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Summary 
The hippocampus (HPC), a brain area important for spatial learning and memory, 

requires concerted excitatory synaptic transmission via intrinsic and extrinsic 

connections. This transmission is mainly mediated by AMPA receptors. AMPA 

receptor subunit GluA1 knock-out (GluA1-/-) mice show distinct HPC-dependent 

behavioral phenotypes. These mutant mice are hyperactive, have no spatial working 

memory (SWM) and are impaired in the expression of experience-dependent 

behavioral despair. However, since GluA1-/- mice are globally lacking GluA1, the 

specific contribution of the HPC to these behaviors has not been investigated. I 

therefore examined the role of GluA1 in HPC by stereotaxically injecting 

recombinant adeno-associated viruses (rAAVs) to alter the GluA1 content of infected 

neurons. I employed two approaches. In the first approach, to elucidate the 

contribution of hippocampal GluA1-containing AMPA to different behaviors, GluA1-

/- mice were injected with a GluA1-expressing rAAV in HPC, thereby reintroducing 

GluA1 into this area (knock-in approach). In the second approach, to detect behaviors 

requiring hippocampal GluA1-containing AMPA receptors in HPC, mice with floxed 

GluA1 alleles (GluA12lox/2lox mice) were stereotaxically injected with an rAAV 

expressing Cre-recombinase, thereby deleting GluA1 from this area (knock-out 

approach). After virus injection, the mice were tested in open field, rewarded 

alternation on the T-maze, and Porsolt forced swim test (FST). The results show that 

hyperactivity was abolished in mice from the knock-in approach, indicating that lack 

of GluA1 in HPC induces hyperactivity. Knock-in approach mice still had impaired 

SWM, while knock-out approach mice only had a partially impaired SWM, 

suggesting that hippocampal GluA1-containing AMPA receptors are necessary but 

not sufficient for intact SWM. Knock-out approach mice showed no experience-

dependent changes in immobility in the FST, suggesting that hippocampal GluA1-

containing AMPA receptors are required for the expression of learned behavioral 

despair in the FST. Overall, my thesis work dissected behaviors strictly dependent on 

hippocampal GluA1-containing AMPA receptors. Interestingly, and in contrast to 

what was hypothesized so far, SWM was not solely dependent on the HPC. Thus, this 

study further improves our understanding on the expression of HPC-dependent 

behaviors. 
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Zusammenfassung 
Der Hippokampus (HPC), ein wichtiges Gehirngebiet für räumliches Lernen, benötigt 

konzertierte erregende synaptische Übertragung mittels intrinsischer und extrinsischer 

Verbindungen. Diese synaptische Übertragung wird hauptsächlich durch AMPA-

Rezeptoren gewährleistet. Mäuse in denen die AMPA-Rezeptoruntereinheit GluA1 fehlt 

(GluA1-/-) zeigen bestimmte HPC-abhängige Verhaltensweisen. GluA1-/- Mäuse sind 

hyperaktiv, haben kein räumliches Arbeitsgedächtnis und zeigen gestörtes behavioral 

despair. Da diesen Mäusen GluA1 global fehlt, konnte der spezifische Einfluss des HPC 

an diesen Verhaltensänderungen noch nicht untersucht werden. Aus diesem Grund 

untersuchte ich die Rolle von GluA1 im HPC indem ich rekombinante Adeno-assoziierte 

Viren (rAAVs) stereotaktisch in den HPC injizierte, um den GluA1-Gehalt der infizierten 

Neurone zu verändern. Dazu nutze ich zwei Ansätze. Im ersten Ansatz, um die Rolle von 

GluA1 im HPC zu untersuchen, wurden GluA1-/- Mäuse mit einem GluA1-

expremierenden rAAV injiziert, wodurch GluA1-haltige AMPA-Rezeptoren in dieses 

Gehirnareal zurückgebracht wurden (knock-in Ansatz). Im zweiten Ansatz, um 

Verhaltensänderungen zu erkennen die GluA1 im HPC benötigen, wurden Mäuse mit 

gefloxten GluA1-Allelen stereotaktisch mit einem Cre-Rekombinase expremierenden 

rAAV im HPC injiziert, wodurch GluA1 aus diesem Areal herausgenommen wurde 

(knock-out Ansatz). Nach der Virusinjektion wurden die Mäuse im Offenfeld, belohnter 

Alternierung im T-maze und dem Porsolt Schwimmtest gestestet. Die Ergebnisse zeigen, 

dass in den knock-in Ansatz Mäusen die Hyperaktivität aufgehoben wurde, was darauf 

hinweist, dass fehlendes GluA1 im Hippokampus Hyperaktivität verursacht. Knock-in 

Ansatz Mäuse hatten noch immer ein fehlendes räumliches Arbeitsgedächtnis, während 

knock-out Ansatz Mäuse ein teilweise verschlechtertes räumliches Arbeitsgedächtnis 

hatten. Diese Ergebnisse wiesen darauf hin, dass GluA1 im HPC notwendig, jedoch nicht 

ausreichend für ein intaktes räumliches Arbeitsgedächtnis ist. Knock-out Ansatz Mäuse 

zeigten keine erfahrungsabhängigen Immobilitätsänderungen im Porsolt Schwimmtest, 

was darauf hinweist, dass GluA1 im HPC notwendig für behavioral despair im Porsolt 

Schwimmtest ist. Zusammengenommen untersuchte ich in meiner Arbeit Verhaltens-

weisen, die ausschließlich von GluA1 im HPC abhängig sind. Interessanterweise und im 

Gegensatz zu dem, was bisher angenommen wurde, ist räumliches Arbeitsgedächtnis 

nicht allein vom HPC abhängig. Daher hilft diese Studie unsere Kenntnisse über HPC-

abhängige Verhaltensweisen zu verbessern.
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1 Introduction 
1.1 Hippocampus (HPC) 
Scoville and Milner’s patient H.M. suffered from severe epilepsy with minor and 

major seizures from the age of 10. Despite strong anticonvulsant medication, the 

epileptic seizures worsened. To alleviate seizures, a medial temporal lobe resection 

was carried out at the age of 27. After surgery H.M., at first glance, seemed like a 

normal person, since his intelligence, personality, understanding and reasoning were 

unchanged. However, bilateral removal of the medial temporal lobes (including large 

parts of the hippocampal formation) led to a complete inability to form new 

memories. For example, he never knew the correct date and did not remember people 

he met shortly before or the food he had just eaten. Additionally, H.M. suffered from 

partial retrograde amnesia. While his remote memory was unimpaired, recent memory 

(up to three years before the operation) was partially or completely lost (Scoville & 

Milner, 1957; Squire, 2009). Interestingly, the described memory deficits only 

affected declarative (e.g. facts and episodes) and not procedural (e.g. skills) 

memories. For example, when H.M. was asked to trace the contours of a star through 

a mirror, he learned this task with high accuracy within a few trials, although he never 

remembered having done this task before (Milner, 1962). Until he deceased at the age 

of 82 on December 2, 2008, H.M. became one of the best known and most studied 

patients in neuroscience (Squire, 2009). 

After Scoville and Milner (1957) described their findings about H.M. and other 

patients with similar phenotypes, the interest on memory formation in the medial 

temporal lobe increased significantly. Further studies delineated a major role of the 

hippocampal formation for declarative memories. Hippocampal lesions in both, 

monkeys and rodents, further increased knowledge about the role of this brain area in 

learning and memory (Squire & Zola-Morgan, 1991; Neves et al., 2008; Squire, 

2009). The interest in hippocampal learning and memory increased with the finding of 

long-term potentiation (LTP) by Bliss and Lømo (1973), a putative physiological 

correlate of learning and memory, which was first described for the HPC. The finding 

of hippocampal place fields by O’Keefe and Dostrovsky (1971) and spatial memory 

impairments after hippocampal lesions in rats (Hughes, 1965; Stevens & Cowey, 

1973; Sinnamon et al., 1978) increased the focus of spatial processing within the 
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HPC. Today, the importance of the hippocampal formation in spatial and non-spatial 

learning and memory is widely accepted (Neves et al., 2008). 

 

1.1.1 Anatomy of the hippocampal formation 
The HPC is a complex but highly organized structure in the mammalian brain. The 

word ‘hippocampus’ (Greek for “sea horse”) was chosen, because of the similarity of 

this brain structure in humans to the sea horse (Amaral & Lavenex, 2007).  

The term HPC describes an area, which is composed of three subfields CA1, CA2 

and CA3 (CA=cornu ammonis (Latin for “Ammon’s horn”)). The hippocampal 

formation comprises four regions, namely the HPC, dentate gyrus (DG), subicular 

complex (consisting of the subiculum, presubiculum and parasubiculum) and 

entorhinal cortex (Figure 1a). The subicular complex and entorhinal cortex are often 

referred to as the parahippocampal region (Amaral & Witter, 1989). Most of these 

areas were identified and named by Santiago Ramón y Cajal (Ramón y Cajal, 1893) 

and his student Raphael Lorente de Nó (Lorente de Nó, 1933; Lorente de Nó, 1934). 

In rodents the hippocampal formation looks like an elongated, banana-shaped 

structure. It extends from the midline close to the septal nuclei (septal pole/dorsal 

HPC) over and behind the thalamus into the beginning temporal lobe (temporal 

pole/ventral HPC) (Figure 1a). 

The areas of the hippocampal formation are, almost exclusively, unidirectionally 

connected. The entorhinal cortex projects to the DG via a fiber bundle called the 

perforant pathway. The mossy fibers of the DG granule cells in turn project to 

pyramidal neurons of the CA3 subfield. The so-called Schaffer collaterals are 

connecting CA3 with CA1 pyramidal neurons. The CA1 neurons project back to the 

entorhinal cortex. This loop-like connection is often referred to as the trisynaptic 

circuit (Amaral & Witter, 1989; Amaral & Lavenex, 2007) (Figure 1b). 
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Figure 1: (a) Position of the hippocampal formation in the rat brain (consisting of DG (dark brown), 

CA3 (medium brown), CA2 (not indicated), CA1 (orange), subiculum (yellow), presubiculum 

(medium blue), parasubiculum (dark blue), the lateral (dark green) and medial (light green) entorhinal 

cortex). Moreover the perirhinal cortex is shown (pink and purple). For a detailed description see text 

(adapted from van Strien et al., 2009). (b) Basic anatomy of the HPC and its connections with the 

entorhinal cortex. For a detailed description see text (adapted from Neves et al., 2008). 

 

1.1.2 Cell types and intrinsic connections 

1.1.2.1 DG 

The DG comprises three layers, the granule cell layer, the molecular layer, and the 

polymorphic cell layer. The granule cell layer is the principal cell layer of the DG. It 

contains the granule cells, which are the only principal neurons within the DG. They 

mainly give rise to excitatory projections to pyramidal neurons of CA3 via the so-

called mossy fibers. However, mossy fibers also terminate on interneurons of the 

granule cell layer and mossy cells of the polymorphic cell layer (Amaral & Lavenex, 

2007).  
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The polymorphic cell layer contains a large variety of neurons the most common 

of which are the excitatory mossy cells. They project to the dendrites of granule cells 

and interneurons of the DG. Therefore, mossy cells provide both feedforward 

excitatory (directly) and inhibitory (via interneurons) control of DG granule cells. The 

mossy cells cannot be defined as projection neurons, since their axons are confined to 

the DG, however they also do not follow the common pattern of interneurons, since 

they are excitatory (Amaral & Lavenex, 2007).  

The molecular layer surrounds the granule cell layer and mainly contains dendrites 

from neurons of the granule and polymorphic cell layers and axons from the 

entorhinal cortex and other projection areas (Amaral & Lavenex, 2007).  

1.1.2.2 HPC (CA1, CA2 and CA3) 

As mentioned above the HPC comprises three subfields, CA1, CA2 and CA3. In 

all subfields the pyramidal cell layer contains the principal neurons of the HPC, the 

pyramidal neurons. The pyramidal cell layer is surrounded by the stratum oriens, 

which contains the basal dendrites of the pyramidal neurons. The pyramidal cell layer 

itself surrounds the stratum radiatum, which contains the apical dendrites of the 

pyramidal neurons. The stratum radiatum surrounds the so-called stratum lacunosum-

moleculare, which contains the apical tufts of the apical dendrites (Amaral & 

Lavenex, 2007) (Figure 2).  

The CA3 (but not CA2) is the only subfield of the HPC that receives input from 

granule cells of the DG via the mossy fibers. These fibers give rise to presynaptic 

terminals called mossy fiber expansions that make synaptic contacts with CA3 

neurons (Amaral & Dent, 1981). Each mossy fiber makes approximately 15 

expansions (i.e. one granule cell projects approximately to 15 CA3 neurons). One 

CA3 pyramidal neurons receives input from about 72 granule cells. The site of 

termination, which is located between the pyramidal cell layer and stratum radiatum 

of CA3, is called the stratum lucidum. CA3 cells do not project back to the molecular 

layer of the DG except for a few neurons from the most temporal part of the HPC. 

Additionally, some CA2 and CA3 neurons project to the polymorphic layer of the DG 

(Amaral & Lavenex, 2007) (Figure 1&2).  

CA3 and CA2 pyramidal neurons are strongly innervated by their own axons and 

axons of the contralateral CA3 and CA2. This connection is referred to as the 

associational connection. Additionally, CA2 and, more so, CA3 pyramidal neurons 

project to CA1 neurons via the Schaffer collaterals. These collaterals terminate on the 
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apical and basal dendrites of CA1 pyramidal neurons. The axonal projection of a 

single CA3 neuron can make as many as 60,000 synaptic connections. However, a 

single CA3 pyramidal neuron only makes up to 10 synaptic contacts with an 

individual CA1 pyramidal neuron (Li et al. 1994; Ishizuka et al., 1995; Amaral & 

Lavenex, 2007) (Figure 1&2).  

CA1 neurons have no associational connection. However, some of these cells 

project to interneurons within the CA1, thereby giving inhibitory feedback. CA1 

neurons project to the adjacent subiculum and the entorhinal cortex (Amaral & 

Lavenex, 2007). 

 

 
Figure 2: Representations of the hippocampal formation in the rat brain. Horizontal (a, b) and coronal 

sections of the rat hippocampal formation are shown. In (e) an enlarged representation of the horizontal 

section from (b) is shown. The hippocampal subfields are color-coded in all images (DG (dark brown), 

CA3 (medium brown), CA2 (not indicated), CA1 (orange), subiculum (Sub, yellow), presubiculum 

(PrS, medium blue), parasubiculum (PaS, dark blue), the lateral (LEA, dark green) and medial (MEA, 

light green) entorhinal cortex, perirhinal cortex (pink and purple) and postrhinal cortex (blue-green)). 

The Roman numerals indicate cortical layers (Abbreviations: gl = granule cell layer, luc = stratum 

lucidum, ml = molecular layer, or = stratum oriens, pyr = pyramidal cell layer, rad = stratum radiatum, 

slm = stratum lacunosum-moleculare) (adapted from van Strien et al., 2009). 

 

1.1.2.3 Interneurons of the hippocampus 

Interneurons, which can be essentially found in all layers of the DG and HPC, play 

an important role in the proper physiological functioning of the hippocampal 
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formation. One interneuron can make more than 10,000 inhibitory synaptic contacts 

with principal neurons. Thereby, interneurons have strong inhibitory control over the 

excitability of granule and pyramidal neurons. The most important interneurons found 

in the DG and HPC will be presented in the following section. 

The most intensively studied type of interneuron is the pyramidal basket cell, 

which is found in the principal cell layers of the DG and HPC. Pyramidal basket cells 

form inhibitory synapses with the cell bodies of principal neurons in a ‘basket’-like 

fashion. A single pyramidal basket cell makes about 10,000 synapses on 1,000 or 

more principal neurons. In turn, dendrites of the pyramidal basket cells receive at least 

2,000 excitatory inputs, mostly from principal neurons (Freund & Buzsáki, 1996).  

A second prominent type of interneuron is the chandelier or axo-axonic cell. This 

type of interneuron is located in the molecular layer of the DG and the pyramidal cell 

layer of the HPC. A single chandelier cell synapses on the axon-initial segments of 

about 1,200 principal neurons and the axon initial segment of each principal neuron 

receives input from 4 to 10 different chandelier cells (Freund & Buzsáki, 1996).  

The bistratified cells are located close to the pyramidal cell layer. Their axons 

reach into stratum oriens and stratum radiatum, where they generate up to 16,000 

synaptic contacts. Their dendrites reach into all strata except stratum lacunosum-

moleculare. In CA3 they most likely receive input from associational fibers (feedback 

inhibition), while in CA1 they receive input from Schaffer collaterals (feedforward 

inhibition) (Freund & Buzsáki, 1996; Tukker et al., 2007).  

Additionally, there are several other kinds of interneurons in the HPC and DG, 

most of which project to the dendrites of principal neurons (Freund & Buzsáki, 1996). 

 

1.1.3 Extrinsic connections 
1.1.3.1 Intrahippocampal connections 

The entorhinal cortex plays a critical role in hippocampal processing. Sensory 

information mainly enters and, when processed, leaves the hippocampal formation via 

this area (Amaral & Lavenex, 2007).  

Layer II (but also layers V and VI) of the entorhinal cortex provide the main 

projection to the DG via the perforant pathway. The perforant pathway fibers 

terminate in the molecular layer of the DG (Steward & Scoville, 1976). The same 

entorhinal collaterals that project to the DG also project to the stratum lacunosum-
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moleculare of CA3 and CA2. A different projection, mainly from layer III, terminates 

in the stratum lacunosum-moleculare of CA1 (Witter & Moser, 2006). Projections 

from layer II and III of the entorhinal cortex terminate in the molecular layer of the 

subiculum (Köhler, 1985). Layers III and V of the entorhinal cortex receive 

projections from the pyramidal neurons of CA1 and the subiculum. However, there 

are no projections to the entorhinal cortex from CA2/3 or DG (Naber et al., 2001). 

Layer III of the entorhinal cortex receives a strong projection from the presubiculum, 

and layer II is innervated by the parasubiculum (Amaral & Lavenex, 2007). 

Pre- and parasubiculum also provide a minor projection to the molecular layer of 

the DG. In addition, the presubiculum weakly innervates CA1, CA2 and CA3. 

Subiculum, presubiculum and parasubiculum are all interconnected (Köhler, 1985).  

1.1.3.2 Neocortex 

The medial prefrontal cortex (PFC) projects to the presubiculum and receives input 

from pyramidal neurons in the transition from dorsal to ventral HPC. The 

orbitofrontal cortex receives a prominent projection from the subiculum and the 

entorhinal cortex. The entorhinal cortex projects back to the orbitofrontal cortex. The 

prelimbic and infralimbic cortices are reciprocally connected with the entorhinal 

cortex. The prelimbic cortex projects to the presubiculum, and the prelimbic and 

infralimbic cortices receive a projection from the subiculum (Verwer et al., 1997). 

Additionally, the hippocampal formation is connected with the piriform cortex, the 

olfactory bulb, the anterior olfactory nucleus, the anterior cingulated cortex, agranular 

insular cortex and the occipital visual cortex. Furthermore there are connections with 

the temporal, parietal, retrosplenial, postrhinal and perirhinal cortices. Most of the 

connections of the hippocampal formation with neocortical areas are provided by the 

entorhinal cortex (Insausti et al., 1997; Verwer et al., 1997; Amaral & Lavenex, 

2007). 

1.1.3.3 Amygdala 

The basal nucleus of the amygdala projects to the CA1/subiculum border region, 

where it preferentially innervates the molecular layer of the subiculum and the 

stratum lacunosum-moleculare of CA1. The basal nucleus of the amygdala receives a 

return projection from pyramidal neurons of this region (Pikkarainen et al., 1999; 

Pitkänen et al., 2000). The entorhinal cortex receives a substantial input from the 

amygdaloid complex, mainly from the lateral and basal nuclei and sends a feedback 

projection, mainly to the basal nucleus (Amaral & Lavenex, 2007). 
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1.1.3.4 Subcortical structures 

The septal nuclei provide substantial projections to the hippocampal formation. 

They innervate by cholinergic synapses granule cells and neurons in the polymorphic 

layer of the DG and pyramidal neurons of CA1, CA3 and the subiculum. 

Furthermore, the pre- and parasubiculum, and the entorhinal cortex receive 

cholinergic inputs from the septal nuclei. Principal neurons from CA1, CA3, the 

subiculum and the entorhinal cortex project back to the septal nuclei. Additionally, 

there are γ-amino butyric acid (GABA)-ergic projections from the septal nuclei that 

terminate on GABAergic interneurons of the DG (Amaral & Lavenex, 2007). 

The striatum, in particular the nucleus accumbens and the olfactory tubercle, 

receives projections from the subiculum and entorhinal cortex. The ventral subiculum 

also strongly innervates the bed nucleus of the stria terminalis and moderately the 

ventral part of the claustrum or endopiriform nucleus (Amaral & Lavenex, 2007).  

