
Dissertation

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

presented by
Dipl.-Phys. Daniel Brüderle

born in Offenburg, Germany

Date of oral examination: July 8, 2009

Neuroscientific Modeling

with a Mixed-Signal VLSI Hardware System

Referees: Prof. Dr. Karlheinz Meier

Prof. Dr. Alain Destexhe

Abstract

Neuroscientific Modeling with a Mixed-Signal VLSI Hardware System

Modeling networks of spiking neurons is a common scientific method that helps to understand how
biological neural systems represent, process and store information. But the simulation of large-scale
models on machines based on the Turing paradigm is subject to performance limitations, since it
suffers from an intrinsic discrepancy to the massive parallelism of neural processing in the brain.
Following an alternative approach, neuromorphic engineering implements the structure and function
of biological neural systems in analog or analog-digital VLSI devices. Neuron and synapse circuits
represent physical models that evolve in parallel and in continuous time. Therefore, neuromorphic
systems can overcome limitations of pure software approaches in terms of speed and scalability. Re-
cent developments aim at the realization of large-scale, massively accelerated and highly configurable
neuromorphic architectures. This thesis presents a novel methodological framework that renders pos-
sible the beneficial utilization of such devices as neuroscientific modeling tools. In a comprehensive
study, it describes, tests and characterizes an existing prototype in detail. It presents policies for the
biological interpretation of the hardware output and techniques for the calibration of the chip. The
thesis introduces a dedicated software framework that implements these methods and integrates the
hardware interface into a simulator-independent modeling language, which is also supported by var-
ious established software simulators. This allows to port experiment descriptions between hardware
and software simulators, to compare generated output data and consequently to verify the hardware
model. The functionality of the translation methods, the calibration techniques and the verification
framework are shown in various experiments both on the single cell and on the network level.

Neurowissenschafliches Modellieren mit einer Analog-Digitalen VLSI Hardware

Die Modellierung pulsgekoppelter neuronaler Netzwerke ist eine übliche wissenschaftliche Methode
um die Kodierung, die Verarbeitung und die Speicherung von Information in biologischen neu-
ronalen Systemen zu verstehen. Bei der Simulation großskaliger Modelle auf Computern, die nach
dem Turingprinzip arbeiten, ergeben sich jedoch Performanzeinbußen aufgrund der Diskrepanz zur
intrinsisch hochparallelen Verarbeitungsweise im Gehirn. Einen alternativen Ansatz dazu stellen
neuromorphe Hardwaresysteme dar, die die Struktur und Funktion biologischer neuronaler Sys-
teme in analoger oder gemischt analog-digitaler hochintegrierter Schaltungstechnik emulieren. Die
Neuronen- und Synapsenschaltungen sind dabei physikalische Modelle, die sich parallel und zeitlich
kontinuierlich entwickeln. Daher sind neuromorphe Systeme in der Lage, die Geschwindigkeits-
und Skalierungsbeschränkungen reiner Softwarelösungen zu überwinden. Derzeit werden großskalige,
massive beschleunigte und hoch konfigurierbare neuromorphe Architekturen entwickelt. Diese Dok-
torarbeit präsentiert ein neuartiges methodisches Konzept, das die Verwendung solcher Systeme
für neurowissenschaftliches Modellieren ermöglicht. Ein bereits verfügbarer Prototyp wird detail-
liert beschrieben und umfassend getestet. Es werden Techniken eingeführt, die es erlauben, die
Ausgabe der Hardware biologisch zu interpretieren und den Chip zu kalibrieren. Software, die im
Rahmen dieser Arbeit vorgestellt wird, implementiert diese Methoden. Sie wurde in eine simulator-
unabhängige Modellierungssprache eingebettet, die auch von etablierten Software-Simulatoren unter-
stützt wird. Dadurch können Experimentbeschreibungen zwischen Hardware und Software-Simulatoren
ausgetauscht, erzeugte Ergebnisdaten verglichen und damit auch das Hardwaremodell verifiziert wer-
den. Es werden Experimente an einzelnen Neuronen und ganzen Netzwerken präsentiert, die die Funk-
tionalität der Übersetzungs- und Kalibrierungsmethoden sowie des Verifikationsprinzips bestätigen.

II

Contents

Introduction 1

1 Neuroscience and Neuromorphic Engineering 7

1.1 The World in the Mind . 7
1.2 Modern Neuroscience – Methods and Models 8

1.2.1 Studying the Brain . 8
1.2.2 Insights through Modeling . 11
1.2.3 Software Simulators vs. Neuromorphic Hardware 11
1.2.4 Requirements for the Establishment of Neuromorphic Modeling 13

1.3 Utilized Neuroscientific Concepts . 14
1.3.1 High-Conductance States . 14
1.3.2 Models of Synapse Response Dynamics 15
1.3.3 Synaptic Learning . 16

1.4 The FACETS Research Project . 17

2 Neuromorphic Substrate 19

2.1 Chip-Based Neural Network Model . 19
2.1.1 Technology and Dimensions . 19
2.1.2 Implemented Model . 20
2.1.3 Synaptic Plasticity . 25
2.1.4 Configurability, Ranges and Precision 27
2.1.5 Stack of Hardware Communication Layers 31

2.2 Wafer-Scale Neural Network Model . 34
2.2.1 Technology and Dimensions . 35
2.2.2 Implemented Model . 35
2.2.3 Configurability of the System . 37
2.2.4 Stack of Hardware Communication Layers 38

3 Software and Techniques 41

3.1 Operation Paradigms . 41
3.1.1 Intended Scenarios of Usage . 42
3.1.2 Existing Hardware Interfaces . 43
3.1.3 Back-End Agnostic Description and Analysis 44
3.1.4 Reference Software Simulators . 48
3.1.5 Neuron and Synapse Model Mapping 49
3.1.6 Network Topology Mapping . 53

3.2 Software Architecture . 57
3.2.1 Utilized Technologies . 57
3.2.2 Software Layer Stack . 59
3.2.3 High-Level Software Tools . 64

III

3.2.4 Management of Multiple Users and Systems 66

3.2.5 Analog Unit Test Framework . 67

3.2.6 3D Visualization of Network Mapping 68

4 Gaining Control of Chip Functionality and Imperfections 73

4.1 Methods for Indirect Access . 73

4.1.1 Spike-Triggered Averaging on Neuromorphic Hardware 74

4.1.2 High-Conductance State Test . 76

4.1.3 Long-Term Plasticity . 86

4.1.4 Membrane Time Constants . 88

4.2 Process-Inherent Imperfections . 91

4.2.1 Hardware Production . 91

4.2.2 Electronic Noise . 92

4.3 Prototype-Specific Malfunctions and Design-Related Interferences 96

4.3.1 Spike Recording Deadlocks . 96

4.3.2 Firing Threshold vs. Reset Potential 99

4.3.3 Parasitic Resting Potential Offsets . 102

4.3.4 Synapse Driver Efficacies and Time Constants 104

4.3.5 Dis-Proportionality of Intrinsic Time Constants 109

4.3.6 Multi-Spikes . 110

4.3.7 Limited Spike Input and Output Bandwidth 110

4.3.8 Crosstalk of Digital Activity . 111

4.3.9 Clock Problems . 112

4.3.10 Insufficient Parameter Range for Synaptic Facilitation and Depression 113

4.3.11 STDP Control Problems . 113

4.3.12 Spontaneous Ghost Events . 114

5 Establishing Biologically Realistic Regimes 115

5.1 Handling of Chip Imperfections . 115

5.1.1 Releasing Recording Deadlocks . 115

5.1.2 Clamping Synapse Driver Base Lines 116

5.1.3 Avoiding Time Bin Losses . 116

5.1.4 Providing Sufficiently Low Reference Voltages 117

5.1.5 Achieving Sufficient Parameter Ranges 117

5.2 Hardware Calibration . 118

5.2.1 Voltage Generator Calibration . 118

5.2.2 Firing Threshold and Reset Mechanism Calibration 119

5.2.3 Membrane Time Constant Calibration 120

5.2.4 Synapse Dynamics Calibration . 124

5.2.5 Synapse Weights Calibration . 132

5.2.6 Calibration Reproducibility and Portability 135

5.3 Measures for Cross-Platform Evaluation . 137

5.3.1 Spike Train Comparison . 137

5.3.2 Statistical Descriptors of Network Activity 138

6 Experiments 141

6.1 Basic Studies and Specifications . 141

IV

6.1.1 Spike Delivery Precision . 142
6.1.2 Firing Rates . 145
6.1.3 Membrane Potentials . 149
6.1.4 Short-Term Plasticity . 152
6.1.5 Long-Term Plasticity . 154

6.2 Exploring Network Architectures . 157
6.2.1 Recurrent Network Dynamics: Matching Hardware and Software . . . 157
6.2.2 Self-Stabilizing Network Architectures 175

Conclusion and Outlook 187

A Appendix 195

A.1 Simulation and Emulation Parameters . 196
A.2 Source Code, Documentation and Licences . 197
A.3 Workstation Information . 199
A.4 Practical Recommendations for the FHW-1 Operation 202

List of Abbreviations 203

Bibliography 205

Acknowledgment 219

Introduction

Investigating the brain is a scientific effort that does not need an extensive motivation. Un-
derstanding principles of neural information processing is a human concern as fundamental
as questions on cosmology or particle physics. In contrast to this, the manifold and diverse
methods that are applied in the field of neuroscience have to be permanently put into ques-
tion. So far, the available approaches are not sufficient to reveal final explanations for all
remarkable capabilities inherent to neural systems. Consequently, the technological aspects
of neuroscience are subject to ongoing revisions, improvements and innovations. Section 1.2
lists techniques that significantly contributed to the current state of knowledge about neural
systems.

Especially due to the technical and technological difficulties in accessing and monitoring the
living brain, modeling represents an important approach within the spectrum of neuroscientific
efforts. A large community of researchers develops models of different neural systems and
thereby extracts important insights. These models represent various anatomical fractions
of their biological original and incorporate different levels of detail regarding the utilized
constituents and the applied structural complexity. Section 1.2.2 provides a selection of
recent publications from that field.

One branch of the modeling community uses computers to numerically calculate the emerg-
ing dynamics of their models. Driven by the rapid development of available and affordable
computational power during the last decades, the importance of this field has steadily grown.
But the utilization of computers based on the Turing paradigm (Turing, 1937), i.e. that
perform sequential transitions between discrete internal states using a small number of pro-
cessing units, renders a discrepancy to the massive parallelism of analog neural computation.
This implies performance problems (see e.g. Morrison et al., 2005), as will be discussed in
Section 1.2.2.

An alternative approach is represented by implementing the structure and function of bi-
ological neural systems in analog or mixed-signal1 VLSI2 technology, often referred to as
neuromorphic systems engineering (Mead, 1990; Cauwenberghs, 1999). Building upon the
pioneering work of Carver Mead (Mead and Mahowald, 1988; Mead, 1989), electronic engi-
neers have developed neuromorphic devices since the 1980s. They realized remarkable bio-
logically inspired hardware implementations of spike-based information processing systems,
such as silicon retinas (Delbrück and Liu, 2004; Serrano-Gotarredona et al., 2006), self-tuning
motor control units for robotics (Lewis et al., 2000), attractor memory devices (Vogelstein
et al., 2007), self-organizing pattern classifiers (Häfliger, 2007) and many more. Some fur-
ther examples will be introduced in Section 1.2.3, and the potential, the advantages and the
disadvantages of neuromorphic devices will be discussed.

But although the manifold applications are promising, neuromorphic engineering still rep-
resents a rather exotic niche within the variety of research fields in neuroscience. So far,

1Chips that incorporate both digital and analog circuitry are called mixed-signal devices.
2Very-Large-Scale Integration, i.e. the integration of circuits comprising thousands or millions of transistors

on one single chip.

1

the ways in which neuromorphic engineers and modeling neuroscientists can mutually benefit
from each other are not symmetrically exploited. Chip designers transfer biological principles
to their semiconductor substrates, e.g. the massively parallel operation of simple computing
units and locally operating plasticity rules (Bi and Poo, 1997; Markram et al., 1997; Song and
Abbott, 2001; Morrison et al., 2008). They reproduce and exploit the intrinsic fault tolerance
and the self-optimization features of such architectures (see e.g. Sussillo et al., 2007; Bill, 2008,
Section 6.2.2). Still, the focus of most neuromorphic engineering efforts is rather application
specific, and the technological development has not yet brought up a neuromorphic device
that is flexible and large enough to serve as a neuroscientific modeling tool.

This situation might possibly change in the following years. Within the FACETS research
project, which will be introduced in Section 1.4, a novel type of hardware is currently devel-
oped (see Schemmel et al., 2006; Ehrlich et al., 2007; Schemmel et al., 2008 and Section 2.2).
Devices of that type will combine a massive acceleration, large network sizes and a high
configurability with the advantages inherent to analog neuromorphic devices such as power
efficiency and a time-continuous operation (see Section 1.2.3). Following this strategy, neuro-
morphic engineering has the potential to step out of its niche and provide new and relevant
input towards the understanding of cortical dynamics.

Main Questions Addressed In This Thesis

A prototype for such a novel neuromorphic device is already available. It will be introduced
in detail in Section 2.1. Based on experimental work with devices of this type, the thesis at
hand is an effort to answer the following fundamental questions:� Can neuromorphic hardware devices of the investigated type serve as modeling tools for

neuroscience and provide new insights into neural information processing?� What are the requirements for the acceptance of such neuromorphic tools in the estab-
lished modeling community?� What are the qualities of neuromorphic devices that have to be exploited in order to
provide a benefit for modelers?� Which methods have to be applied in order to translate between the hardware domains
and the biological model?� What are the technical challenges and obstacles on the way towards neuroscientific
modeling with neuromorphic hardware?

This dissertation suggests a novel set of methods for the realization of neuroscientifically
relevant models with neuromorphic hardware. For this purpose, the available prototype
hardware system is deployed in various case studies, thereby testing the proposed paradigms.

The utilized chip is not an optimal device for this purpose due to its prototypic nature. It
represents an early and thus imperfect developmental stage, and its resources, e.g. the number
of neurons and synapses per chip, are limited. Nonetheless, the presented realization of the
suggested paradigms yields essential practical experience and solutions for the overcoming of
emerging obstacles. The insights gained from this thesis are expected to be useful for the
development and operation of future systems.

2

Technical and Experimental Work The utilization of the FACETS prototype hardware
device implies specific, device-related goals:� To specify the impact of constituent variations inherent to the employed chip technology.� To provide calibration methods that deal with these variations.� To document prototype-specific and design-related problems and, if possible, provide

methods to handle them.� To share technical experience and provide recommendations for the operation of the
system.� To document experiments that have been performed with this device both on the cell
level and on the network level.

Dedicated chapters will address these device-specific issues.

Structure of this Thesis

The present thesis is structured as follows: After this introduction, Chapter 1 will pro-
vide background information and references that sketch the status of current research in
neuroscience from the point of view of neuromorphic engineering. Methods and models are
introduced that are relevant for this thesis. In Chapter 2, the investigated neuromorphic hard-
ware system is described in detail. Chapter 3 outlines scenarios of useful device operation.
Based upon these, it describes paradigms for the translation between the hardware domain
and the biological model, including the important concept of embedding the system interface
into the modeling language PyNN. Furthermore, it describes the full software layer stack that
has been implemented to realize the proposed concepts and techniques. Chapter 4 describes
the investigation of process-inherent and design-related imperfections of the used chip. In
this context, the functionality evaluation of certain sub-modules of the device requires meth-
ods for the measurement of specific variables that are not directly accessible. A set of such
techniques has been developed and is presented in the beginning of the chapter. After the
technical problems have been identified, Chapter 5 introduces methods to overcome these ob-
stacles and to establish biologically realistic activity regimes on the hardware. This includes
the handling of chip malfunctions, the calibration of unavoidable constituent variations and
the gauging of hardware dynamics with established software simulators. In order to evaluate
the biological relevance of a neural network experiment performed in hardware, statistical
descriptors of network dynamics are provided which allow for a comparison between output
data generated by hardware and software back-ends. Hardware experiments on the single
cell and on the network level are described in Chapter 6. Utilizing the previously described
methods, the calibration techniques and the introduced software framework, the experiments
represent a first proof of concept for the developed neuromorphic modeling framework. A
conclusion and discussion of the presented work is given at the end of this thesis, followed by
an outlook on ongoing and planned work as well as on estimated further developments in the
field.

3

Naming Conventions

The hardware device in focus of this thesis implements a physical model of cortical neurons
with respect to their information processing dynamics. This model is not based on the
numerical solving of sets of differential equations with digital logic, which is usually referred
to as a simulation, but it is composed of microelectronic circuits, i.e. real physical objects
which imitate the electric dynamics of real neurons. Therefore, employing such a hardware
model will be called an emulation.

One important feature of the employed hardware device is that its intrinsic time constants
are in the order of 105 times shorter than the corresponding values in the biological original.
Hence, the hardware time domain has to be translated into the biological one and vice versa
in order to make use of the model. The hardware time domain will be abbreviated with HTD

throughout this thesis and corresponds to the physical lab time. Unless otherwise expressly
mentioned, the applied interpretation (see Section 3.1.5) defines that any emulated biological
time is exactly a 105-fold of the period measured in HTD. The biological time domain will be
abbreviated with BTD.

Analogously, the membrane potentials, capacitances, conductances and currents in hard-
ware can be translated to their biological counterparts by a linear transformation, which will
be described in Section 3.1.5. In order to avoid confusions regarding these two electrical
domains, the abbreviations HVD and BVD will be used, standing for hardware and biological
voltage domain, respectively, but accounting for all transformed electrical dimensions as well.

The hardware devices which have been utilized for the presented work were developed
within the research project FACETS (see section 1.4) and serve as prototypes for a much
larger system currently under development. Therefore, the prototype system is referred to
as the FACETS Stage 1 Hardware, and the system currently built as the FACETS Stage 2
Hardware. In order to avoid these bulky names throughout the text, they will be abbreviated
with FHW-1 and FHW-2, respectively. For the FHW-1 chip, three versions exist already, i.e. the
design has gone through two revisions. The short forms FHW-1.1, FHW-1.2 and FHW-1.3 will
indicate the utilized chip version. For every chip version, multiple systems exist, which under
ideal conditions would behave identically, but which, due to production variations, do not.
Hence, for some experimental data, e.g. for chip-to-chip comparisons, the individual index of
the employed chip will be given, e.g. FHW-1.3-No.25.

Cooperations

This thesis incorporates data, methods and findings that have been acquired in collabora-
tions with various people.

The Hardware System The utilized FHW-1 system has been developed by Dr. Johannes
Schemmel3 and further members of the Electronic Vision(s) group at the Kirchhoff Insti-
tute for Physics in Heidelberg, Germany, under the coordination of Professor Dr. Karlheinz
Meier3. Dr. Johannes Schemmel, Dr. Andreas Grübl3, Dr. Stefan Philipp3, Dan Husmann3

and Sebastian Millner3 actively supported the work presented in this thesis by providing and

3Professor Dr. Karlheinz Meier, Dr. Johannes Schemmel, Dr. Andreas Grübl, Dr. Stefan Philipp, Dan Hus-
mann and Sebastian Millner are with the Kirchhoff Institute for Physics, University of Heidelberg, Germany.

4

servicing the full hardware framework presented in Section 2.1. The experiments presented
in Section 6.1.1 have been performed in close collaboration with Dr. Andreas Grübl.

Supervised Work The author supervised and coordinated the committed work of Bernhard
Kaplan4, Eric Müller4 and Johannes Bill4 for their diploma theses. Bernhard Kaplan worked
on the hardware-specific high-conductance state analysis method presented in Section 4.1.2.
Eric Müller contributed to the development of the software framework presented in Section 3.2
and performed measurements of long-term plasticity characteristics in hardware synapses
presented in Sections 4.1.3 and 6.1.5. Johannes Bill helped specifying design-related chip
malfunctions, contributed methods to handle them and worked on the development of self-
tuning network architectures described in Section 6.2.2.

Further Collaborations The experiment series presented in Section 6.2.1 have been devel-
oped and performed in close collaboration with Jens Kremkow5.

The work described in Section 3.1.3 contributes to the PyNN project, which is coordinated
and inspired by Andrew Davison6 and Eilif Muller7.

4Bernhard Kaplan, Eric Müller and Johannes Bill are with the Kirchhoff Institute for Physics, University of
Heidelberg, Germany.

5Jens Kremkow is with the Institut de Neurosciences Cognitives de la Méditerranée, CNRS, Marseille, France,
and with the Institute for Neurobiology and Biophysics, University of Freiburg, Germany.

6Andrew Davison is with the Unité de Neurosciences Intégratives et Computationelles, CNRS, Gif sur Yvette,
France.

7Eilif Muller is with the Laboratory of Computational Neuroscience, Ecole Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland.

5

6

1 Neuroscience and Neuromorphic

Engineering

In the following chapter, the current status of research in neuroscience
is sketched (Sections 1.1 and 1.2). Neural network modeling approaches
are introduced in Section 1.2.2. Two branches of modeling, namely
pure software simulations and physical hardware implementations, are
compared in Section 1.2.3. The advantages and disadvantages of both
strategies are discussed, and requirements for the establishment of neu-
romorphic hardware systems as neuroscientifically useful modeling tools
are described in Section 1.2.4. A selection of established models of
membrane and synapse dynamics as well as models of synaptic plas-
ticity that are relevant for the understanding of the hardware model
utilized throughout this thesis are provided in Section 1.3. Since the
development of this hardware system and all presented work are embed-
ded into the FACETS research collaboration, the project is outlined in
Section 1.4.

1.1 The World in the Mind

Every biological organism interacts with its environment. As a part of this process, the
acquisition and the use of information about the surrounding world is essential for the survival
of every living system. Many forms of life have developed a variety of highly complex organs
to optimize both the perception and the processing of information. Sense organs and nervous
systems allow to acquire relevant data and generate reactions based upon this input.

The central nervous system of an organism performs the integration of sensory input, the
control of organism-internal processes and the coordination of motor actions. It intrinsically
reflects the world as it is perceived by the individual creature, or, in other words, it represents
a model of the niche in which the innervated organism lives. In most organisms, this model
is rather static, i.e. actions occur mainly by means of genetically coded and evolutionarily
optimized reflexes. In some species, though, the nervous system has developed to a structure
that is capable of dynamically adapting its intrinsic world representation to changes in the
environment within one individual’s lifetime – the organisms can learn. Highly developed
forms of such systems are brains, which contain dense networks of intercommunicating nerve
cells, so-called neurons. Based on the information that is currently perceived and on what

7

1 Neuroscience and Neuromorphic Engineering

has been perceived in the past, brains generate predictions of what is going to happen next
and can therewith generate reasonable behavior.

Mammalian brains incorporate a structure that has turned out to be evolutionarily very
successful, the neocortex (or simply cortex). The cortex is a layered nervous tissue embracing
older (in terms of evolutionary development) parts of the brain. It plays a key role in the
processing of sensory information, in motor control tasks, in the formation of memory, in
attention and in awareness. In humans, it also significantly contributes to phenomena like
language and consciousness.

For centuries, scientists of different disciplines have been researching the functionality of the
brain, and today they have a large amount of partly very detailed knowledge to their disposal.
Still, a conclusive explanation of many of the remarkable brain capabilities is missing.

1.2 Modern Neuroscience – Methods and Models

One of the goals of scientifically studying nervous systems is to understand the mecha-
nisms that underlie the capabilities of neural structures. This section gives a depiction of
neuroscientific techniques and advancements that have shaped the modern picture of the
brain. Modern methods to access information about the anatomy and the functions of neural
tissue are described with a focus on investigating the cortex. Modeling approaches which
build upon this information, but which also contribute to the understanding of brain-like
information processing, are introduced.

1.2.1 Studying the Brain

Charting the morphology and circuitry of the brain and monitoring the processes going
on inside of it is still a technological challenge today. The cat visual cortex, for example,
incorporates approximately 50,000 neurons per 1mm3, and each of these neurons connects to
approximately 6,000 other cells via so-called synapses (Beaulieu and Colonnier, 1985). For
a review of basic neocortical neuron and synapse types and their functions see e.g. Douglas
et al., 2004. Here, only a very coarse summary of the most basic facts of neural and synaptic
structure and function is given.

Information Processing Constituents

Cortical neurons consist of a cell body (or soma) with a diameter typically ranging from
about 10µm to 50µm, and of morphological branching structures called the dendrites and
the axon. Via the dendrites the neuron receives input from other cells, while along the axon
it carries its output to other cells. Information exchange along these wire-like cell extensions
is performed by sending so-called action potentials or spikes. Every neuron exhibits a dynam-
ically evolving electrical potential difference across its cell membrane. Once this membrane
voltage exceeds a certain threshold value, a sharp voltage peak (the action potential) will
be generated (or fired) by the soma. This pre-synaptic spike travels along the axon and ar-
rives at synapses that connect to the dendrites of post-synaptic neurons. In these synapses1,
the release of neurotransmitters is triggered, which changes the properties of ion-channels
incorporated in the post-synaptic cell membrane and therewith possibly its firing behavior.

1Only the case of chemical synapses is considered here. See e.g. Douglas et al., 2004 for a description of
electrical synapses.

8

1.2 Modern Neuroscience – Methods and Models

In Figure 1.1, a stained cortical neuron is depicted. It shows an exemplar of the so-called
pyramidal cell types, which represent the majority of excitatory cells in the cortex. The
term excitatory describes the kind of impact that such a cell has on other neurons in case
it sends an action potential: The described release of neuro-transmitters will cause a change
in conductance and consequently in a current flow via the post-synaptic cell membrane that
temporarily increases this post-synaptic cell’s own firing probability. The opposite effect, i.e.
the firing probability decrease of a stimulated neuron caused by pulling its membrane potential
away from its firing threshold, is referred to as inhibition. Both the dendritic and the axonal

Soma

Dendrites

Axon

Figure 1.1: Photograph of a stained cortical neuron from rat. The soma, the dendrites and the axon
are indicated. Courtesy of Grazyna Gorny.

total cable length of a typical pyramidal neuron are in the order of centimeters (Dayan and
Abbott, 2001), while the synaptic connections that are spread across these branches have an
area diameter of approximately 1µm per contact (Shepherd, 2004). This structural density
on a microscopic level makes it extremely difficult to access information about the precise
interconnection of the cells. Furthermore, the massive number of brain constituents – the
human cortex is assumed to comprise approximately 1010 cells and 1014 synapses (Shepherd,
2004) – introduces an additional obstacle on the way towards an understanding of the relation
between structure and function.

9

1 Neuroscience and Neuromorphic Engineering

Wiring and Firing

In order to understand computational principles of the brain, both its “hardware”, i.e. the
morphological aspects of its architecture, and its “software”, the neuronal code that is used
to represent, process and store information on the basis of spatio-temporal spike patterns
(Gerstner and Kistler, 2002), need to be investigated.

In the early 20th century, first staining techniques developed by Camillo Golgi (for a review
see Torres-Fernández et al., 2006) revealed important insights into the morphology of single
cells and network anatomy, e.g. the layered laminar structure of the cortex (Ramon y Cajal,
1911, reviewed in Douglas and Martin, 2004). Since then, staining and microscopical tech-
niques have significantly improved, and today even the automated identification and tracing
of a single axon and dendrite in volumes of dense neural tissue with electron microscopy has
become possible (Briggman and Denk, 2006). This has not yet been systematically performed
for full vertebrate brains. Even if the complete static morphology of a brain was available, it
would lack important information about the dynamical properties of its constituents.

Therefore, measuring the ongoing activity in neural networks in vivo and in vitro is in-
evitable and approached with various techniques. An early non-invasive method is the elec-
troencephalography (EEG, Jung et al., 1979), which today is accompanied by magnetoen-
cephalography (MEG, Cohen, 1968; Waldert et al., 2008) and functional magnetic resonance
imaging (fMRI, Logothetis et al., 2001). The spatial resolution of fMRI is in the millimeter
order, which cannot be achieved with EEG and MEG. The temporal resolution of fMRI is only
in the order of two seconds, though, while EEG and MEG can resolve neuronal activity at
the sub-millisecond scale. Another possibility to acquire three-dimensional activity-dependent
images of brain regions is the positron emission tomography, with a spatial resolution on the
millimeter scale and sampling rates of up to 60Hz (see e.g. Purschke et al., 2005; Langner,
2003).

Invasive methods provide both a high spatial a high temporal resolution, but usually access
only tiny fractions of neural tissue at a time. Extracellular recordings reveal local field
potentials generated by volumes with diameters in the order of 100µm (Mehring et al., 2003),
and intracellular recordings with patch-clamp techniques provide highly resolved current flow
and voltage measurements across patches of single neuron membranes (Sakmann and Neher,
1995). By recording neighboring neurons with patch-clamping techniques, the correlation
between their membrane potential fluctuations can be determined (Lampl et al., 1999; Okun
and Lampl, 2008). Thereby, recording pairs or groups of neurons can reveal the existence of
synaptic connections and effects of synaptic plasticity, i.e. the changing impact that a neuron
has on another neuron. Long-term changes in such synaptic weights have been observed
by correlating the pre-synaptic spiking activity with the post-synaptic spike and membrane
recordings (Bi and Poo, 1997; Dan and Poo, 2004; Markram et al., 1997). Short-term synaptic
plasticity effects have been investigated with similar techniques (Markram et al., 1998; Zucker
and Regehr, 2002).

Voltage-sensitive dyes allow for the temporally and spatially highly resolved recording of
hundreds of neighboring neurons at the same time (Jin et al., 2002). The possible volume
depth can be increased up to a millimeter by applying multi-photon imaging techniques (Kerr
et al., 2005; Xu et al., 1996).

In spite of these and many more highly sophisticated methods, a lot of important questions
are left unanswered, e.g. regarding the encoding of information in brains, the neural represen-
tation of concepts, the creation and the persistence of memory, the robustness of functionality,

10

1.2 Modern Neuroscience – Methods and Models

the ability to learn and the emergence of creativity, to just name a few.

1.2.2 Insights through Modeling

The experimental investigation of neural tissue is inevitable for the generation of a detailed
brain knowledge base from which understanding of underlying principles can emerge. The
above sketch of neuroscientific measurement techniques indicates the technological difficulties
of this endeavor. There are further disadvantages in the experimental study of biological
neural systems, for example the following:� It is hard to control the experimental conditions during in vivo studies.� In vitro preparations do not reflect all aspects of living tissue.� It is difficult to acquire data with large statistics.� Ethical issues and animal rights need to be considered.� Most efforts imply high financial costs.

Models are an essential scientific instrument to describe a system in a problem-specific
context. Starting from well defined questions, existing pieces of knowledge, methods and hy-
potheses are combined and evaluated in order to extract the desired answers and predictions.
Especially in research fields on dynamical systems that cannot be fully conceived by experi-
mental methods, like astrophysics and neuroscience, models represent an inevitable approach
to test hypotheses and theories.

1.2.3 Software Simulators vs. Neuromorphic Hardware

Models of spiking neurons are normally formulated as sets of differential equations for an
analytical treatment or for numerical simulation. In contrast to in vivo or in vitro studies, a
software model offers access to all desired observables at any time. It is arbitrarily flexible in
its structure, in its level of detail and in the choice of parameters. There is a large community
of scientists who contribute significant insights into neuroscience by applying models that
usually draw on experimental data, but abstract and transfer these findings into synthetic
systems.

For example, varying integrative properties of neuron membranes have been observed in
vivo (reviewed in Destexhe et al., 2003) and could be well reproduced and explained by
corresponding models (Shelley et al., 2002; Rudolph and Destexhe, 2003; Kumar et al., 2008).
In vivo evidence for long-term synaptic plasticity (Levy and Steward, 1983; Bi and Poo, 1997;
Markram et al., 1997; Dan and Poo, 2004) has led to various mathematical descriptions (see
e.g. Bienenstock et al., 1988; Song et al., 2000; Legenstein et al., 2005; Morrison et al., 2007,
2008). Models on various spatial scales and with different trade-offs between constituent
detail and network size exist, ranging from highly complex single cell descriptions (Jolivet
et al., 2008) to large-scale models of significant fractions of cortical tissue (EPFL and IBM,
2008; Johansson and Lansner, 2007). Considered periods range from short-term plasticity
effects on the scale of tens of milliseconds (e.g. Tsodyks and Markram, 1997) to structural
synaptic development on the scale of hours and days (e.g. Helias et al., 2008).

11

1 Neuroscience and Neuromorphic Engineering

But the more complex the underlying neuron model and the size and connectivity of the
simulated network grow, the more critical computation time gets. If it comes to large net-
works, statistics-intensive analyses or long-term observations of network dynamics can become
computationally extremely expensive (see e.g. Morrison et al., 2005, 2007). The main bottle-
neck is the mapping of the intrinsic parallelism of neural computation to a relatively small
number of sequentially operating processors.

Neuromorphic hardware systems represent an alternative approach that can overcome some
of the limitations inherent to pure software simulations (for a review see Renaud et al., 2007).
In a physical, typically silicon form they mimic the structure and emulate the function of
biological neural networks. Neuromorphic hardware engineering has a tradition going back
to the 1980s (Mead and Mahowald, 1988; Mead, 1989), and today an active community is
developing analog or mixed-signal VLSI models of neural systems.

Inspired by Mead, silicon retinas (Serrano-Gotarredona et al., 2006) and neuromorphic
visual processing systems (Merolla and Boahen, 2006) are still in focus of ongoing research,
with various applications such as light-weight and power-efficient sensors in flying robots
(Netter and Franceschini, 2002), substitutes of biological visual systems useful e.g. for lecture
demonstrations (Delbrück and Liu, 2004) or safety sensors in elderly care (Fu et al., 2008).
Devices have been developed that serve as self-tuning motor control units for robotics (Lewis
et al., 2000). Others resemble hippocampal place cells as attractor memory devices (Vogelstein
et al., 2007) or implement self-organizing spike pattern classifiers (Häfliger, 2007; Mitra et al.,
2009).

A more immediate contact with neuroscientific research is achieved e.g. by hybrid setups
that couple neuromorphic hardware devices with living tissue (Bontorin et al., 2007). Recent
developments, which are in focus of this thesis, aim at the utilization of neuromorphic sys-
tems as flexible modeling tools to approach neuroscientific questions (Schemmel et al., 2007;
Brüderle et al., 2007; Schemmel et al., 2008; Ehrlich et al., 2007).

Pros and Cons of Neuromorphic Models

The main advantage of the physical emulation of neural network models, compared to
their numerical simulation, arises from the locally analog and massively parallel nature of the
computations. This leads to neuromorphic network models being typically highly scalable
and being able to emulate neural networks in real time or much faster, independent of the
underlying network size. Often, only the inter-chip event-communication bandwidth sets a
practical limit on the scaling of network sizes by inter-connecting multiple neural network
modules (Costas-Santos et al., 2007; Berge and Häfliger, 2007; Schemmel et al., 2008). Com-
pared to numerical solvers of differential equations which require Von-Neumann-like computer
environments (Brette et al., 2006), neuromorphic models have much more potential for being
realized as miniature embedded systems with low power consumption.

A disadvantage is the limited flexibility of the implemented models. Typically, neuron and
synapse parameters and the network connectivity can be programmed to a certain degree
within limited ranges by controlling software. However, changes to the implemented model
itself usually require a hardware re-design, followed by production and testing phases. This
process normally takes several months.

Unlike most numerical simulations of neural network models, analog VLSI circuits operate
in the continuous time regime. This avoids possible temporal discretization artifacts, but also
makes it impossible to interrupt an experiment at an arbitrary point in time and restart from

12

1.2 Modern Neuroscience – Methods and Models

an identical, frozen network state (see Section 2.1.2 for the definition of an experiment run
on such a system).

Furthermore, it is not possible to perfectly reproduce an experiment because the device
is subject to noise (see Section 4.2.2), to cross-talk from internal or external signals (see
Section 4.3.8), and to temperature dependencies (see Dally and Poulton, 1998). These phe-
nomena often have a counterpart in the biological specimen, but it is highly desirable to
control them as much as possible.

Another major difference between software and hardware models is the finiteness of any
silicon substrate. This in principle also limits the size of any software model, as it utilizes
standard computers with limited memory and processor resources, but for neuromorphic
hardware the constraints are much more immediate: The number of available neurons and
the number of synapses per neuron have strict limits; the number of manipulable parameters
and the ranges of available values are fixed.

Exploiting Speed and Scalability

Still, neuromorphic network models are highly scalable at constant speed due to the in-
trinsic parallelism of their circuit operation. This scalability results in a relative speedup
compared to software simulations, which gets more and more relevant the larger the sim-
ulated networks become, and which provides new experimental possibilities. A hardware
experiment can be repeated many times within a short period, allowing the common problem
of insufficient statistics due to lacking computational power to be overcome. Large parameter
spaces can be swept to find an optimal working point for a specific network architecture,
possibly narrowing the space down to an interesting region which can then be investigated
using a software simulator with higher precision. One might also think of longer experiments
than have so far been attempted, especially long-term learning tasks which exploit synaptic
plasticity mechanisms (Schemmel et al., 2007).

Except for the kind of systems considered in this thesis, all neuromorphic hardware projects
cited above currently work with circuits operating in biological real-time. This allows inter-
facing real-world devices such as sensors (Serrano-Gotarredona et al., 2006) or motor controls
for robotics, as well as setting up hybrid systems with in vitro neural networks (Bontorin
et al., 2007). In contrast to these real-time systems, the type of neuromorphic hardware in
focus of the presented work (Schemmel et al., 2007, 2008) operates at a highly accelerated
rate (see Section 3.1.5). This crucial feature even increases the speedup advantages men-
tioned above by many orders of magnitude and hence opens up new prospects and suggests
new experimental paradigms (see Section 3.1.1).

1.2.4 Requirements for the Establishment of Neuromorphic Modeling

The computation speed, together with an implementation path towards architectures with
low power consumption and very large scale networks (Schemmel et al., 2008; Fieres et al.,
2008), makes neuromorphic hardware systems a potentially valuable research tool for the
modeling community, where software simulators are more commonplace (see (Brette et al.,
2006) for a review of simulation tools). The establishment of a neuromorphic hardware device
as a useful component within the neuroscientific modelers’ toolbox requires:� A proof of its biological relevance, i.e. it has to be verified that the implemented neuron

and connectivity model can be used to generate biologically realistic structure and

13

1 Neuroscience and Neuromorphic Engineering

behavior.� For this purpose, a common concept of experiment description and output data inter-
pretation has to be found which allows a comparison between the hardware domain and
a reference system. A very practical choice for such a reference are established software
simulators.� Its operability by non-hardware-experts.

In the following chapters, the fulfillment of these requirements for one specific type of
neuromorphic device is documented.

1.3 Utilized Neuroscientific Concepts

In the following, a selection of neuroscientific concepts is described that are relevant in the
context of this thesis. In case of the synapse modeling, the list does not imply a qualitative
superiority of the selected approaches compared to the manifold possible alternatives, but
rather reflects the functionality that is implemented in the hardware system utilized in the
following chapters (see Section 2.1).

1.3.1 High-Conductance States

Membrane dynamics of single neurons play an important role in neural information process-
ing. Activity measurements in the cortex show that the dynamical properties of a membrane
are strongly influenced by the total of its synaptically induced conductances (Shu et al.,
2003; Destexhe et al., 2003; Boustani et al., 2007; Cossart et al., 2003). In this context,
it is useful to distinguish between two states of neuronal activation: Up states or activated
states, where the membrane is depolarized by increased extracellular activity and the em-
bedded cell fires irregularly, and down states, where both intra- and extracellular activity
follow low-frequency rhythms (Anderson et al., 2000). In the activated state, which is also
called the high-conductance state, neurons show stochastic firing behavior and an enhanced
responsiveness towards input stimuli.

The high-conductance state determines the properties of a single neuron’s membrane within
an active network. There is experimental evidence for its existence within in vivo networks,
e.g. in awake and attentive animals (Destexhe et al., 2003; Boustani et al., 2007), or in vitro
in localized sub-populations (Cossart et al., 2003).

Characteristics of neurons in the high-conductance state are a low input resistance, a de-
polarized membrane with large membrane potential fluctuations, dominant inhibitory con-
ductances and a stochastical response to stimulation patterns due to fluctuating background
activity (Destexhe et al., 2003; Kumar et al., 2008).

In (Wielaard et al., 2001) and in (Shelley et al., 2002), a model is described and analyzed
which is based on leaky integrate-and-fire neurons that can exhibit high-conductance states.
There, the membrane potential V (t) (see also Equation 2.1) is shown to follow the so-called
effective reversal potential Veff(t) with the membrane time constant τm(t). Veff(t) is defined as
the difference current ID(t) between excitation and inhibition divided by the total membrane
conductance gT(t):

Veff(t) ≡
ID(t)

gT(t)
=

gtot
e (t)Ee − gtot

i (t)|Ei|

gT(t)
. (1.1)

14

1.3 Utilized Neuroscientific Concepts

Here, gtot
e (t) and gtot

i (t) denote the total of synaptically induced excitatory and inhibitory
conductances, respectively. The membrane time constant τm(t) is determined by the total
membrane capacitance Cm and the total conductance gT(t) ≡ gl + gtot

e (t) + gtot
i (t), where gl

models the permanent and constant leakage conductance (see also Equation 2.1):

τm(t) ≡
Cm

gl + gtot
e (t) + gtot

i (t)
. (1.2)

This membrane time constant can be understood as the temporal resolution capability
of the neuron, because a small τm(t) makes the membrane potential immediately follow the
effective reversal potential and therewith follow the synaptic input. Consequently, a neuron
with a small τm(t) can perform well as a coincidence detector because it is able to rapidly
detect changes in input correlation.

The possibility of neuron membranes to switch between integrating properties and coin-
cidence detector functionality enriches the information processing capabilities of neural net-
works.

1.3.2 Models of Synapse Response Dynamics

In the following, some popular models for the temporal development of synaptic currents or
conductances as a response to incoming spikes are listed. In this thesis, they are also referred
to as temporal kernels or, only in the case of conductance-based synapses, conductance courses
(CC).

Delta Function For current-based models, the synaptic response to a spike arriving at time
t = tsp is sometimes modeled simply as current delta peaks, see e.g. (Brunel, 2000):

Isyn(t) = I0 δ(t − tsp) . (1.3)

Quantal Increase and Exponential Decay A modification which introduces temporal dy-
namics to the synapse is a quantal increase of the conductance or current by a fixed value
wsyn (usually referred to as the synaptic weight), followed by an exponential decay with time
constant τsyn, found e.g. in (Sussillo et al., 2007) and (Maass et al., 2004a):

dgsyn(t)

dt
= −

gsyn(t)

τsyn

+ wsyn δ(t − tsp) . (1.4)

See Figure 1.2(a) for an illustration.

Alpha Function In order to avoid the quantal increases of currents or conductances and
rather have a non-instantaneous rise which smoothly changes into a decrease, alpha or alpha-
like functions are commonly used, e.g. in (Kumar et al., 2008) and (Shelley et al., 2002):

gsyn(t) = g0
t − tsp
τsyn

exp(tsp−t)/τsyn H(t − tsp) , (1.5)

where H(t) is the Heaviside step function. See Figure 1.2(b) for an illustration.

15

1 Neuroscience and Neuromorphic Engineering

(a) Quantal increase and exponential decay (b) Alpha function

Figure 1.2: Two typical examples for the temporal response kernels of modeled synapses. Such
kernels are used to shape the conductance or the current course generated when a spike arrives at the
synapse. (a) A quantal increase followed by an exponential decay. (b) An alpha function.

1.3.3 Synaptic Learning

In the following, two important models of synaptic plasticity are introduced: The short-
term mechanisms of synaptic depression and facilitation, and a model of long-term synaptic
modification based on the temporal correlation of pre- and post-synaptic spike times. For
a review of phenomenological models of synaptic plasticity based on spike timing, see e.g.
Morrison et al., 2008.

Short-Term Synaptic Plasticity

It has been found that the efficacy of biological synapses can be dependent on the history
of their pre-synaptic activity (Tsodyks and Markram, 1997; Markram et al., 1998). These
changes typically last for a few milliseconds to seconds. The effect is called depression if the
synapse gets weaker, the opposite effect, i.e. strengthening of the synapse, is referred to as
facilitation. See Figure 1.3 for a schematic.

In the FACETS Stage 1 hardware, a slight modification of the short-term plasticity model
described in Tsodyks and Markram, 1997 is implemented. It is introduced in Section 2.1.3,

Long-Term Synaptic Plasticity

A first important postulation about the mechanisms of self-organization in the brain was
made by the psychologist Donald Hebb in 1949, especially notable since it was formulated on
purely theoretical grounds (Hebb, 1949). He suggested a dependency of the development of
synaptic strengths on correlations between pre- and post-synaptic activity: “When an axon of
cell A is near enough to excite cell B or repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.”

Based on experimental evidence described e.g. in Bi and Poo, 1997 and (Markram et al.,
1997), a class of synaptic weight modification models has been developed that is based on
the temporal correlation between pre- and post-synaptic firing (Song et al., 2000; Legenstein
et al., 2005; Morrison et al., 2007, for a review see Morrison et al., 2008). According to these

16

1.4 The FACETS Research Project

Time [a.u.] Time [a.u.]

M
em

b
ra

n
e

P
o
te

n
ti
a
l
[a

.u
.]

M
em

b
ra

n
e

P
o
te

n
ti
a
l
[a

.u
.]

Depression

Facilitation

Figure 1.3: Schematic of a membrane potential that receives sequences of spikes (indicated as vertical
markers on the time axis) via an excitatory depressing (left) and via an excitatory facilitating (right)
synapse. In the case of depression, the synaptic efficacy decreases due to the successive pre-synaptic
input. In the case of facilitation, the synaptic efficacy grows as a consequence of the pre-synaptic
stimuli.

so-called spike-timing-dependent plasticity (STDP) rules, the weight of a synapse increases by
an additive or relative amount, if the temporal correlations between pre- and post-synaptic
spikes suggest a causal relationship. In cases of acausal correlations, the weight will decrease.
Such correlations are determined in terms of spike pairings or triplets (Pfister and Gerstner,
2006).

For the specific STDP implementation realized in the FACETS Stage 1 hardware system,
see Section 2.1.3.

1.4 The FACETS Research Project

The FACETS2 research project (FACETS, 2009) is a collaboration of 16 European partner
groups, funded by the European Commission in the framework of the Information Society
Technologies (IST, 2009) program. FACETS puts together a multi-disciplinary team of re-
searchers from the fields of biology, mathematics, computer science, physics and electrical
engineering. The goal of the project is to experimentally and theoretically investigate brain-
like computing principles beyond the Turing paradigm (Turing, 1937; von Neumann, 1945).
Computational concepts inherent to biological neural systems, which form the basis for capa-
bilities like the processing of sensory input, memory, self-organization and learning, shall be
extracted, understood, generalized and exploited for technological applications.

The research in FACETS follows three major approaches:� In vivo and in vitro experiments with real neural tissue.
The acquired results are collected in data bases and therewith made accessible to other
FACETS members.� The theoretical analysis of the experimental data.
Mathematical models of neural systems based on the experimental observations are

2Fast Analog Computing with Emergent Transient States

17

1 Neuroscience and Neuromorphic Engineering

extracted. If possible, they are investigated analytically, otherwise they are numerically
computed in software simulations.� The design, implementation and utilization of neuromorphic hardware devices which
physically implement the developed neural network models.

The mutually beneficial cooperation of researchers working in these three fields is a major
challenge aimed at and strongly supported by FACETS.

Neuromorphic Hardware in FACETS Along the line of keeping diversity instead of elimi-
nating it, the project follows two development branches for neuromorphic hardware systems:
One approach aims at VLSI models of neurons with a high degree of biological precision.
These systems are operating in real-time and provide the opportunity to set up hybrid sys-
tems, i.e. networks of biological and hardware neurons which communicate with each other
(Bontorin et al., 2007). The second approach tries to exploit the possibilities of CMOS3

technology in terms of the small realizable time scales, the low power consumption and the
possible dense spatial integration of VLSI circuits. The goal is to create a novel, large-scale
and massively accelerated neuromorphic hardware device which, among other possible appli-
cations (see Section 3.1.1), provides a complementary modeling tool for the computational
neuroscience community. It shall helps to overcome some typical limitations of software simu-
lators like speed and scalability (see Section 1.2.3). In Chapter 2, this second type of hardware
is introduced and described in detail.

The development of such a device is not a task performed isolatedly by the engineering
groups within FACETS. Instead, its successful realization essentially depends on contributions
from modeling experts and experimentalists. The implemented neuron and synapse models
are the outcome of project-wide discussions, and the communication structure provided by
the currently developed large-scale system (see Section 2.2), for example, strongly orients
towards the realization of experiment types performed and suggested by FACETS members.

3Complementary Metal Oxide Semiconductor

18

2 Neuromorphic Substrate

This chapter introduces the two development stages of the accelerated,
large-scale hardware approach followed by the FACETS project (see
Section 1.4). Section 2.1 provides a detailed description of the chip-based
prototype devices, also referred to as FHW-1 systems. These devices have
been available for some time already. They have been utilized for all
experimental hardware work presented in this thesis. Many of the FHW-1
components and sub-circuits will be used in the target system, which
is not based on single chips anymore, but on the creation of a neural
substrate on a whole silicon wafer. This wafer-scale or FHW-2 system,
which is currently under development, is introduced in Section 2.2.

2.1 Chip-Based Neural Network Model

The components of the hardware system utilized throughout this thesis have been described
in detail in various publications (Schemmel et al., 2004, 2006, 2007; Fieres et al., 2004; Philipp
et al., 2007; Grübl, 2007; Philipp, 2008). In the following, basic information about the neural
network chip and its support hardware is summarized with respect to the neuroscientific
applicability of the system. The implemented neuron and synapse model plus the realizable
network topologies are described.

Furthermore, since the correspondence between hardware parameters and their biological
counterparts is not always a linear one (see Section 3.1.5), and since multiple process-inherent
or design-related hardware mechanisms impose problems on the biologically realistic opera-
tion of the device (see Section 4.3), a selection of technical details about sub-circuits, about
hardware parameters and about their precise functionality is provided. Later sections will
refer to these details.

2.1.1 Technology and Dimensions

The existing first three versions of the FACETS Stage 1 hardware (FHW-1) system are
built using a standard 180 nm CMOS process. 384 neurons are located on one single 25mm2

die. The programmable inter-neuron connectivity is described below in Section 2.1.2. The
possibility to inter-connect multiple of the network dies is work in progress (Philipp et al.,
2007). The system exhibits an acceleration factor of up to 105 – see Section 3.1.5 for a detailed
explanation of the applied time transformation method. The action potentials generated

19

2 Neuromorphic Substrate

during hardware operation can be recorded with a temporal resolution of approximately
0.3 ns (HTD). The precise value of this depends on the frequency fchip the chip is clocked with.

Figure 2.1 shows a photograph of an FHW-1.2 chip bonded to a carrier PCB1. The two
symmetric, homogeneously structured rectangles are the synapse arrays described below in
Section 2.1.2. The more heterogeneously structured rectangle below the synapse arrays com-
prises the neuron circuits described in Section 2.1.2 and various digital control circuitry.

Figure 2.1: Photograph of an FHW-1 chip and the bonding wires connecting it to pads inside a
package.

2.1.2 Implemented Model

The FHW-1 system implements a leaky integrate-and-fire (I&F) neuron model with conductance-
based synapses (Destexhe, 1997; Destexhe and Pare, 1999). It is designed to exhibit a lin-
ear correspondence with existing phenomenological conductance-based modeling approaches
(Burkitt et al., 2003; Rudolph and Destexhe, 2006). The cell body is modeled as a point
neuron, i.e. it does not comprise any compartments separated by resistors which are often
used to model the temporal dynamics induced by the spatial extension of the cell soma, its
dendrites and its axon (Gerstner and Kistler, 2002, Section I.4.4).

In analytical or numerical I&F neuron models, the electrical processes of neural information
processing are usually described mathematically by sets of differential equations. In the
neuromorphic hardware described here, nearly all electric quantities incorporated in the model
are physically represented: A capacitance is modeled by a capacitance, currents are currents
and voltages are voltages. Conductances are emulated by voltage controlled current sources,
so-called operational transconductance amplifiers. The model is not passively computed by a
separate unit, it computes itself in continuous time and with continuous variables.

What is an Experiment?

An important consequence of the physical nature of the neuromorphic model is the hardware-
specific definition of an experiment run: In contrast to pure software simulations, where time

1Printed Circuit Board

20

2.1 Chip-Based Neural Network Model

emerges as a sequence of discrete numerical integration steps, the analog part of a neuromor-
phic hardware model exists and operates continuously in real-time. In software simulations,
an experiment run has a starting point in time with well defined initial conditions plus an
experiment duration. If not explicitly computed, the model does not exist beyond this scope.
In a hardware system connected to its power supply, the membrane potential is permanently
existing and evolving and can always be measured.

Hence, an experiment run in hardware is defined as a period Texp during which� the system is fully configured with well defined parameter values,� a sequence of stimuli is applied and� a set of observables is recorded.

A period Tinit is recommended which immediately precedes Texp without stimulation and
recording, but with a well defined hardware configuration already applied. This minimizes
the influence of the operation history on dynamically evolving observables like the membrane
potential or synaptic activation states. Still, due to effects described in Sections 4.2.2 and
4.3.8, two hardware runs with identical settings can never generate precisely the same results.

Membrane Potential Dynamics

The neuron circuits are designed such that the temporal development of an emulated mem-
brane potential V (t) is determined by the following differential equation:

− Cm

dV

dt
= gl(V − El) +

∑

j

pj(t)g
amp

j (t)(V − Ee) +
∑

k

pk(t)g
amp

k (t)(V − Ei) . (2.1)

The constant Cm represents the total membrane capacitance. The first term on the right-
hand side models the sum of all currents via constantly conducting ion channels. Hence, if no
transient conductances towards other reversal potentials are active, the membrane potential
will develop towards the so-called leakage reversal potential El. The time constant of this
development, an exponential convergence, is determined by the membrane capacitance and
the so-called leakage conductance gl: τm = Cm

gl
.

The transient conductances imposed by synaptic activity have different reversal potentials,
Ei and Ee, modeling inhibitory and excitatory ion channels. The index j in the first sum of
Equation 2.1 runs over all excitatory synapses, while the index k in the second sum covers
the inhibitory ones. The conductance course (CC) induced by an individual synapse s is
modeled as a product ps(t)g

amp
s (t), where ps(t) denotes the synaptic open probability (Dayan

and Abbott, 2001), and gamp
s is again a product of the synaptic weight ωs(t) and a maximum

conductance gmax
s (t):

gamp
s (t) = ωs(t) gmax

s (t) . (2.2)

The shape of a CC is determined by ps(t) (see Section 2.1.2), while gamp
s (t) defines its

amplitude. The weights ωs(t) can be dynamically modified by the implemented so-called
spike-timing dependent plasticity (STDP, see Section 1.3.3) algorithm which in every synapse
detects temporal correlations in the order of tens of milliseconds (BVD, Caporale and Dan,
2008) between pre- and post-synaptic action potentials. See Section 2.1.3 for more detail on
that. The maximum conductances gmax

s (t), on the other hand, can be affected by plasticity

21

2 Neuromorphic Substrate

mechanisms called short-term depression and short-term facilitation, both determined by the
pre-synaptic activity only.

The neuron emits a spike as soon as a configurable threshold voltage Vthresh is exceeded.
In the FHW-1 neuron model, emitting a spike means that a circuit separate from the neuron
membrane releases a short voltage pulse, which is delivered to the synapse circuits of possibly
connected target neurons. This pulse can also be recorded by the operating software, then
comprising the neuron index and an event time stamp, discretized (Grübl, 2007) with a tem-
poral resolution of approximately 0.3 ns (HTD). A strong depolarization peak on the membrane
like in biological neurons is not modeled in hardware at all, because it is assumed to carry
no relevant information except for the time of its occurrence. Once a spike has been released,
the hardware membrane potential is forced to a reset voltage Vreset, where it remains for a so-
called refractory period τref, then it is released back into the influence of excitatory, inhibitory
and leakage mechanisms. Figure 2.2 exemplarily shows such a spike situation recorded from
an FHW-1 neuron.

1 2 3 4
Time [�s] (HTD)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
[V

]
(H
V
D
)

Figure 2.2: Detail of a membrane potential recorded from an FHW-1 neuron that is stimulated with
excitatory and inhibitory Poisson-type input. Time and voltage are given in hardware time domain
(HTD) units. Two times, at approximately t1 = 2 µs and t2 = 3.5 µs, the membrane voltage exceeds
the firing threshold Vthresh, which is indicated by the dashed line. Then, as explained in the main text,
a separate circuit releases a spike signal, while the neuron membrane is pulled to its reset potential
Vreset, indicated by the dash-dotted line.

Connectivity and Synapse Model

In the following, the programmable FHW-1 inter-neuron connection structure and the synap-
tic conductance dynamics are described.

Programmable Connections The 384 neurons are located in two so-called network blocks
of 192 circuits each. Figure 2.3 illustrates the implemented connectivity mechanisms within
and between these blocks. Each network block contains 256 synapse drivers (in the figure:
triangles) and 256·192 = 49152 synapse nodes (circles) which can be individually programmed

22

2.1 Chip-Based Neural Network Model

to connect a synapse driver to a neuron (squares) via a certain weight. Every synapse driver
is connected to 192 synapse nodes and can be programmed to receive one of three possible
signals: (a) The output spikes of one specific neuron located in the same network block,
(b) the output spikes of one specific neuron located in the other neuron block, or (c) events
which have been generated externally and which are delivered via software and digital control
logic within the support hardware (see Section 2.1.5) and within the chip itself. The signal
source can be programmed individually for each synapse driver and, by means of the current
operating framework, is not changeable during one experiment run. Furthermore, pairs of
neighboring synapse drivers can be configured such that they share the same input source,
i.e. that pairs of synapse node rows can be combined to one virtual row with an effectively
increased weight resolution per virtual node. The spike output of every neuron can be fed to
either one specific synapse driver in the same network block, to the corresponding driver in
the opposite block, to some digital recording logic, or to every possible combination of those
three targets.

Consequently, if the neuron blocks are used isolatedly, each neuron can be connected to
every other neuron in the same block. In such a full connection scheme, 64 synapse drivers
remain in each network block for the application of externally generated spikes. But if both
network blocks are combined to form one larger network with feedback connections, configu-
ration conflicts can emerge. The operation software has to detect and minimize such conflicts
(see Sections 3.2.2 and 3.1.6).

