generalization of the energy operator to two dimensions there is also a discussion about the
extension of the analytic signal to images and the different approaches to the extension.

4.2 Definition and properties of the energy operator
A good systematic and self contained introduction to the energy operator for one dimensional
signals is given in [Kvedalen, 2003, pages 15–30].

4.2.1 Definition
For continuous signals f = f (x) the energy operator E is defined as

E( f ) :=
(
d f
dx

)2

− f ·
d2

dx2 f .

For a simple sinusoidal signal

f (x) := a · cos(ωx)

the output of the energy operator is

E( f ) = (−aω sin(ωx))2 − a cos(ωx)(−ω2a cos(ωx)) = a2ω2(sin2(ωx) + cos2(ωx)) = a2ω2 .

The main property of the energy operator is, that the output is proportional to the square
of the amplitude and the square of the frequency of an oscillating signal. As stated in [Larkin,
2005, page 7], the energy operator generates two oscillatory terms in phase quadrature. The
oscillation exactly cancels out, resulting in a constant energy ω2a2. This is a phase invariant
estimation or phase invariant demodulation.

Energies of well known signals with plots for comparison between the input signal and the
response are presented in [Kvedalen, 2003, pages 18-22].

Signal type Signal f (x) Response E[ f ](x)

sine a · cos(ωx) a2ω2

exp e−αx 0
AM a(x) · cos(ωcx) a2(x)ω2

c + cos2(ωcx)E(a(x))
exp sine e−αxa · cos(ωx) e−2αxω2a2

FM a · cosϕ(x) a2(ϕ′(x) + 1
2ϕ
′′(x) sin 2ϕ(x))

AM-FM a(x) · cosϕ(x) (a(x)ϕ(x))2 + 1
2axϕ′′(x) sin 2ϕ(x) + cos2 ϕ(x) · E(a(x))

4.2.2 Some analytic properties
The energy operator was designed to track the energy of a source generating given signal. As
the energy is always non negative, the question arises weather the output of the energy operator
is non negative and if not, for which signal this happens.
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A counterexample by [Kvedalen, 2003, page 28 and figure 3.8] shows, that the output of
the energy operator can become negative for certain signals. Hence the conditions for non-
negativity should be investigated more carefully. This have been already done in [Maragos, P.
et al., 1993, pages 1546–1547], [Bovik, Alan C. and Maragos, Petros, 1994] and [R. Hamila
et al., 1999, page 261]. As a main result of simple analysis it comes out, that for real signals,
the output of the energy operator is non negative, if any of the following conditions hold

• f (x) = 0, ∀x ∈ R

• f ′′(x) = 0, ∀x ∈ R

• f (x) < 0 and f ′′(x) > 0

• f (x) > 0 and f ′′(x) < 0 .

Another statement for the no-negativity of the energy operator follows from the main result
of [R. Hamila et al., 1999]. The output of the energy operator of a signal is proportional to
the second order conditional moment in frequency of the Wigner-Ville transform, see also
section 1.4 Time-frequency signal analysis. Sometimes it happens, that the second conditional
moment of the Wigner-Ville transform is negative. As the proportionality factor is π it follows,
that the output of the energy operator for such signal is negative too.

Some interesting remarks and open questions on the relation between the positivity of
the energy operator and the negative convexity of the logarithm of the estimated signal are
published in [Larkin, 2005, page 10].

4.3 Implementation for optic flow estimation
Historically, the discrete definition of the energy operator in signal and image processing was
published before its continuous counterpart. Thus the well known Teager-Kaiser algorithm,
[Kaiser, 1990a], computes the output from three adjacent samples.

In one dimension there are experiments reported in [Larkin, 1996, 2001], where the energy
operator performed well with a huge rate of undersampling up to a factor of three. This is
because of the compensation of aliasing in the gradient squared term alone and the signal
times the Hessian term alone. Both terms alone are band enlarging operators, see also 5.1,
[Bigun, 2006, pages 114-117] or [Köthe, 2003, pages 26–27].