1.1.3.5 Thalamus and Hypothalamus 

Thalamic areas that are connected with the hippocampal formation include the 

anterior thalamic complex, the nucleus reuniens, interanteromedialis, gelatinosus and 

centralis medialis. Furthermore, the rhomboid, paraventricular and parataenial nuclei. 

Hypothamalic connections include the mammilary, supramammilary, premammilary 

and tuberomammilary nuclei and the ventromedial nucleus (Maglóczky et al., 1994; 

Kiss et al., 2000; Amaral & Lavenex, 2007). 

1.1.3.6 Brain stem 

The pontine locus coeruleus innervates the hippocampal formation with 

noradrenergic fibers. These mostly terminate in the DG, the CA3, the presubiculum, 

and the entorhinal cortex. The ventral tegmental area makes dopaminergic projections 

to the entorhinal cortex and the DG. Serotonergic input to the hippocampal formation 

comes from the raphe nuclei. Axons from this area project to the DG, CA3, the 

presubiculum and entorhinal cortex (Amaral & Lavenex, 2007). 

 

1.1.4 Hippocampal physiology 

Long-lasting changes in the strength of synaptic transmission were first postulated 

by Donald O. Hebb to be the physiological basis for learning and memory (Hebb, 

1949). So far, the best correlate for these changes in synaptic plasticity is LTP, which 

was discovered in the rabbit HPC by Bliss and Lømo (1973). Excitatory postsynaptic 
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potentials of DG granule cells were shown to increase after tetanic stimulation of the 

perforant pathway fibers (Bliss and Lømo, 1973). In later studies this increase in 

potentials was also shown for mossy fiber projections from DG to CA3 (Alger & 

Teyler, 1976) and for the Schaffer collateral input from CA3 to CA1 (Schwartzkroin 

& Wester, 1975; Alger & Teyler, 1976). In fact, CA3 to CA1 LTP became the most 

commonly studied form of LTP. Notably, also other brain areas including the 

amygdala were shown to produce robust LTP after tetanic stimulation (Racine et al., 

1975).  

The molecular mechanisms that lead to LTP are mostly resolved. Essentially, Ca2+-

influx through N-methyl-D-aspartate (NMDA) receptors leads, via a second 

messenger cascade, to enhanced incorporation of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors to the activated synapse and therefore to 

an increased response of this synapse to glutamate (Collingridge et al., 1983; Lynch et 

al., 1983; Lynch & Baudry, 1984; Malinow & Malenka, 2002). The role of AMPA 

receptors in LTP will be described in more detail later.  

Since the induction of LTP is unphysiologic, its role in storage and retrieval of 

memories has long been disputed, and still is. However, several recent studies showed 

that learning induced LTP in the HPC in vivo and the reversal of this LTP abolished 

the acquired memory traces, indicating that LTP in fact contributes to learning and 

memory processes (Gruart et al., 2006; Pastalkova et al., 2006; Whitlock et al., 2006). 

Important correlates of spatial processing in the hippocampal formation are the so-

called place cells and grid cells. The place cells are pyramidal neurons of the HPC 

and granule cells of the DG that fire selectively, when an animal is in a certain 

location, regardless from which direction the animal approaches this location. Place 

cells were first described in the rat by O’Keefe and Dostrovsky (O’Keefe & 

Dostrovsky, 1971; O’Keefe, 1976). Later, place cells were also found in mice 

(McHugh et al., 1996; Rotenberg et al., 1996), monkeys (Ono et al., 1991) and 

humans (Ekstrom et al., 2003).  

Grid cells, which were found by the Mosers and co-workers  (Fyhn et al., 2004; 

Hafting et al., 2005), can be found in the superficial layer of the medial entorhinal 

cortex. They were first discovered in the rat, but recently shown to be also present in 

mice (Fyhn et al., 2008). These neurons fire, similar to place cells, specifically when 

an animal is in a certain location. However, unlike place cells, they fire in several 

places of a spatial location in a regular fashion, thereby forming a grid-like field. It is 
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very likely that input from grid cells to the HPC tunes the formation of place cells 

(Fyhn et al., 2008; Moser et al., 2008).  

Place and grid cells seem to play an important role in the formation of spatial 

memories. How these neurons are able to encode memories, however, has not been 

resolved yet (Moser et al., 2008). 

 

1.2 Ionotropic glutamate receptors (iGluRs) 
iGluRs, the main mediators of excitatory neurotransmission in the vertebrates’ 

central nervous system, are ligand-gated ion channels (Dingledine et al., 1999). 

According to their selective agonists iGluRs can be subdivided into three major 

classes: (1) NMDA receptors, (2) AMPA receptors, and (3) Kainate receptors 

(Dingledine et al., 1999; Mayer & Armstrong, 2004). 

NMDA receptors form assemblies consisting of two GluN1 (also known as NR1) 

subunits and two GluN2 (NR2) subunits, of which four exist, termed GluN2A to 

GluN2D (NR2A to NR2D). The AMPA receptors are assembled from the four 

subunits GluA1 to GluA4 (GluR-A to GluR-D or GluR1 to GluR4). Kainate receptors 

are assembled from the five subunits GluK1 to GluK5 (GluR5, GluR6, GluR7, KA1 

and KA2). Additionally, there are two known orphan receptors, termed GluD1 and 

GluD2 (δ1 and δ2) (Mayer & Armstrong, 2004, Collingridge et al., 2009).  

The NMDA and AMPA receptors are the best-studied iGluRs in hippocampal 

physiology. While NMDA receptors are responsible for the slow, relatively long 

lasting (50 times longer then AMPA receptors) postsynaptic currents, AMPA 

receptors mediate the fast component of postsynaptic currents (Seeburg et al., 2001). 

All iGluRs share a common subunit topology. Every subunit has an amino-

terminal domain (ATD), three transmembrane-spanning domains (termed M1, M3, 

and M4), a channel-pore forming domain (termed M2), and a carboxy-terminal 

domain (CTD) (Figure 3a,b) (Mayer & Armstrong, 2004).  

The ATD is partially responsible for the correct channel assembly. Two subunits 

build a dimer through interaction via their ATDs. Two of these dimers then form a 

tetrameric channel via their transmembrane domains (Mayer & Armstrong, 2004; 

Stern-Bach, 2004). Additionally, a part of the ATD (termed S1 region) together with 

the extracellular domain between M3 and M4 (termed S2 region) form the ligand 

binding domain of iGluRs. The S1 and S2 region fold in a clam shell like structure 



1 Introduction  
 

 

13 

with two domains termed D1 (which is composed of S1 and the carboxy-terminal part 

of S2) and D2 (the amino-terminal part of S2). Glutamate (or glycine in the case of 

the GluN1 subunit) binds first to D1. Subsequently, D2 rotates towards D1 to close 

the clam shell. This rotation leads to a conformational change, which allows the 

channel to conduct ions (Mayer & Armstrong, 2004; Stern-Bach, 2004).  

iGluRs essentially can adopt three different conducting states, that is resting, active 

and desensitized. During the resting state, the agonist binding site is spared and the 

channel is closed (i.e. no ions are conducted). Upon glutamate binding, iGluRs 

transform into the active state by opening the channel (i.e. the channel is free for ion-

conductance). After the activation iGluRs convert into the desensitized state, which is 

closure of the channel with agonist in the binding site. The time iGluRs need to 

change their conformation from active to desensitized state depends on the type of 

iGluR (AMPA receptors desensitize faster than NMDA receptors) and on the subunit 

composition (e.g. GluN2A-containing NMDA receptors desensitize faster than those 

containing GluN2B) (Figure 3c) (Mayer & Armstrong, 2004).  

A highly conserved element within the M2 domain of each iGluR subunit is the 

pore loop, which is forming the channel pore. The pore loop enters the membrane 

from the intracellular side and then kinks and exits the membrane again to the 

intracellular side. The region where the pore loop kinks is critical for Ca2+-

permeability and the Mg2+-block in NMDA receptors and for the control of Ca2+- and 

Na+-conductances in AMPA receptors. In the case of the NMDA receptor pores, an 

asparagine residue, while in the case of AMPA receptors, a glutamine and, in the 

GluA2 subunit, arginine residue are the critical determinants for channel pore 

function (Seeburg et al., 2001). 

The CTD of iGluRs varies subunit-specifically in length. This domain is mainly 

responsible for the interaction of iGluRs with other proteins, for instance post-

synaptic density (PSD) proteins (Mayer & Armstrong, 2004; Elias & Nicoll, 2007). 
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Figure 3: Schemes of the structure and function of iGluRs. (a) Single subunit domain organization. 

The glutamate binding domains are shown in red (D1) and blue (D2), (trans)membrane domains are 

illustrated in yellow and all other domains, including ATD and CTD are shown in grey. (b) Domain 

organization of an iGluR using the same color-coding as in (a). Additionally, a bound glutamate (Glu) 

is shown in pink. (c) Subunit orientation during different conductive states. The top images show side 

views and the bottom images top views of the subunit assemblies (adapted from Stern-Bach, 2004).  

 

1.2.1 AMPA receptors 
Among the iGluRs AMPA receptors are the main mediators of fast excitatory 

neurotransmission with rapid onset, offset and desensitization kinetics. They are 

mainly responsible for the enhanced synaptic strength after potentiation. The most 

abundant channel assemblies in adult principal neurons of the HPC are GluA1/A2 and 

GluA2/A3. However, GluA1 can also form homomeric channels (Sprengel, 2006; 

Shepherd & Huganir, 2007). The GluA4 subunit is mainly expressed in hippocampal 

interneurons and projection neurons of the juvenile HPC (Jensen et al., 2003; Fuchs et 

al., 2007).  

All four AMPA receptor subunits can undergo alternative splicing events. One 

alternative splicing event affects the “flip/flop” module close to the S2-region. Early 

in development AMPA receptor subunits containing the “flip” module are most 

prominent. However, with increasing age “flip” containing subunits are replaced by 

subunits containing the “flop” module. AMPA receptors that contain “flip” subunits 

desensitize slower than those with “flop” subunits (Figure 4a) (Sprengel, 2006).  
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Another alternative splicing event affects the CTD-length of the GluA2 and GluA4 

subunits. While the GluA1 subunit only contains a long CTD and the GluA3 subunit 

only exists with a short CTD, the GluA2 and GluA4 subunits can be alternatively 

spliced, carrying either a short or long CTD (for GluA2, the short form is most 

abundant, while for GluA4 the long form is more common). The differences in the 

CTD lead to pronounced differences in protein interaction and phosphorylation of the 

different subunits (Figure 4a,b) (Shepherd & Huganir, 2007). 

Another modification found for AMPA receptors is RNA editing. One RNA 

editing event affects the channel pore forming domain of the GluA2 subunit. In 

AMPA receptors the critical amino acid for channel conductance is usually a 

glutamine. However, almost all mRNAs of the GluA2-subunit are edited to code for 

an arginine at this site (Q/R-editing). Q/R-editing leads to a strong reduction in Ca2+-

conductance and blocks rectification of AMPA receptors at positive potentials. 

Moreover, it blocks the transport of homomeric GluA2 subunits from the 

endoplasmatic reticulum (ER) to the plasma membrane (Figure 4a) (Seeburg et al., 

2001; Sprengel, 2006; Shepherd & Huganir, 2007).  

There is an additional RNA editing site before the flip/flop sequence of the GluA2, 

GluA3 and GluA4 subunits. In this position a codon that usually encodes an arginine 

is edited to code for a glycine (R/G-editing). However, R/G-editing is less efficient 

than Q/R-editing, since only 80-90 % of the GluA2 and GluA3 and about 50 % of the 

GluA4 mRNA are edited at the R/G-editing site. AMPA receptors that include 

subunits with a glycine at the R/G-editing site show faster recovery from 

desensitization (Figure 4a) (Sprengel, 2006; Shepherd & Huganir, 2007). 
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Figure 4: AMPA receptor subunit isoforms. (a) Flip (left; illustrated in black) and flop (right; 

illustrated in red) isoforms are schematically shown for each AMPA receptor subunit. Short and long 

CTDs are represented where applicable. Q/R- and R/G-editing sites are illustrated in blue (adapted 

from Sprengel, 2006). (b) Long and short isoforms of all AMPA receptor subunits are shown. The 

different CTDs determine binding partners and phosphorylation sites which are highlighted (adapted 

from Shepherd & Huganir, 2007). 

 

AMPA receptors contribute to synaptic plasticity in a specific way. The induction 

of LTP leads to insertion of AMPA receptors into synapses and, vice versa, long-term 

depression (LTD) leads to endocytosis of AMPA receptors (Malinow & Malenka, 

2002). This activity-dependent insertion/removal apparently requires GluA1-

containing AMPA receptors (i.e. GluA1/A2 assemblies). However, maintenance of 

AMPA receptors in synapses is independent of GluA1, but requires GluA2-containing 

AMPA receptors (i.e. GluA2/A3 assemblies) (Shi et al., 2001; Malinow & Malenka, 

2002). These subunit-specific rules seem to be mostly dependent on the CTD of the 

subunits, suggesting that C-terminal interaction with scaffolding proteins and/or 

phosphorylation are required for these properties (Shi et al., 2001).  

The prototypical class of synaptic scaffolding proteins are the membrane 

associated guanylate kinases (MAGUKs) that consist of four members: PSD protein 
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of 95 kDa (PSD-95), PSD protein of 93 kDa (PSD-93), synapse-associated protein 

(SAP)-97 and SAP-102. All MAGUKs share a common domain structure with three 

amino-terminal PSD-95/Discs large/zona occludens-1 (PDZ) domains, an Src-

homology 3 (SH3) domain and a carboxy-terminal catalytically inactive guanylate 

kinase domain (Elias & Nicoll, 2007). 

The MAGUKs bind to the CTD of GluN2 subunits and thereby most likely 

localize NMDA receptors to the synapse. However, only one MAGUK, SAP-97, is 

known to directly bind to the CTD of GluA1, and this interaction was shown to be 

necessary for clustering GluA1 containing AMPA receptors to synapses. Although, 

none of the other MAGUKs is known to directly bind to AMPA receptors, 

overexpression of PSD-95 led to an increase of AMPA receptor responses. Vice 

versa, downregulation of PSD-93 or PSD-95 induced a strong reduction in AMPA 

receptor-mediated transmission (Elias et al., 2006; Elias & Nicoll, 2007). Therefore 

an intermediary protein is required that binds to both AMPA receptors and MAGUKs. 

This property is provided by the transmembrane AMPA receptor regulatory proteins 

(TARPs) (Nicoll et al., 2006).  

There are four canonical TARPs named γ-2 (or stargazin), γ-3, γ-4 and γ-8 (Nicoll 

et al., 2006). These TARPs bind to AMPA receptors, probably via the transmembrane 

domains. TARPs fulfill complex roles in AMPA receptor function. They are required 

for proper ER-maturation of AMPA receptor subunits. They translocate AMPA 

receptors to the cell surface and are required for AMPA receptor transport to synapses 

by binding to MAGUKs. Additionally, TARPs directly influence AMPA receptor 

function. They increase AMPA receptors affinity for glutamate, enhance single-

channel conductance and slow the rate of deactivation and desensitization (Nicoll et 

al., 2006).  

More recently also γ-5 and γ-7 were shown to function as TARPs (Kato et al., 

2007; Kato et al., 2008; Soto et al., 2009). γ-7, which is mainly expressed in the 

cerebellum, fulfills similar functions to the canonical TARPs with respect to AMPA 

receptor trafficking and kinetics (Kato et al., 2007). However, γ-5 seems to control 

AMPA receptor function differently. γ-5 does not influence AMPA receptor surface 

trafficking, and in great contrast to the canonical TARPs, lowers agonist affinity and 

accelerates deactivation and desensitization of AMPA receptors. However, like the 
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canonical TARPs, γ-5 increases single channel conductance (Kato et al., 2008; Soto et 

al., 2009). 

Very recently, two members of the cornichon family of transmembrane proteins 

were shown to associate with AMPA receptors. Similar to TARPs, these proteins 

increase surface expression and slow the rate of deactivation and desensitization of 

AMPA receptors (Schwenk et al., 2009). 

In addition to binding to TARPs, phosphorylation of AMPA receptors is required 

for changes in synaptic plasticity. The most important phosphorylation sites affecting 

synaptic plasticity are the serine residues 831 and 845 of the GluA1 subunit. 

Phosphorylation of these residues is required for LTP, and dephosphorylation of these 

residues induces LTD, and endocytosis of AMPA receptors. Additionally, several 

phosphorylation sites on the GluA2 subunit have been characterized. Phosphorylation 

and dephosphorylation of these residues differentially modulates binding of 

interacting proteins but also seems to be directly involved in synaptic plasticity. For 

the GluA3 and GluA4 subunits, phosphorylation sites have been found which mostly 

resemble those of GluA1 (for GluA4) and GluA2 (for GluA3) (Figure 4b) (Lee, 

2006). Interestingly, also TARPs and MAGUKs can be phosphorylated. 

Phosphorylation of TARPs (Nicoll et al., 2006) and SAP-97 (Lee, 2006) were shown 

to be required for synaptic plasticity. 

 

1.3 GluA1 knock-out (GluA1-/-) mice 
As mentioned above and suggested by the subunit-specific rules (Shi et al., 2001) 

the AMPA receptor subunit GluA1 is critical in the induction of synaptic plasticity in 

hippocampal neurons. So far, the most studied model to investigate the function of 

GluA1-containing AMPA receptors in vivo is the GluA1-/- mouse. Besides a smaller 

size during the first postnatal weeks and a slightly reduced weight of males, these 

mice are largely inconspicuous in appearance (Zamanillo et al., 1999; Bannerman et 

al., 2004). In hippocampal slice recordings, these mice show almost normal strength 

of excitatory synaptic transmission, mediated by the remaining GluA2/A3 

heteromeric AMPA receptors, but deficits in tetanus-induced cellular and field LTP in 

hippocampal CA3  CA1 connections (Zamanillo et al., 1999, Jensen et al., 2003). 

Interestingly, after theta burst pairing in HPC, GluA1-/- mice only show deficits during 

early phase potentiation, while late phase potentiation remains intact (Hoffman et al., 
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2002). Moreover, when measuring spike timing-dependent plasticity, GluA1-/- mice 

show wild type (WT)-like potentiation (unpublished data), clearly suggesting GluA1-

independent modes of potentiation. These electrophysiological changes might in part 

be attributed to lower protein levels of other AMPA receptor subunits since at least 

one report (Jensen et al., 2003) found that the amounts of the GluA2 and GluA4 

subunits, the main partners of GluA1 in HPC, are reduced in GluA1-/- mice. However, 

these reductions in GluA2 and GluA4 are most likely due to a shorter half-life of 

these subunits in the un-assembled form (Jensen et al., 2003). A better explanation for 

the change of electrophysiological properties in GluA1-/- mice is the lack of 

extrasynaptic AMPA receptors, which are required for the induction of synaptic 

plasticity (Andrásfalvy et al, 2003). This view is also supported by the fact that in 

immunostainings of GluA1-/- mice the GluA2 subunit is most prominent in the 

somata, where it is most likely trapped in the ER, while the residual dendritic GluA2 

is located in synapses (Zamanillo et al., 1999, Jensen et al., 2003). In fact, the GluA2 

subunit was even slightly enriched in hippocampal synapses of GluA1-/- mice, perhaps 

explaining the intact synaptic transmission (Jensen et al., 2003). Another report 

(Chourbaji et al., 2008) showed that GluA1-/- mice express increased levels of the 

principal NMDA receptor subunit GluN1 and glutamate in HPC. This might be a 

compensatory mechanism for the reduction in AMPA receptor signaling and might 

give additional explanations for the unchanged basal transmission in these mice 

(Chourbaji et al., 2008). 

Interestingly, the deficits in LTP can be partially rescued upon transgenic 

reintroduction of a green fluorescent protein (GFP)-tagged GluA1 subunit in principal 

neurons of the forebrain. In fact, already about 10 % of endogenous GluA1 levels are 

sufficient to induce a cellular and field LTP with a strength of about 50 % of that 

found in WT mice (Mack et al, 2001). 

Besides these electrophysiological and biochemical phenotypes, GluA1-/- mice 

show very distinct behavioral phenotypes. These phenotypes are mostly related to 

hippocampal learning and memory, but also other systems are affected. 

 



1 Introduction  
 

 

20 

1.3.1 Behavioral changes in GluA1-/- mice 
1.3.1.1 Locomotor activity 

Rodents exposed to a novel environment show enhanced locomotor and 

exploratory behavior. Locomotor activity is commonly measured in the open field. 

