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Abstract

The direct photons are a particularly useful probe to search for an evidence of
the Quark-Gluon Plasma formation in ultra-relativistic heavy-ion collisions. Direct
photons can be extracted experimentally by measuring the large background from
π0 and η meson decays. This thesis work represents the production of the neutral
pion mesons measured with the CERES/NA45 experiment at the top SPS energy in
158 AGeV/c Pb-Au collisions. The π0 −→ γγ (98.8%) is the decay channel used in
the reconstruction scheme. The π0 measurement is based on the data taken in the
year 2000. The CERES experiment can measure the photons that convert shortly
before the TPC by measuring the e+e− pairs in the TPC. The RICH2 mirror is the
main converter used for this analysis. The presented analysis method describes in
more details the selection of the e+ and e− tracks using only the TPC information
to reconstruct the converted photon. A Secondary vertex technique was developed
and used to select the photons converted in the RICH2 mirror area. The extraction
of the π0 needs a careful study of the combinatorial background determined using
the mixed event technique. The obtained invariant mass distribution of the two
photons defined well the π0 peak. The neutral pion transverse spectra compared to
phenomenological models and other experiments validate our analysis method.

Direkte Photonen sind ein besonders gute Probe zum Nachweis eines Quark-
Gluon-Plasmas in ultrarelativistischen Kollisionen von Schwerionen. Sie können
experimentell nach der Messung des erheblichen Untergrundes aus Zerfällen von
π0- und η-Mesonen extrahiert werden. Die vorliegende Arbeit stellt die Erzeugung
von neutralen Pionen vor, die innerhalb des CERES/NA5-Experimentes bei der
topSPS-Energie von 158 AGeV/c Pb-Au-Kollisionen gemessen wurden. Die Anal-
yse basiert auf der Datennahme des Jahres 2000. Zur Rekonstruktion wurde der
π0 −→ γγ-Zerfallskanal (98.8%) verwendet. Das CERES-Experiment kann Photo-
nen, die kurz vor der TPC konvertieren, durch die Messung von e+e-Paaren nach-
weisen. Der in dieser Arbeit verwendete Hauptkonverter ist der RICH2-Spiegel. Die
hier vorgestellte Rekonstruktionsmethode beschreibt detailliert die Auswahl der e+e-
Spuren, wobei ausschliesslich TPC-Informationen zur Rekonstruktion konvertierter
Photonen benutzt wurden. Eine Sekundär-Vertex-Technik wurde entwickelt und zur
Auswahl von konvertierten Photonen im Bereich des RICH2-Spiegels verwendet. Zur
Extraktrion der neutralen Pionen ist eine sorgfältige Studie des kombinatorischen
Untergrundes erforderlich, welcher mittels Mixed-Event-Technik bestimmt wurde.



Die Verteilung der invarianten Massen von Photonpaaren zeigt den Peak bei der
π0-Masse sehr deutlich. Der Vergleich des hier ermittelten transversalen Spektrums
fuer neutrale Pionen mit phänomenologischen Modellen und anderen Experimenten
verifizieren diese Analysemethode.



To my grandmother ...
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Prelude

The study of direct photons is a particularly useful probe to search for an evidence of
the Quark-Gluon Plasma formation in ultra-relativistic heavy-ion collisions. Direct
photons are very difficult to measure experimentally due to the large background
from π0 and η meson decays. In addition, the main source of systematic errors in
the measurement of the dilepton pairs in the low mass range, main physics topic
of the CERES experiment, comes from the η/π0 ratio which is not measured with
a good accuracy at SPS energies yet. If the measurement of the π0 and η mesons
yields would be possible with good accuracy within the CERES experiment, the sys-
tematic errors on the dilepton measurement would be reduced. The only possibility
to measure photons in the CERES experiment is by reconstructing the converted
photons.
The subject of this thesis is the measurement of π0 meson production in Pb-Au
collisions at 158 AGeV/c in the SPS using the CERES experiment. The π0 mea-
surement is based on the data taken in 2000. The organization of this Thesis is
presented as follows:

The first Chapter is an introductory chapter. It illustrates a description on the
theoretical part of the high energy heavy ion physics, which is dealing with the
Quantum Chromo Dynamics. Starting from the Standard Model unification and
the anticipation of the Strong interactions at the quark level. The main ideas which
lead to the QGP creation and phenomenological models which are promoted by the
experimental data are briefly discussed.

Chapter 2 presents the experimental apparatus of the CERES experiment and its
different subdetectors. We will emphasize on the description of the Time Projection
Chamber, since only the TPC information is used on the neutral pion production
analysis.

The third Chapter explains the procedure used to reconstruct the neutral pions.
The data selection and analysis scheme will be started with the measurement of
the electrons pairs with opposite charge, then this Section will be followed by the
reconstruction of the photons which convert (shortly) before the TPC mainly in the
RICH2 mirror. For this purpose, we have developed a technique to reconstruct the
Secondary vertices that allows to select the photon conversions in the RICH2 mirror
region. The π0 signal is obtained from the two photons invariant mass distributions
after subtraction of the combinatorial background calculated using the mixed event
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technique. The background subtracted two-photons invariant mass distributions
are then investigated in various transverse momentum and rapidity phase-spaces in
order to obtain the neutral pion transverse momentum distributions.

Chapter four is devoted to the Monte Carlo simulations description. The complete
steps of the Monte Carlo method are presented and the obtained results are used
for efficiency and acceptance corrections.

In Chapter five, the results of this work are presented. The neutral pion yields and
the corrected transverse momentum distribution is obtained. The results are then
compared to theoretical models as well as to other existing experimental data.

Finally, the conclusions and the summary of this Thesis work are given in Chapter
six.



In any subject which has principles, causes,
and elements, scientific knowledge and un-
derstanding stems from a grasp of these,
for we think we know a thing only when we
have grasped its first causes and principles
and have traced it back to its elements

Aristotle, Physics

1
Introduction

1.1 The Standard Model

The laws of physics governing the world of elementary particles are now very well
described by what we call the Standard Model [1, 2, 3] of particle physics fruit of ma-
jor theoretical and experimental advances of the twentieth century. To describe and
understand Nature, physicists have worked out to determine the basic constituents
(elementary particles) which it is made of and to define the interactions that govern
theirs fundamental interactions.
In nature there are 12 elementary particles and the 4 gauge bosons that describe
the interactions of the standard model. It also provides that for every particle there
is an anti-particle same mass but an opposed charge and parity. All these building
blocks are grouped into three families growing masses. The stable matter particles
composed of the first family whose members are the lightest.
Today, physics is understood through a series of elementary particles, which are
classified into two main families: the fermions(particles of half-integer spin) and
bosons (integer spin). The fermions follow the Pauli Exclusion Principle and they
are the constituent particles of the ordinary matter-the proton, neutron and elec-
tron belong to this family. The bosons are the particles carrying the information
exchanged between fermions during an interaction.
Among the fermions, six of them are classified as quarks (up, down, charm, strange,
top, bottom), and the other six as leptons (electron, muon, tau, and their corre-
sponding neutrinos). The quarks feel the strong interaction, and leptons are insen-
sitive to it. Leptons are directly observable in nature. Quarks, however, are not

3
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directly observed, they do not appear to exist by themselves as free particles. We
can model each fundamental interaction between elementary particles by the ex-
change of bosons, namely particles integer spin, obeying the Bose-Einstein statistics
which allows them to accumulate in the same conditions. These particles ”carry”
the interaction of a particle to another and are thus called vector bosons. Four
interactions have been identified:
Electromagnetic interaction where the photon is the intermediate vector boson. The
photon does not have itself an electric charge, it is neutral, and particles exchanging
photons retain their electric charge unchanged after the exchange. The mass of the
photon is zero; the electromagnetic interaction length is infinite.
The weak interaction with three vector bosons: Z0, electrically neutral, and W±

have an electric charge ±1. It deals with all fermions through two charges, where
one of these two charges is laid by the left handed fermions.
The strong interaction, the gauge bosons are the gluons and they form an octet.
Among the fermions, only quarks have a known color, which may take three val-
ues appointed by agreement ”red”, ”green” and ”blue”. These three new quantum
number concept of colors was firstly proposed by Han and Nambu in 1964 [4]. The
gluons also have this feature, a combination of colors and anti-colors, and can thus
combine them. They have zero mass.
The standard model thus encompasses all known particles and the three interactions
with a wide effect of the particle. This is done through the quantum field theory
that constitutes the mathematical framework of the model. The standard model
allows us to explain all natural phenomena except gravity, which is for the moment,
resists the theorists for a quantum theory and which can be neglected during the in-
teraction between elementary particles, because of the weakness of the gravitational
intensity force compared to the previous forces [5, 6].
The structure of each interactions included in the Standard Model is dictated by the
symmetry of the group which leaves the action invariant [7]. The model introduces
the following gauge symmetry group:

SU(2)L ⊗ U(1)Y ⊗ SU(3)C (1.1)

The SU(2)L⊗U(1)Y gauge group combines both the electromagnetism and weak
interaction theories into a single unified theory of electroweak theory 1 with the gauge
group.
It contains four quanta of radiation, one for the U(1) part and three for SU(2). The
term SU(3)C is the color gauge group which describes the strong interactions. The
Gluons are its 8 quanta of radiation.

1The Glashow-Salam-Weinberg Model (GSW) where the particle physics collectively describe
the electroweak and strong interactions of elementary
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1.2 The Strong interactions

The Quantum ChromoDynamique (QCD) is the general accepted gauge theory [8,
9] used to describe the strong interactions [10, 11] between basic constituents of
nuclear matter. This approach to standard model is certainly its most complicated
component insofar as its Lagrangian uses only quarks and gluons to describe the
confined states (hadrons). Quarks do not interact with each other directly; they do
so through the gluons as intermediated agents. We can only refer to theirs presence
in objects which are color singlets. A colored quark can be bound with an antiquark
with the corresponding anti-color to form a meson. Three quarks of different colors
can be bound to form baryon. Mesons and baryons are collectively called hadrons
to be distinguished from the leptons and field bosons as the ”particles” which can
be directly measured.

1.2.1 The QCD Lagrangian

The QCD is a Yang-Mills theory of colored quarks and gluons introduced by Gell-
Mann [12] and Zweig [13] in the 60’s. It required the introduction of a new hidden
quantum number in order to do not violate the Fermi Statistics for the particle
∆++(uuu): color. All baryons (set of three quarks) and all mesons (pair of quark-
antiquark) are color singlet states. Theirs symmetry properties are described by the
SU(3)c. We can define a local gauge transformation as the form:

U = exp(g3

∑
a

αa(x)Ta), a = 1, 8 (1.2)

here the g3 is the QCD coupling constant, the matrices Ta represent the gener-
ators of the SU(3)c gauge group and αa are an arbitrary phases dependent on the
space-time coordinates. The QCD Lagrangian involves a bosonic part and fermionic
part, it takes the following form:

LQCD = −1

4
F a

µνF
µν
a +

6∑
q=1

(iψ̄qγ
µDµψq −mqψ̄qψq) (1.3)

with the field strength tensor:

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
νA

c
µ (1.4)

and the covariant derivative:

Dµ = ∂µ + igs
λa

2
Aa

µ (1.5)
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The last term in equation (1.4) contains the fundamental difference between QED
and QCD which describes the self coupling of gluons [14]. This approach allows
interaction between gluons giving rise to the definition of a vertex 3 or 4 gluons while
in QED, the interaction between photons is not permitted. The six quarks q are
represented by the spinors ψq which are the 4-component Dirac spinors associated
with each quark field of (3) color i and flavor q, the Aa

ν are the (8) Yang-Mills
(gluon) fields as well as the associated covariant derivatives Dµ and fabc are the
structure constants of the SU(3) algebra. The very limited scale length of the
strong interaction, of the order of 10−15 meters, is due to the gauge bosons self-
coupling. This also particularly implies that the interaction strength between two
quarks increases with their relative distance. The interaction between quarks grows
weaker as the quarks approach one another more closely. These important properties
of the strong interaction and its physics can be divided into two regimes: asymptotic
freedom and confinement [15, 16].

1.2.2 Asymptotic freedom

One of the striking properties of QCD is the asymptotic freedom which leads to the
Nobel prize for 2004 awarded to David Gross, David Politzer and Frank Wilczek.
This important theoretical discovery states that the interaction strength between
quarks becomes smaller as the distance between them gets shorter so that quarks
behave almost as free particles. Similarly to the QED, the coupling constant of QCD
is defined by

αs =
g2

s

4π
(1.6)

The αs value shows a strong dependence on the momentum transfer Q2 in a col-
lision. The αs(Q

2) evolution is governed by theory through the differential equation
of renormalization group [17]:

Q2 ∂αs

∂Q2
= β(αs) (1.7)

If we consider only the first order of αs, the function is calculated by a perturba-
tive treatment of QCD as a development of the strong coupling [18, 19] and written
in the form:

β(αs) = −bα2
s(1 + b′αs + b′′α2

sϑ(α3
s)) with b =

33− 2nf

12π
(1.8)

For the leading order perturbative approximation the solution of this equation
gives the variation of the coupling constant to the scale of the momentum transfer
at large momentum:
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αs(Q
2) =

α0

1 + α0
33−2nf

12π
ln Q2

µ2

(1.9)

Where α0 is the coupling constant for nf number of active quark flavors with
the momentum transfer µ.

From equation (1.8) we conclude that for a number of flavors less than 17, the
coupling constant is decreasing slowly to zero when Q2 >> µ2,i.e. precisely where
the asymptotic freedom is. Therefore the quarks behave as they were free inside the
hadrons. At this stage when the momentum transfer is large, the strong interac-
tion physics can be calculated in perturbative theory. The variation of the coupling
constant diverges for small values of Q2 < µ2 where the application of perturbative
treatment to calculate the physical observable inaccurate. In this prevailing order
a new phenomenon, coming directly from the non-abelian propriety of the theory.
Figure (1.1) illustrates the decreasing of the strong interaction coupling constant
depending on the momentum transfer. The QCD is therefore perturbative and cal-
culable at short distance (large Q): the asymptotic freedom. However, long-distance
(low Q), the coupling constant becomes too big and the perturbative calculations
are no longer valid.
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Figure 1.1: The αQCD coupling constant [20].

Another approach can be done, in order to estimate the evolution of the coupling
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constant by introducing directly in the definition of the coupling a new parameter
ΛQCD [21] which sets the scale to large coupling constant where the physics becomes
nonperturbative. The ΛQCD value can be determined experimentally and it is on
the order of 200 MeV:

αs(Q
2) =

12π

(33− 2nf ) ln( Q
ΛQCD

)2
(1.10)

It remains to solve the problem of formulating the QCD theory in a non-
perturbative regime when the strong interaction coupling becomes hard for large
distances between quarks (larger than 1 fm) or for small energy scale energy (less
than 1 GeV ). A solution is provided by the Lattice QCD method (see Section 1.2.5).

1.2.3 The quarks confinement

One of the success properties of QCD is the formation of color singlet objects. This
feature is called the color confinement of quarks in hadrons. In the same way as
the electric charges of the opposite sign suffer attraction, the color charge attracts
quarks with different colors. The QCD explains, in particular, the formation of
hadrons. The quarks behave almost as free partons inside the hadron [22, 23].
When the quarks move away from each other (the energy put into play decreases),
more gluons are exchanged. These gluons themselves can interact with each other
or a couple of virtual quark-antiquark new pairs. Beyond a typical distance of 1 fm
(10−15m), quarks are no longer spread freely and remain confined within hadrons.
This phase of hadronization taken over the non-perturbative QCD regime is gener-
ally described by phenomenological models. In general, if the potential between two
quarks is proportional to the distance between them, then the two quarks can never
be separated. To illustrate this character, a classic parameterization [24, 25, 26] of
inter-quarks potential is proposed in the equation:

V (r) = −4

3
.
αs

r
+ σ.r (1.11)

The second term of this equation shows the Coulombian interaction for short
distances, the confinement is represented by the last term where σ is called the
string tension. One may try to separate the quarks by pulling them apart, then
the restoring force of the linear potential between them grows sufficiently rapidly
to prevent them from being separated. The interaction between the quarks gets
stronger as the distance between them gets larger. The form of the potential results
of these two terms is shown in figure (1.2) depending on the separation distance r.
The potential between the two quarks becomes linear and is it growing to infinity
with the inter-quarks distance.
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Figure 1.2: The potential between two quarks as function of the distance.

1.2.4 Deconfinement and the Quark Gluon Plasma

It is believed that the universe consisted of quarks and gluons transforming to
hadronic matter just a few microseconds after the Big Bang [27, 28]. Theories
also predict that it may still exist in the universe that we see today since the cores
of dense neutron stars [29, 30, 31] and the supernova supply extreme astrophysical
environments which favor the creation and the existence of this state.
Among the goals of current nuclear researches is the observation and characteri-
zation of this new state called Quark-Gluon Plasma (QGP) [32, 33] in which its
building blocks (quarks and gluons) act in like free particles. The search for a such
phase transition from the confined hadronic matter to the deconfined QGP matter
is a fascinating subject to study the dynamics of this interface. The nature of the
strong interaction has been described as in the case of the ordinary hadronic matter.
However, it is crucial to be able to describe the behavior of the matter under con-
ditions of temperature and density, particularly when one or both of these two
quantities are extremely high [34, 35]. The challenge is to understand the substance
of the Universe during its first moments, but also of existing forms such as inside
the compact stars formed by the gravitational collapse of the supernovae nucleus.
We can talk about phase transition when certain properties of nuclear matter un-
dergo a radical change for that reason the system can be well described using sta-
tistical mechanics description which provides global variables and other conserved
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quantities. The grand canonical ensemble is therefore used to describe the whole
system allowing the variation of the particles number. The parameters of the control
are then the temperature T , the volume V and the chemical potential µ. The latter
represents the necessary energy to provide to the system in order to add a quark.
Generally the diagram of phases depending on the temperature (T ) and potential
chemical baryonic, as shown in the figure (1.3) [36].
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Figure 1.3: The QCD phase transition diagram of the hadronic matter [36].

By increasing T or µb, a phase transition is possible to occur. The evolution
of the universe can be traced from its earliest moments, where the temperature
was well above Tc and at low chemical potential. The bottom left of this diagram
corresponds to low temperature and low baryonic potential, the behavior of QCD
thermodynamics can be described in terms of hadron gas (states composed of related
quarks and gluons): if we increase the temperature of the system, this state cannot
exist as it is. There is a small area where this matter is undergoing a transition
considered as cross over, from which the degrees of freedom are not the hadrons but
quarks and gluons themselves. The high µ and small T on the right of the diagram,
corresponds to a region accessible by compressing the system. This state of matter
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is a matter of quarks that can be found in the hearts of neutron stars [37, 38].

