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Genomorganisation auf der 30nm Skala

In dieser Arbeit wurde eine grundlegende Frage der Genomorganisation beantwortet, indem
gezeigt wurde, dass eine Struktur höherer Ordnung nach dem Nukleosom, d.h. Chromatin,
tatsächlich existiert. Ein Chromatin-Modell wurde entwickelt, das die Untersuchung sehr langer
Strukturen (im Bereich von Mega-Basenpaaren) erlaubt. Des Weiteren wurde zum ersten Mal
die Ablösung von Linker Histonen und ganzen Nukleosomen in ein Chromatin-Modell inte-
griert. Dies erlaubt die Untersuchung des Chromatin-Phasendiagramms. Die darin enthalte-
nen Strukturen werden vor dem Hintergrund von DNA-Kompaktifizierung und -Zugänglichkeit
sowie anderer wichtiger Chromatineigenschaften diskutiert. Die Verteilungen der Modellpa-
rameter stammen aus experimentellen Daten [186; 187]. Zusammen mit den Ablösungseffekten
zeigen sie, dass jede Chromatinkonformation aus einer Verteilung von verschiedenen Strukturen
besteht. Dies erklärt, warum es experimentell so schwierig ist, reguläre 30nm Fasern zu finden.
Die Ergebnisse zeigen, dass Histonablösungen die Eigenschaften von Chromatin massiv bee-
influssen. Nukleosomablösung kann einerseits zu einem Chromatinkollabs, andererseits aber
auch zum Anschwellen von Chromatin führen und der vorhergesagte Bereich optimaler DNA-
Kompaktifizierung stimmt exakt mit experimentellen Daten [187] überein. Außerdem zeigt das
Modell gute Übereinstimmung mit vielen experimentell bestimmten Chromatineigenschaften.
Ein Vergleich mit Daten aus 5C-Experimenten [72] belegt, dass Histonablösung eine wichtige
Chromatineigenschaft ist, da nur Fasern mit Ablösungenseffekten die wichtigen physikalischen
Kontakte auf der kleinen Längenskala aufweisen. Zufällige Chromatinkontakte werden theo-
retisch untersucht, um 3C-basierte Technologien dadurch zu verbessern, dass präziser zwischen
Zufallskontakten und spezifischen Kontakten der DNA unterschieden werden kann.
Große Teile dieser Arbeit wurden bereits veröffentlicht [63; 64], werden zur Zeit geprüft [65; 66]
oder für eine Veröffentlichung vorbereitet [26; 27; 67; 68].

Genome Folding at the 30nm Scale

This thesis addressed and succeeded in answering a fundamental question concerning genome
folding at the 30nm scale by proving that a higher-order DNA folding pattern beyond the nu-
cleosome, i.e. chromatin, actually exists. A model for chromatin was developed that allows to
study very long fibers (in the range of Mega base pairs). Furthermore, linker histone depletion
as well as nucleosome depletion have been included for the first time in a chromatin model. This
allowed to study the chromatin phase diagram and the corresponding structures are discussed
against the background of compaction and DNA accessibility and other important chromatin
features. The basic model parameter distributions come from experimental data [186; 187]. To-
gether with the histone depletion effects they show that every chromatin conformation consists
of a distribution of different structures. This explains why regular 30nm fibers are so hard to
find experimentally. The results show that histone depletion massively affects the properties
of chromatin. Nucleosome depletion can either lead to a collapse or to swelling of chromatin
and the predicted regime of optimal DNA condensation coincides with experimental data [187]
which proves that histone depletion is used as a regulatory tool for DNA extension. Moreover,
the model is in good agreement with many experimentally determined chromatin properties. A
comparison of the developed model with 5C experimental data [72] proves that histone deple-
tion is an important chromatin feature because only fibers with depletion allow the important
physical contacts on a small length scale. Random chromatin collisions are theoretically stud-
ied to improve 3C-based experimental technologies by allowing to distinguish more accurately
between specific and random DNA contacts.
Major parts of this work have already been published [63; 64] are currently under revision
[65; 66] or respectively under preparation [26; 27; 67; 68].
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Preface

The results which will be presented in this work have been developed between February
2006 and March 2009, i.e. the time of my PhD studies at the Institute of Theoretical
Physics, University of Heidelberg.

A brief outline of this thesis will be given below. A more detailed overview can be
found at the beginning of each chapter.

Outline

Chapter 1 will provide some basic concepts of the statistical mechanics of polymers and
introduce some mathematical tools which will be used frequently in this work. After
that, chapter 2 will introduce chromatin and give an overview over the problems and
fundamental questions concerning genome folding with focus on the small length scale.
In Chapter 3 my part in a collaboration project with the group of Prof. Cremer at
the Kirchhoff-Institute for Physics (University of Heidelberg) will be described. The
analysis of the localization microscopic data in this section will show that a higher order
folding pattern beyond the nucleosome exists.
Chapter 4 will describe the geometric modelling of the 30nm fiber by an improved
two-angle model and in the succeeding chapter 5 the chromatin phase diagram will be
discussed comprehensively. After that, chapter 6 will again deal with modelling issues.
This time the focus will lie on fiber flexibility and the question how histone depletion
can be allowed for.
Then the results of the chromatin simulations will be presented in chapters 7 and 8.
After that, chapter 9 will deal with a completely different topic resulting from a collabo-
ration with the group of Dirk Görlich at the MPI in Göttingen namely the nuclear pore
complex and the matter whether or not nucleoporins can form hydro-gels in particular.
In the final chapter 10 the connection between polymer loops, the scattering function
and the mean Average Crossing Number will be discussed.

Some supplemental figures and tables are only presented in the appendix of this work.
They can be found in App. A respectively App. B.

An electronic version of this thesis in pdf format is available in App. I.

Major parts of this thesis have already been published in scientific journals. Further-
more, several results of this work have been presented at scientific conferences and
workshops. App. J provides an overview over these publications.

A comprehensive list of all figures as well as a list of the tables is given in App. K
respectively in App. L.
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”Art is science made clear.”
- Wilson Mizner
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1. Basic Polymer Physics Philipp M. Diesinger

 Basic Polymer Physics

Some basic concepts of the statistical mechanics of polymers will be explained briefly
in the following sections. For a more comprehensive approach cf. [114; 207].

1.1 Statistical Mechanics of Long Chain Molecules

Understanding the configuration and dynamics of long polymer chains has been a sig-
nificant source of problems within statistical physics from the 1950’s onwards.
One of the most interesting points is the universality of some of the problems. What
was considered to be the most fundamental questions turned out to be insensitive to
the details of the chemistry of the chains. What is more the governing question turned
out to be a diffusion equation since the chain’s shape resembles a random diffusive walk
in space.

Figure 1: Example of a random walk with 100 steps on a cubic lattice. The lattice
constant is 1, the end-to-end distance of the walk is 6.8. The white sphere denotes the
start point of the walk and the black one represents the end point. Another example
of length 20 can be found in App. A (Fig. 162).

Schrödinger’s equation is also a diffusion equation (in imaginary time t′ = it). There-
fore, there are many analogies with quantum mechanics.
Random walks (cf. Fig. 1 and Fig. 2) are an important topic in mathematics, too,
particulary when polymer confirmations appear to resemble not just simple random
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walks but self-avoiding ones.

1.2 The Freely-Jointed Chain Model

1.2.1 Introduction

The simplest model to describe polymers is the ideal or freely-jointed chain (FJC).
It considers polymers as random walks and neglects any kind of interactions among
monomers. But although it is simple, its generality gives already insights about the
physics of polymers.

In this model, monomers are rigid rods of a fixed length b, and their orientation is
completely independent of the orientations and positions of neighboring monomers to
the extent that two monomers can co-exist at the same place. The contour length of
such a polymer is then given by L = Nb were N is the total number of monomers.

In this very simple approach where no interactions between monomers are considered,
the energy of the polymer is taken to be independent of its shape which means that
at thermodynamic equilibrium all of its shape configurations are equally likely to oc-
cur as the polymer fluctuates in time according to the Maxwell-Boltzmann distribution.

While this elementary model is totally unadapted to the description of real-world poly-
mers at the microscopic scale it does show some relevance at the macroscopic scale in
the case of a polymer in solution whose monomers form an ideal mix with the solvent
(in which case, the interactions between monomer and monomer, solvent molecule and
solvent molecule and between monomer and solvent are identical, and the system’s
energy can be considered constant, validating the hypothesis of the model).

The relevancy of the model is, however, limited, even at the macroscopic scale by the
fact that it does not consider any excluded volume for monomers.

Other fluctuating polymer models that consider no interaction between monomers and
no excluded volume, like the worm-like chain model (cf. Sec. 1.3), are all asymptotically
convergent toward this model at the thermodynamic limit.

For purpose of this analogy a Kuhn segment is introduced corresponding to the equiv-
alent monomer length to be considered in the analogous ideal chain. The number of
Kuhn segments to be considered in the analogous ideal chain is equal to the total
unfolded length of the polymer divided by the length of a Kuhn segment.

1.2.2 Mathematical Description

In the model of the freely-jointed chain the chain is made up of N links, each of length
b (cf. Fig. 3). These links can be each thought of as representing one small chemical
group of atoms along the polymer which is called a monomer.
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Figure 2: Example of five random walks with 80 steps each on a cubic lattice. The
lattice constant is 1. All walks start at the origin (big white sphere). The black spheres
denote the end points of the walks.

The joints of the chain are found at positions Rn ∈ R3 and are jointed by the link
vectors rn = Rn − Rn−1. Thus the end-to-end vector (cf. Fig. 5) of the chain is given
by
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R = RN −R0 =
N∑
i=1

rn.

In this model the statistics of the link vectors are determined by

〈rn〉 = 0

〈rn · rm〉 = b2δnm

Hence the statistics of the end-to-end vector R are given by the following ensemble
averages

〈R〉 = 〈
N∑
n=1

rn〉 =
N∑
n=1

〈rn〉 = 0 (1)

as well as

〈R ·R〉 = 〈
N∑
n=1

N∑
m=1

rn · rm〉

=
N∑
n=1

N∑
m=1

〈rn · rm〉

=
N∑
n=1

b2 = Nb2

so finally one gets
〈R ·R〉 = Nb2 (2)

respectively

〈R2
x〉 = 〈R2

y〉 = 〈R2
z〉 = N

b2

3

and the assertion that the probability distribution of the end-to-end vector is a Gaus-
sian in the N →∞ limit as a result of the central limit theorem in statistics (cf. [122]).

A quantity frequently used in polymer physics is the radius of gyration (cf. Fig. 3):

R2
g :=

1
N

N∑
i=1

(ri − rm)2.

Here rm denotes the center of mass. In this case one gets

Rg =
√
Nb√
6
.

It is worth noting that the above average end-to-end distance which in the case of
this simple model is also the typical amplitude of the system’s fluctuations becomes
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negligible compared to the total unfolded contour length of the polymer at the ther-
modynamic limit. This result is a general property of statistical systems.

The most general form of a Gaussian probability distribution in three dimensions, that
is normalized to

∫
p(R) dR = 1, is

p(R) = (2πσ2)−
3
2 e−

(R−µ)2

2σ2 .

The symmetry condition (1) means that the Gaussian must have its maximum at
r = 0. Therefore, µ = 0. It turns out that σ2 = Nb2

3 in 2 dimensions so that∫
R ·Rp(R) dR = Nb2 in order to satisfy condition (2).

This leads to

p(R) =
(

3
2πNb2

) 3
2

e−
3R2

2Nb2 . (3)

The length b is equivalent to the link size within the freely-jointed chain model but
may be interpreted differently within other microscopic models.
Since the form of the probability distribution for the polymer is insensitive to the pre-
cise value of b, and indeed other aspects of the microscopic description of the chain, it
is described as having universality.

The fact that this probability distribution reflects only the central limit theorem of
statistics means that it is recovered for any microscopic model including the freely-
jointed chain but also other models in which e.g. the monomer length distribution or
monomer-monomer correlations are different. One such example is the wormlike chain
model in which the polymer follows a smooth contour that can bend but not link (cf.
Sec. 1.3). Another one is the Gaussian chain model (cf. Sec. 1.5).

One criticism of Eq. (3) is that |R| can be larger than the total contour length of the
chain Nb. This reflects the fact that the central limit theorem applies exactly only in
the case N →∞.

Furthermore, Eq. 3 is identical with the distribution function for the displacement of a
Brownian particle after N uncorrelated steps.
Eq. 3 will include only one parameter, if one uses Eq. 2 to substitute the mean squarred
end-to-end distance: 〈R2〉 = Nb2:

p(R) =
(

3
2π〈R2〉

) 3
2

e
− 3R2

2〈R2〉 . (4)

In this thesis R0 := 〈R2〉1/2 will be used as another measure (besides Rg) for the ex-
tension of a polymer chain.
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Figure 3: Example conformation of a short freely-jointed chain of N = 30 links with
alternating color. The monomer length is b = 100 and the radius of gyration Rg = 112
in this particular case. c denotes the center of mass (black sphere). Further examples
with N = 1000 (Fig. 159) and N = 5000 (Fig. 160) can be found in App. A.

A measure for the flexibility of a polymer chain is provided by the persistence length.
Generally it can be derived from the orientational correlation function O which de-
scribes the correlation between the chain directions at two points with a distance ∆l
along the chain:

O(∆l) = 〈ê(l)ê(l + ∆l)〉.

The unit vectors ê describe the local chain direction in this case. The average is taken
over the whole ensemble of possible chain conformations. Due to the flexibility of the
chain the orientational correlations have to vanish for sufficiently large distances ∆l i.e.

O(∆l→∞)→ 0.
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A suitable choice for a parameter which measures the chain stiffness is given by

lp =

∞∫
0

O(∆l)d(∆l).

It is called the persistence length.
In the case of a freely-jointed chain the chain segments show no orientational correla-
tions.

If the considered chains are long enough they may be split into subchains of uniform
length which has to be much larger than the persistence length. Then the junctions of
the subchains are connected by the vectors

(p1, p2, ..., pN )t.

One can define a mean subchain diameter by

ps =
√
〈p2
i 〉

like the mean squared end-to-end distance previously. This leads to

R0 :=
√
〈R2〉 = psN

1/2,

where N is the number of subchains. Different choices of subchains have to lead to the
same value of R0. For two different choices with parameters N, ps and M, qs this gives

Np2
s = R0 = Mq2

s

and therefore
N

M
=
q2
s

p2
s

.

For large chain this equation can also be applied for the number of segments ns(i, j)
and ms(i, j) between two chain points i and j:

ns(i, j)
ms(i, j)

=
q2
s

p2
s

. (5)

Eq. 5 shows the possibility of rescaling a freely-jointed chain. It expresses a basic prop-
erty of ideal polymer chains namely the concept of self-similarity. This means that
independent of the chosen length scale an ideal chain always has the same internal
structure.

Self-similarity is the basic property of fractal objects and all spatial or temporal self-
similar (fractal) structures have power law distributions.
The probability distribution function (pdf) of a self-similar random variable X is de-
noted by p(X) in the following. Due to self-similarity the functional form of p(X)
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should be left unchanged within a constant factor when X is multiplied by an arbitrary
factor λ which means

p(λX) = c(λ)p(X),

where c(λ) is a constant factor depending on λ.
Differentiating this equation with respect to λ and substituting λ = 1 leads to

p′(X)X = c′(1)p(X).

The solution of this differential equation is a power law:

p(X) ∝ Xc′(1).

The fractal dimension d of an object can be defined as the exponent in the general
equation

n ∝ rν ,

between the mass of an object and its diameter.

In the case of a freely-jointed chain d can be derived easily: If one proceeds ns steps
from a random chain point in the interior of a long chain, the corresponding average
displacement will be given by

r(ns) ≈ psn1/2
s .

That means the number of monomers n is a sphere of radius r may be estimated by

n ∝ ns ∝ r2

and thus the fractal dimension of an ideal chain is d = 2.

One can remove the arbitrariness in the choice of the segments by taking the chain’s
contour length C into account as well:

C = Nps.

Together with the equation for the chain extension

R2
0 = Np2

s

this leads to

ps = pK :=
R2

0

C
.

pK is called the Kuhn length and it also describes the stiffness of a polymer chain. A
completely stiff chain has a Kuhn length of pK = C.
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The Kuhn length is highly correlated with the persistence length [207] by

pK = 2lp.

1.3 The Worm-Like Chain Model

The (Kratky–Porod) worm-like chain (WLC) model in polymer physics describes the
behavior of semi-flexible polymers fibers. It envisions an isotropic rod (cf. Fig. 4) that
is continuously flexible.
This is in contrast to the freely-jointed chain model which is flexible only between
discrete segments.
The WLC model is particularly suited for describing stiffer polymers with successive
segments displaying a sort of cooperativity: All pointing in roughly the same direction.
At room temperature the polymer adopts a conformational ensemble that is smoothly
curved. At T = 0K, the polymer adopts a rigid rod conformation.

Several biologically important polymers can be effectively modelled as WLCs including:
Double-stranded DNA, unstructured RNA and unstructured polypeptides or proteins.
The WLC-model will be used to simulate the chromatin linker DNA and thus will
provide the opportunity to allow for nucleosome skips in the E2A-model (cf. Sec. 4.6.2
and Sec. 6.4).

For a polymer of length l the path of the polymer is parameterized by the unit tangent
vector t̂(s) with s ∈ [0; l] and by the position vector r(s) ∈ R3 along the chain.

Then

t̂(s) =
∂r(s)
∂s

and the end-to-end distance R ∈ R3 is given by

R =

l∫
0

t̂(s)ds .

One can show that the orientation correlation function for a worm-like chain decays
exponentially:

〈t̂(s)t̂(0)〉 = 〈cosΘ(s)〉 = exp (−s/lP ).

Thus one can estimate the persistence length lP of the polymer.

A useful measure for the spatial extension of a WLC polymer is again the mean square
end-to-end distance:
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〈R2〉 = 〈RR〉

= 〈
l∫
0

t̂(s)ds

l∫
0

t̂(s′)ds′〉

=

l∫
0

ds

l∫
0

〈t̂(s)t̂(s′)〉ds′

=

l∫
0

ds

l∫
0

e−|s−s
′|/lP ds′

= 2lP l
[
1− lP

l

(
1− e−l/lP

)]
.

In the limit l� lP one gets 〈R2〉 ≈ 2lP l or more precisely the approximation

lP ≈
l

2
−
√
l2

4
− 〈R

2〉
2

by neglecting the e−l/lP -term.
This can be used to show that a Kuhn segment is equal to twice the persistence length
of a WLC.

Figure 4: Example of a Worm-like Chain with sketched in persistence length lP . An-
other WLC conformation can be found in Fig. 161 in App. A.
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1.4 Free Energy of Distorting a Polymer Chain

If the two free ends of an ideal chain are attached to some kind of micro-manipulation
device, then the device will experience a force exerted by the polymer. The ideal chain’s
energy is constant and thus its time-average, the internal energy, is also constant which
means that this force necessarily stems from a purely entropic effect.

This entropic force is very similar to the pressure experienced by the walls of a box
containing an ideal gas.
The internal energy of an ideal gas depends only on its temperature and not on the
volume of its containing box. So it is not an energy effect that tends to increase the
volume of the box like gas pressure does. This implies that the pressure of an ideal gas
has a purely entropic origin.

In its solvent the ideal chain is constantly subject to collisions from moving solvent
molecules and each of these collisions shifts the system from its current microscopic
state to another, very similar microscopic state.
For an ideal polymer there are more microscopic states compatible with a short end-
to-end distance than there are microscopic states compatible with a large end-to-end
distance (cf. Eq. 4). Thus, for an ideal chain, maximizing its entropy means reducing
the distance between its two free ends. Consequently, a force that tends to collapse the
chain is exerted by the ideal chain between its two free ends.

1.4.1 Free Energy of Pulling a Polymer Chain

The free energy cost of pulling the ends of a whole chain until they are apart will be
considered in the following.

Let S = k log(Ω) be the entropy where Ω is the number of accessible microstates. For
a chain with end-to-end vector R the number Ω is proportional to the probability of
that microstate (end-to-end vector) being occupied by the principle of equal a priori
probability (cf. [97]).
The entropy difference between a chain held with end-to-end distance R and one held
with the preferred end-to-end vector of zero is

∆S(R) = k log(c p(R))− k log(c p(0)) = k log
(
p(R)
p(0)

)
.

The constant c relates the probability p to the number of microstates Ω. With Eq. 4
this leads to

∆F = −T∆S =
3
2
kTR2

Nb2
. (6)

This can be interpreted as an entropic spring with spring constant k = 3 kT
Nb2

.
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1.4.2 Freely-Jointed Chain under Length Constraint

The case of an ideal chain whose two ends are attached to fixed points will be consid-
ered in this section.

The vector R joining these two points characterizes the macroscopic state of the freely-
jointed chain. To each macro-state corresponds a certain number of micro-states Ω(R).
Since the ideal chain’s energy is constant each of these micro-states is equally likely to
occur. The entropy associated to a macro-state is thus equal to:

S(R) = k log(Ω(R)).

A precise determination of Ω(R) would require a quantum model for the ideal chain.
However, Eq. 4 gives the probability density associated with the end-to-end vector of
the unconstrained ideal chain.

Since all micro-states of the ideal chain are equally likely to occur, p(R) is proportional
to Ω(R). This leads to the following expression for the classical (relative) entropy of
the ideal chain:

S(R) = k log(p(R)) + c

where c is a fixed constant.

Let F denote the force exerted by the chain on the point to which its end is attached.
From the above expression of the entropy one can deduce an expression of this force.
Suppose that, instead of being fixed, the positions of the two ends of the ideal chain
are now flexible. If R is changed by a tiny amount dR, then the variation of internal
energy of the chain is zero since the energy of the chain is constant.

This condition can be written as:

0 = dU = δW + δQ.

δW is the amount of mechanical work by changing R and δQ is the heat transferred
by the solvent to the ideal chain.

If one assumes now that the transformation imposed on the system is quasi-static (i.e.
infinitely slow), then the system’s transformation will be time-reversible and one can
assume that during its passage from macro-state R to macro-state R+ dR, the system
passes through a series of thermodynamic equilibrium macro-states.

This has two consequences: First, the amount of heat received by the system during
the transformation can be tied to the variation of its entropy: δQ = TdS, where T is
the temperature of the chain, and second, in order for the transformation to remain
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infinitely slow the mean force exerted on the end points of the chain must balance the
mean force exerted by the chain on its end points. Calling fR the force exerted by the
change of R and fc the force exerted by the chain, we have:

δW = 〈fR〉dR = −〈fc〉dR.

This leads to

〈fc〉 = t
dS

dR
=

kT

p(R)
dp(R)
dR

〈fc〉 = −kT 3R
Nl2

(7)

Eq. 7 is the equation of state of the ideal chain.
Since the expression depends on the central limit theorem it is only exact in the limit
of polymers containing a large number of monomers (i.e. the thermodynamic limit).

1.5 The Gaussian Chain Model

The Gaussian model is inspired by the insensitivity to the microscopic details of the
chain.
Consider a chain made up of orientationally uncorrelated (freely-jointed) links, where
the length of any link vector r is not constant but has a probability distribution

p(r) =
(

3
2πb2

) 3
2

e−
3r2

2b2 ,

which leads to
〈r2〉 = b2

and so, since the links are orientationally uncorrelated, both the links and the result-
ing chain of links have statistics that are also given by the equations above (cf. Sec. ??).

Furthermore, from the probability distribution for the end-to-end vector one gets

p(R) =
N
Π
n=1

(
3

2πb2

) 3
2

e−
3r2n
2b2

=
(

3
2πb2

) 3N
2

exp

(
−

N∑
n=1

3(Rn −Rn−1)2

2b2

)
.

One can see from this that this model has the physical analogy of ”beads on a string”
via the potential

U =
3

2b2
kT

n=1∑
N

(Rn −Rn−1)2
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similar to that which would arise by N beads connected by Hookian springs.

Since the mean ACN is scale invariant this means that the mean ACN of equilateral
chains is equal to that of Gaussian chains at T = 0 when no spring is exited.

At equilibrium the Boltzmann distribution for the potential U above gives the same
equilibrium probability distribution as the freely-jointed chain (or any other choice with
short range correlations). For the Gaussian model this is an exact result for all R.

1.6 The Self-Avoiding Walk in Polymer Statistics

An excluded volume chain is a chain in which the individual links (or monomers) feel
each other’s presence and are repelled from one-another.

If nothing else, the monomers in the chain always have steric interactions with each
other, this being the name given to hard-wall like interactions (ultimately quantum
mechanical in origin) that stop two chemical groups occupying the same volume.
The problem was first discussed by Kuhn and Flory (cf. [83; 123]) who predicted

〈R2〉 ∝ N2ν with ν ≈ 3
5
,

a result which seems to agree with many experiments.

The excluded volume interactions are difficult to include properly because they are non-
local in n: The ith and jth monomers might be very close spatially, even if |i−j| is large.

A prototype mean field theory, the Flory theory (cf. [83; 123]), gives ν quite well (but
fails in other respects, e.g. higher order moments of the chain density).

The excluded volume interactions are assumed to be driven by some general repulsive
monomer-monomer interaction potential U(Rn−Rm). Provided U is short ranged one
can make a mean filed estimate of the two body interactions by treating the polymer
as a gas of disconnected monomers confined within the same volume V as the polymer
coil (of the order of the cube of the root mean squared (r.m.s.) polymer end-to-end
distance V ' R̄3).
This procedure can be thought of as equivalent to cutting all the bonds between neigh-
boring monomers along the polymer backbone.

The free energy cost of putting N such excluded volume monomers into a box with
volume V and hence average concentration c = N

V is approximately

∆Fν = ∆F1 + ∆F2,

where the subscript ν denotes that it is the free energy change due to the effect of
excluded volume.
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The term ∆F1 is an unimportant term that arises from the chemical work done by
initially preparing the monomers in the box, i.e. it is a constant independent of R̄.
These might be called one-body terms as they are not identified with any inter-monomer
interactions.

Figure 5: Mean squared end-to-end distance for equilateral chains with and without
excluded volume. The dashed black lines show the theoretical predictions for ν = 0.5,
ν = 0.588 and b2 = 1. The chains with excluded volume are much more stretched than
those ones without. This will play an important role for the mean Average Crossing
Number in the following sections. Adapted from [61].

The second term ∆F2 depends on the concentration squared

∆F2 = νkTc2V. (8)

Thus ∆F2 ∝ V because it is extensive and ∆F2 ∝ c2 since it corresponds to two-body
terms and hence to the effect of interactions between pairs of monomers.
The remaining unknown prefactor has dimensions of energy × volume and so one can
write it as kTν where ν is an excluded volume constant.
Eq. (8) is the first non-trivial term in an expansion in powers of c. Higher order terms
(such as ∆F3 ∼ c3) are all negligible at the smallest concentrations of interest and so
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one can truncate at second order. The three-body terms, here neglected, would cor-
respond to interactions simultaneously involving three closely approaching monomers.
These interactions are simply much more rare at the very low concentrations of interest
here.

One can motivate Eq. (8) by considering the work done by the pressure field of an
ideal gas of monomers with concentration c that are made non-ideal by being given an
effective volume. Mathematically this is done by allowing them to smoothly swell from
point particles to particles with some finite volume of the order of ν, the effective volume
from which other monomers are excluded due to the repulsive form of the potential U(r).
Thus the work done is dW = −

∫
p dV , where the ideal gas equation (pV = NkT ) is

used to find the pressure p = NkT
V exerted by the ideal gas of monomers (the minus

sign arises from considering the work done on, rather than done by, the system).
Now work is done against this pressure as one forces the monomers to swell from point
like objects to objects with volume ν.

The total available volume in the box decreases from V to V (1− cν). Thus

dW = −NkT
V (1−cν)∫

V

dV ′

V ′
for cν � 1

which can be shown to give Eq. (8).

From Eq. (8) one can construct a scaling argument for the r.m.s. chain size R̄ ∼ Nν .
The total free energy change is the entropic spring distribution Eq. 6 plus the excluded
volume term (cf. Eq. (8)):

δF = ∆F + ∆F2 ' kT
(
R̄2

Nb2
+
νN2

R̄3

)
The equilibrium state is the state of minimum free energy. Minimizing δF with respect
to R̄ gives by solution of ∂δF

∂R̄
= 0:

R̄ '
( ν
b3

) 1
5
bN

3
5

i.e. ν = 3
5 .

This result is remarkably close to that obtained from far more sophisticated treatments,
including perturbation and renormalization group theories which both yield ν ≈ 0.588
(cf. Fig. 5).

1.7 Ideal Chains and the Θ-Temperature

The excluded volume parameter is also called a second virial coefficient and is defined
by

ν =
∫ (

1− e−
U(r)
kT

)
dV (9)
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where U is the monomer-monomer interaction potential.

Consider the simple case of a potential U made up of a hard wall, or steric, repulsive
term and a weak attractive term U = Vhard + Vattr where Vhard would be infinite, if
there were overlaps between particles and zero otherwise.

ν =
∫ (

1− exp
[
−Vhard

kT

]
exp

[
−Vattr

kT

])
dV

≈
∫ (

1− exp
[
−Vhard

kT

](
1− Vattr

kT

))
dV

provided Vattr � kT . One can split the domain of this integral into two parts, volume
V1 lying outside the range of the hard wall potential and V2 lying inside. Thus

ν =
∫
V1

dV +
1
kT

∫
V2

Vattr(r) dV = A− B

T
.

Defining Θ = B
A , one can see that

ν = νhard

(
1− Θ

T

)
.

Hence, at T = Θ, the chain is ideal (Gaussian) and ν = 1
2 .

1.8 Scattering Function and Pair Distribution Function

The scattering function S(q) for a system of equal particles is defined by

S(q) =
I(q)
ImNm

,

where Nm represents the total number of particles in the sample and Im is the scattering
intensity produced by one particle, if placed in the same incident beam. I(q) is the
distribution of the intensity depending on the scattering vector q which is defined as

q = k′ − k,

i.e. the difference between the wave vectors of the incident and the scattered plane
waves.

If k′ ≈ k = 2π
λ , then q will be related to the Bragg scattering angle by

q =
4π
λ

sin(θB).

The scattering amplitude C is given by

C =
Nm∑
i=1

exp(iφi),
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where phases φi are determined by the particle position and the scattering vector:

φi = −qri.

This leads to the following expression for the scattering amplitude:

C(q) =
Nm∑
i=1

exp(−iqri).

Since the scattering intensity is proportional to the squared modulus of C, i.e.

I(q) ∝ 〈|C(q)|2〉

one gets the following expression for the scattering function S(q):

S(q) =
1
Nm
〈|C(q)|2〉

=
1
Nm

Nm∑
i=1

〈exp(−iqri)〉.

Instead of discrete positions ri one can also use a continuum description by introducing
the distribution of the particle density cm(r) (cf. [207]). Then it can be showed that
S(q) is the Fourier transform (cf. App. G) of the space dependent correlation function
of the particle density:

S(q) =
1
〈cm〉

∫
exp(−iqr)(〈cm(r)cm(0)〉 − 〈cm〉2)dr

Another important variable which describes results of scattering experiments is the
pair distribution function g(r). In this case the product g(r)d3r is the probability that
starting from a particular particle another one (even the same one) can be found in the
volume element d3r at a distance r.
In the discrete case the radial pair distribution function is given by

g(r) =
1

4πr2

V

Nm − 1

 1
Nm

∑
i

∑
j 6=i

δ(r − ri,j)

 .

A value of one corresponds to the mean particle density of the system. Since the density
distribution and the pair distribution are related one can connect the scattering function
with the pair distribution as well [207]:

S(q) =
∫

exp(−iqr)(g(r)− 1)d3r.

Hereby, the function h(r) = g(r)− 1 is called the pair correlation function. This shows
that the scattering function is actually the Fourier transform (cf. App. G) of the pair
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distribution function.

The pair distribution function will be used several times in Sec. 7 to describe the
chromatin nanostructure.
Furthermore, the two-dimensional pair distribution function will be applied for a com-
parison with experimental data. It is explained in Sec. 7.3.3.
Moreover, in Sec. 7.3.2 it will be shown what the radial pair distribution function looks
like and how this changes the relation to the scattering function S(q).

In the case of a freely-jointed chain the pair distribution function is given by

g(r) =
1
N

N−1∑
i=−(N−1)

(N − |m|)
(

3
2π|m|p2

s

)3/2

exp
(
− 3r2

2|m|p2
s

)
.

It can be shown that in the case of small distances within the macromolecule g(r)
behaves like

g(r) ∝ 1
r
.

This power law behavior comes again from the self-similarity of the chain [207].
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 Background - Introducing Chromatin

In this section a summary of several publications (cf. references below) concerning
chromatin will be given to provide an overview of the current state of knowledge.
To explain the basic motivation of this thesis it will furthermore be pointed out, how
little is actually known about chromatin and why this is the case.

Figure 6: Genome folding at different scales. Comparison between the naive viewpoint
of a textbook [231] and the current scientific state of knowledge. A basic motivation of
this thesis is to contribute to the understanding of chromatin on the length scale which
is marked by the question mark. This figure is partially adapted from [231]. A larger
version of this figure can be found in App. A (Fig. 164).

2.1 Introduction

Chromatin is found inside the nuclei of eukaryotic cells, and within the nucleoid in
prokaryotic cells. The major proteins involved in chromatin are histone proteins, al-
though many other chromosomal proteins have prominent roles, too. DNA packaging in
prokaryotic cells, although also involving architectural proteins, follows quite different
rules [43; 44].
The DNA molecules that run the length of each human chromosome are arguably the
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longest and most important biomolecules known.
But although the DNA that runs the length of each of the 46 chromosomes has been
sequenced, it is still very little known about how DNA is folded in 3D space within the
nucleus of a living cell. Common sense suggests there must be some underlying order
within the apparent tangle [41].

Figure 7: Nucleosome Structure: Although 75–80 % of the histone molecule is incorpo-
rated in the core, the N-termini of all the histones extend from the rest of the protein
that makes up the nucleosome core. These ”tails” are very well conserved, despite
the fact that they do not seem to be well structured. If they are removed by trypsin
treatment, the nucleosome will remain stable but the DNA becomes more accessible to
nucleases: they only protect 106 bp instead of 146 (20 bp at each end is lost). They
also lose the ability to form a compacted structure at high salt concentrations indicat-
ing that the tails may mediate an interaction with histones in adjacent nucleosomes.
Figure adapted from [234].

2.2 Genome Folding - Spatial Organization of DNA

The problem of DNA folding, i.e. the problem of how plant and animal genomes organize
themselves into volumes, whose linear dimensions are many orders of magnitude smaller
than their contour length, is an important issue in modern biophysics.
For instance, human DNA is billions of base pairs (bp) long (5 · 109 bp ≈ 2m). This
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length of highly-charged (λDNA ≈ 2e
0.34nm = 2 e

bp for naked DNA, cf. [181]) and hard to
bend linear polymer (persistence length ≈50nm) must be condensed into chromosomes
that fit into cell nuclei, whose characteristic size is a micron.

2.2.1 DNA Organization at the 10nm Level

An important part of the condensation process is the compaction of DNA with oppositely-
charged protein aggregates (so called histone) that have the shape of squat cylinders.
These aggregates are octameric complexes consisting of pairs of the four core histones
H2A, H2B, H3 and H4 (cf. Fig. 8).

Figure 8: The proteins that make up the nucleosome are called histones. Histones
H2A, H2B, H3 and H4 are part of the nucleosome while histone H1 is involved the
linker DNA between the two nucleosomes. Adapted from [231].

A DNA stretch of 146bp is wrapped in a left-handed superhelical turn around each
histone octamer and is connected via a stretch of linker DNA to the next such protein
complex. The whole DNA-histone-complex is called a nucleosome (cf. Fig. 7).

Each protein aggregate together with its wrapped DNA comprises a nucleosome core
particle with a radius of about 5nm and a height of about 6nm. Together with its linker
DNA it is the fundamental chromatin repeating unit. It carries a large electrostatic
charge [118].
Whereas the structure of the core particle has been resolved up to high atomic resolu-
tion [137], there is still considerable controversy about the nature of the higher-order
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structures to which they give rise.

Figure 9: A darkfield electron micrograph of chromatin spilling out of a chicken ery-
throcyte nucleus in a low ionic strength buffer. Stained with uranyl acetate. The beads
are nucleosomes, which are each made up of an octamer of histone proteins (two H2A,
two H2B, two H3 and two H4). Adapted from [152].

When stretched the chromatin string looks like beads-on-a-string (cf. Fig. 9).
The recent accumulation of evidence that the chromatin structure above the level of
the core particle plays a key role in determining the transcriptional status of genes and
genetic loci [78; 81] illustrates the critical importance of understanding the fundamental
folding properties of nucleosome arrays: Studies of chromatin compaction in response
to changes in the ionic environment [226] have established that the phenomenon can
be accounted for by electrostatic interactions between DNA, histone proteins and free
ions [40].
Major contributions to these interactions are provided by the N-terminal domains of
the core histones which contain roughly half of the basic amino acids of the octamer
and the C-terminal domains of the linker histones which contain about 3

5 of the positive
charges in these molecules.

Indeed, chromatin compaction requires the presence of the core histone N-termini and
30nm chromatin fibers are not formed in the absence of linker histones [19].
However, the precise interactions that lead to specific chromatin higher-order structures
have remained elusive.





2.2 Genome Folding - Spatial Organization of DNA Philipp M. Diesinger

2.2.2 DNA Organization at the 30nm Level

Although the precise structure of the chromatin fiber (also called 30nm-fiber due to its
diameter) in the cell is not known in detail, there are some accepted facts:

1. the nucleosomes lie perpendicular to the axis of the fibre

2. the linker histones lie on the inside of the structure

3. it readily unwinds into the 10nm ”beads-on-a-string” fiber.

Longstanding controversy [216; 218; 227] surrounds the structure of the 30nm fiber for
which there are mainly two competing classes of models: The solenoid models [80; 211]
and the crossed-linker-models [105; 133; 235].

Figure 10: The two competing classes of models for the 30-nm fiber can be distributed
into (a) solenoid models and (b) crossed-linker models. For both fiber types the side
and the top view are shown. Two nucleosomes that are directly connected via DNA
linker are shaded in gray. In the solenoid these nucleosomes are located on the same
side of the fiber requiring the linker to be bent. In the crossed-linker case they sit on
opposite sides of the fiber and are connected via a straight linker. Adapted from [128].
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In the solenoid model (cf. Fig. 10) it is assumed that the chain of nucleosomes forms a
helical structure with the axis of the core particles being perpendicular to the solenoidal
axis (the axis of an octamer corresponds to the axis of the superhelical path of the DNA
that wraps around it).
The DNA entry-exit side faces inward towards the axis of the solenoid. The linker DNA
is required to be bent in order to connect neighboring nucleosomes in the solenoid.

Figure 11: A gallery of electron micrographs of chromatin. a) low ionic-strength chro-
matin spread, the ”beads on a string”. Size marker: 30nm. b) Isolated mononucle-
osomes derived from nuclease-digested chromatin. Size marker: 10nm. c) chromatin
spread at a moderate ionic strength to maintain the 30-nm higher-order fiber. Size
marker: 50nm. Adapted from [151].

The other class of models assumes straight linkers that connect nucleosomes located
on opposite sides of the fiber (cf. Fig. 10). This results in a three-dimensional crossed-
linker-pattern. Such an arrangement with peripherally arranged nucleosomes and inter-
nal linker DNA segments is fully consistent with observations on intact nuclei and also
allows dramatic changes in compaction level to occur without a concomitant change in
topology.
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Images obtained by electron cryo-microscopy (EC-M) should in principle be able to
distinguish between the structural features proposed by the different models mentioned
above (cf. Fig. 11 and Fig. 12).
The micrographs show a crossed-linker-pattern at lower salt concentrations and they
indicate that the chromatin fiber becomes more and more compact when the ionic
strength is raised towards the physiological value [19].

However, for these denser fibers it is still not possible to detect the exact linker geometry.

Figure 12: SFM images of chromatin fibers (1x1 µm images). A–D, single chromatin
fiber fragments. E–H, chromatin fibers incubated with NAP1. I–L, chromatin fibers
depleted of linker histone H1. Image adapted from [116].

A major difficulty encountered in this structural issue comes from the size of the fiber,
in between the range of light microscopy (scales larger than a few hundreds nanometers)
and cristallography and other experimental tools available at molecular scales (less than
a few tens of nm).
An additional difficulty comes from the fact that it is by no means certain that the
structures observed in vitro for purified fibers or with reconstituted nucleosome arrays
reproduce the actual functional (and possibly dynamic) structure of the fiber in vivo.
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Therefore, information should be gained from in vivo imaging.
Furthermore, the fiber experiences major structural reorganizations during the cell
cycle. Several experimental studies provided a direct, visual access to mitotic conden-
sation [90; 140; 143] to be compared to in vivo investigations of nuclear organization
during transcription [45; 99; 195].

Figure 13: Nucleosomes are the fundamental repeating subunits of all eukaryotic
chromatin. They provide the lowest level of compaction and are important in the
regulation of transcription by preventing RNA polymerase from unnecessarily accessing
the promoter regions of genes which are not needed by the cell. If the requirements of
the cell change, enzymes (‘remodeling factors’) can remove or change the position of
the nucleosome to allow access. Adapted from [173].

These observations evidence that different condensed structures are to be considered
according to the cell cycle stage and to the functional role of the compaction.
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The structure designed to achieve the tight and maximal packing required during mito-
sis is presumably different from the organized condensed structure framing transcription
regulation.

Furthermore, it has been observed that the condensed mitotic structure itself exhibits
two levels of compaction (6 nucleosomes per 10nm and 10 nucleosomes per 10nm) [140].
Conversely, the decompaction also occurs in two stages [143].

A further discussion of the fiber structure as well as references about experimental
supports and structural reorganizations of the zig-zag crossed-linkers structure can be
found in [149].

Experiments on dinucleosomes have been made to check if the nucleosomes collapse
upon an increase in ionic strength. A collapse would only occur, if the linkers bent,
and an observation of this phenomenon would support the solenoid model.

The experiments by Yao et al. [238] as well as more recent experiments by Butler and
Thomas [33] indeed reported a bending of the linkers but do not agree with experiments
by Bednar et al. [19] and by others that did not find any evidence for a collapse.

However, the internal structure of the dense 30nm fiber could not be resolved despite
enormous experimental efforts, especially X-ray diffraction studies [218]. Even less is
known about how chromatin folds into chromosomes on larger scales.

Changes in chromatin structure are affected by chemical modifications of histone pro-
teins such as methylation (DNA and proteins) and acetylation (proteins), and by non-
histone, DNA-binding proteins.

It was proposed that an additional conformational transition between two structures
of the nucleosome takes place to achieve the mitotic compaction ratio. This transition
is called nucleosome gaping.

Nucleosome gaping corresponds to the unsticking of both H2A and H2B dimers. Gaping
is beneficial insofar as it improves the strength of internucleosomal stacking interactions.
It is to note that recent observations of tetranucleosome crystals by the Richmond group
support the key role of stacking interactions between nucleosomes [179]. However, the
tetranucleosome crystal structure does not contain any linker histones.

The energy balance should also take into account the variation in the electrostatic
repulsion of nucleosomal DNA and the change in linker twist energy upon gaping. The
detailed estimation leads to the conclusion that the nucleosome gaped conformation
is a metastable state and that some active process is required to cross irreversibly the
energy barrier separating it from the native state [148; 149].

The height of this energy barrier is highly sensitive to the local ionic strength and could
be tuned by any local supply of charges: This is a first hint towards the possible role of
ionic exchanges in fiber conformational changes and associated regulatory mechanisms.
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2.3 The Role of Chromatin for DNA-Protein Interactions

Embedding of DNA within the highly organized and constrained chromatin structure
strongly modifies its affinity for any ligand compared to free DNA.
Actually, any way of controlling the mechanical constraints experienced by linker DNA
would in turn control its affinity for any protein, whose binding is accompanied by some
distorsion of DNA (bend or twist), hence associated with an elastic energy cost in an
end-constrained linker DNA.
In a locked chromatin fiber the strength of these constraints is controlled by the linker
DNA anchoring onto fixed nucleosomes. Any modification of this anchoring or any
weakening of the tight three-dimensional positioning of the nucleosomes would relax
these constraints and lower the associated energy barrier. Carrying on the argument
allows to connect the degree of chromatin organization and the nature and rate of DNA
transactions.
This provides a mechanistic link between the variations of gene expression pattern and
the variations of chromatin compaction with the cell type and along the cell cycle.
It thus hints at a direct interplay between chromatin fiber conformation (at different
scales), cell cycle and cell differentiation.
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Figure 14: Overview: A brief outline of the history of chromatin. Adapted from [151].

2.4 Epigenetic Regulation

Regulatory mechanisms involving the chromatin structure offer numerous ways of epi-
genetic control of transcription, beyond the schemes based only on genomic sequences:

1. The chromatin fiber structure is sensitive to the intrinsic variability of mechanical
properties of the linker DNA associated with its sequence (natural curvature, local
increase of flexibility). In this way, it might amplify direct physical by-products
of the genomic sequence giving a physical meaning to the DNA sequence beyond
the genetic code and its protein translation.
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2. There is an ever growing number of experimental evidences of the interplay be-
tween the chromatin fiber structure and the histone post-translational modifica-
tions.

It suggests physical ways of reading these modifications beyond the biochemical
ones (e.g. molecular recognition, recruitment of factors and co-activators).

A first way is the electrostatic landscape modification due to the lowering of
histone tail positive charge associated with some histone post-translational mod-
ifications as phosphorylation and acetylation. Histone post-translational modifi-
cations tune histone tail affinities for DNA, hence control the entry-exit angle α
made by the linkers. They also affect the stacking interactions between nucleo-
somes.

In consequence, they indirectly control the fiber architecture and the local me-
chanical constraints on DNA [74].

Histone tail status finally tunes DNA anchoring onto nucleosomes. It thus controls
DNA conformational changes and indirectly the consequences of these conforma-
tional changes on the fiber structure and on the DNA binding affinities.

The central regulatory role of the chromatin fiber and the previous remarks lead to the
notion of an epigenetic information imprinted in the features of the fiber.
It is mediated by a huge variety of elementary features: DNA methylation, nucleosome
gaping, linker histones (H1, H5), non-histone proteins (HMG) and all the histone tail
post-translational modifications.

Speaking of information requires to specify how it is read and interpreted, i.e. how
it gets a meaning. Actually, several meanings superimpose: the reading of epigenetic
information, say, histone tail modifications, might be either chemical (molecular recog-
nition and factor recruitment), physical (mechanical constraints) or kinetic (involved in
hypercycles [21; 22]). Involvement of mechanisms of different nature is likely to play a
key role in regulation pathways: for instance, physical mechanisms do not compete on
the same footing with plain chemical reactions and might be the limiting, controlling
step in the kinetic control of a pathway. A noticeable feature of these physical links, in
particular mechanical and topological constraints, is their long-range nature connect-
ing distant regions of the genome and propagating constraints, i.e. information, over a
large number of base pairs.

