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Abstract 
An increasing amount of Expressed Sequence Tag (EST) and genomic data predominantly for 

the cnidarians Acropora, Hydra and Nematostella, reveals that despite being one of the 

morphologically simplest multicellular animals, cnidarians possess a high genomic 

complexity. In order to contribute towards a broader coverage of this phylum, an EST project 

was performed to analyze the transcriptome of Hydractinia echinata. Moreover, 

transcriptional profiling experiments were carried out to characterize the i-cell population and 

the immune system of the hydroid.  

In this work a cDNA-library containing about 20,000 clones was constructed, which covers 

the entire life cycle of the organism and also represents some stress-induced conditions. After 

randomly sequencing almost 9,000 clones, EST characterization revealed a broad diversity of 

genes, with higher sequence similarity to vertebrates than to ecdysozoan invertebrates. 

Furthermore, a significant number of sequences hitherto unknown in metazoans were 

detected. The identification of unique Hydractinia sequences is consistent with the suggested 

high diversity and complexity of genes within the phylum. To store all the acquired 

information a database aimed at making the data widely available was created, which is 

accessible at www.mchips.org/hydractinia_echinata.html.   

To further characterize Hydractinia genes, a cDNA-microarray was constructed including the 

already sequenced ESTs as well as PCR-products from almost 5,000 un-sequenced cDNAs. 

Genes associated with the i-cell lineage were identified by the analysis of the gene expression 

profile of colonies depleted from their i-cells using mitomycin-C and colonies after the 

recovery from the treatment. Microarray normalized data ended up with 162 significant 

differentially expressed genes. Several growth and transcription factors as well as genes 

associated with undifferentiated cells were identified including; BMPs, Bzip/Mafl and 

CnPL10. In addition, i-cell depleted organisms exhibited an activation of genes involved in 

detoxification and wound healing activities. These genes are good candidates to define the i-

cell population of Hydractinia. 

Genes associated with the immune system of Hydractinia were identified by the analysis of 

the expression profile of organisms having a LPS mimicked Gram-negative bacterial infection 

as well as an allogeneic reaction. 245 candidate genes with a significantly different expression 

level were identified. Genes associated with an LPS response encode for e.g. HSP70, 

lipocalin-like proteins, serine protease inhibitors, proteins with TSR domains and lectins. In 

the case of allorecognition, a probable whole genome response with up-and down regulation 

http://www.mchips.org/hydractinia_echinata.html


Abstract 

v 
 

of hundreds of genes was observed; demonstrating a complex process. Some of the identified 

genes encode for e.g. minicollagens, transcriptional and growth factors, proteins with a 

protective function against oxygen metabolites or with potent inflammatory and neurotoxicity 

effects. Gene expression pattern analysis provided insights towards the function of many 

genes which are still unknown. In the case of genes with a known functional annotation, the 

microarray experiments either corroborated their characterization or defined an alternative 

one for Hydractinia.  

This project is the first high-throughput effort aimed to identify and characterize the 

transcriptome of the colonial marine hydroid Hydractinia echinata. The combination of the 

EST dataset, database and the microarray, provides a solid platform to promote and facilitate 

molecular research not only in Hydractinia but also in other cnidarians. 

 

Publications associated with the project 

 
- Soza-Ried, J., Hotz-Wagenblatt, A., Glatting, K.H., Del Val. C., Fellenberg, K., 

Bode, H., Frank, U., Hoheisel, J.D. & Frohme, M. (2009). The transcriptome of the 
colonial marine hydroid Hydractinia echinata. (in review) 
 

- Mali, B., Soza Ried, J., Frohme, M. & Frank, U. (2006). Structural but not 
functional conservation of an immune molecule: a Tachylectin-like gene in 
Hydractinia. Dev. Comp. Immunol. 30, 275-281. 
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Zusammenfassung 
Die zunehmende  Menge an EST und genomischen Daten der Cnidarier, allen voran der 

Acropora, Hydra und Nematostella zeigt, dass Cnidarier trotz ihrer morphologischen 

Einfachheit eine große genomische Komplexität aufweisen. Um zu einem tieferen 

Verständnis des Phylums beizutragen, wurde ein EST Projekt realisiert, mit dessen Hilfe das 

Transkriptom des Hydroid Hydractinia echinata analysiert wurde. Darüberhinaus wurden 

Experimente zur Analyse der Expressionsmuster durchgeführt, um die I-Zell Population und 

das angeborene Immunsystem des Hydroids zu charakterisieren. 

Im Rahmen dieser Arbeit wurde eine cDNA-Blibliothek mit insgesamt über 20.000 Genen 

erstellt, die den gesamten Lebenszyklus des Organismus abdeckt, und darüber hinaus einige 

stress-induzierte Konditionen repräsentiert. Die EST-Charakterisierung zeigt eine breite 

Vielfalt an Genen, wobei die Sequenzen eine größere Ähnlichkeit mit Vertebraten als mit 

Invertebraten der Ecdysozoen Gruppe aufweisen. Außerdem konnte eine signifikante Anzahl 

an Genen detektiert werden, die bisher in Metazoen unbekannt waren. Die Identifizierung der 

Hydractinia spezifischen Sequenzen unterstützt die Annahme einer großen Vielfalt und 

Komplexität der Gene innerhalb dieses Phylums. Zur Speicherung der gewonnen 

Informationen wurde eine allgemein zugängliche Datenbank angelegt, die unter 

www.mchips.org/hydractinia_echinata.html verfügbar ist. 

Um die Hydractinia Sequenzen näher zu untersuchen, wurde ein cDNA-Microarray erstellt, 

der die bereits sequenzierten ESTs sowie PCR Produkte von fast 5.000 unsequenzierten 

cDNAs enthält. Die Identifizierung I-Zell assoziierter Gene erfolgte anhand der 

Genexpressionsprofile. Hierzu wurden die aufgrund der Mitomycin-C Behandlung I-Zell 

freien Kolonien mit Kolonien verglichen, die sich nach der Behandlung wieder regeneriert 

hatten. Aus den normalisierten Daten des Microarrays ergaben sich 162 signifikant 

unterschiedlich exprimierte Gene. Identifiziert wurden mehrere Wachstums- und 

Transkriptionsfaktoren, sowie Gene, die im Zusammenhang mit undifferenzierten Zellen 

stehen, einschließlich BMPs, Bzip/Mafl und CnPL10. Darüber hinaus zeigten I-Zell freie 

Organismen eine Aktivierung der in der Entgiftung und Wundheilung vorkommenden Gene. 

Diese Gene sind gute Kandidaten, um die I-Zell-Population von Hydractinia zu definieren. 

Zur Identifizierung der mit dem Immunsystem von Hydractinia assoziierten Gene, wurde eine 

Expressionsanalyse an Tieren durchgeführt, bei denen, mit LPS, eine bakteriellen Infektion 

nachgeahmt wurde und die eine allogene Antwort zeigten. 245 Kandidatengene mit 

signifikant unterschiedlicher Expression konnten bestimmt werden. Gene, die mit einer LPS-

http://www.mchips.org/hydractinia_echinata.html
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Antwort in Verbindung stehen, kodieren für z. B. für HSP70, Lipocalin-ähnliche Proteine, 

Serin-Protease-Inhibitoren, Proteine mit TSR-Domänen und Lektinen. Im Falle der Allo-

Erkennung wurde eine wahrscheinlich das ganze Genom umfassende Reaktion mit Hunderten 

von positiv und negativ regulierten Genen beobachtet, die einen komplexen Prozess vermuten 

lässt. Einige der identifizierten Gene kodieren bspw. für Minikollagene, Transkriptions-und 

Wachstumsfaktoren und für Proteine mit Schutzfunktion gegen Sauerstoff-Metaboliten oder 

mit stark entzündlichen und neurotoxischen Effekten. Die Analyse der Genexpressionsmuster 

lieferte Erkenntnisse über die Funktion vieler noch unbekannter Gene. Gene mit bereits 

bekannter Funktion, wurden durch die Microarray-Experimente entweder in ihre Annotation 

bestätigt, oder es konnte eine Alternativfunktion für Hydractinia definiert werden. 

Bei dieser Arbeit wurden erstmals Hochdurchsatztechnologien eingesetzt, um das 

Transkriptom der kolonialen marinen Hydrozoe, Hydractinia echinata zu identifizieren und 

charakterisieren. Die  Kombination aus EST-Datensatz, Datenbank und Microarray, liefert 

eine zuverlässige Plattform um die molekulare Forschung an Hydractinia, aber auch an 

anderen Cnidariern zu fördern und zu vereinfachen. 
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1. Introduction 
 

1.1 Biological aspects 
 

1.1.1. Cnidarians and genomics 
 

1.1.1.1. The phylum Cnidaria 

With fossil records dating back to more than 500 million years, the phylum Cnidaria 

comprises one of the most ancient living multicellular organisms with true animal features 

[1]. Its phylogenetic position at the base of the Metazoa allows to consider them as a sister 

group to the Bilateria, predating the protostome and deuterostome divergence (Fig. 1). The 

phylum is characterized by a simple body plan with two germ layers -an endo and ectodermal 

epithelial tissue layer separated by an acellular mesoglea-, a nerve net with sensory and 

ganglionic nerve cells, and the cnidocytes or stinging cells that give the phylum its name [1, 

2].  

Cnidarians are divided in four different classes, the Anthozoa, Hydrozoa, Scyphozoa and 

Cubozoa, 99% of them being marine animals [2]. They can live either as simple solitary or 

colonial tubes equipped with tentacles, called polyps, as in the case of the anthozoans, 

including Nematostella and Acropora, and some hydrozoans such as Hydra and Hydractinia, 

or have a life cycle characterized by alternating generations of polyps and a more complex 

form, the medusa (jellyfish), as in most hydrozoans, scyphozoans and cubozoans [2, 3]. 

All cnidarian members display a high degree of developmental plasticity, presenting both 

sexual and asexual reproduction (by budding or fission) and also the possibility to regenerate 

after injury. Even re-aggregation of single cells or small tissue fragments can regenerate a 

complete organism under laboratory condition [2, 4]. These features support the use of 

cnidarians as experimental model organisms, which have been used since Abraham 

Trembley’s experiments with Hydra in the 18th century in a variety of biological disciplines 

[2, 5]. 
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1.1.1.2. Sequencing in Cnidaria 

Nowadays, new large-scale sequencing capacities are providing access to the genome 

sequences from a broad variety of model organisms. Most of the organisms have been 

selected according to their key phylogenetic position on the evolutionary tree [6]. This 

information allows the comparison of the genomic data from a wide range of organisms, 

identifying their differences and similarities between each other, and inferring critical clues 

about the structure, function and evolution of genomes. For example, cnidarians demonstrate 

to be particular informative for deciphering the gene content of the last common eumetazoan 

ancestor (Fig. 1) [7-9] 

2 
 

 
Figure 1 - Phylogenetic representation of the animal kingdom. Phylogenetic analyses 
suggest a monophyletic origin of the animal kingdom in an organism known as Urmetazoa. 
Comparisons between deuterostomes and protostomes also suggest a common ancestor of all 
“higher’ animals, the urbilateria. Cnidarians (red) branched off the metazoan stem before the 
origin of bilaterian. The Ureumetazoa represent the common ancestor of all animals with a 
tissue grade of organization  [10].  

Urmetazoa

Ureumetazoa

Urbilateria

Protostomes

Deuterostomes

 

First sequencing approaches in cnidarians were made at the transcriptome level, generating 

thousands of Expressed Sequence Tags (ESTs) [11]. These EST databases are predominantly 

based on the coral Acropora millepora, the freshwater and solitary polyp Hydra spp. and the 

sea anemone Nematostella vectensis [8, 12]. At the genomic level, the Joint Genome Institute 
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(JGI, http://www.jgi.doe.gov) recently released the assembled genome of Nematostella [7] 

and soon will provide the one of Hydra. 

Despite being regarded as morphologically simple organisms, cnidarian sequencing projects 

revealed a surprisingly high degree of genetic complexity [7-9, 12, 13]. At first glance, the 

EST projects on Acropora, Hydra and Nematostella exposed that the genome of cnidarians 

are likely to contain 25,000 genes, richer than the genomes of the commonly used models 

Drosophila and Caenorhabditis [8, 10]. The release of the Nematostella genome confirmed 

that, discarding transposable elements as well as possible pseudogenes and allelic variants, the 

2n = 30 chromosome genome contains ~18,000 bona fide genes [7]. Several genes and 

signalling pathways associated with patterning and developmental processes in bilaterians 

appeared to be represented in cnidarians, including the components of the wingless (Wnt), 

transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) signalling pathways 

as well as their corresponding secreted ligands and antagonists [7, 10]. Additionally, cnidarian 

sequences were significantly more similar to vertebrates than to Drosophila and C. elegans 

[8]. Indeed, many cnidarian genes presented a vertebrate homologue but were absent from the 

invertebrate model systems. These confirm the dramatic gene loss observed in the 

ecdysozoans models, and support that many genes which were considered to be vertebrate 

innovations were actually present in the last common eumetazoan ancestor [7, 8, 12, 14, 15]. 

One of the major findings includes the representation in Nematostella of all but one of the 12 

Wnt gene subfamilies known from the chordates genomes. In the case of the invertebrates 

Drosophila and Caenorhabditis, only six Wnt subfamilies have been identified [9, 10, 14, 16]. 

Moreover, the genomic organization of cnidarians in terms of intron richness and degree of 

synteny resembles the one of vertebrates rather than ecdysozoan invertebrates [7, 17].  

These genetic complexities allow using cnidarians as an experimental platform for medical 

research, providing new insights into the genetic and molecular mechanisms underlying 

human diseases [18]. An example is the cnidarian homologue of the human breast cancer 

related gene (BRCA2). All eight BRC repeats present in the human gene are detectable in 

Nematostella, while the Drosophila and Caenorhabditis gene only contains three and one 

complete repeats, respectively [15, 18].  

Cnidarians also seem to contain a significant number of protein coding sequences which have 

not been detected in other animals, indicating that they might be either cnidarian innovations 

or ancient genes lost in the bilaterian genomes analyzed so far [7, 8]. 

 

http://www.jgi.doe.gov/
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1.1.2. Hydractinia echinata as a model system 
 

1.1.2.1. Cnidarian model organisms 

The phylum Cnidaria is a highly diverse group of animals. The available sequencing data 

suggests a distant relationship between anthozoans and hydrozoans, and is consistent with a 

high variation in their gene content and gene family diversity [7]. Therefore, for a complete 

overview of the phylum it is necessary to access more cnidarians genomic data. While 

anthozoans transcribed genetic data is well represented by the model organisms Nematostella 

and Acropora, Hydra -as a freshwater solitary polyp- is a poor representative of the class 

Hydrozoa as most of its members are colonial and marine. Furthermore, Hydra sexual 

reproduction is an erratic and rather unpredictable event, which results in non accessible 

embryos, limiting developmental biology studies to regeneration experiments [1, 19]. Within 

the Hydrozoa, the colonial and marine organism Hydractinia echinata can be considered as 

one of the best representative of the phylum. This animal offers attractive features of a good 

model organism: it is easy to culture and has a short generation time, which enables genetic 

studies and inbreeding; it reproduces almost daily in highly predictable intervals allowing a 

continuous access to all different developmental stages; it may easily be subcloned and 

manipulated in terms of gene expression; and its biology is well studied at the molecular 

level. Indeed, molecular techniques including transgenic technology are available for 

Hydractinia, which has been a model system to study embryogenesis, metamorphosis, pattern 

formation and immunity for decades [1, 19-23]. 

 

1.1.2.2. The hydroid Hydractinia echinata 

The hydroid Hydractinia echinata can be found on shallow waters of the northern coast of 

Europe, frequently growing on the outside of gastropod shells (e.g. Littorina spp., Buccinum 

spp.) inhabited by paguroid hermit crabs (e.g. Pagurus bernhardus, Eupagurus spp.) [3]. 

A Hydractinia colony is composed of different kinds of polyps connected between each other 

by a network of gastrovascular canals, the stolons [1]. In a colony growing on a hermit crab 

shell it is possible to identify four types of polyps; (1) feeding polyps or gastrozooids with 

upper and lower circles of tentacles; (2) sexual polyps or gonozooids present mainly at the 

centre or in the dense region of the mat, being the male or female reproductive organs (sexes 

are separated and probably genetically determined); (3) specialized defensive polyps spread 

all over the colony known as dactylozooids; and (4) tentaculozooids which probably also 
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serve for colony protection. The sexual polyps will develop the translucent gonophores, which 

are basically the sessile states of the medusa form that are morphologically reduced to ball-

shaped containers of gametes (gonads) [1].  