1.2.5 The Lattice QCD

At large distances (i.e. small scales) it becomes impossible to use the perturbative
theory to achieve results. Indeed, the interactions between quarks and gluons are
too strong and perturbative approach can not work. In particular, the QGP can not
really be considered as a gas of particles without interaction. To take in account
these interactions we should use the QCD to model all the interactions existing in
the system. In this framework, Lattice simulations of QCD thermodynamics have
made significant progress during the last decade.
The method of Lattice QCD allows a statistical approach of the strong interaction for
complex systems. It gives access to the thermodynamic characteristics of a quarks
and gluons system at the equilibrium. The rapid rise in computational power and
implementation of better algorithms authorize the simulation of the behavior of
matter by the QCD equations, which describes the strong interaction suffered by
the quarks and gluons. The whole technic is based on the discretization of space-
time coordinates on a finite domain [39, 40]. The particles involved in the simulation
are located on the nodes of the Lattice. An introduction to the used lattice QCD
methods and its technical details could be founded in [41].
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Figure 1.4: The lattice QCD energy density (left) and pressure (right) as function of
temperature for nf = 0, 2 and 3 light quarks as well as two light flavors (u and d) and one
heavy flavor (s) [42].

Initially, the developments were limited to µb = 0 and they can calculate the
evolution of pressure depending on the temperature. Figure (1.4) shows the evolu-
tion predictions of the energy density (left) and pressure (right) depending on the
temperature. This method of studying deconfinement take into account 3 assump-
tions: two light quarks (u and d), three light quarks (u, d or s), or two light flavors
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Name Mode Beam E (AGeV )
√

(sNN) (GeV ) ε(GeV/fm3)

SIS fixed target 238U 1 1.4 0.5
AGS fixed target 208Pb 12 4.9 1.0
SPS fixed target 208Pb 158 17.3 3.5
RHIC collider 197Au 100 200 5
LHC collider 208Pb 2750 5500 15− 60

Table 1.1: The main characteristics of the ultra-relativistic accelerators used in the high
energy heavy ion physics and theirs achieved energy densities.

(u and d) and a heavy flavor(s). A transition from the hadronic phase to partonic
phase is clearly visible. The energy density undergoes a rapid change near a critical
temperature Tc, enhanced by almost an order of magnitude, as indicated in figure
(1.4). The temperature TC depends on the number of flavors (nf ) considered: Tc =
175 MeV for two light quarks (2 flavors), Tc = 155 MeV for three light quarks (3
flavors) [42]. The reported error is the statistical error only and therefore it does
not takes into account the engendered systematical error by the discretization of
the lattice. The Lattice QCD confirms the sharp increase of the number of degrees
of freedom of the system to the temperature of the phase transition. This rapid
change is an indication that the fundamental degrees of freedom are different above
and below the critical temperature.

1.3 Ultra relativistic heavy ion collisions

1.3.1 Accelerators

The goal of research in ultra relativistic heavy ion collisions is studying the possible
formation of a new state of nuclear matter called Quark and Gluon Plasma (QGP).
It is believed that this state of matter can be reached at ultra relativistic heavy
ion collisions where sufficient energy density and temperature is achieved. Under
these circumstances, the nuclear material undergoes a deconfined phase transition
leading to the QGP formation. To simulate such extreme conditions here on earth,
Ultra relativistic heavy ion collisions between two nuclei were performed and an
experimental campaign has been therefore launched since 1986 to prove its existence
and to study it. The program of this campaign used to study the dense matter. The
different machines used for this subject are presented in Table 1.1: the Alternating
Gradient Synchrotron (AGS), the Relativistic Heavy Ion Collider (RHIC) at the
Brookhaven National Laboratory (BNL), the Super Proton Synchrotron (SPS) and
the future Linear Hadron Collider (LHC) at CERN.
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The main objective of these accelerators is to draw a detailed description for
the path of the universe in the opposite direction by raising the temperature. The
future of the discipline lies at the LHC back at CERN with a rise in energy by a
factor of almost thirty.
The QGP state will be examined by the ALICE detector which is the only exper-
iment optimized for the heavy ion collisions to study the physics of the strongly
interacting matter and the quark gluon plasma in nucleus-nucleus collisions [43].
It will reach center of mass energies of about 14 TeV for protons, and 5.5 TeV for
nuclei, which is much higher than the previous experiments. ALICE is built around
the largest TPC in the world [44]. In the future, it would be possible to probe deeper
into matter than ever before and increasing our knowledge of how the universe began.

1.3.2 The evolution of the QGP: Scenario of Bjorken

To reach the Quark-Gluons Plasma, extreme scenarios must be re-created by collid-
ing heavy ions with velocities close to the speed of light: enormous temperatures,
pressure and densities of those first few microseconds. The framework of the space-
time evolution of ultra-relativistic heavy ion collisions is defined qualitatively and
even quantitatively in terms of the reached energy density. This scenario of evolution
was proposed by Bjorken in 1983 [45] and is represented in figure (1.6).

The system presents a succession of several phases. In the pre-equilibrium phase,
about typical time of T0 of 1 fm/c, the system is thermalized and led to the formation
of QGP in total lifetime of the order of 5 to 7 fm/c. The quark-gluon plasma state
created in collisions will expand and cool down very rapidly, t = 10−23s till reaching
the critical temperature Tc transition. That means that the quarks are grouped into
hadrons and the cooling system will be gradually transformed into a hadronic phase.
The hadronic matter keeps expanding and cooling off.
The hadrons undergo elastic and inelastic collisions that change the production rate
and the momentum spectrum of different particles. They finally stopped when the
system expansion reach its limit. This ultimate step is called chemical freeze-out
where eventually all inelastic interactions are stopped and the particles species are
no longer changed by collisions but only by decays. The nature of particles and
their energies are then frozen. This will disintegrate to provide stable particles that
eventually end up their course in the detector.
Such scenario raises some questions about the possibilities to probe the partonic
phase since the short lifespan of the QGP for a few fm make it more difficult to be
observed directly by the detectors. However the manifestation of the QGP probes
at various moments during the evolution is the only way to find its evidence by the
remnants of the collisions.
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Figure 1.6: The evolution of Ultra-Relativistic Heavy Ion Collisions [46]. The different
stages of the space-time evolution are shown starting from the non-equilibrium state to
the final state as free hadrons.

1.3.3 The Geometry of the collision

A nucleus-nucleus collision at very high energy produces a large number of hadrons
near the center of mass. The attained energy density during the collision depends
on the energy of the incident nucleus, their longitudinal size (atomic mass) and the
fireball volume that is big enough to explore the QGP. The corresponding Lorentz
contraction is important since it is already γ = 10 for the SPS and it makes also sure
that the deformation is in the direction of movement. The centrality of the collision
or the degree of overlap of two nuclei at the collision time is usually given as a
percentage of the total cross section. We might define then from these measurements
an important variable at this stage: the impact parameter b, which gives the distance
between the axes of the two nuclei. This description can be illustrated by figures
(1.7).

Here we describe the case of the most central collisions as they permit to get
the higher energy density where the system is essentially in the form of a hadrons
gas. When a collision occurs at low impact parameter b, the measured number of
particles will be big, and the collision will be central. In contrast, a collision at high
impact parameter is peripheral. One can underline the principal observables which
characterize the dynamic of the collision that are expressed in term of rapidity as:
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Figure 1.7: Schematic view of high energy particles scattering. The geometry of the
collision describes two effects. In the left side, the impact parameter b is large, thereby
the recovery zone is elliptic whereas in the right side the b factor is small and the recovery
zone is nearly circular.

y =
1

2
ln
E + pL

E − pL

(1.12)

where E is the total energy of the particle and PL is its longitudinal momentum.
When the energy density is much greater than the mass of the particle, the preference
then is to use the pseudo-rapidity variable:

η =
1

2
ln
|p|+ pL

|p| − pL

= − ln(tan θ0) (1.13)

where θ is the angle between the particle momentum and the beam axis. The
initial energy density EBj produced during the collisions can then be calculated
using the formula (1.14) [45]:

EBj =
1

AT τ0
.
dEt

dy
(1.14)

This equation takes into account the overlapping transverse surface between
the nucleons AT (depends on B), τ0 the proper time of the partons thermalization
(estimated at around 1fm/c) and the measurement of the total transverse energy,
for such particle i emitted by an angle θi, is defined by:

ET =
∑
i=1

Ei. sin(θ) (1.15)
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The energy densities at CERN-SPS energy is on the average of 3.9 GeV/fm3.
From the equation (1.14), one can conclude that the more the energy density is high
the more we have the possibility to create the QGP state.

1.3.4 The experimental observations of the QGP

The QGP scenario described previously raises some questions about the possibilities
to probe the partonic phase. Due to the very short lifetime of the plasma, how to
ensure that the observed gap is really deconfined phase ? In reasonable manner,
the detection of a set of signatures might be really a clear way to discard any am-
biguity [47]. The predicted signatures for the QGP can be roughly divided into 3
categories: electromagnetic signatures [48, 49] which are based on the detection of
dileptons and photons, signatures associated with the measurement of the hadron
production, and the signature coming from the deconfined phase which enhance the
production of strange quarks and the J/ψ suppression [50]. Among these various
probes, photons and dileptons are known to be advantageous as these signals exam-
ine the entire volume of the plasma because they do not interact with the medium.
We will concentrate only on the electromagnetic signatures. The reader is referred
to [51] [52] for more detailed review about the other probes.

1.3.5 Electromagnetic probes

Together with dileptons, photons constitute electromagnetic probes which are
believed to reveal the history of the evolution of the plasma. Dileptons are
produced in a QGP phase by quark-antiquark annihilation, which is governed by
the thermal distribution of quarks and antiquarks in the plasma. The examination
of photons provides a tool to study the different stages of a heavy ion collision.
They are believed to originate from quark-antiquark annihilation (qq̄ → gγ) and
the QCD Compton scattering (q(q̄)g → q(q̄)γ) processes and as well as from the
photon radiation with bremsstrahlung processes (qq̄ → qq̄γ) at higher order of α2

sα
[53, 54]. The Feymann diagrams of these three processes are illustrated in figure
(1.8).

Consequently, the direct photons [55] which do not interact with the medium
have various origins with rather different sources. They are created within three
subprocess described previously which dominate the photons emission from the fire-
ball. They can be obtained by extracting the decay photons where in this case one
have to deal with formidable background problems because of the hadronic decays
into photons most notably the π0 −→ γγ and the η −→ γγ. The direct photons are
frequently divided into two-prong. The first type consists of photons originating from
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Figure 1.8: Feynman diagrams of the main production processes for direct photons.

the early hard proccess in the dense medium are called prompt photons. The sec-
ond type stands for the photons radiated from thermalized matter the quark-gluon
plasma phase, they are named thermal photons [56]. They can be produced during
the whole history of the evolution of QGP and Hadron gas.



To my self I seem to have been only like a boy playing
on the seashore, and diverting myself now and then finding
a smoother pebble or a prettier shell than ordinary,whilst
the great ocean of truth lay all undiscovered before me.

Sir Isaac Newton

2
The CERES Experiment

2.1 Experimental setup overview

The CERES/NA45 (Cherenkov Ring Electron Spectrometer) is the only experiment
at the CERN Super Proton Synchroton (SPS) dedicated to the study of e+e− pairs
produced in nucleon-nucleus and nucleus-nucleus collisions in a fixed target geometry
in the low mass range up to 1 GeV/c2 [57, 58, 59, 60]. It is axially symmetric around
the beam and it has 2π azimuthal coverage. It was set-up in 1990, went into service
in 1991 and started to take data in 1992.
The original setup included two Silicon Drift Detectors (SDD), two Ring Imaging
CHerenkov Detectors (RICH) [61] for the electron identification. It was upgraded
twice, once from 1994 to 1995 with an additional multiwire proportional chamber
with pad readout (the Pad Chamber) to improve the momentum resolution and
to allow operation in the environment of the multiplicity of lead on gold collisions
[62]. A second time it was upgraded with an additional magnet and a new powerful
tracking detector a cylindrical Time Projection Chamber (TPC) with radial drift
field which replaced the pad chamber [63, 64, 65, 66]. This was done to improve
the mass resolution.

19
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Figure 2.1: The CERES experimental setup after the upgrade with the Time Projection
Chamber.
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Moreover, the dE/dx signal in the TPC provides also electron identification in
addition to the identification by the RICH detectors. The new experimental setup,
with the TPC reaches a mass resolution δm/m ∼ 3.8% [67, 68] at the φ-peak in
the electron decay channel. The addition of the TPC opens the possibility to study
hadronic observables [69, 64]. The upgraded experiment is shown in figure (2.1).
The following sections of this chapter describe the main features of the subdetectors.
They have a common acceptance in the polar range 8◦ < θ < 14◦ which corresponds
to pseudorapidity range of 2.1 < η < 2.65 at full azimuthal coverage.

2.2 The target region

CERES used during the last data taking in the year 2000 a target system consisting
of 13 fixed gold disks of 25µm thickness, and 600µm diameter, spaced uniformly
by 1.98 mm in the beam direction. The distance between the disks was chosen
such that particles coming from a collision in a given target disc and falling into
the spectrometer acceptance do not hit any other disc. The reason behind this
geometry is to minimize the conversion of the γ′s into e+e− pairs. A tungsten shield
is installed around the target to absorb particles emitted backwards in order to
protect the UV-counters of RICH detectors from long background signals.

Figure 2.2: The Target area: 1 - The vacuum pipe, 2 - The entrance window, 3 - BC2 4
- BC2’s PMT, 5 - Au target, 6 - BC3’s PMT, 7 - MC’s PMT, 8 - BC3, 9 - MC scintillator,
10 - Al-mylar light guide, 11 - SiDC1(down), 11 - SiDC2(up), 13 - Gas radiator.
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2.3 The trigger system

Triggers are essential to optimize the quality and quantity of the physics events and
to keep the same time, the background events very low. The CERES experiment
trigger system starts the read-out sequence of the detectors if the occurrence of a
collision has been detected. This is done with the system of beam/trigger detectors
shown in figure ( 2.3). The Beam Counters (BC1, BC2 and BC3) are the Cherenkov-
counters with air as radiator. These detectors are used to detect collisions happened
between projectile and target nuclei.

Figure 2.3: Schematic view of trigger detectors.

The beam trigger (BEAM) is defined by the coincidence of the two beam counters
(BC1 and BC2) located in 60 mm and 40 mm in front of the target respectively:

TBEAM = BC1.BC2 (2.1)

The minimum bias trigger (MinB) is defined as beam and no signal in the beam
counter (BC3) which is located 69 mm downstream the target system.

TMinB = BC1×BC2×BC3 (2.2)

To select the centrality of the collisions based on charged particle multiplicity a
Multiplicity Counter (MC) located 77 mm downstream the target was used. Its out-
put signal is approximately proportional to the number of charged particles passing
through it. The central collision trigger is defined as:

Tcentral = TMinB.MC (2.3)
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The veto detectors VW and VC are plastic scintillators. They are used to reject
interactions which happened before the target. The main trigger detectors BC2,
BC3 and MC are located in the target area followed by the Silicon Drift Detectors
(SDD’s), they form a vertex telescope which is a central part of the event and vertex
reconstruction.

2.4 The Silicon Drift Detectors

The doublet Silicon Drift Detectors(SDD’s) are placed approximately 10 cm behind
the target. Each of them consists of a circular 4-inch silicon wafer with a thickness
of 250 µm which has a central hole of about 6 mm diameter for the passage of the
beam. The sensitive area covers the region between the radii 4.5 mm and 42 mm
with full azimuthal acceptance and cover the pseudorapidity range [1.6,3.4]. The 4”
SDD used in CERES is designed using the principle of the sideward dileption [70]. A
charged particle traversing the detector creates a cloud of electron-hole pairs which
then drifts along radially in the electric field towards the outer rim of the silicon
wafer (figure (2.4)) where they are collected by an array of 360 anodes distributed
equally over its surface and connected with a read-out chain.
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Figure 2.5: Detailed view of the SDD anode structure.

An Schematic view of the anode structure used in the SDD detectors is shown
in figure (2.5) where its design guarantees optimal charge sharing and provides an
accurate azimuthal position resolution [71]. The charge of one hit is detected by
several anodes and a more exact position measurement can be done by calculating
the center of gravity of this distribution. When a charged particle passed through
the detector plane, the radial coordinate r (or the polar angle θ) of a point is
calculated knowing the drift velocity and measuring the drift time with a FADC
(Flash Analogue to Digital Counters) with sampling frequency of 50 MHz. An
example of an event in the SiDC detector is shown in figure (2.6).

Figure 2.6: A central Pb−Au event in one of the two SiDC detectors.
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The two SDD’s detectors provide a very precise vertex reconstruction, determine
the pseudorapidity density of charged particles dN/dη, the coordinates of hundreds
charged particles with high spatial resolution and interaction rate in addition to
the suppression of e+e− pairs coming from conversions. This feature of the SDD is
extremely necessary for the rejection of photon conversions before the RICH2 when
studying low mass dilepton pairs. In this analysis the only information used from
the SDD detectors is the reconstructed position of the event vertex for each event.

2.5 The RICH Detectors

The Ring Imaging Cherenkov Detectors (RICH) are used to identify the electrons
and to measure the particle velocity β. They are the heart of the electron spec-
trometer. The RICH detectors were invented by J.Séguinot and T.Ypsilantis [72].
If the momentum of the particle is known the mass can be determined. Particles
pass through radiator and the radiated photons are collected by a position-sensitive
photon detector by focusing mirror. The simplest method to discriminate particles
with Cherenkov radiation utilizes the existence of a threshold for radiation; thus
providing a signal whenever β is above the threshold β = 1/n. According to elec-
tromagnetism, a charged particle emits photons in a medium when it moves faster
than the speed of light in that medium (Cherenkov radiation). The speed of light
in a medium with reflecting index n is given by:

v =
c

n
(2.4)

where c is the velocity of light in a vacuum. When the velocity of charged particle
exceeds the threshold, Cherenkov lights are emitted under a constant angle θc with
respect to the particle trajectory.

