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Zusammenfassung

Mit dem vorliegende Experiment wurde zum ersten Mal die Emissionswahrscheinlichkeit
von Bremsstrahlung während des α-Zerfalls von 210Po bis zu γ-Energien von ∼ 500 keV
mit einer statistischen Genauigkeit gemessen, die Aussagen über die Gültigkeit ver-
schiedener theoretischer Ansätze zur Beschreibung dieses Prozesses erlaubt. Es wurde
gezeigt, dass Korrekturen zur E1-Winkelverteilung der Bremsstrahlungsphotonen berück-
sichtigt werden müssen, die durch eine Interferenz der Dipol- mit der Quadrupolstrahlung,
sowie durch relativistische Effekte verursacht werden. Mit der experimentell ermittelten
Winkelverteilung zeigt das gemessene Spektrum der differentiellen Emissionswahrschein-
lichkeit der Bremsstrahlung eine hervorragende Übereinstimmung mit den theoretischen
Vorhersagen einer vollständig quantenmechanischen Rechnung.

Abstract

A high-statistics measurement of bremsstrahlung emitted in the α decay of 210Po has been
performed. The measured differential emission probabilities, which could be followed up
to γ-energies of ∼ 500 keV, allow for the first time for a serious test of various model
calculations of the bremsstrahlung accompanied α decay. It is shown that corrections
to the α-γ angular correlation due to the interference between the electric dipole and
quadrupole amplitudes and due to the relativistic character of the process have to be taken
into account. With the experimentally derived angular correlation the measured energy-
differential bremsstrahlung emission probabilities show excellent agreement with the fully
quantum mechanical calculation.
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Chapter 1

Introduction

When discussing the α decay of a nucleus the ”classical” picture one usually has in mind is
that of an α particle tunnelling through the Coulomb barrier and then being accelerated
from the classical turning point to its final energy. Thus bremsstrahlung photons will be
emitted during the process. But while the emission of soft photons during the Coulomb
scattering of charged particles can be well described by classical electrodynamics (see e.g.
[1, 2]), in the α decay the implication of a trajectory partly located in a classically forbidden
region immediately provokes the question: Do α particles emit photons during tunneling?

Several remarks seem to be in place with regard to this question: As the wavelengths of
the photons are much larger than the extend of the tunneling barrier and even much larger
than the main classical acceleration region, it is in principle not possible to identify where
the photon was emitted. This is clearly born out in the quantum mechanical perturbation
approach. Here Fermi’s Golden Rule provides a well defined way how to calculate the
emission probability connected with the decay of the initial state (the mother nucleus) into
the final state consisting of the daughter nucleus, an α particle and a photon, and the
calculation of the transition matrix element involves, of course, the integration over the
full coordinate space. On the other hand, within the quasi-classical approximation, which
is well justified as the Sommerfeld parameter η of the α particle is large compared to unity
(η = 22 for the α emitter 210Po), different space regions can be connected to different time
intervals. It is therefore tempting to split the transition matrix element into contributions
from classically allowed and classically forbidden regions. However, such an interpretation
can only have a restricted meaning because it is possible to rewrite the bremsstrahlung
matrix element in different forms using operator identities. As a result, the integrand for
the matrix element, as well as the relative contributions of the regions of integration, will
be different though the final outcome will be the same. Nevertheless, the issue of the
tunneling during the emission process was widely discussed [3–21]. These authors used
different theoretical approaches leading, not surprisingly, to partly conflicting results as to
the relative contribution of the tunneling, but more seriously also with regard to the total
γ emission probabilities.
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Figure 1.1: The measurement of Kasagi et al. [23] (black squares) and Eremin et al.
[26] (grey diamonds) are plotted together with the theoretical predictions of the CA model
(orange), the SCA model (cyan), the treatment by Kurgalin et al. [16] (magenta), the semi-
classical treatments of Dyakonov et al. [10] (blue) and Kasagi et al. [23] (brown) and the
quantum mechanical model by Papenbrock and Bertsch (green) [3].

The interest in the bremsstrahlung accompanied α decay was actually stirred up in 1994
when a first attempt to observe this rare decay mode was published [22]. But this and
later experimental attempts to measure these elusive decays [23–29] produced inconsistent
results and did not reach the sensitivity to allow for a serious test of the various theoretical
predictions. The unsatisfactory situation accounted prior to our investigations for the best
studied case 210Po is displayed in figure 1.1: Kasagi et al. [23] were the first to measure the
bremsstrahlung accompanied α decay of 210Po and to calculate the emission probability
in a quasi-classical approximation. While the kind of interference pattern implied by their
results was neither observed in the quantum mechanical (QM) calculation of Papenbrock
and Bertsch [3] nor in the quasi-classical (QC) approach of Dyakonov [10], all calculations
are certainly not in conflict with the data given the large error bars. The picture was
getting confused when Eremin et al. [26, 27] presented their data on 210Po, which is not
only in contradiction with the previous data but also with all theoretical predictions, the
exception being the classical Coulomb acceleration (CA) model (see e.g. [10]) expected to
represent an absolute upper limit for the emission probabilities.

The aim of this thesis was to clarify the confusing situation by performing a high-statistics
measurement of the bremsstrahlung emission probability in the α decay of 210Po [30].
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In chapter 2 a brief overview on some of the theoretical descriptions of the bremsstrahlung
accompanied α decay is given. The experimental setup is presented in chapter 3. The
Geant4 simulation of the setup and the derivation of the detection efficiency is discussed
in chapter 4. Chapter 5 describes the data analysis and in chapter 6 the final results are
presented and discussed.
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Chapter 2

Theoretical Description

The theory of the bremsstrahlung emission probability accompanying an α decay was
discussed intensely in the literature in recent years [3–21]. The following discussion will be
restricted to those approaches relevant for the interpretation of the present measurement.
In particular we will discuss the Coulomb acceleration model (section 2.3), the quantum
mechanical treatment (section 2.4) and the refined semi-classical approach of Jentschura-
Milstein-Terekhov (section 2.5).

A detailed discussion of the Coulomb acceleration model and the quantum mechanical
treatment can be found in the appendix A and B.

2.1 α Decay

An α particle, a cluster of two protons and two neutrons, forming a helium-4 (4He) nucleus,
is strongly bound (binding energy: B(4He) = 28.295 MeV, separation energies: Sn =
20.578 MeV, Sp = 19.814 MeV). Thus for heavy nuclei it can be energetically favourable to
split up into an α particle and a daughter nucleus with mass (A − 4) and charge number
(Z − 2), with A and Z being the mass and charge of the parent nucleus.

m(AZ) > m(A−4Z-2) + m(4He) (2.1)

=⇒ B(AZ) > B(A−4Z-2) + B(4He) (2.2)

The α particle is on the one hand bound inside the nucleus by the strong force on the
other hand because of its charge (2+) repelled by the electromagnetic field of the remain-
ing protons. The potential seen by the α particle is the superposition of both potential,
schematically drawn in figure 2.1 [31].

Due to the resulting potential barrier the α decay is classically forbidden, viewed quantum
mechanically though the α particle has a certain probability to tunnel through the barrier
and leave the nucleus. This process is called the α decay. The theoretical description of
the α decay was one of the early successes of quantum mechanics [32–34].
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Figure 2.1: In the α decay an α particle is tunneling through the Coulomb-barrier and
is accelerated in the field of the remaining nucleus. Typical values for the decay energy
Qα, the height of the potential barrier U

(max)
C , the radius of the nucleus rn and the classical

turning point rc are given in the figure.

2.2 Bremsstrahlung

Bremsstrahlung is electromagnetic radiation which is emitted by an accelerated or decel-
erated charge. Classically an elementary charge e at the point r which is accelerated by
β̇ = v̇/c results in a vector potential A at the point of the observer x and at time t which
is given by (see e.g. [1])

A(x, t) =
e

c

[[
n× [(n− β) × β̇]

]

(1 − β · n)3

]

ret

(2.3)

for |r−x| ≫ 1. Here n is an unit vector in the direction of the observer (n = (x−r)/|x−r|)
and c is the speed of light.

Assuming that the acceleration β̇ act in the direction of motion β (β̇ ‖ β) the probability
for bremsstrahlung photons dPγ emitted into the solid angle dΩ with an energy in the
interval dEγ is given by (in the non-relativistic dipole approximation)

d2P

dEγ dΩ
=

α

4π2Eγ

∣∣∣∣∣

+∞∫

−∞

β̇(t) sin ϑ(t) exp

(
i

~
Eγ

(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

, (2.4)

with the fine structure constant α = e2/(~c) and the angle ϑ between the direction of
motion and the direction to the observer. A detailed derivation and discussion of this
classical result can be found in appendix A.1.
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2.3 Coulomb Acceleration Model

The simplest model for the bremsstrahlung emission probability in the α decay is the
Coulomb acceleration (CA) model. Here the α particle is viewed to tunnel through the
classically forbidden region and materialise at the classical turning point rc with zero
velocity. It is then accelerated in the Coulomb field of the daughter nucleus. In this
classical model the tunneling process is completely ignored.

In the non-relativistic limit and within the dipole approximation the expression for the
probability of bremsstrahlung photons dP per energy interval dEγ and solid angle dΩ is
given by (see appendix A.4)

d2P

dEγ dΩ
≈ α(ZE1

eff )2

4π2Eγ
sin2 ϑ

∣∣∣∣∣

+∞∫

rc

β ′(r) eiEγt(r)/~dr

∣∣∣∣∣

2

, (2.5)

where ϑ is the angle between the observer of the bremsstrahlung photon and the direction
of motion of the α particle. The effective dipole charge ZE1

eff is defined by the relation

ZE1
eff := µ

(
Zα

Mα
− Zd

Md

)
, (2.6)

with the mass Mα and the charge Zα of the α particle and the mass Md and the charge
Zd of the daughter nucleus. The reduced mass µ is defined by µ = Mα · Md/(Mα + Md).
Moreover, β ′(r) = dβ(r)/dr is the derivative of the relative velocity between α particle and
daughter nucleus with respect to their relative distance.

With the equation of motion

1

2
µc2β2(r) = Qα − ZαZd e2

r
, (2.7)

where Qα is the decay energy of the α decay, the relation (2.5) can be easily integrated
numerically. In appendix A.4 a detailed derivation is presented.

In equation (2.5) the integral spans over the whole acceleration process (rc < r < ∞).
However from a classical point of view a bremsstrahlung photon of energy Eγ can only be
emitted if the kinetic energy of relative motion is higher than Eγ. In the strict Coulomb
acceleration (SCA) model this is taken into account by setting the lower limit of the inte-
gration in equation (2.5) to rmin defined by

rmin =
ZαZd e2

Qα − Eγ

. (2.8)

The predictions of the CA and SCA models for the angle-integrated bremsstrahlung emis-
sion probability in the α decay of 210Po are plotted in figure 1.1 and figure 2.2.
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Figure 2.2: The theoretical predictions of the CA (orange), the SCA model (cyan), the
semi-classical treatment of Dyakonov et al. [10] (blue) and the quantum mechanical model
(QM, green) are plotted. The prediction of the semi-classical Jentschura-Milstein-Terekhov
approach is not plotted separately as it is indistinguishable from the quantum mechanical
result in this logarithmic plot (see also figure 2.5). Also shown is a numerical calculation
of Kurgalin et al. [16] (magenta), where the square-well potential in U(r) (see equation
(2.17)) was replaced by a Wood-Saxon type potential.
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rection from the quadrupole contribution derived in the context of the Jentschura-Milstein-
Terekhov approach ΛE2

JMT
(Eγ) is shown for comparison (magenta).

As to be expected, the emission probability predicted in the SCA model is getting smaller
as compared to the CA probability with increasing γ-energy.

For the angular correlation between the direction of the α particle and the bremsstrahlung
photon the classical CA model equation (2.5) predicts a dipole distribution.

Looking at first order corrections to (2.5) we obtain contributions from the quadrupole
term and relativistic contributions, which are of the same order of magnitude. As shown
in more detail in appendix A.4 we find

d2P

dEγ dΩ
≈ α

4π2Eγ

∣∣∣∣∣

+∞∫

rc

(
ZE1

eff + ZE2
eff

(
2β(r)

︸ ︷︷ ︸
rel. corr.

− i
Eγ

~c
r

︸ ︷︷ ︸
E2 corr.

)
cos ϑ

)
β ′(r) sinϑ eiEγt(r)/~dr

∣∣∣∣∣

2

. (2.9)

The effective quadrupole charge ZE2
eff is given by

ZE2
eff = µ2

(
Zα

M2
α

+
Zd

M2
d

)
. (2.10)

In the case of the α decay of 210Po we find that the effective quadrupole charge (ZE2
eff ≈ 1.95)

is about five times bigger than the corresponding dipole charge (ZE1
eff ≈ 0.4). Therefore it

is important to take contributions from the electric quadrupole radiation into account.
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This expression for d2P/(dEγ dΩ) has the structure

d2P

dEγ dΩ
≈ C

∣∣(f1(Eγ) + f2(Eγ) cosϑ
)
sin ϑ

∣∣2 (2.11)

and can be written as

d2P

dEγ dΩ
≈ C f 2

1 (Eγ) sin2 ϑ
(
1 +

2Re
(
f1(Eγ)f

∗
2 (Eγ)

)

f 2
1 (Eγ)

cos ϑ +
f 2

2 (Eγ)

f 2
1 (Eγ)

cos2 ϑ
)

. (2.12)

As the squared second order term f 2
2 (Eγ)/f

2
1 (Eγ) cos2 ϑ is ≪ 1 it can thus be neglected.

So the angular correlation can be written as

f�(Eγ , ϑ) = sin2 ϑ
(
1 + 2ΛCA(Eγ) cosϑ

)
(2.13)

where the function ΛCA(Eγ) is defined by

ΛCA(Eγ) :=
Re
(
f1(Eγ)f

∗
2 (Eγ)

)

f 2
1 (Eγ)

= Λrel
CA

(Eγ) + ΛE2
CA

(Eγ) (2.14)

and describes the correction to the dipole distribution. Note that the interference term
ΛCA(Eγ) has two (additive) contributions, one due to the relativistic correction (Λrel

CA
(Eγ)),

the other due to the quadrupole contribution (ΛE2
CA

(Eγ)). They are plotted in figure 2.3
for the case of 210Po. (For a comparison with the result of the strict Coulomb acceleration
model see figure A.5.) While the relativistic contribution dominates at Eγ ≈ 0 keV, they
are both of equal size for Eγ ≥ 500 keV. Of course, when integrating equation (2.9) over ϑ
the contribution of the interference term vanishes.

2.4 Quantum Mechanical Treatment

A full (non-relativistic) quantum mechanical treatment for the bremsstrahlung emission
probability has been presented by [3]. Here the perturbative quantum mechanical expres-
sion of the photon emission probability for the transition from the initial state |i〉 to the
final state |f〉 is obtained from Fermi’s golden rule

Wi→f =
2π

~
|〈f |Hem |i〉|2 ρf , (2.15)

where ρf is the density of the final states and Hem is the interaction Hamiltonian of the
electromagnetic field. Within the dipole approximation one obtains (see appendix B)

dP 2

dEγ dΩ
=

(ZE1
eff e)2

2π µ2c3

∣∣ 〈Φf | ∂rU(r) |Φi〉
∣∣2 1

Eγ
sin2 ϑ . (2.16)
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Here Φi(r) and Φf (r) are the radial wave functions of the initial and final state, respectively,
and U(r) is the potential between the α particle and the daughter nucleus (see figure 2.1).

The potential U(r) is usually approximated by a Coulomb potential outside the radius r0

and a constant potential V0 inside

U(r) =
ZαZde

2

r
Θ(r − r0) + V0Θ(r0 − r) . (2.17)

The initial wave function Φi(r) has zero angular momentum and is given in terms of the
Coulomb wave functions F0 and G0 outside r0 and proportional to the spherical Bessel
function j0 inside

Φi(r) =





Aj0(κr) for r < r0

C
G0(η, kr) + iF0(η, kr)

kr
for r > r0 .

(2.18)

The Sommerfeld parameter η is defined by

η =
µZαZd e2

~2k
(2.19)

and the wave vectors k and κ are given by

k =
1

~

√
2µ Qα κ =

1

~

√
2µ(Qα − V0) (2.20)

where Qα is the Q-value of the α decay. The initial state is normalised to a unit outgoing
flux of particles.

The radius r0 and the potential V0 are fixed by matching the wave function at r = r0 such
that the decay energy and the mean life of the α decay is reproduced. There are multiple
discrete solution sets (r0, V0) distinguished by the number of nodes of the inner wave
function. However the final bremsstrahlung emission probability is quite insensitive to the
choice of the solution set (r0, V0). The solution selected is r0 = 7.96 fm, V0 = −13.42 MeV
(see also appendix B.8).

The final wave function Φf (r) has an angular momentum of one and is therefore described
by the Coulomb wave functions F1 and G1 outside r0 and by the spherical Bessel function
j1 inside

Φf (r) =





aj1(κ
′r) for r < r0

c
sin(α) G1(η

′, k′r) + cos(α) F1(η
′, k′r)

k′r
for r > r0 .

(2.21)

For the primed quantities η′, k′ and κ′ the decay energy is reduced by the energy of the
emitted bremsstrahlung photon Eγ

k′ =
1

~

√
2µ(Qα − Eγ) κ′ =

1

~

√
2µ(Qα − Eγ − V0) η′ =

µZαZd e2

~2k′
. (2.22)
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The angle α is determined by matching the wave function at r = r0. For 210Po the value
of tan(α) is of the order of 10−28 and therefore the irregular Coulomb wave function G1 is
suppressed in Φf . The final wave function is normalised requiring the completeness relation
when integrated over the energy.

The matrix element 〈Φf | ∂rU(r) |Φi〉 is then given by

〈Φf | ∂rU(r) |Φi〉 ≈
√

2m2

π~3kk′

[(
ZαZd e2

r0

− V0

)(
F1(η

′, k′r0) + G1(η
′, k′r0) tan(α)

)
G0(η, kr0)

−zZe2

∞∫

r0

dr
1

r2

(
F1(η

′, k′r) + G1(η
′, k′r) tan(α)

)(
G0(η, kr) + iF0(η, kr)

)]
(2.23)

which can be evaluated numerically. A detailed derivation of the quantum mechanical
result can be found in appendix B. In figure 2.2 the result of our the quantum mechanical
calculation (QM) for the angle-integrated bremsstrahlung emission probability for 210Po is
plotted and compared to other theoretical predictions.

As expected, the quantum mechanical result (QM) agrees with the classical result for
Eγ → 0, but for higher γ-energies the classical results are overestimating the emission
probability by orders of magnitude.

Note that there is a numerical difference between our quantum mechanical calculation and
the result published in [3] because we used the correct decay energy Qα(210Po) = 5.407 MeV
for the α decay of 210Po in our numerical evaluation.

The imaginary part of the matrix element (2.23) is mainly an integral over a product of
the two regular Coulomb wave functions F0 and F1. Because the regular Coulomb wave
functions nearly vanish inside the barrier, the imaginary part contains mainly contributions
to the bremsstrahlung from the classical acceleration in the Coulomb field.

On the other hand the real part of 〈Φf | ∂rU(r) |Φi〉 is dominated by the irregular Coulomb
wave functions G0 and G1 and therefore also contains contributions to the bremsstrahlung
from the tunneling region.

So the comparison of the relative contribution from the real and imaginary part of the
matrix element can be considered as an estimate of the role of the tunneling for the
bremsstrahlung emission probability [3]. As shown in figure 2.4 the ”tunneling” contri-
bution is smaller than 5% at photon energies below 100 keV but rises considerably to reach
values near 15% at Eγ = 600 keV.

Unfortunately, a full quantum mechanical treatment of the quadrupole and of the relativis-
tic contribution to the bremsstrahlung emission probability is not available. To obtain a
quantum mechanical estimate of the E2-contribution a calculation within a semi-classical
approach was initiated [21], the result of which will be presented in the following section.
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Figure 2.4: The contributions from the imaginary (blue) and real (red) part of the matrix
element are compared. The imaginary part of the matrix element contains mainly the
contribution to the bremsstrahlung from the classical acceleration in the Coulomb field,
whereas the real part contains the contribution from the tunneling region.

2.5 The Semi-Classical Jentschura-Milstein-Terekhov

Approach

In the semi-classical (non-relativistic) treatment by Jentschura, Milstein and Terekhov [21]
the regular and irregular Coulomb wave functions in the matrix element are replaced by
semi-classical approximations and the quadrupole contribution has been taken into account.

According to [21] the bremsstrahlung emission probability can then be written as

d2P

dEγ dΩ
=

e2

πµ2Eγ
sin2 ϑ

∣∣∣ZE1
eff eiδ1 M + ZE2

eff eiδ2 N cos ϑ
∣∣∣
2

(2.24)

The dipole contribution M and the quadrupole contribution N can be expressed by

M =

√
2 k

π k′

k k′

k + k′

η

η̄

[
J(ξ) +

1

η̄
J1(ξ)

]
(2.25)

N =

√
2 k

π k′

k k′

k + k′

η

η̄

[
−
√

2Qα

µ
J1(ξ)

]
(2.26)

where η̄ = (η + η′)/2 is a ”mean” Sommerfeld parameter and ξ = η′ − η is the difference of
the final and the initial Sommerfeld parameter. The values k, k′, η and η′ are defined as
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Figure 2.5: The deviation from the fully quantum mechanical result (QM, green) is plotted
for the Jentschura-Milstein-Terekhov approach (red), the semiclassical WKB approximation
given in [3] (magenta) and the semiclassical treatment by Dyakonov et al. [10] (blue).

above

k =
1

~

√
2µ Qα η =

µZαZd e2

~2k
k′ =

1

~

√
2µ(Qα − Eγ) η′ =

µZαZd e2

~2k′
. (2.27)

The functions J(ξ) and J1(ξ) can be expressed in terms of simple integrals

J(ξ) = i ξ exp(−πξ)

∞∫

0

dt sinh(t) exp
[
i ξ (t − sinh t)

]
(2.28)

J1(ξ) = −ξ exp(−πξ)

∞∫

0

dt exp
[
i ξ (t − sinh t)

]
. (2.29)

Neglecting the E2-contribution the result of the semi-classical treatment is in excellent
agreement with our quantum mechanical calculation. The percentage of deviation of the
semi-classical result from the quantum mechanical result is shown for the case of 210Po in
figure 2.5 together with the results from other semi-classical treatments; the improvement
of the Jentschura-Milstein-Terekhov approach with respect to the quantum mechanical
result is obvious.

To discuss the E2-correction to the angular correlation we define again a function ΛE2
JMT

(Eγ)
by writing

dP
JMT

dEγ dΩ
=

dP
JMT

dEγ dΩ

∣∣∣∣
dipole

·
(
1 + 2ΛE2

JMT(Eγ) cos ϑ
)

. (2.30)
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From equation (2.24) we get

ΛE2
JMT(Eγ) =

ZE2
eff

ZE1
eff

Re

(MN ∗

|M|2 ei(δ1−δ2)

)
. (2.31)

In figure 2.3 the interference term ΛE2
JMT(Eγ) is plotted for the case of 210Po in magenta.

While the corresponding interference term ΛCA(Eγ) from the classical Coulomb acceleration
model approaches ΛE2

JMT
(Eγ) for Eγ → 0, it considerably underestimates ΛE2

JMT
(Eγ) at higher

photon energies; ΛE2
JMT(Eγ) even dominates the classical relativistic term Λrel

CA
(Eγ) for γ-

energies ≥ 250 keV.

2.6 Summary

The preceding discussions have shown that the total (angle-integrated) bremsstrahlung
emission probability dP/dEγ in the α decay of 210Po is dominated by the E1 dipole
radiation. The probability is steeply decreasing with increasing Eγ , reaching values of
10−12 keV−1 for Eγ ≈ 600 keV. The quantum mechanical result for dP/dEγ is expected
to be accurate (within the underlying assumption for the α-potential U(r), see equation
(2.17)) to within 1% (see appendix B.1), and is well represented by the semi-classical ap-
proach of Jentschura-Milstein-Terekhov [21]. The influence of the shape of U(r) on the
emission probability is expected to be small. Kurgalin et al. [16] have performed a numer-
ical calculation replacing the square well by a Wood-Saxon type potential; however the
available information about this calculation does not allow to decide if the observed devi-
ations (see figure 2.2) are in fact due to the different form of U(r) alone. E2 quadrupole
contributions to the angle-integrated bremsstrahlung emission probability dP/dEγ are es-
timated to be ≤ 1.5% for γ-energies up to 600 keV [21].

On the other hand, the α-γ angular distribution, which is ∝ sin2 ϑ for pure dipole radi-
ation, is found to be considerably modified by quadrupole contributions and leads to an
α-γ angular correlation f�(ϑ) ∝ sin2 ϑ(1+2ΛE2 cos ϑ). As shown within the semi-classical

approach, ΛE2 reaches values up to 0.25 for γ-energies around 600 keV. The results ob-
tained within the classical Coulomb acceleration model suggest, however, that a consistent
treatment of the E2-contribution to the α-γ correlation has to include also first order rela-
tivistic contributions, i.e. f�(ϑ) ∝ sin2 ϑ(1 + 2Λ cosϑ) with Λ = ΛE2 + Λrel (see equations

(2.13) and (2.14)), where Λrel is of the same size as ΛE2 . Unfortunately Λrel has not been
calculated for the relevant γ-energies within a relativistic quantum mechanical framework;
only for Eγ → 0 it has been shown [35] that Λrel is equal to Λrel

CA
, i.e. ∼ 0.27. Thus the

cos ϑ term in the α-γ correlation function f�(ϑ) is sofar only known for Eγ ≈ 0 keV.
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Chapter 3

Experimental Setup

In order to be able to measure the bremsstrahlung emitted during an α decay it is important
to distinguish the rare bremsstrahlung events from the ambient γ-background. As shown in
chapter 2 typical emission probabilities integrated over the interesting energy region of 300-
500 keV are in the order of 10−10 bremsstrahlung photons per decay. With commercially
available α source activities of about 100 kBq a rate of about 10−5 bremsstrahlung photons
per second in this energy range is expected. Even with good background suppression the
γ-background in the corresponding energy range would be about five orders of magnitude
higher (≈ 1 per second). The room background can further be suppressed by requiring
the simultaneous detection of the bremsstrahlung photon and the α particle. Assuming
a time window of 100 ns and a source activity of 100 kBq the rate of background photons
is reduced to 10−2 per second. This is still three orders of magnitude larger than the
bremsstrahlung rate. Therefore additional precautions have to be taken to measure this
elusive process.

Below we will first discuss the basic principle of the measurement (section 3.1), which
relies on an excellent energy and timing resolution of the detectors employed to record the
α particles and bremsstrahlung photons. Moreover, the measurement requires a strong α
source, which ideally should decay only into the ground state of a stable daughter nucleus
to avoid any additional disturbing radiation. The selected α source, α detector and photon
detector are shortly described in section 3.2, 3.3 and 3.4, while in section 3.5 and 3.6 the
experimental setup and the data acquisition system are presented. For more details see
[36].

3.1 Principle of Measurement

As mentioned above great care has to be taken to distinguish the bremsstrahlung photons
from the background radiation. This can be accomplished by noting that the sum energy
of all emitted particles (α particle, daughter nucleus (with possible excitation energy) and
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bremsstrahlung photon) has to be equal to the decay energy of the α decay Qα.

The energy Qα released in the α decay is equal to the mass difference between the decaying
nucleus and the sum of the masses of the daughter nucleus and the α particle. The released
energy splits up into the kinetic energy of the α particle Eα, the kinetic energy of the
daughter nucleus Ed, the excitation energy of the daughter nucleus Eex and the energy of
the bremsstrahlung photon Eγ :

Qα = Eα + Ed + Eex + Eγ . (3.1)

Due to energy and momentum conservation the energy of the α particle for a decay into
the ground state of the daughter nucleus (Eex = 0) can be approximated by

Eα ≈ Md

Mα + Md
(Qα − Eγ) , (3.2)

with the mass of the daughter nucleus Md and the mass of the α particle Mα. Note
that in equation (3.2) the initial nucleus is assumed to be at rest and the small photon
recoil momentum was neglected. Denoting the energy of the α particle by Eα,0 when no
bremsstrahlung photon is emitted, this can be written as

Eα +
Md

Mα + Md
Eγ ≈ Eα,0 = const. . (3.3)

Therefore in a 2-dimensional plot of the α-energy Eα versus the γ-energy Eγ ,
bremsstrahlung events can be found on a straight line given by equation 3.3.