The life cycle starts with the release of gametes into the surrounding water (Fig. 2). After 

fertilization, the embryo develops within 72 hours into a metamorphosis-competent planula 

larva. As in most marine invertebrates, the larva is induced to metamorphosis by external or 

environmental stimuli. In the case of Hydractinia, this process is most probably triggered by 

bacteria films from the genera Pseudoalteromonas and Alteromonas present on the surface of 

the mollusc shell [3, 24]. The result of the metamorphosis is the primary polyp, which grows 

along the substrate by extension of the tubular stolons. The colony is generated by the 

branching of the stolons from where new gastrozooids appear in a spatially regulated manner, 

probably controlled by lateral inhibition influenced by already established polyps [25]. 

Depending on the individual growth rate of the colony, gonozooids develop within 2-3 

months. Therefore, all polyps within a colony share one gastrovascular system, which is 

necessary for the migration of cells (i-cells), exchange of nutrients and also information [1]. 
 

5 
 

 
Figure 2 - Life cycle of Hydractinia echinata. After fertilization, the embryo will develop 
into the planula larva, which under certain external stimuli will undergo metamorphosis. The 
resulting adult morphology (primary polyp) will grow by elongation of the stolons and 
asexual budding of polyps, ending with the formation of a mature male or female colony 
(modified  from Müller and Leitz [3]).  

The life cycle 
of Hydractinia

Adult  colony
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1.1.3. Stem cells  
 

1.1.3.1. Metazoan stem cells 

All metazoans have stem cells, which are undifferentiated cells with a capacity for self 

renewal and for the production of daughter cells committed to differentiate into products that 

have a shorter lifespan in comparison to the lifespan of the organism [26, 27]. Stem cells are 

characterized according to their potential of differentiation. Unipotent stem cells can give rise 

to only one differentiation product, e.g. spermatogonial stem cells. Oligopotent stem cells are 

restricted to differentiate into cells of a particular lineage, e.g. lymphocyte precursor cells. 

Multipotent stem cells are able to produce different types of cells within a particular organ, 

system or tissue, e.g. hematopoietic stem cells. Pluripotent stem cells can give rise to all 

differentiation products of the embryo except the extra-embryonic tissue required in 

mammalian development, e.g. embryonic stem cells and embryonic germ cells. Totipotent 

stem cells can differentiate into all embryonic and extra-embryonic cells types, e.g. the zygote 

and the blastomeres at the 2-cell stage [26-29].  

There has been increasing interest over the last years in the use of stem cells for new 

therapeutic approaches in regenerative medicine. The possibility to culture human ES cells in 

an undifferentiated state and to regulate their differentiation into many different cell types of 

all three embryonic gem layers - ectodermal, mesodermal and endodermal - might be the 

solution to many degenerative diseases and even cancer. However due to the ethical 

implications involved in the isolation of embryonic stem cells, much of the current work 

focuses on the developmental potential plasticity of adult stem cells [30]. Besides solving this 

ethical issue, a treatment using patient-derived adult stem cells would also limit the problem 

of an immune rejection and the risk of tumour formation associated with ES or EG 

transplantation [30]. The first plasticity experiments failed in reproducibility as well as to 

demonstrate if the cell fate switching occurred at the functional level. However, there are 

concrete examples were environmental cues appear to reprogram precursor or differentiated 

cells into cells with a less mature state or able to differentiate into a new product [30]. Recent 

reports revealed that human adult, foetal and neonatal dermal fibroblasts were induced to a 

pluripotent state by an over-expression of the genes encoding for the transcription factors 

Oct3/4, Sox2, c-Myc and Klf4 or of a gene set including Oct4, Sox2, Nanog and Lin28 [31, 

32]. The resulted pluripotent cells resembled ES in morphology and epigenetic pattern, and 

were able to differentiate into derivatives of all three germ layers. To mimic the 

differentiation of ES in vivo, it is necessary to take into consideration the interplay of signals 
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from a multilineage plethora of cells at various stages of differentiation. Stem cells fate is 

regulated by intrinsic regulatory mechanisms and extrinsic signals coming from its 

microenvironment. It has been suggested that the integration of the extrinsic signals might be 

mediated by Wnt and Notch pathways, while members of the Polycomb group proteins seem 

to play an important role for intrinsic signal regulation [33]. It is still necessary to reveal the 

different developmental signals and the corresponding gene networks used to choose whether 

the daughter stem cell will self-renew or commit to a particular differentiation product. 

Understanding stem cells regulation will reveal how the tissues and organs are formed and 

maintained allowing a concrete biomedical application. 

 

1.1.3.2. Cnidarian stem cells 

Studies on Hydra revealed that all tissues are self renewing. Cells of the single epithelial 

layers derive from the ectoderm or endoderm unipotent stem cells. These cells are in a 

dynamic state; they slowly circulate within the body column and are continuously in the 

mitotic cycle. All other somatic cell types as well as the gametes, derive from a single, 

multipotent stem cell referred to as interstitial cells, or shortly, i-cells. I-cells are called so due 

to their location in the interstitial spaces of the ectoderm and are fast cycling cells distributed 

along the body column but absent from head and foot regions [26, 27]. Many cell types, 

derived from i-cells, migrate after acquiring their differentiation commitment into the 

extremities [33-35].  

Despite having continuous mitotic activity the size of the animal remains constant. This is 

achieved by maintaining equilibrium between gain and loss of cells. Loss of differentiated 

cells occurs by their displacement into the extremities -tentacles or foot region- and 

subsequently sloughing them off. Alternatively, cells are lost from the body column into new 

developing buds, which is the asexual reproduction of Hydra, or die by apoptosis [26].   

Several studies have been focussed on the identification of stem cell markers in Cnidaria. The 

two nanos (nos)-related genes, Cnos1 and Cnos2, are an example of an exclusive expression 

pattern in germ cells and i-cells. This correlates to the expression profile of their invertebrate 

homologues where they seem to maintain the germ line [36]. The vasa related genes Cnavas1 

and Cnavas2 are also expressed in germ cells and less strongly in i-cells and ectodermal cells. 

Genikhovich and colleges showed that the Polycomb Repressive Complex 2 (PRC2) seems to 

be conserved not only in bilaterians but also in cnidarians [37]. This was suggested after the 

identification of the embryonic ectoderm development (EED) Hydra homologue (HyEED) 

which is coo-expressed with the Hydra enhancer of zeste 2 (Ezh2) in i-cells and precursor 
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cells but not in terminally differentiated cells [37]. The PRC2 complex covalently modifies 

the histone tails, generating a dynamic mechanism of epigenetic regulation [38]. It has been 

suggested that PRC2 is essential for cell differentiation and multipotency maintenance of 

precursor or later progenitor cells. Other genes that have been identified in cnidarians include 

among others; the basic-helix-loop-helix (bHLH) transcription factor gene achaete-scute 

homologue Cnash which is expressed in nematocytes and neuron precursor cells, a 

homologue of the zinc finger transcription factor gene zic/odd-paired (Hyzic) expressed in 

nematoblasts, the serum response factors genes HvSRF in Hydra vulgaris and HeSRF in 

Hydractinia echinata, and the reprogramming and differentiation factor genes Sox2, Brn3/5 

and c-Myc [39, 40]. 

 

1.1.3.3. Hydractinia i­cell population 

In mature colonies, Hydractinia i-cells are found predominantly in the stolon mat, specifically 

between the upper and lower ectodermal epithelium, around the endodermal canals (Fig. 3). 

The periphery of the colony is often deprived of stem cells. However, using the meshwork of 

interstitial space that surrounds the base of the epithelial cells, the i-cells can migrate from the 

central mat to new parts of the colony (e.g. growing stolons and newly emerging polyps). 

Therefore, nematocytes precursors migrate into the feeding polyps, primordial germ cells into 

the sexual polyps, while precursors of nerve cells settle in all parts of the colony [35]. 

Experiments with colonies depleted from their i-cell population were already performed by 

Müller in 1967 [41]. Elimination of i-cells resulted with the time in the immobilization, 

starvation and finally death of the colony. This probably occurred due to the absence of 

cnidocytes and therefore, the inability of the colony to capture the prey. Nevertheless it was 

possible to recover the colony after the addition of histocompatible donor i-cells. Even the 

phenotype of the colony depleted from i-cells could be changed into the phenotype of the 

donor, down to the germ line. This experiment showed that donor i-cells were able to provide 

progenitor nematoblast cells as well as nerve, epithelial and germ cells. In 2004, Müller and 

co-workers repeated the experiment, and demonstrated that Hydractinia i-cells have totipotent 

capacities [27]. This means that Hydractinia i-cells, at least under stress conditions, are able 

to differentiate into all cell types, including cells of the two epithelial layers. In contrast, 

Hydra i-cell lineages do not differentiate into epithelia [26, 27].  

The role of the canonical Wnt pathway in the establishment of the body axis and pattern of the 

gastrulating embryo seems to be a common feature of all eumetazoans. Particularly in 

Hydractinia the Wnt signalling mediates the polarization of the embryo by maternal 
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determinants mRNAs, the fate specification of the body regions in the metamorphosing larva 

and the definition of the oral-aboral axis in the polyp [25, 35]. Teo and co-workers 

demonstrated, after the characterization of the Hydractinia frizzled homologue, that the 

Wnt/β-catenin pathway also plays a role in the regulation of stem cells [35]. Activation of the 

Wnt pathway was correlated with a proliferation of a progenitor subpopulation of i-cells but 

not with an increase of the totipotent i-cell population. After Wnt signal removal, the 

proliferated products committed to terminal differentiation [28, 35].  

With the use of transgenic techniques, Kalthurin and co workers were able to follow up the 

behaviour of Hydra stem cells in vivo [33]. They corroborated the results on Hydractinia, 

observing that Wnt in Hydra also controls i-cell differentiation. Additionally, the Notch 

pathway appears to have a critical influence in the complete differentiation of nematoblasts. 

This corresponds to its role on neuronal subtype specification in higher vertebrates.  

Several examples showing i-cell differentiation induced or affected by their temporal and 

spatial interaction with surrounding cells as well as their growth as contiguous patches, 

support the existence of a stem cell niche in Cnidaria [33]. All these data show that there is 

not only a surprisingly high genomic similarity between cnidarians and higher vertebrates, but 

also demonstrate that several controlling mechanisms -such as stemness- seem to be 

conserved at the functional level since the common eumetazoan ancestor. 

 

 
 
Figure 3 - Schematic representation of the i-cell distribution within a Hydractinia colony. 
I-cells migrate using the interstices spaces of the epithelia (diagram from Müller et al, [27]).  
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1.1.4. Innate immunity 
 

The protection of an organism against pathogenic infections, and recognizing between self 

and non-self tissues is attributed to its immune systems [42, 43]. Two different systems are 

known in vertebrates; the innate and adaptive immune system. The adaptive or acquired 

immune system appeared in the evolutionary tree about 500 million years ago and is confined 

to jawed vertebrates (cartilaginous and bony fish, amphibians, reptiles, birds and mammals) 

[44]. The innate response is more ancient and operates in a broad variety of organisms 

including vertebrates, invertebrates and plants [45]. Therefore, in higher vertebrates both 

types of immunity coexist where the innate response provides the first line of defence against 

pathogens. For invertebrates, the innate immune system is the only means by which the 

organism can detect non-self cells or molecules and eliminate them [44, 46].  

Innate immunity was first considered to be of lower specificity, characterized mainly by 

phagocytosis. However, recent studies revealed that innate responses can specifically 

discriminate not only between self and pathogens, but also between different classes of 

pathogens [47]. Microbial metabolic pathways provide many products which are conserved 

and specific for each microorganism but absent from the host repertoire. These are denoted as 

pathogen-associated molecular patterns (PAMPs) and include among others 

lipopolysaccharides (LPS), lipoproteins, peptidoglycans and lipoteichoic acids (LTAs). The 

innate immune system can recognise this signature and activate an appropriate response. For 

this, the host uses receptor molecules named pattern recognition receptor (PRR) [47, 48]. 

Although subtle strain- and specie- specific variations of a pathogen might not be detected, 

most microorganisms of a given class show a highly conserved common and invariant 

molecular pattern [48]. Thus, the innate immune system having a limited germ line 

determined PRRs is able to recognize a great variety of pathogens. However, pathogen unique 

gene products -the virulence factors- are not recognized by this system. These factors are 

produced by the pathogen in response to an adaptation within the host or for interacting with 

it. This means that genes encoding virulence factors have an expression profile according to 

the state of the infection cycle. In contrast, PRRs are expressed almost continuously and are 

essential for the survival of the pathogen at all life stages. In terms of evolution, it seems that 

the low degree of conservation as well as the inducible expression pattern selected against the 

use of virulence factors as a target for innate immune recognition [48]. 

There are different kinds of proteins acting as PRR which are expressed within cells, on the 

cell surface or secreted into the blood stream or tissue fluids.  Secreted PRRs includes C-type 
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lectins, Pentraxins and lipid transfer protein families. Cell surface PRRs include proteins with 

leucine-rich repeats -e.g. Toll/Toll-like receptor (TLR)-, C-type lectins and scavenger 

receptors. Intracellular PRRs include proteins with dsRNA or protein kinase binding domains, 

leucine-rich repeats and proteins with nucleotide binding or CARD domains. With these 

PRRs protein families, the innate immune system is able to opsonise, activate the complement 

and coagulation cascades, phagocyte, activate pro-inflammatory signalling pathways and 

induce apoptosis [48]. 

 

1.1.4.1. Innate immune system in cnidarians 

The acquisition of genomic and EST data from cnidarians does not only confirm the extent of 

gene loss in the ecdysozoans but also provides an informative system to reveal the immune 

gene repertoire of the common eumetazoan ancestor [7]. Using bioinformatics approaches, six 

Toll-interleukin-receptor (TIR) proteins were identified in Nematostella and only four in 

Hydra. The Nematostella TIR collection includes a myeloid differentiation factor 88 

(MyD88) homologue, a Toll/TLR protein (NvTLR-1) which resembles the fly Toll, and three 

TIRs having immunoglobulin domains in the extracellular portion of the transmembrane 

protein. In the case of Hydra, two of the proteins are homologues to MyD88 and the rest –

HyTRR-1 and HyTRR-2 – are atypical Toll-like proteins having a short extracellular domain 

missing any leucine-rich repeat (LRR) motifs responsible for a pattern recognition function 

[49]. Despite the presence of these genes, it seems that Hydra has no functional Toll/TLR 

pathway. In addition to lack a Toll/TLR protein, most of the downstream mediators of the 

signalling pathway that have been identified in Nematostella and the coral Acropora are 

missing or substantially diverged in Hydra. For example, the nuclear factor kappa B (NF-κB) 

is present in both Nematostella and Acropora but has no Hydra counterpart. Another example 

is the complement C3 protein that besides being present in the mentioned anthozoans has also 

been detected in Swiftia [49, 50]. While the complexity of these C3 proteins at the sequence 

and structural level resemble their deuterostome counterparts, most of their protein domains 

are missing in Hydra. The role of the TIR proteins in Hydra is still unknown, but it is 

expected that they act as a receptor together with unidentified pattern recognition molecules 

[16, 49]. Furthermore, it seems that pathways leading to the production of antimicrobial 

compounds have replaced the function of the missing complement system in the hydroid [49]. 

 In vertebrates the complement is composed of more than 20 serum enzymes and cell 

receptors. After its activation, the complement mediates inflammation, opsonisation of 

antigenic particles and membrane damages leading to the eventual lysis of the pathogen. The 
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complement system can be activated via the classical –involving C1 binding to 

immunoglobulin coated surfaces-, alternative –by the deposition of C3b onto pathogens 

surface- or the lectin pathway –involving the binding of mannan-binding lectin to 

carbohydrates- [51]. The three pathways converge on the complement C3 which triggers a 

cascade of events ending in the formation of membrane-attack complexes (MAC). In 

cnidarians, the activation of C3 is suggested to be carried out by lectins, while the effectors 

mechanisms might correspond to the various MAC-perforin (MACPF) domain proteins 

already identified [49].  

The presence in cnidarians of several immune genes, including the Toll/TLR system, a 

prototypic complement mechanism and even a probable Recombination activation gene 1 

(RAG-1) related recombinase demonstrate that key components of the mammalian innate 

immune system were already represented in the common eumetazoan ancestor. 

 

1.1.4.2. Allorecognition in Hydractinia echinata 

Allorecognition, the ability to discriminate between self and unrelated genotypes, has been 

documented in various metazoan groups, from sponges and cnidarians to mammals [1, 52]. 