GluA1-/- mice show hyperactivity when exposed to an open field (Bannerman et 

al., 2004; Wiedholz et al., 2007). This hyperactivity is not rescued by expression of a 

GFP-tagged GluA1 subunit in principal forebrain neurons (Marx, 2007; Freudenberg 

et al., 2009).  

 It has clearly been shown that lesions of the complete HPC induce hyperactivity in 

rats (Teitelbaum & Milner, 1963; Good & Honey, 1997; Bannerman et al., 1999; 

Bannerman et al., 2002). Lesions that are confined to the dorsal HPC also induce 

hyperactivity, however not as pronounced as in complete HPC lesioned rats 

(Bannerman et al., 2002). In contrast, rats with lesions of the ventral HPC only show 

hyperactivity after being exposed to stressors (e.g. mild foot-shocks, swim stress in 

the Morris water maze) (Richmond et al., 1999; Bannerman et al., 2002; Bannerman 

et al., 2003). Locomotor activity is commonly associated with dopamine release in the 

nucleus accumbens (Sharp et al., 1987). Interestingly, complete HPC lesioned rats 

show increased hyperactivity upon amphetamine challenge (Whishaw & Mittleman, 

1991; Bannerman et al., 1999). Therefore it is likely that the lack of projections to the 

nucleus accumbens from the hippocampal formation leads to the hyperactivity 

observed in HPC lesioned rats. Interestingly, GluA1-/- mice were shown to have a 

retarded dopamine-clearance in the striatum (Wiedholz et al., 2007), which might be 

the cause for the hyperactivity.  

1.3.1.2 General cognitive abilities 

Charles Spearman was the first to describe that different cognitive abilities have an 

underlying cognitive trait that contributes to these abilities. Spearman described this 

as general cognitive abilities (g factor). The g factor was supposed to represent what 

diverse cognitive abilities have in common. In other words, difficulties in one 

cognitive task are most likely predictive of difficulties in a different cognitive task, 

which can be described by the g factor (Spearman, 1904). The g factor was generally 

described for humans and suspected to account for about 40 % of the total variance of 

cognitive tests in a given group. However, it is suggested that the g factor is also 

existent in mice (Plomin, 2001). To prove this, Galsworthy et al. (2005) developed a 
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behavioral test battery for general cognitive abilities and found that the g factor in 

mice accounts for 20 to 40 % of the variance within groups (i.e. the likelihood was 

between 20 and 40 % that a mouse that performed badly in one test also showed weak 

performance in a different test). One test that was strongly predictive for the g factor 

was the puzzle box paradigm that was developed specifically for this study 

(Galsworthy et al., 2005). In this test, mice have to escape from an anxiogenic start 

compartment to a more pleasant goal compartment through barriers of different 

features (i.e. a door barrier, an underpass, a sawdust-filled underpass and a plug-

covered underpass). Reductions in the escape latency, particularly when using the 

sawdust-filled and plug-covered underpass, where mice have to develop a strategy to 

make the underpass accessible, are predictive of a low g factor (Galsworthy et al., 

2005). 

In a pilot study from our laboratory GluA1-/- mice were tested in the puzzle box 

paradigm. In this study GluA1-/- mice were strongly impaired in shuttling to the goal 

compartment when using the underpass, the sawdust-filled underpass and the plug-

covered underpass. This impairment cannot be attributed to lower levels of anxiety in 

these mice, since they normally shuttled to the dark goal compartment when using the 

door barrier. Additionally, when mice were retested after an inter-trial interval (ITI) 

of 24 hours, the impairment was not found anymore, meaning that they were only 

impaired when first being confronted with the task and when retested after an ITI of 

1 min (unpublished data). 

1.3.1.3 Spatial working memory (SWM) 

Rodents exposed to a T-maze have a natural tendency to alternate. In the T-maze, 

they tend to explore the previously unvisited arm. Successful performance in this task 

requires intact SWM. This refers to the fact that the rodents have to remember the 

information about specific spatial locations and to process that information over a 

short period of time. In contrast, spatial reference memory (SRM) is needed to 

remember information about a spatial location over a long time period (e.g. 

remembering the fixed location of a food reward in a radial maze) (Deacon & 

Rawlins, 2006). 

The first and most striking behavioral phenotype described for GluA1-/- mice is a 

complete loss of SWM (tested e.g. with spontaneous and rewarded alternation on the 

T-maze and novel arm exploration on the Y-maze) (Reisel et al., 2002; Bannerman et 

al., 2004; Sanderson et al., 2007; Sanderson et al., 2009) while SRM (tested e.g. on 
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the Morris water maze and the Y-maze) stays intact (Zamanillo et al., 1999; Reisel et 

al., 2002). This dissociation cannot be explained by differences of cognitive demands 

in the apparatus that is used, since SRM can be induced on the same Y-maze were 

SWM is impaired (Reisel et al., 2002). On a 3/6-arm radial maze SRM is intact while, 

within the same trial, SWM is impaired (Schmitt et al., 2003). The SWM-deficit 

cannot be attributed to disturbed proactive interference (i.e. disturbing influences 

from previous trials), since SWM is already impaired after a single exposure 

(Sanderson et al., 2007). This SWM deficit is partially rescued by forebrain-specific 

expression of a GFP-tagged GluA1 subunit in both rewarded alternation on the T-

maze and the SWM component of the 3/6-arm radial maze (Schmitt et al., 2005), 

showing that as little as about 10 % of endogenous GluA1 levels in principal neurons 

of the forebrain are sufficient to partially reinstate SWM.  

Sanderson et al. (2009) give an alternative explanation for these deficits in that 

they do not underlie defective SWM but rather a disturbed short-term habituation.  

Several lesion studies showed that the HPC is of great importance for learning and 

memory (Hughes, 1965; Stevens & Cowey, 1973; Sinnamon et al., 1978). Already 

very early a differentiation was found between dorsal and ventral HPC in that the 

dorsal HPC is more strongly involved in spatial memory formation than the ventral 

HPC. However, a clear functional differentiation for SRM was first shown by Moser 

et al. (1993; 1995) and later confirmed (additionally for SWM) by Bannerman et al., 

(1999; 2002; 2003) and others (Hock & Bunsey, 1998). These studies clearly 

demonstrated that the dorsal but not ventral HPC is required for the formation of 

SRM and SWM. Interestingly, input to the HPC from the entorhinal cortex seems to 

be required for the formation of SRM and SWM as well, since lesions of this area 

lead to equal impairments in tests for SRM and SWM (Ramirez & Stein, 1984; Good 

& Honey, 1997; Bannerman et al., 2001; Steffenach et al., 2005). 

Additionally, the medial PFC seems to be partially required for the formation of 

SWM but not for SRM, since lesions of this area in rats lead to variable deficits in 

SWM that are usually only transiently found (van Haaren et al., 1985; Shaw & 

Aggleton, 1993; Schwabe et al., 2003; Mogensen et al., 2007). This suggests a more 

general involvement of the medial PFC in SWM that can be compensated by other 

brain areas like the HPC and/or entorhinal cortex. 
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1.3.1.4 Pavlovian fear conditioning 

Animals tend to associate usually non-salient stimuli (e.g. environment, light, tone) 

with an unpleasant event (e.g. foot-shock), if both are temporally and spatially 

connected. Rodents that are subsequently exposed to such stimuli will show a 

conditioned fear response. The most obvious conditioned fear response is the arrest of 

any movement other than necessary for breathing, the so-called freezing (Fanselow, 

1984). 

Most commonly, rodents are tested for Pavlovian fear conditioning by subjecting 

them to one or more foot-shocks that are preceded by a tone. Subsequently, they are 

tested for ‘cued’ (presentation of the tone in a different context) and/or ‘contextual’ 

(exposure to the environment where the foot-shock was delivered) fear conditioning. 

Usually, rodents will react with an increased rate of freezing (or lower activity) when 

they are confronted with these stimuli. 

GluA1-/- mice were tested for Pavlovian fear conditioning in three different studies. 

Two of these studies showed reduced fear behavior already during the acquisition 

phase (Bosch, 2008; Humeau et al., 2007) while the other (Feyder et al., 2007) does 

not show results from that phase. However, when testing for ‘cued’ or ‘contextual 

fear’, only two of these studies (Feyder et al., 2007; Humeau et al., 2007) showed that 

GluA1-/- mice have reduced fear-elicited behaviors while the other (Bosch, 2008) 

showed normal expression of ‘cued’ and ‘contextual fear’ behavior in these mice.  

The most important brain area for intact expression of fear-elicited behaviors is the 

amygdala. Lesions of the amygdala induce strong impairment in the acquisition of 

fear and the expression of ‘cued’ and ‘contextual fear’ (Fendt & Fanselow, 1999; 

Phelps & LeDoux, 2005). However, also the HPC is strongly involved in conditioned 

fear. Lesions of the dorsal HPC induce deficits in ‘contextual’ but not ‘cued fear’ 

conditioning if lesions are done after the acquisition. Lesions before acquisition elicit 

a less pronounced impairment in ‘contextual fear’ conditioning (Hock & Bunsey, 

1998; Richmond et al., 1999; Fendt & Fanselow, 1999; Anagnostaras et al., 2001; 

Kjelstrup et al., 2003). The ventral HPC in contrast seems to have a more general role 

in Pavlovian fear conditioning, since lesions of this area, akin to amygdala lesions, 

lead to a strong deficit in the acquisition of conditioned fear and the expression of 

‘cued’ and ‘contextual fear’ (Richmond et al., 1999; Anagnostaras et al., 2001; 

Bannerman et al., 2003; Kjelstrup et al., 2003). If this is due to the strong connectivity 

between ventral HPC and amygdala or a distinct feature of learning in the ventral 
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HPC remains to be elucidated. Notably, ventral HPC lesioned rats show a reduction in 

general anxiety (Bannerman et al., 2002; Bannerman et al, 2003; Kjelstrup et al., 

2003), which might lead to the reduction in conditioned fear. 

1.7.1.5 Porsolt forced swim test (FST) 

The FST is commonly used to find antidepressant compounds. This test comprises 

two sessions, 24 hr apart, of forced swimming in an enclosed chamber. Rodents 

placed repeatedly into the chamber learn the uncontrollable and unpredictable nature 

of the task and develop signs of behavioral despair. This can be measured by 

assessing the time until the rodent becomes immobile and the overall amount of 

immobility. A reduction in the latency to immobility and an increase in overall 

immobility after repeated testing, reflect learned behavioral despair (Porsolt et al., 

1977; De Pablo et al., 1989; West, 1990).  

An earlier study from our laboratory (Marx, 2007; Freudenberg et al., 2009) 

showed that GluA1-/- mice are impaired in the expression of behavioral despair after 

repeated testing. These mice show no reduction in latency to, and overall immobility 

on second day of testing. This lack of reduction in latency to immobility and overall 

immobility was rescued in GluA1-/- mice expressing a GFP-tagged GluA1 subunit in 

principal neurons of the forebrain. In contrast, GluA1-/- mice transgenically expressing 

a GFP-tagged GluA1-subunit with a mutation in the PDZ-interacting domain 

resemble the phenotype of GluA1-/- mice (Marx, 2007; Freudenberg et al., 2009).  

The deficit in FST found for GluA1-/- mice implies impairment in learned despair. 

The importance of hippocampal learning in the FST has already been discussed (De 

Pablo et al., 1989; West, 1990). Several studies indicate that both dorsal and ventral 

HPC are critical in FST. Neonatal but not adult lesions of the ventral HPC were 

shown to reduce immobility on the second day of FST (Daenen et al., 2001). 

Additionally, high-speed voltage sensitive dye imaging showed activation of the DG 

after FST in acute brain slices of the rat ventral HPC (Airan et al., 2007), and 

substances reducing mobility in FST were shown to increase serotonin-levels in the 

ventral HPC (Hoshaw et al., 2008). Also the dorsal HPC is important for performance 

in the FST, since experience dependent expression of behavioral despair was blocked 

by inhibition of neuronal nitric oxide synthase (Joca & Guimarães, 2006) or (after 

pre-exposure to stress) NMDA receptors (Padovan & Guimarães, 2004) in the dorsal 

HPC. 
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1.4 Viral gene transfer 
The use of transgenic and knock-out mice aided in finding the contribution of 

certain genes to specific behavioral phenotypes. Conditional mutagenesis, using 

tetracycline controlled gene expression and the Cre/loxP system further refined our 

knowledge about gene function at specific time points in development and in certain 

tissues. However, transgenic and knock-out techniques have certain drawbacks. First, 

the production of mutant mice is cumbersome and time consuming, particularly when 

congenic lines are desired. Second, spatial targeting is very hard to assess and usually 

needs compromises in region-specific expression (e.g. HPC specific expression is 

confined to pyramidal neurons in certain subfields). Third, mosaic or low levels of 

transgene expression might aggravate interpretation of behavioral results (Babinet, 

2000; Hickman-Davis & Davis, 2006).  

To circumvent these problems, the use of recombinant viruses as carriers of 

genetic information has accelerated during recent years. A virus that gained lots of 

interest in this respect is the recombinant adeno-associated virus (rAAV). Adeno-

associated viruses (AAVs) belong to the family of parvoviruses, specifically the 

Dependovirus genus. AAVs are 18-25 nm in diameter and have a genome of 4.7 kb of 

single-stranded DNA that includes two open reading frames coding for replication 

and capsid proteins (named Rep and Cap respectively) (Coura & Nardi, 2007). The 

sequences for Rep and Cap are flanked by the only cis-acting elements of AAV, the 

inverted terminal repeats (ITRs). The ITRs are necessary for virus replication and 

packaging, but additionally supply enhancer/promoter activity (During et al., 2003; 

McCown, 2005; Coura & Nardi, 2007).  

In rAAVs the Rep and Cap genes are replaced by transgenes. rAAV has several 

advantages compared to other viral vectors: (1) it is non pathogenic and induces none 

or only a low immune response, (2) it is relatively resistant to changes in temperature 

and pH, (3) it only rarely integrates into the host genome, (4) it has a broad tropism, 

(5) it gives high levels of expression over a long period of time, (6) rAAVs are 

relatively easy to purify and (7) the relatively small size of rAAVs permits broad 

diffusion and therefore infects large areas (like the HPC). The only obvious 

disadvantage of rAAVs is the limited genetic capacity, which cannot exceed 5 kb, 

including the promoter and regulatory elements (During et al., 2003; Coura & Nardi, 

2007). 
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Several AAV serotypes were identified, the first of which was AAV-2. This 

serotype has a heparan sulfate proteoglycan (HSPG) binding site, which renders the 

virus to be readily purified via affinity chromatography with heparin columns. AAV-2 

generally infects neurons. However, in the HPC only neurons in the DG are 

adequately infected by AAV-2 while CA1 and CA3 are only sparsely infected.  

AAV-1 in contrast shows high tropism for all types of neurons and gives stronger 

expression of the transgene. However, AAV-1 capsids have no HSPG binding site 

and are therefore not as easy to purify (Hauck et al., 2003; Burger et al., 2005). Hauck 

et al. (2003) produced a chimeric virus containing both AAV-1 and AAV-2 capsids. 

This virus combines the advantages of both serotypes. It is able to transduce a broad 

range of neurons and can be easily purified via heparin columns. In fact this chimera 

was already successfully used by us (Celikel et al., 2007; Freudenberg et al., 2009) 

and others (e.g. Klugmann et al., 2005), to transduce the HPC for subsequent 

behavioral testing.  

 

1.5 Aim of the thesis 
As mentioned above, GluA1-/- mice, globally lacking GluA1, show several distinct 

behavioral phenotypes. These include hyperactivity (Bannerman et al., 2004; 

Wiedholz et al., 2007), impaired SWM (Reisel et al., 2002; Bannerman et al., 2004; 

Sanderson et al., 2007; Sanderson et al., 2009), deficits in Pavlovian fear conditioning 

(Feyder et al., 2007; Humeau et al., 2007; Bosch, 2008) and deficient experience-

dependent expression of behavioral despair (Marx, 2007; Freudenberg et al., 2009).  

Results from lesion and pharmacological studies suggest a major contribution of 

the HPC to the behavioral phenotypes of GluA1-/- mice (e.g. Bannerman et al., 1999; 

Anagnostaras et al., 2001; Daenen et al., 2001; Padovan & Guimarães, 2004). 

However, there are several other brain areas that might be involved in mediating these 

behavioral phenotypes. For example the nucleus accumbens is critical for locomotor 

activity (Sharp et al., 1987), lesions of the entorhinal cortex lead to impaired SWM 

(Ramirez & Stein, 1984; Good & Honey, 1997; Bannerman et al., 2001; Steffenach et 

al., 2005), and lesions of the amygdala induce deficits in Pavlovian fear conditioning 

(Fendt & Fanselow, 1999; Phelps & LeDoux, 2005). Therefore, the aim of this thesis 

was to investigate the role of hippocampal GluA1-containing AMPA receptors in the 

mediation of the behavioral phenotypes found in GluA1-/- mice.  
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For this purpose two approaches were used. The first (knock-in approach; i.e. 

expressing GluA1 specifically in HPC) was employed to find if hippocampal GluA1-

containing AMPA receptors are sufficient to mediate the behaviors impaired in 

GluA1-/- mice. The second (knock-out approach; i.e. deleting GluA1 specifically from 

HPC) was employed to see if hippocampal GluA1-containing AMPA receptors are 

required to maintain behaviors impaired in GluA1-/- mice. To achieve this, I made use 

of viral gene transfer by rAAVs. For the knock-in approach, GluA1-/- mice were 

injected stereotaxically into dorsal HPC with an rAAV expressing GluA1, leading to 

GluA1-expression restricted to the HPC. For the knock-out approach, mice with 

‘floxed’ GluA1 alleles (GluA12lox/2lox mice), were stereotaxically injected into the 

HPC with a Cre-recombinase expressing virus, thereby ultimately deleting GluA1 

from HPC. After rAAV injection, mice from the knock-in and knock-out approach 

were tested in behavioral tasks for the phenotypes impaired in GluA1-/- mice. 

The results obtained in this study show that hyperactivity of GluA1-/- mice is due to 

the lack of GluA1 in HPC. Surprisingly, SWM is not exclusively dependent on 

GluA1 in HPC. Additionally, Pavlovian fear conditioning seems to be independent 

from GluA1, while experience-dependent expression of behavioral despair in fact is 

critically dependent on hippocampal GluA1-containing AMPA receptors.
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2 Materials and Methods 
2.1 Mice 
For the experiments reported, adult C57BL/6J (Charles River, Sulzfeld, Germany) 

and different transgenic mouse lines backcrossed to C57BL/6J (Max Planck Institute 

for Medical Research, Heidelberg, Germany) were used in accordance with the 

National Institutes of Health Guide for Care and Use of Laboratory Animals and 

animal welfare guidelines of the Max Planck Society and were registered in the 

Regierungspräsidien Karlsruhe and Tübingen. Mice were kept on a 12-hour light/dark 

cycle (lights on at 7 a.m.) and had ad libitum access to food and water at all times 

except during behavioral testing (unless otherwise specified). All behavioral 

experiments were performed during the light phase and after >30 min acclimation to 

the testing room.  

Mice lacking one (GluA1+/-) or both (GluA1-/-) AMPA receptor GluA1 alleles and 

mice with “floxed” GluA1 alleles (i.e. GluA12lox/2lox) were generated by Zamanillo et 

al., 1999. 

For the experiments an overall number of 87 mice was used. Of these, 19 were WT 

(7 females, 12 males), 38 were GluA1-/- (2 females, 36 males), 10 were GluA1+/- mice 

(all males) and 20 were GluA12lox/2lox (all females). 

 

2.2 Viruses 

2.2.1 Viral vectors 

The AAV construct pAAV CAG-HA.Cre was obtained from Dr. Matthias 

Klugmann (University of Mainz, Germany). This vector contains the cytomegalovirus 

enhancer/chicken beta actin promoter (CAG), driving expression of a hemaglutinin 

(HA)-tagged Cre-recombinase, followed by the woodchuck hepatitis virus 

posttranscriptional regulatory element (WPRE) and a bovine growth hormone poly-

adenylation (bGH pA) sequence (Figure 5a). 

For generation of rAAV-GluA1 (Q/R) expression vectors, myc-tagged GluA1 

cDNA was subcloned into an rAAV backbone containing the 480 bp human synapsin 

(hSynapsin) core promoter, the WPRE and the bGH pA sequence using artificially 

introduced EcoRI and SpeI sites (Figure 5b). 
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Figure 5: Schematic illustration of rAAV vectors. (a) HA-tagged Cre-recombinase is expressed under 

control of the CAG promoter. (b) Myc-tagged GluA1 is expressed under control of the hSynapsin 

promoter. Two versions of this viral vector were used, one coding for a glutamine (Q) and one for an 

arginine (R) at position 598, indicated by the asterisk.  