This suggests that transcription regulation relies jointly on mechanisms, mainly physi-
cal, controlling a global transcriptional potentiation and specific biochemical pathways
locally controlling a targeted activation.

2.5 Purpose of the Chromatin Structure

Besides packaging DNA there are further functions of chromatin: to strengthen the
DNA, to allow mitosis and meiosis and to serve as a mechanism to control expression
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and DNA replication. Numerous facts point towards an adapted functional organiza-
tion of the chromatin fiber and its regulatory role in cell functions, in particular at the
level of transcription.

Furthermore, the structure of chromatin during interphase is assumed to be optimized
to allow easy access of transcription and DNA repair factors to the DNA while compact-
ing the DNA into the nucleus. The structure varies depending on the access required
to the DNA. Genes that require regular access by RNA polymerase require the looser
structure provided by euchromatin.

It should also be noted that during mitosis, while most of the chromatin is tightly
compacted, there are small regions that are not as tightly compacted [231].

These regions often correspond to promoter regions of genes that were active in that
cell type prior to entry into mitosis. The lack of compaction of these regions is called
bookmarking which is an epigenetic mechanism believed to be important for transmit-
ting to daughter cells the ”memory” of which genes were active prior to entry into
mitosis. This bookmarking mechanism is needed to help transmit this memory since
transcription ceases during mitosis [231].

Figure 15: Fit of the mean linker entry-exit angle from EC-M (electron cryomicroscopy)
images of chicken erythrocyte chromatin fibers at different ionic strengths (cf. [19]).
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2.6 Salt-Concentration and the Entry-Exit-Angle

The beads-on-a-string structure can be seen clearly when chromatin is exposed to very
low salt concentrations (cf. Fig. 9) and is known as the 10nm-fiber since the diameter
of the core particle is 10nm.
With increasing salt concentration, i.e. heading towards physiological conditions (c ≈100mM),
this fiber appears to thicken attaining a diameter of 30nm. The absence of the extra
linker histones (H1 or H5) leads to more open structures so it is surmised that the
linker histones act near the entry-exit point of the DNA. They carry an overall positive
charge and bind the two strands together leading to a stem formation [19]. Increasing
the salt concentration decreases the entry-exit angle α of the stem as it reduces the
electrostatic repulsion between two strands (cf. Fig. 15).

Fig. 15 shows a fit (α = axb + c) of different entry exit angles obtained by EC-M
observations of chicken erythrocyte chromatin at different ionic strengths: The salt-
induced compaction by monovalent ions (M+) leads to a strengthening of the histone
stem structures and thus to a decrease of the entry-exit-angle and an accordion like
reduction of the fiber length.

2.7 DNA Organization at Larger Scales

Chromosomes, the packaged DNA carriers of heredity and instructions for proper cell
functioning, undergo dramatic morphological transformations during the cell-division
cycle.
In metaphase which includes the alignment of chromosomes before their separation
between the two daughter cells the 46 chromosomes in a human cell are condensed
to such a degree that they can be observed by light microscopy as clearly separate
individual entities (cf. Fig. 17).
In cells that have entered the subse-

Figure 16: A chromosome during metaphase.
The chromatin density is larger than 280 mg/ml.
Adapted from [231].

quent interphase, the chromosomes
partially decondense into chromosome
territories [45].
The information contained in chro-
mosomes is retrieved and acted upon
in their (partly) decondensed state.
A precise understanding of how de-
condensed interphase chromosomes in-
teract is important because close con-
tact between and within chromosomes
has implications for such fundamen-
tal processes as transcription and DNA damage repair; chromosome association can
influence gene expression [154; 197] and misrepair of DNA double-strand breaks can
promote genome instability in the form of chromosome translocations [76; 236].

A further key issue in biophysics is to determine if, and if so to what extent, different
chromosomes interact in the nucleus.
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A number of arrangements are possible. At one end, there is a complete lack of interac-
tion: chromosomes may be contiguous without intermingling or they may be separated
by interchromatin domains.
Interchromatin domains are nuclear areas mostly void of chromatin where important
chromosomal transactions such as transcription, pre-mRNA splicing, DNA damage
repair and DNA replication occur. At the other extreme, chromatin loops of different
chromosomes can freely intermingle leading to a situation where the borders between
chromosome territories and chromosome subdomains are no longer clearly defined [9].

Figure 17: FISH (Fluorescence in situ hybridization) labelling of all 24 different human
chromosomes (1 - 22, X, and Y) in a fibroblast nucleus, each with a different combi-
nation of in total seven fluorochromes. Shown is a mid-plane of a deconvoluted image
stack which was recorded by wide-field microscopy. Bottom: False color representation
of all chromosome territories visible in this mid-section after computer classification.
Adapted from [28].

A way to deal with DNA organization on large scales up to whole chromosomes is
supplied by the random loop model [25]. This model gives a satisfactory explanation
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for the behavior of the mean square distance between two FISH markers in relation
to their genomic distance. It assumes that chromatin fibers form loops on all length
scales.
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 SPDM Nanostructure Examination of Chromatin

3.1 Project Background and Motivation

This chapter describes a collaboration project between the group of Prof. Cremer at
the Kirchhoff-Institute for Physics (University of Heidelberg) and the group of Prof.
Heermann at the Institute of Theoretical Physics (ITP) at the University of Heidelberg.

Until now it has been impossible to study the nanostructure of chromatin in eukaryotic
cells by light optical techniques. While it is well-established that nuclear organization
on the scale of the whole nucleus is strongly dependend on cell type [46] it is assumed
that the chromatin structure on the nanometer scale is identically.
However, the presumed structure of chromatin is far too small for resolving it via
conventional light optical microscopy where the resolution is limited to ≈200 nm. Cur-
rently most of the knowledge on chromatin structure using light optical techniques
comes from fluorescent in situ hybridisation (FISH) [34; 144; 240] where two markers
are positioned along the chromatin fiber with known genomic separation. Thereby the
relationship between mean-square displacement between two such markers and the ge-
nomic distance can be evaluated.

Figure 18: The main function of fibroblasts is to maintain the structural integrity of
connective tissues. Fibroblasts synthesize the extracellular matrix and collagen. They
play a very important role for wound healing as well. Fibroblasts have one or two
elliptical nuclei. Adapted from [231].
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Figure 19: All HeLa cells are descended from the same tumor cells removed from Ms.
Henrietta Lacks in 1951. It has been estimated that the total number of HeLa cells that
have been propagated in cell culture far exceeds the total number of cells of Ms. Lacks
body. Due to the world-wide sale of HeLa cells it has been claimed that Ms. Lacks is
the most expensive human being that ever lived [190]. HeLa cells are called immortal
since they have the ability to divide an unlimited times as long as fundamental cell
survival conditions are met [127]. Adapted from [231].

The group of Prof. Cremer applied high-resolution localization microscopy to study the
spatial distribution of previously EmGFP labelled H2B histones in the nuclei of two
different human cell lines: Human fibroblasts (cf. Fig. 18) and HeLa cells (cf. Fig. 19).
The H2B histones are part of each nucleosome in the nucleus (cf. Sec. 2). Therefore,
the nucleosomes themselves have been labelled by EmGFP as well.

The measurements were done on a Spectral Precision Distance Microscopy (SPDM)
setup for 2D localization of single fluorescent molecules [113; 131] which allowed to
determine the lateral positions of the single molecules with localization accuracy of
about 20nm. The experiments have been carried out by Rainer Kaufmann, Alexa von
Bassewitz, Paul Lemmer, Manuel Gunkel, Yanina Weiland, Patrick Müller, Michael
Hausmann and Roman Amberger.

Afterwards the experimental raw data was analyzed by Manfred Bohn and myself at the
ITP. We used two independent approaches to reduce the noise in the data: Manfred
Bohn applied a density cut-off to define a mask which eliminated regions where the
average density was below the cut-off and the author used a Voronoi-diagram approach
to repress the noise (cf. Sec. 3.4).
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Later on, we used methods from polymer physics and condensed matter physics to
further analyze the nucleosome distribution data. Although we had two very different
approaches independent of each other, we came to very similar results concerning the
chromatin nanostructure.

In this chapter of my thesis I will give a short overview of the project and describe the
work I have done for this collaboration.

Although this project was one of the last ones during my PhD, it will be described here
in one of the first chapters since it provides a basic motivation of this work. On the
one hand it answers the question whether a higher-order DNA folding pattern beyond
the nucleosome, i.e. chromatin, exists at all, which is still a matter of discussion but
on the other hand it leaves open the interesting question why the 30nm fiber seems so
hard to detect.

After providing evidence for the existence of a 30nm fiber here, a three-dimensional
Monte Carlo model for chromatin will be developed in the following chapters and its
nanostructure and properties will be discussed and compared with further experimental
data. Moreover, some possible reasons will be given that explain why 30nm fibers seem
to be that hard to find (cf. Sec. 6).

3.2 Overview

First, a short overview of the experimental setup will be given in Sec. 3.3. Then the
noise repression with Voronoi diagrams will be explained (cf. Sec. 3.4) and finally the
results of the data analysis will be discussed in Sec. 9.3.

Major parts of the results of this chapter have already been published [26].

Furthermore, an announcement of an invention will be made due to this project: As will
be shown in Sec. 9.3 it seems to be possible to distinguish between healthy and cancer
cells with this combined method of localization microscopy and theoretical analysis. So
far, it is not clear whether this applies generally for all types of cells, but a difference
on the chromatin nanostructure is remarkably and might be cancer-related since the
spatial organization of the genome plays important roles in regulation of genes and
maintenance of genome stability. It was already shown that a lot of diseases (e.g.
cancer) show alterations in the spatial genome organization on a large length scale but
not on the nanometer scale.

3.3 Experimental Setup

A detailed description of the Spectral Precision Distance Microscopy (SPDM) setup
including a schematic overview can be found in App. C. Nevertheless, a short overview
will be given below.
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Figure 20: Localization image of histones H2B in the nucleus of a human fibroblast
labelled with EmGFP. The localized fluorophores are blurred with a Gaussian corre-
sponding to their individual localization accuracy. The inserts show the marked areas
four times magnified. This image was kindly provided by Rainer Kaufmann [113].

Localization microscopy was applied to study the distribution of H2B histones and thus
nucleosomes respectively chromatin in two kinds of mammalian nuclei: Human fibrob-
lasts and HeLa cells. All measurements were done on a SPDM setup for two-dimensional
localization of single fluorescent molecules [113; 131]. This method is based on a light
induced reversibly bleached state of conventional fluorophores. The lateral positions of
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single molecules can be determined with an accuracy of about 20 nm regime with this
technique (cf. Fig. 20).

Figure 21: An example of a two-dimensional Voronoi tessellation for a random set of
points. Adapted from [231].

To achieve this accuracy, a time stack of 2000 frames was recorded with a frame rate of
about 18 fps. After data acquisition the count number at each pixel of the CCD chip
was translated into the number of incident photons. For signals with a low signal-to-
noise ratio a differential photon stack between the succeeding and the preceding frame
was calculated. The high precision localization of the single molecules was done by
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fitting a model function to the acquired signals, revealing the positions and localization
accuracies of them.

The cultivation of the fibroblast and HeLa cells was done according to standard meth-
ods. The histones H2B of both cells lines were labelled with EmGFP by using Organell
Lights (Invitrogen, Carlsbad, USA) according to the manufacturers protocol. Further-
more, HeLa cells stably expressing GFP-H2B histone fusion proteins were used. All
specimens were prepared onto coverslips, fixed with 4% formaldehyde in PBS and em-
bedded with ProLong Gold antifade reagent (Invitrogen). Altogether 32 fibroblasts and
30 HeLa nuclei have been captured. This corresponds to ≈1.5 million histone locations.
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Example of Fibroblast Raw Data

Figure 22: An Example of the raw data provided by the localization microscopy. One
can see some data points outside the nucleus which are not of interest here. Further-
more, there are areas inside the nucleus which have a very low density compared to the
rest of the data points. An image that shows the raw data for a HeLa nucleus can be
found in App. A (cf. Fig. 165).
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3.4 Data Analysis

3.4.1 Noise Repression

In this section the Voronoi tessellation approach to eliminate unwanted background
signals inside the fibroblasts or HeLa nuclei nuclei is described. Fig. 22 and Fig. 23
show some raw data of Fibroblast nuclei. Images of HeLa nuclei can be found in App.
A (Fig. 165 and Fig. 166).

If a set of two-dimensional coordinates is given, a Voronoi cell can be constructed for
each of these points. If r is one of the given points, then the corresponding cell Cr will
consist of all points in the xy-plane that are closer to r than to any other data point.
The segments of a Voronoi tessellation are the points that are equidistant to two of
the given points. Fig. 21 shows such a Voronoi tessellation for some random coordinates.

The Voronoi tessellation has some very useful properties: Its dual graph corresponds
to the Delaunay triangulation of the same set coordinates and points are adjacent on
the convex hull if and only if their Voronoi cells share an infinitely long segment. A
Voronoi tessellation can be used to solve many frequent geometrical problems like the
next neighbor problem (resp. the all next neighbors problem) and the largest free sphere
problem. Furthermore, Voronoi diagrams are used for the analysis of protein structures
[164] and many other problems [29].

The size of a Voronoi cell can be calculated easily with the Gaussian trapeze formula
that describes the area of a polygon:

A =
1
2

∣∣∣∣∣
n∑
i=1

(yi + yi+1)(xi − xi+1)

∣∣∣∣∣ .
The Voronoi tessellation was calculated with the Qhull algorithm [12] in this work by
performing a Delauney triangulation first.

For every localization image first a Voronoi diagram was generated (cf. Fig. 24) in order
to eliminate the background noise of the raw data. One can see that points which lie
in areas that have a very low density have huge Voronoi cells.
The large scale density fluctuations in the localization data come from regions which
were occupied during the capture time for instance by the nucleole. Therefore, the
number of data points in the final projection image is smaller in these regions. They
will not be allowed for in the block analysis of the data.
Furthermore, one can also see that some data points lie even outside the cell nucleus.
They are not of interest here and will be sorted out as well.

After the generation of the Voronoi tessellation all data points the Voronoi cell size of
which is larger than a given cut-off value were taken away. This process is repeated
iteratively until the convex hull of the nucleus is unveiled. During these calculations
the interior of the nucleus is not changed at all.
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Figure 23: Several localization images of emGFP-marked H2B histones inside Fibrob-
last nuclei. The dashed black line represents the convex hull of the raw data. The axis
units are µm. Several raw data images of HeLa nuclei can be found in App. A (cf. Fig.
166).
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The iterative process gives us the advantage that data points which are close to each
other (i.e. small Voronoi cell size) are not changed at all, whereas single abandoned
points are taken away. Fig. 25 shows an example of the convex hull determination in
the case of a fibroblast nucleus.
After the determination of the nucleus’s convex hull the same iterative selection due
to Voronoi cell size is done with the data points that lie inside the nucleus (cf. Fig.
26). The two steps are independent of each other to have the possibility of applying
different cut-off criteria to the exterior and the interior.
With this method the fluorescent markers which are associated with the heterochro-
matin are sorted out, too. In the following block analysis only euchromatin shall be
considered.

At the end of the described process one gets a noise reduced localization image (cf. Fig.
26).

Figure 24: This figure shows a Voronoi diagram of the localization data which was
illustrated in Fig. 22. One can see that points that are close to each other have small
Voronoi cell sizes, whereas other points that are trailed off have large cells. For this
figure Fibroblast #27 was used. A similar HeLa nucleus image can be found in App.
A (cf. Fig. 167).
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Figure 25: An example of the determination of the convex hull of a Fibroblast nucleus.
Iteratively, data points are sorted out which have a too large Voronoi cell size (cf. red
dots). The different iterations are marked with the labels 1,2 and 3 (top). The convex
hull after every iteration is shown as well (black dashed line). A similar figure for a
HeLa nucleus can be found in App. A (cf. Fig. 168).
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Figure 26: This figure shows the noise reduction in the interior of a Fibroblast nucleus.
Again Voronoi diagrams are calculated iteratively and data points with too large cell
sizes are sorted out (cf. red dots) just like the heterochromatin. A similar example for
a HeLa nucleus can be found in App. A (cf. Fig. 169).
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3.4.2 Block Analysis

For the nanostructure examination of the data several steps have been carried out.
For every data point of a given nucleus first a square with edge length 800nm that is
centered around that very data point will be cut out. Then the mean particle density
of that square will be calculated.
If the particle density is equal or larger than the the mean particle density of the nu-
cleus, then a circle of radius 400nm around the considered data point in the center will
be cut out. Now, if this circle fulfils the same condition i.e. that its mean particle den-
sity is equal or lager than the average density of the nucleus, then all distances between
the central point and all other points in the circle will be evaluated. A histogram of
these distances is made to calculate the radial two-dimensional pair distribution func-
tion later.

The circles are necessary to avoid any bias from data points that lie in the corners of
the square-shaped boxes. The density cut-off avoids bias from regions that are partially
empty (e.g. by edges or projections during the capture time of the image).
Fig. 27 shows an example of the block analysis. Eventually evaluated data points are
marked red. Two complete bock analysis visualizations of Fibroblasts and HeLa nuclei
are shown in App. A (cf. Fig. 170 and Fig. 171).

Figure 27: Example of the block analysis in the case of a Fibroblast. First squares and
circles are cut out around each data point. If the mean particle density in the circle is
equal or lager than the average density of the nucleus, the data points in the circle will
be evaluated (red dots). A complete block analysis is shown in Fig. 170 in App. A.
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3.5 Results

3.5.1 Histone H2B Density

Fig. 28 and Fig. 29 show the distribution of the number of H2B histones per nm2 and
thus the distribution of the chromatin density for a Fibroblast nucleus. Similar figures
for the case of a HeLa Cell can be found in App. A again (cf. Fig. 172 and Fig. 173).
One can see that no particular density distributions are visible.

Figure 28: This figure shows the histone H2B and thus the chromatin density of a
Fibroblast as a heat map. The units of the colorbar are particles per nm2.

Fig. 30 shows the average probability density distribution of the Fibroblast nuclei. The
density values on the x-axis were averaged over spheres with a radius of 100nm around
each data point.

3.5.2 Global Distance Distribution

Fig. 31 shows the global distribution of distances between different markers for several
Fibroblast nuclei. One can see that the distributions vary widely since the shape of the
nuclei and the positions of the nucleoli varies, too. A similar figure for the case of a
HeLa nucleus can be found in App. A (cf. Fig. 174).
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Figure 29: The spatial histone H2B density distribution of a noise-reduced SPDM
image in the case of a Fibroblast.
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Figure 30: The average probability density distribution of the Fibroblast nuclei.
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Figure 31: Several distance distributions of different Fibroblast nuclei. The distribu-
tions are different since the shape of the nuclei as well as the positions of the nucleoli
are different, too.
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Figure 32: A comparison of a measured H2B distance distribution and a random
particle distribution within an identically shaped nucleus. The differences come mainly
from the influence of the nucleoli. A similar figure for a HeLa nucleus can be found in
App. A (cf. Fig. 175).
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Fig. 32 shows a comparison between the measured distance distribution and the distance
distributions one will get, if one puts the same number of particles into an identically
shaped nucleus by random. The difference between the two curves comes mainly from
the influence of the nucleoli.

3.5.3 Chromatin Nanostructure

In order to examine the chromatin nanostructure the radial two-dimensional pair dis-
tribution function g2D(r) was used (cf. Sec. 1.8).
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Figure 33: The radial two-dimensional pair distribution function describes the nanos-
tructure of the emGFP-marked nucleosomes. One can clearly see some structure beyond
the scale of the nucleosome since g2D(r) is larger than one for small distances. The
differences between the different cell types were larger when the H2B histones were
marked with another kit. Nevertheless, the two graphs can be clearly separated.

The pair distribution function will be proportional to the conditional probability p(r) of
finding a marker at a distance r, if another one is sitting at the origin. It is normalized
in a way that a value of one corresponds to the mean particle density of the system.
That means unbound H2B histones which are also fluorescently labelled are not ex-
pected to contribute to any structural motif since they are assumed to be uniformly
distributed all over the nucleus.
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For this analysis the formerly described block analysis (cf. Sec. 3.4.2) was used to find
and cut out suitable spheres with a radius of 400nm. Then all distances between the
center and any other marker in each sphere are evaluated to calculate p(r) and it was
averaged over all possible spheres in a particular nucleus (i.e. g2D(r) is calculated by a
histogram of ≈ 106 − 107 distances). The centers of the spheres themselves were not
considered. Thus one gets one distribution function per nucleus.

The two-dimensional pair distribution function is given by

g2D(r) =
[(

A

N − 1

)
1

π[2r∆r + ∆r2]

] 1
N

N∑
i=1

∑
j 6=i

δ(r − ri,j)

 ,
where ∆r=10nm is the binning width for the histogram used to calculate p(r), (N−1)/A
is the average particle density of the 400nm-sphere and N is the total number of par-
ticles the sphere contains. The factor π[2r∆r+ ∆r2] is just the area of a ring of width
∆r with a mean radius of r + ∆r/2.

The average pair distribution functions for HeLa and Fibroblast nuclei are shown in
Fig. 33. The single distance distribution functions for each nucleus are shown in Fig.
34 and Fig. 35 as scatter plots. The latter show that the cell to cell variation of g2D(r)
is large.
First of all, one can clearly see that a chromatin nanostructure beyond the level of the
nucleosome exists: g2D(r) is larger than one for distances below 150nm which means
that the nucleosomes are organized somehow.
Furthermore, the HeLa curve lies almost completely beneath the curve of the Fibrob-
lasts. This is a hint that their structure on that small length scale is different. Although
the nucleosomes might be organized similar inside a 30nm structure, small changes of
the salt concentration or the concentration of linker histones can already change the
distance distribution within a chromatin strand. This will be examined theoretically
in the next chapters of this work (cf. Sec. 5 - Sec. 8).
Moreover, Sec. 7.3.3 and the following Sec. 7.3.4 will provide a direct comparison with
chromatin fiber projection data from the E2A-model (cf. Fig. 98).
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Figure 34: This figure shows all single gi2D(r) distributions that contribute to the
average value g2D(r) of the Fibroblast nuclei. One can see that the cell-to-cell variation
is large.
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Figure 35: This figure shows all single gi2D(r) distributions that contribute to the
average value g2D(r) of the HeLa nuclei. One can see that the cell-to-cell variation is
large.
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 Modelling Chromatin I - Geometry of the 30nm-Fiber

4.1 Overview

In this section the two-angle model for chromatin will be introduced and analytically
described (cf. Sec. 4.3). It is the basis of the Extended Two-Angle model (E2A model)
which will be used for the chromatin simulation in this work.
The geometry of chromatin in the framework of the E2A model as well as an algorithm
for the generation of chromatin fibers within this model are explained in Sec. 4.4.

At the end of this chapter in Sec. 4.6 the modelling of the DNA as well as the
nucleosome-nucleosome interactions will be discussed. But they will be replaced by
experimental data later on (cf. Sec. 6) since the nucleosome-nucleosome interactions
are very complex and in terms of interaction potentials still unknown.

The description of the E2A-model and the algorithm for the generation of chromatin
fibers within this model was already published [64]. Furthermore, some calculations
concerning the basic two-angle model have been parts of former publications [61; 62].

4.2 Introduction

The two-angle model was introduced by Woodcock et al. [235] to describe the geometry
of the 30nm interphase chromatin fiber.
A mathematical framework for the original two-angle model as well as for the E2A-
model will be given in this section. This analytical approach is the basis for the com-
putational modelling of the chromatin fiber.

4.3 The Two-Angle Model

To address the folding problem of DNA at the level of the 30nm fiber a mathematical
description for the different folding pathways is needed.
At the simplest level this can be done by three parameters: the ”entry-exit-angle” α,
the ”torsion angle” β and the ”linker length” b. One can consider these as random
variables with probability distributions but for now they shall be constant - such chro-
matin fibers with constant values of α, β and b will be called ”ideal” or ”regular” in
opposite to fibers with probability distributed α, β and b.

The geometric structure of the 30nm fiber can be obtained from the local geometry of
a single nucleosome. The place of a certain nucleosome can be calculated by knowing
the locations of the three preceding neighbor nucleosomes.

4.3.1 Basic Definitions of the Two-Angle Model

To see how single-nucleosome properties can control the fiber geometry, remember the
fact that DNA is wrapped a fractional number of turns around the nucleosome (146bp
≈ 1.8 turns) in the case of no H1 linker. Therefore, the incoming and outgoing linker
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make an angle α with respect to each other.

In the presence of the H1 histone the ingoing and outcoming linker are in close contact
with each other forming a stem before they diverge (the precise value of α depends on
many parameters such as salt concentration (cf. Fig. 15), degree of acetylation of the
histones etc.).

Figure 36: Basic definitions of the two-angle model: The entry-exit angle α, the linker
length b, and the rotational angle β. Adapted from [61; 62].

The rotational angle β between the axis of neighboring histone octamers along the
necklace (cf. Fig. 36) is a torsion angle. Because nucleosomes are rotationally posi-
tioned along the DNA the angle β is a periodic function of the linker length b with the
10bp repeat length of the helical twist of DNA as the period: β(b+ 10bp) ≈ β(b).

There is experimental evidence that the linker length b shows a preferential quantiza-
tion involving a set of values that are related by integer multiples of this helical twist
[228] i.e. there is a preferred value of β. The experimental results from [228] for the
nucleosome repeat length (i.e. the linker length plus the DNA content which is wrapped
around the histone onctamer) will later on be used to model parameter distributions
in the E2A-model.

The ”linker length” b is in fact the distance between two neighboring nucleosomes which

means b ≈ 2
√
r2 +

(
l
2

)2
(with r being the radius of the nucleosomes and l being the

”true” linker length between two nucleosomes). This leads to typical values of b of
about 60bp (in fact the calculated mean value of b is 63bp which comes quite close to
experimentally found values of about 20nm≈ 59bp for chicken erythrocyte chromatin
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(cf. [219])). The thickness of DNA fiber is t ≈ 2nm≈ 5.9bp.

4.3.2 Mathematical Definition of the Two-Angle Model

Consider four consecutive nucleosomes (cf. Fig. 36): N0, N1, N2 and N3 ∈ R3 within
the chain. N3 is a function of N0, .., N2 by fulfilling the following conditions:

i) ^ ((N0 −N1), (N2 −N1)) = α;
ii) ‖N2 −N1‖ = b2, ‖N0 −N1‖ = b1, ‖N3 −N2‖ = b3, with b1, ..., b3 = b;

iii) P := {r ∈ R3 | ∃ λ, µ ∈ R, such that r = N1 + λ(N0 −N1) + µ(N2 −N1)}
P ′ := {r ∈ R3 | ∃λ′, µ′ ∈ R, such that r = N1 + λ′(N2 −N1) + µ′(N3 −N1)}
^(P, P ′) = β.

By straightforward considerations this leads to the following expression for N3:

N3 = Rŵβ Rv̂π−α
(
N2 + b3 ·

(N2 −N1)
‖N2 −N1‖

)

v̂ :=
(N2 −N1)× (N0 −N1)
‖(N2 −N1)× (N0 −N1)‖

; ŵ :=
N1 −N2

‖N1 −N2‖
;

where ‖N2 − N1‖ = b2 and Rvϕ is the orthogonal rotational transformation matrix
defined by the axis v ∈ R3 and the rotation angle ϕ ∈ [0, 2π] (with respect to the
right-hand-rule).
So the geometrical structure of the necklace is determined entirely by α, β and b.
But this model only describes the linker geometry and does not account for any forms
of nucleosome-nucleosome interaction so far.
Furthermore, it assumes straight linkers. It is still not clear whether the linkers of the
30nm fiber at high salt concentration are straight or not. But straight linkers are likely.

Nevertheless, the two-angle model is a useful tool for understanding the 30nm structure
of chromatin, although it seems to be very simple. Its simplicity is a big advantage from
the numerical point of view but it is still complex enough to explain lots of phenomena
concerning chromatin fibers which will be shown in detail in the following sections.

4.3.3 Mathematical Properties of the Two-Angle Model

For every ideal chromatin fiber with a certain set of values (α, β, b) it is possible to
construct a spiral with radius R and a gradient m so that all the nucleosomes are
located on this spiral (cf. Fig. 37).
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Figure 37: Two typical regular chromatin fibers in the two-angle model: (a) shows a
typical crossed-linker-fiber under physiological conditions and (b) shows a solenoid
like fiber with a large entry-exit-angle. The white ellipsoids are the linkers between
the nucleosomes (red) which are approximately the locations of the linker DNA strings.
Adapted from [61; 62].

The nucleosomes are placed along the spiral in such a way that successive nucleosomes
have a fixed (Euclidean) distance b from one another (in fact there are many such spirals
but the interesting spiral is the one with the largest gradient m). The parametrization
of the spiral is given by

γ(t) :=

R · cos(a·tR )
R · sin(a·tR )

t

 , t ∈ R

where R is the radius and m = 1
a is the gradient of this master solenoid (which follows

from ṙ(0) = (0, a, 1)T ).

Now assume a given set (α, β, b) with an infinite number of nucleosomes on this spiral.
Pick one of these nucleosomes (i.e. mark the beginning of the spiral, t=0) and name
its location R0 (= (R, 0, 0)T ). The locations of the successive nucleosomes are R1, R2,
R3, ... the locations of the proceeding nucleosome locations are R−1, R−2, ... . The
axis of the spiral is the z-axis due to the parametrization above. Now define d as the
distance of successive nucleosomes along the axis of the spiral (explicit expressions for
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d can be found in a former work [61]). Then R1 will be given by R1 = γ(d), R2 will be
given by R2 = γ(2d) and so on.

Consider the following linkers between two successive nucleosomes:

r0 := R1 −R0 =

R · (cos(a·dR )− 1
)

R · sin(a·dR )
d


r1 := R2 −R1 =

R · (cos(2a·d
R )− cos(a·dR )

)
R ·
(
sin(2a·d

R )− sin(a·dR )
)

d


r2 := R0 −R−1 =

R · (1− cos(a·dR )
)

R · sin(a·dR )
d

 .

Now b follows from the condition of fixed linker length: ‖r0‖ = b. By straightforward
calculus this leads to the following relation:

b2 = 2R2

(
1− cos

(
a · d
R

))
+ d2. (10)

Furthermore, cos(π − α) = <r0|r2>
‖r20‖

leads to:

cos(π − α) =
2R2 cos

(
a·d
R

) (
1− cos

(
a·d
R

))
+ d2

2R2
(
1− cos

(
a·d
R

))
+ d2

. (11)

Finally β can be calculated by evaluating cos(β) = <r0×r1|r2×r0>
‖r0×r1‖·‖r2×r0‖ , as the angle between

two successive planes (cf. iii):

cos(β) =
d2 cos

(
a·d
R

)
+R2 sin2

(
a·d
R

)
d2 +R2 sin2

(
a·d
R

) . (12)

So equations 10, 11 and 12 relate R, a and d to α, β and b and thus the global fiber ge-
ometry to these local variables. These equations are important for further calculations.

The inverse transformation which relates the local fiber properties to the global spiral
geometry (i.e. (α, β, b)⇒ (R,m = 1

a , d)) is very important and useful, too. The inverse
transformations are:

R =
b · cos

(
α
2

)
2
(

1− sin2
(
α
2

)
cos2

(
β
2

)) (13)
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m =
1
a

=
2 sin

(
β
2

)√
1− sin2

(
α
2

)
cos2

(
β
2

)
cot
(
α
2

)
arccos

(
2 sin2

(
α
2

)
cos2

(
β
2

)
− 1
) (14)

d =
b sin

(
β
2

)
√

csc2
(
α
2

)
− cos2

(
β
2

) β�1
≈ b · β

2
√

csc2(α2 )− 1
+ o(β)3. (15)

These three equations relate the local fiber geometry to the global properties of the
associated spiral.

4.4 The E2A Model

In the following the two-angle model will be extended by introducing a parameter
(namely d, cf. Fig. 39 for an illustration) for the orthogonal distance between the DNA
strands in front of the nucleosome. This accounts for the fact that the DNA gains
height along the nucleosome axis while it is wrapped around the histone octamer.

Figure 38: A single nucleosome in the E2A-model: The histone octamer is modelled as
a flat cylinder (purple). The light-blue tube represents the DNA and the linker histone
that sits in front of the complex is marked yellow. The nucleosome has a diameter of
7nm and a height of 5.6nm. The diameter of the DNA is 2.2nm (cf. Tab. 1). It has
been shown that the excluded volume of the histone complex plays an important role
for the stiffness of the chromatin fiber [146] and for the topological constraints during
condensation/decondensation processes [13].
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Furthermore, the cylindrical excluded volume of the nucleosomes as well as the H1
histones which fix the DNA linkers in front of the nucleosomes will be factored in. The
H1 histones themselves will later be taken to be random variables to allow for possible
missing linker histones. Thus one can later on study H1/H5 skips and their influence
on properties of chromatin.
The cylindrical instead of the spherical excluded volume will show some interesting
effects in connection with the phase diagram of chromatin.

At first the basic notations for the formulation of the Extended Two-Angle model
(”E2A-model”) will be presented. After that an algorithm for the generation of chains
within the model will be given.

4.4.1 Basic Notations of the E2A Model

At first some basic notations must be fixed to use for the formulation of the model. The
nucleosomes will be characterized by the centers Ni ∈ R3 and the orientations p̂i ∈ R3

of the nucleosomes with i = 0, ..., N and ‖p̂i‖ = 1. N is the length of the fiber. The
linkers between the centers of two nucleosomes will be denoted by bi := Ni−Ni−1 with
i = 1, ..., N . The length ‖bi‖ of the linkers will be a further input parameter of the
model (opposite of the direction bi ∈ R3 of the linkers). Furthermore, the entry-exit-
angle αi ∈ [0, π] between two consecutive linkers is defined by αi := ^(−bi, bi+1) with
i = 1, ..., N−1 and the rotational angle βi ∈ [0, π] between two consecutive orientations
is given by βi := ^(pi−1, pi) with i = 1, ..., N .

Moreover, hi represents the distance along the orientational axis p̂i−1 from Ni−1 to
Ni due to the spatial discrepancy between in- and outgoing DNA strand. hi can be
expressed by the orthogonal distances di which the DNA covers by wrapping up itself
around the histone complexes: hi = 1

2(di−1 + di) with i = 1, ..., N .

Thus a single chromatin strand within the two-angle-model is characterized by the
following set of variables

({αi}i∈{1,..,N−1}, {βi}i∈{1,..,N}, {hi}i∈{1,..,N}, {‖bi‖}i∈{1,..,N}).

The general rotational matrix R around an axis â = (a1, a2, a3)t (with ‖â‖ = 1) by an
angle γ with respect to the right-hand rule will be used in the following. It is given by:

Rγâ =

 cosγ + a2
1(1− cosγ) a1a2(1− cosγ)− a3sinγ a1a3(1− cosγ) + a2sinγ

a2a1(1− cosγ) + a3sinγ cosγ + v2
2(1− cosγ) a2a3(1− cosγ)− a1sinγ

a3a1(1− cosγ)− a2sinγ a3a2(1− cosγ) + a1sinγ cosγ + a2
3(1− cosγ)

 .
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Figure 39: The figure shows the basic parameters of the E2A model: The entry-exit-
angle αi, the rotational angle βi, the linker length bi and the pitch di. The DNA linkers
are fixed in front of the nucleosome by the H1 histone. A large entry-exit-angle was
chosen here to make the visualization clear.
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4.4.2 Definition of the Two-Angle Model

A chromatin fiber within the framework of the extended two-angle model has to fulfil
the following conditions for all i ∈ {1, ..., N}:

i) ^ (−bi, bi+1) = αi ⇔ cos(αi) =
〈−bi, bi+1〉
‖bi‖‖bi+1‖

ii) ^(p̂i−1, p̂i) = βi ⇔ cos(βi) = 〈p̂i−1, p̂i〉
iii) ‖Ni −Ni−1‖ = ‖bi‖

iv) 〈p̂i−1, bi〉p̂i−1 = hi =
1
2

(di−1 + di).

These are illustrated in Fig 39.
The first condition adjusts the entry-exit angle of nucleosome i to the given parameter
αi. The second condition does the same for the rotational angle due to the DNA twist
from nucleosome i − 1 to nucleosome i. The third condition fixes the distance of the
two consecutive nucleosomes i − 1 and i. The last condition adjusts the orthogonal
distance along the local chromatin axis between the nucleosomes i− 1 and i.

This set of equations is much more difficult to solve than 4.3.2 since there is one
additional boundary condition now. Furthermore, a solution does not necessarily exist
in any case (cf. Eq. 23).

4.5 Construction of the Fiber

The construction of the fiber can be done by using an iterative process. A further
part of the model is the presence of a H1 histone which is assumed to be present with
probability p.

4.5.1 Start of the Iteration

The first nucleosome center and its orientation are arbitrary. One choice would be:

N0 =

 0
0
0

 , p̂0 =

 0
0
1

 .

The following vectors fulfil the conditions of the two angle model for the second nucle-
osome location and its orientation:

N1 = N0 +
√
‖b1‖2 − h2

1

 −1
0
0

+ h1p̂0 =

 −√‖b1‖2 − h2
1

0
h1


and

p̂1 = Rβ1

â p̂0 with â = (1, 0, 0)t.
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4.5.2 Calculation of Ni+1

Now one can calculate Ni+1 and p̂i+1 in dependence on Ni, Ni−1, p̂i and p̂i−1. We
define vi to be the linker vector that connects Ni with Ni−1 projected onto a arbitrary
plane orthogonal to pi.

vi := −bi + 〈p̂i,−bi〉p̂i.

Then one can construct the projection of the linker starting at Ni to Ni+1 onto the
very same plane.

wi := Rα0
p̂i

√
b2i+1 − d2

i+1

(
vi
‖vi‖

)
Thus one gets the projection of the location Ni+1 which one would like to know. Un-
fortunately the rotational angle α0 is still unknown and must yet be calculated (cf. Sec.
4.5.3 and Eq. 22).

With

v′i := Rα0
p̂i

√
b2i+1 − d2

i+1

(
vi
‖vi‖

)
+ hi+1p̂i (16)

one finally gets the location of nucleosome i+ 1 by

Ni+1 =Ni + v′i

=Ni +Rα0
p̂i

√
b2i+1 − d2

i+1

(
−bi + 〈p̂i,−bi〉p̂i
‖ − bi + 〈p̂i,−bi〉p̂i‖

)
+ hi+1p̂i.

4.5.3 Calculation of α0 and p̂i+1

α0 is the angle between the projections of bi+1 and −bi−1 onto an arbitrary plane
orthogonal to p̂i. One needs to calculate the dependence of this projected entry-exit-
angle α0 on the actual entry-exit-angle α because at the end one wants to set α by
tuning in α0.
Note that α0 was used as entry-exit-angle in some other publications [183; 184] but in
this work it denotes only the projection of the real entry-exit-angle α.

Using the law of cosine one gets

l2 = b2i + b2i+1 − 2bibi+1cos(α) (17)

for the distance l between Ni+1 and Ni−1.

Now an affine transformation T to a new coordinate system (x, y, z) T→ (x′, y′, z′) is
applied in order to get a second relation for l. One can shift the origin to Ni and rotate
the old coordinate system so that p̂i corresponds to the new z-axis. Furthermore, the
new x-axis has to coincide with the projection of −bi onto any plane orthogonal to p̂i.

The distance l is not changed by this transformation so obviously,

l2 = ‖bi + v′i‖2 = ‖b′i + v′′i ‖2 (18)
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with

bi
T→ b′i =


√
b2i − 〈p̂i,−bi〉2

0
〈p̂i,−bi〉

 (19)

and

v′i
T→ v′′i =


cos(α0)

√
b2i+1 − h2

i+1√
b2i+1 − h2

i+1 −
(

cos(α0)
√
b2i+1 − h2

i+1

)2

hi+1

 . (20)

Equations 18, 19 and 20 lead to

l2 = b2i+1 + b2i − 2hi+1〈p̂i,−bi〉 − 2cos(α0)
√
b2i − 〈p̂i,−bi〉2

√
b2i+1 − h2

i+1. (21)

By comparing Eq.17 and Eq.21 one gets eventually

cos(α0) =
bibi+1cos(α)− hi+1〈p̂i,−bi〉√
b2i+1 − h2

i+1

√
b2i − 〈p̂i,−bi〉2

(22)

with the boundary condition

α0 > αmin = acos
(

(hi+1 + ‖〈p̂i, bi〉‖)2 − b2i+1 − b2i
−2bibi+1

)
(23)

due to non-vanishing di and di+1.

The calculation of Ni+1 is complete since one knows now the dependence of α0 on α.
Therefore, one can use Eq.16 to determine Ni+1. But one still has to calculate the
orientation pi+1 of nucleosome Ni+1. Due to the fixation of the in- and outgoing DNA
strand by the H1 histones this orientation can be calculated by a rotation around the
following normalized axis â:

â :=
−bi+1 − 〈pi,−bi+1〉p̂i

‖â‖
.

p̂i+1 then follows by a rotation of p̂i around this axis:

p̂i+1 = Rβi+1

â p̂i.

This calculation supplies the basis for an algorithm in order to generate chromatin
fibers in the framework of the E2A-model. Note that the four local model parameters
(i.e. αi, βi, di and bi) still depend on their nucleosome number i. Thus one can even
use this iterative construction to generate fibers with parameters which obey a given
probability density function. Later on this feature will be used.
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Figure 40: This figure shows two examples of regular fibers generated with the E2A-
model: A crossed-linker fiber with a small entry-exit-angle (a) and a solenoid like fiber
with a large entry-exit-angle (b). In the latter case one can see that the DNA linkers
have to bend which leads to high energies (≈ 10kT) due to the large charge of the
DNA. It can be explained if one takes the charged histone tails into account.

4.5.4 DNA Trajectory

Here a short calculation of the DNA trajectory (cf. Fig. 38) around the histone octamer
is given. The start of the trajectory is denoted by s ∈ R3. An angle φ(t) will be used
for the rotation of the DNA around the cylinder. It is defined by

φ(t) = 2π 1.65 t

with t ∈ [0, 1]. Then

s = Ni −
d

e
p̂i + h

which leads to the only unknown variable, namely the auxiliary vector h.
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Then one gets the local DNA trajectory q(t) as

q(t) = Ni −
d

2
p̂i + d t p̂i +Rφ(t)

p̂i
h

The start and end positions q(0) = s and q(1) can be calculated in dependence on pi−1,
pi, pi+1 and Ni−1, Ni, Ni+1.

4.6 Potentials and Interactions

As mentioned before the nucleosome-nucleosome excluded volume interactions are not
the only ones within the chromatin fiber. DNA linkers have a diameter of about 2nm
and therefore excluded volume restrictions, too. This is very important especially for
all types of crossed-linker fibers. Since DNA linkers have a very strong and screened
Coulomb repulsion their excluded volume interactions resemble their Coulomb interac-
tions.

Furthermore, the nucleosome-nucleosome potentials will be discussed in this section.

The DNA-nucleosome interaction (i.e. mainly the interaction between the linker DNA
and the histone tails) is not known very well at present. In most of the theoretical work
it is deemed negligible compared to DNA-DNA and nucleosome-nucleosome interaction.
Furthermore, the E2A-model already allows for the fixation of DNA linkers by H1 and
H5 histones. So a part of the interaction between linker DNA and nucleosome is part
of the model geometry (note that DNA which is wrapped around a histone octamer is
considered as a part of the nucleosome).

4.6.1 Volume Exclusion

Excluded volume potentials play a very important role for biopolymers since they con-
tribute largely to entropic forces and thus to long range interactions (cf. [102] for
instance). In this work all excluded volume potentials were modelled by hard-core
potentials i.e. V =∞ if excluded volume is violated and V = 0 if not.

For the basic two-angle model spheres were applied to approximate the volume of
the nucleosomal complex. In the E2A-model stiff cylinders were used to model the
volume exclusion. Further parameters which have been exerted for the excluded volume
potentials can be found in Table 1.

Remark: In the following sections of this thesis the mean value of the length of a base
pair will be used as length unit: 1bp := 〈1bp〉 := 0.34 nm.

4.6.2 DNA

DNA is modelled as a charged Worm Like Chain (WLC, cf. Sec. 1.3) with a persistence
length of 50nm. For the nucleosome skips (cf. Sec. ???) one needs to model blank
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Model Parameters
nucleosome height 16.8 bp 5.6 nm

nucleosome diameter 33.0 bp 7 nm
linker length b 51.0 bp 17.3 nm

vertical displacement d 8.4 bp 2.8 nm
DNA diameter 6.6 bp 2.2 nm

DNA period length 10.2 bp 3.4 nm
DNA major groove 6.6 bp 2.6 nm
DNA minor groove 3.6 bp 1.2 nm

DNA turns ω 1.65 –
length DNA turns 146 bp 49.6 nm

Table 1: Parameters used to describe the geometry and the hard core excluded volume
potentials of the chromatin fiber. 〈1bp〉 ≈ 0.34 nm.

DNA stretches of integer multiples of the nucleosome repeat length (NRL) i.e. of 197
bp (≈70nm).

Figure 41: A DNA stretch.

4.6.3 Coulomb Repulsion of DNA Linkers

The DNA has a very high charge density of λDNA ≈ 2e/0.34nm but the Coulomb
potentials are strongly screened due to the ionic environment of the chromatin fiber
in the cell nucleus. The electrostatic potential and charge density are related in the
Poisson equation:

4Φ = − %

ε0εr
(24)
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in this case εr = 81 (the relative permittivity of water) was used. The concentration of
positive and negative charged ions (n+, n−) of the point where the potential is Φ may
be found from the Boltzmann distribution:

n+ = n+
0 exp

(
−z+eΦ
kT

)
n− = n−0 exp

(
−z−eΦ
kT

)
where z+ and z− are the numbers of charges carried by positive and negative ions
respectively, n+

0 and n−0 the numbers of ions of each type per unit volume, e is the unit
electronic charge and k is the Boltzmann constant. The electrical density % at the point
where the potential is Φ, is the excess positive or negative electricity per unit volume:

% = n+z+e− n−z−e = e

(
z+n

+
0 exp

(
−z+eΦ
kT

)
− z−n−0 exp

(
−z−eΦ
kT

))
due to electroneutrality the condition

n+
0 z+

!= n−0 z−

must be satisfied. Substituting now the electrical density in the Poisson equation leads
to

4Φ = − e

ε0εr
(z+n

+
0 exp

(
−z+eΦ
kT

)
− z−n−0 exp

(
+z−eΦ
kT

)
)

= − e

ε0εr

(
z+n

+
0 [exp

(
−z+eΦ
kT

)
− 1]− z−n−0 [exp

(
+z−eΦ
kT

)
− 1]

)
z±eΦ�kT≈ e2

ε0εrkT
[z2

+n
+
0 + z2

−n
−
0 ]Φ

and with

κ2 =
e2

ε0εrkT
[z2

+n
+
0 + z2

−n
−
0 ]

this results in
4Φ = κ2Φ.