23

2 Neuromorphic Substrate

0 1 2 3

0

1

2

3

192

193

194

195

3 3

Digital Pulse Voltage Ramp

Current
Course

Synapse
Drivers

Neurons

Neurons

Synapse
Nodes

Externally
Generated

Events

Figure 2.3: Schematic of the connectivity structure on an FHW-1 chip. The chip consists of two
network blocks with 192 neurons each – only a small subset is drawn here. At the synapse drivers
(triangles) of a network block, spikes arrive as short analog voltage pulses from three possible sources:
From the neuron circuits within the same network block (large squares), from the neuron circuits of
the opposite network block (small squares) or from a memory that stores externally generated events.
Each synapse driver can be individually connected to exactly one of those three senders. The zoom box
illustrates how the arriving spikes are transformed into a synaptically generated conductance course
at the neuron membrane: The synapse driver generates a linearly rising and falling voltage ramp,
which is delivered to all synapse nodes (circles) within one synapse driver row. Depending on their
programmed weights, these nodes inject current courses into the vertical lines that are connected to
the neuron circuits. There, these currents control conductances between the neuron membrane and
its excitatory or inhibitory reversal potential.

24

2.1 Chip-Based Neural Network Model

Synapse Dynamics In the FHW-1 system, conductance-based synapses are implemented.
Compared to purely current-based approaches, they offer a voltage-dependent and hence
a more realistic impact on their post-synaptic membrane potentials. In Section 1.3.2, some
commonly used modeling approaches for the temporal kernels of synaptic conductance courses
have been introduced. The synapse dynamics implemented in the hardware system are very
similar to the alpha function shape or – if configured adequately – to the quantal increase
followed by an exponential decay.

The zoom box in Figure 2.3 illustrates the process of synaptic influence on a hardware mem-
brane potential: The synapse drivers receive action potentials in the form of short voltage
pulses. Triggered by these, they generate linearly rising and falling voltage ramps, which are
delivered to the connected synapse nodes. See Figure 2.5 for a diagram of the synapse driver
circuits. In the synapse nodes, the voltage ramps cause exponentially rising and falling cur-
rents, which can be scaled by a four-bit value corresponding to ωs(t) (see Equation 2.2). The
shape of this current course and the part of its amplitude which is determined by the synapse
driver voltage amplitude correspond to ps(t) and gmax

s (t), respectively (see Equations 2.1 and
2.2).

The current generated by a synapse node is fed into a line, where it is superposed with
currents from other nodes. The sum directly controls a conductance at the connected neuron.
Every neuron has an excitatory and an inhibitory reversal potential with one corresponding
controllable conductance each. Consequently, two of the current lines described above connect
these dynamical conductances of each neuron with its 256 synapse nodes. Every synapse node
can be configured to inject its current either into the excitatory or into the inhibitory line.
The resulting transient values at the controllable conductances pull the neuron membrane
potentials towards their excitatory or to their inhibitory reversal potential, mimicking the
influence of opening and closing ion channels in real neurons.

2.1.3 Synaptic Plasticity

The FHW-1 synapses can be configured to automatically change their efficacies according
to a short-term plasticity mechanism (see Section 1.3.3) and to a correlation-based long-term
modification rule (see Section 1.3.3). The short-term plasticity feature strongly enriches the
possible dynamics of implementable networks, see e.g. Section 6.2.1 for an implemented self-
stabilizing network architecture. Together with the high speedup of the system, the synaptic
long-term modification mechanism implemented in the FHW-1 chips bears the opportunity
to perform statistics-intensive long-term learning experiments that are not yet possible on
conventional software simulation platforms.

STDP

A correlation measurement of pre- and post-synaptic activity is modeled according to the
principle of spike-timing dependent plasticity (STDP, Song et al., 2000; Legenstein et al.,
2005; Morrison et al., 2007, 2008) in every hardware synapse. It is based on the biological
mechanism as described e.g. in (Levy and Steward, 1983; Bi and Poo, 1997; Dan and Poo,
2004). For each occurrence of a post-synaptic action potential, the synapse circuit measures
the time ∆t that has passed since the last occurrence of a pre-synaptic spike. The same is
done separately for each pre- after post-synaptic spike pairing, such time differences being
handled as negative values. A positive ∆t denotes a possible causal correlation, while negative

25

2 Neuromorphic Substrate

values of ∆t are referred to as acausal.
The exponentially weighted time difference is called the STDP modification function F (∆t)

and is defined as follows:

F (∆t) =

{
A+ exp(−∆t

τ+
) if ∆t > 0 (causal)

−A− exp(∆t
τ
−

) if ∆t < 0 (acausal) .
(2.3)

It is a piecewise function and consists of two branches Fa(∆t) and Fc(∆t) for the acausal and
the causal case. Figure 2.4 schematically shows F (∆t), with A+ and A− being the maximum
and minimum amplitudes of the two branches, which decay with time constants τ+ and τ−.

0

1

−1

0−1 1

A+

A−

τ+

τ−

Time Difference (∆t) [τ+]

M
o
d
ifi

ca
ti
on

F
u
n
ct

io
n

F
(∆

t)
[a

.u
.]

Figure 2.4: Schematic of an STDP modification function. Depending on the time difference ∆t =
tpost − tpre between a pre- and a post-synaptic spike, the modification function F (∆t) of a synapse
determines its additive or multiplicative weight change. The function consists of two exponentially
decaying branches with the corresponding amplitudes A+ and A− and the decay time constants τ+

and τ−.

In most STDP models, the modification function represents an additive or multiplicative
weight change which is applied to the synaptic weight at each occurrence of a spike pairing or
more complex correlation events (Morrison et al., 2008). In the hardware model, the STDP
mechanism affects the weights ωs stored in every synapse, but, due to technical reasons, this
cannot be done each time a spike pair has emerged. Since ωs is represented by four-bit values
only, the weight change imposed by a single spike pair is usually below the smallest step
determined by this resolution. Hence, the possibly very small values F (∆ti) caused by many
succeeding spike pairs Pi have to be stored and accumulated, at least until their sum is large
enough to flip a bit in ωs.

This accumulation is performed in every synapse node by loading two capacitors with
charges depending on the individually measured values of Fa(∆t) and Fc(∆t). The resulting
capacitor voltages V STDP

a and V STDP
c correspond to the two sums

∑
Fa and

∑
Fc. A digital

controller periodically tests for certain conditions: If |V STDP
a − V STDP

c | exceeds a configurable
correlation threshold V STDP

thresh , the correlation occurrence flag zO will be raised. If in such a case
V STDP

c is greater than V STDP
a , the causal correlation flag zc, in the opposite case the acausal

correlation flag za will be set.
If zO is set, a weight change will be initiated: In case zc is set, the new value for ωs is read

from a look-up table LUTc which holds new weights for every possible old value, i.e. 16 entries

26

2.1 Chip-Based Neural Network Model

altogether. For the acausal case, i.e. if za has been raised, a second table LUTa provides the
new weight to be written. In case both zc and za are set, no weight change is performed. If
the digital controller finds a raised zO and possibly performs the described weight update, it
will clear all correlation flags and reset the capacitor voltages V STDP

a and V STDP
c afterwards.

If zO is checked but found to be not set, the digital controller will do nothing.

The frequency with which the correlation flags are checked and the weights possibly ma-
nipulated depends on the number of synapses that are defined to be under STDP control.
See Section 4.3.11 for more details on this issue. The STDP algorithm can be fully disabled.

Synaptic Depression and Facilitation

A slight modification of the short-term plasticity model described in (Tsodyks and Markram,
1997) is implemented in the FHW-1 hardware: For every synapse, a time varying so-called in-
active partition I with 0 ≤ I ≤ 1 is electronically represented. I decays exponentially with
a recovery time constant τrec, but every spike arriving at the synapse increases I by a value
depending on the current state of I:

dI(t)

dt
= −

I(t)

τrec

+
∑

s

C · (1 − I(t)) · δ(t − ts) . (2.4)

The sum covers the arrival times ts of all incoming spikes s. C determines the impact of these
spikes on the inactive partition and is a dimensionless value between 0 and 1.

With an adjustable scaling factor 0 ≤ λdep ≤ 1, depression changes the synaptic conductance
amplitude gmax (see Equation 2.2) as follows:

gmax
dep (t) ∝ 1 − λdep · I(t) . (2.5)

Given another adjustable scaling factor 0 ≤ λfac ≤ 1, facilitation increases gmax
fac like

gmax
fac (t) ∝ 1 + λfac · I(t) . (2.6)

For experiments that illustrate and utilize the short-term plasticity feature in the hardware
system, see Sections 6.1.4 and 6.2.2.

2.1.4 Configurability, Ranges and Precision

This section describes a selection of hardware-specific details that will be referred to in
later sections, mostly during the analysis of design-related malfunctions and interferences
(Section 4.3).

Neuron Membranes For all neuron circuits, the membrane is implemented as a CMOS ca-
pacitance that is not adjustable. It is designed to have a value of approximately 200 fF (HVD),
plus an estimated additional 100 fF more caused by parasitic capacitances of surrounding
circuitry. Due to specifications of process variations and experiences with those (see Sec-
tion 4.2.1), the fluctuation of the produced capacitances from neuron to neuron is assumed
to be in the order of 10% (Schemmel, 2008) . The real values after production cannot be
determined exactly.

27

2 Neuromorphic Substrate

Neuron Voltage Parameters and Refractory Period The reversal potentials El, Ee and Ei

as well as Vreset and Vthresh are implemented as programmable voltages which are generated
on-chip by dedicated circuits (Grübl, 2007, Section 4.5). On every FHW-1 chip, each of the
four neuron pools distinguished by the odd and the even indices on the left and on the right
network block share one value per voltage parameter. For example, all neurons on the left
network block with an even index receive the same value for their firing threshold. Due to
circuit differences caused by transistor level variations, this does not necessarily mean that
these neurons all respond the same to identical stimulation. Hence, this sharing of parameter
values causes problems for the neuron responsiveness calibration (see Section 5.2.5 for an
elaboration on that) and for other efforts to achieve an homogeneous substrate.

Input values from 0.0V to 2.5V (HVD) can be written to the voltage generator cells with
a 10 bit resolution, but these circuits are limited to the generation of output values from
approximately 0.6V to 1.6V (HVD).

For voltage parameter values typically applied in models of cortical neurons (see Ap-
pendix A.1), the distance between the lowest reversal potential and the firing threshold is
much smaller than then difference between the threshold and the excitatory reversal poten-
tial. As mentioned above, the programmable neuron voltage parameters in hardware are
limited to a range of approximately 1.0V width (HVD). Since action potentials in hardware
are only represented digitally and the membranes evolve only in the sub-threshold regime, the
voltage range that is actually covered by the membranes is only a fraction of this available
range. Furthermore, due to technical constraints imposed by the firing threshold comparator,
the voltage Vthresh shall not be set to values larger than 1.1V (HVD). Hence, in order to avoid
a waste of the available dynamic voltage range, i.e. to maximize the signal-to-noise ratio of
the membrane potential signal, the possible conductance values between a membrane and
its excitatory reversal potential have been designed to be much larger than those towards
its inhibitory reversal potential. This design feature allows to set the difference between the
excitatory reversal potentials and the firing threshold to approximately the same value as
the difference between the firing threshold and the inhibitory reversal potentials, while re-
alistic impacts of synaptic activity onto the membrane potentials can still be achieved for
both mechanisms. See Section 3.1.5 for more details on the mapping between biological and
hardware voltage values and on the described break of mapping linearity.

Another hardware parameter that turned out to have enormous influence on the membrane
dynamics is the bias current Ibias

thresh for the firing threshold comparator circuit. The value of
Ibias
thresh does not only control the speed of threshold crossing detections, but also the period treset

during which the membrane is connected to its reset potential Vreset with a large conductance
greset, i.e. the refractory period τref. This double functionality of the parameter Ibias

thresh imposes
a serious problem, which will be described in Section 4.3.2.

Leakage Conductance The static leakage conductance gl is controlled by a current Ictrl
gl

.
The value of gl cannot be measured directly and Cm is not exactly known for an individual
neuron. Therefore, the precise relation between both cannot be determined. Still, normally it
is sufficient to adjust the membranes time constant τm = Cm

gl
to the desired value by iteratively

tuning the value of Ictrl
gl

and measuring τm. See Section 5.2.3 for a detailed description of such
a calibration method. Ictrl

gl
can be varied from 0.0µA to 2.5µA (HVD) with a 10 bit resolution.

The resulting membrane time constants are in the range of approximately 50 ns to 150 ns
(HTD).

28

2.1 Chip-Based Neural Network Model

Synaptic Conductance Courses The synaptic CCs are controlled by four voltages and two
currents: The voltage ramps Vramp(t) generated by the synapse drivers as described above
in Section 2.1.2 have a base line which is not necessarily at 0V, but which can have a pro-
grammable positive offset V ctrl

synbias. Such an offset causes a permanent current generated by the
synapse nodes and hence a permanent conductance between the connected membrane and the
corresponding reversal potential. Bias conductances can be used to minimize damping effects
caused by the parasitic conductances of the wiring between synapse drivers and membranes,
because these are permanently pre-charged. A second voltage V ctrl

synstart determines the initial
value from which the voltage ramp starts its rising phase. It can shorten the total rise time τrise

significantly, a feature that is useful if a quantal conductance increase shall be approximated.
Both V ctrl

synbias and V ctrl
synstart can be set from 0.0V to 2.5V with a 10-bit resolution.

The programmable current Ictrl
τrise determines the slope of the rising voltage ramp and there-

with the speed of the exponential increase of a synaptically generated, transient conductance.
The parameter current Ictrl

amp controls the amplitude of that ramp. Its value is mirrored in every
synapse node that receives the voltage ramp and therewith guarantees a robustly controllable
amplitude of the exponentially rising and falling current generated there. It generates a volt-
age that is permanently compared with Vramp(t). If Vramp(t) exceeds this voltage, the rise is
flipped into a decay, the speed of which is determined by a third current Ictrl

τfall
. The circuit

that performs the comparison between Vramp(t) and the voltage generated by Ictrl
amp receives a

configurable bias current Ibias
syn . If this current is set too low, the comparator becomes very

slow, which might cause overshoots of Vramp(t) over the value determined by Ictrl
amp.

In terms of the model Equations 2.2 and 2.1, Ictrl
amp determines gmax

s (t), while Ictrl
τrise and Ictrl

τfall
control ps(t). All four currents are programmable from 0.0µA to 2.5µA (HVD) with a 10 bit
resolution.

Figure 2.5 shows a schematic of the circuitry that generates the described voltage ramp.

When adjusting Ictrl
τrise , there are constraints to be considered: Since many existing models

that have been chosen for reference experiments use quantal or very fast increases of synaptic
conductance as response to an incoming spike (see Section 1.3.2), τrise shall be as short as
possible for the purposes of this thesis. But setting Ictrl

τrise to values in the order of 1µA or
larger will cause an unwanted effect: The voltage ramp will significantly exceed the value
determined by Ictrl

amp due to a slow comparator mechanism. The speed of this comparator
has been optimized by tuning the bias current Ibias

syn . For the FHW-1.3 system, a value as
small as Ictrl

τrise
= 0.2µA has been found to deliver a sufficiently small rise time, since it is

significantly smaller than the smallest achievable voltage ramp fall time (see hardware PSP2

in Section 4.1.1).

Tuning Ictrl
amp massively influences the efficacy of a synapse driver. But due to design-related

issues described in Section 4.3.4, increasing Ictrl
amp does not necessarily increase the CC ampli-

tude monotonously. Still, if the values of Ictrl
amp are kept limited, calibration mechanisms as the

one presented in Section 5.2.4 can assume a monotonic relation.

Connectivity Every synaptic node can be individually programmed with a four-bit value
which linearly scales the current kernels injected into the conductance control lines described
above in Section 2.1.2. These four-bit values correspond to the synaptic weights ωs(t) in
Equation 2.2 and provide integer factors between 0 and 15.

2Post-Synaptic Potential

29

2 Neuromorphic Substrate

ampI
ctrl

ampI
ctrl

synstart

ctrl
V synbias

ctrl
V

rampV

fallTI
ctrl

riseTI
ctrl

Figure 2.5: Diagram of the FHW-1 synapse driver circuitry that generates the voltage ramp as
indicated in Figure 2.3. This voltage ramp, which implements an intermediate state of generating the
synapse response kernel, is represented by Vramp. If a voltage pulse arrives at the pre pin, a linear
increase of Vramp via the current mirror M5/M6 fed by Ictrl

τrise
will be initiated, starting at value V ctrl

synstart.

Once a maximum voltage, defined by Ictrl
amp and M10, is detected by the comparator O1, the fall/rise

line will be inverted and a decrease of Vramp will be forced via the current mirror M7/M8 fed by Ictrl
τfall

until the resting value V ctrl
synbias is reached. Circuit diagram according to Schemmel et al., 2007, see

there for more explanations.

STDP In order to find valid STDP configuration regimes for the hardware, multiple com-
binations of the parameters that control the amplitude of Fc(t), the amplitude of Fa(t) and
the correlation threshold V STDP

thresh have to be swept.

In hardware, the amplitude of Fc(t), the amplitude of Fa(t) and the correlation thresh-
old V STDP

thresh are controlled by four voltage parameters: V clr
a , V clr

c , V ct
high and V ct

low. The difference
V ct

high−V ct
low controls the value of V STDP

thresh , while V clr
a and V clr

c determine the amplitudes of Fa(∆t)
and Fc(∆t). Like the neuron voltage parameters, they can be written in 10-bit values from
0V to 2.5V, but only values from approximately 0.6V to 1.6V are actually achievable. The
FHW-1 system does not provide a free parameter for adjusting the decay time constants of
the modification curve. The available ranges of the amplitudes and the decay time constant
values of the resulting STDP modification function have not yet been investigated systemati-
cally. Sections 4.1.3 and 6.1.5 show exemplary F (∆t) curves acquired from hardware systems,
though.

A so-called synapse row comprises all synapse nodes connected to the same synapse driver.
The digital STDP controller can be configured to check and modify only specific synapse
rows. Section 4.3.11 discusses possible problems arising from the cyclic update scheme, which
can become rather slow if many synapse rows are involved.

30

2.1 Chip-Based Neural Network Model

Synaptic Depression and Facilitation The inactive partition described in Section 2.1.3 is
electronically modeled by a voltage VI. It can be seen in the lower left of the circuit schematic
in Figure 2.5. If short-term synaptic plasticity is enabled (enable pin in diagram), the current
Ictrl
amp will be changed by the depression and facilitation circuitry drawn in the lower left quarter

of the schematic. Per synapse driver, only one option out of depression or facilitation can
be chosen at a time by setting a corresponding mode bit. This choice influences the efficacy
of all synapse nodes connected to this driver. The recovery time constant τrec is controlled
via the current Irec, which can be programmed by 10-bit values from 0.0µA to 2.5µA. The
voltages Vfac and Vmax determine the values of λfac and λdep. Just like the neuron and the
STDP voltage parameters, they can be written from 0V to 2.5V with a 10-bit resolution, but
without specific workarounds (see Section 5.1.4), only the range from approximately 0.6V to
1.6V is available. This can cause serious problems if depression or facilitation are activated,
see Section 4.3.10.

2.1.5 Stack of Hardware Communication Layers

Giving life to such a delicate piece of silicon like the FHW-1 chip requires a whole set of
support hardware devices, which, among others, provide mechanical footing, power supply,
an infrastructure for the programmable control devices (FPGAs3), memory for the real-time
playback of input stimuli and for the recording of output data, pins and amplifiers for analog
observables, plus an interface for high-level control software modules running on external
computers.

The following list summarizes the most important components of the support hardware
hierarchy:� Every FHW-1 chip is mounted on a so-called Recha board (Ostendorf, 2007). These

PCBs provide the baseplate for the bonding wires which fan out the chip pins to larger
contacts, allowing to access it with normal PCB electronics. Furthermore, Recha boards
have connectors via which the analog sub-threshold potentials of arbitrarily selectable
neurons can be monitored. One further pin that is used in later sections of this thesis is
a multiplexed pin, which can be programmed to output selectable membrane potentials
or chip-internal parameter values via the programmable so-called I test

b
line. The chips

are either packaged in cases or protected by plexiglass covers. In Figure 2.7, the board,
an analog connector and the FHW-1 chip under a plexiglass lid can be seen.� Every Recha PCB sits on a so-called Nathan board (Grübl, 2007, Chapter 3; Fieres
et al., 2004), which, among others, carries an FPGA for the digital controlling of the
chip and – on its back side – a RAM4 module for the storage of digital input and output
data. Stimulation data can be delivered during an experiment run from this so-called
playback memory in real time, using digital logic in the FPGA and on the chip itself.
The same RAM module is used to intermediately store the events generated by the chip
during an experiment, before it is read out by a controlling software. The bandwidth
of this stimulus and output data transport between the chip and the RAM is limited,
see Section 4.3.7. In Figure 2.7, a Nathan board can be seen, with the metal heat sink
for the FPGA clearly visible.

3Field Programmable Gate Array
4Random Access Memory

31

2 Neuromorphic Substrate� Every Nathan board is connected to a so-called backplane (Philipp et al., 2007). Up
to 16 Nathan boards can be connected to one backplane at the same time and, via a
dedicated network infrastructure, among each other. The backplane is connected to a
power supply unit and distributes power to all Nathan boards. Figure 2.7 also shows
the backplane.� Via a custom-design transport medium based on SCSI5 cables and connectors, the
backplane is connected to a so-called Darkwing PCI6 card (Schürmann et al., 2002)
which is plugged into a host PC.� That host PC is running a Linux operating system and performs communication with
the backplane via a partly custom-design, partly proprietary Token-Ring-like (IEEE)
network protocol (Fieres et al., 2004; Philipp, 2008). Currently, every software (see
Section 3.2 and Brüderle et al., 2007) that is supposed to communicate with such an
FHW-1 chip has to use this protocol. A Gigabit Ethernet solution is under development,
but was not available throughout the work for this thesis.

All digital information that can be read from the chip, e.g. the time stamps and neuron
indices of any spikes fired during an experiment run, can be acquired via this communication
stack. In order to access the analog sub-threshold membrane potential of selectable hardware
neurons, an oscilloscope can be connected to dedicated Recha connector pins. One chip can
output up to eight of its membrane potentials at the same time. The device7 utilized for the
work presented in this thesis provides the possibility to access the acquired digitized data
via TCP/IP sockets (LeCroy, 2005; Braden, 1989). Dedicated modules of the higher-level
software layers executed on the host PC can collect this information and integrate it into the
scope of accessible observables (see Section 3.2.2).

Figure 2.6 summarizes the FHW-1 support hardware setup schematically, while Figure 2.7
shows a photograph of the system as it actually exists in the laboratory.

5Small Computer System Interface
6Peripheral Component Interconnect
7LeCroy WaveRunner 44Xi

32

2.1 Chip-Based Neural Network Model

FHW-1 Host PC

digital

analog

Computer Network

Oscilloscope

Backplane

Nathan Boards

FHW-1 Chip on Recha Board

Figure 2.6: Schematic of the complete FHW-1 hardware setup. The neural network chip is mounted
on a Recha PCB, which itself sits on a Nathan board. Multiple Nathan boards are plugged into a
backplane, which, among others, provides the power supply and which is digitally connected to a
host PC. Connectors on the Recha boards allow to connect selectable analog sub-threshold membrane
potentials on the FHW-1 chip with an oscilloscope. The oscilloscope can be interfaced via a computer
network and its acquired information about the analog membrane potentials can be integrated into a
software scope (see Section 3.2.2) running on the host PC.

Oscilloscope

FHW-1 Chip

Recha Board

Analog Output
Nathan Board

Backplane

Figure 2.7: Photograph of a FHW-1 system with support hardware. Compare with Figure 2.6.

33

2 Neuromorphic Substrate

2.2 Wafer-Scale Neural Network Model

One major purpose of the chip-based FACETS hardware system (FHW-1) introduced in
Section 2.1 is to serve as a prototype for a much larger neuromorphic hardware device, the so-
called wafer-scale model (FHW-2, Schemmel et al., 2008). Wafers are slices of semiconductor
material, e.g. monocrystalline silicon, which are used in the fabrication process of micro-
electronic devices. Into and upon the wafers, integrated circuits are built. Typical wafers are
less than 1mm thick and have a round shape with a diameter between 150mm and 450mm.
In the process of industrial VLSI chip production (Hastings, 2001, Section 3.2.2), various
steps are applied to the wafer in order to form the desired circuitry structure: E.g. doping of
the pure semiconductor material with donors or acceptors, chemical etching and deposition
of materials. For this purpose, sets of masks are applied photolithographically, each of which
contains the spatial patterning information for a certain production step. These steps are
applied sequentially, hence, one set of masks fully determines the vertical layer structure on
the final device. But due to technical limitations, such a set can define only a fraction of
the full wafer area (e.g. 20mm× 20mm), the so-called reticle. In a two-dimensional stepping
process, this reticle is replicated multiple times on one wafer, i.e. the structure is identically
repeated.

The smallest structures that can be produced in modern CMOS fabrication processes are
in the order of hundreds and even tens of nanometers. On these microscopic scales of material
manipulation, the occurrence of imperfections is unavoidable, e.g. by particles that distort
the lithographic exposure process. Often, such production flaws destroy the functionality of
the affected circuits. Since a certain rate of imperfection has to be expected for every wafer,
the standard method to cope with this phenomenon is to produce chips with a limited size.
In a typical chip production run, one reticle contains multiple instances of the same design,
and after the wafer is fully produced, it is cut into pieces defined by the boundaries of these
designs. Then, the functionality of each of the obtained chips is tested, and a certain fraction,
the so-called yield, will turn out to be unaffected by production flaws.

Normally, digital designs rely on the correct operation of the underlying circuitry, i.e. one
functionally relevant distortion in a chip is sufficient to make the whole device unusable. The
same accounts for most analog designs, and the larger the area of a chip is, the larger grows the
probability of a defect on each die. This extreme sensitivity of most micro-electronic circuits to
the full functionality of the utilized substrate is intrinsic to the implemented architectures. In
contrast to this, neural circuits, e.g. in mammalian cortices, exhibit an intrinsic fault tolerance.
Their functionality is not significantly degraded by the loss of single neurons or connections,
the occurrence of which is normal due to e.g. cell death or synaptic reorganization. This
feature opens up new perspectives for the design of information processing architectures based
on micro- or nanometer-scale technologies.

Given the possibility to transfer the said neural architectures to error-prone technologies like
e.g. CMOS, the intrinsic fault tolerance of these circuits is expected to massively increase the
yield in the production of the obtained devices. This concept is an essential prerequisite for
the successful operation of the FHW-2 system, which is currently under development within the
FACETS research project (see Section 1.4). Uncut silicon wafers will serve as the substrate
for these large-scale mixed-signal neuromorphic hardware devices. Implemented in CMOS
technology, a large number of neuron and synapse circuits (see Section 2.2.1) will cover the
full wafer while being highly configurable and interconnectable (see Section 2.2.2). For this
purpose, the event communication infrastructure has to cross reticle borders. Such an inter-

34

2.2 Wafer-Scale Neural Network Model

reticle wiring, which is not provided by commercial chip fabrication processes, will be applied
in the form of a so-called post-processing metal layer on top of the wafer. In the following, the
FHW-2 system, the implemented neuron model, the number of realized cells and connections,
the hardware dimensions and its mechanical design are described.

2.2.1 Technology and Dimensions

Like the FHW-1 system described above in Section 2.1, the FHW-2 system will be built using
a standard 180 nm CMOS process. Every FHW-2 unit incorporates one wafer, while multiple
of such units will be interconnectable to set up larger networks. On each wafer, at least
44 reticles are used, and every reticle consists of 8 so-called HICANN8 chips. Every chip
implements more than 115000 synapses. The number of neurons per chip is configurable,
values between 8 and 512 are possible. Depending on this number, the number of input
synapses per neuron varies between 14848 (in case of 8 neurons per chip) and 232 (in case
of 512 neurons per chip). In total, one wafer implements up to 180224 neurons and more
than 40 million synapses. The size of one HICANN die is 50mm2, the utilized wafers have a
diameter of 200mm.

2.2.2 Implemented Model

The FHW-2 system implements a so-called adaptive exponential integrate-and-fire (aEIF)
neuron model with conductance-based synapses as described in Brette and Gerstner, 2005.
Like in the FHW-1 system, the cell bodies in the first version of the FHW-2 system are modeled
as point neurons, i.e. they do not comprise any compartments that are separated by resistors.
A multi-compartment structure is planned to be realized in later versions. The system is
designed to exhibit an acceleration factor of approximately 104.

Membrane Potential Dynamics

The neuron circuits are designed such that the temporal development of an emulated mem-
brane potential V (t) is determined by the following differential equation:

−Cm

dV

dt
= gl(V −El)− gl ∆th exp

(
V − Vth

∆th

)
+ ge(t)(V −Ee)+ gi(t)(V −Ei)+w(t) . (2.7)

The variables Cm, gl, El, Ee and Ei are defined like for the FHW-1 membrane potentials
(see Equation 2.1). The variables ge(t) and gi(t) represent the total excitatory and inhibitory
synaptic conductances. The exponential term on the right hand side introduces a new mech-
anism to the I&F neuron: Under certain conditions, the membrane potential develops rapidly
towards infinity. The threshold potential Vth represents the critical value above which this
process can occur, and the slope factor ∆th determines the rapidness of the triggered growth.
Such a situation, which is detected by a mechanism that permanently compares V (t) with
a critical value Vspike > Vth, is interpreted as the emergence of a spike. Each time a spike
is detected, a separately generated output event signal is transmitted to possibly connected
target neurons (or to recording devices), and the membrane potential is forced to a reset
potential Vreset by a very strong reset conductance.

8High Input Count Analog Neural Network

35

2 Neuromorphic Substrate

A second extension to the basic conductance-based I&F model described by Equation 2.1
is the so-called adaptation current w(t). The value of w develops over time as follows:

− τw
dw

dt
= w(t) − a(V − El) . (2.8)

Additionally, every time a spike is emitted by the neuron, w changes its value quasi-instan-
taneously: w → w + b. The time constant and the efficacy of the so-called sub-threshold
adaptation mechanism are given by τw and a, while b defines the amount of the so-called
spike-triggered adaptation.

For a detailed discussion of the possible neuron dynamics emerging from this model and
for a fitting of the parameters to physiological data, see Brette and Gerstner, 2005. Since
both the exponential term in Equation 2.7 and the adaptation can be deactivated, the FHW-2

neurons can be configured to implement the same model as the FHW-1 systems.

Connectivity and Synapse Model

Programmable Connections The event communication infrastructure in the FHW-2 systems
is organized into two hierarchical layers. So-called Layer 1 (L1) buses transport spikes directly
on the wafer. Local groups of up to 64 neighboring neurons on a HICANN chip feed one L1
bus line. A priority encoder manages the temporal multiplexing of their output signals onto
the shared resource, where the events are transmitted in a serial, continuous time protocol.
The L1 bus network consists of horizontal and vertical lines, which interconnect all HICANN
chips on one wafer among each other. Repeaters at the boundaries of every HICANN relay
the events and guarantee a sufficient signal quality even across long transportation distances.
The wiring applied during the wafer post-processing provides the possibility to route the L1
lines across the reticle borders. At all crossing points of the horizontal and vertical lines,
configurable so-called crossbar switches allow a flexible programming of the realized routing
pattern. Once a spike signal has reached its destination HICANN, it can be fed into a synapse
driver of that chip via programmable select switches. See Figure 2.8 for a schematic.

The FHW-2 Layer 1 routing infrastructure allows for a flexible configurability of the on-
wafer spike routing. In (Fieres et al., 2008) and (Schemmel et al., 2008), the L1 bus system
is described in more detail. In (Fieres et al., 2008), algorithms are presented which determine
configurations of the crossbar and select switches that realize given network topologies with
a minimum of distortions.

The so-called Layer 2 routing framework represents the possibility to record and digitalize
an output spike of a neuron by off-wafer hardware modules (see Section 2.2.4), route them via
a dedicated digital network to a target HICANN on the same or on another wafer system, and
there feed them back into the analog Layer 1 bus system. This analog-to-digital conversion
followed by the transport via a digital protocol followed by a digital-to-analog conversion is
much more time consuming than a pure Layer 1 event transport. Typical hardware delays of
a Layer 1 neuron-to-neuron spike transmission will correspond to less than 1ms in BTD, while
the Layer 2 delays can add up to approximately 5ms (BTD).

Synapse Dynamics Like in the FHW-1 system, conductance-based synapses are implemented,
the dynamics of which are very similar to the alpha function shape or – if configured ade-
quately – to the quantal increase followed by an exponential decay (see Section 1.3.2). Similar
to the prototype implementation, the temporal shaping of conductance courses in the FHW-2

36

2.2 Wafer-Scale Neural Network Model

1

3

2

4

566

6 6

Figure 2.8: Schematic of the Layer 1 bus framework on the FHW-2 system, showing eight out of
the 352 HICANN chips (1) per wafer. On each chip, one horizontal bus (2) with 64 lines and two
vertical buses (3) with 128 lines each provide the transport of spike signals from one chip to another.
Configurable crossbar switches (4) allow to route signals in both directions. Repeaters (5) provide the
event transport across chip boundaries. The output spikes generated by the hardware neurons are fed
into the horizontal bus structure that crosses every chip. After they have reached their destination
chip, they can be selectively connected to synapse drivers on the target HICANN by programmable
select switches (6).

system is determined by so-called synapse drivers. In synapse nodes, which represent a
configurable switch matrix connecting the synapse drivers with the neurons on a chip, the
conductance amplitude of a synaptic connection can be individually scaled by a four-bit value.
See Section 2.1.2 for the corresponding prototype implementations.

Synaptic Plasticity The short-term synaptic plasticity mechanisms implemented in the
FHW-2 systems will be basically the same like in the FHW-1 devices. For the long-term plasti-
city, a more flexible programmability of the weight modification functions (see Section 2.1.3
for the corresponding implementation in the FHW-1 system) is currently under development.

2.2.3 Configurability of the System

In contrast to the FHW-1 model, where many neurons share parameter values, nearly all
parameters that determine the behavior of FHW-2 neurons will be configurable individually
for every cell. For this purpose, so-called floating gate memory cells (Ehrlich et al., 2007)
have been developed specifically for the application in the FHW-2 system. They allow to store
continuous analog voltage values like e.g. the resting potential, the firing threshold or the
reversal potentials of the hardware neurons in a very area- and power-efficient way.

Like in the chip-based prototype system, the synapse drivers in the FHW-2 devices will
determine the temporal aspects of synaptic conductance courses. The amplitudes of synaptic
conductances can be configured individually for every connection with a four-bit value. The
realizable network topologies are determined by the possibilities provided by the Layer 1 and

37

2 Neuromorphic Substrate

Layer 2 routing framework as indicated above. See Section 3.1.6 and (Ehrlich et al., 2008;
Wendt et al., 2008) for more information on the strategies that have been developed in order
to map biological network architectures to the available hardware substrate with a minimum
of distortions.

2.2.4 Stack of Hardware Communication Layers

The large number of neurons and synapses per FHW-2 wafer, in combination with the
speedup factor the system shall be operated with, implies highly challenging bandwidth re-
quirements for the data transfer to and from the wafer. In order to fully configure the system,
a large number of parameter values has to be transferred to the digital and analog memory
cells. Externally generated stimulation data has to be injected into the Layer 2 event com-
munication network, from where it is fed into the continuous time domain of the Layer 1 bus
system. The output spikes of all recorded neurons have to be collected and transported off
the wafer into the memory of a controlling host PC.

For the configuration, stimulation, controlling and recording of the neural substrate im-
plemented in a FHW-2 wafer, a complex support hardware framework has been developed.
Figure 2.9 shows a schematic and summarizes the most important components. The physical
signal exchange between the wafer and this framework is performed via elastomeric connec-
tors that fill the space between the wafer and a large printed circuit board (PCB) on top
of it. These connectors, which provide finely grained vertical conducting structures, estab-
lish the electrical contact between the post-processing metal layer on top of the wafer and
dedicated pins on the PCB. Groups of eight HICANN chips are interfaced by one so-called
DNC9 chip each, which provides the event package generation and addressing for the Layer 2
routing. Groups of four DNC chips are interfaced and controlled by one FPGA each. These
sub-units of four DNCs and one FPGA also incorporate memory devices, which store the
Layer 2 routing information, externally generated stimulation data and the recorded output
data generated on the wafer.

A total of twelve FPGAs are incorporated in one FHW-2 system. Together with the DNCs,
they perform the digital Layer 2 event routing and the distribution of all configuration data
and control signals. Every FPGA also provides a Gigabit Ethernet communication chan-
nel to external controlling devices. Via these Gigabit connections, a host PC can send the
configuration and stimulation data to the system and read back the generated output events.

The total worst case power consumption of this system is assumed to be approximately
2 kW, the half of which is caused by the wafer itself, the other half by the support hardware
framework.

9Digital Network Chip

38

2.2 Wafer-Scale Neural Network Model

Power Supply

Printed Circuit Board

DNC Boards, FPGA and Heat Sink

FHW-2 Wafer

Ethernet Connector

Aluminum Support Frame

Seal Ring

Figure 2.9: Schematic of one FHW-2 unit. The core of the system is a wafer that incorporates more
than 180 · 103 neurons and more than 40 · 106 synapses. The wafer reticles are interconnected by
post-processing wiring structures. Elastomeric connectors establish electrical contacts between pins
on the surface of the wafer and a printed circuit board, which provides the routing of digitalized events
between the wafer and the DNC chips. Those chips implement the exchange of event data between the
Layer 2 and the Layer 1 routing networks. Via FPGAs, these DNC chips communicate among each
other. The FPGAs also provide the interface between the Layer 2 network and a Gigabit Ethernet
connection to external control devices. Figure by D. Husmann.

39

2 Neuromorphic Substrate

40

3 Software and Techniques

This chapter introduces concepts that have been developed in order to
utilize the accelerated FACETS hardware systems (FHW-1 and FHW-2) for
neuro-scientific modeling. Section 3.1 describes paradigms of hardware
operation that allow a biological interpretation of the output generated
by such neuromorphic devices. The main addressed aspects are:� An electric interpretation scheme, i.e. methods to translate be-

tween electric properties and observables of the hardware system
and of the biological model, e.g. membrane potentials of neurons.� A temporal interpretation scheme, i.e. methods to translate be-
tween hardware and biological time domain.� A framework in which the translated hardware output can be com-
pared with the output of established models, in this case with
software simulators.

Section 3.2 describes a software architecture that has been implemented
to realize the proposed paradigms. This software framework is the es-
sential instrument for all hardware experiments presented in this thesis.
Due to its underlying concepts and implemented methods, it is not only
a technological framework, but provides a methodological fundament not
only for the presented but also for future experiments with the FHW-1

and FHW-2 systems.

3.1 Operation Paradigms

One application of the FHW-1 and FHW-2 systems is to use them as modeling tools in
computational neuroscience, complementary to the commonplace software simulators. In
order to achieve this, concepts and methods have been developed which are introduced in the
following.

Section 3.1.1 outlines typical utilization scenarios for FHW-1 and FHW-2 devices and discusses
requirements for the user interface arising from such scenarios and from hardware-specific
issues. Existing interfaces for hardware systems other than the FACETS type are shortly
described in Section 3.1.2.

41

3 Software and Techniques

The back-end agnostic modeling language PyNN is introduced in Section 3.1.3, and the
integration of the FHW-1 and FHW-2 interfaces into this framework is motivated and sketched.
A short introduction on the two neural network software simulators NEST and PCSIM is
given in Section 3.1.4, since they are used for comparison and reference applications within
this thesis.

In Section 3.1.5, methods for the interpretation respectively translation of time scales and
membrane potentials between the biological and the hardware domain are explained. Sec-
tion 3.1.6 describes a technique to map the topology and the parameters of a biological
network model to the limited resources of a neuromorphic device.

3.1.1 Intended Scenarios of Usage

When planning a user interface to a given device, its applications have to be considered.
In the future, neuromorphic VLSI systems inspired by cortical circuits might provide the
intelligence for autonomous machines, e.g. as the sensory-motor control and decision-making
mechanism of robots. They might be embedded in standard computers as novel co-processors,
finally turning them into truly intelligent and adaptive machines. Many visionary and complex
applications of neuromorphic circuitry can be thought of, but before they become feasible,
the understanding of cortical information processing has to develop significantly, and the
technology itself has to be mastered.

The devices created within the FACETS research project, i.e. the FHW-1 and the FHW-2

systems, serve these two purposes: To learn about possible micro-electronic realizations of
cortical architectures, and by doing so, to provide a tool for gaining more insights into cortical
information processing by research on models.

Hence, intended scenarios of experimenting with the FHW-1 and FHW-2 systems are the
following:� Neural network models based on well defined connections between single cell units are

realized by adequate configurations, stimulations and recordings of the hardware device
(see Section 2.1.2, ”What is an experiment?”).� A standard computer provides the physical interface for the user to administer the
execution of experiments. Given an Internet connection and the appropriate software,
this computer can be located everywhere, independently of the location of the operated
hardware.� Models are described in a digital, manipulable and storable format. Therein, parameters
and observables are given in biological dimensions and follow a biological nomenclature.
Like typical software simulators established in computational neuroscience1, the hard-
ware system provides an interpreter for the interactive or scripted setup and control of
experiments.

1For example, NEURON (Hines and Carnevale, 2006; Hines et al., 2009) provides an interpreter called Hoc,
NEST (Diesmann and Gewaltig, 2002; Gewaltig and Diesmann, 2007; Eppler et al., 2008) comes with a
stack-based interface called SLI, and GENESIS (Bower and Beeman, 1998) has a different custom script
language interpreter, also called SLI. Both NEURON and NEST also provide Python (Rossum, 2000)
interfaces, as do the PCSIM (Pecevski et al., pending publication), Brian (Goodman and Brette, 2008)
and MOOSE (Ray and Bhalla, 2008) simulators. An overview over existing software interfaces to hardware
neural network models is given in Section 3.1.2.

42

3.1 Operation Paradigms� Experiment setups can be easily ported from at least one established software simula-
tor to the hardware system and vice versa. The results from both back-ends can be
compared in terms of a well-defined translation concept.� Experiments can be performed by computational neuroscientists, who possibly have no
or just a weak background in hardware engineering. Hence, the interface software must
hide as many hardware-specific details as possible.� The computation speed of the hardware devices is exploited by:

– Acquisition of large statistics for every experiment. This is a weak point in many
simulation experiments, and it is particularly important for analog hardware which
does never perform two perfectly identical runs (see Section 4.2.2).

– Searches for optimal configurations in large parameter spaces.

– Emulation of long experiment durations. Especially due to the implemented synap-
tic plasticity principles (see Section 2.1.3), the FACETS hardware systems are
predestined for studying long-term learning development.

– Running experiments interactively. Since the on-chip execution time of typical
experiments is extremely short on scales of human perception, intuition-guided
manual parameter tuning with quasi-instantaneous feedback of results provides a
novel way of experimenting and can help to explore and understand the possible
dynamics of a setup (see Section 3.2.3).� The chip-based FHW-1 system is a prototype for the FHW-2 wafer-scale system. While

the latter will provide a substrate with sufficiently many neuron and synapse circuits
to set up architectures relevant for topical neuroscientific research, the relatively small
chip-based system used throughout this thesis fulfils other main purposes:

– To test and specify those electronic circuits which will be used also in the large-
scale system, i.e. to either prove their functionality or to revise and re-test the
design until it works.

– To test support hardware techniques (see Section 2.1.5).

– To develop and test software concepts and to acquire operation experience.

– To develop biological interpretation schemes and, within this scope, to explore the
configurability of the neuron and synapse models.

These scenarios imply many requirements for the control interface, which are all considered
by the actually implemented software framework (see Section 3.2).

3.1.2 Existing Hardware Interfaces

Descriptions in the literature of existing software interfaces to neuromorphic hardware
systems are rare. In (Merolla and Boahen, 2006), the existence and main features of a GUI2

for the interactive operation of a specific neuromorphic hardware device are mentioned.
Much more detailed software interface reports are found in (Dante et al., 2005). The au-

thors describe a framework which allows the exchange of AER3 data between hardware and
software while experiments are running. The framework includes a dedicated PCI board

2Graphical User Interface
3Address Event Representation

43

3 Software and Techniques

which is connected to the neuromorphic hardware module and which can be interfaced to
Linux systems by means of a device driver. A C-library layered on top of this driver is avail-
able. Using this, a client-server architecture has been implemented which allows the on-line
operation of the hardware from within the program MATLAB. The use of MATLAB im-
plies interpreter-based usage, scripting support, the possible integration of C and C++ code,
optional graphical front-end programming and strong numerical support for data analysis.
Nevertheless, the framework is somewhat stand-alone and does not facilitate the transfer of
existing software models to the hardware.

In (Oster et al., 2005), an automatically generated graphical front-end for the manual
tuning of hardware parameters is presented, including the convenient storing and loading of
configurations. Originally, a similar approach was developed for the FHW-1 system, too, see
(Brüderle et al., 2007). Manually defining parts of the enormous parameter space provided by
such a chip via sliders and check-boxes can be useful for intuition-guided hardware exploration
and circuit testing, but it turns out to be rather impractical for setting up and controlling
large network experiments as usually performed by computational neuroscientists.

3.1.3 Back-End Agnostic Description and Analysis

Multiple projects and initiatives provide databases and techniques for sharing or unifying
neuroscientific modeling code, see for example the NeuralEnsemble initiative (Neural Ensem-
ble, 2008), the databases of Yale’s SenseLab (Hines et al., 2004) or the software database of
the International Neuroinformatics Coordination Facility (INCF Software Database, 2008).
Creating a bridge from the hardware interface to these pools of modeling experience will
provide the important possibility of formulating transparent tests, benchmarks and requests
that will boost further hardware development and its establishment as a modeling tool. The
concept of integrating the FHW-1 interface into the simulator-independent modeling language
PyNN, which will be introduced below, shall implement such a inter-community bridge.

Choosing the Programming Language Python

The Integration Challenge As shown in Section 2.1.5, operating the FHW-1 system involves
multiple devices and mechanisms, e.g. a Message Queue communication with a user-space
daemon that accesses a PCI board, TCP/IP socket connections to an oscilloscope, software
modules that control the operation of the backplane, the Nathan board and the VLSI chip it-
self, and high-level software layers for experiment definition and flow control. On the software
side, this multi-module system utilizes C, C++ and Python, and multiple developers from
different institutions are involved in the development and maintenance of the code, applying
various development styles such as object-oriented programming, reflective programming or
sequential driver code. The software has to follow the ongoing system development, including
changing and improving FPGA controller code and hardware revisions with new features.

This complexity and diversity argues strongly for a top-level software framework, which has
to be capable of efficiently integrating all modules, supporting object-oriented and reflective
structures, and providing the possibility of rapid prototyping in order to quickly adapt to
technical developments at lower levels.

Python: An Efficient Glue Language With an interface to the FHW-1 system which is
based on the programming language Python (Rossum, 2000; Python, 2009), all scenarios

44

3.1 Operation Paradigms

listed in Section 3.1.1 are realizable. Python itself is an interpreter-based language with
scripting support, thus it is able to provide a software-simulator-like interface. It can be
efficiently connected to C and C++, for example via the package Boost.Python (Abrahams and
Grosse-Kunstleve, 2003). This is important because the low-level software modules for direct
communication with the support hardware framework (see Section 2.1.5), many of which have
been developed and debugged over years, are written in C and C++. Re-implementing them
would cause an unreasonably large effort and new possible error sources. Python supports
sequential, object-oriented and reflective programming and it is widely praised for its rapid
prototyping. Due to the possibility for modular code structure and embedded documentation,
it has a high maintainability, which is essential in the context of a quickly evolving project
with a high number of developers.

In addition to its strengths for controlling and interconnecting lower-level software layers,
it can be used to write efficient post-processing tools for data analysis and visualization,
since a wide range of available third-party packages offers a strong foundation for scientific
computing (Oliphant, 2007; Jones et al., 2001; Langtangen, 2008), plotting (Hunter, 2007)
and graphics (Summerfield, 2008; Lutz, 2001, chapter 8). Hence, a Python interface to the
hardware system would already greatly facilitate modeler adoption.

Still, the possibility of directly transferring existing experiments to the hardware is even
more desirable; a unified meta-language usable for both software simulators and the hard-
ware could achieve that. Thus, the existence and growing acceptance of the Python-based,
simulator-independent modeling language PyNN (see following section and PyNN, 2008; Davi-
son et al., 2008) was the strongest argument for utilizing Python as a hardware interface,
because the subsequent integration of this interface into PyNN depended on the possibility
of accessing and controlling the hardware via Python (Brüderle et al., 2009).

Alternatives to Python Possible alternatives to Python as the top layer language for the
hardware interface have been considered and dropped for different reasons. For example,
C++ requires a good understanding of memory management, it has a complex syntax, and,
compared to interpreted languages, has slower development cycles. The first GUI-based
interface to the FHW-1 system was pure C++ (Brüderle et al., 2007), but it turned out to be
by far not as flexible as the Python approach followed since then, and implementing a similar
scripting support would have cost significantly more effort. Interpreter-based languages such
as Perl or Ruby also provide plotting functionality, numerical packages (Glazebrook and
Economou, 1997; Berglihn, 2006) and techniques to wrap C/C++ code. Eventually, Python
was preferred because it is considered to be easy to learn and to have a clean syntax, but
especially because of the wish to be able to integrate this interface into the PyNN framework.

PyNN and NeuroTools

The advantages of Python as an interface and programming language are not limited to
hardware back-ends. For the software simulators NEURON, NEST, PCSIM, MOOSE and
Brian, Python interfaces exist. This provides the possibility of creating a Python-based,
simulator-independent meta-language on top of all these back-ends. In the context of the
FACETS project (see Section 1.4), the open-source Python module PyNN has been developed
which implements such a unified front-end (PyNN, 2008; Davison et al., 2008).

Figure 3.1 illustrates the hierarchical structure of PyNN. For multiple simulation/emulation
back-ends, it provides one unified access framework. If a neural network model is described

45

3 Software and Techniques

in pure PyNN, the user only has to choose on which back-end it eventually will be executed.
This is done by selecting one of the provided simulator-specific PyNN modules, which then
automatically performs the translation of the PyNN model description into code that can
be handled by the Python interpreter of the individual back-end. This Python interpreter
actually operates the simulator kernel which is implicitly chosen with the PyNN module.
Such a module selection is done with one line of PyNN code and allows to easily switch from
one back-end to another.

PyNN

pyNN.pcsim

PyPCSIM

PCSIM

pyNN.brian

Brian

pyNN.
hardware.stage1

PyHAL

FACETS

Stage 1

Hardware

pyNN.nest

PyNEST

NEST

SLI

pyNN.neuron

nrnpy

NEURON

HOC

Simulator−specific

PyNN module

Python interpreter

Native interpreter

Simulator kernel

Figure 3.1: PyNN architecture: For the software simulators NEST, PCSIM, Brian, NEURON and
for the FHW-1 system, Python interpreters exist which communicate directly with the kernels or, as a
further option for NEST and NEURON, via their native interpreters. PyNN is a unified interface to
all these simulator- and emulator-specific Python interpreters. Back-end specific PyNN modules im-
plement the translation to and from PyNN functions and classes to the individual lower-level software
layers (black arrows denote direct communication).

Currently, PyNN supports the software simulators NEST, PCSIM, Brian and NEURON,
plus the FHW-1 system. Additionally, a module exists which generates NeuroML (Goddard
et al., 2001) descriptions from PyNN code. The markup language NeuroML is a descriptive
alternative to the sequential and/or object-oriented model unification approach of PyNN and
can be interpreted, among others, by NEURON.

For the supported simulation back-ends, PyNN provides:� A common interface.
PyNN has a low-level procedural interface, i.e. a set of Python function declarations for
the creation, manipulation, connection and operation of individual cells and synapses.
For model descriptions on a higher abstraction level, PyNN also provides an object-
oriented interface, i.e. classes like Populations and Projections, representing populations
of neurons and connections between those. Only a fraction of the functionality of these
functions and classes is actually implemented in PyNN. Most of it has to be realized for
every individual underlying back-end.� Built-in neuron and synapse models.

46

3.1 Operation Paradigms

These models are standardized across the supported simulators. A certain PyNN built-
in model represents the same set of differential equations on every supported back-end,
and when given a set of parameter values, the corresponding translation to the individual
back-ends will result in identical or, within the limits of numerical differences, very
similar simulation output.� Consistent handling of physical units.
A typical problem which often complicates the transfer of a model from one simulation
software to another is the different handling of units. For example, in the simulator
NEURON, the value for a membrane capacitance is usually passed in nF, while in
NEST the expected unit is pF. PyNN provides a clear set of units that are to be used
for its various functions and cell types and performs the correct translation to and from
the individual back-ends.� Consistent handling of (pseudo-)random numbers.
The generation of random numbers is an essential mechanisms in the realization of
typical neural network models. External stimulation data has to be created according to
certain distributions, e.g. Poisson-type spike trains, and the connectivity of the network
is usually described by means of connection probabilities, i.e. the existence of every
possible synapse has to be decided individually based on this information. If a certain
experiment shall be repeated on different simulation or emulation back-ends, then the
random number generation process has to be unified in order to have exactly the same
stimuli to the network and in order to have an identical architecture. Usually, every
back-end provides its own random number generation mechanisms, but PyNN provides
the option to use the same, well-defined generator for all back-ends, resulting in the
desired transparency and portability of random numbers.

With these features, PyNN offers the possibility of porting existing experiments between the
supported software simulators and the FHW-1 system and thus to benchmark and verify the
hardware model. In Section 6.1.2, an example PyNN script is presented, which is executed
on both the FHW-1 and the NEST back-end.

On top of PyNN, a library of analysis tools called NeuroTools (NeuroTools, 2008) is under
development, exploiting the possibility of a unified work flow within the scope of Python (see
also Section 3.2.3). Experiment description, execution, result storage, analysis and plotting
can be all done from within the PyNN and NeuroTools framework. Independent of the used
back-end, all these steps have to be written only once and can then be run on each platform
without further modifications.

Especially since the operation of the accelerated hardware generates large amounts of data
at high iteration rates, a sophisticated analysis tool chain is necessary. For the experimental
work presented in this thesis and for every possible PyNN user, making use of the unified
analysis libraries based on the PyNN standards (e.g. NeuroTools) avoids redundant develop-
ment and debugging efforts. This benefit is further enhanced by other third-party Python
modules, like numerical or visualization packages (Oliphant, 2007; Numpy, 2008; Jones et al.,
2001; Hunter, 2007).

PyNN for Hardware Calibration

The experiment portability inherent to the PyNN approach is the essential fundament
upon which most of the calibration routines for the FHW-1 system (see Section 5.2) have been

47

3 Software and Techniques

developed. Based on PyNN, a software simulator which implements an appropriate model
can be utilized for direct output comparisons even for complex setups. For two main reasons,
such a reference mechanism can be extremely helpful when working with the FHW-1 system:
First, certain properties that need to be calibrated cannot be observed directly from the
hardware, e.g. the synaptic conductance courses (see Section 2.1.2). Hence, these properties
need to be derived using indirect access methods (see Section 4.1), and for those, the desired
model output is not always trivial to determine. A corresponding simulation based on the
PyNN script – which then has been written for the hardware anyway – provides reliable
target values. And second, a calibration scheme which isolatedly steps from circuit to circuit
might neglect existing interferences and activity dependencies intrinsic to the hardware model
(see Section 4.3). Therefore, in order to increase the validity of a calibration, it should be
performed with a setup as similar to the planned experiment the chip is calibrated for as
possible. This increases the problem of predicting the correct output even more, and reference
software simulations based on the same PyNN descriptions become an indispensable tool.

3.1.4 Reference Software Simulators

In different sections of this thesis (e.g. in Section 5.2.4, 6.2.1 and 6.2.2), the following two
software simulators are used for the kind of reference experiments indicated in Section 3.1.3.

Neural Network Simulator NEST

The software simulator NEST4 (Diesmann and Gewaltig, 2002; Gewaltig and Diesmann,
2007; Eppler et al., 2008; The NEST Initiative, 2009) is a framework for simulating large
networks of biologically realistic neurons. It provides various synapse types, recording devices
and neuron models and can be extended by user-written modules.

The neuron model utilized in all NEST simulations presented throughout this thesis is
described in detail in Muller (2006). It exactly implements the conductance-based leaky I&F
point neuron model as approximated by the FHW-1 circuitry (see Equations 2.1 and 2.2), with
conductance course kernels shaped as quantal increases followed by an exponential decay
(see Equation 1.4). The optional mechanisms of spike frequency adaptation and relative
refractoriness have been disabled, because they are not supported by the hardware.

NEST can be interfaced through the simulator-independent scripting language PyNN (see
Section 3.1.3 and Davison et al., 2008; PyNN, 2008), allowing for a unified description and
analysis of all experiments performed both in NEST and with the hardware (Brüderle et al.,
2007).

Neural Network Simulator PCSIM

The software simulator PCSIM5 (Pecevski et al., pending publication) is “a tool for dis-
tributed simulation of heterogeneous networks composed of different model neurons and sy-
napses” (Pecevski and Natschläger, 2008). Like NEST, it provides modules which simulate
exactly the model approximated by the hardware, including the exponentially decaying synap-
tic conductance courses (see Equations 2.1, 2.2 and 1.4). For the experiments presented in

4NEural Simulation Technology
5Parallel neural Circuit SIMulator

48

3.1 Operation Paradigms

Section 6.2.2, this software simulator has been utilized, because within its framework a short-
term synaptic plasticity module has been implemented by Johannes Bill and Klaus Schuch
(Bill, 2008) which mimics the optional hardware behavior of synaptic depression and facil-
itation (see Section 2.1.3). Just like NEST, PCSIM can be interfaced through PyNN (see
Section 3.1.3 and Davison et al., 2008; PyNN, 2008).

3.1.5 Neuron and Synapse Model Mapping

In Section 2.1.2, the differential equations are summarized which describe the hardware
neuron and synapse model. In Section 2.1.4, the hardware parameters that actually have to be
written to a FHW-1 device are listed, including the hardware voltages which correspond to the
biological neuron parameters. In this section, a set of mechanisms is explained that has been
developed in order to provide a biological interpretation of the measured hardware variables,
and to control them with parameters that are given in a purely biological nomenclature.
Therefore, the deployed neuron voltage parameter translations, synaptic weight translations
and time transformations are explained in the following. The mapping of network topologies
is described in Section 3.1.6.

Neuron Parameter Mapping

The possibility to give a biological interpretation to the developing voltages of a hard-
ware neuron cell is the essential feature of analog or mixed-signal neuromorphic hardware.
Nevertheless, the applied translation procedure is not necessarily trivial.