θc = acos(
1

n.β
) (2.5)

From the asymptotic angle θc the Lorentz threshold for a charged particle to
radiate can be expressed as:

γth =
1√

1− 1
n2

(2.6)
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Figure 2.7: The Principle operation of the CERES RICH detector

The relativistic particles pass through a radiator, and the emitted photons are
optically focused by a spherical mirror onto a position-sensitive photon detector, on
which Cherenkov photons are detected on a ring with radius:

R = R∞

√(
1− (

m.γth

p
)2

)
(2.7)

where R∞ is the the asymptotic radius of particles with γ >> γth.
As the ring radius, the number of the Cherenkov photons depends also on the particle
momentum and its mass:

N = N∞

[
1− (

m.γth

p
)2

]
(2.8)

where N∞ is the asymptotic number of the reconstructed photons with γ >> γth.
The RICH detectors in the CERES experiment operated with CH4 at atmospheric
pressure as radiator gas [61]. An illustrated view of the CERES RICH detector
principle of operation is shown in figure (2.7).
The CH4-gas has γth ≈ 32 and very high transmission in the U-V region. Therefore,
only electrons and positrons emit Cherenkov light. Charged pions need a momen-
tum of 4.5 GeV in order to reach the threshold. Whereas most of hadrons 95(%)
pass without creating any signal. The RICH detectors are therefore practically
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hadron blind. In order to minimize the number of the converted photons in the
spectrometer and to reduce the loss of momentum resolution due to multiple scat-
tering, the amount of material within the acceptance is kept as small as possible.
For this reason, the RICH1 mirror is based on a thin carbon fiber structure with 1
mm thickness (0.4%X0). The RICH2 mirror is built of 6 mm glass with radiation
length of X/X0 = 4.5 % at comparable U-V reflectivity [61, 73]. The UV detectors
used for position sensitive measurement of the photons are gas counters consisting of
three amplification stages, two Parallel-Plate Avanlanche Chambers (PPAC) and
a Multi-Wire Propotional Detector (MWPD), with a gas composition of 94% He
and 6% CH4 and saturated vapor pressure of TMAE (Tetrakis-di-Methyl-Amino-
Ehtylen). The incoming photons are converted into electrons by adding TMAE as
a photo-sensitive agent. In order to achieve a sufficient partial pressure, the TMAE
is heated to 40◦C. For the purpose of protection from gas condensation and tem-
perature gradients the whole spectrometer is operated at 50◦C. The produced ion
cloud in the last step induces a signal on a pad plan of 53800 pads in RICH1 and
48400 pads in RICH2. The pad sizes are 2.7 × 2.7 and 7.6 × 7.6 mm2 respectively
which corresponds to a subtended solid angle of 2 mrad per pad in both cases.
In this analysis, the information provided by the RICH detectors is not used. How-
ever, the RICH2 mirror is an essential part of this work as with its 4.5%X0 it is the
main photon converter in the experiment.

2.6 The CERES Time Projection Chamber

Generally a TPC comprises a cylinder filled with gas (typically a mixture of ar-
gon and methane). In conventional TPC’s uniform electric and magnetic fields are
applied parallel to the axis of the cylinder. Charged particles created in the colli-
sions pass through the chamber and ionize the chamber gas along the trajectories.
Electrons produced by the ionization drift toward the end cap of the TPC due to
the electric field. The electron trajectories follow the magnetic field in tiny spirals.
On each end cap, the drifting electrons are amplified by a plane of anode wires,
and signals are read out from small pads behind the anode wires. The TPC’s are
designed to provide a three-dimensional picture of all charged particles emitted in a
large aperture surrounding the beam axis with a minimal disturbance to the original
trajectories [74].
In contrast, the CERES TPC has a non-uniform electric and magnetic field that are
not parallel to the axis of the cylinder (see next section).
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2.6.1 Mechanical layout

The cylindrical geometry of the CERES TPC extends 2 m in length and 1.3 m
in radius. In the center of the TPC there is a cylindrical electrode with radius of
48.6 cm. It is located at a distance of 3.8 m downstream the target. The TPC is
composed of 16 Multi Wire Proportional readout Chambers installed in the outer
circumference of the TPC (r ≈ 1.3m). Each chamber has 20 readout planes along
the beam axis with 48 pads each. This means each plane is with 16 × 48 = 768
readout channels. In total, 15360 (20 planes×48 pads×16 chambers) individual
channels with 256 time bins allowing a three-dimensional reconstruction of particle
tracks.

Figure 2.8: Perspective view of the CERES Time Projection Chamber.
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A perspective view of CERES TPC is shown in figure (2.8) [75]. This special
configuration is due to the fact that the new spectrometer system had to preserve
the polar angle acceptance range which corresponds to 8◦ < θ < 15◦ and the full
azimuthal symmetry of the original CERES setup.

2.6.2 Electric field

The electric field in the CERES TPC is radial and it is define by the inner electrode
which is an aluminum cylinder at a potential of −30kV and the cathode wires of the
read-out chambers at ground potential. In order to cancel rim effects of the electric
field which should be parallel to−→r , two voltage dividers consisting of 50 µm thick
capton foils enclose the drift volume at the end caps of the TPC. The electric drift
field strength is proportional to 1/r. The dependence of the radial component as
function of the radius and the azimuthal coordinate is illustrated in figure ( 2.9)

Figure 2.9: The electric dependence as function of the radius r (upper figure) and the
azimuthal angle φ
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2.6.3 Magnetic field

The TPC is operated in an inhomogeneous magnetic field, indicated in figure (2.1)
by red dotted lines, generated by two warm coils with current flowing in opposite
directions. The radial component of the magnetic field is maximal between the two
coils and the deflection of charged particles is mainly in the azimuthal direction.

The magnetic filed
−→
B has a radial Br and longitudinal Bz components with strength

up to 0.5T . The field integral is 0.18 Tm at 8◦ and 0.38 Tm at θ = 15◦. Figure
2.10 shows the radial and longitudinal components of the magnetic field at the
inner and the outer center end of the angular acceptance in θ.
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Figure 2.10: The magnetic field in the CERES TPC.

2.6.4 Counting gas and drift velocity

The ionization region or active volume of the TPC is 9 m3 filled with 80%Ne and
20%CO2 gas mixture. This composition was chosen as an optimum compromise
between small diffusion, sufficient primary ionization, long radiation length and
reasonable fast drift velocity [76].
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The electric filed and the magnetic field in the CERES TPC are not constant along
the drift path of the electrons. Therefore the drift velocity is not either. In the

presence of a magnetic field
−→
B and an electric field

−→
E the drift velocity can be

calculated using the following formula [76]:

−→υ d =
µ

1 + (ωτ)2

(
−→
E + ωτ

−→
E ×−→B
B

+ (ωτ)2 (
−→
E .
−→
B )
−→
B

B2

)
(2.9)

In this equation: µ = eτ/m is the mobility of the electrons, τ is the mean time
between two collisions, and ω = βµ is the cyclotron frequency. The mobility µ is a
function of the electric field, the magnetic field and the gas composition. The angle

between the drift velocity −→υ d and the electric field
−→
E is αL the Lorentz angle given

by:

αL =
̂

(
−→
E , υD) (2.10)

Given a precise knowledge of µ,
−→
B and

−→
E the actual drift path can be calculated.

The drift velocities range from 0.7 cm/µs to 2.4 cm/µs with a maximal drift time
of about 71 µs. The electrons drift along the path given by the drift velocity vector
in equation (2.9) and reach one of the sixteen read-out chambers

2.6.5 Readout chambers

Before building the trace of a charged particle, a read-out stystem is needed for
that purpose. The TPC is filled with a gas mixture (see previous section), which is
ionized by the passage of a particle and the resulting charges are collected on the
electrodes (pads) at the ends of the TPC cylinder. Signals originate from electrons
that are freed when moving charged particles ionize the gas in the TPC.
At close distance to the anode wires, the electric field rises very sharply so drift
electrons create ionized avalanches (electrons are multiply by factor 104) as they
accelerate towards the anode wires where they are absorbed. Ions created in these
avalanches produce image charge on the pad plan; the anode wires are close to the
pad plane and are on 1.3 kV in potential.
The gating grid is furthest from the pad plane and it is operated at an offset voltage
of −140 V. In the opened case, after an external trigger-signal, the electrons are
allowed to pass through the gating grid which is switched to transparent mode at
Ubias = 0.V . In the closed state, adjacent gating grid wires alternate from −70V and
+70V then potentials differences set up electric fields between the wires that are
perpendicular to the drift direction. By this way, stopping non-triggered electrons
extends the life of the TPC by preventing unnecessary ionization from occurring in
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the read-out chambers. The cross section of a read-out chamber with all the wire
planes is shown in figure (2.11).

ground strip pc board

anode wires (

cathode pad ground strip

gating grid (

cathode wires ( 70 µm)

70µm)

20 m)µ

24 mm 3 mm

3 mm

6 mm

6 mm

2 mm

2 mm

Figure 2.11: Cross section of the TPC readout chambers. The different wire planes are
shown.

The experimental arrangement for the electric field close to the read-out
chamber is calculated using the simulation package GARFILED [77]. The electric
potential map performed for a read-out chambers with the gating grid during the
open mode is drawn and shown in figure (2.12). The electric field lines helps to
visualize the electric field near the charges. Field lines define the direction of the
force that a positive charge experiences. The slowly drifting ions created near to the
anode wires are neutralized in a very short time and captured by the cathode-pads.

The avalanche process produced close to the anode wires induces a signal in the
chevron-type cathode pads [63]. In figure (2.13) we see the chevron structure which
has been taken for the CERES TPC.
Measuring the drift time and knowing the drift velocity enables the reconstruction
of the radial coordinates of the tracks. Due to the chevron geometric shape of the
pads the charge cloud is reconstructed precisely and shared between the adjacent
pads in the azimuthal direction. The analogue signals on the TPC pads are
amplified, shaped and digitized in Front End Electronics (FEE).

2.7 TPC track reconstruction

The information provided by the TPC is the main component is this analysis. There-
fore, we will describe in detail the different steps of the reconstruction. In this
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Figure 2.12: The electric potential map of the CERES TPC readout chambers simulated
with the GARFIELD package.

section, we introduce firstly the algorithms (hit finding, track finding and track fit-
ting) used to reconstruct the tracks in the radial drift TPC, then we describe the
particle identification procedures by measuring its specific energy loss (dE/dx). A
schematically event display of the TPC after track reconstruction is shown in figure
(2.14).

2.7.1 TPC hit finding

The particle trajectories are reconstructed from hits in the tracking detectors using
a tracking finding algorithm. As mentioned before (see Section 2.6.1) the CERES
TPC has 20 planes with 768 pads along the azimuthal direction. The data of each
channel consists of linear amplitude from 8-bit ADC in 256 time bins in radial
direction. In total the 20 × 768 × 256 ≈ 4 million pixels make up the pixel grid.
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Figure 2.13: Scheme of the cathode pads. Four single cheveron pads of the cathode pads
compose one readout chamber.

When a charged particle passes the counter gas of the detector the crossing point
in each plane give a definition of the hit. It is described by a local maximum the
adjacent pads and time bins [64, 78].
Hit coordinates are defined and encoded as pad amplitudes in two-dimensional array
of pad versus time coordinates.

Figure 2.14: Schematic event display of the TPC.
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The hit finding procedure starts to examine the pixel grid of the TPC in
all the twenty planes searching the local maxima in the time direction for each
pad. A local maximum corresponds to a hit only if the local maxima in time and
pad directions are at the same location. The procedure is illustrated in figure (2.15).
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Figure 2.15: The TPC hit finding procedure.

An area of 3 pads ×5 time-bins around the local maximum is assigned to a hit.
After finding all the maxima, the positions of all the individual hits are determined
by calculating the center of gravity in pad and time directions for each of them.
They are define as :

p =

∑
iAi

Amax

fi
.pi∑

iAi

and

t =

∑
iAi

Amax

fi
.ti∑

iAi

(2.11)
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where the index i represent the pixels in the area of 15 pixels around the local
maximum, Ai is the amplitude which corresponds the the pixel i, Amax is the ab-
solute maximum, fi is counter variable to each pixel. This method memorizes the
the sum amplitudes of absolute maxima from those hits which share the same pixel.
Thus the overlapping hits problem is solved. A detailed procedure and reconstruc-
tion of overlapping hits is schematiclay shown in figure (2.16).
The spatial coordinates of the individual hits (x,y,z) are calculated from
(pad,time,plane) coordinates knowing the complete geometry of the chamber, the
drift velocity of the TPC, which itself depend on the electric and magnetic field
(equation (2.9)) and the gas properties.

Figure 2.16: The TPC overlapping hit reconstruction. The absolute maximum of the
considered hit is stored by the counter variable. It will be increases by the the absolute
maxima of the overlapping neighbors whenever a founded pixel is shared to several hits.

2.7.2 The Track finding

Once the different hits are all identified and provided, it is possible to proceed
to the combination of the reconstructed hits and then associate these into tracks.
Depending on the polar angle, a TPC track consists of up to 20 hits. The track
finding routine begins from taking a hits candidates in the middle planes of the TPC
(5 to 15) along the Z-direction, where the hit density is lowest [79], and combine
them with their closest neighbors in the two upstream and downstream planes in
Z-direction to determine the sign of the track curvature in φ-direction. Within a
window of ∆φ = 5.3 mrad and ∆θ = 1.4 mrad, further hits in both directions are
searched around the predicted φ position done with a linear extrapolation using
the two previous hits. If no hits were found, the procedure stops at this point.
In the next step, the tracking software uses a second order polynomial with Tukey
Weights [64] fit to find missing hits and to collect all the hits which are possibly
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assigned to the track in several iterations. Again the tracking stops in that direction
if no additional hits are found.

2.7.3 TPC Track fitting

In order to obtain the parameters defining a particle trajectory, the path of the track
must be known as function of these parameters. The task of the fitting algorithm is
to to provide −→p , θ and φ angles of the particles. The presence of the strong inhomo-
geneous magnetic field in the TPC make the analytical description of the particle
trajectory not possible. Therefore, the momentum of the particle is calculated using
a two-dimensional momentum fit in the φ − z and r − z planes based on reference
tables. These tables were produced by Monte Carlo simulations of the CERES TPC
using the GEANT software package [80, 81]. Applying several iterations, the hits are
closed to the fitted track and those with large residuals ∆r > 0.4 cm and r∆φ > 0.2
cm are discarded from the fit.
It is assumed that the deflection in the magnetic filed is in first order only in φ-
direction. The momentum is determined from the φ-deflection. The θ angle is
obtained by fitting a straight line through the hits in the r − z plane. A second-
order corrections in θ is applied to improve the quality of the fit. The track fitting
performs two types of fitting, one is the 2-parameters fit (pcor2) and the other one
the 3-parameters fit (pco3). A better resolution is obtained by using a weighted
combination of these two fits variables (pcomb), where their weights depend on the
momentum resolution over the whole momentum range presented in figure (2.17).
During this fitting we are able to determine the charge of the track by looking to
the sign of the momentum. The two-parameter fit supply better results for high
momentum tracks. The multiple scattering competes with the detector resolution
whereby the three-parameter fit absorbs their effect for low momentum. The mag-
nitude of the momentum and the angles θ and φ of the track are the whole output
information of the fitting function. From the combined momentum fit, the relative
momentum resolution of the CERES TPC is expressed by:

dp

p
=

√
(1%p)2 + (2%)2. (2.12)

Another parameterization is presented by taking the assumption that the track
is originating from the target area, which permit to determine the local angles for
the polar (θ or θR2M) and azimuthal (φ or φR2M ) angles. This can be done and
recorded by the projection of the TPC track corresponding to the second RICH
mirror. Then making the TPC reconstructed track extrapolation to the target area.

φlocal = arctan(
Y Line1

XLine1
) (2.13)
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θlocal = arctan(
√
XLine12 + Y Line12) (2.14)

where XLine1 is the slope in the xz plane and Y Line1 is the slope in the yz plane
of the TPC track. The angles are recalculated from the four original parameters of
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Figure 2.17: The momentum resolution obtained from a Monte Carlo simulation of the
detector, the blue points used for the 3-parameter fit, the red for the 2-parameter fit and
black for the combined momentum fit.

the fit Xline0, Xline1, Y line0, and Y line0 that represent the offset and the slope
of straight line. The equation (2.14) is obtained for z →∞.
The relative momentum resolution dp/p as a function of the momentum p is deter-
mined by the resolution at high momentum of the detector (res.det) and the multiple
scattering (ms) in the detector material at low momentum [82]:

(
dp

p

)2

=

(
dp

p

)2

res.det

+

(
dp

p

)2

ms

(2.15)

with
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(
dp

p

)

res.det

∝ p (2.16)

(
dp

p

)

ms

∝ 1
−→
B

√
1

L.x0

(2.17)

where: L is the the measured track length and x0 is the radiation length.

2.7.4 The coordinate system

The global coordinate laboratory system used in the CERES experiment is shown
in figure (2.18). Its origin located in the middle of the target area. The z-axis is
defined by the beam axis. The event polar coordinates are the polar angle θ, the
pad coordinate which is translated to the angle φ given by the read-out channel and
the distance z to the center of the target area.

The target area

z

y

x

z−plane

The TPC

t
Pad

θ

rφ

Figure 2.18: The TPC coordinate system.
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2.8 Particle identification using specific energy

loss (dE/dx)

Using the TPC, specific identification of charged particles can be achieved by mea-
suring their energy loss (dE/dx). This works very well for particles having low
momentum, however in the opposite case, when their energy rises, the energy loss
of a particle become less mass-dependent and since it is a function of its velocity, it
will be hard to separate particles with velocities υ > 0.7c. The dE/dx of particles
is described by the Bethe-Bloch formula given in equation (2.18). The energy loss
of a particle with charge Z and speed β = υ

c
passing through a medium with the

density ρ is given by:

dE/dx = Kq2Z

A

1

β

(
1

2

2mec
2β2γ2Tmax

I2
− β2 − δ

2

)
(2.18)

where K = 4πNArec
2, NA is the Avogadro number, re is the electron

radius, Z the atomic number of the absorber, A the atomic weight of the
absorber,γ = 1/

√
1− β2, Tmax the maximum kinetic energy in a single collisions, I

the mean excitation energy and δ is the Bethe-Bloch correction factor.
Figure 2.19 shows the energy loss of the observed charged particles in the CERES
TPC as a function of the momentum of the particles and compared with the
Bethe-Bloch formula described above.

2.9 Photon interactions in matter

Photons are electromagnetic radiation with zero mass, electrically neutral and trav-
eling with a constant velocity that is always the speed of light c. A photon passing
through material interacts in different ways.
There are four important mechanisms of interactions between the photon and mat-
ter. In all these mechanisms of the process, the photon gives up a part or all its
energy to a matter particle. This is usually happening in the vicinity of an atomic
nucleus. The Compton effect where the photon can be scattered by an electron (or a
nucleus) and loose some of its energy. Note that the photon does not slowdown. It is
still traveling with the velocity c, but its frequency is reduced. At lower energies the
dominant process is the photoelectric effect. The photon collide with the electron
and ionizes the atom of the matterial by kicking out one electron.
Other process equivalent to the previous one but in this case the photon energy is
not enough to free the electron. Thereby, the photon is captured by the atom and
excites the state of the hitted electron in the shell to higher energy level. Again,
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Figure 2.19: The energy loss of charged particles as a function of their momentum.The
lines indicate the predicted dE/dx areas by the Bethe-Bloch formula for π, K, P , d and e

the photon disappears and transmits all its energy to the atom. The last common
process, which is the formation or the materialization of two electrons, one negative
(electron) and the other one positive (positron). This process is called Pair produc-
tion. It is a direct conversion of radiant energy to matter. This process makes the
detection of photons in the CERES experiment possible.

