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Zusammenfassung

Proteine sind an allen zellularen Prozessen beteiligt und agieren dabei in der
Regel in Wechselwirkung mit anderen Proteinen. In dieser Arbeit wird ein Mo-
dell far die stochastische Dynamik von Proteinkomplexen untersucht, das sich fr
grofBe Systeme und lange Zeiten eignet. Jedes Protein wird als Teilchen aufge-
fasst, welches an seiner Oberflache reaktive Bereiche aufweist. Ein Uberlapp
solcher Bereiche von zwei Modellproteinen flhrt zur stochastischen Ausbildung
einer Bindung, die dynamisch wieder aufbrechen kann. Die Anordnung und
Kinetik der Bindungsstellen kann an konkrete biologische Systeme angepasst
werden. Die Dynamik des Modellsystems wird mit einer Langevin-Gleichung im
Uberdampften Grenzfall beschrieben.

Zunachst werden drei verschiedene Detailstufen der Modellierung der bimole-
kularen Bindungsdynamik betrachtet. Die Zeit zum Erreichen einer reaktiven Re-
lativposition zwischen zwei Proteinen und die Anzahl erfolgloser Annaherungen
werden mit Computersimulationen und analytischen Rechnungen bestimmt. Der
Effekt anisotroper Formen auf die Assemblierungsdynamik wird anhand von Ellip-
soiden mit unterschiedlichen Aspektverhaltnissen untersucht. Die relevante Zeit-
skale fUr anisotrope Diffusion wird analytisch bestimmt. Simulationen ergeben,
dass die Annaherungsdauer im wesentlichen durch die unterschiedlichen Zu-
ganglichkeit der reaktiven Bereiche bestimmt wird. Schlie3lich wird die Dynamik
von Komplexen mit mehr als zwei Proteinen betrachtet. Es zeigt sich, dass
die Transportprozesse zwischen Bindungsvorgangen nicht durch einfache sto-
chastische Raten beschrieben werden kénnen. Fir die Virusassemblierung wird
gezeigt, dass sie nur bei mittleren Dissoziationsraten erfolgreich verlauft.

Abstract

Proteins are involved in all cellular processes and typically act in concert with
other proteins. Here we investigate a model for the stochastic dynamics of pro-
tein complexes which is especially suited to study large systems and long times.
Each protein is modeled as a particle with reactive patches on its surface. An
overlap of such patches of two model proteins leads to the stochastic formation
of a bond, which also can dynamically dissociate. The positioning and kinetics of
the patches can be adjusted to specific biological systems. The model dynamics
is described by a Langevin equation in the overdamped limit.

We start by considering three different levels of detail for bimolecular en-
counter. The time to reach a reactive alignment of two model proteins and the
number of unsuccessful approaches are determined by computer simulations
and analytical calculations. The impact of anisotropic shapes on the assembly
dynamics is investigated for ellipsoids with different aspect ratios. The relevant
time scale for anisotropic diffusion is determined analytically. Simulations reveal
that the time to encounter is mainly determined by the accessibility of the reactive
patches. Finally the dynamics of complexes with more than two proteins is con-
sidered. We show that the transport processes between binding reactions cannot
be described by effective stochastic rates. Our simulations also reveal that virus
assembly is only effective at intermediate values of the dissociation rates.
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Chapter 1

Introduction

1.1 Proteins — the main actors in the cell

Proteins are a large class of highly specialized macromolecules performing es-
sential functions in biological systems, such as processing of genetic informa-
tion, signal transduction, buildup of cellular structure like the cytoskeleton and
transport of material [6, 154]. Structurally, proteins are polymers build up as se-
quences of 50-3000 amino acid residues linked by peptide bonds. All proteins
are composed of 20 different types of amino acids. The particular sequence of
amino acids in a protein, also referred to as primary structure, is encoded in the
genes. This sequence is responsible for the formation of a stable and unique
native conformation. A whole cell machinery, partially consisting of proteins itself,
transcribes DNA into mRNA and synthesizes proteins according to the mRNA.
The three-dimensional structure of the protein itself, also called the tertiary struc-
ture, determines the biological function of a protein. Since 2001, the whole human
genome is sequenced [151]. In principle, this should imply a deep understanding
of the majority of cellular processes. In practice, the conceptual step from the ge-
netic sequence to the multitude of molecular species and their concerted function
inside the cell is huge and poorly understood. Regarding single proteins a lot of
progress has been made concerning the problem of protein structure determina-
tion from the primary structure. Over the past decades a large number of tertiary
structures have been discovered by increasingly powerful methods such as x-ray
crystallography [80], nuclear magnetic resonance (NMR) spectroscopy [161] or
electron microscopy (EM) [56]. The growing amount of this information leads to
an improvement of bioinformatics approaches to structure prediction like homol-
ogy modeling and protein threading [168]. Altogether, this development marks a
big step towards the understanding of the biological function of proteins.
However, in recent years it has been noticed that proteins are mainly func-
tional in complexes [19, 70, 81]. In fact, about half of all cellular proteins are
assumed to be part of macromolecular complexes at various times [42, 59, 60].
The average oligomeric state of soluble proteins in Escherichia coli is four, with
15% forming high-order assemblies. In the biochemistry community, biologically
functional complexes are usually termed assemblies. In contrast, the term ag-
gregation refers to pathologic clustering and plaque formation as found in several
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Figure 1.1: (a) Hepatitis B virus capsid [162]. The whole capsid is built from only
one type of monomers, which are shown in different gray scales according to their
alignment in the icosahedral face. (b) Artificial tree of actin filaments, taken from
UCSF Chimera Gallery (2004). (c) Cartoon representation of the 70S Ribosome
[164]. (d) Arp 2/3 complex [119]. It is built up from seven different proteins each
shown in a unique gray scale in the image. (e) Sketch of a focal adhesion [61]. (f)
Nuclear pore complex [5].

neurodegenerative diseases such as Alzheimer or Parkinson. The process of for-
mation of assemblies out of the individual proteins usually occurs without external
control and is therefore called self-assembly. Functional protein complexes can
have various characteristics and take over all kinds of different functions. Here, we
want to define three different types of complexes without claiming completeness
of categorization. First, there are supramolecular complexes functioning as ar-
chitectural scaffolds. Prominent examples are virus capsids (see Fig. 1.1a), actin
filaments (see Fig. 1.1b) or clathrin coats. These are often made up of a large
number of copies of only a small number of different components. Therefore, they
are typically highly regular and symmetric [14, 102, 165]. Apart from a particu-
lar growth dynamics like actin polymerization and depolymerization, such com-
plexes are typically very stable, i.e., their structure is well determined and rather
permanent. Different characteristics are found for biomolecular machines like the
ribosome (see Fig. 1.1d), the spliceosome, photosynthetic reaction centers or the
Arp2/3 complex (see Fig. 1.1c). The respective compounds are more heteroge-
neous and typically consist of an average number of ~10 different protein species.
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Some of the biomolecular machines have a defined dynamic behavior to perform
their tasks, such as protein synthesis in ribosomes or the photophosphorylation in
bacterial reaction centers. Finally, there are large open complexes like adhesion
clusters (see Fig. 1.1e), transcription complexes, motor complexes or the nuclear
pore complex (see Fig. 1.1f). These can consist of up to millions of proteins out
of hundreds of different species as in case of the focal adhesion complex. Focal
adhesions are the main sites of cell attachment to the extracellular matrix and
control many cellular processes such as proliferation and migration. They have
a particularly rich dynamics because the adhesion is continuously adjusting to
changes in the environment and thus there is large turn-over in the system. In
contrast, once formed the nuclear pore complex is rather stable, but during the
cell division the huge complex is completely disassembled and built up again in
both daughter cells. These considerations show that unlike for most single pro-
teins dynamics is very important for the function of protein complexes [42].

Regarding the composition and structure determination of protein complexes
a number of experimental and computational techniques have been adopted from
single protein investigations or newly developed in the field of proteomics [106,
122]. These methods range from x-ray crystallography, NMR spectroscopy, and
electron tomography (which are able to give direct information about assembly
shape and structure) through fluorescence resonance energy transfer (FRET)
microscopy, mass spectroscopy, and gene/protein arrays (providing subunit prox-
imity measures) to theoretical bioinformatics and docking approaches (predicting
subunit-subunit contacts). An impressive example of the power of these tech-
niques was the recent solution of the structure of the whole nuclear pore complex
containing 456 proteins by the integration of a broad range of the available meth-
ods, as well as reasoning due of geometric constraints and further optimization
[4, 5]. In contrast to the rapid advances in structure determination the analysis
of realtime protein complex dynamics in experiment is still unsolved. Although
FRET microscopy is able to observe protein encounters in vivo and in realtime,
not all proteins can be labeled, so that a lot of encounters are possibly missed
and the actual time lapse is misinterpreted. However, mass spectrometry meth-
ods have been successfully used to unravel dynamics of complexes [132]. For
example, in a recent study with nanoelectrospray mass spectrometry the subunit
exchange in dodecamers of small heat shock proteins has been explored [105].
Still, experimental data in this field is rare, giving strong biological motivation for
various modeling approaches.

From a physics point of view, protein assembly is a many-particle problem.
Such systems are at the core of statistical mechanics. Traditionally, research in
physics has focused on systems of particles with non-specific interactions. Col-
loidal sciences mainly investigated assembly into bulk thermodynamic phases like
liquid crystals, gels and attractive or repulsive glasses [130]. Recently interest has
shifted towards colloids or nanoparticles with more specific assembly properties.
One of the motivations for this development is the attempt to use the increas-
ing knowledge about protein complexes to design artificial systems with similar
functionalities [64]. Experimental techniques have become available to create
particles of various shapes and with distinct functional sites at the surfaces [94].
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Figure 1.2: Schematic effective free energy landscape of protein association. 1)
free diffusion, 2) electrostatic steering region, 3) encounter complex, 4) barrier due
to desolvation and other effects, 5) final complex.

Gracias et al. succeeded in building mm-sized particles which self-assembled into
helical structures [72]. Blum et al. placed gold nanoparticles of different size at
distinct positions of a Cowpea Mosaic Virus [27]. This procedure shows that in
principle it is possible to functionalize virus capsids and thus create very small
building blocks with well-determined features. Also on the theory side the physics
of solutions of colloids with anisotropic interactions is investigated. Zhang et al.
performed computer simulations where particles with discrete interaction sites
self-assembled into chains, sheets, rings and other structures [169]. The phase
transition to sheets is found to be of second order, while chains form through a
first order transition. Analytic solutions for the fluid-fluid transition of sticky, patchy
hard spheres have been found by Fantoni et al. [55]. The results agree with corre-
sponding Monte Carlo simulations. In summary, the research effort invested into
comparable questions is large and the cited references are only examples for the
current interest in the field.

1.2 Protein—protein interaction

In contrast to the dynamics of larger protein complexes, which is still relatively
unexplored, a lot of both experimental and theoretical research effort has been
invested into the understanding of bimolecular protein interactions. These studies
revealed that on the one hand the details of protein interaction are diverse and
complex, while on the other hand they show particular similarities, especially on
scales larger than atomistic. Fig. 1.2 shows a generic free energy landscape of
the interaction of two proteins. The reduction to a single reaction coordinate is a
strong simplification but reflects the fact that protein association is a highly con-
trolled process, characterized by one most probable reaction trajectory. Initially
the binding partners undergo pure diffusion (1). Although Coulombic interactions
are typically considered as long-ranged, in biological contexts they are screened
on the scale of the Debye length of about 1nm because of the high concentration
of ions in the cytoplasm under physiological conditions. After reaching a certain
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proximity, the proteins are steered towards each other (2), usually by electrostatic
and possibly hydrodynamic forces. The latter are assumed to have a rather weak
impact [15] and are thus neglected in this work. The electrostatic steering tilts the
free energy landscape towards the final complex. For even smaller distances, a
number of complicated effects at atomistic scale result in a final free energy bar-
rier (4) [2]. For example, proteins typically present hydrophilic aminoacids to the
surrounding solvent and are thus covered by a layer of water molecules which has
to be removed before they can get into close contact. This phenomenon is called
dehydration. Also, in some cases the binding interfaces fit rather tight. Thus, cer-
tain structural fluctuations are necessary to permit the attachment and one has to
account for conformational dynamics [90]. Furthermore, the configuration space
is typically getting much more narrow during the binding process and thus the
entropy is strongly decreased, which in turn increases the free energy. The inter-
play between the barrier (4) and the steering effects (2) leads to the formation of
a local free energy minimum (3) — the encounter complex. Given the simplifying
considerations leading to this concept it is clear that an encounter complex does
not exist in every case. However, it has been confirmed for several important
cases. Moreover, it is a very helpful concept to model protein interaction net-
works. The encounter complex can be considered as a kinetic concept in the first
place rather than having a particular structural representation. As the encounter
complex is typically transient, its detection is complicated, especially in experi-
ment. However, recent studies proved its existence in a particular system and
even unraveled particular structural aspects [79]. The height of the dissociation
barrier (5) — (3) is believed to be mainly controlled by short-ranged interactions
like hydrogen bonding and van der Waals forces. In this work we use the en-
counter complex as the conceptual starting point to define a stochastic dynamic
model for protein assembly. For a recent review see Ref. [127].

1.3 Encounter complex

Analytical and computational considerations with respect to the encounter com-
plex have a long tradition [50, 57, 127]. Early works attempted to find mathemati-
cal descriptions for the encounter step, i.e., for the transport part of the reaction.
One prominent result is the rate of encounter between a colloid of finite size and
an ensemble of small colloids derived by Smoluchowski as a solution of the cor-
responding diffusion equation [139]:

ky = 47 Drg (1.1)

where D denotes the sum of the isotropic diffusion coefficients of the two types
of colloids D = D, + Dy and ry is the capture radius or in other words the radius
of the collision cross section of the two colloids r, = r; + 5. However, because
protein-protein binding is anisotropic, this formula can be used only as a reference
framework for our purpose. Debye calculated reaction rates in ionic solutions [44].
Eigen did the first step towards the consideration of the encounter complex in a bi-
ological context, particularly enzyme physics [47]. He discussed the classic work
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by Debye [43] and the two limits of pure electrostatics [91, 103, 104] and pure
geometry [139]. Berg and Purcell introduced the standard model for this field (for
ligand—cell binding rather than ligand—receptor binding) [22]: ligands diffuse to a
sphere coated with disk-like receptor patches and are immediately captured upon
encounter. Interestingly, for typical values from cell receptor applications, already
a very low surface coverage (~ 1073) leads to nearly optimal outcome. Later,
Zwanzig discussed cooperative effects between the receptor patches [176] and
derived a correction to the Berg and Purcell result, which matched simulations by
Northrup [98]. Bell considered a two step binding process and the possibility of
dissociation [21]. Consequently, DeLisi and Wiegel discussed the Berg-Purcell
model with a finite reaction rate and accounting for electrostatic interactions [45].
They claim that, although the particular kinetics of association and dissociation
can be affected, the equilibrium properties remain the same. Shoup and Sz-
abo used the concept of a radiation boundary condition to model the formation
of the final complex from the encounter state in a mathematically rigorous way
[136]. Their treatment includes electrostatic interactions and is not restricted to
the diffusion-limited case. For the latter, however, they are able to reproduce
the results of Berg and Purcell. In the following years, Goldstein and Thompson
worked out more details [68, 69, 89, 160].

In many cases, experimental rates were found to be larger than predicted by
the theoretical work. As a consequence, more specific properties like the particu-
lar geometry of the receptor patches were considered in the models. Shoup and
Szabo discussed the impact of orientation constraints and rotational diffusion.
They find that the latter can strongly decrease the encounter time of a ligand
and a receptor patch like in the Berg-Purcell model [135]. Northrup started to
use computer simulations to study protein-protein association [99]. He showed
that the rate enhancement seems to be caused by an entrapment of the en-
counter complex, which allows for sampling a large number of alignments without
leaving the encounter state [100]. Barzykin and Shushin claimed that disk-like
patches as used in the Berg-Purcell model lead to substantially lower reaction
rates than the use of hemispherical patches [20]. In a further publication the same
authors suggest that anisotropic shapes of molecules can enhance the reaction
rate [137]. The importance of electrostatic interactions for long-ranged attraction
was emphasized by Brownian Dynamics simulations of protein-protein encounter
[49, 99, 155, 171]. If atomic structure is taken into account, then successful
encounters are defined by simultaneous fulfillment of two to three distance con-
ditions between opposing residues on the two surfaces [58]. Recently Korn and
Schwarz [85, 86, 87] used a purely geometrical interpretation of the encounter
complex to study the efficiency of cell adhesion in hydrodynamic flow, where con-
vection competes with diffusion. Erdmann and Schwarz [52] used the concept
of a position-dependent rebinding rate to study the role of cell-substrate distance
in cell adhesion. Brownian Dynamics have also been used for the simulation of
dense systems, e.g. by Bicout and Field who studied a cellular “soup” containing
ribosomes, proteins and tRNA molecules [26], or recently by Elcock and cowork-
ers who studied a crowded cytosol for 10us length [93].

Schlosshauer and Baker extended the work of Shoup and derived the bind-
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ing rate for two spherical molecules which bind at hemispherical reactive patches
with a finite reaction rate [123]. In a recent study, Alsallag and Zhou [11] again
extended this ‘hemisphere’ model by introducing a ‘crater’ model consisting of
a spherical protein with a crater to which another spherical protein fits snugly.
There, the formation of a stereospecific complex was disfavored by the loss of
translational and rotational freedom. Small translations and rotations between
the protein subunits destroyed the interactions, leading to a sharp transition be-
tween the bound and the unbound state. The energy landscape was described as
funnel-like, with the deep well of the bound state surrounded by a broad shallow
basin.

Several recent studies have addressed the encounter complex in great de-
tail. Miyashita et al. [95] investigated the effect of electrostatic interactions on
the binding reaction between cytochrome c2 and a bacterial reaction center. The
mechanism involved an encounter complex stabilized by electrostatic interactions,
followed by a transition state similar to those found by Zhou [11], leading to the
bound complex active in electron transfer. The study involved determination of a
set of transition state structures by fitting experimental kinetic data over a wide
range of protein-protein configurations. The transition state ensemble, obtained
from structures having the highest correlation coefficients in comparison with the
experimental data, had the cytochrome displaced by about 10A from its posi-
tion in the x-ray crystal structure. The observed similarity between the structures
of the encounter state, transition state, and bound complex accounted for the
rapid rate of association responsible for fast diffusion-controlled electron transfer.
Spaar and Helms [141] used Brownian Dynamics simulations in order to study
the association of barnase and barstar. The individual positions and orientations
of one protein relative to the other were interpreted as a probability distribution al-
lowing the calculation of the entropy landscape. The free energy landscape was
obtained by summing the electrostatic, desolvation, and entropy contributions. A
characteristic minimum at about 10A distance between the two binding patches
denoted the position of the encounter complex. Recently, it has become possible
to investigate the nature of transient intermediates under equilibrium conditions
via paramagnetic relaxation enhancement [79]. Consequently, this technique was
applied to three different complexes from the bacterial phosphotransferase sys-
tem and the results were compared to replica exchange simulations [82]. Indeed,
both experiment and simulation consistently showed a relative population of about
~ 10% nonspecific complexes representing a combined landscape of transients
close to the specific complex.

This picture of protein association suggests to view it as a two step process.
This concept extends the original model of receptor (R) ligand (L) interaction,
where the final complex (C) associates or dissociates by single kinetic rates &y
(forward) and k, (reverse) respectively [92]:

ky
R+L=C. (1.2)
K,
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The corresponding kinetic equation describes the time evolution of the concen-
tration of the complex C with respect to the concentrations of receptors R and
ligands L:

C = k;RL — k.C'. (1.3)

This simple form is only valid if there is a large reservoir of receptors and ligands
and thus R and L are not decreased by complex formation. A simple dimension
analysis in Eq. (1.3) reveals that k, is given as a frequency [k,] = 1/s = Hz while
ks must have units per time per concentration [k¢] = 1/sM, where M means molar
M = mol/l. Considering the steady state C' = 0, the equilibrium dissociation
constant Kp = k,/k; can be used to express the complex concentration C' =
RL/Kp. Bell first discussed the case where the reaction forming the final complex
is preceeded by an encounter step E in the context of cell-cell adhesion [21]:

ki kg
R+L=E=C. (1.4)
k- kq

The kinetic description now has to deal at least with the concentrations of en-
counter complexes E and finally bound complexes C"

E =k RL+ksC — (k- + k,)FE, (1.5)
C =k,F — ksC = kyRL — k,C' . (1.6)

As the encounter complex is thought to be transient, £ will be typically small and

Eq. (1.5) can be considered to be in a quasi-steady state £ = 0. In this case it
is possible to calculated effective rates k; and k, related to an overall reaction of

the type of Eq. (1.2):
ki ko L k_ky

P ek L P

(1.7)

For sequential stochastic processes it is common to identify the rate limiting step,
i.e., the part of the sequence having the biggest impact on the overall kinetics.
For the case presented here two limits are important as discussed by Bell in his
original work. If the reaction step happens much quicker than the dissociation of
the encounter k_ < k,, we have:
k

ko~ ke kﬂzm?h (1.8)
which means that the overall process is diffusion controlled. Conversely, k_ > k,
describes the reaction controlled limit:

]-Cf ~ kakj— , k?r ~ k?d . (1 9)
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Indeed, many protein-protein interactions are found to support the diffusion con-
trolled limit. A phenomenological biological explanation is that for low protein
concentrations the encounter rate due to diffusion will be typically small £, < k_.
In the reaction limited case this would basically mean that & is the product of two
small quantities divided by one large one — which gives an extremely small result.
Therefore, it seems reasonable that protein reactions might be mainly diffusion
controlled to stay functional at low concentrations.

It is important to note that the considerations in this section presume each
step in the reaction scheme to be a Poisson process, which is defined by a single
stochastic rate. However, this is not a priori clear and must actually be seen as
a convenient simplification. In particular, the reaction step, i.e., from E to C does
only behave Poisson-like if the final barrier (state 4 in Fig. 1.2) is steep and narrow,
which again is an assumption that has to be proven by detailed investigations [3].

However, despite the extensive work on bimolecular encounter, the stochastic
dynamics of larger complexes is still a largely unexplored subject.

1.4 Supramolecular complexes

The separation of the association of two proteins into an encounter and a reaction
step can be utilized to build up stochastic networks of encounter and reaction
processes to reflect the formation of supramolecular complexes with more than
two building units as depicted in Fig. 1.3. Assuming all processes to be of Poisson
type, these networks can then be treated with standard methods from stochastic
dynamics [78]. The second advantage of the concept of an encounter complex
is that encounter and reaction processes happen on very different scales, and
thus the encounter complex provides a suitable crossover scale for multiscale
modeling. The diffusional encounter can be described in a more coarse-grained
manner compared to the reaction step, where an atomistic treatment of many
short-ranged interactions is necessary.

In Fig. 1.3 we schematically illustrate how the concepts of an encounter com-
plex can be used to address the dynamics of complexes. It has become apparent
that for certain systems spatial effects like local precursor dilution after reactions
can be important. This is especially the case for low concentrations, where there
is rather a finite number of copies of a particular protein in the cell than a ho-
mogeneous concentration. In general the level of detail required to implement
the regarding effects in a model does not allow for analytic treatment. Conse-
quently, progress has been made particularly in terms of computer simulations
on reaction-diffusion problems. As the number of more or less specific software
approaches addressing this issue is rapidly growing we want to exemplarily name
only a few. E-CELL is a sophisticated project that integrates a variety of algo-
rithms and common coarse-graining techniques as well as many of the available
information about the genome and protein interactions in yeast in a simulation of
the whole yeast cell [146]. A software which is mainly concerned with a detailed
representation of spatial constraints to diffusion in the extracellular environment
of, e.g., neuronal synapses is MCell (see Ref. [37] and references therein). The
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transport reaction transport _.-.._reaction

Figure 1.3: Generic network representation of the association of a complex of three
different proteins. Each protein-protein bond is the product of a transport step lead-
ing to the formation of an encounter complex (denoted with dashed lines) and a
reaction step. Considering unique proteins there are a total of 11 possible states of
the complex including the completely unbound state as well as possible encounter
or partially formed complexes. The possible pathways due to reversible transport or
reaction processes are indicated by arrows.

lattice based simulation MesoRD effectively models diffusion from one lattice cell
to the next as a special reaction event occurring at some stochastic rate adjusted
to lattice resolution and diffusion constant. With this approach, the authors dis-
covered noise as the main reason for differing Min oscillation patterns in several
Escherichia coli mutants [54]. While this work utilizes an extended version of the
Gillespie algorithm [62, 63] for quick simulations referred to as the next subvolume
method, the particular position of a single particle is only known in terms of the
lattice cell it is contained in. A promising development is therefore the Green’s
function reaction dynamics [149, 150]. In this off-lattice algorithm, the time of
the next reaction of a number of freely and isotropically moving particles with a
certain reactivity is calculated. This makes it possible to overleap phases of free
diffusion in the numeric scheme which makes it very effective. By a simple model
of gene expression the authors show that Green’s function reaction dynamics can
be up to five orders of magnitude faster than conventional techniques.