The spherically symmetric solution of this equation (i.e. for a point charge) follows
with 4r = 1

r
∂2

∂r2
r and Ψ = rΦ since this leads to (− d2

dr2
+ κ2)Ψ = Ψ and thus to

Ψ = c · exp(±κr). Within a small sphere of radius ε around the point charge there is
no screening, this determines the constant c:

⇒ Φ(r) =
q

4πε0εr
exp(−κr)

r
.

κ is the inverse Debye length which is a measure for the screening of the Coulomb
interaction κ = 1

λ . Different values of κ in dependence on the salt-concentration are
listed in Table 2.
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cS [10−2M] 1 2 3 4 5
κ [nm−1] 0.330 0.467 0.572 0.660 0.738
νeff [e/nm] -2.43 -2.96 -3.39 -3.91 -4.15

Table 2: Screening parameters for the Coulomb Repulsion of DNA.

Since the screening of the Coulomb interaction starts at the radius of the DNA strand
and due to the condensation of ions along the DNA linkers one has to calculate a cor-
rection of the screened potential above by fitting the tail of the Debye-Hückel potential
for an infinitely-long cylinder to the Gouy-Chapman potential in the far zone. This
calculation can be found in [181; 202] and leads to a corrected linear charge density νeff

which is also given in Table 2 for different levels of monovalent salt concentration.

Now one can calculate the Coulomb repulsion between the DNA segments i and j by
evaluating

Vi,j =
νeff

c

∫ ∫
e−κri,j

ri,j
dxidxj (25)

where c is the total dielectric constant of water. These double-integrals were numerically
evaluated during some of the chromatin simulations.

4.6.4 Nucleosome Interactions

The charges on the linker histones H1, H5 and the histone tails are under biochemical
control and allow the cell to regulate the stem formation and the attractive interaction
between nucleosomes (cf. Sec. 2). Therefore, the soft parts of the nucleosome are prob-
lematic for all attempts to model chromatin. Less is known about the interaction of
the nucleosomes between themselves or with free DNA.

The nucleosome-nucleosome interaction has recently been parameterized by using the
surface charge density of the known crystal structure in a point-charge model (cf. [17]).
While in that work only electrostatic interactions were considered and the quantitative
influence of the histone tails on the interaction potential still remains obscure, simula-
tions based on this potential allowed to predict an ionic-strength dependent structural
transition of a 50nm-nucleosome chromatin fragment that occurred at a salt concen-
tration compatible with known experimental data (cf. [18]).

Nucleosome-nucleosome interaction potentials can be calibrated by comparison with
the characteristics of liquid crystals of mononucleosomes at high concentrations. Un-
der suitable conditions nucleosome core particles form a hexagonal-columnar phase with
a distance of 11.55± 1nm between the columns and a mean distance of 7.16± 0.65nm
between the particles in one column (cf. [129; 130]). These distances may be assumed to
correspond to the positions of the minima of an attractive internucleosomal potential.
The depth of the interaction potential (i.e. the binding energy per nucleosome) was
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estimated in the stretching experiments in [47] to 2.6− 3.4kT. A slightly lower poten-
tial minimum of 1.25kT is obtained by a comparison of the stability of the nucleosome
liquid crystal phase with simulations [223].

In [61] and this work the nucleosome-nucleosome interaction was modelled by a isotropic
Morse-potential

UMorse(r) = ε
(

1− e−a(r−r0)
)2
− ε (26)

with the parameters a = 0.07, r0 = 46bp and ε = 3kT.

The results for the nucleosome-nucleosome interaction will be shown in Fig. 177. It
will turn out that the excluded volume borderline is reproduced by the nucleosome-
nucleosome potential.
The results of the simulations with interaction potentials will be discussed in Sec. 5.5.1.
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 Chromatin Phase Diagram

5.1 Overview

This section provides a comprehensive discussion of the chromatin phase diagram.

First (a cut through) the phase diagram is presented and all the possible chromatin
structures are discussed (cf. Sec. 5.2 and 5.3).

Then it will be shown that the shape of the excluded volume borderline (i.e. the curve
that separates the allowed from the forbidden states in the phase diagram) can be
understood by geometrical considerations and that the irregularity of its peaks comes
from an underlying prime factor dismantling problem (cf. Sec. 5.4). Furthermore, the
influence of the pitch d and the cylindrical (instead of spherical) excluded volume of
the nucleosomes on this borderline is investigated (cf. Sec. 5.4.4). After that, some
properties of the different structures will be discussed (cf. Sec. 5.5).

Finally, it will be shown that parameter distributions lead to a distribution of structures
in the phase diagram instead of a particular fixed structure (cf. Sec. 5.6).

Most of the results of this chapter have already been published [61; 62; 64] or are
currently under review [65]. Some of the analytical parts are adapted from [61; 62] for
the sake of completeness.

5.2 The Chromatin Phase Diagram

As explained in Sec. 4.5 one can build up stiff chromatin fibers by solving the condi-
tions 4.4.2. Stiff means that for each nucleosome the four parameters α, β, b and d are
equal. Thus one gets perfectly regular fibers without any thermal fluctuations.

Of course, these are very artificial states far from equilibrium but they are helpful to
get an impression of the different chromatin structures and they can be interpreted as
a first mean-field approach on small length scales.
Furthermore, one can investigate them with respect to interesting chromatin features
like line density, fiber extension or compactness and so on.

For every set of parameters (α, β, b, d)N one can generate a certain (stiff) chromatin
fiber of length N . That means the chromatin phase diagram in the E2A-model has
four dimensions.
In this section the linker length b will be fixed to its expected mean value of 17.3nm
(cf. Tab. 1) so that three dimensions remain. During the first considerations of this
chapter the pitch d will be set to zero but later its influence on the phase diagram will
be considered as well (cf. Sec. 5.5.2).
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Figure 42: A cut through the actually four-dimensional chromatin phase diagram.
The pitch d and the linker length b are fixed here so that only the two angles remain
as parameters. A single point in this diagram corresponds to a specific chromatin
structure. The forbidden structures lie left and below the dashed line which is the
excluded volume borderline [62].
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Actually there is a fifth important parameter namely the fiber length N . N denotes
the number of nucleosome repeat lengths of which the chromatin fiber consists of.
In this chapter N has to be chosen carefully in the numerical part since in some cases
one can separate forbidden and allowed states (with respect to volume exclusion) only
when N is large enough.
On the one hand, N should be as small as possibly to reduce the running time of the
simulations and on the other hand it should be large enough to obtain the right physical
insights. For the theoretical part infinitely long fibers: N →∞ are always assumed.
A cut through the four-dimensional chromatin phase diagram can be found in Fig. 42.
As explained b and d are fixed in this case so only the two angles α and β remain as
fiber parameters. Therefore, every single point of this diagram corresponds to a certain
chromatin structure.
One can see dense states like the crossed-linker fibers or very open states which resemble
beads-on-a-string.
The classical solenoid model of Finch and Klug [80] is found in the large α and small
β area in Fig. 42 (but in their case the linkers were bent).
Various other structures with α ≈ 30◦ and different values of β were found by Wood-
cock et. al. in electron micrographs [235]. These are located on the left side (i.e. small
α) of the phase diagram (cf. Fig. 42).

Of course, some of the states in the phase diagram are forbidden due to violation the
excluded volume restrictions: These are all states left and below the dashed line. The
dashed line will be called excluded volume borderline in the following since it separates
the allowed from the forbidden states.
Furthermore, the excluded volume borderline indicates the area where the nucleosome
stacking takes place. Stacking of nucleosomes is particularly interesting because it leads
to very compact chromatin fibers and as pointed out before one important feature of
chromatin is DNA condensation (cf. Sec. 2.2)

All the different chromatin states will be discussed in the following sections. They
can be divided into planar and three-dimensional structures. Although the planar
states seem not to be of interest, since they lie in the forbidden area, it will turn out
that these very structures are of essential importance to understand the shape of the
excluded volume borderline.

5.3 Chromatin Structures

In this section and partially in Sec. 5.4 the nucleosomes will be treated as spherical
instead of cylindrical objects. This approximation is necessary for the analytical calcu-
lation of the excluded volume borderline. The effect of cylindrically shaped nucleosomes
as well as the physical chromatin features will be discussed later (cf. Sec. 5.4.4 and Sec.
5.5).
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Figure 43: The chromatin phase diagram with some planar structures. The pitch is set
to zero (d = 0) to facilitate the analytical calculation of the excluded volume borderline.
The influence of a non-vanishing pitch will be discussed later (cf. Sec. 5.4.4). Adapted
from [61].

5.3.1 Planar Structures

If either one of the angles α or β equals 0 or π the resulting structure will be planar
(cf. Fig. 43). Although it seems that the planar structures aren’t of much interest from
the physical point of view it turned out that they play a very important role for the
excluded volume borderline of the phase diagram, and therefore, they will be discussed
here in detail.

Case A: β = π, α ∈ [0, 2π]

In the case β = π and α arbitrary the fiber forms 2D zig-zag-like structures, as shown
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at the top of Fig. 43. The length of a fiber consisting of N monomers is given by

L = d ·N = b · sin
(α

2

)
N (cf. Eq. 15)

and the diameter is given by

D = b cos
(α

2

)
(cf. Eq. 13).

The length of the fiber increases with increasing α.

Case B: α = π or α = 0, β ∈ [0, 2π]
In the case of α = π with an arbitrary value of β the fiber is a straight line and for α = 0
and β ∈ [0,π] corresponds to linkers that go back and forth between two positions (cf.
Fig. 43).

Case C: β = 0, α ∈ [0, 2π]

Consider now the important case of the edge β = 0, at the bottom of the phase diagram
(cf. Fig. 43):

If α ≈ π the fiber forms a circle (with radius R ≈ b
π−α as follows from equation 13).

Its radius converges towards infinity for α→ π.
For some values of α the fiber forms a regular polygon. For instance the value α = π

2
corresponds to a square and α = π

3 corresponds to the regular triangle (cf. Fig. 42).
To characterize these regular polygons one needs two variables: At first the number
of the tips i and secondly the order n of the polygon which represents the number of
whitlows or circulations the fiber has to do in order arrive at the starting point again.
The α-values that lead to these regular (planar) polygons will be denoted by αni in the
following.
To give an example Fig. 44 shows the two possible geometries of a polygon with 5 tips:
One with only one loop (α1

5 = 108◦) and another one with two loops (α2
5 = 36◦).

The values of α = αni that lead to such regular polygons are given by

αni = π −
(
n · 2π
i

)
, with i, n ∈ N and i ≥ 2n, such that (27)

@ n′, i′ ∈ N with n′ < n and αni = αn
′
i′ (M).

Remarks: The order n of αni is a measure for its contribution to the excluded volume
borderline in the chromatin phase diagram which will be shown below (cf. Eq. 35).
Therefore, all different values of αni will be sorted by n first and secondly by i (i.e. if
n1 > n2, then αn1

i is more important than αn2
i and if i1 > i2 then αni1 is more important

than αni2 to the excluded volume borderline). In fact, this is what makes condition (4)
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necessary: For example α1
3 = α2

6 = α3
9 = π

3 but the order of these three αni is always
n = 1, and therefore, they are all in the same equivalence class.

The special case i = 2n leads to one-dimensional structures with α1
2 = 0 - this value

of αni of highest order in n and i plays an important role in Sec. 5.4.2 and is therefore
mentioned here, too.

According to Eq. 27 all αni are irrational numbers .

5.1 Theorem
Condition (4) of Eq. 27 ⇔ @ α, β, b ∈ N with n = α · b and i = β · b (F).

(F) indicates that n and i are coprime since αni depends only on the relation n
i .

Proof
”⇒”

Let n be an arbitrary element of N. Now assume that i ∈ N, i ≥ 2n and n and i have
a common divisor b i.e. ∃ α, β and b ∈ N such that i = α · b and n = β · b ⇒ n

i =
β·b
α·b = β

α =
n
b
i
b

, furthermore i ≥ 2n indicates i
b ≥ 2nb ⇒

β
α ≤

1
2 which means ∃ n′, i′ ∈

N with i′ ≥ 2n′ and n′

i′ = n
i , namely n′ = β and i′ = α. This means ¬F implies ¬4

which is equivalent to 4⇒F.

”⇐”

To proof the other implication above it suffices to show that if n and i are coprime,
there will be no numbers m, j with m < n such that nj = mi. Dividing this equation
by gcd(n,m) one gets a new equation of the same structure with m′ and n′ instead
of m and n, fulfilling gcd(m′, n′) = 1. Moreover, gcd(n, i) = 1 leads to gcd(n′, i) = 1.
Thus gcd(m′i, n′) = 1 ⇒ j = 1 which contradicts j > 2n. �

5.2 Theorem
If two orders n1 and n2 are coprime with n1, n2 > 1 , there never will be equal values
of αn1

i and αn2
i′ for all possible i ≥ 2n, i′ ≥ 2n′ and i, i′ ∈ N.

For example n and n+1 are always coprime numbers, and therefore, have never common
αni .

Proof
Consider the case that n and n′ are coprime with n′ > n, i ≥ 2n and i′ ≥ 2n′ such
that n

i , n′

i′ 6∈
1
N (which means that they are not equivalent to any order-1-value of αni ).

Furthermore, assume that n′

i′ = n
i ⇒ i′ =

(
n′

n

)
· i, it is clear that

(
n′

n

)
6∈ N and i ∈ N,

therefore ∃ α ∈ N so that i = α · n which contradicts
(
i
n

)
6∈ N. �





5.3 Chromatin Structures Philipp M. Diesinger

Figure 44: This figure shows some of the regular polygons, their classification (n, i) in
blue and their number of tips i as well as their order in red: For i = 5, 6, 7 and 8 all
possible structures are shown. The maximum number of possible polygons for a given i
is max=floor(i/2), achieved for prime numbers. The only possible structures for i = 3
and i = 4 are the equilateral triangle and the equilateral square. Adapted from [61].

One can learn from Theorem 5.1 and 5.2 that for a given order n the possible values
of αni depend on the prime factor dismantling of n and thus are very irregular.
If n is a prime number, all i ≥ 2n with i 6∈ n · N are allowed: for n = 2 all i ≥ 4 with
i 6∈ 2 · N are allowed and for n = 3 all i with i ≥ 2n, i 6∈ 3 · N are allowed (and for n
= 1 all i ≥ 2 are allowed). So between two values of α1

i there is one of α2
i and two of

α3
i - this will be important in Sec. 5.4.2.

The distances ∆n
i1

= αni2 − α
n
i1

between two consecutive i2 > i1 are given below for the





Philipp M. Diesinger 5.3 Chromatin Structures

first three and for prime orders:

n = 1: α1
i = π − 2π

i
, (i ≥ 2n) ⇒ ∆1

i =
2π

i(i+ 1)

n = 2: α2
i = π − 4π

i
, (i ≥ 2n and i 6∈ 2 · N) ⇒ ∆2

i =
8π

i(i+ 2)

n = 3: α3
i = π − 6π

i
, (i ≥ 2n and i 6∈ 3 · N) ⇒ ∆3

i =
mod (i, 3) · 6π

i(i+ mod (i, 3))

n prime: αni = π − n · 2π
i

, (i ≥ 2n and i 6∈ n · N) ⇒ ∆n
i =

m · n · 2π
i(i+m)

.

with m =

{
1⇐ mod (i, n) < n− 1
2⇐ mod (i, n) = n− 1

Furthermore, this shows that ∆n
i
n→∞→ 0, because the counter is always ∼ n and the

leading term of the denominator is at least ∼ n2 (as i > 2n).

5.3.2 Three-Dimensional Chromatin Fibers

The most interesting structures of the chromatin phase diagram are the following two
cases: Solenoid like structures and fibers with crossed-linkers (cf. Sec. 2.2.2). These
cases will be discussed here in detail:

a) Solenoids

For small β � 1 and α ≈ π the chromatin fibers resemble solenoids where the linkers
themselves follow closely a helical path. This implies

(
d·a
R

)
� 1. The lowest order

approximation in
(
d·a
R

)
indicates b ≈ d

√
1 + a2 (cf. Eq. 10), α ≈ π − a2b

R(1+a2)
(cf. Eq.

11) and β ≈ π−α
a (cf. Eq. 12).

These approximations lead to geometrical features of the solenoid-like fibers: The radius
of the fiber is denoted by r, lN is the length of a fiber of N monomers, λ = N/lN is the
corresponding line density and % = λ/πr2 is the density of the fiber:

r =
b (π − α)

β2 + (π − α)2
lN =

b N β√
β2 + (π − α)2

λ =

√
β2 + (π − α)2

b β
% =

(β2 + (π − α)2)5/2

π b3 β (π − α)2
.

The vertical distance δ between two loops plays an important role in the following
sections. It can be obtained by δ ≈ l 2π

π−α
, which leads to

δ ≈

(
2π
π−α

)
b β√

β2 + (π − α)2
. (28)
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One can calculate the exact value of δ by:

δ =

2πr/a∫
t=0

m(γ(t)) · |(γ′x(t), γ′y(t))
t| dt

=
4bπ sin(α2 ) sin(β2 )

arccos
(

2 cos2(β2 ) sin2(α2 )− 1
)√

3 + cos(α) + (cos(α)− 1) cos(β)

For β � (π−α) one finds a very dense spiral (δ � r). In the opposite limit β � (π−α)
the solenoid has a very open structure (δ � r).

b) Crossed-Linker Fibers

Now consider the case β � 1 and α � π: In the previous section (Sec. 5.3.1) the
regular polygons have been discussed. For a non-vanishing value of β these regular
polymers open up in a accordion-like manner. This leads to three-dimensional fibers
with crossed linkers (cf. Fig. 42). Using β � 1 and Eq. 10, 11 and 12 one gets:

d2 =
1
4
β2(4R2 − b2)

⇒ r =
b

2 cos(α/2)

(
1− β2

4
cot2(

π − α
2

)
)

⇒ lN =
N β b

2
cot(

π − α
2

), λ =
4

α β b

⇒ % =
16

π β α b3.

Now δ follows again from δ ≈ l 2π
π−α

:

δ ≈ 1
2

(
2π

π − α

)
β b tan

(α
2

)
. (29)

For a rotational angle β close to π, say β = π − ε with ε � 1 one gets twisted zig-zag
structures (cf. Fig. 42). In this case monomer k + 1 is located nearly opposite to the
kth monomer but slightly twisted by an angle ε. Monomer k + 2 is then on the same
side as monomer k but slightly twisted by an angle 2ε and so on. The fiber lies inside
a cylinder of radius

r =
b

2
cosα2

(
1 +

(ε
2

)2
)

and the length lN is given by

lN = b sin(
α

2
)N
(

1− ε2

8
cot2(

α

2
)
)
.
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The monomers are located at the surface with the linker passing back and forth (ap-
proximately) through the middle axis of the cylinder. The monomers n, n±2, n±4, ...
and the monomers n, n± 1, n± 3, ... form a double helix that winds around the cylin-
der. Within each of these two spirals the monomers are not directly linked together,
even though monomer k and k + 2 can come quite close.

5.4 Excluded Volume Restrictions

Not all of the different chromatin structures have the same probability to occur in
real chromatin fibers (cf. Sec. 5.6). But there are even some structures which have
zero probability because they are forbidden due to excluded volume restrictions. These
forbidden areas of the chromatin phase diagram are the subject of this section.
In this numerical and analytical study hard-core potentials were used to model the
excluded volume interactions of the fibers.

In the following ΓN represents the chromatin phase space and (α, β, b, d)tN = γN ∈ ΓN
a specific chromatin structure with a length of nN NRLs. The general function η
indicates whether a point of the phase diagram belongs to the forbidden area due to
excluded volume interactions or not. So the aim of this section is to learn how ΓN looks
like.
It will turn out that there exists a border that separates the non-excluded volume
structures from forbidden from those which fulfil the excluded volume conditions. This
border is denoted by ζ and called excluded volume borderline. Furthermore, it will turn
out that ζ is a function of α.

η : ΓN → {0, 1} : γN 7→
{

1⇐ γN fulfills the excluded volume conditions
0⇐ γN does not fulfill the excluded volume conditions

ζ : [0, π]→ [0, π] : α 7→ min{β | η(γn,α,β) = 1, ∀ n > 3
(
π + αe
π − αe

)
}

The excluded volume borderline is already plotted in Fig. 42 and 43.
nmin = 3

(
2π

π−αe − 1
)

= 3
(
π+αe
π−αe

)
is given by the chromatin geometry (linker length,

octamer diameter and height, see below).
As shown in Fig. 42 the interesting part of the phase diagram for the excluded-volume
phase-transition is the lower one with β ∈ [0, 30◦]. This cut-out of the phase diagram
is shown in Fig. 45.

5.4.1 Some Basic Estimations

One can explain Fig. 45 by dividing the excluded volume interactions between the
nucleosomes in short-range and long-range interactions: There is never an excluded
volume interaction between two consecutive nucleosomes, short-range interactions occur
between nucleosome k and nucleosome k + 2, and long-range interactions are those
between nucleosomes with a larger distance than 2 (∆k > 2).
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Figure 45: Fine structure of the excluded-volume ”phase transition”. The chromatin
fibers in the upper area fulfil the excluded volume conditions, those in the light-yellow
area do not. The borderline is a function of the entry-exit angle α: ζ = ζ(α).

The short-range interaction explains the minimal value αmin for α to find at least some
structures in the allowed regime. The fiber never fulfils the excluded volume conditions
for any α < αmin (i.e. η(α) = 0 ∀α < αmin). αmin can be calculated easily by simple
trigonometry:

sin
(αmin

2

)
=

d

2b
⇒ αmin ≈ 22◦ (30)

(d is the octamer diameter and b is the linker length)

This condition excludes a vertical strip at the left side of Fig. 45 (and 42).

For small β > 0 the long-range excluded-volume interaction comes into play: For a
given α, starting with a planar, circular structure (i.e. β = 0) one has to increase β
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above ζ(α) so that neighboring loops do not interact. With Eq. 28 and β � π−α this
leads to (cf. Fig. 45)

β '
r (π − α)2

π b

α�1⇒ β '
4d
πb
≈ 28◦. (31)

These two approximations for critical values of α and β are shown in Fig. 46, too.

Another structure explanation of the excluded-volume phase-transition which even al-
lows to derive the explicit progression of ζ and does not need to distinguish between
short-range and long-range interactions is presented in the following section (Sec. 5.4.2).

5.4.2 Calculation of the Excluded Volume Borderline ζ(α)

In this section it will be shown that every peak of the excluded volume borderline
ζ corresponds to a regular polygon (cf. Sec. 5.3.1): The large peaks correspond to
polygons of order 1 and the smaller ones to order 2 and order 3 polygons. Between two
order-1-peaks there is one order-2-peak and two order-3-peaks (as was shown in Sec.
5.3.1, too).
The classification of these peaks is shown in Fig. 46: ζ has local maxima at every αni .
This is because the planar structures which belong to (αni , β = 0) need a large increase
of β to arrive in the area of the excluded volume structures, since at β = 0 nucleosome
k and k + n·2π

π−αni
are located exactly at the same position.

At first, consider only the particular α-values αni : At first order increasing β from
β = 0 to β = β̃ leads to a vertical movement ∆n

i (β̃) of the relevant nucleosomes k and
k + n·2π

π−αni
along the chromatin axis . If ∆n

i (β̃) = d ⇒ ζ(αni ) = β̃. For large α, ∆n
i (β̃)

can be calculated by Eq. 28 and one finds:

∆n
i (β̃) =

n ·
(

2π
π−αni

)
b β̃√

β̃2 + (π − αni )2
(32)

with β > 0 this leads to

β̃ni (∆n
i ) =

√√√√ (∆n
i (π − αni ))2

b2 n2
(

2π
π−αni

)2
− (∆n

i )2

(33)

and furthermore β̃ni (d) = ζ(αni ) implies

ζ(αni ) =

√√√√ d2 · (π − αni )

b2 n2
(

2π
π−αni

)2
− d2

. (34)

Fig. 47 shows the numerically determined excluded volume borderline and the theoret-
ical predictions for the maxima. As Eq. 32 shows,

∆n
i (β̃) ∼ n. (35)
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This means that planar structures at an αni of higher order need a smaller rise of β
to fulfill the excluded volume conditions, and therefore, ζ is decreasing with increasing
α. In fact, this is the reason why n is called the order of the peaks of the ζ-function.
It can be understood easily, if one considers the fact that a higher order means more
nucleosomes are located between two overlapping ones. And thus a rise of β has a
stronger effect than at lower orders.
This explains the forbidden strip at the left side of the figures as the maximum of
highest order (1, 2) with a corresponding one-dimensional structure.

Figure 46: Classification of the peaks which determine the envelope of ζ. The numbers
in the brackets are the classification of the maxima (n, i) i.e. the order n and the number
of tips i of the corresponding planar structure. Exact values can be found in App. B
(Tab. 10 - 14). The dashed lines give the rough estimations which were calculated in
Sec. 5.4.1. Adapted from [61].

Because ∆n
i (β̃) → 0 for αni → π the maxima of ζ(α) converge towards 0 for αni → π.

There are infinitely many αni for n → ∞ and the distance ∆n
i converges to zero (cf.

Sec. 5.3.1), so ζ(α) has infinitely many local maxima and minima for αni → π.
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It is clear that ζ(π) = 0 as the fiber forms a fully stretched fiber (a circle of radius
r =∞).

So far the ζ(α) is only known at the positions of the maxima α = αni . Now consider
values of α which are close to an αni , say α′ = αni ±∆α. Close means such ∆α which
lead to a shift ∆a < 2r. This leads to a slight shift ∆a of those nucleosomes which are
located at the same places namely k and k +

(
n·2π
π−α

)
.

At β = 0 this shift ∆a is orthogonal to the fiber’s axis. This time ∆n
i still denotes the

distance between the nucleosomes k and k+
(
n·2π
π−α

)
along the fiber’s axis but now they

are not located at the same spots but instead slightly shifted. Therefore, their distance
∆ is no longer equal to their distance ∆n

i along the axis when increasing β.
In this case increasing β still leads to a movement along the vertical axis of the fiber but
now the distance ∆ of nucleosome k and k +

(
n·2π
π−α

)
increases like ∆2 ≈ ∆a2 + (∆n

i )2.
The fiber fulfils the excluded volume conditions when ∆ = 2r which means

∆n
i =

√
4r2 −∆a2 < 2r.

So the critical value of ∆n
i , which has to be achieved to fulfil excluded volume decreases

with increasing ∆a.
Therefore, ζ(α) has always a local maximum at αni : ζ(αni ±∆α) < ζ(αni ).

To calculate ∆ai,n(∆α) imagine a planar structure of j nucleosomes with an entry-exit-
angle α′ = αni ±∆α of two consecutive octamers. The locations of these nucleosomes
are denoted by p0, p1, p2, ..., pj−1 ∈ R3. Without loss of generality one can assume

p0 =

0
0
0

 , p1 =

b cos(α
′

2 )
b sin(α

′

2 )
0

 and

∀k ≥ 2 : pk = pk−1 +R · (pk−1 − pk−2)

with R := Rzπ−α′ =

 cos(π − α′) sin(π − α′) 0
− sin(π − α′) cos(π − α′) 0

0 0 1


the rotational matrix along the z-axis. This leads to

pk =
k−1∑
m=0

Rm · p1 ∀ k > 0.

Now, ∆ai,n is given by ∆ai,n = ‖pk=i‖ which leads to

∆ai,n =

∥∥∥∥∥
i∑

m=1

Rm−1 · p1

∥∥∥∥∥ (36)

(wereR and p1 depend on i, n and ∆α). Now one can use Eq. 33 to calculate ζ around
the maximal values αni :
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n ·
(

2π
π−α′

)
b ζ(α′)√

ζ(α′)2 + (π − α′)2

!=
√

4r2 −∆a2

ζ>0⇒ ζ(α′ = αni ±∆α) =

√√√√√√√√
(4r2 − ‖

i∑
m=1
Rm−1 · p1 ‖2)(π − α′)2

b2 n2
(

2π
π−α′

)2
− 4r2 + ‖

i∑
m=1
Rm−1 · p1 ‖2

(37)

Similar to the case of large α one can find equations for ζ of small α: Eq. 29 leads to

∆n
i (β̃) =

1
2
n

(
2π

π − α′

)
β̃ b tan(

α′

2
)

with α′ = αni ±∆α. Now again ζ(α′) follows from β̃(∆n
i =

√
4r2 −∆a2

i,n) = ζ(α′):

⇒ ζ(α′ = αni ±∆α) =
cot(α

′

2 )

n
(

2π
π−α′

)
· b

√√√√4r2 − ‖
i∑

m=1

Rm−1 · p1 ‖2 (38)

|∆α| < c fulfiling ∆a(c) = 2r gives the interval of the allowed α-values: α′ ∈ [αni −
c, αni + c] for a certain peak (n,i).

The predictions of Eq. 37 and 38 are shown in Fig. 47 together with simulation results.

In these simulations regular chromatin fibers with given model parameters were gen-
erated and then it was decided, whether or not the excluded volume conditions were
violated. Thus one gets results for the excluded volume borderline which are indepen-
dent of the approximations that have been made during the analytical calculations of
the borderline.

So the numerical results are more accurate than the analytical ones but the analytically
achieved results supply a profound understanding of the excluded volume borderline.

One can see in Fig. 47 that the numerically obtained exact curve is in good agreement
with the analytically calculated one, although some approximations had to be made.
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Figure 47: These two figures show the calculated theoretical prediction (dashed red
line) and the simulation result (blue line) for the excluded volume borderline ζ(α).
The first figure shows the behavior of ζ for small α up to 140◦ according Eq. 38. The
second one shows the behavior of ζ(α) for α values larger than 140◦ according to Eq. 37.
The nice agreement of the prediction and the numerical result shows that the assumed
estimations lead to suitable expressions for ζ(α). Adapted from [61].
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5.4.3 Remarks

The numerical results and the analytical prediction do not match perfectly (cf. Fig. 47).
Some of the reasons for this are explained in this section supplemented with further
remarks.

a) The Effective Entry-Exit Angle αe
The effective entry-exit angle αe is the projection of α onto a plane which is orthogonal
to the axis of the master solenoid (cf. Sec. 4.3.3). It decreases with increasing twist
angle β because the length of the fiber increases with increasing β.
αe is important for the calculation of the number of linkers which form a closed loop:

Nl :=
2π

π − αe
is the number of multiples of αe to get a full loop (i.e. 2π). If 2π

π−αe is an integer this
will be equal to the number of linkers which corresponds to a full loop. If it is not an
integer number, then the fractional part will give the fraction of π − αe which is miss-
ing for a full loop but the entry-exit angle is fixed here and it is assumed that Nl = 2π

π−αe .

In the calculations above the assumption αe = α = const. was made because only small
β were considered. αe will be calculated as a function of α and β below. It converges
towards 0 for β → π and is shown in Fig. 48 for different values of α and β.
To calculate αe consider three consecutive nucleosome locations within a given fiber:
n0, n1 and n2 ∈ R3. Without loss of generality one can assume: n0 = p0, n1 = p1 + p0

and n2 = p2 + p1 + p0 were the pi are the following linker vectors:

p0 =

0
0
0

 , p1 =

√b2 − d2

0
d

 and p2 =

x2

y2

d

 .

This means that the z-axis of the coordinate system is the axis of the fiber (d is given
by Eq. 15 and b is the linker length). Now ‖p2‖ = b gives

y2 =
√
b2 − d2 − x2

2

and x2 can be calculated by using

cos(α) =
〈−p1 | p2〉

b2

⇒ x2 = −b
2 cos(α) + d2

√
b2 − d2
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with d =
b sin

(
β
2

)
√

csc2
(
α
2

)
− cos2

(
β
2

) this leads to

y2 =

√
b2 − d2 − (b2 cos(α) + d2)2

b2 − d2

d=

√
b2 cos2

(
β

2

)
sin2(α)

and now αe follows from the projection onto the x-y-plane:

sin(αe)
2

=

√
(x1 + x2)2 + y2

2

2
√
x2

2 + y2
2

⇒ sin
(αe

2

)
=

√√√√cos
(
β
2

)
sin2

(
α
2

)
2(1 + cos(α))

. (39)

As Eq. 39 shows αe decreases with increasing β. Therefore, Nl decreases, too: If
αe → 0 then Nl(α, β) = 2π

π−αe(α,β) → 2. So all fibers with high values of beta need only
approximately 2 nucleosomes for a complete loop. This is confirmed by Fig. 42 and 43.
Since αe was assumed to be constant, Nl was also constant in the calculations above.
This is a suitable approximation for small β. For larger β the assumed values of Nl

were a bit too large, and therefore, the calculated values of ζ were a bit too small but
this effect is small compared to the other estimations which were made above. The
error of ζ, due to the assumption that Nl is constant, increases with increasing β.

One way to increase the accuracy in the calculations above would be to replace the term
2π
π−α′ by 2π

π−αe(α′,β) , and furthermore, one should use Eq. 15 to derive exact equations in
order to replace Eq. 28 and 29. But this can only be done by using numerical methods.
Moreover, Fig. 47 shows that the assumed approximations lead to useful equations
which describe ζ in a suitable way.

b) The Torsion of the Fiber

Another effect which has been neglected, but not mentioned explicitly before, is the
fact that with increasing β the fiber’s torsion τ increases, too. This can be seen easily
by considering the fact that Nl decreases with increasing β.
Therefore, all the maxima of ζ(α) are slightly shifted to larger values of α = αni + ε:
It was assumed that increasing β leads only to a vertical movement of overlapping
nucleosomes but in fact there is a horizontal one, too. Together both induce the torsion
of the fiber.
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Figure 48: The effective entry-exit angle αe depends on α and β as shown in the left
figure. The values of α = αe(α, β = 0) can be seen at the left side of the figure.
Because αe depends on α and β the number of linkers forming a closed loop Nl shows
this dependence, too. It is shown in the right figure as a double-log-plot. The red
numbers give α in degrees - increasing from 10◦ to 180◦ by steps of 10◦. Adapted from
[61].

The horizontal movement of the overlapping nucleosomes k and k+ n·2π
π−αni

implies a shift
along the rotation direction of the fiber. Therefore, at the points αni −∆α increasing
β moves the nucleosomes vertically and horizontally away from each other, and their
distance is increased even more than predicted by the calculation.
This leads to an earlier stepping across the excluded volume borderline i.e. ζ should be
decreased.
Otherwise such α′ that are a bit larger than αni have a lower ∆a because increasing β
causes a vertical movement of the overlapping nucleosomes away from each other but
a horizontal one towards each other. This effect should increase with the order n of
the maxima and with α because the larger the number of nucleosomes between two
overlapping ones the stronger the effects which are caused by a rise of β.
So altogether the increase of β rises the torsion τ of the fiber and therefore the maxima
of ζ(α) should be shifted slightly towards higher values of α. But unfortunately the
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simulation results do not show this effect. The 60◦-peak is even shifted towards lower
α.

c) Fractal Dimension of ζ(α)

One can try to use a box counting algorithm to determine the Haussdorff-dimension of
ζ(α). This results in a dimension of one i.e. one finds no fractal dimension at all. The
reason for this is that ζ(α) might show self-similarity only for α → π and these states
are very hard to sample (cf. next issue).

From the theoretical point of view there could be a critical value of α so that from
this point onwards (i.e. α > αcrit) only peaks with the same orders n ∈ {1, .., nmax}
occur. The reason for this is, that the higher order peaks might be covered completely
by the lower order peaks. If this was the case, the excluded volume would indeed be
self-similar and should have a fractal dimension larger than one.

d) Numerical Restrictions

The simulation time τs for chromatin fibers with large α values goes to infinity for
α→ π since the amount of linkers which form a whole loop converges towards infinity.
But to decide whether or not a chromatin fiber violates the excluded volume conditions
or to calculate reasonable physical properties of the chromatin fiber it is necessary to
generate fibers with multiple complete loops. Because of limited simulation time only
fibers up to α = 179.5◦ were generated.

5.4.4 Influence of Cylindrically Shaped Nucleosomes and Pitch

In this section the influence of the cylindrical (instead of spherical) excluded volume
of the nucleosomes and a non-vanishing orthogonal distance between in- and outgoing
DNA strand on the phase diagram of chromatin are determined. Both of these param-
eters have been neglected in chromatin research so far [62; 184].

In order to do so, simulations [24] of regular chromatin fibers have been made and it
was checked, whether they fulfil the excluded volume conditions or not. The results
were plotted in a Ramachandran-like diagram again (cf. Fig. 49) to find out which
states of the whole phase diagram are forbidden by excluded volume interactions and
which are not.
The fibers that have been simulated were regular again, i.e. all linker lengths, entry-
exit-angles, rotational angles and pitches were fixed. The cylinders had a height of
16.8〈bp〉, and a diameter of 33.0〈bp〉 according to [233].
They were orientated by using the vectors pi (cf. Sec. 4). Moreover, a DNA diameter of
6.6〈bp〉, a twist length of 10.2〈bp〉, a mean linker length of 63〈bp〉 and that 1.65 turns
of DNA are wrapped around the histone octameres (cf. Tab. 1) was assumed.
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The colored lines in Fig. 49 represent the phase transition between allowed and forbid-
den states for different pitches d. All states below the corresponding line are forbidden,
those above it are allowed.
One can interpret Fig. 49 as many cuts through the actually four-dimensional phase
diagram which have been piled. The states near the excluded volume borderline are
the most interesting of the phase diagram since they are the most compact ones (cf.
Sec. 5.5). Therefore, the gaps in the borderline might be used by the fiber to become
(at least locally) very dense.
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Figure 49: Cut-out of the chromatin phase diagram (for different d). The states
below the corresponding lines are forbidden due to excluded volume interactions. With
increasing d more and more states become accessible to the fiber.

There is another borderline at the left side of the diagram which prevents α from
getting smaller than some minimal value αmin(d) that depends on the pitch d. This
”arrow-like” structure can be seen best in Fig. 57, 58 and 60. It shifts towards larger
αmin(d) with increasing d.
The gap in this line is a further consequence of the cylindrical excluded volume and
can not be seen in the phase diagram for spherical nucleosomes [62] (cf. Fig. 42 and
Fig. 45). It will be discussed in Sec. 5.5.2.
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Fibers with a small entry-exit angle α and β � π resemble zig-zag-structures. Those
with large entry-exit angles and β ≈ π look like solenoids. A comprehensive discussion
of the different structures of the phase diagram can be found in [62; 184] or Sec. 5.3
and Sec. 5.5. Here only the changes due to cylindrical (instead of spherical) excluded
volume are addressed.

As a consequence of the cylindrical instead of spherical excluded volume of the nucle-
osomes the shape of the peaks in the phase diagram is changed: Their top shows a
wedge-like shape due to the edges of the cylinders. With increasing entry-exit-angle α
there is more space between the nucleosomes which leads to a larger variety of allowed
rotational angles β and thus to the missing tip at the top of the peaks. This effect gets
weaker with increasing d: The edges which cut the peaks become more parallel to the
α-axis.

With increasing orthogonal distance between in- and outgoing DNA strand there is also
more space between consecutive nucleosomes which leads to a decrease of the borderline.
More and more states become accessible and with d = 5.5〈bp〉 the borderline almost
vanishes.
The natural mean value of d is approximately d = 2.8nm = 8.4〈bp〉 due to 1.65 turns
of DNA with a diameter of 2.2nm. One can see from Fig. 49 that the excluded volume
borderline seems to play a role only for lower pitches.
Lower d-values might occur where the DNA has less turns around the histone complex
and, more importantly, when the DNA linkers bend slightly. It has been shown that
nucleosomes tend to stack on top of each other which would lead to such a bending of
the linkers.
During the simulations all DNA linkers were straight. In real chromatin fibers (espe-
cially with attractive nucleosome-nucleosome interaction) the linkers have the oppor-
tunity to bend slightly and thus there probably remain some forbidden regions in the
phase diagram, although d is large. The persistence length of blank DNA is about 50nm.

Nevertheless, the simulations show that for straight linkers the excluded borderline will
vanish almost completely, if d approaches realistic values.

5.5 Chromatin Density and Fiber Accessibility in the Phase Diagram

The problem of DNA-folding was explained in Sec. 2: Inactive chromatin should be
packed as densely as possible because of the very large ratio of DNA length to nucleus
size. But obviously on the other hand the DNA has to be locally accessible for gene
transcription. This optimization problem of simultaneously high compaction and high
local accessibility will be discussed in this section with respect to the chromatin phase
diagram.
First, chromatin structures without pitch (d = 0) and with spherical excluded volume
of the nucleosomes will be considered (cf. Sec. 5.5.1) and afterwards the cylindrically
shaped nucleosomes and different pitches will be factored in (cf. Sec. 5.5.2).
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Figure 50: The nucleosome density %(α, β) increases towards the excluded volume
phase transition which is projected onto the density surface (black line). The density
diverges for large α, too, because the radius of the corresponding cylinder converges
towards 0, so this is an artefact of the simulation without further physical meaning.
There is a cutoff for %(α, β) at 1.31·10−4 bp−3 ≈ 35.4·10−4nm−3 which is the maximum
the density achieves within the excluded volume restrictions. But this point of the phase
diagram is energetically very unfavorable (cf. Fig. 54). Adapted from [61].

5.5.1 Spherical Nucleosomes without Pitch

In this section chromatin fibers with spherical excluded volume potential for the nu-
cleosomes and no pitch d will be considered. First, the nucleosome density and the
nucleosome line density are investigated. The latter one can be measured experimen-
tally. Then the accessability of the fibers is defined and examined.
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a) Nucleosome Density and Nucleosome Line Density

The nucleosome density and the line density of the nucleosomes can be used as a
measure for the compaction of a 30nm fiber. The basic volume for the 3D-density is a
cylinder: Its radius was numerically minimized with the restriction that all nucleosomes
have to fit into its interior. The results can be seen in Fig. 50: As expected the
nucleosome density achieves its maximal values in the gaps of the excluded volume
borderline ζ(α).

Figure 51: The chromatin line density λ: it diverges for α → 0 because the length of
the fiber’s axis converges towards zero. λ increases with increasing gap number. There
is a cutoff of λ(α, β) at its maximum value within the excluded volume restrictions. The
black line is the projection of the excluded volume borderline ζ(α) onto the line-density
surface. Adapted from [61].
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With Eq. 13 and 15 one can give an analytical expression for the 3D-density:

%(α, β) =
N

πR2 · LN
=

4
√

csc2(α2 )− cos2(β2 )
(

1− sin2(α2 ) cos2(β2 )
)

πb3 sin(β2 ) cos2(α2 )
. (40)

Note that the nucleosome density is proportionally to the inverse of the cube of the
linker length: % ∝ b−3.

Figure 52: The mean Average Crossing Number (mACN) of different chromatin struc-
tures. The black line is again the projection of the excluded volume borderline ζ(α)
onto the ACN-surface. To calculate the average crossing number at a certain point
(α, β) 1000 randomly chosen planes were used. But although this number of projec-
tions is quite high, the ACN still shows some fluctuations. Nevertheless, it also shows
where the interesting dense fibers are located within the phase diagram. There is a
cutoff along the z-axis at 700. Adapted from [61].

In order to understand the singularities of the density it is necessary to discuss the
behavior of the cylindrical volume v = πr2Nd of the fiber: All structures of either
α = 0 or β = 0 are planar, and therefore, possible singularities in the 3D-density.
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For β = 0 the distance d between two consecutive nucleosomes along the chromatin
axis is dβ=0 = 0 (this can be seen easily from Eq. 15). As csc(α) → ∞ for α → 0 it

follows that d α→0→ 0 and β ∈ [0, π] . For α = π Eq. 15 gives

dα=π =
b · sin(β2 )√
1− cos2(β2 )

= b.

Furthermore, β = π implies dβ=π = b · sin(α2 ). For β = 0 the radius r of the corre-
sponding spiral structure is given by

rβ=0 =
b

2
·

cos(α2 )
1− sin2(α2 )

=
b

2
· csc

(α
2

)
α→π→ ∞.

If α = 0, it will follow from Eq. 13 that rα=0 = b
2 . For α = π the radius is

rα=π = 0 (r(α, β) is not continuous at (π, 0)) and for β = π the corresponding ra-
dius is rβ=π = b

2 · cos(α2 ).

For small α the 3D-density % = N
v goes towards infinity for β → 0 because d→ 0. With

β = 0 and increasing α, r converges towards infinity but d = 0. If α and β are large,
the density will diverge because d ≈ b and r ≈ 0.
This is a problem of the chosen basic volume model which is assumed for the fiber and
has no further physical meaning. One can see that the most dense fibers are achieved
at the border of the excluded volume phase transition, for instance at α ≈ 30◦ (gap
#1), α ≈ 45◦ (gap #2) and α ≈ 75◦ (gap #3).
The depth of these gaps is increased by the projection onto the density surface. The
maxima of % within the first five gaps are given in Tab. 3.

gap # %max [10−4 bp−3] %max [10−4 nm−3] αmax [◦] gap width ∆α [◦]
1 1.1280 30.4560 23 11
2 1.1180 30.1860 43 7
3 1.0726 28.9602 73 12
4 1.1999 32.3973 97 8
5 1.2580 33.9660 113 5

Table 3: Maximal densities in the first five gaps of the excluded volume borderline.

The line density λ is the number of nucleosomes of a certain fiber length l divided by
the length of the corresponding fiber axis: λ = Nl

Dl
= % · πR2 = 1

d . With Eq. 15 this
gives:

λ =
1
b
·

(
csc
(
β

2

)√
csc2

(α
2

)
− cos2

(
β

2

) )
.

The results for the line density are shown in Fig. 51. One can see that the line density
increases within the excluded volume gaps with increasing α. Furthermore, λ does not
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diverge for large α and β like the 3D-density which shows that the divergence of % is
an effect due to the vanishing cylindrical volume V of the fiber (i.e. an artefact of the
density definition). The line density of the nucleosomes diverges for β towards zero
because the length of the fiber’s axis goes to zero, too.

Figure 53: The accessibility of the different chromatin structures. The black line gives
the excluded volume borderline. One can see that the fiber accessability achieves its
maximum within the allowed surface at the first and the last gaps in the borderline.
Adapted from [61].