2.9.1 Photon conversions (γZ −→ e+e−Z)

The CERES/NA45 experiment measures photon by conversion method. For Pair
Production to occur, the electromagnetic energy, or the photon energy, must be at
least equivalent to the mass of the two electrons. When the photon energy is greater
than 2mec

2, which corresponds to 1.022 MeV , the photon can be materialized by
the creation of electron-positron pair. For photon energies above the threshold
energy, the surplus energy appears as kinetic energy of the two electrons. An
additional condition which must be satisfied during the Pair Production process
because it can not occur in the vacuum. The energy and the momentum can
not be simultaneousley conserved. Something must participate in the interaction



42 CHAPTER 2. THE CERES EXPERIMENT

and absorb the momentum of the initial photon to balance the equations. The
presence of a charged particle like an atomic nucleus, which is more massive than
the electron/positron, during the interaction can absorb a fraction of the photon
momentum. The Pair Production is the dominant process at high energies and a
very small opening angle between the electron and the positron is expected on the
average 2mec

2/Eγ [83].
Since the photons are massless, they are not detected directly. Their states are dis-
placed as ”neutral vertex”. The converted electrons are identified by the searching
for oppositely charged track near the electron track, then we do the extrapolatation
to a common target point. Tracks found in this way are subsequently used as
starting point for track combinations and a converted photon is created for each
valid pair. We have to remember that our our goal is to reconstruct the photons
through conversions happening mainly in the RICH2 mirror location.

2.9.2 Radiation length

The passage of photons through matter were governed by the processes described in
the previous sections. The average length in a specific material in which the created
electrons will lose an amount of their energy by bremsstrahlung or pair production
is called the radiation length [84, 85]. The radiation length is usually measured in
g/cm2 and can be expressed by the following equation:

1

X0

= 4αr2
e

NA

A
(Z2[Lrad − f(Z)] + ZL′rad) (2.19)

here α is the fine-structure constant (1/137.035), re = 2.817.10−15m the classic
electron radius, A is the atomic mass and Z is the atomic number which characterizes
the traversed material. NA is the Avogadro number (6.022.1023/mole).

The distance traveled by the high energy photon before it produces electron pair
is related to the radiation length by (7/9) X0. This distance is called the mean free
path for pair production. The pair creation happens with a probability of:

P = 1− exp(
−7

9

x

X0

) (2.20)

We are using the second RICH mirror as converter. It is assembled from 10
individual pieces and it is conventional a 6mm glass mirror which corresponds to
4.5% radiation length. The geometrical acceptance of the RICH2 mirror is in the θ
range 0.14-0.24 within the pseudorapidity range 2.1-2.65.



Science creates more science, like a fire;
and the conditions for nursing it and keeping
it burning are much the same...
It is like climbing a tree. At the first fork,
we choose-or, in this case, ”nature” or the
experimental outcome chooses-to go to the
right branch or the left; at the next fork, to
go left or right; and so on.

John R. Platt 3
The Data Analysis

This chapter describes in greater details the neutral pion analysis with emphasis
on the proof and on the justification for making various cuts. Applying a set of
electron/positron track selection criteria in order to reject combinatorial background.
These choices and the obtained results will be used for the photon reconstruction.
The reconstruction of the neutral pion from the converted photons in the RICH2
mirror will be discussed in this chapter.

3.1 Event data sample

The data analyzed in this Thesis were taken in the year 2000. The CERES/NA45
experiment has recorded on tape a large data sample consisting of 30 million good
event in Pb-Au collisions at beam energy 158 GeV/c having a centrality of the
top 7%(20%) of the total geometric cross section with an average multiplicity of
< dNch/dy >= 321 [68] and the pseudorapidity range η = 2.1 − 2.65. The typical
Pb beam intensities delivered to CERES from the SPS was ∼ 1 × 106 ions per
burst corresponding to a total interaction rate of 300 to 500 event/ burst. The
highly compressed raw data on tape coming from the detectors and written by the
Data Acquisition System (DAQ) have to be unpacked and converted into a suitable
format for the subsequent data analysis. The events are grouped into 415 units,
each unit consisting of about 200 bursts.
The analysis is performed in the framework of the C++ software package COOL
(Ceres Object Oriented Library) with all the functionality needed to handle and
to analyse a large amount of data in a very efficient way. The data are defined
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as ROOT Tree format specialized storage methods which are used to get direct
access and process. A complete particle trajectories reconstructed once all data has
been processed into meaningful physical information is stored (i.e. for each particle
track a necessary information from each detector is stored like hit amplitudes and
number of hits).

3.2 The reconstruction chain

The different steps of the reconstruction chain in order to get the π0 signal are
listed below. In describing this, we shall keep the chronological order of the analysis
program which can be represented by the following scheme:

1. Hit reconstruction and tracking.

2. Electron identification.

3. Pairing e+e− −→ γ.

4. Identification of γ conversions.

5. Invariant mass γγ in the same event as function of pt and y.

6. Invariant mass of γγ in mixed event as function of pt and y.

7. Background subtraction and raw π0 yield determination as function of pt and
y.

8. Efficiency and acceptance determination.

9. Efficiency and acceptance correction of π0 yields.

10. Transverse momentum spectrum of π0.

The first point that was described in Section 2.7.1 is common to all physics
analysis done with the 2000 CERES data. The other steps are specific for the
analysis presented here. Therefore, they will be described in much more details in
this Chapter (points 2 to 7) and the Chapter 4 (point 8) and Chapter 5 (points 9
and 10).
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3.3 The Electron and Positron selection

The charged particle multiplicity distribution determined by the Silicon Detector
(SD) and the TPC for the events of the year 2000 data set is shown in figure (3.1).
In our analysis, we use only events with a TPC multiplicity larger than 10.
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Figure 3.1: Left, The charged particle multiplicity as measured tracks by the SD and
TPC detectors. Right, the reconstructed charged particle multiplicity with the TPC de-
tector.

The particle identification (PID) in the TPC using the specific energy loss
dE/dx provides a powerful tool to select electrons, positrons and to separate them
from kaons, pions and protons. The energy loss (dE/dx) described in the previous
chapter (see section 2.8) is a function of the mass and the momentum of the charged
particle which passes through the medium. The momentum is determined by the
curvature of the track due to the magnetic field.

Figure (3.2) shows evident points concentration distribution (bands), each cor-
responding to a specific mass of particle. This function that was expressed within
the equation (2.18) gives a curve as a function of the particle energy that is char-
acterized by a decrease leading to a minimum which is then followed by a rapid
increase. This means that the resolution is good at low momentum and it becomes
gradually deteriorated when the momentum is increasing. In order to reduce the
background and optimize the significance, selection criteria are imposed to select
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Figure 3.2: Left: Specific energy loss of charged particles versus its momentum. The
lines shows the expected dE/dx for electrons and of charged pions. Right, Specific energy
loss versus momentum after the applied cuts to select electrons (positrons) among charged
particles.

only the provided dE/dx information for the electron and the positrons tracks. The
right of the figure (3.2) represents all the accepted charged particles after taking the
dE/dx band in the region 308− 2σdE/dx < dE/dx < 440 and along the momentum
interval. However, this cut does not prevent the contamination of the charged pions
when theirs energy loss overlap. This contamination is clearly visible on the left of
the figure. An extra dE/dx condition depending on the momentum is then needed.
The additional cut dE/dx > 260 + 10logp is included and represented by the blue
incline line (figure (3.2) right) which allows the suppression of the π± contamina-
tions.
The distribution of the electron (positron) multiplicity per event after the selection
by using dE/dx information is shown in figure (3.3). A mean number of electrons
(positrons) of 30(32) event is observed. The larger mean number of positrons might
be due to proton contamination.

3.4 The standard quality cut

The track quality criteria is used to accept only the well defined tracks and to
reject the fake tracks. The track quality cuts is essentially a cut on the number of
the hits on the track. The distribution of number of TPC hits is shown in figure
(3.4). The main requirement is that the track must have a minimum number of
associated hits. The reason of this requirement is that the tracks should have a
good momentum resolution and also good dE/dx resolution. Both the momentum
and dE/dx resolutions are improved by the number of hits.
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Figure 3.3: The multiplicities of electrons and positrons in each event. The selection
was obtained by using the specific energy loss information provided by the TPC detector.

The distribution of the recorded number of hits on the TPC segment versus the
theta angle is shown in figure (3.5). Only the tracks which they have more than 10
hits will be kept for the analysis performed later. Tracks at large theta leave the
TPC before reaching the end therefore they have less number of hits. Similar effect
happens at low theta, where the tracks enter the TPC later. A cut that follows this
dependence (black line in figure (3.5)) is applied.

3.5 The study of the unlike (e+e−) and like sign

e+e+, e−e− pairs

In our case, as first step from the reconstruction scheme, we start firstly by the
electron/positron combinations. The associated phase space of the electron-positron
combination will define the photon. This latter ensemble of the opposed signs
represents the signal of a ”good” photon.
Before going to discuss the photon reconstruction part, we have to keep in mind
that we are concerned with the reconstruction of photons that convert (shortly)
before the TPC spectrometer into e+e− via the measurement of the electron pair
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Figure 3.4: The distribution of the number of the TPC fitted hits
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Figure 3.5: Dependence of the number of hits per track versus the theta angle. The
black line indicates the theta dependent cut applied to the tracks.
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in the TPC.
The e+e− pairs from the photon conversion are characterized by a very small
opening angle. Therefore by inspecting the opening angle distributions of e+e−

pairs and comparing them to like sign combinations where no signal is expected,
one should be able to find out the photon conversion signal.
The opening angle (θ12) between the electron and the positron can be expressed by
the equation:

cos θ =
px1px2 + py1py2 + pz1pz2

|p1||p2| (3.1)

where the p1 and p2 are the momentum vectors for the electron and the positron
respectively.
The opening angle distribution of the unlike sign pairs (e+e−) and the like signs
pairs (e+e+ + e−e−) for different pt have been investigated in order to optimize the
definition of the photon for efficiency and significance.
The momentum variation of the opening angle between the unlike sign pairs (e+e−)
and the like-sign pairs (e+e++e−e−) is shown in figure (3.6). No extra normalization
factor is applied in the like-sign distributions.
The peak in each momenta window at small opening angles indicates clearly the
existence of photons converted before the Time Projection Chamber. The peak
becomes narrower and the number of the photons is decreasing when one goes to
the high momentum regions.
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Figure 3.6: The distribution of the opening angle between the unlike sign e+e− (blue
line) and the like sign e+e+ + e−e− (red line) pairs in pair momentum bins from 0 to 10
GeV/c, each window represents 1 GeV/c.
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Figure 3.7: The ratio of the unlike sign e+e− and the like sign e+e+ + e−e− pairs vs
the opening angle in pair momentum slices from 0 to 10 GeV/c, each window represents
1 GeV/c. The vertical line in each momentum bin indicates the cross-point angular cut.
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In order to determine more precisely up to which opening angle the converted
photon signal extends, the ratio of the unlike sign and like sign distributions has
been studied for different momentum bins (figure (3.7)). Each distribution is fitted
by a sum of a constant and an exponential function which take the form:

ratio = p0 + exp(p1 + p2θ12) (3.2)

The vertical lines in each momentum bin were calculated as the opening angle points
where the ratio is 10% higher than the constant level (p0). This leads us to what
we call the cross-point. The cross-point definition can be expressed by the following
parameterization:

crosspoint(θ12) = 1/p2 · (ln(0.1 · p1)− p1) (3.3)

where p1 and p2 refer to the fit function parameters mentioned previously in the
equation (3.2). The photon conversion signal sits below the cross-point. The depen-
dence of the cross-point with the pair momentum is shown in figure (3.8).
We can define the ThetaEP cut function as:

ThetaEP(p) =





f1, if : p ∈ [0, 8.5](GeV/c)

f2, if : p ∈ [8.5,∞](GeV/c)

(3.4)

where:

f1 = exp(a0 + a1p + a2p
2 + a3p

3) with p ∈ [0, 8.5] (3.5)

The value of the different parameters are indicated in table 3.1.

f2 = 3.5 (mrad) (3.6)

a0 (rad) a1 (rad/GeV ) a2 (rad/GeV 2) a3 (rad/GeV 3)
-4.325 ± 0.0018 -0.3548 ± 0.0015 0.04698 ± 0.0004 0.002763 ± 3.5e-5

Table 3.1: The parameter values of the ThetaEP cut function in the momentum interval
0-8.5 GeV/c.
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f1 function corresponds to the curved line and f2 is the horizontal line at the
opening angle 3.5 mrad for p larger than 8.5 GeV/c. In what follows, the ThetaEP
cut function will kept during the whole analysis described later and it defines the
signature of conversions.
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Figure 3.8: The electron-positron opening angle (cross-point) vs the momentum, the
curved and the horizontal line indicates the applied cut values to define photons.

3.6 The photon reconstruction

3.6.1 Map of reconstructed photon conversions

So far we have concentrated on the description of the unlike and like sign pairs
opening angle distributions as building blocks for the photon by using the TPC
information. The number of photons per each event is displayed in figure (3.9).

The measured transverse momentum of the reconstructed primary photon and of
the background from the unlike and like sign pairs is shown in figure (3.10). Photons
are measured from a transverse momentum of 0.1 GeV/c up to 1 GeV/c.
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Figure 3.9: The number of the reconstructed photons (red) in each event by using the
dE/dx information provided from TPC detector and after the ThetaEP cut function.

Figure ( 3.11) illustrates the azimuthal and the polar angles distributions for the
primary photon selection based on the data collected previously. In the X-Y plane,
the photons are measured for the whole azimuthal acceptance. The reconstructed
conversion point map has two clear structures, one uniform comming from conver-
sions in the RICH2 mirror and γ-fold structure comming from a support structure in
the entrance of the TPC. However, a cut in photon angle 0.135 ≤ θ ≤ 0.24 was used
to select only the phase-space where the photons have good momentum resolution.
Thus, by applying this polar angle cut we exclude the photons affected strongly from
the multiple scattering or the Bremsstralung processes which are mainly happening
at lower polar angles where there is a lot of material. The transverse momentum
distribution has sharp peak near zero and broader peak at high transverse momen-
tum. This behavior can be understood from the fact that the photon conversion is
characterized by very small electron-positron opening angle.

3.7 The Secondary Vertex (SV) fit algorithm

The Secondary vertex technique provide a very clean and well measured position
of the photon conversion point. Opposite charged tracks are combined to obey the
physical process γZ −→ e+e−Z candidates. Each of the two tracks is assumed to
point out to a common position. Consequently, an implicit ”zero mass” on the in-
variant mass for the displaced vertices is yielded at the RICH2M region.
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Figure 3.10: Left: Momentum distribution of the reconstructed photons from the unlike
sign pairs (blue) and of the background (red) from like signs. Right: the photon transverse
momentum spectrum after the subtraction of the background.

The principle of the Secondary Vertex fit algorithm is to calculate the 3D distance
between the two tracks. The used algorithm calculates the point of closest approach
assigned to the electron and to the positron. This method is performed on the Least
Square Method. It was used by HADES [86] and CERES [78] collaborations. For
the complete details and all the characteristic features of this method the reader is
advised to consult [87].
The study of the vertexing and kinematic fitting within the Secondary Vertex algo-
rithm will be divided into two subsections. The first part will be intended to provide
the mathematical framework of the vertex fitting. This is handled generally by solv-
ing analytically the closest approach point equations of the two opposite sign tracks.
Then, we will examine in more details and explicitly make the practice calculation
of the closet approach point occurring from the latter subsection.

3.7.1 The mathematics of the Secondary Vertex fit

The general way of the finding the Secondary Vertex is based by the following
prescription. All the tracks are parameterized as straight lines and used as input
to the algorithm. Assuming that there are N detected tracks that means for each
input candidate i ∈ [1, N ] and from the linearity hypothesis, we write the definition
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Figure 3.11: The mapping of the reconstructed photons in the phase-space. The top
window represents the bidimentional distribution of the azimuthal and polar angles for
the reconstructed photons. The middle and the bottom windows shows the projection of
the thetaγ and the φ angles, respectively.
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of the ith track in the form:

~xi = ~ri + ~ui.t, t ∈ < (3.7)

such that ~ri refers to the position vector, ~ui its direction vector,i.e. ~ui = ~ri/|~ri|
and t is the track parameter or the so-called controlled variable. We will attempt
to determine the unknown coordinates is space of the position vector ~rsv which is
assigned to the point of conversion. The distance of the conversion point to a given
ith track which is basically expressed in the equation (3.7) can be calculated as:

Di = |(~ri − ~rsv)× ~ui| (3.8)

Equation (3.8) is concluded from the fact that ~ri vectors set are the measured
data points and the Di represents the deviations from the given set of data in the
base |~ui|. According to Least Square method, the fitting proceeds by finding the
sum of the squares of the deviations Di for all the detected tracks. For all the
measured data points, there are given uncertainties; for that reason these points can
be weighted differently in order to give the high-quality points more weight. Based
on this, the squares deviations are therefore summed and minimized to find the best
fit line. This can yields the following:

M2 =
N∑

i=1

D2
i

σ2
i

=
N∑

i=1

|(~ri − ~rsv)⊗ ~ui| (3.9)

By taking the uncertainties σ2
i constant, the minimization of M2 is thus equiva-

lent to the determination of the space coordinates of the closest approach between
the N tracks. The minimization of M2 is simply done by making the partial deriva-
tives of M2 with respect to the unknown parameters and set these values to zero.
The M quantity defined in equation (3.9) has a property which can be used to carry
out a χ2 test. We now write this consequence ,the analogous expression of 3, in the
form:

χ2 =
N∑

i=1

D2
i

σ2
i

(3.10)

The condition for the χ2 to be minimum is that:

∂χ2

∂xsv

= 0,
∂χ2

∂ysv

= 0,
∂χ2

∂zsv

= 0 (3.11)

To determine the equation(3.11), we first have to get the distance between the two
selected charged tracks D2

i .i.e.:

D2
i = [(yi − ysv)azi − (zi − zsv)ayi]

2

+[(zi − zsv)axi − (xi − xsv)azi]
2

+[(xi − xsv)ayi − (yi − ysv)axi]
2 (3.12)
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Expanding the equation system (3.11), this leads to:

∂χ2

∂xsv
=

∑
Wi {[(zi − zsv)axi − (xi − xsv)azi]azi − [(xi − xsv)ayi − (yi − ysv)axi]ayi} = 0