While the aforementioned works consider the local distribution of monomers,
the study of specific three-dimensional assemblies requires even more detailed
approaches. Here, the information about the number and kind of monomers in a
particular cluster has to be extended by their specific alignment in the complex.
Also, diffusion will not remain isotropic because especially growing clusters can



1.4 Supramolecular complexes 11

have shapes strongly differing from spherical. A class of prominent examples for
large macromolecular structures are virus capsids (see Fig. 1.1a). The dynamics
of their self-assembly has been the subject of several studies. Capsids are typ-
ically built from only one or a small number of distinct protein types, sometimes
with different possible conformations. Therefore, they are in most cases highly
regular and symmetric [14, 102, 165]. Capsid proteins have been reported to be
able to passively self-assemble into capsids with a defined number of proteins in
in vitro experiments [175]. The self-assembly can be viewed in the framework of a
nucleation process, i.e., there is a lag phase until a critical concentration of stable
nuclei has formed, and the growth of the full capsids is fast afterwards. However,
the nucleation of virus capsids is qualitatively different from classic nucleation
systems like linear polymers (actin) or crystals. As the number of monomers in
the final complex is fixed to some definite number in the range of tens or hun-
dreds, a large number of capsids will form which in turn also requires a large
number of nuclei [173]. Thus, different approaches in terms of nucleation theory
have been developed to describe the specific problem of capsid assembly [166].
To gather information about structural aspects of the self-assembly process and
find the particular structure of partially formed capsids which are important for the
assembly pathway, more detailed studies are required. Berger et al. introduced a
theory of local rules [23] which revealed that different types of virus like structures
can be encoded in tiny sets of rules that define bond formation at each monomer
locally. The authors showed in a more or less static growth study that pertur-
bations of the rules or mistakenly bound monomers may strongly decreased the
probability of the formation of a closed capsid or even prohibit it. This predic-
tion agrees with the experimental finding that a small molecule can inhibit and
misdirect the assembly of Hepatitis B virus capsids [174]. Later, the theory was
extended by a set of dynamic rules in terms of harmonic potentials and several
sample trajectories of the extended model were generated [129]. Another ex-
ample for the generality of the local rules approach is its successful application
to polyomavirus polymorphic capsid assemblies [128]. Wilber et al. distinguish
phases of assembly of many closed shells and aggregation of large clusters of
particles with reactive regions built up analogously to the theory of local rules by
the use of effective Lennard-Jones (LJ) interactions in a Monte Carlo study [159].
Rapaport used a different approach in a constant temperature Molecular Dynam-
ics simulation with specifically designed subunits built up from spheres and with
effective LJ-like interactions [116]. In a recent continuation of his work [117], more
detailed simulations including an explicit solvent representation revealed that the
highest possible number of bonds in partially formed clusters is preferred in the
model due to the implied energetics. Furthermore, it is shown that reversibility of
bond formation is of particular importance to prevent kinetic trapping of the sys-
tem with many unfinished capsids which cannot be connected to the desired final
structure. This finding agrees well with results of Hagan and Chandler [74], who
studied a system of spherical particles with another type of effective LJ potential
favoring cluster formation similar to the local rules of Berger et al. while paying
attention to maintain detailed balance. The authors furthermore find a hysteresis
of assembly when increasing and decreasing the interaction strength and distin-
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guish growth by monomers and trimers for different types of capsid structures.
A further type of growth kinetics is found for the same model if capsid formation
around some nanoparticle — or coiled single-stranded RNA — is considered [73].
There monomers possibly cluster around the nanoparticle and undergo collective
alignment to build a closed configuration. Zhang et al. investigated two types of
nucleation scenarios in a model specifically designed for accessing this problem
[167]. A detailed variant of coarse-graining in the spirit of a Go model [65, 145] is
used in Ref. [18]. The basic idea is to define potential energy penalties for devia-
tions from a minimum energy state. These potentials are adjusted by comparing
the coarse-grained version of the model to a very short trajectory of an all-atom
Molecular Dynamics simulation of the whole virus capsid, which is one of very
few if not the only simulation in such detail reported so far. The study hints that
the considered capsid might be unstable in absence of a core of coiled RNA.

1.5 Overview

Since the complete genome and therefore all single proteins are known at least
in principle, gathering knowledge on the hierarchical level of protein complexes is
the next big goal in molecular biology and systems biology. Dynamics is an es-
sential property of protein complexes which is insufficiently understood so far. Al-
though structure and dynamics can be very different, they still must be caused by
the same underlying principles which are related to physics in the sense of, e.g.,
atomistic interactions and hydrodynamic properties of the single players. The
main goal for this work is the combination of concepts from work on bimolecular
protein-protein interaction and generic models for protein complexes. We want to
develop a methodology which is general enough to observe complex dynamics
over relevant time scales while keeping biological significance by a standardized
adjustment of the model to particular systems. The simulation of whole protein
complexes is computationally too expensive in the framework of an all-atom sim-
ulation. Therefore, we use a coarse-graining approach. Particularly, we avoid the
use of complicated interaction potentials as these are computationally exhausting
regarding numerical treatments. Each protein is regarded as a single particle with
certain properties and interaction rules. Particularly, the association and dissoci-
ation is determined by the definition of spherical reactive patches. The overlap
of two of such reactive patches serves as geometric criterion for an encounter
complex in the model. Indeed, the encounter region typically has a more com-
plex form as described, e.g., by Spaar et al. [140, 141]. However, the spherical
shape is a simple approach and can be described with only one parameter — the
patch radius. Thus, the coarse-grained model corresponds to the transport steps
in the reaction network in Fig. 1.3. Each reaction step is modeled as a stochastic
process. This can be adjusted to the considered system according to, e.g., more
sophisticated simulations of the final association [3]. In virtually all considerations
in this work we average over all possible initial conditions. This is reasonable as
the biological equivalent of our systems cannot be prepared in a well known state
in general. Therefore experimental results — if available — are always averages
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over ensembles of many different initial configurations.

In chapter 2 the mathematical background of the model is described. The
framework of this work are methods from statistical physics, particularly stochas-
tic differential equations describing the time evolution of the system. First, we in-
troduce the Langevin equation which reads like the equation of motion from clas-
sic Newtonian mechanics with an additional stochastic term representing thermal
noise. We particularly consider the overdamped limit of the Langevin equation
and motivate its validity on molecular scales in biological contexts. However, the
cases in which an analytic solution of the equation is possible are rare. Hence,
we will mostly rely on numerical methods. In particular, we describe a discretiza-
tion approach to the Langevin equation and summarize the necessary details to
treat it computationally. Although the principal idea of Green’s function reaction
dynamics [149] is not directly applicable to our model, we make use of a related
approximation to derive a variable time discretization step approach. Further-
more, an effective electrostatic interaction is presented causing a systematic drift
in the overdamped Langevin equation. Sect. 2.2 is dedicated to the introduction
of the Fokker-Planck equation and first passage time problems, which is the class
of problems that we mainly deal with in this work. By using the example of two fi-
nite sized and homogeneously reactive particles on a line the analytic procedures
are explained. Additionally, we apply the numerical methods explained before to
a Langevin representation of the same system. The comparison with the ex-
act solution of the Fokker-Planck equation proves that the numerical treatment
is correct. Finally, we summarize a general method to evaluate hydrodynamic
properties of arbitrarily shaped objects. This is necessary to characterize single
proteins from knowing their atomistic structure as well as estimating the proper-
ties of arbitrarily structured complexes of model proteins. A dumbbell consisting
of two spherical particles at variable distance serves as an example to clarify the
procedure and to check the approximation against exact results known from the
literature.

In chapter 3 we introduce the details of our coarse-graining approach. We
consider three different levels of detail. Particularly, proteins are modeled ei-
ther as spherical particles, as dipolar spheres or as collection of several small
beads with one dipole. All required parameters are obtained by a general, repro-
ducible procedure. As three model systems with distinctly different properties we
consider the pairs barnase:barstar, cytochrome c:cytochrome ¢ peroxidase and
p53:mdm2. Spherical reactive patches geometrically determining the encounter
state in the model are placed on the model proteins according to the known ex-
perimental structures of the respective protein complexes. In the computer sim-
ulations, concentration is varied by changing box size. First passage times to
encounter are recorded together with the number of unsuccessful contacts be-
fore encounter. We find that encounter frequency scales linearly with protein
concentration, thus proving that our microscopic model results in a well-defined
macroscopic encounter rate. The number of unsuccessful contacts before en-
counter increases with encounter rate and ranges from 20—9000. In a correlation
analysis we show that the relation of the mean number of contacts scales lin-
early with the first passage time to encounter. For all three models, encounter
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rates are obtained within one order of magnitude of the experimentally measured
association rates. Electrostatic steering enhances association up to 50-fold. If dif-
fusional encounter is dominant (p53:mdm2) or similarly important as electrostatic
steering (barnase:barstar), then encounter rate decreases with decreasing patch
radius. More detailed modeling of protein shapes decreases encounter rates by
5%—-95%. Our study shows that the computational efficiency of modeling protein-
protein encounter can be dramatically increased over atomistic approaches by
using coarse-grained approaches if reactive patches are appropriately defined.
We analyze the distribution of contact resting times and times of return to contact
in the simulation and find a power-law ¢~3/2 for small times. This is well repro-
duced by analytic calculations with respect to a simplified version of the model.

As our simulation scheme incorporates anisotropic diffusion by a 6 x 6 diffu-
sion matrix we want to analyze its impact on protein encounter in detail. Chapter
4 starts with an explanation of anisotropic diffusion and why it is apparent only
on a particular time and length scale. On a larger time scale there is a crossover
to isotropic diffusion because the memory of a particular initial orientation is lost
due to rotational diffusion. We review a calculation of this crossover for two-
dimensional systems in a recent publication. This treatment is then extended to
three dimensions. There, the situation is more complicated because the principal
rotation axes rotate with the body fixed coordinate system. However, we derive
an analytic expression for the crossover which matches corresponding simulation
data. All of the calculations only apply for bodies that do not exhibit diffusional
coupling between different degrees of freedom. As a simple model system for
anisotropically diffusing particles we choose ellipsoids. These are advantageous
in two ways. First, analytic results for the principal diffusion coefficients are known
from the literature and there is no diffusional coupling for ellipsoids. Furthermore,
a rigorous mathematical criterion exists to check whether two ellipsoids overlap.
This can be used to conveniently implement the excluded volume condition. To in-
vestigate the impact of anisotropy we consider the encounter of pairs of ellipsoids
with varying aspect ratios in a periodic boundary simulation box. The encounter
is again defined by the overlap of spherical reactive patches placed at distinct
positions at the surface of the ellipsoids. Particularly, we consider patches lo-
cated at the apex of one of the two distinct semi-axes. Therefore, three different
combinations of patch locations exist for a pair of ellipsoids. We pay attention to
the altered overall mobility for differing aspect ratios. Furthermore, by a generic
measure of the steric accessibility of the reactive patches we show that the main
contribution for the altered encounter rates at different ratios is due to excluded
volume effects. Finally, we compare the data with a different set of simulations
where the steric form of the ellipsoids is considered, but not the hydrodynamic
anisotropy. We only find a significant deviation for prolates with a patch located
on the symmetry axis. This proves that steric effects rather than hydrodynamics
dominate anisotropic encounter.

The methodology we use in this thesis is suited to model large complexes.
Chapter 5 is about the dynamics beyond bimolecular reactions. We start with the
study of three homogeneously binding particles on a line with periodic boundary
conditions in analogy to Sect. 2.2. We find that the mean first passage time to
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the first encounter of two of the particles cannot be calculated with a differential
equation of Poisson type with respect to two relative distances. However, it is pos-
sible to derive a similar equation containing a term of mixed derivatives to solve
the problem. The solution has a similar form as in the case of two particles and
matches corresponding simulation data. Due to the higher complexity the calcula-
tion of first passage time distributions is not possible. We find that the formation of
the first bond biases the second binding event, which forms a single cluster of all
three particles. Therefore, a simple ansatz of two conceptionally equal processes
does not lead to the results obtained by corresponding computer simulations.
Such biases will also occur in more complex situations. In three dimensions, the
assembly of model proteins requires a set of rules regarding the relative align-
ment after binding. Particularly, in our approach we do not consider slow dynamic
changes of the alignment, but rather choose an instantaneous switch of the two
proteins into the predefined relative position. This also affects proteins which are
already attached to the binding partners. These simulation rules are applied to a
three-particle cluster in three dimensions. We try to establish an assembly net-
work in the spirit of Fig. 1.3. However, we find that especially the transitions in
the network representing transport processes are not Poisson-like. This partic-
ularly shows that it is not allowed in general to describe assembly processes by
a respective Master equation. Finally, large scale simulations of self-assembly
processes of virus capsids are performed. We find that capsid assembly is most
efficient at an intermediate range of the unbinding rate of the monomers. The
chapter is closed by an outlook regarding particular challenges for the treatment
of large complexes.
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Chapter 2

Model and methods

In this chapter we introduce the theoretical framework of our model. In the first
part, two types of stochastic differential equations are explained. On the one
hand the Langevin equation is discussed particularly in the overdamped limit.
With regard to the numerical solution a discretized approach is described and
some details of the numerics are summarized. The Fokker-Planck equation can
be used to analytically study first passage time problems. Both are reviewed in
the second section. We present analytic solutions of the association dynamics
of homogeneously binding particles in two well-defined topologies. Our solutions
deal as check for the simulation technique described in the first part. Finally, we
summarize a sophisticated method to evaluate hydrodynamic properties of arbi-
trarily shaped objects, which we use in this work. The results of this approximate
method for the simple geometry of the dumbbell are compared to exact results
known from the literature and serve as a measure for its reliability.

2.1 Langevin equation approach

Theoretical basis

A standard approach for the description of the thermally driven Brownian motion
of particles in the framework of statistical mechanics is the Langevin equation
[78]. Provided that thermal forces are spatially homogeneous a general form is:

mgvt:Ft—(vt—i—Kt. (2.1)
ot
In Eq. (2.1) v, denotes the speed of a particle in solution, m is its mass, ( is the
friction matrix which will be explained in more detail later, F, is the sum of all
forces directly acting on the particle while K; denotes a stochastic force due to
collisions with molecules from the solution. The subscript ¢ is meant to explicitely
point out the time dependency of the quantities. derivative. Without the noise
term K;, Eq. (2.1) is simply Newton’s second law. K, can be considered as
uncorrelated Gaussian noise with zero mean, also called white noise. If K, does
not depend on position x, then the thermal noise is purely additive, as it is only
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present in an independent term in the above equation. Inhomogeneous, i.e.,
position dependent thermal forces K, = K;(x) cause an additional drift term
and lead to so called multiplicative noise. This is more difficult to handle as it
requires an additional definition of the interpretation of the noise term (for details
see Refs. [78, 148]). An example is the motion of a particle above a wall, where
the friction changes according to the height [85, 86]. If m/( is much smaller
than the characteristic time scale of F, and K,;, then the effects of inertia are
negligible due to the damping term —(v,. Typically, this assumption is valid on
molecular scales in biological systems, where the mass of particles is small and
the friction due to the high density of water molecules is high. That is, in the
context relevant for this work the equation can be viewed in the overdamped limit,
where m 0/0t(v;) — 0 and Eq. (2.1) can thus be written as:

Vi D= CHF K (2.2)
The inverse of the friction matrix is also called the mobility matrix (' = M. In
thermal equilibrium the mobility matrix is directly connected to the diffusion matrix
via the Einstein-Smoluchowski relation D = kg7T,M [48, 138], where kT, is the
thermal energy at ambient temperature 7, and kg is the Boltzmann constant.
Under non-equilibrium conditions a more general fluctuation dissipation theorem
applies [142]. Eq. (2.2) is also valid in a generalized coordinate space where the
vectors are six-dimensional and do not only account for the translational motion
of the particle but also for its rotation. In the following, let X; be a six-dimensional
vector describing position and orientation of a particle at time ¢. Furthermore,
F; and K, shall be generalized six-dimensional combinations of the respective
forces and torques. The latter three components of 9/0t(X;) thus give a vector
w; which determines the rotation of the particle. w, points into the direction of the
rotation axis and |w;| defines the angle of rotation. After these considerations,
Eqg. (2.2) can be written as:
0 X; = MF 2
gt T t T &t - (2.3)
In this notation the noise term is g; = MK,;. As K, is Gaussian white noise, the
distribution of g; is fully determined by its first two moments because all higher
moments vanish:

<gt> =0 y <gtgt’> = 2kBTaM5(t — t/) = 2D5(t — t/) . (24)

Formally one can conclude from Eq. (2.4) that g ~ M and thus g ~ /M. Bearing
in mind this finding Eq. (2.3) shows that while the Brownian contribution to motion
is proportional to v/M, the direct impact of force and torque increases linearly
with M. That is, in the regime of high friction and thus low mobility, the stochastic
Brownian motion of the particles can get more important than the impact of F,. An
example with a rough estimation of this effect by typical numbers will be given in
the discussion of the effective electrostatic interaction between macromolecules
at the end of this section. We now explain a rigorous way to handle the integration
of Eq. (2.3).
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Algorithmic details

One approach to the solution of Eq. (2.3) is to consider a discretized form accord-
ing to the Euler algorithm:

X(t+ At) = X(t) + MF(t) At + g(At) + O(A#?) . (2.5)

Note that g(At) is defined similar to g; in Eq. (2.4) but §(¢t — ') goes over to a
factor At:

(8(At)) =0,  (g(At)g(At)) = 2DAL . (2.6)

Thus it explicitely depends on the size of the time step g(At) ~ vAt. The defi-
nition in Eq. (2.6) is not straightforward to implement, but Ref. [53] gives a recipe
to compute random vectors g whose components reproduce the correct distri-
bution. A more detailed explanation is given in Ref. [86], where the same ap-
proach has been used to model cell adhesion in shear flow via reactive receptor
patches. The key is to compute the Cholesky decomposition B of M which satis-
fies M = BB', where B is the transposed of matrix B. Now a vector of six normal
deviate random numbers x is computed, whose components satisfy (z;) = 0,
(rix;) = 2kpT, At d;;. g(At) is then given by:

g(At) = Bx . (2.7)

Note that as Eq. (2.5) is only correct up to order O(At?), actually only the first two
moments of g(At) have to be reproduced correctly [78]. Thus, it is not necessary
to chose x from a normal distribution as it would be possible, e.g., by the Box-
Muller method [28]. In this special case it is equivalent and computationally less
costly to calculate equally distributed random numbers z; = /24kpT, At(r; — 0.5),
where r; denotes a uniformly distributed random number 0 < r; < 1. The typical
orders of magnitude for translational diffusion coefficients of proteins are D =
10~%cm?s~! and the radii are in the nanometer range. Therefore, a reasonable
choice for the time step is At = 1ps, as this leads to a root mean square deviation
due to Brownian motion of v DAt = 0.01lnm, which is well below the size of the
proteins.

The mobility matrix of a particle must be defined in a particle-fixed coordi-
nate system to be independent of its orientation. Thus, the displacement has to
be calculated in terms of particle-fixed coordinates, and then transformed to the
laboratory coordinate space. Particularly, this transformation means a rotation
R according to the orientation of the particle. Special attention has to be payed
regarding the force F, which is typically calculated in the global frame of refer-
ence and hence has to be transformed to particle space first, before Eq. (2.5) can
be evaluated. This back-transformation is achieved by applying R~ to F. Since
rotation matrices R simply consist of a list of orthonormal vectors they are orthog-
onal so that their inverse is equal to the transposed matrix R~! = R, After these
considerations, Eq. (2.5) should be rewritten to:

X(t+ At) = X(t) + R [M (R'F(t)) At + g(At)] + O(AE) . (2.8)
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Note that as F and g are six-dimensional and contain information about torque
and rotation, Eq. (2.8) is only formally correct, because R acts on both the trans-
lational and rotational parts of the respective vectors.

Variable time steps

In many biological cases, the concentration of the reacting proteins is rather low.
The association rate typically scales linearly with the concentration and thus low
concentrations will lead to large mean association times. Thus, a lot of computer
time will be spent on situations, where all proteins are purely diffusing without
much interaction. For this reason we use a variable time step in most of our sim-
ulations. Van Zon and ten Wolde suggested a method to control the next collision
when they introduced their Green’s function reaction dynamics (GFRD) [150]. In
contrast to our work, however, this method is based on isotropic diffusion. Gen-
eralizing the GFRD to anisotropic diffusion is very difficult and out of the scope of
our work. We therefore used the following scheme. We first note that in GFRD
each time step is chosen such that it includes the next reaction. In our case, we
also want to investigate the stochastic dynamics before the next encounter event
takes place. Thus a large time step is not chosen to include the next encounter,
but to bring the system to such a configuration that encounter becomes more
likely. This step can be well represented by isotropic diffusion with an overall dif-
fusion constant D = Dy; + Dy, + D33/3 following from the translational part of the
anisotropic diffusion matrix. For an isotropic random walk, the displacement prob-
ability is given by a Gaussian distribution with spherical symmetry. Particularly,
the mean distance is » = 0 and large displacements are exponentially suppressed
according to the standard deviation v6DAt. Therefore, a displacement of the
magnitude Arfl > H\/6DAt is H standard deviations apart from the average
and thus occurs with a probability of ~ e~7. We define the effective particle dis-
tance as the distance of the surfaces r{j' = |r;—r;|—R;— R;, where R; determines
the maximal steric interaction radius of particle i. By setting Ar[l, = min{r¢f

the smallest effective particle distance in the system one can estimate a reason-
able time step for which a collision is hardly probable. Van Zon and ten Wolde
found that the choice H = 3 provides good results. Besides the small probability
of accidentally drawing a displacement that is large enough, two particles can
only collide if they move towards each other. This further lowers the probability
of sampling erroneous collisions as the direction of motion is completely random.
When the particles reach close proximity min{r{] } — 0 the estimated step size
At vanishes and thus the simulation would be infinitely slowed down. Therefore,
there has to be a lower boundary for the time step At.;,, for which we generally
choose At.,;, = 1ps as reasoned earlier. Thus, the adapted time step is given by:

At,q = min iz (min{reﬁr )2 AV, (2.9)

ad — 6D ij y min . .
The 6 x 6 diffusion matrix D represents anisotropic diffusion. For large times,
anisotropic diffusion effectively crosses over into isotropic diffusion because the
information about the initial orientation gets lost after a certain relaxation time
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due to the rotational diffusion [75]. In general, translational and rotational diffu-
sion are coupled so that large time steps cannot be used. This problem will be
treated in detail in chapter 4. However, for particular protein systems as studied
in chapter 3, e.g., one finds that the diffusive coupling is a rather small effect. In
particular, the major entries in the diffusion matrix of smaller proteins scaled by
different powers of the typical Stokes radius R ~ 10~“cm to make the dimensions
comparable are Dy /R? ~ 10%s7!, D,, ~ 107s7!, Dy,/R ~ 10°s~!. Therefore, the
effect of diffusive coupling is 102 and 10~? smaller than rotational and transla-
tional diffusion, respectively. Finally, the typical time scale at which the cross-over
is expected can be calculated to be 1/(6D,,) ~ 10ns (see chapter 4). This is 10*
times as large as the minimal time step according to the previous considerations.
Time steps of this magnitude were rarely found in the simulations, so that for most
of the steps, the anisotropy is well preserved. Therefore, we can safely neglect
changes in the anisotropy of the effective mobility matrix when using larger time
steps.

Pair interactions

Especially at small separations a multitude of complex effects play a role in protein-
protein interactions, which have to be considered at the atomisitc level (see Sect.
1.2). However, as the encounter complex typically means inter-protein separa-
tions of several angstroms, it still can be well described while neglecting some
of the details. In this work we focus on the two most important types of interac-
tions. One is simply arising by an excluded volume constraint. The other is the
electrostatic interaction of the model proteins.

The excluded volume effect is integrated into the numerical integration scheme
of the Langevin equation by a Monte Carlo like approach. In each step of a
simulation, a displacement vector AX(t) is drawn for each particle as described
above. If this global displacement leads to any violation of the hardcore repulsion,
all suggested displacements are rejected and new set of AX(t) is calculated. This
procedure continues, until an update of all positions and orientations is found
which does not lead to any overlap. In this way, the constraint according to the
excluded volume effect is included in the stochastic motion. In general one would
have to solve the scattering problem. Note, however, that for proteins it is not
clear how to proceed, thus less rigorous approach seems appropriate. One would
expect that our procedure leads to errors of order At if two particles are in close
proximity of order v DAt. However, it has been shown for a different system [115]
that in practice the deviation from the expected behavior is very small and thus
the approach is reasonable.

Coulombic interactions are known to play a prominent role in protein associ-
ation (see e.g. Ref. [99]). They are caused by the sum of all atomistic charges
and their higher electrostatic moments. With a typical number of 10* atoms in
a protein, the exact evaluation of all ~ 10* x 10* pair interactions needs a lot of
computer time, while many of them might be negligible due to the electrostatic
screening. Following Refs. [51, 71] the dipolar sphere model (DSM) can be used
to effectively model the interaction according to the total monopole and dipole
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moments of all charges in each model protein:
i=>qd., Dp=) qr(d), (2.10)

where i counts over the atomistic charges ¢ and r(¢‘) denotes the position of
charge i relative to the center of mass. In the DSM g is represented by a sin-
gle charge ¢; = ¢ located at the center of mass carrying the sum of all charges
of the protein. p is represented by two opposing charges ¢,/3 at some distance
r, from the center of mass. In the original work by Eltis et al. [51] the authors
choose r, such that ¢,/3 are located at a distance of 1.5A beneath the surface of
the respective model protein. We checked different definitions and found that the
particular choice of 7, does not crucially change the simulation results. Therefore,
we placed ¢,/3 at 4.0A beneath the surface of the model proteins of our simula-
tions including the DSM unless otherwise stated. The magnitude and location of
the model charges is:

1
2¢o /3

1 . .
q2/3 = i2— D, T((J2/3) = p- (2.11)
Tp

The factor 2 in the denominator results from the fact that ¢,,; both carry half of the
necessary charge to reproduce:

gor(g2) + gsT(qs) = (;—; + 2‘]—;) b=p, (2.12)
1
while |r(q =——pl=71,. (2.13)

Taking into account the Debye screening function due to the presence of counter
ions in solution, the electrostatic interaction energy between two charges ¢;/; at
positions r;,; respectively with distance r;; = |r;;| = |r; — r;] is:

1 e—r(rij—Bij)

Wy = 4 .
47f€0€7~q q] (1 —+ KBij)’rij

(2.14)

Here, k = ;! is the inverse Debye screening length, which typically has a value
of ~ 1Inm under physiological conditions. B;; is an approximate correction to the
screening for charges which are placed in an object like a protein, since within
the protein, there are no free counter ions, so for the screening only the distance
between two charges outside the containing proteins must be considered. Taking
b;/; as the closest distance of ¢;/; from the surface of the surrounding protein, it
is approximately given by B;; = b; + b;. Assuming a roughly spherical form of the
protein with radius R this length would be given by b, = R and by/3 = R —r,,. This
potential leads to a force of charge ¢; on ¢;:

OW,;
Fij = -V, Wi = — 8ij - (Viri5)
1 e *ria=Biu)(1 + kryj) vy
= i e 2.15
47T6()€Tq 4 (1 + RBij)n,?j Tij ( )
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Two model particles m and n feel the sum of the Coulomb forces F;; between all
pairs of the three complementary charges mimicking the monopolar and dipolar
interactions. Thatis, the full force between particle m and nis Fr, = >, Y0 Fyj,
where i/j count over the charges of m/n respectively.

