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Zusammmenfassung
Pflanzenmodellierung ist ein interessantes und herausforderndes Thema für die wis-

senschaftlich interdisziplinäre Forschung im Bereich der Mathematik, Biologie, Botanik,
Agrarwirtschaft und Informatik. Im Rahmen dieser Dissertation wird die auf Linden-
mayer Systeme (L-Systeme) und Partikel Systeme (PT-Systeme) basierende Modellierung,
Simulation und Visualisierung von Pflanzenwachstum präsentiert und anhand von zwei
Methoden zur Erzeugung von Pflanzenstruktur vorgestellt. Die erste Methode basiert
auf Geklammerten, Stochastischen und Parametrischen L-Systemen. Sie ist für eine
präzise Modellierung von bereits bekannten Pflanzenstrukturen geeignet und bietet auch
die Möglichkeit, die komplexe Struktur in kleine Bestandteile bezüglich der Produktions-
regeln zu zerlegen. In der zweiten Methode wird das PT-System für die Simulation grober
Struktur und schneller Produktionsvorgänge eingesetzt, die auf vordefinierter Form und
Volumen von Spross und Wurzel der Pflanze basiert. Beide Methoden können für die
Modellierung von Pflanzenspross, Wurzel und Blattader eingesetzt werden.

Der Prototyp dieser beiden Methoden ist in einer Weise konstruiert, die die physio-
logischen Daten der Maße realer Pflanzen berücksichtigt wie beispielsweise Länge und
Durchmesser des Internodiums, Länge und Durchmesser der Zweige, Länge und Breite des
Blattes, Länge und Breite der Wurzel. Diese Daten werden durch Parameterschätzung
mit der Anwendung der Levenberg-Marquardt Methode bestimmt, die auf einer N-Puls
sigmoidalen Funktion basiert. Alle angepassten Parameter können im Prototyp für die
Simulation von Wachstumsverhalten einer Pflanze verwendet werden.

Beide vorgeschlagenen Methoden werden für die künstliche Erzeugung bestimmter
Pflanzenarten eingesetzt, die mit L-Systemen vertraute Experten von der Natur ablesen
und in ein künstliches Modell konvertieren. Auch schlagen wir hier eine Methode für das
Umwandeln der erhobenen Daten in ein künstliches Verzweigungsnetzwerk vor, das soge-
nannte ,,inverse Problem vom L-System”. Dieses inverse Problem vom L-System bietet
die Möglichkeit, die Struktur eines Verzweigungsnetzwerks mithilfe von Eingabebildern
oder Volumendaten der komplexen Struktur zu rekonstruieren. Die tatsächlich wachsende
Wurzel im Bodenvolumen kann mit Computer Tomography (CT) gescannt und die Wurzel-
struktur aus dem Volumen segmentiert werden. Die endgültige rekonstruierte Struktur
wird in L-Systemen basierend auf Geklammerten und Parametrischen L-Systemen für die
Weiterverwendung beschrieben.

Die Struktur und das Wachstum der Wurzelsysteme sind stark von Umgebungsfak-
toren im Boden abhängig. Die Diffusionsgleichung und Richardsgleichung werden ver-
wendet, um die Diffusion der Nährstoffe und den Fluss des Wassers zu beschreiben. Das
Wurzelstystem wächst gleichzeitig und abhängig davon, wie die Diffusion der Nährstoffe
und der Fluss des Wassers verläuft. Nährstoff- und Wasseraufnahme werden zu jedem
Zeitpunkt des Wachstumsprozesses berechnet.

Diese Dissertation fördert letztendlich neue Methoden für die Modelierung und Simu-
lierung von Pflanzenwachstum aufgrund von Klimafaktoren, die mit einem von uns neu
entwickelten Software Tool durchgeführt werden kann. Ergebnisse, die in dieser Disserta-
tion erreicht werden, können in vielen verwandten Gebieten angewendet werden wie zum
Beispiel in der Landwirtschaft, Pflanzenmodellierung, Agrarmanagement, Ökonomie, etc.
Die Visualisierung des virtuellen Pflanzenwachstums, das mit L-Systemen, PT-System,
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inversem Problem, Wasserfluss und Nährstoffdiffusion modelliert wird, kann durch die
von uns entwickelte Software PlantVR (Plant Virtual Reality) dargestellt werden.

Schlagworte : Lindenmayer Systeme (L-Systeme), Partikeltransportsysteme (PT-Systeme),
modellierendes Pflanzenwachstum, inverses Problem von L-Systemen, Grundwasserströmung
und Nährstoffdiffusion (Zerstäubung).



Summary

Plant modeling is an interesting and challenging field in the interdisciplinary scientific
researches for integrating the knowledge in mathematics, biology, botany, agriculture and
computer science. In this dissertation on modeling, simulation and visualization of plant
growth based on Lindenmayer Systems (L-systems) and Particle Transportation Systems
(PT-systems), we propose two possibilities for generating plant structures. The first
method is using L-systems based on Bracketed, Stochastic and Parametric L-systems. It
is suitable for generating a known plant structure, which is easy to model and decomposes
the whole plant structure to small simple components such as production rules. In the
second method PT-system is used for simulating the rough structure and fast generating
of plant structure by giving predefined plant shape or volume of shoot and root domain.
Both methods can be used to generate plant shoots, roots, leaf veins and other branching
structures as well.

The prototypes of these two methods are designed for incorporation of measured qual-
itative and quantitative data from actual plants such as internode length and diameter,
branch length and diameter, leaf width and length, root length and diameter. These
quantitative data are approximated by parameter estimation using Levenberg-Marquardt
method based on N-pulses sigmoidal function. All fitted parameters can be used in each
prototype to simulate plant growth behavior.

Both systems are used to create artificial plant models from natural plants by expertise
in L-systems. In order to describe plant structure in a systematic way, we also propose
the method for transforming acquisition data to artificial branching network, the so-called
“inverse problem of L-systems”. The inverse problem of L-systems provides the way to
reconstruct the branching structure from input images or volume data of the complicated
network structures. The actual growing root in soil volume can be scanned by Computed
Tomography (CT) scanners and the root structure can be segmented from the volume. The
final reconstructed structure is represented in L-systems description based on Bracketed
and Parametric L-systems for further use.

For the development of root systems and the root growth, the environmental factors
in soil profile play an important role. The diffusion equation and Richards equation are
used to describe nutrient diffusion and water flow in soil volume, respectively. The root
system is growing simultaneously during nutrient diffusion and water flow. Nutrient and
water uptake are computed at each time step for the next iteration of growth process.

Finally, this dissertation promotes new approaches for modeling and simulation of
plant growth depending on environmental factors by using the computer simulation tools.
The results obtained in this dissertation can be applied in many disciplinary fields; e.g.
agriculture, plant modeling, crop management, economy, etc. The simulation and visu-
alization of plant growth based on L-systems, PT-systems, inverse problem, water flow
and nutrient diffusion are presented by our self-developed software tool so-called PlantVR
(Plant Virtual Reality).

Keywords : Lindenmayer systems (L-systems), particle transportation systems (PT-
systems), plant modeling, inverse problem of L-systems, water flow and nutrient diffusion.
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Chapter 1

Introduction

“God always acts in the simplest way.”
— Galileo Galilei (1564-1642)

In this dissertation, we study modeling, simulation and visualization of plant growth.
At first we introduce the motivation and problems of our research. Section 1.1 gives a
literature review. Section 1.2 presents the aims and contributions of our research. Finally,
we finish this chapter with the description of the contents in this paper.

1.1 Motivation

Plant modeling is an interesting and challenging problem integrating many disciplinary
fields, e.g. mathematical modeling, computer graphics, computer science, agriculture,
botany, biology, soil science. Plant structure consists of the shoot and the root part.
Light, carbon dioxide (CO2), oxygen (O2), temperature, pH, water and nutrient play a
big role for the plant growth and development.

For plant modeling, we have not only to consider geometric structure of plant but
also processes and functions in plants. To describe plant structure (see Figure 1.1), the
biologist Aristid Lindenmayer (1925-1989) introduced a code representing the geometry,
known as Lindenmayer systems or L-systems [Prusinkiewicz and Lindenmayer, 1990]. In
L-systems the structure is decomposed into plant modules and submodules using a graph
theoretical concept and characterized by a code. L-systems are also a useful tool in other
research areas, i.e. to describe networks in computer science, anatomy, etc.

Several methods are used to generate plant structure. Here we restrict ourselves to
the following approaches:

• L-systems method, and

• Particle transportation method (PTM).

In L-systems, the plant is decomposed into different modules (shoot and root) which
are characterized by graphs. Each module and its submodules are generated iteratively.
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2 Chapter 1: Introduction

Figure 1.1: Structure ’s diagram of flowering plant.

We obtain the development in discrete steps, not continuously (see Figure 1.2). In Chuai-
Aree et al., [Chuai-Aree, 2000], [Chuai-Aree et al., 2002] and [Rodkeaw et al., 2004], a
continuous evolution in time based on physiological laws (see Figure 1.3) was used to
obtain the plant growth process. To generate the structure it is necessary to know the
plant specific growth rules.

Figure 1.2: Deterministic L-systems animated by iteration step n = 1, 2, 3, 4.

PTM follows the concept that plant structures are generated by flows which can be
approximated by trajectories of interacting particles, given by specified laws. The bound-
ary of the geometry and target points have to be prescribed (see Chapter 3). PTM can
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Figure 1.3: Deterministic L-systems animated by time step dt.

generate structure very fast by moving particles in a well-defined vector field. However,
it is not easy to control the total particle flow. The algorithm may generate structures in
an ordering which does not represent real plants.

PTM has been applied to model grass structure by Reeves [Reeves, 1983]. Rodkaew et
al. introduced a PTM describing leaf veins in [Rodkaew et al., 2002], plant shoot and root
structures in [Rodkaew et al., 2003] and [Rodkaew, 2004], using random and controlled
particle flows.

Fractal geometry was introduced by Mandelbrot [Mandelbrot, 1983] as a new con-
ceptual framework to analyze and model the nature of complex shapes. It has also been
applied to generate plant structures with help of cellular automata. Iterative fractal meth-
ods were used to illustrate how complex vegetal-like structures could become (see Smith
[Smith, 1984], Barnsley [Barnsley, 1988], Prusinkiewicz and Hanan [Prusinkiewicz and
Hanan, 1989]). Such models were used to generate artificial plants in modeling applica-
tions, e.g. Chen et al. [Chen et al., 1994], Prusinkiewicz et al. [Prusinkiewicz et al., 2001].
Fractal geometry was used also to analyze the complexity in plant shapes by determining
their fractal dimension.

A main problem is the identification of the geometry of a plant given real geometric
data. An algorithm has to be developed deriving from image data the L-string, which
characterizes the geometry of the plant. We call this problem the inverse problem of L-
systems . The system can be used to describe tree-like structure based on bracketed and
parametric L-system. This method allows us to observe the development of a plant in
the soil. Using this non-destructive method, retrieving data from Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI), the 3D geometry of the plant is determined.

Plain geometry description of plant structure is not sufficient for plant modeling.
Functional processes including interaction with environment are very important for growth
modeling. For functional processes in this research, we firstly start the root growth
modeling in soil solution. The problem of root growth in the 2-dimensional soil had been
studied by Lungley [Lungley, 1973].



4 Chapter 1: Introduction

Modeling the root system and its interaction with the environment plays an crucial
role in our investigation. The plant root system is a complex network of section of roots.
Physiologically it plays an important role. Roots absorb water and nutrients from the soil.
The efficiency water and nutrient uptake influent the crop yield. The circulation of water
through the soil, the plant, and atmosphere, is an important hydrological subprocess in
an ecological system. Furthermore, the architecture of root system and its mechanics is
basic for the stability of the plant and the surrounding soil. Plant roots help to prevent
erosion of the soil surface layer and landslides. The root system development is affected by
its surrounding environment by gravity, water, temperature, nutrients, and soil structure.
As a result of these effects, the root system changes its morphology and adapts to changes
in the surrounding environment. Understanding the development of the root system is
fundamental to understand its physiological and morphological functions. Since root
systems are hard to be accessed, they are not studied to an extend as shoots and leaves
are. Even if the root system could be excavated from the ground, it is almost impossible
to observe continuous root system development. In this sense, modeling and simulation
are providing proper tools to investigate the root systems. Solving the inverse problem of
L-systems may help to reconstruct their growth dynamics (see Section 2.7).

1.2 Purpose and Contribution of our Research

The objectives of this study are

1. to develop a new code for plant structure, which can generate plant structures using
L-systems and PTM,

2. to investigate the inverse problem of L-systems by given images and volume data of
branching structure as input data,

3. to understand the mechanism of plant root systems development and the effect of
soil water and nutrient conditions on root system development,

4. to combine structural and functional plant modeling as a computer simulation and
visualization tool, and

5. to apply these methods to improve the optimal growth of some plants for the farmers.

In the following, we summarize the main contribution of our research.
A prototype of plant growth (shoot, root, and leaf structure) from experiments includ-

ing physiological growth factors is developed. L-systems and PTM are used to generated
plant structures. The algorithm can produce deterministic and stochastic structures. The
geometrical structures and the functional processes are combined in simulating the plant
growth. Phenomenological production rules take into account growth factors which are
not modelled explicitly. However, nutrients and water uptake by roots are treated with
model equations.

We improved the L-systems by proposing a continuous evolution in time based on
physiological laws (see [Chuai-Aree, 2000] and [Chuai-Aree et al., 2002]). In case of PTM,
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we improved the work of Rodkaew et al. [Rodkeaw et al., 2004, Rodkaew, 2004] by gener-
ating in the natural ordering the structure of plant: we replaced the given target point by
the given starting point and considered a growing volume. The particle distribution may
be randomly initially chosen and evolves influenced by environmental factors. The direc-
tion of the trajectories is chosen in each time step by an averaging rule. Plant structure is
growing smoothly as natural behavior. PTM is used to describe leaf veins in a predefined
leaf shape, synthetic shoot and root structures in a predefined volume. We also provide
the method for generating the L-string (see Definition from input image data using the
inverse problem of L-systems.

In the functional and biological processes, we study how to generate the root systems.
In this case several algorithms are proposed, e.g. L-systems and PTM. Water flow and
nutrient diffusion in soil solution are combined with root growth systems. Nutrient diffu-
sion in soil solution is described by diffusion equation in 3-dimensional space. Water flow
in soil solution is represented by Richards equation.

There are now both plant structures and plant functions. Then we combine both
geometrical structures and the biological processes. The geometrical structures are gen-
erated by L-systems, inverse problem of L-systems, and PTM. Since the root systems
are growing based on water and nutrient in soil. We propose the simple algorithm for
root growth based on gradient field of nutrient concentration. The root tips are growing
to the direction of maximum nutrient concentration. We later design the algorithm for
PTM to cooperate with environmental factors by considering water content and nutrient
concentration in each voxel space as the source of root growth direction.

Finally, we obtain a computer simulation tool, PlantVR software. There are four soft-
wares working related to PlantVR: BranchRecon (Inverse problem of L-systems), LeafDS
(Leaf surface design), LeafVein (Leaf vein generation), and PlantVR-MuPhi communica-
tion.

Finally, the simulation and visualization of structural and functional plant modeling
are implemented in order to improve and evaluate the modeling.

In this dissertation, new methods are developed for doing research in agriculture. We
bring different disciplines, e.g. plant sciences, mathematics and computer science, together
for a better understanding of the plant structures and their functions.

1.3 Description of the Content

This dissertation is organized into six chapters and three appendices. The first part of
this thesis is composed of one review chapter which provides the fundamental for the work
developed.

Chapter 2 is devoted to describe network systems and some examples. The classes of L-
systems and new code for plant structure are presented. The inverse problem of L-systems
is explained and network structures are reconstructed from two or three dimensional input
data.

Chapter 3 contains the proposed method of PTM and its improvements. The PTM
is introduced for generating leaf veins, plant shoot and root structures. The detail of
algorithms is given and results of simulation are presented.
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In Chapter 4, the interaction of root systems and the environment is treated. We model
and simulate the water flow in soil by Richards equation and nutrient flow by diffusion
and transport equations. The result simulation are visualized in 3D using transparent
technique.

In Chapter 5, the following software tools are introduced and discussed:

- PlantVR (Plant Virtual Reality),
- BranchRecon (Inverse problem of L-systems),
- LeafDS (Leaf surface design),
- LeafVein (Leaf vein generation),
- PlantVR-MuPhi Communication (PlantVR with MuPhi library).

Chapter 6 summarizes the conclusions and discusses the results and future work to be
done.

The appendices contain the rewriting algorithm in Pascal-code, data structure and
variables of plant prototype, L-system interpretation algorithm, and natural selection
algorithm, explicit formula needed for the parameter estimation in Chapter 2, and some
gallery results.

Finally, all softwares and some animations obtained in this dissertation are provided
in CD-ROM at the end of dissertation.



Chapter 2

Networks, L-systems and Plant
Prototype

“Nature is pleased with simplicity and
affects not the pomp of superfluous.”

— Isaac Newton (1642-1727)

This chapter describes general network structures and methods for representing net-
work structures using Lindenmayer systems. The classes of Lindenmayer Systems [see
Prusinkiewicz and Lindenmayer, 1990] are described. Lindenmayer systems (L-systems)
were conceived as a mathematical theory of plant development. Originally, they did not
include enough detail to allow for comprehensive modeling of higher plants. The emphasis
was on plant topology, that is, the neighborhood relations between cells or larger plant
modules. Their geometric aspects were beyond the scope of the theory. Subsequently,
several geometric interpretations of L-systems were proposed with a view to turning them
into a versatile tool for plant modeling.

This chapter is organized into three parts. First part, the general network structures
such as branching structures or plant structure is described. The methods for describing
the structure namely “classes of L-systems” are given in the second part (see Section 2.2).
The new improvement of L-systems used in this research is explained in Section 2.3, 2.4,
2.5 and 2.6. Finally, the third part describes the inverse problem of L-systems since the
input images can be retrieved from end user. It is fully explained in Section 2.7.

2.1 Networks

A network is a system of nodes and edges connecting nodes. Networks can be considered
embedded in space and dynamically evolving in time. Dealing with plant growth we
are considering dynamical networks embedded in R2 respectively in R3. A root and a
shoot system can be considered as a dynamical network in time, however, since it is
not sufficient, to consider only its topology, geometric properties have to be added and

7
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coded. In fact, concerned with biological growth, we have to formulate laws describing
the evolution of such a network. Since the physiological processes in the plant itself are
not well understood, we have to rely on phenomenological laws for the growth processes.

We remark here, that it is one of the challenges to Mathematics to tread processes on
dynamically evolving networks, stochastic or deterministic in its nature. Our investigation
is focussed on networks in plant growth. However, some of our results will be useful also for
networks in other situation. Here, we refer to some networks, where e.g. our contributions
to coding with L-systems and the corresponding inverse problem might be useful for the
networks of blood vessels, bronchia, neurons, bones, etc.

In plants, the transports of substrates and water are always in the network via xylem
and phloem. The connectivity of these networks have been built in different structures
based on their genetics, environment and interactions between genetics and environment.

This section describes the topology of graphs, directed graphs, networks and connec-
tivity, which will be used in the further sections.

2.1.1 Examples of Networks in Plants

This section shows some examples of plant networks, e.g. branch shoot networks of trees
in Figure 2.1, root networks in Figure 2.2, hairy roots in Figure 2.3, and leaf veins in
Figure 2.4.

Figure 2.1: Examples of tree networks.

Figure 2.2: Examples of root networks (left image: tree root system [Cermak, Retrived 2007],
right image : mangrove roots from wikipedia website).
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Figure 2.3: Examples of hairy roots (left image : root reactor [RootTec, Germany], right image
: from wikipedia website).

Figure 2.4: Examples of leaf vein networks.

2.1.2 Graph, Directed Graph, Network and Connectivity

This section describes the definition of graph, directed graph, and network and connec-
tivity. Graphs and networks are later used for connecting all plant components.

Graph

A graph for which the relations between pairs of vertices are symmetric, so that each edge
has no directional character (as opposed to a directed graph). Unless otherwise indicated
by context, the term “graph” can usually be taken to mean “undirected graph”. The
definition of graph is defined in Definition 2.1.

Definition 2.1 (Graph) A graph G = (V, E) consists of a set of vertices, V, and
a set of edges, E. Each edge is a pair (v, w), where v, w ∈ V. Edges are sometimes
referred to as arcs. If the pair is ordered, then the graph is directed. Directed graphs are
sometimes referred to as digraphs. Vertex w is adjacent to v if and only if (v, w) ∈ E.
In an undirected graph with edge (v, w), and hence (w, v), w is adjacent to v and v is
adjacent to w. Sometimes an edge has a third component, known as either a weight or a
cost.



10 Chapter 2: Networks, L-systems and Plant Prototype

Directed Graph

A graph in which each graph edge is replaced by a directed graph edge, is also called a
digraph. A directed graph having no multiple edges or loops (corresponding to a binary
adjacency matrix with 0s on the diagonal) is called a simple directed graph. A complete
graph in which each edge is bi-directed is called a complete directed graph. A directed
graph having no symmetric pair of directed edges (i.e., no bi-directed edges) is called an
oriented graph. A complete oriented graph (i.e., a directed graph in which each pair of
nodes is joined by a single edge having a unique direction) is called a tournament. The
definition of digraph is defined in Definition 2.2.

Definition 2.2 (Digraph) A digraph is an ordered pair of sets G = (V, A), where V is
a set of vertices and A is a set of ordered pairs (called arcs) of vertices of V.

Figure 2.5: Graphs, digraphs and networks (modified from [Bossomaier and Green, 2000]).

Figure 2.5 shows examples of undirected graph, directed graph and network. Un-
directed graph consists of set of vertices and edges. There are no direction specifying
between vertex as directed graph. In case of directed graph, the connection between node
is represented by arrow while the network represented by link from the start node to the
target node.

Network and Connectivity

Network is the combination of graph and directed graph. It consists of nodes and branches.
The connection of nodes is linked by branches. There are nine different network topolo-
gies given in Figure 2.6, e.g. fully connected topology, bus topology, star topology, ring
topology, tree topology, mesh topology, hybrid topology, dual ring topology, and linear
topology.

In plant structures, bus, tree, linear and hybrid topology can be used to represent
plant shoots and roots while the combination of star and ring topology can be applied for
leaf veins and combination of petals in flowers.
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Figure 2.6: Examples of network topology and nodes connectivity.

2.2 Lindenmayer Systems

In 1968, the theoretical biologist from the university of Utrecht, Aristid Lindenmayer
(1925-1989), introduced a new type of string-rewriting mechanism, called L-systems [see
Prusinkiewicz and Lindenmayer, 1990] (see Figure 2.7). The essential difference between
Chomsky grammars and L-systems lies in the method of applying productions. In Chom-
sky grammars production rules are applied sequentially, whereas in L-systems they are
applied in parallel and simultaneously replace all letters in an initial string. This dif-
ference reflects the biological motivation of L-systems. Production rules are intended to
capture cell divisions in multi-cellular organisms, where many cell divisions may occur
at the same time. Parallel production application has an essential impact on the formal
properties of rewriting systems.

This section describes the classes of L-systems from the rewriting systems, determinis-
tic and context-free L-systems (OL-systems), turtle interpretation of strings, modeling in
three dimensions, bracketed OL-systems, stochastic L-systems, edge and node rewriting,
parametric L-systems, and turtle interpretation of parametric words.

2.2.1 Rewriting Systems

The main concept of L-systems is rewriting method. The rewriting method is a technique
for defining complex objects by successively replacing parts of a simple initial object using
a set of rewriting rules or production rules [Prusinkiewicz and Lindenmayer, 1990]. The
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Figure 2.7: Aristid Lindenmayer, 1925-1989 (image from [Prusinkiewicz and Lindenmayer,
1990]).

classic example of graphical object defined in terms of rewriting rules is the snowflake curve
shown in Figure 2.8, proposed in 1905 by von Koch [Prusinkiewicz and Lindenmayer,
1990]. Mandelbrot restates this construction as follows:

One begins with two shapes, an initiator and a generator. The latter is an oriented
broken line made up of N equal sides of length r. Thus each stage of the construction
begins with a broken line and consists in replacing each straight interval with a copy of
the generator (see Figure 2.9), reduced and displaced so as to have the same end points
as those of the interval being replaced (from [Prusinkiewicz and Lindenmayer, 1990]).

An L-system is context-free if each production rule refers only to an individual symbol
and not to its neighbours. If a rule depends not only on a single symbol but also on its
neighbours, it is called a context-sensitive L-system. If there is exactly one production rule
for each symbol, then the L-system is said to be deterministic (a deterministic context-free
L-system is popularly called a D0L-system). If there are several production rules, and
each production rule is chosen with a certain probability during each iteration, then it is
a stochastic L-system.

2.2.2 Deterministic and Context-Free L-systems

Deterministic and context-free L-systems (DOL-systems) are the simplest class of L-
systems. We starts with an example that introduces the main concept in intuitive terms.

From the example in [Prusinkiewicz and Lindenmayer, 1990], we consider strings or
words built of two symbols a and b, which may occur many times in a string. Each
symbol is associated with a rewriting rule. The rule a → ab means that the letter a is
to be replaced by the string ab, and the rule b → a means that the letter b is to be
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Figure 2.8: Construction of the snowflake curve (image from [Prusinkiewicz and Lindenmayer,
1990]).

Figure 2.9: A step by step of the construction of the snowflake curve from Figure 2.8 in the first
iteration.

replaced by letter a. The rewriting method starts from a distinguished string called the
axiom. Assume that the axiom consists of a single letter b. In the first derivation step
(the first step of rewriting, n=1), the axiom the letter b is replaced by the letter a using
the production b → a. In the second step (n=2) a is replaced by ab using production a
→ ab. The word ab consists of two letters. Both of them are simultaneously replaced in
the next derivation step. Thus, a is replaced by ab, b is replaced by a, and the string aba
results. In a similar way, the string aba yields abaab which in turn yields abaababa, then
abaababaabaab, and so on as illustrated in Figure 2.10. The definition of DOL-systems is
defined in Definition 2.3.




n = 5 (iterations)
V : {a, b} (variables)
ω : b (axiom)
p1 : a→ ab (1st production rule)
p2 : b→ a (2nd production rule)

(2.1)



14 Chapter 2: Networks, L-systems and Plant Prototype

Figure 2.10: Example of a derivation in a DOL-system (image from [Prusinkiewicz and Linden-
mayer, 1990]).

Definition 2.3 (DOL-systems) Let V denote an alphabet, V ∗ the set of all words over
V. V + the set of all nonempty words over V. A string OL-system is an ordered triplet
G =< V, ω, P >, where

V is the alphabet of the system,
ω ∈ V + is a nonempty word called the axiom, and
P ⊂ V × V ∗ is a finite set of productions.

A production (a, χ) ∈ P is written as a→ χ. The letter a and the word χ are called
the predecessor and the successor of this production, respectively. It is assumed that for
any letter a ∈ V , there is at least one word χ ∈ V ∗ such that a → χ. If no production
is explicitly specified for a given predecessor a ∈ V , the identity production a → a is
assumed to belong to the set of productions P . An OL-system is deterministic (noted
DOL-system) if and only if for each a ∈ V there is exactly one χ ∈ V ∗ such that a→ χ.

Let µ = a1 . . . am be an arbitrary word over V . The word ν = χ1 . . . χm ∈ V ∗ is
directly generated by µ, noted µ⇒ ν, if and only if ai → χi for all i = 1, . . . , m. A word
ν is generated by G in a derivation of length n if there exists a developmental sequence of
words µ0, µ1, . . . , µn such that µ0 = ω, µn = ν and µ0 ⇒ µ1 ⇒ . . .⇒ µn.

The following example provides another illustration of the operation of DOL-systems.
The formalism is used to simulate the development of a fragment of a multi-cellular
filament such as that found in the blue-green bacteria Anabaena catenula and various
algae [Prusinkiewicz and Lindenmayer, 1990]. The symbols a and b represent cytological
states of the cells (their size and readiness to divide). The subscripts l and r indicate cell
polarity, specifying the positions in which daughter cells of type a and b will be produced.
The development is described by the following L-system:
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Figure 2.11: Development of a filament (Anabaena catenula) simulated using a DOL-system
(image from [Prusinkiewicz and Lindenmayer, 1990]).




n = 4 (iterations)
V : {al, ar, bl, br} (variables)
ω : ar (axiom)
p1 : ar → albr (1st production rule)
p2 : al → blar (2nd production rule)
p3 : br → ar (3rd production rule)
p4 : bl → al (4th production rule)

(2.2)

Starting from a single cell ar (the axiom), the following sequence of words is generated
in each iteration:




n = 0, ar

n = 1, albr

n = 2, blarar

n = 3, alalbralbr

n = 4, blarblararblarar

n = . . . , . . .

(2.3)

Under a microscope, the filaments appear as a sequence of cylinders of various lengths,
with a-type cells longer than b-type cells. The corresponding schematic image of filament
development is shown in Figure 2.11. Note that due to the discrete nature of L-systems,
the continuous growth of cells between subdivisions is not captures by this model.

For more general L-systems, an L-systems grammar is defined as a tuple G in Definition
2.4 and production rule is expressed in Definition 2.5.
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Definition 2.4 (L-systems grammar) L-system grammars are defined as a tuple G =
{V, S, ω, P}, where

V (the alphabet or variables) is a set of symbols containing elements that can be
replaced,

S (constants) is a set of symbols containing elements that remain fixed constants,
ω (start, axiom or initiator) is a string of symbols from V defining the initial state

of the system, and
P is a set of rules or productions defining the way variables can be replaced with

combinations of constants and other variables. A production consists of two strings
-the predecessor and the successor.

Definition 2.5 (Production rule) Production rule (a, χ) in L-systems grammar can be
written as a→ χ, where a is a predecessor which is replaced by a successor χ.

2.2.3 Turtle Interpretation of Strings

This section explains the interpretation of strings and shows some examples. In order
to model the higher plants, a graphical interpretation of L-systems is required. The first
results in this direction were published in 1974 by Frijters and Lindenmayer, and Hogeweg
and Hesper (see [Prusinkiewicz and Lindenmayer, 1990]). In both cases, L-systems were
used primarily to determine the branching topology of the modeled plants. The geometric
aspects, such as the lengths of line segments and the angle values, were added in a post-
processing phase. The results of Hogeweg and Hesper were subsequently extended by
Smith [Smith, 1984], who demonstrated the potential of L-systems for realistic image
synthesis.

Figure 2.12: Turtle interpretation of string (modified from [Prusinkiewicz and Lindenmayer,
1990]).