Programmable Voltage Generators The neuron model parameters El, Ee and Ei as well
as Vreset and Vthresh are programmable voltages generated on-chip by dedicated circuits (see
Section 2.1.4, “Neuron Voltage Parameters”). For a certain range of input values Uin to these
circuits, the generated voltages Uout depend linearly on the written value, while outside of
this range the output voltage saturates on constant values:

Uout(Uin) =

Umin
out , if Uin < Ulower

Uoff + mu · Uin , if Ulower ≤ Uin ≤ Uupper

Umax
out , if Uupper < Uin

. (3.1)

Umin
out and Umax

out limit the linearly programmable range, and Uoff and mu are the offset and
the slope of the linear dependency. They are determined by a calibration routine, see Sec-
tion 5.2.1. While for Uin values from 0V to 2.5V (HVD) can be written, typical values for
the output minimum and maximum lie around Umin

out ≈ 0.6V and Umax
out ≈ 1.6V (HVD). For

the FHW-1.3-No.18 chip, for example, the mean and the standard deviation of Umin
out over all

voltage generators as found by the calibration routine is 〈Umin
out 〉 ± σ(Umin

out) = (0.57 ± 0.02)V
(HVD). For the same chip, the routine found 〈Umax

out 〉 ± σ(Umax
out) = (1.625 ± 0.002)V (HVD),

〈mu〉 ± σ(mu) = 0.948 ± 0.005, and 〈Uoff〉 ± σ(Uoff) = (0.08 ± 0.02)V (HVD).

Assumptions For standard experiment configurations, the following assumptions are made
in order to achieve a hardware-to-biology voltage mapping which exploits as much of the
available dynamic range as possible:� The neuron voltage parameters with the smallest values are either the reset potential

Vreset or the inhibitory reversal potential Ei.

49

3 Software and Techniques� The neuron voltage parameters with the largest value is always the excitatory reversal
potential Ee.� The firing threshold Vthresh has a value between those two extrema.� The neuron resting potential has a value between Vthresh the maximum of Vreset and Ei.

These assumptions are based on typical parameter values used in cortical models, e.g. in
(Kumar et al., 2008; Brette and Gerstner, 2005; Sussillo et al., 2007; Shelley et al., 2002).
These have led to the default neuron voltage parameter set applied to most experiments
presented in this thesis (see Appendix A.1): Vreset = Ei = −80mV, Vrest = −75mV, Vthresh =
−55mV and Ee = 0mV (BVD).

Finding the Lowest Possible Neuron Voltages For a neuron configuration according to
the model defined in Equation 2.1 with a biologically relevant configuration, there are two
candidates for the lowest voltage parameter: Vreset and Ei. For every FHW-1 chip, a total
of four values per voltage parameter exist: All neurons on the left network block with even
indices share one value, those with odd indices share another, and the same accounts for the
right network block. Correspondingly, there exist four minimum output values for the voltage
generators of Vreset and four minimum output values for the voltage generators of Ei. The
maximum of these eight minimum output values is considered as the minimum voltage Vlower

a neuron on this chip can access.

Finding the Highest Possible Neuron Voltages There is only one candidates for the highest
voltage parameter: Ee. Again, for every FHW-1 chip four values exist for this parameter.
Correspondingly, there exist four maximum output values for the voltage generators of Ee.
The minimum of these four maximum output values is considered as the maximum reference
voltage Vupper a neuron on this chip can have.

There is one further constraint to be considered: The range within which the emulated
membrane potential V (t) can evolve has a design-inherent upper limit of Vmax ≈ 1.2V (HVD,
Schemmel, 2008). Since the value of this limit can vary from chip to chip and from neuron
to neuron, a strict upper limit for the firing threshold of V max

thresh = 1.1V (HVD) is defined.

Determining the Final Voltage Mapping One requirement is strictly claimed: The transla-
tion of the membrane potentials emulated by the hardware neuron circuits into their biological
interpretation has to be linear – this is what the hardware model has been designed for. Still,
this does not necessarily mean that all reference voltages (reversal potentials, firing thresh-
old, reset potential) have to be arranged with a linear correspondence to the biological model
either.

Two voltage ranges determine the possible membrane potential states of a hardware neuron:
The limits for the programmable voltage parameters of a neuron, Vupper and Vlower, span a
programmable range ∆Vprog. The voltage range ∆Vmem which is actually accessible by a
membrane potential is limited by V max

thresh and Vlower. Figure 3.2 illustrates these two nested
regions.

For typical values in biological models, the ratio between the super-threshold and the sub-
threshold voltage range

Rsuper
sub ≡

Ee − Vthresh

Vthresh − Ei

(3.2)

50

3.1 Operation Paradigms

is larger than 2/1 (see Figure 3.2). In hardware, though, the corresponding ratio is less
than 1/2 due to the limited ranges ∆Vprog and ∆Vmem. This discrepancy has been technically
solved by implementing very strong synaptically induced conductances towards the excitatory
reversal potential, resulting in realistic driving forces towards values above the firing threshold.
And since the firing mechanism interrupts any evolution of the membrane potential above the
firing threshold, the resulting membrane behavior is a good approximation of a biologically
realistic situation with a larger value of Ee, but with lower synaptic conductances.

Vreset

Vthresh

Vrest

Ei

Ee

approx. 25mV

approx. 55mV

approx. 400mV

approx. 200mV

accessible by

hardware

membrane

potential

programmable

voltage parameter

range

Biological

Voltage Domain (BVD)

Hardware

Voltage Domain (HVD)

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
V

(t
)

Time

Vprog

Vmem

Figure 3.2: Schematic of the mapping between biological and hardware voltages. The voltage param-
eters of an evolving neuron membrane potential V (t) (black trace) are Ei, Vreset, Vrest, Vthresh and Ee

(see Equation 2.1). The hardware does not emulate the super-threshold dynamics of an action poten-
tial (see Section 2.1.2). The sub-threshold voltage range of the biological domain is linearly mapped to
the voltage range ∆Vmem which is accessible by a hardware membrane potential. The super-threshold
parameter Ee is handled differently, because the programmable voltage parameter range ∆Vprog in
hardware does not provide values that are large enough to continue the linear sub-threshold mapping.
See text for the corresponding technical solution.

Considering all constraints and hardware-specific issues, the final voltage mapping is de-
termined as follows:� Choose a ratio Rsuper

sub for the hardware. It has to be kept fixed for all following cali-
brations and experiments in order to provide reproducible efficacies for inhibitory and
excitatory synapses.� Check if Etest

e ≡ V max
thresh + Rsuper

sub · (V max
thresh − Vlower) < Vupper.

– If yes, set Vthresh = V max
thresh and Ee = Etest

e .

– If no, set Vthresh = Vlower + (Vupper −Vlower)/(R
super
sub + 1) and Ee = Vupper, i.e. decrease

Ee to the largest available value and decrease Vthresh such that the ratio Rsuper
sub is

met.

51

3 Software and Techniques

This procedure guarantees the preservation of Rsuper
sub while not violating the constraints im-

posed by V max
thresh and by Vlower and Vupper. For all experiments and calibration runs on FHW-1.3

system presented in this thesis, the described method with a value of Rsuper
sub = 2/3 has been uti-

lized. The fine-tuning of inhibitory and excitatory synapse efficacies still has to be performed
by an adequate calibration routine (see Section 5.2.4), but the chosen mapping provides a
starting point from which such a routine functions well.

Mapping of Synaptic Weights

As explained in Section 2.1.2, the synaptic signal transmission in the FHW-1 system is
comprised of three stages:� The output of a pre-synaptic neuron or an external spike source connects to a so-called

synapse driver. Every time such a driver receives a digital spike, it generates a linearly
rising and then linearly falling voltage ramp.� Every synapse driver connects to so-called synapse nodes, where the generated voltage
ramps are transformed into currents. The amplitudes of these exponentially rising and
exponentially falling current courses depend on the amplitude of the voltage ramp, but
also linearly on the weight stored as a four-bit value in every synapse node. The time
constants of the current courses are determined only by the durations of the linear
voltage ramps.� These currents are routed to post-synaptic neuron circuits, where they control the con-
ductance between the neuron membrane and a reversal potential. Every neuron has
two input current lines, one for a conductance towards its excitatory reversal potential,
and one for a conductance towards its inhibitory reversal potential. Each line receives
and sums up the currents from many synapse nodes.

With the rising part of the ramp being configured to be as short as possible, the resulting
synaptic response kernel in the FHW-1 systems can be described by a quasi-instantaneous
increase of conductance followed by an exponential decay back to zero. Hence, in typical
biological models which utilize the same kernel (see e.g. Sussillo et al., 2007 and Maass et al.,
2004a), for every synapse the amplitude and the time constant of the exponential decay are
the only two parameters given. In the context of such models, this kernel amplitude is often
referred to as the synaptic weight.

Equation 2.2 reflects the hardware-specific separation of the synaptic conductance course
amplitude into two factors:

gamp(t) = ω(t) gmax(t) , (3.3)

where gmax(t) is the contribution of the voltage ramp generated in the synapse drivers, and
ω(t) is the four-bit weight in the synapse nodes.

The synapse driver contribution is utilized to provide a basic biology-to-hardware transla-
tion factor T bio-hw. A method to determine the very device-specific value of T bio-hw is introduced
in Section 5.2.4. But since every synapse driver serves many synapse nodes, this is only a
global pre-transformation between the two domains. The heterogeneity of the synaptic weight
values gbio

s in a biological model is mainly reflected by individually different values of ωs:

ωs = C (gbio
s · T bio-hw) , with ωs ∈ {0, 1, ..., 15} , (3.4)

52

3.1 Operation Paradigms

where C is a function that performs the discretization and the limiting of the product gbio
s ·

T bio-hw necessary due to the four-bit nature of the hardware weights. The following technique
is applied in order to minimize the distortions caused by C, i.e. to provide a maximally fair
mapping from the biological to the hardware weight space:

For every pre-translation ω̃s ≡ gbio
s · T bio-hw, a new random number r is chosen from a

uniform distribution between 0 and 1. Then ωs is determined as follows:

ωs =

{
⌈ω̃s⌉ if r < (ω̃s − ⌊ω̃s⌋)

⌊ω̃s⌋ else .
(3.5)

The Gaussian brackets ⌈ ⌉ and ⌊ ⌋ indicate that the embraced argument is rounded up
respectively down.

This method introduces a random feature which, for a large number of synapse mappings,
provides the correct average synaptic weights like in the biological original.

Mapping of Timescales

The hardware is designed to emulate the membrane potentials of cortical neurons with a
certain speedup factor. This factor is determined by two time constants that are intrinsic to
the hardware circuits and by the desired corresponding values in the biological model: The
membrane time constant τm = Cm

gl
and the decay time constants of the synaptic conductance

courses (see Section 2.1.2).

Typical membrane time constants for conductance-based I&F neuron models are found
between 10ms and 20ms (BTD) (Kumar et al., 2008; Brette and Gerstner, 2005; Sussillo
et al., 2007; Shelley et al., 2002). Synaptic decay time constants usually cover a much wider
range, with typical values for excitatory synaptic conductance decays τsyn,E chosen between
0.3ms (Kumar et al., 2008) and 4ms (BTD) (Sussillo et al., 2007; Shelley et al., 2002), while
inhibitory synapses usually are configured to be a factor 2 to 4 slower.

Hence, an ideal hardware system would provide a membrane time constant which was
adjustable within some range [τmin

m , τmax
m], with τmax

m ≥ 2 τmin
m . In such a system, the synaptic

decay time constants should then be adjustable within [τmin
syn , τmax

syn], with τmin
syn ≤ 0.03 τmin

m and
τmax
syn ≥ 2 τmin

m .

For the FHW-1 chips, [τmin
m , τmax

m] has been found to be approximately [50 ns, 150 ns] (HTD,
see Section 4.3.5). This suggests a HTD-to-BTD translation factor of 1 · 105 to 2 · 105. But the
accessible synaptic time constants in the FHW-1 systems are in the range of approximately
[0.3µs, 1.0µs] (HTD, see Section 4.3.5). This is not in accordance with the requirements
claimed above – a range of approximately [2 ns, 100 ns] would have been appropriate. In
Section 4.3.5, this problem is discussed, and the finally chosen speedup factor of 105 is moti-
vated.

3.1.6 Network Topology Mapping

A major constraint of neuromorphic hardware systems compared to software simulators
is the strictly limited number of neurons and synapses that can be modeled. There is a
well specified number of circuits per device which can emulate neural behavior. Hence, for a
given abstract description of a biological network model, e.g. in form of a PyNN script (see
Section 3.1.3), mapping this network onto the available number of neural circuits and the

53

3 Software and Techniques

available connectivity circuitry is a crucial step within the full process of giving a biological
interpretation to the hardware dynamics.

Designing large-scale neuromorphic hardware is always a trade-off between providing con-
nection flexibility and achieving a high expected resource exploitation. Many assumptions
regarding the kind of models to be emulated by the hardware have to be considered, and one
important reason for the complexity of this connectivity challenge is the discrepancy between
the 3D nature of cortical architectures and the basically 2D nature of CMOS technology. It
is clear that for any reasonably chosen balance between flexibility and resource efficiency of a
hardware solution, networks can be found that cannot be mapped to the provided structures
perfectly.

But if a certain functionality inherent to a given cortical architecture is assumed to tolerate
the loss of individual connections or even cells, as it usually is the case for any kind of
population coding (Georgopoulos et al., 1986; Jaeger et al., 2007; Maass et al., 2002; Yamazaki
and Tanaka, 2007), then many such network architectures can be mapped to the limited
resources of a hardware device, e.g. within a given synapse loss tolerance.

Mapping in the Chip-Based System For the FHW-1 system, which serves as a prototype
for the much larger wafer-scale FHW-2 system currently under development, the available
neural substrate is in the order of a few hundred neurons per chip (see Section 2.1.1), and its
stimulation and feedback infrastructure is rather simple, at least compared to the multi-level
signal routing scheme of the FHW-2 system (see Section 2.2). Thus, mapping a given biological
network to an FHW-1 chip with a minimum of topological distortions is something that can
still be mastered by a human user. Still, the software framework for this system (which will
be described in Section 3.2) provides some basic mapping features:� The neurons of a biological network description are mapped to the available hardware

neuron circuits one by one, i.e. the chip resources are filled up sequentially.� A selectable mapping offset can be applied to this procedure, i.e. the filling starts at a
configurable hardware index.� Neurons which have been determined to be unusable by means of a calibration criterion
(see Section 5.2.2) can be excluded from the set of available hardware neurons, i.e. the
filling procedure will skip those circuits.

Mapping in the Wafer-Scale System For the FHW-2 system, though, the pure number
of neurons and synapses, the different possible levels of inter-neuron connections and the
inter-dependencies of resource allocations and of parameter configurations make a much more
sophisticated software mapping tool inevitable.

As a part of the FHW-2 operating framework, Karsten Wendt from the Technical University
of Dresden has developed a topology and parameter mapping strategy based on the repre-
sentation of both the biological model and the hardware substrate as graphs (Wendt et al.,
2008; Ehrlich et al., 2008). This so-called GraphModel mapping approach is schematically
illustrated in Figure 3.3. The abstract biological model, e.g. originally described in a PyNN
script, is converted into a hierarchical graph structure. A root node represents the biologi-
cal model as a whole and has various child nodes connected via so-called hierarchical edges,
such as a neuron top-level node, a neuron parameter top-level node and a synapse parameter
top-level node.

54

3.1 Operation Paradigms

The children of the neuron top-level node are all neurons within the biological model, again
connected to their parent node via hierarchical edges. Synaptic connections between these
neurons are represented by synapse edges between the neuron nodes. Every neuron node and
every synapse edge is connected to a corresponding parameter node via a so-called hyper-
edge. Parameter nodes can be shared by neurons or synapses, thus allowing for a possibly
massive reduction of data redundancy, which can become extremely important for an efficient
handling of such graphs in the working memory of a utilized computer. All parameter nodes
are connected via hierarchical edges to the corresponding top-level parent nodes.

The hardware substrate onto which the biological network shall be mapped is also repre-
sented in form of a graph. This graph represents the hardware hierarchy, again starting from
a full system root node. Depending on the kind of underlying device, the lower hierarchical
levels represent single chips (for the FHW-1 system) or full wafers (for the FHW-2 system).
Sub-units like the network blocks of the FHW-1 chips or the HICANN modules of the FHW-2

wafers are represented by own nodes. The neuron circuits are children of these sub-units. At
different levels of this hardware hierarchy, the available connectivity infrastructure is incor-
porated by specific nodes and edges. Nearly all hardware nodes represent hardware-specific
configuration space, i.e. parameter memory that has to be filled with reasonable values.

The beneficial idea of the GraphModel mapping approach is that, based on this well de-
fined representation, a mapping algorithm can operate and establish so-called mapping edges
between neurons in the biological model and neuron circuits in the hardware model. This
implies further mapping edges between the corresponding neuron parameter nodes and the
parameters intrinsic to most of the hardware nodes. Once all mapping edges have been estab-
lished by means of an optimization criterion pursued by the mapping algorithm, the transfer
of the biological parameter data into the corresponding hardware parameter space can be
started. Thanks to the unified graph representation, the optimization scheme of the mapping
algorithm can be implemented in a very modular and thus exchangeable fashion, allowing to
apply different optimization strategies for different architectures (see Section 3.2.2).

55

3 Software and Techniques

Neuron
Neuron

Biological

Model

Neurons

Neuron

Parameters Synapse

Parameters

FACETS

Hardware

System

Wafer
Bus

Sub−Unit

Connection

Sub−Unit

WaferChip or

Wafer

Connection

Connection

Neuron

M
a
p
p
in

g

A
s
s
ig

n
m

e
n
t

hierarchical edges

hyper−edge

mapping edges

synapse edge

Figure 3.3: Schematic of the topology and parameter mapping strategy between a biological net-
work description and a neuromorphic hardware substrate as developed by K. Wendt (TU Dresden).
Both the biological network and the hardware system are represented by hierarchical graphs. In the
biological model, neurons and synaptic connections are incorporated as nodes and edges, while the
corresponding parameter sets are nodes themselves, connected to their owners via hyper-edges. The
hardware graph represents the hierarchical structure of the hardware system as close as possible, with
each node standing for a hardware unit that provides parameter memory to be filled with reasonable
values. Connectivity infrastructure such as routing switches and buses form an essential part of these
configurable hardware nodes. A mapping algorithm operates on this graph representation and es-
tablishes mapping edges between the biological and the hardware nodes by means of an optimization
criterion. Figure according to (Müller, 2008).

56

3.2 Software Architecture

3.2 Software Architecture

A Yin for the Yang A hardware device that is as complex as the FHW-1 or the FHW-2 sys-
tems and that is designed to be operated via a connected host computer is useless without
an appropriate operating software. Every hardware feature has to be represented by a corre-
sponding software mechanism, otherwise it will not be controllable or observable. Vice versa,
such an operating software has to rely on the functionality of certain hardware mechanisms,
possibly including worst case scenarios or fluctuation assumptions, otherwise its execution
will fail. Hard- and software form one unit, each of both being crucially dependent on the
functionality of the other.

In this section, the software framework is presented that has been developed to actually
implement the methods and paradigms outlined in Section 3.1. The technologies, third-party
software modules and build strategies are summarized in Section 3.2.1. The complete stack of
software layers that provide the final integration of the FHW-1 system into the PyNN frame-
work (see Section 3.1.3) is specified in Section 3.2.2. Additional software modules which ex-
tend the core framework are also described, such as higher-level analysis tools (Section 3.2.3),
multi-user management (Section 3.2.4), an analog unit-test framework (Section 3.2.5) and a
3D visualization of the mapping from abstract network models to hardware (Section 3.2.6).

3.2.1 Utilized Technologies

The following software technologies are the principal tools utilized for the development and
maintenance of the user interface to the FHW-1 and the FHW-2 system:� The programming language C++ (Stroustrup, 2000).

This general-purpose, so-called mid-level language is an extension of the programming
language C (Kernighan and Ritchie, 1978). C++ supports procedural, generic and
object-oriented programming. It can be used to do both machine-oriented low-level
system programming and high-level user application development. It is well suited for
complex projects due to, among others, its sophisticated encapsulation methods.� The programming language Python (Rossum, 2000).
Python is a general purpose high-level language which supports, among others, object-
oriented and functional programming paradigms. It has an automatic memory manage-
ment and a fully dynamic type system. It provides an interactive interpreter and script-
ing support. Its clear and minimalistic core syntax, its comprehensive standard library,
its community-based development model and the resulting large amount of available,
well maintained third-party packages make it well suited for the high-level interfacing
of neuromorphic systems. See Section 3.1.3 for more application-specific advantages of
Python.� The Boost.Python library (Abrahams and Grosse-Kunstleve, 2003).
Boost is a collection of free, peer-reviewed C++ libraries, many of which are candidates
for future extensions of the C++ standard library. Boost.Python provides methods
and classes for the interoperability of C++ and Python. This includes a framework for
exposing C++ classes and functions to Python (see Section 3.2.2 for a corresponding
application).

57

3 Software and Techniques� The GNU make project building tool (GNU).
The make tool is widely used to control and administer the compilation of source code
into executables or into libraries which can be used by other programs. It can keep
track of changes, inter-dependencies and include hierarchies of source files and control
the actual flow of compilation and linking. The make tool is not limited to specific
programming languages, nor is it limited to compiling code.� A purchased, proprietary device driver for the communication with a PCI card Jungo
Ltd, 2007.� The Doxygen code documentation tool (van Heesch).
By adding comments with a specific syntax to the source code, Doxygen can extract
all these comments and compile a clearly arranged documentation. The format of this
output document can be HTML6 and LATEX(Lamport, 1994), among others, and in ad-
dition to the organized text blocks it generates a hyperlink structure (for the HTML
document) and inheritance diagrams. It can be extended by arbitrary extra documen-
tation material not included in the source code. All code presented in Section 3.2.2 is
explanatorily commented with this technique, the full extracted Doxygen document is
available (see Appendix A.2).� The Qt library (Nokia, 2009).
Qt is a toolkit for the development of widgets and GUIs. For this purpose, it provides a
C++ class library and supports various operating systems and graphics platforms such
as X11, Mac OS X and Microsoft Windows. In addition to the graphics development
tools, Qt provides features like XML7 parsing and thread management. Packages exist
which allow to utilize Qt via Python (Summerfield, 2008).� The OpenGL specification (OpenGL; GLProgramming) and the FreeGLUT toolkit
(FreeGLUT).
OpenGL is a specification for a platform-independent programming interface for 3D
visualizations. FreeGLUT implements a library of tools building upon this specification
which allow to create and manage windows with OpenGL content.

Except of the proprietary PCI device driver, all of these tools are publicly available and well
established in scientific programming.

6Hypertext Markup Language
7eXtensible Markup Language

58

3.2 Software Architecture

3.2.2 Software Layer Stack

In the following, the software layer stacks both for the FHW-1 system and for the currently
developed FHW-2 system are introduced. The first one is existing as described and has been
utilized for nearly all experimental work presented in this thesis. The second one is, like the
FHW-2 system itself, under development.

Operating Software for the Chip-Based System

The implemented software framework for interfacing the FHW-1 system is structured as
illustrated in Figure 3.4. A detailed description of all components depicted in the schematic
will be given in the following (see also Brüderle et al., 2009).

PyNN.hardware.stage1

PyHAL

FACETS

Stage 1

Hardware

C / C++ Communication

C++ Chip Config

Socket Communication

Trace Access

PyScope

Oscilloscope

PyNN

Boost.Python wrappers Boost.Python wrappers

Neuron

Chip Model
C++

C++ Spike Train In C++ Spike Train Out

Hardware Access

Neural Network

NeuronNeuronNeuron Control Module

C++

C / C++

Trace Manager

Python Python

Python

PythonPython

Python

Python Python

Python

Python

Figure 3.4: Schematic of the software layer stack for the operation of the FHW-1 system and its
integration into the PyNN concept (see also Figure 3.1). See text below for a detailed description of
all components.

Digital Communication Stack All digital communication between the host computer and
the connected FHW-1 system, i.e. the configuration of the chip, the sending of input spikes
and the retrieving of output spikes, is performed by the following software layer stack:� At the lowest software layer (in the figure: Communication), dedicated C and C++ code

(Fieres et al., 2004; Philipp, 2008), which is partly custom-design, partly purchased
and proprietary, encapsulates the communication between the host computer and a

59

3 Software and Techniques

controller implemented by the Nathan board FPGA (see Section 2.1.5). This includes a
stand-alone daemon which provides the transport layer for this communication channel.� A C++ class, which encapsulates the functionality of the neural network chip respec-
tively its FPGA controller (figure: Chip Model), utilizes this communication interface
for

– sending configuration data to the chip,

– sending stimulation data to the memory located on the Nathan board,

– initiating the execution of experiment runs, and

– fetching the output data generated during an experiment from the Nathan memory.� The complete set of parameter values utilized by this model to configure the chip is
encapsulated by an own, dedicated C++ class (figure: Chip Config).� Two instances of the same container class (figure: Spike Train In and Spike Train Out)
comprise the stimulation and the output events handled by the chip model.� All these low-level C++ classes are exposed to Python via so-called wrapper classes.
Based on mechanisms provided by the Boost.Python library, these wrapper classes
convert value and array types between the two programming languages, but keep their
class nature. Only those member variables and functions which are of interest for higher
level software layers are interfaced by the wrapping code. If possible, hardware-specific
details are hidden at this level by applying reasonable default values and by providing
meaningful function and argument names. All wrapped classes are compiled into one
single Python module.� A Python neural network class (figure: Neural Network) implements a description of
a network of biological neurons. It comprises multiple instances of a Python Neuron
class, which store all of their parameters and their synaptic connections to or from other
neurons. The neural network class provides functions to create, to inter-connect or to
delete these neurons.� A Python control module (figure: Control Module) provides user functions which, in a
biological terminology, allow to set up the Python neural network representation, i.e.
to create and connect neurons, to define the neuron and synapse parameters, and to
pass stimulation patterns. The control module can execute an experiment set up like
that, and it provides a user function to access the resulting output data generated by
the network.� A Python hardware access module (figure: Hardware Access) communicates with these
wrapped C++ classes. It fills the chip parameter container with the values it extracts
from the Python neural network representation. This filling procedure incorporates the
translation from biological to hardware parameters (see Section 2.1.4) and the topology
mapping described in Section 3.1.6. The same module also performs the transfer of
stimulation data into the C++ containers, including the time transformation described
in Section 3.1.5. Furthermore, it transfers all control commands like experiment start
signals, and it translates the output data from the wrapped low-level C++ container
into its biological representation.

60

3.2 Software Architecture� Together, the following objects form the so-called PyHAL8 module:

– One Python hardware access module. This module instantiates one object of each
low-level C++ class via the Boost.Python wrapper module.

– One Python neural network object.

– One Python control module.

PyHAL implements the Python interface motivated in Section 3.1.3, similar to existing
Python interfaces to the software simulators NEST or NEURON.� A PyNN module for the FHW-1 system (PyNN.hardware.stage1) instantiates and inter-
faces a PyHAL object. Building upon the functions and biological parameter arguments
provided by PyHAL, it implements the full functionality of both the procedural and the
object-oriented PyNN API9 (see Section 3.1.3). The only exceptions are certain synap-
tic plasticity mechanisms which are not yet mastered for the hardware system (see
Sections 4.3.10 and 4.3.11).

Analog Readout Stack In order to access the analog sub-threshold membrane potentials of
selected hardware neurons (see Section 2.1.5), a second software layer stack is incorporated
into the PyNN module for the FHW-1 system:� A C++ routine implements the TCP/IP socket (Braden, 1989) communication (figure:

Socket Communication) between the host computer and the oscilloscope connected to
the hardware system (LeCroy, 2005).� A C++ class buffers and provides the fetched membrane potential trace data. It also
provides functions to write configuration commands to the oscilloscope.� The C++ code is exposed to Python with the Boost.Python wrapping tool, compiled
into one dedicated Python module.� This module is utilized by a Python membrane trace manager (figure: Trace Man-
ager). It automatically performs oscilloscope configurations such that the full trace is
acquired with an optimal resolution, i.e. it adjusts time and voltage scales, and it trig-
gers necessary periodical device calibrations. It hides these device-specific procedures
and provides a user function which allows to fetch the desired trace data.� Together, this trace manager and the Python module which wraps the C++ oscilloscope
access classes form the so-called PyScope.� The PyScope module is interfaced by the PyNN.hardware.stage1 module for accessing
the analog sub-threshold membrane potential data of those neurons which were tagged to
be recorded within the PyNN code. The translation from the hardware to the biological
voltage domain as described in Section 3.1.5 is performed by the PyNN.hardware.stage1
module, which calls a corresponding translation function provided by the PyHAL hard-
ware access module. This is necessary because the hardware module keeps track of the
programmable hardware voltage parameters and the corresponding ranges which are
available for the individual chip currently in use (see Section 5.2.1).

8Python Hardware Abstraction Layer
9Application Programming Interface

61

3 Software and Techniques

Thanks to the implementation of the above software layer hierarchies up to their inte-
gration into the PyNN framework, all software modules developed on top of PyNN by the
NeuralEnsemble community (see Section 3.1.3), such as analysis and visualization tools, are
now available for the FHW-1 system. An example of a basic PyNN script is given in Sec-
tion 6.1.2. There, every single line of code is explained in detail, and the script is executed
both on the FHW-1 system and in NEST.

Hardware-Specific PyNN Issues The integration of the hardware interface into PyNN also
raises problems. Some of the PyNN API function arguments are specific to software simula-
tors. In the hardware context, they have to be either ignored or be given a hardware-specific
interpretation. For example, the PyNN function setup has an argument called timestep,
which for pure software back-ends determines the numerical integration time step. In the
PyNN module for the continuously operating hardware, this argument has been re-determined
to define the sampling rate of the oscilloscope for membrane potential recordings. Further-
more, the strict constraints regarding neuron number, connectivity and possible parameter
values require additional efforts in all software layers mentioned above, i.e. checking for vi-
olations and providing instructive warning and error messages. PyNN does not yet support
a dedicated framework for fast and statistics-intensive parameter space searches with dif-
ferential formulations of the changes from step to step, as will be needed to optimize the
exploitation of hardware specific advantages (see Section 3.1.1).

Module for Offline Script Testing Without having access to the real hardware system, it
is not possible to use the corresponding PyNN module – hence it is not available for public
download in its described form. Still, it is planned to provide a modified module on the PyNN
website (PyNN, 2008) which allows to test PyNN scripts that are intended to be run on the
hardware system. In this context, testing means to run the script, but instead of getting back
the corresponding network output, the user will get back only all warnings or error messages
which would occur with the real system. With such a mapping test module, scripts can be
prepared offline for a later, optimized hardware run.

Operating Software for the Wafer-Scale System

Just like the wafer-scale FHW-2 system itself, the corresponding software stack for its oper-
ation is under development. The basic principles and many modules of the FHW-1 software
are adopted with no or with just a few changes. PyNN will be the top-level interface for the
definition and control of neural network experiments on this hardware. A software layer stack
will provide the transformation of PyNN scripts into hardware configurations and operations.
Figure 3.5 shows a schematic of the FHW-2 software layer stack.

Like for the FHW-1 system, the core software for the FHW-2 system is written in C++,
while the high-level layers are implemented in Python. As a major difference to the FHW-1

software stack, the FHW-2 system utilizes Karsten Wendt’s GraphModel approach described
in Section 3.1.6 for the mapping of network topologies and parameters from the biological to
the hardware domain and vice versa.� The two main components of the GraphModel, a graph representing the biological

network (figure: Bio Graph) and one representing the full hardware system (figure:
Hardware Graph) are C++ classes, which both are exposed to Python with dedicated
Boost.Python wrapper classes.

62

3.2 Software Architecture

PyNN.hardware.stage2

PyHAL

FACETS

Stage 2

Hardware

Communication

PyNN

Boost.Python wrappers

Bio Graph

Spike Train Out

Hardware Graph Configurator

Wafer Config Spike Train In

Mapping

Controller

E
v
e
n
ts

 I
/O

E
x
p
e
ri

m
e
n
t

C
o
n
tr

o
l

N
e
tw

o
rk

 S
e
tu

p

Python

C++

C++C++

C++

C / C++

C++ C++ C++

Python

Python

Python

10 GBit/s Full Duplex

Figure 3.5: Schematic of the software layer stack for the operation of the FHW-2 system and its
integration into the PyNN concept (see also Figure 3.1). See text below for a detailed description of
all components.� A C++ class controls the mapping flow (figure: Mapping Controller). It determines the

sequence of algorithms which are applied in order to establish the mapping edges from
biological neurons and parameter sets to hardware neurons and parameter memories (see
Section 3.1.6). Thanks to the well-defined structure of the graphs, different optimization
techniques can be chosen and exchanged at all levels of the divide-and-conquer mapping
approach (Wendt et al., 2008).� A hardware configuration class (figure: Configurator) extracts the configuration data
from the hardware graph and initiates the transport of this data to the hardware. The
same class performs the translation of the stimulation spike trains from the biological to
the hardware domain and the translation of the hardware output spikes into the biolog-
ical domain, which includes both time transformation and neuron index mapping. For
the index mapping purpose, the configuration class needs input from the GraphModel.

63

3 Software and Techniques� A set of low-level hardware communication modules (figure: Communication) provides
the transport of all data between the host computer and the hardware system (see
Section 2.2), with a bandwidth of 10 GBit/s into both directions.� Like for the FHW-1 system, one Python module called PyHAL wraps the full complex
of C++ classes which perform the biology-hardware translations and the hardware
communication.� Utilizing the functionality provided by PyHAL, a PyNN module for the FHW-2 sys-
tem (PyNN.hardware.stage2) implements the low-level, procedural and the high-level,
object-oriented API of PyNN (see Section 3.1.3).

Neuron Mapping and Synaptic Routing The GraphModel mapping module has to perform
essential tasks:� Create a mapping between biological neurons and hardware neuron circuits.� Translate the corresponding parameter values and apply calibration data.� Provide a configuration of the synaptic routing infrastructure on the hardware, such

that the resulting connectivity is as close to the biological model as possible.

Due to the limited programmable inter-neuron wiring in hardware on the one hand, but the
massive influence of connectivity on the functionality of neural architectures on the other
hand, the routing task within the mapping process is of great importance. In a first step,
the mapping algorithm places the neurons on the hardware. Typically, this is done such
that the number of synaptic connection between the FHW-2 chip units is minimized, but,
in principle, arbitrary optimization criteria can be applied. In a second step, a dedicated
routing optimization algorithm developed by Johannes Fieres computes the corresponding
configuration of the routing switches.

3.2.3 High-Level Software Tools

As mentioned in Section 3.1.3, interfacing the FACETS hardware systems with Python
and PyNN provides many possibilities to accelerate software development cycles, to avoid
redundant development effort and to bundle community efforts. A few concrete examples of
such beneficial exploitations are described in this section.

NeuroTools

NeuroTools is “a collection of tools to support all tasks associated with a neural simulation
project which are not handled by the simulation engine” (NeuroTools, 2008).

NeuroTools is written in Python and builds upon the data formats returned by PyNN,
although it can be utilized for processing the data generated by any simulation or emulation
tool that have a Python front-end. By providing open-source modules for model setup,
parameterization, data management, analysis and visualization usable by a broad group of
scientists, NeuroTools aims at the increase of analysis tools reliability, at the establishment of
best-practices for common tasks and at the avoidance of redundant code development across
simulation or emulation communities.

Features of NeuroTools have been used for the experiment setup and data analysis presented
in Section 6.2.1.

64

3.2 Software Architecture

Graphical Experiment Control

For certain experimental setups, a manual parameter exploration with direct visual feedback
of the results can be useful, e.g. for an intuition-guided coarse parameter search in order to
reduce the search space for an automated optimization task, or for didactic or demonstration
purposes. Especially highly accelerated hardware devices like the FHW-1 and FHW-2 systems
are predestined to be utilized in such a scenario, since they can return the output to a given
experiment setup within periods that are extremely short in terms of human perception.
Therefore, a graphical front-end for a given experiment which allows to manipulate a sub-set
of parameters, after every change immediately re-runs the experiment and outputs a sub-set
of possibly processed observables is sometimes desired.

For the Python programming language, third-party packages are available which provide
the rapid development and design of graphical dialogs and widgets, with parameter sliders,
check boxes, text or number input fields, plot drawing and the like. Such widgets can be
started in separate threads and exchange update signals and values with the core experiment.
In cooperation with Johannes Bill and Eric Müller, a software framework has been developed
which allows to automatically generate a graphical interface to experiments written in PyNN.
Arbitrary experiment parameters can be exposed to an interactive manual manipulation via
graphical interface tools like the mentioned sliders or check boxes. Figure 3.6 shows an
example of such a user widget. It controls a PyNN experiment executed on the FHW-1 system
in a permanently running loop. For a single neuron on the chip, which can be selected with
a slider (top-most), the resting potential can be adjusted with a second slider (bottom).
Furthermore, the hardware-specific bias current for the on-chip threshold voltage generator
is controllable with a third slider (middle). For every run, the resulting output spikes are
visualized in an embedded plot.

The purpose of this basic setup is to develop an intuition for the dependency of the firing
sensitivity of a neuron on both the written threshold voltage and the corresponding bias
current. It has been found that the effective firing threshold of a neuron matches the written
value better if the corresponding bias current is chosen high enough. But, as will be described
in Section 4.3.2, other objectives limit the available range of bias values. In this context,
exploring the qualitative response and firing threshold precision of a neuron depending on
these parameters has turned out to be very useful for a deeper understanding of the underlying
hardware mechanisms.

Extensive Python Package Usage

Further examples for the beneficial usage of Python third-party libraries in high-level soft-
ware modules are the following:� For all kinds of experiments and calibrations, storing data to and retrieving data from

files for permanent or temporary storage is done with functions provided by the Mat-
plotlib module (Hunter, 2007).� Routines which handle XML data, needed e.g. for the multi-user management described
in Section 3.2.4, utilize available Python bindings for Unix XML handlers.� All figures presented in this thesis, which contain data acquired with the FHW-1 system
or with software simulators, are generated with the plotting functions provided by the
Matplotlib module.

65

3 Software and Techniques

Figure 3.6: Screenshot of an automatically generated graphical user interface to a hardware experi-
ment set up with PyNN. The experiment is permanently repeated in a fast loop. A single neuron on the
utilized FHW-1 chip can be selected with a slider (top-most). Its resting potential can be adjusted with
a second slider (bottom). The hardware-specific bias current for the corresponding on-chip threshold
voltage generator is controllable via a third slider (middle). For every run, the resulting output spikes
are visualized in an embedded plot. A user of this interface can interactively explore how the firing
sensitivity of the chosen neuron depends on arbitrary parameter combinations. The relevance of this
setup is explained in the main text.� Fitting procedures, as e.g. incorporated in the hardware synapse driver calibration rou-

tine (see Section 5.2.4), utilize algorithms provided by the SciPy package (SciPy).� The efficient matrix manipulation functions provided by the NumPy package are exten-
sively used for all kind of data post-processing throughout the work presented in this
thesis, such as the calculation of mean values and standard deviations, matrix addition
and multiplication, sorting or slicing. Furthermore, the random number generation fea-
tures are used in many situations, e.g. to generate the normally distributed threshold
values for the experiment presented in Section 6.2.1.

3.2.4 Management of Multiple Users and Systems

As described in Section 2.1.5, with one so-called backplane, multiple FHW-1 chips can be
operated at the same time. Currently, multiple of these backplanes exist in the laboratories
of the University of Heidelberg, each of them connected to an own host PC, and each of them
carrying one or many FHW-1 chips. One chip on a specific Nathan board, plugged into a
specific slot of a specific backplane, connected to a specific host PC with a specific PCI card,
will be referred to as a workstation in this section.

For the parallel operation of all individual workstations, a multi-user and multi-station
management framework has been developed. It provides a centrally maintained collection of
all workstation information. For every workstation, the following information is stored:� A unique number which identifies the FHW-1 chip itself.

66

3.2 Software Architecture� The design version of the chip, e.g. FHW-1.1, FHW-1.2 or FHW-1.3.� The clock frequency with which the chip is operated.� The paths to all calibration files for this chip.� The name under which the oscilloscope connected to this chip is identified within the
laboratory computer network.� Identifiers for the output pins and the oscilloscope input channels via which the analog
sub-threshold membrane potentials are recorded (see Section 2.1.5) for this individual
chip.� A unique number which identifies the Nathan board onto which the FHW-1 chip is
mounted.� The backplane slot index into which the Nathan board is plugged.� A unique number which identifies the PCI card via which the backplane is connected
to its host PC.� The name under which this host PC is identified within the laboratory computer network
(for remote access).� The name of the default user assigned to this individual chip.

The identifier numbers are used to address the individual devices correctly. All calibration
data is chip-specific and therefore needs to be known for every workstation. The operation
clock frequency is evaluated for the translation between the hardware and the interpreted
biological time domain (HTD and BTD). Since the oscilloscopes connected to the FHW-1 sys-
tems are separate devices and need to be accessed via dedicated network connections (see
Section 3.2.2), they need to be unambiguously identifiable for every workstation, and the
mapping between chip output pins and oscilloscope recording channels is essential for a cor-
rect data acquisition. The chip-specific user information is evaluated before every experiment
run. If the current user of a workstation is not the default one, she will be asked to confirm
her operation request. This helps to avoid conflicting accesses to the same workstation by
various users at the same time.

3.2.5 Analog Unit Test Framework

In software development, unit tests are a common technique to increase and maintain the
quality of code. In a software unit test, one specific functional unit, typically a class or a
function, is instantiated and executed in a set of fully defined input scenarios. For every
scenario, a precise definition of the desired output is provided and compared with the output
the program actually generates. Only if the desired output is exactly produced for all input
scenarios, the unit passes the test.

Such a rigorous testing paradigm is possible and necessary for digital information pro-
cessing as performed in von-Neumann-like architectures (von Neumann, 1945), but it is not
applicable to the analog processing of continuous values with micro-electronic circuits, as e.g.
in neuromorphic hardware systems. As soon as information in an electronic system is rep-
resented directly by an analog variable, i.e. without the digitalization concept applied after

67

3 Software and Techniques

every processing step, the imperfect nature of the processing substrate makes a perfect control
over its behavior impossible. The concept of strict reproducibility of an input-output pair has
to be replaced by a scheme which provides tolerances for the output, e.g. by defining levels
of maximum deviations.

For the FHW-1 system, which is subject to different kinds of imperfections (see Sections 4.2
and 4.3), a set of so-called Analog Unit Tests (AUT) has been implemented. Those stand-
alone micro-experiments extend the idea of common unit tests by features that make them
applicable to neuromorphic systems:� Every AUT utilizes the PyNN module for the FHW-1 hardware (PyNN.hardware.stage1,

see Section 3.2.2).� Within this framework, it provides a minimal, executable experiment setup.� Every AUT is either a functionality check (positive AUT, or pAUT) or a hardware
malfunction demonstration (negative AUT, or nAUT). During the development cycles
of a chip, which typically requires one or more re-designs and re-productions, especially
the negative AUTs are a useful tool to communicate detected malfunctions from the
chip users to its designers. They can also minimize functionality verification efforts after
a possible design revision. An extensive set of positive AUTs outlines the target design
specification in a directly testable and therefore constructive way.� Every AUT provides information about

– the applied network architecture, parameters and stimulation data,

– the recorded variables,

– the experiment duration,

– the expected output,

– optionally: the recommended workstation (see Section 3.2.4), especially for nAUTs,

– the actually utilized system,

– the generated output (possibly of multiple trials with the same setup),

– a precise specification of the software with which it was performed.

For an easy comprehensibility, essential information about the experiment setup, the
recommended platform, the expected and the actually generated output are also pro-
vided in a human-readable format.

Section 4.3 refers to multiple AUTs which allow to reproduce various malfunctions of the
FHW-1 system.

3.2.6 3D Visualization of Network Mapping

The GraphModel approach presented in Section 3.1.6 performs a mapping between biolog-
ical neural network descriptions and the corresponding hardware properties. Therewith, it
provides not only a neuron index assignment between both domains, but it also generates a
translation between the properties of individual neurons and synapses and the corresponding
hardware parameter values.

The kind of mapping provided by the GraphModel framework typically is a highly non-
trivial multi-objective optimization task, especially for a situation where highly recurrent and

68

3.2 Software Architecture

structured biological networks are to be mapped to the complex but limited structure of
an FHW-1 or an FHW-2 system. The evaluation of a mapping result can be as difficult as its
calculation, since possible distortions of the original network have to be detected and assessed.

A visualization software has been developed which provides a way for human users to
explore the results of the GraphModel mapping procedure in a virtual 3-dimensional space.
The tool can help to detect systematic malfunctions of the applied optimization algorithm,
which might be obvious to an intelligent human observer, but hard to grasp with an automatic
check routine. Furthermore, the visualization is useful for didactic and presentation purposes
of all kind. The current version is only available for mappings to the FHW-1 systems. An
extension of the software for a visualization of mappings to the FHW-2 system has not yet
been possible due to a lack of finally decided wafer-scale implementation details.

Once the mapping algorithm has generated an assignment between the biological neurons
and the hardware cells and has provided a translation between the parameter values of both
domains, the visualization can be generated. The Figures 3.7 and 3.8 show two screen-shots
of the graphical interface. In Figure 3.7, the biological network is arranged in a cubic grid
of 5 × 5 × 5 neurons, located above the 2-dimensional depiction of an FHW-1 network block.
The biological cells are drawn as spheres, and their spatial location information is provided
by the biological description of the network, e.g. in PyNN (see Section 3.1.3). The hardware
neurons are drawn as cubes at the lower edge of the rectangle hardware structure. Their
spatial location is automatically generated, such that the full chip structure is drawn close
to the biological model, but not overlapping it. The colors of all cells indicate their type, i.e.
if they are excitatory or inhibitory. A color coding is also provided for synaptic connections,
which are only drawn for those cells which have been selected by a mouse click. The user can
select if either incoming or outgoing synapses of a marked neuron shall be visualized. If, e.g.
for a typical cortical architecture, all connections were shown at the same time, they would
form a very dense structure, annihilating any visual clarity.

In the hardware model (see zoomed perspective in Figure 3.8), the visualized synaptic
connections (green lines) connect the neurons with their corresponding synapse drivers (3D
triangles, see Section 2.1.2). From there, the connection path is continued via the synaptic
nodes, drawn as small rectangles which form most of the large 2-dimensional chip area. Every
rectangle codes the weight stored in its synapse node with a color. From these nodes, the
connection path is continued to a target neuron.

If a cell has been selected either in the biological or in the hardware model, the mapping
edge between this cell and the corresponding unit in the other domain is drawn (black line),
and for both cells all parameters associated with them are printed on the upper left and right
corners of the screen. The user can move freely into all directions of the 3D space.

69

3 Software and Techniques

Figure 3.7: Screen-shot: 3D visualization of the assignment between the 5× 5× 5 neurons (spheres)
of a biological network and an FHW-1 network block (large rectangular structure) as determined by
the GraphModel mapping framework. The hardware neuron circuits and synapse drivers are located
at the lower and right edges of the chip structure, while the hardware synapse node array is drawn
by small colored patches covering the rectangle area. The hardware and the biological synapses are
drawn as lines connecting the sources with the targets. For both the neuron symbols and the synapse
lines, the colors indicate if the entity is excitatory or inhibitory. To keep visualization clarity, The
synaptic connections are drawn only for single selectable neurons. For marked biological neurons,
a mapping edge is drawn to the corresponding hardware unit assigned by the mapping algorithm.
Furthermore, the parameters of both the biological and the hardware cell are printed in the upper left
and right corners of the screen. For a zoomed view into the hardware graph with more explanations,
see Figure 3.8.

70

3.2 Software Architecture

Figure 3.8: Screen-shot: A zoomed view into the 3D visualization displayed in Figure 3.7. It shows
a corner of the FHW-1 network block onto which a biological network has been mapped. The cubes
in the upper left edge represent the neuron circuits, while the triangle bodies represent the synapse
drivers. They span a 2-dimensional area, which is filled by small rectangles, each of which represents
a synapse node with a certain weight coded by the drawn color. Green lines illustrate synaptic signal
transmission paths that are configured to be enabled. A mapping edge runs in from above, assigning
a hardware neuron circuit to a biological cell (which cannot be seen from this perspective).

71

3 Software and Techniques

72

4 Gaining Control of Chip Functionality and

Imperfections

A set of paradigms for the translation between the domain of the accel-
erated FACETS neuromorphic hardware system (FHW-1) and its biolog-
ical interpretation has been given in Section 3.1. A software framework
which provides an executable realization of these paradigms has been
introduced in Section 3.2. Building upon this, the following chapter rep-
resents a further step towards a neuroscientifically relevant operation of
such a neuromorphic device, namely the specification of practical diffi-
culties and problems which occur during its actual operation. Various
obstacles such as process-inherent device imperfections (Section 4.2),
FHW-1 prototype flaws and design-related malfunctions (Section 4.3) are
described in detail. But in order to evaluate the functionality of certain
chip features, possibilities to directly access the interesting variables are
missing. In Section 4.1), several techniques are presented, each of which
provides an indirect way to acquire the desired information.

4.1 Methods for Indirect Access

Neural behavior can be characterized by a variety of dimensions, e.g. spike rates, membrane
potential traces, currents and conductances, amongst others. Depending on the observed
system, it can be necessary to deduce magnitudes, which are not or hardly measurable, from
easily accessible ones.

E.g. for in vivo and in vitro recordings, the strength of a synaptic connection typically has to
be deduced from the correlation of spiking and membrane activity of its pre- and post-synaptic
neurons (Bi and Poo, 1997; Dan and Poo, 2004). The dynamics of multiple ion channels of
various types are often combined to one total electric conductance property of the membrane
patch they are located on. This conductance can be accessed via patch-clamp techniques,
during which voltages are applied and the resulting currents can be measured (Sakmann
and Neher, 1995). Another example for hidden variables is the assumed depletion of readily
releasable vesicles at synapses in use, a popular explanation for the known phenomenon of
short-term synaptic depression (Zucker and Regehr, 2002). In general, models of neuronal
and synaptic dynamics often involve variables which are hard to observe in vivo or in vitro.

If such a model – typically expressed by a set of differential equations – is numerically
computed in software simulations, any variable can be accessed arbitrarily. Together with

73

4 Gaining Control of Chip Functionality and Imperfections

the full flexibility in defining environmental conditions, this model transparency is one main
reason for the wide and successful usage of software simulators in modeling neuroscience.
Still, the more complex the underlying model becomes, the more computationally expensive
its simulation will be. Despite strong efforts towards sophisticated optimization techniques
and parallelization of simulations (Morrison et al., 2005), this fact creates a rather slowly
receding limit for the range of computable network sizes and experiment durations.

The hardware system described in Section 2.1 provides a way to avoid the scaling problem
of pure software simulations. Due to its intrinsic parallelism in neural circuit operation, its
speedup factor of up to 105 compared to emulated biological time is independent of the size
of the implemented network, given that the necessary event communication bandwidths can
be provided. Within certain constraints, this is true for the type of devices utilized here
(Schemmel et al., 2006; Philipp et al., 2007; Grübl, 2007; Fieres et al., 2008; Schemmel et al.,
2008). In fact, a highly configurable event communication is the major technological challenge
for the design of such highly accelerated large-scale neuromorphic systems.

The software advantages like selectable parameters, definable topologies and adjustable
environmental conditions in principle hold for the investigated hardware system either, al-
though in a more limited form. Due to the physical nature of the analog model emulation,
most variables and programmable parameters within the system are subject to electronic phe-
nomena like transistor-level variations and noise (see Section 4.2), parasitic leakages, crosstalk
or other, design-related imperfections (see Section 4.3).

As a major difference to pure software approaches, the only accessible hardware observables
with a biological interpretation1 are the network’s spike output, its membrane potentials and
possibly evolving synaptic weights. For example, membranic conductances or currents are not
directly accessible, so if necessary, they have to be deduced from the accessible observables.
Since for the utilized system the sub-threshold membrane potentials have to be acquired via an
oscilloscope connected to the hardware and then need to be integrated into the operating and
evaluating software (Brüderle et al., 2007; Davison et al., 2008) via TCP/IP sockets (Braden,
1989), this acquisition channel is rather slow and inefficient. The design of the neuromorphic
system has been optimized exclusively for the access to all action potentials generated during
an experiment via a fast digital connection. Thus, if possible, a deduction of hidden variables
from nothing but the spike output is highly desirable. Purely or partly spike-based methods
for specification or calibration will be presented e.g. in Sections 4.1.2, 5.2.3, 5.2.2 and 5.2.5.

4.1.1 Spike-Triggered Averaging on Neuromorphic Hardware

The method of spike-triggered averaging (STA) is well established in neuro-physiology
(Thomson and Radpour, 1991; Matsumura et al., 1996; Farina et al., 2001) and modeling
neuroscience (Badel et al., 2006; Paninski, 2006). In a typical STA setup, the membrane
potential of a neuron plus one or many of its assumed pre-synaptic stimulation spike sources
are recorded. Using the spike times of e.g. one of these stimuli as triggers, samples of the
recorded membrane potential corresponding to these trigger times are extracted. Averaging
over these samples reveals the response of the membrane specifically to the selected stimulus.
The schematic shown in Figure 4.1 illustrates this principle.

STA is not limited to membrane potential recordings and its input stimuli. Triggering and
averaging can be performed with all kinds of events which are possibly correlated with an

1Excluding actively controlled parameters, some of which can be read back, too (e.g. the values for the firing
threshold Vthresh).

74

4.1 Methods for Indirect Access

5µs (HTD)20
0
m

V
(H
V
D
)

E
x
te

rn
al

S
ti
m

u
lu

s

Figure 4.1: Schematic of the spike-triggered averaging (STA) technique used to extract post-synaptic
potentials (PSP) from a fluctuating membrane. A neuron is stimulated with externally generated
Poisson-type spike trains, its membrane potential is recorded. In order to extract the averaged PSP
generated by a specific synapse, the input spikes via this synapse (frame around stimulus spikes) are
used as trigger times. Membrane potential samples of a certain length around these trigger times are
extracted from the recorded trace (membrane potential zoom boxes). Averaging over many of these
samples filters out the membrane potential fluctuations caused by the other synapses and possible
noise sources and reveals the pure PSP (see Figure 4.2).

observable of interest.

STA is well suited for being applied to the type of hardware which is in focus of this thesis,
because both the input stimuli to a neuron and its membrane potential are available or can
be easily retrieved. The same holds for any kind of software simulator supported by PyNN
(see Section 3.1.3). Hence, in order to access membrane responses to input spikes, i.e. PSPs,
which in a biologically realistic hardware configuration usually are smaller than the noise
and activity fluctuation level, STA represents a useful technique and was applied in multiple
setups described in this thesis, e.g. for the Sections 5.2.4, 4.3.5 and 4.3.8.

For this purpose a Python class has been implemented which, based on PyNN experiment
descriptions, automatically performs STA in hardware or in the software simulator NEST.
This can be done for arbitrary membranes and for selectable synapses. The class delivers the
averaged trace window in a selectable size and optionally with an exponential fit for the PSP
decay. This class has been used for all STA applications within this thesis.

75

4 Gaining Control of Chip Functionality and Imperfections

Figure 4.2 shows two typical STA results acquired from a hardware membrane (FHW-1.3)
and from a NEST simulation. In both cases the neuron is exposed to stimulation from inde-
pendently firing Poisson spike trains via 208 excitatory and 48 inhibitory weak synapses, each
of them firing with 3Hz (BTD), which leads to membrane potential fluctuations in the order
of ±5mV (BVD) around a sub-threshold average value (see Appendix A.1 for full parameter
set). In both cases, one of the excitatory input channels, i.e. one synapse is investigated with
the STA technique. In order to avoid distortions of the PSP image aimed at, the firing mech-
anism is deactivated during the data acquisition. Sub-figure (a) shows the result acquired
at a hardware synapse, averaged over 100000 trace sub-samples of 400ms (BTD) length each.
Sub-figure (b) shows the corresponding NEST results. The excitatory PSPs are cleanly ex-
tracted, although their amplitudes of approximately 0.5mV (BVD) are one order of magnitude
smaller than the typical synaptically induced fluctuation amplitudes of the membrane signal.
The hardware-specific and activity-independent noise, which on the utilized hardware system
imposes distortions in the order of 0.5mV (BVD) (see Section 4.2.2), is also filtered down to
less than 0.01mV (BVD).

M
em

b
ra

n
e

P
o
te

n
ti
a
l
[m

V
]
(B
V
D
)

Time [ms] (BTD)

(a) Hardware PSP, average of 100000 samples

M
em

b
ra

n
e

P
o
te

n
ti
a
l
[m

V
]
(B
V
D
)

Time [ms] (BTD)

(b) NEST PSP, average of 100000 samples

Figure 4.2: STA technique extracts PSPs caused by single synapses, with amplitudes below noise
and activity fluctuation level. (a) PSP generated by a synapse driver on FHW-1.3-No.18. (b) PSP
generated by a NEST synapse. The small extra-peak just before the onset of the hardware PSP is
digital crosstalk and will be explained in more detail in Section 4.3.8.

4.1.2 High-Conductance State Test

This sub-section incorporates parts of a paper by Bernhard Kaplan, Daniel Brüderle, Jo-
hannes Schemmel and Karlheinz Meier, which has been submitted and accepted for publi-
cation at the International Joint Conference on Neural Networks (IJCNN) 2009 in Atlanta,
USA (Kaplan et al., 2009).

Importance of High-Conductance States for Neuromorphic Systems

One implication of high-conductance states that is especially interesting for the operation of
neuromorphic hardware systems is the possible non-monotonous output vs. input rate relation

76

4.1 Methods for Indirect Access

of a neuron. It is described e.g. in (Kumar et al., 2008): If a neuron is stimulated by excitatory
and inhibitory input spike trains with the same rate fin each, and if excitation is dominating,
then for increasing values of fin the neuron’s output rate will also grow. But if the total
membrane conductance gets larger due to the stimulus, the impact of the incoming spikes can
start to decrease because of a smaller efficient membrane time constant τm (see Section 1.3.1)
respectively shorter and thus less efficient post-synaptic potentials. The phenomenon can be
used to generate self-stabilizing states of network activity (Kumar et al., 2008), which has the
potential of serving as a mechanism for counter-balancing hardware-specific inhomogeneities
and fluctuations (see Section 4.3).

For future biologically realistic experiments on the FHW-1 and FHW-2 systems, but also for
the basic specification of hardware sub-units, finding a working point in the high-conductance
regime is essential. In the following, the effects of synaptic contributions to a neuron’s total
membrane conductance and consequently, in conjunction with the correlation of the applied
input spike trains, on its output spike rate are studied and exploited. A purely spike-based
and hence hardware-compatible method is presented which allows to estimate the amount of
necessary synaptic stimulation in order to operate within a high-conductance state. Differ-
ences and hardware specific advantages of this method compared to a similar one introduced
in (Rudolph and Destexhe, 2006) will be discussed in Section 4.1.2.