The critical values of λ for the gaps of the excluded volume borderline can be found in
Tab. 4.
The mean Average Crossing Number (mACN) (cf. Sec. ??) is a measure for the entan-
glement and for the density of a polymer chain as well. Here the mACN is used as
another measure for the compactness of the chromatin structures. It brings in some
advantages in opposite to the ordinary 3D-density but some disadvantages, too: At
first no basic volume is needed like the cylindrical volume for the 3D-density. But the
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gap # λmax [bp−1] λmax [nm−1] αmax [◦] gap width ∆α [◦]
1 0.3674 1.081 23 10
2 0.4007 1.179 43 7
3 0.5472 1.609 81 13
4 0.8200 2.412 97 7
5 1.2240 3.600 113 5

Table 4: Maximal line densities in the first five gaps of the excluded volume borderline.

average crossing number is a statistical variable which has statistical fluctuations when
calculated numerically.
The average crossing number of chromatin chains is shown in Fig. 52. All chains have
a fixed length of 100 NRLs. This lowers the ACN of fibers with large α-values because
no complete loops are achieved with only 100 linkers. To calculate the average crossing
number at a certain point (α, β) 1000 projections were used. But although this number
of projections is quite high the ACN still shows some fluctuations. Nevertheless, it also
shows where the interesting dense fibers are located within the phase diagram.

b) DNA Accessibility
As a measure of the local fiber accessibility ã := − dλ

dα can be used. It shows how
strong the line density λ changes with increasing entry-exit angle α. This is important
because the DNA has to be locally accessible for purposes of gene transcription. This
local access can for instance be provided by a change of the ionic environment of the
DNA because this changes the screening length of the Coulomb repulsion and thus α.
The accessability can analytically be calculated by using the equations above:

ã(α, β) =
(

1
2b

)
cot(α2 ) csc2(α2 ) csc(β2 )√

csc2(α2 )− cos2(β2 )
. (41)

Fig. 53 shows ã over the whole chromatin phase diagram. One can see that the high-
est accessability values in the allowed surface are achieved for small and large values
of α and small β. With increasing α the distance of two nucleosomes k and k + 2
increases. Therefore, the line density is increased by increasing the number of linkers
which form a loop but the vertical distance d between two consecutive nucleosomes is
only weakly dependent on a change of α. Nevertheless, the vertical distance between
two nucleosomes in direction of the fiber axis increases with α as well. It is given by

dvert = Nl · d ≈
2πd
π − αe

=
2πb sin(β2 )√

csc2(α2 )− cos2(β2 )

(
π − 2 arcsin

(√
cos(β2 ) sin2(α2 )

2(1+cos(α))

))
.
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It is interesting to see that the nucleosome density and the accessability are maximized
at the same region within the allowed region of the phase diagram.

It is important to mention that the 3D density and the line density of the fiber can not
only be changed by changing α or β but also by changing the linker length b (in multi-
ples of 10 bp). A variation in b changes the location of the areas of the phase diagram
with the highest accessability and densities. Fibers with smaller values of b can achieve
higher 3D densities but have a smaller maximal line density and accessability. From
this one might infer that active cells should have larger nucleosome repeat lengths in
order to maximize the accessability to their genetic material (cf. [216] for a table of
nucleosome repeat lengths in different organisms).

Figure 54: The total energy ε of a single chromatin repeat unit. The dashed line gives
the excluded volume phase transition and the black lines are the projections of the
equipotential lines. Adapted from [61].

b) NRL Energy
In Sec. 4.6 the Coulomb repulsion of the DNA linkers as well as interaction potentials
for the nucleosomes have been introduced. Therefore, one can examine the total energy
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ε of a chromatin repeat unit (NRL), i.e. the Coulomb repulsion and the nucleosome-
nucleosome interaction.

The results of chromatin simulations with these interactions are shown in Fig. 54.

One can see that the Coulomb repulsion of the linkers is very high within the gaps
of the excluded volume borderline. The repulsion also diverges for the crossed linker
fibers when β becomes too small. So the optimal regions in the phase diagram for line
density and accessability have a very high Coulomb repulsion, too.

Furthermore, a small potential well occurs along the excluded volume borderline which
can be seen best in Fig. 179. Its shape resembles strongly the excluded volume border-
line.

Further figures can be found in App. A. The single energy distribution in the case of
solely Coulomb repulsions is shown in Fig. 176 and the nucleosome-nucleosome inter-
action is illustrated in Fig. 177. Furthermore, Fig. 178 provides a top view of the total
energy per nucleosome repeat length (NRL) and Fig. 179 shows some cuts through the
energy landscape to make the described potential well more visible.

Figure 55: Chromatin line density λ for cylindrical nucleosomes with a pitch d of 6bp
(i.e. 2nm). The line densities along the excluded volume borderline coincident with
experimental values [34].
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Figure 56: The line density of the nucleosomes within a regular chromatin fiber is large
for small βi. However, the comparison with the phase diagram shows that some of
these states are forbidden due to excluded volume interactions. As one can see the line
density decreases with increasing pitch d.

5.5.2 Cylindrical Nucleosomes with Pitch

In this section the influence of cylindrically shaped nucleosomes as well as a non-
vanishing pitch d between in and outgoing DNA linker will be investigated.
The line density (cf. Fig. 55 and Fig. 56), the radius of gyration (cf. Fig. 57 and Fig.
58) and the mean end-to-end distance (cf. Fig. 59 and Fig. 60) of regular chromatin
structures will be investigated along the phase diagram. The line density is historically
defined as the number of nucleosomes along a 11nm stretch of the chromatin fiber. The
mean radius of gyration Rg as well as the mean end-to-end distance are measures for
the spatial extension of the chromatin structures (cf. Sec. 1.2.2). The simulated regular
chromatin fibers had a total length of 500 NRLs.

Again the most compact states can be found near the excluded volume borderline (cf.
Fig. 56). Furthermore, the line densities which were found in the simulations coincide
with experimental values [34]. The line densities at the peaks of the borderline are
approximately twice the densities in the gaps. The fiber might use these gaps to
compact parts of itself. To do so core histone modifications or changes of the entry-exit
angle by changes of the salt concentration might play a role.
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Figure 57: The mean radius of gyration Rg along the chromatin phase diagram. Rg is
a measure for the spatial extension of the chromatin fibers. The arrow-like structure
at the left side (i.e. small α) is a consequence of the cylindrical excluded volume of the
nucleosomes. For the simulations chains with a length of 500 NRLs were used.

Increasing the pitch d decreases the line density (cf. Fig. 56), whereas the mean radius
of gyration and the mean end-to-end distance increase (cf. Fig. 56 and Fig. 60).

The borderline at the left side (i.e. small α) of Fig. 57, 58 and 60 that separates allowed
from forbidden states due to excluded volume interactions has another shape compared
to the previous results for spherical nucleosomes without pitch (Fig. 42).

Previously, there was a cut-off angle αmin such that for all α < αmin no allowed
chromatin structure could be generated. At large this barrier remains but its shape
changed: Now there is a arrow-like gap in this part of the excluded volume borderline.
The gap in this line is a further consequence of the cylindrical excluded volume: If
one increases β at α = αmin, at some point consecutive cylinders will find orientations
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where they do not touch each other any more. The most favorable β value is β = 90◦

because then nucleosomes turned by 90◦ alternate and thus give their neighbors as
much free space as possible. This is also the reason why the gap is symmetric with
respect to β = 90◦.
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Figure 58: The radius of gyration of regular chromatin fibers along a cut-out of the
phase diagram with fixed fiber length of N=500 segments. The compaction of the fibers
decreases strongly with increasing d.
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Figure 59: The end-to-end distance R of regular chromatin fibers along a cut-out of
the phase diagram with fixed fiber length (N=500 segments) and fixed d=0.0〈bp〉. The
solid black line represents the corresponding phase transition.
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Figure 60: The mean end-to-end distance R is another measure for the spatial extension
of the chromatin fibers. It increases with increasing pitch d. The arrow-like shape of
the equipotential lines at the left side of the diagram comes again from the cylindrically
shaped nucleosomes.

5.6 Distribution of Non-Regular Chromatin Structures

In this chapter (Sec. 5) only perfectly regular chromatin fibers have been investigated.
These regular fibers are very artificial and unfavorably from the entropic point of view.
Nevertheless, they allow a first investigation of the different chromatin structures with
respect to fiber features like densities, accessability, excluded volume interactions or
topology.

In the next section (Sec. 6) the local chromatin fiber parameters αi, βi, di and bi will
no longer be fixed. Instead, parameter distributions will be derived for them from
experimental data [228]. Thus one gets equilibrated chromatin fibers. These fibers
do not have a single fixed topology any more. Instead, they show a distribution of
different chromatin structures. If one generates such an equilibrated chromatin fiber
with fluctuations, cuts it into small pieces and then marks the structure of every piece
in the phase diagram, one will get a structure distribution as illustrated in Fig. 61.
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Figure 61: In Sec. 5 only regular chromatin fibers were considered. If one generates
equilibrated fibers (cf. Sec. 6) that have local parameter fluctuations, one will get a
distribution of different chromatin structures. This is illustrated by the red dots in this
diagram.
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 Modelling Chromatin II - Flexibility and Depletion Effects

6.1 Overview

So far, only regular chromatin fibers have been considered (cf. Sec. 4 and Sec. 5),
although it was already explained (in Sec. 4.5) how flexible fibers in principle could be
generated with the knowledge of the right parameter distributions.
In this chapter the chromatin model will be developed further: The local parameter
distributions will be obtained from experimental data and put in the chromatin model
to generate flexible fibers i.e. chromatin fibers with local fluctuations (cf. Sec. 6.3).
Furthermore, another important feature of the chromatin fiber, namely histone deple-
tion, will be taken into account.

There are two kinds of depletion effects that have a strong impact on the chromatin
fiber: Linker histone skips (cf. Sec. 6.2) and nucleosomes skips (cf. Sec. 6.4). The
linker histones are in a dynamic equilibrium with the surrounding fluid. Therefore, the
model should be able to simulate nucleosomes with missing linker histones (i.e. histone
H1/H5).

Nucleosome skips are ”defects” in the chromatin fiber where a whole nucleosome and
not only a linker histone is missing. Therefore, they leave just a long blank stretch of
DNA. Nucleosome skips will be implemented into the E2A model as well.
Finally, some first results for the flexible chromatin fibers with and without depletion
effects are presented (cf. Sec. 6.5) and some of the new E2A model conformations are
compared with electron micrographs (cf. Sec. 6.5.3).

The main parts of this chapter have already been published [64; 65].

6.2 Linker Histone Depletion

The histone H1 (and the variant histone H5 with similar structure and functions) is
involved in the packing of the beads on a string structure into the 30nm chromatin
structure (cf. Sec. 2). To do so it sits in front of the nucleosome keeping in place the
DNA which is wrapped around the histone octamer (cf. Fig. 38) and thus stabilizes the
chromatin fiber. Therefore, the degree of chromatin compaction depends on the pres-
ence of linker histones [19] (as well as on the salt concentration [211]) and H1 depletion
can cause dramatic alterations in the chromatin structure [77].

Linker histones have the ability to dissolve and to be taken up by chromatin fibers
again. This is probably happening all the time somewhere in the genome. Furthermore,
other processes in the cell nucleus like transcription can remove linker histones as
well. Therefore, a dynamic equilibrium between free and bound linker histones exists
(although this equilibrium could be near saturation). This means there could be a
linker histone skip rate which is constant over a large period of time but locally the
linker histones fluctuate to some extent.
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Figure 62: An example conformation of a short chromatin fiber with a missing linker
histone. The upper strand and the strand below the defect are regular, i.e. the local fiber
parameters are fixed. Please note that the fiber is very open to make the visualization
clear. The fiber parameters of the conformation in this figure do not correspond to the
values mentioned in Sec. 6.2.1.
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6.2.1 Simulation of Linker Histone Skips

In this section it will be described how the linker histone skips are included in the
Monte Carlo model.

Figure 63: Chromatin fibers with different linker histone skip probabilities p. At
p = 0.30 the regular structure of the 30nm strand is almost completely collapsed.

Again the two-angle-model was used with some fixed parameters (cf. Tab. 1) which re-
flect the probable mean values within the cell. For the simulations the entry-exit-angles
αi were fixed to 40 degrees, the rotational angles βi to 36 degrees and hi = 7〈bp〉. The
only interaction potential is the hard core excluded volume. In this mean field-like
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approach [48] thermal fluctuations are neglected to concentrate on the interaction be-
tween H1 defects and volume exclusion.

For a certain nucleosome position Ni the skip probability (or sometimes ”defect prob-
ability”) p gives the chance of a missing linker histone. If the histone is missing, the
in- and outgoing DNA strand will no longer be fixed in front of the nucleosome but
instead are arbitrary with respect to the excluded volume interactions of the chromatin
strand. In that case the remaining two DNA linkers are pivoted into their new position.
A example conformation of a short chromatin fiber with one linker histone skip in its
middle is shown in Fig. 62.

Three further chromatin fiber conformations with a fixed linker histone skip rate can
be found in Fig. 63. As one can see the formerly stiff fibers collapse already when the
skip rate reaches 30%.
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Figure 64: The mean end-to-end distance for chromatin fibers with H1 defects. With
increasing defect probability p the length of the fibers decreases rapidly. H1 defects
might play a crucial role for chromatin compaction.

6.2.2 Chromatin Fibers with Linker Histone Skips

As described above one can generate chromatin strands with linker histone skips. Thus
one can examine fiber properties (cf. Sec. 1) like the the mean end-to-end distance (cf.





6.2 Linker Histone Depletion Philipp M. Diesinger

Fig. 64) and the mean radius of gyration (cf. Fig. 65) for fibers with various defect
probabilities: p = 0.00, p = 0.01, p = 0.05, p = 0.10 and p = 0.30. One can clearly see
that even very small defect rates of some percent have a huge effect on the compaction
of chromatin: Both, the mean squared radius of gyration and the mean end-to-end
distance will decrease rapidly, if one allows only a few H1 skips.
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Figure 65: Squared radius of gyration for chromatin fibers with different H1 skip
probabilities p. With increasing number of H1 defects the fiber becomes much more
compact which could be an important mechanism to compact the chromatin fiber. All
skip probability distributions which have been used for these fibers were uniform.

Without H1 defects (p = 0) one gets a regular (i.e. stiff) chromatin fiber within the re-
striction of the extended two-angle model. This ideal fiber reflects the properties of the
30nm strand only on small length scales. Therefore, the increase of the compaction due
to defects will probably be not as strong as implicated by these results. Nevertheless,
missing H1 histones might contribute to chromatin compaction and DNA accessibility
for transcription purposes at the same time since one can see from Fig. 63 that although
the fiber gets more compact, some very open parts appear. One can also see here the
increasing disorder with increasing skip probability p. Fig. 63 shows visual similarities
with EC-M images (for instance Figures 1 and 2 in [19]) which show typical chromatin
confirmations. This might among others come from H1 defects in the fiber.

So far, only uniform linker histone skip distributions along the chromatin fiber have
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been considered. Fig. 66 shows the behavior of the squared radius of gyration in depen-
dence on the fiber length for different defect probability distributions. The probability
density functions range from a Gaussian peak in the middle of the fiber to a uniform
pdf along the whole chromatin strand (cf. inset Fig. 66 or for a larger version Fig. 180
in App. A). Nevertheless, the effect on the squared radius of gyration is small.

Missing H1 histones might supply a further contribution (cf. Sec. 5) to the compaction
of the fiber. These H1 defects might play a crucial role in the task of chromatin
compaction and at the same time serve the transcription of the DNA by opening locally
the chromatin fiber. Taking fluctuations of the basic model parameters into account
the end-to-end distance and the radius of gyration will not decrease that strongly any
more with increasing defect probability (cf. Sec. 6.3). But nevertheless, it is plausible
that H1 defects play a role in chromatin compaction.
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Figure 66: Squared radius of gyration for different linker histone skip probability
distributions ρ and different fiber lengths. The pdfs range from a Gaussian peak in
the middle of the chromatin fiber to a uniform defect probability distribution along
the whole fiber (cf. inset). The corresponding squared radius of gyration is rather
independent of the defect distribution. A larger version of the inset can be found in
App. A Fig. 180.
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6.3 Parameter Distributions

The chromatin fibers in the first chapters of this work (cf. Sec. 4 and Sec. 5) were
regular, i.e. there were no distributions for the local fiber parameters. On a small
length scale these stiff chromatin fibers represent a mean-field approach to the actual
chromatin fiber.
The nucleosome-nucleosome as well as the nucleosome-DNA interactions are highly
complex and still an area of current research. The problem of avoiding these potentials
was solved by using experimental data [228] for the distribution of the nucleosome re-
peat length (cf. Sec. 6.3.1) and taking advantage of the fact that the local chromatin
parameters are not independent. In that case it is possible to partially invert the con-
volution of the probability distributions (which is given by the experimental data) and
thus get information about the individual distributions of our model parameters (cf.
Sec. 6.3.2).

Making use of given parameter distributions for the model parameters gives us the ad-
vantage of saving computation time that would otherwise be spent for the equilibration
of the fibers. The saved computation time can then be used to generate very large
fibers up to 104 NRLs (i.e. chromatin fibers of the order of magnitude of Mbp). This
is the tenfold of comparable chromatin models [201].
Of course, excluded volume potentials for the DNA and the nucleosomes are still taken
into account: The DNA has a tube-like shape and the nucleosomes have the excluded
volume of flat cylinders.

6.3.1 Nucleosome Repeat Length Distribution

In [228] a large number of measurements of nucleosome repeat lengths were analyzed
and found to exhibit preferential quantization to a set of values related by integral
multiples of the helical twist of DNA. This implies that the nucleosomal DNA content is
preferentially quantized which in turn implies that linker DNA lengths are preferentially
quantized.
This study confirms and extends previous observations in the literature [111; 135; 136;
206] that had suggested but not firmly established that linker lengths might be quan-
tized. The quantization of repeat lengths applies even for very long repeat lengths.

Nucleosome repeat lengths have been measured in many laboratories, for a large number
of cell types, tissue types, and organisms. Van Holde [216] has abstracted 185 such
measurements from the literature and presented them in tabular form. The measured
(average) nucleosome repeat length obtained in each study is reported and error bars
are reported when available.
The analysis in [228] was restricted to only these data. They were considered collec-
tively and also in statistically defined subgroups and it was asked whether the reported
nucleosome repeat lengths for all of these cell types, tissue types and organisms are
related to one another by some fundamental periodicity.
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Figure 67: Nucleosome-repeat-length probability distribution functions, P (L), for dis-
tinct sets or subsets of the data. (a) P (L) functions obtained using most or nil of the
data. Solid lines, data for which error bars are reported (n =134); dotted lines, data
(n =185) when error bars are not reported, σ is set equal to 3 bp; dashed lines, data
when error bars are not reported, σ set equal to 10 bp. (b) P (L) functions obtained
using restricted subsets of the data. Solid lines, data having error bars ≤4 bp (n =55);
dashed lines, data having error bars ≤3 bp (n =43); dotted lines, data having error
bars ≤2 bp (n =29). Only the range L of 150-250 bp is shown. The probabilities
are relative: their integrals (if extended to the range −∞ ≤ L ≤ ∞) are equal to the
number of measurements on which they are based. Adapted from [228].

Each measurement was represented as a Gaussian function of probability versus nucle-
osome repeat length L, having unit integrated probability with a mean equal to the
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reported repeat length and a standard deviation σ equal to the reported error bar for
that measurement.
When no error bars are given that repeat length measurement was (in separate calcu-
lations) either skipped or assigned a σ of 10 bp or 3 bp. The measurements were then
combined by summation of their Gaussians to give a probability distribution function
for the set of nucleosome repeat length measurements. This is effectively an averaging
procedure which suppresses possible errors in individual measurements. Plots of the
resulting functions are shown in Fig. 67.

Figure 68: Plots of Fourier transforms of the 6 nucleosome repeat length probability
distribution functions P (L). The curve designations in a and b are identical to those
in Fig. 67. Only the amplitudes of the Fourier transforms are shown; they have been
normalized by dividing by the integral (i.e. sum) of the corresponding P (L). The Insets
show the same results plotted on expanded scales.
c and d show the Fourier transforms plotted against a real-space abscissa. The region
of the six transforms centered on the peak at 0.10-0.11 bp−1 was plotted against the re-
ciprocal of the abscissa. Thus, this figure plots the amplitude of the transforms against
spatial periods measured in bp for periods from 7 to 13 bp. The curve designations in
c and d are identical to those in a and b and in Fig. 67. Adapted from [228].
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The probability distribution functions are broadly centered around 190-200 bp, and
they exhibit multiple peaks or shoulders. In Fig. 67a, the curve calculated using all
134 measurements for which error bars were reported shows peaks or shoulders at 159,
≈171, 178, 188, 192, 196, and ≈206 bp repeat lengths.
In Fig. 67b, the curve calculated using all 55 measurements having error bars of ≤4 bp
shows peaks or shoulders at 159, 170-171, 178, 188, 196, 206-207, and ≈217-218 bp.
Thus, the probability distribution functions show an imperfect but pronounced quanti-
zation with a preference for a set of repeat lengths differing from each other by multiples
of ≈10 bp.

To analyze quantitatively the spatial periodicities presented in these plots, Fourier
transforms of the distribution functions were calculated. The results for the six calcu-
lations are shown in Fig. 68 (in Sec. App. A).
The transforms are dominated by a large peak centered at zero periodicity, arising from
the envelope of the repeat length distribution. There are numerous subsidiary maxima;
the most pronounced (measured as the height, or integrated area, above the envelope
of the transform) is a broad peak occurring at a periodicity of 0.10-0.11 bp−1 that is
present in all six transforms. The reciprocal of this range of periodicities is ≈9-10 bp.
It is this maximum in the Fourier transforms that is responsible for the set of roughly
evenly spaced peaks or shoulders detected in the probability distribution functions.

6.3.2 Local Parameter Distributions

In this section it will be shown how the experimental data for the nucleosome repeat
length (NRL) distributions [228] can be used to get information about the parameter
distributions of the E2A model.
The NRL consists of a stretch of linker DNA b and the DNA content which is wrapped
around the nucleosomes ω: NRL = b + ω. Only the 197 bp repeat length peak of the
data in [216; 228] will be used here.
In the model bi is the linker length between two consecutive nucleosomes (i− 1 and i)
and ωi is the length of the DNA strand which covers nucleosome i.
The distribution for the nucleosome repeat length in [228] will be approximated by a
Gaussian standard normal distribution:

fNRL(l) = N [µNRL, σ
2
NRL](l) =

1
σNRL

√
2π
e
− 1

2

(
l−µNRL
σNRL

)2

. (42)

Furthermore, one knows NRL = b + ω where NRL, b and ω are random variables.
Therefore, the convolution of the probability density functions of b and ω must be the
probability density of NRL, i.e.:

fNRL(l) =

∞∫
−∞

fb(l′)fω(l − l′)dl′.
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By assuming Gaussian standard normal distributions and statistical independence

fb = N [b0, σ2
b ]

fω = N [µω, σ2
ω]

this gives
µNRL = b0 + µω and σ2

NRL = σ2
b + σ2

ω.

In this context σ2
ω represents a part of the mobility of the nucleosomes inside the DNA

loops. σ2
b and σ2

ω are chosen proportionally to the DNA content of their corresponding
nucleosome repeat unit parts (cf. Tab. 5).
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Figure 69: This figure shows the underlying parameter distributions of the E2A model.
They come from the NRL distribution of [228] and are used instead of interaction
potentials since these are still unknown.

The rotational angle βi is a periodic function of the linker length bi because DNA
adsorption always begins with the minor groove turned in towards the first histone
binding site:

β(b) = β0 +
2π

10.2bp
(b− b0).
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Figure 70: This figure shows example conformations of flexible chromatin strands with
the parameters that have been determined in Sec. 6.3.2 (cf. Tab. 5). a) This fiber has
a length of 800 nucleosome repeat lengths, i.e. ≈158kbp. The small chromatin fiber in
the inset (b) has a length of only 100 NRL, i.e. ≈20kbp. The flexible chromatin fibers
have an average diameter of 34.6nm and a persistence length (lp) of ≈280nm.
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The period is the repeat length of the helical twist of the DNA. It is fixed to 10.2 bp
in this work. β0 and b0 are the mean values of β and b. They can be found in Tab.
5. With the equation above one can calculate the probability density function of β by
transforming the density of b:

fβ(β′) = fb(b′)
db(β′)
dβ

= N [b0, σ2
b ](b

′)
(

10.2bp
2π

)

=
10.2bp

2π
1

σb
√

2π
exp

−1
2

b0 + 10.2bp
(
β′−β0

2π

)
− b0

σb

2


= N

[
β0,

(
2π

10.2bp
σb

)2
]

(β′).

In the E2A model βi depends directly on bi. Its distribution was calculated here for
the sake of completeness.
Similarly one can calculate the density function of h by the relation

h =
1
2

(
8.4 bp
146 bp

ωi−1 +
8.4 bp
146 bp

ωi

)
=

8.4
292

(ωi−1 + ωi).

ωi−1 and ωi are statistically independent random variables with the same probability
density fω. Therefore, one gets the probability density of h by

fh(h′) = fωi−1+ωi(ω
′)

292
8.4

= N [2µω, (2σω)2](
292
8.4

h′)
292
8.4

= N

[
8.4
292

2µω,
(

8.4
292

2σω

)2
]

(h′).

µNRL 197 bp σ2
NRL 1.5 bp2

b0 146 bp σ2
b 0.4 bp2

β0 36 deg σ2
beta 0.1518

µω 146 bp σ2
ω 1.1 bp2

µh 8.4 bp σ2
h 0.0036

α0 40 deg σ2
α 0.05

Table 5: Local Parameter Distribution of the E2A Model

The results for the parameter distributions in the chromatin model are shown in Fig.
69 and in Tab. 5. Two example conformations with these parameter distributions are
illustrated in Fig. 70 and Fig. 71. Another example conformation is shown in Fig. 181
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(App. A).

Figure 71: Another example conformation of a flexile chromatin fiber of length 300
NRL (≈60kbp).

6.3.3 Scaling of R2 and R2
g for Flexible Fibers

The scaling of R2 and R2
G for random walks was calculated in Sec. 1 and can be found

in [207]. In the case of self-avoiding walks one gets R2 ∝ N2ν with ν ≈ 0.589 [24; 207].
With the parameter distributions of Tab. 5 the chromatin fibers become flexible like
random walks but the short range interactions due to the excluded volume of the
DNA and the nucleosomes lead to long range correlations and that prevents them
from behaving like random walks. Instead, the end-to-end distance and the radius of
gyration comply the scaling laws of a self-avoiding walk (on large length scales). On
smaller length scales (up to ≈5000 NRLs) the end-to-end distance and the radius of
gyration show strong finite size effects. This is illustrated in Fig. 72.
Fig. 182 and Fig. 183 in App. A show the end-to-end distance and the radius of gyration,
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too, but here the leading order N2ν is divided out. Therefore, the agreement with the
scaling of the self-avoiding walk is easier to see in these figures.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

x 10
8

<
R

2
>

 a
n
d
 <

R
G2

>
 [
b
p

2
]

fiber length [bp]

Chromatin Fiber Extension over Genomic Length

 

 

<R
2
> [bp

2
]

<R
2

G
> [bp

2
]

Figure 72: Since the chromatin fibers are flexible and have excluded volume they behave
like self-avoiding walks on large length scales. The mean squared end-to-end distance
and the mean squared radius of gyration scale with N2ν in this case (ν ≈ 0.589). The
error bars give the standard deviation of R2 and R2

G.

6.4 Nucleosome Depletion

Another new feature of the E2A model that will be explained in this chapter is the pos-
sibility for nucleosomes to dissolve entirely so that only blank stretches of DNA remain.

The DNA content of a nucleosome is 147bp. Its DNA is sharply bent and tightly
wrapped around the histone protein octamer [173]. This bending occurs at every DNA
helical repeat (i.e. ≈10 bp) when the major DNA groove faces towards the histone
octamer and again ≈5 bp away with opposite direction when the major groove faces
outwards. Specific dinucleotides facilitate the bends of each direction [178; 229]. The
linker DNA that connects consecutive nucleosomes has a length of approximately 50bp.
Thus, approximately 75% of genomic DNA will be wrapped in nucleosomes if the
chromatin fiber is entirely saturated with them.
Access to DNA wrapped in a nucleosome is occluded [173] for polymerase, regula-
tory, repair and recombination complexes, yet nucleosomes also recruit other proteins
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through interactions with their histone tail domains [110]. Thus, the detailed locations
of nucleosomes along the DNA may have important inhibitory or facilitatory roles in
regulating gene expression [120; 237].

Since DNA sequences differ in their ability to bend sharply [178; 213; 229] the ability
of the histone octamer to wrap different DNA sequences into nucleosomes is highly
dependent on the DNA sequence [3; 188]. In-vitro studies show this range of affinities
to be 1000-fold or greater [209]. Thus, nucleosomes have substantial DNA sequence
preferences which results in a non-regular arrangement of the nucleosomes along the
DNA. Furthermore, nucleosomes can dissolve entirely by unwrapping the DNA, leaving
blank DNA stretches behind and later on they can reform again. This means that
nucleosomes are in a dynamic equilibrium with the chromatin fiber. These effects lead
to an average nucleosome occupation (i.e. the probability that a bp is covered by
a nucleosome) of less than 75%. Therefore, it is necessary to allow for nucleosome
depletion in a particular chromatin model.

6.4.1 Modelling of Nucleosome Skips

When nucleosomes dissolve entirely they leave blank DNA strands behind. These DNA
stretches are modeled as worm-like chains (cf. Sec. 1.3) with a diameter of 2.2nm and
a persistence length of 50nm as illustrated in Fig. 73 and Fig. 184 (App. A).

The nucleosome detachment itself is not modelled by the E2A model. That would
require a more detailed approach from a smaller length scale (e.g. based on model
structures at atomic resolution). And even then it is very hard to do [116]. Furthermore,
we are not interested in the dynamics of the chromatin strand but want to sample
conformations directly.

The blank DNA stretches have a tube-like excluded volume potential with the DNA
diameter of 2.2nm.

In this work linker histone depletion and nucleosome depletion are treated statistically
independent to investigate the two different kinds of chromatin ”defects” independently
from each other. In fact, linker histone depletion facilitates nucleosome depletion be-
cause if the glue particle that keeps the in- and outgoing DNA strand together is
missing, it will be much easier for the DNA to unroll from the histone octamer. The
linker histone corresponds to an energy barrier which inhibits the unrolling of the DNA
arms.

To estimate the average rate of nucleosome skips in a chromatin fiber data for the
average nucleosome occupancy per bp [186] was used. This data was obtained by
experiments combined with a probabilistic prediction model (cf. Sec. 6.4.2). For the
E2A model a recent prediction of the nucleosome occupancy for the whole yeast genome
[187] was used.
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Figure 73: An example of a single nucleosome skip. If a nucleosome is dissolved, a
blank stretch of DNA will remain. The naked DNA stretches have lengths of multiple
integers of the nucleosome repeat length plus once the length of a DNA linker and can
either lead to a collapse or to a swelling of the chromatin fiber (cf. Sec. 7). In both
cases they increase the flexibility of the chromatin chain massively.

6.4.2 The Average Nucleosome Occupancy

In [186] the average nucleosome occupancy was partially determined by a combined ex-
perimental and computational approach. They looked for DNA sequence preferences of
nucleosomes and the intrinsic nucleosome organization of the genome that these prefer-
ences dictate and demonstrated that eukaryotic genomes use a nucleosome positioning
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code (cf. Fig. 74 and Fig. 185 in App. A).

Segal et. al. isolated nucleosome-bound sequences at high resolution from yeast and
used these sequences in a new computational approach to construct and validate ex-
perimentally a nucleosome–DNA interaction model and to predict the genome-wide
organization of nucleosomes. Their results demonstrate that genomes encode an intrin-
sic nucleosome organization and that this intrinsic organization can explain ≈50% of the
in vivo nucleosome positions. This nucleosome positioning code may facilitate specific
chromosome functions including transcription factor binding, transcription initiation
and even remodelling of the nucleosomes themselves.

Figure 74: Average nucleosome occupancies and standard errors for different types of
genomic regions. Adapted from [186].

Segal et al. extended their model in 2008 to make a prediction for the whole yeast
genome [187] and found an average nucleosome occupancy of 68% (cf. Fig. 75), i.e. not
all nucleosome locations are actually occupied by a histone octamer. Instead, one gets
strong depletion effects that affect the chromatin fiber properties massively as will be
shown below (cf. Sec. 6.5 and Sec. 7). It will turn out that increasing the amount of
nucleosome skips (i.e. the nucleosome depletion) can either lead to a collapse or to
swelling of chromatin fibers.

The prediction of the mean average nucleosome occupancy in [187] will be used as an
average reference value for the E2A model.





6.4 Nucleosome Depletion Philipp M. Diesinger

3 3.05 3.1 3.15 3.2 3.25 3.3

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Average Nucleosome Occupancy of Yeast

position along yeast genome [bp]

a
v
e
ra

g
e
 n

u
c
le

o
s
o
m

e
 o

c
c
u
p
a
n
c
y
 [
%

]

Figure 75: A small cut-out of the average nucleosome occupancy of the whole yeast
genome [187]. The average value for the entire genome (12.1 Mbp) is 68%.

The transformation between the average nucleosome occupancy n in [186; 187] and the
nucleosome skip probability pnuc in this model is

pnuc = 1− n197bp
147bp

= 1− 1.34n.

A negative value for the nucleosome skip probability means that even more base pairs
are covered by nucleosomes than expected by a regular, ideal chromatin strand. In that
case the linker lengths between the nucleosomes have to be adjusted (i.e. narrowed) to
get the given nucleosome occupancy n. With a linker length of approximately 50bp
and ≈150bp wrapped around each histone complex one would expect an average nu-
cleosome occupancy of 75% for a perfectly regular chromatin strand.

The predicted nucleosome occupancy for the yeast genome [187] had a mean value of
≈ 68% which means that one should expect a nucleosome skip rate of 8% for an average
chromatin fiber.
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Figure 76: Example conformation of a chromatin fiber with depletion effects: The
linker histone skip rate is 6% and the nucleosome skip rate is 8%. The linker histone
skips are marked orange. One can see that the concept of a regular 30nm fiber does
not hold anymore. Instead, one gets very flexible coil-like structures of compact regions
which are separated by blank DNA stretches. The fiber has a total length of 394kbp.

Two conformations for chromatin fibers with a nucleosome skip rate of 8% and an es-
timated linker histone skip rate of 6% are shown in Fig. 76 and Fig. 77. Later on (cf.
Sec. 7), the skip rates are treated as parameters in our model, i.e. they are varied over
a large range of possible values to see how depletion effects affect chromatin properties.
Fig. 76 and Fig. 77 will be discussed in Sec. 6.5.2.

6.5 Some First Results

Now that one can generate flexible instead of only stiff fibers and thus one can ask
for properties that describe this flexibility: Chromatin strands with the parameter
distributions that have been determined in Sec. 6.3.2 (cf. Tab. 5) have a persistence
length (lp) of ≈280nm, a line density (λ) of 5.8 nucleosomes per 11nm and an average
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diameter of 34.6nm. These values are in excellent agreement with experimental values
from the literature [34]. Furthermore, they agree with other chromatin models [116;
223].

Figure 77: Another example conformation of a chromatin fiber with depletion effects:
The linker histone skip rate is again 6% and the nucleosome skip rate is 8%. This
shorter fiber has a total length of 98.5kbp. The linker histone skips are marked orange
again.

Experimental values of the persistence length of chromatin depend on the technique
which was used to determine it. Analysis of the distances between genetic markers
in nuclei from human fibroblasts obtained from experiments using fluorescence in situ
hybridization [214; 239] using a Flory model results in a value of 100-140 nm and an
analysis using the Porod-Kratky wormlike chain model in 70-110 nm [145].
Furthermore, the persistence length was determined by an analysis of the end-to-end
distances of chromatin fibers bound to a mica surface and measured with scanning force
microscopy. This results in a value of 30-50 nm [37] as cited in [106].
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It is not clear whether or not the binding of the fiber to mica causes artifacts. Experi-
ments stretching single chromatin fibers from chicken erythrocytes with laser tweezers
resulted in a value of 30nm [47] at low salt concentrations. Unfortunately, no data for
the persistence length was given at physiological salt.

6.5.1 Flexible Chromatin Fibers without Depletion Effects

The scaling of the end-to-end distance and the radius of gyration in the case of flexible
chromatin fibers without depletion effects was already discussed in Sec. 6.3.3.
The chromatin fibers which are generated with the probability distributions from Sec.
6.3.2 do not have a fixed structure (or topology) like the regular ones that have been
examined in the last chapter (cf. Sec. 5). Instead, one gets a probability distribution of
structures which is shown in the background of Fig. 78. This was already indicated in
Sec. 5.6. One can see that the main part of a chromatin strand is still a crossed-linker
fiber but for instance some smaller parts can be in more open beads-on-a-string-like or
solenoidal states (cf. Fig. 82 for an example conformation).
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Figure 78: A cut-out of the actually four-dimensional chromatin phase diagram. The
pitch d and the linker length b are fixed again. A single point in this diagram corre-
sponds to a specific chromatin structure. The forbidden structures lie left and below
the dashed line which is the excluded volume borderline [62]. Due to the parameter
distributions of the model one should not expect a specific chromatin structure but
instead a distribution of structures in the phase diagram. This probability distribution
is shown in the back of the figure.
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6.5.2 Flexible Chromatin Fibers with Depletion Effects

The depletion rates which have been applied in order to generate the fibers that are
discussed in this section were 6% for the linker histone skips and 8% for the nucleo-
some skips. The chromatin chains with these depletion rates have a persistence length
of ≈140nm, i.e. approximately half the value for the flexible fibers without any skips.

The flexible chromatin chains with depletion effects comply the scaling laws of a self-
avoiding walk as well but since the linker histone skips and the nucleosome depletion
increase their flexibility the convergence to the N2ν-power law is much faster (approx-
imately one order of magnitude on the length scale). This can be seen below in Fig.
79 as well as in Fig. 186 and Fig. 187 where the leading order was divided out again.
The scaling of R2 and R2

G for flexible fiber without any depletion effects was discussed
in Sec. 6.3.3.
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Figure 79: The mean squared end-to-end distance and the mean squared radius of
gyration scale with N2ν like self-avoiding walks (ν ≈ 0.589). The error bars give the
standard deviation of R2 and R2

G.

By the comparison of Fig. 70 (i.e. a chromatin fiber without nucleosome or linker histone
depletion) with fiber conformations that allow for depletion effects (Fig. 76 and Fig.
77) one can easily see that an expectation of a regular 30nm chromatin fiber is not
justified anymore. Instead, one gets a coil-like structure of some more or less regular
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parts separated by very flexible parts which mainly consist of blank DNA stretches.
The linker histone depletion does not destroy the picture of a regular 30 nm fiber as
much as the nucleosome depletion. Moreover, one has to keep in mind that the nu-
cleosome depletion rate which was used to generate the conformations in Fig. 76 and
Fig. 77) is only the average depletion rate (of the yeast genome). Some parts of the
genome (for instance telomeres [186; 187]) have even larger nucleosome depletion rates,
and therefore, are much more coiled. Furthermore, small nucleosome skip rates already
induce very coiled structures (cf. Sec. 7).

Fig. 76 and Fig. 77 suggest that the concept of a specific regular 30nm chromatin fiber
possibly has to be adjusted towards a distribution of structures (cf. Fig. 78) which
coexist in one chromatin fiber. Furthermore, depletion effects which obviously occur in
vivo lead to much more coiled conformations even at small skip rates than one would
expect from existing chromatin models [19; 38; 62; 64; 71; 80; 179; 183; 211; 216; 217;
218; 230; 235].
These coils surely show small stretches of 30nm fibers that are separated by large pieces
of naked DNA but a perfectly regular 30nm fiber seems to be very unlikely since it needs
to be almost completely saturated with nucleosomes. Even from a thermodynamic point
of view this seems unlikely: Nucleosomes have the ability to dissolve and form again so
a dynamic equilibrium resulting in a certain nucleosome skip rate seems very plausible.
Maybe these regular fibers exist only under lab conditions where they are built up at
high histone concentrations, and therefore, are entirely saturated with nucleosomes and
linker histones.

6.5.3 Comparison with Electron Micrographs

At the end of this chapter some example conformations that can be found, if one takes
the parameter distributions as well as the depletion effects into account, are compared
with electron micrographs.
Fig. 80 shows a comparison of a 30nm fiber obtained by electron microscopy with
a 30nm crossed-linker fiber from the E2A model whereas Fig. 81 shows a more open
conformation with some nucleosome and linker histone skips. In this case one can clearly
identify a beads-on-a-string structure in the EM-image and one can even distinguish
single nucleosomes. Finally, Fig. 82 shows that even single nucleosomes separated by
blank DNA stretches can be found. The EM images were adapted from [151].
Another figure with scales for the model conformations and without the fuzzy back-
ground of Fig. 80 - Fig. 82 can be found in App. A, Fig. 188.
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Figure 80: This figure shows an example conformation of a chromatin strand of length
40kbp compared to a similar electron micrograph [151]. The light blue tubes represent
the DNA, the histone octamers are modelled as purple cylinders and the linker histones
are marked pale yellow.
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Figure 81: This figure shows a beads-on-a-string-like structure with some nucleosome
and linker histone skips. The latter are marked orange. On the left side of the figure a
similar electron micrograph is shown [151].
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Figure 82: Another comparison of a model conformation with an electron micrograph
from [151]. The conformations consist of single nucleosomes connected by blank DNA
stretches.
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 Influence of Histone Depletion on Chromatin Properties

7.1 Overview

In Sec. 6 linker histone depletion as well as nucleosome depletion have been intro-
duced and integrated into the chromatin model. Some first depletion effects have been
discussed in Sec. 6.5.
In this chapter various chromatin features will be discussed against the background
of nucleosome and linker histone depletion: For every one of the considered chromatin
properties we will show interest in the differences between chromatin fibers with histone
depletion and fibers without histone depletion.

It will turn out that depletion of linker histones and nucleosomes affects massively the
flexibility and the extension of chromatin fibers (cf. Sec. 7.2). Increasing the amount
of nucleosome skips (i.e. the nucleosome depletion) can either lead to a collapse or to
swelling of chromatin fibers. These oppositional effects will be discussed in Sec. 7.2.2
and it will be shown that histone depletion may even contribute to DNA condensation.
Furthermore, it will be shown that predictions from experimental data [187] for the
average nucleosome skip rate lie exactly in the regime of maximum DNA condensation.
This could be a hint that cells are in fact using the plateau regime in Fig. 86 to compact
DNA or even regulate its extension.
Transcription factors increase the nucleosome skip rate locally and according to the
results of this section (cf. Sec. 7.2.2) this leads automatically to a swelling of the chro-
matin strand. This could explain why genome parts that are transcribed very frequently
tend to lie more inside of the nucleus [45].
This is a hint that nucleosome and linker histone depletion may not only be some sort
of defect in the chromatin fiber instead they might even be functional.

In Sec. 7.3 the chromatin nanostructure will be discussed with respect to radial nucle-
osome distributions (cf. Sec. 7.3.1). Again the two cases of chromatin fibers with and
without histone depletion will be discussed and the relation between the spatial and
the genomic distances in the found peak structure will be explained.
Furthermore, it turns out that the peak structure in the radial nucleosome distribution
and the nucleosome pair distribution function is even preserved in the case of fibers
with depletion effects (cf. Sec. 7.3.2). This peak structure reflects the local order of the
nucleosomes in the chromatin fiber.
In principal, the radial pair distribution function could be determined by scattering
experiments.

After the discussion of the radial pair distribution function in the case of three-dimensional
chromatin fibers, the radial distance distribution p(r) as well as g(r) are determined in
the case of previously projected and thus two-dimensional fibers. This is done to pro-
vide a direct comparison with the SPDM data in Sec. 3. The comparison is presented
in Sec. 7.3.4 and although the application of g(r) is problematic in the case of single
fibers instead of melts one can see a good agreement.
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Finally, in Sec. 7.4 the simulation results for the nucleosome distributions are compared
with FISH measurements [34].

The main results of this section have already been published [65].

7.2 Chromatin Extension and Flexibility

In this section the impact of histone depletion on DNA condensation and on chromatin
flexibility will be investigated. It will be shown that nucleosome depletion may even
contribute to the compaction of chromatin.
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Figure 83: This figure shows how depletion effects decrease the chromatin persistence
length lP . Here are either linker histone or nucleosome depletion effects considered.
The persistence length decreases very similar for both cases. Nucleosome depletion has
a slightly larger effect for small skip rates.

Fig. 83 shows how either linker histone or nucleosome depletion affect the flexibility
of chromatin fibers: Without any depletion effects (i.e. zero skip rate) the fiber has
a persistence length of about 280nm. If the skip rate for either linker histones or
nucleosomes increases, the persistence length will drop very fast in both cases, i.e. the
fiber will get much more flexible.
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Fig. 84 shows the persistence length in dependence on the skip rates but this time
combinations of the two kinds of histone depletions are considered as well.

Figure 84: This figure shows how depletion effects decrease the chromatin persistence
length lP . In this case combinations of linker histone and nucleosome depletion effects
are considered. The red spot marks the expected average rates for the two depletion
effects [187].

The radius of gyration as well as the mean squared end-to-end distance are used as
a measure for the fiber extension. Furthermore, it is interesting to see how they are
changed by the depletion effects. In Fig. 85 and Fig. 86 one can see how either linker his-
tone depletion or nucleosome depletion affect the fiber extension and Fig. 87 and Fig. 88
again show the same results for the combinations of the two types of histone depletions.
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7.2.1 Linker Histone Depletion

In the case of linker histone skips the fiber extension decreases with increasing skip
rate until a skip rate of ≈10% (cf. Fig. 85 and Fig. 86). In terms of DNA condensation
that means it is even necessary to have a linker histone depletion rate of about 10% or,
vice versa: It is not efficient to have more than 90% of all nucleosomes saturated with
linker histones because at some point the fiber gets too stiff.
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Figure 85: The mean squared end-to-end distance is used as a measure for the extension
of the chromatin fiber. With increasing linker histone depletion (blue) it decreases,
whereas with increasing nucleosome depletion (green) there is a plateau regime after a
initial decrease and at the end the fiber extension even increases. These effects come
on the one hand from the gain of flexibility that the nucleosome skips bring in and
on the other hand from the spatial need of blank DNA in opposite to the compact
wrapped DNA. In the plateau regime theses two effects level off. This is the regime
where DNA condensation is optimal. As one can see the experimental values [187]
for the nucleosome skip rate with an average of 8% lie just in this region of optimal
condensation.

From experiments [19; 77] one would actually expect that chromatin fibers will become
more compact, if one adds linker histones. One has to keep in mind that in this
model linker histone depletion and nucleosome depletion are statistically independent
but in experiments they are highly correlated since linker histone depletion facilitates
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nucleosome depletion.
Furthermore, if one increased the linker histone skip rate up to 100%, one would prob-
ably see that the fiber DNA condensation decreases again (i.e. R2 and R2

G increase).
This is because at some point the gain of flexibility does not lead to denser states any
more due to the excluded volume interactions of the fiber. So maybe one finds in the
experiments only this last increase of the fiber extension and not the former decrease
at the smaller skip rates.
Other chromatin models with variations of the nucleosome linker length show similar
effects [223].
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Figure 86: The mean squared radius of gyration as another measure for the extension
of the chromatin fiber. It shows a similar behavior as the mean squared radius of
gyration (cf. Fig. 85). The experimentally determined nucleosome skip rate is adapted
from [187].

7.2.2 Nucleosome Depletion

Increasing the nucleosome skip rate has two effects on the chromatin fiber: First, it
gets much more flexible due to the blank DNA stretches which connect more compact
regions. Secondly, the naked DNA is much less condensed and thus needs more space
due to entropic forces than the DNA which is wrapped up around histone octamers. In
Fig. 85 and Fig. 86 one can see that the fiber extension first decreases with increasing
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nucleosome depletion (pnuc ≈ 0% - 5%), then there is a plateau regime where it is
almost constant (5% - 9%) and finally it increases again (pNuc >9%).