In the present experiment the α decay of 210Po is investigated. 210Po decays into the stable
daughter nucleus 206Pb with a weak γ-branch of order 10−5, leading to the emission of a
γ-ray with an energy of Eγ = 803.1 keV. The decay energy Qα

1 has a value of 5407.46 keV
which results in Eα,0 = 5304.38 keV [37].

In figure 3.1 the schematic structure of the expected 2-dimensional Eα-Eγ plot of a co-
incidence measurement is illustrated. In the red region given by equation (3.3) the
bremsstrahlung events are expected to show up. Chance coincidences of α particles with
γ-rays from the room background will mainly occur with α particles of energy Eα,0. These
chance coincidences are therefore found in the green region. If the 210Po decays into the
803.10 keV excited state of 206Pb the emitted α particle has an energy of 4516.58 keV.
The excited state of the daughter nucleus decays by emitting a coincident γ-ray with an
energy of 803.10 keV. These events will produce a full-energy peak in the Eα-Eγ plot at
Eα,803 = 4516.58 keV and Eγ = 803.10 keV, and its corresponding Compton-background
will contribute to the region marked blue in the figure.

Thus by measuring with good resolution the energies of the coincidently measured α particle
and bremsstrahlung photon can be distinguished efficiently from the background as shown
in figure 3.1.

1In the literature sometimes Eα,0 and Qα are not distinguished.
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Figure 3.1: Schematic structure of a 2-dimensional plot of the coincidently measured α-
energy versus γ-energy. The bremsstrahlung events are expected to be found in the red
region given by equation (3.3). Chance coincidence from room background γ-rays with α
decays are contributing to the green region. At Eα,803 and Eγ = 803.10 keV the full-energy
peak of the 803 keV γ-branch can be found with its Compton-background in the blue region.
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Figure 3.2: Coincident background in the region of the expected bremsstrahlung events
arises either from chance coincidences with background γ-rays and an α particle that lost
energy by scattering or one whose energy was measured to low (a) or from a photon out of
the 803 keV γ-branch Compton-background, where the energy of the coincidently measured
α particle was measured to high, e.g. by pile-up.
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Figure 3.3: α decay scheme of 210Po [37].

Nevertheless, the region where the bremsstrahlung events are expected will not be free of
chance coincidences. These may arise from chance coincidences of background γ-rays with
α particles that either lost energy, e.g. by scattering, energy loss in the source material
or in the dead-layer of the detector, or whose energy was measured too low (e.g. due to
incomplete charge collection). Another source of coincident background are events from
the Compton background of the 803 keV γ-branch where the measured value of the energy
of the corresponding α particle is too high, e.g. because of pile-up. Both background
sources have to be minimised by appropriate measures, in particular by optimising the α-
and γ-energy as well as the time resolution.

Another possible coincident background, which has the same Eα-Eγ dependence as the
bremsstrahlung emitted in an α decay, is due to an external bremsstrahlung process, which
might occur while the α particle is slowed down in the α-detector. These contributions can
be estimated to be orders of magnitude smaller in particular when Si-detectors are used
to record the α particles, as here the E1-radiation is strongly reduced due to the similar
N/Z-ratios of natural Si and 4He.

3.2 α Source

For the present experiment the α-decaying 210Po isotope was selected (see figure 3.3).
This isotope is especially suited for this experiment as it decays predominantly into the
0+ ground state of the stable daughter nucleus 206Pb, and only with a weak γ-branch
of 0.00122(4)% in the first excited 2+ state at 803.1 keV [37]. Thus only few γ-rays are
emitted by the source itself. This allows to measure bremsstrahlung photons up to 800 keV
without interference with photons emitted after the α decay of 210Po. On the other hand,



3.2 Detection of α Particles 21

Figure 3.4: Dimensions of the 210Po source obtained from AEA Technology QSA.

the 803 keV branch is very useful for energy and efficiency calibrations (see sections 4.2
and 5.1). Moreover, 210Po has a half-life of T1/2 = 138.4 d, which is convenient for high
statistic measurements.

Commercial sources with an open active area are normally limited to an activity of about
100 kBq to limit the sputtering rate; because the binding of the atoms in the material
is quite weak, the recoil energy released in the α decay can break out clusters of source
material and thereby contaminate the surrounding.

A high activity is needed to achieve high statics data, but on the other hand the source
material must be thin to reduce the energy spread of the α particles due to energy loss
in the source material. Therefore two independent sources2 of an activity of 100 kBq each
were used for the experiment. The sources had an active area of 16 mm diameter and were
deposited on a 0.2 mm thick nickel foil with an aluminium backing of 0.5 mm thickness (see
figure 3.4). The γ-detector was placed beneath the two sources, so the γ-radiation had to
travel through the disk. Therefore the thickness of the nickel foil and the material of the
backing was minimised to lower the absorption for the bremsstrahlung photons.

The areal uniformity of the activity within the active area of the source was tested using
an autoradiography. The result is shown in Figure 3.5, no spatial variation of the activity
could be seen.

3.3 Detection of α Particles

Two single-sided silicon strip detectors (SSSD) of type W(SS)-300 from micron semicon-
ductor3 were used to detect the α particles. These silicon strip detectors had an active
area of 5 cm × 5 cm, a thickness of 300 µm and the electrode on one side of the detec-

2AEA Technology QSA GmbH, Gieselweg 1, D-38110 Braunschweig, Germany
3Micron Semiconductor Limited, 1 Royal Buildings, Marlborough Road, Lancing, Sussex BN 15 8UN,

UK
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Figure 3.5: The uniformity of the α sources was tested by an autoradiography. No areal
spread of the activity could be detected.

Figure 3.6: Picture of the silicon strip detector.
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crystal length total weight relative efficiency

A 76.3 mm 1555 g 55%
B 77 mm 1527 g 55%
C 76 mm 1581 g 59.1%

Table 3.1: Lengths, total weights and relative efficiencies of the HPGe crystals as given
in the specifications by the manufacturer.

tor was segmented into 16 strips (see figure 3.6). Due to the high activity of the sources
the segmentation was needed to reduce the rate for the data acquisition and the pile-up
probability.

The α particles were incident on the unsegmented side of the detector to avoid events
with incomplete charge collection from α-hits in the area between the strips. For the same
reason events where the α particle has deposited energy in two neighbouring strips were
rejected from the analysis (by this measure ≈ 2.5% of the events were rejected).

The silicon detectors are mounted on a copper plate cooled to about −20◦ C. By cooling
the detectors the energy resolution is improved (∼ 28 keV FWHM for Eα = 5.304 MeV)
and the damage of the silicon due to the implanted α particles is reduced.

3.4 Detection of Bremsstrahlung

For the detection of the γ-rays a highly efficient, high-purity germanium (HPGe) cluster
detector of the MINIBALL type [38] was used. The cluster detector consists out of three
encapsulated semi-hexaconical germanium crystals. The outer electrode of each crystal is
electronically segmented into six segments. The capsules are housed in a common cryostat
and cooled to liquid nitrogen temperature (−195.8◦ C). A picture of the triple cryostat
from CTT4 is shown in figure 3.7.

The encapsulated HPGe crystals were produced by Canberra Eurisys5. Figure 3.8 shows
the design of the crystals and the segmentation. The length, weight and relative efficiency
[39] of each crystal as given in the specifications by Canberra Eurisys can be found in table
3.1, figure 3.9 shows pictures of one capsule.

The efficiency of the cluster detector can be raised by adding up the energy signals recorded
in the three detectors for each event (addback mode). Simulation show that in this way
the efficiency of the cluster detector can be raised by about 23% at 800 keV.

The detectors were operated with about +4 kV on the inner contact provided by iseg6

power supplies. For the cooling of the detectors with liquid nitrogen (LN2) an automatic

4Cryostat and Detector Technique Thomas, Tonnerrestr. 5, D-56410 Montabaur, Germany
5CANBERRA Eurisys GmbH, Walter-Flex-Str. 66, D-65428 Rüsselsheim, Germany
6iseg Spezialelektronik GmbH, Bautzner Landstr. 23, D-01454 Radeberg, Germany
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Figure 3.7: Picture of the MINIBALL cluster detector.
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Figure 3.8: Segmentation of the outer contact (a) and dimensions (b),(c) of the HPGe
crystals.

Figure 3.9: Pictures of an encapsulated, sixfold segmented HPGe MINIBALL detector.
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Figure 3.10: Schematic drawing of the experimental setup.

filling system with a 160 l LN2 tank was used (electronics by Ortec7). Both the LN2 filling
system and the high voltage were controlled and monitored by a software designed for this
experiment and now partly used also for the MINIBALL detector array.

The detector signals were pre-amplified by analog electronics. The first amplification stage
was mounted directly on the capsules and was therefore also cooled to LN2 temperature.
The remaining parts of the preamplifiers were integrated in the cluster cryostat (see figure
3.7).

After the preamplifiers the readout was provided by fully digital electronics (see 3.6).
The electronic allowed not only to record the deposited energy but also the shapes of the
signals of the cores and of all segments as a function of time. By pulse shape analysis
(PSA) the position of the main interaction within the crystal could be determined and the
time resolution could be improved (see also section 5.3).

3.5 Geometry of the Setup

In the design of the setup the efficiency of α- and γ-detection had to optimised while keeping
the count-rates of the silicon detectors in a reasonable range and the energy resolutions as
good as possible. Different setups were analysed using a simulation (see also chapter 4).
Figure 3.10 shows a schematic drawing of the experimental setup realised.

7German contact: AMETEK GmbH, Rudolf-Diesel-Str. 16, D-40670 Meerbusch, Germany
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Figure 3.11: Distances between the sources, the silicon detectors and the HPGe detector,
respectively (the source holder is not shown).
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Figure 3.12: Picture of the silicon detector mounted on the top cover of the vacuum
chamber.
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Figure 3.13: Schematic drawing of the vacuum chamber with the feedthroughs for the
electronics, the pump port and the connectors for the cooling system of the silicon detectors.

The two α sources were placed directly above the HPGe cluster detector within the vacuum
chamber. In this area the thickness of the vacuum chamber was reduced to 1.5 mm to keep
the attenuation of γ radiation low. Above each source a silicon detector was placed at a
distance of 31 mm. The silicon detectors were mounted on a solid copper plate cooled to
−20◦ C, which was attached to the top cover of the vacuum chamber with a stainless steal
stage to reduce the heat flux. The steel lamellae were used to hinder scattered α particles to
be detected and in particular to avoid that α particles emitted from the left (right) source
are seen by the right (left) Si-detector; α particles emitted and detected under small angles
with respect to the surface of the source or detector would suffer large energy losses in the
source material or the dead layers of the Si-detector, which would lead to deterioration of
the α-energy resolution.

The distances between the sources, the silicon detectors and the HPGe cluster detector are
given in figure 3.11, while figure 3.12 shows a picture of the silicon detectors mounted in
the chamber.

The α sources and the silicon detectors had to be operated in vacuum to ensure that α
particles could reach the detectors. The chamber was pumped to 5 ·10−6 mbar with a turbo
molecular pump. A schematical drawing of the vacuum chamber is presented in figure 3.13.

The setup was surrounded with a 10 cm thick lead layer to shield the γ-detector from the
room background. To shield the X-rays from the lead induced by background γ-rays and
by cosmic radiation the HPGe cluster detector was additionally covered with 12 mm of
copper [40] as shown in figure 3.14. With this combined shield the rate of background
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Figure 3.14: To reduce ambient γ-background the setup was shielded with 10 cm of lead.
The germanium detector was additionally shielded with 12mm of copper to screen X-rays
from the lead.

events detected in the cluster detector could be reduced from ∼ 300 Hz to about 20 Hz for
γ-energies ≥ 40 keV.

A more detailed description of the experimental setup can be found in reference [36].

3.6 Data Acquisition

To readout the 2 × 16 strips of the silicon detectors analog electronic from mesytec8 was
used. The electronic is split into two components: the MPR-16 preamplifier unit and the
STM-16 unit incorporating the main amplifier, timing filter amplifier (TFA), and leading-
edge discriminator (LE). Each component contains 16 channels, so two MPR-16 and two
STM-16 units were used. The preamplifiers were mounted directly on top of the vacuum
chamber to keep the signal cables from the detectors as short as possible.

The energy signal from the main amplifiers in the STM-16 were digitised using 12 bit, peak-
sensing analog-to-digital converters (ADC) of type V556S manufactured by CAEN9. The
timing signals from the discriminators were read out by 12 bit, multi-event time-to-digital
converters (TDC) of type CAEN V775S.

The signals from the cluster detector were pre-amplified by analog preamplifiers included in

8mesytec Gbr, Wernher-von-Braun-str. 1, D-85640 Putzbrunn, Germany
9CAEN S.p.A. Via Vetraia, 11, 55049, Viareggio (LU), Italy
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the cryostat and then read out with digital electronics from XIA10. In the XIA DGF-4C11

module the charge signals from the preamplifiers are first filtered and amplified in analog
signal-conditioning units (ASC) and then digitised by 12 bit flash ADCs with a sampling
rate of 40 MHz (25 ns per sample). 1024 samples are stored in a FIFO and first analysed
with a digital leading edge trigger algorithm to obtain a timing signal. Then the digital
pulses are further analysed in an FPGA12 and a DSP13, which allow to perform also user
defined pulse shape analysis algorithms in real-time [41, 42]. The low counting rate from
the γ-detector in the present experiment allowed us to store not only the energy and timing
signals but also the full pulse traces. This allowed to analyse the shape of the pulses offline
as described in section 5.3.

The XIA DGF-4C modules contain four channels each and can be connected via a PECL14

bus to synchronise the readout of two or more modules. The seven channels needed for the
readout of one segmented HPGe detector (one channel for the core and six for the segments)
are provided by two DGF-4C modules; to readout the cluster detector six modules were
used.

The trigger output of DGF-4C modules is delayed by about 600 ns and can therefore not
be used for a coincidence trigger with the fast trigger signal from the silicon detectors.
Therefore an analog trigger signal from each core was generated in addition using timing
filter amplifiers and constant fraction discriminators (CFD). These timing signals were
recorded in the same TDCs as used for the silicon detectors.

The fast timing signals from the α- and γ-detectors were used to select coincident α-γ-
events using a standard trigger-electronic. Moreover, γ-singles and down-scaled α-singles
were recorded.

The cbdaq data acquisition software [43] has been used with an implementation for the
XIA DGF-4C card [41]. For details see also [36].

10XIA LLC, 31057 Genstar Rd., Hayward CA 94544, USA
11

Digital Gamma Finder
12

Field Programmable Gate Array
13

Digital Signal Processor
14

Positive Emitter Collector Logic



Chapter 4

Simulation of the α-γ-Detection
Efficiency

To derive the total energy-differential bremsstrahlung emission probability accompanying
the α decay of 210Po from the measured data the efficiency of the setup for detecting a
bremsstrahlung photon in the γ-detector in coincidence with an α particle, εc

γ(Eγ), has to
be known. This efficiency depends not only on the energy Eγ of the photon, but also on
the α-γ-angular correlation, which cannot easily be taken into account analytically due to
the compactness of the experimental setup. Therefore the whole setup was implemented in
a Monte-Carlo simulation to study the influence of the angular correlation on the efficiency
in more detail and to determine the efficiency εc

γ(Eγ) over the relevant γ-energy range.

4.1 The Simulation package

The simulation program used is basically based on two simulation packages:Geant4: Geant4 (GEometry ANd Tracking) is an object-oriented simulation toolkit
for high energy physics [44]. It simulates the passage of particles through matter
including tracking, geometry, physics models and hits. Geant4 is implemented in
the C++ programming language and was designed by a worldwide collaboration of
physicists and software engineers. It has been used in applications in particle physics,
nuclear physics, accelerator design, space engineering and medical physics.g4miniball: The g4miniball simulation package [45] developed as part of this disserta-
tion provides a library for the simulation of one or more MINIBALL cluster detectors
within an Geant4 environment. Figure 4.1 shows the visualisation of a simulated
MINIBALL cluster detector (cut open).

The simulation provides a detailed implementation of the geometry of the HPGe
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Figure 4.1: Visualisation of the simulated MINIBALL cluster detector with the
g4miniball package. For the visualisation the cryostat and the detectors are cut open.

Figure 4.2: Visualisation of a standard setup of MINIBALL consisting of eight MINI-
BALL cluster detectors together with a vacuum chamber in the simulation.
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crystals, the capsules of the crystals and the cryostat wall. The electronics and the
LN2 dewar are not included.

The g4miniball library was originally developed for simulating only one MINIBALL
cluster detector for the experiment described here. However, it was designed such that
it is an easy to use toolkit for the simulation of all possible setups of the MINIBALL
detector array. The library contains class-objects to include the detailed geometry of
the crystals and cluster detectors, for the determination of the deposited energy in
an event and a flexible interface for the readout, which allows e.g. to further process
the data using the Root analysis software [46]. An event generator for calibration
sources (60Co and 152Eu) is also provided.

There are also examples included in the g4miniball package to illustrate the handling
and the implemented features. Figure 4.2 shows a standard setup of MINIBALL with
eight MINIBALL cluster detectors and an aluminum detector chamber.

A visualisation of the simulated experimental setup of the present experiment is show in
figure 4.3 and 4.4.

Included into the simulation are the MINIBALL cluster detector, the two silicon strip
detectors, the two α sources with backing and source holder, the detector support for
the silicon detector, the vacuum chamber, the steel lamellae, the copper shielding of the
MINIBALL cluster detector and the lead shielding of the experiment.

4.2 Efficiency Calibration

Although the geometry of the setup and its components has been included into the sim-
ulation as careful as possible, there remain some uncertainties concerning the full-energy
peak efficiency of the MINIBALL cluster detector. These are caused by (partly unknown)
tolerances of the crystal sizes, the thickness of the dead-layers, the composition of the
material of the detector capsules (kept secret by the manufacturer of the detector), the
charge collection efficiency, simplification of the simulated geometry, etc. Several auxiliary
measurements were therefore performed in addition to the calibration points supplied by
the 210Po source itself to check the results obtained from the simulation of the MINIBALL
detector: some of the input measures were slightly adjusted to properly reproduce the
result of these calibration measurements.

These adjustments are compiled in table 4.1. The relative efficiency (with respect to a
standard NaI detector [39]) is a measure of the active volume of the Ge-crystal. The
dimensions of the simulated crystal (taken to be the design values) were scaled with an ap-
propriate factor to end up with an crystal of the matching relative efficiency. The required
adjustments of the thicknesses of the dead-layers and Al capsules act as a compensation for
effects not included in the simulation (e.g. regions of incomplete charge collection, unknown
materials,. . . ), for insufficiencies of the simulated setup and of the simulation itself.
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opper detetorshielding

lead shielding vauum hambersilion stripdetetor � soure
MINIBALLluster detetor

Figure 4.3: Visualisation of the simulated experimental setup cut open.
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opper platefor ooling ofsilion detetors

soure holder
steel lamellae� soure

MINIBALLluster detetor

silion stripdetetors

Figure 4.4: A more detailed visualisation of the simulated experimental setup (the lead
shielding, the copper shielding for the MINIBALL cluster detector and the vacuum chamber
are not visualised)
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value datasheet simulation

relative efficiency module A 55.0% 58.3%
relative efficiency module B 55.0% 56.5%
relative efficiency module C 59.1% 60.7%
dead-layer module A 5 µm 0.4 mm
dead-layer module B 5 µm 0.3 mm
dead-layer module C 5 µm 0.6 mm
capsule thickness (side) 0.7 mm 1.6 mm
capsule thickness (front) 1 mm 1.8 mm

Table 4.1: The relative efficiencies of the crystals, the thicknesses of the dead-layers and
the capsules have been adapted in the simulation to give a good agreement with the mea-
surements of the reference sources. To achieve a suitable relative efficiency the dimensions
of the simulated crystal were scaled with an appropriate factor. The required adjustments
of the thicknesses of the dead-layers and the capsules function as a compensation for effects
not included in the simulation and for insufficiencies of the simulated setup.

N803 [counts] error εc
803 data error εc

803 simulation

addback 425394 688 8.09 % ±0.26 % 8.08 %
module A 87101 300 1.66 % ±0.05 % 1.64 %
module B 129631 393 2.46 % ±0.08 % 2.49 %
module C 126962 361 2.41 % ±0.08 % 2.43 %

Nα = 4.311(2) · 1011, f803 = 1.22(4) · 10−5

Table 4.2: The measured coincident full-energy peak efficiencies for the 803 keV γ-ray
following the α decay of 210Po to the first excited 2+ state of 206Pb are compared to the
results of the simulation. (Nα is the number of α particles detected, f803 is the α-branching
ratio to 206Pb(2+), see figure 3.3)
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Figure 4.5: The spectrum of the coincident 803 keV γ-branch (module B) with its Compton
background (4.3 MeV < Eα < 4.6 MeV) from the data is compared with the simulation
(scalled according to the full-energy peak area). The lead X-rays are not included in the
simulation, therefore the peaks are not present in the simulated spectrum. The electronic
cutoff at γ energies ≤ 40 keV is artificially added into the simulation.

As mentioned already in section 3.2, the 803 keV γ-branch of the 210Po source is a very
convenient ”build-in”calibration source. The coincident detection efficiency for the 803 keV
γ-ray is deduced from the data using the relation (discussed in more detail in chapter 5)

εc
803 =

N803

f803 · Nα

(4.1)

with the number of coincident detected (full-energy) photons from the 803 keV γ-branch
N803, the branching ratio f803 and the number of detected α particles Nα (see section 5.5).
The measured coincident detection efficiency for the setup used in the bremsstrahlung mea-
surement at 803 keV is presented in table 4.2 and compared to the result of the simulation.
The error of the measured efficiency is dominated by the uncertainty of the branching ratio
f803. In the simulation the E2 angular correlation between the direction of the α particle
and the 803 keV γ-ray was taken into account. The efficiencies are measured and simulated
for observing the full-energy of the 803 keV γ-ray a) in one of the three individual modules
of the MINIBALL detector or b) in the addback mode, where the energy signals of the
individual modules are added up. Note that the gain in the full-energy peak efficiency
when using the addback mode amounts to 23%.

Figure 4.5 shows the spectrum of the coincident 803 keV γ-branch with its Compton back-
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type energy intensity Iµ

Kα1 74.969 keV 0.462(9)
Kα2 72.805 keV 0.277(6)
Kα3 72.144 keV 0.00043(1)
Kβ1 84.938 keV 0.107(2)
Kβ2 87.300 keV 0.0391(8)
Kβ3 84.450 keV 0.056(1)
Kβ4 87.580 keV 0.0009(4)
Kβ5 85.470 keV 0.0031(1)

Table 4.3: X-ray energies and intensities (per 1 K-shell vacancies) for lead (Pb) [37]

ground (module B, 4.3 MeV < Eα < 4.6 MeV) from the data (red) and from the simulation
(blue) in comparison. Both spectra are scaled according to the full-energy peak area. The
main features of the spectrum are very well reproduced (the background from the lead
X-rays is not present in the spectrum of the simulation because they are not included in
the simulation). The electronic cutoff at γ energies ≤ 40 keV is artificially added into the
simulation.

A 60Co and a 152Eu calibration source was used to check the simulated efficiencies over a
wide energy range. Both sources were placed in nearly the same position as one of the
210Po sources, close to crystal B of the HPGe cluster detector.

Because of the close distance of the γ source to the cluster detector summing effects had
to be taken into account. To do so the calibration sources are simulated in case of 60Co
including to well known γ-γ angular correlation. In case of 152Eu, as the decay scheme
is quite complicated, only approximations for the γ-γ angular correlation were used. The
results from the simulations were then used to correct for summing effects in the data.

The relative efficiencies are directly taken from the intensities of the lines compared with
the intensities given in the literature [37].

The absolute full-energy γ-detection efficiencies are deduced from the data by looking at
coincident decays recorded in two different crystals. Requiring one γ-ray from a γ-cascade
to be detected in say module A, the measured probability that the second cascade γ-
ray with energy Eγ2 is observed in module B or C can be used to extract the absolute
γ-detection efficiencies of module B and C for γ-rays of energy Eγ2 . . . etc.

In figure 4.6 the measured efficiencies from the 60Co source are compared with the simulated
isotropic photon detection efficiency. The same is presented in figure 4.7 for the 152Eu
source.

Below ≈ 200 keV the γ efficiencies are getting very sensitive to the precise description of the
inactive materials between source and active volume of the γ-detector. To check the quality
of the simulation at these low γ-energies we used the X-rays emitted be the daughter atom
206Pb after the α decay. With a small probability an electron may be ejected by the α
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Figure 4.6: The measured full-peak energy efficiencies from the 60Co reference source
located near module B for module A (1), module B (2) and module C (3) are compared to
the simulated isotropic photon detection efficiency (summing effects have been corrected).
The shown error band reflects the accuracy of the simulated efficiency (see section 4.4).
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located near module B for module A (1), module B (2) and module C (3) are compared with
the simulated isotropic photon detection efficiency (summing effects have been corrected).
The shown error band reflects the accuracy of the simulated efficiency (see section 4.4).
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Figure 4.8: With a small probability X-ray radiation from the source is produced by an
inner shell electron knockout reaction during the α decay. The detection efficiencies of
X-rays measured in coincidence with the α particle in module A (1), module B (2) and
module C (3) are compared with the simulated coincident isotropic efficiency. The error
band reflects the accuracy of the simulation (see section 4.4).
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particle from an inner shell of the atom. The resulting gap is filled by an electron from
an upper shell producing the characteristic X-ray radiation of the daughter nucleus. In
table 4.3 the X-ray energies and relative intensities Iµ in the daughter nucleus 206Pb are
listed [37]. In this knockout reaction the energy of the α particle is reduced by the electron
binding energy and the kinetic energy of the ejected electron. By a coincident measurement
of the X-ray photons and the α particles these photons can be easily distinguished from
the X-ray radiation caused by background reactions with the lead shielding of the setup.

To measure the coincident detection efficiency the number of coincidently detected X-rays
NX-ray is compared to the number of produced X-rays in the α decay. The K-electron
emission probability PK per α decay of 210Po has been measured [47] and also been calcu-
lated [48, 49]. Here the value PK = 2.6(5) · 10−6 determined in [47] in a α-γ coincidence
measurement is used. Then the coincident detection efficiency is given by

εc
X-ray =

NX-ray

PK · Iµ · Nα
(4.2)

where Nα = 4.311(2) · 1011 is the total number of detected α particles (section 5.5).

In figure 4.8 the measured coincident detection efficiencies for X-ray radiation following the
α decay of 210Po is compared with the simulation assuming an isotropic angular distribution
of the photons. Within the systematic uncertainty given by the error of PK the agreement
between the data and simulation is satisfactory.

4.3 The α-γ Coincident Photon Detection Efficiency

In order to determine the energy-differential bremsstrahlung emission probability
dP (Eγ)/dEγ from the measured number of α-γ coincidences dN c

br(Eγ)/dEγ, the efficiency
εc

γ(Eγ) of the set-up for detecting a bremsstrahlung photon of energy Eγ in coincidence
with an α particle has to be known. In fact, with Nα being the total number of α particles
detected in the Si-detectors we obtain dP (Eγ)/dEγ from

dP (Eγ)

dEγ
=

1

εc
γ(Eγ) · Nα

· dN c
br(Eγ)

dEγ
. (4.3)

The coincident photon detection efficiency εc
γ(Eγ) will depend on the α-γ angular distri-

bution f�(Eγ , ϑ) as the acceptance of the setup is limiting ϑ to ∼ 60◦ < ϑ ≤ 180◦.

In the following we want to illustrate the effect of the angular correlation f� on the
coincident photon detection efficiency. As an example the acceptance of the setup for a
photon energy of 100 keV and 500 keV is compared with an isotropic, a pure E1 dipole and
a pure E2 quadrupole distribution in figure 4.9, i.e.

f�(Eγ, ϑ) = const. isotropic

f�(Eγ, ϑ) = sin2 ϑ pure E1 dipole

f�(Eγ, ϑ) = sin2 ϑ · cos2 ϑ pure E2 quadrupole
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pared with an isotropic (red), a pure E1 dipole (green) and a pure E2 quadrupole correlation
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the direction of motion of the generated α-particle and the propagation direction of the
generated bremsstrahlung photon.

The resulting coincident photon detection efficiencies of the setup are shown in figure 4.10.

As mentioned in section 2.5 for the bremsstrahlung emission during the α decay of 210Po
the interference between the electric dipole and quadrupole distribution as well as the
relativistic correction has to be taken into account.