Spike-Based High-Conductance State Test: Concept

The basic idea of the proposed high-conductance state test is to estimate the total mem-
brane conductance of a neuron by its ability to separate excitatory PSPs which are temporally
close. The integration of successive PSPs on a membrane is less likely to cause an action po-
tential if the temporal course of these PSPs is shorter. Assuming fixed time constants for the
input-triggered increase and decrease of gmax

e (t), the shape of the resulting PSP is shortened or
stretched by the total membrane conductance. Thus, compared to a low-conductance regime,
in a high-conductance state successive input spikes have to be temporally closer to cause an
increase of the output firing rate, which can be regarded as a better temporal resolution capa-
bility of the neuron. In other words, the low-pass filter property of the membrane determines
its quality as a coincidence detector.

This makes it possible to deduce the total membrane conductance merely from input and
output spike data. Figure 4.3 illustrates the effect of different total membrane conductances
on the superposition of PSPs. The same sequence of spikes – a single spike followed by a
quadruple – arrives at a relatively slow (solid line) and at a fast (dashed line) membrane.
Due to the resulting different temporal courses of the PSPs, those on the slow membrane add
up to a larger effective amplitude compared to those on the fast membrane.

Spike-Based High-Conductance State Test: Setup

For testing the input driven responsiveness of a membrane, a single neuron with a constant
leakage conductance gl is utilized. In order to vary the externally driven component of the
membrane conductance, it receives a set of uncorrelated Poisson spike trains through Ne

excitatory and Ni inhibitory synapses. Each spike train has the same firing rate νin. The decay
time constants τsyn and the maxima gmax

e (gmax
i) for the excitatory (inhibitory) conductances

are kept constant during all experiments. The aim of the test is to find an average synaptic
conductance gsyn ≡ 〈gtot

e (t) + gtot
i (t)〉 which, for the utilized membrane, results in a high-

77

4 Gaining Control of Chip Functionality and Imperfections

Time [a.u.]

M
em

b
ra

n
e

P
ot

en
ti
al

[a
.u

.]

Figure 4.3: NEST Simulation: Overlapping PSPs on a membrane with high (dashed line) and
low (solid line) total conductance. Membrane potential and time axis in arbitrary units. For this
schematical example, the total membrane conductance has been changed by varying gl. The shown
PSPs result from conductance courses with identical decay times. The conductance amplitudes for
both the high and the low conductance membrane have been adjusted such that the amplitudes of the
single (leftmost) PSPs become the same in both cases. This results in illustratively different maximum
amplitudes of the four overlapping PSPs triggered by identical input spikes. For the fast, i.e. higher
conductance membrane, the accumulated potential is not high enough to reach the arbitrarily set spike
threshold, while for the slow one it is. The instantaneous membrane depolarization during an action
potentials is not modeled in NEST, but the reset mechanism clearly indicates the spike position.

conductance state. For the definitions of gtot
e (t) and gtot

i (t), please see Section 1.3.1. With
given values for τsyn, gmax

e and gmax
i , the temporal integration over Ne excitatory and Ni

inhibitory spike trains with firing rate νin leads to the following average total synaptically
induced conductance:

gsyn = τsyn νin (Ne gmax
e + Ni g

max
i) . (4.1)

To control gsyn, the frequency νin is varied. If all other parameters remained constant,
this would result in a corresponding variation of the average membrane potential and, hence,
of the output firing rate. An increased output rate deteriorates the responsiveness of the
membrane because of the reset mechanism which clamps the membrane potential to the Vreset

and makes the neuron insensitive to input for a refractory period of τref ≈ 1ms (BTD). This
could possibly lead to systematic distortions in the results of the proposed method. In order to
circumvent such undesired correlations between the average membrane potential, the output
rate and the responsiveness of the membrane, the output rate is kept within a limited range
(νout = νtarget±0.25 νtarget) by changing the ratio Ne/Ni while keeping the sum Ne gmax

e +Ni g
max
i

constant.

In addition to the Poisson type background, a test stimulus is injected into the neuron via
ntest excitatory synapses, which consists of periodic packages of npack equidistant spikes. The

78

4.1 Methods for Indirect Access

period TPP from package to package is kept constant, while the inter-spike interval TISI within
one package is varied from 0 ms to T max

ISI ≡ TPP
npack

. With TISI = T max
ISI , one package exactly

fills TPP. This approach guarantees that the total spike rate fed into the neuron through the
test synapses is independent of TISI. The test stimulus is weakly connected to the neuron,
its contribution to the total synaptic conductance (never more than 5%) is neglected in the
following. Its absolute contribution to the output firing rate is of no interest, while the change
in the output rate resulting from the variation of TISI is evaluated. In this framework, it is
not possible to test the response of the membrane without any Poisson background, since the
desired output rate cannot be established with the test stimulus only.

Figure 4.4 exemplarily illustrates the test setup: A neuron receives input from Poisson spike
trains of a certain frequency νin (only a subset is shown) and additionally from a test stimulus
consisting of packages of equidistant spikes. When the periodic spike packages arrive, the
output rate temporarily increases, indicated by an output spike histogram.

0

5

10

15

20

0

1

2

3

0

100

200

0 500 1000 1500 2000 2500 3000

Input:

Poisson

Background

(extract)

Input:

Test Stimulus

Output:

Accumulated

Spike Count

(1000 runs)

T PP

Time [ms] (BTD)

Figure 4.4: NEST Simulation: Example of the spike-based method for membrane temporal resolution
evaluation. It is shown the input and the output of a neuron under test. Top: Raster plot of parts of
the Poisson background with νin = 10 Hz (BTD). Middle: Test stimulus fed into the neuron. Bottom:
Resulting output spike count histogram accumulated over 1000 runs.

79

4 Gaining Control of Chip Functionality and Imperfections

The mean output rate over the whole experiment duration is dependent on TISI, because
shorter time intervals lead to stronger accumulation of PSPs on the membrane. But as
discussed above, for a constant TISI the output rate also depends on the total membrane
conductance respectively on the width of a PSP. Hence, sweeping TISI for various values of
gsyn (regulated via νin) and measuring the resulting output firing rate will result in different
response curves showing the temporal resolution capability of the neuron.

In the following, all output rates indicated with an f actually represent the difference
between the output rate acquired with a specific test stimulus configuration minus the output
rate with no test stimulus at all, f(TISI) ≡ νstim

out (TISI) − νnostim
out . This is done because only

the response to the test stimulus is of interest, while the response to the output rate caused
by the Poisson background is not. The background determines the conductance state and
thus the responsiveness of the neuron, whereas the test stimulus is needed to get quantitative
information about the conductance state of the neuron.

To be able to distinguish the output response curves for different conductance states, a
characterizing critical quantity τres is defined as follows: τres is the critical time interval T crit

PP

between test spikes at which the output rate falls below a certain threshold frequency

fcrit ≡ fmin +
1

2
(fmax − fmin) . (4.2)

Here, fmin is the minimum output rate, i.e. the saturation rate which is reached for a certain
value of TISI and not under-run if TISI gets larger. The maximum output firing rate resulting
from closely coincident input spikes is fmax. See Figure 4.5 for an illustration. In (Kaplan,
2008, Section 2.1), a method for the estimation of the error of fcrit is given.

Results

The basic set of parameters applied for the software runs is summarized in Table 4.1. The

Neuron Parameters

Description Parameter Unit Value

Membrane capacitance per 1 mm2 Cm nF 0.2
Membrane leakage conductance gl nS 2.0
Reset potential Vreset mV -80.0
Inhibitory reversal potential Ei mV -75.0
Leakage reversal potential El mV -70.0
Firing threshold voltage Vthresh mV -57.0
Excitatory reversal potential Ee mV 0.0

Synapse Parameters

Synaptic CC decay time constant τsyn ms 20.0
Excitatory synaptic CC amplitude gmax

e nS 0.4
Inhibitory synaptic CC amplitude gmax

i nS 1.6

Table 4.1: NEST Neuron and synapse parameters (BVD, BTD).

leakage conductance gl has been chosen particularly low in order to ensure a large membrane

80

4.1 Methods for Indirect Access

time constant for the unstimulated case. If applicable on the hardware system, the other
parameters were chosen according to (Muller, 2006), aiming at biologically realistic models.
However, in a few cases the values were chosen to better fit the hardware system: For instance,
the choice of rather large synaptic time constants reflects hardware limitations, because the
chosen speedup factor for the hardware system does support only time constants in the range
of 20 to 50ms (BTD, see Section 4.3.5). Furthermore, in order to provide the necessary amount
of total synaptic stimulation, the maximum synaptic conductances are large as well, since the
number of synapses to a hardware neuron is limited (see Section 2.1). It also has to be noted
that neither gl nor Cm are directly measurable for the hardware. Still, the time constant
of the hardware membrane under no stimulation, τm,rest ≡

Cm
gl

, can be easily measured. By
varying a steering current which controls the invisible gl, τm,rest can be calibrated close to the
desired value.

Proof of Principle via Software Simulation

In order to avoid that hardware-specific behavior might wrongly confirm the functional-
ity of the proposed method, it is first verified qualitatively utilizing the software simulator
NEST. The NEST neuron model and the parameter values are chosen to optimally resemble
the hardware. Still, quantitatively equal results from hardware and software are not to be
expected, see Section 4.3.

Determining the Temporal Resolution Capability of a Membrane To find the membrane
temporal resolution measure τres, the test stimulus is applied with a package period of TPP =
1000ms (BTD). Each package had npack = 4 spikes, with TISI being varied from 0ms to 250ms
(BTD).

Figure 4.5 shows the result for a background Poisson rate of νin = 4Hz (BTD), fed into
Ne = 48 excitatory and Ni = 51 inhibitory synapses. The plot shows the expected decrease
in the output firing rate with growing TISI due to the decreasing overlap of PSPs belonging
to the test stimulus. Every data point represents the mean value of 250 runs with 10 seconds
of simulated time each. The error-bars denote the standard error of the means (SEM). Also
shown in the plot is fcrit = fmin + 1

2 (fmax − fmin), which is indicated by the dotted horizontal
line. The value of TISI where the curve crosses fcrit defines the temporal resolution capability
τres of the neuron.

Background Activity Increases Membrane Temporal Resolution The membrane temporal
resolution τres has been evaluated for various Poisson background rates νin. Figure 4.6 shows
τres as a function of νin. The dependence is obvious: The temporal resolution capability of the
membrane respectively the coincidence detection property of the neuron improves for higher
Poisson background rates. Furthermore, if the synaptic contribution to the total membrane
conductance is large enough, the temporal resolution capability saturates. The saturation
limit is determined by the time constant τsyn of the synaptic conductance decay.

In the plot, saturation is achieved from νsat
in ≈ 15Hz (BTD). In these regions, the membrane

potential is nearly immediately following the synaptic stimulation. Since the output rate is
dynamically adjusted via Ne and Ni, the critical input rate νsat

in that is sufficient to make τres

saturate also corresponds to two critical values N sat
e and N sat

i .

Hence, following Equation 4.1, the temporal resolution saturation can be quantitatively

81

4 Gaining Control of Chip Functionality and Imperfections

Inter spike interval TISI [ms] (BTD)

O
u
tp

u
t

ra
te

f o
u
t
[H

z]
(B
T
D
)

τres

fcrit ≡ fmin + 1
2(fmax − fmin)

0
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

50 100 150 200 250

Figure 4.5: Neuron output firing rate vs. inter-spike interval of applied test spikes. The horizontal
dotted line shows fcrit. fmin is defined by the mean output rate for TISI in [150 ms, 250 ms] (BTD). The
vertical dotted line indicates the temporal resolution τres defined in the text.

estimated to be reached with the minimum amount of synaptically induced conductance

gsat
syn = τsyn νsat

in (N sat
e gmax

e + N sat
i gmax

i) . (4.3)

For this example with N sat
e = 44, N sat

i = 52 and νsat
in = 15Hz (BTD), an average synaptic con-

ductance of gsat
syn ≈ 30 nS (BVD) is needed to reach a maximum responsiveness of the membrane.

This is a more than ten-fold increase compared to the pure leakage conductance gl.
In (Brette and Gerstner, 2005), the transition of a membrane into the high-conductance

state is defined by a ratio of 5:1 between its total conductance and its pure leakage conduc-
tance. The input rate which is necessary to create this amount of total conductance for the
described experiment is indicated by a dashed line in Figure 4.6.

High-Conductance States in Silicon

As indicated above, variations from the pure software results are to be expected, since the
hardware is subject to electronic phenomena like noise, crosstalk, parasitic capacitances and
leakages. Many of the issues described in Section 4.3 introduce dynamics distortions that are
hard to be quantified and hence cannot be perfectly mapped to the available standard neuron
models in NEST or to custom extension. Furthermore, the conductance courses generated in
the hardware synapse drivers are implemented as increasing and decreasing currents which
control physical conductances to the corresponding reversal potentials, see Section 2.1.2. The
wires and switches for these currents have capacitances which impose a loss of synaptic efficacy
for low input rates plus an activity dependent low-pass filtering effect.

82

4.1 Methods for Indirect Access

Poisson background rate νin [Hz] (BTD)

T
em

p
or

al
re

so
lu

ti
on

τ r
e
s
[m

s]
(B
T
D
)

0 5

10

10 15

20

20

30

40

HCSB.G. : gT/gl = 5/1

Figure 4.6: NEST Simulation: Temporal resolution τres of a membrane plotted versus the applied
background input rate νin, acquired with the method proposed in Section 4.1.2. Note the saturation
for input rates larger than approx. 15 Hz (BTD). The vertical dashed line represents the input fre-
quency necessary to generate a high-conductance state according to the definition given in (Brette and
Gerstner, 2005).

Thus, a theoretical prediction for the transition to a high-conductance state as defined in
(Brette and Gerstner, 2005) and as indicated in Figure 4.6 cannot be made for this system.
Despite these obstacles, the proposed test method provides the possibility to experimentally
find reproducible high-conductance regimes on the hardware system.

All hardware experiments for the presented high-conductance state test are performed on
the FHW-1.3-No.17 system. For the hardware model, the neuron parameters are chosen
identically to the software simulations (see Section 4.1.2) if possible. As stated above, for a
hardware neuron circuit the absolute value of gl cannot be directly accessed, but the membrane
time constant in rest can be measured. A hardware control current which determines gl is set
to a value very close to the minimum of the available range, resulting in a membrane time
constant of τm,rest = (16 ± 3)ms (BTD).

The hardware synapse parameters were set such that the desired output rate of the neuron
could be kept throughout the covered input rates. The chosen weights roughly correspond to
biological quantal conductance increases of gmax

e ≈ 1.5 nS and gmax
i ≈ 6 nS (BVD), with decay

time constants of τsyn = (27 ± 8)ms (BTD). These values have to be interpreted with care,
since, due to a hardware malfunction, especially the excitatory synaptic efficacies are activity
dependent (see Section 4.3.4 for details).

Figure 4.7 shows the result of the proposed high-conductance state test conducted on a
hardware neuron with the given parameters. Like in Figure 4.6, the decrease of τres as a

83

4 Gaining Control of Chip Functionality and Imperfections

function of νin and the saturation from a certain input rate can both be observed.
Analogously to Section 4.1.2, the critical amount of synaptic conductance can be determined

for this hardware neuron. In the shown example setup, saturation is reached from νsat
in ≈ 17Hz

(BTD), with N sat
e = 28 and N sat

i = 27. Together with the values for gmax
e , gmax

i and τsyn

and provided an ideal hardware system, the necessary average synaptically induced leakage
to put the hardware neuron into a maximally input sensitive regime is, in its biological
interpretation, gsat

syn ≈ 94 nS (BVD). But once more, due to the variety of hardware specific
issues mentioned above and in Section 4.3, which distort both gmax

e,i and the experiment result
νsat

in itself, this biological interpretation is not valuable. Still, it is a very useful information
for experimentalists who want to prepare a high-conductance state in hardware.

The difference compared to the NEST model is assumed to be caused mainly by the loss
of excitatory synapse driver efficacy in cases of high load on the excitatory reversal potential,
and by the capacitances of the wires which route the synaptic conductance courses, which
also distort the synaptic impact on the neuron in efficacy and time, depending on the input
rate. This capacitance probably also explains the large values of τres for small background
rates, where the given values for τsyn and τm,rest suggest smaller results – especially since in
the NEST reference experiment τres decreased very fast with growing synaptic stimulation.
But as can be seen from the data, it is still possible to find a level of background stimulation
which is sufficient to put the neuron into a high-conductance state.

Input rate νin [Hz] (BTD)

T
em

p
or

al
re

so
lu

ti
on

τ r
e
s
[m

s]
(B
T
D
)

0 5

10

10 15

20

20

30

40

50

60

70

Figure 4.7: Hardware: Temporal resolution τres of a VLSI membrane plotted versus the applied
background input rate νin. Saturation is reached at approximately 17 Hz (BTD).

In Section 6.1.3, the presented method is used to actually specify the necessary amount of
synaptic stimulation for a larger set of neurons on a FHW-1.3 system, providing a representa-
tive estimator for future experiments which require high-conductance states.

84

4.1 Methods for Indirect Access

High-Conductance State Test: Discussion

For a neuromorphic hardware system, a spike-based method has been presented which
allows to find the amount of synaptic stimulation necessary for a neuron to operate in a
high-conductance state. In order to avoid possible misleading hardware-specific behavior, our
approach has been first tested by pure software simulations. Subsequently, the method has
been applied to the hardware system, and the results clearly demonstrate the functionality
of the proposed technique. Compared to possible alternatives based on e.g. sub-threshold
analyses via oscilloscope, this method is faster and can be robustly automated. Both speed
and robustness are particularly important for the hardware system, since the presented high-
conductance state test has to be applied for several neurons in order to find a reliable setting
that is valid for the whole chip. This is necessary because leakage conductances towards
the resting potential, parasitic leakages towards reversal potentials and parasitic capacitances
affecting post synaptic currents’ shapes can differ from circuit to circuit.

A similar method applied to neuron models in software is described in (Rudolph and Des-
texhe, 2006) and is also spike-based, but has a few draw-backs compared to the presented
one. This is mainly due to portability issues for the hardware platform, which does not offer
the flexibility for artificial setups as software simulators do. First, the method in (Rudolph
and Destexhe, 2006) requires in the order of 30 synaptic inputs which synchronously gener-
ate very strong conductance courses. This is hard to be adopted for the presented system,
because the hardware platform is limited in terms of both number of synaptic inputs and
the available range and reliability of synaptic efficacies. Additionally, sending more than 4
perfectly synchronous spikes into one neuron at a time is not possible on the utilized chip,
although the technically necessary and automatically generated fan-out of input spike times
in the order of tenths of biological milliseconds is probably negligible. Sweeping arbitrary
input firing rates is not possible either, the proposed ranges of up to 150Hz (BTD) exceed
the hardware bandwidths. Furthermore, the method proposed in (Rudolph and Destexhe,
2006) brings difficulties for automation due to the fact that it requires the detection of peaks
in inter-spike interval histograms which often are ambiguous. An algorithm needs to find
the height of a peak that is not necessarily the global, but just a local maximum within the
histogram, and can be determined only by its expected location. Finally, the fact that the
measure τres suggested in this paper is given in millisecond dimension represents an intuitive
quantity for a neuron’s temporal resolution property.

One drawback of the presented approach is that changing the ratio of excitatory to in-
hibitory stimuli in order to keep the chosen output target rate constant makes it difficult to
apply the proposed method to many neurons at the same time – which would have made
the presented test faster. Furthermore, the functionality of the method is dependent on the
output firing rate: If the output rate without test stimulus νnostim

out is chosen too large, the fir-
ing rate with applied test stimulus and hence the difference rate f(TISI) = νstim

out (TISI)− νnostim
out

would not decrease monotonously - as seen in Figure 4.5 - and thus finding the critical quan-
tity τres would not be possible. This can be interpreted as a firing sensitivity which is too
high, resulting in a critically high probability that the first test spike within a package al-
ready triggers an output spike and pulls the membrane to the reset potential. This would
effectively reduce the impact of the following spikes due to the reset mechanism and thus has
to be avoided.

Nevertheless, the spike-based high-conductance state test provides an automatable tool for
tuning neuromorphic systems towards an input-sensitive regime, even although the direct

85

4 Gaining Control of Chip Functionality and Imperfections

measurement of conductances is impossible. The principle might help to avoid extra wiring
and analog-to-digital converters in future neuromorphic designs, because the indirect conduc-
tance access method during a system specification phase can be sufficient. Thus, prototypes
could exploit more of the available chip area.

4.1.3 Long-Term Plasticity

To test the STDP functionality of the chip, the measurement technique described in the
following was applied. Results of investigations on larger arrays of hardware synapses, which
make use of this method, are presented in Section 6.1.5.

Within each hardware synapse of the FHW-1 system, correlation flags are provided which
can be periodically checked by the digital STDP controller (see Section 2.1.3). If enough
charge has been accumulated on one of the capacitors designed for the local summing of
correlation information, the flag zO will be set in order to indicate that a change of the digital
weight is to be performed. The flags zc and za provide information about the dominating
correlation type: causal or acausal. The developed method enforces correlations between pre-
and post-synaptic activity and then reads back the resulting values of zO, zc and za, while
weight changes or flag resets by the STDP controller are disabled.

To artificially generate correlations in a controllable way, a pre-synaptic spike has to be
sent into the observed synapse while the corresponding post-synaptic neuron has to be forced
to fire with a certain, deterministic temporal distance before or after that arrival time. As
explained in Section 2.1.3, each temporal correlation between pre- and post-synaptic spikes
charges a specific capacitor, and if the charge on one of these capacitors is large enough, the
corresponding flag will be set by the detection circuit. Normally, multiple correlated spike
pairs are necessary to cause a correlation occurrence flag to be raised.

The basic idea of the measurement method is to decouple pre-synaptic input spikes from
post-synaptic firing, i.e. to avoid a necessarily causal correlation. Instead, multiple strong
synapses – which the observed one is not part of – trigger the post-synaptic firing (trigger
synapses). The observed synapse, which receives the pre-synaptic spike, is set to its minimum
weight value in order to minimize its effect on the post-synaptic neuron. The post-synaptic
spike, which is triggered by the strong synapses, is released with a controllable time offset
of ∆t with respect to the pre-synaptic spike. Thus, if ∆t is negative, a seemingly causal
correlation between pre- and post-synaptic firing is created, otherwise an acausal one. Figure
4.8 shows a schematic of this hardware-specific STDP measuring method.

Still, to trigger a single output spike at a fixed time, various constraints of the hardware
have to be considered: First, as a single synapse driver typically is not strong enough to
initiate a post-synaptic firing, multiple strong synapses have to be used for the triggering of
the post-synaptic spike. Second, only one input spike per synapse driver FIFO buffer and
time bin can be delivered, thus only one out of 64 synapse drivers may be used for triggering.
As 256 synapse drivers are served by a total of four event input FIFO queues, three trigger
synapses with maximum weight plus one observed synapse with minimum weight are utilized.

A spike train Sbase is generated which consists of equidistant events. This stimulus is
transmitted to all trigger synapses synchronously, while the observed synapse receives the
same spike train with a temporal shift δt. Thus, the post-synaptic neuron repetitively receives
three strong trigger EPSPs2 plus one weak EPSP via the synapse of interest. Consequently,

2Excitatory Post-Synaptic Potential

86

4.1 Methods for Indirect Access

the neuron fires a sequence of spikes caused only by the trigger EPSPs. The correlation flags,
which are possibly raised in the observed synapse due to the resulting correlations of input
and output spikes, will not be reset until the full input spike train has been applied, then
they are read out.

As stated above, a single correlated spike pair is normally not sufficient to raise a correlation
flag. Thus, the number Npairs of equidistant spikes within Sbase is iteratively increased from
run to run until it is large enough to reliably raise the flag. The acquired number Npairs reflects
the shape of the underlying STDP modification function F : It is inversely proportional to the
absolute of F (∆t) (where ∆t is the sum of δt and a configurable, hardware specific offset),
and the sign of F (∆t) is determined by the type of correlation, i.e. if it is causal or acausal. If
Npairs exceeds a certain, configurable limit, F (∆t) is defined to be zero. The current algorithm
implementation receives a minimum value ∆tmin, a step size tstep and a maximum value ∆tmax,
and it scans F (∆t) based upon these parameters.

observed synapse

trigger synapses

neuron

(a)causal? t

p
re

−
s
y
n
a
p
ti

c
p
o
s
t−

s
y
n
a
p
ti

c

tr
ig

g
e
r

ti
m

e

Figure 4.8: Principle of indirect STDP modification function access: Three spikes via strong excita-
tory so-called trigger synapses force a neuron to fire. The observed synapse the modification function
of which shall be extracted receives a fourth spike, shifted by an adjustable time ∆t against the trigger
time. Hence, at the observed synapse, a pre-/post-synaptic spike correlation will be registered which
can be adjusted via ∆t. After multiple applications of such artificially generated correlations, the
observed synapse will raise the corresponding flags which then can be read by a controlling software.
Figure according to (Müller, 2008).

In order to find valid STDP configuration regimes for the hardware, multiple combinations
of the parameters which control the amplitude of the causal branch of the modification func-
tion Fc(t), the amplitude of its acausal branch Fa(t) and the correlation threshold V STDP

thresh have
to be swept (see Section 2.1.4).

Furthermore, as the hardware neurons do not respond homogeneously when excited by

87

4 Gaining Control of Chip Functionality and Imperfections

the three trigger input spikes due to reasons explained in Section 4.3.4, a weight calibration
routine has to be applied. The weights of the trigger synapses are optimized to cause exactly
one post-synaptic spike per trigger event. More algorithmic improvements accelerate the
measurement: First, to detect if it is possible to find correlations for a given ∆t at all, the
routine starts with a high number Npairs of correlated spike pairs, and if no correlation flag
is detected, F (∆t) is set to zero. Second, multiple neurons are stimulated at the same time,
allowing to test multiple synapses in parallel. Finally, probably due to one or more of reasons
listed in Section 4.3.11, multiple scan repetitions and averaging are necessary in order to
achieve significant and clean results.

The data presented in Figure 4.9 has been acquired on a FHW-1.1 synapse with the principles
described above. The plot shows the inverse of the number Ncorr of correlated spike pairs that
are necessary to raise a zO flag, plotted versus the time difference ∆t between the applied
pre- and post-synaptic spike.

−0.10 −0.05 0.00 0.05 0.10
t [us] (HTD)

−0.10

−0.05

0.00

0.05

0.10

1
/N

p
a
ir

s

Figure 4.9: An STDP modification function of a FHW-1.1 synapse, extracted with the method
described in this section. It plots the inverse of the number Npairs of pre-/post-synaptic spike pairings
that are necessary to raise a correlation flag, versus the time difference ∆t (HTD) between the correlated
spikes.

In Section 6.1.5, the described method is applied to an array of synapses. The resulting
modification curve arrays illustrate problems with the systematic control and specification of
STDP curves, which are explained in Section 4.3.11.

4.1.4 Membrane Time Constants

In order to measure the membrane time constant τm = Cm
gl

of a hardware neuron, the mem-
brane potential V (t) has to be set to a value that differs from its resting potential Vrest such
that the subsequent exponential decay back to Vrest can be observed. One way to achieve mem-
brane potential offsets is via synaptic stimulation, i.e. by applying temporary conductances
towards the excitatory or inhibitory reversal potential. But since synaptic conductances have
a significant impact on the effective membrane time constant (see Section 1.3.1), and since
the conductance courses generated in the hardware synapses are temporally stretched (see
Sections 2.1.2 and 4.3.5), synaptic stimulation is not a good choice. After applying a synaptic

88

4.1 Methods for Indirect Access

stimulus, one would have to wait until the synaptic conductance course has definitively ended,
but during this period the achieved membrane offset will already have decayed significantly.

Instead, a τm access method has been developed together with Andreas Grübl, which follows
a simple, but efficient principle. No recording of the membrane potential itself is necessary,
the method requires only the spike output of the analyzed neuron:

The firing threshold Vthresh of the analyzed neuron is set below its resting potential Vrest:

Vthresh = Vrest −
1

e
· (Vrest − Vreset) . (4.4)

Consequently, the neuron fires permanently with a frequency determined only by τm and
its refractory period τref. Each time the firing threshold has been exceeded, the membrane
potential V (t) is pulled to its reset potential Vreset, where it remains for the time τref. As
soon as the refractory period has passed, V (t) starts to evolve back towards Vrest by means
of an exponential decay. Due to the specific choice of Vthresh, the time between the end of the
refractory period and the next threshold crossing is exactly τm. Hence, the resulting firing
rate of the neuron is f = 1/(τref + τm), i.e. the membrane time constant can be extracted from
the acquired firing rate as follows:

τm =
1

f
− τref . (4.5)

Figure 4.10 illustrates the setup for this indirect access principle.
Since the membrane potential recording for FHW-1 neurons has to be provided via an oscil-

loscope (see Section 2.1.5), which significantly slows down the data acquisition process, the
presented, purely spike-based access method is well suited for this system. A membrane time
constant calibration routine based upon this principle is presented in Section 5.2.3.

Note that this measurement method requires a high precision in the configurability of Vrest,
Vthresh and Vreset, and that the value of τref needs to be known well. Due to design-inherent
malfunctions presented in Section 4.3.2, these conditions are not fulfilled for the first three
versions of the FHW-1 system. Nevertheless, the method will be applicable in future systems
which solve the responsible problems, and for the FHW-1 devices currently at hand, a modified
routine already works (see Section 5.2.3).

89

4 Gaining Control of Chip Functionality and Imperfections

Figure 4.10: Illustration of the method to access hardware membrane time constants τm. In order
to avoid distortions of τm by synaptic conductances, a specific setup is chosen: The firing threshold of
the analyzed neuron is set to Vthresh = Vrest − 1/e · (Vrest − Vreset), i.e. below its resting potential Vrest.
Consequently, the neuron fires permanently with a frequency determined only by τm and its refractory
period τref. After every crossing of the firing threshold, the membrane potential V (t) is pulled to the
reset potential Vreset, where it remains for the period τref. As soon as the refractory period has passed,
V (t) starts to evolve back towards Vrest by means of an exponential decay. Due to the specific choice
of Vthresh, the time between the end of the refractory period and the next threshold crossing is exactly
τm. The resulting firing rate of the neuron is f = 1/(τref + τm).

90

4.2 Process-Inherent Imperfections

4.2 Process-Inherent Imperfections

In the following, sources of hardware imperfections are described which, for an engineer
who utilizes a commercially available hardware technology, are unavoidable due to different
reasons. In Section 4.2.1, variations in the physical structure of the hardware substrate,
caused by production imperfections, are described. Those variations are static in the sense
that they stay unchanged once a device is produced. Dynamic aspects of circuit behavior
imperfections, i.e. the temporally evolving deviation of electronic variables from their ideal
values, or just noise, are introduced and discussed in Section 4.2.2. Note that the static
variations explained in Section 4.2.1 a sometimes referred to as fixed-pattern noise.

4.2.1 Hardware Production

During the production of CMOS VLSI devices, not all process conditions can be kept
perfectly constant (Dally and Poulton, 1998, Section 6.5.3). Typical parameters which are
used to quantify process variations are the threshold voltages of the produced n- and p-type
MOSFETs3, i.e. the critical gate voltages beyond which the corresponding transistors are
in a state of a maximum conductance between the source and the drain terminals. Given
a certain voltage VDS between these terminals, the resulting current IDS that flows between
them is a further examples of such process parameters. For these variables, Table 4.2 gives
estimators of process variations that are to be expected from the 0.18µm process utilized for
the production of the FHW-1 and the FHW-2 systems4.

Parameter Typical On-Chip Between Chips

n-type transistor threshold 0.42V ±7mV ±50mV
p-type transistor threshold −0.44V ±9mV ±50mV
n-type transistor drain-source current IDS 6.3mA ±100mA ±900mA
p-type transistor drain-source current IDS −2.4mA ±30mA ±350mA

Table 4.2: Variation of CMOS production process parameters for the 0.18 µm process which is used
for the FHW-1 and FHW-2 systems. All values are estimators for transistors at a temperature of 20 ◦C,
with a gate width of 10 µm, a gate length of 0.18 µm and a drain-source voltage of VDS = 1.8 V. The
“On-Chip” column provides values for typical variations of the parameters from transistor to transistor
on the same chip, while the “Between Chips” column gives the corresponding variations for transistors
located on different chips from different wafers.

Usually, the threshold voltage deviations of n-type and p-type transistors from their typical
values are correlated, which results in a limited 2-dimensional space of possible deviation
combinations. Chip production foundries specify this space by so-called corners, which are
worst-case estimators for all possible combinations of extraordinarily fast and slow n-type
and p-type transistors.

The effect of such process variations on the functionality of the circuits that are made of
these transistors has to be estimated individually for every specific circuit. Especially in the

3Metal-Oxide Semiconductor Field-Effect Transistor
4In such a process, 0.18 µm is the horizontal extension of the smallest realizable structure. Due to a non-

disclosure agreement, only coarse estimators for the process variations are provided here.

91

4 Gaining Control of Chip Functionality and Imperfections

case of transistors that play a crucial role in the control of very small currents, deviations
from the typical specification can have a large relative impact on the controlled variable. For
small designs, worst-case analyses can be computed by simulating the full circuit on basis of
the provided process corners. But due to limited computational power, for large and complex
designs such an analysis can still be performed only component-wise.

In case of the FHW-1 devices (see Section 2.1), process-inherent transistor variations sig-
nificantly influence the behavior of the modeled neurons and synapses, as will be shown in
Sections 4.3 and 5.2.

4.2.2 Electronic Noise

Every electronic signal that can be acquired from VLSI devices is subject to different kinds
of noise. The concept of digitalization is one possible approach to reliably avoid a resulting
loss or distortion of the processed information. But not all tasks to be solved by micro-
electronics are realized best with a digital design, which usually requires more physical space,
consumes more power and is possibly slower than a corresponding dedicated analog circuit.
The accelerated FACETS neuromorphic hardware systems are so-called mixed-signal devices,
i.e. they are composed of both digital and analog circuitry. They exploit the benefits of both
design paradigms for the different stages of information processing. The digital domain of
such a chip mainly performs the exchange of data and control signals between the digitally
operating external interface devices (see Section 2.1.5) and the analog domain of the chip.
The purely analog part of the chip physically implements the neuron and synapse models
described in Section 2.1.2. The analog approach allows to do this in a very efficient way in
terms of consumed chip area, dissipated power and speed (Schemmel et al., 2006, 2007).

Types of Noise

A variety of physical effects causes different kinds of noise (Dally and Poulton, 1998, Chapter
6). The most important types relevant in the context of this thesis are:� So-called 1/f -noise, which is a typical phenomenon observed in many physical processes,

e.g. if the intensity of a noise signal depends on the kinetic energy of a particle or
mechanism. In CMOS transistors, this type of noise is significant and renders a quality
criterion of the production process.� Thermal (or Johnson-Nyquist) noise, which is caused by the thermal agitation of charge
carriers. It occurs even if no currents flow, and can be reduced by cooling the affected
circuitry. It is so-called white noise, i.e. the noise power is uniformly distributed over
the frequency spectrum. For thermal noise, the distribution of its amplitudes, acquired
over arbitrary time steps, is Gaussian.� Shot noise, which is caused by the discrete nature of charge. If the number of charge
carriers that pass a potential barrier per time is small, the fluctuations of this statistical
process result in observable fluctuations of the current. Like for thermal noise, the
power density of shot noise over its frequency is constant, i.e. it is white noise, and its
amplitudes are normally distributed.� Noise caused by activity in surrounding circuitry during the operation of a device, often
referred to as deterministic noise. Although this kind of signal distortions is design-

92

4.2 Process-Inherent Imperfections

related, it has noise character, because in practice, it is nearly impossible to fully predict
its effects and to fully avoid it by design. A typical example is so-called crosstalk, i.e.
signal distortions resulting from capacitive or inductive coupling between neighboring
circuits. Another effect of this category is the activity-dependent change of supply
voltages.

Noise on a Hardware Membrane

A basic example of noise affecting the FHW-1 circuits is shown in Figure 4.11: The histogram
of 25000 membrane potential samples recorded from an unstimulated FHW-1 neuron over
100µs (HTD) is plotted. A Gaussian fit with a width of σ(Vrest) = 1.4mV (HVD) is added to
the figure and matches the distribution well. A priori it is not obvious if the source of this

Figure 4.11: The membrane potential of a single unstimulated FHW-1 neuron is recorded over 100 µs
(HTD) with a sampling period of 4 ns (HTD). The distribution over the resulting 25000 samples is
plotted (histogram), and a Gaussian fit is added to the data (dashed line): µ(Vrest) = 625.8 mV
and σ(Vrest) = 1.4 mV (HVD). In the biological interpretation of this voltage distribution, the width
corresponds to σ(Vrest) ≈ 0.1 mV (BVD).

noise is generated on the chip or if it is imposed by the utilized readout devices, i.e. by the
oscilloscope and the connecting cable. Therefore, the same measurement is performed with
the power supply for the FHW-1 system switched off. An acquisition of the same number of
voltage samples via the same pin with the same device results in a voltage value distribution
width of σ(Voff) ≈ 0.1mV (HVD). Hence, it is assumed that the main contribution of noise
on the membrane recordings from an activated neuron is generated on the chip. It is still
not clear if this noise is really a membrane property or if it is imposed during the routing of
the membrane voltage to the readout pin. But since the corresponding width of the voltage
distribution in the biological voltage domain is only approximately 0.1mV (BVD), and since
the hardware is subject to other, design-related malfunctions that introduce imprecisions on
much larger scales (see Section 4.3), a low priority can be assigned to this issue.

93

4 Gaining Control of Chip Functionality and Imperfections

Power Spectrum Figure 4.12 shows two power spectra: Sub-figure (a) plots the power
distribution against the frequency of the membrane potential trace of an unstimulated FHW-1

neuron placed on a device with power supply. Sub-figure (b) is acquired with exactly the
same setup, but with the power supply of the full FHW-1 system switched off, i.e. mainly the
noise of the readout chain is acquired.

In the spectrum of the activated neuron, peaks at the frequencies 100MHz, 200MHz and
300MHz can be observed, which is assumed to be introduced by crosstalk of digital activity
onto the recorded analog variable. This assumption is motivated by the fact that the full
system is operated with a frequency of fchip = 100MHz. This frequency is chip-internally
doubled to fint = 200MHz (see Section 4.3.9), and based upon this internal clock, the event
transformation between the analog and the digital part of the chip is performed. These
crosstalk peaks are not present in the spectrum of the readout noise. In both spectra, though,
peaks at f ≈ 190MHz, 250MHz and 330MHz are visible. It has been found that the noise at
these frequencies is introduced by the oscilloscope device itself, i.e. the source of these peaks
is off the chip.

For frequencies larger than 20MHz (HTD), there is a clear 1/f -dependency in the noise
spectrum of the active membrane, while this effect is weaker in the pure readout device spec-
trum. In case of the active membrane, strong contributions to the noise occur for frequencies
smaller than 20MHz (HTD). A closer investigation of the lower band of the power spectrum,
which is not shown here, reveals that the major fraction of noise power is contributed by
frequencies even below 1MHz. This kind of noise is assumed to be introduced mainly by the
power supply, which is not perfectly stable.

94

4.2 Process-Inherent Imperfections

(a) Electrical power supply on.

(b) Electrical power supply off.

Figure 4.12: Sub-figure (a) shows a power spectrum of a membrane potential trace acquired from
an unstimulated FHW-1 neuron. The system is operated with a chip clock of fchip = 100 MHz. Corre-
sponding peaks, probably caused by crosstalk from the digital part of the chip to the recorded analog
signal, can be observed at 100 MHz, 200 MHz and 300 MHz. Sub-figure (b) shows a power spectrum
acquired with the same setup, but with the electrical power supply for the FHW-1 system switched off,
i.e. the observed noise is dominated by the readout device chain. As expected, the 100 MHz peaks are
absent. For further interpretations, see main text.

95

4 Gaining Control of Chip Functionality and Imperfections

4.3 Prototype-Specific Malfunctions and Design-Related

Interferences

In the following, multiple issues will be described that have been found to impose constraints
and limitations for working with the FHW-1 system. This list is the result of a systematic effort
to gain control and understanding of the hardware’s behavior and characteristics. In most
cases, technical explanations have been found and will be provided. If the reason for a problem
is not yet understood, it will be described phenomenologically.

For multiple issues, calibration mechanisms (see Section 5.2) or workarounds (see Sec-
tion 5.1) have been developed that minimize or eliminate the negative impact on the usability
of the system. Although all issues that are known at the moment of writing are mentioned
in this section, and although it is unlikely that a major problem has been overlooked, the
list does not claim completeness. Please read Section 2.1 for a thorough understanding of
the parameters and dynamics that will be referred to in the following. Unless otherwise ex-
pressly mentioned, the described problems have been observed on all instances and all versions
(FHW-1.1, FHW-1.2 and FHW-1.3) of the chip.

Naming Conventions

A neuron block is the set of 64 adjacent neuron circuits on an FHW-1 chip that share the
same output FIFO Buffer. Accordingly, a synapse driver block is the set of 64 adjacent
synapse drivers that share the same input FIFO Buffer.

4.3.1 Spike Recording Deadlocks

When recording from more than the last nrec neurons of a neuron block, output spikes
from different neurons that are generated temporally close can result in a total spike readout
deadlock, i.e. no spike is recorded from this block anymore. There is no signal provided by the
hardware system that would indicate such a deadlock, so it is not obvious whether a neuron
mutes because it is just not stimulated sufficiently or a deadlock has occurred. So far, no
spontaneous end of this deadlock situation within one experiment has been observed, only a
so-called neuron reset (see Section 5.1.1) can resolve the deadlock.

For all FHW-1 systems, the critical number nrec has been observed to vary from 5 to 9,
depending on the specific chip and neuron block. For most blocks, applying nrec = 8 avoids
the deadlocks. In the following, the set of neurons that can be recorded at the same time
without the danger of deadlocks will be called REC. The precise conditions for such deadlocks,
e.g. in terms of synchrony or firing rates, are not yet known, but the problem can already
occur if only two neurons outside of REC fire with rates of around 1Hz (BTD). The higher the
output rate of two or more neurons outside of REC is, the sooner the deadlock will happen. If
only one neuron is recorded per neuron block, no deadlocks occur, no matter whether or not
this neuron is an element of REC.

Figures 4.13(a) and (b) show a normal and a deadlock situation on the FHW-1.3-No.18

system: Two neurons are exposed to the same strong excitatory stimulation from t = 50ms to
t = 250ms (BTD), but are not connected to each other. They start to fire shortly after the onset
of the stimulus. The spikes of both neurons and the membrane potential of one of them are
recorded. As can be observed, the voltage-recorded neuron is continuously crossing the firing
threshold and then pulled back to its reset potential, just as expected. Figure 4.13(a) shows a

96

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

situation in which both neurons are located within REC, hence the digital recording of the fired
spikes works well throughout the whole run. For the recordings shown in Figure 4.13(b), both
neurons are chosen from outside of REC, so a deadlock situation occurs: After around 170ms
(BTD), from both neurons no spikes are received anymore, although the analog behavior seems
to be unaffected.

By applying so-called neuron resets, the deadlocks can be resolved temporarily. See Sec-
tion 5.1.1 for more information on that.

The precise reason for the deadlocking bug is design-inherent and not yet fully understood.
Further simulations of the responsible circuits including a detailed model of parasitic effects
are required.

97

4 Gaining Control of Chip Functionality and Imperfections

0 50 100 150 200 250 300

Neuron 0

Neuron 1

0 50 100 150 200 250 300
-80

-75

-70

-65

-60

-55

-50

M
em

.
P
o
t.

N
eu

ro
n

0
V

(t
)
[m

V
]
(B
V
D
)

Time [ms] (BTD)

(a) Both neurons are located within REC: No recording deadlock.

0 50 100 150 200 250 300

Neuron 0

Neuron 1

0 50 100 150 200 250 300
-85

-80

-75

-70

-65

-60

-55

-50

M
em

.
P
o
t.

N
eu

ro
n

0
V

(t
)
[m

V
]
(B
V
D
)

Time [ms] (BTD)

(b) Both neurons are located outside of REC: Recording deadlock occurs.

Figure 4.13: In the upper sub-figures of (a) and (b), the recorded spikes of two neurons during
a phase of strong stimulation are shown. The membrane potential of neuron 0 is plotted in the
corresponding lower sub-figures. In (a), no deadlock situation arises because the two neurons are
located within REC, i.e. they can be recorded at the same time. In (b), where both recorded neurons
are located outside of REC, a readout deadlock situation occurs around t = 170 ms (BTD), although the
neuron’s analog behavior does not seem to be affected.

98

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

4.3.2 Firing Threshold vs. Reset Potential

The hardware parameter Ibias
thresh determines a bias current for the firing threshold comparator

circuits in every FHW-1 neuron (see Section 2.1.4). It controls the responsiveness and, due to
its amplifying effect on transistor mismatch, the effective value of the firing threshold. High
values of Ibias

thresh minimize the offset caused by transistor mismatch. At the same time, Ibias
thresh

controls the length of the period during which, after a spike has been triggered, a strong
conductance is enabled that connects the membrane with the reset potential Vreset. High
values of Ibias

thresh shorten this period of conductivity, low values increase it, i.e. the mechanism
determines the effective value of the neuron refractory period τref (see Section 2.1.2) or even
the effective reset potential in case the time is even too short to let the membrane reach Vreset.

This dual function of Ibias
thresh implies conflicting objectives. Since the threshold comparator

circuits are subject to transistor level variations, the parameter Ibias
thresh should be used to tune

the chip such that all neurons respond similarly to identical input. This optimization turned
out to be very important, because if Ibias

thresh is set too low, the fluctuation of the effective
firing thresholds due to transistor mismatch can become significant and make certain neurons
extremely responsive to synaptic stimulation, while other neurons exposed to the same input
do not fire at all. If the distance between the resting potential and the desired firing threshold
is configured to be smaller than the threshold fluctuations, certain neurons will start to fire
even without any stimulation.

Neurons that are firing at high rates without or with only a marginal stimulation are
normally not tolerable, because they distort the network dynamics and consume a lot of the
available readout bandwidth, which is already a limiting factor for experimental possibilities
(see Section 4.3.7). The opposite effect, i.e. effective firing thresholds that are too high, is also
observed and unwanted either, although then the network dynamics and readout bandwidths
are usually not affected that strongly.

If the value of Ibias
thresh is set rather high for a neuron in order to cope with one of the two

scenarios just described, for example by a calibration routine that tries to counterbalance the
unwanted effects, the conductance period pulling the membrane towards its reset potential
can become too short. Then the membrane might not have enough time to reach the reset
voltage at all, i.e. the effective reset mechanism is too weak. This can even lead to a state
where the membrane potential fluctuates around a value close to the firing threshold, while
the neuron does not output digital spikes anymore and hence completely loses functionality.
For some neurons, this phenomenon has been observed to already occur for Ibias

thresh set to values
of e.g. 0.4µA (HVD) while being exposed to strong synaptic stimulation. The Analog Unit
Test AUT shortReset provides a setup that reproducibly shows this specific behavior, e.g. on
FHW-1.3-No.18 (see Appendix A.2).

Furthermore, if Ibias
thresh is set to low values, the membrane can be caught in a sort of analog

deadlock that makes it start to permanently fluctuate around its reset potential just after the
first spike has occurred. For this case, the Analog Unit Test AUT longReset is a reproducible
example, e.g. on FHW-1.3-No.18 (see Appendix A.2).

For multiple neurons on a typical FHW-1 chip, no value for Ibias
thresh can be found that avoids

all of these unwanted extrema. Thus, the FHW-1 user has to deal either with sets of highly
sensitive and sets of insensitive neurons or with neurons that have a very weak effective reset
mechanism. A calibration method has been developed that, for every individual neuron,
searches the best value for Ibias

thresh, with respect to the following three criteria:� The neuron is not allowed to fire a spike when Vrest is set ∆vlow below Vthresh (lower

99

4 Gaining Control of Chip Functionality and Imperfections

tolerance cut for threshold transistor mismatch) ⇒ minimum value for Ibias
thresh.� The neuron has to fire a minimum spike rate when Vrest is set ∆vhigh above Vthresh (upper

tolerance cut for threshold transistor mismatch) ⇒ minimum value for Ibias
thresh.� The neuron’s effective reset potential is not allowed to be more than ∆vreset above the

desired value ⇒ maximum value for Ibias
thresh.

A calibration run on FHW-1.3-No.17 revealed that for tolerance limits of ∆vlow = ∆vhigh =
5mV and ∆vreset = 3mV (BVD), 38 out of the 384 neurons do not satisfy these demands and
thus are tagged to be unusable.

Figure 4.14 shows oscilloscope screen-shots which illustrate most of the possible membrane
dynamics problems for different settings of Ibias

thresh. It shows a single neuron with its firing
threshold Vthresh set below the resting potential Vrest. Thus, it should fire permanently, result-
ing in a fast oscillation between Vthresh and Vrest. For the recording in sub-figure (a), Ibias

thresh

is set to 0.0µA (HVD), which is not a reasonable setting, but it shows the possible sticking
to Vreset, probably due to a nearly permanently active conductance towards this potential.
Sub-figure (b) shows an acceptable membrane behavior for Ibias

thresh set to 0.01µA (HVD). But,
as can be seen in the following pictures, the real firing threshold (upper dashed line) is clearly
exceeded before the reset mechanism is triggered, which might be explained by a slow com-
parator. Still, the reset mechanism seems to manage to pull the membrane fully down to the
reset potential. Sub-figures (c) and (d) with Ibias

thresh set to 0.1µA and 0.3µA (HVD) illustrate
the shortening period of active conductance towards Vreset, as the membrane cannot reach
the reset potential anymore. In sub-figure (e) (Ibias

thresh = 0.4µA, HVD), the neuron already
fluctuates around the threshold, but still generates spikes (not shown in the plot), while
in sub-figure (f) (Ibias

thresh = 0.5µA, HVD) the membrane is nothing but a flat line above the
threshold, and the neuron does not output a single digital spike signal anymore.

One negative side-effect of these variabilities of effective thresholds and reset potentials is
that the application of a purely spike-based and thus fast method, which had been developed
to determine membrane time constants (see Section 5.2.3), has become impossible. This
method had to be extended such that it now dynamically determines the effective reset,
resting and threshold potentials for every individual neuron. For this purpose, the analog
sub-threshold information acquired via oscilloscope has to be incorporated into the calibration
algorithm, which makes the routine very slow.

A possible and intended solution is to provide two parameters for the disjoint functionalities
of threshold sensitivity and reset efficacy in the planned fourth version of the FHW-1. This
will uncouple the two mechanisms and allow for an appropriate configuration of each neuron.

100

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

Membrane Potential

1
8
0
m

V
(H
V
D
)

200 ns (HTD)

Time

(a) I
bias
thresh = 0.0 µA (b) I

bias
thresh = 0.01 µA

(c) I
bias
thresh = 0.1 µA (d) I

bias
thresh = 0.3 µA

(e) I
bias
thresh = 0.4 µA (f) I

bias
thresh = 0.5 µA

Figure 4.14: The membrane potential of an FHW-1 neuron that should permanently fire since its
firing threshold is set to a value below its resting potential. The sub-figures show recordings from runs
with identical settings except of the value for parameter Ibias

thresh. The choice of this value obviously
affects the membrane dynamics strongly. For a detailed description of the observable phenomena see
text.

101

4 Gaining Control of Chip Functionality and Imperfections

4.3.3 Parasitic Resting Potential Offsets

It has been observed that connecting synapse drivers to a neuron membrane, even with-
out applying any spike stimulation, causes a shift in the resting potential of the neuron.
Connecting excitatory synapse drivers increases and connecting inhibitory drivers decreases
the resting potential. The Analog Unit Test AUT synDriverLeakage provides a reproducible
setup that shows this phenomenon, e.g. on FHW-1.3-No.18 (see Appendix A.2). When vary-
ing the number of drivers or the weights with which these drivers are connected, the effect on
the resting potential varies correspondingly. Zero weights have no effect.

Figure 4.15 shows measurements acquired from FHW-1.3-No.18 that illustrate the extent
of the problem. For a completely unstimulated neuron on FHW-1.3-No.18, the average mem-
brane potential is measured as a function of the number and weights of the excitatory synapse
drivers connected to it. The firing mechanism of the neuron is deactivated. The four sub-
figures show the same measurements for four different values of the parameter Ictrl

τfall
(see

Section 2.1.4), the reason of which will become clear further below. The color range of the
plots is selected such that black denotes the desired average membrane potential, i.e. the con-
figured value of Vrest, here being −71mV (BVD). The upper cut-off color white is at a typical
value for the firing threshold, here Vthresh = −55mV (BVD).

In sub-figure (a), the average membrane potential does not seem to be affected by the
connected synapse drivers – it stays around −71mV (BVD) for every tested configuration. But
in sub-figures (b), (c) and (d), a dependence of the unwanted effective resting potential offset
on both the number and the weights of the connected synapse drivers becomes obvious. For
a large input number and large weights, the offset can easily raise the resting potential above
the firing threshold, despite the total absence of stimulation. The four different sub-figures
indicate a further parameter dependence, which gives an important hint for the explanation
of the problem: The parameter Ictrl

τfall
obviously has a huge impact on the magnitude of the

offset.

Further investigations revealed that the base lines of the voltage ramps generated at each
synapse driver (see Section 2.1.2), in an ideal system determined by the parameter V ctrl

synbias (see
Section 2.1.4), are parasitically raised by a current on the line that connects this externally
provided voltage with the drivers. The source of this problematic additional current could
not yet be clarified, but it was found to be dependent on the programmable current Ictrl

τfall
,

which explains the influence of this parameter. A certain current flow via the critical resistors
(between the DAC5 providing V ctrl

synbias and the output line of the synapse drivers) caused by
Ictrl
τfall

had been expected from the design, but the amount measured in the laboratory exceeds
the expected values by an order of magnitude.

The resting potential offset issue raises major problems: First, as indicated by Figure 4.15,
the parameter Ictrl

τfall
should be chosen as small as possible in order to minimize the effect of

connected synapse drivers. A value of Ictrl
τfall

≤ 0.15µA (HVD) seems to be a good advice. As
a further option, Section 5.1.2 describes a possible but rather intricate soldering workaround
that can decrease the voltage offset inside the drivers. If this is not applicable or practical,
which is usually the case, the only option is to limit Ictrl

τfall
, which can mean a loss of control over

the synaptic time constants. If these need to be manipulated, especially if they shall be kept
rather short (needs large values of Ictrl

τfall
6), then a setup-dependent distortion of the resting

5Digital-to-Analog Converter
6For the FHW-1.3 chip, the full range of accessible synaptic time constants can be achieved with values of

I
ctrl
τfall

smaller than 0.15 µA, but this results from the unwanted fact that the synaptic time constants already

102

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

220

240

-70

-68

-66

-64

-62

-60

-58

-56

Synapse Node Weight Factor

S
y
n
a
p
se

D
ri

v
e
rs

C
o
n
n
e
c
te

d
[#

]

A
v
g
.

M
e
m

b
ra

n
e

P
o
t.

[m
V

]
(B
V
D
)

(a) I
ctrl
τfall

= 0.15 µA

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

220

240

-70

-68

-66

-64

-62

-60

-58

-56

Synapse Node Weight Factor

S
y
n
a
p
se

D
ri

v
e
rs

C
o
n
n
e
c
te

d
[#

]

A
v
g
.

M
e
m

b
ra

n
e

P
o
t.

[m
V

]
(B
V
D
)

(b) I
ctrl
τfall

= 0.30 µA

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

220

240

-70

-68

-66

-64

-62

-60

-58

-56

Synapse Node Weight Factor

S
y
n
a
p
se

D
ri

v
e
rs

C
o
n
n
e
c
te

d
[#

]

A
v
g
.

M
e
m

b
ra

n
e

P
o
t.

[m
V

]
(B
V
D
)

(c) I
ctrl
τfall

= 0.50 µA

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

220

240

-70

-68

-66

-64

-62

-60

-58

-56

Synapse Node Weight Factor

S
y
n
a
p
se

D
ri

v
e
rs

C
o
n
n
e
c
te

d
[#

]

A
v
g
.

M
e
m

b
ra

n
e

P
o
t.

[m
V

]
(B
V
D
)

(d) I
ctrl
τfall

= 1.00 µA

Figure 4.15: Connecting synapse drivers to a membrane imposes a resting potential offset. For
different values of the parameter Ictrl

τfall
((a) 0.15 µA, (b) 0.3 µA, (c) 0.5 µA, (d) 1.0 µA, HVD), the

average membrane potential (BVD) of an unstimulated neuron is plotted as a function of the number
of connected excitatory synapse drivers and of the hardware weight factor (possible values between 0
and 15) with which these are connected. Figure by J. Bill.

potential will occur. For a fixed and known setup, such distortions can be counterbalanced
by lowering the value of Vrest, but this requires a lot of additional, setup-specific calibration
effort, and as soon as STDP dynamically changes the synaptic weights in a network, such a
pre-calibration would lose its validity. Consequently, in practice there is currently no other
option than keeping the parameter Ictrl

τfall
in the order of 0.15µA (HVD).

saturate at values much larger than expected. This limitation is described in Section 4.3.5.

103

4 Gaining Control of Chip Functionality and Imperfections

4.3.4 Synapse Driver Efficacies and Time Constants

The efficacies of the synapse drivers on an FHW-1 chip vary strongly, both spatially and, due
to an activity dependency, for excitatory drivers also temporally. The spatial effect, i.e. the
fact that both PSP7 amplitudes and time constants are different from actuating synapse driver
to synapse driver despite identical settings, is caused by hardware variations on the transistor
level and possibly by parasitic capacitances that vary due to locally different surrounding
circuitry. This is to be expected and can be counterbalanced, at least to a usually sufficient
degree, by calibration routines – an elaborate one is described in Section 5.2.4. In contrast to
this, the activity-dependent effect has to be considered a serious issue that makes the efficacy
of a synapse driver unpredictable.

A minor problem is the fact that if the current that controls the rising ramp of the con-
ductance courses generated at each synapse driver, Ictrl

τrise
, is chosen too high, the circuit that

compares the current voltage with the maximum value (determined by Ictrl
amp) and that triggers

the change from increase to decrease may be too slow to detect the threshold crossing within
a sufficiently short time. This results in a large influence of Ictrl

τrise on the resulting voltage
ramp amplitude. A high value of the comparator bias current Ibias

syn improves its speed and
thus minimizes this problem (see Section 2.1.4). Furthermore, since the conductance rise time
is assumed to be infinitesimally short in the reference models utilized throughout this thesis,
the technique chosen for all later calibration work is to keep the value of Ictrl

τrise constant at a
large value. Hence, synapse driver calibration methods as the one described in Section 5.2.4
will implicitly consider and counterbalance such overshoots.