The impact of the force on a particle in the Langevin equation is weighted
with the mobility matrix, which is the inverse of the friction matrix M = ¢~ =
D/(ksT,). Charges ¢ are always given in multiples of the elementary charge
e. From Eqg. (2.5) and Eq. (2.6) we see that the contribution of the Brownian
term g(At) and the force MFA¢ are given in dimensions of length, i.e., as di-
rect summand to AX(At). The fixed prefactors for the displacement due to the
force term give a length of e*/(4negkpT,) = 5.7031 - 107 ®m at 7, = 293K. The
remaining factors then give a dimensionless quantity proportional to ~ DAt/r7;.
As a rough estimate for the the impact of the force, we compare the typical dis-
placement due to the Brownian motion and due to the force between two ele-
mentary charges at a distance r;; = 1nm and r;; = 4nm, neglecting B;;. A
typical size of a protein is in the range of R = 1nm, which gives a diffusion
constant of the order of D = 107%cm?/s. Considering a time step of At = 1ps,
D|F(1nm)|At/kgT, ~ 10~*m and D|F(4nm)|At/kgT, ~ 10~'%m, while the typical
step length due to the Brownian motion is vV DAt ~ 10~!'m. This shows that the
magnitude of electrostatic interactions at distances of 1nm (and more so at 4nm)is
much smaller than the thermal energy. However, we expect that the systematic
drift, while small, will still lead to an altered encounter behavior.

2.2 First passage time problems

2.2.1 The Fokker-Planck equation

A common class of problems in the framework of stochastic equations like the
Langevin equation are first passage time (FPT) problems. It refers to the time to
the first match of the stochastically evolving system with a certain boundary con-
dition — the passage — having started at some initial configuration. The stochastic
dynamics of the system results in a stochastic component in the process of the
first passage. It will be different for every particular trajectory. Therefore, the first
passage time itself is a random variable. One interesting quantity with respect to
the first passage time is its average value, the mean first passage time (MFPT).
The full FPT distribution is more meaningful but also typically much harder to cal-
culate analytically. However, both can be possibly obtained via simulation. The
mathematical solution of the first passage time problem usually incorporates the
solution of the stochastic problem with a certain set of boundary conditions. In the
following, we will particularly consider the Fokker-Planck equation (FPE), which
can be shown to be equivalent to the Langevin equation. Let p(x, t) be the proba-
bility density of the system. Typically, the initial condition for such a process is to
let the system start at some particular position x, at time ¢ = 0. Strictly, p then de-
notes a transition probability from state (xo, 0) to (x,¢) and is commonly written as
p(x,t|xo,0). However, in the following we presume (xg,0) as initial condition and
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simply write p(x,t). The time evolution is then given by the continuity equation:

%p(x, t) = —Vij(x,t), (2.16)

where j is the probability flux:

j(x,t) = <A(X,t) — %VD(X, t)) p(x,t) . (2.17)

Here, A is the drift, e.g. caused by the action of a potential U:
A(x,t) = =VU(x,1) . (2.18)

The diffusion term VD(x,t) contains the stochasticity in terms of a dynamics
driven by temperature. In general, the scalar D(x,t) explicitely depends on time
and space. However, in the cases considered in this work, there are no such
dependencies, i.e., D(x,t) = D. The factor 1/2 in Eq. (2.17) is a convention [78].
With constant D we can rewrite Eq. (2.17) in form of a heat equation:

%p(x, t) = (g& — VA(x, t)) p(x,t) . (2.19)
Note that the V operator in the drift term acts on both A and p. There is also the
possibility to formulate the FPE for some fixed end configuration with respect to
the initial conditions, which gives the so called adjoint FPE:

0 D
a—top(x,ﬂxo,to) = (_EAXO — A(XO,tO)VxO) (X, t|x0, to) - (2.20)

Note that now the operators A, and V,, act only on p.

Mathematically, the passage is described by an absorbing boundary in the
system with respect to the probability density p(x, t), i.e., the latter is set to zero
at the boundary 09:

p(x, t)|xeaﬂ =0. (2.21)

A more general treatment is the so called radiation boundary condition which
is incorporated by correlating the outward probability flux j(x,t) to some finite
absorption rate k times the probability density at the boundary p(x, t):

n(x) - j(x,t) = kp(x,t) , x € 0. (2.22)

Here, n(x) denotes the normal vector of the boundary 0S2. More generally, £ could
also contain a time or space dependence k = k(x,t). With this one can, e.g.,
model a reaction of two particles happening only at a certain finite rate constant
k (see Ref. [144], e.g.). Particularly, for large rates k¥ — oo one ends at the
absorbing boundary condition p ~ j/k — 0 as given in Eq. (2.21). In the limit of
very small rates £ — 0 the boundary is getting impermeable and the flux vanishes.
This is called a reflecting boundary:

n(x)-j(x,t) =0, x € 00 . (2.23)
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Having solved Eq. (2.19) with the appropriate boundary and initial conditions to
reflect the particular problem, the FPT distribution can then be calculated from p.
The total probability G of the particle to have not yet been absorbed at some time
t is the integral of p over the whole accessible region Q:

G(t) = /dx'p(x',t) : (2.24)

Q

In each infinitesimal time interval G will be lowered by some amount, which re-
flects the part of the probability density captured by the absorbing boundary. The
larger this part the higher is the probability of being captured in the particular time
interval. That is, the probability of being absorbed at time ¢ can be expressed as
the negative time derivative of G(t):

f(t) = —G(t) = — /dx’p(x’,t) : (2.25)

Q

The mean first passage time (MFPT) is equivalent to the first moment of the FPT
distribution:

o

Ti(x0) = T(x0) = /dt’ tf(t) . (2.26)

0

Note that in our formulation T} is a scalar without any explicit dependence on the
initial configuration x,. The dependence is part of the initial value problem that
has to be solved to find f(¢). In Ref. [78] a convenient way is described to express
higher moments. The key finding is that the »'" moment 7;, can be written as:

[e.9] o0 [e.9]

T, = / At " f () = — / At t"G(t) = n / At "G (2.27)
0 0 0
forn > 1 and T, = 1. Combining Eq. (2.20) and Eq. (2.24) leads to:
0 D
SGlxot) = (A0 + Do, ) Glthate). (228)

Assuming a drift constant in time A(x,¢) = A(x) and multiplying both sides of the
equation with t"~! one can integrate Eq. (2.28) with respect to ¢t and use Eq. (2.27)
to obtain:

(A<XO>VXO ¥ %A) T, (w0) = —nTy (o) (2.29)

for n > 1 and with 7, = 1. Given this result, one then can proceed to higher
moments in a recursive manner. Particularly, without drift A(xz,) = 0 the MFPT is
the solution of the Poisson type equation:

2

D, T(%0) = == - (2.30)



26 Chapter 2: Model and methods

e T \\FI

: | S v

: : e Hhoo -
- 2 .

8 K RN ’,

B /. AN

Figure 2.1: Simple model system with two finite sized particles moving on a one-
dimensional track. Periodic boundary conditions are hinted by the box and the two
virtual images of the particles outside the boundaries are given with dashed lines.
The dotted lines denote the binding radius.

2.2.2 One-dimensional diffusion with periodic boundary con-
ditions

As a first simple test of the implementation of our model, we want to study a
system of two equal-sized, homogeneously binding particles, whose movement
is confined to one dimension with periodic boundary conditions (see Fig. 2.1).
We consider the motion as free, i.e., no drift is taken into account. As throughout
this work we neglect hydrodynamic interactions between the particles but take
the mobility into account as derived from the Stokes equation, which applies at
the considered scales. Particularly, the mobility of a sphere according to Stokes’
law is M, = 1/(6mnoR), where R is the radius of the sphere and 7 is the viscosity
of the fluid. As we work with dimensionless quantities here, we identify diffusion
and mobility D, = M, i.e., we choose the thermal energy such that it satisfies
2kgT, = 1 (compare Eq. (2.4)). In our example it is sufficient to consider the
relative position x of the two spheres, which undergoes a random walk with a
diffusion constant D = 2D,. Denoting the binding radius of each particle with R.,
the two spheres bind if + = z, = 2R.. Due to the periodic boundary conditions,
this is equivalent to the situation, where x = x; = L — 2R, with L being the length
of periodicity. We consider the binding event as the passage of the system.
According to the one-dimensional representation of Eq. (2.30), the MFPT T'is
the solution of the ordinary differential equation:
82 T 2 2.31
(9_11% (x0> - _5 ’ ( . )
where x, denotes the initial relative position of the two particles. For simplicity, we
shift x+ — & = x — 2R, in the following, which gives z, =0 and z; = L — 4R, = L.
At the boundaries, it holds T'(z,) = T'(z;) = 0. This leads to a symmetric solution:

- L= .
To calculate the FPT distribution we first ask for the probability density, which
is the solution of:

Op(x.1) _ D dp(a.1)

5 5 o2 (2.33)
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Eqg. (2.33) has the form of the heat equation, which can have solutions of the form
[113]:

p(z,t) = Aexp (—p*Dt/2) cos (uz + B) + C , (2.34)

where A, B, C' and u are constants determined by the initial conditions. Using
an infinite sum of solutions of type (2.34) makes it possible to have a Fourier
series approach to any kind of initial conditions. First, we apply the boundary
conditions. From p(z,,t) = p(i;,t) = 0Vt it follows B = «/2 and p = 7n/L with
n € N. Additionally assuming C' = 0 the complete solution is (compare [118]):

p(i,t) = E;An exp (—g (%):) sin (%x) . (2.35)

The standard initial condition is to start at a certain location 0 < 7, < L at time
t = 0, which means p(z,0|Z,,0) = 6(& — Zo). According to e.g. Ref. [17], the
Fourier coefficients A,, can be calculated via:

oL
1 2
A, = 2E/dx'5(x’ — Tp) sin (%x’) =7 sin (%fo) . (2.36)
0

The first passage time distribution f(Z,t) is the negative time derivative of the

probability that the system is still located between the boundaries 0 < & < L at
time ¢:

o) 2

= Z n};D (1 — cos (nm)) sin (7}75@0> exp (-l; <71L~n> t) (2.37)
n=1

_ 2@ DD (et 1) _D (ren+ 1)\

= r;) 72 sin < 7 x0> exp ( 5 ( 7 > t> . (2.38)

The expression in Eq. (2.37) agrees with the solution of a similar problem in Ref.
[66]. For the numerical evaluation only the first 100 terms of the sum have been
considered.

We perform corresponding Langevin dynamics simulations according to the
technique in Sect. 2.1. In these simulations two particles are restricted to one-
dimensional movement by fixing the other components of the position, y = z = 0.
The passage is defined as the situation when the reactive areas overlap, which
is our geometric criterion for an encounter state. Fig. 2.2 shows excellent agree-
ment between the simulation results and the theoretic predictions derived in this
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(a) (b)

Figure 2.2: (a) Mean first passage time T and (b) selected first passage time distri-
butions f (double-logarithmic) obtained by simulating a system as described in Fig.
2.1 with the following parameters ny = R = 1, R, = 1.1, L = 2.8 and time step
7 = 0.001. The data points give the simulation results for several relative starting
positions Zy, while the dotted lines represent the analytic predictions.

section. Due to the chosen simulation method, the first passage time is system-
atically overestimated, which will be discussed in more detail in the next section.

Because in most situations of interest, the initial condition cannot be con-
trolled, we now proceed by averaging over the initial configurations. Recalling
Eq. (2.32), the average mean first passage time 7' is:

71 %(Z—zo)fOZL—Q. (2.39)

'l
O\mx

Integrating over all possible 7, in Eq. (2.38) we obtain the average first passage
time distribution f(¢):

_ 4712) exp <_2 (@) t) | (2.40)

f(t) is an infinite sum of Poisson distributions of different decay times. Therefore,
one can expect that for large ¢, only the slowest decay with n = 0 will be important,
i.e., f(t) ~ exp[—(m2D/2L2)t] for t — oo. In Fig. 2.3, not only the exponential
decay is compared to the simulation data, but also another feature can be clearly
observed: For small ¢, the distribution shows a power-law behavior f(t) ~ 1/t=%/2,
It is not trivial to derive this behavior from Eq. (2.40). However, it can be motivated
by going over to an integral approximation of the sum. The integral of exp[—a(2n+
1)%t] underestimates the sum, which would be represented by a step function in



2.2 First passage time problems 29

10 —r——r——r .
10° B ~ 112 E

Figure 2.3: Double-logarithmic plot of
) first passage time distributions of the
= binding event in the system consid-

= F , 2
=10 f % 3 ered in Fig. 2.2, averaged over the
0 E ~e %}% 3 possible initial configurations. The
T ] dotted and dashed lines hint the scal-
12 B ] ing behavior at small and large ¢ re-
10 10 10 . 10 10 10° spectlvely.
the integral picture.
e o0 ) D 2
S ematnrnrt /dn e with g = 57;2 _ (2.41)
n=0 0 L

Since the n dependence of the exponent is not linear, the deviation of the in-
tegral representation from this step function is more complicated than a single
factor. However, for a reasonably rapid decay, the largest part of the deviation
results from the first several “steps” of n, where the discrepancy can still be well
described by a factor:

00 1 -1
Z 6—a(2n+1)2t ~ /dn e—a(2n+1)2t et /dn 6—a(2n+1)2t
n=0 0 0
ﬁ e—at
= 1 — erf(vat) . (2.42)
4/ at ( > 25 (erf(3V/at) — erf(v/at))

In the last equation, erf(z) denotes the error function. Fig. 2.4a illustrates the
considerations. The area beneath the solid line would be the exact solution of the
sum, the dashed line gives the integral approximation and finally the dotted line is
the integral approximation corrected by the factor in squared brackets above. The
first order approximation for the error function is erf(z) = 2z/y/7 [1]. Therefore, a
good approximation of Eq. (2.40) for small ¢ is:

iy WDt 1- erf(v/at) (2.43)

e ¢ erf(3v/at) — erf(v/at)
VT
4D a3 V4D e
T 3Vat—vat I avat
The constant a« was defined in Eq. (2.41). For large z, erf(z) — 1. Thus, the limit of

the factor with the error functions in Eq. (2.43) can be calculated by differentiating
numerator and denominator:
1 —erf(z) —e

I fm— . 2.45
bl erf(3z) — erf(2) 0 3¢9 _ o= (2:45)

(2.44)
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Figure 2.4: (a) Continuous function exp[—(2z + 1)?] (chain line) is compared to a
respective step-function (solid line), whose integration would be equivalent to the sum
in Eq. (2.40). The dashed and the dotted lines compare the latter with a step-wise
integration of the continuous function, where the dotted line includes the correction-
factor for x € [0, 1] as used in Eq. (2.42). (b) Same data as in Fig. 2.3 is compared to
the approximate solution obtained in Eq. (2.44).

Therefore, the behavior for large t in Eq. (2.40), which is the slowest decay for n =
0, is reproduced by (2.43), as the fraction with the error functions approaches 1
as t — oco. However, the short-time behavior given in Eq. (2.44) has an additional
term 1/+/t, which vanishes for t — oo. But as the e~* decays much faster, the
effect of 1/1/t can be generally neglected for large ¢. In this sense, Eq. (2.44)
gives a suitable approximation for Eq. (2.40). In Fig. 2.4b the approximation is
compared to the simulation data. As expected, there is a deviation for larger ¢,
but the qualitative behavior is well reproduced.

2.2.3 Diffusion between two absorbing spherical shells

We now turn to three dimensions by considering a two-particle system, which is
enclosed by an absorbing spherical boundary with radius L = L + R.. If one
of the two particles is fixed at the center, the center of mass of the second one
r undergoes diffusion between two absorbing spherical shells of radius 2R, and
L (see Fig. 2.5). In this case, the diffusion constant D of the effective process
is simply the translational diffusion constant of the mobile particle D = D, =
1/(6mnoR). The mean first passage time T'(r) is the solution of Eq. (2.30) with
respect to ry:

Ay, T(ro) = —% . (2.46)

ro denotes the initial position of the system at time ¢ = 0. Since the particu-
lar problem has spherical symmetry, it is 7'(ry) = T'(r9) and Eq. (2.46) can be
simplified to an ordinary differential equation by using the Laplacian in spherical
coordinates:

19,0 2
%a—roroa—roT(To) == _5 y (247)
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Figure 2.5: A simple model
in three dimensions consists
of two finite-sized patrticles,
surrounded by an absorbing
spherical shell, whose cen-
ter coincides with one of the
two particles, while the other
particle can move freely in
three dimensions. The two
dashed circles denote the ef-
fective inner and outer radii,
at which the center of the
free particle is captured.

whose general solution can be found via twofold integration with respect to r:
The boundary conditions T'(2R.) = 0 and T(L) = 0 lead to C; = —(4LR%*+2R.L?)
and Cy, = L? + 4R? + 2LR,, which results in:

Ti(rg) = R R ). 249)

Following the same steps as in Sect. 2.2.2 one can also attempt to find an
expression for the first passage time distribution f(r,t). Eq. (2.33) has the same
form in three dimensions:

op(r,t) D

o = 5 o), (2.50)

and can again be rewritten using the spherical symmetry:

dp(r,t) D10 ,0

ot 2r20r or (r,2). (2.51)
According to [113] a possible solution for the heat equation with spherical sym-
metry is:

p(r,t) = A% exp (—p*Dt/2) cos (ur + B) + C' . (2.52)

Using again the boundary conditions already stated above gives the following full
solution:

p(r,t) = iAn% exp <—§ (Lf—zRC)zt) sin ((%) (r — 233) . (2.53)

Because of the factor 1/r, this solution is not periodic anymore and cannot be
treated like a Fourier series. Comparing Eq. (2.53) to the solution given in Ref.
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Figure 2.6: (a) Mean first passage time T and (b) selected first passage time distri-
butions f (double-logarithmic) obtained by simulating a system as described in Fig.
2.5 with the following parameters 7o = R = 1, R. = 1.1, L = 5.0 and time step
At = 0.001. The data points give the simulation results for several relative starting
positions 7y, while the dotted line in (a) represents the analytic prediction for 7. In
both pictures, data obtained by simulating with random numbers out of a homoge-
neous (represented by the bar symbols) and a Gaussian distribution (cross symbols)
are compared.

[34], one still finds a similar expression for the evaluation of A,,, assuming that the
initial condition is again p(7, 0|7, 0) = 6(7 — 79):

L
o 2 / ~ ~ ! ™ /_
A, = T 9%, / dr’ p(7, 0|79, 0)r' sin ((L — QRC) (r 2Rc)>
2

c

. 2rg . ™

= L——Q_F{C sSin (<L——2_RC) (7’0 2RC)) . (254)
It is not straight-forward to check whether the A,, are normalized. The first pas-
sage time distribution f(r¢,t) = — [ dr’'p(+/,t) contains an infinite sum over an

integral which can only be evaluated numerically:

e Dr
_ 2 0 ; —
f(r(]? t) - ;Mn (L o QRC) Sl (Mn(ro 2RC)) X
. (2.55)
D 9 1 /
exp _?Nnt /dT Fsm (n(r" = 2Rc)) |

c

with p,, = mn/(L — 2R.). The integral over sin(r’')/r’ has a bad convergence due
to the alternating behavior. Thus, the expression in Eq. (2.55) is not really appli-
cable for numerical calculations even in very sophisticated numerical calculation
systems.

Again, we perform corresponding computer simulations to check the results
against the prediction in Eq. (2.49) on the one hand, and to verify two techni-
cal details of the simulation. First, the simulation of a Langevin dynamics uses
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Figure 2.7: (a) Relative deviation of the mean first passage time 7' measured in the
simulations as described in Fig. 2.6 from the analytical prediction for different time
steps At. (b) A square-root fit (dashed line) to the measured mean first passage time
T for different time steps At demonstrates the scaling of the systematic error. The
dotted line denotes the analytic result.

a technical representation of thermal noise. But as stated in Sect. 2.1, for the
particularly chosen simulation scheme the usage of Gaussian and equally dis-
tributed random numbers should be equivalent. Fig. 2.6 compares the simulation
results of the considered three-dimensional, spherically bounded system for both
cases. The data from both methods agree except for statistical deviations. The
prediction of the mean first passage time is also well reproduced.

As already mentioned in the last section, the first passage times ¢ are system-
atically overestimated with the chosen algorithm. Particularly, for a fixed time step
At in the simulation scheme an error of order ~ /At arises. Fig. 2.7a shows the
relative error of T' = t with respect to the analytic prediction for different time steps
At and the homogeneous random number implementation. Indeed, the error is
always positive and increases with At. At rq — 2R. and ry — L, T decreases
and thus the relative error gets larger. In Fig. 2.7b the values of T" are plotted
with respect to the time step At. This demonstrates the square-root behavior of
Tum(At). The fit agrees very well with the theoretic prediction at At — 0.

2.3 Evaluation of hydrodynamic properties

Although we do not incorporate hydrodynamic interactions in our model in this
work, hydrodynamic properties of the single particles or also partially formed pro-
tein complexes are considered via the full 6 x 6 anisotropic diffusion matrix. In
the case of a single protein we will ask for the mobility matrix of one object whose
atomistic structure is known, e.g., from x-ray scattering experiments or NMR stud-
ies. In dynamic systems with several proteins where bonds are formed and re-
moved all the time, usually no structures are available yet. For both situations a
recipe is needed to estimate the mobility matrix.

A promising approach that has been published recently [16] involves several
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sophisticated techniques to determine the surface of a protein, make a corre-
sponding triangulation and integrate the hydrodynamic impact of the solvent over
the triangles. However, a less involved and widely used approach has been de-
veloped mainly by de la Torre and coworkers [25, 32, 33, 39, 41, 76]. With this
method it is possible to calculate the mobility matrix of a rigidly bound aggregate
of N spheres with respect to both translational and rotational diffusion. There-
fore, it intrinsically enables to evaluate the hydrodynamic properties of clusters of
generic model proteins. Furthermore, one can think of several approaches to fill
up the space occupied by a protein structure with small beads and then use the
so obtained aggregate as input for the method. Different models are discussed
and compared in Refs. [32, 40]. The basic approach is to put spheres of a certain
size at the position of any atom except hydrogens. The volume of these spheres
effectively models a fixed hydration shell. This construct is then filled up with
smaller, densely packed but non-overlapping beads. Since the hydrodynamic
properties of a rigid body are determined by its outer boundary only, a shell of
these small spheres can be generated by deleting all spheres which have a max-
imum number of possible neighbors. The calculation of the diffusion matrix with
the method explained in this section is carried out for systematically decreased
sizes of the small beads. Thus, the detail of modeling is stepwise increased and
the result should in all practical cases converge against reasonable values. The
authors provide a freely available software called HYDROPRO [40], which uses the
structure of a protein obtained from the protein data bank (PDB), e.g., to directly
calculate the diffusion matrix. Several system properties are implicitly contained
in the diffusion matrix. Throughout this work — unless otherwise stated — we use
the ambient temperature 7, = 293K and for the density and dynamic viscosity
of the solvent we choose the respective parameters of water p = 1g/cm?® and
no = 1073Pas.

The fundamental concept of de la Torre’s method is to consider the free motion
of each of the spheres. It is affected by the presence of the other spheres due to
hydrodynamic interaction. Finally, the constraints arising from the rigid structure
of the aggregate are applied. In this way, general rules can be derived of how to
include the pairwise hydrodynamic interactions into a global mobility matrix. The
details will be explained in the following.

2.3.1 Hydrodynamic interaction in a system of many spheres

The treatment of de la Torre is based on the work of Brenner and O’Neill [29].
However, we basically follow Ref. [33] in our description and notation. Consider
the system of N spheres with linear velocity u!” referred to some point P, and an-
gular velocities w;, i € [1, N]. Each sphere experiences a frictional force F; and a
frictional torque T? when moving, arising from the presence of the other spheres.
The frictional impact of one sphere i on another one j can be expressed in 3x3
matrices (;;, accounting for the translational (it), rotational (rr) and translational-
rotational (ir/rt) coupling, which are not specified any further at the moment. In
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the overdamped limit, this leads to the following equations:

N

F,=> (! f+z "w; (2.56)
JNl

T =) (fu f+z . (2.57)

7=1

One can also generalize this to equations with supervectors including all velocities
Uur, 0), forces (F) or torques (T) of the system:

tt tr P
Fro(C ) ("), (2.58)
TP Crt Crr O

The grand friction matrix should be symmetric, therefore some relationships can
be presumed: (;} = (i, ¢/ = ¢j and ¢fj = (ji. The relationship in Eq. (2.58)
can also be inverted to calculate the velocities out of the forces and torques with

respect to a grand mobility matrix u:

—1
U tt tr f'P tt tr tt tr
(o T N I e e
O Hrt lu'rr T lu'rt Iurr Crt Crr

In Egs. (2.56) and (2.57) the constraints can now be taken into account, which
come from the assumption that the sum of all spheres forms a rigid body and
thus no relative motion of the spheres is allowed. The whole body shall have
a translational velocity u® referred to some origin O and an angular velocity w.
Setting P, = O, the velocities of the single spheres can be evaluated to u” =
u® + w x r; and w; = w, where r; denotes the distance vector of the center of
sphere i to the origin O. Now it is possible to calculate the frictional force and
torque of the whole rigid body out of F; and T

N
F=2"+Ejw=> F, (2.60)
TC = Egu’ + Ejw =Y (F/ +ri xF,) . (2.61)

Generally, cross products r; x X and X x r; can also be expressed as a matrix
product A; X and X A; respectively, with

0 -z
A= 2 0 —x| - (2.62)

-y r 0
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By inserting Egs. (2.56) and (2.57) into Egs. (2.60) and (2.61) and using Eq. (2.62),
it is shown in Ref. [33] that:

= Z Z ", (2.63)
2 = Z Z ClA; +¢ (2.64)
= = Z Z A (2.65)

E”O”:ZZ = A+ AT — ACHA) (2.66)

[I]

Now the question is how to obtain the friction tensors of the pairwise hydrody-
namic interaction ¢;;. Usually, the friction tensors cannot be directly obtained,
but several methods have been developed to estimate the diffusive interaction
wi;- In Ref. [32] the Kirkwood-Riseman-like [84] treatments are utilized, which
are discussed in-depth in Ref. [33] (section C) amongst others. Generally, these
type of methods neglect the rotational and translation-rotational coupling, i.e.
pi; = wi; = pi; = 0. However, in Ref. [41] a convenient way to include a vol-
ume correction is described, which is equivalent to a zeroth order contribution
to the rotational coupling and will be discussed later. Basically, the translational
“self-coupling” of a bead is accounted for by the reciproke of the standard transla-
tional friction coefficient ut! = (67ngo;) !, where nq is the viscosity of the medium
and o; is the radius of bead i. The hydrodynamic interaction of two spherical
beads with distance vector R,;; is described by means of the Oseen tensor [83]:

ij oy W|th IP)Z] - Rl] ® RW/R

(2.67
(67”’]00'2')71 I ifi=y )

’Lj’

9= {(87%}%%)1 (B} (T+Py)) ifi#

where R;; ® R;; denotes a dyadic product, I is the unit matrix and R;; = |R;|.
A common variant of a modified Oseen tensor for this type of problem was in-
troduced by Rotne, Prager [121] and Yamakawa [163] for two spheres of equal
radius. De la Torre and Bloomfield used a more general expression for spheres
of different radii o; and o; [39]:

= { (87r770R§’j)_1 (R?j (I+P;;) + (07 +03) (%H - R‘j)) if o7 . (2:68)

4 -1 . .
(67T7700'Z') I if vt=17

Note that for overlapping spheres (o, + 0, > R;;) at least the non-diagonal entries
in Eq. (2.68) can get negative which possibly conflicts the requirement of the
diffusion matrix 1’ to be positively definite. Rotne and Prager discuss this and
give an alternatlve expression to prevent this problem. However, Eq. (2.68) is only
valid for non-overlapping spheres. Considering only ' to be a non-zero matrix
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p't £ Qitis also ("™ = (" = (" = 0 and thus Egs. (2.63)—(2.66) simplify to:
= =35, (2.69)

i g

B == (A, (2.70)
(2
B =) A, (2.71)
(2
B =— ) ) AHA; (2.72)
(2

Note that in Ref. [32] there is a spelling mistake in the definition of =7 — Eq. (25)
(which is equivalent to our Eq. (2.72)) lacks a minus sign.