 

2.2.2 Virus production 

rAAV1/2 pseudo-typed virus (chimeric virions containing equal numbers of AAV 

serotype 1 and 2 capsid proteins with AAV2 ITRs; Hauck et al., 2003) was generated 

as described in During et al. (2003).  

Shortly, ten plates (15 cm diameter) of human embryonic kidney 293 cells were 

transfected by standard calcium phosphate transfection. DNA mixtures for 

transfection contained the AAV expression plasmid (see 2.2.1; 12.5 µg/plate), the 

adenovirus helper plasmid pFdelta6 (25 µg/plate) and both the AAV1 and AAV2 

helper plasmids (pH21 and pRV1 respectively; 6.25 µg/plate) (pFdelta6, pH21 and 

pRV1 were obtained from Dr. Matthias Klugmann (University of Mainz, Germany)).  

48 hours after transfection cells were scraped in phosphate-buffered saline (PBS; 

pH 7.4) at room temperature (RT), centrifuged (10 min, 800 rpm, 4°C) and 

resuspended in 20 mM Tris 150 mM NaCl (pH 8.0, RT). Subsequently, cells were 

lyzed by two freeze-thawing cycles and incubated with sodium deoxycholate (0.5 % 

final concentration; Sigma-Aldrich, St. Louis, Missouri, USA) and Benzonase (35-50 

U/ml final concentration; Sigma-Aldrich, St. Louis, Missouri, USA) at 37°C for 1 

hour. After centrifugation (15 min, 3,000 x g, 4°C) the virus containing supernatant 

was loaded on a 1 ml HiTrap Heparin HP column (GE Healthcare, Chalfont St. Giles, 

Great Britain) and the virus was eluted under high-salt conditions (400-500 mM 

NaCl). Subsequently, the virus was concentrated and rebuffered with PBS in Amicon 

Ultra tubes (Millipore, Billerica, Massachusetts, USA) and sterile filtered through a 
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0.2 µm Acrodisc column (Pall Corporation, East Hills, New York, USA). 

Purity and integrity of the virus preparation was monitored on a GelCode (Pierce 

Biotechnology, Rockford, Illinois, USA) stained sodium dodecyl sulfate (SDS)-

protein gel. The genomic titers were determined by real-time polymerase chain 

reaction (PCR) using the ABI 7700 cycler (Applied Biosystems, Foster City, 

California, USA) with primers and probe designed to WPRE. The infectious titers 

were determined by serial dilutions on primary hippocampal cultures after counting 

infected neurons. 

 

2.2.3 Primary hippocampal cultures 

Primary hippocampal cultures were prepared from E18-19 Sprague-Dawley rat 

embryonic brains after dissociation with trypsin and plating on poly-L-lysine-coated 

12-well chambers (Techno Plastic Products, Trasadingen, Switzerland) at a density of 

50,000 cells per well. The neurons were plated in minimal essential medium 

containing Earle’s salts and glutamine with 10 % fetal bovine serum, 0.45 % glucose, 

1 mM sodium pyruvate, 25 µM glutamate, 100 U/ml penicillin and 100 µg/ml 

streptomycin. After 3-6 hours, the medium was replaced by neurobasal medium 

supplemented with B27, 0.5 mM glutamine, 100 U/ml penicillin and 100 µg/ml 

streptomycin. One week after plating the neurons, AraC was added at a final 

concentration of 3 µM. Half of the medium was exchanged once a week (all media 

and additives from Invitrogen, Carlsbad, California USA).  

 

2.2.4 Virus injection 
For stereotaxic rAAV delivery, mice (10-12 weeks of age) were anesthetized 

intraperitoneally with a mixture of ketamine hydrochloride (90 mg/kg)/xylazine (5 

mg/kg) in PBS. The skin above the skull was shaved and afterwards numbed with 1 % 

lidocainhydrochlorid at least 5 min before incision. 

The skull was exposed and a craniotomy was performed 2.1 mm anterior to 

bregma and 1.4 mm from the midline (dorsal HPC) or 2.65 mm anterior to bregma 

and 3.35 mm from the midline (ventral HPC) using a stereotaxic frame (David Kopf 

Instruments, Tujunga, California, USA). Levels of the anterior-posterior and medio-

lateral plain were adjusted using an eLeVeLeR (Sigmann-Elektronik, Hüffenhardt, 

Germany) leveling device. A 33 gauge beveled needle fitted to a 10 µl syringe 
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containing the viral solution was inserted at a depth of 1.25 and 2 mm (dorsal HPC) or 

3.3 mm (ventral HPC) relative to bregma and virus-containing solution was injected 

bilaterally at a speed of 100 nl/min (dorsal HPC: 2x1 µl; ventral HPC: 2 µl) by a 

microprocessor-controlled minipump (World Precision Instruments, Sarasota, Florida, 

USA). For injections of the complete HPC, coordinates for dorsal and ventral HPC 

were used in combination. 

 

2.3 Immunohistochemistry 

2.3.1 Fluorescent staining of primary hippocampal cultures 

After three weeks in culture, neurons were fixed with 4 % paraformaldehyde (PFA; 

Sigma-Aldrich, St. Louis, Missouri, USA) and 0.12 M sucrose in PBS for 30 min, 

permeabilized with 0.2 % Triton X-100 for 5 min, blocked in 5 % normal goat serum 

(NGS), 0.05 % Triton X-100 in PBS for 1 hour, and incubated overnight (ON) at 4°C 

in primary antibody-containing solution (2 % NGS, 0.05 % Triton X-100 in PBS). 

After washing 3x10 min in PBS, cultures were incubated in secondary antibody-

containing solution (2 % NGS, 0.05 % Triton X-100 in PBS) for 2 hours. After 

washing in 2 % NGS, 0.05 % Triton X-100 in PBS for 15 min and twice in PBS for 

15 min, cover-slips were mounted on Superfrost glass slides (Menzel, Braunschweig, 

Germany) with Aqua/Poly-Mount (Polysciences, Warrington, Pennsylvania USA). 

All steps, except primary antibody incubation, were carried out at RT. 

Primary antibodies and concentrations: mouse anti-myc (1:500; Santa Cruz 

Biotechnology, Santa Cruz, California, USA), rabbit anti-Cre (1:5,000; Covance, 

Princeton, New Jersey, USA). 

Secondary antibodies and concentrations: Cy3-conjugated goat anti-rabbit IgG, 

Cy3-conjugated donkey anti-mouse IgG (1:200; both Jackson ImmunoResearch 

Laboratories Inc., West Grove, Pennsylvania, USA). 

 

2.3.2 Fluorescent immunostaining of brain slices 
Mice were transcardially perfused with Heparin-containing (5 U/ml) PBS followed 

by 4 % PFA (Sigma-Aldrich, St. Louis, Missouri, USA) in PBS. Free-floating 

vibratome brain sections (50 µm) were pre-incubated in 0.1 M glycine in PBS for 20 

min and subsequently transferred to a solution containing 3 % bovine serum albumin 

(BSA), 5 % fish gelatine (both Sigma-Aldrich, St. Louis, Missouri, USA), 1 % Triton 
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X-100 in PBS for 1 hour. Brain slices were then transferred to antibody-containing 

solution (3 % BSA, 2.5 % fish gelatine, 0.5 % Triton X-100 in PBS) and incubated 

ON at 4°C. Afterwards, slices were washed 4x10 min in 0.1 M glycine in PBS, and 

incubated with fluorescently labeled secondary antibody in 3 % BSA, 2.5 % fish 

gelatine, 0.5 % Triton X-100 in PBS for 2 hours. After washing 4x10 min in 0.1 M 

glycine in PBS, the sections were mounted on Superfrost glass slides (Menzel, 

Braunschweig, Germany), dried and cover-slipped with Aqua/Poly-Mount 

(Polysciences, Warrington, Pennsylvania USA). All steps, except primary antibody 

incubation, were carried out at RT. 

Primary antibodies and concentrations: mouse anti-NeuN (1:1,000; Millipore 

(Chemicon), Billerica, Massachusetts, USA), rabbit anti-Cre (1:5,000; Covance, 

Princeton, New Jersey, USA). 

Secondary antibodies and concentrations: Cy3-conjugated donkey anti-mouse IgG 

(1:200; Jackson ImmunoResearch Laboratories Inc., West Grove, Pennsylvania, 

USA), Alexa Fluor® 488 goat anti-rabbit IgG (1:300; Invitrogen, Carlsbad, California 

USA) 

 

2.3.3 Diaminobenzidine (DAB) immunohistochemistry of brain slices 
Mice were transcardially perfused as described above. Free-floating vibratome 

brain sections (50 µm) were pre-incubated in 4 % NGS, 1 % BSA, 1 % H2O2 (all 

Sigma-Aldrich, St. Louis, Missouri, USA), 0.3 % Triton X-100 in PBS for 2 hours. 

Slices were then transferred into antibody-containing solution (1 % NGS, 1 % BSA, 

0.3 % Triton X-100 in PBS) and incubated ON. Slices were then washed 4x10 min in 

PBS, and afterwards incubated with horseradish-peroxidase (HRP)-conjugated 

secondary antibody in 0.3 % BSA 0.1 % Triton X-100 in PBS for 1 hour. 

Subsequently, slices were washed 3x10 min in 0.3 % BSA, 0.1 % Triton X-100 in 

PBS and once for 10 min in PBS. Sections were then incubated in 0.5 mg/ml DAB, 

0.01 % H2O2 for 5-8 min. Staining was stopped by washing 4x5 min in PBS. 

Afterwards, sections were mounted on Superfrost glass slides (Menzel, 

Braunschweig, Germany), dried and dehydrated by dipping in serially increasing 

ethanol concentrations (70/95/100 %). Slides were then incubated in xylene and 

subsequently mounted with Eukitt (Sigma-Aldrich, St. Louis, Missouri, USA). All 

steps were carried out at RT. 
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Primary antibodies and concentrations: rabbit anti-GluA1 (1:400), rabbit anti-

GluA2 (1:200; both Millipore (Chemicon), Billerica, Massachusetts, USA). 

Secondary antibody and concentration: HRP-conjugated goat anti-rabbit IgG 

(1:600; Vector Laboratories, Peterborough, UK). 

 

2.3.4 Microscopy and image analysis 

Fluorescently stained hippocampal cultures were imaged using a Zeiss microscope 

connected to a UV-lamp and a filter set fitted to Cy3-flourescence. The microscope 

was connected to a camera (Axiocam). Images were acquired and saved using the 

Axiovision software (all microscope equipment by Carl Zeiss AG, Oberkochen, 

Germany). For virus titer determination five images of each virus dilution were taken 

with a 20x magnifying objective and the number of infected neurons over all neurons 

(imaged with dark field) was calculated. 

Detection of fluorescent neurons on stained coronal sections was conducted by 

confocal laser scanning microscopy with a Zeiss LSM5 microscope (Carl Zeiss AG, 

Oberkochen, Germany) with a 5x-magnifying objective. 

Cre and NeuN co-localization was analyzed by a software written by Dr. Tansu 

Celikel (USC, Los Angeles, California, USA) running in MATLAB (MathWorks, 

Natick, Massachusetts, USA). All images containing Cre-positive neurons were 

analyzed. After normalization, the software located hippocampal areas. Within these 

areas, Cre- and NeuN-immunopositive neurons were quantified in pixels. After 

analysis each image was assigned as representing either dorsal, or ventral 

hippocampal areas. An average of Cre and NeuN positive pixels over all images was 

made for dorsal and ventral HPC. 

For imaging of DAB-stained brain slices, bright field images were obtained with a 

Zeiss microscope (2.5x magnifying objective) connected to a camera (Axiocam). 

Images were acquired and saved using the Axiovision software (all microscope 

equipment by Carl Zeiss AG, Oberkochen, Germany). 
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2.4 Immunoblotting 

2.4.1 Preparation of synaptoneurosomes 
Two GluA1-/- mice (females) were injected into the right hemisphere with the 

GluA1(Q)-expressing virus. Three weeks after injection, these mice together with two 

untreated WT mice (males) were sacrificed and HPCs were dissected. 

Synaptoneurosomes were prepared as described in Whitlock et al. (2006). Briefly, 

after dissection, HPCs were split in to three equal pieces. The most septal (dorsal) 

pieces were homogenized in 0.5 ml ice-cold homogenization buffer (10 mM Hepes, 

1.0 mM EDTA, 2.0 mM EGTA, 0.5 mM DTT) supplemented with Complete 

EDTA-free Protease inhibitor cocktail (1 tablet/50 ml; Roche Diagnostics AG, Risch, 

Switzerland). HPCs were homogenized in a glass/Teflon tissue homogenizer (900 rpm; 

10 strokes), and homogenates were passed through a 100-µm-pore nylon-mesh filter 

(BD Biosciences, Franklin Lakes, New Jersey, USA) and then through a 5 µm pore-

filter (Whatman (Schleicher & Schuell), Maidstone,  Great Britain). Filtered 

homogenates were centrifuged at 3,600 x g for 10 min at 4°C. Resulting pellets were 

resuspended in 100 µL pre-heated (72°C) 1 % SDS (in homogenization buffer), 

incubated for 5 min at 72°C, and stored at –70°C. 

 

2.4.2 Quantitative immunoblotting 
Equal amounts of synaptoneurosome lysate, determined by Bradford assay 

(BioRad, Hercules, California, USA), were resolved on 8 % polyacrylamide gels, and 

blotted onto polyvinylidene fluoride membranes (GE Healthcare, Chalfont St. Giles, 

Great Britain). Membranes were blocked with 10 % non-fat dry milk in tris-buffered 

saline (TBS)-Tween 20 (0.1 %) for 1 hour and incubated in primary antibody (rabbit 

GluA1 1:1,000; Millipore (Chemicon), Billerica, Massachusetts, USA) containing 

solution (1 % non-fat dry milk in TBS-Tween 20). Blots were then washed 4x10 min 

in TBS-Tween 20 and placed in HRP-conjugated anti-rabbit secondary antibody 

(1:5,000; GE Healthcare, Chalfont St. Giles, Great Britain) containing solution (1 % 

non-fat dry milk in TBS-Tween 20). Blots were then washed 4x10 min in TBS-Tween 

20, and incubated in ECL plus reagent (GE Healthcare, Chalfont St. Giles, Great 

Britain) for 5 min. 
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ECL plus treated blots were developed using autoradiographic ECL-hyperfilms 

(GE Healthcare, Chalfont St. Giles, Great Britain). Digital images, produced by 

densitometric scanning of autoradiographs were quantified using the Gel Analyzer 

tool in ImageJ (National Institutes of Health, USA).  

2.5 Behavioral testing 

2.5.1 Groups and tests assessed 

For behavioral testing two different approaches were used. For the first approach 

(further referred to as ‘knock-in approach’), GluA1-/- mice were injected with GluA1 

expressing virus in dorsal or complete HPC. For the knock-in approach two cohorts 

of mice were injected and subsequently tested for behavior. In the first cohort GluA1-/- 

mice were injected with GluA1(Q)- (dHPC A1(Q), N=8, all males) or GluA1(R)-

expressing virus (dHPC GluA1(R), N=5, all males) in dorsal HPC. GluA1+/- 

littermates (N=10, all males) were used as controls. For the second cohort GluA1-/- 

mice were injected with the GluA1(Q)-expressing virus in complete HPC (cHPC 

A1(Q), N=12, all males). In this cohort uninjected GluA1-/- and WT mice served as 

controls. In both cohorts behavioral testing started four weeks after virus injection. 

In the second approach (further referred to as ‘knock-out approach’), GluA12lox/2lox 

mice were injected with Cre-expressing virus in dorsal (ΔdHPC, N=7, all females) or 

ventral (ΔvHPC, N=13, all females) HPC. WT controls were injected with a Cre-

expressing virus in ventral HPC (WT-Cre, N=7, all females). For these groups, 

behavioral testing started twelve weeks after virus injection. 

The behavioral tests performed can be classified into three groups: (1) Tests for 

activity and general cognitive abilities, (2) tests for SWM and (3) tests for emotionally 

motivated learning. The tests performed are illustrated in Table 1. 
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Table 1: Behavioral tests performed and their behavioral context. The numbers in the three right 

columns represent the actual order in which the tests were performed for each approach. In parentheses 

the number of days needed for each test is given. 

Name of the test Behavioral 

context 

Knock-in 

approach 

1st cohort 

Knock-in 

approach 

2nd cohort 

Knock-out 

approach 

Open field 

 

Locomotor 

activity 

4. (1 day) 1. (1 day) Not tested 

Puzzle box 

 

General cognitive 

abilities 

3. (4 days) Not tested Not tested 

Rewarded alternation SWM 

 

1. (6 days) 2. (6 days) 2. (16 days) 

Novel arm exploration SWM 

 

2. (1 day) 3. (1 day) Not tested 

Pavlovian fear 

conditioning 

Learned fear 5. (3 days) Not tested 3. (3 days) 

Porsolt forced swim test Behavioral 

despair 

Not tested Not tested 1. (2 days) 

 

2.5.2 Tests for activity and general cognitive abilities 
2.5.2.1 Locomotor activity in the open field 

Open field exploration was studied in a black-painted wooden arena (60x60x30 

cm) with a white ground. Each mouse was placed at a corner of the open field and 

allowed to explore for 5 min while motor activity was monitored using a video 

camera  (COHU; Pieper GmbH, Schwerte, Germany) placed 200 cm above the open 

field registered sessions at 25 Hz with a spatial resolution of ~0.6 mm/pixel. Software 

written by Tansu Celikel (USC, Los Angeles, California, USA) running in MATLAB 

(MathWorks, Natick, Massachusetts, USA) acquired a copy of each frame on-line and 

located the mouse in the arena using center of mass calculation. Distance traveled and 

the amount of time mice spent in the center (the center 36x36 cm) of the open field, 

were calculated from these activity traces.  

2.5.2.2 General cognitive abilities in the puzzle box 

The puzzle box consisted of a transparent Plexiglas box (30 x 40 x 25(H) cm) 

divided into two compartments of equal size. The dark goal compartment was coated 

with black carton and covered with a lid. Inside this compartment a Plexiglas petri 

dish containing home-cage bedding was put. The open start compartment was coated 
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with white carton and brightly illuminated (~1,000 lux) with a neon lamp. A wall 

separated the two compartments. Mice were able to enter the dark compartment 

through different barriers (see below). The box was positioned on a table to allow 

direct observation of behavior by the experimenter. 

Testing took place in a gently lit room. A trial started by placing a mouse into the 

start compartment with its head facing the back wall (opposite of the entrance). Trial 

duration was 3 min for the first seven trials and 4 min for the last three trials. Trials 

were separated by either a short (1 min) or long (24 hours) ITI (i.e. the time between 

two trials). At the end of each trial mice were kept in the dark goal compartment for 

approximately 20 sec and then returned to their home cage. The box was cleaned with 

water after testing. 

The following barriers were used: (trial 1) Door barrier, (trial 2-4) open underpass, 

(trial 5-7) underpass filled with sawdust, (trial 8-10) underpass covered with a 

cardboard plug (2.9 g weight). Each barrier, except for the door barrier, was used three 

times. Between the first and second exposure to a barrier an ITI of 1 min was used. 

Between second and third exposure to a barrier an ITI of 24 hours was used (Figure 6). 

 

 
Figure 6: Schematic representation of the puzzle box paradigm. The mouse was put into the brightly lit 

white start compartment and had to shuttle to the dark goal compartment through barriers of different 

features. (a) These barriers were a door barrier (trial 1), an opened underpass (trial 2-4; highlighted in 

green), an underpass filled with sawdust (trial 5-7; highlighted in yellow) and an underpass covered 

with a cardboard plug (trial 8-10; highlighted in orange). These trials were separated by a 1 min or 24 

hours ITI (b). 

 

2.5.3 Tests for spatial working memory 

2.5.3.1 Rewarded alternation on the T-maze 

Rewarded alternation was studied on a T-maze as described in Deacon & Rawlins 

(2006). In brief, every trial of the training included two runs, sample run and choice 

run. On each trial, the sample arm was assigned to one of the two target arms 
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randomly, and the mouse was directed to the sample arm where it was rewarded with 

50 % diluted (in water) sweetened condensed milk. After the mouse drank the milk it 

was taken out of the maze and after approximately 5 sec the choice run was given, 

during which it was required to choose one of the two accessible goal arms. If the 

mouse chose the previously unvisited arm (“successful alternation”), it was rewarded. 

Mice received eight trials per day (separated in two sessions) with a minimal 

retention interval (i.e. the interval between sample and choice run) of approximately 5 

sec until groups reached asymptotic levels of performance. When a group other than 

the control group performed above chance level (50 %), mice were tested for eight 

sessions (four trials per session, two sessions per day) with different retention 

intervals (~5, 30, 60 and 120 sec) randomly distributed within each session to increase 

load of working memory. 

The wooden T-maze was painted in black and elevated 150 cm from the ground. 