Common in many invertebrate organisms, allorecognition is characterized by a series of 

effector mechanisms induced by conspecific tissue-to-tissue contact, which may be regarded 

as the ancestral stage of histocompatibility systems of higher vertebrates. Allorecognition has 

been studied in different taxa, but genetic approaches have been done only in the ascidian 

Botryllus and the hydroid Hydractinia [20, 53, 54]. Many sessile, colonial marine 

invertebrates with indeterminate growth by asexual propagation may come into contact with 

other organisms, even from the same species, competing for the space. In the case of 

Hydractinia, one or more larvae can settle down on the same substrate. This may result in the 

contact of compatible colonies forming a chimera, or in case of incompatible ones, the 

rejection of each other’s tissue leading to an antagonistic response [1, 20, 53].  

It has been reported that segregation or fusibility of Hydractinia colonies is controlled by a set 

of two linked loci, the arl1 and arl2, with codomonantly expressed alleles [55, 56]. Fusion 

occurs when the colonies share one or both alleles at both loci, whereas rejection will result 

when colonies share no allele. If colonies share alleles at only one locus, they transitorily fuse. 

Thus, considering a high polymorphism for this locus, only closely related animals may share 

an allele and therefore fuse [56, 57]. By fusion the colonies dissolve their periderm coat, and 

form a common ectoderm and gastrovascular system. Colony fusion forms a heterogeneous 

entity, with an increased size and genetic diversity which may have a better chance for 
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survival than genetically homogeneous organisms. The main disadvantage is proposed to be 

the germ line parasitism [1, 57]. In the case of rejection, the colonies fail to fuse and each 

colony competes for its integrity and space resource. There are two types of rejection: passive 

and active rejection. The passive allogeneic rejection results in the formation of a barrier of 

non cellular material between both colonies, avoiding cell contact and cell migration. In the 

aggressive response, there is a massive nematocytes accumulation with nematocyst discharge 

and abnormal growth of hyperplastic stolons, leading to the destruction of at least one of the 

involved colonies [1, 53, 57]. It seems that rejection is either passive or aggressive depending 

on whether the tissue contact is between mat or stolon, respectively [54]. Thus the basis of 

rejection relies on the genetics of allorecognition, but factors unrelated to the genetics 

determine the phenotype that will follow.  

In transitory fusion the allogeneic tissues fuse but afterwards they follow a variety of 

incompatibility reactions, with cytotoxic rejection at the original contact area [1, 54, 57]. In 

the case of transient chimeras, there are no apparent benefits for the involved colonies. When 

the colonies fuse, there is a slowdown of the growth rate but when they reject there is a 

massive tissue loss [1, 57]. Similar to rejection responses, the basis of transitory fusion relies 

on the genetic but the characteristic of the response also depends on several other sources of 

variation. The different outcomes in transitory fusion might suggest that undiscovered 

modified loci are at play. Thus, the phenomenon of allorecognition in Hydractinia is more 

complex as originally thought. Recent studies identified an arl2 candidate gene (putative 

coding sequence 7, CDS7) encoding a putative transmembrane receptor with a highly 

polymorphic extracellular domain. Sequence analysis showed significant match to proteins of 

the immunoglobulin superfamily, further supporting a role as allodeterminant in Hydractinia 

[55]. 
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1.2 Technical aspects 
 

1.2.1. Expressed Sequence Tags (ESTs) 
 

The genome of any given organism comprises between 5% and 25% of coding DNA that is 

subsequently transcribed into mRNA [58]. In vitro it is possible to reverse transcribe mRNA 

into stable complementary DNA (cDNA) which in turn can be cloned into cDNA-library 

vectors. The aim of Expressed Sequence Tags (ESTs) approaches is to decipher genome 

sequences applying a massive cloning of cDNAs and their subsequent sequence 

characterization. Therefore, the generation of ESTs provides a rapid means of gene discovery, 

allowing biological analysis prior to the generation of a full genome sequence [59]. Besides 

the identification of abundantly expressed genes, ESTs can be used to map genes to particular 

chromosomes and to determine coding regions in genomic sequences [60]. ESTs do not 

completely replace the need for genomic data but rather complement it, as it is still difficult to 

predict at the genomic level which sequences are expressed. The full genome sequencing is a 

resource consuming task, in where EST projects rise as an economic alternative. The EST 

approach greatly facilitates traditional research strategies and has been particularly useful for 

complex model genomes including human, rat, mouse, fish and rice [61]. 

One of the drawbacks of such an approach is that ESTs provide a direct access to a large 

number of transcribed sequences at the expense of losing the positional information of the 

genes. These sequencing entries are usually submitted separately to the EST databases and 

without an extending annotation. This has a high tendency to generate errors, which 

subsequently can be easily propagated to cross-linked databases [60]. In addition, the 

selection of the source for the construction of the cDNA library is critical. If the source is 

limited to a tissue of interest, it will not represent the complete transcriptome of the organism. 

Even in the case of a representative source selection, rare mRNAs will probably be absent 

from the library. In a typical somatic cell, it is considered that the mRNA is distributed in 

three frequently classes. In average, the most prevalent class consists of about 10 mRNA 

species each represented by 5,000 copies per cell whereas; the class of high complexity 

comprises 15,000 different species only represented by 1-15 copies. For rare mRNA the 

numbers are even less promising for being represented in a cDNA library [62]. 
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1.2.2.  Searchable databases 
 

Nucleic acid sequences offer a starting point for the understanding of the structure, function, 

development and evolution of genetically diverse organisms [60]. This has resulted in an 

explosion of the amount of DNA sequence generated over the past decades, following an 

exponential growth law. Nowadays, EST data alone accounts to more than 50 million entries, 

were the majority corresponds to human and mouse sequences. For the storage of such 

information, biological databanks began to emerge already in the 1980s. The first databanks 

were the European Molecular Biology Laboratory (EMBL) database 

(http://www.ebi.ac.uk/embl/) and GenBank (http://www.ncbi.nlm.nih.gov/), followed by the 

DNA Databank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp/). The basic aim of these 

databases is to store DNA information in a way that is public, freely accessible and that can 

be retrieved and used by a third part. The EMBL, GeneBank and DDBJ standardized the 

process of data collection and annotation, collecting individually only a portion of the whole 

data produced worldwide. However, the databases synchronically exchange their information 

on the internet on a daily basis collaborating as part of the International Nucleotide Sequence 

Database (INSD) (http://www.insdc.org/). This means that sequences submitted in one 

database will automatically appear in the others, and therefore, the three repositories contain 

almost the same sets of sequences and with the same quality. In parallel to the DNA 

databases, also several databases appeared to store protein sequence data. Widely used are the 

Protein Sequence Database (PSD) of the Protein Identification Resource (PIR) and the Swiss-

Prot database. The PSD-PIR is emphasized in protein family classifications, and its automatic 

annotation is augmented by manual annotation. The Swiss-Prot database has a minimum level 

of redundancy, with a high level of cross-references to others databases. Protein annotation 

contains bibliographic references, taxonomic data and function of the protein when possible. 

This minimizes errors and improves the quality of annotation, but the size of the database is 

smaller in comparison to other protein sequence repositories. With a lower quality, but 

extensive in their annotation appeared TrEMBL, which is compiled automatically from the 

translation of protein coding sequences of EMBL databases. Swiss-Prot and PIR-PSD created 

an integrated resource which finally provides the most comprehensive repository of protein 

sequences, called UniProt [60].   

 

 

http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/
http://www.ddbj.nig.ac.jp/
http://www.insdc.org/


Introduction 

16 
 

1.2.3. Microarray technology 
 

The availability of complete sequenced genomes has opened the genomic era. The discipline 

of genomics can be characterized as studies dealing with whole sets of genes rather than 

single genes. Together with the advances in new sequencing technologies appeared 

experimental techniques that correspondingly worked in a high-throughput way. One of the 

most important of these is microarray technology, which represent a significant change in 

how molecular biology and gene regulation studies are done. Initially, this technology was 

used for the simultaneously measurement of the absolute or relative abundances of nucleic 

acids in a biological sample for literally several thousands of different genes [60, 63]. 

Nowadays, microarrays technologies have spread into many different fields. Its success rely 

not only in the adaptation and flexibility of the microarray technique to a particular case, but 

also to the allowance of combining it with other techniques [64]. Thus, besides transcriptional 

profiling, microarrays can be used for detailed analyses of DNA sequences including 

genotyping, splice variants, gene or exon identification, DNA structure analyses, DNA 

mapping, re-sequencing, epigenetics studies, etc. At the protein level, microarrays allow the 

analysis of protein binding sites, protein –DNA or –RNA interactions, structural variations, 

etc. Furthermore, microarrays can also be used as a device for manufacturing purposes. 

Although most of the progress in this area is still in a pilot or development phase, efforts are 

being made to synthesis genomes, genes, RNAs and proteins [64].  

The first array approaches were the so called macroarrays, which being a daughter of the 

Southern technique, involve the immobilization of a DNA probe on a positively charged 

membrane of nitrocellulose, nylon or polypropylene. In the array construction, different DNA 

sequences are spotted on the membrane in a regular pattern, were each spot contains several 

identical DNA copies representing one gene. Radioactively or chemiluminescent labelled 

target DNAs present in a sample are allowed to hybridize to their complementary sequence on 

the spot. Macroarrays construction and analysis do not require complicate equipment, 

resulting in an economic alternative to modern-days microarrays. They are considered user-

friendly, involving common hybridization techniques, and sensitive, detecting even low 

abundance transcripts. However, due to the surface porosity hybridization takes place in 

larger volumes and longer times, resulting in a limited printing resolution of 100 probes per 

cm2 [65].   

The nonporous nature of the glass surface of microarrays increases the printing resolution, 

accessing approximately 5,000 probes per cm2, and decreases unspecific binding. Using a 
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standard glass slide of 25 x 75 mm, only a small volume (10-75 μl) of the target sample is 

needed for the hybridization, resulting in higher target concentration and increased sensitivity. 

Furthermore, it allows the usage of two-colour fluorescent labelling, avoiding the use of 

radioactive material. Hence, the targets to be compared can be labelled with different 

fluorescent dyes and simultaneously hybridized with a microarray in a single reaction, as 

described below. In contrast, macroarrays need a serial number of parallel reactions to analyse 

the differential expression profile of two different samples. 

There are two types of DNA-microarrays, which can be differentiated according to the 

preparation of both the array and the sample. Oligo-arrays are produced by spotting on the 

slide ~25 bases long oligonucleotides using photolithography techniques 

(http://www.affymetrix.com). It has been shown that short probes may have poor 

hybridization efficiencies. This probably occurs because they can bind to different regions of 

a gene yielding different signal intensities [66]. To avoid this, several separate oligos 

representing the same gene are spotted and conclusion on gene expression is only assessed 

when almost all of them show the same hybridization pattern. It is suggested that the highest 

sensitivity and specificity can be obtained using ~70mers to 150mers oligonucleotide arrays 

[65, 66]. 

The second type of arrays is the so called cDNA-microarray. cDNA can be synthesized from 

the mRNA present in cells or obtained directly from cDNA libraries. After its amplification 

into high concentrations by PCR, the cDNAs are spotted on the slide. Despite their inability to 

represent the complete gene, the length of cDNA (between 500 and 2,000 bp) provides a good 

representation of it and allows highly specific hybridizations to the complementary sequence 

[65, 67]. 

 

1.2.3.1. cDNA microarray experimental settings 

The slides to be used in a microarray experiment are normally pre-coated with a surface 

chemical to improve the binding of DNA. Aminosilane or Poly-L-lysine coated slides are the 

most used ones, offering a homogeneous positive charged surface and high sensitivity (signal 

to background ratio). The cDNA probes are spotted on the slide using a robotic device. First 

attachment of the DNA occurs via strong electrostatic attraction between the negatively 

charged sugar-phosphate backbone of the DNA and the amino groups of the coated slide. For 

a more stable binding, the slide is subsequently exposed to UV and/or heated, enabling the 

formation of covalent bonds. In average, spots contain around 109 individual molecules, 

which are able to find its complementary sequence in the hybridization solution. To determine 

http://www.affymetrix.com/
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the amount of mRNA in a sample, it is necessary to take into consideration the hybridization 

kinetics. Hybridization must be performed on spots containing a large probe excess and in the 

initial phase of the hybridization reaction where kinetics can be approximated by a linear 

relationship. Only then, the measured signal in the spot is proportional to the amount of the 

corresponding molecules in the target [68]. However, only a small fraction of the spotted 

molecules will hybridize to the corresponding DNA targets. This means that the signal 

intensity of the spot depends on the duration of hybridization, target concentration and the 

amount of probe material [68]. The process of array manufacture is less reproducible for 

spotted arrays than for oligo-arrays, and is difficult to control the real amount of DNA in each 

spot. Thus, it is not possible to compare absolute intensities between slides. Nevertheless a 

two-colour labelling system, were the two samples are compared in one slide simultaneously, 

can solves this problem. For this, total RNA is isolated from the sample tissues or cells that 

will be compared on the microarray. Then both RNA samples are reverse transcribed into 

cDNA. During the generation of the first-strand cDNA, each sample will incorporate a 

different fluorophore. The most frequently used fluorophores are Cy3 and Cy5 [69]. Hence, 

one of the samples (e.g. cDNA of a cancer cell) will be labelled with the green Cy3 dye and 

the other one (e.g. cDNA of a normal or reference cell) with the red Cy5 dye. Then, both 

labelled samples are mixed and let to hybridize in a competitive manner on the array. The 

labelled green and red cDNAs should bind to the spots in proportion to their concentration in 

the complex sample. Using a laser scanner it is possible to measure the intensity of both, the 

green and red fluorescence from each spot. The detection is done separately in their 

corresponding channels, 633 nm for Cy5 and 543 nm for Cy3, resulting in two TIF images. 

Then, the two images are overlaid for visualization and the intensity ratio of Cy3 and Cy5 for 

each spot is determined [65] (Fig 4).   
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Figure 4 -Workflow of a gene expression analysis using microarrays. mRNA from two 
different samples (e.g. normal and tumour) are differentially labelled (e.g. Cy3 and Cy5) and 
co-hybridized to a cDNA microarray. The array is subsequently scanned in the corresponding 
wavelengths of the fluorophores. For each cDNA element on the microarray, the ratio of the 
fluorescent intensities reflects the relative abundance of that mRNA between the compared 
samples. 
 

1.2.3.2. Processing of microarray data 

With image-processing software (e.g. Genepix) it is possible to extract the information from a 

two colour microarray experiment. Microarray raw data consists of foreground and 

background signal intensities for the green and red channels of each spot on the array. Using 

the background intensities, the image-software can correct the foreground intensities for local 

variation on the array surface. The software also helps in assessing the quality of each spot, 

checking its reproducibility and allowing to flag unreliable spots or arrays. It is possible to 

generate a graphical display of the raw intensities values, giving an overview of the success of 

19 
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the experiment, highlighting specific problems, as well as providing an idea of the tools to be 

chosen for subsequent analysis [65]. 

For the analysis and interpretation of the microarray data, the green and red intensities should 

be normalized relatively to one another. Normalization aims to adjust for any bias that arises 

from technical variation rather than from biological differences among the RNA targets or the 

printed cDNA probes [70]. Factors that directly or indirectly affect the raw signal intensity 

values include, among others, different background intensities, unequal amounts of mRNA or 

cDNA, differences in the labelling reaction efficiencies (called dye bias), variation among 

spatial positions on a slide or between slides and different hybridization or signal detection 

behaviours. There are different methods for data normalization which can be done within 

array or between arrays [65]. After normalization, the green Cy3 and red Cy5 ratios 

(Cy3/Cy5) should achieve an unbiased representation of the relative abundance of each 

mRNA in the sample. For such an assumption it is also necessary to have a statistical 

validation, which is normally achieved by several technical and biological replications of the 

experiment. [65]. 