Considering only first order correction terms, the angular correlation is given by (see equa-
tion (2.13))

f�(Eγ , ϑ) = sin2 ϑ
(
1 + 2Λ(Eγ) cos ϑ

)
. (4.4)

Theoretically we so far only know Λ(Eγ) in the limit Eγ → 0, while for Eγ > 0 we only
have the prediction of the semi-classical model of Jentschura-Milstein-Terekhov [21], which
does include the quadrupole interference but not the relativistic correction.

In order to enable calculation of the coincidence efficiency εc
γ(Eγ) for any value of Λ(Eγ)

we rewrite equation (4.4) in the form

f�(ϑ) = sin2 ϑ
(
1 + 2Λ cosϑ

)
(4.5)

= sin2 ϑ + 2Λ sin2 ϑ cos ϑ (4.6)

= sin2 ϑ + 2Λ sin2 ϑ cos ϑ + 2Λ sin2 ϑ − 2Λ sin2 ϑ (4.7)

=
(
1 − 2Λ

)
· sin2 ϑ + 2Λ · sin2 ϑ

(
1 + cos ϑ

)
. (4.8)
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Eγ range εc
γ,2Λ=0 εc

γ,2Λ=1 rel. Eγ range εc
γ,2Λ=0 εc

γ,2Λ=1 rel.
[keV] [%] [%] err. [keV] [%] [%] err.

50 . . . 60 4.15 2.19 7.0% 430 . . . 440 7.22 3.63 4.0%
60 . . . 70 7.35 4.03 5.6% 440 . . . 450 7.11 3.59 4.0%
70 . . . 80 10.1 5.57 5.0% 450 . . . 460 7.02 3.51 4.0%
80 . . . 90 12.0 6.76 4.7% 460 . . . 470 6.95 3.50 4.0%
90 . . . 100 13.3 7.44 4.5% 470 . . . 480 6.78 3.44 4.0%
100 . . . 110 14.1 7.90 4.3% 480 . . . 490 6.72 3.37 4.0%
110 . . . 120 14.6 8.13 4.2% 490 . . . 500 6.61 3.28 4.0%
120 . . . 130 14.8 8.14 4.2% 500 . . . 510 6.52 3.26 4.0%
130 . . . 140 14.8 8.11 4.1% 510 . . . 520 6.50 3.21 4.0%
140 . . . 150 14.5 7.89 4.1% 520 . . . 530 6.39 3.16 4.0%
150 . . . 160 14.1 7.58 4.1% 530 . . . 540 6.29 3.14 4.0%
160 . . . 170 13.7 7.33 4.1% 540 . . . 550 6.30 3.12 4.0%
170 . . . 180 13.3 7.08 4.1% 550 . . . 560 6.10 3.08 4.0%
180 . . . 190 12.9 6.90 4.1% 560 . . . 570 6.11 3.00 4.0%
190 . . . 200 12.6 6.63 4.1% 570 . . . 580 6.05 2.98 4.0%
200 . . . 210 12.1 6.40 4.0% 580 . . . 590 6.02 2.93 4.0%
210 . . . 220 11.8 6.20 4.0% 590 . . . 600 5.92 2.91 4.0%
220 . . . 230 11.5 5.98 4.0% 600 . . . 610 5.87 2.89 4.0%
230 . . . 240 11.2 5.82 4.0% 610 . . . 620 5.77 2.87 4.0%
240 . . . 250 10.9 5.57 4.0% 620 . . . 630 5.76 2.87 4.0%
250 . . . 260 10.5 5.43 4.0% 630 . . . 640 5.64 2.85 4.0%
260 . . . 270 10.2 5.33 4.0% 640 . . . 650 5.59 2.81 4.0%
270 . . . 280 9.96 5.06 4.0% 650 . . . 660 5.51 2.69 4.0%
280 . . . 290 9.75 5.03 4.0% 660 . . . 670 5.55 2.73 4.0%
290 . . . 300 9.53 4.87 4.0% 670 . . . 680 5.44 2.71 4.0%
300 . . . 310 9.28 4.75 4.0% 680 . . . 690 5.37 2.67 4.0%
310 . . . 320 9.11 4.61 4.0% 690 . . . 700 5.37 2.67 4.0%
320 . . . 330 8.78 4.49 4.0% 700 . . . 710 5.30 2.58 4.0%
330 . . . 340 8.75 4.42 4.0% 710 . . . 720 5.34 2.65 4.0%
340 . . . 350 8.53 4.28 4.0% 720 . . . 730 5.19 2.56 4.0%
350 . . . 360 8.37 4.24 4.0% 730 . . . 740 5.13 2.55 4.0%
360 . . . 370 8.17 4.18 4.0% 740 . . . 750 5.17 2.51 4.0%
370 . . . 380 8.07 4.06 4.0% 750 . . . 760 5.14 2.47 4.0%
380 . . . 390 7.86 3.98 4.0% 760 . . . 770 5.08 2.46 4.0%
390 . . . 400 7.69 3.86 4.0% 770 . . . 780 5.01 2.47 4.0%
400 . . . 410 7.60 3.83 4.0% 780 . . . 790 4.98 2.42 4.0%
410 . . . 420 7.42 3.71 4.0% 790 . . . 800 4.92 2.42 4.0%
420 . . . 430 7.28 3.66 4.0%

Table 4.4: The simulated coincident photon detection efficiencies εc
γ,2Λ=0 for the α-γ

angular correlation f2Λ=0 = sin2 ϑ and εc
γ,2Λ=1 for f2Λ=1 = sin2 ϑ(1 + cosϑ) are listed for

10 keV energy bins up to a γ-energy of 800 keV (addback mode).
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semi-classical result of Jentschura-Milstein-Terekhov [21], magenta), and assuming a con-
stant Λ value Λ(Eγ) = 0.26 (orange) are shown.

Thus by knowing the coincident photon detection efficiencies εc
γ,2Λ=0 for a pure dipole (E1)

α-γ angular correlation f2Λ=0 = sin2 ϑ and εc
γ,2Λ=1 for the angular correlation f2Λ=1 =

sin2 ϑ(1 + cosϑ), the coincident photon detection efficiency for a given Λ value can be
derived by

εc
γ,Λ =

(
1 − 2Λ

)
· εc

γ,2Λ=0 + 2Λ · εc
γ,2Λ=1 . (4.9)

The values of εc
γ,2Λ=0 and εc

γ,2Λ=1 were simulated using the corresponding angular corre-

lation f2Λ=0 = sin2 ϑ and f2Λ=1 = sin2 ϑ(1 + cosϑ) in the event generation. The angular
distribution generated in the simulation for 2Λ = 0 and 2Λ = 1 are shown in figure 4.11.
The resulting coincident photon detection efficiencies εc

γ,2Λ=0 and εc
γ,2Λ=1 for an energy

range upto 800 keV binned in 10 keV energy bins are listed in table 4.4 (addback mode).

In figure 4.12 the resulting efficiency curves εc
γ(Eγ) assuming the α-γ angular correlation

(see equation (4.4)) with Λ(Eγ) = 0 (non-relativistic pure dipole), Λ(Eγ) = ΛE2
JMT(Eγ)

(non-relativistic semi-classical result [21]) and a constant Λ value Λ(Eγ) = 0.26 are shown.

4.4 Accuracy of the Simulated Coincident Efficiency

In the following section the accuracy of the simulated coincident photon efficiency εc
γ is

estimated.
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Figure 4.13: The relative error from the 803 keV γ-branch (green) and the error from the
adaptation of the simulation (blue) are combined to the final relative error of the simulated
efficiency (red).

There are many parameters that influence the accuracy of the simulation, such as the
dimensions of the detectors, the chamber and the α sources, the thicknesses of the different
materials, the composition of the materials, the distances between the sources, the chamber
and the detectors. All of these parameters have uncertainties which in principle have to be
taken into account.

In the present case, however, the 803 keV γ-ray following the α decay of 210Po in the first
excited 2+ state of the daughter nucleus 206Pb could be used as a build-in calibration source
to determine the absolute detection efficiency of the setup at ∼ 800 keV. This information
together with γ-calibration sources covering the γ-energy range between ∼ 100 keV and
∼ 1.5 MeV was used to adjust some of the input data of the simulation (see table 4.1). We
therefore have two main contributions to the error budget: The measurement of the 803 keV
γ-ray is subject to an relative error of ∼ 4%, which is mainly caused by the uncertainty of
the branching ratio f803 (see table 4.1). The second error contribution is estimated from
the required adjustment of the simulation by comparing the relative efficiencies obtained
with the adapted parameters to the efficiencies with the original parameters taken from
the data sheets.

In figure 4.13 the relative error from the 803 keV γ-branch in plotted in green and the
relative error from the adaptation of the simulation is plotted in blue. The resulting
combined error taking into account both contributions is shown in red.

Note that the reference sources were point-like whereas the 210Po sources have active areas
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Figure 4.14: The simulated coincident photon detection efficiency is plotted for the active
area of the two α sources in a 2-dimensional surface plot. The variation in the coincident
efficiency is in the order of ±7%. The uncertainty due to the inhomogeneity of the sources
is neglected because the uniformity of the sources has been shown (see section 3.2).

of ∼ 4 cm2 each. Therefore the variation of the detection efficiency over the active area of
the source was investigated. Figure 4.14 shows the variation in the simulated coincident
photon detection efficiency over the source area of both sources at Eγ = 500 keV. The
variation of the efficiency is in the order of ±7%. But because the uniformity of the source
has been shown (see section 3.2, figure 3.5) no uncertainty of the simulated efficiency due
to the spreading of the source has to be considered.

The slight difference of the activities of the two sources by 17%, however, was taken into
account in the simulation.

The resulting relative errors of εc
γ,2Λ=0(Eγ) and εc

γ,2Λ=1(Eγ) are given in table 4.4. Moreover,
the coincident detection efficiencies for Λ(Eγ) = ΛE2

JMT
(Eγ) and for Λ(Eγ) = 0.26 are plotted

with the corresponding error bands in figure 4.15.
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Chapter 5

Data Analysis

The production run lasted more than a year and the analysed data corresponds to 270
days of data taking (about 70% up time).

Within that period 4.3 ·1011 α-particles were incident on the detector. In the energy region
above 300 keV about 160 bremsstrahlung events have been recorded while in the same time
1.4 · 108 background photons were detected.

A detailed description of the analysis of the experimental data is presented in this chapter.

5.1 α-Energy Spectra

Figure 5.1 shows an α-energy spectrum from one strip of the silicon detector. Shown
in black are the down-scaled α-singles. The spectrum displays an asymmetric Gaussian
peak, corresponding to the detection of α particles of energy Eα,0 = 5304 keV from the
ground state decay of 210Po to 206Pb, together with a long low-energy tail caused mainly
by scattered α particles. Note that the tail is completely covering up the α-line expected
at Eα,803 = 4517 keV due to the 10−5 branch of 210Po to the 2+ state of 206Pb. A detailed
discussion of the peak form and a suitable fit function for describing the shape of the peak
will be given in section 5.4.1 and appendix C.1.

The red curve in figure 5.1 shows α particles recorded in coincidence with a photon (Eγ &

40 keV). While the peak at Eα,0 = 5304.38 keV is now strongly suppressed it is still
prominent due to random coincidences with room background. The signature of the α
branch to 206Pb(2+) can now be clearly seen at Eα,803 = 4517 keV.

The resolution of the α detection varies from strip to strip. This is caused by varying
properties of the silicon detector and the electronics and by the geometry of the setup.
Due to the geometry the range of the emission and detection angles as well as the count
rates are different for each strip of a detector, resulting in different energy losses in the
source material and in the dead-layer of the silicon detector.
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Figure 5.1: α-energy spectrum of down-scaled α-singles (black) and α particles coincident
with a photon (red). The data shown were detected by strip number seven of the silicon
detector within a period of five days.

In figure 5.2 the resolution (FWHM) of the 5304 keV α-line at the beginning of the pro-
duction run is plotted for each strip in red. The outer strips (strip 1. . . 5 of detector 1 and
strip 12. . . 16 of detector 2) cover a wider spread of the emission and detection angels than
the central strips and therefore exhibit a slightly higher FWHM. The same holds for the
inner strips (strip 15 and 16 of detector 1 and strip 1 and 2 of detector 2). The resolution
at the end of the production run (green) and the count rate of each strip (blue) are also
plotted in figure 5.2. The loss in resolution is likely due to the radiation damage of the
detectors; the detected α-particles are implanted into the detector material and damage the
crystal structure of the silicon. A discussion of these effects can be found in the literature
[39, 50, 51].

For the analysis of the data only the energy region between Eα,803 and Eα,0 is relevant, as
beyond Eγ ≈ 700 keV the emission probability of bremsstrahlung is too low to be observed
in this experiment.

In the α-γ coincidence spectrum as shown figure 5.1 (red) the Eα,803 and Eα,0 peaks are
prominent and are used for the energy calibration. Between these energies the response of
the detectors and the electronics can be considered to be linear.

The energy spectra of each strip are calibrated separately. For the calibration the data is
grouped into groups of three to six days of data taking to provide enough statistic for each
strip.
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in red, the resolution at the end is plotted in green. The loss in resolution over the time is
likely due to the radiation damage in the silicon detector. The count rate for each strip at
the beginning of the production run is plotted in blue (right axis).
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Figure 5.3: The γ-energy spectrum measured in coincidence with α particles selecting
the α-branch of 210Po to the first excited 2+ state of 206Pb shows the full-energy peak at
803 keV, which has a FWHM of about 2.5 keV and a long tail towards lower γ-energies
due to incomplete detection of the 803 keV photon (partly caused by Compton-scattering in
the active volume of the Ge-detectors, with the scattered photon leaving the active volume
undetected). X-rays following the α decay of 210Po to 206Pb(2+) measured in coincidence
with the α particle are also present in the spectrum at the corresponding γ-energies.

5.2 γ-Energy Spectra

In figure 5.3 the γ-energy spectrum measured in coincidence with α’s selecting the α branch
of 210Po to the 2+ state of 206Pb of module A is shown.

Besides the full-energy peak at 803 keV, which has a FWHM of about 2.5 keV, the spectrum
displays a long tail towards lower γ-energies due to the incomplete detection of the 803 keV
photon. While this tail, which extends down to the electronic threshold of ∼ 40 keV, might
cause coincident background due to pile-up events in the region where bremsstrahlung
events are expected (see figure 3.1), they do allow, on the other hand, for a careful inves-
tigation and optimisation of the time-correlation of α’s and γ-rays for γ-energies between
∼ 80 keV and ∼ 800 keV as discussed in section 5.3.

For the energy calibration of the γ-energy spectra γ-lines from the room background are
used. A detailed background spectrum with the classification of the background lines can
be found in appendix D.
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Each HPGe crystal of the cluster detector is calibrated separately and the data is again
grouped to provide enough statistic. For the calibration of the γ energy spectra a linear
function is used which has been shown to be a good approximation of the response of the
HPGe crystals and the electronics [36] between 80 keV < Eγ < 1300 keV.

5.3 Time Spectra

To reduce background it is important to distinguish coincident events from random events.
To be able to do so the difference between the time when the α particle was detected and
the time of the photon detection is used. For each accepted event (downscalled single-α-,
single-γ-, and coincident α-γ-events) the timing signal of each strip of the silicon detector
and of the core of each crystal and of each of the segments of the cluster detector was
recorded. In all cases the recorded time is the time difference between the master trigger
and the delayed trigger signal of the strip, core or segment (see section 3.6).

The spectrum of time differences between the time of the master trigger, ttrig, and the
delayed trigger signal of a strip of the silicon detector, tα, is shown in figure 5.4. There are
two classes of events contributing to the spectrum. First there are down-scaled α-singles
with no photon detected in the same event (blue curve in the inset of figure 5.4). Down-
scaled α-singles recorded in the chosen strip which gives also rise to the master trigger can
be found in the self trigger peak. If the master trigger was produced by an α particle in a
different strip the event contributes to the broad background on the right of the self trigger
peak. The second contribution comes from events in which an α particle was recorded
together with a photon (red curve in the inset of figure 5.4). On a background from chance
coincidences a prominent peak of the coincident α-γ events can be seen.

Two different times from the HPGe detector were recorded: The time tCFD
γ was taken from

the analog timing branch. Here the preamplifier signal of the core of the responding module
was shaped in a timing filter amplifier (TFA) and then a constant fraction discriminator
(CFD) was used to produce the trigger output. Also the “fast trigger” output of the XIA
DGF-4C cards was recorded as tXFT

γ . This output is generated by the digital leading edge
(LE) discriminator and therefore the time resolution is restricted by the sampling rate of
the flash ADC of 40 MHz (2 ns per sample).

For the investigating and optimising the coincidence time information α-γ coincidences with
Eα restricted to Eα,803 are considered. These events are dominated by the full energy peak
of 803 keV γ-branch and its Compton-background and 2-dimensional Eγ versus tα−tγ plots
allow to analyse the dependence of the time resolution from the detected photon energy.

Figures 5.5 and 5.6 show such a 2-dimensional plot for the analog CFD time tCFD
γ and

the XIA Fast Trigger time tXFT
γ , respectively together with its projection on the time axis.

For the XIA Fast Trigger time tXFT
γ the centre of the coincidence peak moves to earlier

times with lower γ-energies. This is a well known behaviour of a leading edge trigger, the so
called “amplitude walk” [36, 39]. For very small energies also tCFD

γ shows such an amplitude
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Figure 5.4: The spectrum of the time difference between the master trigger ttrig and the
delayed trigger signal of a single strip of the silicon detector is shown (strip 12 of detector 1).
Events in which only a down-scaled α particle is recorded and the selected strip generated the
master trigger give rise to the self trigger peak. A photon which is detected in coincidence
with the α particle and produced the master trigger can be found in the coincidence peak.
In the inset the corresponding spectra of down-scaled α-singles (blue) and events in which
both an α particle and a photon was recorded (red) are shown separately.
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Figure 5.5: In the upper panel the detected energy of the 803 keV γ-ray from the α decay to
206Pb(2+) is plotted versus the time difference between the detection time of the α particle,
tα, and the photon time from the analog timing branch tCFD

γ (sum of all modules, addback
mode). In the lower panel the projection on the time axis is shown. The time resolution
is getting worse for lower γ-energies, moreover, for very low γ-energies a slight amplitude
walk can been seen. The origin of the small second coincidence peak at 100 ns is unclear.
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Figure 5.6: In the upper panel the detected energy of the 803 keV γ-ray from the α decay to
206Pb(2+) is plotted versus the time difference between the detection time of the α particle,
tα, and the photon time tXFT

γ derived from the digital leading edge trigger integrated in the
XIA DGF-4C cards (sum of all modules, addback mode). In the lower panel the projection
onto the time axis is shown. For lower γ-energies the centre of the coincidence peak is
shifted to earlier times. This feature is known as “amplitude walk” and is typical for a
leading edge trigger. Because of the sampling rate of the flash ADC (1 sample = 25 ns) the
resolution of the timing is limited to about 50 ns.
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Figure 5.7: Trace of a charge pulse from a detector segment in which an energy of 2.4 MeV
was deposited. The response function of the preamplifier R(t) (red) is fitted to 7 samples
from the trace including ∼ 4 samples from the start of the pulse and ∼ 3 samples from the
baseline. The value tfit

0 indicates the fitted start time of the pulse. In the inset the total
pulse trace is shown.

walk, which is due to the fact that for such low energies the CFD starts to behave like a
LE trigger.

As noted in section 3.6, due to the low counting rate of the germanium detectors it was
possible to store the pulse traces digitised in the XIA DGF-4C cards; a typical trace of
a (current integrated) charge pulse corresponding to a deposited γ-energy of 2.4 MeV is
shown in the inset of figure 5.7. The recorded signal traces allow for a detailed off-line
pulse shape analysis (PSA), which can be used to determine more careful the start time t0
of the signal and thereby to improve the timing information on an event by event basis.

Different algorithms to the determine the start time t0 of the pulse from such traces have
been discussed [36, 42, 52, 53]. We used the following procedure [54]:

Approximating the beginning of the current pulse, induced by an energy deposition in the
detector at time t0, by a step function Θ(t− t0), the resulting charge pulse R(t) for t & t0
is given by a convolution of the response function of the preamplifier with a step function,
which leads to ([54], note that an obvious misprint has been corrected)

R(t) = Ap

(
t − t0 −

√
π τr

2
√

1.3
erf

(√
1.3 (t − t0)

τr

))
Θ(t − t0) + Bp . (5.1)
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Figure 5.8: Trace of a charge pulse from a detector segment in which an energy of 240 keV
was recorded, together with the best fit (red curve) using equation (5.1) and the resulting
start time tfit

0 .

The value τr describes the rise time of the preamplifier, the value Bp corresponds to the
baseline before the start of the signal.

The function R(t) is only a good approximation of the first 50-100 ns of the charge pulse.
For this work 7 samples of the trace are used to fit R(t) to the beginning of the trace
covering 3 samples of the baseline and 4 of the beginning of the trace. The rise time of
the preamplifier was optimised to a value of τr = 2.3 samples = 57.5 ns. In figure 5.7 an
example for a fitted function R(t) and the resulting start time tfit

0 is given.

The signal of a 240 keV photon which rises slowly in the beginning is presented in figure
5.8. The fitted response function R(t) with the fitted start time tfit

0 is plotted in red. This
illustrates that the fit of the start of the pulse with the response function R(t) also gives
realistic values for tfit

0 for events with low γ-energy.

The fitted start time tfit
0 is used to correct the the XIA Fast Trigger time tXFT

γ . As tXFT
γ

determines the readout of the trace, the corrected trigger time tXTC
γ is defined by

tXTC
γ = tXFT

γ + tfit
0 · 25 ns . (5.2)

As already shown in [36], the timing information from PSA the segment traces is more
precise than that derived from the core trace. So the evaluation of tXTC

γ was based on tfit
0

from the trace of the hit segment with the largest deposited energy fraction.
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Figure 5.9: In the upper panel the detected energy of the 803 keV γ-ray from the α decay
to 206Pb(2+) is plotted versus the time difference between the detection time of the α par-
ticle, tα, and the photon time tXTC

γ derived using PSA of the segment signals (sum of all
modules, addback mode). In the lower panel the projection onto the time axis is shown. In
comparison the XIA fast trigger time the amplitude walk has been cancelled and in com-
parison to the analog timing the shape of the coincidence peak and the background has been
improved.
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CFD time corrected XFT time
Eγ FWHM [ns] area† [counts] FWHM [ns] area† [counts] gain

100 keV. . . 200 keV 29.4 7283 29.3 8643 18.7%
200 keV. . . 300 keV 21.9 8065 24.6 8556 6.1%
300 keV. . . 400 keV 18.6 6263 20.7 6594 5.3%
400 keV. . . 500 keV 17.0 6680 18.7 6972 4.4%
500 keV. . . 600 keV 15.2 9572 19.0 10048 5.0%
600 keV. . . 700 keV 15.1 6055 16.6 6309 4.2%
700 keV. . . 800 keV 14.7 3496 14.9 3636 4.0%
800 keV. . . 900 keV 13.2 24182 14.5 24962 3.2%
† integral of the spectrum from −4.5 · σ to 4.5 · σ (background subtracted)

Table 5.1: The time resolution and the area under the coincidence peak are compared for
the two timing methods applying the corrected XIA time tXTC

γ and the analog time tCFD
γ ,

respectively. While the resolution is comparable, the shape of the coincidence peak and the
number of coincident events within the interval from −4.5 · σ to 4.5 · σ is improved. The
last column shows the relative gain in area.

The resulting 2-dimensional Eγ versus tα − tXTC
γ plot is presented in figure 5.9. With this

correction the amplitude walk is corrected and also the time resolution at low energies is
considerably improved compared to the XFT timing. In table 5.1 the timing resolution
obtained with the corrected XIA timing is compared to the CFD timing for different energy
regions. Also the number of counts within a window of −4.5 ·σ to 4.5 ·σ (the interval used
for the analysis, see also section 5.4.1) are given for both timing method.

Note that the coincidence time resolution as measured by the FWHM is similar for both
methods, but that the number of events within the accepted time window is larger (in
particular in the low energy window from 100 − 200 keV) when using the corrected XFT
timing.

During the period of data taking several time calibrations of the TDCs were performed
using an Ortec 462 time calibrator. The TDCs were found to be linear and stable. The
time offset of each silicon strip were calibrated using the self trigger peak, grouping the
data as described in section 5.1. For the calibration of the offset of the corrected XIA time
of each segment the coincidence peak in the tα − tXTC

γ spectrum was used.

5.4 Bremsstrahlung Analysis

The spectrum of the time difference between the detection time of the α particle tα and
the γ-ray tγ , which is given by the corrected XFT time tXTC

γ (see section 5.3), is plotted
in figure 5.10. It shows a prominent coincidence peak riding on a broad distribution of
random coincidences.
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Figure 5.10: Spectrum of tα − tγ with time-cut and chance gate

To observe the bremsstrahlung emitted in the α decay of 210Po coincident events have to
be selected by a time-cut. Figure 5.11 shows the 2-dimensional Eα versus Eγ plot for a
time-cut on the coincidence peak with a width of ∆t = 100 ns. A more careful choice of
the time-cut, which depends on Eγ and which is used later in the analysis is discussed in
detail in section 5.4.1.

In the upper part of the resulting Eα versus Eγ plot (compare also to figure 3.1) a hori-
zontal band of random coincidences of α particles from the α decay to the ground state of
206Pb and photons from the room background can be seen. The 803 keV gamma branch
is prominent in the lower right corner with its Compton background forming the lower
horizontal band on its left. If the α particle knocks out an electron during the decay part
of its energy is taken away by the electron. The remaining gap in the electron shell is
filled by an electron from an upper shell producing X-ray radiation. These X-rays have
the typical X-ray γ-energy of the daughter nucleus and the corresponding α particle has a
smaller energy. Thus these events form the vertical lines on the left side of the spectrum.
On the diagonal of the Eα versus Eγ plot the bremsstrahlung events are clearly visible.

The 2-dimensional Eα versus Eγ spectrum obtained by selecting events in the chance
coincidence gate (see figure 5.10) is displayed in figure 5.12.

Remember that there are two sources of background in the region of the bremsstrahlung as
already noted in section 3.1: (a) Background arises from random coincidences of photons
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Figure 5.11: 2-dimensional Eα versus Eγ plot of events within a coincidence time-cut of
−50 ns < ∆t < 50 ns.
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Figure 5.12: 2-dimensional Eα versus Eγ plot of events from the chance gate on the
coincidence time spectrum (−200 ns < ∆t < −100 ns or 100 ns < ∆t < 700 ns). The colour
table is scaled by the ratio of the width of the prompt gate to that of the chance gate. (see
figure 5.11).
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bin number Eγ range ∆Eγ

0 90 keV . . . 110 keV 20 keV
1 110 keV . . . 130 keV 20 keV
2 130 keV . . . 150 keV 20 keV
3 150 keV . . . 170 keV 20 keV
4 170 keV . . . 190 keV 20 keV
5 190 keV . . . 210 keV 20 keV
6 210 keV . . . 240 keV 30 keV
7 240 keV . . . 270 keV 30 keV
8 270 keV . . . 300 keV 30 keV
9 300 keV . . . 350 keV 50 keV
10 350 keV . . . 400 keV 50 keV
11 400 keV . . . 450 keV 50 keV
12 450 keV . . . 550 keV 100 keV

Table 5.2: Binning of the data in Eγ. Because the bremsstrahlung emission probability
decreases exponentially with Eγ wider bins were used at higher γ-energies.

from the room background with α particles from the α decay to the ground state of 206Pb
that lost part of their energy, e.g. by scattering, energy loss in the source material, in the
dead-layer of the detector, etc. This background is also present in the random spectrum.
(b) Photons from the Compton background of the 803 keV γ-branch may be measured in
coincidence with a prompt α particle whose energy is detected to high, e.g. due to pile-
up. This background is not present in random spectrum. Therefore a simple background
subtraction of the random spectrum as used in [23, 24, 36] does only take into account part
of the background. The high statistics of the present data allowed us to perform a more
advanced analysis taking into account both kinds of backgrounds.

For the further analysis the data is split into several bins in the γ-energy. Because the
bremsstrahlung probability decreases exponentially with Eγ wider bins were used at higher
γ-energies. Table 5.2 shows the Eγ bins used in the analysis.