The start arm (47x10 cm) and the two identical goal arms (35x10 cm) were 

surrounded by a 10 cm high wall. A metal food well was located 3 cm from the end of 

each goal arm (Figure 7). 

 

 
Figure 7: Illustration of rewarded alternation studied on the T-maze. This test was composed of two 

runs, a sample run (with one arm being blocked) and a choice run (with both arms accessible). 

Choosing the previously unvisited arm was considered a correct response (successful alternation) and 

was therefore rewarded. 

 

2.5.3.2 Novel arm exploration on the Y-maze 

Novel arm exploration was studied on an elevated Y-maze with several extra maze 

cues like described in Sanderson et al. (2009). Two arms of the Y-maze were assigned 

to each mouse (start arm and other arm) to which it was exposed during the exposure 

phase. The remaining third arm, which was blocked during the exposure phase, 

represented the novel arm during the test phase. Allocation of arms (start, other, and 
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novel) to specific spatial locations was counterbalanced within each experimental 

group. During the five exposure trials, mice were placed at the end of the start arm 

and were allowed to both the start and other arm for 2 min before being removed and 

returned to their home cage. Timing of the 2-min period began once the mouse had 

left the start arm.  

Exposure trials were separated by a 1 min ITI. An entry into an arm was defined by 

a mouse placing all four paws inside an arm. Similarly, a mouse was considered to 

have left an arm if all four paws were placed outside the arm. Therefore, if a mouse 

had entered an arm but subsequently placed fewer than four paws outside the arm, it 

was still classed as remaining in the arm.  

The test phase began 1 min after the last exposure trial. During the test phase, mice 

were allowed free access to all three arms. Mice were placed at the end of the start 

arm and were allowed to explore all three arms for 2 min once they had left the start 

arm. The amounts of time that mice spent in each of the three arms and the number of 

arm entries were recorded. 

The three identical arms (50x9 cm, 0.5 cm beading) of the black wooden maze 

were connected to each other with a triangle. The arms of the maze were placed at an 

angle of 120° between two neighboring arms, and equipped with a feeder placed 3 cm 

from the distal end. The location and orientation of the maze relative to distal cues 

stayed the same throughout the training (Figure 8). 

 

 
Figure 8: Novel arm exploration on the Y-maze. This test was separated into an exposure and a test 

phase. During the exposure phase mice were exposed five times for 2 min to two arms (start and other 

arm) of a Y-maze while the third arm (novel arm) was blocked. The ITI between each trial was 1 min. 

1 min after the last trial of the exposure phase, the test phase was started. During this phase the block 

was removed and the mouse was allowed to explore all three arms. 
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2.5.4 Tests for emotionally motivated learning 
2.5.4.1 Pavlovian fear conditioning 

The conditioning system (commercially available from TSE, Bad Homburg, 

Germany) consisted of a soundproof box (58x30x27 cm) with a gray interior and a 

black Plexiglas chamber (35x20x20 cm) that was placed on a shock grid made of 

stainless steel rods (0.4 cm diameter, spaced 0.9 cm apart). The grid was connected to 

a shocker/scrambler unit delivering electrical shocks of defined duration and intensity. 

The chamber received ambient illumination from a 12 V house light. A speaker 

emitted a computer-generated tone/noise (set to 50 dB white noise or 7.5 kHz 200 dB 

sine tone). A fan supplied the chamber with fresh air. The chamber was surrounded by 

infrared detectors measuring locomotor activity of the mice (Figure 9a).  

For Pavlovian fear conditioning, mice were transferred to the operant chamber and, 

after an initial acclimation period of 6 min, were presented with three pairings of the 

auditory conditioning stimulus with foot shock (0.4 mA; 2 sec). The cue was 

presented for 30 sec, and the shock was administered for the last 2 sec, co-terminating 

with the auditory cue. Pairings were separated by 2 min, and mice were removed from 

the chamber 2 min after the last shock presentation. 24 hours after training, mice were 

tested for the conditioned stimulus (CS)-induced conditioned responses. The black 

Plexiglas chamber was replaced by a transparent Plexiglas chamber and patterns were 

attached to the walls of the sound attenuation chamber. Additionally, the shock-grid 

was covered with a grey Plexiglas plate. After an initial acclimation period of 6 min, 

the CS was presented for 8 min (CS test). 24 hours later, an additional test was 

performed for context conditioning. The chambers were altered to the original 

configuration used during conditioning. Subjects were placed in the chamber for 8 

min (context test). The mice of the knock-out approach were tested for contextual fear 

before they were tested for cued fear (Figure 9b). 

During each stage of fear conditioning, freezing duration and activity were 

analyzed using the TSE analysis program. 
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Figure 9: Schematic representation of the fear conditioning paradigm. In (a) the fear conditioning 

apparatus is shown. (b) The fear conditioning paradigm was separated into an acquisition phase (in 

context A) followed by a test for ‘cued fear’ (in context B) and a test for ‘contextual fear’ (in context 

A). During the acquisition phase mice were subjected three times to a 30 sec tone that was co-

terminated with a 2 sec foot shock. After 24 hours mice were subjected to the tone that was previously 

associated with the foot-shock, in a different context. Another 24 hours later mice were placed into the 

original context and behavior was observed. 

 

2.5.4.2 FST 

The FST included two sessions of forced swimming administered at a 24 hours 

interval in a white plastic chamber (Ø 30 cm) filled with warm water (25±1°C) to a 

height of 10 cm. Both sessions were conducted similarly with the exception of the 

duration of sessions (Session 1: 15 min; Session 2: 10 min). At the start of each 

session, mice (all females) were individually placed at the centre of the pool and left 

alone to swim. After the session ended, mice were placed under a red light heating 

lamp and dried before returning it to their home cage. 

A camera (COHU; Pieper GmbH, Schwerte, Germany) placed 140 cm above the 

chamber surface registered sessions at 25 Hz with a spatial resolution of ~0.6 

mm/pixel. Software written by Dr. Tansu Celikel (USC, Los Angeles, California, 

USA) running in MATLAB (MathWorks, Natick, Massachusetts, USA) acquired a 

copy of each frame on-line and located the mouse in the chamber using center of mass 

calculation. Vector analysis on the location of the mouse across frames was 

performed to calculate the latency to immobility and time of immobility. Latency to 

immobility was described as the onset of the three consecutive bins (1 sec/bin) when 
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the speed of mouse movement was <3 cm/sec. This threshold was empirically 

quantified in pilot experiments and incorporates the passive mobility of the mouse due 

to water movements in the enclosed chamber even after mice start floating (Marx, 

2007; Freudenberg et al., 2009). Rate of immobility is represented in percentile scale 

and was calculated as a ratio between the amount of time mice spent below threshold 

(speed of movement <3 cm/sec) and the duration of the session. This normalization 

on the duration of immobility was necessary to ensure that immobility measurements 

are comparable across the two sessions with different durations (Figure 10).  

 

 
Figure 10: Behavioral despair measured with the FST. (a) The FST was composed of two sessions, 

separated by 24 hours, of forced swimming. Mice were put into a swimming pool and a computer, 

connected to a camera, analyzed their swimming behavior on-line. The time until mice started floating 

(Latency to immobility) and overall immobility were analyzed. (b) An exemplary movie frame series 

of a mouse when it is mobile (i.e. active; left image series) and when it is immobile (i.e. floating; right 

image series) is shown. 

 

2.6 Statistical analysis 
The analysis of variance (ANOVA) was used as the principal method for group 

comparisons after testing the data for normality and equal variance. When testing for 

one factor a One Way ANOVA was performed. If normality or equal variance test 

failed, non-parametric ANOVA on Ranks test was used for comparison. When testing 

for two factors a Two Way repeated measures (RM) ANOVA was performed. If 
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normality or equal variance tests failed data were transformed using a square root or 

rank transform before analysis. When ANOVA revealed a statistically significant 

difference pairwise multiple comparison procedures were used for post hoc testing. 

Regardless of the type of the test chosen, uncorrected alpha (desired significance 

level) was set to 0.05 (two-tailed). Data are displayed as the mean and standard error 

of the mean (SEM). 

All statistical analysis was performed using SigmaStat (Systat, San José, 

California, USA).
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3 Results 
3.1 Viruses and virus infection 
Before mice were injected for behavioral testing, the quality of the different 

viruses was determined. The tests for virus quality are presented for the GluA1- and 

Cre-expressing rAAVs. Additionally, the efficiency of injections of mice that were 

used for behavioral testing is shown. 

 

3.1.1 GluA1 expressing viruses 
3.1.1.1 Quality of virus purification and virus titers 

To test for quality of heparin column purification, two different concentrations of 

GluA1-expressing rAAVs were loaded on an SDS-protein gel. These gels were 

stained with GelCode to visualize protein content. Gels loaded with GluA1(Q) and 

GluA1(R)-expressing viruses showed only bands for viral capsid proteins (VP1-3). 

Contamination by other proteins was not observed (Figure 11a). 

 

 
Figure 11: Quality controls of GluA1-expressing viruses. (a) GelCode stained SDS-gels loaded with 

GluA1(Q)- (left) and GluA1(R)-expressing rAAVs. (b) Hippocampal primary neurons infected with 

GluA1(Q)-expressing virus. Dark field images (left), myc-positive fluorescence and the overlay (right) 

are shown. Top images show neurons infected with 1 µl, bottom images with 0.1 µl of virus containing 

solution. 

 

To test the infectious titer, hippocampal primary neurons were infected with 1 and 

0.1 µl of GluA1(Q)-expressing virus-containing solution. The neurons were stained 

for the myc-tag and myc-positive neurons were counted.  Five images for each virus 

dilution were evaluated. About 77 % of the neurons infected with 1 µl of virus were 

myc-positive and 0.1 µl of virus still infected about 56 % of the neurons. Since there 

are 50,000 neurons that can possibly infected, 1 µl of virus is potentially able to infect 
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approximately 160,000 neurons. However, variation between the two virus dilutions 

was very high (Figure 11b; Table 2). 

Quantification of the genomic titer with real-time PCR resulted in 4.5 x 108 

genomes/µl (data not shown). This is almost 3,000-times higher than the infectious 

titer. This is in relatively good agreement with the infectious titer, which, according to 

our observations, is usually 1,000-times lower than the genomic titer.  

 
Table 2: Determination of infectious titer of Synapsin GluA1(Q)-expressing virus. For two different 

virus concentrations five dark field and fluorescent images were obtained and analyzed.  

 1µl virus 0.1 µl virus 

 

Image # 

Myc-positive 

neurons 

Total number of 

neurons 

Myc-positive 

neurons 

Total number of 

neurons 

1 18 23 12 19 

2 18 24 11 19 

3 12 15 16 29 

4 17 22 14 28 

5 20 26 8 14 

Sum 85 110 61 109 

77.3 % 56.0 % 

Amount of neurons infected by 1 µl (overall amount of neurons: 50,000) 
38,650 280,000 

 

Average: ~160,000 

 

3.1.1.2 Immunoblotting of virus infected HPCs 

Efficiency of the GluA1(Q)-expressing virus was further assessed by 

immunoblotting. GluA1-/- mice were unilaterally injected into the dorsal HPC with 2 

µl of this virus. After three weeks, synaptoneurosomes were prepared from dorsal 

HPCs of the injected mice (injected and uninjected HPCs) and WT control mice. 

Immunoblots of the synaptoneurosomes were stained for GluA1 (Figure 12a) and the 

amount of protein was quantified by measuring the intensity of stained bands using 

the ImageJ software (Figure 12b,c). Quantification revealed that the amount of GluA1 

in the injected HPCs was about 35 % of that in WT mice. Background from 

uninjected HPCs from GluA1-/- mice resulted in approximately 7 % of WT GluA1-

levels. 
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Taken together, purity, titer and efficiency of the GluA1-expressing viruses 

seemed to be sufficient for re-expression of GluA1 in the HPC of GluA1-/- mice.  

 

 
Figure 12: Quantification of the amount of GluA1 expressed by the GluA1(Q)-expressing rAAV. In 

(a) GluA1 the immunoblot from synaptoneurosomes of dorsal HPCs of WT mice (1-4) uninjected (5, 

7) and GluA1(Q)-expressing virus injected (6, 8) GluA1-/- mice are shown. In (b) exemplary protein 

quantification is shown for WT and GluA1-/- (injected and uninjected HPCs) mice. The traces are 

profile plots from top (left) to bottom (right). The areas of these profile plots were quantified relative to 

those of WT mice using ImageJ (c). 

 

3.1.1.3 Efficiency of virus injections 

After virus quality was determined, GluA1-/- mice were stereotaxically injected and 

tested for behavioral performance (see 3.2). Subsequently, efficiency of virus 

injections with respect to the infected areas was assessed by staining coronal brain 

sections for GluA1.  

Knock-in approach cohort 1: While any GluA1-signal was absent in uninjected 

GluA1-/- mice (Figure 13a), all GluA1-/- mice injected with a GluA1-expressing virus 

showed a GluA1-positive immunosignal (Figure 13b,c). Therefore, none of the mice 

was excluded from analysis of behavioral results. Visual inspection of these stainings 

revealed a strong expression in dorsal HPC for both GluA1-expressing viruses (i.e. 

GluA1(Q) and GluA1(R)) used. The immunosignal in ventral HPC was restricted to 

the DG and parts of CA1. Expression levels in dorsal HPC seemed to be comparable 

to those in GluA1+/- mice. Sections from dHPC A1(Q) mice were predominantly 

stained in the dendrites (i.e. stratum radiatum, stratum oriens of CA1-3 and molecular 

layer of DG) and only sparsely in the somata (i.e. pyramidal and granule cell layers) 
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(Figure 13b). In contrast, brain slices of dHPC A1(R) mice showed weaker staining in 

dendrites and a strong signal in somatic layers (Figure 13c). 

 

 
Figure 13: Representative images of stainings for GluA1 in GluA1+/-, GluA1-/- (a), dHPC A1(Q) (b) 

and dHPC A1(R) mice (c) from the first cohort of the knock-in approach. The distance between slices 

is 300 µm. 

 

Knock-in approach cohort 2: One of the mice injected with a GluA1-expressing 

virus in complete HPC did not show any GluA1-positive signal and was therefore 

excluded from analysis of behavioral results. Three of the mice were not analyzed for 

expression yet, because they will be further tested in place cell recordings. All other 

mice showed a GluA1-positive signal after staining. Qualitative analysis of the slices 

showed a strong immunosignal for GluA1 in the whole HPC. Only in parts of the 

ventral HPC staining intensity decreased slightly, particularly in CA1. In all mice, the 

strongest signal was seen in the dendritic layers. In some slices expression levels were 

comparable to those observed in WT mice (Figure 14). 
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Figure 14: Representative images of GluA1-stainings in WT, GluA1-/- (a) and cHPC A1(Q) mice (b, c) 

from the second cohort of the knock-in approach. The distance between slices is 300 µm. 

 

One immunohistochemical finding in GluA1-/- mice was a redistribution of the 

GluA2 subunit from dendritic to somatic sites, most likely because unassembled 

GluA2 stays trapped in the ER (Zamanillo et al., 1999). In fact, in GluA2-stainings of 

GluA1-/- mice, we found a predominant immunosignal in the pyramidal and granule 

cell layers of HPC, while in WT mice mainly dendritic sites were GluA2-positive 

(Figure 15a,b). Both, dHPC A1(Q) and dHPC A1(R) mice still had a strong GluA2 

signal in the somatic layers of hippocampal CA1 and CA3. Notably, the staining of 

granule cell bodies in DG was mostly gone in mice from both groups. Brain sections 

of both groups showed a substantial GluA2 positive staining in the dendrites. This 

was particularly pronounced in dHPC A1(Q) mice. These results suggest that the 

virally introduced GluA1-subunits are able to form functional receptor assemblies 

with endogenous GluA2 (Figure 15c,d). 
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Taken together, the immunohistological findings showed that strong expression of 

targeted areas was achieved and that the introduced GluA1-subunit seemed to form 

functional AMPA receptor channel assemblies. 

 

 
Figure 15: Images of stainings for GluA2 in dorsal HPC sections of a WT mouse (a), an uninjected 

GluA1-/- mouse (b), and dHPC A1(Q) (c) and dHPC A1(R) (d) mice from the first cohort of the knock-

in approach. 

 

3.1.2 Cre-expressing virus 
3.1.2.1 Quality of virus purification and virus titers 

Equal to the GluA1-expressing viruses, a GelCode stained SDS-protein gel of the 

HA.Cre-expressing virus showed exclusively bands for VP1-3. Contamination by 

other proteins was not observed (Figure 16a). 

 

 
Figure 16: Quality of virus expressing HA-tagged Cre-recombinase under CAG promoter (a) A 

GelCode stained SDS-protein gel loaded with two different amounts of virus containing solution. (b) 

Hippocampal primary neurons infected with CAG-HA.Cre virus. Dark field images (left), Cre-staining 

fluorescence (middle) and the overlay of them (right) are shown. The top images show neurons 

infected with 1 µl, the bottom images with 0.1 µl of virus containing solution. 
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Like for the GluA1(Q) virus, infectious titer of the HA.Cre virus was determined 

by infection of hippocampal primary neurons, followed by a fluorescent staining for 

Cre-recombinase (Figure 16b). Infection of primary neurons with either 1 or 0.1 µl of 

virus containing solution showed about 77 % or 12 % of Cre-positive neurons 

respectively, resulting in an infectious titer of about 50,000 infectious units/µl. The 

variation between the two dilutions was relatively low (Table 3). 

The genomic titer for the HA.Cre virus was 1 x 109 genomes/µl (data not shown). 

This is about 20,000 fold higher than the infectious titer and therefore much higher 

than the commonly observed 1,000 fold higher genomic titer. 

Although the infectious titer suggested a relatively low infectivity of the Cre-

expressing virus, the genomic titer was very high. Therefore, we assumed that this 

virus is able to give sufficient infection upon injection in mice. 

 
Table 3: Determination of infectious titer of Synapsin GluA1(Q) virus. For two different virus 

concentrations four to five dark field and fluorescent images were obtained and analyzed. 

 1 µl 0.1 µl virus 

 

Image # 

Cre-positive 

neurons 

Total number of 

neurons 

Cre-positive 

neurons 

Total number of 

neurons 

1 26 33 4 40 

2 22 24 5 32 

3 19 29 4 47 

4 22 29 7 54 

5 22 30   

Sum 111 145 20 173 

76.6 % 11.6 % 

Amount of neurons infected by 1 µl (overall amount of neurons: 50,000) 
38,300 58,000 

 

Average: ~48,000 

 

3.1.2.2 Efficiency of virus injections 

Following determination of virus quality, we injected WT and GluA12lox/2lox mice 

into HPC with the Cre-expressing virus and tested mice for behavioral performance 

(see 3.3). 

Coronal brain slices from all injected mice were double-stained for Cre-

recombinase and NeuN, as a neuronal marker. Slices of all injected mice showed a 



3 Results  
 

 

51 

51 

Cre-positive signal and therefore none of the mice was excluded from behavioral 

analysis. However, two mice were excluded from image analysis (one ΔdHPC mouse 

because of unspecific NeuN staining and one ΔvHPC mouse because no dorsal 

section was available). Visual inspection of Cre/NeuN-stainings showed expression of 

Cre-recombinase mainly restricted to the targeted areas (i.e. dorsal and ventral HPC). 

However, sparse expression was observed in non-targeted areas. Μice injected in 

dorsal HPC (i.e. ΔdHPC) expressed Cre recombinase in CA1, DG and most of CA3 

(Figure 17a,b). Mice injected in ventral HPC (i.e. ΔvHPC and WT-Cre) showed 

strong expression of Cre-recombinase in CA3 and DG and weaker expression in CA1 

(Figure 17c,d). 

Quantification of the percentage of neurons that were both Cre- and NeuN-positive 

showed symmetrical expression of Cre-recombinase. Dorsal HPC-injected mice had 

30±2% Cre/NeuN overlay in dorsal HPC. In ventral HPC this rate significantly 

dropped down to 14±3% (paired t-test, P<0.05). For mice injected in the ventral HPC 

the opposite was observed. While in these mice 13±1% or 12±1% (ΔvHPC and WT-

Cre respectively) of neurons in dorsal HPC were Cre- and NeuN-positive, the rate 

increased significantly to 32±3% or 33±2% (ΔvHPC and WT-Cre respectively) in 

ventral HPC (paired t-test, P<0.05; Figure 17e). 

In summary, virus injection of mice from the knock-out approach resulted in high 

levels of expression and relatively high targeting-specificity. 
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Figure 17: Representative images of Cre-expression in GluA12lox/2lox mice injected with Cre-expressing 

rAAV. Overlay of Cre- (green) and NeuN-staining (red) from hippocampal sections of ΔdHPC (a, b) 

and ΔvHPC (c, d) mice. Areas that are Cre-/NeuN-double-positive are illustrated in yellow. (e) 

Quantification of Cre- and NeuN-positive neurons in dorsal and ventral HPC of injected mice (WT-

Cre, N=7; ΔdHPC, N=6; ΔvHPC, N=12) (Significant differences in the Cre-/NeuN-overlay of dorsal 

and ventral HPC are shown by an asterisk (*), paired t-test P<0.05). 