Center of diffusion

Although the grand mobility matrix . does not depend on the chosen coordinate
system in which it is calculated as only relative positions go into Eq. (2.68), it
is clear from Egs. (2.69)—(2.72) that E, is coordinate dependent because of the
products with A. In Ref. [76] the authors explain how to choose the correct point
of reference for a certain system. The basic idea is that finally either the friction
matrix or the diffusion matrix, depending on which quantity is wanted, should be
symmetric. Particularly, they point out that generally the certain point O = R
which leads Z, to be symmetric (the “center of friction”) is different from the
“center of diffusion” O = D, where Dy, is symmetric. They further state that Tr =f;
as well as Tr D% have their minimum at the respective center.

Another interesting fact is that although the translational friction matrix =% is
independent of the chosen center, it is the rotational diffusion matrix D", for which
this independence is valid. This point is rather counterintuitive at first glance,
since D' is of course related to E. However, according to Ref. [76] the origin
independence of E* reflects the fact that the overall force F should also be inde-
pendent of the origin, contrary to the overall torque T©. Instead, D" is connected
to the linear velocity u®, which depends on the origin, while D' is connected to
the angular velocity w, which does not. This can be accounted for a phenomeno-
logical argument.

In Ref. [25] the calculation of the center of friction is motivated, presuming =Eo
has been evaluated before with respect to some arbitrary origin O. In Ref. [32] the
analogous expression for the center of diffusion D can be found in dependence
of Do:

-1

Dy + D2 —Diy —Dz% Dy — DZ,
rpo=D-0=1| -—D Dy, + D77 -Dy D -t | - (2.73)
~Di, ~Di Dy, + Dy Dy, — DI,

It is possible to shift a diffusion or friction matrix calculated with respect to
some point O to another center. The required identities are given in Ref. [25].
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Shifting the diffusion matrix to the center of diffusion D from Eq. (2.73) is done by
the following rules:

DY = DY — ApoDSApo + D Apo — ApoDi (2.74)
D} =Dy + D5 Apo , (2.75)
D}y =Dy . (2.76)
Here, Apo corresponds to the definition of A; in Eq. (2.62) with r o from Eq. (2.73)

as the argument.

Volume correction

In Sect. 2.3.1 the estimation of y;; was described, mentioning that usually all com-
ponents except u'* are neglected. Considering a single sphere and recalling Egs.
(2.70)—(2.72) this would mean that all components of the friction tensor would
vanish except the translational part = # 0. This is not only an obvious mistake,
but it also causes a computational problem, because a matrix of the form

20

O O

(1
I

(2.77)

is singular (det 2 = 0) and thus cannot be inverted. Therefore, also the diffusion
tensor would be undefined. Apart from that, the estimation of the intrinsic viscosity
is also affected by this failure. This problem was tackled in Ref. [41]. It was
suggested to introduce a volume correction for the rotational properties by adding
a rotational friction coefficient to the trace of 2, which is equal to that of a virtual
sphere of the volume of all spheres in the system:

=T | + 6770VI[ , V = _ﬂ-zo-:,)’ . (278)

—corr

As it is shown in Ref. [32], this volume correction does not necessarily improve
the expected results, especially in the case when structures are modeled by a
number of smaller spheres. Although, since it removes the computational prob-
lems arising by the appearance of singular friction matrices, it is still valuable to
include it into the calculations.

Overall procedure
Summarizing all considerations the method consists of the following steps:
1. evaluate Eqg. (2.68) to calculate the grand translational mobility matrix p*,

2. invert ;' to get ¢ = (u')1,

3. calculate E out of ¢* utilizing Egs. (2.69)—(2.72) with respect to some arbi-
trary point O (e.g. the origin 0),
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hydrodynamic
center

%

Figure 2.8: Scheme of the considered exemplary geometry. You see two spheres
arranged along the e, axis, one centered at the origin, the other translated by 2Le,.
As it will be shown in the calculation, the hydrodynamic center is located at Le,.

4. include the volume correction from Eq. (2.78),
5. invert E to get Dp = kgT,=71,
6. use Eq. (2.73) to find the center of diffusion D,

7. shift Dy to the center of diffusion with the prescript given in Egs. (2.74)—
(2.76) to obtain the final result: the estimate of the full diffusion matrix of a
system of NV arbitrarily sized spheres Dp.

2.3.2 Simple example — the dumbbell

To demonstrate the procedure and to get an idea of its consequences, we now
calculate the diffusion coefficient of a dumbbell consisting of two equal-sized
spheres of radius R fixed to each other at a distance 2L via the previously de-
scribed method. Fig. 2.8 illustrates the considered geometry. We assume that the
locations of the spheres are r; = 0 and r, = 2Le,, which makes R, = —2Le..
Therefore, according to Eqg. (2.68) i has the form:

a 00 b 00
0 a 00 b O
00 a 0 0 ¢

't = : (2.79)
b 00 a 00
00600 a6 O
00 ¢c 00 a
1 1 2
with a= ——, b= —-—= ((QL)2 + —R2> ;
3
6mno R 8mno(2L) 3 (2.80)

c= m (2(2L)2 - §R2) :
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Inverting a matrix of the type in Eq. (2.79) generally results in:

d 0 0
d 0

Q\
o
o

o o
o
<<
o o
o
&

(") = : (2.81)

o
Q. O
o o
o K
S
o o

with o = (2.82)

a2 — b2’ a2 — 2’ b2 —a?’ c? —a?

The next step is the evaluation of E according to Egs. (2.69)—(2.72). Because
sphere number 1 is located at the origin it holds A; = 0. The volume correction
(2.78) is E" . = B + v I for this system, with v, = 167, R3. Summing up all

contributions, E has the following form:

2(a’ + ) 0 0 0 2L(d'+ ) 0
0 2(a’ + ) 0 —2L(a" + ) 0 0
= 0 0 200 + d) 0 0 0 2.63)
0 —2L(d" + ) 0 4a'L? + v, 0 0
2L(a' + ) 0 0 0 4a'L? + v, 0
0 0 0 0 0 Ve

We calculate the diffusion matrix with respect to the initially assumed point of
reference by inverting =:

b0 0 0 —b'L 0

0 ab 0 WL 0 0

1

0 0 —— 0 0 o0
Do = kpT, 2(0 + d) , (2.84)

0 VL 0 o0 0

VL 0 0 0 ¥ 0

1

0 0 0 0 0 —

Ve

| 4d' L2 + v, |

with o7 = 07Tl e . (2.85)
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Now Eq. (2.73) can be evaluated, to obtain the center of diffusion:

U—-f—b* 0 0 0 0
o= 0o Loy o o |=10]. (2.86)
Ve

Because of the simplicity of the example, the center of diffusion coincides with the
center of mass. As already mentioned, for more complex examples hydrodynamic
screening will occur, which diminishes the contributions of spheres lying inside
the cluster, and thus rpo is different from the center of mass in general. The
knowledge of rpo finally leads to the diffusion matrix with respect to the center of
diffusion by shifting Dy according to Eqgs. (2.74)—(2.76):

D0 0 0 0 0
0 D, 0 0 0 0
0 0 Dﬁ 0 0 0
Dp = , (2.87)
0 0 0 D, 0 0
0 0 0 0 D, 0
0 0 0 0 0 Dﬁ
1 1 3 1
ith D =kgT,——+— = D! ot = 2.
wit l B a2(b/ + d’) sph <2 + ] 16 ) ’ ( 88)
1 3 1
t x(ox 72\ _ - -1 73
D' = kpT,b*(a" — L?) = D!, (2 ol ) , (2.89)
. 1 /1
H - kBTaU_C - DSph (5) ; (290)
D — kpTub = D (S 4 0 (2.91)
LT PR T e \ 9 T 19 16124613 4+ 15 ) '

Here, Dp is expressed in terms of the scaled distance of the spheres from the
center of mass | = L/R. The indices D and D, denote the coefficients with
respect to the direction parallel and perpendicular to the symmetry axis of the
dumbbell e,. To make it easier to understand the result, it is expressed in terms
of the known diffusion coefficients for a single sphere of radius R [48]:

t kBTa r kBTa

b Ba ro— _MBfa 2.92
sph 67T770R sph 87(770 R3 ( )

The two interesting limits are [ = 1, when the spheres touch each other, and
[ — oo, when the spheres are far apart from each other. First it is obvious that Dy
does not exhibit an [ dependence and thus the dumbbell is assumed to be always
half as mobile as the single sphere with respect to rotations around e, in this
method. Regarding translational diffusion for large [ all terms [=* vanish and the
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friction of both beads is fully accounted for, which means that the whole dumbbell
is half as mobile as one single sphere D = DY = D_, /2. If | gets smaller, the
beads experience a pairwise hydrodynamic screening which decreases the fric-
tion, i.e., increases the mobility up to some value which is still below the single
sphere. Particularly, it is reasonable that translation in the e, direction is favored
compared to perpendicular translation, where the spheres are more exposed to
fluid flow. The rotational diffusion perpendicular to e, is always more than a factor
2 smaller compared to a single sphere and even vanishes for large separations
[ — oo. Considering the definition of torque T = r x F helps to explain this behav-
ior physically. Let w be the velocity of rotation of the whole dumbbell around e,.
This actually means that each of the two beads move with a speed u,/, = +wL
and hence experiences the force FF = +(¢'(L) — ¢!(L))wL. Here, ¢' denotes a
coefficient determining the screened friction of the bead itself and (! denotes the
coupling to the oppositely moving bead. For increasing L it is a reasonable as-
sumption that ¢*(L) and ¢’(L) converge to some finite value, which gives F' ~ wL.
In particular, the coupling as well as the screening will vanish for large separa-
tions, i.e. /(L) — 0 and ¢'(L) — kpT,/D.,, with L — co. The torque on the
dumbbell arising from these forces is T'= L x F' ~ wL?, which clearly diverges.
The rotational friction coefficient is (" = T'/w, it is apparent that the rotational
mobility vanishes y, ~ 1/¢" ~ L2

Comparison with analytic results

The hydrodynamic friction of a system of two spheres has been studied analyt-
ically [38, 67, 143, 156], which enables us to compare the previously derived
approximate results to exact values. In all cases, the system is described in spe-
cial curvilinear coordinates &, n as introduced by Stimson and Jeffery [143], which
are connected to cylindrical coordinates z, r:

r+i(z+a)
=ln——= 2.93
S nr—i—z(z—a)’ (2.93)
sinmn sinh &
_ _ -—q— 2.94
" CLcoshf —cosn’ : acoshf — Ccosn ( )

The surface of a sphere on the z-axis is then an iso surface with ¢ = £,. Davis
gives a general recipe to calculate the necessary constants «, g and a for a
system of two spheres with radii R;, R, and center-to-center distance 2L:

a= e~ Ri= [z} - R}, (2.95)
a=In(z;+a)—InRy, (2.96)
B=1In(zs+a) —InRy, (2.97)

where z; = (4L* + R? — R3)/(4L) and —z, = —(4L* — R? + R3)/(4L) denote the
center positions. The two spheres are then represented by ¢ = « and £ = —(.
From the above equations we see that in case of equal sized beads Ry = R, = R
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Figure 2.9: Comparison of approximate results from the method explained in the
previous section and (quasi-) exact results for the hydrodynamic properties of a rigid
dumbbell. All plots show coefficients of translational (a), (b) and rotational (c), (d)
friction normalized by the corresponding value for a single sphere. The distance
of the two spheres in the dumbbell is given in terms of « = arcosh L/R in (a), (c)
and by | = L/R on a logarithmic scale in (b), (d). The dashed lines denote the
approximations by de la Torre et al. as given in Eq. (2.91). The solid line in (a) and
(b) is the exact solution for fﬁ according to Ref. [143]. The data points marked by
hollow triangles, squares and circles denote numeric results from Refs. [38], [67],
and [156] respectively.

also o = . In most of the analytic solutions, « is used as parameter to describe
the distance of the spheres, which particularly means:

L L\? L
= —_ —_ — = S —_— ., 2_
a=In 7 + ( R) 1 arcosh I (2.98)

The two limits of interest discussed above [ = 1 and | — oo are therefore equiv-
alent to « = 0 and o — oo, respectively. In this coordinate space the differen-
tial equations of incompressible viscous hydrodynamics in the time-independent
Stokes approximation can be solved under the the boundary condition of two
spheres for several types of motions. The only closed form of such a solution was
given by Stimson and Jeffery [143]. The authors considered the hydrodynamic
friction force acting on one sphere moving parallel to e, with constant speed in
the presence of another sphere. For the sake of comparability, all results are
normalized by the according friction of a single sphere kpT,/D{,, and kpT,/Dy,.
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The work of Stimson et al. [143] gives the following expression:

k:BT 4 (n+1) 4sinh? (apa/2) — a2 sinh? oz}
h 1- " ,  (2.99
f“ sm “ Z 2n —1)(2n+3) { 2sinh? (a,) — a2 sinh(2a) (2.99)

with a,, = (2n+ 1). Note that neither of the two limits of small and large separations
can be carried out straightforwardly as they involve an infinite sum over vanishing
terms leading to finite values. However, the limits can be carried out numerically
and one particularly finds:

16
fi =~ 1.2903 & i Torre = 3~ 1:2308. (2.100)

Goldman et al. solved the problem of two spheres of equal size both moving with
the same speed perpendicular to e, [67]. Wakiya developed a rather general
notation for the solution of this class of questions and gave expressions for equal-
sized spheres in uniform translational and rotational motion [156]. In Ref. [38],
Davis extended this treatment to the even more general problem of two spheres
of different size translating with speeds U; and U, along e; L e, and rotating with
speeds €2; and €2, around e,, where e; | e, | e,. Note that the distance of the
spheres is given in terms of the smallest distance between their surfaces S, which
wouldbe S =2L—2R = 2R(I—1) in our case. No closed expressions are available
for these cases in contrast to the work of Stimson et al. discussed above. In Refs.
[38, 67, 156] the solutions are expressed in terms of infinite sums, while the
coefficients must be found by solving a system of linear equations. As the sums
as well as the respective coefficients can be proofed to converge, in practice, they
are cut off at some finite index N by setting the N coefficient in the sum = 0.
This leads to a finite system of equations which can be solved numerically. The
smaller the distance of the spheres the slower is the convergence. Therefore the
limit « — 0 is non-trivial. However, in Ref. [67] the authors give a numerical value

for f1:

32
fh o~ 1.4494 & Il Torre = 23~ 1.3913 . (2.101)

In all papers, results of numerical computations for specific problems are given,
which are quasi-exact and can thus be used for comparison with the results of
the de la Torre approximation. Fig. 2.9 shows the approximations according to
Eq. (2.91) alongside (quasi-) exact results. Obviously, f|’|f and f! are both well
reproduced except for small separations, where the friction is slightly underesti-
mated.

Unfortunately, in the cited papers the torques due to hydrodynamic rotational
coupling are only evaluated for freely rotating spheres and not for a rotating
dumbbell of spheres which are fixed relative to each other as in the case con-
sidered here. However, a reasonable measure for f7 can be constructed from
the translational friction of the angular motion with the velocity wL as explained
above. As the velocity vectors of the two spheres are antiparallel, only the treat-
ment of Davis [38] is general enough to use it for the respective calculation:
T = 2(¢(L) — ¢X(L))L?. The comparison with de la Torre’s results is shown
in Figs. 2.9c and 2.9d.
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Bimolecular encounter

The elementary unit of a multitude of cellular processes is the bimolecular protein-
protein interaction. It plays a key role in many cellular processes such as signal
transduction, bioenergetics, and the immune response [77]. The strength and
specificity of protein-protein association are mainly determined by the comple-
mentarity of protein shape and often by the electrostatics of the protein surfaces.
This was shown by experimental measurements at different ionic strengths [126].
Kinetic on-rates are commonly believed to be controlled by long-ranged electro-
static interactions, whereas off-rates are rather controlled by short-ranged interac-
tions like hydrogen bonding and van der Waals forces. Therefore environmental
control of complex dynamics has to be implemented through on- rather than off-
rates. Notable exceptions are situations in which mechanical force is involved,
like in the cytoskeleton.

In this study [124] we are interested in describing how general principles guid-
ing the diffusional association of biomolecular pairs are modulated by their partic-
ular physico-chemical properties. We systematically explore the effect of various
coarse-graining procedures on the rate of protein-protein encounter. We com-
bine early approaches based on Langevin equations with current knowledge on
molecular structure. We apply our models to three systems with different physico-
chemical characteristics.

3.1 Biologic examples at different levels of detail

One of the most well-observed bimolecular complexes is the extracellular ribonu-
clease barnase and its intracellular inhibitor barstar. Both proteins carry a net
charge of 2e and —6e, respectively, which leads to a considerable electrostatic
steering [36, 46, 131, 133, 157]. Considering the structure of the two proteins,
barnase has a bean-like form, matching well on a large reactive area with the
nearly spherical barstar. A classic example of electrostatically-driven protein as-
sociation is the iso-1-cytochrome ¢ - cytochrome c peroxidase (cytc:ccp) complex,
charged with 6e and —13e, respectively and exhibiting dipoles aligned well with the
reactive areas [99, 107]. Finally, we selected the medically important complex of
a peptide fragment of p53 and its inhibitor mdm2, which is widely used for an-
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Figure 3.1: Scheme to visualize the different variants of the model for the three
considered systems S1-53. Barnase, cytochrome ¢ and p53 are shown in light gray;
barstar, cytochrome c peroxidase and mdmz2 are shown in dark gray. The respective
reactive patches are shown in white. Model M1 only includes a simple steric inter-
action. Model M2 has an additional effective electrostatic interaction, here denoted
with black arrows showing the direction of the dipole of the model particles. In M3,
the excluded volume is modeled in more detail as a collection of smaller beads. The
transparent spherical surface marks the volume used in M1 and M2 for the sake of
comparison. Finally, the bottom row shows surface representations of the atomistic
structures taken from the protein data bank.

ticancer drug design. In this system, electrostatic attraction plays a very minor
role. On the other hand, the steric matching of both surfaces is of particular im-
portance here. It is a perfect example of a key-lock binding interface, where p53
is buried deep into a cleft on the mdm2 surface.

One aim of this chapter is to determine how crucial particular details of the
model proteins are with respect to the association properties. Therefore, we con-
sider a system of model proteins at three different levels of detail as depicted
in Fig. 3.1. We treat it with the numerical Langevin equation approach already
introduced in chapter 2. In the most generic approach (M1), we only account
for the steric interaction between spherical particles. As a first refinement (M2),
an effective Coulombic interaction is introduced using the dipolar sphere model
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(DSM — see Sect. 2.1). Finally, since our Langevin equation approach is particu-
larly suited to capture anisotropic transport, we implement a more refined version
for protein sterics (M3). In this approach the excluded volume of each protein is
modeled by 8-25 smaller beads. M3 uses the DSM as well.

The simulations were performed in a cubic box with periodic boundary con-
ditions. For the application of the DSM this particularly means that actually an
infinite number of copies exists for each model charge. However, due to the very
quick decay of the electrostatic interaction, only the minimum image distance of
two charges is considered in the force calculation. That is, each charge interacts
with only the closest copy of any other charge in the system due to the periodic
boundary conditions.

Schreiber and Fersht used concentrations between 0.125uM and 0.5uM in
their experimental studies of the association rate of the barnase:barstar complex
[126]. The average volume containing one particle at a concentration cis 1/cNy4
with the Avogadro number N, = 6 - 10**mol'. Hence, the edge length of a cubic
boundary box representing concentration ¢ can be calculated from:

L=~V =1/3/cN, . (3.1)

For example, ¢ = 0.125uM leads to L ~ 2370A for one pair of particles, which
is two orders of magnitude larger than the size of the proteins. Due to this low
density, the first passage times (FPT) to encounter can be expected to be much
longer than the chosen time step. For this reason we use the variable time step
approach in our simulations as it has been explained in chapter 2.

Gabdoulline and Wade [58] used several criteria to define a contact area for
the system. In our studies, we define the contact area to consist of those atoms
in the two interacting proteins that are at 5A or less distance from an atom of
the complementary protein. The center of mass of these atoms is considered as
the center of the reactive area. For M1 and M2, the reactive patch is centered
at the surface of the sphere modeling the excluded volume such that it has the
same relative direction from the center of mass as obtained by the method just
described. In the case of M3, the center of the patch is set to the center of the
reactive area.

The contact area has a diameter of approximately 10A to 20A for the three
systems studied here. Following earlier Brownian Dynamics simulations [140]
Alamanova et al. performed an in-depth analysis of the free energy landscape
and the encounter state of the protein complexes considered in this chapter [3].
Both studies showed that the encounter complex is typically located at relative
separations of the two protein surfaces of about 10A compared to their positions
in the final complex. As the reactive patches in this study model both the size
of the contact area on the surface of the model particles and the distance above
their surface at which an encounter will be possible, values in the range of 5A to
10A seem reasonable.

Two types of excluded volume structures are taken into account. In the first
case, used in M1 and M2, the proteins are assumed to have an approximately
spherical form. The radius for the model spheres determining the hard core inter-
action is determined by the radius of gyration of the protein. This as well as the
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Table 3.1: Protein structures and parameters used in the study. The last column
gives the angle between the position of the patch relative to the center of mass (rpatcn)
and the dipole moment (p). Note that two corresponding patch vectors rp;c, are usu-
ally close to antiparallel, while two corresponding dipole moments p electrostatically
favour a parallel alignment. That is, the most beneficial configuration would be if
/1 =0°and £y = 180°.

Protein System PDBcode Ref. Ry, /A  gle  Z(rpaten, P)

barnase S1 1BRS [30, 58] 14.68 2 59.5°
barstar 13.42 -6 135°
cytc S2 2PCC [107]  13.89 6 22.3°

ccp 20.00 -—-13 153.8°
p53 S3 1YCR [88] 10.20 -2 110°
mdm2 16.81 1 83°

anisotropic diffusion matrix of the proteins is calculated by the HYDROPRO software
[40]. The underlying data in the more detailed approach M3 is obtained using
the AtoB bead modeling software [31, 114]. In this way, the three-dimensional
structure of the proteins is modeled with a comparably small number of 8 to 25
spheres of different sizes.

The charges for the DSM were calculated as explained in Sect. 2.1 according
to the atomistic structures obtained from the protein data bank (PDB) [24]. The
data are summarized in Tab. 3.1 for the proteins we consider in our studies.

3.2 General scaling behavior

Langevin dynamics simulations were performed for cubic boxes containing two
model proteins. Simulations were conducted until the encounter condition was
met for the first time over typically millisecond lengths. The central quantity to be
determined in the simulations is the encounter frequency k for a given parame-
terization of the model. Instead, the accessible quantity in our case is the first
passage time (FPT) 7" to encounter. For a Poisson-like process, where the distri-
bution of FPT is given by f(T') = ke~*7, the encounter frequency is the reciprocal
of the mean FPT k = 1/(T). Later we will refer to the encounter frequency scaled
by the concentration as the encounter rate k = k/c. It is reasonable to refer to
the unscaled quantity & = 1/(T’) as frequency as it has the dimension s~!. As the
preparation of a comparable experiment would never allow knowing the particular
initial positions and orientations of the unbound proteins, it makes sense to aver-
age over the possible initial configurations. Therefore, we started a large number
of runs (typically 10* to 10°) with random initial positions and orientations for alll
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Figure 3.2: (a) Logarithmic plot of the distribution of the FPT to encounter 7" between
a single pair of barnase and barstar model particles in a cubic boundary box of edge
length L = 2370A, representing a concentration of 0.125uM for each protein. The
dashed line represents a single exponential fit to the data points, which shows the
expected behavior with respect to the encounter frequency k = (7). (b) Simulated
encounter frequencies for a single pair of barnase and barstar model particles in
cubic boundary boxes of different sizes representing different concentrations. The
dashed line is a linear fit to the data.

involved model particles, under the constraint that the initial pairwise distance is
at least large enough to prevent an immediate encounter. The “first passage” is
defined as the first overlap of two complementary reactive patches. Interestingly,
by this averaging, the first passage process becomes Poisson-like, see Fig. 3.2a.
The data show a clear exponential behavior. This means that it is truly reason-
able to talk of an “encounter rate”, as the FPT distribution is indeed reflected by a
single stochastic rate. The finite probability at small FPT is due to the possibility
that the two model particles are initialized in close proximity in the beginning of
the simulation. The large errors in the histogram at " — 0 are caused by the
fact that exponentially sized histogram bins were used to sample the behavior for
small T'. Therefore, events hitting a particular bin are rare because of the small
width of the bins at 7" — 0, which then leads to bad statistics in this domain.