The prompt events for each γ-energy bin are then projected along the diagonal in the
Eα versus Eγ plot by plotting them as a function of Ẽ = Eα + 206/210 ·Eγ (see section

3.1). In these spectra the bremsstrahlung events should result in a peak at Ẽ = Eα,0 =
5304 keV. An example is shown in figure 5.13. By this procedure the peaks from the
chance coincidences and from the Compton background of the 803.1 keV branch are getting
broader, but at the same time the width of the bremsstrahlung peak is optimised.

The same projection is applied to the data obtained with the chance gate (see figure
5.14). The resulting spectrum, scaled with the width of the chance gate in comparison to
the prompt gate gives a good reference for the random background in the corresponding
prompt coincidence spectrum.
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Figure 5.13: Prompt data from the γ-energy bin 9 (300 keV < Eγ < 350 keV) projected
along the expected bremsstrahlung diagonal.
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Figure 5.14: Random data from the γ-energy bin 9 (300 keV < Eγ < 350 keV) projected
along the expected bremsstrahlung diagonal. The projected spectrum is scaled with the ratio
of the widths of the time windows applied to obtain the prompt and random spectra.
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5.4.1 Modelling the Projected Energy Spectra

To extract the number of bremsstrahlung photons from the projected spectra it is necessary
to understand the shape of the underlying random background and to model the various
coincident contributions to the spectra.

Modelling the α-Lineshape

The response of the Si-detector to an impinging monoenergetic α particle of 5304 keV from
the α decay of 210Po has a characteristic form. Its shape is influenced by various effects,
e.g. incomplete charge collection in the detector, energy loss of the α particle in the dead
layer of the silicon detector, pile-up effects, etc. All these effects are characteristic of the
detection of the α particle or of the geometry of the setup but do not depend on the choice
of the time-cut. Therefore the peak form can be deduced from the random (non-projected)
α spectrum.

Several methods to fit an α spectrum have been proposed in the literature [55–58]. In
this work a fit function f(x) is used consisting out of a Gaussian g(x), a function for the
approximation of the low energy tail tl(x) and one for the high energy tail th(x).

f(x, x0) = g(x, x0) + tl(x, x0) + th(x, x0) . (5.3)

The modelling of the α-lineshape is discussed in detail in appendix C.1.

Modelling the Background due to Chance Coincidences

The peak at Ẽ = 5304 keV + 206/210 · Eγ and its low energy tail is due to random
coincidences between the α particle from the decay of 210Po to the ground state of 206Pb
and the ambient γ background. For a given energy bin the projected spectrum obtained
with the random gate gives a good approximation of the background contribution.

Due to the projection the peak form is broadened in comparison to the α-lineshape dis-
cussed above. In principle the α-lineshape folded with the characteristic function of the
background spectrum should reproduce the peak form of the projected spectrum. For sim-
plification, the broadened peak in the projected random spectrum is approximated by six
equidistant Gaussian with each amplitude fitted freely. To each of the six Gaussians a low
energy tail and a high energy tail of similar structure as mentioned above was attached,
shifted with the position of the Gaussian, and scaled by its area. All parameters of the
tails are identical for each Gaussian and are allowed to vary freely during the fit. By this
procedure the peak form in the projected random spectrum is described very well; scaled
with the widths of the respective time-cuts it describes the background from chance coin-
cidences in the prompt spectrum without any further fitting. In figure 5.15 the so derived
function bcc(Ẽ) modelling this background contribution is plotted in cyan for the energy
bin 190 keV < Eγ < 210 keV.
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Figure 5.15: Background contributions in the projected prompt energy spectrum due to α
particles which where detected in coincidence with photons from the room background and
due to the Compton background from the 803 keV γ-branch. The function bcc(Ẽ) models

the background from the chance coincidences (cyan), the function bgc(Ẽ) that from the
Compton background of the γ-branch (green). The sum of both contributions results in the
dotted curve (blue). The shown spectrum is the projected 190 keV < Eγ < 210 keV energy
bin for a 100 ns wide prompt time-gate.
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Modelling the Background due to the 803keV γ-Branch

The second main feature in the prompt projected energy spectra at Ẽ < 5304 keV is due
to the Compton background from the 803 keV γ-branch. Because the photons from the
803 keV branch are detected in coincidence with the corresponding α particles they are
strongly suppressed in the random spectra. Therefore a different method has to be applied
in order to model this contribution.

The peak from the 803 keV γ-branch is again broadened due to the projection but it has
a slightly different form than the peak from the chance coincidences. Again a fit function
consisting of six equidistant Gaussian with their corresponding low and high energy tails is
used. The absolute areas of the Gaussians are fitted to the spectrum whereas the structure
of tails is taken from the fit of the random spectrum and held constant.

The resulting function bgc(Ẽ) again describes the contribution very well as shown figure
5.15 (green line).

Modelling of the Compton Background due to Higher Energy Bremsstrahlung

The upper part of figure 5.16 displays the 2-dimensional Eα versus Eγ plot of simulated

bremsstrahlung events using the quantum mechanical model. The projection on the Ẽ axis
is shown for a specific energy bin (here 190 keV < Eγ < 210 keV) in the lower part of figure
5.16.

Using ideal detectors all bremsstrahlung events would lie on the Eα + 206/210 ·Eγ = Eα,0

diagonal in the the 2-dimensional Eα versus Eγ plot. The simulated bremsstrahlung events
displayed in the upper panel of figure 5.16 show that one expects a considerable number of
events below this diagonal. These counts are due to (A) events in which the full γ-energy
was detected, but the measured α-energy is lower due to the effects that lead to the typical
peak-form in the Eα spectrum, and (B) due to events with the correct α-energy, but a
lower measured γ-energy, because the bremsstrahlung photon left the active volume of the
germanium detector after Compton scattering and thus deposited only part of its energy.
The comparison of the emitted bremsstrahlung energy, which is known for each event in
the simulation, with the energy detected by the germanium detector allows to distinguish
these effects. In the projected spectrum shown in the lower panel of figure 5.16 those
bremsstrahlung events in which the full photon energy was detected are plotted in blue.
The projected spectrum for these events shows the typical peak-form of the α-energy peak.
The red histogram shows bremsstrahlung events where the emitted energy was higher but
only part of it was detected in the active volume of the detector.

To determine the number of bremsstrahlung events the first effect (A) is taken into ac-
count by fitting the bremsstrahlung peak in the projected spectrum with the α-lineshape
discussed above (blue spectrum in figure 5.17). To include also the second effect (B) the

simulation is used to determine the function fbc(Ẽ) describing the Compton background of
higher energy bremsstrahlung, and scaling it with the area of the full energy bremsstrahlung
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Figure 5.16: In the upper panel the Eα versus Eγ plot for 8 ·109 simulated bremsstrahlung
events is shown. The lower panel shows the projected energy spectrum for an γ-energy
bin of 190 keV < Eγ < 210 keV. The projected energy spectrum is a superposition of
bremsstrahlung events recorded in the γ-detector with its full γ-energy (blue) and of Comp-
ton events from higher energy bremsstrahlung (red).
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peak (magenta spectrum in figure 5.17). This is done separately for each Eγ bin.

Fitting of the Bremsstrahlung Peak

The fit function ffit for the projected prompt spectrum is the sum of the four mentioned

contributions. The functions bcc(Ẽ) describing the background from the chance coinci-

dences, and the function bgc(Ẽ) describing the Compton background caused by the 803 keV

γ-branch. The Gaussian gbr(Ẽ, Ẽbr) models the full energy bremsstrahlung events with the
corresponding tails from the α-lineshape scaled with the area of the Gaussian. The func-
tion fbc(Ẽ, Ẽbr) for the Compton background from higher energy bremsstrahlung is scaled
with the area Asim of the fitted full energy bremsstrahlung events in the simulation.

The function ffit is then given by

ffit(Ẽ) = Abr

(
gbr(Ẽ, Ẽbr) +

1

Aref

tl(Ẽ, Ẽbr) +
1

Aref

th(Ẽ, Ẽbr)

+
1

Asim
fbc(Ẽ, Ẽbr)

)
+ bcc(Ẽ) + bgc(Ẽ) (5.4)

with the position of the bremsstrahlung peak in the projected spectrum Ẽbr and the Gaus-
sian gbr(Ẽ)

gbr(Ẽ, Ẽbr) =
1

σ
√

2π
exp

(
−1

2

(Ẽ − Ẽbr)
2

σ2

)
. (5.5)

All parameters of the α-lineshape including the width σ are kept constant. Only the area
Abr of the full energy bremsstrahlung and the position Ẽbr of the peak are free fitting
parameters.

Figure 5.17 shows the projected data for the 190 keV < Eγ < 210 keV energy bin and a

prompt time cut of ∆t = 100 ns. The fitted function ffit(Ẽ) describes the spectrum very
well.

Optimising the Prompt Time Window

The spectrum of the time difference tα − tγ as shown in 5.10 is dominated by the coin-
cident events from the 803 keV γ-branch. To analyse the shape of the coincidence peak
in the time spectrum for bremsstrahlung events it is therefore necessary to constrain it to
bremsstrahlung events. This done by applying the condition

5234 keV < Eα +
210

206
Eγ < 5374 keV ∧ Eα < 5220 keV . (5.6)

This condition selects events within a 140 keV broad band around the diagonal on which
full-energy bremsstrahlung events are expected to show up.
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Figure 5.17: The projected data is fitted with the function ffit(Ẽ) (190 keV ≤ Eγ ≤
210 keV, ∆t = 100 ns). This function is the sum of the bremsstrahlung peak (Gaussians
with tails), the contribution of the Compton background of higher energy bremsstrahlung

fbc(Ẽ) and the functions modelling the background from the chance coincidences bcc(Ẽ) and

the Compton background from the 803 keV γ-branch bgc(Ẽ).
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Figure 5.18: The spectrum of the time difference tα − tγ for events in the bremsstrahlung
region (equation (5.6)) and with a γ-energy of 130 keV < Eγ < 150 keV is fitted with a
Gaussian and a linear background.

As mentioned in section 5.3 the coincidence time resolution depends on the photon energy.
So the prompt gate for the different Eγ energy bins should be adjusted individually to (A)
minimise the contribution of random coincidences and to (B) avoid any efficiency losses
due to too narrow gates.

The spectrum of the time difference for the energy bin 130 keV < Eγ < 150 keV and
condition (5.6) is shown in figure 5.18. The coincidence peak is fitted with a Gaussian
and a linear background. The width ∆t of the prompt gate used in the analysis of the
corresponding energy bin is chosen to be proportional to the fitted standard deviation σ

t0 − 4.5σ < tα − tγ < t0 + 4.5σ , (5.7)

i.e. ∆t = 9σ, with t0 being the fitted position of the Gaussian. (Although t0 varies slightly
with the energy bin a constant value is chosen for all energy bins). This choice of the gate
window ensures that more than 99.9% of the area of the Gaussian lies within the time-cut.

Because the statistic in the region defined by equation (5.6) is very low for higher photon
energies some energy bins are grouped together for the fitting procedure. In these cases
for the lower energy bins within a group the gate of the preceding lower energy group is
applied to ensure no bremsstrahlung events are lost. The fitted values and the gate widths
chosen for each energy bin are presented in figure 5.19.

To verify the choice of the gate widths the resulting number of bremsstrahlung events was
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Figure 5.20: The area of the bremsstrahlung peak for the 150 keV < Eγ < 170 keV energy
bin is plotted versus the width of the prompt time gate. The red point is the number of
bremsstrahlung events using a prompt time gate of ∆t = 9σ.

analysed over a range of different gate widths. In Figure 5.20 the area of the bremsstrahlung
peak is plotted versus the width of the prompt gate. Using ∆t = 9σ is certainly sufficient
to ensure that the efficiency loss due to the time cut is much smaller than the statistical
error.

Number of Observed Bremsstrahlung Events per Eγ-Energy Bin

The fitting procedure described above was applied to each energy bin separately with the
corresponding prompt gate widths. In table 5.3 the fitted bremsstrahlung area is listed for
each energy bin together with the reduced χ2 of the fit.

The number of bremsstrahlung events Abr
n observed in the energy bin n is connected to the

total energy-differential bremsstrahlung emission probability (dP/dEγ)n by

(
dP

dEγ

)

n

=
1

∆Eγ,n

· Abr
n

εc
γ,n · Nα

, (5.8)

where ∆Eγ,n is the width of the energy bin n, εc
γ,n is the coincident photon detection

efficiency averaged over the bin n, and Nα is the number of α particles detected in the
Si-detector. While Nα can be extracted in a straight forward way from the down-scaled
α-singles spectra (see the following section 5.5), εc

γ,n can only be taken from the simulation
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Eγ bin [keV] Abr
n χ2

90 . . . 110 2455 2.0
110 . . . 130 1719 1.7
130 . . . 150 1223 1.8
150 . . . 170 755 1.7
170 . . . 190 588 1.5
190 . . . 210 368 1.6
210 . . . 240 371 1.3
240 . . . 270 196 1.6
270 . . . 300 127 1.2
300 . . . 350 93 1.2
350 . . . 400 45 1.0
400 . . . 450 15 1.1
450 . . . 550 11 1.1

Table 5.3: The fitted number of bremsstrahlung events Abr
n is listed for each energy bin

together with the reduced χ2 of the fit (addback mode). For the error evaluation see section
5.7.

once the α-γ angular correlation is known (see section 4.3); information about the α-γ
angular correlation is deduced from the present measurement in section 5.6.

5.5 The Down-scaled α-Singles Spectra

The number of down-scaled α singles detected in the two silicon detectors is used to deduce
the total number of α particles incident on the silicon detectors. The α-energy spectrum of
the down-scaled α singles is fitted using the α-lineshape derived from the random spectrum.
(see section 5.4.1 and appendix C.1).

During the time of data taking the down-scale factor was changed from time to time because
of the exponential decay of the α source. Therefore the data is grouped according to the
down-scale factor and fitted separately.

Figure 5.21 shows the fit of the first group of data with down-scale factor 211. Table 5.4
compiles the resulting values. The total number of α particles which were recorded by the
two Si-detectors is 4.311(2) · 1011.

With a detection efficiency of the Si-detectors of about 12% the total number of α decays
is ∼ 3.59 · 1012.
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Figure 5.21: The α-energy spectrum of the down-scaled α-singles is fitted using the ref-
erence α-lineform. The fitted area multiplied with the down-scale factor gives total number
of α particles incident on the detector.

run number ds factor ds α singles fit error α singles fit error

406 . . . 500 211 1.053 · 108 7.9 · 104 2.157 · 1011 1.6 · 108

504 . . . 562 210 1.120 · 108 6.5 · 104 1.147 · 1011 6.7 · 107

616 . . . 765 26 1.574 · 109 1.5 · 106 1.007 · 1011 9.4 · 107

sum 4.311 · 1011 2.0 · 108

Table 5.4: The number of α particles recorded by the silicon detectors is given by the fitted
area of detected down-scaled (ds) α-singles multiplied by the down-scale factor.
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Figure 5.22: Through the segmentation of the silicon detectors and the HPGe cluster
detector the angle ϑ between the direction of the α particle and the photon can deduced.

5.6 Analysis of the Angular Distribution

The present setup was not designed to measure the angular correlation f�(Eγ, ϑ) between
the direction of the α particle and the direction of the bremsstrahlung photon; in fact, the
setup was optimised to follow the bremsstrahlung emission probability up to the highest
possible γ-energies. Nevertheless, the segmentation of the α- and γ-detectors allow together
with the simulation program (discussed in section 4.1) to draw some conclusions about
f�(Eγ, ϑ). This analysis became necessary as it turned out during the course of the
present experiment that only a non-relativistic calculation of the α-γ angular correlation
will be available, which is not sufficient to describe correctly the α-γ angular correlation
as discussed in chapter 2.

Figure 5.22 shows how the angle ϑ between the direction of the α particle and the photon
can be estimated from the strip of the silicon detector hit by the α particle and from the
segment of the HPGe cluster detector containing the largest energy deposition of the γ-ray
(main interaction approximation [59]). Combining the 18 segments of the HPGe cluster
detector (hm, m = 1 . . . 18) and the 32 strips of the silicon detectors (sn, n = 1 . . . 32)
we obtain 576 individual segment-strip pairs (Pm,n, m = 1 . . . 18, n = 1 . . . 32) covering a
ϑ-range of 60◦ . ϑ ≤ 180◦ (note that each Si-detector only sees one of the α-sources).

To obtain information about the α-γ angular correlation we compare the number of events
detected per segment-strip pair, N exp

m,n, to the number of simulated events, N sim(iso)
m,n , as-

suming in the simulation an isotropic α-γ angular correlation.

Using the simulated contribution to Pm,n, we can define an average angle of isotropic
emission ϑsim

m,n between the direction of the simulated α particle and the corresponding
photon for this segment-strip pair, defined as the angle between the averaged direction of
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Figure 5.23: The simulated ϑ-distributions and the corresponding average angle are shown
for the segment-strip pairs P7,2 and P7,27 (Eγ = 803 keV).

the α particles pα
m,n and the averaged direction of the photons pγ

m,n

ϑsim
m,n := ∠(pα

m,n,p
γ

m,n) . (5.9)

In figure 5.23 the simulated ϑ-distributions are shown for the segment-strip pairs P7,2 and
P7,27 together with the corresponding average angle ϑsim

7,2 and ϑsim
7,27.

Due to the close geometry of the present setup the ϑ-resolution per segment-strip pair is
only moderate (FWHM ∼ 30◦ − 40◦), but should be still sufficient to gain information on
the α-γ angular correlation function.

In view of the limited statistic and the moderate ϑ-resolution of the Pm,n we further
combine the segment-strip pairs according to the average angle ϑsim

m,n into ϑ-bins Bi of 10◦

width. The number of segment-strip pairs grouped together varies for the different bins
and is shown in figure 5.24. Figure 5.25 shows the simulated ϑ-distribution for four of the
ϑ-bins Bi; note that the resolution is only slightly deteriorated compared to that of the
corresponding segment-strip pairs shown in figure 5.23.

We define the simulated isotropic detection ratio r
sim(iso)
i for bin Bi as

r
sim(iso)
i :=

N
sim(iso)
i

N sim(iso)
, (5.10)

where N sim(iso) is the total number of simulated events assuming an isotropic α-γ angular
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Figure 5.26: The data for the analysis of the angular correlation of the 803 keV γ-branch,
the X-rays from the source and the bremsstrahlung events is selected from the prompt data
by cuts in the γ- and α-energy. The bremsstrahlung data is grouped into γ-energy bins.
The background is corrected using the same energy cuts in the random data scaled with the
widths of the prompt and the random time window.

correlation and N
sim(iso)
i is the number of simulated events contributing to the segment-

strip bin Bi

N
sim(iso)
i :=

∑

Pm,n∈Bi

N sim(iso)
m,n . (5.11)

The measured ratio rexp
i is defined accordingly as the number of events detected in bin Bi,

divided by the total number of detected events N exp, that is

rexp
i :=

N exp
i

N exp
, with N exp

i :=
∑

Pm,n∈Bi

N exp
m,n . (5.12)

The angular correlation averaged over the ϑ-distribution of bin Bi is then given by

f�(ϑi) =

(
dP

dΩ

)

i

∝ rexp
i

r
sim(iso)
i

. (5.13)

Test of the Angular Correlation Extraction Procedure

The above procedure to extract the α-γ angular correlation from the data was first checked
using (a) the K X-rays emitted after the kick-out of the K-electron from 206Pb by the



5.6 Analysis of the Angular Distribution 83

 0

 0.5

 1

 1.5

 2

 2.5

 90  100  110  120  130  140  150  160  170  180

 

 

 

 
anisotropy function g(ϑ)

ϑ [◦]

d
P

/d
Ω

(n
or

m
al

is
ed

)

X-ray data (without anisotropy correction)

isotropic distribution

fitted parameters:

a = 0.984

b = 5.04 · 10−3

c = 3.38 · 10−5

d = 1.38 · 10−6

e = −6.73 · 10−9

X-ray data (with anisotropy correction)
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emitted α, and (b) using the 803 keV transition following the α decay of 210Po to 206Pb(2+).
As the recoil velocity of 206Pb is very small, we expect for the sum over all K X-rays an
isotropic α-γ angular correlation in the laboratory system, while the correlation of the
803 keV transition will be governed by a pure E2 quadrupole distribution of the form
cos2 ϑ · sin2 ϑ.

Figure 5.27 and 5.28 show the measured correlation functions for the X-rays and the 803 keV
transition, respectively. The selection energy cuts are shown in figure 5.26; in both cases
the random background from the random time gate is subtracted scaled with the widths
of the prompt and random time window.

As displayed in figure 5.27 the deduced correlation for the X-rays slightly deviate (< 10%)
from the expected isotropic distribution. These deviations are attributed to deficiencies of
the simulations, which were found to be very sensitive to small deviations of the geometry
of the simulated from the real setup. To correct for it we define an anisotropy function
g(ϑ) by

g(ϑ) = a + b(ϑ − ξ) + c(ϑ − ξ)2 + d(ϑ − ξ)3 + e(ϑ − ξ)4 . (5.14)

where ξ was chosen to be 135◦. The parameters of which were determined by fitting g(ϑ)
to the measured X-ray correlation as shown in figure 5.27. In the following we will apply
this function to correct all simulated detection ratios ri. For the K X-rays data this results
in the open symbols, which scatter only within their error margins around the isotropic
distribution.

The validity of the anisotropy correction is further tested using the 803 keV transition.
Applying the same anisotropy factor in the extraction of the measured α-γ correlation,
the resulting distribution is in perfect agreement with the simulated distribution assuming
a pure E2 quadrupole correlation, which is calculated, in analogy to equation (5.13), by

r
sim(E2)
i /r

sim(iso)
i . This gives confidence that the extraction procedure should be well under

control also for γ-energies between 80 keV and 800 keV.

Angular Correlation of the Bremsstrahlung

To get information about the angular correlation of the bremsstrahlung in dependence of
the γ-energy the bremsstrahlung data is grouped into γ-energy bins as illustrated in figure
5.26. For each of these bins the angular correlation is analysed separately.

The background is corrected using the same energy gates in the Eα versus Eγ matrix for
the random data scaled with the widths of the prompt time window ∆texp and the random
time window ∆tbg

rbr
i :=

N exp
i − g · N bg

i

N exp − g · N bg
, with g =

∆texp

∆tbg
. (5.15)

In figure 5.29 the distribution rexp
i /r

sim(iso)
i and the resulting background free correlation



5.6 Analysis of the Angular Distribution 85

 0

 0.5

 1

 1.5

 2

 2.5

 90  100  110  120  130  140  150  160  170  180

ϑ [◦]

d
P

/d
Ω

(n
or

m
al

is
ed

)

background corrected data

data

Figure 5.29: Experimental angular correlation for bremsstrahlung events with 130 keV <
Eγ < 150 keV (orange points) and the resulting background free correlation (red circles)
are shown in comparison (without anisotropy correction).

(dP/dΩ))br
i = rbr

i /r
sim(iso)
i for bremsstrahlung events with 130 keV < Eγ < 150 keV are

displayed.

The background free, anisotropy corrected and normalised angular correlations are then
compared to simulations assuming an α-γ angular correlation function of the form (see
sections 2.3 and 2.5)

f�(Eγ , ϑ) = sin2 ϑ (1 + 2Λ(Eγ) cos ϑ) . (5.16)

For each bin the angular distribution is simulated for a set of different values for Λ. In
figure 5.30 the angular correlation data for bremsstrahlung in the energy region 130 keV <
Eγ < 150 keV is compared to simulated distributions for 5 different Λ values.

The best value for Λ is determined by a chi-square minimising algorithm. The reduced
chi-square χ2

red here is given by

χ2
red,Λ =

χ2
Λ

ν
, with χ2

Λ =
n∑

i=1

((
dP
dΩ

)br
i
− ζ ·

(
dP
dΩ

)sim(Λ)

i

)2

(
σ br

i

)2 , (5.17)

where (dP/dΩ) br
i is the angular correlation of the bremsstrahlung data, σ br

i the correspond-

ing uncertainty, and (dP/dΩ)
sim(Λ)
i is the simulated angular correlation with the value Λ.

The normalisation factor ζ is a free parameter optimised in the fit. The number of degrees
of freedom ν is equal to the number of bins n minus two.
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Figure 5.32: The parameter Λ derived from the experimental data of the bremsstrahlung is
plotted versus the γ-energy. The theoretical predictions of the Jentschura-Milstein-Terekhov
model (magenta), of the Coulomb acceleration model (green), of the strict Coulomb accel-
eration model (blue), and of the relativistic quantum mechanical approach valid for Eγ → 0
[35] (black point) are shown in comparison to the data.

In figure 5.31 the reduced chi-square is plotted in dependence of the parameter Λ for the
γ-energy bin 130 keV < Eγ < 150 kev. The Λ value minimising χ2

red is determined by the
fit of a quadratic polynomial.

The derived Λ values for the bremsstrahlung are plotted versus the γ-energy Eγ in figure
5.32. The uncertainties are taken from the χ2

red minimisation algorithm. These uncertain-
ties are estimated in a standard procedure [60], where ∆Λ is given by

∆Λ =
√

χ2
red(Λmin) · δΛ (5.18)

and δΛ is defined by the condition

χ2(Λmin + δΛ) = χ2(Λmin) + 1 . (5.19)

In figure 5.32 the experimental results for Λ(Eγ) are also compared to various theoret-
ical predictions. In the non-relativistic semi-classical calculation of Jentschura-Milstein-
Terekhov [21] Λ(Eγ) is only due to the E2-quadrupole amplitude in the bremsstrahlung
emission probability, which is expected to vanish for Eγ → 0. This is clearly falling short
to explain the measured values of Λ. The data rather seem to approach the Λ-value of 0.27,
that is the Eγ → 0 limit of the classical relativistic calculations (Coulomb acceleration and
strict Coulomb acceleration model), which was shown to be identical to the Eγ → 0 limit
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Figure 5.33: The experimental data does not allow to draw a sustainable conclusions on
the γ-energy dependence of the Λ value. Therefore a constant was fitted to the data. The
shown error is the combined of the error of the data points and an estimated systematical
error of 25%.

of a relativistic quantum mechanical calculation [35]. Unfortunately the experimental Λ
values are not accurate enough to draw any sustainable conclusion on their Eγ-dependence.
Therefore a constant value was fitted to the data as shown in figure 5.33. The error band
is given by the error of the data points and an additional systematical error estimated to
25%.

5.7 The Energy-Differential Bremsstrahlung Emis-

sion Probability

We have now determined all ingredients required to calculate the energy-differential
bremsstrahlung emission probability dP/dEγ according to equation (5.8) from the number
of bremsstrahlung events given in table 5.3.

The total number of α particles detected was determined in section 5.5 to be

Nα = 4.311(2) · 1011 .

The coincident photon detection efficiency εc
γ(Eγ) was simulated for Λ(Eγ) = Λexp =

0.26 ± 0.07. The result is plotted in figure 5.34 together with its error band, which is
determined by the estimated error of the simulation and the error of Λexp. The coincident
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Eγ range ∆Eγ Eγ
counts εc

γ, Λ(exp)

(dP/dEγ)n

[keV] [keV] [keV] [keV−1]

90 . . . 110 20 99 2455 10.6 2.68(8)(34) 10−9

110 . . . 130 20 119 1719 11.3 1.76(5)(20) 10−9

130 . . . 150 20 139 1223 11.2 1.27(4)(13) 10−9

150 . . . 170 20 159 755 10.6 8.24(35)(87) 10−10

170 . . . 190 20 179 588 9.9 6.89(33)(72) 10−10

190 . . . 210 20 199 368 9.3 4.61(28)(48) 10−10

210 . . . 240 30 224 371 8.7 3.31(20)(34) 10−10

240 . . . 270 30 254 196 7.9 1.92(16)(20) 10−10

270 . . . 300 30 284 127 7.3 1.35(13)(14) 10−10

300 . . . 350 50 323 93 6.6 6.51(78)(69) 10−11

350 . . . 400 50 373 45 5.9 3.51(63)(38) 10−11

400 . . . 450 50 423 15 5.4 1.28(43)(15) 10−11

450 . . . 550 100 493 11 4.9 5.2(26)(7) 10−12

Table 5.5: The bremsstrahlung emission probability evaluated with the coincident photon
detection efficiency εc

γ,Λexp
(Eγ) (addback mode) assuming Λ(Eγ) = Λexp = 0.26 ± 0.07. Eγ

denotes the weighted energy of the γ-energy bin discussed in the main text. In brackets
the statistical error (first bracket) and the systematic error (second bracket) are given. For
details of the error evaluation see table 5.6.
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Figure 5.34: The simulated coincident photon detection efficiency (addback mode) assum-
ing Λ(Eγ) = Λexp = 0.26 ± 0.07. The shown error band is determined by the uncertainty
of the simulation (see section 4.4) and the error of Λexp.

photon detection efficiencies, averaged over the γ-energy bins are compiled in table 5.5,
while their uncertainties are given in table 5.6.