The basic idea of turtle interpretation is shown in Figure 2.12. There are three direc-
tions of turtle movement, e.g. left, forward, and right. The rotation angle is controlled by
symbol + for turning counter-clockwise and symbol − for turning clockwise. The symbol
F is walking forward with the constant length. Figure 2.12 shows the turtle movement of
string FFF − FF − F − F + F + FF − F − FFF . A state of the turtle is defined as a
triplet (x, y, α), where the Cartesian coordinates (x, y) represent the turtle’s position, and
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Table 2.1: The two-dimensional turtle interpretation.
Symbols Meaning
F Move forward a step of length d. The state of the turtle changes

to (x′, y′, α), where x′ = x + d cos(α) and y′ = y + d sin(α).
A line segment between points (x, y) and (x′, y′) is drawn.

f Move forward a step of length d without drawing a line.
+ Turn left by angle δ. The next state of the turtle is (x, y, α + δ).

The position orientation of angles is counter-clockwise.
− Turn right by angle δ. The next state of the turtle is

(x, y, α− δ). The position orientation of angles is clockwise.

the angle α, call the heading, is interpreted as the direction in which the turtle is facing.
Given the step size d and the angle increment δ, the turtle can respond to commands
represented by the following symbols in Table 2.1.

Given a string ν, the initial position of the turtle (x0, y0, α0), fixed parameters d and
δ , the turtle interpretation of ν is the figure (set of lines) drawn by the turtle in response
to the string ν in Figure 2.12(b). This method can be applied to interpret strings which
are generated by L-systems. For example, Figure 2.13 presents four approximations of
the quadratic Koch island. These figures were obtained by interpreting strings generated
by the following L-system:




n : 3 (Iterations)
V : {F} (V ariable or alphabets)
S : {−, +} (Constants)
ω : F − F − F − F (Axiom)
P : F → F − F + F + FF − F − F + F (Production rule)

(2.4)

The images correspond to the strings obtained in derivations of length 0 to 3. The
angle increment δ is equal to 90. The step length d is decreased four times between
subsequent images, making the distance between the endpoints of the successor polygon
equal to the length of the predecessor segment (see [Prusinkiewicz and Lindenmayer,
1990]).

2.2.4 Modeling in Three Dimensions

Turtle interpretation of L-systems can be extended to three dimensions following the ideas
of Abelson and diSessa [Prusinkiewicz and Lindenmayer, 1990]. The idea is to represent

the current orientation of the turtle in space by three vectors �X, �Y , �Z indicating the
direction in X-axis, Y-axis, Z-axis, respectively. These vectors have orthogonal unit vector
that satisfy the equation (2.5)
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Figure 2.13: Generating a quadratic Koch island (modified from [Prusinkiewicz and Linden-
mayer, 1990]).

�Z × �X = �Y . (2.5)

Rotations of the turtle are expressed by the equation (2.6)

[ �X ′ �Y ′ �Z ′] = [ �X �Y �Z] R (2.6)

where R is a 3 × 3 rotation matrix in equation (2.7). The rotations by angle θ about

vectors �X, �Y and �Z are represented by the following matrices:

Rx(θ) =


 1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 ,

Ry(θ) =


 cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)


 ,

Rz(θ) =


 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




(2.7)
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Table 2.2: The symbol of three-dimensional turtle interpretation.
Symbols Meaning

+ Roll counterclockwise by angle δz, using rotation matrix Rz(δz)
− Roll clockwise by angle δz, using rotation matrix Rz(−δz)
& Roll counterclockwise by angle δy, using rotation matrix Ry(δy)
ˆ Roll clockwise by angle δy, using rotation matrix Ry(−δy)
\ Roll counterclockwise by angle δx, using rotation matrix Rx(δx)
/ Roll clockwise by angle δx, using rotation matrix Rx(−δx)
| Roll back, using rotation matrix Ry(180)

The following symbols in set S control turtle orientation in three-dimensional space
as Figure 2.14.

Figure 2.14: Controlling the turtle in three-dimensions [Chuai-Aree, 2000].

In this case, set of constants S is defined as S = {+,−, &,̂ , \, /, |}. The meaning of
each constant in S is shown in Table 2.2.

2.2.5 Bracketed OL-systems

The definition of tree L-systems does not specify the data structure for representing axial
trees. One possibility is to use a list representation with a tree topology. Alternatively,
axial tree can be represented using strings with brackets [Prusinkiewicz and Linden-
mayer, 1990]. A similar distinction can be observed in Koch constructions, which can be
implemented either by rewriting edges and polygons or their string representations. An
extension of turtle interpretation to strings with brackets and the operation of bracketed
L-systems [Prusinkiewicz and Lindenmayer, 1990] are described below.

Two new symbols are introduced to represent a branch. They are interpreted by the
turtle in Table 2.3. A set of constants S is defined as S = {+,−, &,̂ , \, /, |, [, ]}. The
meaning of bracketed symbols in S is described in Table 2.3.
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Table 2.3: The bracketed symbols.

Symbols Meaning
Push the current state of the turtle onto a pushdown stack. The information

[ saved on the stack contains the turtles position and orientation,
and possibly other attributes such as the color and width of lines
being drawn
Pop a state from the stack and make it the current state of

] the turtle. No line is drawn, although in general the position of
the turtle changes

Figure 2.15: Bracketed string representation of an axial tree structure (modified from
[Prusinkiewicz and Lindenmayer, 1990]).

An example of an axial tree and its string representation are shown in Figure 2.15.
This example can be easily describe step by step for L-system interpretation (see Figure
2.16).

The interpretation starts with the arrow up with the symbol F (see Figure 2.16 in
the second image from left in the first row), starts a new branch with the symbol [, turns
left 45 degrees with +, draws the arrow with length F , moves back to the start point of
its branch with symbol ], and now the interpretation string becomes F [−F ] (see Figure
2.16 in the third image from left in the first row). The new right branch starts with the
symbol [ for opening the new branch , symbol − for turning right 45 degrees, symbol F
for drawing the arrow with length F . The interpretation is proceeded until all symbols
reached.

Derivations in bracketed OL-systems proceed as in OL-systems with out brackets. The
brackets replace themselves. Examples of two-dimensional branching structures generated
by bracketed OL-systems are shown in Figure 2.17.

Another example of a three-dimensional plat is shown in Figure 2.18. The L-systems
can be described and analyzed in a similar manner. Figure 2.18 illustrates some ex-
amples of a three-dimensional bush-like structure generated by a bracketed L-system
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Figure 2.16: Step by step bracketed string representation of an axial tree structure, red string
illustrates the structure in each step from left to right.

[Prusinkiewicz and Lindenmayer, 1990]. Production p1 creates three new branches from
an apex of the old branch. A branch consists of an edge F forming the initial internode,
a leaf L and an apex A (which will subsequently create three new branches). Productions
p2 and p3 specify internode growth. In subsequent derivation steps, the internode gets
longer and acquires new leaves. This violates a biological rule of subapical growth, but
produces an acceptable visual effect in a still picture. Production p4 specifies the leaf as a
filled polygon with six edges. Its boundary is formed from the edges f enclosed between
the braces { and }. The symbols ! and ’ are used to decrement the diameter of segments
and increment the current index to the color table, respectively.

Examples of branching structures generated by this L-system with derivations of length
7 are shown in Figure 2.18. Note that these structures look like different specimens of
the same plant species.

2.2.6 Stochastic L-systems

All plants generated by the same deterministic L-system are identical. An attempt to
combine them in the same picture would produce a striking, artificial regularity. In order
to prevent this effect, it is necessary to introduce specimen-to-specimen variations that
will preserve the general aspects of a plant but will modify its details.

Variation can be achieved by randomizing the turtle interpretation, the L-system, or
both. Randomization of the interpretation alone has a limited effect. While the geometric
aspects of a plant such as the stem lengths and branching angles are modified, the un-
derlying topology remains unchanged. In contrast, stochastic application of productions
may affect both the topology and the geometry of the plant. The definition of stochastic
OL-system is defined in Definition 2.6.

Definition 2.6 (stochastic OL-system) A stochastic OL-system is an ordered quadru-
plet Gp =< V, ω, P, π >. The alphabet V , the axiom ω and the set of productions P are
defined as in an OL-system. π is set of production probabilities mapped one to one into
P .
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Figure 2.17: Examples of plant-like structures generated by bracketed OL-systems (image from
[Prusinkiewicz and Lindenmayer, 1990]).

Function π : P → (0, 1], called the probability distribution, maps the set of productions
into the set of production probabilities. It is assumed that for any letter a ∈ V , the sum
of probabilities of all productions with the predecessor a is equal to 1.

We will call the derivation µ⇒ ν a stochastic derivation in Gπ if for each occurrence
of the letter a in the word µ the probability of applying production p with predecessor a
is equal to π(p). Thus, different productions with the same predecessor can be applied to
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Figure 2.18: A three-dimensional busk-like structure (image from [Prusinkiewicz and Linden-
mayer, 1990]).

various occurrences of the same letter in one derivation step.

A simple example of a stochastic L-system is given below.




V : {F} (Alphabet)
S : {+,−, [, ]} (Constants)
ω : F (Axiom)
P : {p1, p2, p3} (Production rules)
π : {0.33, 0.33, 0.34} (Production probabilities)
p1 : F →0.33 F [+F ]F [−F ]F (1st Production rule)
p2 : F →0.33 F [+F ]F (2nd Production rule)
p3 : F →0.34 F [−F ]F (3rd Production rule)

(2.8)

The three cases of the stochastic L-system in L-systems (2.8) can be visualized in the
graphical form as Figure 2.19. The production probabilities are listed after the derivation
symbol →. The production rules p1, p2 and p3 can be selected with approximately the
same probability of 0.33, 0.33 and 0.34, respectively.
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Figure 2.19: A stochastic L-system and its visualization of each production rule in L-system
(2.8), an axiom F , p1, p2, and p3 are arranged from left to right, respectively.

2.2.7 Edge and Node Rewriting

Random modification of productions gives little insight into the relationship between L-
systems and figures they generate. However, we often wish to construct an L-systems
which captures a given structure or sequence of structures representing a developmental
process. This is called the inference problem in the theory of L-systems. Although some
algorithms for solving it were reported in the literature [Prusinkiewicz and Lindenmayer,
1990], the are still too limited to be of practical value in the modeling of higher plants.
Consequently, the methods introduced below are more intuitive in nature. They exploit
two modes of operation for L-systems with turtle interpretation, called edge rewriting
and node rewriting using terminology borrowed from graph grammars [Prusinkiewicz
and Lindenmayer, 1990]. In the case of edge rewriting, productions substitute figures
for polygon edges, while node rewriting, productions operate on polygon vertices. Both
approaches rely on capturing the recursive structure of figures and relating it to a tiling
of a plane. Although the concepts are illustrated using abstract curves, they apply to
branching structures found in plants as well.

Edge rewriting identifies edges as specific types of edges, which the turtle does not
interpret, but the different types of edges affect rewriting rules.

Example:
Node rewriting substitutes new polygons for nodes of the predecessor curve.
The Hilbert curve can be expressed by a rewrite system (L-system). From L-system

2.4 we can write Hilbert curve in the form of G = {V, S, ω, P} as follows:




V : {L,R} (Alphabet)
S : {F, +,−} (Constants)
ω : L (Axiom)
P : {p1, p2} (Production rules)
p1 : L→ +RF − LFL− FR+ (1st production rule)
p2 : R→ −LF + RFR + FL− (2nd production rule)

(2.9)
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Figure 2.20: Construction of the E-curve on the square grid, a)Fl,b)Fl → FlFl +Fr +Fr−Fl−
Fl + Fr + FrFl−Fr −FlFlFr + Fl−Fr −FlFl−Fr + FlFr + Fr + Fl−Fl−FrFr+, c)Fr,d)Fr →
−FlFl+Fr+Fr−Fl−FlFr−Fl+FrFr+Fl+Fr−FlFrFr+Fl+FrFl−Fl−Fr+Fr+Fl−Fl−FrFr

(image from [Prusinkiewicz and Lindenmayer, 1990]).

In this case, F means “draw forward”, + means “turn left 90 degrees”, and − means
“turn right 90 degrees”. In order to write Hilbert curve in general rules, we can simply
write as follows (see L-system 2.10).

{
Ln+1 = +RnF − LnFLn − FRn+ (1st production rule)
Rn+1 = −LnF + RnFRn + FLn− (2nd production rule)

(2.10)

Figure 2.21: Recursive construction of the Hilbert curve in term of replacement (image from
[Prusinkiewicz and Lindenmayer, 1990]).

Figure 2.21 illustrates the recursive construction of the Hilbert curve in term of re-
placement by node rewriting method based on Ln and Rn and two production rules in
L-system 2.10.
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The curves are generated by either edge or node rewriting method. As in the case of
edge rewriting, the relationship between node rewriting and tiling of the plane extends
to branching structures. It offers a method for synthesizing L-systems that generate
objects with a given recursive structure, and links methods for plant generation based on
L-systems.

2.2.8 Parametric L-systems

Parametric L-systems operate on parametric words, which are strings of modules con-
sisting of letters with associated parameters. The letters belong to an alphabet V, and
the parameters belong to the set of real numbers �. A module with letter A ∈ V and
parameters a1, a2, . . . , an ∈ � is denoted by A(a1, a2, . . . , an). Every module belongs to
the set M = V ×�∗ , where �∗ is the set of all finite sequences of parameters. The set of
all strings of modules and the set of all nonempty strings are denoted by M∗ = (V ×�∗)∗

and M+ = (V ×�∗)+, respectively (see [Prusinkiewicz and Lindenmayer, 1990]).
The real-valued actual parameters appearing in the words correspond with formal

parameters used in the specification of L-systems productions. If Σ is a set of formal
parameters, then C(Σ) denotes a logical expression with parameters from Σ, and E(Σ)
is an arithmetic expression with parameters from the same set. Both types of expres-
sions consist of formal parameters and numeric constants, combined using the arithmetic
operators +,−, ∗, /; the exponentiation operator ˆ, the relational operators <,>, =; the
logical operator !, &, | (not, and, or); and parentheses ( ). Standard rules for constructing
syntactically correct expressions and for operator precedence are observed. Relational
and logical expressions evaluate to zero for false and one for true. A logical statement
specified as the empty string is assumed to have value one. The sets of all correctly con-
structed logical and arithmetic expressions with parameters from Σ are noted C(Σ) and
E(Σ). The definition of parametric OL-system is defined in Definition 2.7.

Definition 2.7 (A parametric OL-system) A parametric OL-system is defined as an
ordered quadruplet G =< V, Σ, ω, P >, where

• V is the alphabet of the system,

• Σ is the set of formal parameters,

• ω ∈ (V ×�∗)+ is a nonempty parametric word called the axiom,

• P ⊂ (V × Σ∗)× C(Σ)× (V × E(Σ))∗ is a finite set of productions.

The symbols : and→ are used to separate the three components of a production : the
predecessor, the condition and the successor. For example, a production with predecessor
A(t), condition time t > 5 and successor B(t + 1)CD(t̂ 0.5, t− 2) is written as

A(t) : t > 5 → B(t + 1)CD(t̂ 0.5, t− 2). (2.11)

A production matches a modules in a parametric word if the following conditions are
met:
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• the letter in the module and the letter in the production predecessor are the same,

• the number of actual parameters in the module is equal to the number of formal
parameters in the production predecessor, and

• the condition evaluates to true if the actual parameter values are substituted for
the formal parameters in the production.

A matching production can be applied to the module, creating a string of modules
specified by the production successor. The actual parameter values are substituted for
the formal parameters according to their positions. For example, production (L-system
(2.11)) matches a module A(9), since the letter A in the module is the same as in the
production predecessor, there is one actual parameter in the module A(9) and one formal
parameter in the predecessor A(t), and the logical expression t > 5 is true for t = 9. The
result of the application of this production is a parametric word B(10)CD(3, 7).

If a module a produces a parametric word χ as the result of a production application
in an L-system G, we write a→ χ. Given a parametric word µ = a1a2 . . . am, we say that
the word ν = χ1χ2 . . . χm is directly derived from (or generated by) µ and write µ⇒ ν if
and only if ai → χi for all i = 1, 2, . . . , m. A parametric word ν is generated by G in a
derivation of length n if there exists a sequence of words µ0, µ1, . . . , µn such that µ0 = ω,
µn = ν and µ0 ⇒ µ1 ⇒ . . .⇒ µn.

An example of a parametric L-system is given below in (2.12).




V : {A,B}
Σ : {x, y}
ω : B(2)A(4, 4)
P : {p1, p2, p3, p4}
p1 : A(x, y) : y <= 3 → A(x ∗ 2, x + y)
p2 : A(x, y) : y > 3 → B(x)A(x/y, 0)
p3 : B(x) : x < 1 → C
p4 : B(x) : x >= 1 → B(x− 1)

(2.12)

As in the case of non-parametric L-systems, it is assumed that a module replaces
itself if no matching production is found in the set P. The words obtained in the first few
derivation steps are show in Figure 2.22.

2.2.9 Turtle Interpretation of Parametric Words

If one or more parameters are associated with a symbol interpreted by the turtle, the
value of the first parameter controls the turtles state. If the symbols are not followed
by any parameter, default values specified outside the L-system are used as in the non-
parametric case. The basic set of symbols affected by the introduction of parameters is
listed below in Table 2.4.

It should be noted that symbols +, &, and / are used both as letters of the alphabet
V and as operators in logical and arithmetic expressions. Their meaning depends on the
context.
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Figure 2.22: The initial sequence of strings generated by the parametric L-system specified in
prototype (2.12) (image from [Prusinkiewicz and Lindenmayer, 1990]).

Table 2.4: The turtle interpretation of parametric words.
Symbols Meaning
F (a) Move forward a step of length a > 0. The position of the turtle changes

to (x′, y′, z′), where

x′ = x + a �Xx

y′ = y + a �Xy

z′ = z + a �Xz.

A line segment is drawn between points (x, y, z) and (x′, y′, z′).
f(a) Move forward a step of length a without drawing a line.
+(a) Rotate about Z-axis by an angle of a degrees.

If a is positive, the turtle is turned to the left and if a is negative,
the turn is to the right.

&(a) Rotate about Y-axis by angle of a degrees.
If a is positive, the turtle is pitched down and if a is negative,
the turtle is pitched up.

/(a) Rotate about X-axis by an angle of a degrees.
If a is positive, the turtle is rolled to the right and if a is negative,
it is rolled to the left.
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2.3 Plant Structures and Their Functions

This section roughly describes about plant structures; i.e. shoot, root, leaf, flower, and
their functions. Plants were classified to be a member in domain of Eukaryota and
kingdom of Plantae by Haeckel (1866). Plants are a main group of living things including
familiar organisms, e.g. trees, flowers, ferns, herbs, and mosses. There are about 350,000
species of plant defined. Figure 2.23 shows plant components and some functions of leaves,
shoot, root components (see [Bell and Bryan, 1993a,b]).

Plants are living things that make their own food using energy from the sun by photo-
synthesis processes. There are thousands of different plants on earth, some living on land
and others in water. Each type of plant has different structural features to help it survive
in each environmental condition. The most common type of plant is the flowering plant;
they are all made up of roots, stems, leaves and flowers.

Roots, which are most often found in the ground, are important for plants water,
nutrient uptake and starch storage. Roots also help stabilize the plant as they hold it
firmly in the ground. Roots provide anchorage in the soil. Root hairs provide huge surface
area for water and nutrient absorption. Root tip is the area of cell division. Root cap
protects and lubricates the growing root.

The stem of a plant transports water from roots to leaves so that the plant can
grow, leaves can develop, and sunlight can be found for the formation of food through
photosynthesis. Stems also support the leaves, flowers and fruits in the plant life cycle.
Leaves grow from the stem of the plant and can have many different shapes and sizes.
The transformation of the suns energy into food, photosynthesis, generally takes place in
the leaves, so all actual plants have leaves.

Leaves are also important in regulation of water. Transpiration, or release of water,
takes place in the leaves so that the roots can draw in fresh water. There are two types
of leaves, simple and compound; simple leaves are those with only one leaf blade on a
stalk while compound leaves are those with more than one leaf blade on a single stalk.
Leaves are a plant’s food factory. They are the main site of photosynthesis, where sugars
are made from water and carbon dioxide, using sunlight energy.

The illustrations of leaf structures and leaf connection to its stem are given in Figure
2.24 and Figure 2.25. The examples of leaf margins are shown in Figure 2.26. They show
many different types of leaf margins, e.g. undulate, sinuate, serrate, dentale, lobate, scal-
loped, palmate, digitate, bipinnatisect, tripinnatisect, pinnatisect, palmatisect, pedate,
palmatilobate, bipartite, tripartite, palmatipartite, pinnatipartite, and pinnatifid.

Flowers are responsible for reproduction, production of seeds that can grow into new
plants. Many parts of the flower are designed for reproduction. Flowers begin as buds,
with sepals surrounding them for protection. The sepals are forced apart to reveal the
petals as the flower starts to bloom. The petals surround the pistol and stamen of the
flower that interact for reproduction. In the center of the flower is the pistil, the female
part that contains the ovary, which houses the egg cells, called ovules. Stamens, the male
parts of the flower, surround the pistil. Each stamen has a stalk, called the filament, that
holds up the anther where pollen is produced. When the pollen is ripe it is released from
the anther into the air so it can come into contact with the pistil. The pollen fertilizes
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Figure 2.23: Plant structure, plant components and their functions (image from Royal Botanic
Gardens Kew (England) [Bell and Bryan, 1993a,b]).
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Figure 2.24: Example of leaf structure with single leaf and branch with alternative buds,
leaf structure consists of leaf tip, leaf blade, lateral vein, central vein and auxiliary bud.
There is lateral bud at each node and terminal bud at the branch tip. (image from
http://www.infovisual.info)

Figure 2.25: Example of leaf structure with compound leaves and branch with opposite buds,
this compound leaves consist of five leaves. The petiole is the connection of all leaves with the
main stem. (image from http://www.infovisual.info).

the ovules in the ovary and seeds begin to form. Flowers’ beautiful petals are designed
to attract pollinators, such as bees and butterflies. Some petals even have markings that
point in the direction of the nectar the bees have come to collect.



32 Chapter 2: Networks, L-systems and Plant Prototype

Figure 2.26: Example of leaf margins, e.g. undulate, sinuate, serrate, dentale, lobate, scal-
loped, palmate, digitate, bipinnatisect, tripinnatisect, pinnatisect, palmatisect, pedate, pal-
matilobate, bipartite, tripartite, palmatipartite, pinnatipartite, and pinnatifid. (image from
http://www.infovisual.info).

Figure 2.27: Example of flower structure, the flower components consist of petal, stamen,
anther, filament, carpel, stigma, style, ovary, ovule, receptacle and sepal. (image from
http://hawaii.hawaii.edu).
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2.3.1 Plant Components and Their Representations

Problem 2.1 How do we represent plant structures?

This sections describes plant components and component representations using L-
systems. In Section 2.2, the classes of L-systems are explained in detail. They have
attracted the attention of the computer scientists who investigated them through formal
language theory. Specialists in computer graphics, particularly Prusinkiewicz have used
the L-systems to produce realistic images of trees, bushes, flowers and some images are
well illustrated in [Prusinkiewicz and Lindenmayer, 1990].

For a three dimensional movement, a component is free to move in any X, Y, or Z
direction. Hence, the directional angles in this case are three directions. The initial three
directional angles, ax, ay, az of the first unit movement are set with respect to X, Y and
Z axes, respectively. The directional angles of the other unit movements are computed in
a similar fashion to that of the two dimensional case. Three constants, dx, dy, dz, are used
to adjust the direction of the unit movements. In addition, the physical location of the
unit movement must be represented by XY Z coordinates. Therefore, a unit movement
described in the Cartesian coordinate system is denoted by a hexaplet (X, Y , Z, ax, ay,
az). After adding/subtracting dx, dy, dz, the new XY Z coordinates of the movement
is computed by multiplying the coordinates of the current movement with the rotation
matrices Rx, Ry, Rz shown in equation (2.7). The rotation of a unit movement and its
direction are captured in a symbolic form similar to two dimensional case by using these
symbols /, \, &, ˆ , +, -, and |. The meaning of each symbol is explained in Table
2.5. We are now define the terms of “L-symbols” in the definition 2.8.

Definition 2.8 (L-symbols) L-symbols are letters in set V ∪S representing set of plant
components and set of plant orientations S in plant prototype, where V = { I, i, P, p, A,
L, F} and S = { /, \, &, ˆ , +, -, |, [, ] }.

The meaning of each symbol is described in Table 2.5.

2.3.2 L-system Prototype

This section presents L-string definition and format used in L-system prototype. Some
examples of L-system prototype are shown in simple L-system and Stochastic L-system.
The definition of L-string is defined in Definition 2.9.

Definition 2.9 (L-string) An L-string is a sequence of the combination of letters in
set V ∪ S representing the final string after rewriting the L-system at the nth iteration.

An example of a simple turtle in a 3-dimensional space is given in production rule
(2.13). (dx = dy = dz = 45, ax = ay = az = 0)

Shoot = I[−IL][+IL]I[+IL]I[−IL]I[+IL]I[−IL][+IL]IF
Root = I[+I]I[−I]I[+I]I[−I]I[+I]I[−I]I[+I]I

(2.13)
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Table 2.5: The symbol of three-dimensional turtle interpretation of plant structure.
Symbols Meaning

I Generate the plant shoot/root internode
i Generate the plant shoot/root short internode
P Generate the plant shoot/root petiole
p Generate the plant shoot/root short petiole
A Generate the plant shoot apex or root tip
L Generate the plant shoot leaf
F Generate the plant shoot flower

+(δz) Roll counterclockwise by angle δz, using rotation matrix Rz(δz)
−(δz) Roll clockwise by angle δz, using rotation matrix Rz(−δz)
&(δy) Roll counterclockwise by angle δy, using rotation matrix Ry(δy)
ˆ(δy) Roll clockwise by angle δy, using rotation matrix Ry(−δy)
\(δx) Roll counterclockwise by angle δx, using rotation matrix Rx(δx)
/(δx) Roll clockwise by angle δx, using rotation matrix Rx(−δx)
| Roll back, using rotation matrix Ry(180)
[ Push the current state of the turtle onto a pushdown stack to create

a new branch
] Pop a state from the stack and make it the current state of the turtle

to close the branch

Figure 2.28: A simple L-system interpretation of simple plant.
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The simple script of L-systems in production rule (2.13) can be visualized in Figure
2.28.

We define the symbol “I” for an internode, “L” for a leaf and “F” for a flower of the
plant. From the example in shoot there are 13 internodes - six internodes for the main
stem, seven internodes for petioles and their leaves in each direction - and one flower.
In root part, there are 15 internodes - eight internodes for taproot, seven internodes for
lateral roots. The visualized image is shown in Figure 2.28.

2.3.3 Stochastic L-systems

To implement variation of plant structures, the probability distribution of all possible
cases for all species can be observed and categorized in m different possible cases with
probability pj where j = 1, 2, 3, ...,m. The production rule can be represented by the
equation (2.14). 


ai → p1µ1, p2µ2, p3µ3, ..., pmµm,

m∑
j=1

pj = 1, and 0 < pj < 1
(2.14)

where ai, pj, µj are predecessor of ith production rule, probability value of jth species,
and successor of jth species, respectively. The summation of probability values of all
possible successors m in ith production rule is equal to one.

The syntax of the production rule is defined as the following format

Pred = (Prob1)Succ1, (Prob2)Succ2, (Prob3)Succ3, . . . , (Probn)Succn, (2.15)

where Pred is the predecessor of successor Succi with probability value Probi when
i = 1, 2, 3, ..., n. The sum of probabilities of all successors with the same predecessor Pred
is equal to one.

For example, a simple stochastic L-system is given in production rule (2.16).

I = (0.40)I[+iL]I, (0.30)I[−iL]I, (0.30)I[−iL][+iL]I (2.16)

In the above production rule, the predecessor I is to be replaced by one of three
possible cases in a set of successors with probability values 0.40, 0.30, 0.30, respectively.
It can be visualized in Figure 2.29.

Figure 2.29: An example of stochastic L-System, (a) is (0.40)I[+iL]I, (b) is (0.30)I[−iL]I, and
(c) is (0.30)I[−iL][+iL]I.
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2.4 Plant Module Design

Problem 2.2 How can we design the plant module based on L-systems?

The L-system description of a plant is defined in form of a set of iterations, a set of
directional and a sizing parameters, an initial string, a set of production rules and a set
of terminating productions. This description has the following format in Table 2.6.

Table 2.6: The L-system prototype for plant representation.

Plant Name { Root {
Shoot { Iterations=Nr

Iterations=Ns Angle=δr

Angle=δs Diameter=Dr

Diameter=Ds Axiom=ωr

Axiom=ωs Production 1
Production 1 Production 2
Production 2 . . .
. . . Production nr

Production ns Endrule
Endrule Endproduction 1
Endproduction 1 Endproduction 2
Endproduction 2 . . .
. . . Endproduction mr

Endproduction ms }
} }

The meaning of each keyword in Table 2.6 is given as follows:

Plant Name
Plant Name is the name of the plant module. There are two modules of a plant pro-

totype. They are “Shoot” and “Root”, respectively. The prototype of the shoot module
is similar to the root module and uses the same keyword.

Shoot, Root
Shoot and Root are used to separate the shoot (see subscript with s) and root (see

subscript with r) module, respectively.

Iterations=N
This input sets the number of iterations N for selecting and rewriting the production

rules where N ≥ 0 . Each production rule is selected according to the appearance of the
symbols in the current string.
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Angle=δ

This angle δ is used to set the angle of the branch where −360 ≤ δ ≤ 360. For exam-
ple, symbol “-” is to turn right by an angle δ , symbol “ ˆ ” is to pitch up by an angle δ
and symbol “/” is to roll right by an angle δ.

Diameter=D

This diameter D syntax is used to set the diameter of the first internode where D > 0.
The other internodes are controlled by the given function related to the first internode.

Axiom=ω

This axiom ω string is used to set the initial state of the plant structure. The first
internode is located at the origin (0,0,0) and pointed towards the positive Y axis. The
three angles for a 3-dimensional space (ax, ay, az) are set to zero for the first internode.

Production 1 . . . Production n

Each production consists of a set of predecessor and successor(s). The format of pro-
duction is given in production rule (2.15). The probability of normal production rule is
equal to 1. The predecessor is a set of single character and the successor is a set of string.

Endrule

To terminate the rewriting of a production rule, a terminating symbol must be sub-
stituted for the corresponding symbol used by the endproduction rule . The substitution
rules are defined in the endproduction 1 to endproduction m. The endproduction rules
are only called at the last N th iteration.