Figure 87: The mean squared end-to-end distance in dependence on linker histone and
nucleosome depletion. Here combinations of linker histone and nucleosome depletion
effects are considered. The red spot marks the expected average values that come from
experimental data [187].

The first decrease comes from the increase of flexibility which the blank DNA stretches
bring in. The increase of the extension at the end (pNuc >9%) stems from the spacial
need of the blank DNA and in the plateau regime in the middle the two effects level
off.

One can also consider this from the view of DNA condensation: At a nucleosome skip
rate of 100% one would have the whole genome as a naked stretch of DNA. Adding
nucleosomes at this point means that one decreases the nucleosome skip rate. Then,
at the plateau regime the DNA condensation is optimal because a further increase will
make the chromatin fiber too stiff.

One has to keep in mind that the experimental data for the average nucleosome oc-
cupancy [187] suggested an average nucleosome skip rate of 8% which lies just in this
plateau regime of optimal DNA condensation. That means the experimentally deter-
mined average nucleosome occupancy is optimal in terms of DNA condensation.

This is nice because it shows that this plateau regime might actually be used by the cell
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to compact the DNA: Cells could use it to regulate the chromatin fiber extension locally.

Transcription will increase the nucleosome skip rate in a genome region and thus (ac-
cording to Fig. 85 and Fig. 86) lead automatically to swelling of the chromatin strand.
This could explain why parts of the genome which are transcribed very frequently tend
to lie more inside the nucleus [45].

The nucleosome skips are much more important for this effect than the linker histone
skips (cf. Fig. 86 and Fig. 85).

In this context, linker histone and nucleosome skips may not just be defects in the
chromatin fiber but instead they may play a very important role for DNA condensation
and support a tool to locally regulate the chromatin fiber extension as well as its
flexibility within the cell nucleus.

Figure 88: The mean squared radius of gyration as a measure for the extension of the
chromatin fibers in dependence on histone depletion. Here again combinations of linker
histone and nucleosome depletion effects are examined. The red spot marks again the
expected average values that come from experimental data [187].

In Fig. 87 and Fig. 88 one can see that only in the case of linker histone skip rates
less than ≈10% one will get a plateau regime in the fiber extension, if one considers
different nucleosome skip rates. If the linker histone skip rate is larger, one will only
find an increase in R2 and R2

G with increasing nucleosome skip rate.
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7.3 Chromatin Nanostructure

In this section the chromatin nanostructure will be examined. First, the radial nucleo-
some distribution is investigated (cf. Sec. 7.3.1), then the nucleosome pair distribution
function is discussed (cf. Sec. 7.3.2) and it will be shown that even in the case of fibers
with depletion effects its main dominant peaks can still be identified.
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Figure 89: p(r) is the conditional probability of finding a nucleosome at a spatial
distance r, if another nucleosome is located at the origin. One can see a peak structure
which comes from the local order of the nucleosomes in the chromatin fiber. The peaks
r∆ can be associated with certain genomic nucleosome-nucleosome distances ∆. Here
it was averaged over approximately 1014 nucleosome distances.

7.3.1 Radial Nucleosome Distribution

Fig. 89 shows the conditional probability p(r) to find a nucleosome at a distance r, if
another nucleosome is located at the origin:
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p(r) =

〈
N∑
i=1

∑
j 6=i

δ(r − ri,j)

〉

=
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

δ(r − ri,j).

Two different cases are considered: fiber with and without histone depletion. Is was
averaged over 104 chromatin fibers of length 160kbp, i.e. over approximately 1014

nucleosome-nucleosome distances altogether.

As one can see p(r) shows some very dominant peaks which are labelled I - V. They
express the local nucleosome order in the chromatin fiber since they represent very
frequent spatial nucleosome distances. They can be associated with certain genomic
nucleosome-nucleosome distances.

The genomic distances are given in multiples of the nucleosome repeat length, i.e. they
are integer numbers. The corresponding spatial nucleosome-nucleosome distance to a
genomic distance ∆ is denoted by r∆. Some of the genomic distances r∆ are illustrated
in Fig. 90.

The r = 0 peak is not shown in Fig. 89. It has approximately the same height as peak
II.

p(r) is almost zero until r is approximately larger than 10nm which is the diameter of
the reference nucleosome.

Some of the peaks in Fig. 89 superimpose of several single r∆-distributions. This is
indicated in some cases by subscript letters (cf. peak II and peak III). The allocation
of the peaks to genomic nucleosome-nucleosome distances can be found in Tab. 6. For
instance, the second peak (II) is a superimposition of the distribution of r1 and the
distribution of r3.

peak # I IIa IIb IIIa IIIb IV V
genomic distance ∆ [NRL] 2 1 3 4 5 6,7 8,9,10
genomic distance ∆ [bp] 394 197 591 788 985 1182 - 1379 1576 - 1970

Table 6: Allocation of peak number to particular genomic nucleosome-nucleosome dis-
tances for the first five peaks in p(r) and the pair distribution function g(r). The peak
locations can be found in Tab. 15: They are determined by the most frequent values
(mf∆) of the r∆-distributions.
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Figure 90: This figure illustrates the connection between the genomic distance ∆ and
the spatial distance r∆ for the first four cases. The reference nucleosomes which have
the genomic distance ∆ (given in NRLs) are marked red.

The first five peaks of p(r) can even be identified, if one allows for depletion effects
(cf. Fig. 89), although in this case p(r) is decreased in comparison to the conditional
probability without depletion effects. This is because linker histone and nucleosome
depletion destroy the local order at some points within the chromatin strand so that
these spots do not contribute to the dominant peaks any longer.
Furthermore, the distance distribution with depletion effects is a bit shorter (cf. Fig.
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92) since the fibers are more flexible (cf. Fig. 83). Nevertheless, the first peaks can still
be identified clearly.
On the long scale the overall shape of p(r) is very similar, although not identical, to
the distribution of the end-to-end distance of a random walk (cf. Eq. 3).
The average depletion rates of 8% (for nucleosome skips) and 6% (for linker histone
skips) were applied again in this section.
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Figure 91: The mean spatial nucleosome distance 〈r∆〉 in dependence on the genomic
distance ∆ for stiff, flexible and flexible fibers with histone depletion. Some of the
r∆-distributions are very asymmetric which shifts the mean value far away from the
reference value of the regular fiber.

Fig. 91 shows the dependence of the average spatial nucleosome distance on the genomic
nucleosome distance for three different cases: Stiff fibers, flexible fibers and flexible
fibers with depletion effects. One can see that the depletion effects have a great influence
on r∆. This is because the depletion effects destroy the local nucleosome order and the
average of r∆ was also taken over possibly existing nucleosome or linker histone skips.
Furthermore, the flexibility and the depletion effects shift the mean values of r∆ because
their probability distributions are very asymmetric in some cases. This can be seen in
Tab. 15: The mean value of r∆ and the most frequent value which is responsible for
the peak location differ greatly in some cases.
The dependence of the mean spatial nucleosome distance on the corresponding genomic
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distance on larger scales can be seen in Fig. 191 in App. A.
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Figure 92: The conditional probability p(r) on the large scale. One can see that
the distribution for fibers with histone depletion is much shorter due to the gain of
flexibility that the linker histone skips and the nucleosome skips bring in. The short
scale is dominated by the peaks that come from the local nucleosome order, whereas
on the large scale many r∆-distributions superimpose, and therefore, no peak structure
is visible any more.

Moreover, the single distributions of the first ten r∆ are plotted in Fig. 189 and Fig.
190 in App. A.

The conditional probability p(r) is the superimposition of all r∆-distributions. This is
illustrated in Fig. 93 for the flexible fibers and in Fig. 94 for the flexible fibers with
depletion effects. With the help of these two figures one can determine which peak
corresponds to which r∆-distribution (cf. Tab. 6).

With increasing ∆ the distributions of r∆ become broader and finally the superimpo-
sition of these distributions, i.e. p(r) does no longer show a peaks structure which can
also be seen in Fig. 92.





7.3 Chromatin Nanostructure Philipp M. Diesinger

stiff fibers flexible fibers stiff fibers with depletion effects
∆ r∆ 〈r∆〉 σ∆ mf∆ 〈r∆〉 σ∆ mf∆

1.00 17.00 17.00 0.21 16.85 21.20 10.24 45.51
2.00 11.63 12.52 2.39 10.44 21.81 18.55 10.40
3.00 17.35 17.11 1.33 17.46 28.51 20.76 18.47
4.00 21.81 22.71 2.39 23.34 35.22 22.13 19.69
5.00 20.96 21.42 2.76 22.10 38.12 25.17 2.53
6.00 29.77 30.01 2.03 29.98 45.04 24.98 28.14
7.00 28.71 30.06 3.71 27.59 48.43 26.96 30.76
8.00 35.95 35.60 2.65 19.61 53.32 27.51 1.11
9.00 38.31 39.62 3.63 37.57 57.59 28.35 2.79
10.00 41.82 41.69 3.85 42.73 61.16 29.54 40.67

Table 7: This table shows the mean value (〈r∆〉), the standard deviation (σ∆) and
the most frequent value (mf∆) of the first ten r∆-distributions. In the first case a stiff
reference fiber was generated. The following three columns show the values for flexible
fibers and the last three columns show the results for flexible fibers with depletion
effects. Here, the nucleosome skip rate was again fixed to 8% and the linker histone
skip rate was fixed to 6%. The table shows that some of the r∆-distribution are very
asymmetric since the mean value differs greatly from the most frequent value (e.g. the
distribution of r2). All spatial distances are given in nm (a similar table can be found
in App. B with the values in bp). The genomic distances are given in multiples of NRL
again.
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Figure 93: The overall probability distribution p(r) is a superimposition of the single
r∆-distributions which is illustrated here for the case of flexible chromatin fibers. One
can see that some distributions are very asymmetric (e.g. r1 and r7).
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Figure 94: This figure shows how the different r∆-distributions contribute to the overall
distribution p(r) in the case of flexible chromatin fibers with histone depletion.

7.3.2 The Nucleosome Pair Distribution Function

Fig. 96 shows the (radial) pair distribution function g(r) [207] of nucleosomes in a
chromatin strand. The pair distribution function is a major descriptor for the atomic
structure of solids, amorphic materials and liquids and was described partially in Sec.
1.8.

In this case one can apply this mathematical tool only for small distances because one
does not have a chromatin melt but instead only a single fiber at a time. Therefore,
the distance cut-off for the following structure analysis was set to a small value, namely
40nm. That means that spheres with this radius around each nucleosome are analyzed
by looking for very frequent spatial distances (cf. Fig. 95 for an illustration).

In this context it is important to keep in mind that the nucleosomes sit at the edge
of the chromatin fiber, and furthermore, the fiber itself has only a diameter of about
35nm. Therefore, the main part of the 40nm-sphere is empty which leads to a decrease
of the mean nucleosome density (cf. Fig. 96).
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Figure 95: Illustration of the system size V for the structure analysis with the pair
distribution function: The red sphere has a radius of 40nm and covers only a part of
the chromatin fiber.

The pair distribution function will be proportional to the conditional probability p(r)
of finding a nucleosome at a distance r, if another nucleosome sits at the origin. It is
normalized in a way that a value of one corresponds to the mean nucleosome density
of the considered system (i.e. in this case of a 40nm sphere):

g(r) =
1

4πr2

V

N − 1

 1
N

∑
i

∑
j 6=i

δ(r − ri,j)


=

1
4πr2

V

N − 1

(
N − 1

2
p(r)

)
.

The pair correlation function is given by g(r) − 1 and the Fourier transform of it is
the scattering function S(q) which could theoretically be determined by scattering
experiments:

S(q) =
∫
V

e−iq r(g(r)− 1)d3r.

In the case of an isotropic system (like the one that is considered here) with a radial
pair distribution function the scattering function is also isotropic (S(q) = S(q)) and
one gets

S(q) =

∞∫
r=0

sin(qr)
qr

4πr2(g(r)− 1)dr.
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g(r) shows some very dominant nucleosome-nucleosome distances which are labelled I
- V again (cf. Fig. 96). These peaks that represent frequent spatial distances r∆ can
be associated with the same genomic distances as in the case of p(r) (cf. Tab. 6) and
again g(r) is the (normalized) superimposition of all r∆-distributions.
The first four peaks of the pair distribution function can even be identified, if one allows
for depletion effects (cf. Fig. 96), although in this case the pair distribution function
is again decreased in comparison to g(r) without depletion effects because the skips
reduce the number of nucleosomes that have a certain genomic distance.

10 15 20 25 30 35 40

10
-1

10
0

10
1

distance r [nm]

ra
d
ia

l 
p
a
ir
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n
 g

(r
)

Nucleosome Pair Distribution Function of Chromatin

 

 

I

II
a

II
b

III
a

III
b

IV

V

without depletion effects

with depletion effects

Figure 96: The pair distribution function of nucleosomes in a chromatin fiber (with
and without depletion effects). g(r) is proportional to the probability of finding a nu-
cleosome in distance r to a reference nucleosome. The labelled peaks can be associated
with particular genomic nucleosome-nucleosome distances ∆ (cf. Tab. 6). Even in the
case of fibers with depletion effects (i.e. a linker histone skip rate of 6% and a nucleo-
some skip rate of 8%) the first four peaks can clearly be identified. The large δ-peak
at r = 0 has been eliminated here.

7.3.3 Pair Distribution Function of 2D Chromatin Fibers

In Sec. 3.5.3 the two-dimensional radial pair distribution function of HeLa and Fibrob-
last nuclei was examined. In this section this experimental data will be compared with
results from the E2A model.
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Fig. 97 shows the conditional probability p(r) (cf. Sec. 7.3.1) of previously projected
i.e. two-dimensional chromatin fibers. Again, the two cases of chromatin fibers with
and without histone depletion are considered.
Interestingly, there are distances below 10nm now. These distances do not occur in the
3D chromatin structure and are an artefact due to the projection of the fibers: Some
formerly larger distances have been foreshortened by the projection. A comparison
with Fig. 89 shows that all peaks are smeared out towards smaller distances by the
projections. This is clear, since projecting vectors can only shorten them but never
increases their length.
Nevertheless, the first four peaks in the distance distribution function can still be iden-
tified in the case of fibers without defects. In the other case of fibers with histone
depletion only the first two peaks can yet be clearly identified.
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Figure 97: The radial nucleosome distance distribution in the case of 2D chromatin
fibers. Some of the peaks can still be identified in the case of fibers without depletion
effects. Furthermore, p(r) does not vanish any more for distances smaller than 10nm.
This is an artifact of the projections.

Fig. 98 shows the two-dimensional radial pair distribution function that corresponds to
p(r) in Fig. 97. Moreover, the Fibroblast and HeLa data from Fig. 33 in Sec. 3.5.3 are
shown as well.
For the calculation of the two-dimensional pair distribution function a 2D-sphere with
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radius 40nm was used again as the limiting system size (cf. Sec. 7.3.2). The connection
of the conditional probability p(r) and the two-dimensional pair distribution function
is in this case given by:

g2D(r) =
1

A(r)
A
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 1
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∑
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=

1
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2
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4∆r

)
p(r)
r
.

∆r is the binning parameter and was set to 0.2 bp during the calculations of g2D(r)
and R denotes the 40nm radius that limits the system size.

7.3.4 Comparison with SPDM Data

Fig. 98 shows the two-dimensional radial pair distribution function compared with the
Fibroblast and HeLa nuclei data from Sec. 3.

One can identify only the first two peaks in the case of chromatin fibers with histone
depletion. The fibers without histone depletion still have the first four peaks in the
distance distribution.
One has to be very careful with the comparison of the model data with the SPDM data
since the model data comes from a single chromatin fiber of finite size. It was tried
to compensate this by choosing the small system size of a 40nm-sphere so that g(r)
is at least matched correctly at the small scale below ≈ .30nm. For a comprehensive
examination of g(r) on larger scales it would be necessary to simulate several chromatin
fibers or chromatin melts.
It could be possible that the Fibroblast and HeLa data points below 10nm are artefacts
of the projection as well as in the case of the model data. Furthermore, one has to keep
in mind that their localization accuracy in x- and y-direction is fairly large (20nm).

7.4 Comparison with Experimental Distance Measurements

In Fig. 99 one can see the average spatial nucleosome distance in dependence on the
genomic distance for the three different cases of chromatin fibers on a larger scale (cf.
Fig. 91 for the small scale). Furthermore, FISH measurements from [34] are shown, too.

In [34] high-resolution fluorescence in situ hybridization data from intervals of 14-100
kb along single chromatids were reconciled with measurements of whole chromosome
arms (122–623 kbp in length), monitored in intact cells through the targeted bind-
ing of bacterial repressors fused to GFP derivatives. The results are interpreted with
a flexible polymer model and suggest that interphase chromatin exists in a compact
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higher-order conformation with a persistence length of 170–220 nm and a mass density
of ≈110–150 bp per nm. These values are equivalent to 7–10 nucleosomes per 11nm
within a 30nm-like fiber structure (cf. Sec. 6.5).
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Figure 98: Comparison of the SPDM data from Sec. 3.5.3 with the distance distribution
of projected E2A model chromatin fibers. The system size had to be limited to 40nm
since only single model fibers can be evaluated and thus the application of g(r) is
problematic for larger length scales.

To analyze chromatin compaction ratios in interphase nuclei, laboratories have generally
applied fluorescence in situ hybridization (FISH) using differentially derivatized probes.
Gasser et al determined [34], end-to-end distances for a range of genomic intervals
by using unique techniques for high-resolution FISH [94; 103] and live GFP-fusion
imaging based on repressor binding to chromosomally integrated, non-amplified lac or
tet operator arrays [205].
This process combined with immunofluorescence (IF) allowed them to examine chro-
matin folding over small distances in intact yeast cells.

They also compared arm length measurements with distances separating different re-
pressor array insertions. The polymer chain model (WLC) then allowed them to deter-
mine both the persistence length and mass density of chromatin from these end-to-end
distance values.
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As one can see in Fig. 99 the FISH-data lies even beneath the curve of the flexible fibers
with histone depletion. This might be due to the confinement in the nucleus that has
not been considered in the simulations.

Another very important effect has still been neglected: Flory showed [83] that polymers
in melts behave as if their monomers have zero volume. That means that the actual
distance graph for chromatin melts would definitely lie beneath the curves presented
in Fig. 99.
In that sense, the graphs of Fig. 99 provide only an upper bound to the actual behavior
of chromatin in the cell nucleus.
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Figure 99: Shown is the dependence of the spatial nucleosome distance on the cor-
responding genomic distance for the different types of chromatin fibers (stiff reference
fiber, flexible fibers and flexible fibers with depletion effects). Furthermore, one can see
a comparison with two-color FISH measurements of interphase chromatin in budding
yeast cells [34].

Furthermore, one has to keep in mind that only the average values for the histone
depletion rates have been used. If one applies larger histone skip rates, one will get a
further decrease of the spatial distances.
Moreover, FISH measurements on this small length scale unfortunately change the in-
vestigated system and therefore, have to be interpreted very carefully.
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Nevertheless, it seems that one has to allow for histone depletion effects in order to
get suitable predictions for spatial chromatin distributions. The results for chromatin
fibers without any defects are much too stiff and hence the curve increases too rapidly.
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 Chromatin Loops

8.1 Overview

In this section the focus will lie on chromatin conformations with loops i.e. with direct
physical DNA contacts over large genomic distances.

First, Sec. 8.2 will provide some basic motivation for the examination of chromatin
loops by explaining which role they play for transcription and other biological pro-
cesses that are crucial for several cell functions (cf. Sec. 8.2.1). Furthermore, the role
of random chromatin contacts in 3C-based experiments will be discussed (cf. Sec. 8.2.2
and Sec. 8.2.3) and it will be explained how a better understanding of these random
collision would improve 3C-based technologies by allowing to distinguish more accu-
rately between specific and random DNA contacts.

In Sec. 8.3 the simulation results concerning chromatin loops are presented. It will be
shown that fibers with histone depletion and fibers without histone depletion have very
different loop statistics. Especially the loop number distribution and the loop length
distribution are qualitatively as well as quantitatively very diverse.

Experimental 3C-based methods are very important for the investigation of DNA in-
teractions and chromatin loops. All the current 3C-based methods are described com-
prehensively in [53; 192]. But a brief introductory overview will be given in Sec. 8.4.1
as well.

After that, Sec. 8.4 will provide a comparison between the simulation results and actual
experimental data from 5C experiments.

It will turn out that only the chromatin fibers with histone depletion match the exper-
imental data, because only they have physical interactions on a small genomic length
scale. Furthermore, only chromatin with histone depletion shows qualitatively the same
behavior of the interaction probability as the experimental data.

In Sec. 8.5 the loop entropy of chromatin loops will be investigated. It will be proven
that in the case of fibers with histone depletion it is favorable for a chromatin confor-
mation to have some loops. A further increase or decrease of the loop number leads to
a decreases of the loop entropy. This is remarkable because chromatin loop formations
and thus DNA contacts are important for biological processes as mentioned before.
Most of the fibers without histone depletion have no loop at all and in this case every
loop formation leads to a loss of entropy.

The results of this section are in preparation for publication [67].
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8.2 Introduction

Loop conformations play a very important role in chromatin physics: A large number
of molecules permanently access the DNA and thus change the chromatin structure.
As experiments have shown this leads to permanent building and dissolving of loops
mediated by transcription factories [25; 42; 109; 132].
The genomic sequence for different proteins which have to work together, and therefore
find each other, has to be somehow spatially clustered for the time the genetic code is
being transcribed, while some time later in cell evolution another clustering of genes
might be necessary for the production of other proteins [126].
The fact that transcriptional regulatory DNA elements loop towards their target genes
to regulate the expression has been revealed by the 3C-based technologies (cf. Sec. 8.4)
which contributed enormously to the understanding of the intricate folding of gene loci
[192].

8.2.1 Loop Formations during Transcription

The transcription is a complex mechanism [124]. For the initiation of the transcription
specific proteins have to assemble at the promoter, that is the DNA region which
identifies the beginning of a gene. The RNA polymerase II (cf. Fig. 100) depends on
other proteins, the general transcription factors, to be enabled to transcribe the gene’s
DNA sequence into mRNA. One interesting problem that is not yet finally solved is
how the DNA packing is negotiated by the transcription complex.
In fact, in most of the eukaryotes only a small fraction of the whole genome is ded-
icated to encode for protein production, for example approximately two percent in
human cells. Some of the remaining DNA contains binding sites for regulatory proteins
that determine, for instance, how often a referring gene is transcribed and thus affect
the synthesis rate of a specific protein.

Binding sequences are quite frequently situated about 100 to 200 bp upstream from the
promoter and, hence, denoted as upstream elements. But in particular in eucaryotic
cells, regulatory proteins can bind to referring sequences, for instance enhancers, thou-
sands of base-pairs away from the transcription start and still influence the transcription
rate. These long-range interactions between regulatory proteins and the transcription
complex are facilitated by bending of the intervening chromatin.

Competition or synergy between proteins, regulating the transcription of the same gene,
constitute the basis for a complex gene-regulation network. The efficiency of a regu-
latory protein depends on its global concentration in the cell nucleus, but also on its
local concentration in proximity of the promoter according to the probability of inter-
vening chromatin loops. So, the positioning of a regulatory sequence with respect to
the promoter is an important factor determining the impact of the referring enhancer
or repressor protein. If the intervening chromatin segment is too short, bending might
be impossible. But if it is too long, polymer dynamic effects causing chromatin bending
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will become irrelevant.

Another example for loop formations in chromatin is chromatin looping in centromeres
[124].

8.2.2 Chromatin Interaction Mapping

Intense efforts are made to map genes and regulatory elements throughout the whole
human genome [72; 210]. These studies are expected to identify many different types of
elements, including those involved in gene regulation and DNA replication. Analysis of
only one percent of the human genome has already revealed that genes are surrounded
by a large number of supposed regulatory elements [210].

Figure 100: An illustration of RNA polymerase II, an enzyme that produces RNA
chains from DNA genes. Adapted from [231].

In order to fully annotate the human genome and to understand its regulation it is
important to map all genes and functional elements and also to determine all rela-
tionships between them. This endeavor is complicated by the fact that the genomic
positions of genes and elements do not provide direct information about functional re-
lationships between them. A well known example is provided by enhancers that can
regulate multiple target genes that are located at large genomic distances or even on
different chromosomes without affecting genes immediately next to them [197; 225].
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Recent evidence indicates that regulatory elements can act over large genomic distances
by engaging in direct physical interactions, i.e. loop formation with their target genes
or other elements [39; 49; 52; 225]. These observations indicate that the genome may
be organized as a complex three-dimensional network that is determined by physical
interactions between genes and elements. Therefore, mapping of chromatin interactions
by 3C-based technologies is very important.

Figure 101: Illustration of loop formations. Left-hand side: In bacteria, transcription of
the circular chromosome, followed by clustering of polymerases (ovals), transcriptional
activators/repressors (diamonds), and transcripts (wavy red lines), generates loops.
Only one of a number of rosettes is shown, and the path of the DNA is expected to
be complicated. Right-hand side: In eukaryotes , DNA is coiled around the histone
octamer, and runs of nucleosomes form a zig-zagging string. At the intermediate level
in the hierarchy, this string is organized into loops (average contour length 86 kbp;
range 5-200 kbp) by attachment to transcriptional activators/repressors (diamonds)
and engaged RNA polymerases (ovals) bound to a factory. Adapted from [41]

8.2.3 The Role of Random Chromatin Interactions

As discussed in Sec. 8.2.2 it is very important to distinguish between non-functional
physical contacts by intrinsic, random collisions and specific, functional contacts. The
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term ”non-functional” is very common but maybe misleading: As pointed out in Sec.
8.2.1 most of the promoters sit only 100 to 200 bp away from a corresponding binding
site. Since this is the length scale where random collisions dominate physical chromatin
interactions might be very important for transcription purposes, too.

For small distances the contacts due to random collisions prevail due to the intrinsic
close proximity of neighboring fragments [51; 72]. The frequent random interactions
between adjacent genomic fragments are likely dependent on local physical properties
of the chromatin fiber and limit the ability to detect specific looping interactions be-
tween elements separated by small genomic distances [72; 92]. Hence, in 3C-based
experiments often a gene desert region is measured as a control sequence to determine
the influence of random contacts on the experimental results [72].

The E2A model does not allow for specific chromatin interactions which supplies the
advantage that all physical chromatin interactions in this model are random collisions.
Therefore, one can determine and examine the amount of non-specific contacts in order
to improve 3C-based experiments for example.
In order to model the specific chromatin interactions on the large length scale one
needs much more coarse-grained approaches like the concept of random loops [25]. In
the latter case the biological environment of the cell nucleus that affects the chromatin
fiber is treated as a feature of the modelled polymer itself.
As discussed above the chromatin flexibility plays a very important role not only for
its structural properties but also for its functional features. The chromatin flexibility
has already been discussed in Sec. 7.2. Therefore, chromatin loop statistics will be the
focus of the next section (i.e. Sec. 8.3).

8.3 Chromatin Loop Statistics

8.3.1 Modelling

The chromatin loops that are examined in this section come from mere random chro-
matin collisions in opposite to the situation in the real cell nucleus where specific DNA
interactions induce loop formations, too. This is a problem in 3C-based experiments
where one is explicitly looking for the specific interactions (cf. Sec. 8.4) and thus wants
to avoid the random chromatin contacts.
It will turn out that flexible chromatin fibers without depletion effects and fibers with
histone depletion have very different loop statistics.

Since there are no other molecules than chromatin involved in the E2A model one has
to define what a loop is in the first place. For the considerations of this whole chapter
a part of a chromatin fiber is called a loop, when its end points come closer to each
other than 105 bp (i.e. 35nm). Other studies use similar values [124].

Furthermore, there was a coarse-graining for the fibers without histone depletion to save
computation time: Six nucleosomes were pooled to one coarse-grained chain segment
in the loop analysis. The fibers with histone depletion were not coarse-grained.
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Figure 102: This figure shows a 1.6Mbp long chromatin fiber conformation (without
histone depletion) with a large loop of length 167kbp (middle panel).
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If two nucleosomes come closer than the spatial cut-off length of 105 bp they will have to
be more than five nucleosome repeat lengths away from each other along the chromatin
fiber. This additional condition makes sure that only real loops count. This leads to a
second, but this time genomic, cut-off length of 5.91kbp. The cut-off lengths are equal
in the two cases of chromatin fibers.

Figure 103: Another example of a chromatin conformation with a small loop. The
chain has a total length of 160kbp. The loop length is ≈10kbp.

The fibers without depletion effects have lengths of 1.6Mbp, 800kbp and 160kbp (i.e.
8000NRLs, 4000NRLs resp. 800NRLs) and the fibers with depletion effects have con-
tour lengths of 160kbp and 80kbp. In the case of fibers with depletion effects smaller
fiber lengths are already sufficient to resolve the loop distributions as will be shown
below. Furthermore, they are harder to sample and in the following analysis sometimes
conditional probabilities are needed. Unfortunately, these require huge sample sizes
(e.g. to evaluate the conditional probability distribution of the loop end position over
the set of all fibers with a loop that starts a given position along the fiber). It will be
shown that the total length of a fiber does not much change the loop statistics as long
as it is above the persistence length.
For every fiber type the sample consists of at least 3 ∗ 106 chromatin conformations.

The concept of the persistence length has to be applied very carefully to the fibers with
H1 and nucleosome depletion: Although the persistence length is still of the order of
hundred nm, fiber parts can come quite close together due to the nucleosome depletion,
although they are only a few NRLs apart along the fiber axis, i.e. they are still in a
region where one would actually expect that the fiber was too stiff to bend.
Moreover, chromatin fibers in the cell nucleus which are larger than some hundred
kbp are not unconstrained any more and start to feel the presence of the biological
environment. The large chains without depletion effects have been sampled to exclude
that the differences of the loop distributions which will be discussed in the following
will disappear, if one changes the fiber length.
For the fibers with histone depletion the average skip rates of 8% (nucleosome skips)
and 6% (H1 skips) are applied again.

Fig. 102 shows a 1.6Mbp chromatin conformation with a large 167kbp long loop.
Most of the given probabilities in this chapter are under the condition that the chro-
matin fiber has at least one loop. These probabilities are denoted as conditional prob-
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abilities in the following. All unlooped fibers are left out in these cases.
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Figure 104: The distribution of the loop number for the two cases of chromatin fibers
with histone depletion and fibers without depletion effects. The average loop number
is 2.96 in the first case and 25.5 in the second case.

8.3.2 Results

One can see (cf. Fig. 104) that chromatin fibers with and without histone depletion
have completely different loop number distributions.
First of all, the chance that an arbitrary fiber without histone depletion of length
160kbp does not have a single loop is almost 50%, whereas the chance of finding a
fiber of the same length without a loop but with histone depletion is almost zero. The
average loop numbers for these two types of fibers are 0.31 for fibers without histone
depletion and 25.5 for fibers with histone depletion.
Furthermore, the shapes of the loop number distributions are very different, too. The
fibers with depletion effects show the behavior one would expect from a self-avoiding
random walk (cf. Fig. 192 in App. A). In the case of chromatin strands without histone
depletion only the tail of the distribution is visible, i.e. they are (even with huge fiber
length) too stiff with respect to their persistence length.

The distribution of the chromatin loop length is illustrated in Fig. 105. Shown are four
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cases: Fibers with and without histone depletion and with different contour lengths.
One can see that the fibers without histone depletion have a completely different loop
length distribution than the fibers that allow for depletion effects.
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Figure 105: The loop length distributions of chromatin fibers with and without de-
pletion effects for different fiber lengths. In the case of fibers without depletion effects
small loops are very unlikely, whereas in the case of fibers that allow for histone de-
pletion these very loops are dominating. The differences of distributions with different
fiber length come from the normalization.

The distribution for fibers without depletion effects resembles the loop distribution
of an ordinary (self-avoiding) random walk (cf. Fig. 193). Small loops are unlikely
because the fiber is too stiff to bend on the short length scales. The persistence length
of 280nm corresponds to a fiber contour length of about ≈13.5 kbp. One can see that
this is approximately the region where the loop probability starts to grow. Large loops
are unlikely, too, since the random walk is transient in three dimensions.
The loop length distribution of a random walk follows the scaling law

P (l) ∝ l−c,

where c = d/2 for a random walk and in the case of a self-avoiding walk c = dν − σ4

i.e. 2.68 in the 2D case and 2.22 in the 3D case [215].
The loop distribution of the chromatin fibers with depletion effects looks completely
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different: Small loops are very likely in this case. The depletion effects give the fiber a
lot more flexibility. Especially the nucleosome depletion allows the fibers to bend even
on small length scales.

The fiber length does not have a recognizable effect on the loop distribution on this
small length scale. The difference of the 160kbp-fiber without depletion effects and the
corresponding 10-fold larger fiber comes from the normalization since the fiber length
limits the maximal loop length.
Furthermore, one has to keep in mind that there is a cut-off for the minimal loop length
at about 5.9kbp.
Another plot of the loop length distribution for more different fiber sizes is supplied by
Fig. 105 in App. A.
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Figure 106: The distribution of the loop start respectively end position for fibers
without histone depletion and a length of 160kbp.

Fig. 106 shows the distribution of the loop start and end positions for chromatin fibers
without nucleosome depletion and a length of 160kbp. A similar figure for the case of
a random walk can be found in App. A (cf. Fig. 195).
The loop start probability is largest at the beginning of the fiber since there are simply
more possibly end points for the loop. The two distributions are mirror images of each
other since there is no difference between the two fiber ends.
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If the loops were independent of each other and one did not have any finite size effects,
the loop start/end position distribution would simply be uniform. That means the two
random variables S (loop start position) and E (loop end position) would have uniform
distributions: fS = fE = 1/l. Then the loop length L = |S − E| has the probability
distribution fL = fabs ◦ fS−E .
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Figure 107: This figure shows the distribution of the loop start respectively end po-
sition for larger fibers (1.6Mbp contour length) without histone depletion as a semi-
logarithmic plot.

The latter is simply a triangle function

fS−E(x) =

{
1/l + x/l2 ⇐ x < 0
1/l − x/l2 ⇐ x ≥ 0

with l = 160kbp. The composition of the two probability densities fabs ◦ fS−E can be
calculated by evaluating the convolution of them (cf. App. H). The density of the abso-
lute value is a simple boxcar-function on the positive x-axis. Therefore, the convolution
of the densities is simply the half of the triangle on the positive x-axis:

fL(x) =

{
0 ⇐ x < 0
2/l − 2x/l2 ⇐ x ≥ 0
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where l is again the fiber length. But since the loop start and end positions are not
uniformly distributed along the contour length of the fiber one does not get a simple
linear decrease of the loop length. Nevertheless, some models for genome folding on
larger scales assume independent and uniformly distributed chromatin loops [25] since
this assumption gets better with increasing fiber length (cf. Fig. 107).

Fig. 108 shows the loop length in dependence on the loop end position as a scatter plot.
One can see that for a given end position of the loop all possible loop lengths occur
(but not equally distributed of course).
The offset with respect to the x-axis comes from the minimal loop-length condition
defined in Sec. 8.3.1. The same applies for the offset in y-direction.
The dependence of the loop length on the loop start position looks like the mirror
image of Fig. 108 i.e. the range of possible loop lengths is decreasing with increasing
start position.

Figure 108: The loop length in dependence on the loop end position as a scatter plot.
One can see that for a given end position all possible loop lengths exist.

The dependence of the loop length on the loop center is shown in Fig. 196 in App. A
again as a scatter plot. Hereby, the loop center C is defined as follows: C = (S+E)/2.
As expected the loop length distribution is broadest for loops around the center of the
fiber.
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8.4 Comparison with 5C Experiments

Experimental 3C-based methods are very important for the investigation of DNA in-
teractions. All the current 3C-based methods are described in [53; 192]. Nevertheless,
a short summary will be given in the next section (i.e. Sec. 8.4.1).
After that the simulation results are compared to results of a 5C experiment [72].

8.4.1 3C-Based Methods to Capture DNA Interactions

The shape of the genome is thought to play an important part in the coordination of
transcription and other DNA-metabolic processes. Chromosome conformation capture
(3C) technology allows to analyze the folding of chromatin in the native cellular state
at a resolution beyond that provided by current microscopy techniques, although it
brings in some other difficulties [52].
It has been used, for example, to show that regulatory DNA elements communicate
with distant target genes through direct physical interactions that loop out the inter-
vening chromatin fiber.

3C technology has become a standard research tool for studying the relationship be-
tween nuclear organization and transcription in the native cellular state.
Other technologies based on the 3C principle have been developed that aim to increase
the throughput: 4C technology allows for an unbiased genome-wide screen for interac-
tions with a locus of choice, whereas 5C technology permits parallel analysis of inter-
actions between many selected DNA fragments. Furthermore, Chip-loop methodology
combines 3C with chromatin immunoprecipitation to analyze interactions between spe-
cific protein-bound DNA sequences.

The 3C procedure involves five experimental steps (cf. Fig. 109). First, cells are fixed
with formaldehyde, which cross-links proteins to other proteins and to DNA segments
that are in close proximity in the nuclear space. Second, the cross-linked chromatin
is digested with an excess of restriction enzyme, separating cross-linked from non-
cross-linked DNA fragments. Third, DNA ends are ligated under conditions that favor
junctions between cross-linked DNA fragments. Fourth, cross-links are reversed. Fi-
nally, ligation events between selected pairs of restriction fragments are quantified by
PCR, using primers specific for the fragments being studied.

The technique allows the identification of physical interactions between distant DNA
segments and of chromatin loops that are formed as a consequence of these interac-
tions, for example between transcriptional regulatory elements and distant target genes
[134; 150; 156; 196; 212].

3C technology is particularly suited to study the conformation of genomic regions that
range roughly from five to several hundred kilobases in size. The smallest region studied
so far by 3C technology spans 6,700 base pairs (bp) [155], whereas the largest region
analyzed spans ≈600kb [194].
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Figure 109: Schematic representation of 3C-based methods. In 3C, 4C and 5C methods
DNA interactions are captured by formaldehyde treatment, DNA digestion with a
restriction enzyme and ligation of cross-linked fragments and then ligation frequencies
are measured. Adapted from [192].
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It is important to note that because of the flexibility of the chromatin fiber DNA seg-
ments on the same fiber are engaged in random collisions (cf. Sec. 8.2.3). Therefore, the
mere detection of a ligation product does not necessarily reveal a specific interaction.
To ascertain that an interaction is specific requires the demonstration that two DNA
sites interact more frequently with each other than with neighboring DNA sequences.
To do so it is important to know the amount of random chromatin collisions which is
the subject of this chapter.

3C and 3C-based technologies provide information about the frequency but not the
functionality of DNA interactions. Thus, additional, often genetic, experiments are
required to address whether an interaction identified by 3C-based technologies is func-
tionally meaningful. For example, many of the interactions identified by 4C technology
[191] between genomic regions far apart on the same chromosome or on other chro-
mosomes may well be nonfunctional and merely the consequence of general folding
patterns of chromosomes [50].

Furthermore, a meaningful (that is, quantitative) 3C analysis must be performed on a
DNA template that represents many genome equivalents and DNA interactions can be
quantified accurately only, if they occur in a substantial proportion of the cells. Sites
separated by large genomic distances or present on different chromosomes often do not
form enough ligation products for accurate quantification, even if microscopy studies
suggest that they come together in a substantial proportion of cells. To study such
long-range interactions one should use high throughput 4C technology.

Large-scale mapping of several hundred chromatin interactions using standard 3C is
time-consuming and difficult. The introduction of the 3C–carbon copy (5C) method
generates the possibility of such large-scale locus-wide analysis [72; 73]. The method
uses a multiplex ligation-mediated amplification step to amplify selected ligation junc-
tions, thereby generating a quantitative carbon copy of a part of the initial 3C library
which is subsequently analyzed by microarray detection or high-throughput sequencing
(cf. Fig. 109).

8.4.2 Comparison of Loop Occurrence with 5C Measurements

In this section the chromatin loop statistics (cf. Sec. 8.3) obtained by simulations with
the E2A model are compared to actual data sets from 5C experiments [72]. The ex-
perimental data which will be used is compiled in Tab. 17, Tab. 18, Tab. 19 and Tab. 20.

Dekker et al. [72] verified the 5C technology at a previously by 3C experiments in-
vestigated region of 400kbp length around the human β-globin locus. Furthermore,
they investigated a 100kb large gene desert on chromosome 16 as a reference system
to measure the physical contacts which come from random chromatin collisions and to
normalize the data sets obtained by the different experiments.
Moreover, two different cell types have been used in this study: The erythroleukemia
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cell line K562 where the β-globin locus is expressed (”On”) and the lymphoblastoid
cell line GM06990 where the locus is not expressed (”Off”).

Figure 110: Analysis of the conformation of the gene desert control region. (A)
Positions of alternating 5C forward (top) and reverse (bottom) primers throughout the
gene desert control region. (B) Chromatin interaction frequencies of the gene desert
region as determined by conventional 3C (left panel), by 5C and microarrays (middle
panel) and by 5C and quantitative sequencing (right panel). Interaction frequencies
are plotted vs. genomic distance between the interacting fragments. Bars represent
the S.E.M. Interaction frequencies detected in K562 cells are also presented as two-
dimensional heat maps in which the color of each square is a measure of the interaction
frequency. Note: Primers 3, 6, and 20 recognize repetitive sequences. These primers
were included to generate 5C libraries, but data obtained with these primers are not
included in B. Adapted from [72].

Since we are only interested in the statistics of purely random contacts here we will focus
on the part of the 5C data which concerns the 100kbp gene desert. This region has only
the strong interactions between nearby sites but (apparently) no functional long-range
looping contacts [51; 53; 172]. Hence, the data should reflect a rather unconstrained
chromatin fiber (cf. Fig. 110) which shows the random coil behavior of chromatin.
The β-globin region data looks very different from the data of the gene desert and
shows some strong long-range looping interactions [72].
The locations of the primers which where used in [72] to receive the data for the gene
desert region can be found in Tab. 16 (App. B).

Fig. 111 shows a comparison between the interaction frequencies obtained by the E2A
model simulations and the 5C-data from [72]. This plot is very similar to Fig. 110 and
the shape of the loop length distribution has already been discussed in Sec. 9.3. Fig.
112 shows the comparison between the simulations results and the 5C-data, too, but
for more different fiber lengths.
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One can clearly see that the fibers without histone depletion are much too stiff to allow
the looping on the small scale which was found in the experiments. Furthermore, a
lot of comparable 30nm chromatin models (cf. Sec. 2) have persistence lengths around
300nm, too, which corresponds to a contour length of about 15kbp along the fiber.
That means these models are not able to explain the chromatin loops on the small
scale below this value.
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5C-data: GM06990 cells (β-globin locus off)

5C-data: K562 cells (β-globin locus on)
flexible chromatin fibers (total length: 160kbp)
flexible fibers with histone depletion (length: 160kbp)

Figure 111: The comparison with the 5C-data [72] shows that the chromatin fibers
which do not allow for histone depletion are much too stiff on the small scale. With a
persistence length of 280nm, i.e. 13.5kbp along the fiber they don’t have any significant
looping interactions below genomic distances of this value.

The graph for the fibers with depletion effects do not fit perfectly but show at least
the same qualitative behavior as the 5C-data: The loop probability increases when the
loop length decreases (cf. Fig. 110 and Fig. 111), especially in the region below 15 kbp.
This can only be explained by allowing for depletion effects, nucleosome depletion in
particular.
This is a clear hint that histone depletion plays a significant role for the looping proper-
ties of chromatin. The depletion effects might even be crucial for transcription purposes
as only they allow physical contacts on a small scale.

Due to the cut-off for the loop size formerly defined (cf. Sec. 8.3.1) we do not get smaller
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loops than 5.9kbp.
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5C-data: K562 cells (β-globin locus on)

5C-data: GM06990 cells (β-globin locus off)
flexible chromatin fibers (total length: 1.6Mbp)
flexible chromatin fibers (total length: 800kbp)
flexible chromatin fibers (total length: 160kbp)
flexible fibers with histone depletion (length: 160kbp)
flexible fibers with histone depletion (length: 80kbp)

Figure 112: The interaction frequency depending on the corresponding genomic dis-
tance for different fiber lengths compared with 5C-data [72]. The main difference in
the different distributions of the same fiber type come from the normalization since the
fiber length limits the maximal loop length. One can see that only fibers with histone
depletion and nucleosome depletion in particular explain the loops on the small scale.

The graphs in Fig. 111 and Fig. 112 do not reveal where along chromosome 16 the found
interactions occur. To better illustrate this chromatin interaction maps are shown in
Fig. 113 (5C-data), Fig. 114 (simulated chromatin fibers of length 160kbp) and Fig.
115 (simulated fibers without histone depletion of length 1.6Mbp).
Furthermore, the interaction frequencies are also illustrated as heat maps in Fig. 116
and Fig. 117 for the case of 5C-data and Fig. 118 and Fig. 119 and Fig. 120 for the
case of chromatin fibers generated by the E2A model. Fig. 197 and Fig. 198 show the
5C-data in the among biologists popular way of heat maps with equidistant spacing.
They can be found in App. A. The color of each square is an indication of the interac-
tion frequency between the considered fiber parts (cf. colorbar).

One can see again that the most frequent interactions occur between chromatin parts
that have a small genomic distance.
The large gap in the case of fibers without histone depletion (cf. Fig. 114, top) comes
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from the local fiber stiffness: Points that are very close to each other along the chro-
matin fiber can’t have a small spatial distance because the fiber is not able to bend
that tightly. The gap occurs in the case of chromatin with histone depletion as well,
but its width is much smaller (cf. Fig. 114). The gaps in Fig. 114 (top) and Fig. 115
are equally broad.

The gap widths can be compared in Fig. 121 where a cut through the previous 3D plots
(i.e. Fig. 113, Fig. 114 and Fig. 115) is presented. In the case of the experimental data
two cuts have been made (denoted by ’I’ and ’II’) for each cell type.

All cuts go through the central interaction peak and therefore the graphs represent the
interaction frequency of a particular fiber part with the center of the fiber. The distance
from the fiber center is shown at the x-axis. The sign of the distance corresponds to
either one fiber end or the other.

One can see that the interaction frequency of chromatin without histone depletion is
much too small in order to explain the behavior of the 5C-data. The graph for the
fibers with depletion effects comes much closer although some data points seem to lie
within the central zero interaction gap.
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Figure 113: This figure shows the interaction frequency which was measured by 5C
experiments [72] on chromosome 16. One can see that chromatin parts with a small
genomic distance interact most frequently.
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Figure 114: A plot of the interaction frequency found by chromatin simulations with
and without histone depletion. The fiber length is fixed to 160kbp in this case. The
central gap comes from the local stiffness of the fibers. One can see that parts of
chromatin with histone depletion can even interact when their genomic distance is
small.
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Figure 115: This figure shows the interaction frequency of chromatin fibers without
histone depletion of length 1.6Mbp.