According to [Larkin, 2005, page 8109] the discretization of the gradient form of the 2D
energy operator with small kernels and autoconvolution for the Hessian leads to an anisotropic
response. Therein larger kernels are recommended. We choose the 5x5x5 optimized Sobel
filter by [Scharr, H. et al., 1997; Scharr, 2000; Scharr, H. and Weickert, J., 2000]. It is also
possible to implement the Hessian by a filter mask of the same size as the gradient mask,
anyway the both filters should be adjusted to each other, otherwise the phase invariance will
no longer apply [Larkin, 2005, page 8110].

4.4 Numerical experiments

4.4.1 Error measurements
We implemented the energy operator in three dimensions for optic flow estimation based on
three dimensional derivative filters in the spatio-temporal domain in a straightforward manner
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using (4.1) by replacing D2 with the Hessian of the sequence. We used the modified Sobel
filters as described in [Scharr, H. et al., 1997] and [Scharr, 2000, page 155]. For comparison
between different implementations, the Hessian of the spatio-temporal image data was com-
puted either by twice applying first order derivative filters, [Jähne, B. et al., 2007, page 100]
or second order derivative masks.

In our experiments we computed the energy operator on original resolution for every
wavelet scale. We conducted measurements of the average angular error for a synthetic se-
quence without noise, for synthetic sequences with noise and a real world test sequence ac-
quired by a camera. The local total least squares approach was used for the 3D structure tensor
and for the 3D energy operator.

Since we estimated image sequences with ground truth, we compared the best results of a
total least squares local approach for the energy operator and the structure tensor. First the optic
flow estimation was fulfilled with the energy operator in the scale-space and we determined
by brute force the optimal integration size and wavelet scale for the best average angular error.
Then we performed motion estimation at the optimal wavelet scale by the well known structure
tensor and measured the best average angular error in dependence on the integration scale for
the tensor field. In this way we compared the best possible results for the both operators at
given wavelet scale, because our task was to investigate, whether the energy operator is better
or not. The results are listed in the table below.

Synthetic sequence: sinus pattern with discontinuity

Type of the derivative filter Optimal integration scale for the tensor Average angular error

structure tensor 0.24 4.589143

energy operator by ...

first order derivative 3.54 10.2803

Marbled Block sequence

Type of the derivative filter Optimal integration scale for the tensor Average angular error

structure tensor 3.2 3.509298

energy operator by ...

first order derivative 2.59 3.215193
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Street sequence

Type of the derivative filter Optimal integration scale for the tensor Average angular error

structure tensor 1.57 4.589143

energy operator by ...

first order derivative 6.1 10.251023

4.4.2 On the effect of the bandpass filtering: filter bandwidth versus
wavelet scale

We investigated the dependency of the average angular error as a function of the bandwidth
and wavelet scale simultaneously. Here we mean the bandwidth of the bandpass filter or the
spread of the wavelet, used to filter the input image sequence. As a result it comes out, that
there is an optimal point in the bandwidth-scale plane which minimizes the error measure, see
also figure 4.4.2.

5
10

15
20

10

20

30

40

10

20

30

40

50

60

70

Bandwitdh of the wavelet

Synthetic Double Sinus Sequence

Wavelet scale for the CWT

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

Bandwitdh of the wavelet

W
av

el
et

 s
ca

le
 fo

r 
th

e 
C

W
T

Average Angular Error for the Synthetic Double Sinus

 

 

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

7.5

8

8.5

9

9.5

10

10.5

11

Figure 4.1: The optimal average angular error as a function of the bandwidth and scale of the
Mexican hat wavelet for a synthetic sinus pattern sequence with discontinuity.