The spatial fluctuation of conductance course amplitudes and time constants generated
at synapse drivers that are caused by transistor level variations are a fixed-pattern problem
which in principle can be calibrated utilizing the parameters Ictrl

amp (for the amplitudes) and
Ictrl
τfall

(for the decay time constant). Figures 4.16 and 4.17 show the different PSP integrals and
time constants as determined via the STA method (see Section 4.1.1) for the left block of the
FHW-1.3-No.18 system. For these measurements, all synapse drivers were configured with
the values Ictrl

amp = 0.2µA and Ictrl
τfall

= 0.15µA (HVD). In order to establish a realistic operating
point, the tested neuron has been exposed to 208 independent excitatory and 48 inhibitory
Poisson spike trains with a firing rate of 3.0Hz (BTD) each. Hence, the PSP integrals are
partly positive (index 0 up to 207), partly negative (index 208 up to 255). Each data point
in these two figures represents the mean over 10000 individual PSPs, acquired at an average
sub-threshold operating point which was actively adjusted. For the excitatory drivers, the
mean of the integral distribution is 28 · 10−6 Vs, the standard deviation is 15 · 10−6 Vs (BTD
and BVD). The mean of the decay time constant distribution is 34ms, the standard deviation
is 12ms (BTD).

A minimum requirement for any synapse driver calibration would be that the integral
over a PSP caused by such a driver (assuming a well defined average membrane potential)
does not vary more than a defined value from synapse driver to synapse driver. A better
calibration routine would consider both the integral and the decay time constant. Such a
dual optimization approach has been developed and is described in Section 5.2.4. But, due
to the critical analog effect described above in Section 4.3.3, Ictrl

τfall
has to be kept as low

as possible. Hence, for the available FHW-1 systems, the decay time constants of synaptic
conductance courses cannot be calibrated sufficiently at the moment.

The activity-dependent fluctuations are most probably caused by voltage drops of the

7Post-Synaptic Potential

104

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

excitatory reversal potential Ee due to too high load, i.e. when too many synapses connect
this potential to leaky membranes, it will break down. This cannot be avoided by increasing
the bias current Ibias

Ee
for the corresponding hardware voltage generator.

Figure 4.18 illustrates the effect: A single neuron is stimulated by 5 synchronous spikes via
5 synapse drivers, connected with a maximum digital weight to the membrane. For different
values of Ibias

Ee
, the PSP amplitude is measured as a function of the parameter Ictrl

amp, which
determines the amplitude of the conductance course generated by the synapse drivers. In the
left sub-figure, the plotted neuron is the only one that gets connected to Ee, and only for
the said 5 spikes. In the right sub-figure, the same setup is repeated, but a second neuron
receives 160 excitatory and 40 inhibitory independent Poisson spike trains firing at a rate of
1Hz (BTD). Obviously, the additional load caused by the 160 excitatory spike trains connecting
the second neuron to Ee massively decreases the PSP amplitude of the first neuron, although
there is no intended connection or correlation between the two membranes.

The more neurons impose load onto Ee, the stronger this decrease becomes. Hence, the
efficacy of a post-synaptic conductance course is strongly dependent on excitatory network ac-
tivity. For the current system, there is no known way to avoid this issue. The Analog Unit Test
AUT excLoad provides a reproducible setup that shows the phenomenon on FHW-1.3-No.18

(see Appendix A.2). The consequence of these load-dependent weakenings of the excitatory
reversal potential is the impossibility to adjust excitatory synapses adequately to a determin-
istic strength. This fact has to be considered as fatal for a wide field of applications that
otherwise might have been possible for the FHW-1 system.

105

4 Gaining Control of Chip Functionality and Imperfections

(a) PSP integrals vs. Synapse driver index

(b) Histogram of PSP integrals (excitatory synapse drivers only)

Figure 4.16: Identically configured synapse drivers result in different PSP integrals. Figure (a) shows
the measured integrals caused by each of the 256 synapse drivers of the FHW-1.3-No.18 system’s left
block. Figure (b) summarizes these data points into a histogram.

106

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

(a) PSP decay time constant vs. Synapse driver index

(b) Histogram of PSP decay time constants

Figure 4.17: Identically configured synapse drivers result in different PSP decay time constants.
Figure (a) shows the measured time constants caused by each of the 256 synapse drivers of the
FHW-1.3-No.18 system’s left block. Figure (b) summarizes these data points into a histogram.

107

4 Gaining Control of Chip Functionality and Imperfections

(a) Low load on excitatory reversal potential Ee

(b) High load on excitatory reversal potential Ee

Figure 4.18: A high load on the voltage generators for Ee causes an activity-dependent decrease of
the corresponding synapse efficacies. The plot shows the amplitude of five accumulated, synchronous
excitatory PSPs versus the synapse amplitude current Ictrl

amp. The chosen range for this control current
covers typical values used for the FHW-1 operation. Every data point represents the mean over 10
runs, the error-bars are the standard deviations of the individual PSPs. In every sub-figure, the curves
for five different value settings of the bias current Ibias

Ee
are shown. In sub-figure (a), the load on Ee

caused by background activity is very low, while in (b) it is much higher. The influence of the load is
obvious, while large values of the parameter Ibias

Ee
seem to have no positive effect on this issue.

108

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

4.3.5 Dis-Proportionality of Intrinsic Time Constants

In computational neuroscience, typical membrane time constants τm for conductance-based
I&F neuron models are found between 10ms and 20ms (BTD) (Kumar et al., 2008; Brette and
Gerstner, 2005; Sussillo et al., 2007; Shelley et al., 2002), while synaptic decay time constants
usually cover a much wider range. Typical values for excitatory synaptic conductance decays
τsyn,E are chosen between 0.3ms (Kumar et al., 2008) and 4ms (BTD) (Sussillo et al., 2007;
Shelley et al., 2002). Inhibitory synapses usually are configured to be a factor 2 to 4 slower.

For the FHW-1 system, the synaptic decay time constants were originally assumed to be
configurable within a range of 10 ns to 1µs (HTD), i.e. covering two orders of magnitude.
Figure 4.19 shows the synaptic decay time constant as a function of the parameter Ictrl

τfall
(which normally should not be chosen larger than 0.15µA (HVD), see Section 4.3.4). All
values of τsyn have been acquired with the STA method (see Section 4.1.1) and a setup which
guarantees that the utilized membrane is in a high-conductance state (see Sections 1.3.1 and
4.1.2, see Kaplan, 2008). In this plot, the available time constants range from around 30ms
to varying maxima between 55ms and 140ms (BTD). The lower limit is typical for all neurons
on all chips. As discussed above, this value is much larger than the time constants usually
applied in models.

0.01 0.1 1
0

20

40

60

80

100

120

140

160

Synapse Decay Control Current Ictrl
τfall

[µA] (HVD)

S
y
n
ap

se
D

ec
ay

T
im

e
C

on
st

an
t

τ s
y
n

[m
s]

(B
T
D
)

Ictrl
τfall

= 0.025µA (HVD)

Figure 4.19: Synaptic decay time constants vs. the parameter Ictrl
τfall

(HVD). Data points have been

acquired with the STA technique on a membrane in a high-conductance state. For Ictrl
τfall

= 0.025 µA,
the difference between the resulting time constants is minimal. Figure by B. Kaplan.

So why not decrease the speedup interpretation by a factor of 10? The problem is the
configurable range of membrane time constants, which is approximately 50 ns to 150 ns (HTD).
For a speedup factor of 104, this would mean 0.5ms to 1.5ms (BTD), being one order of
magnitude too short. Since the activity-dependent integration capability of a membrane, i.e.
especially its varying low-pass filtering properties, is assumed to be functionally important,
a realistic time constant for an unstimulated membrane is demanded. Hence, the translation
factor between HTD and BTD is kept as 105, despite the resulting slow synapses. In the specific

109

4 Gaining Control of Chip Functionality and Imperfections

case of the FHW-1 chip, which has much less synaptic inputs (N chip
inputs = 256) than usually

found for a cortical neuron (N cortex
inputs ≈ 103..104), a higher synaptic time constant can possibly

counterbalance this lack of stimuli to achieve a comparable level of excitation.

Still, in order to map more network models onto the hardware substrate, it is desirable to
have a wider range of configurable ratios

τsyn

τm
available. Hence, for a future FHW-1 version,

the neuron membrane capacitance is planned to be increased by a factor of at least 10. A
resulting emulation slowdown would also minimize the I/O bandwidth problems summarized
in Section 4.3.7.

4.3.6 Multi-Spikes

Many neurons exhibit a double- or multi-spike phenomenon, i.e. for every spike that is
visible on the analog membrane trace, two or more spikes with a distance between 3 ns and 7ns
(HTD) are recorded digitally. For affected neurons, this inter-spike distance varies from spike
pair to spike pair, even within one experiment run. The Analog Unit Test AUT multiSpikes

provides a reproducible setup that shows this specific behavior, e.g. on FHW-1.3-No.18 (see
Appendix A.2). The intensity of this phenomenon has been found to be influenced by the
parameter Ibias

thresh.

If two adjacent neurons within one neuron block would always show the same behavior,
one could speculate about a problem within the digital registering of the spike, as one spike
pulse from within the analog part of the chip might have overlapped two clock cycles of the
digital part and thus been registered as two events. But there is clear evidence of neurons
within one neuron block that behave differently, so there has to be another explanation.

The multi-spikes can have a distorting influence on, for example, synaptic plasticity, if they
are already existent within the analog part of the chip. This still has to be investigated. In
any case, they distort the digitally recorded event data in terms of precise spike times and
firing rates, plus might affect firing regularity, synchrony and other statistical parameters.
Artificially increased firing rates can cause further problems, because the readout bandwidth
of the FHW-1 system is very limited, as will be described in the following paragraph.

4.3.7 Limited Spike Input and Output Bandwidth

As discussed in Sections 3.1.5 and 4.3.5, the intrinsic membrane and synapse time constants
within the FHW-1 chip determine the interpreted translation factor of 105 between HTD and
BTD. With this speedup and an applied chip clock of fchip = 100MHz (which, at least for the
FHW-1.1 and FHW-1.2 systems, cannot be significantly increased due to problems with the
internal DLL locking, see Section 4.3.9), the input and output bandwidths for digital events
are very limited.

There are two main bottlenecks for digital data coming into or going out of the chip.
First, the packet transport between the controlling FPGA respectively the so-called Playback
Memory and the chip itself. Since one packet can carry a maximum of three events, the total
maximum input and output rate for a chip clock of fchip = 100MHz is 300MEvents/s (HTD).
This is further limited by the fact that each packet has to carry events for different synapse
driver blocks.

The second bottleneck is given by the depth of the FIFO queues that buffer the event
input and output on the chip. Each neuron and synapse driver block has two FIFO buffers,
each of which is 64 events deep and operates with the chip clock, but one of the two being

110

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

shifted by the half of one clock period. This results in an upper limit for the input (output)
rate of 200MEvents/s (HTD) per synapse driver block (neuron block), eight (six) of which
are located on one chip. Still, an input (output) rate of eight (six) times 200MEvents/s
(HTD) might not be feasible because of the packet rate described above. The occurrence of
bandwidth problems strongly depends on the configuration of the system and on the temporal
and spatial distribution of its activity.

To give an idea of realistic limits, two simple example cases will be introduced, which have
been tested experimentally. For a speedup factor of 105 and a chip clock of fchip = 100MHz,
the maximum rate of 256 independent, externally generated Poisson spike trains stimulating
one single neuron is approximately 8Hz (BTD) per train. This upper limit arises from the
packet transmission limit of 300MEvents/s (HTD). If only 64 external inputs are applied,
but to the same synapse driver block (which is a very realistic situation, because 64 adjacent
synapse drivers per chip half are not occupied by possible feedback connections), the maximum
rate for a Poisson spike train is approximately 11Hz (BTD) per train, in this case determined
by the FIFO buffer depth. Both bandwidth limitations are demonstrated by single-neuron
experiments presented in Section 6.1.2.

A decrease of the interpreted speedup by a factor s via a redesign of the electronic membrane
properties, as proposed in Section 4.3.5, would increase the available biological input and
output rates by the same factor s.

4.3.8 Crosstalk of Digital Activity

Activity within some circuits of the digital part of the chip causes noise in the purely analog
circuitry. This reproducible, clock-dependent noise normally is superposed by hardware-
intrinsic, statistical noise (see Section 4.2.2). Still, in some cases this digital crosstalk can
become large enough to be visible even on a noisy membrane potential. And if the STA
technique (see Section 4.1.1) is applied, i.e. if statistical noise is filtered out, crosstalk effects
can become very noticeable.

Figure 4.20(a) shows an FHW-1.3 resting potential during a parameter update of so-called
membrane voltage output buffer bias currents. Nine digital spikes can be observed, caused by
crosstalk from the update circuits. In this case, the spiking behavior was not observed to be
affected, thus this phenomenon is assumed to affect the readout chain, but not the membrane
itself.

In Figure 4.20(b), an EPSP extracted via STA is shown. A peak is visible just before the
EPSP. This is caused by crosstalk from digital circuit activity upon the arrival of the digital
spike information, hence its temporal correlation to the PSP is always the same and thus its
effect cannot be filtered out by averaging techniques.

Especially the kind of crosstalk shown in Figure 4.20(a) can cause a serious problem dur-
ing calibration of the chip. Although it might not affect the membrane itself, but just the
recording of it, this can be a problematic issue in cases where analog readout information
is essential, as e.g. for a lot of calibration methods. Determining effective resting and reset
potentials or thresholds (necessary for example due to the problems stated in Section 4.3.2)
typically involves measuring the minima and maxima of the traces acquired via an oscillo-
scope. If this information is distorted by digital crosstalk as shown, the results might be
misleading.

Future hardware designs might consider more shielding mechanisms for the analog circuitry.
Until such a revised system is available, averaging techniques have to filter out at least the

111

4 Gaining Control of Chip Functionality and Imperfections

(H
V
D
)

(HTD)

M
em

b
ra

n
e

P
o
te

n
ti
a
l

Time

(a) Oscilloscope screen-shot: Crosstalk
on resting membrane potential due to
parameter updates of the nine membrane

voltage output buffer bias currents.

M
em

b
ra

n
e

P
o
te

n
ti
a
l
[m

V
]
(B
V
D
)

Time [ms] (BTD)

(b) A digital crosstalk spike just before the onset of an ex-
citatory PSP (spike-triggered average over 100000 runs).

Figure 4.20: Examples of crosstalk on membrane potentials of FHW-1.3 neurons.

temporally uncorrelated parts of digital crosstalk.

4.3.9 Clock Problems

For the event data transport to and from the FHW-1 chips, the periodic signal that clocks
the devices, typically oscillating with a frequency of fchip = 100MHz, is first divided into a
chip-internal clock of fint = 2 · fchip. Then this chip-internal clock is divided again into 16
so-called time bins by a delay-locked loop (DLL), an electronic building block on the chip.
Event delivery to and from the chip needs precise time stamps for each event and hence makes
use of this sub-clock. Two problems with the DLL cause situations where events within the
last few of each set of 16 time bins are not generated in the analog part of the chip or are
dropped during the time-to-digital conversion phase.

One possibility is that the DLL does not synchronize correctly to the chip clock, i.e. that
there are either too few or too many time bins per clock cycle. This issue is explained in detail
in (Grübl, 2007, Section 6.5). It can lead to a systematic event loss during both stimulation
and recording. For fchip = 100MHz, though, the event loss rate due to DLL locking problems
was found to be below 0.5% (Grübl, 2008).

The other kind of possible input spike loss is due to too short trigger signals sent to
the synapse drivers, so that the conductance course sequence (see Section 2.1.2) will not be
started. This problem is experimentally shown and explained in more detailed in Section 6.1.1,
where the precision of spike delivery is analyzed with an FHW-1.2 chip. A workaround that
avoids stimulation distortions due to these too short synapse trigger signals is presented in
Section 5.1.3. A modification in the circuitry of the third version of the FHW-1 chip addresses
this problem, but has not yet been evaluated.

112

4.3 Prototype-Specific Malfunctions and Design-Related Interferences

4.3.10 Insufficient Parameter Range for Synaptic Facilitation and Depression

In order to get short term depression and facilitation working in a biologically realistic
regime, the reference voltages Vfac and Vmax (see Sections 2.1.3 and 2.1.4) have to be adjustable
within a large range. Otherwise, the control over the impact of the electronically modeled
inactive partition (see Section 2.1.3) is very limited, which results in extremely fast saturation
at the maximum or minimum synaptic weights.

The voltage generators that are located on the chip (see Section 2.1.4) usually provide
values from around 0.6V to 1.6V (HVD). For a biologically realistic configuration of the short-
term synaptic plasticity mechanism, this has been found to be not sufficient (Bill, 2008). In
Section 5.1.4, a workaround is presented which manages to pull down selectable reference
voltages like Vfac significantly by connecting it to an external potential. This method imposes
a high risk of damaging the circuits by wrong usage, and the actual value of Vfac is unknown
during its application. Furthermore, the method occupies I/O resource that might be needed
otherwise, and it requires additional devices like external voltage generators.

4.3.11 STDP Control Problems

The hardware STDP mechanism, which is explained in Section 2.1.3, has not yet been put
under satisfying control. Despite considerable efforts (see description of applied technique in
Section 4.1.3), no method could be established so far which allows to configure the chip such
that all synapses exhibit acceptable weight change curves. Hence, to which extent synaptic
long-term plasticity does or does not work is not yet clear. But the measurements indicate
that it will be impossible to reliably tune the ratio of the integrals over the causal and the
acausal branch of STDP curves with a precision in the order of 5%. Hence, unsupervised
STDP learning paradigms that rely on such a precise balancing (see e.g. Song et al., 2000)
are not applicable.

Possible reasons for the continuous lack of STDP configurability are the following:� Since the applied measurement method is rather complex, systematic errors within the
high-level routines cannot be ruled out perfectly.� The results might be distorted by leakage currents inside the correlation measurement
circuits that vary from synapse to synapse and over time.� The low-level software interface does not provide a cleanly encapsulated and fully tested
STDP configuration interface – thus there might be errors in its functionality or usage.� Due to the problems with the effective firing threshold (see Section 4.3.2), it is hardly
possible to make a whole set of neurons reliably generate the required post-synaptic
spikes. And since each neuron has to be tuned individually, correlation measurements
of large synapse arrays become very slow.� Due to slow measurement methods, possible temperature dependencies of leakage cur-
rents discharging the involved capacitors might have a significant influence.� Fundamental misbehavior of the hardware itself.

Exemplary results that illustrate the mentioned difficulties are presented in Section 6.1.5.

113

4 Gaining Control of Chip Functionality and Imperfections

Weight Update Cycle

A well-known issue is the possibly very slow weight update cycle of the hardware STDP
mechanism. The weight updating works sequentially, therefore an update is delayed until the
controller processes the particular synapse. The following formula can be used to calculate
the worst case delay for updating the synaptic weights, assuming that all synapses are plastic,
that all synapse rows are used and that all weights need to be updated:

tupdate = (2Nupdates/(6×row) + trow delay) · 2tclk · Nrows . (4.6)

Every two clock cycles up to six weights can be updates. Each row access must be done twice,
once for causal and once for acausal measurements. Using the default operating parameters
at the time of writing, row access trow delay requires typically 50 cycles; tclk is set to 200 MHz
(HTD). Thus (2 · 64 + 50) · 2 · 5 ns · 256 ≈ 456µs (HTD) are needed for updating all 192 · 256
synapses within a block. Considering a speedup of 105, this represents a worst case of 45.6 s
in BTD. In a typical setup, values between 10 s and 30 s are expected. This clearly limits the
speed of synaptic weight adaptation via STDP in the hardware system. Therefore, depending
on the experimental setup, a sufficiently fast weight modification behavior that reproduces
existing STDP modeling approaches (reviewed in Morrison et al., 2008) cannot be guaranteed.

4.3.12 Spontaneous Ghost Events

When output spikes are read back from the FHW-1 playback memory, often digital events
are among the data that have no analog correspondence, i.e. that are generated wrongly.

The Analog Unit Test AUT ghostSpikes provides a reproducible setup that shows this
specific behavior, e.g. on FHW-1.3-No.18 (see Appendix A.2): There, one neuron is created
and its membrane is recorded for 100ms (BTD) while no stimulation is applied. No single
neuron is flagged to be recorded digitally. During the experiment, the membrane remains
at its resting potential, but after the run is finished, multiple spikes can be read back from
the playback memory. These ghost events seem to occur randomly in time, but from specific
neurons only, independent of the neuron the membrane or spikes of which is recorded. For the
FHW-1.3-No.18 system, the neuron indices of ghost events usually are in I = {1, 64, 128, 320},
i.e. indices close to boundaries of neuron blocks seem to be preferred. The membranes of these
neurons that are wrongly indicated to be active show no significant deviation from their resting
potentials either.

It is not clear at what point in the event generation chain those ghost events emerge, and
due to the fact that such events are rather rare, debugging this issue has been assigned a low
priority (Schemmel, 2008).

114

5 Establishing Biologically Realistic Regimes

After practical difficulties with the operation of the accelerated FACETS
hardware system (FHW-1) as a neuroscientific modeling tool have been
identified in the previous chapter, the following sections describe meth-
ods that help to overcome the hardware-specific drawbacks. The pre-
sented techniques allow to set up biologically realistic regimes of activity
on the neuromorphic system despite the imperfections of the substrate.
Section 5.1 presents techniques that minimize or avoid the corruptive
impact of some of the design-related hardware malfunctions described
in Section 4.3. The calibration routines presented in Section 5.2 provide
a parameter fine-tuning that increases the homogeneity of the neuro-
morphic sub-circuit dynamics. This is necessary due to process-inherent
transistor-level fluctuations and further design-related interferences.
In order to evaluate the success of hardware tuning methods in terms
of a possibly increased biological relevance, comparison paradigms with
established software simulators are helpful. For this purpose, descriptors
of network dynamics are motivated and introduced in Section 5.3. They
can be used to quantify the similarity of simulated and emulated data.

5.1 Handling of Chip Imperfections

The following techniques have been developed in order to minimize or avoid the impact of
some of the problems with the FHW-1 system described in Section 4.3.

5.1.1 Releasing Recording Deadlocks

The event readout deadlocks described in Section 4.3.1 have been found to be resolvable
during an experiment by applying a specific mechanism called neuron reset. A neuron reset is
a chip-global signal which disables the spiking mechanism while it resets the priority encoders
in the event acquisition circuitry of the FHW-1 chip. Those encoders are assumed to cause the
deadlocks. After applying a neuron reset signal, events from all neurons can be read again,
but only until the next deadlock occurs. Hence, if more than a small subset of the network
shall be recorded at the same time and continuously, neuron resets have to be applied many
times during an experiment.

Although such a reset signal does not affect the analog integration process of the neurons,
the fact that no spike mechanism can be initiated during a reset distorts the network dynamics

115

5 Establishing Biologically Realistic Regimes

in various ways. Depending on the length of the neuron reset signals and the frequency with
which they are applied, output spikes can be lost or delayed, and the membrane potential
might spend significantly more time above the firing threshold compared to a situation with
an undisturbed spiking mechanism. Nevertheless, since all available versions of the FHW-1

system are subject to the deadlock issue, the possibility of recording the whole chip at the
same time might be worth the drawbacks caused by the neuron resets.

Different ways of applying neuron resets into an active network have been considered,
including periodic resets, resets as Poisson processes, or resets which are applied every nth
externally generated input spike. Any method which is based on the external stimulation of
the network has been skipped, because self-stimulating networks, especially networks with self-
sustaining activity, can run into deadlocks without a single externally applied spike. Regular
and Poisson process resetting has been implemented (Müller, 2008, Section 4.3.2). Figure 5.1
shows two neurons which, due to their firing threshold being set below their resting potential,
fire permanently at very high rates. But as can be seen from the plot, they run into deadlocks
multiple times. By applying multiple neuron resets which last less than 1ms (BTD) each, the
deadlocks are resolved for certain periods again. In some cases only one of the neurons is
unlocked, in most cases both are.

0

1

2000 4000 6000 8000

Time [ms] (BTD)

N
eu

ro
n

Figure 5.1: The spike output of two neurons which repeatedly run into recording deadlocks. The
deadlocks are resolved by so-called neuron resets several times. Time axis in BTD. If not caught in
a deadlock situation, the firing rates of both neurons are very high in order to provoke the problem.
Figure by E. Müller.

5.1.2 Clamping Synapse Driver Base Lines

For suppression of the synapse driver offset voltage as described in Section 4.3.3 and for
an applicable synaptic short-term plasticity configuration (Bill, 2008, Section IV.5.4), the
parasitically distorted parameter V ctrl

synbias has to be lowered. This can be achieved by bypassing
the connection between the DAC on the Recha board and the on-chip V ctrl

synbias, leaving only
an internal resistor of 10Ω (HVD) across which the parasitically injected currents cause the
corruptive voltage deviation. Such a bypass needs additional soldering and was performed
only for the FHW-1.3-No.25 system. With that device the short-term synaptic plasticity
experiments presented in Section 6.2.2 were performed, which needed a minimized value of
V ctrl

synbias.

5.1.3 Avoiding Time Bin Losses

As a workaround for the too short trigger signal issue described in Section 4.3.9, a technique
is applied which guarantees the delivery of all generated stimulation data into the analog part
of the chip, provided that the delay-locked loop, which generates the 16 time bins per chip
clock cycle, works correctly.

116

5.1 Handling of Chip Imperfections

With the chip clock fchip set to 100MHz (HTD), only events in the last one or two time bins
within one clock cycle have a non-marginal probability to be lost, i.e. the bins with the indices
14 and 15 or, in binary representation, 1110 and 1111. Hence, in order to avoid events within
these time bins without imposing systematic input pattern distortions, the last two bits of all
stimulation event time stamps are set to zero. By doing so, the critical time bins are avoided,
and the only drawback is an effective loss of temporal resolution by a factor of 4 – which is
acceptable at the current stage of development and in the light of more serious malfunctions
presented in Section 4.3.

5.1.4 Providing Sufficiently Low Reference Voltages

The dynamic ranges of programmable voltages provided by the on-chip generators (see
Section 2.1.4) are sometimes not sufficient. As for e.g. a useful short-term synaptic plasticity
configuration (see Section 4.3.10), values significantly smaller than 0.6V (HVD) are required.
Hence, a method has been developed which can pull selectable voltage parameter values
towards an externally provided potential (Bill, 2008, Section IV.5.4). For this purpose, the
Itest
b pin is used (see Section 2.1.5), which was originally designed as a readout pin only, but

which can be used to influence selectable voltage parameters with a potential connected to
that pin, i.e. to effectively write values.

Two conditions have to be met in order to avoid damage to the Itest
b circuits: The bias

currents of all voltage generators connected to the Itest
b pin in its write mode have to be set to

zero, and the same holds for the target values of the involved voltage parameters defined by
the software interface. The total current through the Itest

b pin must not exceed 3mA (HVD).

For the PyNN.hardware.stage1 module (see Section 3.2.2), a flag is implemented which
automatically performs the automatable safety precautions, i.e. it sets the bias currents for the
appropriate voltage generators to zero, as soon as configurable voltage parameter values are
defined to be externally provided. This workaround is applied for the experiments presented
in Section 6.2.2.

5.1.5 Achieving Sufficient Parameter Ranges

During the work with FHW-1 devices, the output range of the on-chip voltage generators
(see Section 2.1.4) turned out to have a critical influence on the usability of the system. The
available voltages directly determine the available dynamic range of the hardware neuron
membranes, while the various noise sources, parameter fluctuations and parasitic effects (see
Section 4.3) impose a total error onto every experiment which is mostly independent of that
range. Hence, in order to achieve an acceptable signal-to-noise ratio, the voltage ranges have
to be maximized.

The upper and especially the lower limits of such a programmable voltage V can be opti-
mized by selecting an appropriately low value for the bias current Ibias

V of the corresponding
voltage generator circuit. According to recommendations originally given by the hardware
developers, these bias currents were set to 0.2µA (HVD) for all generators, resulting in a lower
output limit of approximately 0.85V (HVD). After checking experimentally that bias current
values as small as 0.02µA (HVD) still do not cause significant output voltage drops under
realistic load, the resulting lower limit of approximately 0.6V (HVD) can now be regarded as
a factual minimum.

During the process of bias current testing, another phenomenon has been observed: Both

117

5 Establishing Biologically Realistic Regimes

the bias currents and the absolute values of adjacent voltage memories can affect the effective
output value of a voltage memory which itself is not changed in terms of its input value
or its bias current. It is assumed that this phenomenon is related to the issue described in
Section 4.3.3.

5.2 Hardware Calibration

In this section, a set of calibration mechanisms is described that have been developed to
increase the reliability of parameter programming for the FHW-1 system and to minimize the
effects of transistor mismatch from neuron to neuron and from synapse to synapse. The goal
is to provide a neural substrate with a maximum of homogeneity in terms of its response
to external stimulation. Without these calibration procedures, neurons on the same chip
can respond such differently to identical input, that one cell fires permanently at biologically
unrealistic rates, while the membrane of another cell is not even close to its firing threshold.
The impact of a spike arriving at one synapse driver can be orders of magnitude stronger
than the impact of a spike arriving at another synapse driver on the same chip. Under these
conditions, it is hardly possible to set up reasonable experiments.

Some of the effects counterbalanced by the presented methods are process-inherent and
have been expected, i.e. the corresponding calibration approaches can be transferred to any
comparable system. Others, which deal with malfunctions described in Section 4.3, will lose
relevance as soon as systems are available that solve the responsible issues.

Johannes Bill, Eric Müller and Andreas Grübl have contributed to the development of the
methods presented in this section.

Calibration Framework Except of the voltage generator gauging presented in Section 5.2.1,
all calibration methods presented in this section have been implemented in Python and utilize
PyNN (see Section 3.1.3) for the setup and control of hardware experiments. The membrane
time constant calibration (Section 5.2.3), the synapse driver calibration (Section 5.2.4) and the
synapse weight calibration (Section 5.2.5) use the software simulator NEST (see Section 3.1.4)
as a reference. This comparison paradigm is not just a control mechanism. It is the essential
mechanism with which the biologically relevant operation regime of the FHW-1 hardware is
established.

The order in which the routines are presented is the order in which they are recommended
to be applied to an uncalibrated chip, as each calibration builds upon and requires its prede-
cessors. A top-level calibration framework has been implemented in Python which embeds all
routines presented in the following and which provides the storage of the resulting calibration
data for later use in experiments. Hence, for a given workstation (see Section 3.2.4), the full
calibration program sequence has to be performed only once.

5.2.1 Voltage Generator Calibration

In the FHW-1 model, important neuron voltage parameters like its firing threshold and
its reversal potentials are generated on-chip by programmable voltage generators (see Sec-
tion 2.1.4). For those, the relation between the written voltage value Uin and the actually
generated output voltage Uout is well approximated by a linear dependency with a slope mU

118

5.2 Hardware Calibration

and an offset Uoff, which is limited by upper and lower bounds Uupper and Ulower:

Uout =

Umin
out , if Uin < Ulower

Uoff + mU · Uin , if Ulower ≤ Uin ≤ Uupper

Umax
out , if Uupper < Uin

. (5.1)

The values of mU, Uoff, Umax
out and Umin

out have been found to differ significantly from voltage
generator to voltage generator. This can be explained by fluctuations of the 10 kΩ polysilicon
resistors which are used to convert the currents that are generated by a DAC1 into the desired
voltages. In the utilized chip production process, polysilicon resistors can have a mismatch
of up to 30% (Schemmel, 2008).

The effect is too strong to be ignored, hence a calibration routine has been developed by
Eric Müller which, for a given chip, automatically determines the relationship between Uin and
Uout, i.e. it finds and stores the values of mU, Uoff, Umax

out and Umin
out for every single one of the 40

voltage generator on a chip (Müller, 2008, Section 4.3.4). This calibration algorithm has been
embedded into the full chip calibration framework presented here. The acquired translation
values are utilized every time a voltage is written to the chip, and the upper and lower limits
of the programmable voltage range are incorporated into the automated mapping process
between biological (BVD) and hardware voltage domain (HVD) presented in Section 3.1.5.

5.2.2 Firing Threshold and Reset Mechanism Calibration

The problems inherent to the parameter Ibias
thresh have been discussed in detail in Section 4.3.2.

As indicated there, for multiple neurons on a typical FHW-1 chip, no value for Ibias
thresh can be

found which avoids all possible malfunctions caused by this parameter. A calibration method
has been developed which, for every individual neuron, searches the best value for Ibias

thresh, with
respect to the following three criteria:� The neuron is not allowed to fire a spike when its resting potential Vrest is set ∆vlow

below its firing threshold Vthresh. This leads to a minimum value condition for Ibias
thresh.� The neuron has to fire a minimum spike rate when Vrest is set ∆vhigh above Vthresh. This

leads to another minimum value condition for Ibias
thresh.� The effective reset potential of the neuron is not allowed to differ more than ∆vreset from

the desired value. This leads to a maximum value condition for Ibias
thresh.

All three conditions are tested, i.e. the corresponding voltage parameters are applied and the
value of Ibias

thresh is swept while the output firing rate of the analyzed neuron is recorded. The
resulting minimum and maximum values are compared, and if there is no valid range left,
the neuron is tagged as unusable in terms of this calibration regime. If there is a range of
possible values for Ibias

thresh, the largest value is chosen for later experiments, because the larger
Ibias
thresh is, the smaller are the firing threshold fluctuation due to transistor mismatches.

For the FHW-1.3-No.17 chip, the tolerance values ∆vlow = 5mV, ∆vhigh = 5mV and
∆vreset = 3mV (BVD) led to a total of 38 out of the 384 neuron cells which were unusable.
On the FHW-1.3-No.18 chip, for 17 neurons no satisfiable regime could be found, and on the
FHW-1.3-No.25 chip there are 15 unusable cells.

1Digital to Analog Converter

119

5 Establishing Biologically Realistic Regimes

The described method is the only way to minimize the firing threshold and reset potential
fluctuations, because the voltage parameters themselves cannot be individually configured for
every neuron (see Section 2.1.4). A total of four values per parameter and chip are available,
which is not sufficient to counterbalance the neuron-to-neuron fluctuations of all 384 cells.

5.2.3 Membrane Time Constant Calibration

For each FHW-1 neuron circuit, the hardware membrane capacitance Cm cannot be controlled
by any programmable parameter (see Section 2.1.4), i.e. it is fixed. The hardware design
aims at identical capacitances for all circuits, but due to transistor-level hardware variations
(see Section 4.2.1), the real physical capacitances follow a distribution which is not known
a priori. For the temporal dynamics of the hardware membrane potentials, the absolute
value of these capacitances does not influence the spiking behavior of the neurons, provided
that the time constants τm = Cm

gl
(see Section 2.1.2) are equal for every circuit, and that

identically configured synapses have the same impact on every membrane. The first condition
is addressed in the following.

The leakage conductances gl can be configured individually for every neuron by tuning
the corresponding hardware control current Ictrl

gl
(see Section 2.1.4), but it is not possible to

directly measure the resulting values of gl for validation. Even if gl was perfectly controllable,
applying the same value for all neurons would result in fluctuating membrane time constants
due to the variability of Cm. Hence, setting the membrane time constants τm = Cm

gl
to desired

values is not possible without additional effort.

In order to approximate the desired values for the individual membrane time constants, a
feedback loop has been implemented which iteratively determines the actual value of τm for
every neuron and adjusts Ictrl

gl
. This is repeated in a binary search scheme (Knuth, 1997) until

the measured values of τm have reached a value within some configurable tolerance range.

A crucial part of this procedure is the method with which τm is measured. In Section 4.1.4
a purely spike-based and thus fast measurement method is presented which has been devel-
oped specifically for this purpose. Due to the chip malfunctions presented in Section 4.3.2,
the parameter programming precision that is necessary for the application of the mentioned
method cannot be achieved. Hence, it had to be extended by the following steps:� For every neuron, a resting and a reset potential V in

rest and V in
reset is written.� Then, the actually generated values V out

rest and V out
reset are determined with oscilloscope

measurements.� Based upon these two values, the target output value V out
thresh is calculated: V out

thresh =
V out

rest −
1
e · (V out

rest − V out
reset) (see Section 4.1.4).� With a binary search algorithm and test runs utilizing the oscilloscope, the input value

V in
thresh is searched that has to be written in order to actually achieve V out

thresh.

With this extra effort invested to tune the firing threshold, the membrane time constant
access method described in Section 4.1.4 can be applied to the FHW-1 system, but it lost its
speed advantage due to two reasons:� Due to the necessary utilization of the oscilloscope, the acquisition of the recorded

membrane potentials significantly slows down the experiment repetition frequency.

120

5.2 Hardware Calibration� Since the FHW-1 system allows access to only a small sub-set of membrane potentials
at the same time, a full chip has to be calibrated sub-set by sub-set, while otherwise
all neurons could have been calibrated in parallel. The spike recording deadlock issue
described in Section 4.3.1 causes the same type of problem.

An additional issue that distorts the method described in Section 4.1.4 is the fact that the
refractory period τref is not known well due to reasons described in Section 4.3.2. Therefore,
a constant value of τref = 1.0ms (BTD) has been assumed for all membrane time constant
calibrations on the FHW-1 systems. Nevertheless, deviations in the order of ±0.5ms from this
generic value have to be expected.

Based upon the described procedure, the membrane time constants of all neurons on all
chips currently in operation have been calibrated to target values in the order of 5ms (BTD).
The choice of this value is motivated in Section 4.3.5. Figure 5.2 shows the results of the
membrane time constant calibration performed on the FHW-1.3-No.18 chip by comparing the
values of τm with unmodified, i.e. identical values for gl. Figure 5.3 bins the same data into
histograms. Both figures illustrate the significant improvement achieved by the calibration
algorithm.

Figure 5.4 shows the values of the leakage conductance control current Ictrl
gl

which are
determined by the calibration algorithm on the FHW-1.3-No.18 system and which result in
the improved homogeneity of the membrane time constants depicted in Figure 5.2(b). As an
effect of the binary search algorithm (Knuth, 1997) and the chosen logarithmic vertical axis,
the resulting control currents form a grid-like structure.

121

5 Establishing Biologically Realistic Regimes

(a) Before calibration.

(b) After calibration.

Figure 5.2: Results of the membrane time constant calibration routine described in this section,
for all 384 neurons on the FHW-1.3-No.18 system. The target time constant was τm = 5.0 ms. A
few neurons did not fire at all (see Section 4.3.2 for explanation), for those no data point is plotted.
(a) Measured membrane time constants without calibration, i.e. with the same value for the leakage
conductance parameter applied to all neurons. (b) Membrane time constants after calibration.

122

5.2 Hardware Calibration

(a) Before calibration. (b) After calibration.

Figure 5.3: Histograms of the results shown in Figure 5.2: Membrane time constants as measured on
the FHW-1.3-No.18 chip before (a) and after (b) calibration. The standard deviation of the plotted
values divided by their mean value is σ

µ
(τm) = 0.42 for the uncalibrated and σ

µ
(τm) = 0.19 for the

calibrated neurons.

Figure 5.4: The values of the leakage conductance control current Ictrl
gl

as determined by the cali-
bration algorithm described in this section for all 384 neurons on the FHW-1.3-No.18 system. These
heterogeneous values result in the homogeneous membrane time constants shown in Figure 5.2(b).
The grid-like structure of the current values is an effect of the binary search algorithm (Knuth, 1997)
and the logarithmic scaling of the vertical axis.

123

5 Establishing Biologically Realistic Regimes

5.2.4 Synapse Dynamics Calibration

As elaborately explained in Section 2.1.2, the synaptic signal transmission in the FHW-1

system is comprised of three stages:� The output of a pre-synaptic neuron or an external spike source connects to a so-called
synapse driver. As soon as such a driver receives a digital spike, it generates a linearly
first rising and then falling voltage ramp. In an ideal system, the slopes of both ramp
sections are configurable, but due to design-related issues (see Section 4.3.3), the slope
of the falling edge is not freely configurable in the available versions of the chip.� Every synapse driver connects to 192 so-called synapse nodes, where the generated
voltage ramps are transformed into currents. The amplitudes of these exponentially
rising and falling current courses depend on the amplitude of the voltage ramp, but also
linearly on the weight stored as a four-bit value in every synapse node.� These currents are routed to post-synaptic neuron circuits, where they control the con-
ductance between the neuron membrane and a reversal potential. Every neuron has
two input current lines, one for a conductance towards its excitatory reversal potential,
and one for a conductance towards its inhibitory reversal potential. Each line receives
and sums up the currents from many synapse nodes.

Sources of Synaptic Variability There are multiple mechanisms involved in this hardware
synaptic transmission process that are possibly affected by process-inherent transistor-level
variations (see Section 4.2.1). The main candidates which are believed to result in deviations
from ideal synaptic dynamics are:� A driver-to-driver variability in the effect of the control currents Ictrl

τrise and Ictrl
τfall

for the
rising and falling voltage ramps generated by the synapse drivers (see Section 2.1.4 for
an explanation of the hardware control parameters).� A driver-to-driver variability in the effect of the control current Ictrl

amp which determines
the amplitude of this voltage ramp.� A limited sensitivity of the comparator which detects the maximum amplitude of the
voltage ramp and triggers the change from rising to falling slope.� A node-to-node variability in the transformation of the voltages into currents in the
synapse nodes.� A neuron-to-neuron variability in the effect of these currents onto the conductance
between the neuron membrane and the reversal potential.� A neuron-to-neuron variability in parasitic capacitances inherent the lines which deliver
these currents.

This list considers only possible distortions of static dynamics, i.e. of synapses which are not
configured to exhibit depression of facilitation (see Section 2.1.3, “Synaptic Depression and
Facilitation”). For synapses with such mechanisms enabled, more hardware-specific factors
can impose additional fluctuations.

124

5.2 Hardware Calibration

Counterbalancing Principles

In the following, paradigms are listed which form the basis upon which the synapse driver
calibration algorithm is implemented.

Tuning Granularity Every synapse driver receives its own parameter values for the control
currents Ictrl

τrise , Ictrl
τfall

and Ictrl
amp. Hence, in contrast to the massively shared parameter values for

e.g. the firing threshold voltages, these parameters can be utilized to counterbalance the effect
of transistor-level variations occurring from synapse driver to synapse driver. Consequently,
the first three issues in the above list can be approached with the manipulation of the synapse
driver parameters.

For the last two issues in the list, no calibration routine can be applied, because no param-
eters are available in the FHW-1 system which are individually configurable for every neuron
or every synapse node and which are not fully determined by other constraints. The only
exception to this statement are the synaptic four-bit weights, and indeed they are used to ho-
mogenize the neuronal responsiveness (see Section 5.2.5), although this reduces the remaining
ranges of free synaptic programmability. In this section, though, a calibration algorithm is
introduced which approaches only the synapse drivers.

Optimization Objective Besides the output spike times of all neurons in the network and
the synaptic weights (interesting e.g. in the context of STDP, see Section 1.3.3), the only
activity information accessible from a FHW-1 device during operation is the membrane poten-
tial of selectable neurons (see Section 2.1.5). This implies that a direct measurement of the
conductance courses at the synapse drivers, which would be the optimal information for a
corresponding calibration, is not possible. Hence, the following objective for a homogenization
of synapse driver efficacies is proposed: The effect that a single spike running into a synapse
has on the post-synaptic membrane potential (the so-called post-synaptic potential or PSP)
is supposed to be equal within a provided tolerance range.

Since the rise time of the synaptic conductance courses is kept fixed (see Section 2.1.4 for
an explanation), the amplitude and the fall time remain as free parameters. Due to the FHW-1
design-inherent malfunction described in Section 4.3.3, the control currents for the synaptic
fall times are restricted to values below 0.15µA (HVD) in the available first three versions
of the chip. Still, the tuning of this current is integrated into the implemented calibration
routine for future versions of the hardware. Consequently, since the temporal aspects of the
synaptic conductance courses can only be controlled inadequately, the amplitude of these
courses itself is not an optimal optimization criterion for the synaptic efficacy. Therefore, the
chosen major objective of the synapse driver calibration is to homogenize the integral over
the PSPs generated by all different synapse drivers connected to the same neuron membrane.

Utilizing NEST as a Reference Based on the PyNN approach (see Section 3.1.3), the
synapse driver calibration paradigm is even extended: The calibration setup and execution is
done with PyNN, and based upon this description, a reference run with the software simulator
NEST (see Section 3.1.4) provides the target value for all hardware tuning.

Basis Activity Regime For a number of reasons, the PSP acquisitions of a synapse driver
calibration have to be performed on a neuron membrane under significant stimulation:

125

5 Establishing Biologically Realistic Regimes� As outlined above, the full path of synaptic signal transmission in hardware incorporates
a variety of electronic circuitry, wires and switches. The resulting parasitic capacitances
have a dumping effect, especially when they have to be initially charged after a period
without signal transmission. This effect can be minimized by generating a basis activity
via the electric signal path, i.e. by sending spikes into the neuron via the synapse driver
that is to be calibrated. In such an active regime, the observed PSPs are subject to less
distortions.� The target PSP amplitudes are typically in the same order or below the level of noise
on an FHW-1 membrane potential. Therefore, the technique of spike-triggered averaging
(STA) as introduced in Section 4.1.1 is applied in order to access the PSP. This requires
a high number of membrane potential samples triggered by input spikes, and in order to
establish a membrane potential with reasonable fluctuations and a controllable average
value (which influences the averaged PSP shape, as can be seen e.g. from Equation 2.1),
both excitatory and inhibitory spike sources with high event rates have to be applied.� If the time constants of the acquired PSPs shall be interpreted as the time constants
of the underlying conductance course (which is an interesting additional information,
but not crucial for a well working calibration routine), the observed membrane must be
in a high-conductance state (see Section 1.3.1). This requires a high level of synaptic
stimulation. In Section 4.1.2, a corresponding test method is introduced.� Due to the design-related malfunction described in Section 4.3.4 (the excitatory reversal
potential significantly drops under heavy load), a load for excitatory network activity
has to be applied that is close to the load expected in the experiment for which the
chip is calibrated. Since the activity dependence is strong, this issue actually makes a
reliable calibration impossible, because every synapse driver setup is only valid for a
very narrow range around the conditions under which it was calibrated. This issue is
considered to be not solvable without re-designing the chip.

The Calibration Algorithm

The setup utilized by the implemented synapse driver calibration algorithm is the follow-
ing: A single neuron is exposed to N stim

e externally generated Poisson-type spike trains via
excitatory synapses and to N stim

i Poisson-type spike trains via inhibitory synapses. These
spike trains are statistically independent, and each of them fires with an average rate of fstim

over a period Texp. The weights of the excitatory (inhibitory) synapses, i.e. their peak conduc-
tances, are all set to the same value ge (gi). The firing mechanism of the stimulated neuron
is deactivated, its membrane potential is recorded.

Step 1: Establish Working Point in NEST In a first phase, a selectable average membrane
potential is established, with reasonable membrane potential fluctuations over time. There-
fore, the setup, which is described in PyNN, is repeatedly executed in the software simulator
NEST. If not directly involved in the calibration routine, all neuron and synapse parameters
are set to values as they are expected to be applied during future experiments. Then, the
weights of the inhibitory spike trains gi are set to zero, and the weights of the excitatory
spike trains ge are increased from iteration to iteration, starting at zero. In every run, the
resulting average membrane potential 〈V (t)〉 is determined. The increasing of ge is stopped

126

5.2 Hardware Calibration

as soon as 〈V (t)〉 reaches the firing threshold voltage of the neuron. (As mentioned above,
the firing mechanism itself is deactivated.) The corresponding value of the excitatory weight
gwp

e is kept, then gi is iteratively increased. Again 〈V (t)〉 is checked after every iteration, and
as soon as the selectable working point, typically 〈V (t)〉wp = Vrest + 2/3 · (Vthresh − Vrest), is
reached, the corresponding inhibitory weight gwp

i is also kept.

This procedure provides a well defined working point of the membrane potential which
exhibits the desired average value, but also well defined fluctuations caused by a balanced
influence of both excitatory and inhibitory spike trains. The average PSP caused by one
synapse on a membrane with this basis activity represents the target shape the hardware
shall be able to approximate with every synapse driver.

Step 2: Determine PSP Integrals and Decay Time Constants in NEST With these
synaptic weights gwp

e and gwp
i for the external stimulation, multiple runs of the basic setup

are performed, with new randomly generated spike trains for each repetition. The spike-
triggered averaging technique is applied to extract the average PSP generated by every
synapse in this regime. For both the excitatory and the inhibitory average PSP, the inte-
gral IPSP ≡

∫
(VPSP(t)−〈V (t)〉 dt and, via an exponential fit, the decay time constant τPSP are

determined (see Figure 5.5). The PSP integral and decay time constant acquired with NEST
are the target values for the following hardware calibration.

Figure 5.5: For every synapse driver, the calibration algorithm determines the integral and the decay
time constant of an average PSP which has been acquired with the STA technique. The corresponding
working point voltage 〈V (t)〉 is estimated by the average value of the first half of the PSP trace
(horizontal line). The sum over all trace values in the right half minus the base line (grey area)
delivers the value of the PSP integral IPSP. An exponential fit from 10 ms (BTD) after the maximum
of the PSP curve provides the decay time constant estimator τPSP (dashed line).

127

5 Establishing Biologically Realistic Regimes

Step 3: Establish Working Point in Hardware Before the first synapse driver calibration has
been performed, no rule is available which allows to translate biological synapse parameters
into the corresponding hardware control parameters. This is achieved by applying exactly
the same procedure as in Step 1, but instead of tuning ge (gi), the hardware control currents
Ictrl
amp for all N stim

e excitatory (N stim
i inhibitory) synapse drivers are collectively swept. When

the biological interpretation of the hardware average membrane potential (see Section 3.1.5)
has reached the working point 〈V (t)〉wp, the values of Ictrl

amp are found which correspond to gwp
e

respectively gwp
i . The corresponding basis translation factors T bio-hw

e and T bio-hw
i are stored and

kept for all future experiments. Still, such a translation can only establish the desired working
point, but does not yet provide a homogenization of the synapse drivers efficacies. This is
done in the next step, where additional calibration factors are searched for every individual
synapse driver.

Step 4: Determine and Tune PSP Integrals in Hardware Like in Step 3, the integrals and
decay time constants are determined for the average PSP of every synapse driver acquired
with the STA technique. Now, this is done in an iterative loop, and the values of both Ictrl

amp

and Ictrl
τfall

are adjusted after every repetition in order to optimize the matching between the
measured values and the target values determined in Step 2.

This individual fine-tuning of the synapse driver parameters possibly shifts the mem-
brane working point. Therefore, after every repetition, an adjustment control procedure
re-establishes the working point by collectively increasing or decreasing the individual cali-
bration factors by the same factor.

Results and Discussion

After a maximum number of iterations or after all synapse drivers have reached their
calibration targets, for every driver s two individual calibration factors are available: ceff,s

and cτ, s. The parameter value of Ictrl
amp for every driver is from then on calculated by

Ictrl
amp,s = gwp

e · T bio-hw
e · ceff,s for excitatory drivers ,

Ictrl
amp,s = gwp

i · T bio-hw
i · ceff,s for inhibitory drivers . (5.2)

Note that this formula is only valid for the specific values of gwp
e and gwp

i at which the calibra-
tion has been performed. Due to the unwanted activity dependence of the synaptic efficacy
(see Section 4.3.4), no relation between gwp

e and Ictrl
amp,s can be given that is valid for a whole set

of different scenarios. As long as the underlying issue is not solved, the presented calibration
has to be repeated for every new type of experiment.

For the synaptic time constants, the calculation of the individual parameter values of Ictrl
τfall,s

is analogous to Equation 5.2, i.e. the values are determined by a basis translation factor and
by individual calibration factors. Since the adjustable range of Ictrl

τfall,s
is extremely limited

due to the hardware problem described in Section 4.3.3, the results achieved on the FHW-1.3

systems hardly improve the decay time constant homogeneity and thus are not shown here.

Figure 5.6 shows the results of such a calibration routine applied to the left network block of
the FHW-1.3-No.18 chip. The numbers of excitatory and inhibitory Poisson-type spike trains
were chosen to be N stim

e = 208 and N stim
i = 48. This specific partitioning was motivated

by the kind of experiments planned with the calibrated system, which will be presented in
Section 6.2.1. In sub-figure (a), the hardware PSP integrals of all 256 synapse drivers after

128

5.2 Hardware Calibration

Step 3 are plotted. The excitatory and inhibitory drivers can clearly be recognized by the
sign of the integral. In sub-figure (b), the PSP integrals of the same synapse drivers, but
after Step 4 are shown. The improvement of the integral homogeneity is obvious, and the
matching of most of the values with the target range (horizontal lines) can be observed.

In Figure 5.7, the PSP integrals of the excitatory synapse drivers shown in Figure 5.6 are
binned into histograms, one for the situation after Step 3 (a) and one after Step 4. It is
obvious that the width of the distribution is strongly narrowed by the calibration algorithm,
the distribution width changes from σ

µ(IPSP) = 0.56 before the calibration to σ
µ(IPSP) = 0.15

after the calibration.
Due to the design-related malfunction of the FHW-1 systems described in Section 4.3.4, a

global drift of the Ictrl
amp parameters towards large values worsens the load on the excitatory

reversal potential. For the described calibration scenario, this can even result in an inverted
dependency of the PSP integral on the Ictrl

amp parameter, i.e. from a certain value, increasing
the parameter reduces the integral. This issue is solved by applying a maximum value Imax

amp for
Ictrl
amp which is much smaller than the maximum that is technically possible (see Section 2.1.4).

This technique massively improves the final result of the calibration algorithm, but for a few
synapse drivers it means that the target value cannot be achieved.

Figure 5.8 shows how the values of Ictrl
amp are distributed after Step 4. It can be observed

that the values are distributed across the full width of the available range (0.002µA ≤ Ictrl
amp ≤

Imax
amp = 0.14µA), and that for some synapse drivers the upper bound was probably a real limit

during the calibration process.

129

5 Establishing Biologically Realistic Regimes

(a) Before calibration.

(b) After calibration.

Figure 5.6: Results of the synapse driver efficacy calibration routine described in this section, for
all 256 synapse drivers on the left network block of the FHW-1.3-No.18 system. The target integral
of an average PSP was Iexc

PSP = 27.7µ Vs for the excitatory synapse drivers (indices 0 – 207) and
I inh
PSP = −39.9µ Vs for the inhibitory synapse drivers (indices 208 – 255). (a) Measured PSP integral

without calibration, i.e. with the same value for the synaptic conductance course amplitude parameter
applied to all drivers. (b) PSP integral after calibration. The two vertical lines denote the upper
and the lower tolerance limits which were accepted by the calibration algorithm. For those values still
outside of this range, no better calibration value could be found.

130

5.2 Hardware Calibration

(a) Before calibration. (b) After calibration.

Figure 5.7: Histograms of the results shown in Figure 5.6 (excitatory only): PSP integrals IPSP

caused by the excitatory synapse drivers on the left network block of the FHW-1.3-No.18 chip before
(a) and after (b) calibration. The standard deviation of the plotted values divided by their mean
value is σ

µ
(IPSP) = 0.56 for the uncalibrated and σ

µ
(IPSP) = 0.15 for the calibrated case.

Figure 5.8: The values of the synapse driver control current Ictrl
amp as determined by the calibration

algorithm described in this section for all 256 synapse drivers on the left block of the FHW-1.3-No.18

system. These heterogeneous values result in the homogeneous PSP integrals shown in Figure 5.7(b).

131

5 Establishing Biologically Realistic Regimes

5.2.5 Synapse Weights Calibration

As mentioned in Section 5.2.3, the capacitances of the hardware neuron circuits are sub-
ject to transistor-level variations. This cannot be directly counterbalanced by any calibration
mechanism, since there is no parameter which allows to manipulate these capacitances. In-
stead, as described in Section 5.2.3, the membrane time constant is homogenized via the
individually adjustable leakage conductance gl. But this calibration method only minimizes
the impact of the capacitance variations on the leakage mechanism, as can be seen in the
first term on the right hand side of Equation 2.1. The remaining two terms, which model the
synaptic influence on the temporal evolution of the membrane potential, are still affected by
the neuron-to-neuron variability of membrane capacitances. Furthermore, they are affected
by neuron-to-neuron fluctuations of the conductances between membranes and the reversal
potentials.

The only hardware parameter which allows to tune the synaptic efficacies individually
for every neuron are the synaptic weights stored as four-bit values in every synaptic node
(see Section 2.1.2). Although these parameters do not seem to be qualified for any kind of
fine-tuning due to their coarse value resolution, the fact that every neuron typically receives
synaptic input via many of these nodes allows a statistical approach. As already indicated in
the description of the weight discretization process in Section 3.1.5, a large number of synapses
per neuron provides a fine adjustability of the average synaptic input. Hence, at least by
means of this average value, a counter-balancing method for neuron-to-neuron variabilities of
synaptic influence has been developed.

The Calibration Algorithm

The following calibration method has been developed and implemented: For every neuron
n on an FHW-1 chip, a so-called synapse weight factor cω, n is created, with a default value of 1.
This factor is multiplied to the weight of every excitatory synapse, i.e. it directly influences the
total amount of excitatory stimulation to neuron n. A basic experimental setup is described in
PyNN: A neuron receives a set of Poisson-type input spike trains with well defined firing rates
and synaptic weights, some of which are excitatory, some inhibitory. A set of reference runs
in NEST (with freshly generated spike trains per repetition) reveals a reliable target output
rate of the neuron. Then, for every neuron on the FHW-1 chip to be calibrated, the same input
patterns like for the NEST reference runs are applied, utilizing the same calibrated synapse
drivers for every neuron (see Section 5.2.4).

In an iterative loop, the output rate of every neuron is measured and compared with the
target rate. The value of cω, n is adjusted adequately in every iteration, until either all output
rates have reached a tolerance range around the target value, or until a maximum number of
iterations is exceeded.

Results and Discussion

Figure 5.9 shows the result of such a calibration routine applied to the FHW-1.3-No.18

chip. In sub-figure (a), a histogram of all measured output firing rates with a synapse weight
factor of cω, n = 1 for all neurons is shown. Sub-figure (b) shows the distribution of the firing
rates after the values of cω, n have been individually optimized in order to achieve the NEST
reference output rate of fNEST

out = 8.96Hz (BTD). Note the different scaling of the frequency
axes! Before the calibration has been applied, the mean and standard deviation over all

132

5.2 Hardware Calibration

neurons on the chip was (µ ± σ)(f chip
out) = (55 ± 59)Hz (BTD). After the optimization, it is

(µ ± σ)(f chip
out) = (8.7 ± 2.0)Hz (BTD).