As the encounter process is purely diffusion limited, one expects the en-
counter frequency to scale linearly with the concentration. The plausible argu-
ment for this is the rising number of combinatorial possibilities per volume with
decreasing concentration. Fig. 3.2b shows the encounter frequencies for the bar-
nase:barstar model system without electrostatic interaction (M1). The linear be-
havior is well reproduced. Hence, it is reasonable to always scale the encounter
frequencies with the inverse concentration for a better comparability, as it will be
done for the remaining part of this work. We denote the rescaled quantities as en-
counter rate in the following, i.e. the encounter rates have the dimension M~1s.
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Finite size effects

In most of the simulations, only one instance of the final complex was consid-
ered, i.e. one model particle of each kind. Using such small systems could lead
to undesired finite size effects. Fig. 3.3 shows the simulation results for £ for an
increasing number of barnase:barstar pairs, while keeping the size of the bound-
ary box constant. The idea is to rule out that larger numbers of particles may
lead to noticeable three-body interactions or hindering of the encounter process.
In particular, this means that just the number of possible pairs for binding in-
creases. Consider a system of two barnase molecules (A and A’) and two barstar
molecules (B and B’) randomly distributed over the boundary box. The relative
alignment of any pair of As and Bs is therefore random again. For a particular pair
the distribution of times to first encounter will thus look very similar to the case
with a single pair in the box, which is a simple exponential decay with respect to
the encounter frequency k§"°: f1(T) = k™ exp[—k$"°T]. The probability that, e.g.,
the particular pair A — B reaches encounter at a certain time ¢ before the three
other possible pairs (A’ — B, A — B’, A’ — B'), is therefore:

o0 [e.9] [e.o] o0

4
p(t) = /dt1/dt2/dt3/dt4 5(t1 _t)Hki}nce_anCti
=1

0 t1 t1 t1

= fenceahyet (3.2)

Thus, the probability that any of the four possible particle pairs reaches encounter
before the respective three other pairs do, is 4 x p(t) as just calculated, i.e. f>(T)
has again a Poisson form like f1(7") and k$* = 4k$™. In general, for higher
numbers of particle pairs N, it is expected to again find an exponential distribution
of the time to first encounter with the encounter frequency k3" = NZks™. This
quadratic behavior is again well reproduced by the data shown in Fig. 3.3, which
suggests that even for small systems with only two particles no strong finite size
effects have to be expected.

Size of the reactive patches

We want to understand the dependence of the data on the size of the reac-
tive patches in more detail. This behavior is exemplarily studied with the bar-
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Figure 3.4: (a) Encounter rates in dependency of the patch size for the bar-
nase:barstar model system in the M1 variant. (b) Comparison of M1 and M2 similar
to Fig. 3.4a for small patch sizes. For larger patch sizes there is no substantial differ-
ence.

nase:barstar model system. In Fig. 3.4a, the encounter frequency has been ob-
tained from simulations for barnase:barstar-like model particles in the framework
of M1 at several concentrations ¢ = {5uM, 125nM, 2.5nM, 125pM} and varying
patch sizes r. All values in the figure have been scaled with the concentra-
tion, which leads to a collapse as expected. It is obvious that as r gets larger
than 2R at around r = 40A, the reactive patch “covers” the whole model particle
and we therefore go over to the Smoluchowski limit of isotropic reactivity, where
ksmo ~ 7. This gets particularly apparent in the chain dotted line, which depicts
the Smoluchowski approximation according to Eq. (1.1) with D = Dg,,, + Dp,s =
2.33-107%m?/s chosen as the combined translational diffusion coefficient of bar-
nase and barstar and assuming the capture radius is determined by the patch size
ro = r, wWhich is true for large r. The simulation results are in good agreement
with the Smoluchowski approximation in an intermediate range of ». However, at
high densities or large r respectively, the patches span a serious part of the sim-
ulation box of edge length L, and do immediately encounter for a threshold value
of r = Tyge = L\/§/4, where the sum of the patch diameters 4r equals the triag-
onal. Thus, the encounter frequency must diverge with ~ 1/(7q. — )%, Where
we suppose a = 3, as the volume of configurational space without immediate en-
counter is decreasing with 3. This assumption in addition with the Smoluchowski
behavior would lead to & ~ r/(r... — r)? for large r, which follows the data in Fig.
3.4a (dashed lines).

On the other hand, the scaling for smaller r is clearly not k£ ~ r*, as one would
expect from naive geometric arguments. This is consistent with the findings of
Shoup et al. [135], who stated that the association rate of similar systems with
spherical reactive patches is considerably increased due to the effect of rotational
diffusion. Furthermore, if two complementary particles come into close proximity,
a process as described by Smoluchowski, they will stay close for a finite time
and test not only one orientation but part of the orientational configuration space,
until they completely disperse again, as e.g. stated in Ref. [100]. Therefore, the
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Figure 3.5: Different alignment states during the encounter process. A1 proteins are
completely unaligned. In state A2, referred to as contact in this chapter, the proteins
are translationally aligned, i.e. they are close enough to actually encounter (denoted
by the overlap of the lightened area around the model particles), but lack the correct
orientation. A3 proteins reached the encounter meaning that the reactive patches
are in translational and rotational alignment.

Al

question if the encounter is reached when two particles are at a small distance is
not answered by a static geometric probability.

It has been shown that the electrostatic interaction of proteins can strongly in-
crease the association rate. However, under physiological salt conditions, Coulom-
bic interactions are screened by counter ions in the solution on a small length
scale of approximately x = Inm. Thus, deviations from case M1 without effective
charges will only arise for small . Fig. 3.4b shows the results of respective sim-
ulations of our model M2 compared to the results of M1. Indeed, for large patch
radii r, the results are similar, while for smaller r, the encounter rates in M2 are
clearly higher compared to M1. However, the crossover to a power law behavior
with roughly ~ r%/* can be suspected for very small r, just at a prefactor of about
50 times larger than for M1.

3.3 Study of the encounter pathway

The pathway through which the encounter is formed is of special interest. We
dissect the encounter process into several states as illustrated in Fig. 3.5. At the
start of each run, the systems were prepared in the unaligned state A1, as de-
scribed earlier. We assume that the two model proteins will then switch between
state A1 and .42 a number of times NV, until they finally reach the encounter com-
plex A3 due to rotational diffusion. In the following, each of these switches from
Al to A2 will be termed a contact. That is, N counts the number of unsuccess-
ful contacts before the encounter is finally formed. A separate set of simulations
was performed to measure the distribution of N. Furthermore, we analyzed the
distribution of return times T,¢. This is the time it takes for two model proteins
to get into contact again after having lost translational alignment (42— A1), i.e.,
they have been in close proximity once. Finally, we determined the distribution
of resting times T, in translational alignment A2 before the two model particles
separate again.

As an example, Fig. 3.6a shows the distribution of NV for the barnase:barstar
model system at ¢ = 0.5uM in the framework of M1. The distribution of the
number of contacts again has a Poisson form. This is not obvious. Although,
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Figure 3.6: (a) Logarithmically plotted distribution of the number of contacts N be-
tween a barnase and a barstar particle. The dashed line is an exponential fit to the
data. (b) Double-logarithmic plot of the distribution of resting and return times of the
translationally aligned state (.42 in Fig. 3.5).

as we start with random initial conditions, low numbers of approaches until the
encounter patches overlap can be expected to occur with a finite probability. In-
terestingly, the number of unsuccessful contacts in state .42 can be rather large.
We also find that the distribution of NV is roughly independent of the concentration.
This is reasonable, as after the two proteins were in contact once, the further en-
counter process is guided by returns to state .42 and thus is virtually independent
of the system size.

However, Fig. 3.6b shows that the return time T, is not exponentially dis-
tributed. Instead, it follows a power law p(T,g) ~ Tojf/ > and undergoes an expo-
nential cutoff due to the finite size of the boundary box at large T,¢. Therefore,
there is a high probability for very small return times, i.e. situations, where the two
model proteins do not really disperse, but immediately after loosing translational
alignment (A2—.A1) get into contact again (A1—.42). The power law behavior of
the return time is consistent with the problem of a random walk to an absorber
in three dimensions [112]. In principle, these two situations are equivalent since
the relative motion of the two proteins while unaligned (A1) can be approximately
understood as a random walk, and the criterion for going over to translational
alignment A2 reflects an absorbing boundary in the configuration space of rela-
tive positions. The distribution of resting times T, follows the same power law as
f(Tug), but the exponential cutoff happens much earlier. The reason is that the
finiteness is here determined by the region in configuration space, where the two
model proteins are in state A2. As this is much smaller than the whole volume of
the boundary box, in which they are unaligned and therefore in state A1, a random
walk in state .42 will end much earlier. The power law in both histograms for T,
and T, makes it actually impossible to consistently normalize them because of
the divergence for T — 0. However, a convenient normalization can be achieved
by introducing some cut-off T,,;,. This is technically reasonable as we use a nu-
merical scheme for the evolution of the system with a discrete and finite minimal
time step At.in. And also physically it makes sense to cut off the histogram as
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the applied concepts of diffusion break down at very small time scales when mo-
tion gets ballistic and therefore the picture would change at 7' — 0 systematic
reasons.

The differences we obtain in the distributions of 7,,, and T, when using the
variants M2 and M3 compared to M1 are generally very small and unlikely to
account for any deviations in the overall encounter rates. Also, the distribution of
N is always well described by a single exponential decay. However, the inverse
decay length (N) really varies for the different situations. Therefore, changes in
the overall encounter rate are mainly caused by a different probability for reaching
state A3 being in contact (A2). This is reasonable when considering that all
regarded effects are strongly localized and can thus only act while the system is
in contact.

3.3.1 Three systems with different physico-chemical interface
properties

So far we have exclusively considered a parameterization of barnase:barstar (S1)
to demonstrate the principal behavior of our model and how we access particular
quantities. As the techniques we use for finding parameter values are general,
we now apply our method to two other systems cytochrome c and its peroxidase
(S2) as well as the p53:mdm2 complex (S3). Those represent systems with dif-
ferent interface characteristics and where the role of electrostatics is either much
stronger (S2) or much weaker (S3) than for S1.

Basically all the previously described quantities are measured for 8 different
concentrations ¢ = {125,250, 500, 750, 1250, 2500, 5000, 7500 }pM. Furthermore, to
find out how crucial the choice of the radius of the reactive patch affects the re-
sults, we use patch radii of = 6A and » = 3A in addition to the initially considered
value of r = 10A.

Tab. 3.2 shows the encounter rates £ and mean number of contacts (V) as
obtained from the simulations. The rates are all roughly of the same order of
magnitude. Still, several qualitative features are readily apparent. First, for de-
creasing patch sizes, the rates generally decrease as expected. Secondly, this
effect is weaker for M2 compared to M1, which basically means that the electro-
static attraction and orientation due to the dipole interaction are indeed enhancing
the encounter. The strongest effect of the electrostatic interaction is obtained for
cytc:ccp, which is the system with the largest monopole and dipole and the best
alignment of the directions of the dipoles and the reactive patches. On the other
hand p53:mdmz2 is nearly unaffected by the effective charges, due to its weak
monopole charges and, additionally, a rather bad alignment of the dipolar inter-
action and the reactive surface area. Furthermore, regarding the results with
detailed steric structure M3, the effect on the rate is correlated with the devia-
tions of the protein forms from the spherical excluded volume approach in M1
and M2. This deviation is smallest for cytc:ccp and largest for p53:mdm2.

The findings for the encounter rate k are also reflected in the results for (N).
As expected, higher (N) leads to a decrease in k. This principle is very con-



3.3 Study of the encounter pathway

55

Table 3.2: All values k(Mx) denote encounter rates which have been averaged
over several simulations at different concentrations as given in the text. The values
are given in k / 10°M~1s~! for the three different versions of our model. (N)(Mx)
are average values for the mean number of contacts. As already mentioned, (N) is
basically independent of the concentration. Therefore we average over the different
simulations for each of the chosen systems. The errors were determined by one
standard deviation from the 8 values obtained at different concentrations. Some of
the choices for the patch radius were not applicable to M3, as for these cases an
encounter was completely hindered by the detailed excluded volume model.

System  Patch radius k(M1) k(M2) k(M3)

brn:brs 10.0 1.56 £ 0.04 2.76 £+ 0.07 2.02 £ 0.02
6.0 0.57 =+ 0.01 2.13 £+ 0.01 1.34 £ 0.08
3.0 0.13 4+ 0.001 1.28 + 0.03 —

cytc:ccp 10.0 1.12 £ 0.02 431 + 0.20 4.15 + 0.15
6.0 0.40 £ 0.01 429 4+ 0.21 4.05 £+ 0.09
3.0 0.09 £+ 0.001 4.03 + 0.05 0.21 £+ 0.02

p53:mdm2 10.0 2.05 £ 0.05 251 £ 0.04 1.27 £ 0.02

6.0 0.80 £ 0.01 1.12 + 0.01 0.15 £ 0.01
3.0 0.19 £ 0.002 0.28 £ 0.01

System  Patch radius (N)(M1) (N)(M2) (N)Y(M3)

brn:brs 10.0 474 + 2 198 + 5 282 £ 10
6.0 11490 £+ 4 232 £ 8 534 £+ 50
3.0 4120 £ 10 6563 + 15 —

cytc:cep 10.0 842 + 3 61 + 5 1+ 7
6.0 2040 £ 20 30 £ 3 77T £ 10
3.0 7540 £+ 63 21 £ 3 4160 £ 375

p53:mdm2 10.0 362 £+ 2 266 + 4 823 £+ 10

6.0 815 £ 10 582 £+ 13 8720 £ 200
3.0 2900 + 35 2550 + 30 -
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sistent with the data. The only exception is cytc:ccp observed in M2. Here, the
effective Coulombic interaction is strongest and the dipole moment is best aligned
with the reactive patches. Therefore, having reached state .42 once, the proteins
do systematically orient towards .43, while they are additionally strongly steered
back towards A2 when loosing their translational alignment. This behavior is the
stronger the closer the model proteins have approached once — i.e. for the case
of small patch sizes, where state .42 implies the smallest distance. While this only
explains the inversion in the (V) behavior, k is obviously still slightly decreasing
with smaller patch sizes. This can be explained by the fact that the time to the first
approach of state .42 is larger for smaller patches, as this implies a smaller rela-
tive distance. This obviously compensates the fact that afterwards the encounter
is formed even quicker, as reflected by the decreasing (V).

The strong correlation between the encounter rate £ and the mean number
of contacts (V) is most apparent in the respective correlation plot in Fig. 3.7.
Indeed, k& ~ (N)~!is valid for most of the different systems and models. Note,
particularly, that the prefactor is very similar in all cases. Basically, this means that
one unsuccessful contact takes the same amount of time on average, no matter
what the local details of the system are. This gets more obvious recalling the
distributions of the resting and return times T, and T.¢ in Fig. 3.6b, where it gets
clear that (T,¢) > (T...). As the average time for one contact will be approximately
(Ton)+(Tog), itis dominated by T,¢, which is only marginally influenced by the local
details of the system and the chosen model. Therefore it can be concluded, that
for S1 and S3 the incorporation of a more detailed modeling approach influences
k and (), but not the overall characteristics of the encounter process.

The only exceptions for the clear correlation of £ and (N) are M2 and M3
with the cytc:ccp parameterization (S2), where k is nearly independent of (V)
because of the strong electrostatic interaction. This is consistent with the earlier
finding that the behavior of cytc:ccp is qualitatively different [99], as its electro-
static interactions would ‘facilitate long-lived nonspecific encounters between the
proteins that allowed the severe orientational criteria for reaction to be overcome
by rotational diffusion’. In M3, the smallest patch size r = 3A leads to an artificial
slow-down, because in this case an overlap of the patches is rather hindered by
the beads modeling the protein structure.
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3.3.2 Analytic approximations

Recalling the contact situation as illustrated in Fig. 3.5, the problem of resting
and return times T,,/T.¢ can be simplified to a random walk in three dimensions
with specific boundary conditions. The question whether or not the proteins are
in contact can be answered without knowledge of the orientation of the particles.
That is, the only relevant information is the relative position r. For the analytic
solution we choose the easiest model M1, i.e., particularly without electrostatic
interaction. Neglecting the anisotropy of diffusion the evolution of r becomes
a simple random walk with the diffusion coefficient D = D} + Dj, where Dj ,
denote the translational diffusion coefficients of either protein. Fig. 3.8 illustrates
the principle idea of this approach and how the contact can be mathematically
defined therein. The system is spherically symmetric. Therefore, we reduce the
relative distance vector r to its absolute value r in the following. The contact radius
is denoted with a and is given by a = R, + Ry + r; + ry, where R, /, and r,/, are
the radii of proteins and patches, respectively. We now follow the mathematical
treatment of first passage time problems described in Sect. 2.2. In this framework,
the problem of resting and return times imply to start the (relative) random walk
close to the contact radius at some distance r(t = 0) = o = a+e withe < 1. This
corresponds to a situation where the proteins have just lost contact vy = a + ¢ for
Toz or came into contact ry = a—e for 7,,,. The passage is then defined by r(t) = a
in either case, i.e., the next contact for 7., and the loss of contact for 7,,,. That is,
there is an absorbing boundary at r(¢) = a. Treating the return time to contact as it
has been measured in the simulations would additionally imply an infinite number
of copies of the absorbing spherical shell at » = a aligned in form of a cubic lattice
due to the periodic boundary conditions. Unfortunately, such boundary conditions
would be extremely complicated to parameterize. Thus we will only consider the
return time to a single absorber in an otherwise free space neglecting the periodic
boundary conditions. For the resting time, the random walk is performed inside
the spherical shell at » < a. On the other hand, there is still the effective spherical
steric interaction of the proteins which prohibits distances of r < R; + Ry = b.
Therefore, in this case a reflecting boundary has to be introduced at » = b. In the
following, the first passage time distribution is calculated and discussed for these
two cases.

Return time to translational encounter

From now on, we simply write ¢ in the calculation instead of 7.+, especially since
t here has a different meaning as 7,4 used in the simulation results as explained
above. First, a partial differential equation of the form of the heat equation gives
the probability density of finding the particles at distance r at time ¢:

op(r,t)
ot

_ gﬁp(r,t) | (3.3)
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Figure 3.8: The problem of return to contact in a simplified view that can be treated
analytically.

which can be rewritten using the spherical symmetry:

op(r,t) D10 ,0
— L=t : 4
ot 2 r2 8rr arp(r’ t (3-4)
As discussed above in this case, the only boundary condition is an absorbing
sphere at r = a, where therefore p(a,t) = 0V¢t. The initial condition is to start at
r = ro, Which means p(r,0) = d(r — ry). The solution of the above problem with
these conditions can be found in Ref. [34]:

p(r,t) = —72 {exp [—M]—exp [_M]}

21Dt 2Dt 2Dt

The first passage time distribution f(¢) is given by the loss of probability density
at time ¢, where “loss” means the negative time derivative. The total probability
of not having reached the absorbing boundary » = a yet is the integral of the
probability density over the whole space r € [a, 0o]:

[e.9]

f(t)=— /dr'p(r',t) . (3.6)

a

With ¢ = rq — a, the time derivative of the probability density according to Eq. 3.5
writes:

(r —rg)?
( t) . To exp |:_ 2Dt :| %
PR = V8mD? Vi (3.7)

{(r )’ — Dt —exp {—W} ((r + 2 — rg)? - Dt)} .
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Since we want the initial distance r, to be above but close the absorber ry — a =
e < 1, the term in braces can be expanded around ¢ = 0:

o [‘%] 2(r — 1)’
plr,t) = \/% = (r —ro)e (% - 6) LOE?) . (3.8)

The integration over r is still tricky, since generally integration over a Gaussian
function only gives a closed solution for special intervals like [;°, and the integral
of the form [ dr’ e~ /7 does not have a closed solution at all. The first problem
can be tackled by shifting the integration boundaries from [a, c0) t0 [rg,0). As
ro — a = ¢ is intended to be small and the relevant contributions around the
maximum of the function to integrate will be located at » > r( for large ¢ also, this
is a reasonable approximation and gives solutions for all contributions of the form:

% . %:\/CW fora =0
/dr’ e (r 1) = zic (1 + roy/em) fora=1 , (3.9
0 =75 (VT + droy/c+ 2erg /) fora =2

where 7’ is the shifted » — ry and therefore » — '+ 1. As already stated, the case
of a = —1 is somewhat more difficult. However, in Ref. [1] the solution is given in
terms of the error function erf and the exponential integral Ei:

2

R — ;erf(z\/c_xQ)—%Ei(cf)] . (3.10)
1

r+x
0

As ¢ ~ 1/Dt in the considered case, erf and Ei can be expanded for ¢ < 1 at
reasonably large ¢:

2 = (—1)ng?ntt erf(12) 2 = 2zl
=— ) — =— )y — A1
erf(z) /7 2 ni2n 1) = ; = nz:% W2n 1) (3.11)
El(z):’y—i—lnz—l—znn‘ forz >0, (3.12)
n=1 ’

where v ~ 0.5772 is the Euler-Mascheroni constant. Applying the previous find-
ings to integrate Eq. 3.8 with ¢ = 1/2Dt and = = r, we finally get:

ft)=— [ dr'p(r',1)

3\8

TOE 1 27 2r3
~— 8frD3 \/;5{—27"0 + ”E(T‘% —2Dt) + <6r0 - D2> exp [—x?] x

> 1 1 =1
2n+1 _ — 21 - 2n
[ﬁ7;)n!(2n+l)x 2 (74_ nX—i_;nn!X )]}’

(3.13)
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with x = rq/v/2Dt. A further expansion in terms of ¢ is difficult, since In y ~ In(1/t)
diverges for both large and small . However, since this logarithm is not contained
in the leading contribution, the asymptotic behavior of the distribution of return
times can still be calculated:

N ToE 1 /2r _ ToE

This asymptotic behavior is somewhat surprising recalling the work of Pdlya [112]
which predicts a power law of f(t) ~ t=3/2 instead of f(t) ~ t~2. Fig. 3.9a shows
the result of two different numeric solutions for parameters a« = ry — ¢ and D
according to barnase and barstar with ¢ = 0.1A, as well as their relative devia-
tion and data from the corresponding simulation for comparison (see Fig. 3.6b).
The first solution was obtained via the numerical integration of Eq. (3.7). The
second is the approximate solution Eq. (3.13) with a reasonably high number of
summands. The plot also shows the relative deviation of these two types of solu-
tions abs(f1(t) — f2(t)/fi(t)), which is well below 1% over the whole range of the
plot. This verifies that the assumptions we made to find the approximate solution
Eqg. (3.13) are reasonable. However, as already discussed, the crossover to a ¢t =2
behavior is not seen in the simulation data. On the other hand, the histogram ob-
tained by simulation shows an exponential decay at some point, which is due to
the finite available space for exploration due to the periodic boundary conditions,
which we are not able to consider in the analytic approach.

Resting time at translational encounter

In Ref. [34] an even more general solution for heat equations with spherical sym-
metry is given, which involves two generally parameterizable radiation boundary
conditions. As explained in the beginning of this section, the problem of resting
time T, involves a reflecting boundary at b = R; + R, and an absorbing boundary
at a = b+ r{ + 5. In the following we again write ¢ instead of T, for the situation
considered in the analytic solution. For these particular conditions and applying
an initial “heat” distribution f(r') = 6(r' — ), the solution of the probability density
p(r,t) as introduced above is given by:

[e.9]

p(r,t) = % Z e_Da%terRn(T)Rn(ro) , (3.15)
with Ro(r) = sin ((r — a)ay,) + aay, cos ((r — a)ay,) . (3.16)

Va2a2(b—a)+b

Particularly, «,, are the solutions of the equation aa = tan ((a — b)«r). The negative
time derivative of the probability distribution is thus:
—p(r,t) = Z Ane_Da%t/21 {sin ((r — a)ay,) + aay, cos ((r — a)ay,)} ,  (3.17)
T

n=1

2
with 4, = [oftalro)Dey

- (3.18)
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Figure 3.9: (a) Numerical solution of the return time problem according to Eq. (3.7)
and Eq. (3.13) (solid line) and their relative deviation (dashed line) as well as indicated
scaling behavior (dotted lines) and simulation data (data points). A general normal-
ization of the numerical solution is not available due to the divergence at ¢ — 0 and
is thus obtained by a fit to the simulation data. (b) Numerical solution of the resting
time problem according to Eq. (3.17) (solid line) with the scaling behavior indicated
by the dotted line and compared to the according simulation data (data points).

Unfortunately, the integration f(t) = — ff dr’ p(r',t) is a complicated task as the r
dependent sin- and cos-terms can be heavily fluctuating due to possibly large a,,.
Thus it can only be evaluated numerically. However, the structure of the solution
is again an infinite sum of exponentials with respect to time, where the mentioned
integration with respect to r acts on the third factor in the writing of Eq. (3.17)
and leads to combined coefficients A,, x [. Fig. 3.9b shows the comparison of
this analytic solution parameterized with a, b and D according to the barnase and
barstar system and the data obtained by simulations as already shown in Fig.
3.6b. The initial radius r, was chosen to be a« — 0.1A and the normalization of
the numerical solution was again fitted to the simulation data. The plot shows
a good agreement and especially as here the finiteness of the system is directly
incorporated in the analytic approach the exponential decay of the simulation data
is well reproduced.

3.4 Discussion

The main goal of this chapter is to model protein encounter in a generic framework
which later will allow us to study the dynamics of protein clusters. Our model
approach incorporates structural, electrostatic and hydrodynamic properties of
the considered proteins. These are thought to be the major factors governing
protein encounter. Not included are conformational changes of the proteins after
association, related entropic terms, and the molecular nature of the surrounding
solvent that becomes relevant at close distances [2]. The model parameters are
extracted from the atomic structures available in the PDB by generally applicable
protocols as described in chapter 2 and Sect. 3.1. In principle, these methods of
data extraction can be fully automatized and are thus capable of producing well
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comparable parameter sets.

The biggest advantage of this coarse-grained model is the possibility to extend
the simulations to large scales in terms of particle numbers, time and system size.
In many of the earlier studies [51, 100, 101, 172] the system was prepared already
close to encounter and the overall association rate was then calculated via a
sophisticated path-integral like procedure. In contrast, our simulations account
for the whole process of diffusional encounter and is thus rather general, allowing
for spanning large time scales via our adaptive time step algorithm. In particular,
each set of simulations consists of 10* to 10° runs of lengths up to the order of
seconds and was performed on a standard CPU within hours of computer time.