4.5 Conclusion
Despite the preprocessing of the image sequence, our experiments showed, that there is a
need of post-integration for the energy operator to achieve optimal average angular error of
the estimated flow fields. For orientation estimation with the energy operator [Felsberg and
Jonsson, 2005, page 498] reported similar results and applied a Gaussian post-filtering with
σ = 1 and a smoothing window size of 7x7. The accuracy gain for the real world Marbled
Block sequence is in the first digit behind the decimal point or approximately 7.7 %. This
improvement is achieved by optimal parameter setting for both operators, the structure tensor
and the energy operator.
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Figure 4.2: The optimal average angular error as a function of the bandwidth and scale of the
Mexican hat wavelet for the Marbled Block sequence.

In general for motion estimation purposes the energy tensor is comparable to the structure
tensor, but requires less computational steps. The energy tensor has three essential advantages:

• In comparison with the structure tensor it possesses higher spatial resolution and is auto
adapted to the underlying spatial structures due to its phase invariance.

• Unlike in the case of the structure tensor, [Bigun, 2006, pages 114-117] or [Köthe, 2003,
pages 26–27], there is no need of oversampling. The higher spatial resolution allows
in one dimension an undersampling up to three times without significant performance
reduction, [Larkin, 2005, page 8111].

• It needs less computational steps do determine the energy tensor, if there is no need of
averaging. The averaging of six tensor components is more expensive than the computa-
tion of the Hessian. To obtain the Hessian we need only three additional computational
steps for the spatio-temporal derivatives of second order. For an averaging by binomial
filters with equivalent standard deviation of 1 and derivative masks of size 5x5x5, in
three dimensions the speed acceleration is approximately threefold or 2.9069767 times
if we consider the number of multiplications as the significant time consuming compu-
tational step.





Chapter 5

Detection of temporal aliasing

5.1 Sampling of band enlarging operators
Translational motion is the simplest motion model. In this section we will give a brief overview
of the conditions for occurrence of temporal aliasing in image sequences under the assumption
that the objects undergo a translational motion. Translational and affine motion parameter
estimation can be derived in the continuous domain, as described in 1.3.1. Conditions for
temporal aliasing appearance are investigated in [Bigun, 2006, Section 12.7, pages 264–267].

A simple illustration of the temporal aliasing effect is described below. Given a one di-
mensional sine signal s(t) = sin t we can determine the translation in an unambiguous way up
to the period of 2π. Translations by a length l greater than 2π will be recognized as a shift

l − n 2π n ∈ N

with suitable n.
Given a image sequence f = f (x, y, t)

f : R3 → R

let’s assume, that there is a translational motion v = (vx, vy) in the image plane between
two image frames f (x, y, 0) and f (x, y, t)

f (x, y, t) = f (x − vt, y − vt, 0), t ∈ R.

Let g(x, y),
g : R2 → R

is a band-limited image. Band-limited means, that the Fourier transform F [g] has a compact
support. Translating g(x,y) to produce a 3 dimensional spatio-temporal image sequence f =
f (x, y, t) is a band enlarging operation but f (x, y, t) still remains band limited if the modulus of
the translational speed v is bounded.

If we denote by Ks the upper bound for the spatial wavenumber ks of g(x, y)

|ks| > Ks ⇒ F [g](kx, ky) = 0

then a upper bound Kt for the spatio-temporal wavenumbers kt of f (x, y, t) is given by

|kt| ≤ |v|Ks =: Kt .

Thus we have seen, that if the translational speed v is bounded, then the spatio-temporal
image sequence f (x, y, t) is band limited too. Similar result can be derived if we analyze 3
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dimensional voxel images, depth maps or other multidimensional image data with respect to
motion estimation and aliasing detection.

If the temporal axis is sampled with the sampling period 2π
2Kt

or tighter, then the speeds not
greater than v will be recoverable. In this case the motion planes generated by these shifts
will have a smaller inclination angles with the (kx, ky)-plane. The maximal speed vmax of the
translation is bounded by

vmax ≤
Kt

Ks
. (5.1)

This result is summarized in [Bigun, 2006, Lemma 12.8, page 265].