∂χ2

∂ysv
=

∑
Wi {[(xi − xsv)ayi − (yi − ysv)axi]axi − [(yi − ysv)azi − (zi − zsv)ayi]azi} = 0

∂χ2

∂zsv
=

∑
Wi {[(yi − ysv)azi − (zi − zsv)ayi]ayi − [(zi − zsv)axi − (xi − xsv)azi]axi} = 0

(3.13)

where the Wi is the weighting factor 2/σ2
i The equation (3.13) is linearized in

the unknown parameters of the space coordinates. Involving matrix manipulations
and especially matrix inversions, the equation system in (3.13) can be summarized
in three main matrices labeled as A, B and C which satisfy the equation:

C = A−1B (3.14)

The expressions of these specific matrices are written in the matricial form and
obtained as follow:

A =
N∑

i=1

Wi




a2
yi + a2

zi −axiayi −axiazi

−ayiaxi a2
xi + a2

zi −ayiazi

−aziaxi −aziayi a2
yi + a2

xi


 (3.15)

B = A




xi

yi

zi


 , (3.16)

and the wanted matrix:

C =




xsv

ysv

zsv


 , (3.17)

Once this problem is handled by solving analytically the point of closest approach
of the two charged tracks (the two candidates), we could then determine the A,B
and C matrices. The latter C matrix is 1−column matrix which offers the space
coordinates values of the conversion point..
It may be, however, that the uncertainties σi are not normally distributed. and theirs
expectation values are different from zero. This constraint implies dependency of
the σi uncertainties on the Di distances(i.e. σ2

i = σ2
i (Di)). In this case special care

on the calculation of σi‘s values because we are dealing with non-negligible values
of errors. It can be redefine and one gets the alternative expression as:
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σ2
i (Di) =

(
∂Di

∂x1

,
∂Di

∂y1

,
∂Di

∂x2

,
∂Di

∂y2

)



σx1x1 0 σx1x2 0
0 σy1y1 0 σy1y2

σx2x1 0 σx2x2 0
0 σy2y1 0 σy2y2







∂Di

∂x1
∂Di

∂y1
∂Di

∂x1
∂Di

∂y2


 (3.18)

With the definition written in equation (3.18), (x1, y1) refers to the track space
coordinates by requiring z = 0. (x2, y2) are the corresponding slopes in the X-Z
plane (for x2) and Y-Z plane (for y2). Thus, that reads:





x2 =
ux

uz

y2 =
uy

uz

(3.19)

where (ux, uy, uz) are the coordinates of the unit direction vector ~u. The σmn refers
to covariance if m 6= n and in the opposite case m = n it corresponds to the variance
of the m and n parameters. In what follows, we will use a short notations to simplify
the complication of the equations. Let:

~∆i = ∆x
~i+ ∆y

~j + ∆z
~k. (3.20)

and

~∆i = ~ri − ~rsv. (3.21)

from the equations (3.20) and (3.21) one can gets:




∆x = xi − xsv

∆y = yi − ysv

∆z = zi − zsv

(3.22)

Furthermore, the unit vector property provide us:

u2
z = 1− u2

x − u2
y (3.23)

which leads to:





∂uz

∂ux

= −ux

uz

,

∂uz

∂uy

= −uy

uz

(3.24)
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From these formulas, the equation 3.12 can be re-written in the following com-
pact form:

D2
i = (∆2

zi −∆2
xi)u

2
xi + (∆2

zi −∆2
yi)u

2
yi − 2(∆yi∆ziuyiuzi)

+∆xi∆ziuxiuzi + ∆xi∆yiuxiuyi.+ ∆2
xi + ∆2

yi (3.25)

and the partial derivatives in equation 3.18 will be computed with respect to
ux and uy and not for the x2 and y2 cases (this step will be done later). Thus, the
results of the updated partial derivatives of the distance Di are and obtained as:

∂Di

∂x1

=
(1− u2

xi)∆xi − uxi(∆ziuzi + ∆yiuyi)

Di

∂Di

∂y1

=
(1− u2

yi)∆yi − uyi(∆ziuzi + ∆xiuxi)

Di

∂Di

∂uxi

=
(∆2

zi −∆2
xi)uxi +

∆yi∆ziuyiuxi

uzi
+

∆xi∆ziu
2
xi

uzi
−∆xi∆ziuzi −∆xi∆yiuyi

Di

∂Di

∂uyi

=
(∆2

zi −∆2
yi)uyi −∆yi∆ziuzi + ∆yi∆zi

u2
yi

uzi
+ ∆xi∆zi

uxiuyi

uzi
−∆xi∆yiuxi

ui

.

(3.26)

The remaining partial derivatives values of (∂Di/∂x2) and (∂Di/∂y2) are then
straightforward obtained from the previous step. This yields:

∂Di

∂x2

=
∂Di

∂uxi

.
∂uxi

∂x2

+
∂Di

∂uyi

∂uyi

∂x2

=
∂Di

∂uxi

.
1− u2

xi

Q
− ∂Di

∂uyi

.
x2y2

Q3
(3.27)

∂Di

∂y2

=
∂Di

∂uxi

.
∂uxi

∂y2

+
∂Di

∂uyi

.
∂Dyi

∂y2

= − ∂Di

∂uxi

.
x2y2

Q3
+
∂Di

∂uyi

.
1− u2

yi

Q
, (3.28)

with

Q = x2
2 + y2

2 + 1 (3.29)

Using the equations in 3.19, Q can be expressed in the form:

Q =
1

u2
z

(3.30)

Finally, once all the parameters have been found, the error propagation with
the no-negligible values of σi is obtained by simply implementing all of them in the
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equation ( 3.18).
The complete procedure is re-iterated until convergence is reached. Before each iter-
ation track parameters and error matrices are translated to current vector position.
It should be noted that the procedure of the charged track selection for the conver-
sion criteria is iterated till a displacement of the order 0.01µm or less is seen on the
computed slope of the secondary vertex position.
As a conclusion, the method is based on maximizing the Secondary vertex probabil-
ity (or minimizing the χ2) derived from the vertex fits for a permutation of possible
two track associations. Within the mathematical framework, the position of the
conversion point is then given by the equation ( 3.14).

3.7.2 Application of the SV method to the reconstruction
of the conversion point

The determination of the Secondary vertex point manifest through the mathematical
configuration presented in the previous section. In all what follows, we will consider
the uncertainties as constant variables. As a consequence, here we make a direct
application for the photon conversion point which is identified by the following
sequence.

~a2

~p2

~p1

z

y

t~b1

x

~a1

s~b2

~d

Figure 3.12: Scheme of the method to reconstruct the conversion point.
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Assume we have the two electrons vectors expressed as:

{
~p1 = ~a1 + t.~b1

~p2 = ~a2 + s.~b2
(3.31)

we consider the distance vector ~di between ~p1 and ~p2, that means:

~di = u(~b1 ×~b2) ⇔ ~di⊥~b1 and ~di⊥~b2 (3.32)

In addition one can get (see figure 3.12):

~p1 + ~di = ~p2 (3.33)

~a1 + t.~b1 + u(~b1 ×~b2) = ~a2 + s.~b2 (3.34)

which yields:

~a1 − ~a2 = s~b2 − t~b1 + u(~b2 ×~b1) (3.35)

By re-writting the equation ( 3.35) in the matricial form:




b2x −b1x (~b2 ×~b1)x

b2y −b1y (~b2 ×~b1)y

b2x −b1z (~b2 ×~b1)z







s
t
u


 =




a1x − a2x

a1y − a2y

a1z − a2z


 (3.36)

The goal is to determine (s, t, u) vector components. The system of linear equations
in ( 3.36) can be solved by using Cramer’s rule in terms of determinants. That read,

s =
detS

detA
, t =

detT

detA
, u =

detU

detA
(3.37)
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with:

detA =

∣∣∣∣∣∣∣

b2x −b1x (~b2 ×~b1)x

b2y −b1y (~b2 ×~b1)y

b2x −b1z (~b2 ×~b1)z

∣∣∣∣∣∣∣
(3.38)

detS =

∣∣∣∣∣∣∣

a1x − a2x −b1x (~b2 ×~b1)x

a1y − a2y −b1y (~b2 ×~b1)y

a1z − a2z −b1z (~b2 ×~b1)z

∣∣∣∣∣∣∣
(3.39)

detT =

∣∣∣∣∣∣∣

b2x a1x − a2x (~b2 ×~b1)x

b2y a1y − a2y (~b2 ×~b1)y

b2z a1z − a2z (~b2 ×~b1)z

∣∣∣∣∣∣∣
(3.40)

detU =

∣∣∣∣∣∣

b2x −b1x a1x − a2x

b2y −b1y a1y − a2y

b2z −b1z a1z − a2z

∣∣∣∣∣∣
(3.41)

Consequently, the Secondary vertex point is just pointed out by the vector ~p12

expressed by the following equation:

~p12 = ~p1 +
1

2
~di (3.42)

= ~p1 +
1

2
(~p1 − ~p2). (3.43)

Any vector of the electron/postiron detected by the TPC and expressed by the
equation (3.31) is then computed by the coordinates (Xline0,Y line0, 0).
The (x2, y2) slopes that are defined in the previous section with z = 0 are equivalent
to the ~s slope in the X-Z plane (for x2) and Y-Z plan (for y2). They are obtained
by the Xline1 and Y line1 values of the TPC track. The latter two parameteres are
used to measure the local angles defined in the equations ( 2.13) and ( 2.14).
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3.7.3 Selection of γ conversions in the RICH2 mirror

Since our concern is to reconstruct the photons that converts in the RICH2 mirror
position, we select them by making a cut on reconstructed conversion point. It was
possible to enhance the extracted photon signal by the ThetaEP cut described in
Section (3.5). It has a powerful support to reduce the background and to improve
the significance.
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Figure 3.13: The Secondary Vertex distributions of the photons candidates. The recon-
structed photons from the unlike sign pairs (e−e+) are in blue and the like sign pairs (e−e−

+ (e+e+) in red. The top two plots correspond to the X coordinates of the Secondary
Vertices distributions before (left) and after (right) the ThetaEP cut function while on
the bottom two plots, the same distributions for the Y coordinates before and after the
ThetaEP cut function.

This can be seen by checking the reconstructed secondary vertices distributions
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in the X,Y and Z axis. It is explicitly verified on the X and Y axis shown in figure
(3.13) after and before the ThetaEP cut. Additionally, more check can be performed
corresponding the projection of the distribution on the X-Y plane illustrated in figure
(3.14). The highly concentrated distribution represents the location of the photon
conversion point in the phase-space.
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Figure 3.14: The distribution of X vs Y position of the reconstructed conversion point.
On top of the homogeneous distribution comming from the RICH2 mirror, the γ-fold
structure from the TPC entrance window is clearly visible.

A similar situation along the Z axis is presented separately, where the most
significantly photons distribution are very clear. This is shown in figure (3.15).
From this one finds that reconstructed photons are concentrated in the RICH2
mirror region. This is expected since the RICH2 mirror is main converter.
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Figure 3.15: The Z direction of the Secondary Vertex distributions of the photon candi-
dates before (left) and after (right) imposing the ThetaEP cut for unlike-sign pairs (blue)
and like-sign pairs (red).

By following the previous steps discussed above, More precise tuning is now
needed and may give further improvement to select the photons at the RICH2M
position. The Secondary Vertex cut (SV) can be comfortably performed at µ ±
2σ. After extensive verification that no photons information was being originated
from other locations, by keeping the SV cut in all the accumulated analysis, the
Secondary Vertex distributions from the contributions of the unlike and like sign
pairs investigated as function of the photon momentum (see figure (3.18)). The used
requirement is a major benefit from the SV cut which has been studied depending
on the momentum of the photons. This study can be explored in figure (3.17).
The location of the extracted photon signal is substantially present at the RICH2
converter and fitted with Gaussian function. This confirms that the used technique
to determine the conversion point of the photons is equivalent to our expectations
where they should be occurring.
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Figure 3.16: The measured Z position of the Secondary Vertex distributions after the
ThetaEP cut function as function of the photon momentum for unlike-sign pairs (blue)
and like-sign pairs (red).
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Figure 3.17: The extracted signal Z position distribution of the photon conversion point
Vs the momentum of the photon fitted with a Gaussian.
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The mean of the Gaussian fit refers to the photon conversion point as function of
their momentum. The stability of the mean values indicates the well reconstructed
photons candidates which will be used next to the neutral pion reconstruction.
The width of the distributions is dominated by the angular resolution of the opposed
charged tracks. A detailed study of the photon conversion point for both the position
and the width as a function of the theta angle is shown in figure (3.18). These values
are used for the secondary vertex cut in the analysis.
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Figure 3.18: The mean (left) and the width (right) of the fitted Secondary vertex dis-
tribution Vs the photon momentum.
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3.8 The π0 reconstruction

This section is dedicated to describe the reconstruction of π0 from γγ decay. The
produced π0 decays into a pair of photons with branching ratio 98.8% making it the
most convenient decay channel for π0 reconstruction.

3.9 The mixing event method

Experimentally we are dealing some times with instable particles which have a very
short life time, or discussing the statistical analysis of data which direct to the
final event analysis, in these cases we are beyond multiple paths that lead from the
detection digitizing to physics information.
During the an ultra-relativistic collision, a pair of electrons/positrons (i.e the same
signs) do not come from the same photon, however they might issued from a
coincidence events. Each electron (positron) combines with positron (electron) of
opposite charge to form one photon. However the extraction of photon signal is
reproduced by using the distribution of electrons and positrons taken from different
event of similar multiplicity.
The obtained photons distributions after subtracting the background are then used
to build the neutral pion mesons distribution. This approach of the subtraction
of combinatorial background is called the mixed event method [88, 89]. The
idea of mixed event method is based on the combination of the uncorrelated
two different photons. The superposition of the two photon pairs from the same
and mix events is what define to us the signal and the combinatorial background [90].

Figure (3.19) shows the principle of the mixed event technique. The applied
track selection is the same for all the recorded events in order to reproduce correctly
the combinatorial background. Each combination for a certain event i between Xi

and Yi is taken into account after passing all the global criteria cuts. The yield will
form the real distributions needed later to extract the signal. This step is repeated
over all the number of events(n).
Another correlation of X and Y particles which can be happened numerically but
it will not be taken into account physically since it is considered as background. All
the combinations Xi and Yi, Yi−1, Yi−2, ...,Yi−n or Yi and Xi, Xi−1, Xi−2, ...,Xi−n

are counted by the mixing between the different events.
Chronologically, after each event, the selected X − Y combinations are stored in an
array.
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Figure 3.19: Principle of operation of the event mixing method.
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3.9.1 Invariant mass analysis

The γγ invariant mass is defined by the 4-momentum absolute value. The energy and
the opening angle of the two photons (zero mass) are the main kinematic variables
to perform the invariant mass analysis. The invariant mass of the two photons
originating from the neutral pion decay is identical to the neutral pion rest mass of
134.9766 MeV/c2 [84]. The reconstruction of π0 is twofold problem. The first one
was the reconstruction of the γ already described. For this analysis only photons
with pt larger than 0.150 GeV/c were used. Then π0’s are found. The invariant
mass of particle pair is expressed by the momentum as .

p12 = pγ1 + pγ2 (3.44)

The invariant mass expression of π0 −→ γγ is found by taking the p =
(p0, p1, p2, p3) = (E, pxpypz) and taking the metric base diag gµν = (1,−1,−1,−1).
The E = p for the photons. This reads:

M2
π0 = 2Eγ1Eγ2(1− cos θ)

= 2|−→pγ1||−→pγ2|(1− cos θ)

=⇒Mπ0 =
√

2|−→pγ1||−→pγ2|(1− cos θ) (3.45)

where θ12 is the opening angle between the two photons.

The Mixing event

Once the ”good” photons are identified, the invariant mass analysis of π0 cannot
be identified uniquely since all possible photon-photon combinations have to be
considered. The procedure of event mixing method is widely used to determine
the combinatorial background. The mixed event is determined by taking all pho-
ton candidates from an event and combining them with the photons from different
events. By this way the mixed event distribution is determined in the case of the
π0 invariant mass.

The Armenteros Podolanski plots

In order to verify if there is any cross decay channels with the π0 peak which can
missidentify the mass, we study the Armenteors-Podolanski plot [91].

The variables of the Armenteors-Podolanski technique are the pTA which is the
projection of one of the two photon momentum (daughters) on the flight direction
of the neutral pion (parent). Considering M as the mother particle mass (π0) which
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Figure 3.20: The Armenteros-Podolanski distribution of qt Vs |α| for the π0 signal for
all the π0 transverse momentum and rapidity range.

decay into two photons. In the center of mass reference frame, we denote all the
kinematic quantities with the index ∗. Thus the momentum of each particle (mother
or daughter) can be presented as:

~p∗i = γ~p∗i + ~βγE∗
i (3.46)

From the momentum conservation in the center of mass reference frame, we have
‖ ~p∗1 ‖=‖ ~p∗2 ‖= p∗. The two vectors ~p∗1 and ~p∗2 refers to the daughters momentum
γ1 and γ2 respectively. One can write the two momentum components in the flight
and transverse direction of the mother particle (π0) as:

{
p∗i‖ = γ.p∗. cos θ∗ + d.βγE∗

i

p∗i⊥ = p∗. sin θ∗
(3.47)

where for i = 1 ⇒ d = 1 and for i = 1 ⇒ d = −1. The angle θ∗ is define as

θ∗ = (~̂p∗, ~p∗1) which is the angle between the mother particle and one of the daughter
particles. By using another parameter α that can be defined by the momentum
projections of the photons on the direction of the π0 meson. This can be simply
expressed as:
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α =
p∗1‖ − p∗2‖
p∗1‖ + p∗2‖

(3.48)

From the equation (3.47), the α value can be rewritten as:

α =
2p∗

βM
. cos θ∗ +

E∗
1 − E∗

2

M
(3.49)

By putting a1 =
2p∗

βM
and a2 =

E∗
1 − E∗

2

M
and taking pTA = p∗1⊥ = p∗1⊥ we obtain:

(
α− a2

a1

)2

+

(
pTA

p∗

)2

= 1 (3.50)

The equation (3.50) means that for π0 moving with β velocity a good reconstruc-
tion of the neutral pion mass should appears as an elliptic concentration in (pTA, α)
plane. This can be seen in figure(3.20). This method reinforces the suppression of
the contamination of different hadrons and distinguish between them. A clear signal
of the neutral pion mass is seen and there is no decay channel which can misidentify
the reconstruction of the π0 in the γγ invariant mass.