Being able to directly obtain the first passage times (FPT) of the encounter
processes in our model allows to check the validity of several phenomenological
assumptions. First of all, the FPT distribution matched very well a Poisson pro-
cess with a single stochastic rate, as seen in Fig. 3.2a, which validates the notions
of encounter and association. Moreover, both ways of controlling the particle den-
sity, particularly by changing the boundary box size and by varying the number of
particles in the box, are shown to match the expected scaling behavior. Therefore
we can conclude that the computational model studied here fulfills the general re-
quirement of stochastic bimolecular association processes that describe binding
by a single rate constant. Furthermore, three well-known bimolecular systems
with different characteristics were purposely chosen to check whether our effec-
tive representations of the protein properties would lead to reasonable and sig-
nificantly distinguishable results. Indeed, this is the case as the discussion of the
results in Tab. 3.2 in the respective section shows.

When comparing the results for the encounter rates in Tab. 3.2 with previous
studies from the field of bimolecular protein association, several aspects have to
be kept in mind. First, throughout this study, we do only consider the encounter of
our model particles. The complete association of the complex still lacks the step
over a final free energy barrier, which is due to effects such as the dehydration
of the protein surfaces, completion of the alignment involving a loss of entropy
and many other processes which have been studied in detail in Ref. [2]. In the
framework of this study, this final step could be modeled by a stochastic rate
criterion, where the rate can be obtained by transition state theory from the energy
landscapes characterized in atomistic calculations. In any case, any additional
process to be included can only lower the rates found in our study. Thus, our
results can be considered as an upper boundary.

In the work on barnase:barstar by Schreiber et al. [126], the authors reported
that the association between barnase and barstar is a diffusion-limited reaction.
The argument for this is that the association rates at high ionic concentrations
in the solution, i.e. for the limit in which the electrostatic steering gets negligible,
are clearly lowered by the addition of glycerol, which will lead to slower diffusion.
Assuming diffusion control, the reactive step over the final barrier should be kinet-
ically unimportant, as generally discussed in Sect. 1.3. Indeed, we see that our
results for the encounter rates lead to values in the correct order of magnitude of
k ~ 10°M~1s7!, which is similar to the experimental value obtained by Schreiber
et al. for the association constant of barnase:barstar £ = 8- 105M~!s~! and more
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[125]. However, the basal association rate, i.e., the rate at high ionic strength in
the limit of low Coulomb interaction is given to be about k.. < 10°M~1s~! in ex-
periments [126]. Given that the association process of brn:brs is diffusion limited,
these findings should actually agree with our values for M1. But as we already
discussed the influence of the effective electrostatics introduced in M2 do not
result in such a drastic change of the encounter behavior.

In several earlier approaches, similar problems have been addressed by com-
putational and analytical studies. In different works by Zhou, basal encounter
rates for particles with reactive patches have been found to be k. = 4-105M 157!
[170] and kpasa = 10°M~1s~! [171]. Note that in both cases the patches were flat
areas above the surface of the spherical model particles, which had a smaller
angular extension compared to our cases, and especially required a much closer
translational approach (0.7A in [170]) to form the encounter. If we expand the
graph in Fig. 3.4a to smaller patch radii like » = 1A, we also find basal rates in the
order of k = 10"M~!s~!. Also, the deviation between M1 and M2, i.e. the impact
of the effective electrostatics is more prominent and could enhance the encounter
rate by about two orders of magnitude, which is consistent with the findings in the
previously cited work. There, the effect of Coulombic interaction is reflected with
a Boltzmann-like factor due to a pairwise Coulomb energy. This approach works
well, as shown in Ref. [172], and has been recently used in a more complex model
study of the energy landscape of protein-protein association [11, 12].

However, the aim of this work is not to model the biomolecular details of the
association process, but to find a suitable link of a coarse-grained model for the
process of diffusional encounter to a more sophisticated treatment of the final
complexation as it has been described by Helms and co-workers [3, 140]. This
is reasonable, as many effects become important for very close approach of pro-
teins. Furthermore, the hydration shell has a typical thickness of about 3A and
will therefore in principle hinder the approach of two proteins to distances be-
low 6A. Moreover, all of the considered protein systems feature distinct key-lock
binding interfaces regarding the steric structure, apart from some flexibility due
to intrinsic thermal motion. Therefore, it makes sense to represent the encounter
area by a three-dimensionally spread object rather than a flat surface region. In-
deed, the results of our studies show that a generic approach like ours is capable
of reproducing encounter rates in a reasonable order of magnitude, qualitatively
replicating general expected features. Our investigation of the dependency of the
encounter rate and the patch radius shows that the choice of the geometry of the
reactive area is at least as crucial for the results as the definition of the model in-
teractions and its parameters. In principle, one can think of the patch radius as a
valuable tuning parameter to fit experimental results and the encounter kinetics in
the computational model. The observation furthermore approves the importance
of rotational diffusion as an accelerating mechanism with respect to the aligning of
the proteins. We show that the encounter rate decreases not as slow for smaller
patch sizes as static geometric arguments would suggest.

Our approach makes it possible to investigate general features of the en-
counter process. In particular, we dissect the pathway to the encounter complex
in several levels of alignment between our model proteins. As we observe the
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full trajectory to encounter in our simulations, we are able to extract the number
of close approaches (contacts) N between the proteins until they finally reach a
reasonably aligned state to bind. The distribution of NV is again in all cases well
described by a single exponential decay. This behavior is not obvious as the prob-
ability of success for one contact is depending on several aspects of diffusion in
a complex manner. First, the closer the rotational alignment is to the encounter
state at the beginning of the contact, the higher is the probability of success. Sec-
ond, this initial alignment is also coupled to the last contact if the time in between,
Tos, is small. Finally, longer contact resting times 7, also increase the probability
of encounter. It is interesting, that all these effects still lead to a simple Poisson
distribution of the number of contacts NV when averaging over the initial conditions
as it is done in this study. Furthermore, we find that the distributions of these rest-
ing and return times cannot be described by a Poisson process, but are consistent
with the expectations for a spatially constricted random walk in three dimensions.
We find that the particular mean FPT to encounter scales linearly to the number
of unsuccessful contacts in most cases. This seems to be a very fundamen-
tal qualitative feature irrespective of the details of the proteins and the applied
model. However, for cytc:ccp the behavior is qualitatively different, which is con-
sistent with earlier studies of this highly electrostatically steered complex. There,
the encounter rate k is virtually independent of (V) and the choice of the patch
radius r if the Coulombic attraction is effectively modeled, i.e. in our approaches
M2 and M3. The distributions of resting and return times can be motivated by
analytic approximations. Especially for the resting times 7, the analytic results
show good agreement with the simulation data.

Here, we have shown that the relevant features of bimolecular protein asso-
ciation on length and time scales above the atomistic level, i.e., in the range of
nanometers and nanoseconds, are reproduced well. Due to its computational ef-
ficiency our model is an excellent starting point for studying the dynamics of larger
protein complexes, if importance is attached to aspects of association pathways
which happen on scales of milliseconds to seconds. Unlike in more detailed sim-
ulation models, we are able to gather significant statistics also over complete
trajectories on these timescales.

An interesting subject for future work is the direct evaluation of the entropic
contribution to the free energy in our model. Particularly, this would involve the
analysis of distance and position histograms over long simulation trajectories as
it has been done by Spaar et al. [141] in a particular distance regime. With our
generic model it is possible to compute similar entropy landscapes for larger dis-
tances and especially to take the effect of finite concentration into account, which
was not possible in the cited study.



Chapter 4

Influence of hydrodynamic
anisotropy

In the previous chapter we investigated the effects of electrostatic and steric inter-
actions on rates of molecular encounter for spherical or close-to-spherical parti-
cles. Although many proteins are globular, some are not (compare Fig. 3.1). Even
more importantly, clusters of globular proteins are not globular. As the encounter
process basically denotes the transport part of protein interaction, it depends on
the particular diffusion properties of the interacting objects and thus sufficiently
strong anisotropy might affect the encounter rate. In this chapter we want to in-
vestigate this aspect in more detail. First, the features distinguishing anisotropic
from isotropic diffusion are quantified. Particularly, we calculate the relevant time
scales on which diffusion can be anisotropic. Then, the encounter dynamics of
ellipsoidal molecular particles is observed in detail. The influence of the aspect
ratio of the ellipsoids on the encounter rates is evaluated in computer simula-
tions similar to those in chapter 3. By investigating the altered accessibility of the
encounter patches due to steric constraints we find that this effect does mainly
account for the observed variation in encounter rates. Finally, we compare simu-
lations with and without consideration of the anisotropic diffusivity to gain a better
understanding for its importance.

4.1 From anisotropic to isotropic diffusion

Objects exhibiting anisotropic diffusion properties show qualitatively different tra-
jectories on a small time scale compared to isotropically moving objects. An
anisotropic random walk started at some particular orientation at time ¢, will ini-
tially show a preferred direction of motion. As the particle will also undergo rota-
tional diffusion in general, this principal direction will change over time. A typical
trajectory is shown in Fig. 4.1a. The memory of the initial orientation will get lost
due to the stochastic rotations after some time. That is, for large times there
cannot be a preferred direction anymore and each direction of motion is equally
probable. Therefore, diffusional anisotropy can only exist up to a certain scale
and there has to be a crossover to isotropic diffusion on large scales as illustrated



66 Chapter 4: Influence of hydrodynamic anisotropy

10 \ I 250
200
S . 150
100
> 0 — >
50
0
5+ — ;
| lﬂ 50
-10 L | -100 v
-10 5 10 -250 -200 -150 -100 -50 0 50 100
x x
(a) Small time and length scale (b) Large time and length scale

Figure 4.1: Dimensionless example of two-dimensional trajectories of a particle
performing a random walk with principal diffusion coefficients D!, = 10 and Déy =0.1
for translation and D™ = 0.1 for rotation at different resolution: (a) Closer look at the
starting point of the trajectory zq = yo = 0 with a time resolution At = 1072; (b)
Coarser time resolution of At = 1 and a larger viewing window. The area shown in
(a) is indicated by a dashed square.

in Fig. 4.1b. In Ref. [75] Han and colleagues experimentally observed the two-
dimensional diffusion of an ellipsoidal particle in a thin glass cell. They found nice
agreement between analytic calculations and corresponding experiments. The
calculation of Han et al. deals with a two-dimensional system where the state of
a particle is fully described by two translational (x, y) and one rotational degree of
freedom (). No diffusional coupling is considered, i.e., the diffusion matrix does
not contain off-diagonal entries:

xT

D
D=10
0

o O

0
‘Dy
0 Dy

In D the first two components denote the two translational degrees of freedom in
the plane while the third component denotes rotations in the plane. The action of
a rotation by angle ¢ is written in a matrix form:

cos(f) —sin(d) 0
S=|sin(@) cos(d) 0] - (4.2)
0 0 1
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The transformed diffusion matrix D reads:

D, 0 0 cos(20) sin(20) 0O
D=SDS"=| 0 D, 0 |+D_|sin(20) —cos(20) 0] , (4.3)
0 0 Dy 0 0 0

with D, = (D, + D,)/2 and D_ = (D, — D,)/2. For a Langevin process without
drift in the over-damped limit it is (compare chapter 2):

0 /
5% = 8 (g) =0, (gigr) =2D0(t — ') . (4.4)

If the object has orientation ¢ at time ¢, then for a small time interval 6t the mean
square displacement is:

(x(t + 0t)*) = (z(t)®) +2((Dy + D_ cos(20))):6t , (4.5)
(y(t +0t)%) = (y(1)*) + 2((D+ — D cos(20))).0t . (4.6)

The average in the second summands considers all possible orientations weighted
by their probability at time ¢ due to rotational diffusion. Assuming 6, = ¢, = 0 this
leads to:

((Dy £ D_cos(20)))y =Dy + D_ / dfp(0,t) cos(20) = Dy + D_e Pt | (4.7)

1 )
0.1) = —0%/(4Dot) 4.8
p( ) ) \/F_D@te ( )

Hence, the total mean square displacement at time ¢ is:

t

(x(t)?) = Z/dt’ (Dy 4+ D_cos(20)))y = 2Dt + QD_D_Q (1—e P . (4.9)

We conclude that the characteristic time scale for the crossover from anisotropic
to isotropic diffusion in two dimensions is 1/4D,. In case of diffusional coupling
between translational and rotational degrees of freedom the above calculations
are not applicable due to a more complex structure of the diffusion matrix after
rotation.

4.1.1 Crossover in three dimensions

In three dimensions the situation is more complicated as there are now three
different rotation axis, which we will consider as independent (no coupling). This
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makes the diffusion matrix a 6 x 6 matrix:

D, 0 0 0 0 0
0 Dy, 0 0 0 O
0 0 D3 0 0 O
D= (4.10)
0 0 0 DY 0 0
0 0 0 0 Dj 0
0O 0 0 0 0 Dj

The torque due to the rotational diffusion basically leads to a rotation of the sys-
tem around a vector whose component along the unit vector i (in the body fixed
coordinate system) is drawn from a Gaussian distribution with the width D?, while
the length of the rotation vector determines the magnitude of the rotation angle.
As the rotations are supposed to be completely independent, we only have to
consider the upper left 3 x 3 part of the diffusion matrix, which is responsible for
the translational diffusion:

D, 0 0
D=0 D, 0| - (4.11)
0 0 Ds

A rotation of a 3 x 3 matrix determined by a vector of angles 0 = (6, 6, 65)" around
the three principal axes can be described by the following rotation matrix:

S=e?,  I=0L1% ). (4.12)
6 - J denotes a formal scalar product and J* are matrices defined by ij = €k

where ¢ is the Levi-Civita symbol. We proceed considering only small rotations
occurring at small times, so that we can expand the rotation in orders of 6:

3 3
1~ 1 ) 1 \
Sij = i (1 - 5};&) + €O <1 - 6;@) +5(0:0) 00" . (413)

By applying the rotation to D* we get Dt = SD*ST, considering only terms up to
second order in 6:

3 3 3
D; + (Z 92) <—2Di +> Dm> -> eanm]
k=1 m=1 m=1

3
3
+ 929] <—(D, + Dj) — Z Dm) + €z‘kj0k (Dj — DZ) + 0(03) . (414)

]Dstij = 51']'

2

m=1

As in the first section, the non-diagonal entries are odd in 6; and thus do not give
a contribution when averaging over the possible orientations, weighted by their
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probability. Again, the average of the diagonal entries is the central quantity for
the calculation of the mean square displacement. As we already did an expansion
in & and we also assumed ¢ < 1, it will now also be sufficient to consider a
probability distribution of angles 6; due to rotational diffusion, which is correct up
to second order in t. Therefore, the Gaussian probability distribution from the
first section can be replaced by a uniform distribution regarding correct integral
boundaries. The particularly interesting average (Dt;), is then:

) w1 /2 wa/2 w3 /2
<Dtii>t = / del / d92 / deg]ﬁtii y (415)
W1 Wa2W3
—w1/2 —wa2/2 —wsz/2

where w; = /24D’ is the width of the uniform distribution interval. As already
stated, the terms odd in a particular ; will not give a contribution. That is, the
integral in Eqg. 4.15 will only lead to zeroth and second moments of the angular
distribution. Hence, its solution up to linear order in ¢ is:

3 3 3
(D) ~ D; [1 —4 (Z Dﬁt) +6DJt| + Y 2Dt [(Z D,i) - DY — Dfn] . (4.16)
k=1 k=1

m=1
Therefore, by the average action of the rotational diffusion, D; transforms into
an effective translational diffusion constant (Dt;), over time t. Considering a
vector with the three principal diffusion coefficients D = (D, Ds, D3), the evolu-
tion of the effective, orientation averaged vector of diffusion coefficients (D)(¢) =
((Dt11)y, (Digs)y, (Dfs3),) can be expressed in a matrix form, not taking into account
non-linear terms in ¢:

(D)(t) =D -R(t) + Ot , (4.17)
—(D5 + Df) Dj Dj
R(t) =1+ 2¢ D¢ —(DY + DY) DY : (4.18)
Dj Dy —(DY + D3)

The principal axes of effective motion are constant since the coupling terms be-
tween the translational degrees of freedom vanish when averaging over all possi-
ble orientations. Because rotational diffusion is independent of time and orienta-
tion, which makes R a constant property of the diffusion of some arbitrary body,
we can also apply R(4¢) to some diffusion vector (D)(¢) and get:

(D)(t + 6t) = (D)(t) - R(6t) + O(6t?) . (4.19)

Thus, it is possible to evaluate the effective change of the diffusion coefficients for
large times ¢ in small steps §t with only making errors of O(6t?):

(DY(NGt) = D - (R(61))Y + O(N6t?) . (4.20)
The potentiation of R is easiest when using a diagonal form:

R(6t) = S(dt) - Ry(t) - S(6t) ", (4.21)
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with:
1 0 0
R4(0t) = [0 1 —26t(c+ d) 0 : (4.22)
0 0 1 —26t(c — d)
c a—+d a—d
S(6t) =S=|¢c —c—a—-d —c—a+d]| , (4.23)
C C C
a=Dy-D, bv=D!-DYy, c=D!+Dj+ DY, (4.24)
d=/Df* + D + DY — DYDY — DYDY — DYDY . (4.25)

As the transformation into a diagonal form is not unique, an asymmetry is in-
troduced at this step with respect to the different components of D. One would
actually expect that the three terms a, b and ¢ should have a similar form. How-
ever, in our choice ¢ has a different structure than « and 5. We now go to the
limit of large NV with §t = t/N. This limit is meaningful as the error in Eq. (4.20)
vanishes: O(Nt?*/N?) = O(t*/N) — 0. This basically means that we ask for
(D)(t) with infinite accuracy. As S is independent of ¢, the limit does only apply
to (R4(6t))Y, where we find:

N
lim (1 — 2%@ + d)) = o At (4.26)

N—oo

This leads to an exact expression for (D) (t):

1 0 0
(D)(t) =D -S-RX()-S7, with RF(t)= |0 e 2ctdt 0 , (4.27)
0 0 e—2(c—d)t
which can be evaluated to:
[+ (ahy — bh3)g— + dhig
D)(t) = | f+ (ahy — bhy)G— + dhagy | (4.28)
[+ (ahs —bh1)g- + dhsg
) D D D —2(c—d)t + —2(c+d)t
with f=—tt2 o g ‘ , h=3(D;— [). (4.29)

3 6d
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Figure 4.2: Example for the evolution of the effective principal translational diffusion
coefficients for the following choice of parameters: Dy = 3, Dy = 2, D3 = 1, D{ =
0, D§ = 0.005, D§ = 0.5. The data points have been obtained by simulation (the
error bars depict the standard deviation obtained from 10° individual runs), the line
represents the theoretic prediction.

In analogy to the two-dimensional case, we can now evaluate the overall, orien-
tation averaged mean square displacement by integrating over (D) (t):

t 2ft + (ah2 — bh3>g7 + dhngr
(x(t)%) =2 / dt' (D)(t') = | 2ft + (ahy — bha)g— + dhogy | (4.30)
0 th + (ah3 — bhl)g_ + dh3g+

t

with g+ = Q/dt/ g:ﬁ: =

0

1— 6—2(c—d)t 1— 6—2(c+d)t

6c—dd © 6ctdd

(4.31)

This can also be used to obtain effective translational diffusion coefficients via
D°fi(t) = (x*(t))/2t. Fig. 4.2 shows the effective principal diffusion coefficients
for an arbitrary object which cannot rotate around the x;-axis. This choice is un-
natural but leads to a clearer understanding of the plot. As rotational diffusion
is much faster around the x3-axis than around the x,-axis, the anisotropy in the
z1-zo-plane is lost first due to DY. For larger At this average D, 5 = (D; + D5) /2 is
also mixed with D3 due to the slower rotations according to Dj. The analytic solu-
tion matches the simulation results very well. As in the two-dimensional case, the
additional consideration of diffusional coupling does not lead to a closed solution.

The effective diffusion coefficients D*(¢) should be equal to the initial ones
D for t — 0. The limit of g, /(2t) for t — 0 can be determined by expanding the
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exponential functions up to first order:

_ 0 for ¢_
lim 9% — 2(c —d)t n 2(c+d)t _ | . (4.32)
t—0 2t 12(c —d)dt = 12(c+ d)dt ¥ for g,
Therefore, D¢ (¢) behaves as expected for small ¢:
1
lim DS(t) = f+ 7dhi = Di. (4.33)

In contrast, we expect the crossover to isotropic diffusion for t — oo, i.e., all D (¢)
should be equal in this limit. Indeed, this is the case as the prefactors of g, do
not depend on ¢ and g, approach finite values for large ¢:

. 1 Cig— + dh; —00
D() = o (x(t)?) = f + = =X (4.34)

where C; just denotes the prefactor of g_ according to Eq. (4.30). Therefore, the
analytic limits of the main result agree with our expectations for D (¢).

4.2 Brownian motion of rigid ellipsoidal particles

Diffusion properties

In our study we want to observe the encounter of anisotropic particles. Using el-
lipsoids with two equal semi axes is advantageous for two reasons. First, this type
of ellipsoid is one of the few geometric bodies for which closed analytic expres-
sions of the friction coefficients are known, which have been calculated by Perrin
[110, 111]. The results are summarized in Ref. [134]. Assuming the ellipsoid is
viewed in a coordinate system spanned by the principal axes, it is symmetric with
respect to mirroring in all normal planes and, therefore, the friction matrix has
only diagonal entries. Letting the z-axis be the rotation axis, i.e. the diameter of
the spheroid in y and = direction are equal L, = L., these entries are:

L2 — [2
t g x y 4.35
w = ST T 12)S —or, (4.39)
L2 — L2
tE—¢t =1 z__Y 4.
ny 2z 67T77 (QL?E . 3[/221)3 + 2_[/z ’ ( 36)
L _dx (12 I)I
4 Li— 1%
== — S (4.38)

w5 = o s Zor,
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Figure 4.3: (a) Relative change of the diffusion coefficients and the relative mobility
measure A (chain dotted line) for an ellipsoid with varying diameter along the sym-
metry axis normalized by the corresponding values for a sphere. (b) Basic geometry
of the considered ellipsoid with a reactive patch on its surface at some angle i, with
respect to the symmetry axis e,.

Here, 7 is the viscosity and S is a function of L, and L, which is different for
prolates and oblates:

2 L,+ /L2 —L? ,
log v ifL,>L,,

g «/Li—LZ L Y

arctan

o (4.39)
# @ Jif L, < Ly .
V06— 12 L,
Note that in the original reference the expressions are given in terms of the semi
axes, which results in different prefactors. The friction coefficients for general
ellipsoids with three distinct semi axes involve elliptic integrals and can thus only
be evaluated numerically. We furthermore introduce a relative mobility measure A
which compares the trace of the translational part of the mobility matrix according
to the inverse of Eq. (4.35) and Eq. (4.36) with the spherical case ¢, = ¢/, =
3mnL,:

(¢l (Lay Ly)) ™ +2(¢y (Lo L)

ALy, L,) =
( y) 3 (37”7[/?4)_1

(4.40)

Fig. 4.3a shows the diffusion coefficients, i.e., the inverse friction coefficients,
relative to the spherical case for an ellipsoid with constant diameter L, = L, and
varying length along the symmetry axis L, (compare the illustration of the basic
geometry in Fig. 4.3b). Particularly, the plotted values are defined as:

_ C;(Ly, Ly)
Cj(La, Ly)
With this definition the relative mobility measure can be written as A\ = (D, +

QD;y)/?). All diffusion coefficients except D;y do only sublinearly depend on the
aspectratio ¢ = L,/ L,,.

DY(L,, Ly) (4.41)
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In combination with the findings from the last section we are now able to im-
plement the numerical solution of a Langevin equation as introduced in chapter 2
especially for ellipsoids including the crossover from anisotropic to isotropic diffu-
sion by using D(At) instead of a constant D for all time steps At in the adaptive
time step approach.

Collision detection

In our simulation we assume the particles to be rigid and thus use a hard-sphere-
type potential, which is infinite for an overlap of two ellipsoid particles, and zero
otherwise. While the detection of collisions between spheres is trivial, it is a hard
problem to find an analytic overlap criterion for a pair of ellipsoids. However,
suitable algorithms for this purpose have been developed in the field of hard body
fluids [8, 9]. The principal approach for checking ellipsoid collisions is, e.g., well
described in [7]. Typically, the starting point is the characteristic equation of an
ellipsoid located at the origin and with the semi axis a, b and ¢ oriented in parallel
to the coordinate axis:
ZE2 2 2

Y < _~aAwT
0:¥+b—2—|—§—1—XAX , (4.42)

1/a*> 0 0 0

A= , X=(z,y,21) . (4.43)

This can be generalized by additionally considering a transformation T about an
arbitrary vector (xo, 30, 20) @and a general rotation R according to:

0= XTRAR'TTXT, (4.44)
1 0 0 0 Tex Toy Taz 0
0 1 0 O Tye T Ty, 0

T = , R=1|""Y woy (4.45)
0 0 1 0 Tow Tay Tzz 0O
—To —Yo —20 1 0O 0 0 1

In the following, we assume that an ellipsoid A is described by a generalized
matrix A = TRARTTT. According to Ref. [158] the characteristic equation of two
ellipsoids A and B is:

F(\) =Det \A+B] =0. (4.46)

Because the determinant is a multiplicative map and Det[A] # 0 in general, the
roots of f()\) are equivalently found as eigenvalues of the matrix (—A~'B):

0 = Det [AA + AA™'B] = Det [A (Al +A™'B)] = Det[A] - Det [\l + A~ 'B]| ,
= 0=Det[(-A7'B) — Al . (4.47)
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It can be shown that A and B are separated, if (—A~'B) has two distinct real and
positive eigenvalues. They are touching, if it has one real and positive eigenvalue
of multiplicity two. As soon as there is an overlap of the two ellipsoids, the two
former positive eigenvalues gain a finite imaginary component. In Ref. [158], a
proof for this is given, assuming that the two ellipsoids have the same orientation
(i.,e. R = I). However, the conditions stated above also hold, if this constraint is
not fulfilled.