Endproduction 1 . . . Endproduction m

The format of endproduction rule is the same as the production rule. The endproduc-
tion is used to prevent some symbols which are not in { I, i, P, p, L, F, A }.

Character “{” and “}” The character “{” and “}” are the beginning and the end-
ing of L-systems structure, respectively.

Figure 2.30 shows an example of 3D plant both in shoot and root part from the plant
prototype in the left side. In the L-system code, there are Shoot and Root part. Each
part consists of its own sub L-system. There are three iterations, rotating angle of each
branch and sub-branch for 45 degrees, initial diameter for 1.5 units, one production rule,
and three end production rules in the shoot part. In the root part, it consists of two
iterations, 20 degrees for rotating angle, one unit for initial root diameter, two production
rules and two end production rules, respectively. After rewriting method in both shoot
and root part, the transformation of L-string in graphical form is visualized in the plant
structure as Figure 2.30.

We now have the plant prototype for generating the plant structure, but the growth
processes are needed to embed into the plant symbols. In this new method, the number
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Figure 2.30: An example L-system prototype and 3D plant structure both in shoot and root
module.

of iteration is not used to animate the plant development, but the sigmoidal function of
each plant component is combined during the growth processes. Next section describes
more detail in growth function.

2.5 Growth Function

Problem 2.3 How can we grow the plant using L-systems?

This section explains the growth function used in this dissertation. The collected
data from experiment can be used to calculate the appropriate parameter values. The
raw data are approximated as a growth function in Figure 2.31 using a sigmoidal curve
approximation.

The raw data are converted to growth function G(t) of length or width at time t and
is given below,
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Figure 2.31: Sigmoidal curve approximation of G(t).

G(t) = L +
U − L

1 + em(T−t)
(2.17)

where

L : the minimum value of length, width or diameter,
U : the maximum value of length, width or diameter,
m : the approximated slope of raw data,
T : the time at G(t) = (U + L)/2, and
t : the independent time variable.

Besides the growth function, there is another function that we use to control all the
components of the plant topology, such as, the length of each internode from the first to
the last internode. The function is

Yi = c(a)ni (2.18)

where Yi is the length of internode i, c is a constant, a is a real value greater than zero
and ni is the level of internode i. We also use this equation to control the size of petiole,
leaf, flower from the first to the last level. The initial time of each component is specified
by the following linear equation.

Bi = βni + b (2.19)

where Bi is the initial time of component i, β is the acceleration rate of Bi, ni is the
level of component i and b is a constant. Every component of plant is controlled by its
growth function with either the same or different slope m, time T, the maximum U and
the minimum L.
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2.5.1 Growth Functions in Plant Components

This section describes growth function of growing plant based on logistic equation. The
collected data can be approximated by parameter estimation using non-linear regression.
The Levenberg-Marquardt method is applied for minimizing total square error E.

Growth Model

The exponential growth function had been widely used at the beginning of growth model-
ing. Let G(t) be growth value or biomass of organism at time t. The exponential growth

rate dG(t)
dt

at time t is proportional to the growth value G(t), which is written in equation
(2.20).

dG(t)

dt
∝ G(t) (2.20)

The exponential growth function is given in the ordinary differential equation form as
follows.

dG(t)

dt
= αG(t) (2.21)

The solution of equation (2.21) is

G(t) = βeαt (2.22)

where α is growth rate constant of G(t) and β is initial biomass G(0). Since the
exponential growth function has no bounded value, which cannot be described for real
biomass for large time. The equation (2.22) is modified by adding the negative feedback

term (1− G(t)
U

). The growth rate of biomass converges to the limited upper bounded value
U .

Figure 2.32 shows the comparison of exponential and logistic growth with the same
value of α = 0.2. The growth value of both curves has the same growth behavior until
t ≤ 35, then exponential curve is exploding fast while logistic curve is converging to
carrying capacity U .

dG(t)

dt
= αG(t)(1− G(t)

U
) (2.23)

From equation (2.23), the feedback term (1− G(t)
U

) converges to 1 when G(t)� U and
converge to zero when G(t) reaches the limited growth value U as G(t) → U . Therefore
the growth rate of the first stage is based on exponential growth and decreasing to be
zero when G(t) converges to limited growth value U . The solution of equation (2.23) is

G(t) =
U

1 + e−α(t−β)
(2.24)

where G(t) is growth value or biomass, t is time, U , α and β are parameters of growth
function.
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Figure 2.32: Comparison of exponential growth (β = 0.001, α = 0.2), logistic growth (U =
100, α = 0.2, β = 60).

The growth rate parameter α represents the width or steepness of sigmoidal curve in
Figure 2.33(c), re-labelled m. The limit value parameter U specifies the different upper
bounded value of logistic growth. The parameter β specifies the time when the growth
reaches U

2
, or the time midpoint of the growth behavior, re-labelled T . The equation

(2.24) is rewritten as Sigmoidal Growth equation (2.25).

G(t) =
U

1 + em(T−t)
(2.25)

where G(t) is growth value or biomass, t is independent time variable, U is limit growth
parameter, m is growth rate parameter and T is midpoint time parameter of growth at
G(t) = U

2
.

Equation (2.24) can be rewritten by changing parameter α in the form of ∆t which
means the growth period from 10% to 90%. It is visualized in Figure 2.35.

Let tU10% be the growth value at 10%. So that G(tU10%) is defined in equation (2.26),

G(tU10%) =
10

100
U (2.26)

and growth value at tU90% is
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Figure 2.33: Logistic curves from equation (2.24), (a) different U , α, β, (b) different U , (c)
different α, (d) different β.

Table 2.7: Three parameters of logistic curves in Figure 2.33.
Curves G1(t) G2(t) G3(t)

Parameters U α β U α β U α β
Figure (a) 5.00 0.25 25 10.0 0.50 35 15.0 0.75 45
Figure (b) 5.00 0.50 35 10.0 0.50 35 15.0 0.50 35
Figure (c) 10.0 0.25 35 10.0 0.50 35 10.0 0.75 35
Figure (d) 10.0 0.50 25 10.0 0.50 35 10.0 0.50 45

G(tU90%) =
90

100
U (2.27)

Substitute equation (2.26) into equation (2.24), we get
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Figure 2.34: Comparison of logistic growth (left) and its growth rate (right) with parameters
(U = 100, m = 0.2, T = 60).

Figure 2.35: Growth period at 10% to 90%.

10

100
U =

U

1 + e−α(tU10%−β)

9 = e−α(tU10%−β)

ln(9) = −α(tU10% − β)

(2.28)

and substitute equation (2.27) into equation (2.24),
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90

100
U =

U

1 + e−α(tU90%−β)

1

9
= e−α(tU90%−β)

−ln(9) = −α(tU90% − β).

(2.29)

Subtract equation (2.28) by (2.29), we have

ln(81) = α(tU90% − tU10%). (2.30)

Let ∆t be the time of growth period from 10% to 90%, then ln(81) = α(∆t) and

α = ln(81)
∆t

. Finally, substitute α into the equation (2.24), we get

G(t) =
U

1 + e−
ln(81)

∆t
(t−β)

. (2.31)

Parameter β controls the growth period at 1
2
U , we change parameter β in the form of

T which means the time at maximum growth rate.
Let T be G(T ) = U

2
and substitute G(T ) into equation (2.31), we get

U

2
=

U

1 + e−
ln(81)

∆t
(T−β)

1 = e
−
ln(81)

∆t
(T − β)

0 = − ln(81)

∆t
(T − β)

T = β

(2.32)

Rearrange equation (2.31) and use T = β , it can be written as

G(t) =
U

1 + e
ln(81)

∆t
(T−t)

. (2.33)

The equation (2.33) is comparable to equation (2.25) which means m = ln(81)
∆t

.

We now have the derivation of growth function used in this work. In reality, plants
are growing from the seed to be the actual plant with different growth behaviors: growth
period, stable growth period, decreasing growth period, stable growth after decreasing
stage, and death stage. In order to implement these behaviors, next section explains
more detail in mathematical functions.
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2.5.2 Plant Growth Process with Five Stages

For actual plant growth process, the growth function consists of five stages (see Figure
2.36). There are growth stage G1(t), stable stage G2(t), decreasing stage G3(t), stable
after decreasing stage G4(t) and death stage G5(t). Each stage is shown in equations
(2.34).

In equation (2.34) and Figure 2.36, there are eight time intervals. These functions,
G1(t), G2(t), G3(t), G4(t) and G5(t), are used in 0 ≤ t < T2, T2 ≤ t < T3, T3 ≤ t < T5,
T5 ≤ t < T6 and T6 ≤ t ≤ T8, respectively. The growth process with five stages are
written in the following equations (2.34),

G1(t) = L +
U − L

1 + em1(T1−t)
for 0 ≤ t < T2,

G2(t) = U for T2 ≤ t < T3,

G3(t) = L1 +
U − L1

1 + e−m2(T4−t)
for T3 ≤ t < T5,

G4(t) = L1 for T5 ≤ t < T6,

G5(t) = L +
L1 − L

1 + e−m3(T7−t)
for T6 ≤ t ≤ T8,

(2.34)

where L : the minimum value of length, width or diameter,
L1 : the minimum value of length, width or diameter in

the decreasing stage,
U : the maximum value of length, width or diameter,
m1 : the approximated slope of raw data in the growth stage,
m2 : the approximated slope of raw data in the decreasing stage,
m3 : the approximated slope of raw data in the death stage,
T1 : the time at G(t) = (U + L)/2,
T2 : the starting time at G(t) = U in the stable stage

after growth stage,
T3 : the ending time at G(t) = U in the stable stage

before decreasing,
T4 : the time at G(t) = (U + L1)/2,
T5 : the starting time at G(t) = L1 in the stable stage

after decreasing,
T6 : the ending time at G(t) = L1 in the stable stage

after decreasing,
T7 : the time at G(t) = (L1 + L)/2,
T8 : the ending time at G(t) = L in the death stage, and
t : the independent time variable.

Function G3(t), G4(t) and G5(t) are designed for optional processes in biological be-
haviors.



46 Chapter 2: Networks, L-systems and Plant Prototype

Figure 2.36: Prototype of five stages of growth function.

We now have the sigmoidal functions describing in different growth behaviors of plant
growth. From the general experiments, the collected data can be approximated for solving
the optimal parameter values. The next section provides the parameter estimation based
on sigmoidal function.

2.5.3 Parameter Estimation Based on Sigmoidal Function

Problem 2.4 How can we estimate all parameters in N -pulses sigmoidal function?

This section describes a procedure of parameter estimation for approximation the
optimal parameters of sigmoidal growth function in equation (2.25). The model function
can be modified in N -pulses of the general sigmoidal growth function. It is given in
equation (2.35).

G(t) =
U1

1 + em1(T1−t)
+

U2

1 + em2(T2−t)
+ ... +

UN

1 + emN (TN−t)

=
N∑

k=1

(
Uk

1 + emk(Tk−t)
)

(2.35)

To simplify more general parameters, all parameters in equation (2.35) can be rewritten
to
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G(t) =
a1

1 + ea2(a3−t)
+

a4

1 + ea5(a6−t)
+ ... +

a3N−2

1 + ea3N−1(a3N−t)
or

=
N∑

k=1

(
a3k−2

1 + ea3k−1(a3k−t)
)

= G(t; a)

(2.36)

where G : the growth function of nonlinear regression equation or dependent variable,
t : the time variable or independent variable of nonlinear regression equation,
a : the parameters of nonlinear regression equation.

The Levenberg-Marquardt (LM) method is used for calculating the set of parameter
values of nonlinear regression equation. Let n be the number of measured data points
(ti, Gi) ; i = 1, 2, 3, . . . , n with m parameters; aj; j = 1, 2, 3, . . . , m.

Sum square error (SSE) is calculated from observed data Gt and approximated value
G(t; a) at time t in equation (2.37).

E(a) =
n∑

i=1

(Gi −G(ti; a))2

=
n∑

i=1

(
Gi −

N∑
k=1

(
Uk

1 + emk(Tk−ti)
)

)2

=
n∑

i=1

(
Gi −

N∑
k=1

(
a3k−2

1 + ea3k−1(a3k−ti)
)

)2

(2.37)

where E(a) : the sum square error of nonlinear regression equation,
Gi : the growth value of measured data at ith data point,
G : the growth function of nonlinear regression equation or dependent variable,
ti : the time variable or independent variable at ith data point, and
a : the parameters of nonlinear regression equation.

E(a) can be written in second order of Taylor’s series in equation (2.38).

E(at+1) ≈ E(at) +∇E(at)
T · (at+1 − at) + 1

2
(at+1 − at)

T · ∇2E(at) · (at+1 − at)(2.38)

where

∇E(at) =




∂E(at)

∂a1t

∂E(at)

∂a2t
...

∂E(at)

∂amt




, (2.39)
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and ∇2E(at) can be computed from equation (2.40).

∇2E(at) =




∂2E(at)

∂a1t∂a1t

∂2E(at)

∂a1t∂a2t

∂2E(at)

∂a1t∂a3t

. . .
∂2E(at)

∂a1t∂amt

∂2E(at)

∂a2t∂a1t

∂2E(at)

∂a2t∂a2t

∂2E(at)

∂a2t∂a3t

. . .
∂2E(at)

∂a2t∂amt

∂2E(at)

∂a3t∂a1t

∂2E(at)

∂a3t∂a2t

∂2E(at)

∂a3t∂a3t

. . .
∂2E(at)

∂a3t∂amt
...

...
...

. . .
...

∂2E(at)

∂amt∂a1t

∂E(at)

∂amt∂a2t

∂E(at)

∂amt∂a3t

. . .
∂2E(at)

∂amt∂amt




= [hi,j]

=

[
∂2E(at)

∂ait∂ajt

]
∀i, j; where i, j = 1, 2, 3, ...,m, andm = 3N.

(2.40)

Equation (2.38) can be rewritten in gradient vector g and Hessian matrix H in equation
(2.41).

E(at+1) = E(at) + gT · (at+1 − at) +
1

2
(at+1 − at)

T ·H · (at+1 − at) (2.41)

where g : the vector of first order partial derivative of E(at),
H : the vector of second order partial derivative of E(at),

To compute parameter a for minimizing an error E(a), the partial derivative with
respect to an is computed as follows:

∂E(at+1)

∂at

=
∂E(at)

∂at

+
∂gT · (at+1 − at)

∂at

+
1

2

∂(at+1 − at)
T ·H · (at+1 − at)

∂at

0 =
∂E(at)

∂at

+ gT (−1) + H(at+1 − at)(−1)

(2.42)

consider the minimum point by given ∂E(at)
∂at

= 0, then

0 = gT + H(at+1 − at)

at+1 = at −H−1g,
(2.43)

The term H−1g in equation (2.43) is step size of changing of parameter a in each
iteration. Levenberg-Marquardt proposed to change the term H−1g to (H + λI)−1g in
order to reduce the number of iteration. It means the step size is small when λ is big and
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step size is big when λ is small. This method results in the reduction of the number of
iteration by equation (2.44). The λ value depends on E(a) in each iteration.

at+1 = at − (H + λI)−1g, (2.44)

To reduce the complexity for calculation the matrix H, we can derive H in term of
Jacobian matrix (see [Suratgar et al., 2005]). The equation (2.44) can be rewritten in the
following equation

at+1 = at − (2J · JT + λI)−1J, (2.45)

where H ∼= 2J · JT + S, S =
∑n

i=1(E(ai) · ∇2E(ai)), but S is small value, then
H ∼= 2J · JT .

Levenberg-Marquardt’s Algorithm for Parameter Estimation

The Levenberg-Marquardt’s Algorithm is a well-known method for optimizing error [Press
et al., 1992]. The algorithm is given in the following consecutive steps in Algorithm 2.1.

Algorithm 2.1 LevMar

1. Given an initial guess for the set of fitted parameters a0, (t = 0) and tolerance value
σ (i.e. 10−10),

2. Compute gradient vector g and Hessian matrix H,

3. Take a modest value for step size λ, let λ = 0.001,

4. Calculate δat+1 = (H + λI)−1g and consider the following conditions,

• If E(at+1) ≥ E(at) increase λ by a factor of 10 then compute (4),

• If E(at+1) < E(at) decrease λ by a factor of 10, update the trial solution
at+1 = at + δat+1,

• If E(at+1) ≤ σ then stop the process, else compute (4), where σ is minimum
error,

5. Solution of the set of fitted parameters is at+1.

Finally, we get all fitted parameter values from the parameter estimation method. All
fitted parameter values can be used in the model to simulate the plant growth processes.
The next section describes the procedure of plant simulation and shows some results.
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2.6 Procedure of Plant Simulation

Problem 2.5 How does the plant simulation work?

2.6.1 L-system Transformation

After measuring the plant, we have the plant structure as L-system code. There are
two parts of L-system code. The first part is shoot module and the second part is root
module. The L-strings of shoot and root parts are generated by rewriting of shoot and
root modules (No. 1, No.3) and these L-strings represent the shoot and root structures
(No. 2, No. 4) of the plant, respectively. These processes are given in Figure 2.37.

Figure 2.37: L-system transformation (see [Chuai-Aree et al., 2002]).

The structure of simulation starts from data collection of the actual plant and also
captures the structure of the plant to be the L-system code. The measured data are
approximated by the growth function based on a sigmoidal curve. The L-system code is
compiled by the rewriting method to be an L-string at the last iteration. The L-string and
the growth function of each symbol are combined together and represent the structure
of the plant and its development. The system generates the 3D-plant development by
visualization method. We have to evaluate the plant growth and adjust some parameters,
such as, the size of each internode, to make the plant model and plant growth to look
more realistic. The flow diagram of our simulation is shown in Figure 2.38.

In order to understand the plant structure using the stochastic and bracketed L-
systems, an example of plant structure is given below. There are three iterations of shoot
part and root part. The shoot part has only one production rule with three cases of
stochastic L-system and one endproduction rule A=IL. For the root part there are four
production rules using the stochastic L-system, one production rule using normal rule and
five endproduction rules A, B, C, D and E.
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Figure 2.38: Flow diagram for simulating and visualizing of plant growth [Chuai-Aree et al.,
2002].

Plant{
Shoot{

Iterations = 3
Angle = 45
Diameter = 0.7
Axiom = A
A = (0.33)A[+A]A[−A]A, (0.33)A[+A]A, (0.34)A[−A]A
Endrule
A = IL
}
Root{

Iterations = 3
Angle = 45
Diameter = 0.5
Axiom = ii[−A][+B][/C][\D]E
A = (0.5)I[+A][/A][\A]A, (0.25)I[+A][/A]A, (0.25)I[+A][\A]A
B = (0.5)I[−B][/B][\B]B, (0.25)I[−B][\B]B, (0.25)I[−B][/B]B
C = (0.5)I[−C][+C][\C]C, (0.25)I[−C][\C]C, (0.25)I[+C][\C]C
D = (0.5)I[−D][+D][/D]D, (0.25)I[+D][/D]D, (0.25)I[−D][/D]D
E = I[−A][+B][/C][\D]E
Endrule
A = I
B = I
C = I
D = I
E = I
}
}
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The given L-system code is compiled and then we get the different sequences of the
production rules. From the example there are 27 different structures (33 different struc-
tures, 3 cases of stochastic rule for 3 iterations) of shoot part and 312 different structures
(81 cases of stochastic rule for 3 iterations) of root part.

Figure 2.39: The different plant structure generated by Stochastic L-system [Chuai-Aree et al.,
2002].

Fifteen of twenty-seven structures of this plant prototype are given in Figure 2.39.
There are two lines of the number of each plant structure. The first line is the sequence of
shoot structure and the root structure is given in the second line. The visualized images
of plant growth from time t=22 to t=80 are shown in Figure 2.40.

The visualization of the example is shown in vegetative state. Cylinders are used
to represent internodes and petioles segments. Spheres are used to represent jointed
internodes. Triangular polygons are used to represent leaves and flowers.
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Figure 2.40: The development of plant growth from time t=22 to t=80 [Chuai-Aree et al., 2002].
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2.6.2 Discussion and Conclusion

A prototype program called PlantVR has presented to create the continuous development
of plant shoot and root models by parametric functional symbols based on the bracketed
L-system and stochastic L-system. The optional Endrule keywords are added to the
L-system in order to prevent some symbols that are not defined for plant definition in
Table 2.5. The visualization technique makes the plant looking more realistic and every
component can be controlled by the growth functions. The development of plant growth
is smoother and more natural. This prototype can be used to generate a realistic model
of the plant.

The prototype can be improved to observe the plant growth from specific experiments,
e.g. the experiment of plant growth based on environmental factors; light, water, nutrient,
pH, and salinity. The prototype can be shown in Figure 2.41. The growth functions
approximated from parameter estimation are based on the specific experiments.

Figure 2.41: Diagram of plant simulation and visualization in PlantVR.
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2.7 Inverse Problem of L-Systems

Problem 2.6 How can we reconstruct the L-systems code from input image or volume?

This section describes the inverse problem of L-Systems which representing the branch-
ing structures, e.g. root, shoot, leaf structures in 2D and 3D structure. Not only the plant
structure, but also the other branching structures for example the vein, lung or other
structures in human body can be applied.

L-systems have been used to generate and describe the geometrical structures for
example, branch structures, graph structures, both in biology and medicine. The L-
systems consist of a number of iteration n, an initial string ω and a set of production
rules P . The production rules are a set of predecessors a and successors χ. They are
written as the form a → χ. The production rules have been defined and analyzed from
the real structure by a structure decomposition manually. The rules are compiled and
transformed to represent 2D and 3D structure. However, the complicated structures are
not easy to decompose and time consuming to get such production rules. In this section,
we propose an algorithm to solve this problem automatically from 2D input images by
given initial pixels (picture elements) or voxels (volume elements). The data acquisition
can be retrieved from 2D image scanner, camera, CT-scanner or MRI. The methods
namely Region and Volume Growing Methods are applied to bound the target object.
The skeletonizing method is an important part in our reconstruction. The L-systems are
reconstructed for representing the structure from 2D input image or sliced images of the
volume data.

In recent years there has been significant interest in using graph-based abstraction
of skeleton for qualitative shape recognition. The application of such methods has af-
fected very much in biology, medicine, image recognition, etc. There are many different
methods to overcome the reconstruction of branching structures. Some methods are very
sensitive to noisy disturbance. Methods based on Voronoi techniques in [Russ, 1995] pre-
serve topology, but heuristic pruning measures are introduced to remove unwanted edges.
Methods based on Euclidean distance functions in [Russ, 1995] can localize skeletal points
accurately, but often at the cost of altering the object’s topology. In this dissertation we
introduce a region growing method, which is represented by the method of finite difference
method. It is easy to implement in order to calculate the target object.

Figure 2.42 shows the diagram of L-systems for describing the plant structure in
Chuai-Aree et al. [Chuai-Aree et al., 2005a]. The inverse problem of L-systems is the
method to reconstruct the branch structures from 2D input image or sliced images of the
volume data to a set of production rules.

This section is divided into 11 parts as follows: data acquisition, computed tomog-
raphy, the flow diagram for reconstruction method of branching structures, anisotropic
diffusion filtering, region and volume growing method, skeletonizing method, construction
of branching structures, resolution reduction, L-string construction algorithm, experiment
and results, and discussion and conclusion, respectively.
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Figure 2.42: The transformation of L-systems, L-string, plant structure and its inverse problem.

2.7.1 Data Acquisition

Problem 2.7 How can we retrieve the input data both in 2D and 3D?

The data acquisition can be retrieved from 2D image scanner, camera, CT-Scanner
or MRI by scanning the source of data. 2D image containing the tree-like network,
e.g. photographs, 3D volume data of soil i.e pot of root, human body having network
structures; i.e. lung structure, blood vessels, and other sources of data can be used as
input data for the process of inverse problem of L-systems. Figure 2.43 shows some 2D
examples of branch structures of plant, rice root, leaf vein, and neuron. An example of
3D input data using CT-scanner is presented in Figure 2.44. We scanned the pot of plant
using CT-scanner for observing root structures.

2.7.2 Computed Tomography (CT) Scanner

This section presents an example of CT data from soil volume in cylindrical pipe. The
volume size is 512 × 512 × 1278 voxels (W × H × L). The gray level of each voxel in
cylinder volume represent the X-ray absorbance. Plant roots have a value between -100
and +300. Air is -1000, water is 0, clay is between +900 and +1200, sand is between
+500 and +800. Organic matter has the same absorbance as root. It can be distinguished
from the roots only on morphology - roots are ”wormlike” structures. We are working
with organic deposits build up 2-mm-thick horizontal layers in the soils. The range of
X-ray absorbance of plant is presented in Figure 2.45.

Figure 2.46 shows the cylindrical pot of canola root. The cross-section and distribution
of soil particles before planting the canola plant was coded by using Amira software and
shown in Figure 2.47.
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(a) brach image (b) rice root

(c) leaf vein (d) neuron image

Figure 2.43: Example of 2D input images containing network structure, (a) branch image, (b)
rice root, (c) leaf vein, (d) neuron image.

Figure 2.48, Figure 2.49, and Figure 2.50 illustrate the canola pot with vertical cross-
section, soil particles, segmented canola root, tunnels used for fertilizer injection, and
organic matters.

Figure 2.51 shows the segmented canola root with organic deposit layers in the pot.
The root are growing to the organic layers which are in the same range of X-ray absorbance
as the roots.
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Figure 2.44: Example of 3D input data using CT (Computed Tomography) scanner (at CT
Abteilung, DKFZ, Germany).

Figure 2.45: The range of X-ray absorbance of plant pot using CT (Computed Tomography)
scanner.
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(a) (b)

Figure 2.46: Example of canola root in cylindrical pot.

Figure 2.47: The range of X-ray absorbance of cylindrical pot before planting canola plant using
CT scanner. It was coded and viewed in Amira software.
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(a) (b)

Figure 2.48: Example of canola pot with vertical cross-section, (a) they consist of air, root
system, organic matter, sand, clay and tunnel for fertilizer injection, (b) the segmented canola
root system was reconstructed [Kolesik, 2004] using Amira software.

(a) (b)

Figure 2.49: Example of canola pot with vertical cross-section, (a) the segmented canola root
and tunnels used for fertilizer injection, (b) the segmented canola root system with root skeleton.
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(a) (b)

Figure 2.50: Example of canola pot with vertical cross-section, (a) the segmented canola root
skeleton with color coded diameter, (b) the root path following organic deposit layer.

(a) (b)

Figure 2.51: Example of canola pot, (a) the segmented canola root with organic deposit layer
in the pot, (b) another view of segmented root in the pot.
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Problem 2.8 If there are some branches or network structures in a given input image
or volume, how can we reconstruct the network structure?

To solve the Problem 2.8, we have to segment the network structures from the given
image or volume (see Section 2.7.3).

2.7.3 Flow Diagram for Reconstruction of the Branching Struc-
tures

This section proposes the method for reconstructing the branching structure from an
input image and 3D volume data. There are seven consecutive steps given in the following
algorithm:

Algorithm 2.2 ReconProc

1. Read all sliced input images with the width W, height H, and Length L (L = 1 for
2D, L > 1 for 3D),

2. Do preprocessing the input image or volume by smoothing, de-noising, edge/surface
preservation by anisotropic diffusion filtering,

3. Proceed with the region (2D) or volume (3D) growing method by given pixels pi(x, y)
or voxels pi(x, y, z),

4. Do thinning and skeletonizing method,

5. Generate the network of branching structure and resolution reduction.

6. Generate L-system production rules or L-string.

7. Print L-system production rules or L-string to the output file.

There are seven steps of each procedure in Figure 2.52. The flow diagram starts by
reading the input image for 2D and sliced images for 3D. The preprocessing step is applied
by using anisotropic diffusion filtering. Either region or volume growing method is started
by the set of given initial starting points. After the growing process stopped, thinning and
skeletonizing method are applied, respectively. The network is reconstructed and network
resolution is reduced. The L-system production rules are generated and ready for further
uses.
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Figure 2.52: Flow diagram of reconstruction process of branching structure described in Algo-
rithm 2.2 [Chuai-Aree et al., 2007].

The example input images and volume sliced images are shown in Figure 2.53.

2.7.4 Anisotropic Diffusion Filtering

Anisotropic diffusion filtering is the method for smoothing, edge preservation, and de-
noising process [Perona and Malik, 1990] and [Weickert, 1998]. In this section we use the
technique of the Perona-Malik (PM) model in [Perona and Malik, 1990] to process the
smoothing, edge preservation and de-noising before doing region growing method, since
this method can be grown very easily if the input image was smoothed by anisotropic
diffusion process.

The nonlinear diffusion filtering of PM-model is based on the equation

∂tu = div(g(|∇u|2)∇u), (2.46)

and it uses diffusivity such as

g(s2) =
1

1 + s2/λ2
u

. (2.47)

The λu is conduction coefficient, where 20 ≤ λ ≤ 100, and s = |∇u| is absolute
gradient of gray intensity u.

One advantage of nonlinear diffusion filtering is the combination of disconnected lines.
The example of disconnected lines of branching structure is shown in Figure 2.54. The
result after diffusion filtering is useful for region growing method. The equation (2.46) is
solved by using finite difference method.

2.7.5 Region and Volume Growing Methods

This method is called “Seeded Region Growing” and it was introduced by Rolf Adams and
Leanne Bischof [Adams and Bischof, 1994]. They presented a new method for segmen-



64 Chapter 2: Networks, L-systems and Plant Prototype

Figure 2.53: Example of input images and volume sliced images of volume data [Chuai-Aree
et al., 2007], neuron and rice root images from [Strzodka and Telea, 2004], leaf network from [Ash
et al., 1999b], and actual soil volume data from P. Kolesik [Kolesik, 2004]

Figure 2.54: Example of nonlinear diffusion filtering for combination of disconnected lines [Chuai-
Aree et al., 2007].

tation of intensity images, which is robust, rapid and free of tuning parameters. These
characteristics allow implementation of one very good algorithm which could be applied to
a large variety of images. This method, however, requires selection of seed regions, what
has to be done manually and it classifies this approach to the class of semiautomated algo-
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rithms. The algorithm grows these seed regions until all image pixels have been processed.
The region growing method is kind of a Level-Set Method [Sethian, 1999].

The input images of this thesis are assumed to contain the branch structures. The
system is started by giving the initial starting pixels on the branching structure. The
initial pixels will be growing around the given points and diffuse under the condition of
gray intensity of each pixel. If the considered pixel satisfies the condition in branching set,
that pixel will be taken into the set of branching structure. The development of growing
process is computed by the finite difference method. In 3D case, the pixel is considered
as the voxel.

Figure 2.55: Example of input image, the color image (left) converted to the gray-scale image
(right) [Chuai-Aree et al., 2007].