The Opening angle cut (OpG1G2)

The opening angle between the two photons has been studied as function of the pair
transverse momentum. This is shown in figure (3.21). An opening cut OpG1G2
between the two reconstructed photons is implemented in order to reduce the com-
binatorial background which are coming from small opening angle photons. The ma-
genta line indicates the implemented cut as function of the neutral pion momenta,
this can be expressed as: OpG1G2 = 0.2 exp(−5pt) + 0.02. where pt represents the
transverse momentum of the γγ pair.

The π0 signal extraction

The combinatorial background is defined as the background level in mass distribu-
tions after imposing all the requirements on the kinematic quantities. Besides the
discussed cuts, more stringent requirements are used to observe the π0 signal. The
combinatorial background depends upon the pT distribution of the reconstructed
photons.
The obtained γγ invariant mass distributions for the photons yielded from the same
event and the mixing event is scanned as function of transverse momentum and
rapidity ranges. This has been checked for 8 pt bins. Each signal templates rep-
resents 0.25(GeV/c). We expand also the study as function of rapidity splitted in
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Figure 3.21: The scatter plot of the π0 transverse momenta vs the opening angle between
the two photons. The left panel indicates all the distributions coming from the same events,
and right panel illustrates the subtracted distributions. The OpG1G2 cut is indicated by
the magenta line in both panels.

three interval, 2.2 ≤ y1 < 2.4, 2.4 ≤ y2 < 2.6 and 2.6 ≤ y3 < 2.7. In all what
follows we will measure the γγ invariant mass as function of these two variables
(pt,y). An additional constraint on the second pt bin 0.25−0.5 GeV/c and the third
pt bin 0.5 − 0.75 GeV/c along all the rapidity intervals have been required. This
cut have been imposed where we require for all the photons opening angles to be
larger than 0.11 rad and 0.08 rad in the transverse momentum intervals 0.25 − 0.5
GeV/c and 0.25− 0.5 Gev/c respectively for the first rapidity bin y0. In the second
and third rapidity bins (y1 and y2) the opening angle between the two photons in
0.25 < pt < 0.5 GeV/c is 0.10 rad and in 0.5 < pt < 0.75 GeV/c is 0.07 rad. A
summary of all these cuts is presented in table 3.2.

All photons that survived the previous cuts were taken in combination with each
other. The resulting γγ mass distributions was used to define the π0 signals. As
it is illustrated in figures (3.22), (3.23), (3.24) the signal is well separated from the
background and the π0 mass is pointed out by the vertical line. The normalized
background in red is below the peak in all the transverse momenta bins and rapid-
ity. In the first pt window the π0 reconstruction efficiency is very low and no signal
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Rapidity range Trans.Mom. (GeV/c) OpAng (γγ) (rad)

y1: 2.2 - 2.4 0.25 < pt < 0.5 ≥ 0.11
y1: 2.2 - 2.4 0.5 < pt < 0.75 ≥ 0.08

y2: 2.4 - 2.6 0.25 < pt < 0.5 ≥ 0.10
y2: 2.4 - 2.6 0.5 < pt < 0.75 ≥ 0.07

y3: 2.6 - 2.7 0.25 < pt < 0.5 ≥ 0.10
y3: 2.6 - 2.7 0.5 < pt < 0.75 ≥ 0.07

Table 3.2: Description of the opening angle cut used as function of rapidity and momen-
tum

is obtained for the recorded statistics.
The scale factor obtained from the ratio (real/mixed) of the invariant mass distri-
bution will be used to normalize the mixed event background and subtract it from
the real event invariant mass distributions.
The normalization factor for each pt and rapidity is obtained by fitting the ratio of
the γγ mass distribution of the real to the mixed events.
The used fit function for this purpose is gaussian function plus a constant. The
constant gives the normalization factor for the mixed event background. The range
of the fit is 0.08− 0.25 GeV/c2 (see figures (3.25), (3.26), (3.27) ).

The distributions of the invariant mass are obtained by the subtraction of the
mixed event distributions from the real event distributions. The γγ invariant mass
spectrum is then investigated as function of the transverse momentum and rapidity.
This can be seen for each template fits for the first rapidity range 2.2− 2.4 in figure
(3.28), for the second rapidity interval 2.4 − 2.6 in figure (3.29) and for the last
rapidity 2.6 − 2.7 in (3.30). The signal is clearly visible in all rapidity bins and
located at the π0 mass mentioned in [84]. In the last rapidity set, the π0 yields are
too small. The presence of these signals validate the used method of the neutral
pion detection. The obtained signals are fitted by a gaussian in the interval 0.05− 1
GeV/c.
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Figure 3.22: The invariant mass distribution for all the photons pairs coming from the
same event (blue histogram) and from the mixing event (red histogram) after normalization
for the rapidity range 2.2 ≤ y < 2.4 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.23: The invariant mass distribution for all the photons pairs coming from the
same event (blue histogram) and from the mixing event (red histogram) after normalization
for the rapidity range 2.4 ≤ y < 2.6 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.24: The invariant mass distribution for all the photons pairs coming from the
same event (blue histogram) and from the mixing event (red histogram) after normalization
for the rapidity range 2.6 ≤ y < 2.7 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.25: The ratio of the same and mixed events γγ mass distributions for the
rapidity range 2.2 ≤ y < 2.4 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.26: The ratio of the same and mixed events γγ mass distributions for the
rapidity range 2.4 ≤ y < 2.6 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.27: The ratio of the same and mixed events γγ mass distributions for the
rapidity range 2.6 ≤ y < 2.7 and 8 pt bins of 0.25 GeV/c width.
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Figure 3.28: The real mass distribution of π0 after subtracting the normalized mixed
event distribution in the range 2.2 < y < 2.4 and in 8 pt bins of 0.25 GeV/c width.
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Figure 3.29: The real mass distribution of π0 after subtracting the normalized mixed
event distribution in the range 2.4 < y < 2.6 and in 8 pt bins of 0.25 GeV/c width.
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Figure 3.30: The real mass distribution of π0 after subtracting the normalized mixed
event distribution in the range 2.6 < y < 2.7 and in 8 pt bins of 0.25 GeV/c width.
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Figure (3.31) shows the γγ invariant mass for the three rapidity ranges and the
sum of them.
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Figure 3.31: The real mass distribution of π0 after subtracting the normalized mixed
event distribution in the three rapidity ranges. In the top, left panel, for 2.2 < y < 2.4,
right panel for 2.4 < y < 2.6. In the bottom, left panel for 2.6 < y < 2.7, right panel for
2.2 < y < 2.7 which corresponds to whole rapidity range taken in this analysis.

The measured peak position and the width for each rapidity range as function
of π0 momentum are illustrated in figure (3.32). The Mean of the Gaussian fit
for the first two rapidities is stable along the transverse momentum, however for
the last range is not stable. This can been seen also in the width. The statistical
uncertainties for the last rapidity is high. This is due to the limited statistics which
is not sufficient to maintain a fit with free parameters.
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Figure 3.32: Left, the measured position of the π0 peak as function of the π0 transverse
momentum in three rapidity bins. Right, the measured width of the π0 peak as a function
of the π0 transverse momentum in three rapidity bins.

As a comparison, the invariant mass distribution of photon pairs for minimum
bias Pb-Pb collisions from the WA98 experiment [92, 93] is illustrated in figure
(3.33). The WA98 photon spectrometer consist of a large area lead-glass detector
array. From the corresponding π0 peak width as function of pt illustrated in figure
(3.34), we can say that our measurements are approximately a factor 2 better. The
improvement is a result of the excellent photon energy resolution obtained with this
method of photon reconstruction. The same method has been used is the STAR
experiment at RICH and similar width (6 MeV/c2) was observed [94].
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as simple as possible, but not simpler

A. Einstein

4
Monte Carlo Simulations

4.1 Introduction

A CERES Monte Carlo simulation is used for numerous purposes in particular in this
work to determine the detector response for photons and π0 reconstructed from γγ
invariant mass analysis. The full Monte Carlo simulation described in this chapter
is used for the efficiency evaluation for the neutral pion reconstruction. The CERES
Monte Carlo simulation consists of two different levels: at the event generator level
(the partons generation) and in the second stage the photons and neutral pions
are reconstructed by using the detector simulation. The generated Raw data by
the Monte Carlo simulations were processed by the same tracking, vertexing, and
filtering programs used for the previous analyzed data. An important aspect of
these programs is that they must be applied with same criteria in both Monte Carlo
method and data in order to be able to compare the Monte Carlo generation and
data. The main Monte Carlo implementations which were used to simulate the
CERES spectrometer response are listed below, each step will be discussed in much
more details within the next sections.

1. The CERES Event Generator (user-input).

2. The CERES Detector simulation with Geant software..

3. The Conversion from Step2 to Step3c.

4. The reconstruction of the final analysis.

89
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4.2 The physics event generator

This step is called also the user-input. A standard physics generator, to gener-
ate the partons in the whole phase-space and impose a certain requirements corre-
sponding to the geometry of the detector. The kinematic Event generator generates
particle spectra where the main input parameters are particle type, the number of
the produced particles per each event and the requested total number in the colli-
sion, the momentum distribution, the rapidity distribution, the detector acceptance
range. The goal is to define some reasonable cuts to maximize the significance of
the results.
To let the π0’s ejectile in the GEANT software (see Section 4.3), the main char-
acteristics of the physical process π0 −→ γγ and those of their decay products are
studied via the TGenPhaseSpace class found in the ROOT package [95]. The in-
put parameteres of the package are: number of decay particles, masses of particles,
betas of decaying particle, total energy in the C.M. minus the total mass, and the
kinematics of the generated particles.
The important kinematical parameters which have to be investigated for the gener-
ated π0 and the decayed photons are:

- The phase-space initial parameters.

- The rapidity.

- The transverse momentum pt.

- Polar and azimuthal angles in the laboratory reference frame.

Owing short mean life time τ = (8.4 ± 0.6) × 10−17s [84] which is typically of
electromagnetic decays, the π0’s decay before getting free from the collision region.
The neutral pions are generated with Boltzmann distribution for the transverse
momentum. The corresponding temperature (the inverse slope) of π0 is 190
MeV/c2, [96]. The rapidity obey a Gaussian distribution with a mean y = 2.95
and width σy = 1.2. [97]. The π0s are generated isotropically in the center of mass
frame, but later the photons which are the decay products are finally boosted using
the betas of the π0 original particle. For the 158 AGeV energies, the beam beta is
2.913 with the rapidity interval [1.5-3.0].

Substantial computations are required to generate high statistics samples for
the studied physical process. For that reason the event generation procedure is per-
formed for many steps with same configuration. In each step, 300 files are generated.
Each output file contain 9900 events and each event have 50 π0. That means in any
single step we have: 300 × 9900× 50 π0. This prescription is the generation stage.
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Figure 4.1: The dependence of the mT spectra inverse slopes T on the particle mass m
at CERN-SPS Pb-Pb collisions.

The second stage consists of filtering the photons with the geometrical acceptance
cut which is 0.135 (rad)< θ(γ) <0.25 (rad). This criteria is chosen to cover the
CERES spectrometer.
The scatter plot in figure (4.2) illustrates the generation and acceptance stages of

the rapidity versus the transverse momentum distribution of the neutral pion. On
the left, before applying the geometrical cut, and on the right side of the figure, after
fulfilling the geometrical acceptance requirement. We see clearly that we have large
acceptance for the bulk of the π0 in 0 < pt < 2 GeV/c and rapidity of y ∈ [2.2−2.7].
The transverse momentum distribution of the neutral pion in figure (4.3).

An additional check is needed and performed to verify the opening angle
between the two photons as function of the π0 transverse momentum. This is
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Figure 4.2: The distribution of the neutral pion rapidity versus the transverse momen-
tum. The left panel represents the generated distribution in the whole phase-space while.
The right panel, shows the accepted distributions where the two photons are within the
CERES spectrometer acceptance.

shown in figure (4.4).

So far, all the kinematic properties of the generated/accepted π0 and of their
decay product, the photons, are known. The 4-momentum vectors of the mother
particles (π0) and the daughters (γγ) are recorded. The full decay/production his-
tory is stored in dat format files. The produced γ’s by the Kinematic Event generator
were used for studies that required larger statistics. The number of the generated
neutral pion used for the complete Monte Carlo simulations is about 7 millions of
π0. A total of 4 TBy is needed to store the MC simulation. An another aspect of
using the Event generator can be noticed. It gives an estimation of an insight of
how we could achieve the neutral pion reconstruction which is decaying into two
photons within the geometrical acceptance.

4.2.1 Expected number of π0 mesons

As mentioned in Chap.2 the CERES experiment recorded 30 million good events
in collisions of heavy nuclei during the running period in the year 2000. Before to
perform this analysis, we have use a quantitative method to explore the expected
number of π0 and (η) yields after the analysis to check the feasibility of such analysis.
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Figure 4.3: The transverse momentum distribution of the neutral pion.

The number of π0 mesons produced per event is approximately about 500 neutral
pion at the CERN-SPS energy of 158 AGeV/c [98] if we take it equal to the number of
π±. Getting the output parameters of the π0 from the kinematic generator described
above, we can recapitulate these complete information in order to offer an estimation
of the π0 expected number.

Nπ0 = BR×500π0×acceptance×Nevent×(conversion probability)2×(single track efficiency)4.
(4.1)

where:

- Nπ0 is the total number of the expected π0’s.

- BR: the branching ratio of π0 −→ γγ (98.8 % [84]).

- The acceptance =
nAccπ0

nGenπ0

. =
495000

3802554
= 0.13

- Nevent: the total number of the recorded events (30.106 events).

- The efficiency = (conversion probability)2× (single track efficiency)4
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Figure 4.4: The γγ opening angle distribution versus the transverse momentum of the
neutral pion. The projection of the opening angle is plotted on the right panel.

Given the low conversion probability (∼ 4%) introducing 50 π0/event does not
distort the underlying event. It means a mean of 4 electrons (4 positrons) in addition
to the 300 charged tracks per event.
If we take the efficiency for detecting a neutral pion ≈ (0.04)2, from the conversion
probability as an approximation, this reads :

Nπ0 = 3.06× 106π0s (4.2)

This number is an upper limit because it assumes that conversions are recon-
structed with (0.9)4 but as e+/e+ have usually very low momentum, thereby the
efficiency will be lower.

In relativistic heavy ion collisions, the analysis performed on the ratios of the
produced hadrons shows that they are well described by a statistical model. The
hadron production is described using thermal models enabling to encounter the yield
particles. In this way, the ratio η/π0 is obtained from the thermal model [99] which
is in very good agreement with the experimental data. It states the particle ratios
as they were measured by several experiments at the SPS in Pb-Pb collisions. In
figure (4.5), the particle ratios of different hadrons are illustrated. In addition to
what has been found in the π0 case, one can anticipate using the η/π0 ratio obtained
from the thermal model and applying the same previous calculation in order to get
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Figure 4.5: The comparison between the Thermal model [99] and the experimental data
particle ratios.

the expected number of the η meson. This means:

Nη = BR×42η×acceptance×Nevent×(conversion probability)2×(single track efficiency)4.
(4.3)

where:

- Nη is the η expected number.

- BR is the branching ratio of η −→ γγ (39 %).

- The acceptance = 5000/116279 = 0.043.

Again taking the same assumption for the efficiency ≈ (0.04)2, from the radiation
length as an approximation, this gives:

Nη = 3.4× 104η (4.4)

We now may compare the π0 measurement and the η measurement which is difficult
due to the smaller production rate and the smaller 2γ decay branching ratio.

4.3 The detector simulation

The complete simulation of the photons from the π0 decays in the CERES ex-
periment is described in this section. The CERES detector setup is implemented
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in the GEANT simulation [100]. The ouput informations of the Event Generator
(user-input) contained in the dat files (see Section 4.2) are propagated through the
CERES detector volume. The GEANT software simulates the passage of the gener-
ated elementary particles (γ’s from the π0 decays) by the Event generator through
the matter. It provides a full data base passage of the standard geometrical shapes
and materials used to model the CERES spectrometer.
All the essential physical interactions of the photons with the detector material are
computed. Every propagated particle is simulated with GEANT independently. At
the final stage the particle trajectory can be traced and thus saved in RAWMC for-
mat files. The digits in the RAWMC files include all energy deposits (hits) recorded
during the particle trajectory during its passage through the individual elements
of the detector. This means each hit is assigned to a track number to where it is
originating from.
The digitization framework of the RAWMC output files is performed to build a
mapping between the location of sensitive detectors within GEANT, and the sub-
sequent front-end electronics functionality. This step is accomplished by using the
CERES Step2 Analyzer.
However, before to proceed the digitization process of the simulation output, a
setup.analyzer file is used to set one of the two options: Clean Monte Carlo (CMC)
or Overlay Monte Carlo (OMC) simulations. The CMC is used basically for fast
simulations of the CERES spectrometer. The CMC option allow us to gain addi-
tional insights into the detector effects in less computing time with low disk space
storage. It allows very flexible runtime configuration once every check have been
checked. The OMC operation is done by overlaying the simulated Monte Carlo
tracks on top of the real raw data event. The association is made accurately only
between the GEANT tracks as an input and the OMC tracks as output.
The output of the Step2 Analyzer during the digitization process are written in
ROOT format files. They are accessible and can be checked at any stage of the
GEANT simulation engine. This ability is an important aspect to ensure that the
Monte Carlo faithfully reproduce the truth detector manifestations. This simula-
tion chain was performed to produce about 7 million π0 events. This task is time
consuming and have to be handled in very large volume of disk space (4 TBy).

4.3.1 The Conversion from Step2 to Step3c

After the Step2 Analyzer simulation chain, the output of this simulation has to
be proceeded through the same reconstruction treatment used in the experimental
data analysis softwares described in Chapter 3 (Step3c). This means that once this
step is reached all the track finding, track fitting operations are applied in the same
way as in the data analysis.
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The Purity

For each reconstructed track, we associated simulated track with the largest common
number of hits. The purity of the reconstructed track, defined as the fraction of hits
having same MC parent among hits attached to the track is calculated. It can be
written for ith track as:

Purity =
NHits(MC, (ithtrack))

NHits(All, (ithtrack))
(4.5)

where NHits(MC, (ithtrack)) represents the number of hits for the ith Monte
Carlo track and NHits(All, (ithtrack)) is the total number of the associated hits of
the ith Monte Carlo track. The distribution of the Purity for reconstructed tracks
is shown in figure (4.6)
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Figure 4.6: The Purity distribution of the reconstructed charged tracks from the assigned
Monte Carlo tracks.

The association of a reconstructed track to a simulated track is successful if the
Purity exceeded 50%. The reconstructed tracks which are not associated with a
simulated tracks are called ghost tracks and they are not taken into account. By
using the Purity condition we are rejecting the ghost tracks from the reconstruction
chain
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Completely reconstructed tracks will be employed to perform the main analysis
of the reconstruction efficiency of the neutral pion analysis.