This result has to be interpreted carefully. As described in Section 4.3, multiple hardware
neurons do emit spikes which do not have a correspondence in the biological reference model.
This can be e.g. caused by the so-called multi-spike issue, where multiple hardware events
are emitted for one single firing threshold crossing (see Section 4.3.6). Unwanted spikes
can also result from a highly distorted firing threshold due to transistor-level variations (see
Section 4.3.2).

(a) Before calibration. (b) After calibration.

Figure 5.9: Histograms of the average output firing rates over all neurons of the FHW-1.3-No.18 chip
before (a) and after (b) calibration of the synapse weight factors. The target output rate provided
by a NEST reference simulation was fNEST

out = 8.96 Hz. Note the different horizontal scalings. The
mean and the standard deviation over all plotted values is (µ± σ)(f chip

out) = (55 ± 59)Hz (BTD) for the
uncalibrated and (µ ± σ)(f chip

out) = (8.7 ± 2.0)Hz (BTD) for the calibrated case.

Figure 5.10 shows a histogram of the synapse weight factors determined by the calibration
routine. As expected from sub-plot (a) in Figure 5.9, where the average output firing rate
before calibration is shown to be significantly larger than the target value, the average value
of the tuned factors cω,n is smaller than 1.

133

5 Establishing Biologically Realistic Regimes

Figure 5.10: Histogram of all synapse weight factors cω,n as determined by the output firing rate
homogenization for the FHW-1.3-No.18 chip (see Figure 5.9). The mean and standard deviation over
all values are (µ ± σ)(cω,n) = 0.85 ± 0.40.

134

5.2 Hardware Calibration

5.2.6 Calibration Reproducibility and Portability

Production process-inherent transistor-level variations are assumed to cause fluctuations
in the characteristics of circuit dynamics. They are believed to be the main reason for the
necessity of calibration methods like those presented in the previous sections. Still, there are
other possible effects which can result in circuit inhomogeneities, e.g. different surrounding
areas of identical circuitry, which possibly impose different parasitic capacitances or which
hold different sources of crosstalk.

The transistor-level effects are randomly distributed, i.e. if the corresponding distortions
on two chips of the same design are compared, no repeating pattern can be expected to be
found. Systematic parasitic effects, though, are design-related and might be found in every
individual chip with very similar characteristics and spatial patterns. If such systemic effects
were strongly dominating the transistor-level distortions, calibration data acquired on one
chip could be used for all other chips as well. The following calibration data comparisons
address this question and show that both the dominance of design-related distortions and the
dominance of process-inherent random effects are possible.

Another issue of hardware imperfection is the possible temporal development of factors
which can influence the hardware behavior, such as temperature or electro-magnetic fields
from close-by devices. Therefore, the following two examples also refer to the question of
permanent validity respectively reproducibility of calibration data.

Chip-To-Chip Comparison of Membrane Time Constant Calibration Data

The calibration mechanism presented in Section 5.2.3 determines individual leakage con-
ductance control currents Ictrl

gl,n
for every neuron n. These values have been determined, among

others, for the FHW-1.3-No.17 and two times for the FHW-1.3-No.18 system. In the latter
case, the two calibration runs lie months apart.

For the resulting three sets of calibration data, the values of the tuned parameter Ictrl
gl

are
compared for every neuron. Figure 5.11 bins the differences between the individual values
∆Ictrl

gl,n
(chip1,chip2) ≡ Ictrl

gl,n
(chip1) − Ictrl

gl,n
(chip2) into histograms. It compares� the first and the second calibration run on the FHW-1.3-No.18 system in sub-figure (a),� one calibration run on the FHW-1.3-No.18 system and one calibration run on the

FHW-1.3-No.17 system in sub-figure (b).

It is obvious that for two calibration runs on the same chip, the fluctuation of the re-
sulting calibration values is much smaller than for calibration runs on two different chips.
The standard deviation of the plotted current differences is σ(∆Ictrl

gl,n
= 0.030µA (HVD) for

the same-chip comparison, and σ(∆Ictrl
gl,n

= 0.065µA (HVD) for the different-chips compari-
son. The fluctuation of the calibration values themselves is σ(Ictrl

gl,n
) = 0.5µA (HVD) for the

FHW-1.3-No.18 system.

Conclusions For the considered devices and for the membrane time constant calibration,
a significant fraction of the counterbalanced distortions is independent of the device. This
can be deduced from the differences between the calibration data sets for two different chips
compared to the fluctuations of each individual set. Obviously, the location of a neuron
circuit on the chip has a large impact on its membrane time constant, i.e. the transistor-level
variations are dominated by systematic parasitic effects.

135

5 Establishing Biologically Realistic Regimes

(a) FHW-1.3-No.18 – FHW-1.3-No.18 (b) FHW-1.3-No.18 – FHW-1.3-No.17

Figure 5.11: Histograms of the differences between the tuned control parameters Ictrl
gl

for all neurons
on an FHW-1 device acquired from two calibration runs on the same chip (a), between the tuned
parameters values acquired from two different chips (b).

Although this suggests the portability of calibration data, an individual calibration per chip
does improve the result further, as can be seen from the even smaller differences between two
calibration data sets acquired on the same chip. Therefore, a chip-individual calibration is
recommended. If any temporal effect is the reason for the remaining differences between two
calibrations on the same device, it can most probably be ignored, since the differences in the
tuning parameter are close to the resolution limit with which it can be written.

Chip-To-Chip Comparison of Voltage Generator Calibration Data

As stated in Section 5.2.1, the assumed reason for the fluctuations of the input-output
relations of the FHW-1 voltage generators is the process-inherent imprecision of polysilicon
resistor production. Therefore, in contrast to the fluctuations of membrane time constants
(see section above), which are clearly dominated by an effect related to the location of the
circuits on the chip, the voltage generator calibration data is expected to be not transferable
from one chip to another at all.

The following observation supports this assumption: The standard deviation of the input-
output translation parameter mU (see Section 5.2.1) over all calibrated voltage generators
is σ(mU) = 6 · 10−3 for the FHW-1.3-No.17 and for the FHW-1.3-No.18 system, while the
fluctuation of the differences between the corresponding values of mU between these two
chips is σ(∆mU) = 7 · 10−3.

Conclusion The considered voltage generator calibration data is very device-specific. The
dominating effect that causes the fluctuations is not related to the location of the circuit
on the chip, but to process-inherent random imperfections of the utilized micro-electronic
components.

136

5.3 Measures for Cross-Platform Evaluation

5.3 Measures for Cross-Platform Evaluation

Establishing neuromorphic hardware as a useful component within the neural network mod-
elers’ toolbox requires the proof that the hardware system can be operated in biologically re-
alistic regimes. Furthermore, its operability by non-hardware-experts has to be ensured. The
interest of the computational neuroscience community for neuromorphic hardware systems
will significantly grow if it can be shown that, for a relevant type of experiment, a hardware
device can generate the same results like an established software simulator. This has to be
shown in terms of measures which satisfy the modelers’ needs, while the simulator is outper-
formed in at least one aspect that is crucial for the chosen type of experiment. Candidates for
such aspects which are often mentioned in the context of neuromorphic hardware devices are
speed at large model sizes, low power consumption and the possibility to embed them into
autonomous systems like robots (Lewis et al., 2000; Netter and Franceschini, 2002; Delbrück
and Liu, 2004; Schemmel et al., 2007; Fu et al., 2008).

For the type of neuromorphic devices utilized throughout this thesis, the non-expert us-
ability condition has been met by integrating the hardware interface into the simulator-
independent modeling language PyNN (see Davison et al., 2008 and Section 3.1.3). This
approach does not only introduce the hardware into the world of established software simula-
tors by means of experiment portability, but utilizing platform-independent descriptions also
provides a way to approach the proof of its biological relevance: Based on PyNN, the same
evaluation measures for relevant experiments can be applied within this unified framework.
There can be one analysis tool chain on top of one model description, finally exposing the
hardware system to the necessary beneficial criticism of a community not limited to micro-
electronics engineers.

In the following, two types of methods are introduced which provide ways to compare the
output of spiking hardware models like the FHW-1 and the FHW-2 system with the output of
software simulators. First, a measure for the comparison of single neuron spiking activity is
described. It can be utilized to e.g. quantify the output spike timing precision of a hardware
neuron from run to run (see Section 6.1.2), or, more generally, to determine the intrinsic noise
of a neuron. Based upon that, a software model can be tuned towards the hardware behavior
or vice versa. The second type of measures presented below are statistical descriptors. They
are intended to be applied to recurrent networks of neurons, where they are usually much more
useful for an interpretation of the observed dynamics than the raw set of all precise spike times.
Statistical treatment can be beneficial for nearly any kind of spike data, but it is especially
useful for the output of hardware systems which, due to reasons listed in Sections 4.2 and 4.3,
can never be expected to generate exactly reproducible data. In recurrent networks, slight
changes in an early state can cause very different activity trajectories within the system’s
state space, while appropriate measures will remain the same in such a situation. Statistical
measures are a necessary step of abstraction to cope with hardware imperfections. They will
be applied e.g. in experiments presented in Section 6.2.1.

5.3.1 Spike Train Comparison

Comparing two spike trains is a task which does not only arise when comparing a hardware
neuron with a software simulation, but also when trying to determine the intrinsic noise of a
real or a hardware neuron by recording one cell and repeating the same stimulation protocol,
or when comparing different numerical simulations, to mention just a few situations.

137

5 Establishing Biologically Realistic Regimes

The most basic approach of assessing the the similarity between two spike trains is to
compare the number of fired spikes. This method completely neglects all aspects of temporal
structure like the synchrony of firing, which, for example in a coincidence detection task,
might be much more important than the pure spike count. Therefore, this simple approach
is skipped. A typical way to introduce a basic synchrony test is to provide an array of time
bins into which the spikes are sorted, and then count the number of identically filled bins.
But binning imposes possible discretization artefacts, especially when it comes to systematic
time shifts between the spike trains to be compared. Hence, such a technique is not utilized
in this context, either.

Based upon work presented in (Victor and Purpura, 1996), the authors of (van Rossum,
2001) introduced a measure for the distance between two spike trains which is well applicable
for the comparison between hardware and software simulation results:

Given two original spike trains

fi(t) =

Ni∑

s=1

δ(t − ts) , i ∈ {1, 2} , (5.3)

the delta peaks are replaced by exponential decays as follows:

f tail
i (t) =

Ni∑

s=1

H(t − ts) e−(t−ts)/τc , i ∈ {1, 2} . (5.4)

H(t) is the Heaviside step function, and τc is a free parameter. The distance between f1(t)
and f2(t) is then defined as

D2(f1, f2, τc) =
1

τc

∫
∞

0
[f tail

1 (t) − f tail
2 (t)]2 dt . (5.5)

E.g. in Section 6.1.3, this measure is used to classify the similarity of a set of hardware runs
with one reference software simulation.

5.3.2 Statistical Descriptors of Network Activity

In Section 6.2.1, experiments based on cortical network models inspired by the work pre-
sented in (Brunel, 2000) and (Kumar et al., 2008) will be described. They will be analyzed
by statistical measures which are described in the following.

In (Kumar et al., 2008), different states of network dynamics are discriminated by:

1. The mean population firing rate.
It is estimated by the total spike count Stot over the whole population divided by the
simulation time Tsim and the number Nnet of neurons:

νnet =
Stot

Tsim Nnet

. (5.6)

2. The firing rate diversity within the network.
The individual firing rate of a neuron i is estimated by the total spike count Si fired by
this neuron divided by the simulation time Tsim:

νi =
Si

Tsim

. (5.7)

138

5.3 Measures for Cross-Platform Evaluation

The standard deviation over these individual firing rates

σ (νi) =

√∑Nnet
i=1 (νi − ν)

Nnet

(5.8)

is a measure for the activity diversity in the network.

3. The synchrony among pairs of neurons.
Given a bin width ∆bin, binning the output spike times of neuron i results in an array
Ci(∆bin) of spike counts. An estimator for the synchrony between neuron i and j is the
correlation coefficient of their joint spike counts Ci and Cj,

Corr(Ci, Cj) =
Cov(Ci, Cj)√

Var(Ci)Var(Cj)
, (5.9)

where Cov stands for covariance and Var for variance. By averaging this correlation
coefficient over Npairs randomly picked pairs of neurons, we obtain the estimator CCSync

for the synchrony of population activity in a given experiment.

4. The irregularity of individual spike trains.
It is determined by the squared coefficient of variation CV2 of the inter-spike interval
distribution FISI,

CV2(FISI) =
Var(FISI)

E2(FISI)
. (5.10)

Here, E denotes the expectation value. Low values of CV2(FISI) indicate regular spiking,
while a large value denotes irregular, Poisson-like behavior. The average CV2 across all
recorded spike trains is used to describe the network irregularity.

139

5 Establishing Biologically Realistic Regimes

140

6 Experiments

In previous chapters of this thesis, the FACETS Stage 1 hardware system
(FHW-1, see Section 2.1) and its operation software (Section 3.2) have
been introduced. Critical problems have been reported (Section 4.3),
and for some of them, methods have been presented which minimize
the impact or even avoid the issues (Section 5.1). Calibration routines
have been described which do not only improve the homogeneity of the
silicon neural substrate, but which also establish a gauging of hardware
neurons and synapses with the software simulator NEST (Section 5.2).
Techniques have been presented which allow to give the hardware out-
put a biological interpretation (Sections 3.1.5 and 3.1.6), methods were
described which provide the access to variables that cannot be recorded
directly (Section 4.1), and measures for the analysis of large amounts
of experimental data in a biological context have been introduced (Sec-
tion 5.3).
The following chapter presents both basic and complex experiments
which utilize the full composition of hardware, software, optimization
and data acquisition methods. These experiments represent the first
steps taken on a new terrain, and many of the insights presented in pre-
vious sections have been won by early unsuccessful trials of what will be
shown.
Section 6.1 comprises a set of basic studies on the single cell level. Some
of them provide specifications of certain hardware features, others prove
the functionality of specific hardware mechanisms or of the hardware-
software interplay. Section 6.2 presents experiments on the network
level, which, as far as the prototypic character and the remaining mal-
functions of the utilized hardware systems allow, orient towards a uti-
lization of the system for neuroscientific modeling.

6.1 Basic Studies and Specifications

In the following, experiments are presented which put certain components of the FACETS
Stage 1 system (FHW-1) to the test. In Section 6.1.1, the precision of the on-chip conversion
between the digital and the analog time domain is analyzed. In Section 6.1.2, a basic single
neuron stimulation experiment is presented, which experimentally relates the input to the out-
put firing rate of a hardware neuron. In addition to this pure spike analysis, Section 6.1.3 also

141

6 Experiments

acquires and evaluates the membrane potential traces of stimulated neurons. Sections 6.1.4
and 6.1.5 provide a proof of functionality of the FHW-1 short-term and the long-term synaptic
plasticity features, respectively.

6.1.1 Spike Delivery Precision

The work presented in this section has been performed in cooperation with Dr. Andreas
Grübl.

Precision of Digital-To-Time Conversion

One component of the digital controller circuitry in the FHW-1 chips is the so-called Digital-
to-Time Converter (DTC). It performs the translation of digitally coded event packets into
signals for the analog part of the chip, where no chip clock for synchronization is present.
In this section two experiments are presented which analyze the temporal precision of this
transition between the digital and the analog chip domain.

Measure for Conversion Quality For all kinds of conversion from digital to analog values, the
so-called differential nonlinearity (DNL) is a commonly used measure for the transformation
quality. If the digital value changes by one least significant bit (LSB), an ideal digital-to-
analog converter changes also its analog output value by exactly the analog correspondence
to this amount. The DNL measure is defined as the deviation of the analog output value
changes from the ideal 1.0 LSB change (Geiger et al., 1990).

Measurement Setup As explained in Section 4.3.9, two clocks are involved in the FHW-1

digital-to-time conversion of spike events: One chip clock, typically operating at a frequency
of fchip = 200MHz (HTD), and a so-called bin clock, which generates 16 sub-bins for each clock
period Tchip of the chip clock. One period Tbin of the bin clock corresponds to the LSB of the
DTC process. Hence, an ideal temporal resolution of the digital-to-time event transformation
at a chip operation frequency of fchip = 200MHz is Tres = 1/(16 · 200MHz) = 312.5 ps (HTD).
But due to imperfections of the conversion process, its DNL cannot be expected to be zero.
The dominating source of imperfection can be identified by the following experiment.

Since the precision measurement shall cover both clocks involved in the event generation
process, the data acquisition covers four cycles of the chip clock, which equals 64 cycles
of the bin clock. For one specific synapse driver per FHW-1 chip, the voltage peak which
represents the event in the analog domain of the chip (see Section 2.1.2) can be recorded
via the multiplexed output pin described in Section 2.1.5. Two events are delivered to this
synapse driver, with a time difference of 6401 bin clock cycles or 400 chip clock cycles plus
1 LSB of the DTC. The chip clock is set to fchip = 200MHz (HTD). Then, for 64 times, both
events are shifted in time by one LSB of the DTC process, i.e. their time difference in the
digital domain does not change, but an increasing start offset of toffset is applied. For every
run, the time difference ∆tosc between the resulting analog voltage peaks is recorded with an
oscilloscope via the multiplexed pin.

Results Figure 6.1 shows the difference between the acquired time differences ∆tosc and the
ideal value ∆ttheo of 6401 time bins as a function of toffset. Every data point represents the mean
value over 100 measurements, while the error-bars indicate the standard errors of the mean

142

6.1 Basic Studies and Specifications

values. A systematic pattern can be observed, which clearly dominates the statistical error:
Every time toffset has been increased by 16 bins, ∆tosc drops significantly below the ideal value.
One time later, it increases significantly above the ideal value. This effect results in a quality
measure for the DTC process of DNLDTC ≈ 0.7 LSB. For a chip frequency of fchip = 200MHz,
this corresponds to a temporal precision of the DTC process of Tres ≈ (300 ± 200) ps (HTD).

-0.4

-0.2

0.0

0.2

0.4

0.6

0 10 20 30 40 50 60

Spike Sequence Start Time toffset [Tbin]

D
T

C
P

re
ci

si
on

∆
t o

sc
−

∆
t t

h
e
o

[T
b
in
]

Figure 6.1: Deviation of the time interval ∆tosc between two spikes generated by the FHW-1 DTC
logic (acquired with an oscilloscope) from its corresponding ideal value ∆ttheo, as a function of the
start offset toffset with which the two spikes are fed into the chip. Every data point represents the mean
value over 100 measurements, the error-bars indicate the standard errors of the mean values.

Analysis The reason for the systematic peaks becomes clear from the following additional
experiment: The same synapse driver as before is fed with 16 events at times ti. The time
t0 of the first spike is chosen such that the sub-bin index into which it is sorted is zero:
t0 = N · Tchip, with N being a natural number. The time difference between two subsequent
spikes is ti+1 − ti = M · Tchip + 1 · Tbin, where M is a natural number, i.e. the sub-bin
index into which the events are arranged increases by one for every event. The analog event
representation is recorded with the oscilloscope, and so is a membrane potential which receives
excitatory conductance changes from the observed synapse driver via a strong synapse node
(see Section 2.1.2). The resulting traces are plotted in Figure 6.2. The lower trace shows
the voltage pulses generated by the DTC circuitry which represent the events in the analog
chip domain. The upper trace shows the membrane potential of the stimulated neuron. More
precisely, both traces show an average over multiple repetitions of the experiment.

The analog pre-synapse-driver event signal decreases with a growing time bin, which is to
be expected due to the fact that its amplitude is generated from the length of an enable
signal which lasts from the onset of the event until the end of the corresponding chip clock
cycle. Hence, the higher the time bin within that cycle, the shorter the enable signal and
the smaller the event peak. This observation also explains the peaks in Figure 6.1: The
oscilloscope acquisition of the analog event time representations involves a software peak
detection algorithm. These peaks are low-pass filtered by the readout RC-network, and
larger amplitudes in the original analog signal result in an earlier detection due to larger
slopes in the filtered signal. Hence, the measured analog time is distorted by a systematic
offset that depends on the time bin of its original digital representation. This results in

143

6 Experiments

200mV

5µs

membrane potential of neuron#1

outputof synapse driver #1 (with according time bin values)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(HTD)

(HVD)

Figure 6.2: Lower trace: An oscilloscope measurement of voltage pulses generated by the DTC
circuitry, which represent a sequence of equidistant spike events in the analog domain of a FHW-1

chip. The pulses have been generated with different time stamps, such that every value of the bin
clock between 0 and 15 is met once. As expected from the design, the amplitudes of these signals
decrease with growing time bins. Upper trace: A membrane potential stimulated by these events
via an excitatory synapse. Both plotted traces represent an average over multiple runs. The smaller
amplitude of the last post-synaptic potential in the upper trace is explained in the main text. Figure
by A. Grübl.

the observed jump of the measured value ∆tosc from negative to positive deviations from its
target value every 16 time bins, i.e. when the difference between the amplitudes of the analog
representations of the two spikes rapidly changes.

Observation of a Chip Malfunction But Figure 6.2, which has been acquired with an
FHW-1.2 chip, indicates another problem, which has been already indicated in Section 4.3.9.
Due to the small amplitudes of analog event representations corresponding to the last time
bin within one chip clock cycle, these events sometimes do not initiate a conductance course
generation at the connected synapse driver. The amplitude, also low-pass filtered by on-chip
wiring, is just not sufficient to exceed a necessary trigger level. This problem is caused by
a disadvantageous wire routing automatedly performed by a chip design software. The issue
has been understood and described in (Grübl, 2007, Section 6.5.4), and is solved for the third
generation of the FHW-1 chips.

Precision of Time-To-Digital Conversion

After the translation of event times from the digital to the analog chip domain has been
analyzed, the opposite direction is tested. The goal is to measure the accuracy of the digital-
ization of events generated in the analog part of the chip (time-to-digital conversion, TDC).

Measurement Setup Again, for a specific synapse driver, the incoming voltage peaks which
represent the event times are recorded with an oscilloscope. Again, two events arrive at this
driver, and the temporal distance ∆tosc between them is acquired. In contrast to the DTC
setup, though, these events are not directly generated by an externally applied spike signal,
but by the event output of a hardware neuron which feeds its output into the observed synapse
driver. The delivering neuron itself receives two sets of four synchronous spikes each via strong

144

6.1 Basic Studies and Specifications

excitatory synapses. This results in two output spike generated by the stimulated neuron,
which are not only fed into the synapse driver, but are also digitalized by the on-chip TDC
logic. The time difference ∆tout between these digital output time stamps and the reference
measurement ∆tosc is computed. This procedure is repeated for different temporal offsets
toffset of the applied stimulation spike sets, while the period between the two sets always stays
the same.

Results Figure 6.3 shows the acquired results. Due to problems in the on-chip event cap-
turing logic, which are described in detail in (Grübl, 2007, Section 4.3.5), the accuracy check
is only performed on the scale of a chip clock period Tchip.

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8
Spike Sequence Start Time toffset [Tchip]

T
D

C
P

re
ci

si
on

∆
t o

u
t
−

∆
t c

h
ip

[T
c
h
ip
]

Figure 6.3: Deviation of the time interval ∆tout between two spikes digitalized by the FHW-1 TDC
logic and a reference measurement ∆tosc, as a function of the start offset toffset with which the two
spikes are fed into the chip.

For the plotted ten different stimulation pattern offsets, no deviation of the digitalized time
difference ∆tout from the analog reference measurement ∆tosc is larger than 0.05 · Tchip. This
is considered to prove the functionality of the time-to-digital event conversion on a chip clock
cycle basis.

6.1.2 Firing Rates

In the following, a basic single-neuron experiment is set up. One cell is stimulated by a set
of Poisson-type spike trains, and the resulting output firing rate as a function of the applied
input rates is analyzed. This is done both in hardware and with the software simulator NEST,
utilizing the same PyNN scripts. The goals of the presented experiments are� to give a basic example of how to use the simulator-independent modeling language

PyNN by means of a line-by-line code explanation,� to prove the functionality of the FHW-1-specific PyNN implementation and the resulting
portability of experiments between the hardware and software simulators as motivated
in Section 3.1.3,� to compare the results acquired from both back-ends, to discuss the achievements and
remaining shortcomings of the matching,

145

6 Experiments� to experimentally demonstrate the hardware-specific input bandwidth limitations de-
scribed in Section 4.3.7.

Input vs. Output Rates in Hardware and Software

A first experiment focuses on the matching between an FHW-1 and a NEST neuron in terms
of output firing rates under the same stimulation. One type of hardware input bandwidth
limitation can be observed already in this case, though.

Setup In a first setup, a single neuron is created, and Ne = 48 excitatory plus Ni = 16
inhibitory Poisson-type spike trains are connected to it. All stimulation spike trains fire with
an adjustable frequency fstim for a period of Texp = 5000ms (BTD). The maximum synaptic
conductance gmax is 2.0 nS for excitatory and 15.0 nS (BVD) for inhibitory connections. The
output spikes of the stimulated neuron are recorded. This experiment is fully described in
PyNN and executed both on the FHW-1 system and with NEST.

PyNN Description, Step by Step Listing 6.1 shows the PyNN script which describes the
experiment. In line 1, the simulation or emulation back-end, in this case the FHW-1 system,
is chosen. In order to utilize NEST instead, the only necessary change within this script is to
replace line 1 by from pyNN.nest2 import *, everything else remains the same. From line 4
to 8, the numbers of external stimuli and the synaptic weights are set. In lines 10 to 16, the
neuron parameters are defined. Lines 19 and 20 determine the rate and duration of the Poisson
spike train stimuli. In line 23, PyNN is initialized, the numerical integration step size of 0.1ms
is passed. If the hardware back-end is chosen, no discrete step size is utilized due to the time
continuous dynamics in its analog network core. Instead, the function argument is used to
determine the time resolution for the membrane potential sampling via the oscilloscope, if
connected. In line 25, the neuron is created, passing the cell parameters and the number
of cells as the second and the third arguments. The first argument, IF facets hardware1,
specifies the neuron type to be created. For the FHW-1 system, no other neuron type is
available. For the NEST back-end, this neuron type determines parameter values for e.g. the
membrane capacitance Cm, which are fixed to resemble the hardware.

In lines 27 and 28, the Poisson-type spike sources are generated, passing the type of source,
the previously defined parameters and the desired number. In lines 30 and 31, the spike
generators are connected to the neuron. The arguments of the connect commands first specify
a list of sources, then a list of targets, followed by the synaptic weights, the synapse types
and finally by the probability with which each possible pairing of source and target objects
is actually connected. The recording of the output spikes and the membrane potential of the
stimulated neuron is prepared in lines 34 and 35. In line 37, the experiment is executed for a
duration of 5000ms (BTD). Line 40 defines the end of the script, and initiates the writing of
the recorded values to files.

146

6.1 Basic Studies and Specifications

Listing 6.1: PyNN description of a single-neuron stimulation experiment. For a detailed explanation
see main text.

1 from pyNN.hardware .stage1 import *

2 # OR: from pyNN.nest2 import *

3

4 numExcInputs = 48

5 numInhInputs = 16

6

7 wExc = 0.002 # uS

8 wInh = 0.015 # uS

9

10 neuronParams = { ’v_reset ’ : -80.0, # mV

11 ’e_rev_I ’ : -80.0, # mV

12 ’v_rest’ : -70.0, # mV

13 ’v_thresh ’ : -55.0, # mV

14 ’g_leak’ : 40.0, # nS

15 ’tau_syn_E’ : 30.0, # ms

16 ’tau_syn_I’ : 30.0, # ms

17 }

18

19 inputParameters = { ’rate’ : 5.0, # Hz

20 ’duration ’ : 5000 # ms

21 }

22

23 setup(timestep =0.1)

24

25 neuron = create(IF_facets_hardware1 ,neuronParams ,n=1)

26

27 iExc = create(SpikeSourcePoisson ,inputParameters ,n=numExcInputs)

28 iInh = create(SpikeSourcePoisson ,inputParameters ,n=numInhInputs)

29

30 connect(iExc ,neuron ,weight=wExc ,synapse_type=’excitatory’,p=1.0)

31 connect(iInh ,neuron ,weight=wInh ,synapse_type=’inhibitory’,p=1.0)

32

33 record(neuron , ’spikes.dat’)

34 record_v (neuron , ’membrane .dat’)

35

36 run (5000) # duration in ms

37 end()

Results The experiment is run both on the FHW-1 system and with the software simulator
NEST. The firing rate of the stimulating Poisson spike trains was varied from 1Hz to 20Hz
(BTD) in steps of 1Hz, and for each rate the experiment was repeated 30 times with different
random number generator seeds. Figure 6.4 shows the resulting average output firing rates.

147

6 Experiments

Figure 6.4: A single neuron is stimulated by Poisson-type spike trains via 48 excitatory and 16
inhibitory synapses. The plot shows the average output firing rate of the stimulated neuron as a func-
tion of the applied input rates. The setup (see PyNN description in Listing 6.1) has been executed
with various stimulation rates on both the FHW-1 system (circles) and the software simulator NEST
(squares). Each data point represents the mean over 30 runs, the error-bars denote the corresponding
standard deviations. The drop of the hardware output rate for input frequencies larger than approx-
imately 12 Hz (BTD) is a result of limited buffer depths in the memory-to-chip event transmission as
described in Section 4.3.7. Therefore, above a critical input rate, not all input-spikes actually reach
the hardware anymore. Further discrepancies between the results of both back-ends are discussed in
the main text.

Analysis For input firing rates smaller than approximately 12Hz (BTD), the output firing
rates acquired from both back-ends exhibit a coarse qualitative correspondence. As intuitively
expected, from a certain critical input rate, on both back-ends the output firing rate grows
with the input rate. For the hardware system, though, the onset of activity is later, and the
following slope is steeper. The best matching is achieved for input rates of (9 ± 1)Hz (BTD),
where both curves meet, which can be explained by the fact that for this output frequency,
the synaptic weight calibration factors (see Section 5.2.5) have been determined. The delayed
onset of the hardware activity and the seemingly growing responsiveness for higher input
rates is assumed to be an effect of the parasitic capacitances incorporated in the synaptic
transmission path in hardware (see Sections 4.3.4 and 6.1.4). The resulting damping effect
decreases for higher signal frequencies, because then these capacitances have less time to lose
their accumulated charge. Hence, a perfect FHW-1-NEST alignment of such fin vs. fout curves
is not possible, a matching can only be achieved for a narrow range of input frequencies.

For input firing rates larger than approximately 12Hz (BTD), the communication bandwidth
between the event memory module and the analog part of the chip is limited by the depth
of the involved FIFO buffers. This issue has been described in Section 4.3.7, and becomes
very obvious in the presented experiment. When the buffers overflow, not all applied input
spikes can be delivered into the analog part of the chip anymore (see also Section 6.1.1), which
results in a stagnancy of the output firing rate. The fact that the output rate in Figure 6.4
even decreases for rates larger than approximately 13Hz (BTD) is possibly caused by a higher

148

6.1 Basic Studies and Specifications

loss of excitatory input events compared to the loss of inhibitory ones.

Experimental Demonstration of Another Bandwidth Limitation

Setup Like in the previous setup, a single neuron is created, but this time Ne = 208 exci-
tatory plus Ni = 48 inhibitory Poisson-type spike trains are connected to it. This exploits
the full number of synapse drivers available for one FHW-1 neuron, and for spike trains with
identical firing rates, the maximum input bandwidth in this case is not determined by the
FIFO buffer depths, but by the event packet transmission limit of 300MEvents/s (HTD), i.e.
by the chip clock frequency (see Section 4.3.4). This time, the maximum synaptic conduc-
tance gmax is 1.0 nS for excitatory and 15.0 nS (BVD) for inhibitory connections, which results
in reasonable output firing rates.

Results Figure 6.5 shows the resulting fin vs. fout curve. As predicted in Section 4.3.7, the
input event data cannot be reliably delivered to the hardware neuron from a critical rate per
spike train of approximately fin ≈ 8Hz (BTD). This input bandwidth limitation has to be
considered during the setup of every hardware experiment.

Figure 6.5: A single FHW-1 neuron is stimulated by Poisson-type spike trains via 208 excitatory and
48 inhibitory synapses. The plot shows the average output firing rate of the stimulated neuron as a
function of the applied input rates. Each data point represents the mean over 30 runs, the error-bars
denote the corresponding standard deviations. The stagnancy of the hardware output rate for input
frequencies larger than approximately 8 Hz (BTD) is a result of the limited memory-to-chip event packet
transmission bandwidth as described in Section 4.3.7. I.e. from a certain input rate, not all applied
spikes reach the hardware.

6.1.3 Membrane Potentials

In the previous section, only average output firing rates have been considered as measures
of neuronal activity. But since every spike is the consequence of evolving membrane po-
tential dynamics (see Section 2.1.2), and since the firing rate is not the only variable used
by neurons to code output information into spikes (see e.g. Thorpe et al., 2001), acquiring

149

6 Experiments

the sub-threshold development of neuron membrane voltages can provide many additional
insights. Especially in the case of neuromorphic hardware systems, where the correspondence
between the electronically emulated membrane potential and its biological counterpart has
to be established by applying dedicated translation and calibration methods (as presented in
Sections 3.1, the analysis of membrane potentials is essential for the verification of the model.

The goals of the experiments presented in the following are� to prove the functionality of the FHW-1-specific PyNN implementation in terms of mem-
brane potential data access, i.e. to demonstrate the automated integration and transla-
tion of oscilloscope data into the PyNN domain,� to compare the hardware voltage traces directly with corresponding NEST simulation
data (see Section 3.1.4),� to illustrate the improvements achieved by the calibration methods introduced in Sec-
tion 5.2 in terms of matching between the hardware system and NEST.

Setup A single neuron is created and stimulated with Ne = 48 Poisson-type spike trains via
excitatory plus Ni = 16 spike trains via inhibitory synapses. All stimulation spike trains fire
with a frequency fstim = 8Hz (BTD) for the full experiment duration of Texp = 5000ms (BTD).
This stimulation frequency value has been chosen, because it results in an optimal matching
of the hardware and the NEST output firing rates, as has been shown in Section 6.1.2. The
maximum synaptic conductance gmax is set to 2.0 nS for excitatory and to 15.0 nS (BVD) for
inhibitory connections. The membrane potential and the output spikes of the stimulated
neuron are recorded. The experiment is fully described in PyNN and executed both on the
fully calibrated FHW-1.3-No.18 system and with NEST.

For the FHW-1 back-end, the same setup is repeated 50 times. The hardware run which
matches the NEST result best in terms of the spike train difference measure introduced in
Section 5.3.1 (with the parameter τc set to 3ms, BTD) is selected for the membrane potential
comparison shown in Figure 6.6.

In further hardware runs, the system fine-tuning is deactivated one by one in terms of� the synapse weights calibration (see Section 5.2.5),� the membrane time constant calibration (see Section 5.2.3),� the firing threshold and reset mechanism calibration (see Section 5.2.2),� the synapse driver calibration (see Section 5.2.4).

The resulting changes on a membrane potential exposed to the same input as described above
illustrate the improvements achieved by each calibration method.

Results For the period between 2000ms and 4000ms (BTD), Figure 6.6 shows the membrane
potential and the spike times (indicated by vertical dashed lines) of the stimulated neuron
as computed in a NEST simulation (upper sub-figure) and as emulated by the FHW-1 system
(lower sub-figure). There is an obvious qualitative correspondence between both traces, and
10 out of the 15 plotted spike times generated by NEST are reproduced on the hardware
neuron (temporal offsets in the order of 10ms BTDare tolerated). The matching is not perfect,

150

6.1 Basic Studies and Specifications

(a) NEST Simulation

(b) Hardware Emulation

Figure 6.6: The sub-threshold membrane potential of a neuron stimulated by Poisson-type spike
trains as simulated by NEST (a) and emulated by the FHW-1 system (b). Both in NEST and in the
hardware model, action potentials are not modeled with depolarization peaks, but just registered in
terms of their occurrence time and followed by a reset mechanism. Therefore, the output spike times
of the recorded neuron are indicated by vertical dashed lines. The voltage traces show an extract of
2000 ms (BTD) length out of the full experiment duration of 5000 ms (BTD).

though. The hardware does not reproduce all NEST spikes, and generates others, which are
not part of the NEST model. The hardware membrane trace seems to be subject to stronger
fluctuation amplitudes. Especially in the case of polarizing peaks in the hardware trace, the
amplitudes are often much larger than corresponding drops of the NEST voltage. Different
reasons for this can be assumed: The efficacy of one or multiple of the involved synapse drivers
have not been sufficiently calibrated by the synapse driver calibration routine presented in
Section 5.2.4 – they are still too strong. There is not yet a mechanism incorporated in the
utilized software framework which avoids such outliers in the process of mapping biological
networks to the available hardware substrate, as it is already used for critical hardware neurons

151

6 Experiments

(see Section 3.1.6). Another possible reason is a particularly large sensitivity of the circuit
which translates the synaptic conductance course signal (chip-internally represented as a
current, see Section 2.1.2) into a conductance between the membrane and the inhibitory
reversal potential. This can be caused by transistor-level fluctuations specific to the observed
neuron.

Deactivating Calibration Mechanisms The experimental setup is kept, but in four separate
runs, each time one calibration method is deactivated. For illustrative purposes, a neuron
has been manually selected for which these disabling steps have an impact that can be easily
observed on the membrane.

Figure 6.7 shows six membrane potential traces, again for the period between 2000ms and
4000ms (BTD) of experiment time. The upper-most trace represents the NEST simulation.
Trace A is recorded during a run with all calibration mechanisms presented in Section 5.2
applied.

For the recording of trace B, acquired with the same neuron as in case A, the synapse weight
calibration presented in Section 5.2.5 has been deactivated. This results in a significantly
increased output firing rate, caused by larger excitatory synaptic weights. The correspondence
with the reference NEST model decreases.

For the recording of trace C, the only disabled calibration mechanism is the tuning of the
membrane time constant (see Section 5.2.3). In this case, the applied default value results
in a membrane time constant which is too low, i.e. the impact of synaptic stimulation is not
enough to drive the membrane potential above the firing threshold. This also decreases the
correspondence with the reference NEST model.

Trace D has been acquired from the same neuron, but with the calibration mechanism deac-
tivated that determines the trade-off between firing threshold precision and reset mechanism
efficacy (see Section 5.2.2 – the necessity of such a trade-off is a design-related malfunction
of the FHW-1 system). The resulting trace looks like it fits the NEST reference better than
trace A, because the reset mechanism seems to work more efficiently, and the spike times
of the NEST model are better reproduced. But the originally applied calibration algorithm
has detected a responsiveness of this neuron which is too high without further tuning, and
although this cannot obviously be seen from trace D, the calibration result is trusted.

For the recording of trace E, the synapse driver calibration (see Section 5.2.4) has been
deactivated. The applied default values result in much weaker synaptic impacts compared
to the calibrated case. Hence, the membrane fluctuation amplitudes are very small, and
consequently, the neuron does not fire a single spike. Better default values would improve
this shortcoming, but finding those values requires additional effort. Investing this effort has
been considered to be not reasonable, because values, which are tuned for each individual
driver, are already available.

6.1.4 Short-Term Plasticity

In Section 2.1.2, the synaptic depression and facilitation mechanisms implemented in the
FHW-1 system have been described. Their functionality is illustrated by the following ex-
periment. The data presented in this section has been acquired by Johannes Bill under the
supervision of the author (see also Bill, 2008).

152

6.1 Basic Studies and Specifications

2000 2500 3000 3500 4000
Time [ms] (BTD)

NEST

A

B

C

D

E

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
[1

0
m

V
/

d
iv

]
(B
V
D
)

Figure 6.7: The sub-threshold membrane potential of a neuron stimulated by Poisson-type spike
trains as simulated by NEST (top-most trace), as emulated by a fully calibrated FHW-1 neuron (A), by
the same neuron without synapse weight calibration (B), without membrane time constant calibration
(C), without firing threshold vs. reset mechanism tuning (D), and without synapse driver calibration
(E). For each trace B – E, only one calibration mechanism has been deactivated. See main text for
more explanations on the observable differences between the traces.

Setup The short-term dynamics of one specific, excitatory synapse shall be analyzed. There-
fore, a single neuron is exposed to 16 Poisson-type spike trains via excitatory and 4 Poisson-
type spike trains via inhibitory synapses, each of which fires with a rate of 5Hz (BTD). In
addition to this background input, the stimulated neuron also receives a specifically prepared
spike train via the synapse of interest: 30 spikes with constant inter-spike intervals of 50ms
(BTD), followed by one extra spike 500ms (BTD) later, are injected. The resulting membrane
potential is recorded over 100 repetitions of this setup, each time with new randomly gener-
ated Poisson spike trains applied.

These 100 runs are performed three times: Once, the plasticity mechanism in the analyzed
synapse is configured to be facilitating, once it is switched off (static synapses) and once it
is depressing. The workaround presented in Section 5.1.4 is applied in order to minimize
design-related problems. See Bill, 2008, Section I.3.3 for the precise hardware parameters
applied.

153

6 Experiments

Results Figure 6.8 shows the recorded membrane potentials. It is divided into three sub-
figures, the upper one showing the facilitating synapse, the middle one showing the case
without short-term plasticity, and the lower one showing the depressing synapse. In each of
these sub-figures, two traces are plotted: The upper of both represents the average membrane
potential over all acquired 100 runs, while the lower one represents one out of these 100
measurements.

While the membrane potential fluctuations imposed by the Poisson-type background stim-
ulation dominate the single run traces, they are filtered out in the average traces. There,
the three different characteristics of the synapses can clearly be observed: In the facilitating
case, the synapse needs approximately 5µs (HTD) (or 500ms in BTD) of permanent stimulation
before it reaches its maximum efficacy. Approximately the same period is needed by the de-
pressing synapse, before it has reached its minimum impact. In both cases, the post-synaptic
potential caused by the delayed extra spike illustrates the recovering of the synapse from the
depression or facilitation effect.

An interesting observation can be made in the middle sub-figure. The synapse, which
is configured to exhibit no plasticity mechanism at all, seems to need a certain amount of
stimulation before it reaches its maximum efficacy, just like for a facilitating configuration.
This is interpreted as an effect of parasitic capacitances within the synaptic circuitry, which
need to be pre-charged before the synaptic conductance courses reach their full amplitude
(see Section 2.1.2 for an explanation of the affected electronic circuits).

Still, despite the need for workarounds to be applied and despite parasitic effects, the basic
principles of synaptic depression and facilitation can be stated to be working in the analyzed
FHW-1 synapse. See Section 6.2.2 for an experiment which utilizes the synaptic depression
and facilitation for self-stabilizing dynamics in a recurrent neural network.

6.1.5 Long-Term Plasticity

In Section 4.1.3, a method has been presented which allows to access the STDP modification
curves of hardware synapse nodes. The Figure 6.9 shows a set of STDP curves acquired with
this method from adjacent synapses on the same FHW-1.3-No.17 chip. Every data point
represents the mean value, the error bars represent the standard deviations over 10 repetitions
of the same acquisition setup. As mentioned in Section 4.3.11, technical problems with the
controlling of these curves are still unsolved. Hence, it is not clear if the observed synapse-
to-synapse differences and the error bars within one curve are caused by actually varying
hardware behavior or by problems in the acquisition process. Possible distorting factors are
listed in Section 4.3.11. Concluding statements about the measurements can therefore not be
given at this point.

Despite the scepticism regarding the quality of the results, the presented STDP curve
array illustrates the ability of every synapse to measure temporal correlations between pre-
and post-synaptic spiking activity. The time constants of the measured branches, which are
not adjustable by a hardware parameter, are in the order of 5ms to 10ms (BTD). This is rather
short compared to choices of around 20ms (BTD) found e.g. in (Song et al., 2000; Morrison
et al., 2007).

154

6.1 Basic Studies and Specifications

(HTD)

(HVD)

Depressing

Facilitating

Static

Figure 6.8: A hardware membrane potential exposed to Poisson-type background stimulation and
to equidistant spikes via one facilitating (top sub-figure), one non-plastic (middle) and one depress-
ing (bottom) synapse. In every sub-figure, an average over 100 recordings of the membrane with
newly generated background stimuli is shown (upper trace), plus one single recording out of these
100 measurements (lower trace). For the single-run membrane potentials, the fluctuation due to the
background stimulation dominates the dynamics. In the average traces the background is filtered out,
and the impact of the analyzed synapse becomes visible. In the facilitating case, the impact of the
synapse grows with ongoing stimulation, until a maximum efficacy is reached. The opposite effect can
be observed for the depressing synapse. Both effects recover in the absence of ongoing stimulation,
as can be seen from the effect of a delayed single spike. The synapse which is configured to exhibit
no plasticity at all still needs a certain amount of stimulation before it reaches its maximum efficacy,
which is assumed to be caused by parasitic capacitances in the synapse circuitry. Figure by J. Bill.

155

6 Experiments

1

0

−1

1
/N

p
a
ir

s

[ms](BTD) t
−10 0 10

Figure 6.9: An array of STDP modification curves measured in 16 adjacent synapse nodes that are
connected to the same FHW-1.3-No.17 neuron. The corresponding measurement method is explained
in Section 4.1.3. Pairings of pre- and post-synaptic spikes with a time difference of ∆t are artificially
provoked in the synapse node. The number Npairs of these pre- / post-synaptic spike pairs that has
to be applied until a hardware-internal flag signals a necessary weight update is determined. The
inverse of Npairs(∆t) is plotted against ∆t. Every data point represents the mean value, the error bars
represent the standard deviations over 10 repetitions of the acquisition setup.

156

6.2 Exploring Network Architectures

6.2 Exploring Network Architectures

In this section, experiments with basic neural network architectures implemented on the
chip-based FACETS hardware system (FHW-1, see Section 2.1) are presented. The applied
setups are described, executed and analyzed with the software framework introduced in Sec-
tion 3.2. They incorporate the calibration methods and the chip malfunction handling tech-
niques described in Sections 5.2 and 5.1.

This section points out the large effort that has to be invested in order to realize even simple
functional neural architectures on a neuromorphic hardware system. But it also provides the
proof that a realization is possible. And that, for certain experiments, the advertised benefits
in terms of operation speed already pay off for the utilized prototype device.

The following studies address different aspects of cortical neural networks: In Section 6.2.1,
a recurrent network inspired by cortical connectivity patterns is configured and stimulated
such that a spectrum of firing dynamics emerge at least one of which is observed in vivo.
A parallel execution on both the hardware system and a software simulator, with a mutual
matching approach, provides additional insights into hardware dynamics and delivers direct
computation time comparisons.

In Section 6.2.2, the synaptic short-term plasticity mechanisms implemented in the FHW-1

system are utilized to generate self-stabilizing firing dynamics in a recurrent neural network.
This approach can help to provide a neural substrate that is tolerant of certain types of
hardware-specific inhomogeneities.

6.2.1 Recurrent Network Dynamics: Matching Hardware and Software

One of the conditions for the establishment of neuromorphic hardware as a tool for the
modeling neuroscience community has been stated in Section 1.2.4: Its biological relevance
must be proven. The major aim of the following experiment series is to show that and how
this condition can be fulfilled. The FHW-1 system is not an optimal substrate for this purpose
due to its prototype nature, i.e. its limited size (see Section 2.1.1) and its various malfunctions
(see Section 4.3). Nevertheless, the realization of the comparison paradigms presented in this
section yields practical experience and solutions for the overcoming of emerging obstacles.
The acquired insights are expected to be useful for the operation of future systems.

The chosen reference system the hardware shall be compared with is not biological tis-
sue, though, but a software simulator. This is a reasonable method, because the hardware
system implements a model which already strongly abstracts the detailed knowledge of the
high diversity of cortical cell types that has been accumulated by neuro-physiologists (for a
review see Toledo-Rodriguez et al., 2002). At the same time, there is a large community of
scientists who contribute insights into cortical dynamics by utilizing software simulations at a
comparable abstraction level (see e.g. Destexhe et al., 2003; Helias et al., 2008; Tsodyks and
Markram, 1997).

One further purpose is implicitly met with the experiments documented in this section:
Nearly the full set of insights and methods described previously in this thesis is unfolded and
applied to one specific and biologically motivated experiment. All these deployed techniques
help to achieve a homogeneous neural substrate on an FHW-1 chip, with a minimum of dis-
tortions caused by process-inherent or design-related issues, and with an optimized matching
between the hardware and the reference software model (see Section 6.1.3).

In the following, the activity of a self-stimulating, i.e. recurrent network with a simple

157

6 Experiments

structure of two randomly connected sub-populations under external stimulation is both em-
ulated using the FHW-1 hardware system and computed with the software simulator NEST
(see Section 3.1.4). The statistical descriptors previously defined (see Section 5.3.2) are ap-
plied for the analysis of the generated output data. They are shown to be an appropriate
tool to find hardware and software configuration regimes which make both platforms respond
similarly to identical input while exhibiting biologically realistic network dynamics. Due to
distortions of the hardware results caused by various issues (see Section 6.2.1), the results
presented here cannot yet provide the basis for a final evaluation of this matching approach.
Still, the full experiment is described in the following, including many techniques to handle
the mentioned problems, and the distorted but promising results acquired with the FHW-1.3

chip are presented. The reasons for remaining differences between the behavior of both plat-
forms are discussed with a focus on the improvements that are to be expected from a future
revised chip that solves the critical issues.

The work presented in this section has been performed in cooperation with Jens Kremkow1

The Cortical Architecture and its Dynamical States

Describing the architecture of cortex is important for understanding its computational
principles. Early staining studies have shown that the cortex could be considered as a vertical
layered structure (Ramon y Cajal, 1911), in which neurons and their projections are laminar
specific (reviewed in Douglas and Martin, 2004). Studies have provided an estimate of the
total number of neurons and synapses in the different layers of the cat visual cortex (Beaulieu
and Colonnier, 1983, 1985). However, a consensus about how these synapses are distributed
across the neurons still is not reached.

Despite the layered structure, it is argued that there is only little fine anatomical specificity
within the local cortical volume and that the connectivity could be considered as random
(Braitenberg and Schüz, 1991). However, technical advances have produced new data which
highlights the non-randomness of the cortex (Binzegger et al., 2004; Stepanyants et al., 2008;
Binzegger et al., 2007; Stepanyants et al., 2009; Ohki and Reid, 2007; Thomson and Lamy,
2007).

Furthermore, the cortex is not only an ensemble of anatomical, interconnected elements,
but rather a system with complex dynamics. Describing the dynamical properties of the
cortex was therefore the aim of many studies.

On the single neuron level, spike trains are irregular and show a large variability of spike
counts (Softky and Koch, 1993; Shadlen and Newsome, 1998). The overall firing rates are
low, in the order of few Hz (Brecht and Sakmann, 2002) and even values smaller than 0.1Hz
have been reported by Kerr et al. (2005). However, also high firing rates with regular spiking
patterns during high amplitude stimuli have been reported. The impinging excitatory and
inhibitory synaptic inputs are dynamically balanced (Haider et al., 2006) such that the average
membrane potential stays a few millivolts below the firing threshold. Spikes are thus elicited
by membrane potential fluctuations (Gerstein and Mandelbrot, 1964; Shadlen and Newsome,
1998). The massive number of excitatory and inhibitory stimulation sources induces the
“high-conductance state” of cortical neurons (Destexhe et al., 2003). In vivo recordings have
shown that this high-conductance state changes the integrative properties of the neurons (see
Destexhe et al., 2003; Léger et al., 2005 and Sections 1.3.1, 4.1.2).

1Jens Kremkow is with the Institut de Neurosciences Cognitives de la Méditerranée, CNRS, Marseille, France,
and with the Institute for Neurobiology and Biophysics, University of Freiburg, Germany.

158

6.2 Exploring Network Architectures

Characterizing the cortical dynamics on the network level is a more challenging task. Gen-
erally, the correlation of the spiking activity of neurons in a population is low (Abeles, 1991).
However, it was shown that the correlation of the spiking activity of neurons is a function of
their spatial distance and of neuronal tuning properties (Smith and Kohn, 2008). Similarly,
based on intra-cellular recordings from pairs of neighboring neurons, not only synchronous
membrane potential fluctuations have been reported (Lampl et al., 1999), but also high cor-
relations of excitation and inhibition in the recorded neurons (Okun and Lampl, 2008).

Therefore, depending on the spatial scale, the cortical spiking activity can be classified as
follows: Individual neurons can show irregular (I) or regular (R) inter-spike intervals. On the
population level, the neurons can fire asynchronously (A) or synchronously (S). Thus, the
resulting four characteristic activity states of cortex are: AI, AR, SI and SR.

The in vivo type activity of a large population of neurons is best described by the AI
activity characteristics. Statistical measures to characterize and discriminate these states
have been proposed (Brunel, 2000; Kumar et al., 2008) and are introduced in Section 5.3.2.

Activity States of Generic Random Networks

Despite the complex nature of the cortical architecture, the random recurrent network
model has emerged as a standard theoretical model for the local cortical volume. This model
has been subject to many studies and has been shown to be a useful tool to understand the
dynamical properties of cortical networks (van Vreeswijk and Sompolinsky, 1996; Amit and
Brunel, 1997; Brunel, 2000; Vogels and Abbott, 2005; Kumar et al., 2008; Legenstein and
Maass, 2007; Maass et al., 2004b; Sussillo et al., 2007; Shelley et al., 2002).

Usually, it is composed of only two populations of neurons, one excitatory and one in-
hibitory, which are modeled as leaky I&F neurons with current- or conductance-based synapses.
The excitatory and inhibitory neurons are randomly connected with a connection probability
of around 10-20%, creating a sparsely interconnected network. Input from the surrounding
cortical network is mimicked by providing spikes from uncorrelated point-processes (usually
Poisson-distributed spike times)

Despite this simplistic nature, the model shows complex dynamics. Depending on param-
eters like the external input rate and the strength of the recurrent inhibition, the network
elicits different dynamical activity states, closely resembling those observed in vivo and de-
scribed above (Brunel, 2000; Vogels and Abbott, 2005; Kumar et al., 2008). Furthermore,
such networks can exhibit self-sustained activity (Vogels and Abbott, 2005; Kumar et al.,
2008), which has been observed in isolated brain tissues (Plenz and Aertsen, 1996; Timofeev
et al., 2000).

The capability of the random network to reproduce in vivo-like activity in terms of statis-
tical measures renders it a suitable candidate for comparing the VLSI system with software
simulations on a statistical level.

Implemented Cortical Network Model

The architecture used in the following is composed of an excitatory and an inhibitory
population. The total neuron number is Nnet, with the larger fraction of all neurons being
excitatory, Ne = 0.75 ·Nnet, and the remaining being inhibitory, Ni = 0.25 ·Nnet. The neurons
are sparsely connected with well defined intra- and inter-population connection probabilities,

159

6 Experiments

and they receive independent external Poisson-type input spike trains, thereby mimicking
cortical background activity.

The probabilities pxy ∈ {pee, pei, pie, pii} determine if a synapse from a neuron of type x
to another neuron of type y is created, where e stands for excitatory and i for inhibitory.
The parameters gxy ∈ {gee, gei, gie, gii} denote the corresponding synaptic weights, i.e. the
amplitudes of the quantal conductance increases as a response to spikes arriving at these
synapses(see Section 2.1.2). In the following, the probabilities for connections from neurons
of the same type get the same value: pi ≡ pii = pie and pe ≡ pee = pei. The same accounts for
the corresponding synaptic weights: gi ≡ gii = gie and ge ≡ gee = gei.

Next is the number of externally generated Poisson processes used to activate the neurons,
pext is the probability for spike sources to get connected to any neuron within the network.
The corresponding synaptic weights of these purely excitatory stimulus synapses is gext, and
every process fires with a spike rate of νext.

Figure 6.10 shows a schematic diagram of the described network architecture. The complete
set of applied parameter values is listed in Section 6.2.1. Some value choices are determined
by constraints imposed by the hardware system – they will be motivated in the following
paragraph.

Inhibitory

population

N

Excitatory

population

N

Poisson

population

N ext

e

i

pii

pee

pei
piepext

Figure 6.10: Schematic diagram of the network architecture. Ne and Ni are the numbers of excitatory
and inhibitory neurons, respectively. The labels pxy ∈ {pee, pei, pie, pii} for each arrow indicate the
probability of making a synapse of a neuron of type x onto a neuron of type y, where e stands for
excitatory and i for inhibitory. Next is the number of externally generated Poisson processes used to
activate the neurons, pext is the probability for every possible stimulus-to-neuron connection to be
established.

Realization on the Hardware Substrate

The networks studied in (Brunel, 2000; Kumar et al., 2008) consist of up to 105 neurons,
which is a realistic size for approximately 1mm3 of mammalian cortex. Due to architectural
constraints of the utilized neuromorphic hardware system, a network size in that range is not
realizable (see Section 2.1): On an FHW-1 chip, the largest set of neurons with a connectivity
structure flexible enough for the kind of experiments presented here is a so-called network

160

6.2 Exploring Network Architectures

block (see Section 2.1.2). One network block implements 192 neurons and 256 synapse drivers
which provide the spike input to the neurons. Each synapse driver receives its input either
from an external playback memory or from one of the 192 neurons. It delivers its input signal
to a row of 192 programmable synapse nodes, which can be configured to connect the synapse
driver to any of the 192 neurons within the block via individual weights. This results in a
synapse array of 256×192 = 49152 programmable synaptic weights with a four bit resolution
each.

Thus, if configured adequately, the neurons on one network block of the chip are fully
connectable among each other. But the number of spike sources for all 192 neurons in total
is limited to a number of 256, including the feedback connections between these neurons. For
the present experiments, 192 out of the 256 synapse drivers were reserved for the recurrent
network connections, providing the wiring for all theoretically possible recurrent connections.
The remaining 64 synapse drivers were used to feed in externally generated Poisson-type
background activity, leading to the constraint that the background input to each neuron
cannot consist of purely independent spike trains, but rather of samples from a pool of 64
Poisson sources, drawn with a certain probability pext. Thus, for randomly chosen pairs of
neurons, pext defines the amount of common input.

As a further constraint, the FHW-1 chip has an upper limit of spikes that can be delivered to
each synapse driver per time interval (see Section 4.3.7). For the applied hardware speedup
factor of 105, this limit is in the order of νext ≈ 12Hz (BTD, see Sections 4.3.7 and 6.1.2). Due
to this low number of spikes per Poisson process, it is even more necessary for each neuron
to sample from multiple Poisson processes in order to receive enough spikes to reach its firing
threshold. Very strong synapses are to be avoided, otherwise an average membrane potential
fluctuating closely below the firing threshold – a regime that is typical for AI activity – would
not be possible. Consequently, in the chosen setup, the background input to the neurons is
more correlated and not as independent as described in (Brunel, 2000; Kumar et al., 2008).
However, considering that with such a small number of neurons the network represents only
the very local neighborhood, correlations between membrane potentials are expected (see
Section 6.2.1 and Lampl et al., 1999; Okun and Lampl, 2008).