The pixel pi,j consists of four elements namely red (RRi,j), green (GGi,j), blue (BBi,j)
for color image and gray (Y Yi,j). The color input image is converted to gray-scale image
as Figure 2.55 by using the following equation (2.48).

Y Yi,j = Round(0.299 ∗RRi,j + 0.587 ∗GGi,j + 0.114 ∗BBi,j);
∀Y Yi,j,∀RRi,j,∀GGi,j,∀BBi,j ∈ {0, 1, 2, ..., 255} (2.48)

Where Y Yi,j, RRi,j, GGi,j, and BBi,j are gray intensity of gray image, red, green,
and blue channel of color image, respectively. Y Yi,j is the integer value from 0 (black) to
255 (white) value. The Round function returns the integer value for Y Yi,j intensity. The
color intensities RRi,j, GGi,j, and BBi,j are also integer value from color image. The gray
intensity bar is shown in Figure 2.56.

We define I, B, G as a set of all pixels in input gray-scale image for 2D or set of all
voxels in input gray-scale volume image for 3D, set of pixels which is branching structure,



66 Chapter 2: Networks, L-systems and Plant Prototype

Figure 2.56: The gray-scale intensity bar from zero intensity (black) to 255 intensity (white)
with the range [a, b] and current point p.

and set of given initial pixels, respectively. So then we have G ⊆ B and B ⊆ I. The
description of each set is given below.

I =



{pi,j | (0 ≤ pi,j ≤ 255) ∧ (1 ≤ i ≤ W )∧

(1 ≤ j ≤ H)} for 2D
{pi,j,k | (0 ≤ pi,j,k ≤ 255) ∧ (1 ≤ i ≤ W )∧

(1 ≤ j ≤ H) ∧ (1 ≤ k ≤ L)} for 3D

B = {p ∈ I | (a ≤ Int(p) ≤ b) ∧ (0 ≤ a ≤ 255) ∧ (0 ≤ b ≤ 255) ∧ (a ≤ b)}

G = {∃p | p ∈ B}

(2.49)

Where W, H, L, a and b are the width, height, depth of the image, the minimum and
maximum intensity value of branching structure set, respectively. The value of a, b, and
p are illustrated in the Figure 2.56. The function Int(p) is the intensity of pixel p.

Figure 2.57 shows the setup of an input image and shows the eight directions of region
growing method around the initial given pixel. The step by step of region growing method
is represented in Figure 2.58.

Region growing algorithm for 2D image

This section describes a step by step of the region growing method. From the given input
image to the target branch region, there are eight consecutive steps as follows.

Algorithm 2.3 RGM2D

1. Load all pixels Pi,j from input image, convert to gray intensity value and store in
an array M as original gray-scale array. The size of array M is H×W.

2. Initialize zero array MOld and MNew for calculating the growing method. The size
of array MOld and MNew is W× H.

3. Define the set of given initial pixels G by user and set the value of the initial points
in array MOld to the medium intensity, e.g. 128.

4. Define the condition of a and b in equation (2.49) for region growing method by
user. The considering interval of branching structure will be in [InitialValue - a,
InitialValue + b]. The InitialValue is gray intensity of the last given pixel.
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Figure 2.57: Setup of the input image and given initial pixel.

Figure 2.58: Growing method of each step.

5. Start the region growing method.

6. Set Oldpoint = 0, Newpoint = 1, Iteration= 0
While (Oldpoint �= Newpoint) do {
Set Oldpoint=Newpoint , and Iteration = Iteration + 1
For all elements in M do {
If (Mi,j ≥MGx,Gy − a) and (Mi,j ≤MGx,Gy + b) Then {
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• Region growing of each pixel pi,j in G by considering the 8-neighboring pixels,
we use the following equation to proceed the growing method.

MNew
i,j = MOld

i,j + Round(0.99 ∗ (MOld
i−1,j + MOld

i+1,j

+MOld
i,j−1 + MOld

i,j+1 + MOld
i−1,j−1 + MOld

i+1,j−1

+MOld
i−1,j+1 + MOld

i+1,j+1 − 8 ∗MOld
i,j ))

(2.50)

• Take all new neighboring points in to G, which satisfy the condition in B. If
MNew

i,j �= 0, it means the pixel pi,j satisfies the condition.

• Count all growing points in G and set the value to Newpoint.

} // If
} // For
} // While

7. Update B = G and set B is stored information of branching structure satisfying the
condition in B.

8. The array MNew and B will be used for skeletonizing method.

After executing the Algorithm 2.3(RGM2D), we use a clover plant as a case study. Six
initial pixels (red label) are given in Figure 2.59. The region growing method is running
until reaching all clover pixels.

Volume growing algorithm for 3D volume data

Figure 2.60 shows an example of soil volume with canola root scanned by CT scanner.
The given size of input volume is 512× 512× 1313.

The volume growing method is given in the following steps in Algorithm 2.4. There
are eight steps for processing the volume growing method in the 3D volume data.

Algorithm 2.4 VGM3D

1. Load all voxels Pi,j,k from sliced input images, convert to gray intensity value and
store to an array M as original gray-scale array. The size of array M is W×H×L.

2. Initial zero array MOld and MNew for calculating the growing method. The size of
array MOld and MNew is W×H×L.

3. Define the set of given initial voxels G by user and set the value of the initial points
in array MOld to the medium intensity, e.g. 128.

4. Define the condition of a and b in equation (2.49) for volume growing method by
user. The considered interval of branching structure will be in [InitialV alue − a,
InitialV alue + b]. The InitialV alue is gray intensity of the last given voxel.
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Figure 2.59: Region growing in branching structure of the clover plant.

5. Start the volume growing method.

6. Set Oldpoint = 0, Newpoint = 1, Iteration = 0
While (Oldpoint �= Newpoint) do {
Set Oldpoint=Newpoint , and Iteration = Iteration + 1
For all elements in M do {
If (Mi,j,k ≥MGx,Gy,Gz − a) and (Mi,j,k ≤MGx,Gy,Gz + b) Then {

• Region growing of each voxel pi,j,k in G by considering the 26-neighboring
voxels, we use the following equation (2.51) to proceed the growing method.

MNew
i,j,k = MOld

i,j,k + Round(0.99 ∗ (MOld
i−1,j,k−1 + MOld

i+1,j,k−1

+MOld
i,j−1,k−1 + MOld

i,j+1,k−1 + MOld
i−1,j−1,k−1

+MOld
i+1,j−1,k−1 + MOld

i−1,j+1,k−1 + MOld
i+1,j+1,k−1

+MOld
i,j,k−1 + MOld

i−1,j,k + MOld
i+1,j,k + MOld

i,j−1,k

+MOld
i,j+1,k + MOld

i−1,j−1,k + MOld
i+1,j−1,k + MOld

i−1,j+1,k

+MOld
i+1,j+1,k + MOld

i−1,j,k + MOld
i+1,j,k + MOld

i,j−1,k

+MOld
i,j+1,k + MOld

i−1,j−1,k + MOld
i+1,j−1,k + MOld

i−1,j+1,k

+MOld
i+1,j+1,k + MOld

i+1,j+1,k+1 − 26 ∗MOld
i,j,k))

(2.51)
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Figure 2.60: Example of CT volume data of plant root.

• Take all new neighboring voxels into G, which satisfy the condition in B. If
MNew

i,j,k �= 0, it means the voxel pi,j,k satisfies the condition.

• Count all growing voxels in G and set the value to Newpoint.

} // If
} // For
} // While

7. Update B = G and set B is stored information of branching structure satisfying the
condition in B.

8. The array MNew and B will be used for skeletonizing method.

Figure 2.61 shows the sequence of volume growing method of root data in several steps
after applying Algorithm 2.4(VGM3D). The remark for a very fast computation of region
and volume growing method is simply calculated by using only MOld instead of MNew on
the left hand side in equation (2.50) and (2.51). The region and volume growing methods
can be accelerated for fast computation.
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Figure 2.61: Development of volume growing method of root data in several steps after giving
the initial root voxel in the pot data. The processing will stop when there is no increasing of
the number of root voxels [Chuai-Aree et al., 2007].
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2.7.6 Skeletonizing Methods

Problem 2.9 How can we calculate the skeleton of reconstructed network?

This section presents the method how to proceed the thinning process from B from the
previous section. After the thinning process was done, the skeleton of branching structure
can be found.

Skeletonization is the method for peeling off of a pattern as many pixels as possible
without affecting the general shape of the pattern. It means after pixels have been peeled
off, the pattern is still connected with one pixel line width. The skeleton hence obtained
must have the following properties; as thin as possible, connected, centered. In this
dissertation, we have improved the so-called Hilditch’s Algorithm for skeletonization.

Hilditch’s Algorithm and Improvement

There are two versions for Hilditch’s algorithm [Azar and Toussaint, 1997], one using a
4x4 window and the another one using a 3x3 window. Here we are concerned with the
3x3 window version. Hilditch’s algorithm consists of performing multiple passes on the
pattern and on each pass.

Definition 2.10 (Hilditch’s Window Setup) A 3× 3 window is arranged by the se-
quence (p2,p3), (p3,p4), (p4,p5), (p5,p6), (p6,p7), (p7,p8), (p8,p9), (p9,p2). The p1 is
the center of the window. It is shown in Figure 2.62(a).

(a) (b) (c)

Figure 2.62: A setup of Hilditch’s algorithm, (a) point labels from p1 to p9, (b) Fa(p1) = 1,
Fb(p1) = 2, (c) Fa(p1) = 2, Fb(p1) = 2.

Consider the following 8-neighborhood of a pixel p1 from Figure 2.62, we want to
decide whether to peel off p1 or keep it as part of the resulting skeleton. For this purpose
we arrange the eight neighbors of p1 in a clock-wise order and we define two functions:
Fa(p1) and Fb(p1). The function Fa(p1) counts the number of (0,1) pattern corresponding
to pixel p1. It means the two neighboring pixels are arranged from white pixel (zero) to
black pixel (one). The function Fb(p1) counts only the number of non-zero neighbors of
pixel p1. Each pixel pi will be set to one if it is black pixel, otherwise it will be set to zero
since we need the multiplication (*) in the third and fourth conditions of the algorithm.
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Definition 2.11 (Hilditch’s Functions) The Hilditch’s algorithm consists of two func-
tions; Fa(p1) and Fb(p1). They are defined as follows:

1. Function Fa(p1) returns the number of (0,1) patterns (or number of arrow in Fig-
ure 2.63) in the sequence (p2,p3), (p3,p4), (p4,p5), (p5,p6), (p6,p7), (p7,p8), (p8,p9),
(p9,p2), and

2. Function Fb(p1) gives a number of non-zero neighbors of pixel p1.

(a) (b) (c)

Figure 2.63: Function Fa(p1) and Fb(p1) from Figure 2.62, (a) cycle of pattern from p2 to p9,
(b) Fa(p1) = 1 (number of arrows represents (0,1) pattern), Fb(p1) = 2, (c) Fa(p1) = 2 (two
arrows for two (0,1) patterns), Fb(p1) = 2.

From Figure 2.62(b) and 2.63(b), we have Fa(p1) = 1 since there is only one (0,1)
pattern from pixel (p9, p2) and Fb(p1) = 2 because of the non-zero neighbors of pixel p2
and p3. The same procedure is applied to Figure 2.62(c) and 2.63(c). It shows Fa(p1) = 2
and Fb(p1) = 2.

The Hilditch’s algorithm checks all the pixels and decides to change a pixel from black
to white (or change the value of 1 to 0) if it satisfies the following definition:

Definition 2.12 (Hilditch’s Algorithm) The pixel p1 is removed from the image I if
it satisfies the following four conditions:

1. 2 ≤ Fb(p1) ≤ 6,

2. Fa(p1) = 1,

3. p2 ∗ p4 ∗ p8 = 0 or Fa(p2) �= 1, and

4. p2 ∗ p4 ∗ p6 = 0 or Fa(p4) �= 1, stop when nothing changes (no more pixels can be
removed).

Before calculating the skeleton of an given object, the height field map has to be
proceeded as the following algorithm.
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Figure 2.64: The height field map for the thickness of branching structure, (a) given object, (b)
edge detection, (c) height field map (black is low, white is high distance).

Height field map algorithm for 2D images

This section explains the height field map algorithm for an input image. There are two
steps shown in Algorithm 2.5(HFM2D):

Algorithm 2.5 HFM2D

1. Track the edge detection (in Figure 2.64)(b)) from array M and put to the set of
boundary points E and other points to the set O when O = B − E.

2. For all points j in O do {
• initial dminj = W + H

• For all points i in E do {
– Calculate the distance di,j =

√
(xj − xi)2 + (yj − yi)2

– if dminj > di,j then dminj = di,j

}
}

The input image I in gray-scale is given in Figure 2.64(a). The edge detection algo-
rithm is applied in Figure 2.64(b). Finally, the result after processing this algorithm is
shown in Figure 2.64(c).

Height field volume algorithm for 3D volume data

In case of 3D volume data, we expand the calculation in the previous section to volume
data to label the value of distance from the boundary of the found object after region and
volume growing method. There are two consecutive steps as follow:
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Algorithm 2.6 HFV3D

1. Track the edge/surface detection from array M and put to the set of boundary
voxels E and other voxels to the set O when O = B − E.

2. For all voxels j in O do {
• initial dminj = W + H + L

• For all voxels i in E do {
– Calculate the distance di,j =

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

– if dminj > di,j then dminj = di,j

}
}

Skeletonizing algorithm for 2D images

In 2D input image, we apply the skeletonizing method after using region growing method.
This section shows six consecutive steps in Algorithm 2.7(Skel2D) for calculating the
skeleton from the given image.

Algorithm 2.7 SKel2D

1. Take the array MNew from the region growing method.

2. For all elements in MNew {
• Set the value of each element in array M to 1 if MNew

i,j �= 0.

}
3. Calculate height field map (see Figure 2.64 for 2D).

4. Start the thinning process

• For all elements in MNew do {
– If MNew

(i,j) �= 0 then MOld
i,j = 1 else MOld

i,j = 0

}
• Set Oldpoint = 0, Newpoint = 1, and Iteration = 0

• While (Oldpoint �= Newpoint) do {
– Oldpoint = Newpoint, Iteration = Iteration + 1

– Set zero array C with size H×W.
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– For all elements in MNew {
∗ Compute the Hilditch’s algorithm

∗ Count Newpoint

} // For

} // While.

5. Remove some jagged points along the skeleton of branching structure and update
B. Array MNew and set B are stored the information of branching structure.

6. Record the thickness information of the branching structure from calculating height
field map.

After having the result from Algorithm 2.3 in Figure 2.59, then we apply the Algorithm
2.7. We are now having the result from skeletonizing method in Figure 2.65.

Figure 2.65: Skeletonization in branching structure of the clover plant.
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Skeletonizing algorithm for 3D volume data

In 3D volume data, we calculate skeleton by applying the peeling off process from outside
and label the number of each layer. The Skel3D is presented in the Algorithm 2.8.

Algorithm 2.8 SKel3D

1. Take the array MNew from the volume growing method.

2. For all elements in MNew do
- Set the value of each element in array M to 1 if MNew

i,j,k �= 0 for 3D.

3. Calculate depth field value (DFV) of each voxel by peeling off process.
For all elements in MNew do {
- Set the depth field value at position DFVi,j,k = 1
- Count Np if depth field value DFVi,j,k = 1
}

Iteration = 1

While (Np > 0) do {

• Iteration = Iteration + 1

• For all elements in MNew {
- Count the number of its 26-neighbors (Cp) if DFVi,j,k = 1,
- If Cp < 20 then set the depth field value of current voxel DFVi,j,k = Iteration,
} // For

• Count Np if depth field value DFVi,j,k = 1

} // While.

4. Construct the skeleton from the maximum DFVi,j,k to the smaller value by replacing
the sphere and removing the smaller spheres inside the bigger sphere and connect
them to its neighbors,

5. Remove some jagged points along the skeleton of branching structure and updating
B. Array MNew and set B are stored the information of branch structure,

6. Record the thickness information of the branch structure from calculating depth
field value.
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2.7.7 Construction of the Branching Structures

Problem 2.10 How can we construct the branching structure of reconstructed network?

After skeletonizing method, the skeleton of branching structure is stored in array
Mnew and set B. Since all the skeleton points are not connected to each other by the
line connection yet, this section is described the algorithm to generate the network and
remove some unnecessary points, which are on the same straight line.

Algorithm for constructing the branching network

This section shows the algorithm to construct the branching network after using the
skeletonizing method. The seven consecutive steps are shown as follows.

Algorithm 2.9 CBN

1. Initialize a stack S and start with a user supplied point for generating the network,

2. Calculate the nearest given starting point R in array MNew and push point R into
Stack S,

3. Set point R as a root node of the branching structure T,

4. Set M old = MNew for marking the path that was discovered,

5. While (Stack S is not empty) do {
• Pop a point Pi,j from the top of stack S and set the value of MOld

i,j = 0,

• Look for all neighboring points of Pi,j with a value is equal to 1, and push them
to stack S (If there are no neighboring point of Pi,j, the point Pi,j will be set
as a terminated point.),

• Set all neighboring points of Pi,j as children of Pi,j and mark the value of that
point in array MOld to be 0,

} // While

6. Finally, the network of branching structure T is constructed.

The next step, resolution reduction is needed to remove some unnecessary points.

2.7.8 Resolution Reduction

Problem 2.11 How can we reduce the resolution of the reconstructed network?

Up to now the network of branching structure T has been reconstructed, but it is still
having a high resolution. In this section, we propose the algorithm to reduce the number
of point in the network in Algorithm 2.10 (see Figure 2.66). The L-string construction is
given in Algorithm 2.10.
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(a) (b) (c)

Figure 2.66: Resolution reduction process, (a) structure of considered point B for removing, (b)
network before reduction, and (c) network after reduction.

Resolution reduction algorithm

This section explains the resolution reduction after executing the Algorithm 2.9(CBN ).
There are five steps in the following algorithm.

Algorithm 2.10 ResRed

1. Consider the network of branching structure T,

2. Start the process at the root node R of branching structure T,

3. For all nodes in T do {
• For every 3 nodes, and each node has only one child, A is the parent of B and

B is the parent of C,

• If node A, B, and C are on the same line, then calculate the angle between−→
BA and

−−→
BC,

• If the angle between
−→
BA and

−−→
BC ≤ (180 ± δ), then remove node B from T,

where δ is the resolution angle for removal,

} // For

4. Finally, the network of branching structure T is regenerated.
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2.7.9 Algorithm for L-string Construction

Problem 2.12 How can we construct the L-string description from the reconstructed
network?

This section is the final section for constructing the L-string from the branch structure.
The script of L-string can be constructed with six consecutive steps as follows.

Algorithm 2.11 LCon

1. Read the network of branching structure T after reducing its resolution,

2. Start the process at the root node T of branching structure T,

3. Let A be the root node and B be the first child of root node A,

4. Calculate the angle δR between unit vector
−→
j and

−→
AB,

5. For all nodes in T which have parent node and at least one child do {
• Let B be the current node and A be the parent of node B,

• Calculate the vector
−→
AB and its length DAB,

• If node B has more than one child then

– Rearrange all children of node B in the order of left branches “+(δ)I”,
right branches “-(δ)I”, and middle branches “I” (has no angle) for L-string
preparation and exchange all children of node B in the same order left,
right and middle, respectively,

• For all children of node B do {
– Let C be the current child of node B,

– Calculate the vector
−−→
BC and its length DBC ,

– Calculate the angle δB between
−→
AB and

−−→
BC,

– If the angle δB > ε and node B has more than one child then print “[” for
adding a new branch,

– Calculate the angle δN between unit perpendicular vector −→n of
−→
AB, where−→n is rotated 90 degrees clockwise,

– If δN > 90+ ε degrees then print “+(δB)” else if δN < 90− ε print “-(δB)”,
where ε is a small angle,

– Print the segment of
−−→
BC in the form of “I(DBC)”,

– If node C has no child and the angle δB > ε then print “]” for ending its
branch

} // For
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(a) (b) (c) (d) (e)

Figure 2.67: L-string construction: (a) input network from Algorithm 2.10, (b), (c), (d) and (e)
step by step of L-string construction of input network (a)

} // For

6. Finally, the L-string code of the network T is generated.

Figure 2.67 shows the L-string reconstruction from input network from Algorithm 2.10
by applying the Algorithm 2.11. The L-string of the input network after applying the
algorithm 2.11 is

“I(181.0)[−(45.5)I(185.2)]I(179.0)[+(43.68)I(162.6)]I(188)”.
The given L-string starts with an internode with 181.0 pixel unit length, then draws

a new branch rotated 45.5 degrees clockwise with 185.2 pixel unit length and closes its
branch, then continues a new main stem with 179.0 pixel unit length, then draws a new
branch rotated 43.68 degrees counter-clockwise with 162.6 pixel unit length, and finally
draws a new main stem with 188 pixel unit length.
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2.7.10 Experiments and Results

In this section we show the result of some examples. Since Figure 2.59 illustrates the
development of region growing of every 10 steps from left to right and top to bottom.
The red color from different starting points is growing until all branching structures are
discovered. The skeletonization of the clover plant is shown in Figure 2.65. We are now
summarizing the result of the clover plant in Figure 2.68, which contains region growing
method (see Figure 2.59) in the first and second row and skeletonizing method (see Figure
2.65) in the third row.

Input image iter=10 iter=30 iter=50

iter=70 iter=90 iter=120 iter=157

skel iter=1 skel iter=5 skel iter=10 skel iter=15

Figure 2.68: Region growing method and skeletonization in the branching structure of the clover
plant.

The different resolution structures of the clover plant are shown in Figure 2.69. The
user define δ value will reduce the structure resolution of the network.

The reconstruction procedure from an input image, region growing method, skele-
tonization, and 3D view after reconstruction is shown in Figure 2.70: (a) an input image,
(b) result while applying region growing method, red pixels are labelled as a set of branch-
ing structure points, (c) result after applying skeletonizing algorithm, and (d) 3D view
after reconstructing the branching network, respectively.

Figure 2.71 and 2.72 represent the branching structure and its reconstruction with
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Figure 2.69: Some different resolution structures of the clover plant with the different δ values,
(a) and (c) show the wire frame structure, (b) and (d) show 3D structure.

Figure 2.70: (a) rice root input image, (b) result while applying the region growing method (red
pixels), (c) result after applying skeletonizing algorithm (green centerline), (d) result in 3D view
after reconstruction.

different resolutions in 2D and 3D view, respectively.

Some Tree-like structures and their L-string codes are given in Figure 2.73 by applying
the Algorithm 2.11. Each structure shows the number labels of the pixel node number.

Figure 2.74 shows some results of reconstructed canola roots reconstructed by P. Ko-
lesik [Kolesik, 2004] in .MV3D file and a neuron structure of rat done by P. J. Broser
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Figure 2.71: Branching structure and its reconstruction with different resolutions.

[Broser, 2006] saved in .HOC file format. They can be convert to L-string file format
(.NLS).

In the Figure 2.76, we get the L-string from the algorithm as follows:

I(77.00)[+(23.12)I(18.38)[+(32.20)I(55.21)[+(34.47)I(61.00)
[+(22.74)I(43.08)][−(34.97)I(35.80)]][−(21.58)I(91.80)[+(12.00)
I(69.29)][−(28.96)I(71.17)[+(22.53)I(67.08)][−(58.40)I(73.81)]]]]
[−(23.57)I(48.01)[−(39.99)I(85.04)][−(4.662)I(78.40)[+(48.06)
I(58.05)][−(29.68)I(68.81)[+(58.33)I(74.84)][−(11.22)I(91.96)]]]]]
[−(54.56)I(79.05)[−(89.81)I(38.83)][−(16.81)I(65.14)[+(17.21)
I(90.44)][+(68.98)I(73.10)[+(55.56)I(32.80)][−(29.33)I(26.07)
[+(47.46)I(57.97)][−(26.05)I(57.45)]]]]]

Figure 2.77 shows the vascular aneurysm reconstruction with the different conditions
of consideration during doing region growing method. Since the input image does not
sharp enough, the smoothing process and anisotropic diffusion filtering can be applied for
a preprocessing step before applying the region or volume growing method.
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Figure 2.72: The different resolutions after reconstruction in 3D view.

(a) (b) (c) (d) (e)

Figure 2.73: Some tree-like structures constructed in L-string codes: (a) I(132.0) [+(29.61)
I(117.8)] [-(29.58) I(119.0)], (b) I(136) [-(43.1) I(111.0)] I(101), (c) I(102.0) [+(45.21) I(104.6)]
I(145.0), (d) I(108)[+(46.05) I(115.2)] [-(45.6) I(117.3)] I(137), (e) I(94.00) [+(45.64) I(96.89)]
[-(1.29) I(84.00)] [-(45.1) I(100.4)] I(84), the number labels in each network are the pixel node
numbers.
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Figure 2.74: Some results of (a), (b) reconstructed roots, and (c) neuron structure in HOC file
[Broser, 2006], [Chuai-Aree et al., 2007].

(a) input image (b) skeletonization

(c) branch analysis (d) reconstruction with resolution reduction

Figure 2.75: Example of L-string from input image, (a) input image, (b) skeletonization, (c)
branch analysis, and (d) reconstruction with resolution reduction process.
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Figure 2.76: Branch analysis and node labelling.

Figure 2.77: The vascular aneurysm and its reconstruction with different conditions and resolu-
tions.
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2.7.11 Discussion and Conclusion

The inverse problem of L-systems provides the methods to reconstruct the branching
structure from the set of input images. It will be useful for the further uses in plant
modeling, network modeling, bio-informatics and medical applications. One can use this
method to observe the development of branching structures in biology, botany or medicine.
The method allows the user to choose the resolution of the network since many cases the
high resolution of network can be ignored. This method also provides to work with the
sliced images from medical and biological applications. The volume of branching structure
can be discovered and represented in a 3D object.

We are now summarizing the steps for reconstructing the network from input im-
age. The region and volume growing methods are applied for recognizing the branching
structure. The skeletonization is called for generating the pixel or voxel alignment. The
resolution reduction is applied for removing unnecessary nodes. Finally, the network can
be viewed in 3D object. The tree-like structure can be saved in L-string format for further
uses. Figure 2.78 shows the steps of rice root reconstruction from the input image (a),
growing region method (b), skeletonization (c), and 3D object (d).

Figure 2.78: The reconstruction process of rice root, (a) input image, (b) result after applying
the region growing method, (c) result after applying skeletonizing method, and (d) result in 3D
object.
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For some input images contained some noise, the de-noising and smoothing algorithm
are provided by using the anisotropic diffusion filtering algorithm. Then the normal
processes: region or volume growing method, skeletonization, network construction, and
3D viewer, can be applied, respectively. Figure 2.79 shows the procedure of leaf vein
reconstruction. The leaf vein cannot be now explained by our L-string reconstruction,
but can be saved as graph format.

Figure 2.79: The reconstruction procedure, (a) input image, (b) result after applying de-noising,
smoothing method, (c) result after applying region growing method, (d) result after applying
skeletonizing method, (g) result after applying network construction algorithm, (f) and (e) result
in 3D viewer.

In 3D soil volume data, the root reconstruction results are not good enough if there
are a lot of organic deposit layers. Since the organic matter voxels are in the same interval
as root voxels (see detail in Figure 2.45). The worm-like as morphological root structure
is taken into account for considering the root path. The resolution of CT-scanner plays
a very important role for retrieving the high resolution of input volume data. At least
a few root voxels are recognized before segmentation. If the resolution of CT-scanner is
less than the root tip then it is impossible to recognize in the given volume data.
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Chapter 3

Particle Transportation Method

“Nature is the realization of the simplest
conceivable mathematical ideas.”

— Albert Einstein (1879-1955)

Particle systems is a modeling method used in a variety of applications in computer
graphics. It has been used to model natural modeling such as water and fire based
on many independent “particles” with independent characteristics and behaviors. In
this dissertation, we would name the “particle transportation method” (PTM) instead of
“particles systems” since we apply the different behavior of particle movement.

Branching system in plant is one of the challenging problem of a realistic models. The
growth hormone namely auxin (IAA - indole-3-acetic acid) and water in plants play a
major role of plant growth. Auxin is required for differentiation of the vascular cambium
to develop the function of transportation. The auxin is important for the induction of leaf
vein. The pathways of xylem and phloem are for water and food transportation through
all parts of plant connected from root.

We propose a simulation algorithm for the branching of leaf venations caused by the
movement of auxin in the leaf blade where there are light support. The branching of shoot
which is the production of auxin and water transportation in plants together with light
and available volume space. We consider the amount of water and nutrient in soil for the
major roles of root growth. Light intensity and available space are mainly considered for
the shoot growth.

This chapter is organized into six sections: introduction and problem setting, leaf
vein generation, algorithm of growing plant generation, plant component arrangements,
simulation and results, and discussion and conclusion.

We now motivate this chapter by a following problem and solve the problem by using
PTM.

Problem 3.1 How can we generate the leaf vein if a leaf margin and a source point P0

are given?

91
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Figure 3.1: Examples of given leaf margin and source point P0 (connection to petiole).

Figure 3.2: Problem and how to generate the leaf vein in the leaf margin.

3.1 Introduction and Problem Setting

Pattern formations of leaf veins and branching patterns were introduced by H. Meinhardt
[Meinhardt, 1982]. In leaf veins, the midvein and the main lateral branches are formed
before intercalary growth starts, which described why it is only higher order branches
that usually form closed loops. For plant leaf venation, the veins are not only to remove
the auxin from surrounding tissue but they transport auxin towards the roots. Figure 3.3
illustrates the simulation results proposed by H. Meinhardt [Meinhardt, 1982] based on
the activator coupling with substances to control leaf vein differentiation.

In the leaf of Ginkgo tree in Figure 3.3(a), the activator maximum at the growing
tip can only divide into two maxima for extending filament. The lateral branching is
not allowed to differentiate. The simulation of dichotomous branching of this type is
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presented in Figure 3.3(b) based on only two controlling substances. The lateral branching
of Fittonia leaf in Figure 3.3(c) is possible to differentiate for a new growing tip. The
simulated vein in Figure 3.3(d) was started by one differentiated cell at the bottom-right
corner of the domain grid. The first vein is growing towards the largest available space
in the diagonal. It becomes a midvein of the leaf. Reconnections are possible between
higher order branches. The higher order branches are more curved since they are often
deflected by other growing tips. All growing tips can form closed loops.

Figure 3.3: Comparison of branching patterns of leaves with their simulation (image from [Mein-
hardt, 1982]).

To implement the above leaf vein pattern formation, Rodkaew [Rodkaew, 2004] pro-
posed the particle transportation method to provide the new way of leaf vein formation.