 

3.2 Behavior of mice from the knock-in approach 
For the knock-in approach GluA1-/- mice were injected with GluA1 expressing 

virus in dorsal or complete HPC. For this approach two cohorts were injected. In the 

first cohort GluA1-/- mice were injected with GluA1(Q)- (i.e. dHPC A1(Q) mice) or 

GluA1(R)-expressing virus (i.e. dHPC GluA1(R) mice) in dorsal HPC. Uninjected 

GluA1+/- littermates were used as controls. For the second cohort, GluA1-/- mice were 

injected with GluA1(Q)-expressing virus in complete HPC (i.e. cHPC A1(Q) mice). 
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In this cohort uninjected GluA1-/- and WT mice served as controls. In both cohorts 

behavioral testing started four weeks after virus injection. 

 

3.2.1 Rescue of hyperactivity in the open field 
GluA1-/- mice show hyperactivity in an open field (Bannerman et al., 2004; 

Wiedholz et al., 2008). Therefore, knock-in approach mice were tested for locomotion 

in the open field over a period of 5 min. Distance traveled in bins of 1 min (a measure 

for locomotor activity) and the overall time spent in the center (a measure for anxiety) 

were analyzed. 

All activity traces from the first cohort were analyzable and therefore included in 

the analysis. In the second cohort, one of the GluA1-/- mice was excluded from 

analysis because of a tracking error.  

Knock-in approach cohort 1: dHPC A1(R) mice were slightly more active than 

GluA1+/- and dHPC A1(Q) mice during the last three minutes of open field 

exploration. However, a Two Way RM ANOVA on square root-transformed data 

found no significant difference for the factors ‘group’ (F2,114=0.85, P>0.4) and ‘1 min 

bin’ (F4,114=1.016, P>0.4) but for the interaction of these factors (F8,114=2.229, 

P<0.04). Post hoc analysis revealed a significant decrease in locomotion for dHPC 

A1(Q) mice during the last two minutes compared to the first minute (Tukey test, 

P<0.03). In GluA1+/- and dHPC A1(R) mice however, locomotion did not change 

significantly over time (Tukey test, P>0.2). dHPC A1(R) mice only showed a trend 

towards increased locomotion during the last minute compared to GluA1+/- (Tukey 

test, P=0.087) and dHPC A1(Q) mice (Tukey test, P=0.057) (Figure 18a). 

dHPC A1(R) mice spent slightly more time in the center of the open field than 

GluA1+/- and dHPC A1(Q) mice (One Way ANOVA, F2,22=1.481, P>0.25) (Figure 

18b). 

The differences in locomotion found in the first cohort did not reach statistical 

significance. One reason might be that these mice underwent three other behavioral 

tests before being subjected to the open field and thus were used to exposure to novel 

environments. Therefore, mice from the second cohort were tested in the open field 

before they were subjected to any other task. 

Knock-in approach cohort 2: As published (Bannerman et al., 2004; Wiedholz et 

al., 2008), GluA1-/- mice were more active than WT mice. This hyperactivity was 
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rescued in cHPC A1(Q) mice. A Two Way RM ANOVA on traveling distance data 

revealed a statistically significant effect for the factors ‘group’ (F2,154=34.171, 

P<0.001), ‘1 min bin’ (F4,154=17.436, P<0.001) and the interaction of these factors 

(F8,154=7.822, P<0.001). Post hoc comparison revealed comparable locomotion in all 

three groups during the first minute (Tukey test, P>0.3), but a significantly increased 

locomotion during the last four minutes for GluA1-/- mice compared to WT and cHPC 

A1(Q) mice (Tukey test, second bin: P<0.025, third to fifth bin: P<0.001). Compared 

to WT mice cHPC A1(Q) mice traveled a significantly shorter distance during the 

second minute (Tukey test, P<0.05) but not during any other times (Tukey test, 

P>0.08) (Figure 18c).  

Analysis of time spent in the center of the open field revealed a significant 

difference between groups (Kruskal-Wallis One Way ANOVA on Ranks, H2=15.498, 

P<0.001). Post hoc testing showed that WT and GluA1-/- mice spent a similar amount 

of time in the center of the open field (Dunn’s Method, P>0.05), while cHPC A1(Q) 

mice spent a significantly decreased amount of time in the center compared to the 

other two groups (Dunn’s Method, P<0.05) (Figure 18d). 

Taken together, results from open field suggest that expression of GluA1 confined 

to the dorsal or complete HPC is sufficient to rescue the hyperactive phenotype of 

GluA1-/- mice. However, expression GluA1 in complete HPC in GluA1-/- mice also 

increased anxiety related behaviors in the open field. 
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Figure 18: Open field behavior of knock-in approach mice. Distance traveled (in cm ±SEM) in 1 min 

bins (a, c) and time spent in the center (in sec +SEM) of the open field (b, d) are shown for both 

cohorts of the knock-in approach (first cohort (a, b): GluA1+/-, N=10; dHPC A1(Q), N=8; dHPC 

A1(R), N=5; second cohort (c, d): WT, N=10; GluA1-/-, N=10; cHPC A1(Q), N=11) (in (c) the 

asterisks (*) indicate statistically significant differences between GluA1-/- mice and both WT and cHPC 

A1(Q) mice and the circle (°) indicates a statistical difference between WT and cHPC A1(Q) mice, 

Tukey test P<0.05; in (d) the asterisks (*) indicate significant differences between groups, Dunn’s 

Method (d) P<0.05) 

 

3.2.2 Hippocampal GluA1-expression does not change general cognitive 

abilities in the puzzle box 

In the puzzle box paradigm mice are exposed to an anxiogenic (white walls, bright 

illumination) start compartment. To escape from this compartment they have to 

shuttle to a more pleasant (black walls, dark) goal compartment through barriers of 

different features (i.e. a door barrier, an underpass, a sawdust-filled underpass and a 

plug-covered underpass). Reductions in the escape latency reflect impairments in 

general cognitive abilities (Galsworthy et al., 2005). 

GluA1-/- mice were tested in preliminary experiments in our department for 

behavior in the puzzle box. In these experiments, GluA1-/- mice were only comparable 

to WT mice when using the door barrier. For all other barriers, i.e. underpass, 

sawdust-filled underpass and plug-covered underpass, GluA1-/- mice were impaired in 

shuttling to the dark goal compartment. 
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When mice from the first cohort of the knock-in approach were tested in the puzzle 

box, most of them managed to shuttle to the dark goal compartment for most of the 

barriers used. When using the sawdust-covered underpass, about half of the GluA1+/- 

and A1(Q) mice and only one of the A1(R) mice managed to shuttle to the dark goal 

compartment. 

Mice from all groups needed a similar time to shuttle to the dark goal compartment 

when the door barrier was used (One Way ANOVA, F2,22=0.256, P>0.75) (Figure 

19a). A comparable time to shuttle to the dark goal compartment was also seen when 

the open underpass and the plug-covered underpass were used (Figure 19b,d). When 

using the sawdust-covered underpass A1(R) mice needed a longer time than GluA1+/- 

and A1(Q) mice (Figure 19c). However, statistical analysis for these three test phases 

was not possible because data never passed normality test, even after transformation. 

When a Two Way RM ANOVA was performed regardless of non-normal 

distribution, no group effects were found in any of the tests (Figure 19). 

Since dHPC A1(R) mice were not as impaired as preliminary data suggested, this 

test was only performed with the first cohort of the knock-in approach mice. 

 

 
Figure 19: Puzzle box test for the first cohort of the knock-in approach (GluA1+/-, N=10; dHPC A1(Q), 

N=8; dHPC A1(R), N=5). The average time to shuttle to the dark goal compartment (+SEM) is shown 

for the four different barriers that were used: (a) door barrier (Trial 1), (b) open underpass (Trials 2-4), 

(c) sawdust-covered underpass (Trials 5-7) and (d) plug-covered underpass (Trials 8-10). 
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3.2.3 SWM is not rescued by hippocampal expression of GluA1 
GluA1-/- mice show a complete loss in SWM on different tasks including rewarded 

alternation on the T-maze (Reisel et al., 2002) and novel arm preference on the Y-

maze (Sanderson et al., 2007; Sanderson et al., 2009). Notably, the SWM deficit on 

the T-maze was partially rescued by expression of GFP-tagged GluA1 in principal 

forebrain neurons (Schmitt et al., 2005). To see if expression of GluA1 restricted to 

principal neurons and interneurons of the HPC is equally sufficient to reinstate SWM 

in GluA1-/- mice, knock-in approach mice were tested for rewarded alternation on the 

T-maze. A minimal retention interval (i.e. the time between forced and choice run) of 

about 5 sec was used at all times for both cohorts. 

Knock-in approach cohort 1: All mice habituated normally to the T-maze and 

learned to consume the milk reward. Each mouse was tested for rewarded alternation 

for 48 trials. When a mouse did not move for more than 2 min it was removed from 

the T-maze and had to repeat a trial. Over all trials this happened for one GluA1+/- 

mouse (twice) and two dHPC A1(Q) mice (once each). None of the dHPC A1(R) 

mice had to repeat a trial. There was no statistical difference in the number of 

repetitions between groups (Kruskal-Wallis One Way ANOVA on Ranks, H2=1.548 

P>0.45).  

GluA1+/- mice had a success rate of ~70 % at the beginning of training. This 

performance slightly increased with successive training to almost 80 %. Both, dHPC 

A1(Q) and dHPC A1(R) mice alternated at chance (50 %) and did not increase their 

performance. A Two Way RM ANOVA on rank-transformed data showed a 

statistically significant effect for the factor ‘group’ (F2,91=19.236, P<0.001) but not for 

the factor ‘block’ (F3,91=1.547, P>0.2) or the interaction of these factors (F6,91=1.033, 

P>0.4). Post hoc comparison revealed a significantly increased performance for 

GluA1+/- mice compared to dHPC A1(Q) and dHPC A1(R) mice (Tukey test, 

P<0.001). However, dHPC A1(Q) and dHPC A1(R) mice did not differ from each 

other (Tukey test, P>0.95) (Figure 20a). 

Knock-in approach cohort 2: The mice from all three groups habituated to the T-

maze and learned to drink the milk reward. Each mouse experienced 48 trials over six 

days. Two of the WT mice had to repeat a trial once because they did not move for 

more than 2 min. In the GluA1-/- group, four mice had to repeat a trial twice and in the 

cHPC A1(Q) group overall three mice had to repeat trials five or more times  



3 Results  
 

 

58 

58 

(5 times=one mouse, 6 times=two mice). However, there was no statistically 

significant difference between groups in the number of repetitions (Kruskal-Wallis 

One Way ANOVA on Ranks, H2=1.075 P>0.55). 

WT mice started with a success rate of ~70 % and gradually increased their 

performance up to almost 85 %. In contrast, GluA1-/- mice performed at chance level 

at all times. This was not rescued in cHPC A1(Q) mice. Statistical analysis on rank-

transformed data with a Two Way RM ANOVA revealed a significant effect for the 

factor ‘group’ (F2,127=38.585, P<0.001) but not for the factor ‘block’ (F3,127=0.687, 

P>0.55) or the interaction (F6,127=0.87, P>0.5). Post hoc analysis showed a 

significantly higher performance for WT mice compared to GluA1-/- and cHPC A1(Q) 

mice (Tukey test, P<0.001). Performance of GluA1-/- and cHPC A1(Q) mice was 

statistically comparable (Tukey test, P>0.95) (Figure 20b). 

 

 
Figure 20: Rewarded alternation on the T-maze for knock-in approach mice. Successful alternation (in 

% ±SEM) over four training blocks (12 trials/block) is shown for (a) the first cohort of mice from the 

knock-in approach (GluA1+/-, N=10; dHPC A1(Q), N=8; dHPC A1(R), N=5) and (b) the second cohort 

of mice from the Knock-in approach (WT, N=10; GluA1-/-, N=11; cHPC A1(Q), N=11) (the dashed 

gray line indicates chance level (50 %); the asterisks (*) indicate statistically significant differences 

between groups independent of the training block, Tukey test P<0.05). 

 

Another test for SWM is the novel arm exploration on the Y-maze. In this test 

mice are exposed five times to two arms of a Y-maze followed by a test trial where all 

three arms are accessible and novel arm preference (tested by an increased time spent 

in the novel arm) is measured. As with rewarded alternation on the T-maze, GluA1-/- 



3 Results  
 

 

59 

59 

mice also showed a complete loss of SWM in this test (Sanderson et al., 2007; 

Sanderson et al., 2009). 

Mice from both cohorts readily explored the Y-maze during the exposure phase. 

Therefore, none of the mice was excluded from behavioral analysis. 

Knock-in approach cohort 1: GluA1+/- mice spent a pronounced amount of time in 

the novel arm, while dHPC A1(Q) and dHPC A1(R) mice spent similar amounts of 

time in all three arms of the Y-maze. A One Way RM ANOVA was performed for 

each group and showed a significant effect for GluA1+/- mice (Friedman RM ANOVA 

on Ranks, Chi-square(2)=9.8, P<0.01) but not for dHPC A1(Q) (F2,23=0.621, P>0.55) 

or dHPC A1(R) mice (F2,14=1.213, P>0.3). Post hoc comparison for GluA1+/- mice 

showed that these mice spent significantly more time in the novel than in the start arm 

(Tukey test, P<0.05). However, the difference in dwell time on novel and other arm 

did not reach significance (Tukey test, P>0.05) (Figure 21a). 

Another parameter that can be analyzed during novel arm exploration is the total 

number of arm entries over all phases. This reflects activity of the mice on the Y-

maze. Analysis of activity showed similar results to those from the open field. During 

all phases dHPC A1(R) mice performed more arm entries than GluA1+/- and dHPC 

A1(Q) mice. A Two Way RM ANOVA on rank-transformed data found a statistical 

difference for the factors ‘group’ (F2,137=5.602, P<0.015) and ‘trial’ (F5,137=4.775, 

P<0.001) but not for the interaction of those factors (F10,137=0.675, P>0.7). Post hoc 

comparison revealed a statistically higher amount of arm entries for dHPC A1(R) 

compared to GluA1+/- mice (Tukey test, P<0.01) and a trend for more arm entries in 

dHPC A1(R) compared to dHPC A1(Q) mice (Tukey test, P=0.086). The number of 

arm entries was comparable between GluA1+/- and dHPC A1(Q) mice (Tukey test, 

P>0.45) (Figure 21b).  

Knock-in approach cohort 2: WT mice spent more time in the novel arm compared 

to the other two arms during the test phase, while GluA1-/- mice spent a comparable 

amount of time in all three arms. This was only partially rescued in cHPC A1(Q) 

mice. Statistical analysis with One Way ANOVA for each group revealed a 

significant effect for WT mice (F2,29=32.383, P<0.001), but not for cHPC A1(Q) 

(F2,32=2.285, P>0.12) or GluA1-/- mice (F2,32=0.468, P>0.6). Post hoc comparison 

showed that WT mice spent significantly more time in the novel arm than in the other 

two arms (Tukey test, P<0.001) (Figure 21c). 
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Equal to the first cohort, analysis of arm entries showed similar results to those 

from the open field. GluA1-/- mice were hyperactive compared to WT mice (i.e. had 

more arm entries), and this hyperactivity was abolished in cHPC A1(Q) mice. Even 

after transformation, the data did not pass normality test. However, since visual 

inspection of the data showed clear differences, a Two Way RM ANOVA was 

performed to test for statistical differences. This analysis revealed a significant effect 

for the factors ‘group’ (F2,191=30.08, P<0.001), ‘trial’ (F5,191=4.068, P<0.005) and the 

interaction of those factors (F10,191=6.699, P<0.001). Post hoc testing showed a 

significantly increased number of arms entries for GluA1-/- mice in comparison to WT 

from second to fifth trial (Tukey test, P<0.001). During the first and test trial, WT and 

GluA1-/- mice had a comparable number of arm entries (Tukey test, P>0.2). In 

comparison to cHPC A1(Q) mice, GluA1-/- mice were more active during all trials 

(Tukey test, first trial: P<0.03, all other trials: P<0.001). WT mice showed 

significantly more arm entries during the first and test trial (Tukey test, P<0.05) than 

cHPC A1(Q) mice. During all other trials the number of arm entries between WT and 

cHPC A1(Q) was comparable (Tukey test, P>0.2 ) (Figure 21d). 

Taken together, the results from rewarded alternation on the T-maze and novel arm 

exploration on the Y-maze suggest that expression of GluA1 restricted to the HPC is 

not sufficient to reinstate defective SWM in GluA1-/- mice. In agreement with the 

results from open field, analysis of activity on the Y-maze showed that hyperactivity 

can be rescued by both dorsal and complete hippocampal expression of GluA1 in 

GluA1-/- mice. 
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Figure 21: Novel arm exploration on the Y-maze for mice from the knock-in approach. The time spent 

in each arm (start (S), other (O) and novel (N) arm) during the test trial (T) in sec (+SEM) (a, c) and 

the number of arm entries (±SEM) during all trials (b, d) is shown for (a, b) the first (GluA1+/-, N=10; 

dHPC A1(Q), N=8; dHPC A1(R), N=5) and (c, d) second cohort of the knock-in approach (WT, N=10; 

GluA1-/-, N=11; cHPC A1(Q), N=11) (in (a) and (c) the asterisks (*) represent statistically significant 

differences in the time spent in the arms, the dashed gray lines show chance level performance (33 %); 

in (b) the asterisk (*) represents statistical significance between GluA1+/- and dHPC A1(R) mice 

(independent of the trial); in (d) statistical significance between WT and GluA1-/- compared to cHPC 

A1(Q) is represented by a circle (°) and between GluA1-/- and both WT and cHPC A1(Q) mice by an 

asterisk (*), Tukey test P<0.05). 

 

3.2.4 Pavlovian fear conditioning is not rescued by hippocampal 

expression of GluA1 

Pavlovian fear conditioning is strongly impaired in GluA1-/- mice during the 

acquisition phase. However, results on the ability of GluA1-/- to express ‘cued’ or 

‘contextual fear’ have been somewhat contradictory (Feyder et al., 2007; Humeau et 

al., 2007; Bosch, 2008). 

Pavlovian fear conditioning was only assessed in mice from the first cohort of the 

knock-in approach. The percentage of freezing duration and activity were analyzed as 

measures of fear (a high amount of freezing and low amount of activity reflect high 
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states of fear). In contrast to Feyder et al. (2007) and Humeau et al. (2007), but as 

shown by Bosch (2008), the only obvious difference among groups was found during 

the acquisition phase. In this phase dHPC A1(Q) and dHPC A1(R) showed reduced 

freezing and higher activity after tone-shock pairing than GluA1+/- mice. When testing 

for ‘cued’ and ‘contextual fear’ no differences were found between groups. A Two 

Way RM ANOVA was performed for each testing phase to test for statistical 

differences. 

During the acquisition phase a statistically significant difference was found for the 

factors ‘group’ (freezing duration: F2,45=9.881, P<0.001; activity: F2,45=9.773, 

P<0.002), ‘phase’ (freezing duration: F1,45=38.212, P<0.001; activity: F1,45=83.752, 

P<0.001) and the interaction of those factors (freezing duration: F2,45=8.23, P<0.003; 

activity: F2,45=20.719, P<0.001) for both, freezing duration (this data was square root-

transformed for analysis) and activity. Post hoc analysis showed a comparable 

freezing duration and activity in all groups in the 120 sec before the first shock 

(Tukey test, P>0.25). In the 120 sec after the third shock, GluA1+/- and dHPC A1(Q) 

mice showed a significant increase in freezing (Tukey test, P<0.005) and reduction in 

activity (Tukey test, P<0.001). During this second phase, GluA1+/- mice froze for a 

significantly longer duration and had a significantly reduced activity compared to 

dHPC A1(Q) and dHPC A1(R) mice (Tukey test, P<0.001). dHPC A1(Q) and dHPC 

A1(R) showed a comparable freezing duration (Tukey test, P>0.15), whereas dHPC 

A1(Q) mice showed slightly but significantly reduced activity compared to dHPC 

A1(R) mice during this phase (Tukey test, P<0.03) (Figure 22a,d). 