4.3.2 The reconstructed tracks comparison

The reconstructed tracks which survived after the Purity condition, are compared
to the true values in order to cross check the reconstruction chain provided by the
Overlay Monte Carlo simulations. The phase-space covered by the TPC is shown in
figure (4.7).
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and Geant θ for electrons/positrons versus the reconstructed θ distributions. The black
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the Geant (true) distribution in blue and the reconstructed distribution in red. The bottom
panels indication mentioned before however this case refers to the azimuthal distributions.
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Figure 4.8: Left: distribution of the reconstructed momentum vs the Geant momen-
tum. Right: distribution of the reconstructed momentum (red) and the Geant momentum
(blue).

Figure (4.7) illustrates the polar and the azimuthal angles distributions from the
reconstructed tracks which were determined by the Overlay Monte Carlo technique
(similar the Step3c) and the true tracks which are the output of the Step2 Analyzer.
The polar angles are plotted in the range 0 < θ < 0.3 rad. The structure at
high theta angles are not considered since we cut on 0.135 < θ < 0.25 rad. This
point will be justified in the analysis section. The azimuthal angles distribution
are scanned and plotted in the range −3.15 < φ < 3.15 rad. The structure of the
pad chambers and the 8 spokes of the TPC are clearly visible. A visible sign of
hole is positioned at φ ≈ −3 rad. This behavior refers to a dead region during
data taking. The momentum distribution from the reconstructed tracks compared
to Geant tracks in shown in figure (4.8). The low distribution on the Geant part
reflects the reconstructed energy loss due bremsstrahlung process.
Figure (4.9) shows the number of the TPC fitted hits on the track for Overlay Monte
Carlo simulation is plotted in blue and for data in red. One can notice that the taken
cut for NHits larger than 10, indicated by the black vertical line, applied in both
Overlay Monte Carlo and data is a good estimation.
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Figure 4.9: The Comparison of the TPC fitted hits on the track for Overlay Monte Carlo
simulation plotted in blue and for data in red, the vertical line ta NHits = 10 indicates
the the minimum value for the reconstructed track taken in both cases.

4.4 The unlike/like sign pairs comparison

As mentioned before, the same reconstruction steps are done for all the MC as for
the data. The first step is to reconstruct the photons from the measured electrons
and positrons. For that purpose the opening angle distribution of the e−e+ pairs
and of the like sign pairs is computed (see figure (4.10)). The signature of photon
conversion is clearly seen (a peak at small opening angles). The various selection
criteria imposed on pair tracks (electrons and positions) events is based on those of
data analysis.
The subtracted signal to background distributions is studied in ten momentum bins
0 < p < 10 GeV/c. Figure (4.10) illustrates a shape comparison of photon signatures
(unlike sign - like sign pairs) between the data (in red) and the Overly Monte Carlo
(in blue) distributions, each momenta window represents 1 GeV/c. The comparison
in each momentum bin was made by the normalization of the maximum of the
photon conversion signals in both Overlay Monte Carlo and data. One can see
that there is a tiny difference between the opening angle distributions of MC and
data. For that reason, we smear the MC angles to match the data by the values
(0.5− 0.5× |pe|) mrad for the polar angles and with (2.5− 2.5× |pe|) mrad for the
azimuthal angles.
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Figure 4.10: The Photon signal distribution comparison between the Overlay Monte
Carlo simulations (blue) and data (red). Each momentum window represents 1 GeV/c.
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The obtained opening angles for the smeared values compared to those of
the data are shown in figure (4.10). The photon conversion signatures are well
pronounced in all the momentum bins and became narrower at high momentum.
The Overlay Monte Carlo and data distributions reproduces both the same photon
signal width. At large momentum, the data distributions exhibits an extra contri-
butions at higher opening angle. It should be mentioned at this point this situation
is happening in the region outside the real signal distribution where the photon
conversion signature is well defined and known. Furthermore, this misidentified
background is not seen in the Overlay Monte Carlo where the input particles to
Event Generator are photons within the acceptance range from π0 decays.

However, the presence of the effect would manifest itself by a question which
arises part of the effect and if it has a different origin. It is therefore useful to
look at the charged tracks of electrons and positrons selection criteria mentioned in
Section 3.6. The observed structures in the signal to background distributions for
7 (GeV/c) < p < 10 (GeV/c) are expected to come from of highly ionizing π±. We
optimized the ionization energy loss cuts to reject pions by keeping the upper limit
cut dEdx < 440 and settled on tight cut values of dE/dx > 290+2.log(p) at energy
loss low ionizing regions. This highly ionizing tracks which pass the tightened cut
are illustrated by figure (4.11, right).
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Figure 4.11: The left panel represents the used energy loss of the charged particles
measurement within the TPC, the blue incline line and the upper cut at 440 refers to
the electron/positron selection. The right panel shows the tighter energy loss in brown in
order to cross check the additional structure shown in the photon signal at θ(e−e+) ∼ 7
(mrad) at high momentum.
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Figure 4.12: The Photon signal distribution comparison between the Overlay Monte
Carlo simulations (blue) and data (red) after applying the new dE/dx condition. Each
momentum window represents 1 (GeV/c).
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The left panel of the figure (4.11) represents the considered energy loss area for
the electron/positron selection, and in the right panel, the performed dE/dx check-
cut. Thus, in order for a electron/positron leptons to fulfill the loose requirements,
it must pass only the dE/dx ionization cuts mentioned above. By inspecting figure
(4.12), one can conclude that this approach explicitly minimize the uncertainties
related to the suppression of the charged pions contributions. Consequently, these
little bumps are originating from the charged pions and not from the electrons and
positrons.

4.5 The Photon mapping comparison

The reconstruction procedure of the photons is based on the measured charged
tracks of the electrons and the positrons from the Overlay Monte Carlo simulations.
The reconstruction of final state photons requires a well measured photon candidate
where the combinatorial background is estimated by like sign distributions. The
used criteria for the photon reconstruction are the same of those mentioned already
in Section 3.6.2. One should, however, keep in mind that the photons has to be
within a fiducial volume of 0.135 < θTPC < 0.25 rad and full azimuthal coverage.
The comparison of the reconstructed photons candidates from the Overlay Monte
Carlo method and the analyzed data can be done by the integration method. This
method can be illustrated by figure (4.13). The integral procedure generally con-
sists by calculating the angular distribution integrals of the reconstructed photons
in the Overlay Monte Carlo and in the data, then performing the scaling by using
the obtained ratio of the two integrals. The normalized region in θ is 0.14-0.22 (rad)
and then we use the ratio of the two integrals within this region to scale the polar
and azimuthal MC distributions.
The key test of the Overlay Monte Carlo is its ability to reproduce/describe the
different distributions of the reconstructed photons in the detector at the level of
RICH2 mirror. Although the Overlay Monte Carlo reproduce the photon distribu-
tions and agrees well with the data, a minor problem encountered here is related to
small differences between the photon mapping described by Overlay Monte Carlo
simulations and data. The difference is slightly seen by looking at the angular dis-
tributions comparison provided by the integration method, where in contrast if we
consider the comparison performed by the maximum method. Following these in-
vestigations, this may affect the reconstruction efficiency by making a geometrical
correction factor due to tiny differences between the photon topologies dependence
of θ and φ in the simulation and data.
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Figure 4.13: The comparison of the subtracted angular distributions of the azimuthal
(upper panel) and the polar (bottom panel) distribution in the normalization region 0.14 ≤
θ < 0.22 rad. The MC distributions are plotted in blue and the data distribution are in
red.

4.6 The Secondary Vertex Comparison

The position of the photon decay vertex was reconstructed from opposed charged
tracks detected in TPC and originated from the RICH2 mirror area. Th Z-vertex
positions were determined using the same algorithm as detailed in our previous
study described in Chapter 3. The combinatorial background has been subtracted
from the real photon signal for each momentum bin (shown in figure (4.14)).
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Figure 4.14: The Secondary Vertex distributions of the subtracted signal to background
reconstructed in the Overly Monte Carlo simulations. Each window represents 1 GeV/c
photon momenta.
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Then the next step is performing the Secondary vertex cut in the region
the RICH2 converter, i.e. µ(Sec.V er.) − 2σ(Sec.V er.) < Z < µ(Sec.V er.) +
2σ(Sec.V er.). The obtained Secondary vertex distribution was then fitted with
a Gaussian function. All these distributions have been carefully evaluated firstly
with an appropriate fast Monte Carlo simulations before performing the Overlay
Monte Carlo method. The aim of this step is to cross check the validity of the used
Secondary Vertex algorithm.
The photon vertex position in the Overlay Monte Carlo simulations which fulfilling
the same requirements as in data is presented in figure (4.15).
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Figure 4.15: Left panel, the position of the photon vertex converting to e−e+ for Overly
Monte Carlo. On the right panel, the corresponding width of the Secondary vertex distri-
bution.

The Secondary Vertex distributions from the contributions of the unlike and like
sign pairs as function of the photon momentum provide the precise position and
resolution parameters to define the Secondary Vertex cut. It can be seen that the
photon events of the same momentum and the same Z longitudinal distance of the
photon decay vertex from the RICH2 converter agrees very well in both data (see
figure (3.18)) and Overlay Monte Carlo. As conclusions, the obtained yield photon
measurements in the Overlay Monte Carlo simulations validates our used method
for the Secondary Vertex fit algorithm, described in Section 3.7. The width in data
is larger. In order to evaluate the efficiency the sigma from the MC simulations is
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used in MC and in the corresponding from data.

4.7 The γγ invariant mass distributions

In order to evaluate the reconstruction efficiency for the neutral pion production,
the γγ invariant mass distributions are studied and checked. All the following
invariant mass distributions are based on the same cut criteria as used in the
data analysis. We perform our study as function of transverse momentum in
the range 0 < pt < 2 GeV/c and rapidity splitted in three ranges expressed as:
2.2 < y1 < 2.4, 2.4 < y2 < 2.6 and 2.6 < y3 < 2.7. We have to keep in mind
that we find that signal candidates in the regions: 0.25 < pt < 0.5 GeV/c and
0.5 < pt < 0.75 GeV/c are considerably contaminated by background events along
all the taken rapidity ranges (y1, y2 and y3). This effect have been seen in data and
Overlay Monte Carlo. Therefore a special opening angles between the two photon
candidates is needed. For this purpose we require a tighter conditions as in the data:





y1 and 0.25 < pt < 0.5(GeV/c) =⇒ θ(γγ) ≥ 0.11(rad)

y1 and 0.5 < pt < 0.75(GeV/c) =⇒ θ(γγ) ≥ 0.08(rad)

y2, y3 and 0.25 < pt < 0.5(GeV/c) =⇒ θ(γγ) ≥ 0.1(rad)

y2, y3 and 0.5 < pt < 0.75(GeV/c) =⇒ θ(γγ) ≥ 0.07(rad)

(4.6)

As in our MC the complete history from the e−/e+ to the π0 was not properly
stored, it was impossible to know which two γ′s come from the same π0. Therefore,
the same analysis was done in the data, namely all the γ’s in one event are combined
in pairs. The signal appears on top of the uncorrelated background.
The different subtracted invariant mass distributions obtained under these require-
ments are shown in figures (4.16), (4.17) and (4.18). Principally two studies are
done using the MC results: in one hand π0 yield as function of pair transverse
momentum in order to obtain the efficiency of the π0 reconstruction. In the other
hand, to study the position and width of the π0 peak as function of pt and rapidity
to compare them with the analyzed data. This provides us a measurement of how
good the MC describes the data.
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Figure 4.16: The MC real mass distribution of π0 after subtracting the normalized mixed
event distribution in the range 2.2 < y < 2.4 and in 8 pt bins of 0.25 GeV/c width.
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Figure 4.17: The real mass distribuion of π0 after subtracting the normalized mixed
event distribution in the range 2.4 < y < 2.6 and in 8 pt bins of 0.25 GeV/c width.
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Figure 4.18: The real mass distribuion of π0 after subtracting the normalized mixed
event distribution in the range 2.6 < y < 2.7 and in 8 pt bins of 0.25 GeV/c width.
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We can summarize these investigation by looking to the mean and the width of
the reconstructed γγ mass versus the transverse momentum shown in figure (4.19).
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Figure 4.19: The position of π0 signal obtained from the γγ invariant mass distributions
in the Overlay Monte Carlo compared to the values obtained in data as function of the π0

transverse momentum and rapidity. The top panel represents the first rapidity range y1:
2.2-2.4, the middle panel is for the second rapidity range y2: 2.4-2.6, and the last panel is
for the last rapidity range y3: 2.6-2.7. The MC distributions are plotted in blue and data
in red

.
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The mean of real invariant mass distribution of the Overlay Monte Carlo and
data agrees very well for the first two rapidity intervals y1 and y2, however in the
third rapidity interval, due to low statistics and 0.1 rapidity step the invariant mass
distribution is slightly different at high momentum. This can inspected also when
looking to the width distributions illustrated in figure (4.20).
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Figure 4.20: The width of π0 signal obtained from the γγ invariant mass distributions in
the Overlay Monte Carlo compared to the values obtained in data as function of transverse
momentum and rapidity. The top panel represents the first rapidity range y1: 2.2-2.4, the
middle panel is for the second rapidity range y2: 2.4-2.6, and the last panel is for the last
rapidity range y3: 2.6-2.7. The MC distribution are plotted in blue and data in red.



114 CHAPTER 4. MONTE CARLO SIMULATIONS

4.8 Acceptance and efficiency evaluation

The π0 yields as function of the pt and rapidity obtained in the invariant mass
analysis (see Section 3.8) do not reflect directly the neutral pion production.
All the measured quantities must be corrected by certain factors which take
into account the geometrical acceptance and efficiency of the CERES detector.
Therefore, determining the detector acceptance and the reconstructed efficiency for
the selection criteria used in this analysis is essential to obtain quantitative and
properly calculated π0 production yields. The acceptance is the phase-space region
covered by the TPC detector. It is related to the detector geometry. However, the
efficiency evaluation depends on the reconstruction efficiency of tracks determined
by the reconstruction chain listed in Section 3.1.
The multiplicity in the full phase-space is generated within the Boltzmann distri-
bution for the transverse momentum and a Gaussian distribution for the rapidity
distribution with a mean y = 2.95. The transverse momentum and rapidity
distributions were studied in eight pt bins and in three rapidity intervals. The two
first equidistant rapidity bins are 2.2 < y1 < 2.4 and 2.4 < y2 < 2.6, and the last
rapidity bin is 2.6 < y3 < 2.7. In all what follows, we will keep this phase-space
division as function of transverse momentum and rapidity.

As a first exploratory study, the acceptance calculation of the generated neutral
pions which decay into two photons requires a number of conditions including the
geometry of detector. These imposed requirements were explained in much more
details within the physics Event generator Section (See Section 4.2). The acceptance
can be simply define by the ratio between the number of found particles nAcc inside a
fiducial geometrical zone which define the detector limit and the number of generated
particles nGen in the full phase-space 4π. It can be expressed as:

εacc(pt, y) =
nAcc(pt, y)

nGen(pt, y)
(4.7)

Under these circumstances the π0 acceptance is illustrated in figure (4.21). The
π0 acceptance of the first two rapidity intervals y1 in red squares, y2 in blue circles
and y3 in light blue triangles. The acceptance is low at lower transverse momentum
regions for all the rapidity bins and starts to increase at high momentum. The
acceptance of first two rapidity intervals is large (approximately by a factor 2) in
comparison with the last rapidity interval.

For more reliable approach, it was important to ensure, as far as possible, that
the Monte Carlo simulation reproduces the experimental data correctly. This cross
check is needed for the reconstruction efficiency evaluation by using the complete
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Figure 4.21: The acceptance of the neutral pion in the CERES experiment as function
of rapidity and transverse momentum. The red squares are for 2.2< y2.4, the blue circles
for 2.4< y2.6 and the light blue triangles refers to the last rapidity range 2.6< y2.7.

Overlay Monte Carlo simulation information.
The reconstruction efficiency can be defined as the ratio of the integrated recon-
structed neutral pion yields by the simulated neutral pions which theirs γ’s from
the decay cross the entire volume of the detector. It can be defined as:

εrec.eff =
nRec

nAcc
(4.8)

where the numerator (nRec) was explained and obtained from the reconstruction
part of the Overlay Monte Carlo which is similar to the experimental data analy-
sis, and the denominator (nAcc) indicates the number of the neutral pions passed
through the detector simulation described by the GEANT software within the accep-
tance. The evaluated reconstruction efficiency for the three different rapidity bins
indicated previously is shown in figure (4.22). It includes the conversion probability
for each photon.

The equations (4.7) and (4.8) provide us the geometrical acceptance and the
reconstructed efficiency. They are used to determine directly the correction factor.
The total or the physical efficiency is then defined as the probability of neutral pion
simulated within a geometrical acceptance and produced during 158 AGeV/c Pb-Au
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Figure 4.22: Reconstruction efficiency distributions versus the π0 transverse momentum
studied for different rapidity bins.

collisions at 7% centrality in the CERES spectrometer. Consequently, the physical
efficiency of the simulated π0s which cover such available phase-space is then given
by the product εacc.εrec. This factor will be used later to correct the production rate
of the measured neutral pions obtained from the experimental data analysis. One
have to keep in mind that in the low momentum regions, the generation of a large
multiplicity is needed in the Overlay Monte Carlo simulations due to the strong
dependence of the π0 detection efficiency with the transverse momentum.



It is in the admission of ignorance and
the admission of uncertainty that there is a
hope for the continuous motion of human
beings in some direction that doesn’t get
confined, permanently blocked, as it has
so many times before in various periods
in the history of man.

Richard P. Feynman 5
Results

The results of the measured neutral pion presented in this Chapter have been ob-
tained from an analysis of the data taken in 158 AGeV/c Pb-Au collisions for the
most central collisions (7%). They are obtained using the experimental analysis
method explained previously. The correction factor εacc × εrec ×BR is used to cor-
rect the integrated invariant mass distributions. The π0 signals which have been
studied as function of transverse momentum and rapidity are used to obtain the
transverse momentum spectra of the neutral pion. A followed comparative study of
our measurements with another experimental results as well as theoretical calcula-
tions is of great interest.

5.1 The total π0 yields

The invariant mass distributions for the neutral pion were studied differentially as
functions of transverse momentum and rapidity. The physical signals are presented
in figures (3.28), (3.29) and (3.30) of the Chapter 3. The analysis of the π0 mea-
surement was carried out for 28 · 106 events. The phase-space with the production
strategy was divided in 8 pt bins and in three rapidity bins y1, y2 and y3. It has
been shown that measurements of the ratio of the γγ invariant mass for the same
event to the one in mixed events is used to determine the normalization factor of the
combinatorial background. The transverse momentum extends within the interval
0.25 GeV/c < pt <2 GeV/c and equidistant rapidities y1 and y2 and in third bin y3.
The yield was calculated by integrating the invariant mass distribution of the two
photons in the obtained signal region defined as µ± 2σ. The uncorrected yields for

117



118 CHAPTER 5. RESULTS

each y bins are illustrated in the figure (5.1).
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Figure 5.1: The uncorrected neutral pion yields as function of transverse momentum
and rapidity.