Experimental Procedure

For one full experiment, all parameters except of νext and gi are kept constant. The two
free parameters span a space which is sampled by sub-experiments in a two-dimensional grid.
Every sub-experiment consists of nstat repetitions of the same setup, but with new random
choices for both the network connectivity and the external stimulation patterns. Such two-
dimensional parameter space sweeps are performed both with the FHW-1 hardware model and
with the software simulator NEST. In an ideal setup, the spiking activity of the full network
is recorded. The following statistical descriptors, introduced in Section 5.3.2, are applied to
the spikes recorded from every single run:� The mean population firing rate νnet as a measure for global activity,� The averaged pairwise (neuron to neuron) correlation coefficient CCSync for the network

synchrony.� The averaged squared coefficient of variation CV2 of the individual inter-spike interval
distributions for the irregularity of firing.

161

6 Experiments

For every sampled point in the parameter space, the average of νnet, CCSync and CV2 over
all nstat runs is determined. This results in three two-dimensional data point grids for one
experiment.

Back-End Matching Methods

The following techniques are applied in order to optimize the matching between the network
dynamics generated by the hardware system and the software simulator.

Hardware Tuning The following methods aim at the establishment of a homogeneous hard-
ware substrate:� For the hardware back-end, the membrane time constants are calibrated with the

method described in Section 5.2.3.� The hardware synapse driver efficacies and time constants are calibrated according to
Section 5.2.4. In order to minimize distortions caused by the activity-dependent efficacy
fluctuations of these drivers (see Section 4.3.4), this calibration is performed with an
architectural setup and with activity regimes as close to this experiment as possible.� The firing threshold vs. reset potential trade-off calibration described in Section 5.2.2
is applied to all hardware neurons. This results in the exclusion of some hardware
neurons from the set of usable cells, because they exceed the defined tolerance limits.
Consequently, there are even less than 192 neurons available for the realization of the
experiment in hardware. In order to keep this experiment setup transferable to different
chips, a value Nnet = 160 is chosen, so that up to 32 neurons per network block can be
rejected. The neurons that are actually used have to be mapped to cells on the chip
that are connected to synapse drivers calibrated for the correct type, i.e. excitatory or
inhibitory.� The occurrence of multi-spikes as described in Section 4.3.6 is filtered out for the
spike recording. In case of two successive output spikes from the same neuron with
an inter-spike interval smaller than 0.3ms (BTD), only the first spike is kept, the second
is dropped. This can only be done offline with a dedicated software routine, i.e. the
multi-spike problem is not solved for the feedback connection within the network.� The experiment is described fully in PyNN (see Section 3.1.3). Setup, operation and
output data analysis are controlled with the same set of scripts for both NEST and the
hardware, all from within a single Python environment. At a few positions within the
PyNN setup code, the sequential execution forks into two branches, each of which is
executed by only one of the two back-ends. The branches always merge into one code
sequence after a few instructions, but they are necessary to incorporate fluctuations into
the NEST model that mimic the hardware imprecisions. This NEST extension will be
explained below.

Still, due to the set of problematic hardware issues described in Section 4.3, the two modeling
platforms cannot be expected to behave similarly at every level of activity after the application
of these methods – not even in terms of statistical measures like the averaged network firing
rate (see also Section 6.1.2).

162

6.2 Exploring Network Architectures

NEST Model Modifications A perfect hardware substrate can never be achieved, and even
after the optimization methods listed above have been applied, tolerance ranges accepted by
the calibration algorithms remain as uncertainties in the behavior of the circuits. Hence, some
of these remaining hardware-specific fluctuations are incorporated into the NEST model. This
further improves the matching between the two systems and can possibly provide useful infor-
mation about hardware-specific imprecisions which are not directly accessible. The following
features, which shall mimic remaining hardware-specific imperfections, have been introduced
into the NEST description of the model:� The individual values of the firing thresholds are chosen from a normal distribution with

its mean value being the model target value Vthresh and its standard deviation being
σ/µ(Vthresh) = 5%. This assumption is motivated by the following simple consideration:
During the threshold-vs-reset calibration (see Section 5.2.2) of the FHW-1.3-No.18 chip,
for 17 out of the 384 neurons no configuration was found that puts the firing thresholds
of these neurons into the tolerance range of V target

thresh ±10%. Generally, for random samples
from a normal distribution, approximately 96% are lying within µ ± 2 · σ. Assuming a
normal distribution for the hardware thresholds caused by transistor-level variations, the
fraction of 17/384 ≈ 4% rejections at a tolerance of 10% indicates a relative standard
deviation for the threshold of 5%. This assumption will be checked in preparation
studies presented further below.� The individual values of the synaptic weights are chosen from a normal distribution,
with a mean value of ge respectively gi, and with a standard deviation being 20% of
this mean. The chosen distribution width is motivated by preparation studies described
below.� The weights of the excitatory feedback connections are multiplied with a factor fe, which
is used to fine-tune the matching of the global firing rates. The corresponding tuning
experiment will also be described further below.

Recording from Subsets Due to the spike recording deadlock issue described in Section 4.3.1,
the output spikes of only a subset of hardware neurons can be recorded at the same time.
Therefore, the PyNN script considers this and, both when using the hardware back-end and
when using NEST, acquires data only from those neurons which are known to be recordable
in hardware. This limitation is transferred to NEST in order to keep the results comparable.
Otherwise, statistical measures like the pairwise firing correlation might become distorted by
sampling from a much larger pool of spike trains in the NEST case.

The sub-set recording raises the necessity for more runs per experiment in order to acquire
enough statistics for spike-based analyses.

Parameter Values

Due to the mentioned resource constraints and technical obstacles imposed by the hardware
system (see Sections 6.2.1, 2.1 and 4.3), the parameter values for the network connectivity
are chosen different from those used in (Brunel, 2000; Kumar et al., 2008).

In particular, the parameter values used for the main experiment are listed in Table 6.1.
Unless otherwise expressly mentioned, the preparation studies described below use the same
values.

163

6 Experiments

Description Parameter Unit Value

Network Architecture

Number of excitatory neurons Ne 120
Number of inhibitory neurons Ni 40
Connect prob. from exc. to exc. neurons pee 0.25
Connect prob. from exc. to inh. neurons pei 0.25
Connect prob. from inh. to exc. neurons pie 0.5
Connect prob. from inh. to inh. neurons pii 0.5

Neurons (Excitatory and Inhibitory)

Reset potential Vreset mV -80.0
Inhibitory reversal potential Ei mV -80.0
Leakage reversal potential El mV -75.0
Firing threshold voltage Vthresh mV -55.0
Excitatory reversal potential Ee mV 0.0
Leakage conductance gl nS 40.0

Synapses

Cond. amplitude for excitatory internal synapses∗ ge nS 1.88
Cond. amplitude for inhibitory internal synapses gi nS (swept) 3.0 .. 15.0
Cond. amplitude for synapses from external sources∗ gext nS 2.82
Cond. time constant for all synapses τsyn ms 30.0

External Stimulus: Poisson Spike Trains

Number of external Poisson spike sources Next 64
Connect prob. from any ext. source to any neuron pext 0.25
Firing rate per spike train νext Hz (swept) 4 .. 10

Experiment

Simulated / Emulated time per experiment run Texp ms 10,000
Number of experiment runs per parameter set nstat 200

Table 6.1: Full set of experiment parameters. All values given in BVD and BTD. For the parameters
marked with an asterisk (*), the given values are those written to the hardware system. For the
software runs, the values are multiplied by scaling factors in order to simulate hardware-specific efficacy
fluctuations (see the following section Preparation Studies).

164

6.2 Exploring Network Architectures

Preparation Studies

Weight Distribution The synapse driver calibration routine described in Section 5.2.4 ho-
mogenizes the impact that the different synapse drivers have on a neuron membrane. By
utilizing PyNN, the calibration algorithm also performs a matching with the reference simu-
lator NEST. Still, after the calculated calibration values are applied, a permanent imprecision
of the synapse driver efficacies remains: The standard deviation of the PSP integrals caused
by the individual synapse drivers is approximately 15% of the mean value over these integrals.
This fluctuation estimation accounts for single neurons and was determined in a setup with
well defined membrane dynamics. The estimator does not incorporate possible fluctuations
caused by different synapse node efficacies or any activity dependencies – which have to be
expected due to a design-related malfunction of the FHW-1 system described in Section 4.3.4.

In a preparing NEST experiment, where such weight fluctuations can be added, the in-
fluence of the width of a Gaussian input weight distribution on the firing behavior of the
considered neurons is analyzed. For this purpose, the network architecture defined above is
exposed to 64 Poisson spike trains with νext = 10Hz (BTD) each, while its recurrent connec-
tions are deactivated. Hence, every neuron receives a subset of these 64 spike trains, but no
feedback from other neurons. The resulting mean population firing rates νnet is acquired in 30
runs of Texp = 10 s (BTD) length each. In every run, new Poisson patterns and new connections
between the stimuli and the neurons are randomly generated. The mean value µ (νnet) and
the standard deviation σ (νnet) of νnet over all 30 runs are computed.

In multiple repetitions of this experiment series, the width of the underlying Gaussian
weight distribution σNEST

g is varied, and the NEST values for µ (νnet) as a function of this width
are determined. Figure 6.11 shows the results: The data points with error-bars represent the
NEST measurements of µ (νnet) and σ (νnet) for different values of the weight distribution
width σNEST

g . The dashed-dotted line indicates a constant fit, which, considering the standard
deviations of each data point, suggests that for the applied widths the influence of the weight
distribution can be ignored. This results from a sufficiently effective averaging performed by
every neuron membrane over its multiple input synapses.

The measures CCSync for the population synchrony and CV2 for the single neuron firing
regularity were found to be not significantly influenced by σNEST

g , either. Therefore, for all
following experiments in this section, a weight distribution width of σNEST

g = 0.2 · g is as-
sumed. This value represents the fluctuations that remain after the hardware synapse driver
calibration, and additionally incorporates a careful estimation of further fluctuations imposed
by the hardware synapse nodes.

Stimulus Weight Tuning Due to a design-related malfunction that results in activity-
dependent efficacies of excitatory hardware synapses (see Section 4.3.4)and due to parasitic
capacitances in the synaptic signalling path of the FHW-1 system (see Section 6.1.2), the
weights of all stimulation synapses in NEST are tuned such that the average output firing
rate in a network without internal feedback fits the hardware results.

The basic setup as listed in Table 6.1 is applied, but again pee, pei, pie and pii are set to
zero. Hence, every neuron receives a subset of the 64 external Poisson-type spike trains,
but no feedback from other neurons. The stimulation spike trains fire with a frequency
of 10Hz (BTD) each, and in 30 hardware runs the resulting population firing rate νnet (see
Section 5.3) is determined. This results in a mean value µ(νnet) = 7.8Hz and a standard
deviation σ(νnet) = 2.4Hz (BTD) over these 30 runs. The same experiment series is performed

165

6 Experiments

Figure 6.11: NEST simulations: 160 unconnected neurons receive Poisson-type input stimuli, sam-
pling from a set of 64 spike sources with a connection probability of pstim = 0.25. The width of the
distribution from which the synaptic weights for these stimuli are drawn is varied. Every data point
represents the mean population firing rate µ (νnet) over 30 runs of the same experiment, the error-bars
are the corresponding standard deviations. The dashed-dotted horizontal line indicates a constant fit
through the data (red. χ2 = 2.4).

multiple times with the simulator NEST, each time with another factor fstim multiplied to
the original weights gext. Figure 6.12 shows the results: A good matching between the NEST
data (data points with error-bars) and the hardware result (full and dashed lines) is achieved
for fstim ≈ 0.63.

It has to be assumed that this factor depends on the applied threshold fluctuations in NEST,
which change the diversity of responsiveness for the network neurons. Hence, in addition to
the mean population firing rates, further criteria of dynamics similarity between the FHW-1

system and NEST have to be applied.

Regularity and Synchrony of Firing The degree of firing synchrony within the network is as-
sumed to depend on the diversity of the involved firing thresholds. If two neurons receive very
similar input, but have different firing thresholds, their response will not be as synchronous
as in the case of two identical neurons. The same accounts for the regularity of firing of
individual neurons. Two scenarios can strongly decrease the width of inter-spike intervals
generated by a neuron: If the neuron is stimulated very strongly via excitatory synapses, its
firing behavior can be mainly determined by its refractory period, i.e. it will fire as fast as it
can, with very regular and short periods between the spikes. Another possibility is the emer-
gence of a global activity oscillation. The probability of such a population effect decreases
with a higher diversity of responsiveness among the neurons.

Hence, changing the width of the firing threshold distribution is assumed to have an impact
on both the population firing synchrony as well as on the regularity of firing for every single
neuron. The following setup tests if this impact is significant: While the threshold distribution
width in NEST is varied, the measures CCSync for network synchrony and CV2 for the network
firing irregularity are acquired and compared with the corresponding hardware results.

166

6.2 Exploring Network Architectures

Figure 6.12: Hardware and NEST: Firing rate matching by sweeping a tuning factor for the stimula-
tion weights in the NEST simulations. A set of hardware neurons receives Poisson-type input stimuli
via synapses which are all configured with the same weight value. But due to hardware-specific issues,
the effective weight values decrease for higher loads on the excitatory reversal potential. The full
horizontal line represents the mean population firing rate µ (νnet) over 30 hardware runs of the same
experiment. The dashed horizontal lines indicate the standard deviation σ (νnet) over these 30 hard-
ware runs. With the software simulator NEST, the same experiment is performed, but with a varying
tuning factor fstim for the weights of the excitatory stimulation synapses (horizontal axis). The data
points with the error-bars represent the corresponding mean values µ (νnet) and the standard devia-
tions σ (νnet) over 30 NEST runs. The value of fstim is searched which fits the hardware results best.
A linear fit through the NEST data with νnet ≤ 5 Hz (BTD) suggests an optimal factor of f opt

stim ≈ 0.63.

For different values of σ(Vthresh), the input weight correction factor fstim that matches the
NEST and the hardware firing rates best is determined as described above (“Stimulus Weight
Tuning”). For this optimal correction factor, the values of CCSync and CV2 are determined for
both NEST and the hardware. Table 6.2 summarizes the results. For every applied threshold
distribution width, a factor fstim can be found that results in matching population firing rates
of the hardware system and NEST. As expected, this value varies with the applied σ(Vthresh).
For all NEST runs, the synchrony measure CCSync is smaller than the corresponding hardware
value. The values of the irregularity measure for the NEST runs are in the same region as
the corresponding hardware value, but do not exactly match either. Both CCSync and CV2

are not significantly affected by the choice of σ(Vthresh).
It has to be concluded that the hardware seems to generate more synchronous firing behav-

ior by means of the applied measure. One possible reason for this is the damping effect caused
by parasitic capacitances in the hardware transmission path of synaptic signals. This might
cause an intrinsically increased responsiveness of individual hardware neurons to temporally
dense input signals. Such a behavior would result in a selectively amplifying effect for syn-
chronous input sequences. Experimental observations presented further below will support
this assumption.

In this pure stimulation setup without feedback, the chosen synchrony and firing regu-
larity measures do not provide additional information about the correctness of the assumed
threshold fluctuations. Therefore, the threshold distribution width is kept at the previously

167

6 Experiments

Threshold Distribution Width Weight Factor Synchrony Irregularity

σ/µ(Vthresh) fstim CCSync CV2

Hardware Emulation
? 1 0.15 1.6

NEST Simulation
0% 0.66 0.09 2.2
2% 0.65 0.08 2.3
4% 0.64 0.09 2.2
6% 0.60 0.09 2.0

Error Estimation NEST values ±0.05 ±0.01 ±0.3

Table 6.2: A set of hardware neurons is stimulated with Poisson-type spike trains. The measures
CCSync for the resulting firing synchrony among the stimulated neurons, and CV2 for the irregularity
of the firing of individual neurons, are listed. In NEST simulations of the same experiment, the firing
thresholds of the stimulated neurons are drawn from a distribution with varying widths σ(Vthresh). For
every width, a weight correction factor fstim is determined which results in population firing rates that
match the hardware result. For these matching setups, the values of CCSync and CV2 are listed and
compared with the corresponding hardware results. Only actively spiking neurons were considered for
the calculation of CCSync and CV2. See main text for an interpretation of the data.

motivated value of σ(Vthresh) = 0.05 · Vthresh for the following experiments.

Excitatory Feedback Strength The frequently mentioned circumstance that the strength
of excitatory FHW-1 synapses varies with the load on the excitatory reversal potential (see
Section 4.3.4) causes a serious problem for the experiment described in this section. A wide
range of different network firing rates is expected to be generated with the planned parameter
scans. This results in many different and a priori unpredictable levels of load on the excitatory
reversal potential. Therefore, the described hardware malfunction cannot be systematically
counterbalanced with individual weight calibration factors for every activity state. In the
following NEST experiments, all excitatory feedback weights are multiplied with a factor of
fe = 0.5, independent of the level of network activity or external stimulation. As will be
shown in the following, this value results in a good network firing rate matching between
hardware and software for a wide range of the tested parameter sets.

Results and Interpretation

After these preparation studies, the main experiment as described above (“Experimental
Procedure”) is executed both on the FHW-1 system and with the software simulator NEST. The
two parameters νext and gi are scanned. For every considered point in the two-dimensional
parameter space, nstat = 200 experiment runs with a simulated period of 10000ms (BTD)
are performed. The externally applied stimulus patterns and the synaptic connections are
randomly re-generated for each of these runs.

Activity States of the Emulated and Simulated Model In Figure 6.13, the values of the
firing rate νnet, the synchrony measure CCSync and the irregularity descriptor CV2 are plotted

168

6.2 Exploring Network Architectures

for all scanned parameter sets. Every data point represents the average over 200 runs. The
hardware results are drawn in the left column (sub-figures a, c and e), the NEST results in
the right (sub-figures b, d and f).

The average network firing rates emulated with the hardware system and computed with
NEST match well. Although tuning factors had to be applied to the excitatory NEST weights
in order to simulate hardware-specific problems, the reproduction of the diagonal line of
activity onset is remarkable.

The irregularity measures acquired from both back-ends exhibit a coarse qualitative match-
ing. In both cases, the values of CV2 are strongly correlated with the network firing rate νnet,
i.e. the regions of high firing irregularity are approximately the same as the regions of high
activity. For the hardware measurements, though, the upper left corner in the CV2 plot indi-
cates an increased regularity of firing. Such a region cannot be observed in the corresponding
NEST plot. A possible explanation of this behavior is the increased load on the excitatory
reversal potential due to the strong network activity. The resulting loss of excitatory synaptic
efficacy in the hardware system (see Section 4.3.4)can possibly cause oscillation phenomena.
In such a scenario, activity peaks temporarily weaken the excitatory reversal potential. This
weakening results in a decrease of network activity. Consequently, the excitatory reversal
potential can recover, and the network activity increases again.

The synchrony measure CCSync reveals another interesting discrepancy between the hard-
ware system and NEST: While the network-internal inhibition determines the firing synchrony
on both back-ends, the external stimulation rate affects the hardware system much stronger
than the NEST networks. For low stimulation rates around 5.5Hz (BTD), the hardware neu-
rons exhibit systematically increased values of CCSync. This can be explained by parasitic
capacitances in the FHW-1 transmission path of synaptic signals, which result in decreased
synaptic efficacies for low input rates per synapse (see Section 6.1.2). Such a damping can
cause a network-wide, selectively amplifying effect for temporally dense input sequences.

169

6 Experiments

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

N
et
w
o
rk

R
a
te

�net[Hz](BTD)
(a) Hardware: Firing Rate νnet

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)
0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

N
et
w
o
rk

R
a
te

�net[Hz](BTD)

(b) NEST: Firing Rate νnet

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)

X

+

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0
F
ir
in
g
Ir
re
g
u
la
ri
ty

C
V

2

(c) Hardware: Irregularity CV2

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)
X

+

0

1

2

3

4

5

6

7

8

9

F
ir
in
g
Ir
re
g
u
la
ri
ty

C
V

2

(d) NEST: Irregularity CV2

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)

X

+

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

F
ir
in
g
S
y
n
ch

ro
n
y

C
C

S
y
n
c

(e) Hardware: Synchrony CCSync

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)

X

+

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

F
ir
in
g
S
y
n
ch

ro
n
y

C
C

S
y
n
c

(f) NEST: Synchrony CCSync

Figure 6.13: Statistical activity measures for a recurrent network of excitatory and inhibitory neuron
as a function of the externally applied stimulus frequency νext and the strength gi of the inhibitory
feedback synapses. The left column shows results acquired with the FHW-1 system, the right column
represents NEST simulations. Sub-figures (a) and (b) plot the average output firing rates νnet, sub-
figures (c) and (d) plot the irregularity measure CV2, sub-figures (e) and (f) plot the synchrony
measure CCSync. The white cross and plus symbols drawn in the lower four sub-figures indicate the
parameters for which the network activity is analyzed in more detail (see following section). The upper
limit of the color code does not necessarily represent the maximum value within a diagram, i.e. the
color black denotes a value equal to that limit or larger. For every presented NEST data point, the
determined standard error of mean is 10% of the plotted mean value or less. For the hardware data
points, the same upper limit is true for all data points with an output firing rate of νnet ≤ 1 Hz (BTD).
For lower output rates, erroneous ghost events generated by the chip (see Section 4.3.12) result in
relative standard errors of mean of up to 40%.

170

6.2 Exploring Network Architectures

Detailed Comparison of Two Activity States

To further illustrate the different network dynamics occurring in two distinct activity states:
One candidate for an AI state and one for an instable SI/SR state. Figure 6.14 and Figure 6.15
show the membrane potential trace of one neuron and the raster plots of several recorded
active neurons.

The AI activity state is shown in Figure 6.14. The parameter combination that has been
used to generate this state is marked by a white cross in Figure 6.13. The membrane potential
of both back-ends fluctuates around a mean value a few millivolts below the firing threshold
(a and b). The spikes are elicited by these fluctuations, inducing irregular spiking pattern.
The correlation across the neurons is low, as can be seen in the raster plots of 5 neurons
(c and d). Both the sub- and the supra-threshold activity of both back-ends is comparable
during this activity state.

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [ms] (BTD)

�80�75�70�65
�60�55

M
em

b
ra
n
e
P
o
te
n
ti
a
l
[m

V
]
(B
V
D
)

(a) Hardware: Membrane Potential

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [ms] (BTD)

�80�75�70�65
�60�55

M
em

b
ra
n
e
P
o
te
n
ti
a
l
[m

V
]
(B
V
D
)

(b) NEST: Membrane Potential

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [ms] (BTD)

0

1

2

3

4

5

S
p
ik
e
O
u
tp
u
t

(c) Hardware: Spike Trains

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [ms] (BTD)

0

1

2

3

4

5

S
p
ik
e
O
u
tp
u
t

(d) NEST: Spike Trains

Figure 6.14: Characteristic membrane potential trajectories and spiking responses as measured
during an AI activity state. The left column shows results acquired with the FHW-1 system, the right
column represents NEST simulations. Sub-figures (a) and (b) plot the membrane potential trace of
one recorded neuron, sub-figures (c) and (d) plot the raster plot of the spiking behavior of 5 neurons.

In contrast to the stable AI state, the membrane potential and spike output samples shown
in Figure 6.15 illustrate a very instable network situation. The parameter sets for the sampled
examples are marked by a white plus in Figure 6.13. For a certain initial period, which is
determined by the randomly applied input patterns, the network exhibits no output activity
at all. But as soon as a few neurons start to fire, the excitatory feedback within the network

171

6 Experiments

leads to a strong global amplification of the activity. The figure shows such a situation for
both back-ends, i.e. the illustrated time windows (note that the plotted periods are much
smaller than in Figure 6.14) have been manually set to the onset of strong activity. From this
moment of activity onset, most neurons fire with a maximum frequency determined by their
refractory time and their effective membrane time constant (see Section 4.1.2), while others
do not fire at all. This necessarily results in high values for the synchrony measure.

If all neurons fired at the same maximum rate permanently, the irregularity measure would
be very small. But since the effective membrane time constant varies with the stimulation,
and since the activity periods are sometimes interrupted (possibly caused by fluctuations in
the input or by a temporarily dominating inhibition), the inter-spike interval histogram of
such a firing pattern can be rather stretched. Furthermore, the squared average inter-spike
interval, i.e. the denominator of the irregularity measure, is very small. Therefore, the total
value of the irregularity measure is large.

The minimum inter-spike intervals in hardware are much larger than the corresponding
NEST values. One possible reason for this is the way multiple spikes from one pre-synaptic
source are integrated in the post-synaptic neuron. In NEST every spike from one source elicits
the same conductance transient, which is added to the total conductance impinging on the
neuron. In the hardware system, however, the situation is slightly different (see Section 2.1.2).
A spike that arrives at the synapse driver induces a conductance transient, like in NEST.
But with each new arriving spike this conductance transient is reset and re-starts from its
beginning, independent of the preceding input history. Hence, in case of input rates arriving
at a synapse driver that are larger than 1/τsyn, a considerable fraction of the stimulus impact
gets lost, resulting in a nonlinear input-output relationship.

A further possible reason for the large hardware inter-spike intervals observed in Figure 6.15
are the instable excitatory reversal potentials (see Section 5.2.4). As described above, at high
levels of global activity the excitatory reversal potential drops, which results in a reduced
driving force and in reduced effective synaptic weights, respectively.

Runtime Comparison

The data depicted in Figure 6.13 represents the statistical essence of a large number of
single simulation runs. The 13×17 tested parameter sets with 200 runs of 10 sec (BTD) length
each correspond to a total simulated time of Tbio = 13 · 17 · 200 · 10 s = 442000 s (BTD). This
corresponds to more than five days.

With the applied time translation factor of facc = 105 between HTD and BTD, the total
emulation time needed by the circuits of the FHW-1 chip in order to generate the corresponding
data is Ton-chip = Tbio/facc = 4.42 s (HTD). The actual lab time that was consumed by the full
system, i.e. with the overhead introduced by further components and with the calculation time
for the statistical analysis included, was 72 hours. The main contributor to this significant
slow-down is the inefficient network interface between the controlling host PC and the FHW-1

carrier board (see Section 2.1.5), via which all hardware configuration and stimulation data
as well as the generated output data has to be transported.

The NEST simulations have been performed on an Intel quad-core architecture, i.e. four
simulations were executed at the same time on four processor cores in parallel, each of which
is clocked with 2.4GHz. The working memory of this computer shared by the four processor
cores is 4 GByte. The total time consumed by this machine for the NEST simulations and
the corresponding statistical analysis is 135 hours. It can be assumed that this quad-core

172

6.2 Exploring Network Architectures

0 100 200 300 400 500
Time [ms] (BTD)

	80	75	70	65
	60	55

M
em

b
ra
n
e
P
o
te
n
ti
a
l
[m

V
]
(B
V
D
)

(a) Hardware: Membrane Potential

3500 3600 3700 3800 3900 4000
Time [ms] (BTD)

80
75
70
65

60
55

M
em

b
ra
n
e
P
o
te
n
ti
a
l
[m

V
]
(B
V
D
)

(b) NEST: Membrane Potential

0 100 200 300 400 500
Time [ms] (BTD)

0

1

2

3

4

5

S
p
ik
e
O
u
tp
u
t

(c) Hardware: Spike Trains

3500 3600 3700 3800 3900 4000
Time [ms] (BTD)

0

1

2

3

4

5

S
p
ik
e
O
u
tp
u
t

(d) NEST: Spike Trains

Figure 6.15: Membrane potential trajectories and spiking response as measured during an instable
SI/SR activity state. Same arrangement as in Figure 6.14. For explanations see main text.

computer did not spend more time on the analysis of the data than the hardware host PC,
because the analysis is not memory limited, and the hardware host PC is a single-core Intel
architecture clocked with 2.4GHz, too. Hence, even if 72 hours are assumed for pure data
analysis, a total NEST execution time of 63 hours remains. This corresponds to 226800
seconds, i.e. once configured, the hardware generated the acquired data approximately 50000
times faster than the NEST software simulation. This comparison is not totally fair, since
the considered NEST execution time also contains software-specific periods for data structure
setup. Note that such an execution time comparison is very problem-specific. For larger
numbers of neurons or synapses or for more firing activity in the network, the NEST simulation
will require more execution time. This does not hold for the on-chip emulation time of the
hardware system, which is only determined by the biological period to be emulated and by
the hardware speedup factor facc.

Conclusions Drawn From This Section

The network experiments described in this section prove that the hardware-to-biology trans-
lation paradigms, the hardware tuning techniques and the comparison framework presented
in this thesis provide an appropriate tool set to implement biologically motivated models with
a neuromorphic device. The achieved level of similarity between the hardware system and
the software simulator NEST is remarkable, especially if the imperfections of the device are

173

6 Experiments

considered.
For the remaining differences plausible explanations have been given, the most of which are

design-related, i.e. they can be eliminated or minimized in future revisions of the hardware
design. The following suggestions address the most critical issues. Significant improvements
in the controllable generation of biologically realistic activity regimes with FHW-1 devices are
expected if these requirements will be satisfied:� Reliable reversal potentials, that are not activity dependent.� Reliable and independent configurability of the firing threshold and the reset potential.� Full access to the spike output of all neuron circuits at the same time.� An immediate synaptic response that is not initially damped by parasitic capacitances.

One further need for improvement has become obvious from the presented execution time
comparison between the hardware emulation and the NEST simulation: A significantly faster
interface between the controlling host PC and the hardware device is essential for the efficient
exploitation of the speedup benefit intrinsic to the neuromorphic approach. A Gigabit Ether-
net interface that will solve exactly this issue is currently under development in the Kirchhoff
Institute in Heidelberg.

174

6.2 Exploring Network Architectures

6.2.2 Self-Stabilizing Network Architectures

In Section 6.2.1, the realization of a recurrent network on an FHW-1 device has been pre-
sented. That network consisted of excitatory and inhibitory neurons, and by varying the
strength of the inhibitory internal feedback and the frequency of the applied stimuli, the
network has been purposely put into different states of spiking activity, characterized by the
frequency, the regularity and the synchrony of firing. In contrast to this, the goal of the fol-
lowing experiment series is not the generation of a large variety of dynamics, but the opposite:
A hardware network shall be set up that exhibits a stable firing activity despite variations in
the stimulation strength and in the responsiveness of the utilized neurons.

Such a working point stability is achieved by appropriately applying the short-term plas-
ticity mechanisms implemented in the FHW-1 synapses (see Sections 1.3.3 and 2.1.3). Before
the experiment is realized on the hardware substrate, a preparation study based on pure
software simulations proves the functionality of the chosen approach for the limited number
of available hardware neurons.

The results presented in this section have been acquired by Johannes Bill under the super-
vision of the author (see also Bill, 2008).

Setup and Stabilization Mechanism

Inspired by the descriptions given in Sussillo et al., 2007, a network architecture consisting
of two populations is set up: An excitatory population Pe, consisting of Ne = 144 neurons,
and an inhibitory population Pi, consisting of Ni = 48 neurons. They are interconnected
according to a specific pattern, which determines the depressing and facilitating type of the
involved synapses:� All synaptic connections from excitatory to excitatory neurons are depressing.� All synaptic connections from excitatory to inhibitory neurons are facilitating.� All synaptic connections from inhibitory to inhibitory neurons are depressing.� All synaptic connections from inhibitory to excitatory neurons are facilitating.

All neurons within the network receive externally generated Poisson-type spike trains via
static excitatory and inhibitory synapses. Figure 6.16 shows a schematic of the described
connectivity scheme.

This architecture has an intrinsic self-stabilizing mechanism, which has been theoretically
investigated and proved by the authors of Sussillo et al., 2007, and which becomes plausible
by the following “differential” consideration: Given a state where the external stimulation has
been constant for a while, and the population firing rates νe and νi are stable. If at this point
the external stimulation increases, the firing rates of both populations will start to grow.
As a consequence of this first response, the efficacy of the facilitating synapses increases,
i.e. the excitatory feedback from Pe to Pi and the inhibition from Pi to Pe get stronger.
Furthermore, all depressing synapses lose some of their efficacy, i.e. the intra-population
feedback connections get weaker. Consequently, the activity in the excitatory population Pe

is damped by two factors: By a weakening of its self-excitation and by an increased inhibition
from Pi. Correspondingly, the activity in the inhibitory population Pi is amplified by two
factors: By a weakening of its self-inhibition and by an increased excitation from Pe.

175

6 Experiments

Figure 6.16: Schematic of a self-stabilizing network architecture inspired by Sussillo et al., 2007.
Two populations of neurons, an excitatory (white circle) and an inhibitory one (black circle), receive
externally generated input via static synapses. All network-internal synapses are dynamic: The intra-
population connections are depressing, the inter-population connections are facilitating. The possible
activity-balancing features arising from this are explained in the main text.

In the case of a weakened external stimulation, an analog consideration reveals that the
activity in the excitatory population will be amplified, while the activity in the inhibitory
population is damped.

The authors of Sussillo et al., 2007 show theoretically and with software simulations, that
if the parameters of all synaptic connections within such an architecture are appropriately
chosen, the network exhibits a low total firing rate νnet that is very stable against changes in
the external stimulation frequency.

Software Simulation Study

The simulated networks presented in Sussillo et al., 2007 consist of 5000 neurons, though,
and all synapses exhibit a both facilitating and depressing behavior (Tsodyks and Markram,
1997). For the proposed network architecture, the maximum number of neurons that can
be realized is 192, and every synapse can only be facilitating, depressing or static. Hence,
Johannes Bill and Klaus Schuch tested the dynamics of such small and simplified architectures
with the PCSIM software simulator (see Section 3.1.4) in order to prove that the same self-

176

6.2 Exploring Network Architectures

stabilization features occur. The software simulator allows to tune experiment parameters
with an arbitrary flexibility. In contrast to the FHW-1.3 system, which is subject to a readout
deadlock issue (see Section 4.3.1), all neurons can be recorded at the same time, which is
important for the determination of population firing rates. Furthermore, no possibly unknown
malfunctions of the hardware short-term plasticity mechanisms distort the results, i.e. if the
preparation studies with the software simulator do not prove that this kind of architecture can
work with such few neurons, no futile effort needs to be invested into the search for phantom
hardware bugs.

Applying Noise to the Parameters Similar to the experiment series presented in Sec-
tion 6.2.1, certain parameters are drawn from a normal distribution D in order to simulate the
variations in the hardware parameters. If the standard deviation σD of such a distributions is
in the same order as the mean value µD, a policy has to be introduced that handles the cases
in which the drawn value has a sign other than the mean value, but the parameter type does
not allow this. Always setting such values to zero would result in a distortion of the resulting
distribution. In order to avoid this, a new value is drawn from a uniform distribution in the
range [µD − sD, µD + sD] instead, where sD is an adjustable so-called spread, with |sD| < |µD|.

Achieving an Uncorrelated Activation Level In order to keep the activity correlation within
the network low, especially in order to avoid the emergence of strong, self-amplifying syn-
chronization patterns, each neuron receives input only from a small subset of the applied 48
externally generated spike trains. Instead of applying very strong synaptic weights to reach
the firing threshold with such few stimuli, a basis quasi-activation of the neurons is achieved
by setting the leakage reversal potential Vrest to a value close to the firing threshold. Fur-
thermore, in order to simulate the hardware-specific dynamic analog noise on the membranes
(see Section 4.2.2), every neuron receives a fluctuating input current Inoise that is distributed
normally around zero with a standard deviation of σI = 5pA (BVD).

Test Procedure In order to test the firing rate stability of a given network architecture, two
parameters are swept: The resting potential Vrest of all neurons, and a stimulation strength
factor fstim. The basis weights of all synapses that connect the externally generated spike
trains with the network are multiplied by fstim. Hence, this factor directly controls the efficacy
of the externally applied excitation. The resting potential controls the responsiveness of the
neurons, i.e. the closer this value is set to the firing threshold, the less synaptic stimulation
is needed to make the cell fire.

The resulting two-dimensional parameter scans are performed for four versions of the net-
work architecture:� Case A: Weak internal connectivity, all synapses set to static.

The basis values of internal connection weights are multiplied with a factor of fint = 0.5,
and no depression or facilitation is incorporated in the network.� Case B: Weak internal connectivity (fint = 0.5), synapses are set to be depressing and
facilitating according to the architecture described in Figure 6.16.� Case C: Strong internal connectivity (fint = 3.0), all synapses are static.

177

6 Experiments� Case D: Strong internal connectivity (fint = 3.0), synaptic short-term plasticity config-
ured as in Figure 6.16.

parameters Table 6.3 summarizes the set of PCSIM simulation parameters that has been
found to result in network dynamics which exhibit a well performing self-stabilization (Bill,
2008).

178

6.2 Exploring Network Architectures

Description Parameter Unit Value σD/µD sD/µD

Network Architecture

Number of exc neurons Ne 144
Number of inh neurons Ni 48
Conn prob from exc to exc neurons pee 0.12
Conn prob from exc to inh neurons pei 0.24
Conn prob from inh to exc neurons pie 0.36
Conn prob from inh to inh neurons pii 0.72

Neurons (Excitatory and Inhibitory)

Membrane Capacitance Cm nF 0.2 0.3 0.5
Reset potential Vreset mV -80.0 0.1 0.2
Inhibitory reversal potential Ei mV -80.0 0 0
Leakage reversal potential El mV (swept) -62 ... -56
Firing threshold voltage Vthresh mV -55.0 0.01 0.02
Excitatory reversal potential Ee mV 0.0 0 0
Leakage resistance 1/gl MΩ 25.0 1.0 0.8
Refractory period τref ms 1.0 0 0

Synapses

Cond amp for exc to exc synapses gee nS 0.35 0.6 0.7
Cond amp for exc to inh synapses gei nS 0.25 0.6 0.7
Cond amp for inh to inh synapses gii nS 1.00 0.6 0.7
Cond amp for inh to exc synapses gie nS 1.50 0.6 0.7
Cond amp for ext to exc synapses gext,e nS (basis value) 6.00 0.6 0.7
Cond amp for ext to inh synapses gext,i nS (basis value) 20.0 0.6 0.7
Cond time constant for all synapses τsyn ms 30.0 0.3 0.5
Maximum facilitation factor 1.5 0.5 0.5
Minimum facilitation factor 1.0 0.5 0.5
Facilitation time constant τfac ms 50.0 0.3 0.5
Relative facilitation step per spike 0.27 0.3 0.5
Maximum depression factor 1.0 0.5 0.5
Minimum depression factor 0.7 0.5 0.5
Depression time constant τdep ms 50.0 0.3 0.5
Relative depression step per spike 0.27 0.3 0.5

External Stimulus: Poisson Spike Trains

Number of exc external spike sources Next,e 24
Number of inh external spike sources Next,i 24
Conn prob from ext source to neuron pext 0.1
Firing rate per spike train νext Hz (uniform) 8 ... 12

Experiment

Simulated time per exp run Texp ms 5000 (0 ms − 1000ms not evaluated)

Number of exp runs per param set nstat 25

Table 6.3: Full set of PCSIM experiment parameters. All values given in BVD and BTD.

179

6 Experiments

Simulation Results For the network configurations A, B, C and D, Figure 6.17 shows the
resulting total network firing rates νnet as a function of Vrest and fstim. In case of weak recurrent
synapses (sub-figures (a) and (b)), the total network firing rate is strongly determined by
the two swept parameters across the full range of considered values. For the strong internal
feedback (sub-figure (c)), the sensitivity is very high, output rates of more than 100Hz can
be observed. For the networks with dynamic synapses (sub-figures (b) and (d)), a significant
firing rate stabilization can only be observed in case of a strong network-internal synaptic
feedback (sub-figure (d)). For the weak recurrence, the self-tuning effects of the architecture
are obviously not strong enough.

In order to illustrate the functionality of the mutual damping and amplifying, respectively,
Figure 6.18 plots the difference between the excitatory and inhibitory population firing rates
∆ν ≡ νe − νi for the cases C and D.

The effect is obvious: The firing rate differences ∆ν in sub-figure (a) (static synapses)
are nearly independent of the swept parameters Vrest and fstim. But in the case of dynamic
synapses (sub-figure (b)), the difference between the firing rates of both populations exhibits
an obvious dependency on the swept parameters. For a weak external stimulation and a
low resting potential (lower left corner), the excitatory population is more active, while for
a strong external stimulation and a high resting potential (upper left corner), the inhibitory
population dominates the excitatory one. Obviously, the total network firing rate is controlled
via this discrepancy in the population firing rates.

For the presented preparation simulations it can be concluded that, with the chosen param-
eter values, the described network architecture does exhibit self-stabilizing features in terms
of its total output firing rate – despite the small number of utilized neurons. Hence, in a next
step, the experiment is ported to the FHW-1 system.

180

6.2 Exploring Network Architectures

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0

6

12

18

24

30

36

42

48

54

60

Resting Potential Vrest [mV] (BVD)
-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

T
o
ta

l
N

et
w

o
rk

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(a) Case A: Internal synapses static and weak.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0

6

12

18

24

30

36

42

48

54

60

Resting Potential Vrest [mV] (BVD)
-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

T
o
ta

l
N

et
w

o
rk

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(b) Case B: Internal synapses dynamic and weak.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0

15

30

45

60

75

90

105

120

Resting Potential Vrest [mV] (BVD)
-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

T
o
ta

l
N

et
w

o
rk

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(c) Case C: Internal synapses static and strong.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0

6

12

18

24

30

36

42

48

54

60

Resting Potential Vrest [mV] (BVD)
-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

T
o
ta

l
N

et
w

o
rk

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(d) Case D: Internal synapses dynamic and strong.

Figure 6.17: PCSIM Simulation: Total network firing rate as a function of the resting potential
Vrest of all network neurons and of the stimulation strength factor fstim. The four sub-plots have
been acquired with different versions of the network architecture described in the main text: (a) Case
A, weak recurrent connections, all synapses are static. (b) Case B, weak recurrent connections, the
internal synapses are depressing and facilitating according to Figure 6.16. (c) Case C, strong recurrent
connections, all synapses are static. (d) Case D, strong recurrent connections, the internal synapses
are dynamic according to Figure 6.16. The firing rates in (a) and (b) are strongly determined by Vrest

and fstim. The network shown in (c) exhibits an even increased sensitivity to the external stimulation
(note the different color code). The variant (d) exhibits almost stable output firing rates for most of
the scanned parameter space. Only for cases of weak stimulation and a low resting potential (lower
left corner), the output firing rate is significantly lower.

181

6 Experiments

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

-30

-24

-18

-12

-6

0

6

12

18

24

30

Resting Potential Vrest [mV] (BVD)

-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

F
ir

in
g

R
a
te

D
iff

er
en

ce

ν
e
−

ν
i
[H

z]
(B
T
D
)

(a) Case C: Internal synapses static and strong.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

-10

-8

-6

-4

-2

0

2

4

6

8

10

Resting Potential Vrest [mV] (BVD)

-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

F
ir

in
g

R
a
te

D
iff

er
en

ce

ν
e
−

ν
i
[H

z]
(B
T
D
)

(b) Case D: Internal synapses dynamic and strong.

Figure 6.18: PCSIM Simulation: Difference between the firing rates νe and νi of the excitatory
and inhibitory populations in the network as a function of the resting potential Vrest of all network
neurons and of the stimulation strength factor fstim. The two sub-plots have been acquired with
different versions of the network architecture described in the main text: (a) Case C, strong recurrent
connections, all synapses are static. (b) Case D, strong recurrent connections, the internal synapses
are dynamic according to Figure 6.16. The firing rate differences in (a) are nearly independent of the
swept parameters. In the case of dynamic synapses (b), though, the difference between the firing rates
of both populations exhibits an obvious dependency on the swept parameters. For weak stimulation
and a low resting potential, the excitatory population is more active, while for a strong stimulation
and a high resting potential, the inhibitory population dominates. The total network firing rate is
controlled via this discrepancy in the population firing rates.

182

6.2 Exploring Network Architectures

Hardware Realization

Implementing the architecture shown in Figure 6.16 on the hardware system requires a few
extra considerations, which are explained in the following.

Handling of Recording Problems Due to the output spike deadlock problem of the FHW-1.3
system (see Section 4.3.1), only three out of 192 hardware neurons can be arbitrarily recorded.
Hence, in order to acquire reliable information about the average firing activity in the two
populations of the network, a given setup has to be executed multiple times, while each time
different neurons are recorded. The chosen approach is to re-execute the experiment for every
individual network configuration 20×5 = 100 times. Instead of one PCSIM run, i.e. for every
randomly determined connection and stimulation pattern, the following is done in hardware:
Twenty times, three neurons are chosen randomly and recorded for five repeated executions
of the same experiment. This five time repetition is applied in order to minimize the impact
of analog noise and various design-related issues (see Section 4.3) onto the recorded firing
rates. After every five runs, another random triple of neurons is chosen to be recorded.

Synapse Parameters Due to difficulties in the configuration of the depression and facilitation
features of the hardware synapses (see Section 4.3.10), a direct translation between the PCSIM
parameters and the hardware characteristics is not possible. Because of the same reason, an
analytical conversion between the static and dynamic synapse weights is not possible either.
The author of Bill, 2008 used oscilloscope measurements as presented in Figure 6.8 in order to
establish appropriate translation factors. Still, the chosen parameter values for the presented
hardware experiments result from a merely coarse tuning and do not yet incorporate any
optimization effort. The discrete four bit synapse node values determine the weight proportion
among the connections: Excitatory to excitatory synapses receive a mean value of ωee = 7.5,
inhibitory to inhibitory connections are set to ωii = 5, and the inter-population connections
are set to ωei = 2.5 and ωie = 2.5. (In Section 3.1.5, the applied technique of mapping
continuous weights to the available discrete hardware values is explained.) Furthermore, like
in the PCSIM study, all values are chosen from Gaussian distributions around these mean
values, with relative standard deviations of σω = 0.6 and a relative spread of sω = 0.7.

Stimulus Intensity Due to changes in the synapse setup (see above), a re-adjustment of
the stimulus is necessary in order to achieve satisfying output firing rates. The number of
input channels is increased to 64, which is the maximum number that is possible in case of
192 utilized hardware neurons with full feedback flexibility (compare with Section 6.2.1). 48
of those channels are excitatory, 16 inhibitory. The rate per channel is increased to 12Hz
(BTD), which also represents the maximum due to the limited hardware input bandwidth (see
Section 6.1.2). Every network neuron (uniformly) samples three to six excitatory and three
to six inhibitory spike trains from this pool of externally generated Poisson-type stimuli.

Hardware Results Figure 6.19 shows the total network firing rate acquired on the FHW-1

system, again as a function of both Vrest and fstim. The cases C and D (definition see above)
are plotted in sub-figures (a) and (b), respectively.

The figure shows that the firing rate self-tuning of the network with the dynamic synapses
works well: While in the case of the static synapses (sub-figure (a)) the network firing rate
is extremely high for nearly all considered parameter combinations, the network with the

183

6 Experiments

2

3

4

5

6

7

8

9

10

0

20

40

60

80

100

120

140

160

180

200

Resting Potential Vrest [mV] (BVD)

-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

P
o
p
u
la

ti
o
n

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(a) Static synapses.

2

3

4

5

6

7

8

9

10

0

2

4

6

8

10

12

14

16

18

20

Resting Potential Vrest [mV] (BVD)

-62 -60 -58 -56

In
p
u
t

W
ei

g
h
t

F
a
ct

o
r

f
st

im

P
o
p
u
la

ti
o
n

F
ir

in
g

R
a
te

[H
z]

(B
T
D
)

(b) Dynamic synapses.

Figure 6.19: Hardware Realization: Total network firing rate as a function of the resting potential
Vrest of all network neurons and of the stimulation strength factor fstim. The two sub-plots have been
acquired with different versions of the network architecture described in the main text: (a) Case
C, strong recurrent connections, all synapses are static. (b) Case D, strong recurrent connections,
the internal synapses are dynamic according to Figure 6.16. The network shown in (a) exhibits a
strong sensitivity to the external stimulation (note the different color code). For nearly all considered
parameter sets, the firing activity saturates at an upper limit of νmax ≈ 200 Hz (BTD). The variant
(b) exhibits a almost stable output firing rates of approximately 15 Hz (BTD) for most of the scanned
parameter space. Only for cases of weak stimulation and a low resting potential (lower left corner),
the output firing rate is significantly lower.

dynamic synapses (sub-figure (b)) exhibits a stable rate of νnet ≈ 15Hz (BTD) for most of the
covered parameter space.

In Figure 6.20, the same firing rates like in Figure 6.19 are plotted, although this time not
as a function of Vrest and fstim, but rather versus the firing rate standard deviation over the 20
runs that are acquired per parameter set. This is done for both the static and the dynamic
synapse setups. The plot illustrates that for the dynamic architecture (grey triangles) not only
the mean firing rate over multiple repetitions is remarkably stable, but that such networks
also exhibit a high output rate robustness against varying random connections and stimuli
based on the same statistics. The absolute variations from run to run are much larger in the
case of the static architecture.

Conclusions Drawn From This Section

It can be concluded that the short-term plasticity features implemented in the FHW-1 system
provide a possibility to stabilize network dynamics against variations in both the applied
stimulation intensity and the responsiveness of the utilized neurons. This can be used to
minimize the distorting effects of unwanted hardware-specific variations e.g. in the firing
sensitivity of the neuron circuits (see Section 5.2.5). The realization of the described self-
balancing paradigm on the hardware system revealed a variety of technical difficulties and
problems (see e.g. Section 4.3.10), the most of which still have to be solved. How much
information processing properties are left in such a modulated network remains an open
question. This has to be investigated in further studies.

184

6.2 Exploring Network Architectures

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90
dynamic
static

Network Firing Rate νnet [Hz] (BTD)

In
te

r-
n
et

w
o
rk

F
ir

in
g

R
a
te

V
a
ri

a
ti
o
n

σ
ν

[H
z]

(B
T
D
)

Figure 6.20: For every tested parameter set, the mean value νnet (horizontal) and the standard
deviation σν (vertical) over the firing rates acquired in 20 repetitions of the corresponding experiment
– with new random connections and stimuli each – are plotted as one data point. The white circles
represent the runs with static synapses (compare with Figure 6.19 a), the grey triangles represent the
experiments performed with dynamic synapses (compare with Figure 6.19 b).

185

6 Experiments

186

Conclusion and Outlook

This thesis aims at the establishment of a novel modeling tool within neuroscience, namely
a specific kind of neuromorphic hardware system. For this purpose, a comprehensive study
was presented that incorporates the development of a novel methodological framework, the
creation of software and the design and execution of experiments.

An existing prototype device of the considered neuromorphic system was put into operation.
The chip features were extensively tested, and a specification of process-inherent imperfections
and prototype- or design-related properties was extracted. These steps were essential pre-
conditions for further developments: A novel methodological framework was presented that
incorporates paradigms for a biological interpretation of the hardware output, calibration
algorithms and techniques for the handling of device-specific issues. An advanced software
interface was developed that implements the suggested methods and provides the usability
for non-hardware-experts. Calibration results were presented that prove the functionality of
the chosen hardware tuning approaches. The thesis illustrated the necessity of these calibra-
tion steps and documented the successful performance of biologically inspired neural network
experiments. The concluding remarks given in the following provide a differentiated answer
to the central question of this dissertation:

Can neuromorphic hardware devices of the investigated type serve as modeling tools for
neuroscience and provide new insights into neural information processing?

Modeling with the FHW-1 System Before this question is discussed for the wafer-scale de-
vice that is currently under development (see Section 2.2), an answer is given with respect to
the chip-based prototype FHW-1 system utilized throughout this thesis (see Section 2.1). For
various reasons, no significant neuroscientific insights can be expected from the utilization
of this system in its current setup. The high emulation speed of the FHW-1 device cannot
compensate for its small number of neurons and the connectivity restrictions, especially since
the currently applied communication network between the neuromorphic chip and the con-
trolling host computer significantly slows down the work flow (see e.g. Section 6.2.1). As a
further design-related drawback, the bandwidth for feeding stimulation events into the chip
and reading back output spikes imposes relevant limits (see Section 4.3.7). These kinds of
constraints are inherent to the prototype nature of the used device and will be overcome by
the wafer-scale FHW-2 system.

A different type of issues are implementation-specific imperfections, which can be solved by
minor revisions of the FHW-1 design. Caused by such flaws, the configurable values of certain
prototype parameters have been shown to be insufficient or unreliable, see e.g. Section 4.3.2,
Section 4.3.4 and Section 4.3.10.

The experiments presented in Section 6.2 proved that even with the utilized prototype
hardware system cortically inspired network architectures and dynamics can be generated.
Despite the small number of applied neurons and a set of technical obstacles imposed by
the early development status of the device (e.g. the spike recording problems explained in
Section 4.3.1 or the unreliable excitatory reversal potential described in Section 4.3.4), a

187

remarkable qualitative and partly even quantitative correspondence between the hardware
emulations and the output of reference software simulations could be achieved. Generally,
there is no sense in aiming at a perfect quantitative matching between a software simulator and
a neuromorphic hardware system. Since analog or mixed-signal devices will never generate
a totally reproducible output, they are not suitable for tasks that require perfectly precise
parameter values and ideal constituents. But since biological neural systems are subject
to similar variations, models of cortical architectures that rely on an ideal substrate are
implausible.

Modeling with the FHW-2 System Considering the promising results and the knowledge
acquired with the prototype FHW-1 chip, the fact that most of the presented methods and
higher-level software modules are directly transferable to the wafer-scale FHW-2 system sug-
gest that this currently developed device will actually provide a tool with which large-scale
cortical models can successfully be implemented. Among a variety of possible configurations,
architectures will be realizable that – on a single wafer device – resemble approximately 1mm3

of mammalian cortical tissue: It will be possible to set up networks in the order of 10000 neu-
rons, each receiving 1000 to 5000 synaptic inputs from other neurons within the network.
The dynamics of such networks will be emulated with a speedup factor of approximately 104,
i.e. one second of chip time will generate the output corresponding to more than two hours
of biological time.

This acceleration factor, combined with the programmability of the synaptic connections,
the configurability of the implemented long-term and short-term synaptic plasticity mecha-
nisms and the spike-frequency adaptation feature, can be exploited in a variety of possible
experimental scenarios (see Section 3.1.1). The exploration of dynamics of a macroscopic
fraction of the cortex will be possible in terms of large parameter space scannings, in long-
term learning or self-organization studies or within an interactive, intuition-guided scheme.
All kind of systematic investigations will be feasible to an extent and with a large sample
statistics that is unapproachable by software simulations.

This does not imply that such neuromorphic hardware systems can replace software sim-
ulations. The physical nature and the slow production cycles of the devices impose a very
limited flexibility in terms of the implemented constituents. To quickly add a new feature
to the neuron or synapse models within a network and to test the impact of this change
onto the emerging network dynamics is a freedom that is reserved to software simulations or
to programmable devices like FPGAs2. Instead, neuromorphic devices will provide a com-
plementary research tool for the systematic or interactive parameter exploration of large
architectures that consist of established neuron and synapse models.

Requirements and Challenges A further question stated in the introduction of this thesis
relates to the requirements for the acceptance of such neuromorphic tools in the established
modeling communities. The experience acquired with the work on the FHW-1 system raised
the awareness of some important conditions. It is unlikely that a neuromorphic system will be
adopted by modelers if its operation requires an intensive study of hardware-specific details
or interfacing techniques. The presented integration of the hardware interface into the PyNN
framework addresses this aspect in an elegant way (see Section 3.1.3 and Section 3.2).

2Field Programmable Gate Array

188

Another important requirement for the acceptance of such a system is a certain standard
of configuration reliability. Unstable reversal potentials as described in Section 4.3.2 and
4.3.4 impede the transfer of existing experiments to the hardware substrate and have no
obvious biological correspondence. More generally speaking, the modeling community must be
provided with a calibrated hardware system that has well specified remaining inhomogeneities,
but that is free of practically unpredictable mechanisms that significantly affect the model
dynamics.

The initially stated question on the technical challenges and obstacles on the way towards
neuroscientific modeling with neuromorphic hardware also refers to this essential requirement
of a calibratable hardware device. With chip technologies as utilized for the FHW-1 and the
FHW-2 system, it is impossible to produce a neuromorphic device of comparable complexity
that can be reasonably operated in an uncalibrated state. Therefore, a set of appropriate
tuning parameters and monitoring possibilities has to be provided by every hardware design
that allows to counterbalance the unavoidable functional distortions caused by transistor-level
substrate fluctuations. In Section 5.2, the calibration of the FHW-1 chip was demonstrated,
and e.g. the highly laborious determination of PSP integrals for the purpose of synapse driver
tuning illustrates the obstacles that can arise from insufficient monitoring opportunities. In
order to minimize the additional chip area and communication infrastructure consumed by
such tuning opportunities, they have to be economically deployed. The following principles
are considered essential in this context:� The relative proportions of the chip-intrinsic time constants are more important than

their absolute values, since the applied speedup factor is a free parameter. The available
ranges of time constants of membranes, synaptic conductance courses, short-term and
long-term synaptic plasticity need to be well balanced. Therefore, if not configurable
individually, at least each of those groups should be adjustable in a wide range.� At least two arbitrarily adjustable groups of synaptic time constants are highly desirable
in order to implement different excitatory and inhibitory efficacy periods.� All modules within a device that provide input for multiple other modules, as e.g.
the synapse drivers in the FHW-1 system, need to be individually configurable, because
otherwise in case of a malfunction all dependent modules will be affected as well.� Since an excessive firing behavior of individual neurons can distort the dynamics of
a whole recurrent network, every neuron should have a free tuning parameter for its
responsiveness, e.g. the firing threshold.

A further opportunity is not essential but probably very useful: For a very small subset of
neuronal and synaptic circuits, all dynamically evolving variables and static parameter values
could be made accessible. Such testing units could be used to acquire a deeper understanding
of possibly unexpected chip-specific dynamics, and a variety of scenarios can be tested with
full transparency.

Not only the remaining inhomogeneities of a calibrated device need to be specified. The
information about all distortions introduced by the mapping of a given model to the hardware
substrate have to be transparently accessible to the user. This refers to parameter value
changes necessary due to e.g. low hardware value resolutions as well as to changes in the
connectivity structure due to limited routing possibilities (see Section 3.1.6).

189

Since the speed of the neuromorphic system is essential to its attractiveness for modelers,
the mentioned mapping process and the transfer of configuration data to the system need
to be as fast as possible. A high-performance link between the controlling host PC and the
system is inevitable, and all involved software layers must be optimized with respect to a
rapid transmission of configuration, stimulation and output data (see the wafer-scale support
hardware described in Section 2.2 and the software framework outlined in Section 3.2.2).