When testing ‘cued fear’ data for statistical significance, Two Way RM ANOVAs 

found a significant effect for the factor ‘phase’ (freezing duration: F1,45=86.142, 

P<0.001; activity: F1,45=73.679, P<0.001) but not for the factor ‘group’ (freezing 

duration: F2,45=1.5, P>0.2; activity: F2,45=1.104, P>0.35) or for the interaction of those 

factors (freezing duration: F2,45=1.066, P>0.35; activity: F2,45=0.989, P>0.35) for 

both, freezing duration and activity (for statistical analysis the freezing duration data 

was rank-transformed and the activity data was square root-transformed). Post hoc 

comparison showed a significantly increased freezing duration and significantly 

reduced activity in the 120 sec after tone onset compared to the 120 sec before tone 

onset (Tukey test, P<0.001) (Figure 22b,e). 

A Two Way RM ANOVA on the data from ‘contextual freezing’ showed no 

significant change for the factors ‘group’ (freezing duration: F2,45=3.025, P>0.07; 
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activity: F2,45=2.038, P>0.15), ‘phase’ (freezing duration: F1,45=0.00797, P>0.9; 

activity: F1,45=0.197, P>0.65) and the interaction of those factors (freezing duration: 

F2,45=0.462, P>0.6; activity: F2,45=1, P>0.35) for both, freezing duration (this data was 

square root-transformed for statistical analysis) and activity (Figure 22c,f). 

In summary, similar to results from Bosch (2008), GluA1-/- mice (i.e. dHPC 

A1(R)) were only impaired during the acquisition of Pavlovian fear. This was 

partially, but not strongly rescued by expression of GluA1 in the dorsal HPC of 

GluA1-/- mice. Because there was no pronounced rescue in the first cohort of the 

knock-in approach, Pavlovian fear conditioning was not further assessed in the 

second cohort. 

 

 
Figure 22: Pavlovian fear conditioning of mice from the first cohort of the knock-in approach 

(GluA1+/-, N=10; dHPC A1(Q), N=8; dHPC A1(R), N=5). Freezing duration (+SEM) (a-c) and activity 

(+SEM) (d-e) both in percentages are shown (statistical significance between groups is shown by an 

asterisk (*), and statistically significant changes across phases are shown by circles (°), Tukey test 

P<0.05). 

 

3.3 Behavior of mice from the knock-out approach 
For the knock-out approach GluA12lox/2lox mice were injected with Cre-expressing 

virus in dorsal (i.e. ΔdHPC) or ventral (i.e. ΔvHPC) HPC. WT controls were injected 
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with a Cre-expressing virus in ventral HPC (i.e. WT-Cre). For these groups, 

behavioral testing started twelve weeks after virus injection. 

 

3.3.1 Lack of GluA1 in HPC partially impairs SWM 
SWM that is impaired in GluA1-/- mice (Reisel et al., 2002) was also tested in mice 

from the knock-out approach. All mice habituated normally to the T-maze and 

learned to take the milk reward. Each mouse was tested for rewarded alternation for 

96 trials. None of the mice ever failed to move within the first 2 min and therefore 

none of them had to repeat a trial. 

The mice were first subjected to rewarded alternation on the T-maze with a 

minimal retention interval of approximately 5 sec. WT-Cre mice started with a 

performance of about 70 % and increased their performance to more than 90 % with 

successive training. Both ΔdHPC and ΔvHPC mice started with a performance of 

about 75 % and 65 % respectively, but failed to increase their performance above 

80 %. However statistical analysis of the data with a Two Way RM ANOVA only 

showed a significant effect for the factor ‘block’ (F3,75=5.372, P<0.005), but not for 

the factor ‘group’ (F2,75=2.808, P>0.08) or the interaction of those factors 

(F6,75=1.664, P>0.1). Post hoc comparison for the factor ‘block’ revealed a significant 

increase in overall performance for the last compared to the first block, independent 

of the group (Tukey test, P<0.005) (Figure 23a). 

After mice reached asymptotic performance levels with a minimal retention 

interval, mice were subjected to rewarded alternation with four different retention 

intervals (5, 30, 60 and 120 sec) for eight trials per interval. Again, both ΔdHPC and 

ΔvHPC mice showed lower performance than WT-Cre mice. This difference was 

particularly pronounced during the 30 sec retention interval. Statistical analysis with a 

Two Way RM ANOVA showed a significant effect for the factor ‘group’ 

(F2,71=5.871, P<0.015) and ‘retention interval’ (F3,71=8.802, P<0.001) but not for the 

interaction of those factors (F6,71=0.578, P>0.746). Post hoc analysis showed a 

significantly lower performance for ΔdHPC mice in comparison to WT-Cre mice 

(Tukey test, P<0.015). Although performance of ΔvHPC mice was impaired, data did 

not reach statistical significance compared to those from WT-Cre mice (Tukey test, 

P>0.13). However, the performance between ΔdHPC and ΔvHPC mice was 

comparable (Tukey test, P>0.5) (Figure 23b). 
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In summary, data suggest that GluA1 is required in ventral and particularly dorsal 

HPC for intact SWM. However, deletion of GluA1 from dorsal or ventral HPC was 

not sufficient to completely abolish SWM on the T-maze, suggesting that non-

targeted parts of the HPC or other parts of the brain partially compensate for the lack 

of GluA1 in dorsal or ventral HPC.  

 

 
Figure 23: T-maze rewarded alternation of the knock-out approach mice (WT-Cre, N=6; ΔdHPC, 

N=7; ΔvHPC, (a) N=6 or (b) N=5). Mice were first tested with a minimal retention interval (~5 sec) 

until they reached asymptotic performance levels (a). Subsequently, mice were subjected to training 

with four different retention intervals (5, 30, 60 and 120 sec) (b). 

 

3.3.2 Pavlovian fear conditioning is not dependent on GluA1 in dorsal 

or ventral HPC 

When testing the mice from the knock-out approach in Pavlovian fear conditioning 

essentially no differences between groups were found in both freezing duration and 

activity during acquisition, ‘cued’ and ‘contextual fear’. 

A Two Way RM ANOVA showed a significant increase in freezing and decrease 

in activity (activity data were square root-transformed for statistical analysis) in the 

120 sec after tone foot-shock pairing in comparison to the 120 sec before foot-shocks 

(freezing duration: F1,35=118.926, P<0.001; activity: F1,35=100.783, P<0.001). The 

factor ‘group’ (freezing duration: F2,35=0.463, P>0.6; activity: F2,35=0.744, P>0.45) or 

the interaction of ‘group’ and ‘phase’ (freezing duration: F2,35=0.189, P>0.8; activity: 

F2,35=0.22, P>0.8) showed no significant effect in both freezing duration and activity 

(Figure 24a,d). 
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When testing for ‘cued fear’ a Two Way RM ANOVA revealed a significant 

increase in freezing and decrease in activity after tone onset (freezing duration: 

F1,35=122.133, P<0.001; activity: F1,35=183.562, P<0.001), independent of the group. 

For the freezing duration there were no differences for the factor ‘group’ (F2,35=2.421, 

P>0.12) or the interaction of the factors ‘group’ and ‘phase’ (F2,35=0.879, P>0.4), 

however, for activity ANOVA revealed a significant effect for the interaction of the 

factors ‘group’ and ‘phase’ (F2,35=3.768, P<0.05) but not for the factor ‘group’ 

(F2,35=2.743, P>0.09). Post hoc comparison only revealed a significantly higher 

activity for ΔdHPC mice compared to WT-Cre mice during the 120 sec before tone 

onset (Tukey test, P<0.015) but not after tone onset (P>0.3) (Figure 24b,e). 

When testing for ‘contextual fear’ a Two Way RM ANOVA revealed no statistical 

differences for square root-transformed freezing duration data for the factors ‘phase’ 

(F1,35=2.694, P>0.12), ‘group’ (F2,35=1.081, P>0.35) and the interaction of those 

factors (F2,35=0.134, P>0.85). For activity data the Two Way RM ANOVA revealed a 

significant effect for the factor ‘phase’ (F1,35=4.557, P<0.05) (i.e. activity was 

significantly lower in the last 120 sec compared to the first 120 sec independent of the 

group) but not for the factor ‘group’ (F2,35=0.966, P>0.4) or the interaction of those 

factors (F2,35=0.458, P>0.6) (Figure 24c,f). 

In summary, data from Pavlovian fear conditioning revealed no pronounced effect 

of deletion of GluA1 from dorsal or ventral HPC. This suggests, that GluA1 in dorsal 

or ventral HPC does not contribute to the expression of Pavlovian fear. 
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Figure 24: Pavlovian fear conditioning of the knock-out approach mice (WT-Cre, N=6; ΔdHPC, N=7; 

ΔvHPC, N=5). The freezing duration (a-c) and activity (d-e), both in percentage (+SEM) are illustrated 

(statistical significance between groups is shown by an asterisk (*), and statistical changes across 

phases is shown by a circle (°), Tukey test P<0.05). 

 

3.3.3 GluA1 in dorsal and ventral HPC is required for the expression of 

behavioral despair in FST 
The FST comprises two sessions, 24 hr apart, of forced swimming in an enclosed 

chamber. Mice normally show a decreased latency to immobility and an increase in 

immobility during the second compared to the first session, reflecting experience-

dependent expression of behavioral despair in the FST. GluA1-/- mice are impaired in 

the expression of behavioral despair since they do not exhibit a decrease in latency to, 

and increase in immobility after repeated exposure to the FST. This impairment was 

rescued by expression of GFP-tagged GluA1 in principal forebrain neurons (Marx, 

2007; Freudenberg et al., 2009). To elucidate the contribution of the HPC to the 

impairment in experience-dependent expression of behavioral despair, mice from the 

knock-out approach were tested in the FST. 

All tested mice were able to swim and all activity traces were analyzable. 

However, one of the ΔdHPC mice never stopped swimming during the first session 

and was therefore excluded from analysis.  
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Only WT-Cre mice showed normal experience-dependent expression of behavioral 

despair. During the second FST session these mice showed a significant decrease in 

latency to immobility and a significant increase in overall immobility (pared t-test, 

P<0.05). However, ΔdHPC and ΔvHPC mice showed impaired experience dependent 

expression of behavioral despair. These mice showed comparable latency to, and 

overall immobility in both sessions of the FST (paired t-test, P>0.25) (Figure 25). 

Taken together the results demonstrate that experience-dependent expression of 

behavioral despair in the FST requires GluA1 in dorsal and ventral HPC. 

 

 
Figure 25: Performance in the FST for knock-out approach mice (WT-Cre, N=6; ΔdHPC, N=6; 

ΔvHPC, N=13). The latency to immobility in sec (+SEM) (a) and overall immobility in percentage 

(+SEM) (b) are shown for the first (FST 1) and second (FST 2) session of the FST (statistical 

significance within groups is shown by an asterisk (*), paired t-test P<0.05). 
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4 Discussion 
AMPA receptors containing the GluA1-subunit are critical for mediating synaptic 

plasticity in brain areas important for learning and memory, like the HPC (Zamanillo 

et al., 1999; Shi et al., 2001). In GluA1-/- mice, globally lacking functional GluA1-

alleles, hippocampal principal neurons show normal strength of excitatory synaptic 

transmission, but lack somatic AMPA receptor-mediated currents and CA3CA1 

LTP. In GluA1-/- mice the GluA2 subunit (the major GluA1 partner in hippocampal 

principal neurons) is redistributed from dendrites to the soma (Zamanillo et al., 1999; 

Jensen et al., 2003). Moreover, GluA1-/- mice show distinct HPC-dependent 

behavioral phenotypes. These mice are hyperactive (Bannerman et al., 2004; 

Wiedholz et al., 2007), have no SWM while SRM stays intact (Reisel et al., 2002) and 

are impaired in Pavlovian fear conditioning (Feyder et al., 2007; Humeau et al., 2007; 

Bosch, 2008) and in the expression of experience-dependent behavioral despair 

(Marx, 2007; Freudenberg et al., 2009). Notably, some of these phenotypes were 

partially rescued by transgenic expression of a GFP-tagged GluA1 subunit in 

forebrain principal neurons of GluA1-/- mice (Mack et al., 2001; Schmitt et al., 2005; 

Marx, 2007; Freudenberg et al., 2009).  

Results from hippocampal lesion and pharmacological studies suggest a basic 

involvement of the HPC in the behavioral phenotypes found in GluA1-/- mice (e.g. 

Bannerman et al., 1999; Anagnostaras et al., 2001; Daenen et al., 2001; Padovan & 

Guimarães, 2004). However, the specific contribution of hippocampal GluA1 to these 

behaviors could not be investigated in global GluA1-/- mice. Therefore, my work 

aimed at separating the specific contribution of GluA1-containing AMPA receptors in 

HPC to the behavioral impairments found in GluA1-/- mice. To achieve this, two 

approaches were used. To elucidate the contribution of confined GluA1-expresion in 

the HPC to learning behavior, GluA1-/- mice were stereotaxically injected into the 

HPC with an rAAV expressing GluA1 (knock-in approach). Vice versa, to show the 

requirement of GluA1 in the HPC for learning behavior, GluA1 was deleted from the 

HPC by stereotaxically injecting a Cre-expressing rAAV into the HPCs of 

GluA12lox/2lox mice (knock-out approach). 

The results show that hyperactivity in GluA1-/- mice is due to the lack of GluA1 in 

HPC, since hyperactivity was rescinded in mice only expressing GluA1 in HPC 

(knock-in approach mice). Surprisingly, intact SWM is not solely dependent on the 
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HPC, since mice expressing GluA1 in HPC (knock-in approach mice) still were 

impaired in two different tests for SWM (i.e. rewarded alternation on the T-maze and 

novel arm exploration on the Y-maze), and mice lacking GluA1 in HPC (knock-out 

approach mice) were only partially impaired during rewarded alternation on the T-

maze. Interestingly, GluA1 in the HPC does not contribute to the expression of 

Pavlovian fear, since mice from both approaches were unaffected in Pavlovian fear 

conditioning. However, GluA1-containing AMPA receptors in the HPC are required 

for experience-dependent expression of behavioral despair, because mice lacking 

GluA1 in HPC (knock-out approach mice) showed a behavior similar to GluA1-/- mice 

in the FST (i.e. they did not show an increased immobility after repeated testing). 

 

4.1 Stereotaxic injections of rAAVs induce efficient transduction of 

hippocampal neurons 
In this work I used rAAV to express transgenes in hippocampal principal neurons 

and interneurons. Transduction of hippocampal neurons with rAAVs was highly 

efficient, since staining for the virally expressed proteins was prominent in most of 

hippocampal subfields. Only few subfields (e.g. CA3 in dorsal HPC injected mice and 

CA1 in ventral HPC injected mice) showed sparse expression, most likely due to a 

lack of virus diffusion to these areas. 

Quantification of transduction efficiency by immunoblotting revealed that the 

GluA1(Q) virus expressed GluA1 at 30 % of WT GluA1-levels in the targeted areas. 

Since no electrophysiological tests were performed with these mice, it is uncertain if 

this amount of protein is sufficient to rescue GluA1-dependent signaling. However, 

transgenic expression of less than 10 % of endogenous GluA1-levels was sufficient to 

partially rescue LTP and behavioral impairments in the GluA1-/- background (Mack et 

al., 2001; Schmitt et al., 2005; Marx, 2007; Freudenberg et al., 2009), suggesting that 

in fact 30 % of endogenous GluA1-levels should be sufficient to rescue GluA1-

dependent physiology in HPC. 

To see, if the virally introduced GluA1-subunits formed functional receptor 

assemblies, distribution of the GluA2-subunit was tested by immunostaining. Mice 

expressing a functional GluA1-subunit showed a stronger GluA2-staining in the 

dendrites than GluA1-/- mice. However, GluA2-staining of somata was still strong, 

indicating a high amount of unassembled GluA2. One reason for that might be that 
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the virally introduced GluA1 mostly forms homomeric receptors. This can be 

particularly the case, when GluA1 is expressed at high levels (Shi et al., 2001). 

Homomeric GluA1 AMPA receptors show rectification at positive potentials (Shi et 

al., 2001). Therefore, the rescue of the virally introduced GluA1-subunit might not 

ultimately reflect endogenous GluA1-dependent signaling. However, the somatic 

GluA2-staining is mostly gone at sites of highest viral infection (i.e. DG and the 

lateral parts of CA1). Therefore, the most likely reason for the strong somatic GluA2-

staining is that 30 % of endogenous GluA1-levels still leave large amounts of 

unassembled GluA2 in the ER. 

Cre-positive neurons were quantified by immunostaining to test for transduction 

efficiency of the Cre-expressing virus. More than 30 % of the neurons in the targeted 

areas expressed Cre-recombinase. This might be an underestimate, since staining 

properties of the antibodies for Cre-recombinase and NeuN (as a neuronal marker) are 

different. In fact, visual inspection of stainings suggests an even higher amount of 

transduced neurons in the targeted areas.  

Since less than 10 % of endogenous GluA1-levels are sufficient to partially rescue 

LTP and behavioral impairments (Mack et al., 2001; Schmitt et al., 2005; Marx, 2007; 

Freudenberg et al., 2009), it is not clear whether the lack of GluA1 in about 30 % of 

hippocampal neurons is sufficient to induce the behavioral impairments found in 

GluA1-/- mice. However, while in my study mice lacked all GluA1 in at least 30 % of 

the neurons in the targeted areas, in the case of the GluA1-/- mice expressing a GFP-

tagged GluA1-subunit (Mack et al., 2001) less than 10 % of endogenous GluA1-

levels were expressed in all principal forebrain neurons. Therefore, the complete lack 

of GluA1 in only a part of hippocampal neurons might be sufficient to find behavioral 

phenotypes dependent on GluA1-containing AMPA receptors. Of note, it was 

reported that impaired GluA1-dependent signaling in about 20 % of neurons in the 

amygdala was sufficient to induce behavioral impairments (Rumpel et al., 2005).  

 

4.2 Hyperactivity of GluA1-/- mice is abolished by hippocampal 

expression of GluA1 
To test for locomotor activity, GluA1-/- mice expressing GluA1 in HPC (i.e. knock-

in approach mice) were tested in the open field. Expression of GluA1 in the dorsal or 

complete HPC was sufficient to abolish hyperactivity of GluA1-/- mice. An annulment 
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of hyperactivity in knock-in approach mice is also supported by analysis of activity 

on the Y-maze during novel arm exploration. 

This annulment is in contrast to results from GluA1-/- mice expressing a GFP-

tagged GluA1-subunit in forebrain neurons, which remain hyperactive (Marx, 2007; 

Freudenberg et al., 2009). One reason for this difference might be that in the viral 

approach used in this thesis-work, GluA1 is expressed in both principal neurons and 

interneurons, while in other studies (Marx, 2007; Freudenberg et al., 2009) GluA1 is 

only expressed in principal neurons. However, this explanation is unlikely, since mice 

lacking GluA1 only in principal neurons of the HPC showed hyperactivity (Bus, 

2009), while mice lacking GluA1 in forebrain interneurons showed WT-like 

locomotor activity in the open field (Fuchs et al., 2007), suggesting that locomotor 

activity is mainly modulated by principal neurons of the HPC. 

 An alternative explanation for the discrepancy in the annulment of hyperactivity 

concerns differences in the expression levels. In this thesis neurons of knock-in 

approach mice expressed 30 % of endogenous hippocampal GluA1, which abolished 

hyperactivity. In contrast, hippocampal neurons of GluA1-/- mice expressing a GFP-

tagged GluA1-subunit (Marx, 2007; Freudenberg et al., 2009) expressed less than  

10 % of endogenous GluA1 levels, which might not suffice to abolish hyperactivity. 

Notably, the abolishment of hyperactivity in the open field was not as pronounced 

in GluA1-/- mice expressing GluA1 in dorsal HPC (i.e. dHPC A1(Q)). This is mostly 

due to the fact that GluA1-/- mice expressing a mutant GluA1-subunit (i.e. dHPC 

A1(R) mice) only showed a trend towards significantly higher activity. This cannot be 

explained by an abolishment of hyperactivity by the mutant GluA1 subunit, since 

mice globally expressing this subunit (GluA1R/R mice), show hyperactivity similar to 

GluA1-/- mice (Vekovischeva et al., 2001). The hyperactivity in dHPC A1(R) mice 

was most likely reduced, since they were subjected to three other tasks before open 

field-testing, and probably were used to novel environments.  

It is unclear by which mechanism expression of GluA1 in dorsal or complete HPC 

abolishes hyperactivity in the open field. The HPC sends modulatory glutamatergic 

projections to the nucleus accumbens (Kelley & Domesick, 1982; Totterdell & Smith, 

1989), inducing dopamine release in this brain area (Legault & Wise; 1999; Legault et 

al., 2000) and thereby modulates locomotor activity (Sharp et al., 1987). Therefore, it 

is possible that glutamatergic modulation of the nucleus accumbens is disturbed in 
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GluA1-/- mice, thereby leading to hyperactivity, and this modulation is rescued by 

viral expression of GluA1 in knock-in approach mice. 