The eigenvalue problem of the 4 x 4 matrix (—A~'B) leads to a quartic equa-
tion, which can be analytically solved with, e.g., Ferrari’'s method. Therefore, it
is in principle possible to derive a more direct criterion for the collision detection,
which does not require the calculation of the eigenvalues. Such a criterion has
been derived by Vieillard-Baron [152, 153]. The necessary calculations are still
rather costly. Therefore, Allen et al. [8] suggested to also take into account the
less costly and necessary but not sufficient condition derived by Perram et al.
[108, 109]. In Ref. [10], Fortran pseudo code is given for both of these criteria.
Here, we have implemented the general procedure described above in C using
the CLAPACK package [13] for the determination of the eigenvalues.

4.3 Influence of anisotropic shape on encounter rate

The ellipsoid is a geometric body with a well defined anisotropy and provides
both an efficient methodology for collision detection and analytic expressions for
the diffusion matrix. To observe effects of shape anisotropy in analogy to the
studies in chapter 3 we perform similar simulations with a pair of molecular sized
ellipsoids in a periodic boundary box. The diameter in y and z direction is fixed
tolL, =L, = 40A. The diameter along the = axis L, is varied and defined by
the aspect ratio ¢ = L, /L,.. The size of the periodic boundary box models a con-
centration of ¢ = 200nM. Each of the model particles has a spherical reactive
patch on its surface. An overlap of these reactive patches is considered as an
encounter in our model. We start simulations at random initial positions and ori-
entations and measure the time until the two model particles reach an encounter
state for the first time, i.e., until the first overlap of their reactive patches occurs.
This time is the first passage time (FPT) to encounter.

Besides ¢ the location of the patches relative to the model particles is a possi-
ble source for varying encounter behavior. The latter is described, e.g., by altitude
1, and azimuth v, with respect to the symmetry axis of the ellipsoid e,, assuming
that the center of the patch is always at the surface. As in chapter 3 we average
over all initial conditions. Therefore, different v, are indistinguishable due to the
rotational symmetry. In this case the only important parameter to define the patch
position is 1, (compare Fig. 4.3b). A series of simulations with varying aspect
ratios £ was carried out. First, only two distinct choices for the altitude were con-
sidered, particularly v, € {0,7/2}. Therefore, three pairs of patch geometries
are possible: The patches on both particles lie on the respective symmetry axis
! =14? = 0 (G1) and one or both are aligned perpendicular to the symmetry axis,
Pl =0, 9?2 =7/2(G2) or ¢! = ? = 1/2 (G3) respectively.
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Figure 4.4: (a), (b), (c) Pure encounter rates as obtained by simulations for different
patch sizes (see key in the plots). (d), (e), (f) shows the same data with a mobility
correction relative to the spherical case with the aspect ratio ¢ = 1. The patches are
located according to G1 in (a), (d), G2 in (b), (e) and G3 in (c), (f). The vertical lines
denote the value of £ below which erroneous encounters are counted for G1 and G2.

Figs. 4.4a—4.4c show the encounter rates as obtained by the simulations. An
important remark has to be made regarding G1 and G2. Let r denote the radius
of the reactive patch. As the patches are spherical and the overlap is checked
by comparing their center-to-center distance with the sum of the patch radii 2r,
erroneous “back side” bindings are possible for small aspect ratios £ < 2r/L, if
at least one patch is located on the symmetry axis (v, = 0). Therefore, there
is a erroneous increase in the accessible configuration space for { < 2r/L, and
thus the measurements are not reasonable anymore. Detecting these erroneous
encounters in the simulation is hard. It requires to check whether the overlapping
subvolume of the reactive patches intersect with the subvolume in front of the
ellipsoid confined by the ellipsoidal surface. Therefore, we reject the complicated
classification of correct and erroneous encounters. We rather denote the respec-
tive threshold by a vertical line in Figs. 4.4a and 4.4b. Only the part of the plots
to the right of these lines is physically reasonable. As the L, is constant and we
do only consider patch radii » < L, no erroneous encounters are possible in case
g3.

Furthermore, by varying L, and leaving L, = L. constant, the effective size
of the particle is altered. This will affect the overall mobility. Particularly, for large
¢ the particle is effectively larger and thus less mobile than for small £. This will
lower the encounter rate. Indeed, all plots show a systematic decrease of the
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Figure 4.5: (a)—(c) Statistical estimate
of the fraction of configuration space
available for encounter for the patch po-
sitions and sizes as considered in Fig.
4.4. Again, the vertical lines denote the
threshold below which erroneous en-
counters occur (see explanation in the
text). (d) lllustration of the setup used to
obtain the data in (a)—(c), here shown
exemplary for G1.

(d)

encounter rate with increasing ¢ besides their specific behavior. Recalling the
Smoluchowski equation Eq. (1.1) the encounter rate is expected to be linearly
dependent on the mobility in the respective simple framework. Therefore dividing
the results shown in Figs. 4.4a—4.4c by \(£) as defined in Eq. (4.40) approximately
corrects the error due to the varying size of the model particles. The corrected
data is shown in Figs. 4.4d—4.4f. From the plots it is apparent that the encounter
rate is enhanced for large £ in G1 and for small ¢ in G3. As the two cases are
qualitatively different the behavior is not symmetric in a strict sense. However,
as G2 can be considered as a mixture between G1 and G3 it is reasonable that it
shows a quasi-symmetric behavior around the intermediate regime of £ ~ 1.

Contribution of steric effects

Before investigating the reasons for the observed effects another important sys-
tematic difference between ellipsoids with different ratios £ has to be noted: As
the geometry of the ellipsoid is changing with &, the exposed volume fraction fy, of
the reactive patches not covered by the steric particle is changing. For example,
if the patch is located on the front edge of the ellipsoid along the symmetry axis
(G1), for large ¢ the fraction will approach fy = 1, while for small ¢ the particle has
a disc like shape and thus ideally covers half of the patch f,, = 0.5, neglecting
the erroneous encounter problem. Regarding G3 the situation is nearly opposite.
Large fractions fy reflect a larger space of possible encounter configurations,
which will have a positive influence on the encounter rate. Unfortunately, the
subspace of accessible encounter configurations of two ellipsoids is a complex
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Figure 4.6: (a) Relative deviation of the encounter rates assuming isotropic motion
at all times from the original data (compare Fig. 4.4). The reactive patches have a
radius of » = 10A. The dotted line indicates a supposed power-law. For the sake of
clearness the chain dotted line hints correspondence of the data, i.e. Ay, = 0. (b)
Encounter rates for two ellipsoids with aspect ratio £ = 2.4, encounter patch radius
r = 10A and varying patch positions determined by ! and 2, scaled in degrees
here, as visualized in Fig. 4.3Db.

six-dimensional region because of three relative degrees of freedom for transla-
tion and rotation respectively. To estimate this steric effect on the encounter rate
we study the fraction of non-overlapping ellipsoid configurations with touching re-
active patches. A scheme of the setup is shown in Fig. 4.5d. Particularly, the
centers of the patches with radius r are placed at the distance 2r and both ellip-
soids are then randomly rotated around the center of their respective patch. In
Fig. 4.5d the resulting distance vector d is illustrated, which is the sum of the patch
distance vector (with absolute value 2r) and the two vectors from the respective
patch centers to the rotated ellipsoid centers with length L, and L, (for G1 as
shown in Fig. 4.5d itis L, = L, = L,). After obtaining a random encounter config-
uration we check whether the ellipsoids overlap. To gain appropriate statistics we
repeat this procedure 10° times and calculate the fraction of non-overlapping con-
figurations. The results for the parameters corresponding to Fig. 4.4 are shown
in Figs. 4.5a—4.5c. As the method of random rotations does again allow for er-
roneous encounters at small ¢ < &, the reasonable data is bounded by vertical
lines in Figs. 4.5a and 4.5b. The plots show that the qualitative features of the
encounter rates are well reproduced by the steric constraints. The latter corre-
spond to the thoughts about the accessible patch area fi,. This finally leads to
the conclusion that the main reason for the changes in the encounter rate in the
preceeding study is not the altered hydrodynamic behavior of the ellipsoids but
the steric hindering of encounters due to the changing geometry. Note that hy-
drodynamic two-body interactions are neglected as usual. Actually it is doubtful
that continuum approaches work for the small distances considered here.

Direct comparison with isotropic diffusion

The effect of the different hydrodynamic properties for ellipsoids of varying aspect
ratio £ is screened by the dominating steric effects in our approach. Therefore, we
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want to compare our simulations with explicit anisotropic diffusion to simulations,
where we do not account for the anisotropy in the diffusion matrix. Particularly,
we use an isotropic diffusion matrix with the average translational and rotational
diffusion coefficients D* = (D., + D}, + D..)/3, which is equal to the isotropic
limit of Eq. (4.30) for large time steps ¢t — oo, and D" = (D;, + D;, + DZ,)/3
respectively. Fig. 4.6a shows the relative deviation of the encounter rates when
performing the same simulations which were used to produce the data shown in
Fig. 4.4 with an isotropic diffusion matrix. Particularly, the data in the plot is:

Aiso = kisotropic/kanisotropic - 1 . (448)

Interestingly, if the patches are aligned along a radial axis and thus their position is
independent of &, i.e. in case G3, there is no significant deviation from the original
results. However, considering G1, where the patches are located at the front
end of the ellipsoid along the symmetry axis, the (artificial) isotropic encounter
rate is clearly higher. This effect can also be observed in the “mixed” case G2,
decreased by roughly a factor 2. This is reasonable as here only one of the two
encountering ellipsoids has its patch at ¢, = 0. These findings show that the
anisotropic diffusion of elongated ellipsoids leads to a decrease of the encounter
rates. Unfortunately, the large statistical errors do not allow for a clear statement
about the correlation of A, and &, although the data fit well a A, ~ £2 power-law
as indicated by the dotted line in the plot.

Finally, Fig. 4.6b shows a more detailed study regarding the possible positions
of the patches, i.e., for more pairs of ¢!, 1) as the three that have been considered
so far. The plot shows the rates obtained by simulations with £ = 2.4 and patch
radius » = 10A. Simulations are only performed for ¢! > v2, as due to averaging
over all initial conditions the change of ! « 2 does not alter the system. The
data shows a flat crossover between the already considered cases G1, G2 and
G3. That is, more general patch alignments do not lead to any complex behavior.
Here, the anisotropic diffusion matrix is taken into account. However, in analogy
to Fig. 4.6a a similar analysis reveals, that the deviation of the encounter rates
obtained with isotropic diffusion are largest for G1.

4.4 Discussion

On large time scales, diffusion in an isotropic environment becomes isotropic.
Diffusion of anisotropic objects is anisotropic on small time and length scales
if rotational relaxation has not yet occurred. The memory of the initial orien-
tation is important for anisotropy and decays exponentially. The analytic treat-
ment of this problem reveals that the dominating time scale for this process is
1/(6D") = 1/(2¢) (compare Eq. (4.25) and Eq. (4.31)) where D" denotes the av-
erage rotational diffusion coefficient. The crossover from anisotropic to isotropic
diffusion actually has two time scales which increasingly deviate with increasing
anisotropy. In three dimensions alternating rotations around two axis are suffi-
cient to reach any orientation. This gets apparent in the example shown in Fig.
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4.2, where rotational diffusion about axis e; does not occur DY = 0. Therefore
the two time scales for the crossover (c &+ d, see Eq. (4.31)) are defined by two
effective rotation speeds mixing different orientation spaces, particularly the e;-e,
plane and the e, »-e3 plane.

The effects of anisotropic diffusion on encounter rates is studied using the ex-
ample of ellipsoids with reactive patches. The magnitude of the diameter along
the symmetry axis L, is changed by factors of ¢ = 0.1...5 with respect to the fixed
diameter L,. The appropriate mobility is evaluated according to analytic expres-
sions known from the literature. By simulations we investigate pairwise encounter
rates of ellipsoids with three different combinations of patch locations (G1-G3). If
both patches are located on the symmetry axis (G1), the obtained encounter rates
are much lower for oblate-shaped ellipsoids. If both reactive patches are located
perpendicular to the symmetry axis (G3), encounter rates strongly decrease in the
prolate regime. However, by varying L, not only the degree of anisotropy of the
ellipsoid with respect to diffusion changes. Firstly, the overall mobility of particles
increases when ¢ is decreased. We correct this effect by a relative mobility factor
A. Secondly, the shape of the ellipsoid also varies according to £ which leads
to differences in the accessible volume of the reactive patches due to excluded
volume. We numerically evaluate an approximate measure for the accessibility
of the patches fi,. Although the particular impact of f;, on the encounter rates
is unknown, the qualitative behavior is very similar. This indicates that steric ef-
fects are the main reason for the changes in the encounter rates according to
our approach. Finally, we compare our results with simulations in which we do
not consider the hydrodynamic anisotropy. We find agreement irrespective of ¢ if
the patches are located perpendicular to the symmetry axis (G3). Otherwise, a
slow-down of encounter proportional to £2 is obtained for prolates. Particularly, if
both patches are at the tip of the ellipsoid (G1) for £ = 5, the relative deviation with
neglecting hydrodynamic anisotropy is Ay, ~ 0.7.

General thermodynamic effects of suspensions of hard ellipsoids or sphero-
cylinders at higher densities have been studied by other approaches from sta-
tistical mechanics like density functional theory. For example, Roth et al. [120]
observed the depletion-induced torques and forces on spherocylinders close to a
wall. Such might have an impact on the binding characteristics of, e.g., anisotropic
molecules in appropriate environments. Chelakkot et al. [35] observed phase
transitions of dispersions of spherocylinders with sticky ends in dependence of
thermodynamic parameters. Note, however, that the focus of this chapter is on
the dynamics of specific encounter events.

An interesting question that has not been investigated yet is whether the im-
pact of hydrodynamic anisotropy regarding re-encounter is stronger. Because
prolates have a lower overall rotational diffusion coefficient one might assume that
they are much more likely to return to an encounter even after having lost contact
due to diffusion. Possibly, this could accelerate bond formation in cases of protein-
protein interaction where a large number of encounters is required to enable bond
formation. In such situations, quick re-encounter could increase protein-protein
association in analogy to the question of contact numbers in chapter 3.



Chapter 5

Dynamics of clusters

The overriding aim of this work is to use concepts from stochastic dynamics to de-
velop an efficient yet realistic model for protein complexes which can be upscaled
to large systems. We therefore do not consider atomistic details and sophisti-
cated interaction potentials but rather focus on the concept of reactive patches
and encounter complex. In this chapter we generalize our model of bimolecular
encounter (see chapter 3) to address the assembly of more than two proteins.
We start with three homogeneously encountering particles on a line. This prob-
lem is more complex to solve analytically than the two-particle problem treated
in chapter 2. We derive and solve an exact equation for this mean first passage
time problem. Next we consider complex formation in three dimensions. Partic-
ularly, we choose a model system of particles forming equilateral three-particle
clusters. We take special care to derive appropriate rules for the alignment after
bond formation. The extraction of rate data for a stochastic network view on the
complex dynamics from simulations is explained by assuming that all processes
in the network are of Poisson type. However, transition time histograms of our
model system show that this assumption is not valid. This means that the as-
sembly network can not be evaluated by a Master equation approach in general.
Average populations and fraction time series show that transport steps have a
strong impact on the system which qualitatively differs from expectations on the
basis of the reaction steps only. Finally, the self-assembly dynamics of a T1 virus
capsid structure is considered as a first application to larger systems. The re-
sults for varying unbinding rates agree well with recent findings by similar model
approaches reported in the literature.

5.1 Cluster of three homogeneously binding parti-
cles

We begin the considerations regarding the dynamics of multi-particle complexes
by investigating the association dynamics of three homogeneously binding parti-
cles in analogy to Sect. 2.2.2. That is, we disregard the concept of having reactive
patches at the surface of the particles and assume that they are fully covered with
ligands and receptors, respectively. An interesting but non-trivial question is how
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Figure 5.1: lllustration of the problem of three particles in a box with periodic bound-
ary conditions in one dimension. Assuming the boundary to be at the center of one
of the spheres, any state of the system can be fully described by the box length and
two independent variables = and y. In this picture, L is the “free” length of the box,
i.e. after subtracting the finite sizes of the particles.

long three particles need to successively bind to form one cluster. As usual we
assume periodic boundary conditions. This problem can be best addressed in
one dimension. Fig. 5.1 shows a schematic illustration of the setup. The bound-
ary is placed at the center of one of the spheres. L is the sum of the distances
between the absorbing shells, so that L + 6R. is the total size of the box. There-
fore, it is possible to describe a certain state of the system with the two distances
x and y. The third is then determined by the boundary conditions L — x — y. In a
system with instantaneous binding after encounter and without dissociation, the
process of cluster formation consists of two parts. First, two of the three freely
diffusing particles have to bind to each other. Afterwards, a process as treated
in Sect. 2.2.2 (but with different D, for the two particles) then leads to the final
clustering.

The first process has to be discussed in more detail. The corresponding mean
first passage time will be denoted as 7. The problem of a particle binding
to either its left or its right neighbor in one dimension is similar to the problem
discussed in Sect. 2.2.2. However, the difference is that in Sect. 2.2.2 the distance
between absorbing boundaries is constant. In the present case, the boundaries
can fluctuate. In order to derive a differential equation for the calculation of 7™
we consider particle movement on a lattice with step size § and stepping time
7 and obtain a continuous description in the limit of infinitesimally small steps.
In each time step each of the three particles either moves to the left (-) or the
right (+). This gives 8 different possibilities of movement in the whole system with
equal probability for each step and respective changes of x and y: +++ (z — =,
y—vy), ++ (r — x, y — y — 20), ... Thus, the MFPT can be expressed as:

1
70 (2,y) =7+ 2 (TW (@ +26.y) + TN (@ = 26,) + TV (w,y +26) + TV (2, y — 20)

+ T (2 + 26,y — 26) + TW (x — 26,y + 26) + 27V (z, y)) . (5.1)

By complementing the sum with pairwise compensating terms and after regroup-
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ing, one ends up with:
—87 =2 (T(l)(w +26,y) + TW (x — 26,y) — 27W (z, y))
) (T(l)(x, y+26) + TW(z,y — 26) — 2TV (x, y))
(5.2)
- (T<1>(x +20,y) — TW(z,y) — TW (2 + 26,y — 26) + TW (x,y — 25))
- (T(l)(:c, y+28) — TV (2 — 26,y + 28) — TV (2, y) + TV (z — 26, y)) .

Dividing both sides of the equation by (26)? and in the limit of vanishing 6 and
with D = 62/, the final differential equation to describe 7 is:

2 0? 0? 0?
_2 9| L pM) Z p@) __Y 7@
2 =2 e TV @) + T ) - 57 TV 53
We now derive the solution to Eqg. (5.3) in a systematic manner. A specific solution
to the inhomogeneity of Eq. (5.3) is:
1
1) = ——g? 4
T (ey) = — 550" (5.4)
The homogeneous part of Eq. (5.3) is solved by any linear combination of terms,
which are either the imaginary or the real part of:

1 n
falz,y) = (5 (1 + 2\/§> T+ y) : (5.5)
The boundary conditions for the considered case are:
T (@, y)|,_ g =TV (9| _, =TV (zy)|,,,_, =0 (5.6)

The first two conditions 7™M (0,y) = TW(x,0) = 0 imply that there can be no
terms in (W which depend exclusively on x or on y. Since the real part of f,
always contains at least an y* summand, 7™ can only consist of the respective
imaginary parts, which are for n = {1, 2, 3}:

Im{fi(z,y)} = \/;x : (5.7)
Im{fo(z,y)} = \/75902 +V3zy , (5.8)
Im { fs(z,y)} = g\/g(nyeryQ)- (5.9)

Im{f,} does not fulfill the boundary condition 7 (x,0) = 0. Also the specific
inhomogeneous solution Eq. (5.4) violates this condition. However, this can be
corrected with the respective counterpart from Im{ f,}. The result is:

1 1 3
T (z,y) = —ﬁxz - 7D (gxz + \/ga:y> = Duxy . (5.10)
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Figure 5.2: Mean time to first encounter of any two particles of the system described
in Fig. 5.1 in dependency of the initial state (z¢, o). We use the parameter set ny =
R =1, R. = 1.1 and time step 7 = 0.001. The box length is chosen such that L. = 1.
The simulation data are shown in (a) and the relative deviation from the analytic
calculation according to Eq. (5.11) is plotted in (b).

However, T" still does not satisfy the third boundary condition 7" (z, L — x) = 0.
Therefore, a term of form Im{ f;} is required to obtain the final result:

TO(z,y) = %my - ﬁ(ﬁy +ay’) = %xy (L—(z+y)) - (5.11)
It is easy to check that this expression is indeed a solution of Eqg. (5.3). The
final expression is very similar to the one obtained for the case of two particles in
Eqg. (2.32). TM is linear in each of the possible initial distances and the correct
dimension is preserved by the factor 1/L, as L is the only length scale in the
system. We perform corresponding simulations with three particles on a line.
The simulation data is shown in Fig. 5.2a. The analytic solution looks very similar
and the relative deviation is shown in Fig. 5.2b. Obviously the deviation is largest
at the boundaries of the initial configuration space (up to ~ 20%), while in the
intermediate region it is much smaller (~ 1%). This is similar to the finding in Fig.
2.7a, which can be explained by the systematic error due to the finite time steps as
explained in Sect. 2.2. It is reasonable that the relative error O(v/At/T) is largest
for small MFPTs close to the boundaries because the absolute systematic error
does not depend on the initial configuration.

Coming back to the complete clustering process, one might expect that during
the first step, which is the diffusion until two particles encounter and immediately
bind, the memory of the system with respect to the initial configuration should
get lost. Particularly, this would mean that all initial distances between the two-
particle cluster and the still free particle, would have an equal probability. In
this case, one could average over all possible distances and would then get an
average first passage time for the total binding, which could be added to the first
part. However, Fig. 5.3a shows that also the second part of the clustering process
depends on the initial configuration. The graphs for T'(xo, 39) have the parabolic
form which also was observed for 7", but the quantitative behavior is changed.
While e.g. for small =, the first encounter is always reached quickly, the second
one takes much longer, especially for intermediate values of y,. On the other
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Figure 5.3: (a) Mean first time to a bound three-particle cluster in the system de-
scribed as in Fig. 5.2a for the same set of initial conditions. (b) Double-logarithmic
plot of first passage time distributions of the first (T(l)) and complete binding (f) in
the considered system (see caption of Fig. 5.2a) averaged over possible initial con-

tributions.

hand, for intermediate values of z,, the differences in T()) for certain v, are less
distinct for the over-all T'. The whole problem is again symmetric in z, and y,.

In Fig. 5.3b, the FPT distributions for the first binding and the complete cluster

formation averaged over the initial conditions are shown. Astonishingly, 7(1) is
also ~ 1/+/t at small ¢ and exponentially decays for high ¢. This is qualitatively
equal to the case discussed in Sect. 2.2.2. Furthermore, f looks very similar to a
Poisson distribution, as it shows the characteristic plateau for small ¢. The second
encounter is in principle similar to the encounter of two particles discussed in
chapter 2. If the initial configurations of this process after the first encounter would

be equally distributed one would expect 7" to be qualitatively equal to 7' and T
could be generated by a convolution. However, the convolution of two processes

with distributions like 7(1) cannot produce a Poisson distribution. Therefore, the
form of f is another hint that the second encounter process is biased by the
particular realization of the first one.

5.2 Three-particle cluster with distinct geometry

The preceding section dealt with homogeneously binding particles. In line with
our investigations of bimolecular binding we now extend our cluster model by
the concept of finite-sized reactive patches. In principle, we follow the spirit of
the model presented in chapter 3 to study clusters of more than two particles.
However, we now have to proceed beyond the first encounter and must specify
rules for the cluster structure.
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Figure 5.4: Generic illustration of two clusters forming an encounter. The vectors
r| /» determine the desired final relative positions of the centers of the binding proteins
P, ;. The two vectors t, /, define the orientation with respect to the final linking vector
d”. The necessary transformations will also affect the center positions of the two
clusters Cy 5.

5.2.1 Aligning bound model proteins in three dimensions

To build up larger clusters with a distinct geometry as given, e.g., by a specific
structure contained in the protein data base (PDB), it is necessary that two bind-
ing proteins end up in a particularly specified relative position and orientation. In
the real biologic situation this is achieved by short-ranged interactions between
the binding interfaces, which clearly define a small window in configuration space
as energetically favorable in analogy to the key-lock binding hypothesis. How-
ever, this conformation is still subject to thermal fluctuations. It is even possible
that two bound proteins alternate between several conformations. As we do not
want to consider submolecular fluctuations in our model and our particles are
meant as an averaged representation of the biological proteins, we neglect such
conformational fluctuations between bound proteins.

If two proteins contained in different clusters bind in the model, the respective
clusters are combined. As each protein bond implies a well-defined relative align-
ment of the two partners and thus the structure of a cluster is fixed, the alignment
requirements for the newly evolving protein bond can only be fulfilled by changing
the position and orientation of the whole clusters containing the binding partners.
In our model, this reorientation and translation happens instantaneously. A more
accurate model for the dynamics leading to the final conformation is not required
for our purpose. Often, artificial potentials are used to favor a certain alignment
state. This approach is not necessarily more physical and would lead to unde-
sirable high frequency oscillations in the numerical solution due to the finite time
step. To prevent errors from these oscillations a small time step has to be chosen
which strongly slows down the simulation speed.

Fig. 5.4 should help to illustrate the applied procedure to realign the clusters
as required to proceed with the next step after binding. The figure schematically
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shows two proteins with center position P,,, and overlapping reactive patches
in light gray. Each protein is part of a small cluster, and the already bound pro-
teins are indicated with dashed lines. The hydrodynamic center of the respective
clusters, which is the point of reference for the cluster translation and rotation, is
denoted with C, ,. The position of a protein relative to the center of the cluster, in
which it is contained, is given by p, .. The structure of a bond is uniquely defined
by two vectors for each of the two binding proteins, both given relative to their
center. First, r,/, determines the position of the opposing protein in the bound
state. However, even if the clusters would be translated and rotated such that r/
points to P, and vice versa (with primes indicating transformed vectors), there
would still be one degree of freedom left. Particularly, the two clusters could be
rotated around the linking vector r'; = —1'5. Therefore, a further vector t,, is
defined for each protein, which must not be parallel or antiparallel to r, », respec-
tively. That is, the projection of t; , on the plane perpendicular to r’; > does not
vanish. The equality of the two projected vectors then gives the missing condition
for full determination of the bond structure.