The errors shown on the histograms are the statistical errors. We integrate the
π0 yields over all pt interval in each rapidity bin. The performed method of the
yield extraction from the invariant mass distributions and the fits works very well
in all pt and rapidity bins with sufficient statistics, except in the first pt bin where
we do not measure the neutral pions, and in y3 where the statistics is relatively low.
Hence according to these trends, one can see clearly that the yields in y3 range are
poor. In order to investigate this effect, the integrated π0 yields in each rapidity
bin are presented in table 5.1.
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Rapidity range Number of π0

y1 : 2.2− 2.4 41493
y2 : 2.4− 2.6 45070
y3 : 2.6− 2.7 4200

Table 5.1: Total number of π0 measured in each rapidity bin.

5.2 The Corrected Neutral Pion spectra

The raw yield has to be corrected, and the results depend strongly on the factors
which were calculated in Section 4.8. They must then be corrected for the efficiency
and the acceptance of the detector as well as for the branching ratio of π0 to two
photons of 98%. We will now give a short general description of the emission of
neutral pion meson which is usually conducted in a two dimensions: the rapidity
and transverse momentum (mass). Complementary to the goal observables for a
produced particle defined with it momentum and energy, there are single particle
observables of great importance like the pt and the differential cross section of the
production mechanism. The particle production can be expressed as in the phase
space as:

d3σ

d3p
=

d3σ

ptdptdθdpz

(5.1)

Where the θ is the emission angle of the particle in request (π0 meson). Thus
this can be re-written by considering the symmetry in the full phase space as:

d2σ

ptdptdpz

=

∫ 2π

0

d3σ

ptdptdθdpz

dθ (5.2)

= 2π
d3σ

ptdptdθdpz

(5.3)

Furthermore, one can conclude from the fact that dy = dpz/E, the following
relation:

d3σ

d3p
∝ d2N

2πptdptdpz

(5.4)
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Thus the Lorentz-invariant differential cross section can be linked to the particle
production as:

E
d2σ

d3p
∝ d2N

2πptdptdy
(5.5)

In addition to the efficiency and acceptance correction factors, the number of the
analyzed events and the branching ratio of the π0 0.988±0.032% have to be included
in the production rate d2N/2πptdptdy. The fully corrected transverse momentum
spectra is shown in figure (5.2).
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Figure 5.2: The corrected neutral pion transverse momentum spectra, the error bars are
only statistical errors. Systematic errors are drawn as boxes.
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Rapidity range T (MeV/c) dN/dy
y1 : 2.2− 2.4 204±6 (stat) ± 4 (sys) 215 ± 17 (stat) ± 12 (sys)
y2 : 2.4− 2.6 205±5 (stat) ± 5 (sys) 210 ± 15 (stat) ± 20 (sys)

Table 5.2: The measured inverse slope and the rapidity density in each rapidity range.

The π0 transverse momentum in studied in the rapidity ranges and fitted with
the function:

1

2π

d2N

ptdptdy
=

1

2π

dN/dy

T.(T +m0)
.exp

(
−

√
m2

0 + p2
t −m0

T

)
(5.6)

Where A = dN/dy, m0 = 0.1349766 GeV/c2 is the neutral pion mass in the rest
frame and T is the inverse slope which corresponds to the temperature parameter.
Each transverse momenta spectra is fitted with the function indicated in the equation
(5.6) and the corresponding temperature and dN/dy values are obtained. The T
and dN/dy parameters of the fit function refers to the inverse slope and the rapidity
density, respectively. The corresponding measured parameters of the fit function in
each rapidity bin are listed in table 5.2.

5.3 The systematic uncertainties

The previous last two chapters have enable us to understand how to determine the
π0 transverse momentum corrected for efficiency and acceptance. The method used
to extract the π0 signal should have the statistical and systematic errors. The sta-
tistical errors depends on the neutral pion signal extracted in the γγ invariant mass
distributions and the correction of the π0 spectra using the Monte Carlo simula-
tions. In addition to these two errors, we must add the systematic errors related
to the different methods and cuts used in every step in the analysis and the Monte
Carlo simulations. The estimation of the systematic errors of the final neutral pion
measurements results mainly from uncertainties in the determination of the photon
reconstruction, peak extraction, applied pair cuts and knowledge of the material.
This step have been investigated with extensive studies by varying the polar angle
cut of the reconstructed photons and then cross check the correct neutral pion trans-
verse momentum spectra. The evaluation of the systematic errors are calculated by
fitting the subtracted background of the γγ invariant mass distributions with dif-
ferent fit functions and by varying the two photon opening angle as function of pt.
These calculation steps are listed as follow:

- In our standard analysis we fit the γγ invariant mass distributions in different
pt and rapidity bins with gaussian function, then evaluating the π0 yields by
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integrating the γγ invariant mass distributions in the range µ±2σ. This calculation
is applied in all the next steps.

- Fitting the γγ invariant mass distributions in the pt range and rapidity bins
mentioned in the first point with gaussian function and polynomial of the first order,
then performing the integration of the π0 signal.

- In this step we use different cut on the opening angle between the two photons
mainly in the second pt bin where we have required 0.10rad and in the third pt bin
equal to 0.07rad in the three rapidity regions (see table 3.2, for the definition of
the standard cut). The γγ invariant mass distributions are then fitted by gaussian
function.

- We use a gaussian function and a polynomial of the first order to fit the γγ
distributions which results from the previous cut set.

- A global systematic uncertainty that will change the efficiency is coming from
the missing material. To the best of our knowledge only the spokes holding the
RICH2 mirror are missing in the Geant simulation. Our best estimation for this
correction is a factor 1.05. This value is obtained from using the RICH2M volume,
the volume of the spokes and the corresponding radiation length of each volume.
The final systematic errors on each point for the evaluation of the yields depending
on the different fit functions and the opening angle cuts is presented in table 5.3.

5.4 Comparison to the CERES negative hadrons

(h-)

The corrected π0 transverse momentum spectra can be compared firstly to the neg-
ative hadrons measured also by the CERES experiment in the same data set [101]
for the rapidity from 2 to 2.6. The negative hadrons are composed by π−, K−, and
P , π− being the dominant contribution. The K−/π− ratio obtained in the thermal
model [36] is 0.129 and the NA49 measured value is 0.095± 0.001 [98]. On the other
hand, π0/π− ratio is approximately 1.07 due to the larger number of decays into
π0. Therefore, part of the extra contribution from the K− cancels out, and only
a difference of about 3 to 6 % is expected. The comparison is presented on figure
(5.3). The π0 yield is systematically larger than the h−.

5.5 Comparison with UrQMD and PHSD models

The soft interactions are not described within the perturbative quantum chromody-
namics (pQCD) because of the small Q2 scale, whereas the pQCD is applicable to
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y pt (GeV/c) Material Cuts Fit Total
2.2-2.4 0.25-0.5 +21.77

−0.41 % +0.43
−11.87%

0
−3.8%

+21.77
−12.47%

2.4-2.6 0.25-0.5 +4.27
−8.24%

+20.46
−0

0
−2.04

+20.9
−8.48%

2.2-2.4 0.5-0.75 +6.32
−0. % +7.47

−1.35%
0
−0.%

+9.73
−1.35%

2.4-2.6 0.5-0.75 +17.24
−0. % 0

−7.04
0
−1.42

+17.24
−7.18 %

2.2-2.4 0.75-1. +2.14
−0. % +2.65

−0.68%
0
−2.18%

+3.4
−2.28%

2.4-2.6 0.75-1. +9.27
−0.04%

+1.20
0

0
−6.5

+9.34
−6.5 %

2.2-2.4 1-1.25 +4.3
−5.06%

+2.72
0 % 0

−3.79%
+5.8
−6.32%

2.4-2.6 1-1.25 +0.3
−6.05%

+3.12
0

0
−3.01

+3.13
−6.75%

2.2-2.4 1.25-1.5 +0.63
−10.20%

0
−3.03%

0
−3.36%

+0.63
−11.15%

2.4-2.6 1.25-1.5 +21.70
−0.01 % 0

−4.14
4.17
0

+22.09
−4.14 %

2.2-2.4 1.5-1.75 +2.04
−4.92%

+3.82
0 % 0

−5.99%
+4.3
−7.75%

2.4-2.6 1.5-1.75 0
−23.60%

2.28
0

0.17
0

+2.82
−23.60%

2.2-2.4 1.75-2 +3.13
−11.12%

0
−0.006%

0
−6.61%

+3.13
−12.71%

2.4-2.6 1.75-2 0
−45.76%

0
−1.09

1.17
0

+1.17
−45.77%

Table 5.3: The different contributions to the estimated systematic uncertainties.
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Figure 5.3: The corrected transverse momentum spectra compared to the CERES neg-
ative hadrons

describe the hard process with the large Q2 four-momentum transfer. Consequently,
the phenomenological models are needed to describe the collisions which are mainly
happening at low transverse momentum. We will start by giving a brief description
about the theoretical models that we use for the our comparison with our measured
neutral pion.
Hadronic and nuclear collisions models have been developed to study macroscopic
(statistical and hydrodynamical) systems and microscopic (string, transport, etc)
systems. The microscopic models describe the subsequent individual hadron-hadron
collisions such as the UrQMD model. The Ultra-relativistic Quantum Molecular Dy-
namic model (UrQMD) [102, 103] is microscopic transport model based on phase-
space description of nuclear reactions. The UrQMD applies especially at high-energy
collisions such as those produced in the energy range SIS up to AGS, SPS and RHIC.
It therefore simulates the color strings formation and hadronic interactions at low
and intermediate energies.
The comparison between experimental observations and the UrQMD predictions can
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bring many information on the dynamics of the collision. The UrQMD model in-
cludes the color strings formation and their subsequent fragmentation into hadrons.
The model is built upon a Monte-Carlo solution where a large set of partial dif-
ferential equations for time evolution phase space densities of particle species and
where each the nucleon is represented by Gaussian coherent state in the phase space.
UrQMD initializes the projectile and target nuclei. We need just to set the two nu-
clei, beam energy and impact parameter and then we receive a list with all particles
for each reaction. The total running time for first check is on the order of a couple
of hours for some hundred events. The creation of transverse momentum spectra
is then straight forward step, where we ask only for the PDG particle code for the
particle identification.
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Figure 5.4: The left panel illustrates the UrQMD transport model charged particle
multiplicity for different centralities. The light blue line represents the 20 % centrality
events, the 7 % are represented by the magenta line and the weighted centrality in green
which is the sum of 7% centrality events with factor 0.91 and the 20 % with factor 0.09.
The neutral pion transverse spectra for different UrQMD centralities are shown on the
right panel.

As starting point we have to check the TPC and UrQMD charged particle mul-
tiplicities, before comparing the neutral pion transverse momentum spectra to pre-
dictions of the UrQMD transport model. For that purpose, we produce two set of
events in the UrQMD model to describe Pb-Au collisions at

√
s = 17.2 GeV/c. The
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first set is for the 7% most central collisions, with the impact parameter 0 < b < 3.9
fm.
To get good correspondence between the charged particle multiplicity distributions
in UrQMD and in the data, the UrQMD multiplicity have been scaled up by a fac-
tor of 1.1 such that the two distributions agree. The second set consists of events
created with a larger impact parameter 0 < b < 6.6 fm, i.e. 20% centrality. The
UrQMD π0 distributions are obtained in the rapidity range 2.2 < y < 2.7. The total
UrQMD distribution is then the sum of the two different UrQMD distributions with
the proper factors for each of them as given from the amount of data taken for each
of the two centralities (see Section 3.1). The figure (5.4) presents the two different
set of the produced events together the weighted average. In the left panel, the
UrQMD multiplicities are shown and in the right panel, the neutral pion transverse
momentum spectra with the UrQMD transport model for the different centralities
is indicated. The comparison of the UrQMD model and the TPC multiplicities is
shown in figure (5.5)
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Figure 5.5: The comparison of the UrQMD transport model multiplicity in green and
the TPC multiplicity in blue.

The second microscopic covariant transport model that will be compared to
our results is the Parton-Hadron-String-Dynamics (PHSD) model [104, 105]. The
relativistic hadronic transport approach is formulated to provide a dynamical de-
scription of parton-parton interactions (quark-gluon interaction). The concept of
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this model is also based essentially on hadronic reactions, formation and decay of
baryonic and mesonic resonances. The degrees of freedom are dynamical quarks, an-
tiquarks, and gluons (q, q, g). The hadronic part is equivalent to conventional HSD
approach [106]. The partonic part is based on DQPM [107, 108] where the following
elastic and inelastic interaction are included qq ↔ qq, qq ↔ qq, gg ↔ gg, gg ↔ g,
and qq ↔ g. The PHSD results for the neutral pion spectra are for Pb-Pb collisions
with 7% centrality in the rapidity bins 2.2-2.4, 2.4-2.6 and 2.2-2.6 [109].
The neutral pion transverse momentum spectra is compared to UrQMD and PHSD
predictions. This is shown in figure (5.6). Both models show a different slope com-
pared to the data.
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Figure 5.6: The corrected transverse momentum spectra compared to the UrQMD and
PHSD phenomenological models.
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5.6 Comparison with results from other SPS ex-

periments

Before to compare our results with other experiments, the different measurement
conditions have to be checked. Our results are compared with other SPS experi-
ments, mainly the WA98 and NA49 experiments, which were performed at the same
beam energy. The neutral pion measured by the WA98 experiment in Pb-Pb at
158 GeV/c are reconstructed using the decay channel π0 −→ γγ within the pseudo-
rapidity region 2.3 < η < 3.0 for the centrality selection σ/σgeo <6.8 % [93]. Figure
(5.7) shows the comparison to neutral pions from the WA98 experiment and the
negative pions from NA49 experiment.
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Figure 5.7: Comparison of the neutral pions transverse momentum presented in this
work with the neutral pions measured by WA98 experiment (yellow circles) and negative
pion from the NA49 experiment (light blue circles).
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This comparison is done with π− measurements from the NA49 experiment. The
negative pions were produced at 0 < y < 0.2 midrapidity [98]. One can scale the π−

from the NA49 experiment to our measured neutral pions by using the ratio π−/π0

from the thermal model [36]. is shown in figure .
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In science one tries to tell
people, in such a way as to be
understood by everyone, something
that no one ever knew before.
But in poetry, it’s the exact opposite. .

Paul Dirac

6
Conclusions and Outlook

In this Thesis work, the neural pions via theirs decay channel π0 −→ γγ in 158
AGeV/c Pb-Au collisions have been measured. The neutral pion decays with 98.8
% probability within a fast life time scale. This physical process making the princi-
pal source of photons which convert into e+e−.
A method to measure photons that convert shortly before the TPC via the measure-
ment of e+e− pairs in the TPC has been developed where the specific energy loss
(dE/dx) information for each track provided by the CERES TPC was employed to
identify the electron pairs. The main physics characteristic of the photon conver-
sion, namely, the small opening angle between the e+ and the e− is used in order
to identify photons. For that, a detailed study of the opening angle of the e+-e−

pairs as function of momentum was performed to obtain the cut value. To select
the photons that convert (shortly) before the TPC, mainly in the RICH2 mirror, we
have developed a technique to reconstruct the Secondary vertices. By studying the
Secondary vertex Z-position distributions as function of the momentum and the po-
lar angle of the photon, we have defined a new cut to select only the photons which
convert in the RICH2 mirror area. A good position resolution on the Secondary
vertices and identification has been obtained.
We have identified the neutral pion mesons via the reconstruction of the invariant
mass of all the photons combinations. All the photons which will not participate into
the π0 signal are then taken as combinatorial background that is calculated by the
mixing event technique. To optimize the significance an opening angle cut between
the two photons as function of the transverse momentum of the π0 was implemented.
However in order to suppress a part to the pronounced combinatorial background
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at small transverse momentum regions, a tighter opening angle between the photon
pairs in that phase space region was needed to improve the π0 signal. A precise de-
termination of electron/positron four-momentum, leads to a precise measurements
of the photon momenta. A typical width of the π0 peak of about 5 MeV/c2 to 10
MeV/c2 is obtained with this method compared to 15 MeV/c2 obtained in the WA98
experiment based on a lead glass calorimeter.
The phase space of the data analysis was divided in the rapidity range 2.2 < y < 2.7
and in 8 pt bins, the number of π0 as function of pt for three rapidity intervals has
been calculated by integrating the background subtracted invariant mass distribu-
tions of the photons pairs.
We have seen that the shapes of the neutral pion distributions are well reproduced in
both cases the Monte Carlo simulations and in the data. The π0 yields for the first
two rapidity regions were larger than the last rapidity bin. The neutral pion yields
were then corrected for the reconstructed efficiency and the geometrical acceptance
factors. The main source of systematic error in this analysis was encountered mainly
from uncertainties in the good mapping determination of the photon reconstruction
in the Monte Carlo and the data. An other important source of the systematic errors
comes from the knowledge of the reconstructed efficiency at low transverse momen-
tum. As the e+ and e− from the converted photon are characterized by a very low
pt and, the efficiency of the standard tracking drops rapidity below momenta of 0.6
GeV/c, small difference between efficiency of data and MC will have an influence
on the final results. In this pt cut of 0.150 GeV/c on the photons has been used.
The obtained results were compared to two theoretical models (UrQMD and PHSD),
and to experimental measurements from the CERES, WA98 and NA49 experiments.
The measured rapidity density for the first rapidity range dN/dy = 215 ± 17(sta)
and the corresponding inverse slope T = 204 ± 6(stat) ± 4(sys), int the second
rapidity we measure dN/dy = 210 ± 15(stat) ± 20(sys)and the inverse slope value
T = 205 ± 5(stat) ± 5(sys). The WA98 measurements have a 20% pt independent
systematic uncertainty for the neutral pion spectrum in central Pb+Pb collisions.
Our results are systematically larger by approximately a factor 1.7 compared to
WA98 results and by factor 1.6 with NA49 measurements. This difference is beyond
the systematic errors quoted by the experiments.
The presented analysis method in this Thesis work can be used in the ALICE ex-
periment which will start seeing first collisions in this year. The key detector in
the central barrel of ALICE is also a TPC. We can simulate π0 and η decays in
the ALICE framework. The direct photons are one of the QGP signal, they are
very difficult to measure experimentally due to the large background from π0 and η
meson decays. To accomplish this task one have to know the π0 and η spectra with
very high precision.
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