Microarray experiments yield a large amount of data, limiting the identification of genes that 

have been significantly up- or down- regulated in the test sample relative to the reference. For 

the selection of differentially expressed genes, besides normalization, statistical filtering tools 

are applied to extract the subset of genes that may be of interest from the full dataset. These 

usually corresponds to genes; (a) with a large variance or periodicity within their gene 

expression, (b) with a high fold induction over a time course, (c) considered significant by a 

statistical criterion or (d) above a particular threshold, such as exceeding a given percentile 

rank in the distribution of the ratios [71, 72]. However, observing a list of gene names or 

ratios provides a poor overview of the real trends or patterns that may exist in the data. Within 

the different methods that have been developed for displaying microarray data, clustering 

algorithms or projection methods like Correspondence Analysis (CA) can be applied to study 

the relations among genes and hybridizations that result from expression profiling 

experiments [71, 73, 74]. A more detailed description will be discussed in this work. 
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1.3 Aims of the project   
 

The cnidarian genomic information generated so far, predominantly based on the coral 

Acropora, the sea anemone Nematostella and the solitary polyp Hydra, is insufficient for the 

representation of the highly diverse cnidarian phylum. Thus, the genetic design of the 

common eumetazoan ancestor it is still unclear. Additional sequencing data is needed for 

revealing the origin and diversification of ancient gene families involved in essential 

metazoan features such as stemness or immunity, as well as to define their structural and 

functional conservation into higher metazoans. 

 

1.3.1. General aims: 
 

The general aim of this project is to generate a facility platform to promote molecular research 

in Hydractinia and complement the information of other cnidarian sequencing projects with 

the final goal to better understand the function and evolution of ancient genes. 

 

1.3.2.  Specific aims 

 
The specific aims of this project can be summarized as follows: 

• The generation of an EST data set representing a large fraction of the Hydractinia 

transcriptome 

• A bioinformatics functional characterization of the generated sequencing reads and 

comparison of the Hydractinia transcriptome to the genomic information available 

from other cnidarians 

• The generation of a database accessible in the web-interface in order to make these 

data widely available 

• To generate a microarray comprising the already analyzed ESTs and un-sequenced 

cDNAs, in order to identify new candidate’s genes for further sequencing and to 

improve the functional characterization of the already annotated sequences. 

• To identify the genetic repertoire associated to the i-cell lineage and the immune 

system of Hydractinia 
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2. Materials and Methods 
 

2.1 Materials 
 

2.1.1. Chemicals and reagents  
 
The following chemicals and reagents with an analytical research purification grade were use: 

 
Chemical or Reagent Manufacturer 
2’-deoxyadenosine 5’-triphosphate (dATP) Fermentas, St. Leon-Rot, Germany 
2’-deoxycytidine 5’-triphosphate (dCTP) Fermentas, St. Leon-Rot, Germany 
2’-deoxyguanosine 5’-triphosphate (dGTP) Fermentas, St. Leon-Rot, Germany 
2’-deoxythymidine 5’-triphosphate (dTTP) Fermentas, St. Leon-Rot, Germany 
2’-deoxyuridine 5’-triphosphate (dUTP) Fermentas, St. Leon-Rot, Germany 
Acetic acid Mallinckrodt Baker, Griesheim, Germany  
Adenosin 5’-Triphosphat (ATP) Fermentas, St. Leon-Rot, Germany 
Agarose  Sigma, Deisenhofen, Germany 
Agarose, Low melting point  Biozym, Oldendorf, Germany 
Bacto Agar Difco, Detroit, MI, USA 
Bacto Tryptone Difco, Detroit, MI, USA 
Bacto Yeast Extract Difco, Detroit, MI, USA 
Betain, Monohydrat  Sigma, Deisenhofe, Germany 
Bovin Serum Albumin (BSA)  Roth, Karlsruhe, Germany 
Bromophenol Blue   Sigma, Deisenhofe, Germany 
Caesium chloride Serva, Heidelberg, Germany 
Carbenicilin  Serva, Heidelberg, Germany 
Chloroform  Fluka, Deisenhofen, Germany 
CTAB (Cetyltrimethylammonium bromide) Sigma, Deisenhofe, Germany 
Cy3-AP3-dCTP Amersham Biosciences, Freiburg, Germany 
Cy5-AP3-dCTP Amersham Biosciences, Freiburg, Germany 
Diethylpyrocarbonate (DEPC) Roth, Karlsruhe, Germany 
Dimethylformamide Mallinckrodt Baker, Griesheim, Germany  
Dimethylsulfoxide (DMSO)  Merck, Darmstadt, Germany 
Dithiothreitol (DTT)  Invitrogen, Karlsruhe, Germany 
Ethanol  Riedel-de Haen, Seelze, Germany 
Ethidium Bromide (EtBr) Roth, Karlsruhe, Germany 
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Chemical or Reagent Manufacturer 
Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe, Germany 
Formaldehyde Merck, Darmstadt, Germany 
Formamide  Roth, Karlsruhe, Germany 
Giemsa  Merck, Darmstadt, Germany 
Glycerol  Roth, Karlsruhe, Germany 
Guanidine hydrochloride Roth, Karlsruhe, Germany 
Guanidinium isothiocyanate  Roth, Karlsruhe, Germany 
Hydrogen chloride (HCl) Merck, Darmstadt, Germany 
Isopropanol (2-Propanol) Mallinckrodt Baker, Griesheim, Germany  
Isopropyl β-D-1-thiogalactopyranoside (IPTG) Fermentas, St. Leon-Rot, Germany 
Lipopolysaccharide (LPS) Sigma, Deisenhofe, Germany 
Lithium chloride  Merck, Darmstadt, Germany 
Magnesium chloride  Fermentas, St. Leon-Rot, Germany 
May-Grünwald  Merck, Darmstadt, Germany 
Mercaptoethanol (-2) Merck, Darmstadt, Germany 
Methanol Riedel-de Haen, Seelze, Germany 
Mitomycin-C (MMC) Alexis biochemicals, Lörrach, Germany 
Morpholinopropane sulfonic acid (MOPS) Serva, Heidelberg, Germany 
Oligo-dT(12-18) Invitrogen, Karlsruhe, Germany 
Phenol Roth, Karlsruhe, Germany 
Phenol,chloroform,isoamylalcohol (PCI, 25:24:1) Sigma, Deisenhofe, Germany 
Potassium Chloride (KCl) Mallinckrodt Baker, Griesheim, Germany  
Sodium Acetate  Merck, Darmstadt, Germany 
Sodium azide (NaN3) Applichem, Darmstadt, Germany 
Sodium Chloride (NaCl) Mallinckrodt Baker, Griesheim, Germany  
Sodium Citrate (C6H5Na3O7) Roth, Karlsruhe, Germany 
Sodium dodecyl sulfate (SDS) Sigma Chemical Co 
Sodium hydroxide (NaOH) Merck, Darmstadt, Germany 
Tris Roth, Karlsruhe, Germany 
Triton X-100 Serva, Heidelberg, Germany 
TWEEN-20  Serva, Heidelberg, Germany 
X-Gal Sigma, Deisenhofe, Germany 
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2.1.2. Solutions, buffers and media 
 

Solution, buffers and media were sterilized by autoclaving. Alternatively, they were filtrated 

through a 0.22 µm filter. All commercial buffers (e.g. kits or enzyme reaction buffers) are 

described in the methods section.  
 

2.1.2.1. Solutions and buffers 

0.5 M EDTA (pH 8.0) 
186.1 g EDTA 
ddH2O  
Adjusted to pH 8.0 with 20 g NaOH 
 
1 M Tris-HCl (pH 8.3) 
242.2 g Tris base 
ddH2O  
Adjusted to pH 8.3 with concentrated HCl  
 
1% Agarose/TAE 
1 g agarose 
1X TAE to 100 ml 
Warm the mixture until the agarose is 
dissolved 
  
10X MOPS (pH 7.0) 
200 mM morpholinopropane sulfonic acid 
(MOPS) 
50 mM sodium acetate 
10 mM EDTA 
DEPC treated water 
 
10X PBS 
1.4 M NaCl 
0.03 M KCl 
0.02 M K3PO4 
0.1 M Na3PO4 
ddH2O  
 
10X PCR-Puffer  
100 mM Tris-HCl (pH 8.3) 
500 mM KCl 
ddH2O 
 
10% SDS 
100 g SDS in 900 ml ddH2O 
Heat to 68°C and adjust to pH 7.2 with 
HCl 
Fill to 1 litre with ddH2O 
 

20X SSC 
3 M NaCl 
0.3 M sodium citratre (pH 7.0) 
ddH2O 
 
20% Tween-20 
40 ml Tween-20 
160 ml ddH2O or DEPC 
 
3 M NaAc (pH 5.2) 
204.14 g sodium acetate 
500 ml ddH2O 
Adjusted to pH 5.2 with 22 ml of 37% HCl 
 
35% guanidine hydrochloride 
35 g guanidine hydrochloride  
ddH2O to 100 ml 
 
50X TAE (pH 7.8) 
242 g Tris base 
57.1 ml acetic acid 
100 ml 0.5 M EDTA  
ddH2O  
 
6X DNA loading buffer 
0.25% Bromphenol blue 
0.25% xylene cyanol  
30% Glycerin 
ddH2O 
 
7.8 M NH4Ac 
300.6 g ammonium acetate 
ddH2O to 500 ml 
 
CTAB buffer  
2% (w/v) CTAB 
2% SDS 
0.1 M Tris pH 8.0 
1.4 M NaCl 
0.02 M EDTA pH 8.0 
ddH2O 
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DEPC treated water 
0.1% (v/v) DEPC in ddH2O  
Mix, incubate overnight and autoclaved 
twice 
 
Ethidium Bromide Stock Solution  
10 mM Tris-HCl  
1 mM EDTA 
1 mg/ml ethidium bromide 
dH2O 
 

PBST 
0.1% (v/v) Tween-20 in PBS 
Sterile filtration 

 
 
Solution D  
4 M guanidium thiocyanate 
1 M sodium citrate (pH 7.0) 
10% lauryl sarcosine  
DEPC treated water 
 
X-Gal solution  
20 mg X-Gal 
1 ml dimethylformamide 
Storage at -20°C 
 

 
Proteinase K stock 
10 mg/ml of Proteinase K in H2O or DEPC 
Storage at -20°C 
 

2.1.2.2. Solutions for bacteria culture 

10X H.M.F.M. 
Solution 1 
3 mM MgSO4 (7H2O) 

 15 mM tri-sodium citrate (2H2O) 
70 mM (NH4)2SO4 
45% glycerin 
Addition of 800 ml ddH2O and filtrate 
(0.22 µm) 
Solution 2 
270 mM KH2PO4 
130 mM K2HPO4 (3H2O) 

 Addition of 200 µl ddH2O and autoclave 
Mix of both solutions before use 
 
2YT freezing media 
90% (v/v) 2YT media 
10% (v/v) 10X H.F.M.F. 
100 µg/ml of carbenicillin 
 

2YT medium 
16 g Bacto-tryptone 
10 g Bacto-yeast extract 
5 g NaCl 
For Agar-culture: 15 g Bacto-agar 
ddH2O to 1 litre  
 
2YT or LB-Carbenicillin medium  
100 μg/ml Carbenicillin in 1 litre of 2YT 
or LB medium  
 
LB medium 
10 g Bacto-tryptone 
5 g Bacto-yeast extract 
10 g NaCl 
For Agar-culture: 15 g Bacto-agar 
ddH2O to 1 liter 

2.1.2.3. Solutions for staining Hydractinia i­cells 

6 mM mitomycin-C stock solution 
6 mM of mitomycin-C 
dissolved in methanol 
Stored at -20°C 
 
 
 
 

Lavdovsky’s fixative  
5 ml of formaldehyde  
2 ml of acetic acid  
25 ml of ethanol  
20 ml of ddH2O 
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Sørensen’s buffer (0.1 M, pH 7.0)  
39 ml of 0.2 M NaH2PO4  
61 ml of 0.2 M Na2HPO4 
100 ml of ddH2O 

 

 
 

 

2.1.2.4. Solutions for the microarrays experiments 

1X Spotting solution  
3X SSC 
150 mM NaPO4-buffer 
1.5 M Betain  
ddH2O 
 
Blocking buffer  
5X SSC 
0.05% (v/v) SDS 
1% (w/v) BSA 
ddH2O 
 
NaPO4-buffer 
600 mM Na2HPO4 
600 mM NaH2PO4 
Adjust to pH 8.5 
ddH2O 

 
Rinsing Solution 1  
0.1% (v/v) SDS 
ddH2O 
 
Washing buffer A 
 2X SSC 
0.2% SDS 
ddH2O 
 
Washing buffer B 
 2X SSC 
ddH2O 
 
Washing buffer C 
 0.2X SSC 
ddH2O 

 

2.1.3. Enzymes 
 

Enzymes and their respective reaction buffers were purchased from a range of manufacturers. 

Enzyme Manufacturer 
Deep Vent®™ DNA Polymerase NEB, Frankfurt, Germany 
DNase (RNase free) Fermentas, St. Leon-Rot, Germany 
E. coli DNA ligase Invitrogen, Karlsruhe, Germany 
E. coli DNA polymerase I Invitrogen, Karlsruhe, Germany 
Eco RI Fermentas, St. Leon-Rot, Germany 
Hind III Fermentas, St. Leon-Rot, Germany 
Not I Invitrogen, Karlsruhe, Germany 
Proteinase K Qiagen, Hilden, Germany 
RNase H Invitrogen, Karlsruhe, Germany 
RNase out Invitrogen, Karlsruhe, Germany 
SuperScript™ III Reverse Transcriptase Invitrogen, Karlsruhe, Germany 
T4 DNA ligase Invitrogen, Karlsruhe, Germany 
T4 DNA Polymerase Invitrogen, Karlsruhe, Germany 
Taq DNA Polymerase self-made/commercial  DKFZ / Qiagen, Hilden, Germany 
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2.1.4. Ladders and oligonucleotides 
 

Specific oligonucleotides were designed using the software Primer3 (v.0.4.0) at: 

http://frodo.wi.mit.edu. 

Nucleic acids ladder Manufacturer 
GeneRulerTM 100 bp DNA ladder Fermentas, St. Leon-Rot, Germany 
GeneRulerTM 1kb DNA ladder  Fermentas, St. Leon-Rot, Germany 
GeneRulerTM DNA Ladder Mix Fermentas, St. Leon-Rot, Germany 
RiboRulerTM High Range RNA ladder Fermentas, St. Leon-Rot, Germany 

 

 

 

Standard oligonucleotide Sequence 

M13 (22 mer-) Forward CCCAGTCACGACGTTGTAAAAC 

M13 (23 mer-)Reverse AGCGGATAACAATTTCACACAGG 

SP6 (18 mer-) Reverse ATTTAGGTGACACTATAG 

T7 (20 mer-) Forward  TAATACGACTCACTATAGGG 
 

Specific oligonucleotide Sequence 
Actin-Forward AAACCCTTTTCCAACCATCCTT 

Actin-Reverse TGGGCCAGATTCATCGTATTCT 

HEAB-0034N17-Forward GCATTGATGTACCTCCACCAC 

HEAB-0034N17-Reverse GCTGTTGCACATCATCAGGTA 

HEAB-0042L12-Forward GCGTCCGCGATTAAGTATCA 

HEAB-0042L12-Reverse GCTGGCGATATGAGGAAGTC 

Oligo-dT(15)-Not I anchor tag  CTAGTTCTAGATCGCGAGCGGCCGCCC(T)15VN 

Tai08H10-Forward GATGATCTTGACCGGCTTGT 

Tai08H10-Reverse CGACAAGGGGAATACCAATG 

Tai09B01-Forward GCAAATCCTTGGGCTGAA 

Tai09B01-Reverse CGAGAGCACAAATGATCGAG 

Tai11F02-Forward TATGGCAGTGGTTGCATCAT 

Tai11F03-Reverse TTCGCGACCACCTAACTTCT 

Tai16A08-Forward AATCCTCAAGCTCGAAGTGG 

Tai16A09-Reverse TTGATGCACCGCATCTTTTG 

Tai20D03-Forward CCCTTTATTCCCCACCTA 

Tai20D04-Reverse GTGAGTATCCTGACTTTGC 
 

2.1.5. Vector and Bacterial strain 

Vector and Bacterial strain Manufacturer 
E. coli ElectroMAXTM DH10B T1  Invitrogen, Karlsruhe, Germany 
pSPORT1 vector Invitrogen, Karlsruhe, Germany 

 

 

http://frodo.wi.mit.edu/
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2.1.6. Kits 
 
Kit Manufacturer 

Agilent RNA 6000 Nano kit Agilent tech.,Böblingen, Germany 
Dynabeads® Oligo(dT)25 Invitrogen, Karlsruhe, Germany 
QIAfilter® Plasmid purification kit Qiagen, Hilden, Germany 
QIAprep® Spin Miniprep kit Qiagen, Hilden, Germany 
QIAquick® PCR Purification kit Qiagen, Hilden, Germany 
R.E.A.L.® Prep 96 Plasmid kit  Qiagen, Hilden, Germany 
SuperScriptTM First-Strand Synthesis System for RT-
PCR Invitrogen, Karlsruhe, Germany 