Particle transportation method (PTM) has been originally proposed by Rodkaew (see
[Rodkaew, 2004]) for generating leaf vein structure of many different leaf shapes and tree-
like structures. The idea is to distribute all auxin particles in the given leaf boundary using
different types of distribution: square, hexagonal, jitter, uniform and edge distribution.
Figure 3.4 shows the example of two types of the PTM simulation of leaf vein. There are
two simple algorithms of PTM: Algorithm 3.1 and Algorithm 3.2.
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(a) (b) (c)

Figure 3.4: Simulated leaf vein by PTM, (a) algorithm 3.1: PTM I, (b) algorithm 3.2: PTM II,
(c) moving direction of the particle (see Rodkaew et al [Rodkaew, 2004])

Algorithm 3.1 PTM-I

1. Set the particles randomly in the domain of a leaf shape

2. Move the particles to the target (the petiole)

3. Repeat (2) until all particles reach the target

Algorithm 3.2 PTM-II

1. Set the particles randomly in the boundary of a leaf shape

2. Try to use the same path:

(a) Move current particle towards the nearest particle

(b) Move current particle to the target together

3. Repeat the step 2 until all particles reach the target

Both algorithms were implemented to represent two types of leaf vein; monocotyledon
(Algorithm 3.1: PTM-I) and dicotyledon plants (Algorithm 3.2: PTM-II). The given leaf
boundary can be used from both in scanned actual leaf and synthetic leaf shape using
spline curve (see Figure 3.5).

Both algorithms create veins from the trail of particles that are scattered within a leaf
margin. Let S be the set of particles in leaf blade. At first, each particle i, pi carries the
energy ei. The direction �Di of particle pi is controlled by the following equation.
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Figure 3.5: Synthetic leaf shapes using spline curve with control points (see Rodkaew et al.
[Rodkaew, 2004]).

�Di =
p̂i + q̂i

‖p̂i + q̂i‖ (3.1)

where p̂i is a unit vector denoting the direction from a particle to a presumed target
point, q̂i is a unit vector denoting the direction from a particle to its nearest neighbor
Ki nearest (see Figure 3.4(c)), and ‖�x‖ is a length of vector x.The unit vectors �pi and �qi

are calculated from the following equations,

p̂i =
�pi

‖�pi‖ ,

q̂i =
�qi

‖�qi‖
(3.2)

The vector �pi and �qi can be calculated from the following equations,

�pi = (XT −XPi
, YT − YPi

),

�qi = (XPi nearest
−XPi

, YPi nearest
− YPi

)
(3.3)

where (XT , YT ) and (XPi nearest
, YPi nearest

) are the target position T and the nearest
particle of Pi, respectively. The target position T in this case means the start point P0 in
Figure 3.1.

To make the direction vector �Di in equation (3.1) supporting both algorithms, the

vector �Di can be calculated from the following equation with weighting parameters.

�Di =
wpp̂i + wq q̂i

‖wpp̂i + wq q̂i‖ (3.4)

where wp, wq ∈ [0, 1], wp + wq = 1.0, and wp, wq ∈ R.
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Statement 3.1 All particles in algorithm 3.1 and algorithm 3.2 can move to the target
point by using the direction vector �Di in equation (3.4). The direction vector controls both
algorithms as follows:

1. It supports the Algorithm 3.1 when wp = 1.0 and wq = 0.0,

2. It supports the Algorithm 3.2 when wp = 0.5 and wq = 0.5 or wp · wq �= 0.0.

For each particle Pi at time t+1, the position of each particle Pi(t+1) can be calculated
from the following equation.

Pi(t + 1) = Pi(t) + �vi(t) (3.5)

where Pi(t+1) is the position of particle i at time t+1, Pi(t) is the position of particle
i at time t, �vi(t) is the velocity of particle i at time t, and Pt=0 is the initial position of
particle i at time t = 0.

The velocity of the particle i at time t, �vi(t) is calculated from the following equation.

�vi(t) = s · �Di(t) (3.6)

where �Di(t) is the direction vector of particle i at time t, and s is the distance step
size of particle in unit time.

When particle i is moving closer to the nearest particle j, then two particles are
combined to be the new particles Ki new. It is calculated as follows.

Ki new = Ki + Ki nearest (3.7)

The equation (3.7) is called when the condition satisfies the following equation (3.8).

‖�qi‖ ≤ Ri + Ri nearest (3.8)

where Ri nearest is the radius of the nearest particle of particle i, Ri is the radius of the
particle i, and ‖�qi‖ is the length of the vector from the particle i to the nearest particle i.

After combining two particles, the position of a new particle is

Pi new =
Pi ·Ri + Pi nearest ·Ri nearest

Ri + Ri nearest

, (3.9)

the energy of new particle is

Ei new = Ei + Ei nearest, (3.10)
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Figure 3.6: The development of vein structure using PTM from Rodkaew et al [Rodkaew, 2004].

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Synthetic leaf enhancement of the output from algorithm 3.2 in [Rodkaew, 2004].

and the radius of new particle is

Ri new =
Ri + Ri nearest

2
, (3.11)
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where Pi new, Ei new, and Ri new are the properties of new particle Ki new. The particle
Ki and Ki nearest are removed from the set of particles S.

Figure 3.6 shows development of synthetic leaf venation using PTM from Rodkaew
et al [Rodkaew, 2004]). All particles from the starting time t = 0 are moving to the
target point (the connection to petiole). Figure 3.7 shows the result of simulated ivy leaf
from Figure 3.6. The image enhancement process is applied to improve the realism of the
output. The effect for blurring (see Figure 3.7(b)) and bumping (see Figure 3.7(c) and
Figure 3.7(d)) are used. The leaf color is changed to color sampling from the real leaf.
The dual-tone color (see Figure 3.7(f)) is produced using the combination of prior images.
The image in Figure 3.7(b) is changed to white color and added to Figure 3.7(e). This
process is suitable for creating the leaf colors that depends on the vein structure.

Problem 3.2 From algorithm 3.1(PTM-I) and algorithm 3.2(PTM-II), the set of parti-
cles S is initiated at the beginning, then all particles are moving to the target point T .
All particles are combined to one particle at the target point. These algorithms simulate
nice results of leaf veins, fast simulation, less control parameters, easy to implement, but
there are some drawbacks; i.e. some particles across the existing network during particle
movement, it does not support the concave boundary in the blade, the leaf margin is not
growing. How can we improve these drawbacks from these proposed algorithms?

We now start to solve this problem by changing the target point T to the source point
P0 which is the start point of all veins. The vein structure starts from P0 and grows
to take all particles to the vein. So, we are going to invert the previous methods in
[Rodkaew, 2004]. At each time step of the simulation, we assume that the new product
from photosynthesis is produced and needed to transport through the vein structure for
producing other organisms in the plant body. The leaf vein generation is described in the
next Section 3.2.

3.2 Leaf Vein Generation

This section explains a algorithm of leaf edge detection and leaf vein generation using
new PTM. Before generating vein structure, a leaf margin is required as an input for the
algorithm. The leaf margin can be retrieved from scanned real leaves or synthetic leaf
margin using spline curve.

Some examples of scanned real leaves are given in Figure 3.8.

The input leaf margins can also be constructed by spline curves (see Figure 3.9).

Problem 3.3 After having the leaf margin as an input, we need to get the leaf margin by
edge detection process. How can we detect the leaf margin from a given leaf?

The next Section 3.2.1 is about to solve this problem automatically after giving the
leaf blade to the system.
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(a) Ivy leaf (b) Rubber leaf (c) Ivy gourd leaf

Figure 3.8: Some examples of scanned real leaves.

3.2.1 Leaf Edge Detection Algorithm

This section describes the algorithm for leaf detection. We firstly investigate the leaf edge
detection from the given leaf margin. There are five consecutive steps in Algorithm 3.3
as follows.

Algorithm 3.3 LED

1. Given an input leaf image or an initial leaf margin from spline curve,

2. Set a source point P0(x, y) in the input leaf image,

3. Check the leaf pixel by 3 × 3 window in counter-clockwise until the leaf pixel is
found and set this pixel as a current pixel,

4. Calculate a polar coordinate of current pixel from equation (3.12),

5. Repeat (2) until the current pixel reaches the source point P0(x, y).

Leaf boundary is traced by the edge detection process given by the source point P0(x, y)
from the input leaf. It is described by the polar equation in polar coordinate system
(radius, angle) in equation (3.12). Figure 3.10 shows the process how the edge detection
works in the Algorithm 3.3. At the current point, the consideration of edge detection
starts from the last edge point (leaf pixel) in counter-clockwise until the new leaf pixel is
found and it is set to the new current point for the next step. The leaf blade is bounded
when the source point P0(x, y) is found as the next current point.

The list of leaf boundary pixels (points) is computed and stored in polar coordinate.
The coordinate (t, r(t)) and (t, θ(t)) are calculated corresponding to the source point
P0(x, y) or (x0, y0) from the following equations r(t) and θ(t) in equation (3.12).
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Figure 3.9: Leaf margins constructed by spline curve in [Rodkaew, 2004].

r(t) =
√

(xt − x0)2 + (yt − y0)2

θ(t) = cos−1(

−−−−→
(xt, yt) ·

−−−→
(1, 0)√

x2
t + y2

t

)

(3.12)

where (xt, yt) is the current pixel of leaf boundary, r(t) and (t) are radius or distance

from source point P0 to the current pixel Pt, and angle between the current vector
−−−−→
(xt, yt)

and unit vector
−−−→
(1, 0) , respectively. θ(t) is in [-90,240] in degree started from the first or

forth quadrant.
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Figure 3.10: The process of leaf edge detection from step t to step t + 1 tracing in counter-
clockwise of the ivy leaf boundary.

The radius and angle of each boundary point is plotted against the boundary pixel
number t. Figure 3.11 shows the development of leaf edge detection using Algorithm 3.3
at t = 0, 210, 404, 600, 810, and 975. Figure 3.12 presents the graph of radius r(t) (green
line) and angle θ(t) (red line) against the edge detection time step t. The tracing process
is started from the source point in counter-clockwise until reaching the source point P0

(red circle). Leaf boundary points are stored in the set of boundary points B (blue path).
In the graph of Figure 3.12, each point at time step t of edge detection can be also

plotted to the original leaf margin based on (r(t), θ(t)) coordinate.
We have now detected the leaf margin from the given leaf. The next step is to generated

the leaf vein structure. The detail of leaf vein generation is presented in Section 3.2.2.

3.2.2 Leaf Vein Generation Algorithm

We now start a new algorithm to generate leaf venation network by the inverse direction
of Rodkaew’s algorithms in Rodkaew et al [Rodkaew, 2004]. The leaf margin detected in
the Algorithm 3.3 is used by the following algorithm as the input set of boundary points
B.
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Figure 3.11: Development of leaf edge detection using algorithm 3.3.

Algorithm 3.4 PTM-LeafVein

1. Given 2D initial boundary points of leaf margin from Algorithm 3.3,

2. Given source point P0(x, y) of petiole of leaf,

3. Random the set of particles S in the leaf blade for k particles, e.g. a set of auxin
particles,

4. Generate the leaf vein to the available set of particles S based on product obtained
by photosynthesis process in leaf blade,

5. Store the leaf vein network at the current state,

6. Update the leaf vein depending on leaf growth step dl in time,

7. Do growing process Gl(t) of leaf boundary and do the step 3, 4, 5 and 6 until
reaching the appropriate time when the vein resolution is bounded.

In order to give more detail in the Algorithm 3.4, we now explain in the next Section
3.2.3.
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Figure 3.12: Tracing leaf boundary in polar coordinate system.

3.2.3 Leaf Vein Construction

This section describes leaf vein construction to explain in detail of the Algorithm 3.4.
After giving the initial leaf margin, the source point P0 is defined for initial point of

leaf vein. Let a point n0(x0, y0) be the given initial network point, dl be the growing
step size of leaf vein segment, respectively. At each time step t with step size dt, all
random particles are searching for nearest point in the set of network particles N , which
its distance is less than Rc. Each point ni in the set N has its own particles sk in set Si,
which are respect to it as a nearest point. Each point ni will grow as a new network point
nj in the next step if and only if it has more than one particle influence to it as a set of
nearest points. The calculation of the absolute direction of nj can be calculated from the
average of all unit vector vi with the growing step size dl.

The new network point nj is calculated from the following equations (3.13) and (3.15).

nj = ni + ds
vi

‖vi‖ ,

vi =

Mi∑
k=1

(ni − Sk)

‖ni − Sk‖ ,∀i ∈ N,∀k ∈ Si.

(3.13)

From equation (3.13), Mi is the number of particles which are closet to network point
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Figure 3.13: Example of particle in leaf boundary.

ni. The new segment of leaf network is created by drawing edge (ni, nj). The number of
network point is increased every time step if there is at least a point, which is in S.

At each time step, the size of leaf margin can be fixed or can grow based on the
following sigmoidal growth function in equation (3.14).

Gl(t) = L +
U − L

1 + em(T−t)
(3.14)

where

Gl(t) : the growth of leaf at time t,
L : the minimum value of length from P0 to r(ti) of the small leaf,
U : the maximum value of length from P0 to r(ti) of the big leaf,
m : the approximated slope of raw data,
T : the time at Gl(t) = (U + L)/2, and
t : the independent time variable.

From the equation (3.14), the parameter L can be zero in case the leaf grows from a
very small organism. The result after running the Algorithm 3.4 with fixed leaf margin
at t = 10, 60, 85, and 120, is visualized in Figure 3.14.

Figure 3.15 shows the development of growing leaves from t = t0 to t = t7. The
equation (3.14) is used to calculate the growth parameters, e.g. L, U , m, and T . The
example of simulated leaf growth using the equation (3.14) with L = 0, m = 0.20, T = 15,
and U value taken from the length of r(ti) from the source point P0 to each boundary
point i is illustrated in Figure 3.16.
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(a) t=10 (b) t=60 (c) t=85 (d) t=122

Figure 3.14: Result after running the Algorithm 3.4 with fixed leaf margin at (a) t=10, (b)
t=60, (c) t=85, and (d) t=122.

(a) t=t0 (b) t=t1 (c) t=t2 (d) t=t3 (e) t=t4 (f) t=t5 (g) t=t6 (h) t=t7

Figure 3.15: Development of growing leaves from t = t0 to t = t7.

At each time step, while the leaf margin is growing, the vein structure is generated si-
multaneously. The leaf margin expands with its vein structure as a natural leaf expansion.
The simple example is shown in Figure 3.17 for second order leaf vein with the product
from photosynthesis process. The simulation of the same growth of leaf with high amount
of product (red region) is presented in Figure 3.18.

We now have the algorithm to generate leaf veins by fixed and growing leaf margins.
In the next section we start to generate the plant structure.
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Figure 3.16: Example of growing ivy gourd leaf margin starting from t = 1 for every 5 time
steps.
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Figure 3.17: Example of growing leaf vein and margin starting from t = 1 for every 2 time steps,
red region is the product from photosynthesis process.

Figure 3.18: Example of growing leaf vein and margin starting from t = 1 for every 2 time steps
with high amount of product from photosynthesis process.
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3.3 Growing Plant Generation Algorithm

This section explains a plant structure generation using PTM. Rodkaew proposed the
method to generate tree structures using PTM in Rodkaew et al [Rodkaew, 2004]). The
results from PTM in [Rodkaew, 2004] are not developed in natural way of plant growth
(see the model in Figure 3.19). The result is shown in Figure 3.20. All particles of shoot
part move from leaf position to the seed of tree on the soil surface and all particles of
root part also move from root tip position to the seed position. The tree structure can
be generated only the fixed shoot and root volume.

Figure 3.19: Plant Model by PTM in [Rodkaew, 2004].

In this drawback, we improve the new method for growing plant structure from the seed
position and grow in the realistic way. We now propose a new algorithm for generating
the plant structure in the following Algorithm 3.5 (PTM-Tree).

There are seven steps for shoot and root structures as follows.

Algorithm 3.5 PTM-Tree

1. Given a 3D initial volume boundary of shoot and root components,

2. Given a source point P0(x, y, z) of the seed of plant,

3. Random the set of light particles for the shoot part, set of water particles for the
root part,

4. Generate the shoot and root structures to the available set of particles based on the
gaining of light for photosynthesis in shoot part, and reaching the moist zone for
water uptake in the root part,
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Figure 3.20: Result of tree generation by PTM in [Rodkaew, 2004].

Figure 3.21: Tree structure with light (shoot) and water-nutrient (root) particles in a cubic
shape for shoot and root volume.

5. Store the shoot and root networks at the current state,
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6. Update the plant components depending on their growth processes in time,

7. Do growing process of shoot and root volume boundary and do the step 3, 4, 5 and
6 until reaching the appropriate time.

To give better detail, we now explain in the next section for each step in the above
algorithm.

3.3.1 Shoot and Root Boundary

The shoot and root boundaries are represented by the basic shape such as cone, cylinder,
sphere and cube. They can be resized by their parameters both in shoot and root volume.
The set of particles P stores the random particle points Pi(x, y, z) in a given boundary
domain B of shoot and root volume. Set N represents the set of network points.

Figure 3.22: Basic boundaries of plant shoot and root domain; cone, cylinder, sphere and cube.

Figure 3.23: Example of the combination of shoot and root domain as a complete structure.

Basic shapes of plant shoot and root boundaries and some examples of combination
of shoot and root boundary are illustrated in Figure fig:objectbase and Figure 3.23.

3.3.2 Network Construction and Growing Volume Method

After giving the initial volume of shoot and root parts, the source point P0 is defined for
initial point of plant network. Let a point n0(x0, y0, z0) be the given initial network point,
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ds and dr be the growing step size of shoot and root parts, respectively. At each time
step t with step size dt, all random particles are searching for nearest point in the set of
network particles N , which its distance is less than Rc. Rc is the radius for considering
the distance to particles. Each network point ni in the set N has its own particles sk in
set Si, which are respect to it as a nearest point. Each network point ni will grow as a
new network point nj in the next step if and only if it has more than one particle influence
to it as a nearest point. The calculation of the absolute direction of nj can be calculated
from the average direction of all unit vectors vi with the growing step size ds or dr (see
Figure 3.24).

The new network point nj is calculated from the following equations.

nj = ni + ds
vi

‖vi‖ ,

vi =

Mi∑
k=1

(ni − Sk)

‖ni − Sk‖ ,∀i ∈ N,∀k ∈ Si.

(3.15)

From equation (3.15), Mi is the number of particle which are closet to network point
ni. The new internode of network is increased by drawing edge (ni, nj). The number
of network point is added every time step if there is at least a point, which is in S (see
Figure 3.25).

Figure 3.24: Example of network construction from available particles.

We now can generate the plant shoot and root structures. Figure 3.26 illustrates some
results from the Algorithm 3.5 for conical shape, cubical shape, spherical shape, and root
system. Next section we introduce the arrangement of plant components.
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Figure 3.25: Growing process of shoot and root networks.

Figure 3.26: Some results from the Algorithm 3.5 for conical shape, cubical shape, spherical
shape, and root system.

3.4 Plant Component Arrangements

This section describes the plant component arrangements, e.g. leaf arrangements, flower
and fruit arrangements.

3.4.1 Leaf Arrangement

Leaves are formed at the meristem and attached at the node position. At the leaf position,
a bud is embedded for a new branch generation under the appropriate condition. The
different types of leaf shapes are presented in Figure 3.27. Leaf veins are shown in Figure
3.28 and leaf margins are illustrated in Figure 3.29. The leaf arrangement is called phyl-
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lotaxis. There are many different kinds of leaf arrangements. Figure 3.30 shows several
types of leaf arrangements and leaf compositions of dicotyledon plants.

Figure 3.27: Leaf shapes, e.g. acicular, falcate, orbicular, rhomboid, acuminate, flabelate, ovate,
rosette, alternate, hastate, palmate, spatulate, aristate, lanceolate, pedate, spear-shaped, bipin-
nate, linear, peltate, subulate, cordate, lobed, perfoliate, trifoliate/ternate, cuneate, obcordate,
odd pinnate, tripinnate, deltoid, obovate, even pinnate, truncate, digitate, obtuse, pinnatisect,
unifoliate, ellptic, opposite, reniform, and whorled (image from en.wikipedia.org).
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Figure 3.28: Leaf venations, e.g. arcuate, cross-venulate, dichotomous, longitudinal, palmate,
parallel, pinnate, reticulate, and rotate (image from en.wikipedia.org).

Figure 3.29: Leaf margins, e.g. ciliate, crenate, dentate, denticulate, doubly serrate, entire,
lobate, serrate, serrulate, sinuate, spiny, and undulate (image from en.wikipedia.org).
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Figure 3.30: Leaf arrangements, e.g. alternate, opposite, whorled; leaf compositions, e.g. simple
leaf, bi-pinnately compound leaf, pinnately compound leaf, and palmately compound leaf (image
from http://www.forestry.state.al.us).
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Figure 3.31 shows how to get from the topmost leaf to the last of the 5 leaves of the
plant on the left takes 2 counter-clockwise turns (see Figure 3.31(a)) or 3 clockwise turns
(see Figure 3.31(b)). The numbers, 2, 3 and 5 are three consecutive Fibonacci numbers.
For the plant on the right, it takes 3 counter-clockwise rotations (see Figure 3.31(c)) or
5 clockwise rotations (see Figure 3.31(d)) to pass 8 leaves. Again, the numbers, 3, 5 and
8 are consecutive Fibonacci numbers. The fraction of number of leaves per number of
rounds and its angle are expressed as follows, (a) 5/3 : 5 leaves/2 rounds with (e) 144 ◦,
(b) 5/3 with (f) 216 ◦, (c) 8/3 with (g) 135 ◦, and (d) 8/5 with (h) 225 ◦. An estimated
90% of all plants displays this pattern.

(a) 5/2 (b) 5/3 (c) 8/3 (d) 8/5

(e) 144 ◦ (f) 216 ◦ (g) 135 ◦ (h) 225 ◦

Figure 3.31: Leaf arrangement with fibonacci number by Michael S. Schneider from A Beginners
Guide To Constructing The Universe, the fraction of number of leaves and number of rounds,
(a) 5/3 : 5 leaves/2 rounds with (e) 144 ◦, (b) 5/3 with (f) 216 ◦, (c) 8/3 with (g) 135 ◦, and (d)
8/5 with (h) 225 ◦.

The angle δL in degree is calculated from the following equation (3.16).

δL =
360 ·NR

NL

(3.16)

where δL is the angle (degrees) between ith leaf and (i + 1)th leaf, NR is the number
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of turns from the first leaf to nth leaf in the vertical projection, and NL is the number of
leaves in NR rounds.

We can also calculate the angle of (i + 1)th leaf by the following equation.

δl(i + 1) = δl(i) + δL (3.17)

where δl(i+1) is the accumulative angle from the 1st leaf to (i+1)th leaf, and δl(1) = 0.
Leaf arrangement plays an important role for getting enough light for photosynthesis

process. Different kinds of plants have their own fraction value and angle of phyllotaxis.
The next section explains an arrangement of flowers and fruits.

3.4.2 Flower and Fruit Arrangement

For flowering plants, flower identifies the reproductive stage after vegetative growth stage
under the suitable condition. Bud at plant node can be initiated a new vegetative branch,
root system, or flower depending on the condition. Flowers are formed from the bud
position which is determined to initiate as a flower. The bud position is also located at
the leaf position. So, in this experiment we implement the emergence flowers at the bud
positions. The growth of leaves, flowers and fruits are explained in the next Section 3.4.3.

3.4.3 Leaf and Flower Growth

In this simulation, leaf vein structure is used as a texture mapping on the 3D leaf surface
for the leaf growth in the PlantVR software. The leaf and flower growths are based on
the sigmoidal growth function (see equation (2.17)).

3.5 Simulation and Results

This section illustrates simulated results obtained from the proposed algorithms. An
example of some results shows some simulated leaf veins, plant structures of shoot and
root part using PTM.

3.5.1 Results of Simulated Leaves

This section presents some simulated leaves obtained in our improvement from [Rodkaew,
2004]. Figure 3.32 shows examples of simulated growing leaf veins starting from t = 20 to
t = 130. The leaf margin is fixed for all iterations. The product particles are randomly
allocated in the leaf blade for every time step. The vein structure is initiated from the
source point P0 and growing until the vein density is bounded as the stop condition. The
vein structure is labelled for three colors, e.g. red for the first vein order (main vein),
green for the second vein order, and blue for the third vein order.

Figure 3.33 illustrates the example of simulated leaf veins by increasing a number of
particles, (a) 100 particles, (b) 200 particles, (c) 400 particles, (d) 800 particles, (e) 1600
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particles, and (f) 3200 particles. High number of particles gives a better structure, but
it costs the simulation times than small number of particles. The red points in the leaf
blade show product particles from photosynthesis process.

In order to compare some results from real leaf veins and simulated veins, we simulate
the vein structures and compare the main important veins. The comparison of synthetic
leaf veins and real veins over leaf textures is given in Figure 3.34. The main veins (red
branches) in Figure 3.34 (left) are closely to the real veins. The second order to vein struc-
tures (green branches) also returns an acceptable results. The vein resolution parameter
plays an important role to the leaf vein.
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(a) time t=20 (b) time t=50 (c) time t=60

(d) time t=80 (e) time t=85 (f) time t=90

(g) time t=95 (h) time t=100 (i) time t=105

(j) time t=110 (k) time t=120 (l) time t=130

Figure 3.32: Example of simulated growing leaf veins, at time (a) t=20, (b) t=50, (c) t=60, (d)
t=80, (e) t=85, (f) t=90, (g) t=95, (h) t=100, (i) t=105, (j) t=110, (k) t=120, and (l) t=130.
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(a) 100 particles (b) 200 particles (c) 400 particles

(d) 800 particles (e) 1600 particles (f) 3200 particles

Figure 3.33: Example of simulated leaf veins with changing number of particles, (a) 100 particles,
(b) 200 particles, (c) 400 particles, (d) 800 particles, (e) 1600 particles, and (f) 3200 particles.

Figure 3.34: Comparison of synthetic leaf veins and real veins in leaf textures.
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Figure 3.35 presents the comparison of real leaves (1st row), Rodkaew’s leaves (2nd

row) using the Algorithm 3.2 (PTM-II ) in [Rodkaew, 2004] and using the Algorithm 3.4
(PTM-LeafVein) (3rd row). The simulated vein structures are acceptable and improved
from the original result in [Rodkaew, 2004].

Figure 3.35: Comparison of real leaves (1st row), Rodkaew’s leaves (2nd row) and the Algorithm
3.4 (3rd row).

Another example is the comparison of real leaves (1st column), leaf veins (2nd column),
and vein with texture (3rd column) using the Algorithm 3.4 (PTM-LeafVein) (see Figure
3.36). We also adjust the parameters, e.g. vein resolution value, growth rate of first and
second vein orders. Several examples of adjusting these parameters of mango leaf margin
are shown in Figure 3.37.
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Figure 3.36: Comparison of real leaves (1st column), leaf veins (2nd column), and vein with
texture (3rd column).

Figure 3.37: Comparison of simulated veins in mango leaf margin.
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We now show the example of simulated leaf veins with vein orders in Figure 3.38 (a,
d), leaf veins (b, e), and leaf veins with textures (c, f).

(a) vein order (b) leaf vein (c) vein with texture

(d) vein order (e) leaf vein (f) vein with texture

Figure 3.38: Example of simulated leaf veins with showing vein orders (a, d), leaf veins (b, e),
and leafs vein with textures (c, f)

The simulation provides some example results of upper leaf surface and lower leaf
surface. The examples of this result are given in Figure 3.39, Figure 3.40, Figure 3.41,
and Figure 3.42.

Figure 3.43 shows an example of real rubber leaf (left) and simulated leaf (right). The
higher detail of rubber vein structure is given in Figure 3.44.
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Figure 3.39: Result of upper leaf surface (left) and lower leaf surface (right).

Figure 3.40: Result of upper leaf surface (left) and lower leaf surface (right).
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Figure 3.41: Result of upper leaf surface (left) and lower leaf surface (right).

Figure 3.42: Result of upper leaf surface (left) and lower leaf surface (right).
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Figure 3.43: An example of real rubber leaf (left) and simulated leaf (right).

Figure 3.44: Simulated rubber leaf with its zoom-in for vein structure.
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We now illustrates the comparison of real rubber leaf vein and its simulated results in
Figure 3.45 (a) real rubber leaf, (b) simulated vein, and (c) simulated vein with texture.
This simulation allows the closed vein structure. The algorithm provides the combination
of two nearest tips when they are close to each other by an appropriate angle.

(a) (b) (c)

Figure 3.45: Rubber leaf and its simulated leaves, (a) real rubber leaf, (b) simulated vein, and
(c) simulated vein with texture.

Figure 3.46: Simulated vein in poplar leaf boundary.
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Figure 3.47: Some different simulated veins in heart leaf boundary.

Figure 3.48: Zoom in detail of leaf vein construction with particles and leaf texture.
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Figure 3.49: Simulated veins in a set of given leaf boundaries.

Since the algorithm 3.4 provides the closed vein property, an example of simulated
vein in poplar leaf boundary is presented in Figure 3.46. In the same given leaf boundary,
it is possible to generate different veins based on the control parameter of the distribution
of particles in leaf blade (see Figure 3.47). We can zoom into detail of leaf network in
the leaf blade to see the tip growth, available auxin particles, and change of leaf texture
(see Figure 3.48). Finally, we illustrate some examples of leaf veins generated by the
Algorithm 3.4 (PTM-LeafVein).

Next section, we present some results of simulated plants and trees from the Algorithm
3.5 (PTM-Tree).
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3.5.2 Results of Simulated Plants/Trees

This section shows some simulated results using PTM for generating plant/tree structures.
There are some results of plant structure with different types of initial seeds, e.g. a single
plant and two plants.

We do simulate two plants which are growing close to each other. They are growing
with sharing the volume space and light competition between both plants. The result of
this experiment is shown in Figure 3.50. The interaction of competing light and volume
space plays a major role to the number of branches with low branch density.

Figure 3.50: Result of two growing trees with single main stem.

We do also simulate the same procedure but we allow one tree can grow with more
than one stem. The result is illustrated in Figure 3.51.

In case of defining the volume of shoot and root boundary by shifting them, we would
get the different result. The environmental factors; water content and nutrient, are not
available or even the plant are grown in the box of concrete that roots cannot grow to that
direction. This implementation is visualized in the Figure 3.52. In Figure 3.52, plant was
grown in the given environment. Roots grew under the limitation of available nutrient
and water in the cubic box while shoot grew in the natural way of spherical shape.
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Figure 3.51: Result of two growing trees with multiple main stems and a single main stem.