A well known strategy for avoidance of temporal aliasing in spatio-temporal image se-
quences follows from the above analysis. The strategy consists of spatial low-pass filtering of
the image frames and is described in [Jähne, Bernd, 2005, page 293], [Christmas, 2000] and
[Bigun, 2006, pages 265–266]. In this manner the high-frequency spatial content is removed
and higher speeds are recoverable in an unambiguous way. A drawback of spatial low-pass
filtering is occurrence of errors at object boundaries in the following image processing steps
such as gradient calculation, motion estimation, segmentation from motion etc. It should be
mentioned that temporal aliasing will potentially affect any temporal filtering operation. The
temporal derivative is an important value for the gradient based optic flow estimation, so it will
be desirable to remove temporal aliasing. It will be even better to detect aliasing occurrence
and to label the regions, it occurs in.

We have seen that the support of the spatio-temporal Fourier spectrum of an image se-
quence depends on the upper bound vmax for the modulus of the translational velocity |v|. In
practice we don’t know in advance the upper bound vmax. We propose a practical method to
detect regions of temporal aliasing by optic flow estimation in the scale space.

5.2 Experimental Results

Experimental Results

An example with ground truth for a real life sequence

To prepare the scene for more complicated experiments and to study the behavior of aliasing
occurrence in the scale-space, we investigated the dependence of estimated optic flow on the
scale parameter. We decomposed a simple real life test sequence with ground truth. The test
sequence shows a known horizontal translational motion of a scale grid paper, see also figure
5.1.
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Figure 5.1: Real world test sequence and estimated flow field of a test sequence at original
scale

We acquired the sequence by the stop-and-shoot method. If there are enough frames this
allows for any kind of subsampling of the sequence in temporal direction in order to conduct
experiments. By a proper subsampling of the frames we generated an aliased motion of the
thin lines in the opposite direction of the real motion but choosing the subsampling rate such
that the motion of the thick lines is not affected.

The image sequence was decomposed by the continuous wavelet transform with the Mex-
ican hat wavelet. The Mexican hat wavelet ensures the best scale-frequency resolution in the
sense of the uncertainty principle, see also section 1.4.1. Then we performed optic flow esti-
mation with a simple local algorithm at every scale of the decomposed sequence.

Figure 5.2: Movie: Scale decomposition of a test sequence
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Figure 5.3: Aliasing detection, optical flow on scale 3 and scale 21
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Figure 5.4: Aliasing Velosity vs. Wavelet Scale

S 5.1. If the estimated velocity for a given segmented object changes its direction or
its order of magnitude across the scale space, then there is aliasing in the pixel.

Unfortunately we can not detect all regions of aliasing by this method. It can happen, that
maybe there are some objects in the image sequence, where temporal aliasing occurs, but the
velocity changes neither its direction nor its order of magnitude.
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5.3 Conclusion
Detection of aliasing in the scale-space is possible. By our method not all regions of temporal
aliasing are detected.

The scale-space is generated by the continuous wavelet transform with rotationally sym-
metric wavelets. The optical flow is computed in parallel at each scale.

The underlying assumption is, that in a neighborhood of the investigated pixel there is a
constant motion. This assumption is realistic in the inside of moving objects.

An open question is the comparison and cross-check of the proposed method by direct
implementation of the inequality 5.1. In this case the local wavenumbers can be estimated by
a transform of Cohen’s class, 1.4 and the optic flow can be computed by a local method.





Chapter 6

Conclusion and outlook

The topic of this work was to reveal some new aspects of motion analysis from image se-
quences by scale space decomposition of the image data. The scale space generation was
performed by the wavelet transform. The discrete wavelet transform is suitable for compres-
sion of multidimensional signal and image data. For analysis purposes, the continuous wavelet
transform is a better tool than the discrete one, because it generates a continuous scale repre-
sentation of the image sequence. In order to avoid direction dependence we used rotationally
symmetric wavelets. It is easy to construct a fully isotropic multidimensional wavelet just by
rotation of the one dimensional one. The Mexican hat wavelet localizes best in two dimensions
in the sense of the uncertainty relation, [Dahlke, S. and Maass, P., 1995]. If there is no a priori
knowledge about the image data, the data can be decomposed by the Mexican hat wavelet, be-
cause in two dimensions it is optimal with respect to minimization of the uncertainty principle,
[Dahlke, S. and Maass, P., 1995].