SuperScriptTM Plasmid System with GatewayTM 
technology for cDNA and Cloning  Invitrogen, Karlsruhe, Germany 

 

 

2.1.7. Technical material and equipment 

 

 

Technical material Manufacturer 
12-channel-Pipette Biohit Proline® Biohit, Helsinki, Finland 
384-F-well plates (X7001) Genetix, Dornach, Germany 
384-pin metal replicator Steinbrenner, Wiesenbach, Germany  
384-V-well plates (X6004)  Genetix, Dornach, Germany 
96-pin metal replicator Steinbrenner, Wiesenbach, Germany  
96-well flat-bottom block Qiagen, Hilden, Germany 
96-well reaction plates Steinbrenner, Wiesenbach, Germany  
Aminosilane coated slides Nexterion® Slide A+  Schott, Louisville, USA 
Horizontal electrophoresis chamber (mini) Renner, Dannstadt, Germany 
LifterSlip® coverslides Erie Scientific c, Portsmouth, USA 
Microscopic slides (76x26 cm, glass) Menzel, Braunschweig, Germany 
Owl A2 Large Gel System Thermo Scientific, New York, USA 
Plastic culture plates (22x22 cm) Nalge Nunc Int., Roskilde, Denmark 
PP-tube (14 ml) Greiner, Frickenhausen, Germany 
Self-sealing alu-film G.Kisker GbR, Stainfurt, Germany 
SMP3 stealth pins TeleChem, CA, USA 
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Technical equipment Manufacturer 

Agilent 2100 Bioanalyzer  Agilent Tech., Waldbronn, Germany 
Centrifuge 6K15 DJB Labcare Ltd, Buckinghamshire, UK
Centrifuge Biofuge pico Heraeus, Hanau, Germany 
Centrifuge Megafuge 1.0R Heraeus, Hanau, Germany 
Dry Block heating system Grant Instruments, Cambridge, UK 
E. coli Transporator  BTX, San Diego, USA 
Fluorescence microscope Axiovert 200  Zeiss, Göttingen, Deutchland 
Gel documentration system Geldoc 1000 Bio Rad, Munich, Germany 
Hybridization oven  H.Saur Lab., Reutlingen, Germany 
MicroGrid II Array-Roboter BioRobotics, Cambridge, UK 
NanodropTM ND-1000 Peqlab, Erlangen , Germany 
Power supply E835 Hoefer, CA, USA 
Qfill automated microplate filler Genetix, Dornach, Germany 
Qpix Roboter Genetix, Dornach, Germany 
ScanArray® 4000XL Perkin Elmer, Massachusetts, USA 
SlideBooster hybridization station Advalytix, Munich, Germany 
Thermocycler PTC-200 MJ Research Inc., MA, USA 
Thermomixer comfort Eppendorf, Wesseling, Germany 
Ultrasonic bath Sonorex RK102 Bandelin electronic, Berlin, Germany 
UV-Crosslinker UVC 500 Hoefer, CA, USA 
Vacuum concentrator H.Saur Lab., Reutlingen, Germany 
Vacuum manifold QIAvac 96 Qiagen, Hilden, Germany 
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2.1.8. Softwares 
 
Softwares  Manufacturer 
BLAST adapted to GCG/implemented to HUSAR  DKFZ, Germany/NCBI, USA 
Composition HUSAR, DKFZ, Germany 
Domainsweep HUSAR, DKFZ, Germany 
Fragment Assembly System (convex-version of 
GCG/HUSAR) DKFZ, Germany/Accelerycs, CA,USA 

Gel package (convex-version of GCG/HUSAR) DKFZ, Germany/Accelerycs, CA,USA 
GenePix Pro 6.0 Axon Instruments, CA, USA 
GOPET HUSAR, DKFZ, Germany 
Matlab Version 7.0 The Math Works Inc, Natick, USA 
M-CHiPS Kurt Fellemberg, DKFZ, Germany 
Perl 5.8.9 ActiveState Software Inc., Canada 
PostGreSQL The PostgreSQL consortium 
Qsoft Picking software Genetix, Dornach, Germany 
Significance Analysis of Microarrays (SAM) Stanford University Labs, USA 
Spotconverter Kurt Fellemberg, DKFZ, Germany 
TIGR Multiexperiment Viewer (MeV) The TM4 Consortium 

 

2.1.9. Databases and internet addresses 
 

Databases and additional web pages Internet addresses 

Doe Joint Genome Institute www.jgi.doe.gov/ 

Ensembl Genome Browser  www.ensembl.org 

European Bioinformatics Institute www.ebi.ac.uk/ 

Genome Sequencing Center genome.wustl.edu/ 

Heidelberg Unix Sequence Analysis Resource 
(HUSAR) husar/menu/biounit/ 

Hydractinia EST Database www.mchips.org/hydractinia_echinata.html 

National Center for Biotechnology Information www.ncbi.nlm.nih.gov 

National Human Genome Research Institute www.genome.gov 

 
 

http://www.jgi.doe.gov/
http://www.ensembl.org/
http://www.ebi.ac.uk/
http://genome.wustl.edu/
http://husar/menu/biounit/
http://www.mchips.org/hydractinia_echinata.html
http://www.ncbi.nlm.nih.gov/
http://www.genome.gov/
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2.2 Methods  

 

2.2.1. Animal handling 

 

2.2.1.1. Animal culture  

Hydractinia mature colonies growing on glass slides were cultured in artificial seawater 

(ASW) at 18°C under illumination cycles of 14 light- and 10 dark- hours. Colonies were daily 

fed with 3-4 days old Artemia salina nauplii [1]. Fertilized eggs were collected almost daily 

and maintained in sterile ASW. Embryos and the subsequent larvae were raised for up to 3-5 

days. Metamorphosis-competent larvae were induced to metamorphose on glass slides by 

three hours incubation at 18°C with 116 mM CsCl in seawater, osmotically corrected to 980 

mosmol. Primary polyps were examined regularly under the dissecting microscope, and 

polyps showing abnormal morphology or slow growth rates were removed. Mature colonies 

were subcloned by cutting out pieces of the stolon plate bearing several feeding polyps. In 

order to generate explants exhibiting fast growth rates, the cut tissue included part of the soft 

peripheral area of the stolon plate. The explant pieces were held in the desired location using 

glass pearls until the tissue resumed growth and adhered to the surface.  

 

2.2.1.2. Mitomycin­C exposure 

The antibiotic mitomycin-C (MMC) was dissolved in methanol to a concentration of six-

millimolar. From this stock solution, several aliquots were prepared and stored at -20°C. For 

the treatment, the slides with the colonies were placed in a petri-dish and repeated incubations 

with increasing concentration of MMC were performed, at RT in the dark. In the first 

treatment, animals were incubated for 3 hours with 3 µM MMC in seawater. Subsequently, 

they were washed 4 times with ASW and let to recover overnight. After 24 hours the 

treatment was repeated and at 48 hours, colonies were incubated overnight with an increased 

concentration of 15 µM MMC. Animals were washed, fed and let to recover for the next 24 

hours. Finally, after 96 hours the colonies were incubated overnight with 30 µM MMC. Then, 

animals were washed and let to recover under normal culture conditions. To assess for i-cell 

depletion, explants were extracted at different time-points for cytological examinations. To 

recover the i-cell depleted colonies, genetically identical donor explants (prepared before the 
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MMC treatment) were grafted in the middle and edge of the treated colony. The stolons of the 

explants were allowed to join the gastrovascular system of the treated colony.  

 

2.2.1.3. Lipopolysaccharide (LPS) exposure and allorecognition challenge 

Hydractinia colonies were incubated for one hour at 18°C with 100 µg/ml of LPS. Then, the 

animals were washed 4 times with ASW and let to recover. For the allorecognition 

experiments, explants from genetically distinct adult colonies were transferred into a common 

glass slide. They were cultured under normal condition till they grow into contact with each 

other. Incompatible allogeneic rejections were assessed when colonies started to generate 

hyperplastic stolons. 

 

2.2.1.4. Staining of i­cells 

For cytological examinations, colonies grown on glass slides were fixed with Lavdovsky’s 

fixative overnight at 6°C. After several washes with water, the samples were permeabilised 

with Sörensen’s buffer (pH 7.0) supplemented with 1% Triton-X100 for 1 hour. I-cells were 

stained with May-Grünwald at RT for 3.5 hours. After washing with Sörensen’s buffer for 1 

hour, the samples were further stained with Giemsa for 3.5 hours. Final distaining was done 

overnight at RT with Sörensen’s buffer. 

 

2.2.2. Preparation of DNA and RNA samples 
 

2.2.2.1. RNA isolation 

Approximately 50 mg of tissue was lysed in 500 µl of solution D (containing 0.7% of β-

mercaptoethanol), 500 µl of phenol and 100 µl of 2 M sodium acetate. After the addition of 

200 µl of chloroform, the reaction was vigorously shaken for 15 seconds and incubated on ice 

for 20 minutes. Then, it was centrifuged at 4°C, 14,000 x g for 20 minutes and the aqueous 

phase containing the nucleic acids was carefully transferred into a RNase free tube. 

Subsequently, 250 µl of ice-cold isopropanol and 250 µl of 1.2 M NaCl/0.8 M sodium citrate 

were added. The reaction was incubated at RT for 30 min, shortly vortexed and centrifuged at 

4°C, 12,000 x g for 10 min. Then, the pellet was air dried for 15 minutes and incubated with 

400 µl of 4 M LiCl at RT for 5 minutes. The mix was centrifuged at 4°C, 5,000 x g for 10 min 

and the pellet was dissolved in 250 µl of solution D (containing 0.7% β-mercaptoethanol) at 

65°C for 5 min. After a briefly centrifugation, the RNA was precipitated adding 250 µl of 
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100% ice-cold isopropanol, incubating the reaction at -20°C for 30 min and centrifuging at 

4°C, 10,000 x g for 10 min. The RNA pellet was washed with 300 µl of 70 % ice-cold ethanol 

in DEPC-treated water and incubated at RT for 15 min. The solution was centrifuged at 4°C, 

10,000 x g for 10 min and the supernatant was removed. The RNA pellet was air-dried at RT 

for 10-15 min to eliminate fluid traces by evaporation. Finally, the isolated RNA was 

dissolved in 20-30 µl of RNase free water and stored at -80°C. 

 

2.2.2.2. Isolation of genomic DNA  

Approximately 50 mg of tissue was digested in a solution containing 750 µl of CTAB buffer 

(pH 8.0) and 0.2 mg/ml of proteinase K. After tissue maceration, the mix was incubated at 

65°C for 2 hours. Every 30 minutes the solution was softly vortexed. A second batch of 

proteinase K was added and the solution was incubated overnight. Then, 1 ml of a mix 

containing phenol, chloroform, isoamylalcohol (PCI) in the ratio 25:24:1 was added and the 

solution was mixed by inverting the tube. After centrifuging at 10,000 rpm for 10 minutes, the 

aqueous layer was transferred into a new reservoir and a second PCI separation was 

performed. Subsequently, one volume of CI (24:1) was added to the aqueous solution and 

softly mixed. The samples were centrifuged at 12,000 rpm for 12 minutes and the supernatant 

was collected. The DNA was precipitated by adding 2.5 volumes of 95% ice-cold ethanol and 

10% v/v of sodium acetate, incubating the mix at -20°C for 20 minutes. The DNA was spun 

down at 4°C, 12,000 rpm for 20 minutes and the resulting pellet was washed twice with 750 

µl of 70% ice-cold ethanol. After centrifuging at 4°C, 5,000 rpm for 5 minutes, the pellet was 

air dried at RT for 15 minutes. Finally, the genomic DNA was resuspended in 50 µl of DEPC-

treated water and stored at -80°C.  

 

2.2.2.3. Assessing the quality and quantity of the isolated DNA and RNA 

The quantity and purification grade of the extracted nucleic acids was determined measuring 

the absorbance of the sample at different wavelengths using the Nanodrop. Absorvances at 

260 nm allowed to calculate the nucleic acids concentration, whereby one A260 nm unit 

corresponds to 40 µg/ml of ssRNA or 50 µg/ml of dsDNA. The ratio between the absorbance 

at 260 nm and 280 nm estimates the purity of the sample. Only samples with a ratio above 1.9 

were selected for further analysis. 

The integrity of the isolated nucleic acids was assessed by agarose gel electrophoresis. In the 

case of DNA, a 1% agarose gel was cast and 0.5 µg of sample was loaded. The gel was run in 
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1X TAE buffer for 45 minutes at 100 volts. In the case of RNA samples, a 1.4% agarose gel 

with formaldehyde and Morpholinopropane sulfonic acid (MOPS) was cast. An aliquot of 1 

µl of the RNA sample was mixed with loading buffer containing ethidium bromide. To 

denature the RNA, the mix was heated at 70°C for 10 minutes. Then, the sample was chilled 

on ice, loaded in the gel and ran in 1X MOPS buffer for 30 min at 100 volts. After the 

electrophoretically separation, the gel was observed under the U. V. transluminator. 

Alternatively, the Agilent Bioanalyser was used to analyze the RNA samples. For this, the 

RNA 6,000 Pico kit was employed following the manufacturer instructions. The assay 

involves the loading of the RNA samples in a RNA-chip containing an interconnected set of 

microchannels. These channels work as a gel platform for the electrophoretically separation of 

nucleic acid fragments based on their size. The assay has a high sensitivity and can determine 

the integrity of the RNA sample by calculating a RNA integrity number (RIN) which 

considers the presence or absence of degradation products. RNA samples without degradation 

were considered when the integrity number was above 6.5. 

 

2.2.2.4. Plasmid DNA preparations  

For the purification of the plasmid from the bacteria cells, two different protocols were used. 

In the analysis of particular clones the plasmid preparation was done with the QIAprep Spin 

Miniprep Kit, which is based on the alkaline lysis of the bacterial cells followed by a silica-

column separation. For this, each clone was cultured in 5 ml of LB media containing 100 

µg/ml of carbenicillin at 37°C under shaking overnight. The culture was centrifuged at 1,500 

x g for 5 min and the supernatant was removed. From the bacterial pellet, the plasmid DNA 

was isolated following the protocol described by Qiagen. During the preparation, the optional 

wash step for the removal of nuclease traces was performed and the elution of the plasmid 

DNA was done by the addition of 50 µl of 10 mM Tris-HCl (pH 8.5).  

In the case of high-throughput plasmid purification, the R.E.A.L. prep 96 Plasmid Kit was 

used. This procedure is based on modified alkaline lyses of the bacteria cells, followed by the 

removal of the lysates through vacuum filtration and finally, the purification and 

concentration of the DNA by isopropanol precipitation. Clones were cultured in 96 deep-well 

plates containing 1.3 ml of LB or 2YT media with 100 µg/ml of carbenicillin. After the 

overnight culture at 37°C under shaking, the plate was centrifuged at 1,500 x g for 5 min. The 

media was removed and the bacterial pellet was used as the starting material in the protocol 

described by Qiagen. In the preparation, the optional boiling procedure as well as the ice 
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incubation was omitted. The isopropanol precipitated pellet was dissolved in 100 µl of Tris-

HCl (pH 8.5). 

 

2.2.2.5. Restriction digests 

To analyze the cDNA insert, the plasmid DNA was digested with the restriction enzymes 

EcoRI and HindIII. To ensure a proper digestion, three units of enzyme were added per µg of 

cDNA in the corresponding buffer (R+ buffer from Fermentas) and the reaction was incubated 

at 37°C for a minimum of two hours. BSA was added to the reaction mix to a final 

concentration of 100 µg/ml. The inactivation of the restriction enzymes was carried out by 

incubating the reaction at 65°C for 20 minutes. 

 

2.2.2.6.  Semi­quantitative  reverse  transcription  polymerase  chain  reaction 

(sqRT­PCR) 

Semi-quantitative RT-PCR was used to determine the relative amount of mRNA transcripts in 

a particular sample. For this, total RNA from different Hydractinia stages were isolated as 

described in section 2.2.2.1. Subsequently, 2 μg of total RNA were reversed transcribed into 

cDNA using the First-strand Synthesis system for RT-PCR from Invitrogen, following the 

manufactures protocols. Briefly, 2.5 µg of oligo-dT(12-18) and 0.5 mM each of dNTP were 

added to the RNA sample. After the incubation of the mix at 65°C for 5 minutes and chilling 

on ice, 10 µl of the reverse transcription reaction mix were added. The reaction mix contained 

2 µl of 10X reverse transcription buffer, 2 µl of 25 mM MgCl2, 100 mM dithiothreitol, 40 

units of RNase out and 200 units of Superscript III reverse transcriptase. The reaction was 

incubated at 50°C for 50 minutes. Subsequently, the reaction was terminated incubating the 

mix at 85°C for 5 minutes and chilling on ice. Finally, 2 units of RNase H were added and the 

reaction mix was incubated at 37°C for 20 minutes. 