8.4 Comparison with 5C Experiments Philipp M. Diesinger

60.85 60.86 60.87 60.88 60.89 60.9

60.85

60.86

60.87

60.88

60.89

60.9

 

position along chromosome 16 [Mbp]

DNA Contact Statistics

(5C-data: K562 cells, β-globin locus on)

 

p
o
s
it
io

n
 a

lo
n
g
 c

h
ro

m
o
s
o
m

e
 1

6
 [
M

b
p
]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 116: Heat map illustration of 5C-data (K562 cells) [72].
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Figure 117: Heat map illustration of 5C-data (GM06990 cells) [72].
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Figure 118: Heat map illustration of fibers without histone depletion (160kbp).

Figure 119: Heat map illustration of fibers with histone depletion (160kbp).
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Figure 120: Heat map illustration of fibers without histone depletion (1.6Mbp).
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Figure 121: This figure shows the interaction frequency of different fiber parts with
the center of the chromatin fiber. Shown are simulation results of chromatin with and
without histone depletion as well as results from 5C-experiments on chromosome 16
[72].

8.5 Chromatin Loop Entropy

In systems which are in thermal equilibrium with their environment, i.e. which have
a constant temperature, the free energy F is minimized. In this section the entropy
S which contributes to the free energy is examined with respect to chromatin loops.
Of course the entropy is only one side of the medal since F = U − TS determines the
system’s behavior.

8.5.1 Loop Number Entropy

Fig. 122 shows the loop number entropy difference ∆Sk,0 between chromatin fibers
which have k loops and fibers without loops:

∆Sk,0 = Sk − S0 = kBln
(
p(k)
p(0)

)
,

where p(k) is the probability for a chromatin fiber to have exactly k loops (cf. Fig. 104).
Here it is assumed that p(k) ∝ Ωk, the number of microstates with exactly k loops.
The loop entropy number difference of other fiber with several different lengths can be
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found in App. A (cf. Fig. 199).

One can see that the entropy difference of the fibers without depletion effects is always
negative. This is because the probability to have no loop at all p(0) is larger than for
any other loop number p(k > 0).
The entropy difference in the case of fibers with histone depletion first increases since
p(0) is very small in this case and it is unlikely to have only a few loops. Then it
decreases because p(k) decreases, too (due to the fact that the chain length and the
transience of the fiber limits the loop distribution). The entropy is positive in this case
since it is very likely that chromatin fibers with histone depletions have several loops.
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Figure 122: This figure shows the loop number entropy difference between the chro-
matin fibers without loops (S0) an the fibers with k loops. The entropy difference in
the case of fibers without histone depletion is always smaller than zero because here
the largest loop number probability is p(0).

8.5.2 Loop Entropy

Entropy loss due to loop formation was studied for the case of disconnected loops in
[84; 180; 189]. In their seminal article, Poland and Scheraga [162], and Wang and
Uhlenbeck [222], considered coupled Gaussian loops.

Loop entropy is defined as the entropy lost upon bringing together two segments of a
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polymer. For a fiber conformation with only one single loop the entropy loss is given
by

∆S = α kB ln(l),

where l is the loop length and α is a polymer type specific coefficient.

100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
x 10

-3

loop length l [NRL]

p
ro

b
a
b
ili

ty
 p

(l
)

Fit of the Loop Length Distribution of Fibers with exactly one Loop

 

 

chromatin fibers without histone depletion (160 kbp)
power law fit

Figure 123: Power law fit of the loop length distribution in the case of chromatin
fibers without histone depletion. The goodness of the fit is SSE=0.0001155 (Sum of
Squares due to Error) and R-square = 0.8667 (coefficient of multiple determination).
The exponent of the fit is -1.725(= −α1).

This expression for the entropy comes from a power-law probability distribution of the
loop length: p(l) ∝ l−α. In the case of a three-dimensional random walk α = 3/2 and
in the case of a self-avoiding walk α ≈ 2.2 [215].
Furthermore, the loop entropy varies with the loop position since contacts near the
ends of a polymer are more likely than contacts in the middle due to excluded volume
effects. But the influence of the loop position on the entropy will not be considered
here. It was already discussed in Sec. 9.3.

The loop length distribution was fitted with a power law in order to estimate α in the
two cases of chromatin fibers with and without histone depletion.
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One needs independent loops for this loop length distribution. Therefore, in the case
of fibers without histone depletion only such fibers were considered which have exactly
one loop.
In the other case of fibers with histone depletion it is very hard to find conformations
with only one loop. Hence, the used loop length distribution contains all fibers that
have less than ten loops in that case assuming that the loops are not influencing each
other very much.
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Figure 124: Power law fit of the loop length distribution in the case of chromatin fibers
with histone depletion. The goodness of the fit is SSE=0.0001589 (Sum of Squares due
to Error) and R-square = 0.8809 (coefficient of multiple determination). The exponent
of the fit is -2.231(= −α2).

The results of the fits are shown in Fig. 123 and Fig. 124. The determined coefficients
are α1 = 1.725 in the case without histone depletion and α2 = 2.231 in the case of
fibers with histone depletion. The chromatin fiber length was fixed to 160kbp for both
types of chromatin fibers.

α1 is smaller than the theoretical prediction for self-avoiding random walks. It seems
that the fibers are too short to already feel the long-range excluded volume interactions
at full extent. On the other hand, the fit is strongly influenced by the scatter of the
data points with small loop lengths. Therefore, the fit does not match the tail of the
distribution very well. If this was the case, the coefficient would be larger (abs. val.)
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and thus fit better the theoretical prediction.
In the case of fibers with histone depletion the coefficient matches the prediction of 2.2
very well.
Fig. 125 shows the distribution of the loop entropy ∆Si = αikBln(l) in the cases of
fibers with one respectively less than ten loops. One can see that the distributions
resemble the distribution of the loop lengths (cf. Fig. 105).
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Figure 125: The loop entropy distribution of chromatin fibers with one respectively
less than ten loops.

8.5.3 Wang-Uhlenbeck Entropy

The loop entropy becomes more complicated in the case of multiple loops within the
one fiber. In this case the loop entropy is determined by a matrix method which was
developed by Wang and Uhlenbeck [222].

If a fiber has k loops then the corresponding Wang-Uhlenbeck matrix is a l×l symmetric,
real matrix. The elements Wij of the matrix equal the number of common monomers
of loop i and j i.e. the diagonal elements are simply the loop lengths. The entropy of
making the particular contacts is then given by

∆S = α kB ln(det(W )).
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As an example consider a fiber with k = 3 loops with the starting points s = (82, 44, 62)t

and the loop end positions e = (95, 56, 91)t in multiples of the nucleosome repeat length.
Loop one and loop three overlap which means that the corresponding Wang-Uhlenbeck
matrix is

W =

 13 0 9
0 12 0
9 0 29

 .

Fig. 126 shows the distribution of the Wang-Uhlenbeck loop entropy for all chromatin
fibers without histone depletion and chromatin fibers with histone depletion. All kinds
of loops are considered here and the fiber length was fixed to 160kbp in both cases.
The mean values of the entropy distributions are about 440kB (without histone deple-
tion) and ≈200kB (with histone depletion) but due to the results shown in Fig. 122 the
Wang-Uhlenbeck entropy is only conditionally applicable in the latter case.
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Figure 126: This figure shows the Wang-Uhlenbeck entropy distribution of chromatin
fibers with multiple loops.
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 Gelation of Nucleoporins

In this chapter it will be examined whether hydrophobic parts of FG-rich nucleoporins
are the reason for their ability to form a hydro-gel [87]. Thereby, the N-terminal fsFG-
domain of the essential yeast nucleoporin Nsp1p [107] will serve as a nucleoporin model
system (cf. Sec. 9.1).

There is a competition between two kinds of entropic forces in the system: The excluded
volume interactions and the hydrophobic parts of the nucleoporin strands. Therefore,
it is not a priori clear whether the system percolates at a biologically realistic density.
A Metropolis Monte Carlo model was developed to address this question. It will be
described in Sec. 9.2 together with the percolation theoretical approach that will be
used to examine the connectivity properties of the model system.

Finally, a sol-gel phase transition will be found in the system at a critical density of
42mg/ml (cf. Sec. 9.3). This may be considered as a hint that hydrophobic nucleoporin
parts are key for the formation of gels in the nuclear pore complex (cf. Sec. 9.4).

This project was inspired by Prof. Dirk Görlich at the MPI for Biophysical Chemistry
in Göttingen who funded the main part of my PhD.
The main results of this chapter have already been submitted to a scientific journal
[66].

9.1 Introduction

All the proteins of the cell nucleus are imported from the cytoplasm. On the other
hand, the nucleus supplies the cytoplasm with all kinds of nuclear products such as
messenger RNA or transfer RNA. Since, during interphase, the eucaryotic cell nucleus
is surrounded by a double membrane called the nuclear envelope (NE, cf. Fig. 127 and
Fig. 129), transport between the cytoplasm and the nucleus has to proceed through
specialized pores (cf. Fig. 205, Fig. 128 and Fig. 206 in App. A).

Such pores are built by so-called nuclear pores complexes (NPCs, cf. Fig. 130), large
proteinaceous channels distributed across the NE. About 2000 of such nuclear pore
complexes exist on average within the nuclear envelope of a vertebrate cell. Their
exact number varies depending on cell type and throughout the cellular life cycle.
The central aqueous channel within NPCs is ≈40-60nm in length and has a diameter
of ≈30-50nm depending on the organism (cf. Fig. 132). This channel is guarded by
a permeability barrier [93; 138] that prevents uncontrolled intermixing of cytoplasmic
and nuclear contents by effectively blocking diffusion of particles larger than ≈30-40kD
in size. At the same time, however, this barrier allows efficient passage of molecules
which are in complex with nuclear transport receptors (NTRs) [93; 159; 224]. This
facilitated mode of NPC passage is reliant on interactions of NTRs with the FG-rich
nucleoporin repeats [15; 16; 20; 108; 167].
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Figure 127: Nuclear pores are large protein complexes that are located at the nuclear
envelope. In an average vertebrate cell a nuclear envelope has approximately 2000
nuclear pores. Adapted from [157].

Figure 128: Fluorescently labelled NPCs on the surface of a HeLa nucleus. Adapted
from [231].
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Each NPC is built-up from multiple copies of a set of about 30 different proteins
collectively called nucleoporins (cf. Fig. 130 in App. A). About half of these nucle-
oporins predominantly consist of folded domains often displaying alpha solenoid- or
beta-propeller folds. The second half also contains domains that show structural char-
acteristics typical for intrinsically unfolded proteins [54], i.e. highly flexible elements
lacking ordered secondary structure [54]. Such unstructured domains typically con-
sist of up to 50 Phenylalanine-Glycine (FG) dipeptide motives [160; 174] spaced by
hydrophilic amino acid stretches and are therefore called FG-rich nucleoporin repeat
domains (cf. Fig. 133).

Although it is commonly accepted that the permeability barrier consists of FG-rich
nucleoporin repeat domains, several different models exist that try to explain how such
repeats can form an efficient barrier.

Figure 129: Shown are details of a nuclear envelope. Nuclear pores (anti-NPC) red,
nuclear envelope (anti-Lamin) green, chromatin (DAPI-staining) blue. Scale bars: 1µm.
The images have been obtained by confocal laser scanning microscopy (top) and 3D
structured illumination microscopy (3D-SIM-Microscopy, bottom). Adapted from [182].
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These models [138; 170; 171; 175] differ foremost in the question of whether the perme-
ability barrier is tightened by inter-repeat interactions or not. The ”selective-phase”
model [170; 171] assumes the barrier to be a sievelike structure formed by hydrophobic
interactions between the FG-repeats’ hydrophobic clusters. Then the sieve’s mesh size
predetermines a size limit for passive exclusion. NTRs could bypass this size restric-
tion since their binding to hydrophobic clusters competes the noncovalent inter-repeat
cross-links and, thereby, opens adjacent meshes of the sieve.

Figure 130: An illustration of a nuclear pore complex. One can see the nuclear envelope
and the basket as well as the filaments of the pore complex. Adapted from [157].

All other models have in common that they neglect interactions between FG-repeat
domains. Recent attempts to experimentally discriminate between the proposed mod-
els were based on a simple assumption: Without inter-repeat interactions aqueous
solutions of FG-repeat domains should behave like viscous fluids. In contrast, if cross-
linking prevented a free sliding between the linear polymers, an elastic hydrogel should
form. Görlich et al. [87] tested these predictions for the N-terminal fsFG-repeat do-
main of the essential yeast nucleoporin Nsp1p which comprises 18 regular FSFG-repeats
and [107] less regular FG-repeats and showed that indeed a macroscopic gel is formed
when the protein concentration exceeds 8-10mg/ml of repeat domains [88] (cf. Fig. 131).





9.1 Introduction Philipp M. Diesinger

Figure 131: FG repeats can form an elastic hydrogel in aqueous solution. (b) An
aqueous solution with 26 mg/ml wildtype fsFG-repeat domain from Nsp1p (400 mM)
was filled into a silicon tubing, where it completed gelling. The formed gel was pushed
out of the tubing by gentle pressure, placed onto a patterned support (1 square =
1.4 mm), and photographed. (a) The F→S mutated repeat domain remained liquid
after identical treatment as b). This shows that nucleoporin FG-domains can form a
hydrogel under native conditions and that Phenylalanine side chains are crucial for gel
formation. Adapted from [87].

The same repeat domain (cf. App. F) will be considered here as a FG-rich model system.
We want to address the question whether the interactions of the hydrophobic FG-rich
repeats are actually strong enough to form a hydrogel. These attractive cluster-forming
interactions are in strong competition with the repelling (entropic) forces caused by
excluded volume of the nucleoporins and their side chains so that it is not a priori
clear, whether the system shows a transition from the sol to the gel state [83] at a
biologically realistic density. In contrast to the colloids sol state, gel formation would
argue for a substantially dilute crosslinked system.

Answering this question will give important information about possible implications of
hydrophobic interactions for the gelation of nucleoporin FG-repeat domains. Further-
more, one can examine whether the system is in the 3D percolation universality class.
Eventually, a finite size scaling will supply the order of magnitude of the critical density
at which the phase transition lies since we are interested in modeling the main effect
here and do not want to go to much into details in order to keep the model fast.
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Figure 132: This figure illustrates the geometry of nuclear pores. Adapted from [157].

Figure 133: The nuclear pore consists of proteins which are called nucleoporins. About
half of the nucleoporins in a pore are natively unfolded i.e. they lack of ordered sec-
ondary structure. These unfolded peptides are called FG nucleoporins because their
amino acid sequence is rich on phenylalanine—glycine subunits. Adapted from [157].
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9.2 Hydrophobicity induced Gelation of FG-rich Nucleoporins

In this chapter the question whether hydrophobic parts of FG-rich nucleoporins can
be the reason for their ability to form a hydro-gel [87] is addressed. Thereby, the N-
terminal fsFG-domain of the essential yeast nucleoporin Nsp1p [107] will serve as a
nucleoporin model system.
It comprises 18 regular FSFG-repeats and 16 less regular FG-repeats. This domain is
modeled and equilibrated ensembles of peptide networks were generated by a Metropolis
Monte-Carlo algorithm which then were analyzed by percolation theoretical methods.
The excluded volume of the protein backbone and all side chains which are at least
medium-sized (starting with Glu / E) as well as the hydrophobic clusters of the amino
acid sequence (cf. App. F) will be taken into account.

There is a competition between two kinds of entropic forces in the system: The excluded
volume interactions and the hydrophobic parts of the nucleoporin strands. Therefore,
it is not a priori clear, whether the system percolates at a biologically realistic density.
Nevertheless, a sol-gel phase transition was found in the system at a critical density of
42 mg/ml. This may be considered as a hint that hydrophobic nucleoporin parts are
key for the formation of gels in the nuclear pore complex.

9.2.1 Sol-Gel Transition as a Percolation Problem

FG-rich parts of nucleoporins in water have the ability to cluster together due to their
strong hydrophobicity [11]. Therefore, two or more different peptid chains can coalesce
via hydrophobic bonds to a cluster cf. Fig. 134 and Fig. 138. On the other hand,
repelling forces as the excluded volume of the peptide backbone or the side chains
counteract this effect. The mixture of peptide chains with the water molecules and
possibly already existing small peptide clusters represents the sol phase. In sol systems
[176; 200] it happens that as the mass density c of the monomers (or even polymers)
increases, larger and larger clusters are formed.

The interesting question is whether the hydrophobic clustering can become so strong
that it leads to a phase transition of the system. If this is the case, the system will
develop macroscopic properties like a finite elasticity or shear modulus [176; 200] when
the density exceeds a critical value ccrit.

At the phase transition a large cluster will exist that represents the gel network and
often coexists with single unbound peptide chains that may even be trapped in the
interior of the gel cf. Fig. 138. Further increasing of the density will let the sol phase
disappear completely and eventually all peptides contribute to one large cluster i.e. the
gel network.

In the case of such a sol-gel phase transition the critical density signals a connectivity
transition of the system. This model of polymerization and gelation was first invented
by Flory and Stockmayer [82; 83; 203] who were interested in the formation of large
branched polymers.
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Physical gels, in contrast to chemical gels, are formed when no permanent chemical
reaction takes place between the monomers (or polymers). Instead only a reversible
association links the particles to each other. Examples are silica aerogels and structures
formed during the gelation of silica particles in pure water or NaCl solution [176].
In the following model hydrophobic bonds between peptides will have the ability to be
dissolved again by thermic fluctuations (cf. Sec. E). In all these examples the connec-
tivity properties of the system play a key role for their physical understanding.

Figure 134: Two parts (colored white and grey) of the N-terminal fsFG-domain of
the essential yeast nucleoporin Nsp1p coalesce a hydrophobic bond and thus form a
cluster. The blue parts of the peptide backbone mark hydrophobic regions. The red
spheres illustrate the positions of the side chains (that are at least medium sized). The
corresponding amino acid sequences of the illustrated nucleoporin parts are shown, too,
and have the same color code as in the cluster visualization.

9.2.2 Percolation Theoretical Methods

If a transition from a sol phase with only a few clusters to a gel phase with cross-linked
peptides exists, increasing the mass density c of the system over some critical density
ccrit will push the system from the colloidal sol state to a gel state [200]. To determine
whether the system has such a phase transition from a sol to a gel state a model is
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developed and then percolation theoretical methods [83; 200] will be applied to analyze
the data.

Here, one has to examine the hydrophobic cross-linking between peptide chains. Two
important properties in this context are the correlation length ξ(c) and the percolation
probability P∞(c) of the system. In the case that the linear dimension of the system
l is larger than the correlation length, ξ is a measure of the largest hole in the largest
cluster and it decreases as c is increased above ccrit. P∞ is the probability that a given
peptide belongs to the largest cluster of the system.

Near the percolation threshold of infinitely large systems, i.e. c approaches ccrit, most
percolation quantities obey scaling laws that are largely insensitive to the structure
and the microscopic details of the system. For example the correlation length and P∞
scale as

ξ ∝ |c− ccrit|−ν and P∞ ∝ (c− ccrit)β.

Where ν and β are critical exponents that are completely universal, i.e. they are inde-
pendent of the microscopic details of the system and depend only on the dimensionality.
Even long but finite range interactions do not change this universality, although they
may change the value of ccrit.
The prefactors are non-universal (although certain ratios of them are universal again)
and therefore not mentioned here. Although percolation is universal, ccrit is very dif-
ficult to measure and depends on the microscopic details of the system. The main
question in this chapter is, does such a critical density and thus a phase transition exist
at all?

For an infinite system P∞ behaves like P∞ ∝ (c− ccrit)β if the density approaches the
critical value. As the mass density is decreased to the critical value P∞ decreases to
zero. For c < ccrit P∞ is zero. In a finite system, as ccrit is approached, ξ eventually
becomes comparable to the linear size of the network. Therefore, the variation of any
property X of a system of linear size L is given by

X ∝ L−af(x),

where x = L1/ν(c− ccrit) and f(0) is nonsingular [79; 200]. One can use this equation
either to determine critical exponents or to estimate the critical density itself. The
latter is done here.

Near ccrit and in the limit L→∞ one has P∞ ∝ (c− ccrit)β [200]. This leads to a = β
ν .

Therefore, all different system sizes which have been simulated fulfil the condition

P∞L
β/ν ∝ f(L1/ν(c− ccrit)). (43)

This means variation of ccrit until all curves f for the different system sizes collapse
to a master curve supplies the critical mass density at which the percolation threshold
lies.





Philipp M. Diesinger 9.2 Hydrophobicity induced Gelation of FG-rich Nucleoporins

9.2.3 Description of the Nucleoporin Model

In the model we take into account all FG-rich hydrophobic clusters of the nucleoporin
strands cf. App. F for details.
An individual Nsp1p peptide chain is shown in Fig. 135. Every single chain consists of
606 amino acids, has a mass of about 62kDa and consists of 37 hydrophobic clusters
i.e. 110 hydrophobic amino acids.
The hydrophobicity is modeled similar to the hydrophobic-polar protein folding model
[60]: If two hydrophobic parts of the peptide chains come closer than 0.7 nm the total
energy of the system will be reduced by 0.04336 eV [11; 125].

Figure 135: a) One conformation (out of the whole ensemble) of a single nucleoporin
strand. The red spheres represent side chains of large and medium sized amino acids
(starting with Glu / E). The FG-rich hydrophobic parts of the nucleoporin are marked
blue. They have been enlarged by 30 percent for this visualization. b) Same as a)
but transparent backbone and amino acid side chains to give a better view at the
hydrophobic parts. One can see small hydrophobic clusters (numbered 1-10). Since
there is no other peptide chain they are intra-bonds (cf. Fig. 141), i.e. bonds that the
peptide coalesces with itself.

The excluded volume of every amino acid is factored in just like the side chains of all
large and medium sized amino acids (starting at Glu / E). All smaller side chains were
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neglected.
The peptide backbone is modeled as a tube with side chains and hard-core excluded
volume potential.
Furthermore, all chains are trapped in a cubic box with side length l (cf. Fig. 137 and
136 for an illustration).

Figure 136: An example peptide system of N = 40 Nsp1p strands with density c = 25
mg/ml. There is one large cluster in the system that consists of 72.5% of all peptides.
The rest of the peptides are free. The total binding energy is −213 eV (−8.2 103 kT).

The formation of hydrogen bonds as well as other hydrophobic or hydrophilic interac-
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tions than that of the FG-repeats are neglected in this model.
Moreover, the model is not based on a underlying spacial lattice.

The rotational freedom (Φ and Ψ) of the peptide bonds between sp3 and sp2 hybridiza-
tion of each amino acid is modeled by pivoting the nucleoporin strand with respect to
the excluded volume potentials. Every amino acid contributes to the peptide flexibility
with one joint of this kind.

A Metropolis-Hastings Monte-Carlo algorithm was used in order to generate many
equilibrated configurations of the described nucleoporin model system (the N-terminal
fsFG-domain of the essential yeast nucleoporin Nsp1p, cf. App. F) at various densities
to analyze their connectivity properties.
The Metropolis algorithm is a rejection sampling algorithm (cf. App. E) used to gen-
erate a sequence of samples from a probability distribution that is difficult to sample
from directly. It was used to generate equilibrated ensembles of peptide networks of a
given density and temperature with Maxwell-Boltzmann distributed energy.
The start configuration for every peptide chain is a self-avoiding random walk. The
algorithm uses pivot moves to alter the peptide chains during the iterations as described
above. Randomly a number of peptide chains is chosen and pivoted (with respect to
the excluded volume interactions). Then the energy difference ∆E between the new
state after and the old state before the pivot moves is calculated. At the end of the
step a random variable decides with respect to the Maxwell-Boltzmann distribution
whether the new state is accepted or rejected. Hereby, the acceptance probability is

pA = min
(

1, exp(−∆E
kT

)
)
,

where k is the Boltzmann constant. This last step allows thermal fluctuations to break
bonds and dissolve clusters with a certain probability. Thus one gets equilibrated en-
sembles of system configurations at a certain density c and a temperature T . The latter
was fixed to T = 300K (i.e. lab conditions).

Then one can average over such an ensemble to determine system properties like P∞
or the radius of gyration (cf. Sec. 1.2.2) which is a measure for the extension of the
system. The radius of gyration is defined by

R2
g =

1
M

∫
d3rρ(−→r )|−→r −−→r S |2,

where ρ is the mass density, M the mass and −→r S the center of mass. The radius of
gyration will be used later in this chapter.

For every simulated system size (N = 10, 25, 40, 50 and 60 peptides) we generated an
ensemble of at least 105 configurations. Some example configurations are shown in Fig.
135, Fig. 137 and Fig. 136 (as well as in Fig. 200, Fig. 201, Fig. 202, Fig. 203 and Fig.
204 in App. A). The red spheres represent amino acid side chains, whereas the blue
tubes picture hydrophobic regions.
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The box surrounding the peptide system has free boundary conditions and it’s size l is
determined by the density c.

Fig. 135 (as well as Fig. 201 in App. A) shows only a single simulated N-terminal Nsp1p
fsFG-domain. One can see that some hydrophobic clusters are formed, whereas other
hydrophobic parts remain unbound.

Three different example configurations of peptide systems with 40 peptides are shown
in Fig. 137 (a larger version of this figure is available in App. A, Fig. 200). The
configurations have different peptide mass densities. At a low density (at the left) only
a few peptides coalesce bonds. But increasing the density leads to an increase of these
bonds and thus an increase of peptide clusters in the system. The box on the right
of Fig. 137 is enlarged in Fig. 136. Here one can already see a configuration where all
peptides contribute to one large cluster. Hydrophobic bonds can again be dissolved by
thermal fluctuations of the system.

Figure 137: Three example configurations of a system with 40 peptides with different
box sizes and thus different mass densities (1 mg/ml, 10 mg/ml and 25 mg/ml). The
clustering of the peptide chains increases (the fraction of clustered peptides are 10%,
37.5% and 72.5% with decreasing density (resp. decreasing box volume). A larger
version of this figure can be found in App. A (Fig. 200).
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9.3 Results

Fig. 139 and 143 show the increase of clustering in the system: With increasing mass
density the peptid network exceeds the percolation threshold and eventually all chains
contribute to one large cluster. Finite size effects lead to a rounding of the phase tran-
sition [200]. This shows that the attractive cluster-forming hydrophobic interactions
of the N-terminal Nsp1 fsFG-domains are strong enough to compete with the entropic
forces by the excluded volume of the peptid strands. This may be a hint that indeed
FG-rich hydrophobic parts of nucleoporins are key for the percolation and thus the
formation of gels in the nuclear pore complex.

Fig. 140 shows the radius of gyration Rg of the largest cluster. For small densities
Rg is simply the extension of a single peptide chain (about 10nm) because the chains
interact very weakly with each other and therefore collapse by forming hydrophobic
clusters. With increasing density the average largest cluster grows and thus the corre-
lation length increases until one large cluster is formed. Eventually at high densities
(i.e. near ccrit) the box volume limits extension of the cluster, and therefore, Rg de-
creases again as the box size l decreases with increasing density c (as c ∝ l−1/3).

The average number of hydrophobic bonds which an individual peptide chain coalesces
with itself (”intra-bonds”) to form hydrophobic clusters is relatively independent of the
mass density (cf. Fig. 141). The average number of intra-bonds of a single Nsp1p pep-
tide chain is of the order of 100. However, the average number of hydrophobic bonds
which an arbitrary peptide chain coalesces with other peptide chains (”inter-bonds”)
rapidly increases with the mass density of the system and the system size (cf. Fig. 141).

The finite size scaling of P∞ is shown in Fig. 142. ccrit was varied in integer intervals
until the data collapse to the master curve was best. We used the sum of the squared
distances between the curves for different system sizes as a measure for the extend of
the data collapse and varied ccrit until it was minimal. The final result for the critical
density was ccrit = 42 mg/ml.
The critical exponents used were: β = 0.41 and ν = 0.88 i.e. the critical exponents of
3D percolation. Other critical exponents give a very bad fit.
One can see in Fig. 142 that the collapse to a master curve is not perfect but one has
to keep in mind that P∞ has strong fluctuations (cf. Fig. 139). The peptide systems
were difficult to sample and we decided to simulate different system sizes instead of
absolutely minimizing fluctuations of the measured properties for only one number of
peptides. At the end, this is what makes the finite size scaling possible. The estimation
of the critical density is a byproduct in this work. Our main goal was to answer whether
there is a phase transition to a gel phase at all.

9.4 Conclusions

It was not a priori clear whether the examined peptide system would be able to form
a gel by hydrophobic FG-rich clusters at biologically realistic densities. In the model
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system of the Nsp1p fsFG-domain we found a gel-sol phase transition at a critical den-
sity of 42 mg/ml which is not far away from biologically realistic densities in nuclear
pore systems: Experiments on Nsp1p systems show that a macroscopic gel is formed
above densities of 8-10 mg/ml. The gel was identified in this case by visual inspection
[87].

Figure 138: Example configuration of 40 peptides (N-terminal Nsp1p fsFG-domains
cf. App. F) with colored clusters at a mass density of 10 mg/ml. Altogether, there are
five clusters (colored green (12 peptides), yellow (5 peptides), red (2 peptides), black
(2 peptides) and pink (3 peptides)) in this configuration. White peptides are single,
unbound nucleoporins that have no hydrophobic bond with another peptide and thus do
not contribute to any cluster. The box on the right shows the same configuration as on
the left with the difference that the single unbound peptide chains are not shown. 60%
of all nucleoporins in this configuration have hydrophobic bonds, i.e. they contribute
to some of the five clusters. The other 40% are unbound. A larger version of this figure
can be found in App. A (Fig. 202).

This shows that the attractive cluster-forming hydrophobic interactions of the N-
terminal Nsp1 fsFG-domains are strong enough to compete with the entropic forces
by the excluded volume of the peptid strands. This may be a hint that indeed FG-rich
hydrophobic parts of nucleoporins are key for the percolation and thus the formation
of gels in the nuclear pore complex.

We neglected hydrogen bonds in our model as well as hydrophilic interactions and fo-
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cused instead on modeling the most dominant effects namely the FG-rich hydrophobic
clusters. Hydrogen bonds would support attractive forces whereas hydrophilic parts
would lead to an increase of the repulsion in the system and thus to more open struc-
tures. These opposite effects might slightly shift the critical density of the system.
Exact predictions of critical densities in such complex systems are very difficult even
in the easier case of Ising-models.
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Figure 139: This figure shows the average percentage of the largest cluster in depen-
dence on the mass density of the system. One can see that the largest cluster grows with
increasing density until all peptides are linked. In this case the system gets macroscopic
properties like a finite elasticity or shear modulus and thus a gel is formed.

The small number of inter-bonds (compared to the number of intra-bonds) may give
the peptid network the possibility to open up easily which might be a biologically ad-
vantage to facilitate transport through the nuclear pore complex.

Although we already invested a huge amount of computer time, more simulations es-
pecially of larger systems would be nice. One could reduce the finite size effects and
have a more detailed view at the system. But we would need one order of magnitude
more computation time in order to achieve this goal which is not possible with current
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machines. Nevertheless, the data presented is already sufficient to show that the Nsp1p
peptide network is a percolating system and that the percolation threshold lies at the
order of magnitude of 40 mg/ml which is close to experimental results [87].
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Figure 140: This figure shows the mean radius of gyration Rg of the largest cluster of
the nucleoporin system as a measure for the system’s correlation length in dependence
on the mass density. For very small densities the correlation length is just the average
extension of a single peptid (around 10 nm). With increasing density the largest cluster
grows and thus the correlation length increases. In the case of large densities (c > ccrit)
the cluster size is eventually limited by the box size l and thus Rg is about the linear
dimension of the bounding box which decreases with increasing density c (c ∝ l−1/3).
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Figure 141: This Figure shows the average number of bonds between different peptides
(inter) and the average number of bonds an individual peptide coalesces with itself for
different system sizes: N denotes the number of peptides of the system. One can clearly
see that the number of inter-bonds increases with the mass density whereas the number
of intra-bonds is density independent.
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Figure 142: This figure shows the finite size scaling of P∞ which was used to determine
the critical density ccrit. The latter was considered as a parameter here and varied in
integer steps of 1 mg/ml until the curves for different system size fit best upon one
another (cf. Eq. 43). The so found critical density is ccrit = 42 mg/ml. Our focus on
the FG-rich hydrophobic clusters and thus the neglection of hydrogen bonds and other
hydrophobic or hydrophilic interactions leave a margin for this value but in principle
the order of magnitude should stay and we proved that gelation is possible. The critical
exponents used here were: β = 0.41 and ν = 0.88.
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Figure 143: This figure shows the average fraction of clustered peptides in dependence
on the mass density of the system. With increasing mass density at some point all
peptides contribute to one large cluster and thus a gel is formed.
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 The Mean Average Crossing Number

In this section it will be described how an analytical polymer physics tool, namely the
mean Average Crossing Number (mACN), has been developed further during my PhD.

Roughly speaking the mACN is a measure for the entanglement of polymer chains.

One basic motivation was to use the mACN to analyze two-dimensional experimental
chromatin projections with respect to their loop content (cf. Sec. 10.6) and then use
these results to improve the random loop model [25].

First, an overview over some possible applications of the mACN will be given in Sec.
10.1. After that Sec. 10.2 provides some basic analytical facts about the mean Aver-
age Crossing Number together with a description of the simulation methods that were
applied in the numerical part of this chapter.

In Sec. 10.3 the influence of excluded volume on the mACN will be examined. This
was not done before and it will be shown here that several approximations that are
crucial for many mathematical proofs of properties of the mACN still apply in the case
of chains with excluded volume.

Moreover, it turned out that the excluded volume interactions have a strong impact on
the behavior of the local crossing number of two chain segments at very small distances
but only a weak one at large distances.

Furthermore, it will be shown that the data is compatible with a N ln(N)-behavior for
the mACN, even in the case with excluded volume.

After that the connection between loops in polymer conformations and the mACN will
be investigated for different kinds of random walks (cf. Sec. 10.4) and it will turn out
that there is a strong correlation between these two variables. This makes the mACN
a potential tool for the estimation of loop numbers in polymer systems and it is the
basic motivation of Sec. 10.6 where a short outline of an idea for the estimation of the
loop number of two-dimensional experimental data is presented.

In Sec. 10.5 an analytical connection between the mACN and the two-point correlation
function Φ(−→r ,

−→
r′ ) and thus the scattering function S(−→q ) will be presented.

The major parts of Sec. 10.3.1 are results from my diploma thesis [61]. During my PhD
I made further simulations concerning the influence of excluded volume effects on the
mACN and the results have been published [63]. The remaining results of this chapter
are currently prepared for a further publication [68].





Philipp M. Diesinger 10.1 Introduction

10.1 Introduction

10.1.1 Polymer Entanglement

Random walks are frequently used to model the behavior of polymers at thermodynamic
equilibrium [48; 70; 83].
The simplest but also the most fundamental type of random walks is represented by
chains composed of freely jointed segments of equal length (equilateral) where the in-
dividual segments have no thickness. Such random walks are known as ideal random
walks and are used to model the behavior of polymers under so-called theta conditions
where polymer segments neither attract nor repel each other [163].

The behavior of ideal random walks is thoroughly researched and it is well established,
for example, that such measures of overall dimensions of ideal random walks like the
average end-to-end distance or the average radius of gyration scale with the number of
segments N as Nν where ν = 0.5 [48; 70; 83] (cf. Sec. 1).
Although the overall dimensions provide important information about the modelled
polymers, frequently additional characteristics of polymers are of interest. Among
these characteristics are some that can be used to measure the entanglement of the
polymers like the mean Average Crossing Number.

Figure 144: Strain energy distribution in a polymer strand with a trefoil knot. Shown
are distributions in chains of 35 (a) and 28 (b) carbon atoms taken from constrained
classical MD simulations. When the knot is sufficiently tightened the strain energy
localizes most on the bonds immediately outside its entrance points. Adapted from
[177].

The influence of knots on the properties of polymers has become of great interest, in
part because of their influence on mechanical properties [14].
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Knot theory applied to the topology of macromolecules indicates that the simple trefoil
knot is likely to be present in any long polymer strand [10; 85; 89; 112]. Many experi-
ments have been done to determine the relative strengths of different knots and these
show that the break in a knotted rope or polymer almost invariably occurs at the point
just outside the entrance of the knot [177; 220] (cf. Fig. 144).

In the case of circular polymers their knot type can be rigorously determined [1; 121].
However, the information about the knot type gives only the minimal crossing number
that one could see upon elimination of all nugatory crossings. The determination of
the knot type does not tell us, for example, how many nugatory crossings there are in
the analyzed polymer conformations. In addition, in the case of linear polymers it is
difficult to define their knottedness [142; 208] and the knot type is only a mathematical
property that describes the topology of a polymer and not the polymer conformation
itself.

There are no difficulties, however, with defining a directional crossing number that cor-
responds to the perceived number of crossings that can be observed on an orthogonal
projection of a given non perturbed trajectory in open or circular form. If a given
conformation or of a random walk is orthogonally projected onto a plane along a given
direction, one can count the number of crossings that are visible in this particular pro-
jection of the conformation.

To be independent of the choice of a particular projection the average crossing number
(ACN) is defined as the average of directional crossing numbers over all possible or-
thogonal projections (which is equivalent to the unit sphere) of a given conformation.
Furthermore, to be independent of the particular conformation it will be averaged over
all possible polymer conformations as well. Thus, one gets the mean average crossing
number (mACN).
For the first mean value one can imagine a sphere which contains the whole polymer
chain (resp. random walk). Then the tangential planes of this sphere are the possible
projection planes for this particular conformation.
The second mean value is the average over all polymers (or random walks) of length
N .

In contrast to the minimum crossing number the average crossing number is a more
natural geometric measure of polymer entanglement as it refers to the actual number of
crossings that can be perceived while observing a non-perturbed trajectory of a given
polymer. Of course, the mACN corresponds also to the time averaged crossing number
of randomly fluctuating polymers in solution.

10.1.2 The mean Average Crossing Number

The mean average crossing number (mACN) was introduced in [153; 220] as a simplified
version of the writhe of a random walk.
For a given linear closed polymer conformation the crossing number associated with
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a particular projection of the random walk is the number of crossings one observes
when the polymer is projected to a plane under the given projection direction (cf. Sec.
10.1.1). The average crossing number (ACN) of the polymer is then defined as the
average of this crossing number over all possible projection directions [56]. The mean
average crossing number (mACN) is the average of the ACN over all possible random
walks of a certain length N .

Figure 145: An example for a Gaussian chain of length N = 20 with excluded volume.
The dashed line is the projection of the chain onto the xy-plane and shows only one
crossing. The average crossing number of this particular chain is ACN= 1.61 and the
mean average crossing number of all Gaussian chains of length 20 is ≈1.96. The color
corresponds to the height of the ellipsoids.

Diao suggested to use the mACN which was called ’entanglement complexity’ in a
previous work [117], as a measure of entanglement to determine whether a (closed)
polymer chain is highly or weakly knotted [55].
Grassberger [96] showed that the mACN is mainly a measure for the ’opacity’ of a
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random walk.
For equilateral and for Gaussian random walks without excluded volume Diao [56; 57]
succeeded in showing that the mean average crossing number behaves c1N lnN + c2N .
Furthermore, in [153; 220] it was shown that the mACN satisfies mACN ∝ Nα for
N →∞ with α ≈ 1.2 [6].

10.2 Basic Properties

In this section some basic mathematical properties of the mean average crossing number
will be given. The proofs of the following theorems can be found in [56; 57; 61].

10.2.1 Basic Definitions and Lemmata
10.1 Definition

1. A Gaussian Random vector −→v = (x, y, z) is a random point with coordinates
x,y and z which are independent standard normal variables (with mean = 0 and
variance= 1). The probability density function (pdf) of −→v is the joint pdf of x,
y and z which is

p (−→v ) =
(

1√
2π
e−

x2

2

)(
1√
2π
e−

y2

2

)(
1√
2π
e−

z2

2

)
=
(

1√
2π

)3

e−
x2+y2+z2

2

= (
1√
2π

)3 · e−
|−→v |2

2 .

2. A Gaussian random walk (or chain) of n steps consists of n + 1 points X{0 ... n}
such that Xk+1 − Xk (k = 0, 1, ..., n − 1) are Gaussian random vectors and
X0 = (0, 0, 0)t. The joint pdf for all the vertices is

p(X1, X2, ..., Xn) =
(

1√
2π

)3n

e−
1
2

(|X1|2+|X2−X1|2+...+|Xn−Xn−1|2).

10.2 Lemma
Let −→v = (x, y, z)t be a given Gaussian random vector then x, y, and z are independent
variables and the spherical coordinates (r, θ, φ) (or spherical random variables) of −→v
are independent, too. Furthermore, one can show that the probability density functions
of r, θ and φ are given by

p1(r) =

√
2
π
r2e−

r2

2

p2(θ) =
1
2

sin(θ), and

p3(φ) =
1

2π
.
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The proof of Lemma 10.2 is straightforward and can be found in [122] for instance.

10.3 Lemma
1. The pdf of the kth chain point Xk of a Gaussian random walk is given by

gk(Xk) =
∫ ∫

...

∫ ∫
p(X1)p(X2 −X1) ... p(Xk −Xk − 1) dX1 ... dXk−1,

which leads to

gk(Xk) =
(

1√
2πk

)3

e−
|Xk|

2

2k . (44)

2. As a consequence of this the pdf of the random vector Xj+k −Xj (where Xj+k

and Xj are vertices from the same Gaussian random walk of length n) is given
by

gk(Xj+k −Xk) =
∫ ∫

...

∫
p(Xj+1 −Xj)p(Xj+2 −Xj+1) ...

... p(Xj+k −Xj+k−1 dXj+1dXj+2 ...dXj+k−1

=
(

1√
2πk

)3

e−
|Xj+k−Xj |

2

2k .

The proof of Lemma 10.3 can be obtained easily by using [95].

10.4 Definition
1. A vector U = (u, v, w)t will be called uniformly distributed on the unit sphere S2,

if the probability density function of U is

ϕ(U) =

{
1

4π ⇐ |U | = 1
0 otherwise .

2. If U1, U2, ..., Un are n independent random vectors uniformly distributed on S2,
then an equilateral random walk (or chain) will be defined as the sequence of the

points X0 = O, Xk =
k∑
i=1
Ui, k = 1, 2, ..., n in R3. Each Xk is called a vertex

and the line segment joining Xk and Xk+1 is called an edge of the equilateral
random walk.

10.5 Lemma
1. Let U be a uniformly distributed random vector on the unit sphere. Then the

spherical coordinates (θ, φ) of U are independent random variables with the fol-
lowing probability density functions:

p(φ) =
1

2π

p(θ) =
1
2

sin(θ).
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2. The joint probability density function p(X1, X2, ..., Xn) of the vertices of an equi-
lateral random walk is

p(X1, X2, ..., Xn) = ϕ(U1)ϕ(U2)...ϕ(Un)
= ϕ(X1 −X0)ϕ(X2 −X1)...ϕ(Xn −Xn−1).

Let Xk be the kth vertex of an equilateral random walk (1 < k ≤ n). Then its
density function is given by

pk(Xk) =
∫ ∫

...

∫
ϕ(X1 −X0)ϕ(X2 −X1)...ϕ(Xk −Xk−1)dX1dX2...dXk−1

and it has the closed form

pk(Xk) =
1

2π2r

∞∫
0

x sin rx
(

sinx
x

)k
dx. (45)

3. The following estimation shows that for large values of k pk(Xk) is approximately
Gaussian: ∣∣∣∣∣∣fk(Xk)−

(√
3

2πk

)3

exp
(
−3|Xk|2

2k

)∣∣∣∣∣∣ < 1
2k2.5

for k ≥ 10. (46)

The proof of the first point can be done easily by a transformation of the unit sphere
into spherical coordinates or can be found in [122]. The proofs of the second and third
point can be found in [55; 58; 59; 168].

Note that the probability density function pk(Xk) depends only on |Xk| so it can be
written as pk(|Xk|). Furthermore, if one defines rk = |Xk| (which is also a random
variable), the probability density function of rk is 4πr2

kpk(rk). It follows that the mean
diameter of an equilateral walk of length n is of order

√
n.

10.2.2 ACN of Two Non-Consecutive Line Segments

The following theorem will give the ACN of two line segments within a Gaussian
random walk. The behavior of the ACN of two line segments of a equilateral walk
will be given in theorem 10.7.

10.6 Theorem (ACN of Two Segments of a Gaussian Chain)
Let P and Q be two fixed points in R3

1. If P1 and Q1 are also fixed points in R3 and l1 := PP1, l2 := QQ2 are the two
corresponding line segments, then the average crossing number a(l1, l2) is given
by

a(l1, l2) =
1

2π

∫
t

∫
s

γ̇1(t) · (γ̇2(s)× (γ1(t)− γ2(s)))
‖γ1(t)− γ2(s)‖3

dtds (47)
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where γ1 and γ2 are the arclength parameterizations of l1 and l2.

2. Now let P1 and Q1 be random variables such that P1 − P and Q1 − Q are two
independent Gaussian random vectors. Then the expected value of a(l1, l2) is
given by

E(a(l1, l2)) = E(a(d)) =
1

2πd2
+O

(
1
d2.5

)
(48)

for large d (means
√
d > ‖γ1‖, ‖γ2‖) with d = ‖P −Q‖.

10.7 Theorem (ACN of Two Segments of an Equilateral Chain)
Let P and Q be two fixed points in R3

1. If P1 and Q1 are also fixed points in R3 and l1 := PP1, l2 := QQ2 are the two
corresponding line segments, then the average crossing number a(l1, l2) is given
by

a(l1, l2) =
1

2π

∫
t

∫
s

γ̇1(t) · (γ̇2(s)× (γ1(t)− γ2(s)))
‖γ1(t)− γ2(s)‖3

dtds (49)

where γ1 and γ2 are the arclength parameterizations of l1 and l2

2. Now let d = |P − Q| fulfil d > 4 and P1 and Q1 be random variables such that
U1 = P1 − P and U2 = Q1 − Q are two random vectors which are uniformly
distributed on the unit sphere S2. Then the expected value of a(l1, l2) is given
by

E(a(l1, l2)) = E(a(d)) =
1

16d2
+O

(
1
d3

)
. (50)

10.2.3 mACN of Gaussian and Equilateral Random Walks

In this section the means of the crossing number of a random walk over all possible
projections will be called the average crossing number and the means over all projections
and all possible chain confirmations will be called the mean average crossing number.

10.8 Theorem
Let c̄n be the average crossing number of a Gaussian random walk of n steps. Then
the mean average crossing number is

E(c̄n) =
1

2π
n log(n) +O(n). (51)
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10.9 Theorem
Let c̄n be the average crossing number of an equilateral random walk of n steps. Then
the mean average crossing number is

E(c̄n) =
3
16
n log(n) +O(n). (52)

10.2.4 Simulation Methods

The average crossing number of a random walk can be calculated by using the Gauss
formula

a(l1, l2) =
1

2π

∫
t

∫
s

|γ̇1(t), γ̇2(s), γ1(t)− γ2(s)|
‖γ1(t)− γ2(s)‖3

dtds,

where γ is the arclength parametrization of the random walk. But using this formula
leads to problems when some non-consecutive segments get close to each other.
To avoid these problems the average crossing number was calculated numerically by
counting the crossings in numerous projections of γ and taking the average of all these
crossing numbers. For each ACN calculation (at least) 1000 projections onto randomly
chosen planes have been made to get a good approximation of the actual ACN value.
Unfortunately, the crossing number depends discontinuously on the projection plane,
and therefore, a large amount of projections is needed.