Using this input data together with equation (5.8) we obtain the bremsstrahlung emission
probabilities compiled together with their statistical and systematic errors in table 5.5.

The statistical error is derived from the total number of counts in the peak area including
the background beneath the peak. The background is the sum of the Compton background
caused by higher energy bremsstrahlung events and the background from chance coinci-
dences. For the background evaluation the energy range is used where the bremsstrahlung
peak is above the error level of the background. The bremsstrahlung peak area, the back-
ground contributions and the resulting estimated statistical error are listed in table 5.6.

The systematic errors are due to

(a) the modelling of the Compton contribution from higher energetic bremsstrahlung
events and the description of the random background using the events from the
random coincidence gate; these contributions are estimated to have an uncertainty
of 10% and 5%, respectively,

and (b) due to the coincident photon detection efficiency εc
γ as discussed above.

A detailed error budget for each γ-energy bin is given in table 5.6.
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As the emission probabilities dP (Eγ)/dEγ are exponentially falling off with increasing γ-
energies and the γ-bins used in the analysis have increasing widths ∆Eγ , we also give
in table 5.5 the weighted bin energies Eγ . Plotting the measured emission probabilities
(dP/dEγ)n at Eγ , they can be directly compared to theoretical predictions calculated at
Eγ for an infinitesimal small energy bin dEγ. Eγ was determined using an exponential
adjusted to the measured probabilities close to the bin of interest.



Chapter 6

Results and Conclusion

6.1 Discussion of the Experimental Results

The final experimental result for the energy-differential bremsstrahlung emission proba-
bility accompanying the α decay of 210Po, evaluated with the experimentally derived α-γ
angular correlation function as discussed in section 5.6 and listed in table 5.5, is shown in
figure 6.1. The 1σ errors shown compromise the statistical and the systematic uncertain-
ties; they are dominated by systematic uncertainties of the detection efficiency at small
and by statistical errors at high γ-energies. Note that the external bremsstrahlung contri-
bution, which stems from the slowing down of α-particles in the Si-detector are orders of
magnitude smaller than the measured probabilities.

Also shown in figure 6.1 are the earlier experimental results obtained by Kasagi et al. [23–
25]; within their errors they are consistent with the present high statistic data. However,
the previous data of Eremin et al. [26, 27] are inconsistent with the present findings.

Our high statistic data also allow for a detailed comparison with theoretical calculations
(see figure 6.2). Since the first order E2-contribution as well as the first order relativis-
tic correction, which lead to the cosϑ term in the α-γ angular correlation (see equation
2.13) do not contribute when integrated over the total solid angle, non-relativistic theories
considering only E1 dipole radiation should give an excellent approximation for the energy
differential emission probability. In fact we have shown within the semi-classical approach
[21] that that higher order E2 contributions to the angle-integrated emission probabilities
are < 1.5% up to γ-energies of 500 keV, and higher order relativistic corrections are ex-
pected to be at most of the same size. Performing the non-relativistic QM calculation of
Papenbrock and Bertsch [3] with the proper Qα value (see section 2.4) we obtain the solid
curve in figure 6.2, which is in good agreement with our data over the full γ-energy range
covered. Also shown is the (non-relativistic) semi-classical calculation of Dyakonov et al.
[10] valid for small γ-energies only. We revisited this semi-classical approach [21] to enlarge
its range of applicability to γ-energies reached in the present investigation. As discussed
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Figure 6.1: The measured energy-differential bremsstrahlung emission probability accom-
panying the α decay of 210Po (red crosses: present work) compared to previous measure-
ments (open squares: Kasagi et al. [23], open diamonds: Eremin et al. [26])

in section 2.5 we find the result of our improved approach to agree with the quantum me-
chanical prediction to better than 2% even at energies as high as 500 keV. Figure 6.2 also
displays the results of two classical bremsstrahlung calculations using the Coulomb accel-
eration (CA) and the strict Coulomb acceleration (SCA) model (see section 2.3). While
they agree as expected with the quantum mechanical calculations at small γ-energies, they
considerably overestimate the emission probabilities at higher energies.

The evaluation of the emission probabilities from the measured data required the input of
the α-γ angular correlation into the calculation of the coincident detection efficiency εc

γ(Eγ)
of the setup. The model calculations show that the dipole correlation function, which is
proportional to sin2 ϑ, is considerably modified by E2- and relativistic contributions and
lead to an α-γ angular correlation of the form sin2 ϑ(1 + 2Λ(Eγ) cosϑ). We were able to
deduce an average value for Λ of Λexp = 0.26 ± 0.07 from our data, which we used in the
simulation of εc

γ(Eγ). To elucidate in more detail the accuracy of the present data and
its sensitivity to the α-γ angular correlation, the deviation of our data from the quantum
mechanical expectation is plotted in figure 6.3 together with the corresponding difference
when assuming Λ(Eγ) = ΛE2

JMT
(Eγ) (see figure 4.15) from the non-relativistic semiclassical

approach of Jentschura-Milstein-Terekhov [21]. This comparison shows, in agreement with
the measured value for Λexp, that the relativistic contribution to Λ(Eγ) is mandatory to
achieve reasonable agreement between theory and experiment to an overall precision of
∼ 10%.
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Figure 6.2: The energy-differential bremsstrahlung emission probability accompanying the
α decay of 210Po determined in the present work is compared to the theoretical predictions
of the CA (orange) and the SCA model (cyan), of the semi-classical treatment of Dyakonov
et al. [10] (blue) and of the quantum mechanical calculation (green). The predictions of the
refined semi-classical Jentschura-Milstein-Terekhov model [21] are not plotted separately
because they are indistinguishable from the result of the quantum mechanical calculation in
this logarithmic plot.



96 Results and Conclusion

-60

-40

-20

0

20

40

60

 100  150  200  250  300  350  400  450  500  550

quantum mechanical calculation

final result JMT

final result fitted chi

E [keV℄

Λ(Eγ) = Λexp = 0.26 ± 0.07

quantum mechanical calculation

dP Exp
=dP Th
eo�1
[%℄ Λ(Eγ) = ΛJMT(Eγ)
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experimental data evaluated with Λ(Eγ) = ΛJMT(Eγ) from the refined (non-relativistic)
semi-classical Jentschura-Milstein-Terekhov model [21] are shown by the open (magenta)
circles. The small error-bars correspond to the statistical error, the big error-bars represent
the combined statistical and systematic error.
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6.2 Summary and Outlook

In the present experiment the energy differential bremsstrahlung emission probability ac-
companying the α decay of 210Po was measured with high statistics. In comparison to
the previous measurement by Kasagi et al. [23–25] an improvement in statistics by almost
two orders of magnitude has been achieved. This was accomplished by using two strong
α sources, an efficient γ-detection with a HPGe cluster detector of the MINIBALL type,
and a measuring period of more 270 days. Through the segmentation of the silicon detec-
tors and the MINIBALL cluster detector information could be gained on the α-γ angular
correlation. The analysis of the data supports the existence of an non-vanishing correction
factor Λ in the angular correlation f� = sin2 ϑ(1 + 2Λ cosϑ) with Λexp(Eγ) = 0.26 ± 0.07.

The final result on the bremsstrahlung is in good agreement with the quantum mechanical
calculation (see section 2.4) and demonstrates that the classical Coulomb acceleration
model and the strict Coulomb acceleration model overestimate the bremsstrahlung emission
probability by more than an order of magnitude at γ-energies of > 400 keV. Also other
theoretical suggestions put forward, e.g. by Kasagi et al. [23–25] and Maydanyuk et al.
[17, 18] are clearly ruled out by our high statistic data.

Together with U. D. Jentschura, A. I. Milstein and I. S. Terekhov a refined (non-relativistic)
semi-classical approach has been developed which agrees with the quantum mechanical
model [3, 7, 8] within 2% up to an energy of 800 keV. Within this framework the E1/E2
interference contribution to the α-γ angular correlation for bremsstrahlung in the α-decay
was studied. Usually bremsstrahlung is assumed to be pure E1 radiation as the wavelength
of the emitted radiation is much larger than the dimension of the radiating system. How-
ever, in the case of 210Po the effective quadrupole charge ZE2

eff = 1.95 is almost a factor
of 5 larger than the effective dipole charge ZE1

eff = 0.40. Though the E2 radiation does
not contribute sizably to the total, angle-integrated emission probability, we found that it
affects the α-γ angular correlation by leading to sizable values for Λ(Eγ) at Eγ > 0. How-
ever for Eγ → 0 the E2-contribution to the angular correlation vanishes, i.e. Λ(Eγ) → 0,
in contrast to our experimental finding.

On the other hand, the classical relativistic Coulomb acceleration model (CA) reveals that
there are two contributions to Λ(Eγ): one arising from the quadrupole interference which
vanishes as in the semi-classical model for Eγ → 0, and a second contribution connected to
the relativistic nature of the problem. This relativistic contribution is non-zero for Eγ → 0
(see figure 2.3) and results in Λ(Eγ = 0) ≈ 0.27, in agreement with our experimental
value of 0.26 ± 0.07. Obviously, a theoretical treatment taking into account the quantum
mechanical as well as the relativistic nature of the process is needed to fully understand
the α-γ angular correlation in the bremsstrahlung accompanying the α decay. Such a
calculation was beyond the scope of this work, however, using Low’s low-energy theorem
[61] it was shown [35] that for Eγ → 0 the classical result for Λ(Eγ = 0) is regained in such
a treatment.

An interesting goal for a future experiment would be to perform a more precise measure-
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ment of the α-γ angular correlation.

A promising candidate for such a further measurement would be 214Po. With a decay energy
Qα = 7833.26 keV a 65 times higher bremsstrahlung emission probability is expected for
this isotope at 600 keV. The drawback is that 214Po with a half-life of 164.3 µs has to be
produced either via the decay chain of 226Ra or using an online isotope separator.



Appendix A

Classical Treatment

A.1 Bremsstrahlung

A.1.1 The Bremsstrahlung Vector Potential

The electromagnetic field at the point x and the time t results from the motion of an
elementary charge e at the point r and the previous time t′. We define R(t) = x − r(t)
and get for the retarded time t′

t′ +
R(t′)

c
= t , (A.1)

where c is the speed of light.

The 4-vector potential at the point x is then given by Liénard-Wiechert potential [1, 2]

Aµ(x) =
e uµ(t′)

uν · [xν − rν(t′)]
, (A.2)

where uµ is the 4-velocity of the charge. From equation (A.2) the electric and magnetic
fields of a moving elementary charge e can be derived

E(x, t) = e

[
n− β

γ2(1 − β · n)3R2

]

ret

+
e

c

[[
n× [(n− β) × β̇]

]

(1 − β · n)3R

]

ret

(A.3)

B(x, t) =

[
[n×E]

]

ret

. (A.4)

On the right hand side the retarded time t′ from equation (A.1) has to be used indicated
by the subscript ”ret”. For β and γ we have the common relativistic definitions
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β =
v

c
and γ =

1√
1 − β2

, (A.5)

and n is a unit vector pointing in the direction of x− r(t′).

The electric and magnetic fields E(x, t) and B(x, t) split up into velocity fields which are
independent of the acceleration and a acceleration fields. The velocity fields are falling
off with R−2 and may be neglected in the case of an accelerated charge (β̇ > 0) at large
distances R

E(x, t) ≈ e

c

[[
n× [(n− β) × β̇]

]

(1 − β · n)3R

]

ret

. (A.6)

For the vector potential A(x, t) we choose the gauge

A(x, t) = RE , (A.7)

which is a valid gauge because with the magnetic field (A.4) we have

rotA(x, t) = [(∇R) ×E] + R rotE = [n×E] = B(x, t) . (A.8)

With (A.6) and (A.7) we get the expression for the vector potential of an accelerated charge

A(x, t) =
e

c

[[
n× [(n− β) × β̇]

]

(1 − β · n)3

]

ret

, (A.9)

or for its Fourier transform

A(x, ω) =
1√
2π

+∞∫

−∞

A(t)eiωt dt (A.10)

=
e

c

√
1

2π

+∞∫

−∞

[[
n× [(n− β) × β̇]

]

(1 − β · n)3

]

ret

eiωt dt . (A.11)

Replacing the time t using the definition of the retarded time (A.1)

t = t′ +
R(t′)

c
= t′ +

R(t′) · n
c

= t′ +
x · n− n · r(t′)

c
(A.12)

and changing the variable of integration to t′ leads to the expression for the vector potential
from equation (A.11) (except for a phase factor which may be dropped due to local gauge
invariance)

A(x, ω) =
e

c

√
1

2π

+∞∫

−∞

[
n× [(n− β) × β̇]

]

(1 − β · n)3
exp

(
iω(t′ − n · r(t′)

c
)

)
dt

dt′
dt′ (A.13)

=
e

c

√
1

2π

+∞∫

−∞

[
n× [(n− β) × β̇]

]

(1 − β · n)2
exp

(
iω(t′ − n · r(t′)

c
)

)
dt′ . (A.14)
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A.1.2 Frequency Distribution and Angular Distribution of
Bremsstrahlung

The energy flux of the emitted radiation is given by the Poynting-vector [1]

S =
c

4π
[E×B] . (A.15)

The radiated power dP per solid angle dΩ is given by

|S| =
dP

R2 dΩ
. (A.16)

With the expression for the magnetic field B from equation (A.4) and the transversality
of the electric field for r ≫ 1 we get

dP(t)

dΩ
= R2 |S| = R2 c

4π

∣∣∣[E×B]
∣∣∣ (A.17)

= R2 c

4π

∣∣∣
[
E× [n×E]

]∣∣∣ (A.18)

=
c

4π
R2E2 . (A.19)

With the gauge of (A.7) this leads to

dP(t)

dΩ
=

c

4π
R2E2 =

c

4π
A2 . (A.20)

The total energy dW radiated per solid angle dΩ is given by the time integral

dW
dΩ

=
c

4π

∞∫

−∞

|A(t)|2 dt (A.21)

=
c

4π

∞∫

−∞

dt
1√
2π

∞∫

−∞

dω
1√
2π

∞∫

−∞

dω′A∗(ω′) ·A(ω)ei(ω′−ω)t (A.22)

=
c

4π

∞∫

−∞

dω

∞∫

−∞

dω′A∗(ω′) ·A(ω)
1

2π

∞∫

−∞

dt ei(ω′−ω)t (A.23)

=
c

4π

∞∫

−∞

dω

∞∫

−∞

dω′A∗(ω′) ·A(ω) · δ(ω′ − ω) (A.24)

=
c

4π

∞∫

−∞

|A(ω)|2 dω (A.25)
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The gauge of A(x, t) was chosen such that A(x, t) is real, so it is evident that A(−ω) =
A∗(ω) holds for the Fourier transform. This leads to

dW
dΩ

=
c

4π

∞∫

−∞

|A(ω)|2 dω (A.26)

=
c

4π

0∫

−∞

|A(ω)|2 dω +

∞∫

0

|A(ω)|2 dω (A.27)

=
c

2π

∞∫

0

|A(ω)|2 dω . (A.28)

For the energy I radiated per solid angle dΩ and per unit frequency interval dω we have
the relation

dW
dΩ

=

∞∫

0

d2I(ω,n)

dω dΩ
dω . (A.29)

Hence with equation (A.28) we get

d2I(ω,n)

dω dΩ
=

c

2π
|A(ω)|2 . (A.30)

Using expression (A.14) for the vector potential leads to

d2I
dω dΩ

=
e2

4π2c

∣∣∣∣∣

+∞∫

−∞

[
n× [(n− β(t)) × β̇(t)]

]
(
1 − β(t) · n

)2 exp

(
iω
(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

. (A.31)

Dividing this expression by the energy of a bremsstrahlung photon ~ω gives the expression
for the number of bremsstrahlung photons per solid angle, and per frequency interval, i.e.
the bremsstrahlung emission probability

d2P

dω dΩ
=

e2

4π2~cω

∣∣∣∣∣

+∞∫

−∞

[
n× [(n− β(t)) × β̇(t)]

]
(
1 − β(t) · n

)2 exp

(
iω
(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

, (A.32)

or per solid angle and per bremsstrahlungphoton energy interval dEγ

d2P

dEγ dΩ
=

α

4π2Eγ

∣∣∣∣∣

+∞∫

−∞

[
n× [(n− β(t)) × β̇(t)]

]
(
1 − β(t) · n

)2 exp

(
i
Eγ

~

(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

(A.33)

with the fine structure constant α = e2(~c)−1.
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# �_�

n

Figure A.1: The angle ϑ is the angle between the direction of observation n ||R and the
direction of motion of the particle β. In the considered case of linear motion β and β̇ are
parallel.

Linear Motion

We now want to consider the simple case of a linear motion in which β and β̇ are parallel
(β || β̇).

Let ϑ be the angle of observation measured from the direction of motion, see figure A.1.
Then we see

n(t) · β(t) = |β(t)| cos ϑ(t) (A.34)

and get for the denominator

1 − n(t) · β(t) = 1 − |β(t)| cos ϑ(t) (A.35)

For the nominator we get

[
n(t) ×

[(
n(t) − β(t)

)
× β̇(t)

]]
=

[
n(t) ×

([
n(t) × β̇(t)

]
−
[
β(t) × β̇(t)

])]
(A.36)

=
[
n(t) ×

[
n(t) × β̇(t)

]]
(A.37)

where we have used [β(t) × β̇(t)] = 0 because β and β̇ are parallel. Let e⊥(t) be the unit
vector perpendicular to n(t) and β̇(t), then we can write

[
n(t) ×

[
n(t) × β̇(t)

]]
= |β̇(t)| sin ϑ(t) e⊥(t) (A.38)

If the distance of observation is big compared to the region of interaction, n and ϑ are
approximately constant (therefore also e⊥ is constant). Then equation (A.35) and (A.38)
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simplify to
[
n×

[(
n− β(t)

)
× β̇(t)

]]
= |β̇(t)| sin ϑ e⊥ (A.39)

1 − n · β(t) = 1 − |β(t)| cos ϑ (A.40)

For the bremsstrahlung emission probability per solid angle and photon energy interval we
get from (A.33)

d2P

dEγ dΩ
=

α

4π2Eγ

∣∣∣∣∣

+∞∫

−∞

|β̇(t)| sin ϑ
(
1 − |β(t)| cos ϑ

)2 exp

(
i
Eγ

~

(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

. (A.41)

In the non-relativistic limit (β ≪ 1) we get the normal sin2 ϑ behaviour of the dipole
radiation

d2P

dEγ dΩ
≈ α

4π2Eγ

sin2 ϑ

∣∣∣∣∣

+∞∫

−∞

|β̇(t)| exp

(
i
Eγ

~

(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

. (A.42)

The Integration over 4π gives

∫

4π

sin2 ϑ dΩ =

2π∫

0

dϕ

π∫

0

sin3 ϑ dϑ = 2π

π∫

0

sin3 ϑ dϑ =
8π

3
(A.43)

and leads to

dP

dEγ
=

2α

3πEγ

∣∣∣∣∣

+∞∫

−∞

|β̇(t)| exp

(
i

~
Eγ

(
t − n · r(t)

c

))
dt

∣∣∣∣∣

2

. (A.44)

A.2 The Centre of Mass System

Considering two particles 1 and 2 at the points r1 and r2 with the masses m1 and m2 with
the momenta p1 and p2 and the charges q1 and q2 it is convenient to discuss the system in
the centre of mass system.

In the centre of mass system the relative motion and the motion of the centre of mass are
distinguished. For the centre of mass we have

Mcm = m1 + m2 (A.45)

Rcm =
m1r1 + m2r2

Mcm
(A.46)

Vcm =
∂Rcm

∂t
=

m1v1 + m2v2

Mcm
(A.47)

Pcm = McmVcm = p1 + p2 . (A.48)
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For the relative motion of particle 1 and 2 we define the relative coordinate r and get the
relative velocity v

r = r1 − r2 (A.49)

=⇒ v =
∂r

∂t
= v1 − v2 . (A.50)

The non-relativistic kinetic energy of the two particles can then be written as

Ekin =
1

2
m1v

2
1 +

1

2
m2v

2
2 (A.51)

=
1

2

m2
1 + m1m2

m1 + m2
v2

1 +
1

2

m2
2 + m1m2

m1 + m2
v2

2 (A.52)

=
1

2
Mcm

m2
1v

2
1 + m2

2v
2
2

M2
cm

+
1

2

m1m2

m1 + m2
v2

1 +
1

2

m1m2

m1 + m2
v2

2 (A.53)

=
1

2
McmV2

cm +
1

2

m1m2v
2
1

m1 + m2
− m1m2v1v2

m1 + m2
+

1

2

m1m2v
2
2

m1 + m2
(A.54)

=
1

2
McmV2

cm +
1

2

m1m2

m1 + m2
(v1 − v2)

2 (A.55)

=
1

2
McmV2

cm +
1

2
µv2 , (A.56)

where the reduced mass
µ =

m1m2

m1 + m2
(A.57)

has been introduced. For the relative momentum p we get

p = µv (A.58)

=
m1m2

m1 + m2
(v1 − v2) (A.59)

=
1

Mcm

(m2p1 − m1p2) . (A.60)

We now want to move to the centre of mass system, i.e. we choose a coordinate system in
which the centre of mass is at rest in the origin

Rcm = 0 =⇒ m1r1 + m2r2 = 0 (A.61)

Vcm = 0 =⇒ m1v1 + m2v2 = 0 (A.62)

Pcm = 0 =⇒ p1 + p2 = 0 . (A.63)

In this system we get

r1 = −m2

m1
r2 =

m2

m1
r− m2

m1
r1 =⇒ r1 =

µ

m1
r (A.64)

r2 = −m1

m2
r1 = −m1

m2
r− m1

m2
r2 =⇒ r2 = − µ

m2
r . (A.65)
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and
p1 = −p2 = p (A.66)

The interaction with the electromagnetic field for two particles is given by the interaction
Hamiltonian (see section B.1 for more details)

Hem = − q1

m1c
p1A(r1, t) −

q2

m2c
p2A(r2, t) (A.67)

with the charge q1 and q2 of particle 1 and 2, respectively. If we use the first two terms of
the expansion of the vector potential A

A(r, t) = ǫ ei(ωt−kr) ≈ ǫ
(
1 − ikr + · · ·

)
eiωt (A.68)

we get (dropping eiωt)

Hem ≈ − q1

m1c
p1ǫ(1 − ikr1) −

q2

m2c
p2ǫ(1 − ikr2) (A.69)

= − q1

m1c
pǫ(1 − ik

µ

m1

r) − q2

m2c
(−p)ǫ(1 − ik(− µ

m2

r)) (A.70)

= −pǫ

c

[(
q1

m1

− q2

m2

)
− i

(
µq1

m2
1

+
µq2

m2
2

)
kr

]
(A.71)

= −pǫ

µc

[
m2q1 − m1q2

m1 + m2

− i
m2

2q1 + m2
1q2

(m1 + m2)2
kr

]
(A.72)

= −pǫ

µc

(
qE1
eff − iqE2

eff kr
)

(A.73)

where we introduced the effective dipole charge

qE1
eff =

m2q1 − m1q2

m1 + m2
= µ

(
q1

m1
− q2

m2

)
(A.74)

and the effective quadrupole charge

qE2
eff =

m2
2q1 + m2

1q2

(m1 + m2)2
= µ2

(
q1

m2
1

+
q2

m2
2

)
. (A.75)

If we use the charge numbers q = Zeff e, q1 = Z1 e and q2 = Z2 e the effective charge
numbers are given by

ZE1
eff =

m2Z1 − m1Z2

m1 + m2
= µ

(
Z1

m1
− Z2

m2

)
(A.76)

ZE2
eff =

m2
2Z1 + m2

1Z2

(m1 + m2)2
= µ2

(
Z1

m2
1

+
Z2

m2
2

)
. (A.77)

In the case of the α-decay of 210Po we find

ZE1
eff ≈ 206 · 2 − 4 · 82

4 + 206
≈ 0.4 (A.78)

ZE2
eff ≈ 2062 · 2 + 42 · 82

(4 + 206)2
≈ 1.95 (A.79)
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It is important to note, that in the case of 210Po the effective quadrupole charge is approx-
imately five times bigger than the corresponding dipole charge. Therefore it is important
to take contributions from the electric quadrupole radiation into account.

A.3 Bremsstrahlung of two Charged Particles

In the following we will consider a system of two particles in the centre of mass system (see
A.2). Let 1 be the first particle with the charge q1 = Z1 · e, the masses m1 at the point
r1(t). For the second particle we define q2, m2 and r2(t) analogous.

Both particles are accelerated in the Coulomb field of the other particle and therefore emit
interfering bremsstrahlung. From equation (A.30) we get for the bremsstrahlung emission
probability per solid angle and per frequency interval

d2P

dω dΩ
=

c

2π~ω
|A1(ω) + A2(ω)|2 . (A.80)

Using the expression (A.14) for the vector potential leads to

d2P

dω dΩ
=

e2

4π2~cω

∣∣∣∣∣

+∞∫

−∞

Z1

[
n1(t) × [(n1(t) − β1(t)) × β̇1(t)]

]

(1 − β1(t) · n1(t))2
exp

(
iω(t− n1(t) · r1(t)

c
)

)

+Z2

[
n2(t) × [(n2(t) − β2(t)) × β̇2(t)]

]

(1 − β2(t) · n2(t))2
exp

(
iω(t − n2(t) · r2(t)

c
)

)
dt

∣∣∣∣∣

2

.

(A.81)

In the two particle case without outer fields we have a linear motion where β1, β2, β̇1 and
β̇2 are parallel. So we case use the relations (A.39) and (A.40) and get

d2P

dω dΩ
=

α

4π2ω

∣∣∣∣∣

+∞∫

−∞

Z1|β̇1(t)| sin ϑ1(t)e⊥,1(t)

(1 − |β1(t)| cos ϑ1(t))2
exp

(
iω(t − n1(t) · r1(t)

c
)

)

+
Z2|β̇2(t)| sin ϑ2(t)e⊥,2(t)

(1 − |β2(t)| cos ϑ2(t))2
exp

(
iω(t − n2(t) · r2(t)

c
)

)
dt

∣∣∣∣∣

2

.(A.82)

If the distance of observation is big in comparison to the relative distance of the two
particles (R ≫ r) the n1 and n2 and the angles ϑ1 and ϑ2 may be approximated to be
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β̇2

β1
β2

ϑ2
ϑ1

n1n2

β̇1

Figure A.2: For two interacting particles with no outer fields the resulting motion is linear,
i.e. that β1, β2, β̇1 and β̇2 are parallel. If the distance of observation is big compared to the
relative distance the angles ϑ1 and ϑ2 of the direction of observation n1 and n2 measured
from the direction of motion are correlated by the relation ϑ2 = π − ϑ1.

constant and we have (see figure A.2)

n1(t) = n1 (A.83)

n2(t) = n2 = n1 (A.84)

ϑ1(t) = ϑ1 (A.85)

ϑ2(t) = ϑ2 = π − ϑ1 (A.86)

e⊥,1(t) = e⊥,1 (A.87)

e⊥,2(t) = e⊥,2 = −e⊥,1 (A.88)

The unit vectors e⊥,1 and e⊥,2 are antiparallel because β̇1 and β̇2 are antiparallel.