Interestingly, it was shown that dopamine-clearance in the striatum, which includes 

the nucleus accumbens, is retarded in GluA1-/- mice (Wiedholz et al., 2008). Possibly, 

activity of the dopamine transporter in these mice is downregulated by homeostatic 

mechanisms, because of the disturbed glutamatergic modulation of the nucleus 

accumbens. Since glutamatergic modulation of the nucleus accumbens by the HPC 

might be restored in knock-in approach mice, striatal dopamine clearance is likely to 

be intact in these mice, explaining the abolished hyperactivity. This is also supported 

by the fact that hyperactivity in rats induced by dopamine receptor activation in the 

nucleus accumbens is facilitated by inhibition of the dorsal HPC by lidocain (Rouillon 

et al., 2007; Degoulet et al., 2008). Moreover, hyperactivity induced by hippocampal 

lesions can be increased by amphetamine (Whishaw & Mittleman, 1991; Bannerman 

et a., 1999; Bannerman et al., 2002). 

An alternative explanation for the hyperactivity in GluA1-/- mice, suggested by 

Sanderson et al. (2007), is a reduction or lack of habituation to novel environments in 

GluA1-/- mice. This offers a common trait for the hyperactivity and SWM-deficit of 

GluA1-/- mice in the sense that these mice show no short-term habituation to 

environments and therefore consistently experience environments previously exposed 

to as novel. However, it is very unlikely that this is an explanation for the 

hyperactivity of GluA1-/- mice, since knock-in approach mice did not show any rescue 

in SWM (see 4.4). 

 

4.3 Anxiety-related behaviors in the open field are increased by 

expression of GluA1 in complete HPC of GluA1-/- mice 
Anxiety-related behaviors were evaluated by analysis of the time spent in the 

center of the open field (Walsh & Cummins, 1976; Prut & Belzung, 2003). GluA1-/- 

mice expressing GluA1 in complete HPC (i.e. cHPC A1(Q) mice) barely explored the 

center of the open field, implying enhanced anxiety in these mice. 

One factor confounding the analysis of anxiety-related behaviors in the open-field 

is hyperactivity. Therefore, GluA1-/- mice might be generally increased in anxiety, 

which cannot be observed in the open field due to hyperactivity of these mice 

(Bannerman et al., 2004; Wiedholz et al., 2007). Although we (Marx, 2007; 
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Freudenberg et al., 2009) and others (Vekovischeva et al., 2004) did not find any 

changes in anxiety, Bannerman et al. (2004) showed an increase in anxiety-related 

behaviors of GluA1-/- mice. In fact, Bannerman et al. (2004) used a test that was 

mostly independent of locomotor activity, while studies that found no differences in 

anxiety (Vekovischeva et al., 2004; Marx, 2007; Freudenberg et al., 2009) employed 

tests that use locomotor activity for the assessment of anxiety-related behaviors. 

Since results about anxiety levels in GluA1-/- mice are controversial it is possible 

that the increased anxiety-related behavior of cHPC A1(Q) mice in the open-field is 

specific to GluA1-expression restricted to the HPC. In fact, a contribution of 

hippocampal GluA1-containing AMPA receptors in anxiety has already been shown. 

Withdrawal from benzodiazepines, typical anxiolytic compounds, increases anxiety in 

rats (Van Sickle et al., 2004; Das et al., 2008), which is accompanied by an increased 

synaptic incorporation of GluA1-containing AMPA receptors in HPC (Van Sickle & 

Tietz, 2002; Das et al., 2008). Therefore, it might be that GluA1-/- mice expressing 

GluA1 in the entire HPC have an exaggerated synaptic incorporation of GluA1-

containing AMPA receptors, thereby inducing enhanced anxiety in these mice. 

 

4.4 General cognitive abilities are not altered in GluA1-/- mice 
To test for general cognitive abilities the puzzle box paradigm was used. No 

differences in the latency to shuttle to the dark goal compartment were found between 

groups of the first cohort of the knock-in approach. These data are in strong contrast 

to a preliminary study from our department, where GluA1-/- mice were only 

comparable to WT mice when the door barrier was used. For all other barriers  

GluA1-/- mice were severely impaired to shuttle to the dark goal compartment 

(unpublished data).  

There are essentially two large differences between these two studies. First, in the 

preliminary study the floor and one of the walls of the start compartment of the puzzle 

box were black, which mostly abolished the anxiogenic properties of this 

compartment. Therefore, mice with higher anxiety (as might be the case for GluA1-/- 

mice) (Bannerman et al., 2004; Vekovischeva et al., 2004; Freudenberg et al., 2009) 

might have already felt safe enough in the start compartment and were more anxious 

of shuttling to the unknown goal compartment.  
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Another reason for the differences found in these two studies might be the groups 

used. While in the preliminary study performance of WT and GluA1-/- mice was 

compared, in this thesis-work GluA1+/- mice were used instead of WT mice. Although 

GluA1+/- mice usually show behaviors comparable to WT mice, these mice were 

never directly compared to GluA1-/- or WT mice in the puzzle box paradigm. It cannot 

be ruled out that the lack of only one GluA1 allele in GluA1+/- mice is already 

sufficient to induce impairment in the puzzle box. Therefore, differences between 

GluA1+/- mice and GluA1-/- mice expressing the mutant GluA1 subunit in dorsal HPC 

(i.e. dHPC A1(R)) might not have been strong enough to reach statistically significant 

levels. 

Another factor that is affecting both, the preliminary study and this thesis-work is 

the size of the start compartment, which was much smaller than the one in the study 

that originally established the puzzle box paradigm (Galsworthy et al., 2005). The use 

of a bigger start compartment increases the anxiogenic properties and therefore makes 

it more likely to find impaired general cognitive abilities in the puzzle box. 

The puzzle box paradigm was developed by Galsworthy et al. (2005) to test for 

general cognitive abilities in mice. However, since the puzzle box paradigm was 

never used in any other study, it is relatively uncertain which factors might confound 

results obtained in this paradigm. Impairment in the puzzle box to shuttle to the dark 

goal compartment can probably be induced by several independent factors (e.g. 

hyperactivity, impaired SWM, impaired short-term habituation, increased anxiety, 

lack of motivation) most of which have been shown for GluA1-/- mice (e.g. 

Bannerman et al., 2004; Reisel et al., 2002; Wiedholz et al., 2008). Therefore, it is 

questionable whether impairments found in GluA1-/- mice can be attributed to 

impaired general cognitive abilities or to a single factor contributing to impairment in 

the puzzle box.  

 

4.5 SWM is not solely dependent on GluA1-containing AMPA 

receptors in HPC 
Rewarded alternation on the T-maze and novel arm exploration on the Y-maze was 

used to test for SWM. In these tests GluA1-/- mice expressing GluA1 in dorsal or 

complete HPC (i.e. knock-in approach mice) still had impaired SWM. This is in 

contrast to GluA1-/- mice expressing a GFP-tagged GluA1 subunit in principal 
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forebrain neurons, which were at least partially rescued in SWM (Schmitt et al., 

2005). This discrepancy cannot be attributed to differences in expression levels, since 

neurons in mice from Schmitt et al. (2005) expressed less than 10 % of endogenous 

GluA1, while neurons in knock-in approach mice expressed about 30 % of 

endogenous GluA1 in targeted areas. However, the fraction of neurons expressing the 

GluA1-subunit was not quantified. Quantification from the Cre-expressing virus 

however suggests that with the viral approach used in this study at least 30 % of the 

neurons in the injected area were transduced. Therefore, the amount of hippocampal 

neurons in knock-in approach mice expressing the GluA1 subunit could have been 

too low to reinstate SWM.  

Another possible explanation for the lack of rescued SWM might be that 

expression of GluA1 in the HPC alone is not sufficient to mediate SWM. One brain 

area that seems to be equally necessary for intact SWM is the entorhinal cortex 

(Ramirez & Stein, 1984; Good & Honey, 1997; Bannerman et al., 2001; Steffenach et 

al., 2005). Potentially, input from the entorhinal cortex to the HPC is required for 

intact SWM. This might be mediated by tuning of hippocampal place cells by grid 

cells from entorhinal cortex (Fyhn et al., 2008; Moser et al., 2008). In fact, place 

specific firing of CA1 pyramidal neurons was shown to be impaired in GluA1-/- mice 

(Resnik, 2007). However, it is not known if grid cell firing in the entorhinal cortex of 

GluA1-/- mice is intact. Since in knock-in approach mice the entorhinal cortex is not 

expressing GluA1, impaired formation of grid cells might explain the lack of rescued 

SWM by expression of GluA1 restricted to the dorsal or complete HPC. 

Mice lacking GluA1 in dorsal or ventral HPC (i.e. knock-out approach mice) had 

partially impaired SWM in rewarded alternation when using a minimal retention 

interval and strongly impaired SWM when using longer retention intervals. These 

results support the requirement of GluA1-containing AMPA receptors for intact 

SWM.  

One consideration when using Cre-recombinase for specific gene targeting is 

toxicity of Cre-recombinase at high expression levels (Schmidt-Supprian & 

Rajewsky, 2007). WT controls used in this study were also injected with Cre-

recombinase. Therefore, if Cre-toxicity is the reason for the SWM-deficit, these mice 

should have been affected to an equal extent, which was not the case. 

The SWM impairment found in knock-out approach mice is in contrast to findings 

from mice lacking GluA1 in principal neurons of the HPC, which are not impaired in 
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rewarded alternation and only slightly impaired in spontaneous alternation (both 

tested on the T-maze) (Bus, 2009). This discrepancy might be attributed to the fact 

that in the study from Bus (2009) mice only lacked GluA1 in principal neurons, while 

in knock-out approach mice GluA1 was additionally lacking in interneurons. In fact, 

expression of GluA1 in interneurons was shown to be important for the mediation of 

SWM (Fuchs et al., 2007). 

Of note is the finding in mice from the knock-out approach that showed 

impairment in SWM when GluA1 was lacking in dorsal HPC (i.e. ΔdHPC mice) or 

ventral HPC (i.e. ΔvHPC). This is in contrast to lesion studies, which only show 

involvement of the dorsal HPC to SWM (Bannerman et al., 1999; Bannerman et al., 

2002; Bannerman et al., 2003). One possible explanation for this might be that 

unspecific deletion of GluA1 in dorsal HPC of ΔvHPC mice induced the SWM 

deficit. In fact, quantification of immunostainings showed that about 15 % of the 

neurons in dorsal HPC of ΔvHPC mice were expressing Cre-recombinase. Therefore, 

it is possible that this deletion was sufficient to partially impair SWM. This is also 

supported by the fact that ΔvHPC mice were not as strongly impaired as ΔdHPC 

mice, suggesting that in fact GluA1 in dorsal HPC mainly contributes to impaired 

SWM. 

 

4.6 The acquisition of Pavlovian fear conditioning does not depend 

on GluA1-containing AMPA receptors in HPC 
To test for fear-related behaviors mice were tested in the Pavlovian fear 

conditioning paradigm. Expression of GluA1 in the dorsal HPC of GluA1-/- mice (i.e. 

dHPC A1(Q) mice) only slightly rescued the impaired expression of fear related 

behaviors (i.e. less freezing/higher activity). One confounding factor for assessing 

fear-conditioned responses can be hyperactivity (Good & Honey, 1997). Therefore, 

the increased freezing and decreased activity of dHPC A1(Q) mice is probably due to 

the abolished hyperactivity rather than to an increased fear response. 

Interestingly, when testing for ‘cued’ or ‘contextual fear’ GluA1-/- mice 

(independent of the injected virus) were indistinguishable from GluA1+/- controls. 

This in a agreement with data from Bosch (2008), but in great contrast to two other 

studies (Feyder et al., 2007; Humeau et al., 2007), which found decreased fear related 

behaviors when testing for ‘cued’ or ‘contextual fear’. One explanation for this 
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discrepancy might be that the hyperactivity of GluA1-/- mice confounded the results 

from Feyder et al. (2007) and Humeau et al. (2007). However, hyperactivity should 

have equally affected results from this thesis.  

A more likely explanation concerns differences in the protocols used. While the 

protocol in Humeau et al. (2007) was very similar to the one used here, Feyder et al. 

(2007) used a different protocol with higher shock intensity and four instead of three 

tone-foot shock pairings. Additionally, both studies (i.e. Feyder et al. (2007) and 

Humeau et al. (2007)) assessed the freezing rate by an experimenter observing the  

behavior of the mice via a video camera, while in our department freezing was 

analyzed by the software controlling the fear conditioning-chamber. Differences in 

freezing rates found in these studies might therefore be due to the different ways of 

analysis.  

For assessing ‘cued fear’ Feyder et al. (2007) used a different conditioning 

chamber in a different room. In contrast, in our department the configuration of the 

very same conditioning-chamber is changed by covering the shock-grid with a 

Plexiglas plate and exchanging the black walls of the chamber with transparent walls. 

The conditioning-chamber stays the same and conditioning takes place in the same 

room. Therefore, it is possible that the configuration of the set-up was not different 

enough, and GluA1-/- mice might have received sufficient stimuli to recognize the 

conditioning chamber as a fearful environment. In fact, in this thesis-work, the 

freezing duration in all groups of the knock-in and knock-out approach was slightly 

higher before tone onset during the ‘cued fear’ test compared to the freezing before 

the first shock during acquisition, suggesting that mice at least partially recognized 

the conditioning chamber and/or room. 

Another factor influencing the assessment of conditioned fear is anxiety 

(Bannerman et al., 2003; Ponder et al., 2007; Muigg et al., 2008). Since a different 

level of anxiety in GluA1-/- mice cannot be ruled out (Bannerman et al., 2004; 

Vekovischeva et al., 2004; Marx, 2007; Freudenberg et al., 2009), any differences 

found in Pavlovian fear conditioning in these mice need to be interpreted carefully.  

Mice lacking GluA1 in dorsal or ventral HPC (i.e. knock-out approach mice) did 

not manifest any impaired expression of fear-related behavior during the acquisition 

or when tested for ‘cued’ or ‘contextual fear’. This, together with the impaired fear 

behavior of dHPC A1(Q) mice during acquisition, suggests that GluA1 in HPC is not 

involved in the acquisition of Pavlovian fear. To which extent the HPC is involved in 
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the expression of ‘cued’ or ‘contextual fear’ cannot be clarified with the data at hand. 

Since no differences in ‘cued’ or ‘contextual fear’ were found for mice globally 

lacking GluA1, it is unlikely that a potential deficit is found in mice lacking GluA1 in 

HPC with the set-up or protocol used in this study. 

 

4.7 Experience-dependent expression of behavioral despair 

requires GluA1-containing AMPA receptors in HPC 
To test for experience-dependent expression of behavioral despair, mice were 

tested on two consecutive days in the FST. An increase in immobility after repeated 

testing in the FST is a commonly used measure for experience-dependent behavioral 

despair (Porsolt et al., 1977; DePablo et al., 1989; West, 1990). Mice lacking GluA1 

in dorsal (i.e. ΔdHPC) or ventral (i.e. ΔvHPC) HPC showed a comparable latency to 

immobility and overall immobility in both sessions of the FST, resembling results for 

GluA1-/- mice (Marx, 2007; Freudenberg et al., 2009). This impairment in the 

expression of behavioral despair cannot be attributed to Cre-toxicity, since WT 

controls were also expressing Cre in ventral HPC. Therefore, the results suggest that 

the lack of GluA1-containing AMPA receptors in at least 30 % of principal and 

interneurons of the dorsal or ventral HPC is sufficient to disturb the experience-

dependent expression of behavioral despair. 

The FST is a test commonly used to find antidepressants (Porsolt et al., 1977). 

However, it is very unlikely that the deficit in the expression of behavioral despair in 

mice lacking GluA1 in HPC is reflecting a ‘depressive’ phenotype. In fact, several 

studies have shown a ‘non-depressive’ phenotype for GluA1-/- mice. For example, 

glucose consumption in female GluA1-/- mice (Bannerman et al., 2004) and learned 

helplessness (Chourbaji et al., 2008), both commonly used tests for modeling 

depression in rodents, were reduced. More likely is a generally disturbed learning or 

memory of the inescapable nature of the FST in knock-in approach mice. 

Several studies showed that increases in hippocampal AMPA receptor activation 

induce impairment in behavioral despair in the FST (Bai et al., 2001; Li et al., 2001; 

Li et al., 2003; Gould et al., 2008). This is in strong contrast to the lack of increase in 

immobility found knock-out approach mice, since these mice supposedly have a 

lowered AMPA receptor activation. Therefore, it is possible that a generally disturbed 
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AMPA receptor activation in HPC induces a disturbed experience-dependent 

expression of behavioral despair. 

 

4.8 Conclusions 
The knock-in and knock-out approaches used in this study provide complementary 

models to study the contribution of hippocampal GluA1-containing AMPA receptors 

to several behavioral impairments found in GluA1-/- mice. Taken together, results 

from this study reveal a critical role for hippocampal GluA1-containing AMPA 

receptors in hyperactivity, SWM and behavioral despair. In contrast, GluA1 in HPC is 

not required for mediating general cognitive abilities or Pavlovian fear conditioning. 

Further studies should be helpful to support the results from this study. First, 

functionality of the virally introduced GluA1 subunit could be tested using 

electrophysiological methods. Second, the contribution of GluA1 in principal and 

interneurons might be investigated by using cell-type specific promoters for the 

expression of GluA1 or Cre-recombinase (e.g. Ca2+/calmodulin-dependent protein 

kinase II (CaMKII)-promoter for expression in principal neurons and glutamate 

decarboxylase 67 (GAD67)-promoter for expression in interneurons). Third, the 

changes in anxiety in the open field might be investigated in more detail, using 

protocols that are more independent of locomotor activity. Moreover, the fear 

conditioning protocol might be improved to be able to test for the contribution of 

hippocampal GluA1 to ‘cued’ or ‘contextual fear’. Also, it might be interesting to 

investigate the role of hippocampal GluA1-containing AMPA receptors to 

experience-dependent behavioral despair by making use of the knock-in approach.  

Further studies using the approaches used here might help to find the contribution 

of GluA1-containing AMPA receptors in different behavioral paradigms that are 

impaired in GluA1-/- mice. For example the contribution of the entorhinal cortex to the 

SWM impairment and the contribution of the amygdala to impairments in Pavlovian 

fear conditioning could be investigated using these approaches.  

Finally, the complementary nature of the approaches used here might be a model 

for future studies on the necessity and sufficiency of specific genes on certain 

phenotypes in targeted brain areas. 
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5 Abbreviations 
 

AAV = adeno-associated virus 

AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

ANOVA = analysis of variance 

ATD = amino-terminal domain 

bGH pA = bovine growth hormone poly-adenylation sequence 

BSA = bovine serum albumin 

CA = cornu ammonis 

CAG = cytomegalovirus enhanced chicken beta actin 

CaMKII = Ca2+/calmodulin-dependent protein kinase II 

CS = conditioned stimulus  

CTD = carboxy-terminal domain 

DAB = diaminobenzidine 

DG = dentate gyrus 

ER = endoplasmatic reticulum 

FST = (Porsolt) forced swim test 

GABA = γ-amino butyric acid 

GAD67 = glutamate decarboxylase 67  

g factor = factor underlying general cognitive abilities 

GFP = green fluorescent protein 

GluA1-/- = mice lacking functional GluA1 alleles 

GluA1+/- = mice lacking one functional GluA1 allele 

GluA12lox/2lox = mice with floxed GluA1 alleles 

GluA1R/R = mice expressing a mutant (non-functional) GluA1-subunit  

HA = hemaglutinin 

HPC = hippocampus 

HRP = horseradish-peroxidase 

HSPG = heparan sulfate proteoglycan 

hSynapsin = human synapsin  

iGluR = ionotropic glutamate receptor 

ITI = inter-trial interval 

ITR = inverted terminal repeat 
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LTD = long-term depression 

LTP = long-term potentiation 

MAGUK = membrane associated guanylate kinase 

NGS = normal goat serum 

NMDA = N-methyl-D-aspartate 

ON = overnight 

PBS = phosphate-buffered saline 

PCR = polymerase chain reaction 

PDZ = PSD-95/Discs large/zona occludens-1 

PFA = paraformaldehyde 

PFC = prefrontal cortex 

PSD = post-synaptic density 

PSD-93/-95 = PSD protein of 93/95 kDa 

Q/R-editing = mRNA editing from glutamine to arginine  

rAAV = recombinant AAV 

R/G-editing = mRNA editing from arginine to glycine  

RM = repeated measures 

RT = room temperature 

SAP = synapse-associated protein 

SDS = sodium dodecyl sulfate  

SEM = standard error of the mean 

SH3 = Src-homology 3 

SRM = spatial reference memory 

SWM = spatial working memory 

TARP = transmembrane AMPA receptor regulatory protein 

TBS = tris-buffered saline 

VP = viral capsid protein 

WPRE = woodchuck hepatitis virus posttranscriptional regulatory element 

WT = wild type 
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