Figure 3.52: Different perspectives of tree structure with environmental limitation of soil volume.
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(a) time t=80 days (b) time t=100 days (c) time t=110 days

(d) time t=120 days (e) time t=130 days (f) time t=140 days

Figure 3.53: Example of simulated growing trees, at time (a) t=80, (b) t=100 days, (c) t=110
days, (d) t=120 days, (e) t=130 days, and (f) t=140 days.

We now simulate the two trees grown close to each other again in both shoot and root
parts. Figure 3.53 shows the example of simulated growing trees from t = 80 to t = 140,
(a) time t = 80 days, (b) time t = 100 days, (c) time t = 110 days, (d) time t = 120 days,
(e) time t = 130 days, and (f) time t = 140 days. The interactions between two shoot
and two root systems are optimized under the available volume space and environmental
factors.
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(a) time t=42 (b) time t=54 (c) time t=66

(d) time t=78 (e) time t=90 (f) time t=102

(g) time t=114 (h) time t=126 (i) time t=138

Figure 3.54: Example of simulated growing tree, at time (a) t=42, (b) t=54, (c) t=66, (d) t=78,
(e) t=90, (f) t=102, (g) t=114, (h) t=126, and (i) t=138.

Figure 3.54 shows the simulation scene of plant growth with its leaves, flower, fruits,
and environment; at time (a) t=42, (b) t=54, (c) t=66, (d) t=78, (e) t=90, (f) t=102,
(g) t=114, (h) t=126, and (i) t=138.
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In order to initialize the shoot and root volume in the easier way, we provide the curve
with control points to define the shoot volume (see curve in Figure 3.55). All particles are
controlled by the control curve to random in the given volume for branching structure.
Figure 3.55 shows the same result with different views.

Figure 3.55: Result from the Algorithm 3.5 (PTM-Tree) in PlantVR using the control spline
curve for shoot volume.
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Figure 3.56 presents the simulated plant in both shoot and root parts using the control
curve for initiating the given volumes.

Figure 3.56: Result from the Algorithm 3.5 (PTM-Tree) in PlantVR using the control spline
curves for shoot and root volume.
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3.6 Discussion and Conclusion

This chapter introduced the algorithms for generating leaf vein structures which can
also be applied for shoot and root structures from the given shape boundary and the
distribution of environmental particles; i.e. auxin distribution or the product from pho-
tosynthesis process in leaf blade, light particles for shoot growth, water-nutrient particles
for root growth. We improved the Algorithm 3.1 (PTM-I ) and Algorithm 3.2 (PTM-II )
and PTM to generate tree structures in a natural way of plant growth (see [Rodkaew,
2004]). The algorithm provides the possibility to grow more than one plant to observe the
management of available volume space and environmental resources. The algorithm was
implemented in the PlantVR software and useful for dicotyledon plants. The parameter
of vein resolution is controlled in time for different resolutions at each time step for a
dynamic vein adjustment. Leaf vein structure has been mapped on the leaf object as a
texture mapping for fast visualization in PlantVR. The method will be improved to cal-
culate the water-nutrient transportation from soil to stems and leaves for photosynthesis
calculation.



Chapter 4

Root Systems, Water Flow and
Nutrient Diffusion

“Look deep into nature,
and then you will understand everything better.”

— Albert Einstein (1879 - 1955)

Plant roots are the most important part for absorbing nutrients and water to the
main stems and leaves. Roots grow in the path of minor resistance and they extend in
the porous spaces of soil. The roots change their directions when they find obstacles that
are aggregates of resistant soil. Besides, following the path of minor resistance, roots also
grow where the media is better. The roots can avoid the dry and arid soil while they
grow in the moist and fertile soil. In this chapter, we are interested in how the roots
grow in the soil volume based on nutrient concentration and water content. We assume
that root tips grow to the direction of the maximum nutrient concentration, find the
best direction and elongate to that direction. During the roots penetrate in soil volume,
nutrient concentration is changed by diffusion process. The roots can also uptake nutrient
to root stems when the roots reach the local soil volume. At each time step, the nutrient
uptake by root can be calculated. The visualization of root growth is presented in this
chapter.

4.1 Introduction

The root systems of terrestrial plants perform two primary functions: One is the acqui-
sition of soil-based resources (principally water and dissolved ions or nutrients) and the
other is anchorage. Other root system functions such as storage, synthesis of growth reg-
ulators, propagation, and dispersal, can be seen as secondary in [Smith et al., 2000]. In
Chapter 2 and previous work in [Chuai-Aree et al., 2000], [Chuai-Aree, 2000], [Chuai-Aree
et al., 2002], [Chuai-Aree et al., 2003], [Rodkeaw et al., 2004] we use Lindenmayer sys-
tems (L-systems) in [Prusinkiewicz and Lindenmayer, 1990] to represent the plant shoot
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and root structures which are known as a set of production rules of shoot and root parts
known in advance. In this chapter we propose the method to represent the root structures
using nutrient concentration as an activator of root growth. This method does not need
any rule for representing the root structure and root growth. The position of root apices
will move to the appropriate nutrient concentration.

The next section describes the water flow in soil volume and mathematical modeling
of water uptake by plant roots.

4.2 Water Flow

This section describes the water flow from the flux of water and water root extraction in
soil volume. We start from a given soil volume as follows:

Figure 4.1: Cubic soil with three directions of water flow.

Now suppose that we have box of soil, ∆x by ∆y by ∆z in size (cm), that is partially
saturated with volumetric water content, θ (cm3 cm−3). The volume of the box is V t =
∆x · ∆y · ∆z (cm3). The volume of water in the box is V w = θ · V t = θ · ∆x · ∆y · ∆z
(cm3) at the beginning of ∆t. It is V w + ∆V w = (θ + ∆θ) · V t at the end of ∆t. We
now consider the flow in the x-direction. We define the flow to be positive in the positive
x-direction. The ∆ terms are added at the higher end of the respective dimension, ∆θ
at the end of ∆t, and ∆q at the end of ∆x. The flow is defined as the volumetric flux, q
(cm3 cm−2 · s−1) or (cm/s). So that the volume rates of inflow and outflow over time ∆t
are:

Vin = q ·∆y ·∆z · t,

Vout = (q + ∆q) ·∆y ·∆z · t.
(4.1)

The volumes (masses) balance can be derived as follows:
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∆Vw = Vin − Vout,

∆Vw = ∆θ · Vt = ∆θ ·∆x ·∆y ·∆z,

Vin − Vout = q ·∆y ·∆z ·∆t− (q + ∆q) ·∆y ·∆z ·∆t,

∆θ ·∆x ·∆y ·∆z = −∆q ·∆y ·∆z ·∆t,

∆θ

∆t
= −−∆q

∆x
.

(4.2)

so, we now can write the mass balance equation for the flow in x-direction from discrete
(∆) to the continuous derivative (∂) by taking ∆t and ∆x both to the limit of zero. We
finally get the following equation

∂θ

∂t
= −∂q

∂x
. (4.3)

For the flow q (cm/s), is a term of Darcy’s law:

q = −K · ∂H

∂x
. (4.4)

We can substitute Darcy’s law into the mass balance equation (4.3) to get the following
equation a so-called one-dimensional Richards’ equation:

∂θ

∂t
=

∂

∂x

[
K · ∂H

∂x

]
. (4.5)

We can derive the mass balance for flow in all three directions at once. The Darcy’s
equation can be written in three components of the flow, qx, qy and qz as

qx = ix

(
Kxx

∂H

∂x
+ Kxy

∂H

∂y
+ Kxz

∂H

∂z

)
,

qy = iy

(
Kyx

∂H

∂x
+ Kyy

∂H

∂y
+ Kyz

∂H

∂z

)
,

qz = iz

(
Kzx

∂H

∂x
+ Kzy

∂H

∂y
+ Kzz

∂H

∂z

)
.

(4.6)

The K-component values are defined as follows:

Kxy = Kyx,

Kxz = Kzx,

Kyz = Kzy,

(4.7)

where Kxy is hydraulic conductivity in xy-direction (cm day−1), H is total head, and
H(x, y, z) (cm). In equation (4.6) we can also express in matrix form as:
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qx

qy

qz


 = −




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


 .




∂H

∂x

∂H

∂y

∂H

∂z




(4.8)

So that, the full-blown Richards’ equation can be written in matrix form as:

[
∂θ

∂t

]
=

[
∂

∂x

∂

∂y

∂

∂z

]
.




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


 .




∂

∂x

∂

∂y

∂

∂z




. H(x, y, z) (4.9)

If the major axes of the soil anisotropy are aligned with the x, y and z axes, the
equation (4.9) becomes

[
∂θ

∂t

]
=

[
∂

∂x

∂

∂y

∂

∂z

]
.


 Kxx 0 0

0 Kyy 0
0 0 Kzz


 .




∂

∂x

∂

∂y

∂

∂z




. H(x, y, z) (4.10)

If the soil is isotropic, but it is still heterogeneous. The Richards’ equation reduces to

[
∂θ

∂t

]
=

[
∂

∂x

∂

∂y

∂

∂z

]
.


 K 0 0

0 K 0
0 0 K


 .




∂

∂x

∂

∂y

∂

∂z




. H(x, y, z) (4.11)

where K is K(x, y, z). This bring us back to

∂θ

∂t
=

∂

∂x

[
K

∂H

∂x

]
+

∂

∂y

[
K

∂H

∂y

]
+

∂

∂z

[
K

∂H

∂z

]
(4.12)

The root system is a sink that penetrates in the soil profile. The combination of root
growth system and water flow in soil solution is presented here as macroscopic way of
solving the root water uptake problem. The continuity equation of water flow is combined
with a sink term representing water extraction by plant root system.
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The three-dimensional root water uptake model can be written as follows

∂θ

∂t
= −

(
∂q

∂x
+

∂q

∂y
+

∂q

∂z

)
− S (4.13)

where θ is the soil water content (cm3 cm−3), t is time (days), y is the vertical coordi-
nate (cm) take positive upward, q is the Darcian soil water flux density (cm day−1) taken
positive upward, and S is the actual root water uptake rate (cm3 cm−3 day−1).

Combination of equation (4.13) and equation (4.6) is so-called as Richards’ equation:

∂θ

∂t
= −C(h)

∂h

∂t
=

∂

[
K(h)(

∂h

∂y
+ 1)

]
∂y

− S(y)
(4.14)

where C is the differential water capacity (dθ/dh) (cm−1), and h is soil water pressure
head (cm). It is the slope of the soil water characteristic. Van Genuchten [van Genuchten,
1980] has provided analytical expression for the strongly non-linearly behaving soil hy-
draulic characteristics θ(h) and K(h).

Next section presents nutrient diffusion process in soil profile and mathematical mod-
eling of nutrient uptake by plant roots.

4.3 Nutrient Diffusion

Nutrient diffusion can be described by the Fick’s second law which predicts how diffusion
causes the nutrient concentration field to change in time:

∂c

∂t
= D

∂2c

∂x2
(4.15)

where c is the nutrient concentration (mol/cm3), t is time (s), D is the diffusion
coefficient (cm2/s), and x is the position (cm).

The Fick’s second law can be derived from Fick’s first law and mass balance as follows:

∂c

∂t
= − ∂

∂x
J =

∂

∂x

(
D

∂

∂x
c

)
. (4.16)

Assuming the diffusion coefficient D to be a constant, the diffusion equation can be
rewritten in the following form:

∂c

∂t
=

∂

∂x

(
D

∂

∂x
c

)
= D

∂2c

∂x2
. (4.17)

The diffusion equation can be expand to 3D form with a constant diffusion coefficient
D as follows:
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∂c

∂t
= D

(
∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)
. (4.18)

To combine the diffusion equation with the convection term caused by the pore water
velocity and the sink term for nutrient uptake by plant roots. The diffusion equation is
given in equation (4.19). We use the equation (4.19) as a model.

∂c

∂t
= D

(
∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)
− v(

∂c

∂x
+

∂c

∂y
+

∂c

∂z
)− S, (4.19)

where c(x, y, z, t) is the nutrient concentration (mol/cm3), D is the diffusion coefficient
(cm2/s), v is the pore water velocity (cm/s), and S(x, y, z, t) is the sink term for nutrient
uptake by plant roots Somma et al. [1998].

We now propose a method to generate root structures based on nutrient concentration.
We assume that the nutrient concentration is stored in each small soil voxel in soil volume.
Nutrient concentration will be changed in time based on the diffusion process. If the soil
voxel does not contain the part of roots, then sink term is zero for that voxel. The initial
nutrient concentration is randomly for every voxel at t = 0 and possible to set as function
of nutrient distribution in soil volume. Nutrient concentration could not diffuse through
the boundary. Assume that we grow the plant in a pot. We implement this simulation
using small voxels in soil volume to study how the diffusion process behaves. So finally,
we get the numerical calculation of the nutrient concentration at time t by the following
equation 4.20.

ct
i,j,k = ct−1

i,j,k + R1 ∗ (ct−1
i−1,j,k + ct+1

i−1,j,k + ct−1
i,j−1,k + ct−1

i,j+1,k + ct−1
i,j,k−1 + ct−1

i,j,k+1

−6 ∗ ct−1
i,j,k)−R2 ∗ ((ct−1

i,j−1,k − ct−1
i,j+1,k) + (ct−1

i−1,j,k − ct−1
i+1,j,k)

+(ct−1
i,j,k−1 − ct−1

i,j,k+1)− (dt) ∗ (St−1
i,j,k).

(4.20)

where c(xi, yj, zk, t) is the nutrient concentration at the voxel (xi, yj, zk) at time t,

R1 = (dt)D
(dx)2

, R2 =
(dt) v

(2 ∗ (dx))
, D ≤ (dx)2

2(dt)
, dx is the size of cubic voxel, and dt is the time

step size.

The nutrient uptake by plant roots is given in equation 4.21.

S(x, y, z, t) = α(x, y, z, t)β′(x, y, z, t)Tpot (4.21)

where α(x, y, z, t) is the water-extraction function [-], β′ is the normalized nodal value
of β [-], and Tpot is potential transpiration rate. The nodal values of α(x, y, z, t) is calcu-
lated using the expression proposed by van Genuchten [van Genuchten, 1987], considering
the combined effects of matric and osmotic potential on water uptake rate:
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Figure 4.2: Soil voxel diagram of position (i, j, k) and its neighbors.

α(x, y, z, t) =
1

[1 + (h/h50)p1] ∗ [1 + (π/π50)p2]
, (4.22)

where h50 and π50 are the soil-water pressure head and the osmotic head at which the
uptake rate is reduced by 50%, respectively, and p1 and p2 are fitting parameters (see
[Somma et al., 1998]).

The normalized nodal value of β is required to calculate β′(x, y, z, t) in the following
equation:

β′(x, y, z, t) =
β(x, y, z, t)∫

D
β(x, y, z)dD

, (4.23)

where D is integration over the complete soil domain. The S(x, y, z, t) is calculated
at each time step as in F. Somma [Somma et al., 1998].

At each time step t, the nutrient concentration is calculated by using the previous
nutrient concentration at the same voxel and its neighbors shown in Figure 4.2. The
nutrient concentration at the boundary of the soil volume is equal to its neighbor inside
the volume. The growth direction follows to the position of the maximum concentration
of its neighbors. In the case of there are many branches at the same position, one branch
grows to the position of maximum concentration and the other branches move to the
lower concentration. While the root is moving to the appropriate direction, it has taken
up the nutrient to the root stem automatically.
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Next section, we present how to generate root structures with nutrient concentration
in soil volume.

4.4 Root Structures and Root Systems

This section presents root structures and root systems in soil volume. Root tip can turn
to an appropriate direction based on soil environment.

Figure 4.3: A seed position from the top view of soil volume and the possible direction for
growing roots.

Figure 4.4: A seed position and possible direction for moving root to downward direction.

Figure 4.3 and Figure 4.4 show the seed position and the possible directions of the root
movement. There are 26 neighbors which have to be considered excluding the previous
root position. The root structures from the simulation are given in Figure 4.5.
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Figure 4.5: Root structures from the simulation [Chuai-Aree et al., 2004a].

The numbers of roots and root depth are required for the simulation. Hairy roots
are randomly generated concerning nutrient concentration. The root diameter depends
on the root age of each segment. This algorithm is available for the monocotyledon
and dicotyledon plants. The root growth process and diffusion processes are changing
simultaneously. The root structure visualized in PlantVR software is shown in Figure
4.6d and the development of root growth is illustrated in Figure 4.7.

Figure 4.6: Simulated root structure in soil volume visualized in PlantVR software [Chuai-Aree
et al., 2004a].
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Figure 4.7: Development of root growth in soil volume [Chuai-Aree et al., 2004a].

Next section, we present how to generate root systems by applying PTM from Chapter
3.

4.5 Root Systems using PTM

This section describes the way to combine the root systems with the particle transporta-
tion method (see Chapter 3). In Chapter 3 we use random nutrient-water particles for
growing root systems. In order to cooperate with root systems in this section, we apply
the water content in soil volume to stimulate the root growth. The random water particles
are transferred to the water content in each soil voxel. The structured grid for soil volume
is applied for stimulating the root growth.

Root Growth Process Algorithm

From Figure 4.8 let the circle be the root tip and eight neighbors are particles which
stimulate the direction of tip for the growth process. The root growth process is given in
the following algorithm.
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Figure 4.8: 2D grid domain for root growth.

Algorithm 4.1 RGP

1. Initialize a given seed position P0,

2. Calculate the preferred direction of the root tip P0,

• Calculate absolute direction for water content θ,

�E = �di =
n∑

j=1

θj�vi,j (4.24)

where n is the number of neighbor particles, θj is water content at the position

j, and vi,j is the unit vector from the root tip to the position j. It is �ei = |�di| =
�di

‖�di‖ ,

• Calculate absolute direction for all factors,

�N = �O + �E + �G + �M (4.25)

where �N is the new direction of next root growth, �O is an old unit vector of the
previous direction of root tip, �E is the unit gradient vector of water content,
�G is the unit vector by gravitropism effect, and �M is the unit vector by soil
strength (see Figure 4.9),

• Elongate the root tip Pi

�p∗i = er�ei (4.26)

where er = e∇θ = eTθ

(1+∇θ)
, er is elongation rate of the root tip corresponding

to gradient of water content ∇θ or nutrient concentration ∇c, e is elongation
rate constant, and Tθ is the total uptake,
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Figure 4.9: 2D grid and root growth direction.

3. Solve nutrient diffusion in equation (4.20) or water flow in equation (4.13),

4. Do the step 2 until the calculation time is reached.

Next section describes shortly about the MuPhi library for water flow calculation in
soil volume.

4.6 Root Water Uptake Using MuPhi Library

This section describes water uptake by plant roots cooperating with the MuPhi (or µϕ)
library for water flow in soil volume. MuPhi library was developed by O. Ippisch at the
Institut für Parallele und Verteilte Systeme (IPVS), University of Stuttgart (see [Ippisch,
2001]). It is used to calculated the water flow in soil volume. Water flow in MuPhi
solves the Richards’ equation in soil volume using Finite Volume Method (FVM). At each
time step MuPhi is called by PlantVR software to ask for the water flow in soil domain.
PlantVR gets the solution of water content and uses water content for the growth of plant
and uptake some water from the soil domain and sends the rest of water after taking up
to the MuPhi library for the same procedure. A better detail of sending and receiving
data between MuPhi and PlantVR will be explained again in next chapter.
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4.7 Results

This section shows some results from the simulation. Figure 4.10 and Figure 4.11 show
root growth for every three time steps starting from t = 63 using PTM from front and
top views, respectively.

Figure 4.10: Root growth using PTM for every 3 time steps starting from t = 63.
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Figure 4.11: Root growth using PTM for every 3 time steps starting from t = 63 from top view.

Figure 4.12 shows root growth with its growth curve of root length starting from t = 3
for every eight time steps dt = 8. Figure 4.14 illustrates the growing root with nutrient
uptake by considering the root age. Only young root zone can only uptake nutrient from
soil solution.

3D root growth and water uptake using MuPhi library is visualized in Figure 4.13.
Figure 4.15 illustrates 3D plant growth and water uptake for every three time steps
starting from t = 7.
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Figure 4.12: Root growth with its growth curve of root length starting from t = 3 for every
eight time steps dt = 8.

Figure 4.13: 3D root growth and water uptake using MuPhi library visualized in PlantVR.
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Figure 4.14: Root growth with nutrient uptake by considering the root age.
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Figure 4.15: 3D plant growth and water uptake for every 3 time steps starting from t = 7.

4.8 Discussion and Conclusion

This chapter introduced the root systems, water flow and nutrient diffusion in the soil
volume based on the diffusion process of nutrient concentration. Water flow was described
by Richards’ equation. Plant root growth and water uptake by plant roots was modelled
by water flow and sink term from root density in soil volume. Nutrient diffusion was
used for the calculation of nutrient uptake by plant roots. The amount of nutrient at
each time step in the root stem was coupled with the shoot parts for plant growth. The
root growth process algorithm was explained to generate the root system in soil volume
cooperating with PTM. Water flow and nutrient diffusion are not coupled together as a
solute transport in soil volume in MuPhi library yet. It will be improved for the further
work. The MuPhi library is used in PlantVR software.



154 Chapter 4: Root Systems, Water Flow and Nutrient Diffusion



Chapter 5

Software Tools and Results

“Theory without practice is fruitless, but
practice without theory is rootless.”

—The land of wisdom, India

This chapter introduces five softwares programmed within the scope of this disserta-
tion, e.g. PlantVR, LeafDS , LeafVein, BranchRecon, and PlantVR-MuPhi . PlantVR is
a software for generating plant structures using L-systems based on bracketed L-system,
stochastic L-system, parametric L-system and particle transportation method (PTM)
based on the environmental particles in both shoot and root parts (see Chapter 2 and
Chapter 3). It simulates the growth of plant in time both in shoot and root parts. Leaf3D
software was programmed to create the 3D leaf surface used in PlantVR as a predefined
surface. LeafVein software simulates the leaf veins using PTM by defining leaf boundary
and the source point P0 of leaf (see Chapter 3). BranchRecon software was developed to
solve the inverse problem of L-systems by giving a set of input images contained branching
structures and returning the L-system description which can be used in PlantVR, Finally,
PlantVR-MuPhi is a communication library between the PlantVR and MuPhi library
written by O. Ippisch [Ippisch, 2001] for calculating water flow in soil volume and sending
the numerical solution to PlantVR for plant growth and water uptake by plant roots.

This chapter is organized into six sections for each software and conclusion: PlantVR,
LeafDS, LeafVein, BranchRecon, PlantVR-MuPhi, and discussion and conclusion. Next
section describes more detail of PlantVR software.

5.1 PlantVR Software

This section introduces PlantVR procedure, simulation and visualization of PlantVR.
PlantVR is a software tool to simulate and visualize a model of plant growth such as the
growth of leaves, shoots and roots. This software can generate the plant shoot and root
structures based on L-systems and PTM depending on their environmental factors. There
are two methods for generating plants in PlantVR. The first method uses L-systems based
on PlantVR’s syntax. In order to create the plant structures in an easy way, the PTM is

155
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provided in the second method which is designed to generate leaf veins, plant shoots, and
roots. The growth depends on environmental factors. For example, leaf growth is based
on auxin hormone and glucose distribution in the leaf blade, while shoot growth is based
on sunlight, available volume space, and resources from root part. Root growth is based
on the available water, nutrient, volume space in the soil, and resources from shoot part.
The software allows users to expand from a single plant to an entire crop. The user can
export the results to an animation file and display the growth at each time step.

Figure 5.1: Diagram of PlantVR visualizer.

To motivate this section and overview the PlantVR software, Figure 5.1 illustrates the
diagram of PlantVR visualizer. The spherical world represents the world inside for above
ground and underground.

This section is organized into five parts: procedure of PlantVR prototype, L-systems
interpretation algorithm, collected data, growth function and curve fitting, leaf and flower
in predefined object, and visualization procedure.

5.1.1 Procedure of PlantVR Prototype

The biological data from actual plant observations are very important to simulate the
plant development [Chuai-Aree, 2000]. A flow diagram of a prototype of PlantVR, sim-
ulation and visualization of plant growth is shown in Figure 5.2. This section presents a
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prototype for creating computer models that capture the development of plants using L-
systems and mathematical model incorporating biological data. The L-systems are used
for qualitative model in order to represent the plant topology and development. This
method has six consecutive steps, (1) defining a qualitative model constructed from ob-
servations of plant growth in their life cycle, (2) measuring key characteristics collected
from actual plants by L-systems description, (3) converting raw data to growth functions
based on sigmoidal function approximations using curve fitting and parameter estimation,
(4) defining a quantitative model composed from the qualitative model and growth func-
tions, (5) visualizing the quantitative model in three dimensional space, and (6) evaluating
the models. The design of L-system in this dissertation is based on bracketed L-system,
stochastic L-system and parametric L-system.

Figure 5.2: Diagram of plant simulation and visualization in PlantVR.

5.1.2 L-systems Interpretation Algorithm

This section introduces interpretation algorithm of L-systems which is related to all sym-
bols in Chapter 2 (Table 2.5) and their interpretations in L-systems prototype for both
plant shoot and root parts.

Figure 5.3 shows a flow diagram of L-systems interpretation. The process starts from
reading the input L-systems code. A given L-systems code is compiled and checked for
syntax error. If there are no syntax errors, the L-string will be generated and interpreted
to plant components and their properties. The programming code of rewriting algorithm
is similar to Pascal programming langauge given in Appendix A.
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Figure 5.3: L-systems interpretation flow diagram.

5.1.3 Collected Data, Growth Function and Curve Fitting

The PlantVR software provides an option to import the measured data from actual plants
for approximating the growth function by parameter estimation based on sigmoidal func-
tion. The soybean (Glycine max ) data were firstly collected in 1999 as a case study (see
[Chuai-Aree, 2000]). It is suitable for new data observation in the same procedure.

For the measured data, they were collected by manual method using rulers for length
and width, vernier caliper for diameter, protractor for angle. Figure 5.4 shows the ob-
servation of soybeans which were grown from the seeds in their life time approximately
120 days. Figure 5.5 shows the soybean structure and its label for measurement. The
internodes are measured from the seed position (soil surface) to the first node called N1.
Figure 5.6 illustrates the diagram of internode measurement. The diagrams of petiole and
leaf measurements are shown in Figure 5.7 and Figure 5.8, respectively. There are some
abbreviations labelled in the figures, i.e. N4LL is the left leaf length of the 4th internode,
N4LW is the left leaf width of the 4th internode, N4MW is the middle leaf width of the
4th internode.

All collected data are imported to the system and approximated all parameter values
based on N-pulses sigmoidal function using parameter estimation (see Section 2.5.1).
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Figure 5.4: Data collection from soybeans (Glycine max ).

Figure 5.5: The structure of soybean (Glycine max ).
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Figure 5.6: The diagram of internode measurement, Ni is the ith internode.

Figure 5.7: The diagram of petiole measurement, petiole length data.
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Figure 5.8: The diagram of leaf measurement, the length and width data of left, middle and
right leaf.

The description of leaf measurement is shown in Figure 5.8. At the beginning of third
internode, there are two leaves. The fourth internode and upper internode, there are
trifoliolate - three leaves. The symbol description of each leaf is given below:

NiLL : the left leaf length of ith internode,
NiLW : the left leaf width of ith internode,
NiRL : the right leaf length of ith internode,
NiRW : the right leaf width of ith internode,
NiML : the middle leaf length of ith internode, and
NiMW : the middle leaf width of ith internode.

5.1.4 Qualitative Model

The modeling process begins with the specification of the qualitative model. It captures
the aspects of a plant which can be obtained through the observations and are deemed
essential to its form and development. These include the topology and the sequence of
activities of various plant modules. The main components of the plant are distinguished
and their developmental stages are identified. The connections between these components
are also defined. In this dissertation, the qualitative parameters are obtained from a
soybean. The qualitative parameters of the soybean model consists of three main parts:
internodes, petioles, and leaves.

The simulation begins with first a pair of leaves. This is captured by the L-system
axiom, or the initial string of modules. The axiom in Figure 5.9 represents an internode
I, a pair of leave L with its short internode i, and an apex A. The apex A is initially
contained within the petioles. After some iterations, the apex A is substituted by an
internode I, a right petiole [−P ], an internode I, a left petiole [+B] and an apex A shown
by the following production rule.
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Figure 5.9: Axiom = I[+iL][−iL]A.

A = I[−P ]I[+B]A. (5.1)

Each petiole consists of some internodes, some short petioles, a left leaf, a right leaf,
and a middle leaf. The production rules of the left and right petioles are defined as follows:

P = IIIII[\pL][/pL][−pL],

B = IIIII[\pL][/pL][+pL]
(5.2)

The “Endrule” is defined as follows:

B = IL,
P = IL,
A = IL

(5.3)

The above Endrules are called at the last iteration. The left petiole B, the right
petiole P as well as the apex A are substituted by an internode and a leaf. By using the
previous defined production rules with some specific parameters, the L-system description
of a soybean is given in the following format.
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Soybean {
Shoot {

Iterations=6
Angle=45
Diameter=1.5
Axiom=I[+iL][-iL]A
A = I[-P]I[+B]A
P = IIII[\pL][/pL][-pL]
B = IIII[\pL][/pL][+pL]
Endrule
B = IL
P = IL
A = IL

}
}

Actually, L-system code consists of a module of shoot and root parts (see Table 2.6).
In this case, we show only the shoot part of soybean for a better explanation. In the
above L-systems code, there are six iterations; the initial branch angle is 45 degrees, and
the diameter of first internode is 1.5 centimeters. After the sixth iteration, the Endrule
productions are called to terminate the substitution process.

The last L-string at the sixth iteration is

I[+iL][-iL]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL]

[-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]

I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I

[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]A.

The string P and B are not appeared in the last string of the above symbol string,
but A remains in the last letter. A is replaced with endproduction A = IL. Observe that
the endproduction B = IL and P = IL is not necessary to define in the soybean module.
After the above L-string is replaced with the endproduction, the final string is

I[+iL][-iL]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL]

[/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL]

[/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL]

[/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]IL.

After the sixth iteration, the L-string is substituted by Endrule to the symbol defined
in all end production rules. The L-string is interpreted by the turtle’s interpretations of
the L-systems definition. This string is transformed to the associated plant structures
with the growth function at each time step.
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L-system String and Plant Interpretation

The last string of generated L-system is interpreted as the plant structure which consists
of internodes, petioles, leaves, apices, and flowers that compose to the main stem. The
branches is defined from the bracket symbols “[” and “]”. The example of the L-system
prototype is given in an example Plant2. The simplest L-system is given for understanding
the L-system code and L-system interpretation in Plant2 prototype.