We define

n := n1 = n2 (A.89)

ϑ := ϑ1 = π − ϑ2 (A.90)

e⊥ := e⊥,1 = −e⊥,2 (A.91)

so equation (A.82) can be simplified to

d2P

dω dΩ
=

α

4π2ω

∣∣∣∣∣

+∞∫

−∞

Z1|β̇1(t)| sin ϑe⊥

(1 − |β1(t)| cos ϑ)2
exp

(
iω(t − n · r1(t)

c
)

)

− Z2|β̇2(t)| sin ϑe⊥

(1 + |β2(t)| cos ϑ)2
exp

(
iω(t − n · r2(t)

c
)

)
dt

∣∣∣∣∣

2

. (A.92)
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We recall from equations (A.64) and (A.65)

r1(t) =
µ

m1
r(t) r2(t) = − µ

m2
r(t) . (A.93)

If we define β in an analogous way to r

β =
ṙ

c
=

ṙ1 − ṙ2

c
= β1 − β2 (A.94)

we get similar relations for β and β̇

β1(t) =
µ
m1

β(t) β2(t) = − µ
m2

β(t)

β̇1(t) =
µ
m1

β̇(t) β̇2(t) = − µ
m2

β̇(t) .
(A.95)

The substitution of these relations into (A.92) leads to

d2P

dω dΩ
=

α

4π2ω

∣∣∣∣∣

+∞∫

−∞

µ

(
Z1

m1

1

(1 − µ
m1

|β(t)| cosϑ)2
e
−iω

µ
m1

n·r(t)
c

−Z2

m2

1

(1 + µ
m2

|β(t)| cosϑ)2
e
iω

µ
m2

n·r(t)
c

)
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

(A.96)

where the unit vector e⊥ was dropped in the integrant.

Dipole Approximation

The Taylor expansion for the exponential factors leads to

e
−iω

µ
m1

n·r(t)
c ≈ 1 − iω

µ

m1

n · r(t)
c

and e
−iω

µ
m2

n·r(t)
c ≈ 1 − iω

µ

m2

n · r(t)
c

. (A.97)

In the dipole approximation only the first term of this expansion is taken into account. So
the dipole approximation of equation (A.96) is given by

d2P

dω dΩ
≈ α

4π2ω

∣∣∣∣∣

+∞∫

−∞

µ

(
Z1

m1

1

(1 − µ
m1

|β(t)| cosϑ)2

−Z2

m2

1

(1 + µ
m2

|β(t)| cosϑ)2

)
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

(A.98)

Using the approximation

1

(1 − x)2
≈ 1 + 2x + · · · and

1

(1 + x)2
≈ 1 − 2x + · · · (A.99)
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leads to

d2P

dω dΩ
≈ α

4π2ω

∣∣∣∣∣

+∞∫

−∞

µ

(
Z1

m1

(
1 + 2 µ

m1
|β(t)| cos ϑ

)

−Z2

m2

(
1 − 2 µ

m2
|β(t)| cos ϑ

))
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

(A.100)

=
α

4π2ω

∣∣∣∣∣

+∞∫

−∞

(
µ

(
Z1

m1

− Z2

m2

)
+ 2µ2

(
Z1

m2
1

+
Z2

m2
2

)
|β(t)| cos ϑ

)
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

.

(A.101)

With the effective dipole and quadrupole charge from equations (A.76) and (A.77) we get
finally

d2P

dω dΩ
≈ α

4π2ω

∣∣∣∣∣

+∞∫

−∞

(
ZE1

eff + 2ZE2
eff |β(t)| cosϑ

)
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

. (A.102)

Quadrupole Contribution

In the following we want to consider the contribution from the second term in the expansion
of the exponential factor from equation (A.97) which corresponds to the electric quadrupole.
For the contribution of particle 1 in expression (A.96) we find

µ
Z1

m1

1

(1 − µ
m1

|β(t)| cos ϑ)2
e
−iω µ

m1

n·r(t)
c

≈ µ
Z1

m1

(
1 + 2

µ

m1

|β(t)| cosϑ
)(

1 − iω
µ

m1

n · r(t)
c

)
(A.103)

= µ
Z1

m1

(
1 + 2

µ

m1
|β(t)| cos ϑ

)(
1 − iω

µ

m1

|r(t)|
c

cos ϑ
)

(A.104)

= µ
Z1

m1
+ µ2 Z1

m2
1

(
2|β(t)| − i

ω

c
|r(t)|

)
cos ϑ − i

2µ3ω

c

Z1

m3
1

|r(t)| |β(t)| cos2ϑ . (A.105)

In an analog way we find for the contribution of particle 2

−µ
Z2

m2

1

(1 + µ
m2

|β(t)| cos ϑ)2
e
iω µ

m2

n·r(t)
c

≈ −µ
Z2

m2
+ µ2 Z2

m2
2

(
2|β(t)| − i

ω

c
|r(t)|

)
cos ϑ + i

2µ3ω

c

Z2

m3
2

|r(t)| |β(t)| cos2ϑ . (A.106)



A.4 Coulomb Acceleration Model 111

We neglect the third term proportional to cos2ϑ and get for the bremsstrahlung emission
probability per solid angle and frequency

d2P

dω dΩ
≈ α

4π2ω

∣∣∣∣∣

+∞∫

−∞

(
ZE1

eff + ZE2
eff

(
2|β(t)| − i

ω

c
|r(t)|

)
cos ϑ

)
|β̇(t)| sin ϑ eiωtdt

∣∣∣∣∣

2

. (A.107)

Angular Correlation

From equation (A.107) we find that the expression for the number of emitted
bremsstrahlungphoton per solid angle and frequency has the structure

d2P

dω dΩ
≈

∣∣(f1(ω) + f2(ω) cosϑ
)
sin ϑ

∣∣2 (A.108)

= f 2
1 (ω) sin2 ϑ + 2Re

(
f1(ω)f ∗

2 (ω)
)
sin2 ϑ cos ϑ + f 2

2 (ω) sin2 ϑ cos2 ϑ (A.109)

= f 2
1 (ω) sin2 ϑ

(
1 +

2Re
(
f1(ω)f ∗

2 (ω)
)

f 2
1 (ω)

cos ϑ +
f 2

2 (ω)

f 2
1 (ω)

cos2 ϑ
)

(A.110)

The third term is small and might be neglected but the second interference term has to
be taken into account. As we can see from equation (A.107) in comparison with equation
(A.102) this second term has two contributions: one from the relativistic character of the
problem, which vanishes for β ≪ 1, and one from the electric quadrupole.

A.4 Coulomb Acceleration Model

In the Coulomb-acceleration model (CA) the α particle is assumed to materialise at the
classical turning point with zero velocity and is then accelerated in the Coulomb field of
the daughter nucleus.

Let Zα and Zd be the charge of the α particle and the daughter nucleus, respectively. Then
the Coulomb potential at a relative distance r of the α particle and the daughter nucleus
is given by

V (r) =
ZαZd e2

r
. (A.111)

Then the classical turning point rc is given by the condition V (rc) = Qα where Qα is
the Q-value of the α-decay, i.e. the total kinetic energy released, which is shared by the
α-particle and the daughter nucleus. So one gets

rc =
ZαZd e2

Qα

(A.112)

The equation of motion is the given by Newton’s law

µr̈(t) = − ∂

∂r
V (r) =

ZαZd e2

r2(t)
=⇒ r̈(t) =

ZαZd e2

µr2(t)
(A.113)
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where µ is the reduced mass given by equation (A.57).

At the beginning of the acceleration (t0 = 0) the α particle is at rest at the classical turning
point rc. From energy conservation we get

1

2
µv2(r) = Qα − ZαZd e2

r
(A.114)

=⇒ v(r) =
dr

dt
=

√
2

µ

(
Qα − ZαZd e2

r

)
=

√
2ZαZd e2

µ

√
1

rc
− 1

r
.(A.115)

Or looking at β(r) and β̇(r) as defined in (A.94) we get

β(r) =

√
2ZαZd e2

µc2

√
1

rc
− 1

r
(A.116)

β̇(r) =
ZαZd e2

µc

1

r2
for r > rc (A.117)

To evaluate equation (A.80) we substitute the integration over time by the integration over
the relative distance r by

β̇ dt =
dβ

dt
dt =

dβ

dt

dt

dr
dr =

dβ

dr
dr . (A.118)

From equation (A.116) we get

dβ

dr
= β ′(r) =

√
ZαZd e2

2µc2

(
1

rc
− 1

r

)− 1
2 1

r2
. (A.119)

The resulting expression for the bremsstrahlung emission probability per energy interval
and solid angle derived from equation (A.107) is then given by

d2P

dω dΩ
≈ α

4π2ω

∣∣∣∣∣

+∞∫

rc

(
ZE1

eff + ZE2
eff

(
2β(r) − i

ω

c
r
)
cos ϑ

)
β ′(r) sinϑ eiωt(r)dr

∣∣∣∣∣

2

. (A.120)

To get an expression for t(r) the differential equation (A.114) might be solved by standard
techniques [62]. Equation (A.114) can be written as

ṙ2(t) +
ζ

r
= Ω (A.121)

with

ζ =
2ZαZd e2

µ
and Ω =

2Qα

µ
(A.122)
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For the differential equation (A.121) we find the solution

t(r) =

[
ζ ln

(√
Ω ρ +

√
Ω ρ − ζ

)

Ω
3
2

+

√
Ω ρ2 − ζρ

Ω

]ρ = r

ρ = rc

(A.123)

or with rc = ζ/Ω we get

t(r) =

[√
µ

2Qα

(
rc ln

(√
ρ +

√
ρ − rc

)
+
√

ρ ( ρ − rc)
)]ρ = r

ρ = rc

. (A.124)

Equation (A.120) can be evaluated numerically. In figure A.3 the velocity β(r), its deriva-
tive β ′(r), the acceleration β̇(r) and the time t(r) is plotted for the case of 210Po. The
resulting emission probability is given in figure A.4.

Angular Correlation

As stated above equation (A.120) has the form

d2P

dω dΩ
≈ C

∣∣(f1(ω) + f2(ω) cosϑ
)
sin ϑ

∣∣2 (A.125)

= Cf 2
1 (ω) sin2 ϑ

(
1 +

2Re
(
f1(ω)f ∗

2 (ω)
)

f 2
1 (ω)

cos ϑ +
f 2

2 (ω)

f 2
1 (ω)

cos2 ϑ
)

(A.126)

with

f1(ω) =

+∞∫

rc

ZE1
eff β ′(r) eiωt(r)dr (A.127)

f2(ω) =

+∞∫

rc

ZE2
eff

(
2β(r) − i

ω

c
r
)
β ′(r) eiωt(r)dr (A.128)

The equation (A.125) can be approximated by

d2P

dω dΩ
≈ Cf 2

1 (ω) sin2 ϑ (1 + 2Λ(ω) cosϑ) . (A.129)

with the correction function Λ is defined by

Λ(ω) =
Re
(
f1(ω)f ∗

2 (ω)
)

f 2
1 (ω)

. (A.130)

In figure A.5 the correction function Λ is plotted. From equation (A.120) we see that this
correction function has two contributions. The contribution from the term 2β(r) in the
integrant is referred to as the ”relativistic correction” and the correction from the term
−iω

c
r as the ”quadrupole correction”.
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Figure A.3: The relative velocity β (1), its derivative with respect to r (2), the acceleration
β̇ (3) and the time t (4) as functions of r for the case of 210Po
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Figure A.4: The resulting bremsstrahlung emission probability of 210Po is shown for the
Coulomb acceleration model (red) and the strict Coulomb acceleration model (green).

A.5 Strict Coulomb Acceleration Model

In the strict Coulomb acceleration model (SCA) it is taken into account that from a classical
point of view an bremsstrahlung photon of energy Eγ can only be emitted by an α-particle
which kinetic is bigger than Eγ . So the integration of equation (A.120) starts from the
point rmin with

rmin =
ZαZd e2

Qα − Eγ
(A.131)

The bremsstrahlung emission probability of 210Po in the strict Coulomb acceleration model
is plotted in green in figure A.4. In figure A.5 the corresponding corrections Λ(Eγ) to the
angular correlation are plotted. Note the large differences between the CA and SCA model
for the relativistic as well as the E2 contribution to the interference term.
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equation (A.130) is plotted for the Coulomb acceleration model (1) and the strict Coulomb
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problem (blue) and the electric quadrupole (magenta) is also plotted separately.



Appendix B

Quantum Mechanical Treatment

In this chapter we follow the quantum mechanical calculation by Papenbrock and Bertsch
[3].

As discussed in appendix A.2 the system of the α particle and the daughter nucleus can
be viewed as a relative particle with the reduced mass

µ =
Mα · Md

Mα + Md
(B.1)

in a potential U(r), where r is the relative coordinate of the two particles (Mα is the mass
of the α particle, Md the mass of the daughter nucleus).

In the following sections we will discuss the photon emission probability (section B.1) and
the solutions of the Schrödinger equation in a Coulomb potential and a constant potential
(section B.2) for a general particle of mass m, charge q in a potential U(r).

In sections B.3-B.8 the quantum mechanical description of bremsstrahlung emission prob-
ability in the α decay is derived.

B.1 Photon Emission Probability in the Dipole Ap-

proximation

According to Fermi’s golden rule the photon emission probability for the transition from
the initial state |i〉 to the final state |f〉 is

Wi→f =
2π

~
|〈f |Hem |i〉|2 ρf , (B.2)

where ρf is the density of the final states. The interaction Hamiltonian of the electromag-
netic field Hem is given by
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Hem = − q

mc
p ·A(r, t) , (B.3)

where q, m and p are the charge, the mass and the momentum of the particle, respectively.
With the quantisation of the electromagnetic field the vector potential A can be written
as (e.g. [63])

A(r, t) =
∑

kγ ,λ

√
2π~c

kγV

(
akγ ,λǫkγ ,λe

ikγ ·r−iωγt + a†
kγ ,λǫ

∗
kγ ,λe

−ikγ ·r+iωγt
)

. (B.4)

In equation (B.4) the usual definition of the ladder operators

akγ ,λ

∣∣. . . , nkγ ,λ, . . .
〉

=
√

nkγ ,λ

∣∣. . . , nkγ ,λ − 1, . . .
〉

a†
kγ ,λ

∣∣. . . , nkγ ,λ, . . .
〉

=
√

nkγ ,λ + 1
∣∣. . . , nkγ ,λ + 1, . . .

〉

is used. The wave-vector kγ points in the direction of the propagation of the photon, the
polarisation vectors ǫkγ ,λ (λ = 1, 2) are perpendicular to kγ and to each other. The volume
V introduced in (B.4) is defined to have periodical boundary conditions, the frequency ωγ

is given by

|kγ| =
ωγ

c
. (B.5)

The initial and final states can be written as the direct product of the the initial and
final states |Φi〉 and |Φf 〉 of the particle and the photon states |0〉 and

∣∣1kγ ,λ

〉
= a†

kγ ,λ |0〉,
respectively

〈f | = 〈Φf |
〈
1kγ ,λ

∣∣ = 〈Φf | 〈0| akγ ,λ |i〉 = |0〉 |Φi〉 . (B.6)

Using the equations (B.4),(B.3) and (B.2) the emission probability of a photon with wave-
vector kγ can be expressed by

Wi→f,kγ =
(2π)2q2

m2ckV

∑

λ

∣∣ 〈Φf |
〈
1kγ ,λ

∣∣p · ǫ∗kγ ,λe
−ikγ ·r |0〉 |Φi〉

∣∣2ρf . (B.7)

Because of akγ ,λ |0〉 = |0〉 only the second part of equation (B.4) contributes to Wi→f,kγ .

In the kγ-space there are d3kγ V/(2π)3 states in the volume element d3kγ , which is given
by d3kγ = k2

γ dkγ dΩ. The photon emission probability is then given by
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dP

dEγ dΩ
=

∫
k2

γ dkγ V

(2π)3

(2π)2q2

m2ckγV

∑

λ

∣∣ 〈Φf |p · ǫ∗kγ ,λe
−ikγ ·r |Φi〉

∣∣2δ(Ei − Ef − ~kγc)

=

∫
dkγ kγ

q2

2π m2c

∑

λ

∣∣ 〈Φf |p · ǫ∗kγ ,λe
−ikγ ·r |Φi〉

∣∣2δ(Ei − Ef − ~kγc) . (B.8)

We use the Taylor expansion for e−ikγ ·r

e−ikγ ·r = 1 − ikγ · r +
1

2
(ikγ · r)2 + . . . (B.9)

and get in the dipole approximation e−ikγ ·r ≈ 1

dP

dEγ dΩ
=

∫
dkγ kγ

q2

2πm2c

∑

λ

∣∣ 〈Φf |p · ǫ∗kγ ,λ |Φi〉
∣∣2δ(Ei − Ef − ~kγc) . (B.10)

Let ϑ be the angle between p and kγ, θ1 and θ2 the angle between p and ǫkγ ,1, ǫkγ ,2,
respectively. Then it is easy to see that

cos θ1 = sin ϑ cos ϑ cos θ2 = sin ϑ sin ϑ . (B.11)

With p · ǫkγ ,λ = p cos θλ we can perform the summation over λ = 1, 2 as cos2 θ1 + cos2 θ2 =
sin2 ϑ and obtain

dP

dEγ dΩ
=

q2

2π m2c

∫
dkγ kγ

∣∣ 〈Φf | p |Φi〉
∣∣2δ(Ei − Ef − ~kγc) · sin2 ϑ . (B.12)

Performing the integration over kγ with δ(ax) = 1
|a|

δ(x) and kγ = ωγ/c = Eγ/(~c) leads to

dP

dEγ dΩ
=

q2Eγ

2π m2~2c3

∣∣ 〈Φf | p |Φi〉
∣∣2 · sin2 ϑ . (B.13)

With the Hamiltonian

H =
p2

2m
+ U(~r) (B.14)

and a spherically symmetric potential U(r), the matrix element can also be written as

〈Φf | p |Φi〉 =
1

Ei − Ef
〈Φf | [H, p] |Φi〉 =

1

Eγ
〈Φf | [H, p] |Φi〉 =

i~

Eγ
〈Φf | ∂rU(r) |Φi〉 . (B.15)
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So the emission probability for an photon of energy Eγ is given by

dP

dEγ dΩ
=

q2

2π m2c3

∣∣ 〈Φf | ∂rU(r) |Φi〉
∣∣2 1

Eγ
· sin2 ϑ . (B.16)

and since
∫

dΩ sin2 ϑ =

2π∫

0

dϕ

π∫

0

dϑ sin3 ϑ =
8π

3
(B.17)

we find for the angle-integrated emission probability

dP

dEγ

=
4 q2

3 m2c3

∣∣ 〈Φf | ∂rU(r) |Φi〉
∣∣2 1

Eγ

. (B.18)

B.2 Time-independent Schrödinger Equation of

Spherically Symmetric Potentials

The time-independent Schrödinger equation for a spherically symmetric potential U(r) is
given by

(
− ~2

2m
△ + U(r)

)
ϕ(r) = Eϕ(r) . (B.19)

The Laplace-Operator △ is given by

△ =
1

r

∂2

∂r2
r +

1

r2

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
(B.20)

using the polar coordinates r, θ and φ. With the operator for the square of the angular
momentum L2

L2 = −~
2

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
, (B.21)

the equation (B.19) can be written as

(
− ~2

2m

1

r

∂2

∂r2
r +

L2

2mr2
+ U(r)

)
ϕ(r) = Eϕ(r) . (B.22)

Splitting up the wave function into a product of a radial part R(r) and the spherical
harmonics Y m

L (θ, ϕ)
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ϕ(r) = R(r) Y m
L (θ, ϕ) (B.23)

gives the differential equation for the radial function RL(r)

(
− ~2

2m

1

r

∂2

∂r2
r +

L(L + 1)~2

2mr2
+ U(r)

)
RL(r) = ERL(r) . (B.24)

Here L(L + 1)~ is the eigenvalue of the operator L2 for the functions Y m
L

L2 Y m
L (θ, ϕ) = L(L + 1)~2 Y m

L (θ, ϕ) . (B.25)

Introducing the functions uL(r) as

RL(r) =
uL(r)

r
(B.26)

further simplifies equation (B.24) to

(
− ~2

2m

∂2

∂r2
+

L(L + 1)~2

2mr2
+ U(r)

)
uL(r) = EuL(r) (B.27)

=⇒ ∂2

∂r2
uL(r) +

(
2mE

~2
− 2m

~2
U(r) − L(L + 1)

r2

)
uL(r) = 0 . (B.28)

B.2.1 The Coulomb Potential

The Coulomb potential for a charge q in the field of a second charge Q is given by

U(r) =
qQ

r
. (B.29)

The functions uL(r) are then defined by the differential equation obtained from (B.28)

∂2

∂r2
uL(r) +

(
2mE

~2
− 2mqQ

~2r
− L(L + 1)

r2

)
uL(r) = 0 . (B.30)

By the substitution

k =
1

~

√
2mE, ρ = kr η =

mqQ

~2k
(B.31)

this reduces to the Coulomb wave equation



122 Quantum Mechanical Treatment

-2

-1

 0

 1

 2

 3

 4

 0  20  40  60  80  100  120
ρ

G0(η,ρ)

F0(η, ρ)

Figure B.1: Coulomb wave functions G0(η, ρ) and F0(η, ρ) with a realistic η = 22.0079.

∂2

∂ρ2
uL(ρ) +

(
1 − 2η

ρ
− L(L + 1)

ρ2

)
uL(ρ) = 0 . (B.32)

The general solutions of this differential equation are given by

uL(ρ) = c1FL(η, ρ) + c2GL(η, ρ) (B.33)

where FL(η, ρ) is the regular Coulomb wave function and GL(η, ρ) is the irregular Coulomb
wave function [64]. Figure B.1 shows the functions F0(η, ρ) and G0(η, ρ) for η = 22.0079,
relevant in the case of 210Po.

The asymptotic behaviour of the Coulomb wave functions is given by

FL(η, ρ)
ρ→∞−→ sin

(
ρ − η ln 2ρ − L

π

2
+ σL

)
(B.34)

GL(η, ρ)
ρ→∞−→ cos

(
ρ − η ln 2ρ − L

π

2
+ σL

)
(B.35)

where
σL = arg Γ(L + 1 + iη) . (B.36)

Further holds the Wronskian Relation
(

∂

∂ρ
FL(η, ρ)

)
GL(η, ρ) − FL(η, ρ)

∂

∂ρ
GL(η, ρ) = 1 . (B.37)
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Let uL = FL(η, ρ) or uL = GL(η, ρ) then following recurrence relations hold

L
∂

∂ρ
uL =

√
L2 + η2 uL−1 −

(
L2

ρ
+ η

)
uL (B.38)

(L + 1)
∂

∂ρ
uL =

(
(L + 1)2

ρ
+ η

)
uL −

√
(L + 1)2 + η2 uL+1 (B.39)

L
√

(L + 1)2 + η2 uL+1 = (2L + 1)

(
η +

L(L + 1)

ρ

)
uL

−(L + 1)
√

L2 + η2 uL−1 . (B.40)

B.2.2 Constant Potential

If we take the potential U(r) to be constant

U(r) = V0 (B.41)

the differential equation for the radial functions RL(r) (B.24) has the form
(

1

r

∂2

∂r2
r − L(L + 1)

r2
+

2m(E − V0)

~2

)
RL(r) = 0 (B.42)

or by using the relation
1

r

∂2

∂r2
rRL =

∂2

∂r2
RL +

2

r

∂

∂r
RL (B.43)

this can also be written as
(

∂2

∂r2
+

2

r

∂

∂r
− L(L + 1)

r2
+

2m(E − V0)

~2

)
RL(r) = 0 . (B.44)

By substituting

κ =
1

~

√
2m(E − V0), σ = κr (B.45)

one obtains [
∂2

∂σ2
+

2

σ

∂

∂σ
+

(
1 − L(L + 1)

σ2

)]
RL(σ) = 0 . (B.46)

This differential equation is solved by the spherical Bessel functions jL(σ) and nL(σ):

RL(σ) = a1jL(σ) + a2nL(σ) . (B.47)

The spherical Bessel functions can also be written as

jL(σ) = (−σ)L

(
1

σ

∂

∂σ

)
sin σ

σ
(B.48)

nL(σ) = −(−σ)L

(
1

σ

∂

∂σ

)
cos σ

σ
. (B.49)
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Figure B.2: spherical Bessel functions j0(σ), j1(σ), n0(σ) and n1(σ)

For the asymptotic behaviour we have

jL(σ)
σ→∞−→ 1

σ
sin
(
σ − L

π

2

)
nL(σ)

σ→∞−→ 1

σ
cos
(
σ − L

π

2

)
(B.50)

and

jL(σ)
σ→0−→ σL

(2L + 1)!!
nL(σ)

σ→0−→ (2L − 1)!!

σL+1
. (B.51)

In figure B.2 the functions j0(σ), j1(σ), n0(σ) and n1(σ) are plotted

j0(σ)=
sin σ

σ
n0(σ)=−cos σ

σ

j1(σ)=
sin σ

σ2
− cos σ

σ
n1(σ)=−cos σ

σ2
− sin σ

σ
.

(B.52)

B.3 Description of the α Decay using Gamow Vectors

The potential experienced by the α decay is usually approximated by (see figure 2.1)

U(r) =
Zα Zd e2

r
Θ(r − r0) + V0Θ(r0 − r) (B.53)
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with the charge of the α particle Zα, the charge of the daughter nucleus Zd, and the distance
r between the two particles. The function Θ(x) is called the Heaviside step function and
is defined as

Θ(x) =





0 for x < 0
1
2

for x = 0
1 for x > 0

(B.54)

The unknown values for the radius of the nucleus r0 and the potential inside the nucleus
V0 are chosen to describe the measured α decay width and energy for a given initial state
|Φi〉.

B.3.1 Gamow Vectors

For the quantum mechanical description of a decaying particle the formalism of Gamow
vectors is used, first proposed by Gamow [32] and only shortly later by Gurney and Condon
[33]. For a more detailed description see also reference [65, 66].

For a decaying system the number of particles N(t) that have not decayed satisfy the
condition:

N(t) = N(0)e−λt (B.55)

where λ is called the decay rate, which is connected to the lifetime τ by τ = 1/λ and to
the half-life T1/2 of the state by T1/2 = ln 2/λ.

We denote the wave function of the decaying state as
∣∣ϕG(t)

〉
(where G refers to Gamow).

For the evolution in time we have the usual equation

∣∣ϕG(t)
〉

= e−iHt/~
∣∣ϕG(0)

〉
, (B.56)

and for the survival probability PS we get

PS =
N(t)

N(0)
=

∣∣〈ϕG(0)
∣∣ ϕG(t)

〉∣∣2 (B.57)

=
∣∣∣
〈
ϕG(0)

∣∣
(
e−iHt/~

∣∣ϕG(0)
〉 )∣∣∣

2

(B.58)

If we claim the expression for the survival probability to be equal with the decay law in
equation (B.55), we get the relation

∣∣∣
〈
ϕG(0)

∣∣
(
e−iHt/~

∣∣ϕG(0)
〉 )∣∣∣

2

= e−λt . (B.59)

This equality can be achieved if
∣∣ϕG(0)

〉
is an eigenvector of the Hamiltonian HG with a

complex eigenvalue

HG
∣∣ϕG(0)

〉
=

(
E0 − i

Γ

2

) ∣∣ϕG(0)
〉

(B.60)
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where E and Γ are both real and positive. If we postulate this we get from equation (B.59)

∣∣∣
〈
ϕG(0)

∣∣
(
e−iHGt/~

∣∣ϕG(0)
〉)∣∣∣

2

= e−λt (B.61)
∣∣〈ϕG(0)

∣∣ ϕG(0)
〉
e−i(E0−i(Γ/2))t/~

∣∣2 = e−λt (B.62)

e−Γt/~ = e−λt (B.63)

λ =
Γ

~
(B.64)

using the normalisation
〈
ϕG(0)

∣∣ ϕG(0)
〉

= 1. It is important to note that the introduced
”Hamiltonian” HG has a complex eigenvalue and therefore cannot be hermitian [67].