We discussed also the issue of tensor field regularization for optic flow computation and
conducted accuracy measurements for motion estimation by adaptive smoothed tensor fields.
The adaptive smoothing of the tensors relies on nonlinear anisotropic diffusion with disconti-
nuity and curvature preservation. We reached an accuracy gain under properly chosen param-
eters for the diffusion filter.

Another research topic was the optic flow estimation in the scale space by the energy oper-
ator. Our experiments showed, that there is a need of post-integration for the three dimensional
energy operator, in order to achieve optimal average angular error of the estimated flow fields.
For orientation estimation with the energy operator [Felsberg and Jonsson, 2005, page 498] re-
ported similar results in two dimensions and applied a Gaussian post-filtering with σ = 1 and
a smoothing window size of 7x7. In comparison with the structure tensor, the energy operator
requires an additional computational step, this is the calculations of the Hessian of the image
data for every pixel. In the numerical experiments there was an accuracy gain for a real life
sequence in our measurements. In general for motion estimation purposes the energy tensor is
comparable to the structure tensor, but requires less computational steps.

The energy tensor has three essential advantages:

• In comparison with the structure tensor it possesses higher spatial resolution and is auto
adapted to the underlying spatial structures due to its phase invariance.

• Unlike in the case of the structure tensor, [Bigun, 2006, pages 114-117] or [Köthe, 2003,
pages 26–27], there is no need of oversampling. The higher spatial resolution allows
in one dimension an undersampling up to three times without significant performance
reduction, [Larkin, 2005, page 8111].
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• It needs less computational steps to determine the energy tensor, if there is no need of
averaging. The averaging of six tensor components is more expensive than the computa-
tion of the Hessian. To obtain the Hessian we need only three additional computational
steps for the spatio-temporal derivatives of second order. For an averaging by binomial
filters with equivalent standard deviation of 1 and derivative masks of size 5x5x5, in
three dimensions the speed acceleration is approximately threefold or 2.9069767 times
if we consider the number of multiplications as the significant time consuming compu-
tational step.

We showed also, that detection of aliasing in the scale-space is possible. By our method not
all regions of temporal aliasing are detected. The scale-space is generated by the continuous
wavelet transform. The optical flow is computed in parallel at each scale.

With respect to mathematical modelling of optic flow computation in this work we for-
mulated a new regularization model for motion estimation with discontinuity and curvature
preservation. We discussed the nonlocal dependence of the diffusion tensor on the image data
in the mathematical sense.

Here are some open questions and comments on possible improvements of our analysis.

• Gradient computation by derivative filters, which are tuned for the wavelet scale with
respect to rotation invariance.

Due to the discretization of image data on rectangular grids, there is an angle depen-
dent error in the derivative computation. The basic concepts of error minimization for
derivative filters with cross smoothing are discussed in [Jähne, Bernd, 2004, page 416],
[Scharr, 2000] and [Jähne, B. et al., 1999]. In the optimization of the filter masks with
respect to better isotropy the wavenumber weighting is important for the definition of
the objective function. The wavenumber weighting w(k) can be set as

w(k) := cosn 2πk, n = 0, 1, 2, 4,

where k is the wavenumber. Then the filter masks are computed by nonlinear optimiza-
tion.

It is still an open question, which accuracy gain can be reached by computing the tensor
field with filters optimized for the wavelet and the wavelet scale.

• Tuning of derivative filters for the given wavelet scale from statistical point of view.

Filters approximating the local gradient in image sequences can be optimized with re-
spect to the noise characteristics of the image data, [Mester, 2003]. Experiments showed,
that there is an improvement of the estimated optic flow in comparison with other meth-
ods, that do not take into account the statistical properties of the image data, [Krajsek
and Mester, 2007].