Plant2 {
Shoot {

Iterations=1
Angle=45
Diameter=2
Axiom=IA
A=[+pL][-pL]I[-I1][+I1]I[/I2][\I2]IF
1=[/iL][\iL]P
2=[-iL][+iL]P
Endrule
P=iiF

}
}

The Plant2 prototype has one iteration, the angle of 45 degrees, and two units of
diameter. An axiom consists of an internode I and an apex A. At the first iteration,
the apex A is substituted by left short petiole and leaf [+pL], right short petiole and
leaf [−pL], internode I, left petiole and special symbol [−I1], right petiole and special
symbol [+I1], internode I, back petiole and special symbol [/I2], front petiole and special
symbol [\I2], internode I, and flower F . The second production, a symbol 1 is replaced
by back short internode and its leaf [/iL], front short internode and its leaf [\iL], and
the symbol P . The third production, a symbol 2 is replaced by short right petiole and
its leaf [−iL], short left petiole and its leaf [+iL], and the symbol P . The endproduction
P is substituted by two short internode ii and flower F for every symbol P in the last
L-system string. After the first iteration, the last string is given below.

I[+pL][-pL]I[-I[/iL][\iL]iiF][+I[/iL][\iL]iiF]I[/I[-iL][+iL]iiF][\I[-iL][+iL]iiF]IF

The internode order, leaf order, and flower order of the L-string are described in
Figure 5.10. The internode order is counted from the first to the last symbol of L-string
for symbol I, i, P , and p. The leaf L and flower F order are attached to the previous
internode or petiole. All internode and petiole have their own attributes for leaf and
flower. All attributes are described in Section 5.1.6.

The visualization of the L-string is presented in Figure 5.11. It shows only the in-
ternodes and petioles. The left nearest component of the internode or the petiole is the
parent of component i. Figure 5.12 shows the number of internode order.

In Figure 5.12, the number of each internode is counted following the L-string as in
Figure 5.10. It is used to determine the parent of each component. The number of symbol
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Figure 5.10: The component order of L-string

Figure 5.11: All internodes and petioles

[ in the L-string is used to generate the main stem of plant. The level of each component is
used to calculate the initial time of each component. The number of bracket [ is calculated
from the following equation (5.4).

N[ = N([)−N(]) (5.4)

where

N[ : Number of bracket [,
N([) : Number of open bracket [, and
N(]) : Number of close bracket ].

The parent is used to set the attribute of each component in the visualization proce-
dure, for example in Figure 5.12, the 1st internode is the parent of the 2nd, 3rd and 4th

internode. The parent value of component can be calculated from the number of bracket
[ and the number of main internode in the current state. Each stack of every state with
the order number of internode or petiole of the internode I, short internode i, petiole P ,
or short petiole p are shown in Figure 5.13.
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Figure 5.12: All internodes and their number labels.

At the last order of Figure 5.13, the main stem of the plant will be arranged in the
stack. For example, the main stem of this example is the first, the fourth, the 15th, and
the 26th internode, respectively. The level of each component is considered from the order
of the parent calculated from the following equation (5.5):

Li = LPi
+ 1 (5.5)

where the level of the parent the first component is zero LP0 = 0. Figure 5.14(a) shows
the level of the plant. It is used to set the initial time of its component. It will be shown
in Section 5.1.5. The level of component, the main stem order, the parent of component,
and the number of bracket [ are shown in Table 5.1, where

Li : Level of component i,
Mi : Main stem order of component i,
Pi : Parent of component i, and
N([) : Number of open bracket [.

From this prototype, the leaf L and the flower F are added to the system and visualized
in Figure 5.14(b).

In the case of soybean, the L-string is more complicated, so we reduced the process to
two iterations. The last L-string is given below.
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Figure 5.13: Push and pop stack for interpreting the parent of each internode and petiole.
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Table 5.1: The value of leaf number, flower number, number of [, parent of each component,
main stem order, and level of each component.

Component number i Symbol Leaf number Flower Number N([) Pi Mi Li
1 I - - 0 0 1 1
2 p 1 - 1 1 - 2
3 p 2 - 1 1 - 2
4 I - - 0 1 2 2
5 I - - 1 4 - 3
6 i 3 - 2 5 - 4
7 i 4 - 2 5 - 4
8 i - - 1 5 - 4
9 i - 1 1 8 - 5
10 I - - 1 4 - 3
11 i 5 - 2 10 - 4
12 i 6 - 2 10 - 4
13 i - - 1 10 - 4
14 i - 2 1 13 - 5
15 I - - 0 4 3 3
16 I - - 1 15 - 4
17 i 7 - 2 16 - 5
18 i 8 - 2 16 - 5
19 i - - 1 16 - 5
20 i - 3 1 19 - 6
21 I - - 1 15 - 4
22 i 9 - 2 21 - 5
23 i 10 - 2 21 - 5
24 i - - 1 21 - 5
25 i - 4 1 24 - 6
26 I - 5 0 15 4 4
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(a) The level of each component (b) adding leaves and flowers

Figure 5.14: The level of each component (a) and the visualized image after adding leaves and
flowers to the plant structure. (b).

I[-iL][+iL]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL]
[/pL][-pL]]I[+IIII[\pL][/pL][+pL]]IL

The internodes and petioles of the soybean model are shown in Figure 5.15(a), and the
number of internode and petiole are shown in Figure 5.15(b). The level of each component
and its parent is shown in Figure 5.15(c) by following the concept of the Plant2 prototype.
After adding the leaf L to the plant, the visualization is shown in Figure 5.15(d), and the
6th iteration of soybean prototype of its structure is expressed in Figure 5.16.
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(a) soybean at 2nd iteration (b) soybean and component labels

(c) soybean and level of all components (d) soybean with leaves

Figure 5.15: Soybean structure (a) at the 2nd iteration and its component labels (b).

The implemented codes of rewriting algorithm and L-system interpretation algorithm
are given in Appendix A.1.
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(a) soybean at 6th iteration (b) soybean and leaf texture mapping

Figure 5.16: Soybean’s structure (a) at 6th iteration and its leaves with texture mapping (b).

5.1.5 Quantitative Model

The quantitative model combines the L-systems string with the approximated growth
functions of each component. The plant model can simulate its growth with continuous
development in the virtual reality form. In Section 5.1.4, the qualitative model or the
L-system string is defined and generated to the plant structure. In Section 5.1.3, the
approximated growth function is constructed from the raw data corresponding to the
time in their life cycle. The slope m, the minimum value L, the maximum value U , and
the time T are set to its component. Every component of the plant such as the internode
I, the petiole P , the leaf L, the flower F , and the apex A are controlled by a self-growth
function with either same or different slope m, the time T , the maximum U , and the
minimum L. For example, the L-system string of Soybean prototype in Section 5.1.4 is
shown below:

I[-iL][+iL]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL]
[/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL]
[/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL]
[/pL][-pL]]I[+IIII[\pL][/pL][+pL]]I[-IIII[\pL][/pL][-pL]]I[+IIII[\pL][/pL][+pL]]IL

The value of m, L, U , T of every component is shown in the Table 5.2.

The approximated growth function of each component is shown in Figure 5.17. The
internode I, the short internode i, and the apex A are shown in Figure 5.17(a), the petiole
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Table 5.2: The value of L, U , m, T .
Symbols L value U value m value T value
I and i 0.1275 4.039 0.65 7
P and p 0 6.8737 0.38 8
L width 0 2.7909 0.49 11
L length 0 5.2613 0.54 11
A 0.1275 4.039 0.65 7

Figure 5.17: Approximated growth functions of internode and apex (a), petiole (b), leaf length
(c) and leaf width (d). The growth unit and time unit are centimeters and days, respectively.

P and the short petiole p are presented in Figure 5.17(b), Figure 5.17(c) shows the leaf
length L, the leaf width L is shown in Figure 5.17(d).

Figure 5.18 shows the approximated function of each component I, i, P , p, L for their
initial time functions.
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Figure 5.18: Examples of approximation of initial time of internode, petiole and leaf of soybean
using linear approximation.

Figure 5.19: Structure of simulation generated from the production rules of soybean.

Figure 5.19 illustrates a graphical image of a soybean drawn from the L-string defined
in the production rules in Section 5.1.4. Figure 5.19(a) shows the L-string obtained after
the rewriting method. The plant structure in Figure 5.19(b) is constructed from the L-
system string shown in Figure 5.19(a) and its graphical image of the axiom of the plant is
illustrated in Figure 5.19(g). Figure 5.19(d) gives the details of a part of soybean. Figure
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5.19(c) is the left petiole component. The right petiole is shown in Figure 5.19(e). In
Figure 5.19(f), the raw data were converted to the growth function corresponding to each
symbol.

5.1.6 Visualization Procedure

This section describes the visualization method of each component such as the internode
I, the short internode i, the petiole P, the short petiole p, the leaf L, the apex A, and the
flower F. Each component uses the primitive geometric shape; for example, cylinder, line,
triangular polygon, sphere, rectangular polygon, and texture bitmap.

Internode

A cylinder represents the plant internode, while a sphere represents the internode joint.
Figure 5.20 shows the internode of plant. The short internode i is similar to internode I
but its length is shorter than internode I.

Figure 5.20: Internode of plant structure.

The structure of internode in the prototype is defined by the following type:

Procedure Internode(wx, wy : real)

begin

Cylinder(wx, wx, wy, slices, stacks)

Sphere(wx, longitudes, latitudes)

end;

From above procedure, internode receive 2 arguments, wx and wy where wx represents
the base radius of the internode, and wy represents the height of the internode. A cylinder
has five arguments, namely, base radius, top radius, height, edges, and slices. Spheres
have three arguments, namely, radius, latitudes, and longitudes. The cylinder and the
sphere are given in Figure 5.21.
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Figure 5.21: The arguments used in cylinder and sphere function.

Petiole

A petiole and a main stem have the same topology as internode with either same or
different size. The petiole component is represented by symbols I, i, P , or p. Figure 5.22
shows the petiole and the main stem of the plant structure. The short petiole structure
is similar to the petiole with either same or different size. The main stem was given in
Section 5.1.4. Its direction is upward to Y-axis.

Figure 5.22: The petiole and the main stem of plant topology I[−I][+I]I.

Leaf

Leaves are very important for plant visualization to make plant look more realistic. The
plant is defined by more than three points in the three-dimensional space. It consists of
the source point which is attached to the internode or the petiole tip. In this dissertation,
the leaf library is designed in the following format.

Name=Leaf_Name

Source=S
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Point=P1x P1y P1z

Point=P2x P2y P2z

Point=P3x P3y P3z

...

Point=Pnx Pny Pnz

Triangle=T11 T12 T13

Triangle=T21 T22 T23

Triangle=T31 T32 T33

...

Triangle=Tm1 Tm2 Tm3

The meaning of each keyword is given as follows:

Name=Leaf Name
Leaf Name is the name of leaf.

Source=S
A source point is a point in a set of the leaf points. It is attached to the petiole or the

internode with its leaf.

Point=Pnx Pny Pnz

A keyword is a coordinate (x, y, z) of leaf point. The value Pnx, Pny, and Pnz are the
x, y, z at the nth point where x, y, z ∈ R.

Triangle=Tm1 Tm2 Tm3

A triangle consists of three points. The values of Tm1, Tm2 and Tm3 are the first point,
the second point, and the third point of the mth triangle, respectively. They are members
in the set of the leaf points. Figure 5.23 illustrates the leaf surface structure.

For example, the leaf surface prototype (see [Chuai-Aree, 2000, Chuai-Aree et al.,
2000]) is given below.

Name=Leaf,Soybean

Source=2

Point=0 0 0

Point=0 0 0

Point=0 0 0

Point=-33 -50 8

Point=0 -50 11

Point=33 -50 8

Point=-44 -100 11

Point=0 -100 17

Point=47 -100 11

Point=-33 -150 5

Point=0 -150 12
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Figure 5.23: The leaf surface used in PlantVR.

Point=33 -150 8

Point=0 -200 0

Point=0 -200 0

Point=0 -200 0

Triangle=1 4 2

Triangle=4 5 2

Triangle=2 5 6

Triangle=2 6 3

Triangle=4 7 5

Triangle=7 8 5

Triangle=5 8 9

Triangle=5 9 6

Triangle=7 10 8

Triangle=10 11 8

Triangle=8 11 12

Triangle=8 12 9
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Triangle=10 13 11

Triangle=13 14 11

Triangle=11 14 15

Triangle=11 15 12

This example illustrates a soybean leaf prototype. The second point is the source
point of the leaf. There are 15 points (size 5 × 3), and 16 triangular polygons. Figure
5.23 shows the soybean leaf topology. At the first, there are 15 points as shown in Figure
5.23(a) in XY -coordinate. The first point and the third point are set similar to the second
point as same as the 13th point and the 15th point are set to the 14th point. The seventh
point is moved leftward while the ninth is moved rightward. The fifth point, the eighth
point, and the 11th point are moved upward. The result is shown in Figure 5.23(b). All
triangular polygon is set to every triangle in Figure 5.23(c). In Figure 5.23(d), the 13th

point, 14th point, and 15th point are moved downward. It makes the leaf longer than the
leaf Figure 5.23(c).

The leaf grid in this thesis is designed for J ×K points, where J and K are 3, 5, 7,
9, or 11. The leaf size supports odd number, because this thesis assumes that the leaf is
symmetric with respect to the column. A size of leaf depends on its complicated structure.
In Figure the string 5.9 shows the simple plant with its leaves. The source point of leaf
is attached to the internode tip. Therefore the second point is attached to the internode.
The leaves in this thesis can be resized and rotated following the user adjustment. The
simple L-system of Figure 5.9 is I[−iL][+iL]A. The previous symbol of the leaf symbol
L must be only attached to the internode I, the short internode I, the petiole P , or the
short petiole p. Therefore, the leaf cannot be separated from the symbol I, the short
internode i, the petiole P , or the short petiole p.

Flower

A flower of plant in this dissertation is defined only rounded flower. The number of petals
will be changed by users. The petal structure is similar to the leaf structure. It has a
source point, set of points, set of triangular polygons. For example, Figure 5.24 shows a
simple plant with its leaves and flower with the L-system as follows:

I[−iL][+iL]IiF

The plant consists of eight components, there are two internodes I and one short
internode i for main stem. There are two petioles, left petiole [+iL], and right petiole
[−iL] with their leaves L. The flower F must follow the internode I, the short internode
i, the petiole P , or the short petiole p. The symbol F is imported from the flower library
as well as the leaf library.
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Figure 5.24: A simple plant with its leaves and flower : I[−iL][+iL]IiF .

Root

Root components in PlantVR are implemented by the symbols I, i, P , p, and A. The
structure of each component are used as shoot part without leaves and flowers.

Environments

PlantVR provides environmental elements such as ground, sky, fog, grass and soil for
making the visualization of the scene more realistic.

Texture mapping

Texture is a set to images, e.g. leaf, trunk, ground, sky, grass, soil. The leaf texture is
designed for 2D texture mapping to 3D space of leaf polygon. The texture size must be
2n × 2m pixels, where n, m are integer, 3, 4, 5,..., k. It is cropped from the actual leaf
images and set to the appropriate size. The textures can be changed the color by user
adjustment. The user can create a new texture or select from the given texture library.
The texture coordinate is mapped to a range of [0,1]. For example, if the texture size is
64x64 pixels, the texture coordinate will map to 1 × 1. Figure 5.25 shows the mapping
coordinate. The texture coordinate (0,0) is mapped to p0 (0,0), (63,0) is mapped to
p1(1,0), (0,63) is mapped to p2(0,1), (63,63) is mapped to p3(1,1), (31,31) is mapped to
p4(0.5,0.5) as well as other points.
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Figure 5.25: The texture coordinate.

Figure 5.26 shows a texture mapping from a cropped texture to a leaf polygon. A
leaf coordinate in three-dimensional space (Figure 5.26(a)) is mapped to range of [0,1]
coordinate in XY -plane (Figure 5.26(b)) corresponding to texture coordinate in Figure
5.26(d), and the texture coordinate is mapped to the actual leaf coordinate as Figure
5.26(c).

Figure 5.26: The texture mapping procedure.

The flow of leaf texture mapping is shown in Figure 5.26. The texture is acquired by
scanners or cameras from actual leaves, and cropped to an appropriate size, then mapped
to the 3D leaf polygon. The 3D leaf can be changed the material color by users.

In the case of soybean, the texture of the soybean leaf is cropped from the actual
soybean in this thesis experiment. It is mapped to the leaf polygon of soybean plant.
Figure 5.27(a) visualizes the Soybean prototype in Section 5.1.4 using six iterations as
well as in Figure 5.27(b) is added the soybean texture to its leaves.
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(a) soybean at 6th iteration (b) soybean with leaf texture mapping

Figure 5.27: Soybean’s structure at 6th iteration without leaf texture mapping (a), and with
texture mapping (b).

Changing of Plant Components in Time

Plant components have been changed their properties, e.g. color, angle, size, in time.
PlantVR provides the interpolation color of plant components. The mapping functions of
red R, green G, and blue B convert the object color (R,G,B) to three channels R, G, B,
and interpolate each color channel depending on time. Finally, all channels of R, G, B are
combined to the object color (R,G,B) for visualizing at the current time. Angle of each
component depends on the property in L-system code. Leaf angle can be interpolated in
the angle corresponding to XY Z-axes. Size of component changes with growth function
at each time step. Figure 5.28 illustrates the plant growth and changing color of plant
components in time.

Programming language

PlantVR is a software for simulation and visualization of plant growth. It works on
windows operating systems based on OpenGL library. The implemented code is based on
Pascal object oriented language namely Delphi.

User interface

Delphi provides a fast user interface implementation based on graphical user interface
(GUI). The objects in Delphi allow users to interact with 2D and 3D rendering view port
linking to OpenGL.
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Figure 5.28: Plant growth and changing color of plant in time space.

OpenGL implementation

OpenGL is free library for graphic implementation in both 2D and 3D based on simple
geometry such as point, line, triangle, polygon. OpenGL provides also advanced features
for environmental effects, i.e. blending function, transparency, fog, etc.

Visualization results

Figure 5.29 and Figure 5.30 show some results from PlantVR software. The gallery of
some additional results is shown in Appendix C.

5.1.7 Model Evaluation

The PlantVR software presented in this dissertation has the capability to adjust the
parameters of the plant model interactively. It allows users to verify the production
rules and to modify the appearance of the graphical image of the generated plant in real
time mode. In addition, if there are any flaws presented in the plant model due to the
production rules, the users can edit the rules and recompile the L-system description.
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Figure 5.29: Plant field.

Figure 5.30: A simulated plant with flowers and fruits in PlantVR.
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5.2 LeafDS Software

The section describes the LeafDS (Leaf Design) software for creating the 3D leaf surface
(file extension .sur) used in PlantVR as a predefined leaf surface of leaf and petal. The
leaf surface is based on 2D mesh (leaf plane). It allows the user to move and modify each
vertex to the appropriate position. The set point operation provides to set a vertex to
the target position for some unnecessary vertices.

Figure 5.31: LeafDS software : Initial leaf grid.

Figure 5.31 shows the setting up of 2D mesh for 3 columns and 5 rows. The point
number 2 is defined as a source point which is attached to the petiole or internode. We
now show an example for creating a simple leaf surface. Firstly, the point number 1 and
3 are set to the point number 2, and the point number 13 and 15 are set to the point
number 14. Then we now get the result in Figure 5.32.

All points on the leaf surface can be moved to any direction for creating the 3D leaf
surface. Figure 5.33 shows leaf surface after editing by user in wire frame. The leaf surface
with polygon fill is illustrated in Figure 5.34. The LeafDS allows the user to load and
modify the existing leaf library in .sur file format and save it back to the library.
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Figure 5.32: LeafDS software : Leaf control points.

Figure 5.33: LeafDS software : Leaf surface in wire frame.
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Figure 5.34: LeafDS software : Leaf surface with polygon fill.

The leaf surface library in LeafDS is imported to PlantVR for optional leaf and petal
library to attach the leaf shape to the branch structure. The growth of leaf and petal is
controlled in sigmoidal growth functions from data collection.

5.3 LeafVein Software

LeafVein software was designed to generate the leaf vein structure based on PTM (see
Chapter 3). The input of LeafVein requires leaf margin from scanned leaf or other re-
sources. Figure 5.35 illustrates the input leaf margin, leaf edge detection and leaf margin
representation.

The results from leaf vein generation are used as leaf textures and mapped on 3D leaf
surface (result from LeafDS software). LeafVein was mainly implemented for simulating
leaf vein structures, but trees and roots were also included in the software for showing in
rough detail. Figure 5.36 shows simulated leaf vein of ivy leaf.

The vein resolution parameter is controlled by Bezier curve as shown in Figure 5.37.
Figure 5.38 shows an example of simulated leaf vein from LeafVein software and used

in PlantVR for leaf texture mapping.
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Figure 5.35: Leaf edge detection and leaf margin representation.

Figure 5.36: LeafVein software.
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Figure 5.37: Leaf vein resolution.

Figure 5.38: Simulated leaf vein (left) by LeafVein software and simulated plant with texture
mapping (right) in PlantVR.
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5.4 BranchRecon Software

The BranchRecon software is implemented to solve the inverse problem of L-system (see
section 2.7). The flowchart of the software was shown in Figure 5.39. The procedure
starts from given 2D/3D input data, proceeds a preprocessing for noise reduction, executes
region or volume growing method, runs thinning and skeletonization processes, generates
network and resolution reduction, produces L-systems rules or L-string code, and print
L-system string for further uses. Figure 5.40 shows the software after entering an input
branching structure image.

Figure 5.39: Flow diagram of reconstruction process of branching structure described in algo-
rithm 2.2 [Chuai-Aree et al., 2007].

Figure 5.40: BranchRecon software with input branch structure.
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After applying the region growing algorithm and the skeletonizing algorithm, the skele-
ton of branching structure is constructed and labelled all appropriate nodes (see Figure
5.41). The 3D structure of reconstructed network is visualized in Figure 5.42. provides

Figure 5.41: Input branch structure and its skeleton with node labels.

Figure 5.42: Skeleton of reconstructed structure.
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Figure 5.43 and Figure 5.44 illustrate 3D view of reconstructed rat neuron structures.
3D structures can be converted from .HOC file to .NLS (Network L-system) file format.

Figure 5.43: Some rat neuron structures reconstructed by P. J. Broser [Broser, 2006] and vi-
sualized in BranchRecon and converted to .NLS (Network L-systems) file format in form of
L-systems description, 1st row (side view) and 2nd row (top view).

Figure 5.44: Some rat neuron structures reconstructed by P. J. Broser [Broser, 2006] and vi-
sualized in BranchRecon and converted to .NLS (Network L-systems) file format in form of
L-systems description, 1st row (side view) and 2nd row (top view).
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The side view and top view of reconstructed canola root structures are shown in Figure
5.45 and Figure 5.46. 3D structures can be converted from .MV3D file to .NLS (Network
L-system) file format.

Figure 5.45: Some canola root structures reconstructed by P. Kolesik [Kolesik, 2004] and vi-
sualized in BranchRecon and converted to .NLS (Network L-systems) file format in form of
L-systems description, 1st row (side view) and 2nd row (top view).

Figure 5.46: Some canola root structures reconstructed by P. Kolesik [Kolesik, 2004] and vi-
sualized in BranchRecon and converted to .NLS (Network L-systems) file format in form of
L-systems description, 1st row (side view) and 2nd row (top view).
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5.5 PlantVR - MuPhi Communication

This section describes the interaction between PlantVR software and MuPhi(or µϕ) li-
brary. MuPhi library was developed by O. Ippisch [Ippisch, 2001] at the Institut für
Parallele und Verteilte Systeme (IPVS), University of Stuttgart. It is used to calculated
the water flow in soil volume. In this section, the explanation of the communication
between both softwares is shown in Figure 5.47.

1.Prepare input file input.dat
2.Call MuPhiInitialize ←→ Initialize input file input.dat
3.Define the gridsize of domain ←→ Initialize the gridsize
4.Call MuPhiSetSources(sources) ←→ Set the source/sink term
5.Call MuPhiDoTimeStep(dt) ←→ Calculate water flow in the domain
6.Call MuPhiGetThetaArray(myTheta) ←→ Return array of Theta values
7.Call MuPhiGetPotentialArray(myPotential) ←→ Return array of Potential values
8.Use myTheta and myPotential for plant
9.Calculate plant growth and water uptake
10.Do 4. to 9. until satisfies the condition
11.Call MuPhiFinished() ←→ Finalize the MuPhi

Figure 5.47: Flow diagram of PlantVR-MuPhi interaction.

There are 11 consecutive steps to proceed the communication for all calculations be-
tween PlantVR-MuPhi. All steps are describes in detail as follows.

1. Prepare input file input.dat

2. Call MuPhiInitialize

3. Define the grid size of domain

4. Call MuPhiSetSources(sources)

5. Call MuPhiDoTimeStep(dt)

6. Call MuPhiGetThetaArray(myTheta)

7. Call MuPhiGetPotentialArray(myPotential)

8. Use myTheta and myPotential for plant

9. Calculate plant growth and water uptake
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10. Do step 4 to step 9 until it satisfies the condition of the target time step.

11. Call MuPhiFinished()

5.6 Discussion and Conclusion

This chapter introduced our software packages for modeling, simulation and visualization
of plant growth. We have introduced five softwares programmed within the scope of this
thesis, e.g. PlantVR, LeafDS, LeafVein, BranchRecon, and PlantVR-MuPhi. PlantVR
software is a software for generating the plant structures using L-systems based on brack-
eted L-system, stochastic L-system, parametric L-system and particle transportation
method (PTM) based on the environmental particles in both shoot and root parts (see
Chapter 2 and Chapter 3). It simulates the growth of plant in time both in shoot and
root. Leaf3D software is programmed to create the 3D leaf surface used in PlantVR as
a predefined surface. LeafVein software simulates the leaf veins using PTM by defining
leaf boundary and the source point P0 of leaf (see Chapter 3). BranchRecon software
is developed to solve the inverse problem of L-system by giving the input image con-
tained branching structure and returning the L-system description which can be used
in PlantVR, Finally, PlantVR-MuPhi is a communication library between the PlantVR
and MuPhi library for calculating the water flow in soil volume and send the numerical
solutions to PlantVR.
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Conclusion and Outlook

“Structure without function is only half, but
structure with function is one.”

6.1 Conclusion

In this thesis, we proposed two methods for generating plant structures using L-systems
and PTM. We also presented the algorithm for reconstructing the network structure
from data acquisition such as camera, scanner, CT-scanner, the so-called method inverse
problem of L-systems.

Plant structures can be modelled using deterministic and stochastic L-systems. A
set of simple production rules after decomposition, the plant structure was generated to
the complex plant or tree structures. The growth functions based on sigmoidal function
were applied to all plant components and controlled by starting time. The whole plant
structure is growing depending on the global time. Each plant component has their own
local time for starting the growth. We used Levenberg-Marquardt algorithm to estimate
the parameters of the N-pulses sigmoidal growth function. To calibrate the model, we
acquired real data from the experiments.

To generate trees quickly, we selected the PTM as algorithm which is a proper tool
to produce complicated structures starting from given the shape of shoot and root parts.
It also generates leaf veins for fixed and growing leaf margins. Using the interface we
prescribed spline curves to control the branching process of the network density. The
given leaf margin and tree boundary shape play a big role for tree network construction.
Varying the vein velocities of the main stem and the lateral branches, different network
structures and shapes of trees could be reproduced.

Solving the inverse problem of L-systems, we developed a tool to reconstruct the auto-
matic L-string code. It can be used both in 2D image and 3D volume data. The presented
reconstruction algorithms can be adapted to a wide scope of applications in medicine, e.g.
by describing the vessel branching in human body. The input data are required to proceed
the pre-processing for noise reduction using anisotropic diffusion filtering. We applied the

195
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region and volume growing methods to reduce the object to its skeleton. The network
structure is reconstructed and represented in its L-string code. Furthermore, we offer a
tool to reduce the resolution of the network.

The nutrient diffusion and water flow in soil play a big role for root growth. In this
thesis, we simply calculated nutrient diffusion and water flow in soil interacting with the
root system. We used MuPhi library written by O. Ippisch for computing the water flow
and root growth simultaneously. The library is not completed for solute transport with
water flow, but the solute transport will be developed in the future.

Finally, five softwares are developed for investigatation in this thesis, e.g. PlantVR,
LeafVein, BranchRecon, LeafDS and PlantVR-MuPhi. They are working on windows
operating systems.

6.2 Outlook

As in any research project there is a number of aspects which were not treated and that
shall be the object of future research. Here, we are going to discuss some of them briefly.

We see the following possibilities and the need for improvements in future research:

1. improving the mathematical modeling of processes inside the plant based on physio-
logical information,

2. developing new features and tool for the L-systems in order to treat other classes of
structures,

3. introducing a hierarchical structure allowing to pass between different scales,

4. transfer of the concepts and software tools to other applications, e.g. vessels systems,
systems of neurons in medicine,

5. improving the coupling of the different compartments in the system, including in-
vestigation on PTM,

6. including the micro-ecology interacting with the root system,

7. combining the photosynthesis process in the plant growth,

8. interacting of different plant species in root and shoot parts, and

9. combination of solute transport with water flow in PlantVR-MuPhi interface.

Not all of these topics are of the same importance and posing the same difficulties.
Improving the modeling of the physiological processes in the plant has the highest priority.
In fact, it is a long term project for the community which needs intensive cooperation
between the biologists and specialists in modeling and simulation. We see a good chance to
transfer our approaches to structures which can be represented by networks. We already
started cooperation with scientists in medicine investigating network of blood vessels
and neurons. It is already a challenge to characterize and to quantify their geometries.
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Computing processes on such complex networks is even more challenging. Those topics
which belong to the more technological parts seem to be easier solvable and we hope to
achieve the demanded improvement in the near future.
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Appendix A

Algorithms

This appendix describes the rewriting algorithm and data structure of plant structures
presented in Section 2.2.

A.1 Rewriting Algorithm

We define a production consisting of a predecessor Pred and a successor Succ as the
following record declaration.

Type production = record
Pred : Character
Succ : String

End

The variables are defined as follows:

i, j, and k : a positive integer,
iter : a number of the L-system iterations,
rulenum : a number of production rules,
allstr : a last L-system string,
rule : an array of the production rule,
prev : a previous string of current character,
last : a next string of current character,
Endrule Check : a flag of the endrule keyword,

it is true if there are endrule keyword,
Length() : a length function return the number of argument string,
EndRuleNum : a number of endproduction rules,
Endrule : an array of the production rule.
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The rewriting algorithm of the L-system is given below.