Transcripts to be analysed by sqRT-PCR were amplified from 2 µl of cDNA using sequence 

specific primers. The reaction mix also contained 0.2 mM each of dNTP, 1X PCR reaction 

buffer containing 15 mM MgCl2 and 1 U of Taq DNA polymerase. The PCR protocol 

described in Table 2 was followed with modifications in the number of amplification cycles. 

In RT-PCR, product quantification can be performed when the reaction is in the logarithmic 

phase of amplification. Therefore, for each transcript, the cDNA sample in which the target is 

highly expressed was selected as template to perform seven PCR reactions having different 

amplification cycles (15-36). Then, the optimal cycle number to obtain a logarithmic 
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amplification of the target was defined. Gene expression was compared in the different 

samples performing the optimized PCR and analysing the amplified products in an agarose 

gel electrophoresis.   

 

2.2.3. DNA and RNA methods involved in the cDNA library 

 

2.2.3.1. Isolation of RNA for the cDNA library  

To maximize the collection of expressed genes, RNA was extracted from different 

developmental stages as well as from organisms subjected to induction experiments. 

Subsequently, all RNA samples were pooled in different percentages (Table 1) and used for 

the library construction. Before any RNA isolation, animals starved for up to two days. 

The 10 different developmental stages included were: early embryos at 1-5 hours post 

fertilization (pf), gastrulating embryos at 24 hours pf, pre-planula and planula larvae at 2 and 

3 days pf, respectively, metamorphosing animals at 3, 16, 28 and 72 hours post induction (pi) 

of metamorphosis with CsCl and finally mature female and male colonies.  

Five different types of induction experiments were performed. i) Heat shock treatment: 

primary polyps were incubated for 30 min at 30°C, washed with ASW and incubated for 1 h 

at 18°C before RNA isolation. ii) Osmotic shock treatment: mature colonies were incubated 

for 1h at a salinity of 1.7%, washed with ASW and incubated for 1 h at normal salinity before 

RNA isolation. iii) Regeneration treatment: polyps were cut and incisions were made in the 

stolon mat of an adult colony. After 3 hours of recovery, RNA was isolated. iv and v) 

included a Lipopolysaccharide (LPS) and allorecognition challenge already described in 

sections 2.1.1.3 and -4.  
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Table 1. Hydractinia’s RNA-pooling strategy     

RNA source 
Pooling 

% Total RNA used in pool (µg) 

Early embryo (1-5 h) 7.5 16.8 

24 h gastrulating embryo 7.5 16.8 

48 h pre-planula 7.5 16.8 

72 h planula 7.5 16.8 

Metamorphosing larvae (3 h pi) 7.5 16.8 

Metamorphosing larvae (16 h pi) 7.5 16.8 

Metamorphosing larvae (28 h pi) 7.5 16.8 

Metamorphosing larvae (72 h pi) 7.5 16.8 

Mature colony (male)  15 33.6 

Mature colony (female)  15 33.6 

Heat shocked animals 2 4.5 

Osmotic shocked animals 2 4.5 

LPS-treated animals 2 4.5 

Allogeneic transplantations 2 4.5 

Regeneration 2 4.5 

Total 100 224.1 

  
The left column shows the different stages and induction experiments used for the 
construction of the cDNA library along with the corresponding amount of RNA material used 
in the pool.  

  

 

2.2.3.2. cDNA library construction 

Poly A+ RNA was isolated from 224 µg of pooled total-RNA using the Dynabeads mRNA 

purification kit. For this, 300 µl of binding buffer (20 mM Tris-HCl (pH 7.5), 1 mM LiCl, 2 

mM EDTA) containing 3 mg of magnetic beads coupled with oligo-dT residues were added to 

the RNA sample. After several washing steps with the washing buffer (10 mM of Tris-HCl 

(pH 7.5), 0.15 mM LiCl, 1 mM EDTA), the bound mRNA was capture with the use of a 

magnet and eluted with 60 µl of 2 mM Tris-HCl (pH 7.5). Subsequently, the mRNA solution 

was diluted in 240 µl of DEPC-treated water and was again purified with the magnetic beads. 

Final elution was done with 50 µl of 2 mM Tris-HCl (pH 7.5), and the quality and quantity of 

the mRNA was analysed as described in section 2.2.2.3. 

The cDNA library was constructed from 2.2 µg of poly A+ RNA. For the cDNA synthesis, 

the SuperScriptTM Plasmid System with GatewayTM technology for cDNA and Cloning was 

used following the manufacturers protocols. The synthesis of the first cDNA strand was 

primed with 50 µg/ml of oligo-dT(15) carrying a Not I anchor tag at the 3´end. The primer was 

mixed with the 2.2 µg of mRNA, incubated at 70°C for 10 minutes and chilled on ice. Then, 4 

µl of 5X first strand buffer (50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2), 10 mM 

dithiothreitol and 0.5 mM of each dNTP were added. The reaction was gently vortexed and 
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incubated at 45°C for 2 minutes. Then, 600 units of Superscript III were added and the 

reaction was further incubated at 45°C for 1 hour.  

The second strand of the cDNA was synthesized by nick translational replacements, using as 

template the first cDNA strand. For this, 40 units of E. coli DNA polymerase, 2 units of E. 

coli RNase H, 10 units of E. coli DNA ligase, 30 µl of 5X second strand buffer (25 mM Tris-

HCl (pH 7.5), 100 mM KCl, 5 mM MgCl2, 10 mM (NH4)2SO4 and 0.15 mM ß-NAD+) and 

DEPC-treated water until a final volume of 150 µl were added. The reaction was incubated at 

16°C for 2 hours. To ensure a blunt terminus of the generated cDNAs, 10 units of T4 DNA 

polymerase were added and the reaction was further incubated for 5 minutes at 16°C. After 

the addition of 10 µl of 0.5 M EDTA, the DNA was purified by organic extraction (PCI) and 

precipitated with ethanol.  

In order to maximize the ligation of the cDNA into plasmid vectors, 10 µg of adapters with 

Sal I recognition sites were ligated to the blunt end cDNA products. For this, 5 units of T4 

DNA ligase with the respective T4 DNA ligase buffer (50 mM Tris-HCl (pH 7.6), 10 mM 

MgCl2, 1 mM ATP, 5 % PEG 8000, 1 mM DTT) were added. The reaction was incubated 

overnight at 16°C and the cDNAs were deproteinized by organic extraction (PCI) and 

precipitated with ethanol. Subsequently, the cDNAs were digested with 60 units of Not I 

restriction enzyme at 37°C for two hours. This resulted in asymmetrically cDNAs, which at 

the 5’ end contained a SalI and at the 3’ end a NotI recognition site.  

Size fractionation of the cDNA was done by column chromatography following the 

manufacturer protocols. The yield of the first and second strand reaction was determined 

measuring the amount of precipitable radioactivity. To calculate the amount of incorporated 
32P on the cDNA, a scintillantion counter was used. The size ranges of the synthesized 

products was estimated by loading the radioactive labelled samples in an alkaline agarose gel 

electrophoresis and their subsequent exposure to x-ray film, as described in the 

manufacturer’s instructions. Only the cDNAs of the largest fractions obtained in the 

fractionation steps were ligated into the plasmid vector pSPORT1 and electroporated into 

ElectroMAXTM DH10B T1 phage resistant cells, as described below.  

 

2.2.4. Cloning strategies 
 

2.2.4.1. Ligation into pSPORT1vector  

The cDNA inserts were ligated into NotI- SalI-Cut pSPORT1 vectors following manufacturer 

protocols. This was carried out by the addition of 25 ng of vector and three fold molar excess 
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of the cDNA insert. The reaction was catalyzed by 25 units of T4 DNA ligase in the 

respective buffer (1 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 1 mM ATP, 5 % (w/v) PEG 8000, 

1 mM DTT). Finally, the reaction was gently mixed and incubated overnight at 4°C.  

 

2.2.4.2. Electrotransformation of E. coli cells and clone culture  

Vectors containing cDNA inserts were introduced by electroporation techniques into 

ElectroMAX TM DH10B-T1 phage resistance cells.  The cDNA sample was mixed on ice with 

25 µl of freshly thawed electro-competent cells and transferred to a 0.1 cm electro-cuvette. 

The mix was incubated on ice for 5 minutes and a pulse with 1.8 kV was applied. 

Immediately after, the mixture was resuspended in 1 ml of S.O.C media and incubated at 

37°C under shaking for 45 min. Then, the culture was spread in plastic plates (22 x 22 cm) 

containing 200 ml of LB-Agar media with 200 µg/ml of carbenicillin. In order to eliminate 

the empty vectors from the library, the agar plates contained 500 µl of 20 mg/ml X-Gal and 

90 µl of 0.2 g/ml IPTG. Finally, the plates were incubated at 37°C overnight. 

 

2.2.4.3. Colony picking and setting the Hydractinia cDNA library 

For colony picking an automatic robotic devise was used. The Qpix robot use a CCD camera 

for imaging the colonies to be picked by the 96-pin picking head, in which each pin 

individually samples a single colony. Colony selection is made defining the picking 

parameters of the QSoft Picking software, for example; in the colour, roundness and diameter 

of the colony. To avoid picking satellites or double-colonies, only colonies with a diameter 

between 4-40 pixels were selected. To improve the picking of small colonies, the pin was 

deeply inserted (~3 mm) into the agar. Sample carryover and cross-contamination was 

diminished by the sterilization of the pins in 80% ethanol before each new picking round of 

the robot pin head. The picked colonies were transferred to 384-well microplates previously 

filled with 50 µl of LB media containing 10 % HFMF freezing solution and 100 µg/ml of 

carbenicillin. Finally, the plates were incubated overnight at 37°C. 

Plates containing more than 15 non-inoculated wells were discarded from the library, and 

used for colony replacement purposes. Two replicates were made from each plate selected for 

the library. For this, a 384-pin metal devise was used, which was sterilised between each 

inoculation by two wash-flame steps with 70% ethanol. The obtained replicates were 

incubated overnight at 37°C, while the original plates were labelled and stored at -80°C. 
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During the culture, the replicates were observed to identify slow growing bacteria and empty 

wells. Finally they were labelled and placed at -80°C.  

 

2.2.4.4. Assembling the Hydractinia­chip library 

To avoid redundancy in the Hydractinia microarray the previously generated EST library was 

re-arrayed, transferring the most representative sequences of each 3,808 contigs into new 384-

well plates. The Hydractinia-chip library was supplemented with 4,992 un-sequenced clones, 

prepared in the EST project. Additionally, 384 external control DNA sequences -LORECs, 

artificially generated randomized sequences of 100 bp- were included in the library [75].  

 

2.2.5. DNA and RNA methods involved in the microarray experiments 
 

2.2.5.1. Isolation of RNA for the microarray experiments 

For the mitomycin microarray experiment, RNA was isolated from colonies at 96 hours post 

MMC treatment. 50% of the colony tissue of each biological replicate was used for the RNA 

extraction. The rest of the colony was allowed to recover. After 4 weeks of the MMC 

treatment, RNA was isolated from active polyps budding areas of recovering colonies.  

For the immune microarray experiments, colonies were induced to different immune 

responses. In the case of the LPS experiment, RNA extraction was done at 1 and 3 hours after 

the LPS induction. For the allorecognition experiment, RNA was isolated only from the 

contact area of colonies showing signs of rejection.  

All these isolated RNAs were reverse transcribed into labelled cDNA, as described below, 

and used in the different microarray hybridization experiments. 

 

2.2.5.2. Target labelling for microarray hybridization  

Target for hybridizations were generated from total RNA by incorporation of fluorophor-

labelled dCTP during first strand cDNA synthesis. For this, the RNA sample was diluted with 

DEPC-treated water to a concentration of 7.5 µg/15 µl. To prime the first cDNA strand 

reaction, 2.5 µg of oligo-dT(12-18) were added and the mix was incubated at 65°C for 10 

minutes. After chilling on ice, 22 µl of the reverse transcription reaction mix were added. The 

reaction mix contained 3 nmoles either of Cy3 or Cy5-dCTP, 0.3 mM each of dATP, dGTP 

and dTTP, 20 µM dCTP, 100 mM dithiothreitol, 40 units of RNase out and 400 units of 

Superscript III reverse transcriptase in the buffer provided by the manufacturer. The reaction 
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was incubated at 42°C for 1 hour. Subsequently, 200 units more of Superscript III reverse 

transcriptase were added and the mix was further incubated at 42°C for 3 hours. The enzyme 

was inactivated at 70°C for 15 minutes. The RNA strand of the DNA-RNA hybrid was 

degraded with the addition of 2 units of RNase H, incubating the reaction mix at 37°C for 20 

minutes. Finally, the labelled single stranded cDNAs were purified with the QIAquick PCR 

purification kit as described below.  

 

2.2.5.3. Purification of the labelled cDNAs  

To purify the cDNA fragments from the dye-labelled reaction, one volume of the reaction mix 

was diluted with 5 volumes of PB buffer (pH ≤ 7.5). After a gently mix, the solution was 

transferred to a QIAquick column and centrifuged at 13,000 rpm for one minute. The DNA, 

which is bound to the column, was washed with 0.75 ml of a 35% guanidine hydrochloride 

solution and centrifuged at 13,000 rpm for one minute. A second wash step was done with the 

addition of 0.75 ml of buffer PE and the corresponding centrifugation at 13,000 rpm for one 

minute. To remove rest of the washing solution, another centrifugation for one minute was 

performed. The DNA was eluted twice with 30 µl of DEPC-treated water (pH 8.5).    

 

2.2.5.4. Determination  of  the  yield  of  the  cDNA  synthesis  and  the  Cy3/Cy5 

incorporation rates   

The NanodropTM was used to measure the absorbance of the labelled cDNA sample at four 

different wavelengths. The absorbance of the sample at 260 nm and 280 nm was used to 

determine the purity and yield of the cDNA reaction (section 2.2.2.3), while its absorbance at 

550 nm and 650 nm allowed to calculate the incorporation rate of Cy3 and Cy5 in the cDNA, 

respectively. To avoid disturbances due to the A260nm of the dye molecules, the concentration 

of the single strand cDNA was calculated with a correction factor. This means, that one A260 

nm unit equals to 33 µg/ml of ssDNA minus 0.08 x A550 in the case of Cy3 and 0.05 x A650 for 

Cy5. The incorporation rate of the dye molecules was calculated with the following formulas: 

 

ࢋ࢚ࢇ࢘ ࢔࢕࢏࢚ࢇ࢘࢕࢖࢘࢕ࢉ࢔࢏ ૜࢟࡯ ൌ ቆ
૜ሿ࢟࡯ሾࢉ
ࢉ ሿሾ࡭ࡺࡰࢉ ቇ ൈ ૚૙૙% 

ࢋ࢚ࢇ࢘ ࢔࢕࢏࢚ࢇ࢘࢕࢖࢘࢕ࢉ࢔࢏ ૞࢟࡯ ൌ ቆ
૞ሿ࢟࡯ሾࢉ
ሿቇ࡭ࡺࡰࢉሾࢉ ൈ ૚૙૙% 
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2.2.5.5. Polymerase chain reaction (PCR) 

The polymerase chain reaction uses a DNA polymerase from the thermophilic prokaryote 

Thermus aquaticus to amplify a piece of DNA. The uses of specific primers, which hybridize 

to the target DNA sequence, define the starting point of the DNA polymerase to initiate the 

DNA synthesis. The generated DNA products in each PCR round are subsequently used as 

template for further amplification. In the present project, single PCR reactions were used to 

analyse the insert of particular clones, while whole 96-well plate PCR reactions were used to 

amplify the probe to be printed on the microarrays (i.e. the Hydractinia-chip library). In order 

to have yield and quality homogeneity in all PCR products, logarithmic-phase bacteria 

cultures were used as PCR templates. For this, all clones were cultured in 96-deep-well blocks 

containing 1.2 ml of 2YT and 200 µg/ml of carbenicillin at 37°C under shaking for 7-9 hours. 

Subsequently, an aliquot was used to inoculate a new media for an overnight culture at 37ºC. 