B.3.2 Gamow Vector and Decay Rate for the α Decay

The Hamiltonian of the stable system with the potential (B.53) is given by

H0 :=
p2

2µ
+

Zα Zd e2

r
Θ(r − r0) + V0Θ(r0 − r) . (B.65)

The initial state |Φi〉 can be found by solving the Schröderinger equation for the space
regions r < r0 and r > r0, respectively

(
p2

2µ
+ V0

)
|ϕ1〉 = Qα |ϕ1〉 for r < r0 (B.66)

(
p2

2µ
+

Zα Zd e2

r

)
|ϕ2〉 = Qα |ϕ2〉 for r > r0 . (B.67)

From section B.2 we know the general solutions for the radial equations

Φ1(r) = A1jL(κ0r) + A2nL(κ0r) (B.68)

Φ2(r) =
C1FL(η0, k0r) + C2GL(η0, k0r)

r
(B.69)

where η0 and k0 and κ0 are given by equation (B.31) and (B.45) and the energy E0 is given
by the decay energy Qα

k0 =
1

~

√
2µQα κ0 =

1

~

√
2µ(Qα − V0) η0 =

µ Zα Zd e2

~2k0
. (B.70)

In the following we consider the case of angular momentum L = 0. Since Φ1(r) must be
finite for r = 0 we find A2 = 0. For large r we require Φ2(r) to have the limit of a spherical
outgoing wave. Therefore we write

Φ2(r) = C2
G0(η0, k0r) + iF0(η0, k0r)

r
(B.71)
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and get for the asymptotic behaviour from equations (B.34) and (B.35)

Φ2(r)
r→∞−→ cos(k0r − δ) + i sin(k0r − δ)

r
=

eik0r−δ

r
(B.72)

Hence we get for the wave function of the initial state

Φi(r) =

{
A1j0(κ0r) for r < r0

C2 (G0(η0, k0r) + iF0(η0, k0r)) /r for r > r0
(B.73)

We now define the analogous Gamow vector
∣∣ΦG

i

〉
by

ΦG
i (r) =

{
A1j0(κr) for r < r0

C2 (G0(η, kr) + iF0(η, kr)) /r for r > r0
(B.74)

with

k =
1

~

√
2µE κ =

1

~

√
2µ(E − V0) η =

µ Zα Zd e2

~2k
E = Qα − i

Γ

2
. (B.75)

and the Hamiltonian HG as in equation (B.60)

HG
∣∣ΦG

i

〉
=

(
Qα − i

Γ

2

) ∣∣ΦG
i

〉
(B.76)

with

HG := H0 + W G . (B.77)

Because of Γ ≪ 1 the ”Hamiltonian” W G can be viewed as a perturbation of the Hamilto-
nian of the stable system H0.

To simplify the further calculations we write

A := A1 C := kC2 (B.78)

and get

ΦG
i (r) =





Aj0(κr) for r < r0

C
G0(η, kr) + iF0(η, kr)

kr
for r > r0

(B.79)

For the matching of the wave functions Φ1(r) and Φ2(r) at r = r0 we get following condi-
tions:

Φ1(r0) = Φ2(r0) (B.80)

Φ′
1(r0)

Φ1(r0)
=

Φ′
2(r0)

Φ2(r0)
(B.81)
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Equation (B.80) leads to the condition

sin(κr0) =
C

A

κ

k
(G0(kr0) + iF0(kr0)) (B.82)

where the j0 from equation (B.52) was used.

For the derivative of Φ1(r) and Φ2(r) we get

∂

∂r
Φ1(r) = A

(
cos(κr)

r
− 1

κ

sin(κr)

r2

)
(B.83)

∂

∂r
Φ2(r) = C

(
G′

0(η, kr) + iF ′
0(η, kr)

r
− 1

k

G0(η, kr) + iF0(η, kr)

r2

)
(B.84)

with leads to

Φ′
1(r)

Φ1(r)
= κ cot(κr) − 1

r
(B.85)

Φ′
2(r)

Φ2(r)
= k

G′
0(η, kr) + iF ′

0(η, kr)

G0(η, kr) + iF0(η, kr)
− 1

r
. (B.86)

So finally the condition (B.81) can be written as

κ cot(κr0) = k
G′

0(η, kr0) + iF ′
0(η, kr0)

G0(η, kr0) + iF0(η, kr0)
. (B.87)

This equation is call the energy relation. Using identity (B.37) we get

κ cot(κr0) = k
G′

0 + iF ′
0

G0 + iF0
· G0 − iF0

G0 − iF0
(B.88)

κ cot(κr0) = k
G′

0G0 + F ′
0F0 + i(F ′

0G0 − G′
0F0)

G2
0 − F 2

0

(B.89)

κ cot(κr0) = k

(
G′

0G0 + F ′
0F0

G2
0 − F 2

0

+
i

G2
0 − F 2

0

)
(B.90)

Expanding k and κ in a Taylor series gives

k = k0

√
1 − i

Γ

2Qα
(B.91)

≈ k0

(
1 − i

1

4

Γ

Qα

+
1

32

Γ2

Q2
α

+ · · ·
)

(B.92)

= k0

(
1 − i

1

4
∆ + O(∆2)

)
(B.93)

with

∆ =
Γ

Qα
=

~λ

Qα
=

~

τQα
. (B.94)
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In the case of 210Po we get ∆ = 7.1 · 10−30. Because ∆ ≪ 1 we may neglect the terms of
order O(∆2) and higher and get

k ≈ k0 − i
µ

2~2k0

Γ = k0 − i
εΓ

k0

+ O(∆2) (B.95)

κ ≈ κ0 − i
µ

2~2κ0

Γ = κ0 − i
εΓ

κ0

+ O(∆2) (B.96)

with ε = µ/(2~2). Now using also the Taylor expansion

cot(x) ≈ cot(x0) −
1

sin2(x0)
(x − x0) + · · · (B.97)

we get for the left hand side of equation (B.90)

κ cot(κr0) ≈
(

κ0 − i
εΓ

κ0

)(
cot(κ0r0) −

1

sin2(κ0r0)

(
−i

εΓ

κ0
r0

))
(B.98)

= κ0 cot(κ0r0) − i
εΓ

κ0
cot(κ0r0) + i

εΓr0

sin2(κ0r0)
+ O(∆2) (B.99)

= κ0 cot(κ0r0) + i
εΓ

κ0

(
κ0r0

sin2(κ0r0)
− cot(κ0r0)

)
+ O(∆2) . (B.100)

We use the approximation G2
0 − F 2

0 ≈ G2
0 for r = r0 (see figure B.1) and F ′

0F0 ≪ 1 (for
r = r0), the right hand side of equation (B.90) can then be written as

k

(
G′

0G0 + F ′
0F0

G2
0 − F 2

0

+
i

G2
0 − F 2

0

)
≈ k

(
G′

0

G0
+

i

G2
0

)
(B.101)

Employing the Taylor expansions for the functions G′
0/G0 and 1/G2

0 (see also B.9.3):

G′
0(η, kr0)

G0(η, kr0)
≈ G′

0(η, k0r0)

G0(η, k0r0)
+

(
−i

εΓ

k0

)
∂

∂k

(
G′

0

G0

)
(η, k0r0) + O(∆2) (B.102)

≈ G′
0(η, k0r0)

G0(η, k0r0)
− i

r0εΓ

k0

∂

∂ρ

(
G′

0

G0

)
(η, k0r0) + O(∆2) (B.103)

1

G2
0(η, kr0)

≈ 1

G2
0(η, k0r0)

+

(
−i

εΓ

k0

)
∂

∂k

(
1

G2
0

)
(η, k0r0) + O(∆2) (B.104)

≈ 1

G2
0(η, k0r0)

− i
r0εΓ

k0

∂

∂ρ

(
1

G2
0

)
(η, k0r0) + O(∆2) (B.105)
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and write for the right hand side of equation (B.90)

k

(
G′

0

G0

+
i

G2
0

)
≈

(
k0 − i

εΓ

k0

)[
G′

0

G0

− i
∂

∂ρ

(
G′

0

G0

)
εΓ

k0

r0 + i
1

G2
0

+
∂

∂ρ

(
1

G2
0

)
εΓ

k0

r0

]

= k0
G′

0

G0
− i

∂

∂ρ

(
G′

0

G0

)
εΓr0 +

ik0

G2
0

+
∂

∂ρ

(
1

G2
0

)
εΓr0 − i

G′
0

G0

εΓ

k0
+

εΓ

k0G2
0

+ O(∆2) (B.106)

= k0
G′

0

G0

+
∂

∂ρ

(
1

G2
0

)
εΓr0 +

εΓ

k0G
2
0

+i

[
k0

G2
0

− ∂

∂ρ

(
G′

0

G0

)
εΓr0 −

G′
0

G0

εΓ

k0

]
(B.107)

= k0
G′

0

G0
+

∂

∂ρ

(
1

G2
0

)
εΓr0 +

εΓ

k0G2
0

+ i

(
k0

G2
0

− εΓ

k0

G
G2

0

)
(B.108)

For simplicity we introduced the function G(η, ρ), defined as

G(η, ρ) := G′
0(η, ρ)G0(η, ρ) +

∂

∂ρ

(
G′

0

G0

)
(η, ρ)G2

0(η, ρ)ρ (B.109)

= G′
0(η, ρ)G0(η, ρ) +

(
G′′

0(η, ρ)G0(η, ρ) − G′2
0 (η, ρ)

)
ρ (B.110)

Using relation (B.39) we write

G′′
0 =

∂

∂ρ
G′

0 (B.111)

=
∂

∂ρ

[(
1

ρ
+ η

)
G0 −

√
1 + η2G1

]
(B.112)

= − 1

ρ2
G0 +

(
1

ρ
+ η

)
G′

0 −
√

1 + η2G′
1 (B.113)

So we get

G = G′
0G0 +

[
− 1

ρ2
G2

0 +

(
1

ρ
+ η

)
G′

0G0 −
√

1 + η2G′
1G0 − G2

0

]
ρ (B.114)

= (2 + ηρ)G′
0G0 −

(
ρ +

1

ρ

)
G2

0 − ρ
√

1 + η2G′
1G0 (B.115)
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Comparing the imaginary part of equation (B.100) and equation (B.108) leads to

k0

G2
0(η, k0r0)

≈ εΓ

κ0

(
κ0r0

sin2(κ0r0)
− cot(κ0r0)

)
+

εΓ

k0

G(η, k0r0)

G2
0(η, k0r0)

(B.116)

k2
0

2εΓ
≈ k0G

2
0(η, k0r0)

2κ0

(
κ0r0

sin2(κ0r0)
− cot(κ0r0)

)
+

1

2
G(η, k0r0) (B.117)

k2
0

2εΓ
≈ k0r0

2

G2
0(η, k0r0)

sin2(κ0r0)

(
1 − cot(κ0r0) sin2(κ0r0)

κ0r0

)
+

1

2
G(η, k0r0) (B.118)

k2
0

2εΓ
≈ k0r0

2

G2
0(η, k0r0)

sin2(κ0r0)

(
1 − sin(2κ0r0)

2κ0r0

)
+

1

2
G(η, k0r0) (B.119)

where we used the relation

cot α sin2 α = cos α sin α =
sin(2α)

2
. (B.120)

If we substitute the expression for ε and use equation (B.64) for Γ we get

k2
0

2εΓ
=

2Qα

~λ
=

2Qατ

~
(B.121)

and get finally the relation for the decay rate, r0 and V0

2Qατ

~
≈ k0r0

2

G2
0(η, k0r0)

sin2(κ0r0)

(
1 − sin(2κ0r0)

2κ0r0

)
+

1

2
G(η, k0r0) . (B.122)

Comparison the real part of equation (B.100) and equation (B.108) leads to

κ0 cot(κ0r0) = k0
G′

0

G0
+

∂

∂ρ

(
1

G2
0

)
εΓr0 +

εΓ

k0G2
0

(B.123)

κ0 cot(κ0r0) − k0
G′

0

G0
= εΓ

(
1

k0G2
0

− 2r0
G′

0

G3
0

)
(B.124)

k2
0

εΓ

(
κ0 cot(κ0r0)

k0

− G′
0

G0

)
=

1

G2
0

(
1 − 2k0r0

G′
0

G0

)
(B.125)

k2
0

2εΓ
=

k0

2G2
0

1 − 2k0r0
G′

0

G0

κ0 cot(κ0r0) − k0
G′

0

G0

(B.126)

With k2
0/(2εΓ) ≫ 1, k0/(2G2

0(η, k0r0) ≪ 1 and because G0(η, k0r0) and G′
0(η, k0r0) are of

the same order, equation (B.126) becomes true for

κ0 cot(κ0r0) − k0
G′

0(η, k0r0)

G0(η, k0r0)
≈ 0 (B.127)

κ0 cot(κ0r0) ≈ k0
G′

0(η, k0r0)

G0(η, k0r0)
(B.128)
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order 1 2 3 4 5 6 7 8

r0 [fm] 8.4528 8.1684 8.0519 7.9952 7.9644 7.9461 7.9344 7.9266
V0 [MeV] 4.7505 2.5884 -1.1477 -6.4766 -13.417 -21.986 -32.200 -44.069

Table B.1: For the case of 210Po (life time τ = 199.7 d, decay energy Qα = 5.407 MeV)
the first eight sets of solutions (r0, V0) of the imaginary and real part of the energy relation
(B.129) and (B.130) has been evaluated numerically.

which is the real part of the energy relation (B.90) with the simplifications F ′
0F0 ≪ 1 and

F 2
0 ≪ 1 for k0, κ0 and r0.

So we get the equations

k0r0

2

G2
0(η, k0r0)

sin2(κ0r0)

(
1 − sin(2κ0r0)

2κ0r0

)
+

1

2
G(η, k0r0) −

2Qατ

~
≈ 0 (B.129)

k0
G′

0(η, k0r0)

G0(η, k0r0)
− κ0 cot(κ0r0) ≈ 0 . (B.130)

For a given life time τ and decay energy Qα these equations are solved by an endless
number of sets (r0, V0). The first eight sets of solutions for the case of 210Po have been
evaluated numerically and are listed in table B.1. The left hand side of equation (B.129)
and (B.130) is plotted versus the depth of the inner potential in figure B.3 for the first six
solutions r0.

B.4 The Initial Wave Function |Φi〉

The initial wave function is given by the radial part Φi(r) and the spherical harmonic
Y 0

0 (θ, ϕ):

|Φi〉 = Φi(r)Y
0
0 (θ, ϕ) (B.131)

where the radial part is given by equation (B.79)

Φi(r) =





Aj0(κr) for r < r0

C
G0(η, kr) + iF0(η, kr)

kr
for r > r0

(B.79)

with

k =
1

~

√
2µE κ =

1

~

√
2µ(E − V0) η =

µ Zα Zd e2

~2k
E = Qα − i

Γ

2
(B.132)
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Figure B.3: For the case of 210Po the left hand side of equation (B.129) (red) and (B.130)
(green) is plotted versus the depth of the inner potential V0 for the first six solutions r0
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For r > r0 the particle flux is given by

j =
~

2µi

[
Φ∗

i (∇Φi) − (∇Φ∗
i )Φi

]
(B.133)

=
~

2µi

[
C∗G0(η, kr) − iF0(η, kr)

kr

∂

∂r

(
C

G0(η, kr) + iF0(η, kr)

kr

)

− ∂

∂r

(
C∗G0(η, kr) − iF0(η, kr)

kr

)
C

G0(η, kr) + iF0(η, kr)

kr

]
(B.134)

=
~

2µi

[
|C|2G0 − iF0

kr

(
G′

0 + iF ′
0

r
− 1

k

G0 + iF0

r2

)

−|C|2
(

G′
0 − iF ′

0

r
− 1

k

G0 − iF0

r2

)
G0 + iF0

kr

]
(B.135)

= |C|2 ~

2µki

[
(G0 − iF0)(G

′
0 + iF ′

0)

r2
− (G′

0 − iF ′
0)(G0 + iF0)

r2

]
(B.136)

= |C|2 ~

2µki

2i(F ′
0G0 − F0G

′
0)

r2
(B.137)

= |C|2 ~

µk

1

r2
(B.138)

where we used the Wronskian relation (B.37).

Integrating the flux j over a sphere with radius R with R > r0 we get for the integrated
flux JR

JR = |C|2 ~

µk
. (B.139)

We normalise the initial wave function to an outgoing flux of 1 and get for |C|:

|C| =

√
µk

~
(B.140)

We introduce the global phase ϕG

C = |C|eiϕG =

√
µk

~
eiϕG (B.141)

and write

Ã = AeiϕG . (B.142)



B.4 The Final Wave Function |Φf〉 135

Then Ã is defined by the matching condition (B.82)

sin(κr0) =
C

A

κ

k
(G0(kr0) + iF0(kr0)) (B.143)

sin(κr0) =
|C|
Ã

κ

k
(G0(kr0) + iF0(kr0)) (B.144)

Ã =

√
mk

~

κ

k

G0(kr0) + iF0(kr0)

sin(κr0)
(B.145)

Ã =

√
m

~k
κ

G0(kr0) + iF0(kr0)

sin(κr0)
(B.146)

In figure B.4 the initial wave function is plotted for the first six solution sets (r0, V0) for
the case of 210Po.

B.5 The Final Wave Function |Φf〉

In the dipole approximation an E1 photon is emitted, so the final wave function has an
angular momentum of L = 1. So it can be written as an radial part Φf (r) and a sum over
the spherical harmonics Y m

1 (θ, ϕ):

|Φf 〉 =
1∑

m=−1

Φf (r)Y
m
1 (θ, ϕ) . (B.147)

The radial part is again given by the solutions of the Schrödinger equation inside and
outside r0

Φf (r) =





aj1(κ
′r) for r < r0

c1G1(η
′, k′r) + c2F1(η

′, k′r)
k′r

for r > r0

(B.148)

with

k′ =
1

~

√
2µ(Qα − Eγ) κ′ =

1

~

√
2µ(Qα − Eγ − V0) η′ =

µ Zα Zd e2

~2k′
(B.149)

where Eγ is the energy of the emitted bremsstrahlung photon.

The matching condition of the function values at r0 leads to

aj1(κ
′r0) =

c1G1(η
′, k′r0) + c2F1(η

′, k′r0)

k′r0
(B.150)

a

(
sin(κ′r0)

κ′2r2
0

− cos(κ′r0)

κ′r0

)
=

c1G1(η
′, k′r0) + c2F1(η

′, k′r0)

k′r0
(B.151)

a

(
sin(κ′r0)

κ′r0

− cos(κ′r0)

)
=

κ′

k′

(
c1G1(η

′, k′r0) + c2F1(η
′, k′r0)

)
. (B.152)
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Figure B.4: The radial part of the initial wave function Φi is plotted for the first six
solution sets (r0, V0) for the case of 210Po.
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The derivatives at r0 are given by

∂

∂r
Φf (r)

∣∣∣
r→r0,r<r0

=
∂

∂r

(
aj1(κ

′r)
)∣∣∣

r=r0

(B.153)

= a
(
− 2

κ′2

sin(κ′r0)

r3
0

+
1

κ′

cos(κ′r0)

r2
0

+
sin(κ′r0)

r0

)
(B.154)

=
a sin(κ′r0)

r0

(
1 − 1

κ′2r2
0

)
− a

r0

(
sin(κ′r0)

κ′2r2
0

− cos(κ′r0)

κ′r0

)
(B.155)

=
a sin(κ′r0)

r0

(
1 − 1

κ′2r2
0

)
− 1

r0
aj1(κ

′r0) (B.156)

∂

∂r
Φf (r)

∣∣∣
r→r0,r>r0

=
∂

∂r

(c1G1(η
′, k′r) + c2F1(η

′, k′r)

k′r

)∣∣∣
r=r0

(B.157)

=
c1G

′
1(η

′, k′r0) + c2F
′
1(η

′, k′r0)

r0

− 1

r0

c1G1(η
′, k′r0) + c2F1(η

′, k′r0)

k′r0
(B.158)

So we get for the logarithmic derivatives

Φ′
f (r)

Φf (r)

∣∣∣
r→r0,r<r0

=
1

r0

sin(κ′r0)
(
κ′2r2

0 − 1
)

sin(κ′r0) − κ′r0 cos(κ′r0)
− 1

r0
(B.159)

=
1

r0

κ′2r2
0 − 1

1 − κ′r0 cot(κ′r0)
− 1

r0

(B.160)

Φ′
f (r)

Φf (r)

∣∣∣
r→r0,r>r0

= k′ c1G
′
1(η

′, k′r0) + c2F
′
1(η

′, k′r0)

c1G1(η′, k′r0) + c2F1(η′, k′r0)
− 1

r0
(B.161)

The matching of the logarithmic derivatives leads then to

1

r0

κ′2r2
0 − 1

1 − κ′r0 cot(κ′r0)
− 1

r0
= k′ c1G

′
1(η

′, k′r0) + c2F
′
1(η

′, k′r0)

c1G1(η′, k′r0) + c2F1(η′, k′r0)
− 1

r0
(B.162)

1

k′r0

κ′2r2
0 − 1

1 − κ′r0 cot(κ′r0)
=

c1G
′
1(η

′, k′r0) + c2F
′
1(η

′, k′r0)

c1G1(η′, k′r0) + c2F1(η′, k′r0)
(B.163)

(B.164)

The final state is stable, therefore η′, k′ and κ′ are real and the right hand side of equation
(B.163) must also be real. c1 and c2 may be complex so we write

c2

c1
= x + iy (B.165)
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so we get for the right hand side of equation (B.163)

G′
1 + c2

c1
F ′

1

G1 + c2
c1

F1
=

G′
1 + (x + iy)F ′

1

G1 + (x + iy)F1
(B.166)

=
G′

1 + (x + iy)F ′
1

G1 + (x + iy)F1
· G1 + (x − iy)F1

G1 + (x − iy)F1
(B.167)

=
(G′

1 + xF ′
1)(G1 + xF1) + yF ′

1F1

(G1 + xF1)2 + (yF1)2

+i
yF ′

1(G1 + xF1) − yF1(G
′
1 + xF ′

1)

(G1 + xF1)2 + (yF1)2
(B.168)

=
(G′

1 + xF ′
1)(G1 + xF1) + yF ′

1F1

(G1 + xF1)2 + (yF1)2
+ i

y(F ′
1G1 − F1G

′
1)

(G1 + xF1)2 + (yF1)2
(B.169)

=
(G′

1 + xF ′
1)(G1 + xF1) + yF ′

1F1

(G1 + xF1)2 + (yF1)2
+ i

y

(G1 + xF1)2 + (yF1)2
(B.170)

using again the Wronskian relation (B.37). So it follow y = 0 and therefore c2/c1 must be
real. So we can write

c1G1(η
′, k′r0) + c2F1(η

′, k′r0)

k′r0

= c̃
G1(η

′, k′r0) + dF1(η
′, k′r0)

k′r0

(B.171)

where c̃ is a global complex factor and d is real. This is usually written as

c1G1(η
′, k′r0) + c2F1(η

′, k′r0)

k′r0
= c

sin(α) G1(η
′, k′r0) + cos(α) F1(η

′, k′r0)

k′r0
(B.172)

where c is a global complex factor and α is real.

We then write the final wave function as

Φf (r) =





aj1(κ
′r) for r < r0

c
sin(α) G1(η

′, k′r) + cos(α) F1(η
′, k′r)

k′r
for r > r0

(B.173)

and have the two matching conditions

sin(κ′r0)

κ′r0

− cos(κ′r0) =
c

a

κ′

k′

(
sin(α) G1(η

′, k′r0) + cos(α) F1(η
′, k′r0)

)
(B.174)

κ′2r2
0 − 1

1 − κ′r0 cot(κ′r0)
= k′r0

sin(α) G′
1(η

′, k′r0) + cos(α) F ′
1(η

′, k′r0)

sin(α) G1(η′, k′r0) + cos(α) F1(η′, k′r0)
. (B.175)

We define

F(σ) :=
σ2 − 1

1 − σ cot(σ)
(B.176)
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and derive tan(α) from equation (B.175)

F(κ′r0) = k′r0
sin(α) G′

1 + cos(α) F ′
1

sin(α) G1 + cos(α) F1
(B.177)

F(κ′r0) (tan(α) G1 + F1) = k′r0 (tan(α) G′
1 + F ′

1) (B.178)

tan(α) (F(κ′r0)G1 − k′r0G
′
1) = k′r0F

′
1 − F(κ′r0)F1 (B.179)

tan(α) =
k′r0F

′
1 − F(κ′r0)F1

F(κ′r0)G1 − k′r0G′
1

(B.180)

In the case of 210Po tan(α) is of order of 10−28 therefore we have sin(α) ≪ 1 and cos(α) ≈ 1,
so the final wave function is dominated by the contribution of the regular Coulomb wave
function F1.

For the normalisation constant c we require the completeness relation for the F1 functions
(see B.9.1)

∞∫

0

√
2µk′

π~2

F1(η, k′r)

k′r

√
2µk′

π~2

F1(η, k′r′)

k′r
dE =

1

r2
δ(r − r′) (B.181)

and get

|c| =

√
2µk′

π~2
. (B.182)

We use again a global phase ϕg and write:

c = |c| eiϕg a = ã eiϕg (B.183)

and get ã from the matching condition (B.174)

sin(κ′r0)

κ′r0
− cos(κ′r0) =

c

a

κ′

k′

(
sin(α) G1(η

′, k′r0) + cos(α) F1(η
′, k′r0)

)
(B.184)

sin(κ′r0)

κ′r0
− cos(κ′r0) =

|c|
ã

κ′

k′

(
sin(α) G1(η

′, k′r0) + cos(α) F1(η
′, k′r0)

)
(B.185)

ã = |c|κ
′

k′
κ′r0

sin(α) G1(η
′, k′r0) + cos(α) F1(η

′, k′r0)

sin(κ′r0) − κ′r0 cos(κ′r0)
(B.186)

ã =

√
2mκ′2

π~k′
κ′r0

sin(α) G1(η
′, k′r0) + cos(α) F1(η

′, k′r0)

sin(κ′r0) − κ′r0 cos(κ′r0)
(B.187)

In figure B.5 the radial part of the final wave function Φf is plotted for the first six sets of
solutions (r0, V0) for the case of 210Po for the photon energies Eγ = 150 keV and 300 keV.
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Figure B.5: The radial part of the final wave function Φf is plotted for the first six solution
sets (r0, V0) for the case of 210Po (for energies Eγ = 150 keV and 300 keV)
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B.6 The Matrix Element 〈Φf | ∂rU(r) |Φi〉

The derivative of the potential U(r) for r < r0 is 0 because U(r) is constant there. For
r > r0 the derivative is given by

∂

∂r
U(r) =

Zα Zd e2

r2
, r > r0 (B.188)

With the derivative of the step function

∂

∂x
Θ(x) = δ(x) (B.189)

we get for the derivative at the point r0

∂

∂r
U(r)

∣∣∣∣∣
r=r0

=
Zα Zd e2

r0

δ(r − r0) + V0

(
− δ(r0 − r)

)
(B.190)

=

(
Zα Zd e2

r0
− V0

)
δ(r − r0) . (B.191)

So the derivative of the potential U(r) can be written as

∂

∂r
U(r) =

(
Zα Zd e2

r0

− V0

)
δ(r − r0) −

Zα Zd e2

r2
Θ(r − r0) (B.192)

From (B.4) and (B.5) we have for the initial wave function

Φi(r) =





Aj0(κr) for r < r0
√

µk
~

G0(η, kr) + iF0(η, kr)
kr

for r > r0

(B.193)

and for the final wave function

Φf(r) =





aj1(κ
′r) for r < r0

√
2µk′

π~
2

sin(α) G1(η
′, k′r) + cos(α) F1(η

′, k′r)
k′r

for r > r0

(B.194)

The matrix element 〈Φf | ∂rU(r) |Φi〉 is given by

〈Φf | ∂rU(r) |Φi〉 =

∞∫

0

dr r2 Φ∗
f (r) ∂rU(r) Φi(r) (B.195)

There is no contribution from the internal part of the wave functions with r < r0 due to
the the δ-distribution and the Heaviside Θ function in ∂rU(r). The matrix element is then
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Figure B.6: The real part (red-solid line) and the imaginary part (green-dotted line) of
the integrant of equation (B.197) is plotted for different γ energies Eγ.
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given by:

〈Φf | ∂rU(r) |Φi〉 =

√
2µ2

π~3kk′[(
ZαZd e2

r0

− V0

)(
G0(η, kr0) + iF0(η, kr0)

)(
sin(α) G1(η

′, k′r0) + cos(α) F1(η
′, k′r0)

)

ZαZd e2

∞∫

r0

dr
1

r2

(
G0(η, kr) + iF0(η, kr)

)(
sin(α) G1(η

′, k′r) + cos(α) F1(η
′, k′r)

)]

(B.196)

Because tan(α) ≪ 1 we can use the approximations cos(α) ≈ 1 and sin(α) ≈ tan(α)
and neglect F0(η, kr0) in the sum G0(η, kr0) + iF0(η, kr0) because G0(η, kr0) ≫ 1 and
F0(η, kr0) ≪ 1. So equation (B.196) can be written as (see also [3])

〈Φf | ∂rU(r) |Φi〉 ≈
√

2µ2

π~3kk′

[(
ZαZd e2

r0

− V0

)(
F1(η

′, k′r0) + G1(η
′, k′r0) tan(α)

)
G0(η, kr0)

−ZαZd e2

∞∫

r0

dr
1

r2

(
F1(η

′, k′r) + G1(η
′, k′r) tan(α)

)(
G0(η, kr) + iF0(η, kr)

)]
(B.197)

Figure B.6 shows the real and the imaginary part of the integrant in equation (B.197).