Rewriting Algorithm

BEGIN
FOR i := 1 TO iter DO
BEGIN

FOR j := 1 TO rulenum DO
BEGIN

k := 1
WHILE (k ≤ length(allstr)) DO
BEGIN

IF allstr[k]=rule[j].pred THEN
BEGIN prev := Copy(allstr,1,k-1)

last := Copy(allstr,k+1,length(allstr)-k)
allstr := prev + rule[j].succ + last
k := k+length(rule[j].succ)

END
ELSE

k:=k+1
END

END
END

IF EndRule Check THEN
BEGIN

FOR j := 1 TO EndRuleNum DO
BEGIN

k := 1
WHILE (k ≤ length(allstr)) DO
BEGIN

IF allstr[k]=EndRule[j].pred THEN
BEGIN

prev := Copy(allstr,1,k-1)
last := Copy(allstr,k+1,length(allstr)-k)
allstr := prev + EndRule[j].succ + last
k := k+length(EndRule[j].succ)

END
ELSE

k:=k+1
END

END
END

END.
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A.2 L-system interpretation algorithm

After executing the rewriting algorithm, the L-system string is interpreted by the L-system
interpretation algorithm presented Section 2.3.1. The structure and variables are defined
as follows:

The structure of plant is given the following type:

Type TTree = record
StringType : Char;
Length : Real;
BigT : Real;
T : Real;
t start,t stop : Real;
Angle H, Angle U, Angle L : GLFloat;
Angle : GLFloat;
angle azimut : GLFloat;
allchild : Integer;
child : array[1..maxchild] of integer;
myparent : Integer;
mylevel : Integer;
Leaf : Boolean;
Flower : Boolean

End

The description of TTree attribute is given as follows:

Attribution name Meaning
StringType a symbol of the L-system string,
Length a length of internode, or petiole,
BigT a maximum life time of internode or petiole,
t a time variable between the internode

or petiole life cycle,
t start,t stop a start time and stop time of the internode

or petiole,
Angle H, Angle L, Angle U a angle respect to X, Y, Z axis,

respectively,
allchild a number of all child of internode or petiole,
child an array of child internode or petiole,
myparent a parent of the internode or the petiole,
mylevel a level of the internode or the petiole,
Leaf a flag for internode leaf,

it is TRUE if there is a leaf,
Flower a flag for internode flower,

it is TRUE if there is a flower,

The variables are defined as follows:
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Variable name Meaning
CountNode a number of symbols I, A, P , i, and p,
Showmessage() a procedure that display the argument message,
Exit an exiting procedure,
NOT a boolean operator,
Maxatree a maximum length of the L-system string,
Atree an array of plant TTree type,
Maxatree a maximum number of symbols I, A, P , i, and p,
Current Str[k] a kth symbol of the L-system string,
Main Stem[k] an array of the main stem order at kth level,
MainStemOfBracket[k] a number of bracket [ at the kth level,
Bracket a number of Bracket [,
Ang U an angle respect to Z axis,
Ang L an angle respect to Y axis,
Ang H an angle respect to X axis,
TopStack a length of stack,
Stack Angle U[TopStack] a Topstack angle respect to Z axis,
Stack Angle L[TopStack] a Topstack angle respect to Y axis,
Stack Angle H[TopStack] a Topstack angle respect to X axis,
RU Change a flag of turtle angle on Z axis,
RL Change a flag of turtle angle on Y axis,
RH Change a flag of turtle angle on X axis,
AllNode a number of all component I, A, P , i, and p,
Current Node a current symbol of the L-system string,
TopMainStem a current length of the main stem, and
MainStem[TopMainStem] a main stem order at TopMainStem level.

The L-system interpretation algorithm presented Section 2.3.1 is given below.

L-system interpretation algorithm

BEGIN
CountNode := 0;
FOR k := 1 TO length(allstr) DO
BEGIN

IF allstr[k] IN [‘I’,‘A’,‘P’,‘i’,‘p’] THEN
CountNode := CountNode + 1

IF NOT (allstr[k] in [‘I’,‘i’,‘A’,‘P’,‘p’,‘L’,‘F’,‘[’,‘]’,‘-’,‘+’,‘/’,‘\’,‘ˆ’,‘&’,‘|’]) THEN
BEGIN

Showmessage(allstr[k]+‘is not in {I,i,A,P,p,L,F,[,],/,\,+,-,ˆ,&,| }’)
EXIT

END
END
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IF CountNode > Maxatree THEN
BEGIN

Showmessage(‘The String is too long.’)
EXIT

END

FOR k := 1 TO CountNode DO
BEGIN

atree[k].Angle U := 0
atree[k].Angle L := 0
atree[k].Angle H := 0
atree[k].Leaf := False
atree[k].Flower := False

END

IF CountNode > MaxaTree THEN
BEGIN

Showmessage(‘The number of node is too much.’)
EXIT

END
ELSE
FOR k:= 1 TO length(allstr) DO
BEGIN

Current Str[k] := 0
Main Stem[k] := 0
MainStemOfBracket[k] := 0

END

//———— Plant generator start ————
k := 1
WHILE k ≤ length(allstr) DO
BEGIN

CASE allstr[k] OF
‘[’ : BEGIN

Bracket := Bracket + 1
MainStemOfBracket[Bracket] := 0

Ang U := 0
Ang L := 0
Ang H := 0

Stack Angle U[TopStack] := Ang U
Stack Angle L[TopStack] := Ang L
Stack Angle H[TopStack] := Ang H

END
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‘]’ : BEGIN
Bracket := Bracket - 1
Current Str[TopStack] := 0 // Clear the top of Stack

Ang U := Stack Angle U[TopStack]
Ang L := Stack Angle L[TopStack]
Ang H := Stack Angle H[TopStack]

TopStack := TopStack - MainStemOfBracket[Bracket+1]
MainStemOfBracket[Bracket+1] := 0

RU Change := True
RL Change := True
RH Change := True

END

‘A’,‘P’,‘I’,‘i’,‘p’ : BEGIN
AllNode := AllNode + 1
TopStack := TopStack + 1
Current Node := CountNode + 1
Current Str[TopStack] := Current Node

MainStemOfBracket[Bracket] := MainStemOfBracket [Bracket] + 1

IF (RU Change) THEN
BEGIN

IF (allstr[k+1] IN [‘I’,‘A’,‘P’,‘i’,‘p’]) THEN
BEGIN

RU Change :=True
atree[Current Node].Angle U := Ang U

END
ELSE
RU Change :=False

END

IF (RL Change) THEN
BEGIN

IF (allstr[k+1] IN [‘I’,‘A’,‘P’,‘i’,‘p’]) THEN
BEGIN

RL Change :=True
atree[Current Node].Angle L := Ang L

END
ELSE

RL Change :=False
END
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IF (RH Change) THEN
BEGIN

IF (allstr[k+1] IN [‘I’,‘A’,‘P’,‘i’,‘p’]) THEN
BEGIN

RH Change :=True
atree[Current Node].Angle H := Ang H

END
ELSE

RH Change :=False
END

IF Bracket = 0 THEN // Check for MainStem
BEGIN

inc(TopMainStem) // = 0 is empty node.
Main Stem[TopMainStem] := Current Node
IF (allstr[k-1] IN [‘[’,‘I’,‘A’,‘P’,‘]’,‘i’,‘p’]) THEN

atree[Current Node].angle := 0

Ang U := 0.01*Random(5)
Ang L := 0.01*Random(5)
Ang H := 0.01*Random(5)

IF allStr[k] = ‘I’ THEN
atree[Current Node].StringType := ‘I’

ELSE IF allStr[k] = ‘i’ THEN
atree[Current Node].StringType := ‘i’

ELSE
atree[Current Node].StringType := allstr[k]

END

ELSE IF allStr[k] IN [‘I’,‘i’] THEN
BEGIN

IF allStr[k] = ‘I’ THEN
atree[Current Node].StringType := ‘P’

ELSE
atree[Current Node].StringType := ‘p’;

// Reset the angle of Petiole after first Node

IF allStr[k-1] IN [‘I’,‘i’] THEN
BEGIN

IF RU Change AND (atree[Current Node1].Angle U > 0) THEN
Ang U := 0.05

ELSE
Ang U := -0.05

IF RL Change AND (atree[Current Node1].Angle L > 0) THEN
Ang L := 0.05

ELSE
Ang L := -0.05
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IF RH Change AND (atree[Current Node1].Angle H > 0) THEN
Ang H := 0.05

ELSE
Ang H := -0.05

END
END

ELSE
atree[Current Node].StringType := allstr[k]

// Set Leaf attach to this node
IF allstr[k+1] = ‘L’ THEN
BEGIN

atree[Current Node].Leaf := True
k :=k+1

END

// Set Flower attach to this node
ELSE
IF allstr[k+1] = ‘F’ THEN
BEGIN

atree[Current Node].Flower := True
k := k+1

END

atree[Current Node].myparent := Current Str[TopStack-1]

atree[Current Node].Angle U := Ang U
atree[Current Node].Angle L := Ang L
atree[Current Node].Angle H := Ang H

atree[Current Node].mylevel := Bracket
END

‘−’ : BEGIN
Ang U := Ang U - sigma
RU Change := True

END

‘+’ : BEGIN
Ang U := Ang U + sigma
RU Change := True

END

‘|’ : BEGIN
Ang U := Ang U + 180.0
RU Change := True

END
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‘&’ : BEGIN
Ang L := Ang L + sigma
RL Change := True

END

‘ˆ ’ : BEGIN
Ang L := Ang L - sigma
RL Change := True

END

‘\’ : BEGIN
Ang H := Ang H + sigma
RH Change := True

END

‘/’ : BEGIN
Ang H := Ang H - sigma
RH Change := True

END
END
k := k + 1

END
END.

A.3 Stochastic Structure Implementation and Natu-

ral Selection

The stochastic L-system presented in Section 2.3.3 is applied to L-systems prototype based
on natural selection.

The attributions of production rule in the stochastic L-system are defined as follows:

Type production = record
ruleno : Integer;
pred : String;
succ : array[1..MaxSuccessor] of String;
prob : array[1..MaxSuccessor] of Single;

End

The detail of each attribution is given in the following table.

Attribution name Meaning
ruleno all successor rules,
pred predecessor of production rule in stochastic L-system,
succ array of all successors in the same production rule,
prob array of probability value of each successor,
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The variables are defined as follows:

Variable name Meaning
MaxBall a maximum number of ball for natural selection process,
StochRule stochastic rule,
Ball an array of all labelled balls in the system,
BallTmp a maximum number of ball in each case concerning probability value,
BallNo running number of ball number,
BallNew a random new ball index,
BallNewValue the index of BallNew,
BallOld a random old ball index,
BallOldValue the index of BallOld,

We implemented the natural selection algorithm for stochastic production rules selec-
tion in L-systems. The following source code of natural selection algorithm is given below.

Natural Selection Algorithm

const MaxBall = 100;

function NaturalSelection(StochRule : Production) : Integer;
var

Ball : array[1..MaxBall] of Integer; // To store the kind of ball
i,j,k : Integer;
BallTmp, BallNo : Integer;
BallNew,BallNewValue,BallOld,BallOldValue : Integer;

begin

BallNo := 0;
for i:= 1 to StochRule.ruleno do
begin

BallTmp := Round(StochRule.prob[i]*MaxBall);

for j:= 1 to BallTmp do
begin

inc(BallNo);
Ball[BallNo] := i;

end;
end;
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// Shaking the Ball Process.
for i:=1 to 5000 do
begin

BallOld := Random(MaxBall)+1; // Random old Address
BallOldValue := Ball[BallOld]; // store the old value

BallNew := Random(MaxBall)+1; // Random New address
BallNewValue := Ball[BallNew]; // Store New vlaue

Ball[BallOld] := BallNewValue; // move New value to Old address
Ball[BallNew] := BallOldValue; // move Old value to New address

end;

// Return the selected ball to the caller..
Result := Ball[Random(MaxBall)+1];

end;
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Appendix B

Parameter Estimation

This appendix describes the Hessian matrix of multi-logistic parameter estimation shown in Section 2.5.

Hessian Matrix

From equation (2.35), let N be a number of N-pulses. In order to make the example easy, we show for
3-pulses (N = 3).

G(t) =
U1

1 + em1(T1−t)
+

U2

1 + em2(T2−t)
+

U3

1 + emN (TN−t)

=
3∑

k=1

(
Uk

1 + emk(Tk−t)
)

(B.1)

We now have 3-pulses with 9 parameters: U1,m1, T1, U2,m2, T2, U3,m3, T3. Let ai be all parameters
where i, j = 1, 2, 3, ..., 9. The equation (2.40) can be rewritten as follows:

∇2E(at) =




∂2E(at)
∂a1t∂a1t

∂2E(at)
∂a1t∂a2t

∂2E(at)
∂a1t∂a3t

. . .
∂2E(at)
∂a1t∂a9t

∂2E(at)
∂a2t∂a1t

∂2E(at)
∂a2t∂a2t

∂2E(at)
∂a2t∂a3t

. . .
∂2E(at)
∂a2t∂a9t

∂2E(at)
∂a3t∂a1t

∂2E(at)
∂a3t∂a2t

∂2E(at)
∂a3t∂a3t

. . .
∂2E(at)
∂a3t∂a9t

...
...

...
. . .

...
∂2E(at)
∂a9t∂a1t

∂E(at)
∂a9t∂a2t

∂E(at)
∂a9t∂a3t

. . .
∂2E(at)
∂a9t∂a9t




= [hi,j ]

=
[

∂2E(at)
∂ait∂ajt

]
∀i, j; where i, j = 1, 2, 3, ..., 9 (m = 3(3) = 9)

(B.2)

The Hessian matrix is symmetry. The hi,j elements are listed in the following equations.
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h1,1 = h1,4 = h1,5 = h1,6 = h1,7 = h1,8 = h1,9 = 0 (B.3)

h1,2 =
∂2E(at)
∂a1t∂a2t

= h2,1 = − (dd)(x− a3)e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)2

(B.4)

h1,3 =
∂2E(at)
∂a1t∂a3t

= h3,1 = − (dd)e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)

(B.5)

h2,2 =
∂2E(at)
∂a2t∂a2t

= −

2a1(dd)2(x− a3)2


e

(
− (dd)(x− a3)

a2

)


2


1 + e

(
− (dd)(x− a3)

a2

)


3

(a2)4

+
2a1(dd)(x− a3)e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)3

−a1(dd)2(x− a3)2e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)4

(B.6)
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h2,3 =
∂2E(at)
∂a2t∂a3t

= h3,2 = −

2a1(dd)2(x− a3)


e

(
− (dd)(x− a3)

a2

)


2


1 + e

(
− (dd)(x− a3)

a2

)


3

(a2)3

+
a1(dd)e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)2

−a1(dd)2(x− a3)e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)3

(B.7)

h2,4 = h2,5 = h2,6 = h2,7 = h2,8 = h2,9 = 0 (B.8)

h3,3 =
∂2E(at)
∂a3t∂a3t

= −

2a1(dd)2


e

(
− (dd)(x− a3)

a2

)


2


1 + e

(
− (dd)(x− a3)

a2

)


3

(a2)2

− a1(dd)2e

(
− (dd)(x− a3)

a2

)

1 + e

(
− (dd)(x− a3)

a2

)


2

(a2)2

(B.9)
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h3,4 = h3,5 = h3,6 = h3,7 = h3,8 = h3,9 = 0 (B.10)

h4,1 = h4,2 = h4,3 = h4,4 = h4,7 = h4,8 = h4,9 = 0 (B.11)

h4,5 =
∂2E(at)
∂a4t∂a5t

= h5,4 = − (dd)(x− a6)e

(
− (dd)(x− a6)

a5

)

1 + e

(
− (dd)(x− a6)

a5

)


2

(a5)2

(B.12)

h4,6 =
∂2E(at)
∂a4t∂a6t

= h6,4 = − (dd)e

(
− (dd)(x− a6)

a5

)

1 + e

(
− (dd)(x− a6)

a5

)


2

(a5)

(B.13)

h5,5 =
∂2E(at)
∂a5t∂a5t

= −
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)


3

(a5)4

+
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)

1 + e
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2
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1 + e

(
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)


2

(a5)4

(B.14)
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h5,6 =
∂2E(at)
∂a5t∂a6t

= h6,5 = −

2a4(dd)2(x− a6)


e
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2

(a5)3

(B.15)

h5,7 = h5,8 = h5,9 = 0 (B.16)

h6,6 =
∂2E(at)
∂a6t∂a6t

= −

2a4(dd)2


e

(
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)


2

(a5)2

(B.17)

h6,7 = h6,8 = h6,9 = 0 (B.18)
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h7,1 = h7,2 = h7,3 = h7,4 = h7,5 = h7,6 = h7,7 = 0 (B.19)

h7,8 =
∂2E(at)
∂a7t∂a8t

= − (dd)(x− a9)e

(
− (dd)(x− a9)

a8

)

1 + e

(
− (dd)(x− a9)
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)


2

(a8)2

(B.20)

h7,9 =
∂2E(at)
∂a7t∂a9t

= − (dd)e

(
− (dd)(x− a9)

a8

)

1 + e

(
− (dd)(x− a9)

a8

)


2

(a8)

(B.21)

h8,1 = h8,2 = h8,3 = h8,4 = h8,5 = h8,6 = 0 (B.22)

h8,7 =
∂2E(at)
∂a8t∂a7t

= h7,8 = − (dd)(x− a9)e

(
− (dd)(x− a9)

a8

)

1 + e

(
− (dd)(x− a9)

a8

)


2

(a8)2

(B.23)

h8,8 =
∂2E(at)
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= −
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)


2
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−a7(dd)2(x− a9)2e
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− (dd)(x− a9)

a8

)

1 + e

(
− (dd)(x− a9)

a8

)


2

(a8)4

(B.24)

h8,9 =
∂2E(at)
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(B.25)

h9,1 = h9,2 = h9,3 = h9,4 = h9,5 = h9,6 = 0 (B.26)

h9,7 = h7,9 (B.27)

h9,8 = h8,9 (B.28)
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h9,9 =
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Gallery Results

This appendix shows some simulated results in the dissertation obtained from PlantVR software. The
description of each simulated result is given at its caption.

Figure C.1: Some examples of plant growth using PlantVR.
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Figure C.2: Plant development with its shadow starting at t = 20 days for every two time steps
dt = 2 days.
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Figure C.3: Plant development and its shadow with growing grass starting at t = 20 days for
every two time steps dt = 2 days.
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Figure C.4: Plant development with their growth curves starting at t = 20 days for every three
time steps dt = 3 days.
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Figure C.5: Simulated mango tree with changing leaves color.
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Figure C.6: Simulated growing mango tree starting at t = 28.25 for every 10 frames.
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Figure C.7: Simulated growing mango tree starting at t = 28.25 for every 10 frames (from top
view). It is similar to Figure C.6 mapped frame by frame.
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Figure C.8: Four different simulated growing plants based on sigmoidal growth functions.
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Figure C.9: Simulated growing entire crop in the field based on sigmoidal growth functions.
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Figure C.10: Simulated growing plant with growth curve of plant components, shoot length,
main step length, and leaf area. Users can observe plant growth behavior.
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Figure C.11: Simulated growing plant in wire frame.
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Figure C.12: Simulated growing plant with changing leaf color depending on leaf age.

Figure C.13: Simulated growing soybean with changing leaf material corresponding leaf age.
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Figure C.14: Simulated growing plant with changing leaf material corresponding leaf age,
straight main stem, PlantVR provides an option to adjust the main stem look more realistic.

Figure C.15: Simulated stochastic L-system applied to soybean prototype and growing as entire
crop.
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Figure C.16: Simulated growing plant with red flowers and changing leaf color in time, the main
stem with realistic mode.
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Figure C.17: Simulated growing soybean using stochastic L-system.
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Figure C.18: Simulated growing soybean using stochastic L-system with changing leaf color
depending on leaf age.
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Figure C.19: Simulated growing root system using root-growth-process algorithm, root color
presents the root age. Red root is younger than black root.
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Figure C.20: Simulated growing root and nutrient uptake by plant root, the color planes present
the nutrient concentration at each position in soil volume. Red is high concentration and blue
is low concentration. The color was coded from red to blue for high to low concentration,
respectively.
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Figure C.21: Visualization of root growth and nutrient diffusion, the iso-surface presents the
nutrient concentration around root zone. The color was coded from red to blue for high to low
concentration, respectively.
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Abbreviations and Notations

This appendix describes all abbreviations and notational conventions used in the text. It
is divided into two sections: Abbreviations and Notations.

List of Abbreviations

Abbreviations Meaning

2D 2-dimensional space
3D 3-dimensional space
BrachRecon Branching Reconstruction software
CBN Algorithm for Constructing the Branching Network
CT Computed Tomography
Delphi Delphi Borland Cooperation
DFV Depth Field Value
DOL Deterministic and Context-Free L-systems
FVM Finite Volume Method
GUI Graphical User Interface
HFM2D Height Field Map Algorithm for 2D Images
HFV3D Height Field Volume Algorithm for 3D Volume Data
HOC Neuron Network File Format
IAA Indole-3-Acetic Acid (Auxin Hormone)
LCon L-string Construction Algorithm
L-systems Lindenmayer Systems
LeafDS Leaf Design Surface Software
LeafVein Leaf Vein Generator Software
LED Leaf Edge Detection algorithm
LevMar Levenberg-Marquardt’s Algorithm
LM Levenberg-Marquardt Method
MRI Magnetic Resonance Imaging
MuPhi µφ Library for Calculating Water Flow
NLS Network L-system File Format
OL Context-Free L-systems
OpenGL Open Graphics Library
PlantVR Plant Virtual Reality software
PlantVR-MuPhi PlantVR Software Linked to MuPhi(or µϕ) Library
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Abbreviations Meaning

PM The Perona-Malik model
PTM Particle Transportation Method
PTM-LeafVein Particle Transportation Method for Leaf Vein Generation
PTM-Tree Particle Transportation Method for Tree/Plant Network Generation
ReconProc Branching Structure Reconstruction Procedure
ResRed Resolution Reduction Algorithm
RGM2D Region Growing Method for 2D Images
RGP Root Growth Process Algorithm
SKel2D Skeletonizing Algorithm for 2D Images
SKel3D Skeletonizing Algorithm for 3D Volume Data
SSE Sum Square Error
VGM3D Volume Growing Method for 3D Volume Data
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List of Notations

Symbols Meaning Defined in

a parameters of nonlinear regression equation 2.5.3
Bi initial time of component i 2.5
BBi,j blue intensity of pixel i, j of image I 2.7.5
c nutrient concentration (mol/cm3) 4.3
C differential water capacity (dθ/dh) (cm−1) 4.2
C(Σ) a logical expression with parameters from Σ 2.2.8
δl(i + 1) accumulative angle from the 1st leaf to (i + 1)th leaf 3.4.1
δL angle (degrees) between the ith leaf and

the (i + 1)th leaf 3.4.1
δr an initial angle between the first root internode

with vertical axis 2.4
δs an initial angle between the first shoot internode

with vertical axis 2.4
dl growing step size of leaf vein segment 3.2.3
D diffusion coefficient (cm2/s) 4.3
�Di direction of particle pi 3.1
Dr an initial diameter of the first root internode in

plant module design 2.4
Ds an initial diameter of the first shoot internode in

plant module design 2.4
DFVi,j,k depth field value at the voxel i, j, k 2.7.5
�E unit gradient vector of water content 4.5
E(a) sum square error of nonlinear regression equation 2.5.3
Ei new energy of new particle after combining

the particle i and its nearest particle 3.1
E(Σ) an arithmetic expression with parameters from Σ 2.2.8
g vector of first order partial derivative of E(at) 2.5.3
G growth function of nonlinear regression equation or

dependent variable 2.5.3
�G unit vector by gravitropism effect 4.5
Gi growth value of measured data at ith data point 2.5.3
Gl(t) growth value of leaf at time t 3.2.3
G(t) growth value of sigmoidal function 2.5
GGi,j green intensity of pixel i, j of image I 2.7.5
h soil water pressure head (cm) 4.2
H Hessian matrix of second order partial derivative of E(at) 2.5.3
H(x, y, z) total head (cm) 4.2
J Jacobian matrix derived from H, H ∼= 2J · JT 2.5.3
χ a successor of production rules for rewriting systems 2.2.1
Ki nearest the nearest particle of the particle i 3.1
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Symbols Meaning Defined in

Ki new the new particle after combining the particle i and
its nearest particle 3.1

Kxy hydraulic conductivity in xy-direction (cm day−1) 4.2
λ a modest value of step size in Levenberg-Marquardt’s

Algorithm 2.5.3
λu conduction coefficient of gray intensity u 2.7.4
L minimum value of sigmoidal growth function 2.5
m slope of sigmoidal growth function 2.5
mr nth endproduction rule of root module in plant module design 2.4
ms nth endproduction rule of shoot module in plant module design 2.4
�M unit vector by soil strength 4.5
MNew 2D or 3D array of gray intensity at the new iteration 2.7.5
MNew

i,j,k gray intensity of the voxel i, j, k at the new iteration 2.7.5
MOld 2D or 3D array of gray intensity at the old iteration 2.7.5
MOld

i,j,k gray intensity of the voxel i, j, k at the old iteration 2.7.5
n number of iteration for rewriting systems 2.2.1
nr nth production rule of root module in plant module design 2.4
ns nth production rule of shoot module in plant module design 2.4
ni a network point of leaf vein 3.2.3
NL number of leaves in NR rounds 3.4.1
NR number of turns from the first leaf to the nth leaf in

the vertical projection 3.4.1
�N new direction of next root growth 4.5
N[ number of bracket [ 5.1.4
N([) number of open bracket [ 5.1.4
N(]) number of close bracket ] 5.1.4
NiLL left leaf length of ith internode 5.1.3
NiLW left leaf width of ith internode 5.1.3
NiML middle leaf length of ith internode 5.1.3
NiMW middle leaf width of ith internode 5.1.3
NiRL right leaf length of ith internode 5.1.3
NiRW right leaf width of ith internode 5.1.3
Nr iteration number of root module in plant module design 2.4
Ns iteration number of shoot module in plant module design 2.4
ω an axiom for rewriting systems 2.2.1
ωr a given axiom of root module in plant module design 2.4
ωs a given axiom of shoot module in plant module design 2.4
�O old unit vector of the previous direction of root tip 4.5
π a set of production probabilities mapped one to one into P 2.2.6
p̂i a unit vector direction from a particle pi to a presumed

target point 3.1
P a finite set of productions for rewriting systems 2.2.1
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Symbols Meaning Defined in

P0(x, y) a source point in the input leaf image 3.2.1
P0(x, y, z) a source point of the seed of plant 3.3
Pi new position of new particle after combining

the particle i and its nearest particle 3.1
q̂i a unit vector direction from a particle pi to its nearest

neighbor 3.1
qx volumetric flux in x-direction (cm/s) 4.2
r(t) distance from a source point P0(x, y) to a current

point Pt(x, y) 3.2.1
Ri new radius of new particle after combining

the particle i and its nearest particle 3.1
RRi,j red intensity of pixel i, j of image I 2.7.5
s absolute gradient of gray intensity u, s = |∇u| 2.7.4
S a set of symbols containing elements that remain

fixed constants 2.2.1
S(x, y, z, t) nutrient uptake rate by plant roots at time t 4.3
Σ a set of formal parameters 2.2.8
θ volumetric water content (cm3 cm−3) 4.2
θ(t) angle between a source point P0(x, y) to a unit vector−−−→

(1, 0) and a source point P0(x, y) to a current point
Pt(x, y) 3.2.1

t time independent variable (s) 4.3
t time variable of growth function 2.5
ti time variable or independent variable at ith data point 2.5.3
tU10% the growth value at 10% of U 2.5
tU90% the growth value at 90% of U 2.5

T time at growth function value G(t) = (U+L)
2

2.5
U maximum value of sigmoidal growth function 2.5
v pore water velocity (cm/s) 4.3
vi absolute direction of network point ni 3.2.3
V set of alphabet or variables for rewriting systems 2.2.1
V ∗ set of all words over V for rewriting systems 2.2.1
wp weighting parameter from a particle pi to

a target point 3.1
wq weighting parameter from a particle pi to

a nearest point 3.1
x position (cm) 4.3
Yi length of internode i 2.5
Y Yi,j gray intensity of pixel i, j of image I 2.7.5
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• S. Chuai-Aree, H. G. Bock, W. Jäger, and S. Siripant : ALGM : An Algorithm for Leaf Growth
Measurement Using Region Growing Method, Proc. of Intern. Conf. on High Performance
Scientific Computing (HPSCHanoi 2009), March 2-6, Hanoi, Vietnam, 2009.

• A. Busaman, S. Chuai-Aree, R. Saelim, and W. Kanbua : Modeling, Simulation and Visualiza-
tion of Water Flooding, Proc. of 14th Annual Meeting in Mathematics 2009 (AMM 2009), March
5-6, Suratthani, Thailand, 2009.

• W. Kanbua, and S. Chuai-Aree : The Simulation of Wave model Under North-East Monsoon
Along Coastline of Thailand, Japan - Thailand Estuary Workshop 2008, Venue: Thai Meteorolog-
ical Department, Bangkok, Thailand, August 19 - 20, 2008

• W. Kanbua, and S. Chuai-Aree : Ocean Wave Simulation Under North-East Monsoon Effect in
the Gulf of Thailand, 13th National Convention on Civil Engineering, Venue: Pattaya, Chon Buri,
Thailand, May 14 - 16, 2008

• W. Kanbua, and S. Chuai-Aree : Tsunami Propagation Prediction by SiTProS Model, Interna-
tion Symposium on the Restoration Program from Giant Earthquake and Tsunamis, Venue: Royal
Phuket City Hotel, Phuket, Thailand, January 22-24, 2008

• S. Chuai-Aree, and W. Kanbua : SiTProS: Fast and Real-Time Simulation of Tsunami Propa-
gation, AMS2007: Asia Modelling Symposium international conference, Phuket, Thailand, March
27-30, 2007.

• W. Kanbua, and S. Chuai-Aree : Understanding the Simple Model of Tsunami Propagation by
SiTProS Model, The 11th Annual National Symposium on Computational Science and Engineering
(ANSCSE11), Phuket, Thailand, March 28-30, 2007.
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• S. Chuai-Aree, W. Jäger, H. G. Bock, S. Siripant, and C. Lursinsap : PlantVR: An Algorithm
for Generating Plant Shoot and Root Growth Using Applied Lindenmayer Systems. In B.Hu
and M. Jaeger (eds.): Proc. of 2003’ Intern. Symposium on Plant growth Modeling, simulation,
visualization and their Applications, Tsinghua University Press - Springer Verlag, October 13-16,
Beijing, China, pp. 55-68, 2003.
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