The noise in a wavelet decomposed sequence is correlated, see figure 6.1.
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Figure 6.1: Autocorrelation of white noise across the wavelet scale. The autocorrelation in-
creases with increasing wavelet scale. At the original scale the autocorrelation is a peak in the
origin.

It is a field of further investigation, to which extent the error can be reduced, if we
apply derivative filters optimized for the noise correlation originating from the wavelet
decomposition.

• Adaptive integration of the tensor field by the local alignment method may improve the
accuracy of the optic flow field.

In chapter 3 we investigated the performance of a method based on nonlinear anisotropic
diffusion for scale space generation of a feature extracted from the image data. The
feature is the structure tensor and the diffusion flow was constrained on the manifold
of matrices with given set of eigenvalues. This constraint is a good trade off between
performance and computational complexity. One can investigate, whether there will be
an improvement and to which extent, if the diffusion flow is constrained on the manifold
of orthogonal matrices SO(3). This is the canonical choice in a natural way for the
manifold, because the tensor field contains only orthogonal matrices. In this manner
we use additional information about the feature, extracted from the image sequence. In
order to avoid the formation of artificial discontinuities, the tensors should be aligned to
each other in a neighborhood, [Tschumperle, 2002, page 143].

• Strategies for incorporation of the computed flow fields for the different wavelet scales.

We showed experimentally, that in scenes with moving objects the detection of temporal
aliasing is possible by computation of the optic flow in parallel at every scale. It is still
an open question, how this results can be incorporated into one flow field, representing
the motion in the original sequence.

• Comparison and validation of the proposed method for temporal aliasing detection on
sequences with displacement ground truth by direct implementation of the inequality
5.1. In this case the local wavenumbers can be estimated by a transform of the Cohen’s
class, section 1.4.

• Fair comparison between different diffusion flows.

In optic flow computation and motion estimation the accuracy of the flow field is impor-
tant for practical applications. We compared the best results with respect to accuracy of
two diffusion flows, on the one hand the isotropic linear diffusion, which is a Gaussian
smoothing and the isotropic nonlinear diffusion on the other hand. Hence our method to
compare different diffusion flows is with respect to practical results and is feature based.
Maybe a better theoretical comparison of different smoothing methods will be possible
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in an invariant metrics, cf. [Xavier Pennec and Nicholas Ayache, 1998; Xavier Pennec
et al., 2006].

• Computation of a spatial gradient of a tensor field in Riemannian metrics.

In chapter 3 we computed the gradient of the tensor field in the flat Euclidean metrics.
Maybe we can improve the accuracy of the results, if in this step the derivatives of the
tensor field are computed on the manifold of orthogonal matrices.

• How can we express the φ-function formalism in Rimannian metrics?

Discontinuity preserving regularization was introduced in section 1.3.2. The idea was to
replace the regularization term ∫

Ω

‖∇u‖2 dx

by a discontinuity preserving term ∫
Ω

Ψ(‖∇u‖) dx

with suitable Ψ.

Under regularity assumptions for Ψ we end up with

div
(
Ψ′(‖∇u‖)
‖∇u‖

∇u
)

for the smoothing term. An interesting open question is, how can we adapt this for-
malism to a Riemannian or an invariant metrics, [Xavier Pennec and Nicholas Ayache,
1998; Xavier Pennec et al., 2006].
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Appendix A

Tools

We used preferably open source tools to fulfill our research and to create this document. If
not explicitly mentioned, all the tools listed bellow are with open source code, they are free of
charge, well documented and licensed in the spirit of the GNU General Public License or the
CeCILL-C license .

Type-setting

LATEX is a standard type-setting environment based on TEX for writing out texts with mathe-
matical formulas, creating reference lists and preparing presentations.

PDE solvers

PETSc is a free open source library for solving partial differential equations. It’s a good
library for implementation of partial differential equations for motion estimation by variational
techniques. PETSc allows also parallel computations by Message Passing Interface.