Though the equation (B.197) depends on the choice of r0 and V0 directly and indirectly
through the value of tan(α), their influence on the value of the matrix element is small (see
section B.8 for more details).

B.7 Bremsstrahlung Emission Probability

In the dipole approximation the emission probability for bremsstrahlung accompanying the
α decay can be derived from equation (B.16) by replacing q by the effective dipole charge
ZE1

eff e from equation (A.76) and m by the reduced mass µ

dP

dEγ dΩ
=

(ZE1
eff e)2

2π µ2c3

∣∣ 〈Φf | ∂rU(r) |Φi〉
∣∣2 1

Eγ
· sin2 ϑ . (B.198)

with the matrix element

〈Φf | ∂rU(r) |Φi〉 ≈
√

2µ2

π~3kk′

[(
ZαZd e2

r0

− V0

)(
F1(η

′, k′r0) + G1(η
′, k′r0) tan(α)

)
G0(η, kr0)

−ZαZd e2

∞∫

r0

dr
1

r2

(
F1(η

′, k′r) + G1(η
′, k′r) tan(α)

)(
G0(η, kr) + iF0(η, kr)

)]
(B.199)
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Figure B.7: The angle-integrated Bremsstrahlung emission probability in the α decay
of 210Po in the quantum mechanical model (for solution set r0 = 7.9644 fm and V0 =
−13.42 MeV).

where k, κ, η and the primed quantities are given by

k =
1

~

√
2µQα κ =

1

~

√
2µ(Qα − V0) η =

m ZαZd e2

~2k
(B.200)

and

k′ =
1

~

√
2µ(Qα − Eγ) κ′ =

1

~

√
2µ(Qα − Eγ − V0) η′ =

µ ZαZd e2

~2k′
(B.201)

with the charge of the α particle Zα, the charge of the daughter nucleus Zd, the decay
energy Qα, and the energy Eγ of the emitted bremsstrahlung photon.

The final result of the angle-integrated bremsstrahlung emission probability of 210Po is
plotted in figure B.7. For the numerical evaluation the solution set r0 = 7.9644 fm and
V0 = −13.42 MeV has been chosen as it results in a reasonable depth V0 of the potential
U(r) inside the nucleus. In figure B.8 the matrix element, its real part and its imaginary
part and their relative contributions to the square of the matrix element are presented.
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is plotted for the bremsstrahlung photon energies Eγ = 100 keV, 300 keV, 500 keV and
700 keV.

B.8 Dependence of the Bremsstrahlung Emission

Probability on the Choice of r0 and V0

The choice of the radius r0 and the potential V0 is restricted to discrete sets of solutions
(r0, V0) by the energy relation (B.87)

κ cot(κr0) = k
G′

0(η, kr0) + iF ′
0(η, kr0)

G0(η, kr0) + iF0(η, kr0)
. (B.87)

In this section the dependence of the final bremsstrahlung emission probability on the
choice of r0 and V0 is discussed.

In figure B.9 the total bremsstrahlung emission probability for different sets of solutions
(r0, V0) of the energy relation (B.87) are compared (the solution set rref

0 = 7.9644 fm and
V ref

0 = −13.42 MeV is used as a reference). The deviations between these sets of solutions
are in the range of ±1.5%.

Though the parameter r0 and V0 vary considerably (in particular the depth of the in-
ner potential V0) for different sets of solutions (r0, V0) there is only a slight variation
in the resulting bremsstrahlung emission probability. In table B.2 the different parts of
the matrix element (B.197) are evaluated numerically for two bremsstrahlung γ-energies
(Eγ = 150 keV and 450 keV) to illuminate this behaviour.
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E

γ
=

15
0
k
eV

n r0 V0 tan(α) ZαZd e2

r0
− V0 F1(η

′, k′r0) G1(η
′, k′r0)

[fm] [MeV] [MeV] tan(α)

3 8.0518 −1.148 1.806 · 10−30 30.48 8.831 · 10−16 4.760 · 10−16

4 7.9952 −6.477 8.327 · 10−31 36.01 7.807 · 10−16 2.473 · 10−16

5 7.9644 −13.42 2.503 · 10−31 43.07 7.298 · 10−16 7.931 · 10−17

6 7.9461 −21.99 −1.538 · 10−31 51.71 7.012 · 10−16 −5.065 · 10−17

7 7.9344 −32.20 −4.519 · 10−31 61.96 6.835 · 10−16 −1.525 · 10−16

8 7.9266 −44.07 −6.790 · 10−31 73.86 6.719 · 10−16 −2.330 · 10−16

n R0 −ZαZd e2 Re (I) −ZαZd e2 Im (I) Re (M) Im (M) |M|2

3 3.896 −3.243 −2.466 3.970 · 10−5 −1.498 · 10−4 1.096 · 10−9

4 3.919 −3.245 −2.466 4.097 · 10−5 −1.498 · 10−4 1.100 · 10−9

5 3.935 −3.239 −2.466 4.226 · 10−5 −1.498 · 10−4 1.105 · 10−9

6 3.947 −3.232 −2.466 4.340 · 10−5 −1.498 · 10−4 1.110 · 10−9

7 3.956 −3.225 −2.466 4.439 · 10−5 −1.498 · 10−4 1.114 · 10−9

8 3.962 −3.219 −2.466 4.516 · 10−5 −1.498 · 10−4 1.117 · 10−9

E
γ

=
45

0
k
eV

n r0 V0 tan(α) ZαZd e2

r0
− V0 F1(η

′, k′r0) G1(η
′, k′r0)

[fm] [MeV] [MeV] tan(α)

3 8.0519 −1.148 2.299 · 10−32 30.48 1.148 · 10−16 4.502 · 10−17

4 7.9952 −6.477 8.725 · 10−33 36.01 1.014 · 10−16 1.926 · 10−17

5 7.9644 −13.42 5.166 · 10−35 43.07 9.474 · 10−17 1.217 · 10−19

6 7.9461 −21.99 −6.036 · 10−33 51.71 9.099 · 10−17 −1.479 · 10−17

7 7.9344 −32.20 −1.056 · 10−32 61.96 8.869 · 10−17 −2.652 · 10−17

8 7.9266 −44.07 −1.403 · 10−32 73.86 8.718 · 10−17 −3.581 · 10−17

n R0 −ZαZd e2 Re (I) −ZαZd e2 Im (I) Re (M) Im (M) |M|2

3 0.4580 −0.3140 −0.3592 8.874 · 10−6 −2.214 · 10−5 8.655 · 10−12

4 0.4599 −0.3145 −0.3592 8.963 · 10−6 −2.214 · 10−5 8.679 · 10−12

5 0.4613 −0.3140 −0.3592 9.081 · 10−6 −2.214 · 10−5 8.711 · 10−12

6 0.4624 −0.3133 −0.3592 9.192 · 10−6 −2.214 · 10−5 8.742 · 10−12

7 0.4632 −0.3125 −0.3592 9.291 · 10−6 −2.214 · 10−5 8.770 · 10−12

8 0.4637 −0.3118 −0.3592 9.367 · 10−6 −2.214 · 10−5 8.792 · 10−12

with R0 :=
(

ZαZd e2

r0
− V0

)(
F1(η

′, k′r0) + G1(η
′, k′r0) tan(α)

)
G0(η, kr0)

I :=
∞∫
r0

dr 1
r2

(
F1(η

′, k′r) + G1(η
′, k′r) tan(α)

)(
G0(η, kr) + iF0(η, kr)

)

M := 〈Φf | ∂rU(r) |Φi〉

Table B.2: Values of different parts of equation (B.197) for Eγ = 150 keV and 450 keV
and the first six sets of solutions (r0, V0).
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The parameter V0 goes directly into the surface term

R0 :=

(
ZαZd e2

r0
− V0

)(
F1(η

′, k′r0) + G1(η
′, k′r0) tan(α)

)
G0(η, kr0) . (B.202)

While term ZαZd e2/r0−V0 grows considerably for lower values of V0, the decrease of tan(α)
nearly compensates this behaviour resulting in only a small growth in the surface term R0

for rising order number n of the solution set.

To examine the behaviour of the integral

I :=

∞∫

r0

dr
1

r2

(
F1(η

′, k′r) + G1(η
′, k′r) tan(α)

)(
G0(η, kr) + iF0(η, kr)

)
(B.203)

we discuss the real part and the imaginary part separately. As illustrated in figure B.6 the
real part of the integrand is small for r ≈ r0 and therefore the value of the lower limit r0

has hardly any effect on the imaginary part Im(I) of the integral. This is not the case for
the real part of the integrand, resulting in a small decrease of Re(I) with n which partly
compensates the increase in R0. Therefore the resulting value of the matrix element M
depends only weakly on the choice of the solution set (r0, V0).

In the following we will look at the behaviour of equation (B.198) when evaluated for
”unphysical” values of r0 and V0 which not fulfil the energy relation (B.87) (the solution
set rref

0 = 7.9644 fm and V ref
0 = −13.42 MeV will be used as a reference).

Figure B.10 shows that the numerical value of equation (B.198) changes dramatically when
the parameter r0 (V0) is changed to ”unphysical” values while the parameter V0 = V ref

0 =
−13.42 MeV (r0 = rref

0 = 7.9644 fm) is kept stable. A 2-dimensional plot of the numerical
results of equation (B.198) in the parameter plane r0 versus V0 is shown in figure B.11 with
the physical solutions sets for n = 4, 5, 6, and 7 marked by red points.

It is illuminative to further look at the behaviour of equation (B.198) for parameters r0

and V0 which fulfil the energy relation (B.87) ”partly”. As derived in section B.3 the energy
relation (B.87) can be split into a condition for the imaginary part, which leads to

k0r0

2

G2
0(η, k0r0)

sin2(κ0r0)

(
1 − sin(2κ0r0)

2κ0r0

)
+

1

2
G(η, k0r0) −

2E0τ

~
≈ 0 (B.129)

and a condition for the real part, which leads to the relation

k0
G′

0(η, k0r0)

G0(η, k0r0)
− κ0 cot(κ0r0) ≈ 0 . (B.130)

In figure B.12 the behaviour of equation (B.198) is investigated when r0 and V0 are changed
continuously along the path of the solutions of equation (B.129) and (B.130), respectively.

In panel (1) of figure B.12 the solution of the real part of the energy relation (B.130) is
plotted in red in a V0 versus r0 plot and the solution of the imaginary part (B.129) is plotted
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Figure B.10: The behaviour of equation (B.198) for ”unphysical” values for the parameter
r0 is shown with the parameter V0 = V ref

0 = −13.42 MeV kept stable in panel (1) and for
the parameter V0 with r0 = rref

0 = 7.9644 fm kept stable in panel (2). Panel (3) shows the
resulting values of equation (B.198) for ”unphysical” r0 and V0 values in a 2-dimensional
r0 versus V0 plot. The physical solution sets (r0, V0) for n = 4, 5, 6, and 7 are marked by
red points.
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Figure B.11: The behaviour of equation (B.198) for ”unphysical” values of the parameters
r0 and V0 is illustrated in a 2-dimensional r0 versus V0 plot (Eγ = 500 keV). The physical
solution sets (r0, V0) for n = 4, 5, 6, and 7 are marked by red points, the parameter set
(r0, V0) published by Papenbrock and Bertsch [3] is shown as a green diamond (PB).

in green. We start at the reference solution set (rref
0 = 7.964 fm, V ref

0 = −13.417 MeV)
and analyse solutions of the real and the imaginary part of the energy relation which are
connect to the reference solution by a continuous path. The behaviour of equation (B.198)
for the solutions of the real part (B.130) is plotted in panel (2) of figure B.12 and for the
imaginary part (B.129) in panel (3). Along the path of solutions of the real part of the
energy relation (B.130) the result of equation (B.198) changes only slightly; in contrast,
along the path of solutions of the imaginary part of the energy relation (B.129) the change
is dramatic.

To interpret this result we recall that the basic energy relation (B.87) approaches equation
(B.130) (neglecting F0(η, kr0) ≪ 1 and F ′

0(η, kr0) ≪ 1) in the limit of a vanishing imaginary
energy Γ → 0, i.e. the limit of a stable state τ → ∞. Furthermore equation (B.130) is
independent of Γ and therefore independent of the lifetime τ of the initial state. Thus
the result of equation (B.198) as discussed above only depends weakly on the lifetime τ
(for solution sets (r0, V0) of equation (B.130)). The imaginary part of the energy relation
(B.129) constrains the solutions of (B.130) to the physical solution sets (r0, V0) according
to the physical lifetime τ .

Therefore the resulting bremsstrahlung emission probability only depends weakly on the
choice of the parameter set (r0, V0) as long as these parameters fulfil the condition of the real
part of the energy relation (B.130) or in other words fulfil the basic energy relation (B.87)
in the limit of a stable nucleus (τ → ∞). This is the reason why parameter sets (r0, V0)
published in literature, e.g. in [3] (green diamond in figure B.11), lead to the almost the
same numerical result for the bremsstrahlung energy spectrum as the solution sets (r0, V0)
presented in this work.
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Figure B.12: The behaviour of equation (B.198) is analysed along the solutions of the real
part (equation (B.130)) and the imaginary part (equation (B.129)) of the energy relation,
respectively. The solutions of the real (red) and imaginary (green) part of the energy relation
are plotted in a V0 versus r0 plot in panel (1). The deviation of the resulting value from
the reference solution is plotted in panel (2) for the solutions of the real part and in panel
(3) for the solutions of the imaginary part of the energy relation.
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Figure B.13: 2-dimensional surface plot of the r0 and V0 dependence of equation (B.198)
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part of the energy relation (equations (B.130), red, and equation (B.129), green).
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B.9 Annotations

B.9.1 Completeness of the Coulomb Wave Functions

The completeness of the Coulomb wave functions has been shown explicitly by Mukunda
in [68]. He defines the functions RL(k, r) by

RL(k, r) =

√
π

2

k

(2L + 1)!
e−π/2ak |Γ(L + 1 − i/ak)|

× (2kr)Leikr M(L + 1 + i/ak, 2L + 2,−2ikr) (B.204)

with

a =
~

2

qQm
=⇒ η =

1

ak
. (B.205)

(Note that in [68] an attractive Coulomb potential is considered, so the representation of
RL(k, r) differs slightly.) The function M is the confluent hypergeometric function (see also
[64]) defined by

M(a, b, z) = 1 +

∞∑

n=1

(a)nz
n

(z)nn!
(B.206)

with the standard abbreviation

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) . (B.207)

The completeness relation for the continuum is then given by
∞∫

0

RL(k, r) RL(k, r′) dk =
1

r2
δ(r − r′) . (B.208)

In this text we use the definition of Coulomb wave function FL(η, kr) according to [64]

FL(η, kr) =
2L

Γ(2L + 2)
e−πη/2 |Γ(L + 1 + iη)|

× krL+1e−ikr M(L + 1 − iη, 2L + 2, 2ikr) . (B.209)

Comparing equation (B.204) and (B.209) we get

r

√
π

2
RL(k, r)

=
kr

(2L + 1)!
e−π/2ak |Γ(L + 1 − i/ak)| (2kr)Leikr M(L + 1 + i/ak, 2L + 2,−2ikr)

=
2L

Γ(2L + 2)
e−π/2ak |Γ(L + 1 − i/ak)| (kr)L+1e−ikr M(L + 1 − i/ak, 2L + 2, 2ikr)

=
2L

Γ(2L + 2)
e−π/2ak |Γ(L + 1 + i/ak)| (kr)L+1e−ikr M(L + 1 − i/ak, 2L + 2, 2ikr)

= FL(1/ak, kr) = FL(η, kr) (B.210)



154 Quantum Mechanical Treatment

where we used the Kummer transformation

M(a, b, z) = ez M(b − a, b,−z) (B.211)

and the relation
|Γ(z)| = |Γ(z)| = |Γ(z)| . (B.212)

With the relation (B.210) the completeness relation for the functions FL(1/ak, rk) can be
derived from (B.208)

∞∫

0

RL(k, r)RL(k, r′) dk =
1

r2
δ(r − r′)

∞∫

0

√
2

π

FL(1/ak, kr)

r

√
2

π

FL(1/ak, kr′)

r
dk =

1

r2
δ(r − r′)

∞∫

0

√
2

π

FL(η, kr)

r

√
2

π

FL(η, kr′)

r

m

~2k
dE =

1

r2
δ(r − r′)

∞∫

0

√
2mk

π~2

FL(η, kr)

kr

√
2mk

π~2

FL(η, kr′)

kr
dE =

1

r2
δ(r − r′) (B.213)

B.9.2 Numerical Integration of 〈Φf | ∂rU(r) |Φi〉

For the numerical evaluation of the integral in equation (B.197) it is important to analyse
the behaviour of the integrant. With the approximation (B.34) and (B.35) we find

F1(η
′, k′r)G0(η, kr)

r→∞−→ sin
(
k′r − η′ ln(2k′r) − π

2
+ σ′

1

)
cos
(
kr − η ln(2kr) + σ0

)

F1(η
′, k′r)F0(η, kr)

r→∞−→ sin
(
k′r − η′ ln(2k′r) − π

2
+ σ′

1

)
sin
(
kr − η ln(2kr) + σ0

)

with
σ′

1 = arg Γ(2 + iη′) σ0 = arg Γ(1 + iη)

Using the relations

sin(α) cos(β) =
1

2

(
sin(α − β) + sin(α + β)

)
(B.214)

sin(α) sin(β) =
1

2

(
cos(α − β) − cos(α + β)

)
(B.215)

we get

F1(η
′, k′r)G0(η, kr)

r→∞−→ 1

2

(
sin(ωsr − ϕs) + sin(ωfr − ϕf )

)
(B.216)

F1(η
′, k′r)F0(η, kr)

r→∞−→ 1

2

(
cos(ωsr − ϕs) − cos(ωfr − ϕf)

)
(B.217)
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with

ωs = k′ − k (B.218)

ωf = k′ + k (B.219)

ϕs =
π

2
+ η′ ln(2k′r) − η ln(2kr) − σ′

1 + σ0 (B.220)

ϕf =
π

2
+ η′ ln(2k′r) + η ln(2kr) − σ′

1 − σ0 (B.221)

For r ≫ 1 the change in ϕs and ϕf is small compared with the change in ωsr and ωfr. So
the behaviour of the real and the imaginary part of the integrant is approximated by the
sum of two sinusoidal functions, one oscillating fast with ωf and one oscillating slow with
ωs. To get a good approximation of the value of the integral it is necessary to use an upper
limit of integration which has an maximum in of both oscillations.

B.9.3 Taylor-Expansion with a Complex Argument

Let f(x) be a real function

x 7−→ f(x) R −→ R

and x0 ∈ R. Let DR be and interval in R with

DR := {x ∈ R, |x − x0| < ε}
with ε ≪ 1. We get for the Taylor expansion about x0

f(x) =

∞∑

n=0

an(x − x0)
n ∀x ∈ DR

with the Taylor coefficients

an :=

(
∂
∂x

)n

f(x0)

n!
We define D ⊂ C by the condition

D := {z ∈ C, |z − z0| < ε}
with z0 = x0 ∈ R and find DR ∈ D. The function F (z) defined by

F (z) :=
∞∑

n=0

an(z − z0)
n ∀z ∈ D

is called the complex continuation of f on D.

We now consider the value of F (z) at the point z = x0 + iδ where δ < ε ≪ 1 and get

F (x0 + iδ) ≈ a0 + ia1δ + O(δ2)

≈ f(x0) + iδ
∂

∂x
f(x0) + O(δ2)
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Appendix C

α- and γ-Lineshape

C.1 The α-Lineshape

Several methods to fit an α spectrum have been proposed in the literature [55–58]. In
this work a fit function f(x) is used consisting out of a Gaussian g(x), a function for the
approximation of the low energy tail tl(x) and one for the high energy tail th(x). For the
fitting procedure a non-linear least square fit is used (provided by the gnuplot 1 software).

The exact fit function is defined by

f(x, x0) = g(x, x0) + tl(x, x0) + th(x, x0) (C.1)

with a Gaussian g(x, x0)

g(x, x0) =
Aref

σ
√

2π
exp

(
−1

2

(x − x0)
2

σ2

)
. (C.2)

The low energy tail tl(x, x0) is approximated by two exponential tails tla(x, x0) and
tlb(x, x0), a smoothed step function sl(x, x0) and an additional Gaussian gs(x, x0)

tl(x, x0) = tla(x, x0) + tlb(x, x0) + gs(x, x0) + sl(x, x0) (C.3)

tla(x, x0) = Bla eCla(x−x0)

(
1 − exp

(
−1

2

(x − x0)
2

σ2

))
Θ (x0 − x) (C.4)

tlb(x, x0) = Blb eClb(x−x0)

(
1 − exp

(
−1

2

(x − x0)
2

σ2

))
Θ (x0 − x) (C.5)

sl(x, x0) =
Bsl

2

(
1 + erf

(
x0 − x

σ
√

2

))
(C.6)

gs(x, x0) =
Ags

σgs

√
2π

exp

(
−1

2

(x − x0 − xgs)
2

σ2
gs

)
. (C.7)

1http://www.gnuplot.info/
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Figure C.1: As a reference for the structure of the α-lineshape the α-energy spectrum of
random gate is fitted. The main contribution to the fit function f(x, x0) is the Gaussian
g(x, x0). The low energy tail is approximated by the function tl(x, x0) consisting of an
additional Gaussian gs(x, x0), two exponential tails tla(x, x0) and tlb(x, x0) and a smoothed
step function sl(x, x0). The fit function for the high energy tails th(x, x0) is similarly
composed of two exponential tail tha(x, x0) and thb(x, x0) and a smoothed step function
sh(x, x0).

The structure of the high energy tail fit function th(x, x0) is similarly given by two expo-
nential tails tha(x, x0) and thb(x, x0) and a smoothed step function sh(x, x0)

th(x, x0) = tha(x, x0) + thb(x, x0) + sh(x, x0) (C.8)

tha(x, x0) = Bha eCha(x0−x)

(
1 − exp

(
−1

2

(x0 − x)2

σ2

))
Θ (x − x0) (C.9)

thb(x, x0) = Bhb eChb(x0−x)

(
1 − exp

(
−1

2

(x0 − x)2

σ2

))
Θ (x − x0) (C.10)

sh(x, x0) =
Bsh

2

(
1 + erf

(
x − x0

σ
√

2

))
. (C.11)

Figure C.1 shows a fit of the random α-energy spectrum. The fit function reproduces the
peak form very well.
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Figure C.2: The γ-energy spectrum of a 60Co reference source recorded with crystal C is
plotted.

C.2 The γ-Lineshape

A typical γ-energy spectrum of a 60Co source is shown in figure C.2 (recorded with module
C of the cluster detector). The two full energy peaks at 1173.23 keV and 1332.50 keV are
prominent. If a photon is Compton scattered in the active volume of the detector and then
escapes only part of the original energy of the photon is detected. This effect gives rise to
the Compton background. Another prominent feature is the summing peak at 2505.73 keV
where both photons from the source are recorded with full energy in the detector. The
remaining peaks in the spectrum are due to the room background. A detailed analysis of
the room background can be found in the appendix D.

Various analytical fit functions for the full energy peak in the γ-energy spectrum have been
proposed in the literature [69, 70]. The peak form is mainly Gaussian like. For the fitting
procedure of the peaks in the γ spectra a fit function fG(x) is used which is the sum of
a Gaussian gG(x), two low energy tails tGla(x) and tGlb(x), a high energy tail tGh (x), a step
function sG(x) and a linear background bG

l (x)

fG(x) = gG(x, x0) + tGla(x, x0) + tGlb(x, x0) + tGh (x, x0) + sG(x, x0) + bG
l (x, x0) . (C.12)

The function gG(x, x0) is defined by

gG(x, x0) =
AG

τ
√

2π
exp

(
−1

2

(x − x0)
2

τ 2

)
(C.13)
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Figure C.3: For the fit of the full-energy peak in the γ-energy spectrum a fit function
fG(x) is used which is the sum of a Gaussian gG(x), two low energy tails tGla(x) and tGlb(x),
a high energy tail tGh (x), a step functions sG(x) and a linear background bG

l (x). Here the
1332.50 keV line in the spectrum of the 60Co reference source recorded with detector C is
shown.
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crystal FWHM @ 1173.23 keV FWHM @ 1332.50 keV

A 2.4 keV 2.5 keV
B 2.7 keV 2.7 keV
C 2.5 keV 2.6 keV

Table C.1: The resolution of the three HPGe-crystal of the cluster detector were measured
with a 60Co reference source.

with the peak position x0, the width τ and the area AG. The low energy tails tGla(x, x0)
and tGlb(x, x0) and the high energy tail tGh (x, x0) are defined by

tGla(x, x0) = BG
la eCG

la(x−x0)

(
1 − exp

(
−DG

la

(x − x0)
2

τ 2

))
Θ (x0 − x) (C.14)

tGlb(x, x0) = BG
lb eCG

lb (x−x0)

(
1 − exp

(
−DG

lb

(x − x0)
2

τ 2

))
Θ (x0 − x) (C.15)

tGh (x, x0) = BG
h eCG

h (x0−x)

(
1 − exp

(
−DG

h

(x0 − x)2

τ 2

))
Θ (x − x0) (C.16)

where the values BG
∗ , CG

∗ and DG
∗ are free parameters. For the step function sG(x, x0) the

error function is used

sG(x, x0) =
BG

s

2

(
1 + erf

(
x0 − x

τ
√

2

))
. (C.17)

The linear background is described by the linear function bG(x, x0)

bG
l (x, x0) = BG

bl (x − x0) + CG
bl . (C.18)

Figure C.3 shows the fit function with its components fitted to the 1332.50 keV line in the
spectrum of the 60Co reference source recorded with detector C. The chosen fit functions
reproduces the peak form in the data very well.

The resolution of the three HPGe crystals measured with the 60Co source is shown in table
C.1.



162 α- and γ-Lineshape



Appendix D

γ Spectra

In the figures D.1-D.4 the γ-energy spectra of the room background are shown up to an
γ-energy of 3220 keV with the classification of the background lines. The spectrum was
recorded with crystal C of the MINIBALL cluster detector over the whole period of data
taking (∼ 270 days).
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Figure D.1: γ-energy spectrum of the room background in the energy region from 30 keV
to 420 keV with the classification of the background lines.
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Figure D.2: γ-energy spectrum of the room background in the energy region from 400 keV
to 1060 keV with the classification of the background lines.
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Figure D.3: γ-energy spectrum of the room background in the energy region from 1050 keV
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Figure D.4: γ-energy spectrum of the room background in the energy region from 1560 keV
to 3220 keV with the classification of the background lines.
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and D. Schwalm, Phys. Rev. Lett. 99, 022505 (2007).

[31] B. Povh, K. Rith, C. Scholz, and F. Zetsche, Teilchen und Kerne (Springer-Verlag,
1999), 5th ed.

[32] G. Gamow, Zeitschr. f. Physik 37, 204 (1928).

[33] R. Gurney and E. Condon, Nature 122, 439 (1928).

[34] R. Gurney and E. Condon, Phys. Rev. 33, 127 (1929).

[35] O. Nachtmann, private communication (2008).



BIBLIOGRAPHY 179

[36] H. Boie, Diplomarbeit, Universität Heidelberg (2002), URL http://www.mpi-hd.

mpg.de/cb/theses.html.

[37] R. B. Firestone, Table of Isotopes (John Wiley & Sons, New York, 1996), 8th ed.

[38] J. Eberth, G. Pascovici, H. Thomas, N. Warr, D. Weisshaar, D. Habs, P. Reiter,
P. Thirolf, D. Schwalm, C. Gund, et al., Prog. Part. Nucl. Phys. 46, 389 (2001).

[39] G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, 2000), 3rd
ed.

[40] G. Heusser, Nucl. Instr. Meth. B 83, 223 (1993).

[41] M. Lauer, Diplomarbeit, Universität Heidelberg (2001), URL http://www.mpi-hd.

mpg.de/cb/theses.html.

[42] M. Lauer, Dissertation, Universität Heidelberg (2004), URL http://www.mpi-hd.

mpg.de/cb/theses.html.
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chen Quantenmechanik.

• Herrn Prof. Alexander Milstein, Herrn Dr. Ulrich Jentschura und Herrn Terekhov für
ihren Einsatz bei der Entwicklung eines semi-klassischen Modells.

• Den ehemaligen Kollegen aus der CB-Gruppe für ein angenehmes, fröhliches und
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