Then, 5 µl of suspension culture were transferred to a 96-well PCR plate containing 95 µl of 

ddH2O. To lyses the bacterial cells and release the plasmid, the mix was heated at 95°C for 10 

minutes. Cellular debris was removed by the centrifugation of the PCR plate at 1,200 x g for 3 

minutes. Then, 4 µl of the supernatant were transferred to a new 96-well PCR plate to be used 

as template. In the case of individual PCR reactions, the same procedure was followed in 

single reaction tubes or alternatively, plasmid DNA was used as template. To the template 

DNA, 0.5 mM each of T7-forward and SP6-reverse primers were added. Alternatively, the 

reaction was primed with M13 -forward and -reverse primers. The reaction mix also 

contained 0.2 mM each of dATP, dCTP, dGTP and dTTP, 1X PCR reaction buffer containing 

15 mM MgCl2, 0.5 to 1 U of self made Taq DNA polymerase, 0.16 U of Deep VentR™ DNA 

polymerase and DEPC-treated water until a final reaction volume of 100 µl. 

The inserts of the cDNA-library have high size heterogeneity. Therefore, to optimize the 

amplification of certain cDNAs, especially those with more than 3 kb, the PCR was 

performed with some variation in the number of cycles and amount of the reaction reagents; 

e.g. with more units of long range DNA polymerase, higher amount of primer, etc. DNA 

amplification was performed in a programmable temperature controller Thermocycle able to 

perform 96 PCR reactions in parallel. The PCR program was adapted depending on the 

annealing temperature of the primers and the size of the template fragment. The different PCR 

programs are described below (Table 2).  
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Table 2 – PCR programs used to amplify clones from the cDNA library 
steps of PCR  PCR of fragments below 3 kb  PCR of fragments above 3 kb  PCR of whole 96 plates 

Denaturation   94 °C for 30 sec  94 °C for 30 sec  94 °C for 30 sec 

Cycles  35  28‐31  31 

Denaturation   94 °C for 15 sec  94 °C for 15 sec  94 °C for 20 sec 

Annealing  48‐53 °C for 45 sec  48‐53 °C for 30 sec  50 °C for 35 sec 

Elongation  68 °C for 3 min   68 °C for 4 min + 0.05 min /cycle  68 °C for 6 min 

Extension  72 °C  for 7 min  72 °C  for 7 min  72 °C  for 7 min 

Cooling  10 °C  for 10 min  10 °C  for 10 min  10 °C  for 10 min 

 

2.2.5.6. Control of the PCR products  

All the PCR products to be used in the microarray were checked by agarose gel 

electrophoresis using the OWL separation system from Thermo scientific. This system 

permitted the analysis of 192 PCR products (2 x 96 well PCR plates) in parallel. For this, 2 µl 

of the PCR products were mixed with loading buffer and transferred to a 1% agarose gel 

using a 12-channel pipette. Four DNA markers, either the 1kb DNA ladder or the GeneRuler 

DNA ladder Mix from Fermentas, were loaded in the gel. The DNA was separated in 1X TAE 

buffer applying 100 volts for 35 minutes. The quality of the fragments was analyzed under the 

U. V. transluminator. In the case of a PCR plate with an amplification yield below 85%, the 

PCR reaction of the whole plate was repeated and optimized. Clones with repeated negative 

PCR results, in most of the cases due to the big size of the insert, were individually treated 

and re-organize in the original 96-well plates. 

 

2.2.6. Construction of the microarray  
 

2.2.6.1. Preparation of the PCR products for the printing of the microarray 

96-well PCR plates with an amplification yield above 85% were selected for the construction 

of the microarray. From the selected plates, 45 µl of the PCR products were transferred to 

384-well plates, whereby four 96-well plates were used to fill out one 384-well plate. The 

PCR products were dried out in a vacuum concentrator at RT overnight. Subsequently, the 

PCR pellets were resuspended in 10 µl of spotting buffer and were gently shaken in a plate 

mixer at 300 rpm for 30 seconds. Before printing the PCR products on the slides, all 384-well 

plates were centrifuged at 1,000 rpm for 1 minute. Finally, the Hydractinia array included 10 

Hydractinia PCR plates already sequenced and analyzed in the EST project, 13 un-sequenced 

Hydractinia PCR plates and 1 LORECs PCR plate as external control. An additional negative 
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control plate was added which contained only spotting buffer. The remaining volumes of the 

PCR reactions were stored at -20 ºC as a backup for further analysis or subsequent microarray 

fabrications. 

 

2.2.6.2. Printing the PCR products on the aminosilane coated slides 

The PCR products of the 25 384-well plates were printed on the surface of the aminosilane 

coated slides (Nexterion® Slide A+) using the microarray roboter MicroGridTM II. This was 

achieved using a print head containing 24 (2 x 12) SMP3 stealth pins. These pins have a 

liquid reservoir of approximately 100 nl and can deliver drops of about 0.8-1 nl, resulting in 

spots with a diameter of 80-100 µm. The geometry of the array, distance of the spots, order of 

the printed PCR, number of pre-spotting and microarray slides were defined with the use of 

the Microgrid software. For printing, we followed the manufacturer’s protocol. Briefly, pins 

were washed before every source visit by two washing steps in double distilled water of 5 

seconds each and by 3 washing cycles in the main washing station of the robot. During the 

run, pins were regularly checked for uniformly delivery of the probe. In the case of pins with 

an insufficient performance, they were immediately changed. Pins were allowed to softly 

touch the slide surface. For the pre-spot and normal microarrays slides the speed of the pins 

was set at 4 m/s with target height of 1 mm and 0.6 mm, respectively. Pins were refilled with 

new probe every 103 printed slides and they first printed the primary spots. Once finished, 

pins were used to print the duplicate spots. The whole printing procedure was performed at 

RT with 40% humidity.  

 

2.2.6.3. Post­processing of the microarray slides 

The printed microarray slides were kept in a vacuum excicator at RT for 12 hours. In order to 

identify the position of the printed DNA, the microarray area was carefully marked on the 

back of the slide with a diamond scriber. To increase the DNA-slide binding efficiency, 

covalent bonds between the probe and the slide amino-groups were generated by irradiating 

the slides with 250 x 100 µJ/cm2 UV using a UV-crosslinker. Subsequently, the microarrays 

were incubated at 80ºC for 4 hours. Finally, the microarrays were stored at 4ºC in a vacuum 

excicator containing desiccant beads.  
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2.2.7. Microarray hybridization methods  
 

2.2.7.1. Preparing the array for the hybridization  

To avoid unspecific bindings and to remove unbounded DNA or rest of buffer substances, the 

slides were washed and their active surface was blocked before the hybridization of the target 

sample. For this, a maximum of five slides were placed in a slide-holder. To avoid blending of 

the spots, all washing procedures were done quickly by moving the slides up and down in the 

respective solutions. First, the slides were washed in a bath containing 500 ml of Rinsing 

solution 1 at RT for 10 seconds. Then, the slides were washed with double distilled water at 

RT for another 10 seconds, transferred to a third bath containing water at 95ºC and incubated 

for 3 minutes. Subsequently, the active surface of the slides was blocked by immersing the 

slides in a fourth bath containing 200 ml of blocking solution at 55ºC under soft shaking for 

45 minutes. The slides were washed again with water at RT for 10 seconds and immediately 

after, were carefully dried with compressed air. The DNA microarrays were ready to be used 

in the hybridization reaction.  

 

2.2.7.2. Microarray Hybridization  

Equal amounts of Cy3- and Cy5- labelled cDNA were allowed to co-hybridize on the 

microarray. For this, 7.5 µg of each differentially labelled target sample (section 2.2.5.2) were 

mixed and dried in the dark in a vacuum concentrator. Subsequently, the cDNA pellet was 

resuspended in 5 µl of 10 mM EDTA (pH 8.0) and softly vortexed for 30 seconds. 

Meanwhile, a cover-slide with spacers of 0.05 mm thick (LifterSlip) was placed over the 

printed surface of the microarray. This allowed generating a chamber for hybridization. Then, 

the microarray was placed in the SlideBooster hybridization station. Advason coupling liquid 

was added between the slides and the incubation chamber floor. Whereby the surface acoustic 

waves produced by the microagitation-chips of the chamber floor oscillated the hybridization 

solution. To maintain a high humidity within the hybridization chamber, 900 µl of AdvaHum 

were added in the disposed reservoir.  

While the microarray was heated until the hybridization temperature, the labelled cDNA was 

denatured at 95ºC for 1 minute. After spinning down, 65 µl of the hybridization buffer 

(SlideHyb#1) previously heated at 68ºC were added. The solution was mixed thoroughly and 

directly pipetted to the microarray, in the edge of the cover-slide. By capillarity, the solution 
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equally spread all over the microarray hybridization chamber. Hybridization was carried out 

at 62 ºC for 16 hours.   

Afterwards, to remove un-hybridized target cDNAs, the microarray slides were washed at RT 

with three different buffers preheated at 37ºC. The first wash was done for 10 minutes with 

buffer A, which contains 2X SSC and 0.2% SDS. Then, they were rinsed for 10 minutes each 

in buffer B (2X SSC) followed by buffer C (0.2X SSC). All washing steps were performed 

under softly shaking and in the dark. Finally, the slides were shortly (2 seconds) immersed in 

isopropanol and immediately dried with compressed air. The fluorescence intensities of the 

hybridized microarrays were directly measured, otherwise the slides were stored for short 

periods in a vacuum excicator at RT in the dark.  

  

2.2.7.3. Signal detection 

The Cy3- and Cy5- fluorescence signals were measured with the confocal laser scanner 

Scanarray 4000XL. The microarrays were scanned with a resolution of 10 µm, at a constant 

laser power, but varying the photomultiplier (PMT) in order to avoid saturation and get the 

best foreground to background intensity ratio. The excitation of the Cy5-dye was achieved 

using a laser with wavelengths of 633 nm and its emission was detected by a sensor at 670 

nm. For the Cy3-dye, excitation of the molecules occurred with a laser having wavelengths of 

543 nm and their emission was detected at 570 nm. A 16-bit TIFF grey-scale image was 

generated for the emission signals of each dye. 

 

2.2.7.4. Quantification of the signal intensities  

The Genepix software was used to quantify the signal intensity of the spots. First, a graphical 

representation of the scanned image was generated by false-colouring the Cy3 and Cy5 

channels in green and red, respectively. Overlying the image from both channels allowed 

preliminary analysis, whereby yellow spots represented an equal amount of target in the two 

compared samples and green, red or spots with mixed colours between green and red 

corresponded to differentially expressed genes. For the quantification of the intensities, a 

spotting-matrix or grid was placed over the merged image. The grid was semi-automatically 

adjusted to the spots and blocks of the array. This grid has a Genepix array list format (gal. 

file) and transfers the gene information to each spot in the array, e.g. the clone position in the 

source plates (cDNA library), gene annotation, etc.  
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The raw signal intensities of both dyes were calculated for each spot and the generated values 

were saved and exported as a table file (extension gpr.). In addition, the table contained the 

average, media and standard deviation of the spots signal intensities, the intensities of the 

local background, number of pixels, etc.  

 

2.2.8.  Bioinformatics methods related to the EST project  
 

2.2.8.1. EST sequencing and Sequence Analysis Pipeline 

Single-pass cDNA sequencing from 5’- and/or 3’-ends was conducted at the Washington 

University Genome Sequencing Center [76]. After removal of vector and ambiguous regions 

from the raw sequence data, the sequence reads were uploaded to the EST database at the 

NCBI (National Center for Biotechnology Information [77]). The first step in the sequencing 

analysis pipeline was a download of the single-pass sequences in FASTA format. 

Subsequently, the Wisconsin GCG package Fragment Assembly System (FAS) available at 

the Heidelberg Unix Sequence Analysis Resource (HUSAR, [78]) was initialized. Within 

FAS, the Gel-package programs were used, starting the assembly project (GelStart), 

uploading the sequences in GCG format (GelEnter), aligning them into contigs (GelMerge), 

editing the assembled contigs (GelAssemble), displaying contig structures (GelView), and 

finally evaluating the created FAS database with respect to quality and statistics (GelStatus 

and GelAnalyze). The generated consensus sequences, which represented each EST-cluster, 

were used as a query for BLAST (Basic Local Alignment Search Tool) homology searches 

against GenBank databases [79, 80]. 

 

2.2.8.2. Annotation and subsequent analysis of the Hydractinia sequences 

At the DNA level, searches were made by BLASTN algorithm against the non-redundant 

nucleotide database at NCBI using the default parameters. In the case of insignificant hits, 

searches were performed against the GeneBank ESTs databases (dbEST) at NCBI. At the 

protein level, analyses were done using BLASTX against the Swissprotplus database under 

the Sequence Retrieval System (SRS) [81] at the HUSAR Bioinformatics Lab, which includes 

the latest full releases both of Swissprot and SpTrembl [82]. Matches with an E-value 

acceptance threshold of less than 10-6 were retrieved from the results page and stored in our 

local server. For annotations at the nucleotide level only the fourth hit was stored in the 
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Hydractinia Database, minimizing the chances to retrieve the Hydractinia sequences itself 

which were already annotated on the NCBI nucleotide database.  

At the protein level, the first hit was directly linked to the database and used for further 

analyses. Sequences without any significant annotation or with an un-informative hit -e.g. 

hypothetical, probable, putative or chromosomal annotation- were further analyzed using 

DomainSweep [83], which allows the identification of domain architectures within a protein 

sequence. It employs different database search methods to scan a number of protein/domain 

family databases. A positive match was only considered, when the sequence contained at least 

two domain hits described in two protein family databases that are members of the same 

InterPro family/domain or, when there were two blocks or motifs in a correct order already 

described in the Prints or Blocks dataset. Further functional annotations were made by adding 

Gene Ontology (GO) terms to the sequences using the Gene Ontology term Prediction and 

Evaluation Tool, GOPET, available at HUSAR Bioinformatics Lab [84]. Only hits above a 

confidence threshold of 80% were annotated with GO terms of the two main categories, 

biological process and molecular function. In subsequent analysis the consensus sequences 

were compared with TBLASTX against different databases that were downloaded into 

HUSAR from NCBI, Ensembl Genome Browser [85], and from the Joint Genome Institute. 

For TBLASTX analysis, significant hits were considered when matches presented an E-value 

acceptance threshold of less than 10-3. The downloaded databases included: the cnidarian EST 

databases of Acropora, Hydra and Nematostella, as well as the raw and assembled genome 

data of Nematostella; the new releases of vertebrate cDNA datasets of Homo sapiens, Pan 

troglodytes, Macaca mulatta, Canis familiaris, Rattus norvegicus, Gallus gallus, Danio rerio, 

Xenopus tropicalis; and the ecdysozoan invertebrate cDNA datasets of Aedes aegypti, 

Anopheles gambiae, Caenorhabditis elegans and Drosophila melanogaster. 

 

2.2.8.3. Hydractinia Database 

All relevant information about every EST as well as the information generated in the 

sequence analysis pipeline was automatically integrated into a Database using in-house 

scripts. The database is a PostgreSQL relational database [86]. For an easy-to-use platform, a 

web interface was created using Perl/CGI. It can be accessed at: 

http://www.mchips.org/hydractinia_echinata.html 

 

http://www.mchips.org/hydractinia_echinata.html
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2.2.9. Bioinformatics and statistical methods involved in the microarray 
experiments 

 

2.2.9.1. Normalization and filtering of the signal intensity data 

The M-CHiPS (Multi-Conditional Hybridization Intensity Processing Software) software 

package implemented in Matlab® (MathWorks) was used to analyse the signal intensity data 

generated in the microarray experiments [72]. First, the table files generated by Genepix (i.e. 

gpr. files of section 2.2.7.4) were separated into green (Cy3) and red (Cy5) intensity channel 

data. Then, the condition and control measurements, independent of the labelling, were 

defined for all hybridizations and uploaded in M-CHiPS.  

To compensate for systematic variations in the quality of the data, M-CHiPS corrected the 

raw intensity values based on the logarithmic regression of one condition measurement versus 

the control measurement [72]. Since in both microarray experiments several repetitions were 

performed, the median signal intensities of the measurements were used. The log-Cy3 versus 

log-Cy5 median signal intensities for all genes were plotted and the regression curve was 

calculated. The algorithm applied a multiplicative and additive corrector to fit the set of genes 

to the regression curve [72, 74, 87]. A good fitting performance was considered when the 

regression curve matched the dense region of the plotted data points, with correlation 

coefficient above 0.8.  