All the requirements mentioned up to this point are about to be met with the currently
developed FHW-2 system and the corresponding software framework. With the novel operation
paradigms presented in this dissertation and building upon the described case studies, it
can be concluded that supposably soon the communities of neuromorphic engineering and
computational neuroscience can start to mutually benefit from each other.

Perspectives

The following paragraphs give an impression of the ongoing and planned work with the
FHW-1 system and outlines a selection of prospects concerning the deployment of the wafer-
scale FHW-2 system.

Open Issues for the FHW-1 System

As indicated in this thesis, a set of open issues needs to be solved for the FHW-1 system,
the most important of which will be recapitulated here. Since substantial parts of the FHW-1

circuitry will be incorporated in the FHW-2 system, too, solving all known problems of the
prototype chip is an essential precondition for the successful operation of the wafer-scale
device.

The FHW-1 design needs a revision in order to solve some critical malfunctions described in
Section 4.3. The most important issues are the spike recording problems (Section 4.3.1), the
instability of the excitatory reversal potential (Section 4.3.4) and the interdependency between
the firing threshold precision and the effective reset potential (Section 4.3.3). The dispropor-
tionality of chip-intrinsic time constants (Section 4.3.5) should also be addressed in such a
revision. The precise reason for the parasitic resting potential offsets (Section 4.3.3) needs to
be clarified and resolved. The limited range of programmable voltages (see Section 4.3.10)
has to be improved. Furthermore, the problems with controlling the STDP functionality have
to be further investigated, which possibly requires additional design modifications.

Once the reliability of these hardware parameters is improved, systematic measurements
have to be performed in order to determine the relation between applied hardware parameter
values and the resulting biological variables. For example, the range of synaptic time constants
that can be adjusted via the synapse driver decay current Ictrl

τfall
, which currently has to be kept

at a fixed value in order to minimize the resting potential distortions, has to be investigated.
The extracted relation between applied hardware values and observed time constants has to
be incorporated into the software flow.

Due to a lack of experience with the underlying mechanisms, the software framework pre-
sented in Section 3.2.2 provides only insufficient control mechanisms for the FHW-1 long- and
short-term synaptic plasticity features. In order to improve this, systematic measurements
and further investigations of these mechanisms are necessary.

190

Self-Organizing Winner-Take-All Architectures in Hardware

The goal of the self-organization experiments outlined in the following is to start utilizing
the FHW-1 STDP functionality for tasks that can be varied in their complexity. This will
allow for a step-wise plasticity testing and specification procedure. Due to problems with the
control of the hardware STDP modules mentioned in Section 4.3.11, the realization of such
experiments on the hardware system is still work in progress.

Under the supervision of the author, the implementation of self-organizing winner-take-
all classifiers on the FHW-1 system has been prepared in (Kaplan, 2008). Inspired by the
work presented in (Häfliger, 2007), so-called cross-inhibition architectures3 have been set up
both with the FHW-1 chip and in NEST. The quality of the cross-inhibition performance as
a function of various parameters has been investigated, and first self-organizing experiments
based on synaptic modification via STDP (see Section 2.1.3) have been performed in NEST
(see example in Figure 6.21). Four neurons, which strongly inhibit each other, receive the
same set of 32 input spike trains via randomly initiated excitatory synapses. In the most
simple setup, four possible input classes shall be separated by the network: If a pattern is
applied to the input of all four cells, only one neuron is supposed to fire. An input pattern
manifests as a period of 1000ms length during which eight out of the 32 input sources fire
with high frequencies while the other input channels remain passive (see sub-figures a, b
and c). Sequences of random patterns are applied to the four classifier neurons. During
this procedure, the weights of the excitatory input synapses evolve according to an STDP
modification rule. After a certain number of cycles (a cycle is a sequence of four patterns),
the automatic weight changes lead to an improvement in the selective response of the neurons
to the applied input patterns.

Comparing STDP Architectures Implemented on Different Neuromorphic Systems

As introduced in Section 1.4, two neuromorphic hardware platforms are under development
within the FACETS research project. One type has been described and utilized throughout
this thesis, the second type is developed in the Laboratoire IMS at ENSEIRB4 in Bordeaux
(Tomas et al., 2006). The Bordeaux system implements six neurons per chip with a high
level of detail in the implemented Hodgkin-Huxley model (Hodgkin and Huxley, 1952). The
system is operated in real-time, and an off-chip digital logic provides STDP dynamics for the
synapses. As a PyNN interface for that hardware system is currently under development,
comparison experiments according to Daouzli et al., 2008 are planned to be performed both
on the Bordeaux system and on an FHW-1 or FHW-2 device. This would be the first time that
a neural network experiment described with PyNN is transfered between two neuromorphic
hardware platforms.

The FACETS Demonstrator Project

One major goal of the FACETS research project (see Section 1.4) is to coordinate and
bundle the efforts of the multi-disciplinary partner groups in order to investigate brain-like
computing principles. An experiment that is currently under development and that manifests
a collaborative effort is the so-called FACETS Demonstrator.

3networks in which each neuron inhibits the activity of all other neurons
4Ecole Nationale Supérieure d’Electronique, Informatique et Radiocommunications de Bordeaux, France

191

0 1000 2000 3000 4000
0

8

16

24

Time [ms] (BTD)

In
p
u
t

In
d
e
x

(a)

0 1000 2000 3000 4000
0

8

16

24

Time [ms] (BTD)

In
p
u
t

In
d
e
x

(b)

0 1000 2000 3000 4000
0

8

16

24

Time [ms] (BTD)

In
p
u
t

In
d
e
x

(c)

0 1000 2000 3000 4000

0

1

2

3

Time [ms] (BTD)

O
u
tp

u
t

N
e
u
ro

n
In

d
e
x

(d) After learning cycle 0

0 1000 2000 3000 4000

0

1

2

3

Time [ms] (BTD)

O
u
tp

u
t

N
e
u
ro

n
In

d
e
x

(e) After learning cycle 13

0 1000 2000 3000 4000

0

1

2

3

Time [ms] (BTD)

O
u
tp

u
t

N
e
u
ro

n
In

d
e
x

(f) After learning cycle 99

Figure 6.21: The figures show the self-organized optimization of a winner-take-all classifier imple-
mented in NEST. Input patterns of 32 spike trains each are applied to the four classifier neurons. The
sub-figures a, b and c represent the input that is applied during cycles 0, 13 and 99, respectively. (A
cycle is a sequence of four different patterns.) During the 1000 ms (BTD) of one pattern, only eight out
of the 32 inputs are firing at a time. The classifier neurons are connected to each other with inhibitory
synapses. The excitatory input weights evolve according to an STDP modification rule. After multiple
cycles of input patterns have been applied, each of the four neurons has learnt to selectively respond to
one class of input stimuli. The sub-figures d, e and f show the corresponding classifier output during
cycles 0, 13 and 99, respectively. Figure by B. Kaplan.

The Demonstrator is a cortical neural network model emulated with the FHW-2 system. This
model will exhibit a specific functionality that can be demonstrated and quantified. In order
to provide a transfer of this experiment to established software simulators for verification and
performance evaluation, it will be described in the simulator-independent modeling language
PyNN (see Section 3.1.3). According to the current status of planning, the network will
implement a functional structure of the visual cortex, e.g. a layer II/III attractor memory
model as presented in (Johansson et al., 2006).

One important aspect of the Demonstrator approach is the transparent and efficient map-
ping of a given network model to the limited resources of the hardware substrate (see Sec-
tion 2.2). The GraphModel mapping tool introduced in Section 3.1.6 is currently being
extended with features that allow to automatically extract a PyNN description of the model
after it has been distorted in order to fit the hardware constraints. Based on this technique,
software simulations can analyze both the ideal behavior of a model and the degradation in-
duced by the mapping process. The intention of the Demonstrator participants is to automate
this process of mapping evaluation, such that free mapping parameters can be iteratively op-
timized. Once a mapping procedure has been found that does not significantly degrade the
functionality of the architecture, the advantages of the hardware system (see Section 3.1.1)
will be exploited for a systematic parameter optimization.

192

Studying the Possible Transfer of Neural Self-Tuning Features to Electronic Substrates

The following possible application of the FHW-2 system addresses the unreliable production
processes of micro- and nano-electronic structures. All current and future information pro-
cessing devices based on such technologies are affected by this issue, and various strategies to
cope with this phenomenon have been developed: On the level of analog circuitry, dedicated
design modifications like adaptive amplifier biasing or compensating dummy structures help
to reduce the distorting impact of transistor level fluctuations (see e.g. Sansen, 2006). On the
functional level, the established digital information processing paradigm introduces a high
degree of tolerance against imperfections of electronic variables (Dally and Poulton, 1998).
On the device level, designers aim at small die sizes in order to reduce the probability of fatal
errors per chip. Every device is individually tested, and for VLSI modules (like processors
or memory devices) that are to be embedded in a computer built according to the Turing
paradigm, a single production error on the chip usually makes it unusable.

Like human engineered CMOS transistors or nano-devices, the phenotypic constituents of
biological nervous systems are subject to variations and imperfections as well. Experimental
findings about the dynamical properties of neuron membranes, synaptic connections and
neural architectures, some of which have been in focus of this dissertation already, suggest
that a variety of mechanisms increase the robustness of the performed computations against
substrate variations: Single cell membranes change their integrative properties depending on
the intensity of synaptic stimulation (see Destexhe and Pare, 1999 and Section 4.1.2). They
can serve as integrators or as coincidence detectors, and the resulting possible non-monotonous
input-output relationship can help to establish stable points of network activity (Kumar et al.,
2008). Cortico-cortical feedforward-inhibition connections help to control impact periods of
thalamo-cortical stimuli (Wielaard et al., 2001). As has been demonstrated in Section 6.2.2,
networks of neurons can exploit synaptic depression and facilitation mechanisms to establish a
self-balanced network activity that is very robust against parameter and stimulus fluctuations
(see Sussillo et al., 2007 and Bill, 2008). Furthermore, the synaptic self-modification based
on the temporal correlation between pre- and post-synaptic activity, which is a Hebbian
learning principle, has been found to induce adaptive self-optimization of working points in
neural architectures (see e.g. Guyonneau et al., 2005). Population codes reduce the distorting
impact of fluctuations in single cell properties and thereby increase the reliability of signals
that need to be precise, e.g. in the context of motor control (see e.g. Georgopoulos et al.,
1986). The list could be continued with brain regions that modulate other regions or even
with evolutionary aspects.

The FHW-2 system comprises conductance-based synapse models, a spike-frequency adapta-
tion mechanism, long- and short-term synaptic plasticity features, a large number of neurons,
a highly programmable connectivity structure and an intrinsic speed of modeling. Therewith,
it provides a platform that allows to systematically investigate these and probably more
strategies that are known or assumed to be used by biological neural systems to optimize
their working point or to minimize the distorting impact of constituent variations. Since the
neuromorphic device is subject to substrate imperfections itself, analyzing the possibilities
of transferring such strategies to micro- or nano-scale constituents might provide important
methods and insights which help to overcome the increasing problem of unreliable process
technologies for the design of future information processing systems.

193

194

A Appendix

195

A Appendix

A.1 Simulation and Emulation Parameters

Unless otherwise expressly mentioned, all hardware experiments and all NEST simulations
presented in this thesis have been set up with the parameters listed in the following.

Neuron Parameters

Neuron Parameters

Description Parameter Unit Value

Membrane capacitance Cm nF 0.2
Membrane leakage conductance gl nS 40.0
Reset potential Vreset mV -80.0
Inhibitory reversal potential Ei mV -80.0
Leakage reversal potential El mV -75.0
Firing threshold voltage Vthresh mV -55.0
Excitatory reversal potential Ee mV 0.0

Table A.1: Neuron default parameters, all given in BVD and BTD.

Synapse Parameters

Synapse Parameters

Description Parameter Unit Value

Synaptic CC decay time constant τsyn ms 30.0
Excitatory synaptic CC amplitude gmax

e nS 1.175
Inhibitory synaptic CC amplitude gmax

i nS 7.500

Table A.2: Synapse default parameters, all given in BVD and BTD.

196

A.2 Source Code, Documentation and Licences

A.2 Source Code, Documentation and Licences

This section provides information about the location of the source code for all software
modules described in this thesis. The access to most of the code repositories listed below
is limited to members of the FACETS research project or to members of the Electronic Vi-
sion(s) group at the Kirchhoff Institute for Physics in Heidelberg, Germany. Please contact
the author (bruederlekip.uni-heidelberg.de) if you are not authorized but require a check-out
of the source code.

PyNN

A download link for the PyNN software (not including the hardware specific module) and
the complete documentation can be found here:
http://www.neuralensemble.org/PyNN

PyNN.hardware.stage1

The most recent version of the hardware specific PyNN module described in Section 3.2.2
is available from:
https://www.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk

The documentation to the software can be found here:
https://www.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/doc

This folder includes the configuration file that is needed by the doxygen tool for an automatic
extraction of a complete source code documentation. The extraction of both a LaTeX and an
HTML documentation is initiated by changing to the local checkout of that folder and calling$ cd doxygen$ doxygen PyHAL.Doxyfile

Analog Unit Tests

All Analog Unit Tests described and listed in Section 3.2.5 can be found here:
https://www.kip.uni-heidelberg.de/repos/VISION/project/facets/scripts/python/

exp/pyNN/test hardware/AUT

Calibration Framework

The calibration framework described in Section 5.2 can be found here:
https://www.kip.uni-heidelberg.de/repos/VISION/project/facets/scripts/python/

exp/pyNN/calib hardware

Analysis Tools

The NeuroTools software package described in Section 3.2.3 can be found here:
http://www.neuralensemble.org/NeuroTools

197

A Appendix

Software Licenses� All components of PyNN (see Section 3.1.3) which can be downloaded from the PyNN
project homepage (PyNN, 2008) are published under the CeCILL licence (CeCILL
2009).� The NeuroTools software collection (see Section 3.2.3) is published under the GPL2
licence (GPL 2009).� Until not officially published, the copyright of the complete hardware-specific software
framework presented in Section 3.2 and the calibration framework presented in Sec-
tion 5.2 is owned by the University of Heidelberg, Germany, and the Technical Univer-
sity of Dresden, Germany.

198

A.3 Workstation Information

A.3 Workstation Information

The following hardware systems, support components and calibration data sets have been
utilized for the experiments described in this thesis.

Workstation FHW-1.2-No.5

System
FHW-1.2-No.5

Component Identification No. Type

NN Chip 5 Stage 1 version 2

Backplane n.a. First generation

Host computer evolver12 Intel Pentium 4, CPU 2.40GHz, Mem 1555540 kB

Darkwing board 11
Nathan board 5
Oscilloscope facetsscope2

Calibration Data
Available at https://www.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/config/calibration, REVISION 6635

Calibration Type Filename

Output pins calibOutputPins fhws1v2 chip5 setup001.dat

Parameter icb calibICB fhws1v2 chip5 setup001.dat

Parameter ileak calibTauMem fhws1v2 chip5 setup001.dat

Parameters drviout and drvifall calibSynDrivers fhws1v2 chip5 setup001.dat

Synaptic weights calibVthresh fhws1v2 chip5 setup001.dat

Table A.3: System components and calibration data for the hardware workstation FHW-1.3-No.5.

199

A Appendix

Workstation FHW-1.3-No.17

System
FHW-1.3-No.17

Component Identification No. Type

NN Chip 17 Stage 1 version 3

Backplane n.a. Second generation

Host computer evolver14 Intel Pentium 4, CPU 2.40GHz, Mem 1555540 kB

Darkwing board 16
Nathan board 2
Oscilloscope facetsscope1

Calibration Data
Available at https://www.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/config/calibration, REVISION 6635

Calibration Type Filename

Output pins calibOutputPins fhws1v3 chip17 setup002.dat

Parameter icb calibICB fhws1v3 chip17 setup002.dat

Parameter ileak calibTauMem fhws1v3 chip17 setup002.dat

Parameters drviout and drvifall calibSynDrivers fhws1v3 chip17 setup002.dat

Synaptic weights calibVthresh fhws1v3 chip17 setup002.dat

Table A.4: System components and calibration data for the hardware workstation FHW-1.3-No.17.

200

A.3 Workstation Information

Workstation FHW-1.3-No.18

System
FHW-1.3-No.18

Component Identification No. Type

NN Chip 18 Stage 1 version 3

Backplane n.a. First generation

Host computer evolver12 Intel Pentium 4, CPU 2.40GHz, Mem 1555540 kB

Darkwing board 11
Nathan board 0
Oscilloscope facetsscope2

Calibration Data
Available at https://www.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/config/calibration, REVISION 6635

Calibration Type Filename

Output pins calibOutputPins fhws1v3 chip18 setup002.dat

Parameter icb calibICB fhws1v3 chip18 setup002.dat

Parameter ileak calibTauMem fhws1v3 chip18 setup002.dat

Parameters drviout and drvifall calibSynDrivers fhws1v3 chip18 setup002.dat

Synaptic weights calibVthresh fhws1v3 chip18 setup002.dat

Table A.5: System components and calibration data for the hardware workstation FHW-1.3-No.18.

201

A Appendix

A.4 Practical Recommendations for the FHW-1 Operation

The following technical recommendations are provided for the operation of all FHW-1.3
devices:� Never record from neurons that are not listed as recordable (see Section 4.3.1) in the

corresponding workstation information file (see Section 3.2.4). Only in the case that
not more than one cell per neuron block (64 adjacent circuits, see Section 2.1) is to be
recorded, the index is freely selectable.� It is highly recommended to apply the calibration data that is available for a specific
chip.� The value of the parameter Ictrl

τfall
should not exceed 0.15µA (HVD, see Section 4.3.3).� The bias values for the programmable voltage generators should not exceed 0.02µA

(HVD, see Section 5.1.5).� For a reasonable configuration of the short-term synaptic plasticity mechanism, all val-
ues of Vfac should be shortened to ground using the Itest

b pin (see Section 5.1.4). Vmax

should be set to the lowest possible value. V ctrl
synstart is recommended to be set to 0.25V,

Vdtc should be 0.7µA (HVD).� The bias current Ibias
syn for the synapse driver amplitude comparator has been found to

be sufficiently large with 1.25µA. The amplitude of the synaptic conductance courses
can be sufficiently controlled with a value of Ictrl

τrise
= 0.2µA (see overshoot problem

description in Section 2.1.4, “Synaptic Conductance Courses”).� Install the full operation software package on the host PC that is directly connected with
the FHW-1 system. It is possible to run the higher-level software modules (described in
Section 3.2.2) on a computer different from that host PC and communicate with the slow
control software via sockets. But at the current status of development, this significantly
slows down the communication. Therefore, it is strongly recommended to run all control
software directly on the FHW-1 host PC.

202

List of Abbreviations

ADC Analog-to-Digital Converter
aEIF Adaptive Exponential Integrate-and-Fire (Neuron Model)
AER Address Event Representation
API Application Programming Interface
AUT Analog Unit Test
BTD Biological Time Domain
BVD Biological Voltage Domain
CC Conductance Course
CMOS Complementary Metal Oxide Semiconductor
DAC Digital-to-Analog Converter
DLL Delay-Locked Loop
DNL Differential Nonlinearity
DTC Digital-to-Time Converter
EPSP Excitatory Post-Synaptic Potential
FACETS Fast Analog Computing with Emergent Transient States
FHW FACETS Hardware
FHW-1 FACETS Stage 1 Hardware (Chip-Based System)
FHW-2 FACETS Stage 2 Hardware (Wafer-Scale System)
FIFO First In First Out
FPGA Field Programmable Gate Array
GUI Graphical User Interface
HICANN High Input Count Analog Neural Network
HTD Hardware Time Domain
HTML Hypertext Markup Language
HVD Hardware Voltage Domain
I&F Neuron Integrate-and-Fire Neuron
IPSP Inhibitory Post-Synaptic Potential
LSB Least Significant Bit
MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
NEST NEural Simulation Technology, a simulation software
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCSIM Parallel neural Circuit SIMulator, a simulation software
PSP Post-Synaptic Potential
PyHAL Python Hardware Abstraction Layer
RAM Random Access Memory
SCSI Small Computer System Interface
SEM Standard Error of the Mean
STA Spike-Triggered Averaging
STDP Spike-Timing Dependent Plasticity

203

TDC Time-To-Digital Conversion
VLSI Very-Large-Scale Integration
XML eXtensible Markup Language

204

Bibliography

M. Abeles. Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press,
1991.

D. Abrahams and R. Grosse-Kunstleve. Building hybrid systems with Boost.Python, 2003.
URL http://www.boostpro.com/writing/bpl.pdf.

D. J. Amit and N. Brunel. Model of global spontaneous activity and local structured activity
during delay periods in the cerebral cortex. Cereb Cortex, 7(3):237–52, Jan 1997.

J. Anderson, I. Lampl, I. Reichova, M. Carandini, and D. Ferster. Stimulus dependence of
two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience, 3:
617–621, 2000.

L. Badel, W. Gerstner, and M. J. Richardson. Dependence of the spike-triggered average
voltage on membrane response properties. Neurocomputing, 69(10-12):1062–1065, June
2006.

C. Beaulieu and M. Colonnier. The number of neurons in the different laminae of the binocular
and monocular regions of area 17 in the cat, canada. J Comp Neurol, 217(3):337–44, Jul
1983.

C. Beaulieu and M. Colonnier. A laminar analysis of the number of round-asymmetrical and
flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat.
J Comp Neurol, 231(2):180–9, Jan 1985.

H. K. O. Berge and P. Häfliger. High-speed serial AER on FPGA. In ISCAS, pages 857–860.
IEEE, 2007.

O. T. Berglihn. RNUM website. http://rnum.rubyforge.org, 2006.

G. Bi and M. Poo. Synaptic modifications in cultured hippocampal neurons: Dependence
on spike timing, synaptic strength, and postsynaptic cell type. Neural Computation, 9:
503–514, 1997.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. MIT Press,
Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.

J. Bill. Self-stabilizing network architectures on a neuromorphic hardware system. Diploma
thesis (English), University of Heidelberg, HD-KIP-08-44, 2008.

T. Binzegger, R. J. Douglas, and K. A. C. Martin. A quantitative map of the circuit of cat
primary visual cortex. J Neurosci, 24(39):8441–53, Sep 2004.

205

http://www.boostpro.com/writing/bpl.pdf
http://rnum.rubyforge.org

Bibliography

T. Binzegger, R. J. Douglas, and K. A. C. Martin. Stereotypical bouton clustering of indi-
vidual neurons in cat primary visual cortex. J Neurosci, 27(45):12242–54, Nov 2007.

G. Bontorin, S. Renaud, A. Garenne, L. Alvado, G. Le Masson, and J. Tomas. A real-time
closed-loop setup for hybrid neural networks. In Proceedings of the 29th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBS2007),
2007.

S. E. Boustani, M. Pospischil, M. Rudolph-Lilith, and A. Destexhe. Activated cortical states:
experiments, analyses and models. Journal of Physiology (Paris), 101:99–109, 2007.

J. M. Bower and D. Beeman. The Book of GENESIS: Exploring Realistic Neural Models with
the GEneral NEural SImulation System (Second edition). Springer-Verlag, New York, 1998.
ISBN 0387949380.

R. T. Braden. RFC 1122: Requirements for Internet hosts — communication layers, Oct.
1989. URL ftp://ftp.internic.net/rfc/rfc1122.txt.

V. Braitenberg and A. Schüz. Anatomy of the Cortex: Statistics and Geometry. 1991.

M. Brecht and B. Sakmann. Dynamic representation of whisker deflection by synaptic poten-
tials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosen-
sory cortex. J Physiol (Lond), 543(Pt 1):49–70, Aug 2002.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. J. Neurophysiol., 94:3637 – 3642, 2005.

R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower, M. Diesmann,
A. Morrison, P. H. Goodman, F. C. Harris Jr, M. Zirpe, T. Natschlager, D. Pecevski,
B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A. P. Davison,
S. E. Boustani, and A. Destexhe. Simulation of networks of spiking neurons: A review
of tools and strategies. Journal of Computational Neuroscience, 3(23):349–98, December
2006.

K. L. Briggman and W. Denk. Towards neural circuit reconstruction with volume electron
microscopy techniques. Current Opinion in Neurobiology, 16(5):562–570, October 2006.

D. Brüderle, A. Grübl, K. Meier, E. Muller, and J. Schemmel. A software framework for
tuning the dynamics of neuromorphic silicon towards biology. In Proceedings of the 2007
International Work-Conference on Artificial Neural Networks (IWANN’07), volume LNCS
4507, pages 479–486. Springer Verlag, 2007.

D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier. Establishing a
novel modeling tool: A python-based interface for a neuromorphic hardware system. Front.
Neuroinform., 3(17), 2009.

N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. Journal of Computational Neuroscience, 8(3):183–208, 2000.

A. N. Burkitt, H. Meffin, and D. B. Grayden. Study of neuronal gain in a conductance-based
leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic
input. Biological Cybernetics, 89:119–125, 2003.

206

ftp://ftp.internic.net/rfc/rfc1122.txt

Bibliography

N. Caporale and Y. Dan. Spike timing-dependent plasticity: A hebbian learning rule. Annual
review of neuroscience, February 2008. ISSN 0147-006X.

G. Cauwenberghs. Learning on silicon: A survey. In G. Cauwenberghs and M. A. Bayoumi,
editors, Learning on Silicon: Adaptive VLSI Neural Systems, pages 1–29, Norwell, MA,
1999. Kluwer Academic Publisher.

CeCILL 2009. Website. http://www.cecill.info/.

D. Cohen. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm
currents. Science, 161(3843):784–786, August 1968.

R. Cossart, D. Aronov, and R. Yuste. Attractor dynamics of network up states in the neo-
cortex. Nature, 423:238–283, 2003.

J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona, and B. Linares-Barranco.
A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision
systems. IEEE Transactions on Circuits and Systems, 54(7):1444–1458, 2007.

W. J. Dally and J. W. Poulton. Digital systems engineering. Cambridge University Press,
New York, NY, USA, 1998. ISBN 0-521-59292-5.

Y. Dan and M. Poo. Spike timing-dependent plasticity of neural circuits. Neuron, 44(1):
23–30, Sept. 2004.

V. Dante, P. Del Giudice, and A. Whatley. Hardware and software for interfacing to address-
event based neuromorphic systems. The Neuromorphic Engineer, 2(1):5–6, 2005.

A. Daouzli, S. Saighi, L. Buhry, Y. Bornat, and S. Renaud. Weights convergence and spikes
correlation in an adaptive neural network implemented on vlsi. In Proceedings of the Inter-
national Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), pages
286–291, 2008.

A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and
P. Yger. PyNN: a common interface for neuronal network simulators. Front. Neuroinform.,
2(11), 2008.

P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT press, Cambride, Massachusetts, 2001. ISBN 0-262-
04199-5.

T. Delbrück and S. C. Liu. A silicon early visual system as a model animal. Vision Res, 44
(17):2083–2089, 2004.

A. Destexhe. Conductance-based integrate-and-fire models. Neural Comput., 9(3):503–514,
1997. ISSN 0899-7667.

A. Destexhe and D. Pare. Impact of network activity on the integrative properties of neocor-
tical pyramidal neurons in vivo. J Neurophysiol, 81(4):1531–1547, 1999.

A. Destexhe, M. Rudolph, and D. Pare. The high-conductance state of neocortical neurons
in vivo. Nature Reviews Neuroscience, 4:739–751, 2003.

207

http://www.cecill.info/

Bibliography

M. Diesmann and M.-O. Gewaltig. NEST: An environment for neural systems simulations. In
T. Plesser and V. Macho, editors, Forschung und wisschenschaftliches Rechnen, Beiträge
zum Heinz-Billing-Preis 2001, volume 58 of GWDG-Bericht, pages 43–70. Ges. für Wiss.
Datenverarbeitung, Göttingen, 2002.

R. Douglas, H. Markram, and K. Martin. The Synaptic Organization in the Brain, chapter
Neocortex, pages 499–558. Oxford University Press, 5 edition, 2004. ISBN 0-19-515955-1.

R. J. Douglas and K. A. C. Martin. Neuronal circuits of the neocortex. Annu Rev Neurosci,
27:419–51, Jan 2004.

M. Ehrlich, C. Mayr, H. Eisenreich, S. Henker, A. Srowig, A. Grübl, J. Schemmel, and
R. Schüffny. Wafer-scale VLSI implementations of pulse coupled neural networks. In Pro-
ceedings of the International Conference on Sensors, Circuits and Instrumentation Systems
(SSD-07), March 2007.

M. Ehrlich, K. Wendt, and R. Schüffny. Parallel mapping algorithms for a novel map-
ping & configuration software for the facets project. In CEA’08: Proceedings of the 2nd
WSEAS International Conference on Computer Engineering and Applications, pages 152–
157, Stevens Point, Wisconsin, USA, 2008. World Scientific and Engineering Academy and
Society (WSEAS). ISBN 978-960-6766-33-6.

EPFL and IBM. Blue brain project, 2008. URL http://bluebrain.epfl.ch/.

J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig. PyNEST: a convenient
interface to the NEST simulator. Front. Neuroinform., 2(12), 2008.

FACETS. Fast Analog Computing with Emergent Transient States – project website. http://
www.facets-project.org, 2009.

D. Farina, L. Arendt-Nielsen, R. Merletti, and T. Graven-Nielsen. A spike triggered averaging
technique for high resolution assessment of single motor unit conduction velocity changes
during fatiguing voluntary contractions. Engineering in Medicine and Biology Society,
2001. Proceedings of the 23rd Annual International Conference of the IEEE, 2:1097–1100
vol.2, 2001. ISSN 1094-687X.

J. Fieres, A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann. A platform for
parallel operation of VLSI neural networks. In Proc. of the 2004 Brain Inspired Cognitive
Systems Conference (BICS2004), University of Stirling, Scotland, UK, 2004.

J. Fieres, J. Schemmel, and K. Meier. Realizing biological spiking network models in a
configurable wafer-scale hardware system. In Proceedings of the 2008 International Joint
Conference on Neural Networks (IJCNN), 2008.

FreeGLUT. The freeGLUT project website. http://freeglut.sourceforge.net/.

Z. Fu, E. Culurciello, P. Lichtsteiner, and T. Delbrück. Fall detection using an address-event
temporal contrast vision sensor. In Proceedings of the 2008 IEEE International Symposium
on Circuits and Systems (ISCAS 2008), pages 424–427. IEEE, 2008.

R. L. Geiger, P. E. Allen, and N. R. Strader. VLSI Design Techniques for Analog and Digital
Circuits. McGraw-Hill, 1990.

208

http://bluebrain.epfl.ch/
http://www.facets-project.org
http://www.facets-project.org
http://freeglut.sourceforge.net/

Bibliography

A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding of
movement direction. Science, 233(4771):1416–1419, September 1986. ISSN 0036-8075.

G. Gerstein and B. Mandelbrot. Random walk models for the spike activity of a single neuron.
Biophys J, 4:41–68, Jan 1964.

W. Gerstner and W. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, 2002.

M.-O. Gewaltig and M. Diesmann. NEST (NEural Simulation Tool). Scholarpedia, 2(4):1430,
2007.

K. Glazebrook and F. Economou. PDL: The Perl Data Language. Dr. Dobb’s Journal, sep
1997. URL http://www.ddj.com/184410442.

GLProgramming. OpenGL programming guide – the redbook. http://www.glprogramming.
com/red/.

GNU. The make tool. http://www.gnu.org/software/make/.

N. H. Goddard, M. Hucka, F. Howell, H. Cornelis, K. Shankar, and D. Beeman. Towards
NeuroML: model description methods for collaborative modelling in neuroscience. Philos
Trans R Soc Lond B Biol Sci, 356(1412):1209–28, 2001.

D. Goodman and R. Brette. Brian: a simulator for spiking neural networks in Python. Front.
Neuroinform., 2(5), 2008.

GPL 2009. GNU General Public License 2.0. http://www.gnu.org/licenses/gpl-2.0.

html.

A. Grübl. personal communication, 2008.

A. Grübl. VLSI Implementation of a Spiking Neural Network. PhD thesis, Ruprecht-Karls-
University, Heidelberg, 2007. Document No. HD-KIP 07-10.

R. Guyonneau, R. VanRullen, and S. J. Thorpe. Neurons tune to the earliest spikes through
stdp. Neural Computation, 17(4):859–879, April 2005.

P. Häfliger. Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans-
actions on Neural Networks, 18(2):551–72, 2007.

B. Haider, A. Duque, A. R. Hasenstaub, and D. A. McCormick. Neocortical network activity
in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci,
26(17):4535–45, Apr 2006.

A. Hastings. The Art of Analog Layout. Prentice-Hall Inc., Upper Saddle River, New Jersey,
USA, 2001. ISBN 0-13-087061-1.

D. O. Hebb. The Organization of Behaviour. Wiley, New York, 1949.

M. Helias, S. Rotter, M.-O. Gewaltig, and M. Diesmann. Structural plasticity controlled by
calcium based correlation detection. Front. Neuroinform., 2(7), 2008.

209

http://www.ddj.com/184410442
http://www.glprogramming.com/red/
http://www.glprogramming.com/red/
http://www.gnu.org/software/make/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

Bibliography

M. Hines, T. Morse, M. Migliore, N. Carnevale, and G. Shepherd. ModelDB: A database to
support computational neuroscience. Journal of Computational Neuroscience, 17(1):7–11,
2004.

M. L. Hines and N. T. Carnevale. The NEURON Book. Cambridge University Press, Cam-
bridge, UK, 2006. ISBN 978-0521843218.

M. L. Hines, A. P. Davison, and E. Muller. NEURON and Python. Front. Neuroinform.,
2009.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol, 117(4):500–544, August 1952.
ISSN 0022-3751.

J. D. Hunter. Matplotlib: A 2D graphics environment. IEEE Computing in Science and
Engineering, 9(3):90–95, 2007.

IEEE. IEEE Token Ring standards. http://www.ieee802.org/5/.

INCF Software Database. Website, 2008. URL http://software.incf.net.

IST. Information Society Technologies – website. http://cordis.europa.eu/ist, 2009.

H. Jaeger, W. Maass, and J. Principe. Special issue on echo state networks and liquid state
machines. Neural Networks, 20(3):287–289, Apr. 2007.

W. Jin, R. J. Zhang, and J. Y. Wu. Voltage-sensitive dye imaging of population neuronal
activity in cortical tissue. Journal of neuroscience methods, 115(1):13–27, March 2002.

C. Johansson and A. Lansner. Towards cortex sized artificial neural systems. Neural Networks,
20(1):48–61, 2007.

C. Johansson, M. Rehn, and A. Lansner. Attractor neural networks with patchy connectivity.
Neurocomputing, 69(7-9):627–633, Jan 2006.

R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, and W. Gerstner. A benchmark
test for a quantitative assessment of simple neuron models. Journal of Neuroscience Meth-
ods, 169(2):417 – 424, 2008. ISSN 0165-0270. Methods for Computational Neuroscience.

E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python, 2001.
URL http://www.scipy.org/.

R. Jung, W. Berger, and H. Berger. Fiftieth anniversary of Hans Berger’s publication of
the electroencephalogram. His first records in 1924–1931 (author’s transl). Arch Psychiatr
Nervenkr, 227:279–300, Dec 1979.

Jungo Ltd. WinDriver. 1 Hamachshev Street, P.O.Box 8493, Netanya 42504, Israel, 2007.

B. Kaplan. Self-organization experiments for a neuromorphic hardware device. Diploma thesis
(English), University of Heidelberg, HD-KIP-08-42, 2008.

B. Kaplan, D. Brüderle, J. Schemmel, and K. Meier. High-conductance states on a neuro-
morphic hardware system. In Proceedings of the 2009 International Joint Conference on
Neural Networks (IJCNN), 2009.

210

http://www.ieee802.org/5/
http://software.incf.net
http://cordis.europa.eu/ist
http://www.scipy.org/

Bibliography

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall Interna-
tional Inc., London, 1978. ISBN 0-13-110163-3.

J. N. Kerr, D. Greenberg, and F. Helmchen. Imaging input and output of neocortical networks
in vivo. Proc Natl Acad Sci U S A, 102(39):14063–14068, September 2005. ISSN 0027-8424.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming, section
6.2.1, pages 409–426. Addison-Wesley, Reading, Massachusetts, third edition, 1997.

A. Kumar, S. Schrader, A. Aertsen, and S. Rotter. The high-conductance state of cortical
networks. Neural Computation, 20(1):1–43, Jan 2008.

I. Lampl, I. Reichova, and D. Ferster. Synchronous membrane potential fluctuations in neu-
rons of the cat visual cortex. Neuron, 22(2):361–74, Feb 1999.

L. Lamport. LaTeX – A Document Preparation System. Addison-Wesley, second edition,
1994. Updated for LaTeXe.

J. Langner. Development of a Parallel Computing Optimized Head Movement Correction
Method in Positron Emission Tomography. Master of computer science thesis, University
of Applied Sciences Dresden and Research Center Dresden-Rossendorf, 2003. URL http://

www.jens-langner.de/ftp/MScThesis.pdf.

H. P. Langtangen. Python Scripting for Computational Science. Springer, 3rd edition, Febru-
ary 2008. ISBN 3540739157.

LeCroy. X-stream oscilloscopes - remote control manual. Technical Report Revision D,
LeCroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, NY 10977-6499, 2005.
URL http://lecroygmbh.com.

R. Legenstein and W. Maass. Edge of chaos and prediction of computational performance for
neural circuit models. Neural Networks, 20(3):323–334, 2007.

R. Legenstein, C. Naeger, and W. Maass. What can a neuron learn with spike-timing-
dependent plasticity? Neural Computation, 17(11):2337–2382, November 2005.

J.-F. Léger, E. A. Stern, A. Aertsen, and D. Heck. Synaptic integration in rat frontal cortex
shaped by network activity. J Neurophysiol, 93(1):281–93, Jan 2005.

W. Levy and O. Steward. Temporal contiguity requirements for long-term associative poten-
tiation/depression in the hippocampus. Neuroscience, 8:791–97, 1983.

M. A. Lewis, R. Etienne-Cummings, A. H. Cohen, and M. Hartmann. Toward biomorphic
control using custom aVLSI chips. In Proceedings of the International conference on robotics
and automation. IEEE Press, 2000.

N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann. Neurophysiological
investigation of the basis of the fmri signal. Nature, 412(6843):150–157, July 2001.

M. Lutz. Programming Python: Object-Oriented Scripting. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2001. ISBN 0596000855. Foreword By-Guido Van Rossum.

211

http://www.jens-langner.de/ftp/MScThesis.pdf
http://www.jens-langner.de/ftp/MScThesis.pdf
http://lecroygmbh.com

Bibliography

W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation, 14
(11):2531–2560, 2002.

W. Maass, T. Natschläger, and H. Markram. On the computational power of circuits of
spiking neurons. Journal of Physiology (Paris), (in press), 2004a.

W. Maass, T. Natschläger, and H. Markram. Computational models for generic cortical
microcircuits, chapter 18, pages 575–605. 2004b.

H. Markram, J. Lübke, and B. Sakmann. Regulation of synaptic efficacy by coincidence of
postsynaptic aps. Science, 275:213–215, 1997.

H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical
pyramidal neurons. Proceedings of the National Academy of Sciences of the United States
of America, 95(9):5323–5328, Apr. 1998. ISSN 0027-8424.

M. Matsumura, D.-F. Chen, T. Sawaguchi, K. Kubota, and E. E. Fetz. Synaptic Interactions
between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of
Intracellular Membrane Potentials In Vivo. J. Neurosci., 16(23):7757–7767, 1996.

C. A. Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading, MA, 1989.

C. A. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78:1629–1636, 1990.

C. A. Mead and M. A. Mahowald. A silicon model of early visual processing. Neural Networks,
1(1):91–97, 1988.

C. Mehring, J. Rickert, E. Vaadia, S. C. de Oliveira, A. Aertsen, and S. Rotter. Inference of
hand movements from local field potentials in monkey motor cortex. Nat. Neurosci., 6(12):
1253–1254, 2003.

P. A. Merolla and K. Boahen. Dynamic computation in a recurrent network of heterogeneous
silicon neurons. In Proceedings of the 2006 IEEE International Symposium on Circuits and
Systems (ISCAS 2006), 2006.

S. Mitra, S. Fusi, and G. Indiveri. Real-time classification of complex patterns using spike-
based learning in neuromorphic VLSI. IEEE Transactions on Biomedical Circuits and
Systems, 3:(1):32–42, 2009.

Morrison, Abigail, Diesmann, Markus, Gerstner, and Wulfram. Phenomenological models of
synaptic plasticity based on spike timing. Biological Cybernetics, 98(6):459–478, June 2008.
ISSN 0340-1200.

A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann. Advancing the boundaries
of high connectivity network simulation with distributed computing. Neural Comput., 17
(8):1776–1801, 2005.

A. Morrison, A. Aertsen, and M. Diesmann. Spike-Timing-Dependent Plasticity in Balanced
Random Networks. Neural Comp., 19(6):1437–1467, 2007.

E. Müller. Operation of an imperfect neuromorphic hardware device. Diploma thesis (En-
glish), University of Heidelberg, HD-KIP-08-43, 2008.

212

Bibliography

E. B. Muller. Markov Process Models for Neural Ensembles with Spike-Frequency Adaptation.
PhD thesis, Ruprecht-Karls University Heidelberg, 2006.

T. Netter and N. Franceschini. A robotic aircraft that follows terrain using a neuromorphic
eye. In Conf. Intelligent Robots and System, pages 129–134, 2002.

Neural Ensemble. Website. http://www.neuralensemble.org, 2008.

NeuroTools. Website. http://neuralensemble.org/trac/NeuroTools, 2008.

Nokia. Qt cross-platform application framework. http://www.qtsoftware.com/, 2009.

Numpy. Website. http://numpy.scipy.org, 2008.

K. Ohki and R. C. Reid. Specificity and randomness in the visual cortex. Curr Opin Neurobiol,
17(4):401–7, Aug 2007.

M. Okun and I. Lampl. Instantaneous correlation of excitation and inhibition during ongoing
and sensory-evoked activities. Nat Neurosci, 11(5):535–7, May 2008.

T. E. Oliphant. Python for scientific computing. IEEE Computing in Science and Engineering,
9(3):10–20, 2007.

OpenGL. Website. http://www.opengl.org.

B. Ostendorf. Charakterisierung eines Neuronalen Netzwerk-Chips. Diploma thesis (German),
University of Heidelberg, HD-KIP 07-12, 2007.

M. Oster, A. M. Whatley, S.-C. Liu, and R. J. Douglas. A hardware/software framework for
real-time spiking systems. In Proceedings of the 2005 International Conference on Artificial
Neural Networks (ICANN2005), 2005.

L. Paninski. The spike-triggered average of the integrate-and-fire cell driven by gaussian white
noise. Neural Comput., 18(11):2592–2616, 2006. ISSN 0899-7667.

D. Pecevski and T. Natschläger. PCSIM website. http://sourceforge.net/projects/

pcsim, 2008.

D. A. Pecevski, T. Natschläger, and K. N. Schuch. PCSIM: A parallel simulation environment
for neural circuits fully integrated with Python. Front. Neuroinform., pending publication.

J. P. Pfister and W. Gerstner. Triplets of Spikes in a Model of Spike Timing-Dependent
Plasticity. J. Neuroscience, 26:9673–9682, 2006.

S. Philipp. Design and Implementation of a Multi-Class Network Architecture for Hardware
Neural Networks. PhD thesis, Ruprecht-Karls Universität Heidelberg, 2008.

S. Philipp, A. Grübl, K. Meier, and J. Schemmel. Interconnecting VLSI spiking neural
networks using isochronous connections. In Proceedings of the 9th International Work-
Conference on Artificial Neural Networks (IWANN’2007), volume LNCS 4507, pages 471–
478. Springer Verlag, Sept. 2007.

D. Plenz and A. Aertsen. Neural dynamics in cortex-striatum co-cultures–ii. spatiotemporal
characteristics of neuronal activity. Neuroscience, 70(4):893–924, Feb 1996.

213

http://www.neuralensemble.org
http://neuralensemble.org/trac/NeuroTools
http://www.qtsoftware.com/
http://numpy.scipy.org
http://www.opengl.org
http://sourceforge.net/projects/pcsim
http://sourceforge.net/projects/pcsim

Bibliography

M. Purschke, A. Kandasamy, A. Kriplani, R. Lecomte, P. O’Connor, J.-F. Pratte, V. Radeka,
D. Schlyer, S. Southekal, S. Stoll, P. Vaska, A. Villanueva, C. Woody, S. Junnakar, S. Kr-
ishnamoorthy, S. Shokouhi, R. Fontaine, and V. Dzhordzhadze. The ratcap conscious small
animal pet tomography. IEEE-NPSS Real Time Conference, 2005.

PyNN. A Python package for simulator-independent specification of neuronal network models
– website. http://www.neuralensemble.org/PyNN, 2008.

Python. The Python Programming Language – website. http://www.python.org, 2009.

S. Ramon y Cajal. Histologie du Systeme Nerveux de l’homme et des Vertebres, volume 2.
1911.

S. Ray and U. S. Bhalla. PyMOOSE: interoperable scripting in Python for MOOSE. Front.
Neuroinform., 2(6), 2008.

S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and S. Säıghi. Neuromimetic ICs with analog
cores: an alternative for simulating spiking neural networks. In Proceedings of the 2007
IEEE Symposium on Circuits and Systems (ISCAS2007), 2007.

G. V. Rossum. Python Reference Manual: February 19, 1999, Release 1.5.2. iUniverse,
Incorporated, 2000. ISBN 1583483748.

M. Rudolph and A. Destexhe. Tuning neocortical pyramidal neurons between integrators and
coincidence detectors. J Comput Neurosci, 14:239–251, 2003.

M. Rudolph and A. Destexhe. Analytical integrate-and-fire neuron models with conductance-
based dynamics for event-driven simulation strategies. Neural Comput., 18(9):2146–2210,
2006. ISSN 0899-7667.

B. Sakmann and E. Neher, editors. Single-channel recording. Plenum press, 1995.

W. M. C. Sansen. Analog Design Essentials (The International Series in Engineering and
Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387257462.

J. Schemmel. personal communication, 2008.

J. Schemmel, K. Meier, and E. Muller. A new VLSI model of neural microcircuits including
spike time dependent plasticity. In Proceedings of the 2004 International Joint Conference
on Neural Networks (IJCNN’04), pages 1711–1716. IEEE Press, 2004.

J. Schemmel, A. Grübl, K. Meier, and E. Muller. Implementing synaptic plasticity in a VLSI
spiking neural network model. In Proceedings of the 2006 International Joint Conference
on Neural Networks (IJCNN’06). IEEE Press, 2006.

J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity within
networks of highly accelerated I&F neurons. In Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS’07). IEEE Press, 2007.

J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural networks.
In Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN),
2008.

214

http://www.neuralensemble.org/PyNN
http://www.python.org

Bibliography

F. Schürmann, S. Hohmann, J. Schemmel, and K. Meier. Towards an Artificial Neural
Network Framework. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen, and R. Zebulum,
editors, Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pages
266–273. IEEE Computer Society, 2002.

SciPy. Website. http://www.scipy.org/.

R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente,
F. Gómez-Rodŕıguez, H. K. Riis, T. Delbrück, S.-C. Liu, S. Zahnd, A. M. Whatley, R. J.
Douglas, P. Häfliger, G. Jimenez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-
Jiménez, and B. Linares-Barranco. AER building blocks for multi-layer multi-chip neu-
romorphic vision systems. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in
Neural Information Processing Systems 18, pages 1217–1224. MIT Press, Cambridge, MA,
2006.

M. N. Shadlen and W. T. Newsome. The variable discharge of cortical neurons: implications
for connectivity, computation, and information coding. J Neurosci, 18(10):3870–96, May
1998.

M. Shelley, D. McLaughlin, R. Shapley, and J. Wielaard. States of high conductance in a
large-scale model of the visual cortex. J. Comp. Neurosci., 13:93–109, 2002.

G. M. Shepherd, editor. The Synaptic Organization of the Brain. Oxford University Press,
198 Madison Avenue, New York, New York, 5 edition, 2004. ISBN 0-19-515955-1.

Y. Shu, A. Hasenstaub, M. Badoual, T. Bal, and D. A. McCormick. Barrages of synaptic
activity control the gain and sensitivity of cortical neurons. Journal of Neuroscience, 23
(32):10388–10401, November 2003.

M. Smith and A. Kohn. Spatial and temporal scales of neuronal correlation in primary visual
cortex. J Neurosci, 28(48):12591–12603, Nov 2008.

W. R. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with
temporal integration of random EPSPs. J Neurosci, 13(1):334–50, Jan 1993.

S. Song and L. F. Abbott. Cortical development and remapping through spike timing-
dependent plasticity. Neuron, 32(2):339–350, Oct. 2001.

S. Song, K. Miller, and L. Abbott. Competitive hebbian learning through spiketiming-
dependent synaptic plasticity. Nat. Neurosci., 3:919–926, 2000.

A. Stepanyants, J. A. Hirsch, L. M. Martinez, Z. F. Kisvárday, A. S. Ferecskó, and D. B.
Chklovskii. Local potential connectivity in cat primary visual cortex. Cereb Cortex, 18(1):
13–28, Jan 2008.

A. Stepanyants, L. Martinez, A. S. Ferecskó, and Z. F. Kisvárday. The fractions of short-
and long-range connections in the visual cortex. Proc Natl Acad Sci USA, Feb 2009.

B. Stroustrup. The C++ Programming Language. Addison Wesley Longman, Amsterdam,
February 2000. ISBN 0201700735.

215

http://www.scipy.org/

Bibliography

M. Summerfield. Rapid GUI Programming with Python and Qt. Prentice Hall, 2008. ISBN
0132354187.

D. Sussillo, T. Toyoizumi, and W. Maass. Self-tuning of neural circuits through short-term
synaptic plasticity. J Neurophysiol, 97(6):4079–4095, 2007.

The NEST Initiative. Website. http://www.nest-initiative.org, 2009.

A. M. Thomson and C. Lamy. Functional maps of neocortical local circuitry. Frontiers in
neuroscience, 1(1):19–42, Nov 2007.

A. M. Thomson and S. Radpour. Excitatory connections between ca1 pyramidal cells revealed
by spike triggered averaging in slices of rat hippocampus are partially nmda receptor me-
diated. European Journal of Neuroscience, 3(6):587–601, 1991.

S. Thorpe, A. Delorme, and R. V. Rullen. Spike-based strategies for rapid processing. Neural
Networks, 14:715–725, 2001.

I. Timofeev, F. Grenier, M. Bazhenov, T. J. Sejnowski, and M. Steriade. Origin of slow
cortical oscillations in deafferented cortical slabs. Cereb Cortex, 10(12):1185–99, Dec 2000.

M. Toledo-Rodriguez, A. Gupta, Y. Wang, C. Z. Wu, and H. Markram. The handbook of
brain theory and neural networks, chapter Neocortex: Basic neuron types, pages 719–725.
The MIT Press,, Cambridge, MA, second edition, 2002.

J. Tomas, Y. Bornat, S. Saighi, T. Levi, and S. Renaud. Design of a modular and mixed neu-
romimetic ASIC. In Proceedings of the 13th IEEE International Conference on Electronics,
Circuits and Systems, pages 946–949, 2006.

O. Torres-Fernández, C. Golgi, and S. Ramón y Cajal. The Golgi silver impregnation method:
commemorating the centennial of the Nobel Prize in medicine (1906) shared by Camillo
Golgi and Santiago Ramón y Cajal. Biomedica, 26:498–508, Dec 2006.

M. Tsodyks and H. Markram. The neural code between neocortical pyramidal neurons de-
pends on neurotransmitter release probability. Proceedings of the national academy of
science USA, 94:719–723, Jan. 1997.

A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42:230–265, 1937.

D. van Heesch. The doxygen documentation system. http://www.stack.nl/~dimitri/

doxygen.

M. C. W. van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001.

C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced excitatory
and inhibitory activity. Science, 274(5293):1724–6, Dec 1996.

J. D. Victor and K. P. Purpura. Nature and precision of temporal coding in visual cortex: a
metric-space analysis. J Neurophysiol, 76(2):1310–1326, 1996.

T. P. Vogels and L. F. Abbott. Signal propagation and logic gating in networks of integrate-
and-fire neurons. J Neurosci, 25(46):10786–95, Nov 2005.

216

http://www.nest-initiative.org
http://www.stack.nl/~{}dimitri/doxygen
http://www.stack.nl/~{}dimitri/doxygen

Bibliography

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs. Dynamically reconfig-
urable silicon array of spiking neuron with conductance-based synapses. IEEE Transactions
on Neural Networks, 18:253–265, 2007.

J. von Neumann. First draft of a report on the EDVAC. Technical report, Moore School of
Electrical Engeneering Library, University of Pennsylvania, 1945. Transscript in: M. D.
Godfrey: Introduction to “The first draft report on the EDVAC” by John von Neumann.
IEEE Annals of the History of Computing 15(4), 27–75 (1993).

S. Waldert, H. Preissl, E. Demandt, C. Braun, N. Birbaumer, A. Aertsen, and C. Mehring.
Hand movement direction decoded from MEG and EEG. J Neurosci, 28(4):1000–1008,
January 2008.

K. Wendt, M. Ehrlich, and R. Schüffny. A graph theoretical approach for a multistep mapping
software for the facets project. In CEA’08: Proceedings of the 2nd WSEAS International
Conference on Computer Engineering and Applications, pages 189–194, Stevens Point, Wis-
consin, USA, 2008. World Scientific and Engineering Academy and Society (WSEAS). ISBN
978-960-6766-33-6.

D. J. Wielaard, M. Shelley, D. McLaughlin, and R. Shapley. How simple cells are made in a
nonlinear network model of the visual cortex. J. Neurosci., 21(14):5203–5211, 2001.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb. Multiphoton fluorescence
excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad.
Sci. U.S.A., 93:10763–10768, Oct 1996.

T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine. Neural Networks, 20
(3):290–297, Apr. 2007.

R. S. Zucker and W. G. Regehr. Short-term synaptic plasticity. Annu. Rev. Physiol., 64:
355–405, 2002.

217

Bibliography

218

Acknowledgment

I want to express my gratitude to all persons who supported this work, especially:

My family.

Karlheinz Meier and Johannes Schemmel for their supportive mentoring and confidence over
many years.

Alain Destexhe for assessing this thesis.

All members of the Electronic Vision(s) group for great team work, for many inspiring con-
versations and for very diligent proof-reading.

The Softies for being my beloved Softies.

The Hardies for not leaving me alone with these crazy Softies.

Johannes Bill, Bernhard Kaplan and Eric Müller for their contributions to this thesis, for their
commitment as diploma students and for being great partners in research, cake production,
tabletop soccer and boboaaaak!

Mihai Petrovici, Moritz Schilling and Bernhard Vogginger for a lot of fun, for great matches
and great pool parties, for piles of LIDL food and for great softieness.

Jens Kremkow for being a very competent, inspiring and humorous collaborator.

Eilif Muller and Andrew Davison for lots of inspiration and for accepting me as a part of their
Python movement.

Tobias Harion, Andreas Bauer, Thomas Pfeil and Jens Rasenack for their committed intern-
ship work.

Christoph Walz for support, resonance, reliability and media. hia.

Olivier LaSchiazza for teaching me basic wisdoms of life, aii.

Philip Heuser and Dan Husmann for thousands of enjoyed cycling kilometers.

Claudia Wördemann and Christian Koscher for sharing a warm home.

219

	Introduction
	Neuroscience and Neuromorphic Engineering
	The World in the Mind
	Modern Neuroscience -- Methods and Models
	Studying the Brain
	Insights through Modeling
	Software Simulators vs. Neuromorphic Hardware
	Requirements for the Establishment of Neuromorphic Modeling

	Utilized Neuroscientific Concepts
	High-Conductance States
	Models of Synapse Response Dynamics
	Synaptic Learning

	The FACETS Research Project

	Neuromorphic Substrate
	Chip-Based Neural Network Model
	Technology and Dimensions
	Implemented Model
	Synaptic Plasticity
	Configurability, Ranges and Precision
	Stack of Hardware Communication Layers

	Wafer-Scale Neural Network Model
	Technology and Dimensions
	Implemented Model
	Configurability of the System
	Stack of Hardware Communication Layers

	Software and Techniques
	Operation Paradigms
	Intended Scenarios of Usage
	Existing Hardware Interfaces
	Back-End Agnostic Description and Analysis
	Reference Software Simulators
	Neuron and Synapse Model Mapping
	Network Topology Mapping

	Software Architecture
	Utilized Technologies
	Software Layer Stack
	High-Level Software Tools
	Management of Multiple Users and Systems
	Analog Unit Test Framework
	3D Visualization of Network Mapping

	Gaining Control of Chip Functionality and Imperfections
	Methods for Indirect Access
	Spike-Triggered Averaging on Neuromorphic Hardware
	High-Conductance State Test
	Long-Term Plasticity
	Membrane Time Constants

	Process-Inherent Imperfections
	Hardware Production
	Electronic Noise

	Prototype-Specific Malfunctions and Design-Related Interferences
	Spike Recording Deadlocks
	Firing Threshold vs. Reset Potential
	Parasitic Resting Potential Offsets
	Synapse Driver Efficacies and Time Constants
	Dis-Proportionality of Intrinsic Time Constants
	Multi-Spikes
	Limited Spike Input and Output Bandwidth
	Crosstalk of Digital Activity
	Clock Problems
	Insufficient Parameter Range for Synaptic Facilitation and Depression
	STDP Control Problems
	Spontaneous Ghost Events

	Establishing Biologically Realistic Regimes
	Handling of Chip Imperfections
	Releasing Recording Deadlocks
	Clamping Synapse Driver Base Lines
	Avoiding Time Bin Losses
	Providing Sufficiently Low Reference Voltages
	Achieving Sufficient Parameter Ranges

	Hardware Calibration
	Voltage Generator Calibration
	Firing Threshold and Reset Mechanism Calibration
	Membrane Time Constant Calibration
	Synapse Dynamics Calibration
	Synapse Weights Calibration
	Calibration Reproducibility and Portability

	Measures for Cross-Platform Evaluation
	Spike Train Comparison
	Statistical Descriptors of Network Activity

	Experiments
	Basic Studies and Specifications
	Spike Delivery Precision
	Firing Rates
	Membrane Potentials
	Short-Term Plasticity
	Long-Term Plasticity

	Exploring Network Architectures
	Recurrent Network Dynamics: Matching Hardware and Software
	Self-Stabilizing Network Architectures

	Conclusion and Outlook
	Appendix
	Simulation and Emulation Parameters
	Source Code, Documentation and Licences
	Workstation Information
	Practical Recommendations for the FHW-1 Operation

	List of Abbreviations
	Bibliography
	Acknowledgment