Furthermore, the number of possible random walk conformations increases dramatically
with the length N of the walk. Therefore, a large sample has to be obtained for every
considered chain length. In most of the cases this is the limiting factor for the chain
length N due to the limited computation time.

10.3 Excluded Volume Effects

The main results of this section were obtained during former studies [61]. The contents
of this section has already been published [63].

In this section the influence of excluded volume interactions on the behavior of the mean
average crossing number (mACN) for random off-lattice walks will be studied. Gaussian
and equilateral off-lattice random walks with and without ellipsoidal excluded volume
up to chain lengths of N = 1500 will be investigated as well as equilateral random
walks on a cubic lattice up to N = 20000.
It will turn out that the excluded volume interactions have a strong influence on the
behavior of the local crossing number 〈a(l1, l2)〉 (cf. Sec. 10.2.2) at very short distances
but only a weak one at large distances. This behavior is the basis of the proof in [57; 56]
for the dependence of the mean average crossing number on the chain length N . It will
be shown that the data is compatible with an N ln(N)-behavior for the mACN, even
in the case with excluded volume.

We start by investigating the effects of excluded volume interactions on the mean
average crossing number (mACN) of equilateral and Gaussian random walks which
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represent polymer classes.
A hard-core ellipsoidal potential was used to simulate the excluded volume interactions
of the chain segments since many polymers can be modelled by such a potential (cf.
Fig. 145).

To understand the effect of the excluded volume interaction, let us focus our attention
initially on the scale invariant

a(l1, l2) =
1

2π

∫
γ1

∫
γ2

|γ̇1(t), γ̇2(s), γ1(t)− γ2(s)|
‖γ1(t)− γ2(s)‖3

dt ds (53)

which is the basis for the prediction [56; 57]

mACNGaussian(N) = 1
2πN ln(N) +O(N) (54)

≈ 1
2πN ln(N) + c1 ·N (55)

mACNequilateral(N) = 3
16N ln(N) +O(N) (56)

≈ 3
16N ln(N) + c2 ·N (57)

for the phantom and equilateral chains of length N without excluded volume. In the
equations above l1 and l2 are segments of the chain and γ is the arc-length parametriza-
tion (the above invariant can be considered as the first element in a hierarchy [98; 232]).
In [56; 57] it was shown that for two chain segments l1, l2 on average a(l1, l2) behaves
as

〈a(l1, l2)〉 =
1

2πd2
+O

(
1
d2.5

)
(58)

for Gaussian phantom and

〈a(l1, l2)〉 =
1

16d2
+O

(
1
d3

)
(59)

for equilateral phantom chains where d is the (fixed) distance between the two consid-
ered chain segments l1 and l2 and a(l1, l2) is averaged over all possible orientations of
l1 and l2 (cf. Sec. 10.2.2). So far, no prediction has been derived for the case of chains
with excluded volume interaction. Hence it is important to ask how far the estimate
also applies to the case of excluded volume interaction and how differences manifest
themselves.

Using Monte Carlo simulations [24; 101] the average crossing number was calculated
by counting the crossings in numerous projections of γ and taking the average over all
these crossing numbers. For every calculated average crossing number it was averaged
over 1000 randomly chosen planes to obtain a good estimate of the actual ACN value.
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Figure 146: The leading order term for the theoretical prediction of the large d case
[56; 57] and the numerical results for 〈a(l1, l2)〉 of Gaussian and equilateral chains for
small values of d. One can roughly see that 〈a(l1, l2)〉 is discontinuous at d = 0. Every
data point represents an average over at least 104 values.

Four types of chains have been investigated: Gaussian and equilateral chains with and
without excluded volume. All chains are open and start at the origin. The excluded
volume chains were generated with an (off-lattice) Pivot-Algorithm which for example
can be found in [115; 139] (cf. Sec. D for details). A hard-core excluded volume po-
tential was used in order to speed up the simulations. Between two consecutive chain
points there is an ellipsoidal hard-core excluded volume (cf. Figure 145). When gener-
ating chains with excluded volume interactions the Pivot-Algorithm simply rejects all
chain conformations which have at least two overlapping ellipsoids.

The chains without excluded volume are off-lattice random walks, since a lattice would
make it problematic to determine the behavior of the average crossing number because
only orthogonal orientations of the line segments would be allowed. The equilateral
random walks have a fixed step length of 1 and the orientation of the next line seg-
ment is randomly chosen by using the given probability distribution of Lemma 10.5. A
consecutive point Xk in a Gaussian random walk was determined by using a Gaussian
probability distribution (cf. Lemma 10.2) for the cartesian coordinates (xk, yk, zk)t of
this point and adding the last vertex Xk−1.
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Roughly speaking the mACN depends on two quantities: The behavior of 〈a(l1, l2)〉 in
dependance on d and the probability distribution (pdf) of d. To understand the effects
on the mACN due to excluded volume it is necessary to understand how excluded
volume interactions affect these two parameters.
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Figure 147: Shown are the ratios between the prediction for the leading order term
for the invariant 〈a(l1, l2)〉 and the simulation results. While the prediction pertains
to chains without excluded volume the results show the agreement with the theoreti-
cal predictions are excellent for distances larger than 10 for chains with and without
excluded volume. The strong fluctuations at the end for the larger distances are a
consequence of the plotted ratio. A single point in the figure represents at least an
average over 104 simulation results.

10.3.1 Influence of Excluded Volume on 〈a(l1, l2)〉

For 〈a(l1, l2)〉 it was found that the excluded volume interactions do not have any mea-
surable effect for distances larger than two (equilateral case) or three (Gaussian case)
chain segments (cf. Fig. 146). A calculation of correlation lengths for the orientation
of the chain segments leads to similar results, namely dc ≈ 1.39 for equilateral and
dc ≈ 2.81 for Gaussian chains.
Each data point of the Figures 146, 147 and 148 for 〈a(l1, l2)〉 is an average over at
least 104 values. The dashed lines in this figure show the leading order term for the
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theoretical prediction of [56; 57] (cf. Eq. 58 and 59).

Although these predictions have been calculated to describe the behavior of 〈a(l1, l2)〉
for large d, they already fit very well for d > 1 for chains with and without excluded
volume. Therefore, they might be used to derive some estimations of the mACN be-
havior for chains with excluded volume, too (only the large d case is important here
because these chains contribute mostly to the mACN).

There seems to be a discontinuity at d = 0, since 〈a(l1, l2)〉 should vanish at the origin
according to the Gauss invariant [56; 57]. Fig. 147 shows the comparison of the numer-
ical results with the theoretical prediction of the papers cited above. One can see that
the predicted behavior is not only good in the case of phantom chains but also in the
case of chains with excluded volume.
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Figure 148: Shown are the distance probability density functions (pdf) for Gaussian
and equilateral chains with and without excluded volume. In both cases the distribution
is rather different but yield the same behavior on average (cf. Fig. 147).

10.3.2 Influence of Excluded Volume on the Distribution of d

In contrast to 〈a(l1, l2)〉 there is a huge effect of the excluded volume interactions on the
probability distributions of d which can be seen in Fig. 148 for equilateral and Gaussian
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chains of length N = 100 (together with the numerical results for 〈a(l1, l2)〉 on a larger
scale in the background of the Figure).
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Figure 149: Shown are the mACN for Gaussian chains with and without excluded
volume and the best fit for each one (cf. tables). The inset shows the end-to-end
distance for the equilateral chains over its theoretical prediction N2νi (ν1 = 0.5 and
ν2 = 0.588). As this ratio converges to 1 one can see that the end-to-end distance
follows the expected behavior. Every data point of the inset represents an average over
at least 104 points and every point of the main figure is an average of at least 105

points.

One can see that the chains with excluded volume are much more stretched as ex-
pected due to the enhanced value of ν for the radius of gyration than those without.
The Gaussian chains are longer than the equilateral ones. This is a consequence of the
Gaussian probability distribution since the mean length of Gaussian chain segments is
about 1.6 and the length of all equilateral chain segments is normalized.

The probability density functions of the equilateral chains show peaks at d ≈ 2. This is
a feature of the equilateral chains since the distance of the endpoints of two consecutive
line segments is always larger than 0 and smaller than 2. If d exceeds 2, the probability
to find monomers with a distance d will drop immediately. In the case of the equilateral
chains with excluded volume the end-to-end distance of two consecutive line segments
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is always larger than

dmin = sin
(αmin

2

)
= 0.66 with αmin = 83.62 degrees,

where the minimal value of the angle α between two consecutive chain segments is
determined by the ellipsoidal excluded volume model. The probability density function
of the equilateral chains with excluded volume has two discontinuity points (at dmin =
0.66 and d = 2, cf. Fig. 148). The one without excluded volume shows only the one at
d = 2 as explained above.

10.3.3 Influence of Excluded Volume on the mACN

Figure 149 and Figure 150 show that the total mACN for chains with excluded vol-
ume is much lower than for phantom chains. As pointed out above this is mainly a
consequence of the much broader distance probability density function for chains with
excluded volume. The orientation effects (i.e. the changes of 〈a(l1, l2)〉) play only a
minor role.
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Figure 150: The mACN of equilateral random walks on a cubic lattice with and without
excluded volume interactions.

As these random walks are a model for equilibrated polymers in solution and as these
polymers do have excluded volume interactions one should expect a much lower ACN
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for these polymers than predicted by [56; 57]. Furthermore, a linear correction term
to the predicted N lnN -behavior (cf. Fig. 148) seems to worsen the fits in the case of
the chains with excluded volume as early points are all above the dashed line and late
points are below the line. Each data point in the figures which show the mACN is an
average over at least 105 points.

The prediction for the mACN by Diao et. al. [56; 57] as stated in Eq. 55 and 57 are
in good agreement with our simulations. Our simulation results confirm these results
and we calculated a factor of c2 = −0.3051 for the equilateral chains and a factor of
c1 = −0.2265 for the Gaussian ones.
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Figure 151: The error term of the theoretical prediction of the mean average crossing
number is negative and much smaller for the chains with excluded volume. Every data
point represents again an average over at least 105 points.

The fit results are complied in the following two tables (cf. Tab. 8 and Tab. 9). Please
note that the data for the equilateral chains with excluded volume reaches up to N =
1500 for off-lattice chains and up to N = 20000 for chains on a cubic lattice, whereas
the mACN for the Gaussian chains reaches to N = 300 (off-lattice). The summed
square of residuals (sse) and the coefficient of multiple determination (rsquare) are also
given in the tables below. The power law fits with b > 1 will beat n ln(n) for large n.
They are shown here to give an approximation of the mACN for smaller chains.
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Table 8: Data Fits
chains without excluded volume

data fit a sse rsquare
equilateral (3/16)N ln(N) + aN -0.3051 445.2 0.9998
Gaussian (1/2π)N ln(N) + aN -0.2265 61.4 1.0000

Table 9: Fitting Parameters
Gaussian chains with excluded volume

fit a b sse rsquare
aN b 0.03239 1.376 10.07 0.9988

(1/2π)N ln(N) + aN -0.5968 —– 537.53 0.9349
aN ln(N) + bN 0.07468 -0.1553 16.3505 0.9980

(1/2π)N log(N)a 0.2426 —– 310.4 0.9624
equilateral chains with excluded volume

aN b 0.06382 1.232 1306.1 0.9952
(3/16)N ln(N) + aN -0.9812 —– 29987 0.8896
aN ln(N) + bN 0.03914 0.05466 241.58 0.9991

(3/16)N log(N)a 0.2902 —– 1010.1 0.9963

10.3.4 Conclusions

The results in Sec. 10.3.1 show that the topological invariant and the behavior of
〈a(l1, l2)〉 which are the basis for the proof by Diao [56; 57] and co-workers are weakly
influenced by excluded volume interactions. Hence it is still unclear especially in the
light of the inconclusive simulation data, whether the proven law c1N lnN + c2N for
the non-excluded volume case changes to a power law as suggested by [153; 220].

Much larger chains are needed to clearly discern between the possibilities. A rough
estimate shows that we need chains that are at least ten times longer. Here the problem
is that despite the well-developed Pivot algorithm the computation of the excluded
volume interaction is so time-consuming that for now it seems to be possible to do such
a calculation only expending a truly fair amount of computing resources.

10.4 mACN of Looped Polymers

In this section the connection between polymer loops and the mACN will be examined.
The importance of loops in biopolymers like DNA or chromatin has already been ex-
plained in Sec. 8.

All chains of a particular polymer model with length N will be divided into subsets
of chains with a fixed loop number k. The average over the ACNs of such a subset
is denoted by mACNN (k) and the average over all these mACNN (k) weighted by the
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probability of the number of loops p(k) again gives the mean average crossing number
mACNN which was discussed in the previous sections.

Figure 152: Illustration of an off-lattice self-avoiding random walk with spherical
excluded volume of length N = 75. The dashed lines in the background are projections
of the chain onto the xz− and the yz-plane with five respectively eight crossings (marked
as red spots). The chain has one loop (k = 1) which is marked blue. The loop length
is 28. The start as well as the end point of the loop are marked colored black. A larger
version of this figure can be found in App. A (cf. Fig. 207).

Altogether, four different kinds of random walks will be investigated: Simple random
walks (RAW) on a cubic lattice and in continuum as well as self-avoiding walks (SAW)
on a cubic lattice and in continuum.

The excluded volume of the off-lattice self-avoiding walks is illustrated in Fig. 152: The
walk resembles beads-on-a-string because every segment has spherical excluded volume.
In the background of Fig. 152 one can see two projections of the shown chain (dashed
lines). Their crossings are marked with red spots. To calculate the average crossing
number of a single walk conformation 103 randomly chosen planes have been used again.
Furthermore, one can already see a loop within the chain conformation of Fig. 152
which is marked blue. The black spheres represent the start and the end point of the
loop.
The walks have mainly been generated with the FP-Algorithm (cf. Sec. D).
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In the case of random walks of a cubic lattice a coarse-graining was applied: In fact
every single monomer consists of a random walk of 15 steps itself. This was done to
avoid permanent overlapping of monomers and thus improve the loop definition in this
case: Two overlapping non-consecutive monomers define the start respectively the end
point of a loop.

To determine the number of loops of a self-avoiding walk on the cubic lattice the walk
monomers between non-consecutive next neighbor monomers have been identified with
loops.

In the off-lattice case two non-consecutive monomers will define a loop, if their spatial
distance is smaller than a critical distance dcrit defined by dcrit = 0.1D were D is the
diameter of the spheres that were used to define the excluded volume of the monomers.

According to Eq. 47 it is obvious that the mACNN should increase at least linearly with
the number of loops k in the case that the loops are independent on each other (i.e.
random walks). Here it will only be averaged over all chain conformations with a par-
ticular loop number k (denoted by mACNN (k)) and not over all possible conformations
like in the previous sections.

Fig. 153 shows the behavior of the mACNN in dependency on the number of loops k in
the case of random walks without self-avoidance. Fig. 154 and Fig. 155 show the same
curves for the self-avoiding walks.

Furthermore, Fig. 154 and Fig. 155 show the probability distribution p(k) of the loop
numbers for fixed chain length as well. One can see that mACNN (k) is only given for
chains the loop numbers of which actually occur. The number of loops is only limited
above by the chain length but for large walks it is very unlikely to have only a few
loops.

Since the distributions of k are almost symmetric the central value of a mACNN (k)
curve corresponds to the mACN(N) value, i.e. the mACN averaged over all possible
chain conformations and thus over all possible k-values.

In the case of random walks on a cubic lattice one gets much less loops due to the
previously made coarse-graining.

If one divides out the linear part, one will find that the mACNN (k) of the random walks
becomes almost a constant for long walks (cf. Fig. 156). In the case of self-avoiding
walks (cf. Fig. 157) one gets a decreasing curve for mACNN (k)/k which means that in
this case mACNN (k) ∝ kc with c < 1. But the decrease itself decreases with increasing
chain length (as in the case of the random walks).

Maybe in the case of self-avoiding walks one needs longer random walks to actually
decide on the scaling. Furthermore, one could try to use self-similarity arguments and
a rescaling of the underlying loop distributions to learn about the actual scaling of
mACNN (k).
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Figure 153: This figure shows the dependence of mACNN on the number of loops k
for random walks on a cubic lattice and in continuum.
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Figure 154: The top figure shows the dependency of mACNN on the number of loops
k in the case of self-avoiding walks on a cubic lattice. Furthermore, the corresponding
probability distributions of the loop numbers are shown as well (bottom).
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Figure 155: This figure shows the dependency of mACNN on the number of loops k
(top) in the case of self-avoiding walks (off-lattice). Furthermore, the corresponding
probability distributions of the loop numbers are shown as well (bottom).
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Figure 156: This figure shows mACNN (k) over k for random walks. One can see that
the long chains get nearly independent of the loop number k.
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Figure 157: This figure shows mACNN (k) over k for Self-Avoiding Walks. One can
see that the curves decrease even in the case of long chains.
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10.5 mACN and Scattering Function

In this sections an idea will be given how the mACN can analytically be connected with
the two-point correlation function Φ(−→r ,

−→
r′ ) and thus with the scattering function S(−→q ).

The crossing number (cn) of a chain conformation {−→r i} on a cubic lattice with respect
to a projection onto the xy-plane is given by

cnz{−→r i} =
N−1∑
i=1

N∑
j=i+1

δy(yi − yj)δz(zi − zj) (60)

where

δy,z(a− b) =

{
1 a = b

0 a 6= b
. (61)

For an isotropic distribution PN ({−→ri }) of the chain points {−→ri } (for instance polymers
without an external field) one gets the mean Average Crossing Number (mACN) by
the ensemble average of cnz that means the average is taken over all possible chain
conformations {−→ri } (respectively {

−−→
r(t)} for the continuum case):

mACN(N) = 〈cnz〉 =
∫
d−→r1 ...

∫
d−→rN

N−1∑
i=1

N∑
j=i+1

δy(yi− yj)δz(zi− zj) PN ({−→ri }). (62)

This is because in the case of an isotropic probability distribution for the chain confor-
mations all conformations which are in fact rotations of one underlying conformation
are equally likely. Therefore, one will average over all possible projections, too, if one
averages over the whole ensemble of possible conformations.

The mACN for a polymer chain can be calculated with the help of the correlation
function

Φ0(−→r ,−→r ′) :=
1
N

∑
i

∑
j

〈δ(−→r −−→ri )δ(−→r ′ −−→rj )〉 (63)

respectively

Φ0(−→r ,−→r ′) =
1
N

∫
ds

∫
dt〈δ(−→r −

−−→
r(s))δ(−→r ′ −

−−→
r(t))〉 (64)

in the continuum case.

Here, the average is taken again over all possible chain conformations {−→ri } respec-
tively {

−−→
r(t)}. Φ0(−→r ,−→r ′) is proportional to the probability of finding segments at the

locations −→r and −→r ′ simultaneously i.e. they have to be part of the same polymer chain.

In the following always continuous chains will be considered with a chain parameter s
or t ∈ [0, 1] instead of an index i or j.
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mACN(N) =
1
Z0

∑
{r(t)}∈Γ0

cnz

=
∫
d−→ro ...

∫
d−→rN

1∫
0

ds

1∫
s

dt δ(x(t)− x(s))δ(y(t)− y(s))P ({−→ri })

∝
∫
V

d−→r ′
∫
V

d−→r Φ0(−→r ,−→r ′)δy(y, y′)δz(z, z′)

where δy(y − y′) and δz(z − z′) are the one-dimensional delta-functions and d−→r =
dx dy dz as well as d−→r ′ = dx′ dy′ dz′.

If there is no external inhomogeneous field imposed on the chain, the center of mass on
the chain can be located equally anywhere in the system [114]. With this translational
invariance one gets:

Φ0(−→r ,−→r ′) =
1
V

Φ0(−→r −−→r ′) =
1
V

Φ0(−→q ) (65)

where V is the system volume which arises from the translational degree of freedom of
the center of mass of the chain which can be anywhere in the volume V . The Wiener-
Khinchin relation [114] describes the connection between the two-point correlation
function and the scattering function S(−→q ) (i.e. the scattering intensity in direction −→q )

S(−→q ) = N(FΦ0)(−→q )− (2π)3V Φ2
0δ(
−→q ) (66)

leads to

Φ0(−→q ) = F−1

(
S(−→q ) + (2π)3V Φ2

0δ(
−→q )

N

)
. (67)

With this equation we get a mean field relation between the mACN an the scattering
intensity of the specimen-chain:

mACN ∝ 1
N

∫
V

d−→r
∫
V

d−→r ′ (F−1S(−→q ))δy(y − y′)δz(z − z′) (68)

+
(2π)3V Φ2

0

N

∫
V

d−→r
∫
V

d−→r ′ (F−1δ(−→q ))δy(y − y′)δz(z − z′). (69)

Hereby, Φ0 is the average segment density and depends on the phase space of the chain.
V is defined above and represents the translational degree of freedom.

10.6 Loop Number Estimation

A further possible application of the mACN might be the analysis of two-dimensional
experimental data (e.g. FISH measurements, or localization microscopy data (cf. Sec.
3)).
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The chain conformations are projected during the calculation of the mACN anyway
and furthermore the mACN shows a strong correlation with the number of loops within
polymer chains (cf. Sec. 10.4). Therefore, two-dimensional data sets, i.e. projections, of
underlying three-dimensional polymer chain configurations might be used to estimate
the average number of loops in the original 3D conformation.

One problem in this context is that the connectivity data is lost in most of the cases
in which experimental data is available. Only single locations of chain points are given
but it is not clear, which points are directly connected in the original polymer chain.

But for the estimation of the loop number with the mACN one has to apply a polymer
model anyway (cf. Sec. 10.4) which can be used as an advantage in this case. One
can do simulations of polymer chains, project them onto a plane and then randomly
reconnect the data points to a chain. Since one knows the initial 3D conformation on
can calculate the actual mACN and compare it to the mean value of the crossings of
the projected and randomly connected chains.
These simulations have been done but are not shown here. Unfortunately, they con-
sume a large amount of computation time. But in the end one gets the ratio of the
actual mACN and the average number of crossings of projected and randomly con-
nected chains.

So one has to decide first which polymer models ought to be applied, determine the
explained ratios and then one can use them to calculate the mACN and thus the average
number of loops in the original polymer chains.
One could imagine for example to apply random walks as well as self-avoiding walks
to estimate an upper and lower bound for the loop number. This was done in the case
of FISH data sets of chromatin. Unfortunately the data was limited to four cells, i.e.
four images, which did not allow to make any significant statements.
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 Appendix

A Supplemental Figures

Figure 158: Example for a short freely jointed chain of N = 30 links with alternating
color. The monomer length is b = 100 and the radius of gyration Rg = 155. c denotes
the center of mass (black sphere).
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Figure 159: Example of a freely jointed chain of N = 100 links with alternating color.
The monomer length is b = 100 and the radius of gyration Rg = 1186. c denotes the
center of mass.
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Figure 160: Example of a freely jointed chain of N = 5000 links with alternating color.
The monomer length is b = 100 and the radius of gyration Rg = 2323.
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Figure 161: Example of a Worm-like Chain with sketched in persistence length lP .

Figure 162: Example of a random walk of 20 steps on a cubic lattice. The lattice
constant is 1, the end-to-end distance of the walk is 4.7. The white sphere denotes the
start point of the walk and the black one represents the end point.
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Figure 163: Example of five random walks with 40 steps each on a cubic lattice. The
lattice constant is 1. All walks start at the origin (big white sphere). Black spheres
denote end points.
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Figure 164: Genome folding at different scales. Comparison between the naive view-
point of a textbook and the current scientific state of knowledge.
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Figure 165: An example of the raw data of a HeLa nucleus.
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Figure 166: Several localization microscopy images of HeLa nuclei. The black dashed
lines represent the convex hull of the raw data. All distances are given in µm.
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Figure 167: This figure shows a HeLa nucleus image together with the corresponding
Voronoi tesselation. In this case HeLa cell #8 was used.
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Figure 168: An example for the noise repression in the case of a HeLa nucleus. Here
the convex hull is determined by iteratively applied Voronoi tessellations.
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Figure 169: An example of the noise reduction in the interior of a HeLa cell nucleus.
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Figure 170: An example of a complete block analysis for the evaluation of the local
distance distribution for a Fibroblast. A similar example for a HeLa nucleus is shown
in Fig. 171.
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Figure 171: An example of a complete block analysis in the case of a HeLa nucleus.
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Figure 172: This figure shows the histone H2B density of a HeLa nucleus as a heat
map. The units of the colorbar are particles per nm2.
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Figure 173: The histone H2B and thus chromatin density of a noise-reduced SPDM
image in the case of a HeLa cell.
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Figure 174: Several distance distributions within different HeLa nuclei. The distribu-
tions are different since the shape of the nuclei as well as the positions of the nucleoli
are different, too.
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Figure 175: A comparison of a measured H2B distance distribution and a random
particle distribution within an identically shaped nucleus. The differences come mainly
from the influence of the nucleoli.
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Figure 176: The Coulomb repulsion of the DNA linkers near the excluded volume
borderline (black). The colored lines are equipotential paths in the phase diagram.
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Figure 177: The nucleosome-nucleosome interaction of the chromatin fibers. One can
see that the excluded volume borderline (black) is reproduced by the equipotential lines
and thus confirmed.
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Figure 178: Projection of the total energy ε of a single chromatin repeat unit. The
dashed line gives the excluded volume phase transition and the black lines are the
projections of the equipotential lines.

Figure 179: A cut through the figures above. One can see a potential well which has
the shape of the excluded volume borderline. The potential at α = 20◦ is completely
forbidden by the excluded volume borderline.
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Figure 180: The different probability density functions that have been used for the
distribution of the linker histone skips in Sec. 6.2.2. The probability distributions are
plotted along the maximum fiber length used in Fig. 66.
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Figure 181: An example conformation of a flexible chromatin fiber (cf. Sec. 6.3). The
fiber has a length of 800 nucleosome repeat lengths, i.e. ≈ 158kbp.
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Figure 182: This figure shows the mean squared end-to-end distance for flexible chro-
matin fibers. Here the factor N2ν (ν ≈ 0.589) is divided out. One can see that on large
length scales the chromatin fibers behave like a self-avoiding random walk.
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Figure 183: This figure shows the mean squared radius of gyration for flexible chro-
matin fibers. Here the factor N2ν (ν ≈ 0.589) is divided out. One can see that on large
length scales the chromatin fibers behave like a self-avoiding random walk.
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Figure 184: Another example of a single nucleosome skip (cf. Sec. 6.4).
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Figure 185: Intrinsic nucleosome occupancy varies with genomic location type. His-
togram of average predicted occupancies at different genomic locations. The leftmost
bin includes all elements with occupancy below 0.6. The number of elements and
average occupancy for each type of genomic region are indicated. Adapted from [186].
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Figure 186: This figure shows the mean squared end-to-end distance for flexible chro-
matin fibers with depletion effects. Here the factor N2ν (ν ≈ 0.589) is divided out.
One can see that on large length scales the chromatin fibers behave like a self-avoiding
random walk.
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Figure 187: This figure shows the mean squared radius of gyration for flexible chro-
matin fibers with depletion effects. Here the factor N2ν (ν ≈ 0.589) is divided out.
One can see that on large length scales the chromatin fibers behave like a self-avoiding
random walk.
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Figure 188: Some example conformations that can be found in the model, if one
takes the parameter distributions as well as the depletion effects into account. Similar
electron micrographs can be found in [? ]. a) Shows a beads-on-a-string-like structure
with some nucleosome and linker histone skips. The latter are marked orange. b)
Example conformation of a chromatin strand of length 40kbp. The light blue tubes
represent the DNA, the histone octamers are modelled as purple cylinders and the linker
histones are marked pale yellow. This chromatin conformation has no depletion effects
and a diameter of about 34nm. c) One can even get single nucleosomes connected by
blank DNA stretches, which is shown here.
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Figure 189: The r∆-distributions of the first three peaks of the radial nucleosome
distance distribution function (cf. Sec. ??). One can see that some of the distributions
are very asymmetric.





A Supplemental Figures Philipp M. Diesinger

3
0

4
0

5
0

0

0
.0

0
5

0
.0

1

P
e
a
k

 IV

r6  [n
m

]

p(r
6
)

3
0

4
0

5
0

0

0
.0

0
5

0
.0

1

P
e
a
k

 IV

r7  [n
m

]

p(r
7
)

3
0

4
0

5
0

0

0
.0

0
5

0
.0

1

P
e
a
k

 V

r8  [n
m

]

p(r
8
)

3
0

4
0

5
0

0

0
.0

0
5

0
.0

1

P
e
a
k

 V

r9  [n
m

]

p(r
9
)

3
0

4
0

5
0

0

0
.0

0
5

0
.0

1

P
e
a
k

 V

r1
0  [n

m
]

p(r
1
0)

Figure 190: This figure shows the r∆-distributions that contribute to the fourth and
fifth peak of the radial nucleosome distance distribution function (cf. Sec. ??) and the
nucleosome pair distribution function g(r).
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Figure 191: The mean spatial nucleosome distance 〈r∆〉 in dependence on the genomic
distance ∆ for stiff, flexible fibers as well as flexible fibers with histone depletion on
the large scale.
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Figure 192: This figures shows how the distribution of the loop number in a random
walk will change, if its length N is increased. One will see a similar effect if one
decreases the persistence length of the walk.
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Figure 193: Shown is the distribution of the loop length l of several Gaussian random
walks. The loop length probability follows the scaling law P (l) ∝ l−c with c = d/2 =
3/2 in the case of a 3D random walk. For a self-avoiding walk the exponent would be
c = dν − σ4, i.e. 2.68 in the 2D case and 2.22 in the 3D case [215].
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Figure 194: This figure shows the loop length distribution for chromatin strands with
and without histone depletion. The fibers without depletion have lengths of 1.6Mbp,
800kbp and 160 kbp. The differences of the corresponding loop distributions come from
the normalization of the curves since the fiber length limits the maximal loop length.





Philipp M. Diesinger A Supplemental Figures

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

0

0
.51

1
.52

2
.53

3
.5

x
 1

0
-4

c
o
n
to

u
r 

le
n
g
th

 c

probability p
N

(c)

L
o
o
p
 E

n
d
 P

o
in

t 
D

is
tr

ib
u
ti
o
n
 (

o
f 

G
a
u
s
s
ia

n
 R

a
W

s
)

 

 

N
=

1
0
0

N
=

2
0
0

N
=

3
5
0

N
=

5
0
0

N
=

6
5
0

N
=

1
0
0
0

Figure 195: One can see that the distribution of the loop end position is almost uniform
in the case of a random walk, i.e. non-interacting loops.
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Figure 196: . This figure shows the dependence of the loop length on the loop center
as a scatter plot. This is basically the sum of the distributions for the loop length in
dependence on the loop start position and the loop end position.
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Figure 197: Heat map illustration of 5C-data (K562 cells) [72] with equidistant spacing.
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Figure 198: Heat map illustration of 5C-data (GM06990 cells) [72] with equidistant
spacing.
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Figure 199: This figure shows the loop number entropy ∆Sk,0 difference between the
chromatin fibers without loops (S0) an the fibers with k loops for five different fiber
types.
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Figure 200: Three example configurations of a system with 40 peptides with different
box sizes and thus different mass densities (1 mg/ml, 10 mg/ml and 25 mg/ml). The
clustering of the peptide chains increases (the fraction of clustered peptides are 10%,
37.5% and 72.5% with decreasing density (resp. decreasing box volume).
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Figure 201: a) One conformation (out of the whole ensemble) of a single nucleoporin
strand. The red spheres represent side chains of large and medium sized amino acids
(starting with Glu / E). The FG-rich hydrophobic parts of the nucleoporin are marked
blue. They have been enlarged by 30 percent for this visualization. b) Same as a)
but transparent backbone and amino acid side chains to give a better view at the
hydrophobic parts. One can see small hydrophobic clusters (numbered 1-9). Since
there is no other peptide chain they are intra-bonds (cf. Fig. 141), i.e. bonds that the
peptide coalesces with itself.
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Figure 202: Example configuration of 40 peptides (N-terminal Nsp1p fsFG-domains
cf. App. F) with colored clusters at a mass density of 10 mg/ml. Altogether, there are
five clusters (colored green (12 peptides), yellow (5 peptides), red (2 peptides), black
(2 peptides) and pink (3 peptides)) in this configuration. White peptides are single,
unbound nucleoporins that have no hydrophobic bond with another peptide and thus do
not contribute to any cluster. The box on the right shows the same configuration as on
the left with the difference that the single unbound peptide chains are not shown. 60%
of all nucleoporins in this configuration have hydrophobic bonds, i.e. they contribute
to some of the five clusters. The other 40% are unbound.
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Figure 203: An example peptide system of N = 40 Nsp1p strands with density c =
1mg/ml.
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Figure 204: An example peptide system of N = 40 Nsp1p strands with density c =
10mg/ml.
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Figure 205: An illustration of a nuclear pore sitting with the nuclear envelope. Adapted
from [157].
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Figure 206: This figure shows an illustration of transport through a nuclear pore
complex. Adapted from [157].
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Figure 207: Illustration of an off-lattice self-avoiding random walk with spherical
excluded volume. Two projections (onto the xz- and the yz-plane are shown in the
background. Furthermore, a loop within the chain conformation is marked blue. The
black spheres represent the start and end point of the loop. The whole chain has a
length of N = 75 and the loop length is 28.
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B Supplemental Tables

Different Values of αni
These tables show different values of αni , i.e. the peak locations of the excluded volume
borderline (cf. Sec. 5), each with an accuracy of 10−4 degrees. Adapted from [61].

n=1
i 3 4 5 6 7 8 9 10 11 12

α1
i [◦] 60 90 108 120 128.5714 135 140 144 147.2727 150
i 13 14 15 16 17 18 19 20 21 22

α1
i [◦] 152.3077 154.2857 156 157.5 158.8235 160 161.0526 162 162.8571 163.6364

Table 10: Different values of αni that define the peak locations of the excluded volume
borderline in the chromatin phase diagram.

n=2
i 5 7 9 11 13 15 17 19

α2
i [◦] 36 77.1429 100 114.5455 124.6157 132 137.6471 142.1053
i 21 23 25 27 29 31 33 35

α2
i [◦] 145.7143 148.6957 151.2 153.3333 155.1724 156.7742 158.1818 159.4286

Table 11: Different values of αni that define the peak locations of the excluded volume
borderline in the chromatin phase diagram.

n=3
i 7 8 10 11 13 14 16 17

α3
i [◦] 25.7143 45 72 81.8182 96.9231 102.8571 112.5 116.4706
i 19 20 22 23 25 26 28 29

α3
i [◦] 123.1579 126 130.9091 133.0435 136.8 138.4615 141.4286 142.7586

Table 12: Different values of αni that define the peak locations of the excluded volume
borderline in the chromatin phase diagram.
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n=4
i 9 11 13 15 17 19 21 23

α4
i [◦] 20 49.0909 69.2308 84 95.2941 104.2105 111.4286 117.3913
i 25 27 29 31 33 35 37 39

α4
i [◦] 122.4 126.6667 130.3448 133.5484 136.5484 138.8571 141.0811 143.0769

Table 13: Different values of αni that define the peak locations of the excluded volume
borderline in the chromatin phase diagram.

n=5
i 11 12 13 14 16 17 18 19

α5
i [◦] 16.3636 30 41.5385 51.4286 67.5 74.1176 80 85.2632
i 21 22 23 24 26 27 28 29

α5
i [◦] 94.2857 98.1818 101.7391 105 110.7692 113.3333 115.7143 117.9310

Table 14: Different values of αni that define the peak locations of the excluded volume
borderline in the chromatin phase diagram.
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stiff fibers flexible fibers stiff fibers with depletion effects
∆ r∆ 〈r∆〉 σ∆ mf∆ 〈r∆〉 σ∆ mf∆

1.00 51.00 51.00 0.63 50.56 63.61 30.72 136.53
2.00 34.89 37.55 7.16 31.32 65.42 55.66 31.21
3.00 52.05 51.33 4.00 52.37 85.53 62.28 55.42
4.00 65.42 68.14 7.17 70.02 105.65 66.40 59.08
5.00 62.88 64.27 8.27 66.29 114.37 75.52 7.58
6.00 89.32 90.04 6.08 89.94 135.13 74.94 84.41
7.00 86.12 90.17 11.13 82.77 145.28 80.88 92.27
8.00 107.86 106.81 7.94 58.82 159.95 82.53 3.34
9.00 114.92 118.87 10.88 112.72 172.76 85.04 8.36
10.00 125.45 125.06 11.55 128.19 183.47 88.61 122.00

Table 15: This table shows the mean value (〈r∆〉), the standard deviation (σ∆) and
the most frequent value (mf∆) of the first ten r∆-distributions. In the first case a stiff
reference fiber was generated. The following three columns show the values for flexible
fibers and the last three columns show the results for flexible fibers with depletion
effects. Here, the nucleosome skip rate was again fixed to 8% and the linker histone
skip rate was fixed to 6%. The table shows that some of the r∆-distribution are very
asymmetric since the mean value differs greatly from the most frequent value (e.g. the
distribution of r2). All spatial distances are given in bp and the genomic distances are
given in NRL again.

Name Sequence (5’-3’) Primer position
Start End

GDFOR001 CTGTCCAACTAATACGACTCACTATAGCCTTTATGGGCAATTCCCATAAAGGGAA 60845555 60845580
GDREV002 TTCTTCAAGTTTAAGTTTCCTGTTTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60849095 60849118
GDFOR003 CTGTCCAACTAATACGACTCACTATAGCCTCACTTTACCCTATGGACTTGCCCTGAA 60851214 60851241
GDREV004 TTCCATAAGACATCATGAATTGTTTTTCTTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60851766 60851794
GDFOR005 CTGTCCAACTAATACGACTCACTATAGCCTATGGTCACTATAACCTCAGCTATTTAGAA 60855909 60855938
GDREV006 TTCAGTATGATGTTGGCTGTGGACTTGTCATAATCCCTTTAGTGAGGGTTAATAGTCGGACTC 60858502 60858534
GDFOR007 CTGTCCAACTAATACGACTCACTATAGCCTCAACGTAGTTTGAAGGTTGAGTGAGAA 60866944 60866971
GDREV008 TTCAAATATTAGCTTTTTTAGCAGGCTTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60873850 60873876
GDFOR009 CTGTCCAACTAATACGACTCACTATAGCCTCTGGGTCTGGCTTCATTCTCTGATGGAGAA 60876630 60876660
GDREV010 TTCTATTGTCTCTGCATTGATTGGAAAGTTTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60877663 60877692
GDFOR011 CTGTCCAACTAATACGACTCACTATAGCCTTACCTAGCAATCTGACAAATAGTAGGAA 60880001 60880029
GDREV012 TTCTATTCACTTTATTAAGGTTGTGGTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60880385 60880410
GDFOR013 CTGTCCAACTAATACGACTCACTATAGCCAAGCATACAGCATTACAAGTAAAATGGAA 60882444 60882472
GDREV014 TTCTATAAAGTTAATTAATCACTATTTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60891170 60891195
GDFOR015 CTGTCCAACTAATACGACTCACTATAGCCGTTACATAACAACTAGATGTAATGATGGAA 60894533 60894562
GDREV016 TTCTAGTTCAGGAGAATAAAAGTTATATCCCTTTAGTGAGGGTTAATAGTCGGACTC 60894683 60894709
GDFOR017 CTGTCCAACTAATACGACTCACTATAGCCGCCCCAAAAGCAGTGGAAGGGGAA 60905463 60905486
GDREV018 TTCTACCGTGGGCATAGAGGAAGGGCCTCCCTTTAGTGAGGGTTAATAGTCGGACTC 60908394 60908420
GDFOR019 CTGTCCAACTAATACGACTCACTATAGCCTCAAAGAGCTGAAACAATTGTCTTCCAGAA 60908658 60908687
GDREV020 TTCCACTTATTTATTATAATTATTTATCCCTTTAGTGAGGGTTAATAGTCGGACTC 60908781 60908806

Table 16: Summary of 5C primer sequences used to generate 5C libraries. ”Primer po-
sition” indicates the position of the genomic primer homology region (genome assembly
hg17). Adapted from [72].
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K562 cells I GDFOR002 GDFOR004 GDFOR006 GDFOR008 GDFOR010
FOR001 0.13 0.16 0.07 0.1 0.2
FOR003 0.56 1.19 0.17 0.14 0.3
FOR005 0.37 1.03 0.31 0.16 0.25
FOR007 0.1 0.23 0.15 0.29 0.25
FOR009 0.16 0.15 0.1 0.6 1.58
FOR011 0.08 0.17 0.08 0.41 1.9
FOR013 0.16 0.11 0.08 0.21 0.67
FOR015 0.1 0.17 0.12 0.25 0.34
FOR017 0.11 0.09 0.08 0.12 0.21
FOR019 0.08 0.11 0.05 0.15 0.14

Table 17: Interaction data of K562 cells (β-globin locus on, part I). Adapted from [72].

K562 cells II GDFOR012 GDFOR014 GDFOR016 GDFOR018 GDFOR020
FOR001 0.11 0.1 0.09 0.16 0.1
FOR003 0.13 0.08 0.13 0.72 0.07
FOR005 0.16 0.09 0.06 0.08 0.09
FOR007 0.08 0.11 0.05 0.09 0.11
FOR009 0.48 0.13 0.09 0.11 0.11
FOR011 1.03 0.28 0.09 0.11 0.07
FOR013 1.21 0.88 0.32 0.18 0.14
FOR015 0.2 0.92 0.66 0.27 0.11
FOR017 0.14 0.18 0.32 0.39 0.18
FOR019 0.08 0.08 0.12 0.55 0.26

Table 18: Interaction data of K562 cells (β-globin locus on, part II). Adapted from
[72].

GM06990 cells I GDFOR012 GDFOR014 GDFOR016 GDFOR018 GDFOR020
FOR001 0.12 0.12 0.06 0.07 0.12
FOR003 0.15 0.39 0.17 0.06 0.11
FOR005 0.11 0.4 0.21 0.08 0.08
FOR007 0.08 0.16 0.17 0.35 0.21
FOR009 0.1 0.1 0.07 0.41 0.82
FOR011 0.04 0.11 0.05 0.14 1.02
FOR013 0.13 0.08 0.06 0.09 0.2
FOR015 0.07 0.09 0.07 0.11 0.21
FOR017 0.05 0.05 0.05 0.04 0.07
FOR019 0.05 0.06 0.03 0.05 0.06

Table 19: Interaction data of GM06990 cells (β-globin locus off, part I). Adapted from
[72].
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GM06990 cells II GDFOR002 GDFOR004 GDFOR006 GDFOR008 GDFOR010
FOR001 0.1 0.06 0.09 0.16 0.07
FOR003 0.06 0.03 0.06 0.27 0.04
FOR005 0.06 0.05 0.03 0.04 0.06
FOR007 0.04 0.08 0.05 0.06 0.08
FOR009 0.18 0.07 0.04 0.05 0.07
FOR011 0.53 0.16 0.07 0.06 0.04
FOR013 0.51 0.65 0.24 0.08 0.09
FOR015 0.15 0.87 0.25 0.19 0.07
FOR017 0.12 0.12 0.32 0.29 0.11
FOR019 0.03 0.05 0.09 0.23 0.1

Table 20: Interaction data of GM06990 cells (β-globin locus off, part II). Adapted from
[72].
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C SPDM Setup

This section depicts the experiments that were done within the framework of the col-
laboration with Prof. Cremer (cf. Sec. 3). The main parts of the following description of
the experimental setup for the localization microscopy were provided by Rainer Kauf-
mann (Kirchhoff-Institute of Physics). This applies also to the figures in this section
(i.e. App. C).

Experimental Setup
The measurements were done on a SPDM setup [113; 131] for 2D localization of single
fluorescent molecules. This method is based on a light induced reversibly bleached
state of conventional fluorophores [104; 158; 193]. By starting illumination of the sam-
ple with an excitation intensity in the 10 kW/cm2 to 1 MW/cm2 range, some molecules
are bleached irreversibly (Mfl −→Mibl), another amount is transferred into a reversibly
bleached state (Mfl −→Mrbl). The statistical recovery of fluorophores from this state
(Mfl ←− Mrbl) can be used for optical isolation of the single fluorescent molecules.
This allows the SPDM setup single molecule detection and localization of conventional
fluorophores specified as SPDMPHYMOD.

Figure 208: Schematic overview of the microscope setup used for the SPDM measure-
ments

Microscope Setup
For the experiments only one laser source was needed at an excitation wavelength of
λ = 488 nm [Ar488] (Lexel 95-4, Lexel Laser, USA). After deflection at the mirror
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[M1] the laser beam is expanded by a factor of 10 using a collimator builded up of
two achromates with focal length of 10 mm and 100 mm (Linos Photonics, Göttingen,
Germany). Then a lens [LL] can be mounted in the optical pathway, leading to a more
focused spot in the object region so one can achieve the high laser intensity, which is
necessary for the localization mode. Via a mirror [M2], a dichroic mirror [DM] (AHF
Analysetechnik AG, Tübingen, Germany) and a lens [L1] the beam is focused into the
back focal plane of an oil immersion objective lens (x100, NA = 1.4, Leica, Bensheim,
Germany).

Figure 209: Localization image of histones H2B in the nucleus of a human fibroblast
cell labeled with EmGFP. The localized fluorophores are blurred with a Gaussian cor-
responding to their individual localization accuracy. The inserts show the marked areas
four times magnified.
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The detection pathway is a conventional epi-fluorescence setup. Emitted fluorescence
light passes the dichroic mirror [DM] and is focused by a tube lens [TL] (x1.0, Leica,
Bensheim, Germany) onto the CCD chip of a highly sensitive 12 bit black and white
camera [CCD] (SensiCam QE, PCO Imaging, Kehlheim, Germany). A blocking filter
[BF], which is mounted in front of the CCD chip, reduces the background signal of the
excitation light.

Data Acquisition and Evaluation
For data acquisition a time stack consisting of 2000 frames was recorded with a frame
rate of about 18 fps. The evaluation was done by algorithms implemented in MATLAB
(7.4.0, The MathWorks, Natick, USA).

In a first step, the number of photons for each pixel of the CCD chip is estimated. The
count number is translated into the number of incident photons by the multiplication
of a factor dependent on the conversion rate of the CCD sensor:

NPhotons(x, y, t) = cconv ·NCounts(x, y, t),

where NPhotons(x, y, t) is the number of incident photons as a function of the pixel
position (x, y) and the time t denoting the individual frames of the image stack ob-
tained by the CCD camera at times t = t1, t2, ..., tk, ...tn. cconv is the conversion fac-
tor between the number of counts and the number of photoelectrons. NCounts(x, y, t)
gives the number of counts (raw data) as a function of pixel position (x, y) and the
time t. For example, using cconv = 2/count (low light mode) a photon number of
NPhotons(x, y, t) = 2NCounts(x, y, t) is estimated.