Image processing libraries

CImg stands for "Cool Image" and this is an image processing library which completely de-
serves its name. CImg is really cool! The library offers an image class with template pixel
types and a variety of image processing and matrix operations. There are also nice display
possibilities for image surfaces, isosurfaces of volume data and interactive visualization im-
plemented in the CImg library. We used the CImg library to solve tensor valued nonlinear
PDE’s by line integral convolution.

heurisko is a commercial closed source script language for image processing with an API
for C extensions. heurisko offers a fast low-level image processing with good possibilities to
control, manage, synchronize and operate on external devices for optical measurements such
like cameras, light sources, translational stages etc. We used heurisko to acquire real life test
sequences.

ImageJ is a program written in Java which offers basic image processing operations, geometric
transformations and spatial calibration. ImageJ provides extensibility via Java plug-ins and the
user can write his own applications. There are a lot of plug-ins available for ImageJ including
some simple basic optical flow algorithms and average angular error measurement. ImageJ
can be run either as an on-line applet or as downloadable application. We downloaded and
used ImageJ to read volume data in tiff format and float precision of the pixel value.
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http://www.gnu.org/licenses/licenses.html#TOCGPL
http://www.cecill.info
http://www.latex-project.org/
http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://cimg.sourceforge.net/
http://www.heurisko.de/
http://rsb.info.nih.gov/ij/


ltilib is a template-based C++ image processing library with some motion estimation methods
implemented.

vigra is a good image processing library, written in C++. The concept of the library is to
develop reuseable software for image data in arbitrary dimensions.

JavaView is not exactly an image processing library, but a mathematical visualization software.
JavaView is suitable for preparing interactive visualization of flow fields and incorporating it
into electronic documents, which allow user interaction and on-line computations.

Wavelets libraries

YAWTB is a wavelet toolbox which provides the computation of a two or three dimensional
non-separable wavelet transform for image sequences. In this manner the wavelet decom-
position is at least theoretically invariant with respect to rotations and there are no preferred
directions in the bandpass decomposed sequences. The separable wavelet transform introduces
a systematic error in the estimated flow field because of preferred directions in the the wavelet
decomposition.

Other wavelet libraries and toolboxes, we used in our research are WaveLab802 , LastWave
and the Wavelet Toolbox. The Wavelet Toolbox is a commercial software.

Linear algebra and matrix computation

lapack and blas are standard linear algebra libraries written in FORTRAN 77 for matrix de-
composition and for solving linear systems of equations and eigenvalue problems. lapack and
blas are used in Expokit and levmar is a Levenberg-Marquardt optimization routine in C/C++.

Expokit is a FORTRAN package for computation of matrix exponentials. We used this pack-
age to implement the isospectral flow on the manifold of matrices with given set of eigenvalues
in chapter 3.

Optimization

levmar is a Levenberg-Marquardt optimization routine in C/C++. levmar was used to search
for optimal wavelet scale, wavelet bandwidth and integration size of the tensor field for the
motion estimation by the energy operator in chapter 4.

Camera calibration toolboxes

Janne Heikkilä and Davide Scaramuzza and Jean-Yves Bouguet are good kamera calibration
tollboxes, which were used for preliminary calibration of real life test sequences.

http://ltilib.sourceforge.net/doc/homepage/index.shtml
http://kogs.informatik.uni-hamburg.de/~koethe/vigra/
http://www.javaview.de/
http://rhea.tele.ucl.ac.be/yawtb/
http://www-stat.stanford.edu/~wavelab/
http://www.cmap.polytechnique.fr/~bacry/LastWave/packages/packages.html
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.shtml
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://www.maths.uq.edu.au/expokit/
http://www.ics.forth.gr/~lourakis/levmar/
http://www.maths.uq.edu.au/expokit/
http://www.ics.forth.gr/~lourakis/levmar/
http://www.ee.oulu.fi/~jth/calibr/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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