In the simulation, the transformations are carried out in three steps. First, the
clusters are rotated such that r; becomes antiparallel with r,. A second rotation
then brings the t vectors into correspondence. Finally, the clusters are translated
such that P} +r| = P/, and vice versa. The moves required by the bond formation
should be kept as small as possible. Furthermore, as the combining clusters can
have very different sizes, there should be some balancing of the motion. If, e.g.,
a small cluster is bound to a much larger one, the largest part of the required
transformations should act on the smaller one. The chosen balancing is based
on the diffusion properties. In particular, overall translational and a rotational
diffusion coefficients are calculated for each cluster by averaging the trace of the
respective parts of the diffusion matrix:

D, = (D.,+D,,+D.,)/3, D, = (D,,+D,,+D.,)/3. (5.12)

The necessary translation distances and rotation angles are then assigned to
both clusters weighted according to:

B{=Dj/(D; + D), Bj=D;/(D}+D3), (5-13)

respectively. In the following the applied transformations will be explained in more
detail.

Fig. 5.5 illustrates the rotation to align r; and r, antiparallelly. The enclosed
angle is:

0, = arccos Tt ) (5.14)
[T |12

and must be increased to 0. = 7. Thus, the rotation acts in the plane spanned by
the two vectors r;, and the rotation axis is therefore given by:

rs XTIy

B r1]|r2] '

Q,

(5.15)
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Figure 5.5: lllustration of the rotation to align the center-to-center vectors r; . The
affected vectors are shown in black before and dark gray after the rotation. For the
sake of clarity, copies of r from the opposing protein are hinted in light gray. The cross
product of these vectors gives the rotation axis Q2,., depicted as a dashed arrow. After
the rotation r’; and r’s are antiparallel and form a straight line in the figure. t; and to
(compare Fig. 5.4) are not shown, although they are also subject to the rotation.

The angles of rotation according to the previously explained balancing rule are
¢ = —(7—0,)B! and ¢? = (7w —6,) B? respectively. Note that the minus sign in the
definition of ¢! already indicates that the first cluster has to be rotated clockwise
around €2,.. As the cluster rotation acts with respect to the hydrodynamic centers
C, /2, this could actually cause a serious translation of the proteins forming the
bond, especially if both clusters are large. Therefore, in the model we try to let
the bond develop close to the position, where the patch overlap occurred. Thus,
for the cluster rotations the centers of the binding proteins are chosen as the point
of reference. This means that C; have to be translated by p; — p’;, where p’; is
the vector p; rotated around 2, by ¢°.

The axis for the second rotation must be parallel to r’;, as this will be the link-
ing vector between the bound proteins (after a final translation). Therefore, the
rotation vector is now €2, = r’,/|r';|. The projections of t'; and t’; on the plane
perpendicular to r'y , are required to be parallel. As only the directions of t,/, are
important, the projection can be circumvented by considering the cross products
X1/2 = t'1/2 X1y, respectively. While computationally less costly, this is equivalent
to the projection approach, as x;,» will be automatically perpendicular to r’; and
basically tilted against the projections of t',,, by 7/2. As the calculation of an-
gles via arccos as already applied above only gives the enclosed angle between
vectors, the direction of rotation has to be determined. This can be done by com-
paring the cross product x; x x2 with r’;. If both point into the same direction the
rotation angle for the first cluster is positive and vice versa. So the overall rotation
angle is

X1 X2 /
0, = arccos - sgn X -1'y), 5.16
t (|X1||X2|) g ((Xl X2) 1) ( )

where sgn is the sign function. Consequently the portions for each cluster are
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Figure 5.6: (a) The geometry of the reactive patches for a simple cluster of three
equal particles is straightforward. The two patches should be located with an en-
closed angle of 60°. In the bound state, the patch vectors will have to be antiparallel,
i.e., the linking vector between the center of two of these particles will be parallel
to its respective patch vector. (b) Any substate in the system described in (a) can
be characterized as one of four complexes, including the single particle (C1), and
two encounter complexes. Here, a generic network including all possible transitions
between the different substates is shown. The encounter complexes C2 and C4 are
surrounded by a dashed line. Furthermore, the reactive patches which are in an en-
counter state are colored in light gray. In all complexes with more than one patrticle,
the formed bonds are denoted by patches colored in dark gray. Note that although C5
is already a complex of three particles, it is kinetically different from C6, where each
particle is bound to both neighbors. The substates are numbered in the order they
will occur on the way from the single particle C1 to the fully bound complex C6.

¢; = 0,B} and ¢? = —0,B2, respectively. As for the €, rotation, the position of
the binding proteins should be kept fix and thus the clusters have to be translated
about p’; — p”;, where two primes indicate the state after this second rotation.

While the orientations of the clusters (and especially the proteins) are now as
desired, the position is still not necessarily matching the requirementd” = d = r;.
d denotes the distance of the centers of the two binding proteins in the encounter
state, i.e., before the binding transformation. As the rotations leave the protein
centers P/, conserved it holds d = d”. Therefore, the final transformations are
(d —r",)B} and —(d — r";) B? for clusters 1 and 2, respectively.

5.2.2 Network view of assembly — substates and transition dy-
namics

In Fig. 1.3 from the introduction we illustrate all possible substates during the for-
mation of a three particle cluster for the case that any pair of particles has to bind
at one specific pair of interaction sites. We want to study a somewhat simpler
case here, where each of the model particles has two binding interfaces which
can form a bond with any of the other interfaces, i.e., all particles are of the same
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type (see Fig. 5.6a). As shown in Fig. 5.6b this scheme gives rise to six differ-
ent substates, counting all possible partial and encounter complexes up to the
fully bound complex. In principle, also an encounter complex of two two-particle
clusters C3 is possible. However, due to the excluded volume properties of the
particle the bond cannot be formed and thus we do not consider it in our network.
We basically consider local states, i.e., according to its particular configuration
each particle in the simulation can be assigned to one of the six substates shown
in Fig. 5.6b. A different approach would be to define a network of global micro
states of the whole system. That is, each state reflects one particular configura-
tion of the entity of all particles (e.g.: “all particles are separate”). However, the
latter view leads to a rapid increase of the network complexity with the number of
particles.

In our binary view of protein interaction, the transitions between these states
can be due to either a transport or a reaction process. The reaction processes are
Poisson processes with predefined rates by the design of our model. These rates
have to be reproduced by the simulation. The transport is the more complicated
encounter process as discussed in detail in chapter 3. We basically generalize
typical reaction diffusion networks by explicitely modeling spatial details of the
diffusion steps. That is, in this model we also account for local concentration
differences due to reactions (reducing or increasing the number of clusters) or
caused by thermal noise. In our simulation we are now able to explore the nature
of transitions between the substates. This enables us to gather information about
the dynamics of the full model in terms of our network view. Assuming Poisson
type dynamics for each transition, the network could then be treated like a Master
equation [78]. A similar modeling approach has already been successfully applied
to the problem of protein conformation dynamics [96, 97]. However, the transport
transition dynamics does not necessarily have to be Poisson like and thus one
has to carefully check whether the Master equation approach is valid. In general,
the required information about the transition dynamics is hardly accessible in ex-
periment, because it requires knowledge about the position of any of the proteins
in a certain region of a sample. Although fluorescence resonance energy trans-
fer microscopy (FRET) [147] allows for the in vivo identification of protein-protein
interactions, typically only a small fraction of proteins are labeled. As a conse-
quence a specific labeled protein will have many unnoticed interactions. That
is, FRET microscopy cannot resolve the dynamics of protein interactions to the
desired extent and modeling can be used to fill this gap.

In our model, each partial cluster or encounter complex can be uniquely as-
signed to one of the substates shown in Fig. 5.6b. At some point it will undergo
a transition to one or more different substates. For example, encounter complex
C4 could degrade into a separate particle C1 and a two-particle cluster C3 by dif-
fusion. The lifetime of the previous substate is equivalent with the transition time
from this substate to the next ones. The transition times 7" and relative frequen-
cies f are the two quantities which are accessible in the simulation. However, in
general there can be more than one possible transition from a particular substate.
Therefore, a statement about the underlying kinetics of the transitions cannot be
calculated from the transition times straightforwardly. First, let us suppose all tran-
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sitions could be modeled by a Poisson process. Let some state A stochastically
switch over to a number N of states B; at independent kinetic rates k;, respec-
tively. What would be the expected transition times T; and frequencies f; in the
whole system? Starting from state A4, the dynamic equations are:

N N
—> kiA=-A <Zk> . Bi=kA. (5.17)
=1 i=1

The solution of the dynamic equation for A is a single exponential:

Alt) Aoexp[ Zm]. (5.18)

As B3; are dynamically only dependent on A, in the combined system all transitions
will happen at the same rate K = >_ k;. That is, the mean transition times will all
equally be T, = T = 1/K. The relative frequencies f; are proportional to the
prefactors of B; in the steady state, i.e., for large times:

t
/ k’L — —00 kz

0

The normalization should be >_ f; = 1, which leads to the finding f; = k;/K.
Knowing only 7" and f; from the simulation, the independent kinetic rates of the
transitions can therefore be calculated via:

ki=Kfi=fi/T. (5.20)

However, this is only the case, if all transitions can be independently described
by Poisson processes.

The simulations of the system described in Fig. 5.6a are parameterized in
the spirit of the model M1 from chapter 3, i.e., we consider only a spherical
excluded volume effect. Furthermore all parameters are set up dimensionless,
i.e., dynamic viscosity 7, = 1, thermal energy kzT, = 1, particle radius R = 1 and
association rate k, = 1. The patch size is » = 0.3 and the distance of the centers
of two particles in the bound state is set to d = 2.55. Thus, there is an overlapping
region between the involved encounter patches in the bound state, i.e., if a bond
is broken the particles are still in an encounter complex. On the other hand the
overlap is small. This is important as the overlap has to be overcome by diffusion
to completely dissociate from the encounter state. Large overlaps could thus
lead to an artificially high probability of rebinding especially for high association
rates k,. All simulations are performed at high concentration to confine the run
times and mostly high particle numbers to prevent finite size effects. Typically, a
periodic boundary box with edge length L = 28 contains N = 192 particles. To
get an impression of the meaning of these values in real microscopic dimensions,
we want to deduce the dimensionless time unit (TU) in the system, assuming a
typical scale for the length unit 1ILU = 1nm. As the diffusion coefficient is given
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Figure 5.7: (a) Rates between substate C5 and C6 (compare Fig. 5.6b) as obtained
from simulations at different predefined dissociation rates k, represented by the data
points plotted along with the expectations in dashed and dotted lines. (b) Transition
time distributions between C5 and C6 for three values of the dissociation rate k; =
{1071,1072,1073}. Data points represent the histogram data from the simulations,
the dotted lines hint the corresponding ideal Poisson behavior from the expected
rates. (c) C3—C4 transition time distribution for k; = 10~ (solid line), kg = 102
(dashed line), and k; = 1072 (dotted line). For the sake of clarity the data is shown
with lines here. (d) Normalized temporal abundance of the four possible complexes
C1, C3, C5, and C6. The data shows the sum of all durations a certain complex exists
in the simulation, normalized by the total of the four values.

by D = kpT,/(6mnR) it is thus in system units D = 1/(67)LU?/TU. Combining
these two equations and using real values for the involved constants kg, T, =
293K, 19 = 1073Pas and R = 1LU = 1nm we find 1TU = (1LU)?Rny/ksT, ~
0.25ns. Obviously, the unit time in our simulations is in a reasonable regime when
the other parameters are scaled like under molecular conditions. Furthermore,
with L = 28nm and N = 192 we can estimate the concentration of the system
c = N/(N4L?) ~ 14mM. This is not unphysical although much higher than the
concentrations used in the studies in chapter 3 and 4. However, the assumed
reactive association rate of k, = 1TU ™ = 4. 10%s~! is of course rather large and
basically means that the system will behave like diffusion limited.

During simulations, we count the number of certain transitions and average
the corresponding transition times. The run is stopped after a total of 10° tran-
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sitions have occurred. In this regard, the results represent equilibrium rather
than first passage properties of the system. All bonds are assumed to form from
and break into an encounter complex with the same stochastic rates k£, and kg,
respectively. The equilibrium simulations are performed over a wide range of dis-
sociation rates for the bonds k; = 5-107°...1. Some of the possible transitions
shown in Fig. 5.6b exclusively depend on k, and k,. This is especially the case
for the three-particle cluster C5 and the fully bound cluster C6, which are formed
by reaction processes. Particularly, the transition from C5 to C6 requires the for-
mation of one bond (k¢s = k,), while the opposite direction can happen by the
dissociation of one of three bonds (ks = 3k,). In Figs. 5.7a and 5.7b the mean
transition rates as obtained by the treatment explained in Eqg. (5.20) and some
transition time histograms are shown for C5=C6. The expectations of kg5 and ks
agree with the simulation results. Also, the histogram data corresponds well to
the assumed Poisson-like behavior. Particularly, the different transition histogram
data of C5—C6 clearly agree which is reasonable as this transition only depends
on the constant association rate £, = 1.

However, we find that as soon as transport processes are involved in the dy-
namics of a substate, the initial assumption of purely Poisson-type transitions
in the network is not fulfilled anymore. This also leads to a break-down of the
treatment described in Eqg. (5.20). One example is shown in Fig. 5.7c. It shows
transition time histograms of the two-particle cluster C3 to an encounter complex
with a single particle C4, which occurs due to diffusion. The histograms are not
completely exponential but show a power-law behavior ¢t=3/2 at small times. This
is similar to what we already found for the contact resting and return times in
chapter 3, compare Figs. 3.9a and 3.9b. Again, the reasonable explanation is
that if the encounter C4 did not successfully lead to a bond formation (—C5), the
encountering particles do not separate to a far distance, but quickly reform the
encounter. This is completely analog to the considerations about the number of
contacts before encounter in chapter 3. Actually, the data should be independent
of the chosen dissociation rate k,, as the process is pure transport. However,
due to the decay of the two-particle cluster at rate k,, the abundance times are
exponentially decaying, which in turn gives an exponential decay of the encounter
formation times shown in the plot. Therefore, it makes sense that the tail of the
histograms decrease slower for smaller dissociation rates.

Fig. 5.7d compares the relative temporal abundances of the substates except
encounter complexes (i.e. C1, C3, C5, and C6) for different dissociation rates k.
The data was obtained the total number of times a certain by summing up all
durations a certain cluster existed. For each k, the four obtained values were
then normalized by the sum of all duration times. The stoichiometry of the com-
plexes was not considered, i.e., each single particle C1 was counted individually,
although on the other hand the maximum number of fully bound complexes C6
was a factor 3 smaller. As we present the data in a double-logarithmic plot, a
different counting rule would only shift the data a little in y-direction but would not
alter the qualitative behavior. The most obvious finding is that low dissociation
rates do kinetically favor the fully bound state C6, while high dissociation rates
lead to quick breaking of formed bonds and lead to a high fraction of single par-
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Figure 5.8: Time series of the fractions of clusters C1, C3, C5, and C6 weighted by
their size. The weighting means that if all particles are in C6 clusters, the fraction of
C6 would be 1. The three plots show the results for three different dissociation rates:
(@) kg = 1071, (b) kg = 1073, (c) kg = 107°.

ticles C1. The abundance of the intermediate complexes C3 and C5 are highest
in an intermediate regime, where both C1 and C6 have a similar probability of
occurrence.

In the unstable regime, i.e., for high k; ~ k, the abundance of complexes with
n bonds formed decrease with k;". As the stability of the bonds decreases with
larger k.4, the probability of finding a two-particle cluster C3 must decrease linearly
~ k;'. The argument can be extended to substates with » > 1 bonds, which are
destabilized proportional to k' with respect to some cluster with » — 1 bonds.
For small k4, i.e., in the complex stabilizing regime the abundance of C6 saturates
while all others decrease approximately proportional to &, at least in the observed
parameter range. In analogy to large k,, a relative preference of clusters with n
bonds proportional to k:g(?’_”) could be expected. However, the transport part
of the association process does systematically “stabilze” smaller clusters in the
unbound state because there is a certain lag time until they find a suitable binding
partner which is only dependent on concentration but not on the reaction rates &,
and k.

Finally, in Fig. 5.8 three time series of cluster fractions are shown for different
dissociation rates k;. The data is averaged over 1000 independent simulation
runs with 24 model particles which are randomly distributed initially. Therefore,
each plot starts with the fraction of C1 f(C1) = 1 and no other substates popu-
lated. As clusters with one or more bonds form, the fraction of C1 is reduced. As
in the previous consideration only C1, C3, C5, and C6 are counted for the normal-
ization. At some point the system must reach a steady state, where all fractions
stay constant on average. In the observed time frame this is only the case for
a large dissociation rate k; = 10~!. In contrast, the data shown in Fig. 5.7 was
obtained from much longer simulations, where the system was always in a quasi-
equilibrium. Here, for k; = 107! the fraction of bound clusters is quite low for all
times. Thus, the steady state is close to the initial state and is reached quickly.
Remarkably, the transport part of the assembly process is clearly changing the
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Figure 5.9: (a) Set of local rules for the forma-
tion of a T1 virus capsid out of 60 particles of
the same type (adopted from Ref. [129]). Each
particle has three interaction sites with enclosed
angles as given in the figure. As the sum of the
angles is smaller than 180° it is obvious that the
three sites do not lie in one plane with the cen-
ter of the particle. This leads to the formation
of a three-dimensional final structure. The differ-
ent sites are numbered and colored in different
gray scales. Site 1 of one particle can only bind

~ 108° 7 with site 2 of another one, as well as 3 can only
RIS bind to 3. (b)—(d) Snapshots from a simulation
(a) Local rules T1 virus with 120 particles in our model framework M1
(compare chapter 3). Time is given in simulation
steps.
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behavior compared to a system where bonds form and dissociate purely accord-
ing to k, and ky. In the latter, as soon as k, > k4, the state with the maximum
number of bonds would always be the most populated one in the steady state.
This is not the case here. However, a certain small amount of fully bound clusters
C6 emerges. This leads in turn to a fraction of three-particle clusters with one
broken bond C5 which is approximately a factor k;/k, = 10~ smaller. This ratio
of f(C5)/f(C6) = kyq/k, is found in all three cases. The dynamics in the begin-
ning as well as the time at which the fraction of C1 gets smaller than the fraction
of C6 for small k, is always rather similar. This is due to two facts. Firstly, the
spatial effects caused by initial configuration and the concentration of the system
are equal in all cases. Secondly, it can be shown that the principal mode of the
reaction dynamics if transport is completely neglected is k, + k4, which is roughly
equal in all cases.

5.3 Modeling large complexes — Virus capsids

Next we extend our considerations to large clusters. A class of systems which
can be well described by model approaches like ours are virus capsids. In the
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introduction a number of models have been reviewed that have been developed
to study self-assembly of virus like structures (see Sect. 1.4). All of these stud-
ies use Lennard-Jones-type (LJ) potentials in order to steer the system towards
bound clusters. Typically, the final structure is predetermined analogously to the
local rules theory of Berger et al. [23] by the form of the potential, e.g., by specific
orientation dependent LJ terms or additional harmonic terms. Most of the cited
references do either have no direct representation of the altered friction proper-
ties of growing clusters or use implicit hydrodynamics by considering independent
motion of all monomers and have the bound monomers tied to each other by the
applied potential. The use of explicit Newtonian dynamics requires the system
to be evolved carefully and in small time steps. In contrast, in our model it is
possible to use much larger time steps, particularly in the most generic version
M1 (compare chapter 3) where no interaction potentials are implied. The lack
of simulation speed is one of the reasons, why interesting questions regarding
the assembly pathway are not well understood yet. Although the mechanisms of
growth in terms of cluster size of added fragments has been addressed at least
to some extend [74, 117, 167], this problem has not been studied thoroughly so
far. Particularly, the topology of the partially formed clusters is not considered in
most cases except in Ref. [117], where static distributions of bond numbers at
fixed cluster sizes are indicated.

The local rules approach can be implemented in our model by locating the
reactive patches according to the required geometry as illustrated in Fig. 5.9a.
The Figs. 5.9b—5.9d show snapshots of a simulation with 120 particles forming
two T1 virus capsids in a simulation of about 4-10° time steps. As in all theoretical
studies of this type, the initial monomer concentration is chosen rather high to
speed up the association process. Particularly, the periodic boundary box is cubic
and has an edge length of L = 40 while the particles have radii R = 1 and patch
sizes r = 0.4. The shown simulation was performed in roughly three hours on
a single CPU. While in many similar approaches the amount of computed data
restricts to a few trajectories, our fast simulation approach allows for collecting
reasonable statistics.

As an example of the performance of our method we perform a similar study
as shown in Fig. 5.8 for the three-particle cluster. Initially, we randomly place 60
monomers in a cubic boundary box with an edge length of L = 30. We average
over 200 simulations of 10° time steps each, which makes a total computation time
of roughly one day on a single CPU. The study is similar to what Rapaport pre-
sented recently [117]. Indeed, our system size is limited to only one fully formed
capsid. That is, it will be fragile to trapping in local minima, e.g., if two partially
formed clusters use up all particles but do not fit together. In this sense Rapaport
stated that unbinding is important for self-assembly to prevent such trapping. Ex-
actly the same is seen in our results. If the dissociation constant k, is too large
like in Fig. 5.10a all bonds do quickly break again and no larger clusters can form.
In the other limit of very low dissociation rates (see Fig. 5.10d) the bond formation
starts quickly, but the system is trapped in local minima. Particularly, a number
of smaller clusters are formed which are structured in a way that prevents them
from binding, i.e., they either do not fit or there is only a very special set of pairs of
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Figure 5.10: Time series of cluster size fractions for the assembly of T1 virus capsid
out of 60 monomers. The map at the bottom of the plots is explicitely designed for
making the details below a fraction of f = 0.05 clearer, which are hard to see in the
three dimensional surface representation of the data with lines. The plots show data
obtained for different dissociation constants: (a) k; = 5- 1072, (b) kg = 5- 1073, (c)
kq=1073, (d) kg = 1074

binding sites at which the partially formed clusters could successfully bind. Con-
sequently, while formation of smaller clusters starts at an early stage the cluster
size with the highest population after 10° simulation steps is at approximately 35
particles. Also a broad range of cluster sizes is roughly equally populated at the
end of the runs. In the intermediate range of &, (see Figs. 5.10c and 5.10b) the
formation of larger complexes is delayed to some extend, however, there is a
clear preference in the final formation of full clusters with 60 particles. This is
especially the case for k; = 5 - 1073, where there is even more unbinding — and
thus less trapping — than for k, = 10~3. Therefore, k; = 5- 102 obviously leads to
the most effective assembly scenario of the four observed ones and unbinding at
a considerable rate plays an important role.
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5.4 Discussion

In this chapter the association dynamics of more than two model proteins has
been considered. From the results of three particles on a line it is apparent that
the dynamics of subsequent encounter cannot necessarily be separated into two
similar transport processes. Moreover, we see in the three dimensional system
treated in Sect. 5.2 that it is invalid to describe the transport processes by sim-
ple stochastic rates in a network view of assembly. Due to quick re-encounter the
transition time histograms obey a power-law at small encounter times. This finding
corresponds to what we saw for the contact problem of the bimolecular encounter
in chapter 3. Both facts are important because they invalidate the description of
assembly with a Master equation approach in a network of transport and reaction
processes. Furthermore, the dynamics due to transport and reactions is con-
nected to each other in a way which cannot be understood straightforwardly. The
average population of clusters of a certain size depends on the rate constants
for binding and unbinding. On the other hand, different concentrations of partially
formed clusters will lead to different encounter times, which in turn will affect the
amount of higher order clusters. If a single tuneable reaction rate in the network
shown in Fig. 5.6b is altered, eventually all transport kinetics are affected. This is
basically an additional reason to reject the network approach, at least in the pro-
posed form, as the links are not independent of each other. In summary we can
say, that the behavior for, e.g., different parameter sets always has to be analyzed
in a full treatment of the model. However, the developed simulation approach is
promising because of its specificity as shown in chapter 3 and especially in terms
of computation speed, which allows to treat complicated problems. This is exem-
plarily shown by the study of the assembly of T1 virus capsids at the end of this
chapter. We find that capsid formation is most effective for an intermediate range
of the dissociation rate, where unbinding is both slow enough to allow formation
of larger complexes and quick enough to prevent the system from being trapped
in states that do not allow complete capsid formation.

While the virus capsid simulations are able to reproduce known qualitative
results there are still a number of issues which have to be considered. From
Figs. 5.9b-5.9d it is obvious that while the concentration in terms of particles per
simulation volume is constant, the concentration of free monomers is strongly
decreasing when large clusters are formed. The distances of the particles are
distributed around some average value in the beginning, while for nearly com-
pletely formed capsids most particles are at a fixed small distance, i.e., bound
to each other, and only some freely moving monomers have a comparably large
distance from all others. This effective dilution of the largest part of the simulation
box is due to the finite size of the system and leads to a strong artificial slow-down
in the assembly kinetics.

To our knowledge, in none of the similar theoretical approaches to virus capsid
assembly the topologies of important intermediate states have been analyzed.
This is one of the interesting open questions and could be achieved by counting
populations of particular configurations during the simulation. However, directly
identifying a particular topology is rather complicated. Additionally, the number
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of possible topologies can be large. Even if one restricts to the information of
how many monomers N and how many bonds N are in a cluster, Nz can vary
between N —1 and up to M x N if each monomer can bind to a maximum number
of M neighbors (in case of our T1 structure we have M = 3). l.e., the number of
distinguishable topologies would be already in the order of N if N is the number
of monomers in the completely assembled cluster.

Even more complex is the identification of important pathways in an overall
assembly network like considered for the three-particle cluster. The number of
possible encounter complexes increases with the second power of the number
of possible substates because any substate can encounter any other one even
if they are not able to form a bond. Therefore, a transition network taking into
account cluster topologies and all encounter to encounter transitions would span
a transition matrix with ~ ((N2)2)?2 = N6 entries. In case of the T1 virus with
N = 60 proteins in the final cluster this is a number in the order of 60'¢ = 2.8 - 10
which exceeds any available computational resources. Thus, it is necessary to
develop more efficient procedures, e.g., by computing and storing only data which
is relevant for answering specific questions.

Another interesting subject that can be investigated with our method is the
self-assembly dynamics of the Arp 2/3 complex (see Fig. 1.1c). The atomistic
structure of Arp 2/3 is known from the work by Robinson et al. [119]. Therefore,
the general methods to evaluate suitable parameters for our model can be applied
straightforwardly to the structure data. Our description might help to understand,
e.g., whether there are particular subclusters that have to form first, before they
finally combine into the full complex.
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