In a second step, for signals with a low signal-to-noise ratio (high background and photo
bleaching effects active during several succeeding frames) an additional computing step
is required to segment signals originating from single molecules only. A differential
photon stack DPhotons(x, y, t′) between the succeeding (t = tk+1) and the preceding
frame (tk) is calculated:

DPhotons(x, y, t′) = NPhotons(x, y, tk+1)−NPhotons(x, y, tk).

The error σ in the photon number produced by the Poisson statistics of the incident
photons and the noise σCCD of the detection at the CCD chip (approx. 4 counts per
pixel) was estimated by the Gaussian law of error propagation:

σ[DPhotons(x, y, t′)] = [NPhotons(x, y, tk+1)2 +NPhotons(x, y, tk)2 + 2σ2
CCD]1/2.

In the last step, the data stackNPhotons(x, y, t) (in case of low background) orDPhotons(x, y, t′)
(in case of high background) is used for a lateral high precision localization of single
molecules. To reduce computing efforts, Regions of Interest (ROIs) of typically 8x8
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pixels were used. A model function is fitted to the acquired signals in the object plane
using the Levenberg-Marquardt algorithm with a Gaussian distribution:

f(x, y) = Ae
−

(x− x0)2 + (y − y0)2

2σ2 +B0 +B1(x0 − x) +B2(y0 − y).

x0 and y0 are start parameters for the position corresponding to the determined cen-
ter of the segmented signals. A is the amplitude and σ the standard deviation of the
Gaussian distribution. B0, B1 and B2 represent a linear background.

In this manner the lateral positions of the single molecules can be determined with a
localization accuracy (σ) in the 20 nm regime [131].

Fig. 3 shows a localization image for histones H2B labeled with EmGFP in human
fibroblast cells. The localized fluorophores give the positions of the single histone pro-
teins with their individual localization accuracy displayed by a corresponding Gaussian
blur. In Fig. 3 the histogram for the localization accuracy of the 43,821 fluorophores
in Fig. 2 is shown. The wide-field image in Fig. 4 was recorded with a conventional
epi-fluorescence microscope setup.

Figure 210: Histogram of the localization accuracy. The pair-wise mean values of x
and y localization accuracy are shown for the EmGFP-labeled histones in Fig. 2. The
overall mean value of the localization accuracy for the 43,821 localized fluorophores was
25.2 nm with a standard deviation of 5.3 nm
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Figure 211: A conventional wide-field image. The image was acquired with a conven-
tional epi-fluorescence microscope setup. The same nucleus as in the localization image
in Fig. 2 is shown.

Specimen Preparation

a) Fibroblast Cells
The VH7 diploid human fibroblast cells (kindly provided by Prof. Dr. Beauchamp from
DKFZ, Heidelberg), used for the measurements, were cultivated in Dulbecco’s Modified
Eagle medium supplemented with 10% FCS, 1% L-glutamine, 1% penicillin/streptomycin
in a standard CO2-incubator. After seeding the cells onto cover slips, they were allowed
to attach and grow over night. Using Organelle Lights (Invitrogen, Carlsbad, USA)
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according to the manufacturer’s protocol, EmGFP conjugated histone proteins H2B
were expressed in the fibroblast nuclei. The cells were fixed with 4% formaldehyde in
PBS and embedded with ProLong Gold antifade reagent (Invitrogen) 20 hours after
the transfection.

b) HeLa Cells
HeLa cells were cultivated in RPMI medium supplemented with 10% FCS, 1% L-
glutamine, 1% penicillin/Streptomycin in a standard CO2-incubator.
HeLa cells, whose H2B histones had been stably transfected with GFP, were seeded
onto coverslips, and were allowed to attach and grow over night. Afterwards the cells
were fixed using 4% formaldehyde in PBS and embedded with ProLong Gold antifade
reagent (Invitrogen).
Those HeLa-cells not being stably transfected were first seeded onto coverslips and
allowed to attach and grow over night. After using Organelle Lights (Invitrogen,
Carlsbad, USA) according to the manufactures protocol, EmGFP conjugated histone
proteins H2B were expressed in HeLa-cell-nuclei. The cells were then fixed with 4%
formaldehyde in PBS and embedded with ProLong Gold antifade reagent (Invitrogen)
20 hours after transfection.





Philipp M. Diesinger D The Pivot Algorithm

D The Pivot Algorithm

The pivot algorithm is a dynamic Monte Carlo algorithm which generates SAWs with
one endpoint fixed at the origin and the other endpoint free. The state space is LN ,
and the invariant probability measure is the standard equal-weight SAW distribution
(πω = 1

cN
).

The elementary move of the pivot algorithm is as follows:

At first choose at random a pivot point k along the walk (0 < k ≤ N −1). Then choose
at random an element of the symmetry group of the lattice (rotation or reflection or a
combination thereof). Now apply the symmetry-group element to Xk+1, ..., XN using
Xk as a temporary origin (pivot). If the resulting walk is self-avoiding, it will be ac-
cepted, otherwise it will be rejected.

Remarks

1. To keep the algorithm ergodic it is necessary that the probability to choose the
pivot element is strictly positive for all points of the chain. (In most cases a
uniform distribution is used but in some situations other choices may be advan-
tageous).

2. Let G be the group of orthogonal transformations (about the origin) that leave
the lattice invariant. Then the symmetry operation g ε G can be chosen according
to any probability distribution (pg)gεG that satisfies pg = pg−1 for all g (and has
enough nonzero entries to ensure ergocity). The condition pg = pg−1 is both
necessary and sufficient to ensure detailed balance with respect to the equal-
weight distribution π.

3. The computational work can be reduced (roughly by a factor 2) by applying
the symmetry operation always to the shorter of the two segments of the walk,
whichever it may be.

Acceptance Fraction

The acceptance fraction f of the pivot algorithm is about f ≈ Np (for d = 2, p is
roughly 0.19 and for d = 3, p is about 0.11, p depends on the specific symmetry opera-
tion). This seems to slow down the algorithm a lot but remember that the pivot moves
are very radical and therefore the chain confirmation will be a completely different
after a few accepted pivot moves (in fact this is what makes the pivot algorithm very
efficient). The autocorrelation time τ is of order N

f .





D The Pivot Algorithm Philipp M. Diesinger

History

The pivot algorithm has a curious history: It was invented by Lal in 1969, and then
completely forgotten by almost everyone. In 1985 it was reinvented by MacDonald et
al. and reinvented a short time later by Madras. This third reinvention led to a com-
prehensive analytical and numerical study by Madras and Sokal [139] which showed
that the algorithm is by far the most efficient algorithm yet invented for simulating
SAWs. After that applications took off.

Faster Implementation of the Pivot Algorithm

A faster implementation of the pivot algorithm for self-avoiding walks which takes ad-
vantage of the underlying grid symmetries was developed in 2004 [115].

Past implementations of the algorithm required a time O(N) per accepted pivot where
N is the number of steps in the walk. In [115] the algorithm is implemented so that
the time required per accepted pivot is O(N q) with q < 1. q is less than 0.57 in two
dimensions, and less than 0.85 in three dimensions. Corrections to the O(N q) make
an accurate estimate of q impossible. They also imply that the asymptotic behavior of
O(N q) cannot be seen for walk lengths which can be simulated.

In simulations the effective q is around 0.7 in two dimensions and 0.9 in three dimen-
sions. Comparisons with simulations that use the standard implementation of the pivot
algorithm using a hash table indicate that our implementation is faster by as much as
a factor of 80 in two dimensions and as much as a factor of 7 in three dimensions. The
fast pivot method does not require the use of a hash table.
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E Metropolis Monte-Carlo Simulations

Detailed information about Metropolis Monte Carlo simulations can be found in [24].
Nevertheless, a short overview is given below.

All possible system configurations ω lie in the phase space Ω. The occurrence proba-
bility of a certain state ω is denoted by p(ω).
Generally, one is interested in mean values of configuration properties X (e.g. the radius
of gyration RG) averaged over the whole phase space Ω:

〈X〉 =
∫
Ω

p(ω)X(ω)dω.

With the Boltzmann distribution this leads to

〈X〉 =
1
Z

∫
Ω

exp
(
−H(ω)
kT

)
X(ω)dω,

where Z is the corresponding partition function:

Z =
∫
Ω

exp
(
−H(ω)
kT

)
dω.

The sample size obtained by computer simulations is always finite, i.e. only a small part
Ω′ of Ω can be sampled. The Metropolis algorithm provides a method to find a finite
set of states ω ∈ Ω so that the average value of X over this limited set Ω′ is a good
approximation to the actual value of 〈X〉Ω. This method is called importance sampling
in opposite to simple sampling where the subset of Ω is chosen by random.

In the case of simple sampling the average value of X is given by

〈X〉 =

∑
Ω′
p(ω)X(ω)∑
Ω′
p(ω)

.

If a certain state is generated during the simulations with a probability w(ω), then the
average value of X will be [100; 198]

〈X〉 =

∑
Ω′
p(ω)X(ω)/w(ω)∑
Ω′
p(ω)/w(ω)

.

If w(ω) = p(ω), a simple arithmetic mean will remains.

To do use importance sampling one starts with a certain configuration ω0 and then gen-
erates a Markov chain of system states [100; 147]. That means a system configuration
ωi is generated only from the preceding configuration ωi−1. The transition probability
between these two states is denoted by Tωi,ωi−1 .
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The Markovian master equation is

∂w(ωi, t)
∂t

=
∑
ωi

Tωi,ωi−1w(ωi−1, t)− Tωi−1ωiw(ωi, t).

In the case of detailed balance [23], i.e.

Tωi,ωi−1w(ωi−1, t) = Tωi−1ωiw(ωi, t)

one gets ∂w(ωi,t)
∂t = 0 which means that w = weq., i.e. the equilibrium probability which

is given by the Boltzmann distribution.
Furthermore, this leads to lim

i→∞
w(ωi) = weq.(ωi).

This gives
Tωi,ωi−1

Tωi−1,ωi

=
weq(ωi, t)
weq(ωi−1, t)

= exp
(
H(ωi)−H(ωi−1)

kT

)
.

The latter condition will easily be fulfilled, if one chooses the following transition prob-
ability:

Tωi−1,ωi
=

{
exp(−∆H

kT )⇐ ∆H > 0
1 ⇐ ∆H ≤ 0

with ∆H = H(ωi) − H(ωi−1). It is called the Metropolis-function. This is, however,
not the only possible choice for a transition probability [24].
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F Sequence of the N-terminal fsFG-Domain of Nsp1p

Amino acid sequence of the N-terminal fsFG-domain of the essential yeast nucleoporin
Nsp1p. The hydrophobic clusters which have been considered are marked blue whereas
the amino acids the side chains of which were allowed for are marked red.

MNFNTPQQ
NKTPFSFGTANNNSNTTNQNSST
GAGAFGT
GQSTFGFNNSAPNNTNNANSS
ITPAFGSNNT
GNTAFGNSNP
TSNVFGSNNS
TTNTFGSNSA
GTSLFGSSSAQQTKSNGTA
GGNTFGSSSLFNNSTNSNT
TKPAFGGLNFGGGNNTTPSSTGNANT
SNNLFGATANANK
PAFSFGATTNDDKKTEPDK
PAFSFNSSVGNKTDAQAPT
TGFSFGSQLGGNKTVNEAAK
PSLSFGSGSAGANPAGASQPEPTTNEPAK
PALSFGTATSDNKTTNTT
PSFSFGAKSDENKAGATSK
PAFSFGAKPEEKKDDNSSK
PAFSFGAKSNEDKQDGTAK
PAFSFGAKPAEKNNNETSK
PAFSFGAKSDEKKDGDASK
PAFSFGAKPDENKASATSK
PAFSFGAKPEEKKDDNSSK
PAFSFGAKSNEDKQDGTAK
PAFSFGAKPAEKNNNETSK
PAFSFGAKSDEKKDGDASK
PAFSFGAKSDEKKDSDSSK
PAFSFGTKSNEKKDSGSSK
PAFSFGAKPDEKKNDEVSK
PAFSFGAKANEKKESDESK
SAFSFGSKPTGKEEGDGAK
AAISFGAKPEEQKSSDTSK
PAFTFGAQKDNEKKTEESSTG
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G Some Basic Properties of the Fourier Transform

The Fourier transform in its standard form (i.e. with the Fourier parameters a = 0 and
b = 1) is

Ff(ξ) =

√
|b|

(2π)1−a

∞∫
−∞

f(x)eibξx dx a=0=
b=1

1√
2π

∞∫
−∞

eiξxf(x) dx .

The Fourier transform is linear and if n > 0 is an integer and lim
|x|→∞

f (r)(x) = 0 for

r = 0, 1, ..., n− 1, then

F
[
f (n)(x)

]
(ξ) = (−iξ)nFf(ξ) (transform of a derivative).

The convolution f ? g of two functions f(x) and g(x) is defined by the integral

f ? g(x) =

∞∫
−∞

f(x− ξ)g(ξ) dξ

and has the property f ? g = g ? f , and f ? (g ? h) = (f ? g) ? h. The Fourier transform
of a convolution can be calculated by using

F [f ? g](ξ) =
√

2π · Ff(ξ) · Fg(ξ) (convolution theorem).

Furthermore, for a > 0 the Fourier transform fulfils

Fe−a2x2
= (a
√

2)−1e−
ξ2

4a2 .





Philipp M. Diesinger H Some Basic Properties of the Convolution

H Some Basic Properties of the Convolution

The convolution f ? g of two functions f(x) and g(x) is defined by the integral

f ? g(x) =

∞∫
−∞

f(x− ξ)g(ξ) dξ

and has the properties
f ? g = g ? f

and
D(f ? g) = Df ? g = f ? DG

as well as
f ? (g ? h) = (f ? g) ? h.

The Fourier transform of a convolution can be calculated by using

F [f ? g](ξ) =
√

2π · Ff(ξ) · Fg(ξ) (convolution theorem).

The convolution of two Gaussians

f(x) =
1

σ1

√
2π

exp
(
−(x− µ1)2

2σ2
1

)
g(x) =

1
σ2

√
2π

exp
(
−(x− µ2)2

2σ2
2

)
is simply another Gaussian:

(f ? g)(x) =
1√

2π(σ2
1 + σ2

2)
exp

[
−(x− (µ1 + µ2))2

2(σ2
1 + σ2

2)

]
.





I Electronic Version of this Thesis Philipp M. Diesinger

I Electronic Version of this Thesis

The CD-ROM below contains this thesis in pdf format and all figures of this work.

The electronic version has some advantages in comparison with the print version: In
the pdf all references (Fig., Sec., Eq., headlines, citations and so on) are hyper-links to
the associated content. Furthermore, most of the figures are supplied as vector graph-
ics, i.e. they can be enlarged without loss of quality in the pdf version.

CD-ROM

The pdf version of this work is also available at

http://www.philipp-diesinger.de/

and

http://www.tphys.uni-heidelberg.de/~diesinger.



http://www.philipp-diesinger.de/
http://www.tphys.uni-heidelberg.de/~diesinger


Philipp M. Diesinger J Publications

J Publications

Major parts of this thesis have already been published in scientific journals, are cur-
rently under revision or are in preparation to be published. Furthermore, several results
of this work have already been presented at scientific conferences and workshops.

A complete list of my publications as well as a list of the attended conferences can be
found on the next page. They include publications and conference participation during
the time of my diploma thesis (publications before 2006).

The details of the papers which are not yet submitted are only provisional and may
still change.





J Publications Philipp M. Diesinger

List of Publications

Diesinger, P.M. 2005. Excluded Volume Effects in Biopolymers. (diploma thesis) [61]

Brill, M. P.M. Diesinger and D.W. Heermann. 2005. Knots in Macromolecules in
Constraint Space. arXiv:cond-mat/0507020

Diesinger, P.M. 2005. Two-Angle Model and Phase Diagram for Chromatin. European
Biophysics Journal (Abstract), Volume 34 6

Diesinger, P.M. and D.W. Heermann. 2006. Two-Angle Model and Phase Diagram for
Chromatin. Physical Review E 74, 1 [62]

Diesinger, P.M. and D.W. Heermann. 2008. Average Crossing Number of Gaussian and
Equilateral Chains with and without Excluded Volume. European Journal of Physics B,
Volume 62, Number 2, 209-214 [63]

Diesinger, P.M. and D.W. Heermann. 2007. The Influence of the Cylindrical Shape
of the Nucleosomes and H1 Defects on the Properties of Chromatin. Biophys. J.
doi:10.1529/biophysj.107.113902 [64]

Diesinger, P.M. and D.W. Heermann. 2009. Depletion Effects massively change Chro-
matin Properties and influence Genome Folding. Submitted to Biophysical Journal
(status: under review) [65]

Diesinger, P.M. and D.W. Heermann. 2009. Hydrophobicity as a possible Reason for
Gelation of FG-rich Nucleoporins. Submitted to European Biophysics Journal (status:
under review) [66]

Diesinger, P.M. M. Bohn, R. Kaufmann, A. von Bassewitz, P. Lemmer, M. Gunkel, Y.
Weiland, P. Müller, M. Hausmann, C. Cremer and D.W. Heermann. 2009. Differences
in Chromatin Nano-Structure of Mammalian Cells. In preparation (to be submitted to
Science Letters) [26]

Bohn, M. Diesinger, P.M. R. Kaufmann, A. von Bassewitz, P. Lemmer, M. Gunkel, Y.
Weiland, P. Müller, M. Hausmann, C. Cremer and D.W. Heermann. 2009. Differences
in local chromatin structure of Fibroblasts and HeLa cells. In preparation [27]

Diesinger, P.M. S. Kunkel, J. Langowski and D.W. Heermann. 2009. The Influence of
Histone Depletion on Chromatin Loop Statistics. In preparation [68]

Diesinger, P.M. and D.W. Heermann. 2009. The Connection of the mACN with the
Scattering Function and the Loop Number of Polymer Chains. In preparation [67]





Philipp M. Diesinger J Publications

Conference Participation

April 1-3, 2004 Workshop on Statistical Physics of Molecular and
Cell Biological Systems and Networks,
Heidelberg, Germany;

August 27-31, 2005 15th IUPAB & 5th EBSA International Biophysics Congress,
Montpellier, France;
poster presentation on ”Chromatin within in the Framework of”
the Two-Angle Model”;

June 5-9, 2006 XX SITGES CONFERENCE on STATISTICAL MECHANICS
Physical Biology: from Molecular Interactions to Cellular Behavior,
Sitges, Barcelona, Spain;
poster presentation on ”Knot Statistics and Entanglement for Biomolecules”;

September 20-22, 2006 MMS06: Methods of Molecular Simulation 2006,
Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg, Germany;

March 14-16, 2007 Workshop on computer simulations of soft matter and biosystems,
BioQuant, Heidelberg, Germany;

July 9-13, 2007 StatPhys 23, the XXIII IUPAP International Conference on
Statistical Physics,;
Genova, Italy;
poster presentation

January 18-19, 2008 Workshop ”Monte-Carlo-Methoden”
Fakultät für Physik und Astronomie, Heidelberg, Germany;

September 26, 2008 HICCup
DKFZ, Heidelberg, Germany;

October 20-23, 2008 Lorentz Center Workshop
The physics of genome folding and function
Leiden University, Leiden, Netherlands;

November 20, 2008 HGS MathComp Modellierungstag
Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg, Germany;

December 5, 2008 HICCup
Villa Bosch Studio, Heidelberg;
Invited Talk: ”Genome Folding at the 30nm Scale”;





J Publications Philipp M. Diesinger

January 22-24, 2009 Workshop on Monte Carlo Methods
IWR, Heidelberg;

February 4-6, 2009 Biophysics of Chromatin Workshop
Villa Bosch Studio, Heidelberg;
Contributed Talk: ”The Effects of Nucleosome and Linker Histone
Depletion on Properties of Chromatin: A Monte Carlo Model”;





Philipp M. Diesinger K List of Tables

K List of Tables

List of Tables

1 E2A Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 Screening Parameters of the DNA Coulomb Repulsion . . . . . . . . . . 83
3 Chromatin Density in the Phase Diagram . . . . . . . . . . . . . . . . . 111
4 Chromatin Line Density in the Phase Diagram . . . . . . . . . . . . . . 113
5 Local Parameter Distribution of the E2A Model . . . . . . . . . . . . . 134
6 Peak Allocation of the Nucleosome Pair Distribution Function . . . . . . 158
7 Classification of the r∆-Distributions for the Chromatin Nanostructure . 162
8 mACN Fits I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9 mACN Fits II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10 Excluded Volume Borderline: αni - Part I . . . . . . . . . . . . . . . . . 300
11 Excluded Volume Borderline: αni - Part II . . . . . . . . . . . . . . . . . 300
12 Excluded Volume Borderline: αni - Part III . . . . . . . . . . . . . . . . 300
13 Excluded Volume Borderline: αni - Part IV . . . . . . . . . . . . . . . . 301
14 Excluded Volume Borderline: αni - Part V . . . . . . . . . . . . . . . . . 301
15 Classification of the r∆-Distributions for the Chromatin Nanostructure II 302
16 Primer Sequences and Positions used in [72] . . . . . . . . . . . . . . . . 302
17 5C-Data: K562 Cells Part I . . . . . . . . . . . . . . . . . . . . . . . . . 303
18 5C-Data: K562 Cells Part II . . . . . . . . . . . . . . . . . . . . . . . . . 303
19 5C-Data: GM06990 Cells Part I . . . . . . . . . . . . . . . . . . . . . . . 303
20 5C-Data: GM06990 Cells Part II . . . . . . . . . . . . . . . . . . . . . . 304





L List of Figures Philipp M. Diesinger

L List of Figures

List of Figures

1 An Illustration of a Random Walk (N = 100) . . . . . . . . . . . . . . . 12
2 Five Random Walks of length 80 . . . . . . . . . . . . . . . . . . . . . . 14
3 Example of a Freely-jointed Chain . . . . . . . . . . . . . . . . . . . . . 17
4 Example of a Worm-like Chain . . . . . . . . . . . . . . . . . . . . . . . 21
5 Excluded Volume Effect on End-to-end Distance of Random Walks . . . 26
6 Genome Folding at Different Scales . . . . . . . . . . . . . . . . . . . . . 32
7 Nucleosome Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 Nucleosome Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9 Darkfield Electron Micrograph of Chromatin . . . . . . . . . . . . . . . 35
10 Competing Models for the 30nm Chromatin Fiber . . . . . . . . . . . . 36
11 Gallery of Electron Micrographs of Chromatin . . . . . . . . . . . . . . 37
12 SFM Images of Chromatin . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 Nucleosome-DNA Binding . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14 History of Chromatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
15 Entry-exit-angle at Different Ionic Strengths . . . . . . . . . . . . . . . . 43
16 Metaphase Chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
17 FISH labelled Chromosome Territories . . . . . . . . . . . . . . . . . . . 45
18 Image of Fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
19 EM Image of HeLa Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
20 Localization Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
21 Example of a 2D Voronoi Tessellation . . . . . . . . . . . . . . . . . . . 52
22 Fibroblast Raw Data Example . . . . . . . . . . . . . . . . . . . . . . . 53
23 Several Fibroblast Raw Data Examples . . . . . . . . . . . . . . . . . . 55
24 Fibroblast Raw Data with Voronoi Diagram . . . . . . . . . . . . . . . . 56
25 Noise Repression Exterior (Fibroblast) . . . . . . . . . . . . . . . . . . . 57
26 Noise Repression Interior (Fibroblast) . . . . . . . . . . . . . . . . . . . 58
27 Block Analysis Example (Fibroblast) . . . . . . . . . . . . . . . . . . . . 59
28 Particle Density of a Fibroblast (heat map) . . . . . . . . . . . . . . . . 60
29 Particle Density of a Fibroblast (3D plot) . . . . . . . . . . . . . . . . . 61
30 Average Density Probability Distribution (Fibroblasts) . . . . . . . . . . 61
31 Several Large Scale Distance Distributions for Fibroblasts . . . . . . . . 62
32 Comparison of Distance Distribution with a Random Distribution (Fib.) 62
33 Two-Dimensional Radial Pair Distribution Function . . . . . . . . . . . 63
34 Scatter Plot of g2D(r) (Fibroblasts) . . . . . . . . . . . . . . . . . . . . . 65
35 Scatter Plot of g2D(r) (HeLa Nuclei) . . . . . . . . . . . . . . . . . . . . 66
36 Basic Definitions of the Two-angle Model . . . . . . . . . . . . . . . . . 69
37 Two Typical Regular Chromatin Fibers in the Basic Two-angle Model . 71
38 A single Nucleosome in the E2A-Model . . . . . . . . . . . . . . . . . . 73
39 Basic Parameters of the E2A-Model . . . . . . . . . . . . . . . . . . . . 75
40 Examples of regular Fibers generated with the E2A-Model . . . . . . . . 79
41 A Stretch of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81





Philipp M. Diesinger LIST OF FIGURES

42 The Chromatin Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . 87
43 Chromatin Phase Diagram with Planar Structures . . . . . . . . . . . . 89
44 Classification of Planar Chromatin Structures . . . . . . . . . . . . . . . 92
45 Fine Structure of the Excluded Volume Borderline . . . . . . . . . . . . 96
46 Classification of the Excluded Volume Borderline . . . . . . . . . . . . . 98
47 Excluded Volume Borderline: Theoretical Prediction vs. Simulation Result101
48 The Effective Entry-Exit Angle αe . . . . . . . . . . . . . . . . . . . . . 104
49 Excluded Volume Borderline: Influence of cylindrically shaped Nucleo-

somes and Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
50 Density Plot over the Chromatin Phase Diagram . . . . . . . . . . . . . 108
51 Line Density Plot over the Chromatin Phase Diagram . . . . . . . . . . 109
52 mACN Plot over the Chromatin Phase Diagram . . . . . . . . . . . . . 110
53 Fiber Accessibility over the Chromatin Phase Diagram . . . . . . . . . . 112
54 Total Energy per NRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
55 Line Density over Chromatin Phase Diagram . . . . . . . . . . . . . . . 115
56 Line Density over Chromatin Phase Diagram for different Pitches . . . . 116
57 Radius of Gyration over Chromatin Phase Diagram . . . . . . . . . . . . 117
58 Radius of Gyration over Chromatin Phase Diagram for differend Pitches 118
59 End-to-End Distance over Chromatin Phase Diagram . . . . . . . . . . 119
60 End-to-End Distance over Chromatin Phase Diagram for differend Pitches120
61 Distribution of Structures in the Chromatin Phase Diagram . . . . . . . 121
62 Example of a Linker Histone Skip . . . . . . . . . . . . . . . . . . . . . . 123
63 Example Conformations with different Linker Histone Skip Rates . . . . 124
64 End-to-End Distance for Chromatin with Linker Histone Depletion . . . 125
65 Radius of Gyration for Chromatin with Linker Histone Depletion . . . . 126
66 Radius of Gyration for Chromatin with different H1 Skip Distributions . 127
67 Distribution of the Nucleosome Repeat Length . . . . . . . . . . . . . . 129
68 Fourier Transforms of NRL Distributions . . . . . . . . . . . . . . . . . 130
69 Parameter Distribution of the E2A Model . . . . . . . . . . . . . . . . . 132
70 Example Conformation of a Flexible Chromatin Fiber I . . . . . . . . . 133
71 Example Conformation of a Flexible Chromatin Fiber II . . . . . . . . . 135
72 Scaling of R2 and R2

G for Flexible Chromatin Fibers . . . . . . . . . . . 136
73 Nucleosome Skip Example Comformation I . . . . . . . . . . . . . . . . 138
74 Average Nucleosome Occupancies for different Genome Regions . . . . . 139
75 Average Nucleosome Occupancy of Yeast (Cut-Out) . . . . . . . . . . . 140
76 Example Conformation of a Flexible Fiber with Histone Depletion I . . 141
77 Example Conformation of a Flexible Fiber with Histone Depletion II . . 142
78 Chromatin Phase Diagram with Probability Density of Different Structures144
79 Scaling of R2 and R2

G for Fibers with Depletion Effects . . . . . . . . . . 145
80 Comparison of Electron Micrograph with Model Fiber I . . . . . . . . . 147
81 Comparison of Electron Micrograph with Model Fiber II . . . . . . . . . 148
82 Comparison of Electron Micrograph with Model Fiber III . . . . . . . . 149
83 Influence of Histone Depletion on Chromatin Flexibility . . . . . . . . . 151
84 Influence of Combined Depletion Effects on Chromatin Flexibility . . . . 152
85 Influence of Histone Depletion on Chromatin Extension I . . . . . . . . 153





LIST OF FIGURES Philipp M. Diesinger

86 Influence of Histone Depletion on Chromatin Extension II . . . . . . . . 154
87 Influence of Combined Depletion Effects on Chromatin Extension I . . . 155
88 Influence of Combined Depletion Effects on Chromatin Extension II . . 156
89 Radial Nucleosome Distribution p(r) on the Small Scale . . . . . . . . . 157
90 Illustration of the Connection between Spatial and Genomic Nucleosome

Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
91 Spatial versus Genomic Nucleosome Distance on the Small Scale . . . . 160
92 Radial Nucleosome Distribution p(r) on the Large Scale . . . . . . . . . 161
93 Superimposition of r∆-Distributions for Flexible Chromatin Fibers . . . 162
94 Superimposition of r∆-Distributions for Fibers with Histone Depletion . 163
95 Illustration of System Size V in the Pair Distribution Analysis . . . . . 164
96 Radial Nucleosome Pair Distribution Function g(r) . . . . . . . . . . . . 165
97 Distance Distribution of 2D Chromatin Fibers . . . . . . . . . . . . . . . 166
98 g2D(r) Comparison of Modell Fibers with SPDM Data . . . . . . . . . . 168
99 Comparison with FISH Experiments . . . . . . . . . . . . . . . . . . . . 169
100 Illustration of RNA Polymerase II . . . . . . . . . . . . . . . . . . . . . 174
101 Illustration of Loops attached to Transcription Factories . . . . . . . . . 175
102 Example Chromatin Conformation with a Large 167 kbp Loop . . . . . 177
103 Example Chromatin Conformation with a Small Loop . . . . . . . . . . 178
104 Chromatin Loop Number Distribution . . . . . . . . . . . . . . . . . . . 179
105 Chromatin Loop Length Distribution I . . . . . . . . . . . . . . . . . . . 180
106 Loop Start/End Position (fiber length 160kbp) . . . . . . . . . . . . . . 181
107 Loop Start/End Position (fiber length 1.6Mbp) . . . . . . . . . . . . . . 182
108 Chromatin Loop Length vs. Loop End Position . . . . . . . . . . . . . . 183
109 Schematic Representation of 3C-Based Methods . . . . . . . . . . . . . . 185
110 5C-Data: Analysis of Gene Desert Control Region . . . . . . . . . . . . 187
111 Loop Frequency depending on Genomic Loop Length I . . . . . . . . . . 188
112 Loop Frequency depending on Genomic Loop Length II . . . . . . . . . 189
113 Interaction Map of 5C-Data . . . . . . . . . . . . . . . . . . . . . . . . . 191
114 Interaction Map of Chromatin Fibers of Length 160kbp . . . . . . . . . 192
115 Interaction Map of Chromatin Fibers of Length 1.6Mbp . . . . . . . . . 193
116 Interaction Heat Map of 5C-Data (On) . . . . . . . . . . . . . . . . . . . 194
117 Interaction Heat Map of 5C-Data (Off) . . . . . . . . . . . . . . . . . . 194
118 Chromatin Interaction Heat Map (160kbp, no histone depletion) . . . . 195
119 Chromatin Interaction Heat Map (160kbp, with histone depletion) . . . 195
120 Chromatin Interaction Heat Map (fiber length 1.6Mbp) . . . . . . . . . 196
121 Interaction Frequencies with Chromatin Fiber Center . . . . . . . . . . 197
122 Loop Number Entropy Difference I . . . . . . . . . . . . . . . . . . . . . 198
123 Fit of the Loop Length Distribution I . . . . . . . . . . . . . . . . . . . 199
124 Fit of the Loop Length Distribution II . . . . . . . . . . . . . . . . . . . 200
125 Loop Entropy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 201
126 Wang-Uhlenbeck Entropy Distribution . . . . . . . . . . . . . . . . . . . 202
127 Cell Nucleus Surface with Nuclear Pores . . . . . . . . . . . . . . . . . . 205
128 Fluorescently Labelled NPCs . . . . . . . . . . . . . . . . . . . . . . . . 205
129 Microscopic Images of the Nuclear Enveloops . . . . . . . . . . . . . . . 206





Philipp M. Diesinger LIST OF FIGURES

130 Nuclear Pore complex (side view) . . . . . . . . . . . . . . . . . . . . . . 207
131 Nucleoporin Gel-Sol Transition . . . . . . . . . . . . . . . . . . . . . . . 208
132 Nuclear Pore Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 209
133 FG Repeat Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
134 Example Configuration of a Hydrophobic Nucleoporin Bond . . . . . . . 211
135 Nucleoporin Example Conformation I . . . . . . . . . . . . . . . . . . . 213
136 Example Peptide Configuration, N = 25mg/ml . . . . . . . . . . . . . . 214
137 Three Example Configurations of the NPC Peptide System . . . . . . . 216
138 Illustration of Clustering in the Peptide System . . . . . . . . . . . . . . 218
139 Size of Largest Cluster vs. Mass Density . . . . . . . . . . . . . . . . . . 219
140 Extension of Largest Cluster in Dependence on Mass Density . . . . . . 220
141 Average Number of Bonds for Different System Sizes . . . . . . . . . . . 221
142 Finite Size Scaling of P∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 222
143 Mean Fraction of Clustered Peptides vs. Mass Density . . . . . . . . . . 223
144 Strain Energy Distribution in a Polymer Strand . . . . . . . . . . . . . . 225
145 Illustration of the mACN Definition . . . . . . . . . . . . . . . . . . . . 227
146 Theoretical Predition and Numerical Results for 〈a(l1, l2)〉 . . . . . . . . 234
147 Numerical Results of 〈a(l1, l2)〉 over Theoretical Prediction . . . . . . . . 235
148 Distance PDFs of Gaussian and Equilateral Random Walks . . . . . . . 236
149 mACN of Gaussian Chains with and without Excluded Volume . . . . . 237
150 mACN of Equilateral Random Walks . . . . . . . . . . . . . . . . . . . . 238
151 Leading Order Term of the mACN . . . . . . . . . . . . . . . . . . . . . 239
152 Illustration of the Excluded Volume of a Self-Avoiding Walk . . . . . . . 241
153 mACNN (k) of Random Walks . . . . . . . . . . . . . . . . . . . . . . . . 243
154 mACNN (k) of Self-Avoiding Random Walks (on-lattice) . . . . . . . . . 244
155 mACNN (k) of Self-Avoiding Random Walks (off-lattice) . . . . . . . . . 245
156 mACNN (k) over k for Random Walks . . . . . . . . . . . . . . . . . . . 246
157 mACNN (k) over k for Self-Avoiding Walks . . . . . . . . . . . . . . . . 247
158 Example of a Freely Jointed Chain (N = 30) . . . . . . . . . . . . . . . 252
159 Example of a Freely Jointed Chain (N = 1000) . . . . . . . . . . . . . . 253
160 Example of a Freely Jointed Chain (N = 5000) . . . . . . . . . . . . . . 254
161 Worm-like Chain Example . . . . . . . . . . . . . . . . . . . . . . . . . . 255
162 Random Walk (N = 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
163 Five Random Walks of length 40 . . . . . . . . . . . . . . . . . . . . . . 256
164 Genome Folding at Different Scales . . . . . . . . . . . . . . . . . . . . . 257
165 HeLa Raw Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . 258
166 Several HeLa Raw Data Examples . . . . . . . . . . . . . . . . . . . . . 259
167 HeLa Raw Data with Voronoi Diagram . . . . . . . . . . . . . . . . . . . 260
168 Noise Repression Exterior (HeLa) . . . . . . . . . . . . . . . . . . . . . . 261
169 Noise Repression Interior (HeLa) . . . . . . . . . . . . . . . . . . . . . . 262
170 Block Analysis Example (Fibroblast) . . . . . . . . . . . . . . . . . . . . 263
171 Block Analysis Example (HeLa Nucleus) . . . . . . . . . . . . . . . . . . 264
172 Particle Density of a HeLa Nucleus (heat map) . . . . . . . . . . . . . . 265
173 Particle Density of a HeLa Nucleus (3D plot) . . . . . . . . . . . . . . . 266
174 Several Large Scale Distance Distributions for HeLa Nuclei . . . . . . . 267





LIST OF FIGURES Philipp M. Diesinger

175 Comparison of Distance Distribution with a Random Distribution (HeLa)268
176 Coulomb repusion of DNA linkers . . . . . . . . . . . . . . . . . . . . . . 269
177 Nucleosome-Nucleosome Interation . . . . . . . . . . . . . . . . . . . . . 270
178 Projection of Total Energy per NRL . . . . . . . . . . . . . . . . . . . . 271
179 NRL Potential Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
180 Different Linker Histone Skip PDFs used in Sec. 6.2.2 . . . . . . . . . . 272
181 Example Conformation of a flexible Chromatin Fiber . . . . . . . . . . . 273
182 Scaling of R2 for Flexible Chromatin Fibers . . . . . . . . . . . . . . . . 274
183 Scaling of R2

G for Flexible Chromatin Fibers . . . . . . . . . . . . . . . . 275
184 Nucleosome Skip Example Comformation II . . . . . . . . . . . . . . . . 276
185 Intrinsic Nucleosome Occupancy for Different Genomic Locations . . . . 277
186 Scaling of R2 for Flexible Chromatin Fibers with Depletion Effects . . . 278
187 Scaling of R2

G for Flexible Chromatin Fibers with Depletion Effects . . . 279
188 Chromatin Example Conformations for the Comparison with EM-Images 280
189 Single r∆-Distributions I . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
190 Single r∆-Distributions II . . . . . . . . . . . . . . . . . . . . . . . . . . 282
191 Spatial versus Genomic Nucleosome Distance on the Large Scale . . . . 283
192 Several Loop Number Distributions for Gaussian Random Walks . . . . 284
193 Loop Length Distributions for Gaussian Random Walks . . . . . . . . . 285
194 Chromatin Loop Length Distribution II . . . . . . . . . . . . . . . . . . 286
195 Several Distributions of the Loop End Position for Random Walks . . . 287
196 Chromatin Loop Length vs. Loop Center . . . . . . . . . . . . . . . . . 288
197 Interaction Heat Map of 5C-Data with Equidistant Spacing (On) . . . . 289
198 Interaction Heat Map of 5C-Data with Equidistant Spacing (Off) . . . . 290
199 Loop Number Entropy Difference II . . . . . . . . . . . . . . . . . . . . 291
200 Three Example Configurations of the NPC Peptide System (large) . . . 292
201 Nucleoporin Example Conformation II . . . . . . . . . . . . . . . . . . . 293
202 Illustration of Clustering in the Peptide System (large) . . . . . . . . . . 294
203 Example Peptide Configuration, N = 1mg/ml . . . . . . . . . . . . . . . 295
204 Example Peptide Configuration, c = 10mg/ml . . . . . . . . . . . . . . . 296
205 A Nuclear Pore together with the Nuclear Envelope . . . . . . . . . . . 297
206 Transport through a Nuclear Pore . . . . . . . . . . . . . . . . . . . . . 298
207 Illustration of the Excluded Volume of a Self-Avoiding Walk (large) . . 299
208 Microscope Setup (Schematic Overview) . . . . . . . . . . . . . . . . . . 305
209 Localization Image (Example) . . . . . . . . . . . . . . . . . . . . . . . . 306
210 Histogram of the Localization Accuracy . . . . . . . . . . . . . . . . . . 308
211 Conventional Wide-Field Image . . . . . . . . . . . . . . . . . . . . . . . 309





c© Copyright by

Philipp M. Diesinger

2009



REFERENCES Philipp M. Diesinger

References

[1] Adams C. C. The Knot Book W. H. Freeman and Company, New York, 1994.

[2] Alberts, B. A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002.

Molecular Biology of the Cell. Garland Science, New York and London.

[3] Anderson, J. D. and Widom, J. 2001. Poly(dA-dT) promoter elements increase

the equilibrium accessibility of nucleosomal DNA target sites. Mol. Cell Biol. 21,

3830–3839.

[4] Arteca G. A. 1993. Biopolymers 33:1829-1841.

[5] Arteca G. A. 1994. Phys. Rev. E 2417-2428.

[6] Arteca G. A. 1995. Pys. Rev. E 51:2600-2610.

[7] Arteca G. A. 1997. Phys. Rev. E 56:4516-4520.

[8] Arteca G. A. 2002. J. Chem. Inf. Comp. Sci. 42:326-330.

[9] Aten, J.A. and Roland Kanaar. 2006. Chromosomal Organization: Mingling with

the Neighbors. PLoS Biol. 2006 May; 4(5): e155.

[10] Atiyha M. F. 1990 The Geometry and Physics of Knots, Cambridge Univ. Press.

[11] Aryeh, B. Hydrophobic Interaction. Plenum Press, New York (ISBN 0-306-40222-

X).

[12] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, ”The Quickhull Algorithm

for Convex Hulls,” ACM Transactions on Mathematical Software, Vol. 22, No.

4, Dec. 1996, p. 469-483. Available in PDF format at http://www.acm.org/

pubs/citations/journals/toms/1996-22-4/p469-barber/ and http://www.

qhull.org/.

[13] Barbi et al. 2004. How the chromatin fiber deals with topological constraints.

Phys. Rev. E 71, 031910.



http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.qhull.org/
http://www.qhull.org/


Philipp M. Diesinger REFERENCES

[14] Bayer, R. K. 1994. Colloid. Polym. Sci. 272:910-932.

[15] Bayliss et al., J. Mol. Biol. 293, 579 (1999).

[16] Bayliss, R., T. Littlewood, M. Stewart, Cell 102, 99 (2000).

[17] Beard D. A. and Schlick T. 2001. Biopolymers 58:106-115.

[18] Beard D. A. and Schlick T. 2001. Structure 9:105-114.

[19] Bednar, J., Horowitz, R.A., Grigoryev, S.A., Carruthers, L.M., Hansen, J.C.,

Koster, A.J. and Woodcock, C.L. 1998. Nucleosomes, linker DNA, and linker

histone form a unique structural motif that directs the higher-order folding and

compaction of chromatin. Proc. Natl. Acad. Sci. USA. 95:14173-14178.

[20] Bednenko, J., G. Cingolani, L. Gerace, J. Cell Biol. 162, 391 (2003).

[21] Benecke, A 2003a. Chromatin dynamics are a hyperstructure of nuclear organi-

zation. in Proceedings Modelling and Simulation of Biological Processes in the

Context of Genomics, Amar P., Kepes F., Norris V., and Tracqui, P. (eds.) Platy-

pus Press, pp. 31-40.

[22] Benecke, A. 2003b. Genomic plasticity and information processing by transcrip-

tional coregulators, ComPlexUs 1, 65-76.

[23] Bhanot, G. 1988. The Metropolis algoritm, Rept. Prog. Phys. 51:429

[24] Binder, K. and D. W. Heermann. 2002. The Monte Carlo Method in Statistical

Physics, 4th Edition. Springer Series in Solid-State Sciences.

[25] Bohn, M. D.W. Heermann and R. van Driel. 2007. A Random Loop Model for

Long Polymers. Phys. Rev. E 76, 051805 (2007)

[26] Bohn, M. P.M. Diesinger, R. Kaufmann, A. von Bassewitz, P. Lemmer, M.

Gunkel, Y. Weiland, P. Müller, M. Hausmann, C. Cremer and D.W. Heermann.

2009. Differences in chromatin nano-structure of mammalian cells. In preparation

(Science Letters).





REFERENCES Philipp M. Diesinger

[27] Bohn, M. P.M. Diesinger, R. Kaufmann, A. von Bassewitz, P. Lemmer, M.

Gunkel, Y. Weiland, P. Müller, M. Hausmann, C. Cremer and D.W. Heermann.

2009. Differences in local chromatin structure of Fibroblasts and HeLa cells. In

preparation.

[28] Bolzer, A. Gregor Kreth, Irina Solovei, Daniela Koehler, Kaan Saracoglu, Chris-

tine Fauth, Stefan Müller, Roland Eils, Christoph Cremer, Michael R. Speicher,

Thomas Cremer. Three-Dimensional Maps of All Chromosomes in Human Male

Fibroblast Nuclei and Prometaphase Rosettes. 2005. PLoS Biol 3(5): e157 DOI:

10.1371/journal.pbio.0030157

[29] Barry Boots, Atsuyuki Okabe, Kokichi Sugihara and Sung Nok Chiu. 2000. Spa-

tial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley Series

in Probability & Mathematical Statistics) Wiley & Sons, Second Edition.

[30] Bronstein, Semendjajew, Musoil, Mühlig Taschenbuch der Mathematik, Verlag

Harri Deutsch.

[31] Buck G. 1998. Nature 392:238-239.

[32] Buck G. and Simon J. 1999. Topology and its Applications 69:1-12.

[33] Butler P. J. G., and Thomas J. O. 1998 J.Mol. Biol. 281:401-407.

[34] Bystricky, K., P. Heun, L. Gehlen, J. Langowski and S. M. Gasser. 2004. Long-

range compaction and flexibility of interphase chromatin in budding yeast ana-

lyzed by high-resolution imaging techniques. Proc. Natl. Acad. Sci. U S A. 2004

November 23; 101(47): 16495–16500.

[35] Cantarella J., Kusner R. B. and Sullivan J. M. 1998. Nature 392:237-238.

[36] Cantarella J., Kusner R. B. and Sullivan J. M. 2002. Invent. math. 150:257-286.

[37] Castro, C. 1994. Measurement of the elasticity of single chromatin fibers: the

effect of histone H1. Ph.D. thesis. University of Oregon, Eugene.





Philipp M. Diesinger REFERENCES

[38] Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K,

”Structure and dynamic properties of nucleosome core particles”, FEBS Letters.

(2005) Feb 7; 579 (4): 895-898.

[39] Chambeyron, S. and Bickmore, W.A. 2004. Does looping and clustering in the

nucleus regulate gene expression? Curr. Opin. Cell Biol. 16: 256–262.

[40] Clark D. J. and Kimura T. 1990. J. Mol. Biol. 211:883-896.

[41] Cook, P. Principles of Nuclear Structure and Function. Wiley-Liss; 1st Edition

(April 24, 2001).

[42] Cook, P. Nat Genet 32, 347 2002. http://dx.doi.org/10.1038/ng1102-347.

[43] Corces, V. G. 1995. Chromatin insulators. Keeping enhancers under control. Na-

ture 376:462-463.

[44] Cremer, T. 1985. Von der Zellenlehre zur Chromosomentheorie: Natur-

wissenschaftliche Erkenntnis und Theorienwechsel in der frühen Zell- und
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