M-CHiPS was used to select genes that have a good evidence of being differentially 

expressed [72]. For this, four different filtering criteria were used. First, all genes with raw 

intensity level above the detection limits (65,000 AU) were eliminated. Second, all genes 

having a substantial expression level (e.g. fitted intensity level of 1,000-2,000 AU) at least in 

one condition were selected. Third, the Significance Analysis of Microarray (SAM) program 

was used to select genes with significant expression changes in at least one of the condition 

with respect to the control. This program assimilates a set of gene-specific t-tests and assigns 

to each gene a score based on its change in gene expression with respect to the standard 

deviation of repeated measurements for that gene [88]. Genes with a score above a defined 

threshold are considered for further analysis. To estimate the false discovery rate (FDR), 300 

permutations of the measurements were performed. All genes with a significant (corrected p-

value > 0.05) differential expression level were selected to be filtered by the last filtering 

criteria. This consisted in the selection of all genes having a two-fold change in expression in 

at least one of the condition with respect to the control. 
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2.2.9.2. Correspondence analysis 

Correspondence analysis (CA) is an explorative and descriptive method which allows 

identifying interdependencies between variables in a complex data environment [74]. The 

data filtered in M-CHiPS was analyzed with correspondence analysis. For this, genes were 

represented as numerical vectors (points) in a high dimensional space determined by the 

number of hybridizations (experiments). Conversely, hybridizations vectors were represented 

in a scenario which dimensionality is equal to the number of genes. Both, genes and 

hybridization vectors in their respective dimensionalities can be displayed simultaneously in a 

plot [73]. However, for an easy visualization accounting the main variance of the data, the 

high-dimensional scenario was scaled down by decomposition into principal axes and 

projection into a low dimensional space (biplot). Whereby, the χ2 distances among the 

represented objects in the two or three dimensional plot resemble their original distances in 

the high-dimensional space as closely as possible. To simplify the visualization of 

associations between the variables, virtual genes with an ideal transcriptional profile in a 

defined condition were included in the plot. The coordinates of such genes are the standard 

coordinates of the condition were this gene is expressed [72-74].  

 

2.2.9.3. Hierarchical and k­means clustering 

The microarray data was further analysed using two different clustering algorithms. First, the 

M-CHiPS filtered data was exported as a table file to the TIGR Multiexperiment Viewer 

(MeV) [89]. This table contains the normalized signal intensity median of the selected genes 

for the condition and control measurements. Then, the Log2 ratio between the condition and 

control measurements was calculated. Thus, in all fold-change regulation analysis the 

expression level of each condition is referenced to the control. Logarithmic conversion was 

used since it tends to make the data variability more constant, treating the number and their 

reciprocal symmetrically [71]. Thus, a gene up-regulated by a factor of 2 has a Log2 ratio of 1 

and genes equally expressed (with a ratio of 1) will have a Log2 ratio equal to zero. A colour-

code heat map was used to represent this data. 

The microarray data was grouped into expression clusters using Hierarchical clustering 

(HCL). This agglomerative clustering method works bottom up, by initially assigning each 

gene to its own cluster. Clusters are then iteratively merged in pairs of clusters, based on their 

similarity distance, until all groups are hierarchical connected. This algorithm generates a 

similarity distance-matrix giving high scores to similar patterns of the data [65]. Pearson 

correlation was used as a distance metrics. Similarity-distances between the clusters were 
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calculated using the average distance of each member of one cluster to each member of the 

other cluster (Average linkage method). With an inter-node distance threshold of -0.99, the 

clustering generated a tree representation of the data. 

In addition, the microarray data was clustered using k-means (KMC). First, the number of 

clusters for the partition of the data was defined using a Figure of Merit (FOM) algorithm. 

This algorithm removes one sample from the total data set, clusters the remaining data, and 

then calculates the fit of the removed sample to the previously obtained cluster-pattern [65]. 

This is done for all samples in the dataset. From each run, a FOM value is returned. These 

values were plotted versus the number of clusters in order to define the optimal clustering 

parameters for k-means. Subsequently, k-means was used to group the data. It starts randomly 

assigning genes into a particular k-cluster. Then, each gene in the data set is compared to the 

k-clusters-genes and distributed into the cluster with the most similar expression profile. 

Pearson correlation was used as distance metrics. This procedure is repeatedly refined until its 

optimization for the clustering criterion [65]. For an easy visualization of the microarray data 

in each cluster, the Log2-transformed expression ratios (conditions/control) for all 

hybridization were plotted with a colour-code GO term annotation. 
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3. Results 
 

3.1 EST analyses on Hydractinia echinata 
 

3.1.1. Generation of the Hydractinia echinata ESTs  

 
In a previous work, a size-selected and representative cDNA-library was created. In order to 

generate an EST dataset covering a large fraction of the Hydractinia transcriptome, pooled 

RNA preparations that were collected from various stages of the complete life cycle were 

used for the construction of the cDNA-library. The pool was complemented with RNA from 

several induction experiments (Table 1, section 2.2.3.1). Optimization of the different steps 

involved in the generation of the clone resource resulted in a library consisting of 21,120 

clones, distributed in a 384-well plate format [90]. Enzymatic restriction and PCR analyses 

revealed that 86% of clones carry a cDNA-insert, with lengths between 0.4 and 5 kb and an 

average of approximately 1.8 kb (Fig. 5). 
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Figure 5 - Quality analysis of the Hydractinia-clone library. A. PCR analysis from plate 
001. 80% of the inserts were successfully amplified. B. Enzymatic restriction analysis of the 
plate 003. The agarose gel shows that only 8 clones were empty. In both cases high insert size 
variability was observed. 
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From the randomly picked clones, 8,151 and 827 sequences were generated from the 5´- and 

the 3´ -ends respectively. A first clustering was made by physically merging sequence reads 

derived from clones that were sequenced from both ends. Then, 8,212 sequences were 

uploaded in the sequence analysis pipeline, as described in section 2.2.8. The sequences were 

grouped into 3,808 EST clusters including 2,625 singletons and 1,183 clusters of two or more 

clones comprising 5,587 ESTs (Fig. 6). Finally, consensus sequences with an average length 

of 439 bp representing each EST cluster were generated and used in the subsequent analyses.  

 

 
Figure 6 - Prevalence distributions of the EST cluster size. Hydractinia ESTs were 
grouped into 3,808 clusters consisting of 2,625 unique sequences or singletons, 919 clusters 
of 2-5 ESTs comprising 2,622 ESTs, 182 clusters of 6-9 ESTs containing 1,261 ESTs, 36 
clusters of 10-13 ESTs comprising 393 ESTs and 46 clusters of more than 14 ESTs 
comprising 1,311 ESTs.   
 

3.1.2. ESTs functional annotation 

 
Analysis by BLASTX showed that, with an E-value acceptance cut-off of less than 10-6, 1,797 

Hydractinia sequences (47.5%) matched entries in protein databases. The majority of these 

hits accounted for vertebrate, invertebrate and non-metazoan proteins including fungi, plants, 

protists and prokaryotes. As expected, a high percentage of ESTs (38.5%, 1,468 sequences) 

exhibited no similarity to any sequence while 543 sequences (14%) presented an un-

informative annotation (Fig. 7A). In order to characterize these ESTs, we searched for known 
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protein-domain architectures within the sequences. This allowed to assign 267 new functional 

annotations (Table S1 in Additional data 1, section 6.1). 

For an overview of all the different functional classes present in the data, sequences were also 

annotated with Gene Ontology (GO) terms. Within the ontology molecular function, most of 

the Hydractinia sequences were associated with a hydrolase, transferase and binding activity 

including nucleotide, nucleic acid and protein binding. In the category biological process, the 

majority of the GO term predictions appeared to be related to metabolism (e.g. biosynthetic 

and catabolic processes), cell communication and biogenesis, transport and regulation of 

biological processes (Fig. 7B). 
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Figure 7 - Hydractinia ESTs sequence analyses. A. Distribution of Hydractinia best 
matches. Proportion of consensus sequences showing BLASTX matches in the Swissprotplus 
database (HUSAR), percentage of sequences without any significant hit, and distribution of 
best-EST matches to specific organism classes. B. Distribution of Hydractinia sequences into 
the two GO functional categories i) biological process and ii) molecular function. All 
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functional assignments were done at the “inferred from electronic annotation (IEA)” level of 
evidence. 
 

3.1.3. Non­metazoan hits 
 

In the BLASTX analysis, 22% (844 sequences) of the Hydractinia proteins showed a non-

metazoan prokaryotic hit, from which 263 and 491 sequences had homologies to bacteria 

from the beta- and gamma-proteobacteria classes, respectively. Amongst the former, 

homologies to Bordetella spp. and Burkholderia spp. accounted for the majority of the hits, 

while in the latter class, 425 sequences presented homology to Pseudomonas spp. To analyze 

if this is a common feature within cnidarians, the Hydractinia sequences were compared by 

TBLASTX algorithms to the Acropora, Hydra and Nematostella EST datasets as well as to 

the recently annotated Nematostella genome. It was observed that with an E-value acceptance 

threshold of less than 10-3, 58% (487 sequences) of the prokaryotic protein sequences are 

represented at least in one of the mentioned datasets, including 331 sequences with a hit on 

the DNA of Nematostella. Analysis at the nucleotide level using BLASTN with the same 

significance criterion revealed that 201 of these sequences (24%) are common within 

cnidarians.  

The GC profile of the sequences classified as non-metazoan was significantly different to the 

profile observed in sequences with a metazoan hit. The slope of the metazoan sequence 

dataset showed almost no overlap with the non-metazoan one, presenting median GC contents 

of 0.39 and 0.62%, respectively (Fig. 8). Unknown and un-informative sequences presented 

GC values that ranged from 0.3 to 0.85%. With average and median GC values of 0.43 and 

0.40%, unknown sequences showed a tendency to be grouped together with the metazoan 

group. However, the wide spread distribution of the data did not allow to demonstrate such a 

tendency in a significant manner. Similar was the case of sequences with un-informative hits, 

which presented a tendency towards the non-metazoan group (Fig. 8). Comparing the GC 

composition of Hydractinia sequences to different organisms, it was observed that the 

Hydractinia metazoan sequences co-clustered in the range of 39-42% of GC content with the 

GC profiles of the Hydra and Nematostella EST datasets as well as with the Caenorhabditis 

elegans cDNAs. In the case of Hydractinia’s non-metazoan consensus sequences, their GC 

content spread out from the previous mentioned profiles together with the GC percentage of 

bacteria like Pseudomonas aeruginosa and Mycobacterium tuberculosis [91-94] (Fig. 9). 



Results 

 
Figure 8 - GC profile of Hydractinia sequences. The GC content of all consensus sequences 
having a length of more than 100 bp was calculated using Composition (HUSAR). Sequences 
were sub-clustered according to the BLASTX results into metazoan, non-metazoan, un-
informative and unknown. The histogram was created by the distribution of the GC content 
into 24 bins starting at 0.30% GC content. The metazoan sequences’ GC content (median 
0.39%) was significantly different from the GC content (median 0.63%) of non-metazoan 
sequences (p < 0.05). Unknown and uninformative sequences had median values of 0.40 and 
0.60 % respectively.  
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Figure 9 - Hydractinia GC profiles compared with EST and cDNA datasets of different 
organisms. The GC content of metazoan and non metazoan sequences showed a normal 
distribution with a low standard deviation. Unknown and un-informative sequences with a 
broad distribution of their GC contents produced a significant standard deviation. The GC 
distribution of both metazoan and non-metazoan sequences (being significantly different, 
p<0.05) co-cluster with the GC profiles of other cnidarian and metazoan organisms or with 
other bacterial species (P. aeruginosa and M. tuberculosis), respectively. 
 

3.1.4. Characteristics of the Hydractinia transcriptome 
 

Using TBLASTX, the translated Hydractinia sequences were compared with the translated 

cDNAs of different vertebrate and invertebrate model organisms. When comparing the best 

hits of the Hydractinia sequences with both the vertebrate and the invertebrate datasets, it was 

observed that 153 consensus sequences presented similarity to the vertebrate sequences with 

more than 1010 fold higher significance than to their invertebrate counterparts, while only 18 

sequences appeared to be more similar to invertebrate sequences using the same criteria (Fig. 

10). Indeed, 28 consensus sequences with a vertebrate homologue but without any hit in the 

invertebrate datasets were detected. Vice versa, four Hydractinia sequences were found only 

in invertebrates (Table 3).  
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Figure 10 - TBLASTX E-values of the best Hydractinia matches to invertebrate and 
vertebrate cDNA datasets. Considering an acceptance E-value threshold of less than 10-3, 
the plot includes the consensus sequences best TBLASTX E-values within the range 10-3 and 
10-100 obtained in the comparisons against the vertebrate cDNA datasets of Macaca mulatta, 
Canis familiaris, Rattus norvegicus, Gallus gallus, Danio rerio, Xenopus tropicalis; and the 
invertebrate cDNA datasets of Aedes aegypti, Anopheles gambiae, Caenorhabditis elegans 
and Drosophila melanogaster. A significant difference between the E-values was considered 
when sequences exhibited a 1010-fold more significant similarity to one of the datasets. 
Sequences present in vertebrates or invertebrates only as well as those with E-values less than 
10-100 were not shown. This included 28 sequences found only in vertebrates, 4 sequences 
only from invertebrates and finally 11 and 2 sequences with an E-value less than 10-100 with a 
higher significance similarity to vertebrates or invertebrates, respectively. 
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Table 3 - Hydractinia sequences uniquely shared either with vertebrates or invertebrates 

A. Hydractinia sequences uniquely shared with vertebrates  
Clone name Ensembl ID entry Sequence annotation E-value 

HEAB-0024D19 xt_ens_cdna:ENSXETT00000041572 Trefoil factor 1 precursor (pS2 protein) (HP1.A) 1E-28 

HEAB-0029B17 dr_ens_cdna:ENSDART00000027368 Hypothetical protein LOC393615 8E-36 

HEAB-0031C22 pt_ens_cdna:ENSPTRT00000012985 Glycine amidinotransferase, mitochondrial precursor (EC 2.1.4.1) 8E-59 

HEAB-0033J13 hs_ens_cdna:ENST00000331336 KRAB-A domain-containing protein 2. 4E-04 

HEAB-0040I14 gg_ens_cdna:ENSGALT00000018072 Adenylate kinase 7 3E-60 

HEAB-0040K13 mm_ens_cdna:ENSMUST00000020365 Melanoma associated antigen (mutated) 1 1E-05 

tah97g01 xt_ens_cdna:ENSXETT00000046873 AP complex subunit beta 1 4E-10 

tah98a12 rn_ens_cdna:ENSRNOT00000004956 Collagen alpha-1(III) chain precursor 7E-20 

tah98g04 cf_ens_cdna:ENSCAFT00000028432 Peripheral myelin protein 22 4E-12 

tai01f07 xt_ens_cdna:ENSXETT00000001418 Coiled-coil-helix-coiled-coil-helix domain containing 5 4E-14 

tai02b03 dr_ens_cdna:ENSDART00000017605 Sperm associated antigen 6 1E-106 

tai03d04 dr_ens_cdna:ENSDART00000013591 TRK-fused 7E-52 

tai08a11 cf_ens_cdna:ENSCAFT00000037058 Trefoil factor 2 (spasmolytic protein 1) 4E-15 

tai08b11 xt_ens_cdna:ENSXETT00000008001 Guanidinoacetate N-methyltransferase. 1E-112 

tai08f03 mm_ens_cdna:ENSMUST00000006853 Hypoxia-inducible factor prolyl 4-hydroxylase 3E-08 

tai09b12 dr_ens_cdna:ENSDART00000051259 Similar to LOC407707 protein 2E-10 

tai11d10 dr_ens_cdna:ENSDART00000010591 WD repeat domain 8. 9E-60 

tai13d09 xt_ens_cdna:ENSXETT00000054650 CH41746 (Fragment). 7E-63 

tai18f11 xt_ens_cdna:ENSXETT00000047703 DNA (cytosine-5-)-methyltransferase 1 5E-32 

tai19h02 xt_ens_cdna:ENSXETT00000027639 Neuropilin-1 precursor (Vascular endothelial cell growth factor 165 
receptor) 7E-11 

tai20d09 hs_ens_cdna:ENST00000309983 Thiopurine S-methyltransferase (EC 2.1.1.67) 2E-12 

tai22h11 mmu_ens_cdna:ENSMMUT00000006486 Hypothetical protein LOC389799 1E-13 

tai27a08 xt_ens_cdna:ENSXETT00000039097 Tropomyosin 4E-12 

tam53h01 dr_ens_cdna:ENSDART00000087062 Hypothetical protein LOC791183 8E-11 

tam54a06 dr_ens_cdna:ENSDART00000062462 Fucolectin precursor 5E-05 

tam57f07 xt_ens_cdna:ENSXETT00000016398 Unknown 4E-34 

tam59f02 cf_ens_cdna:ENSCAFT00000028627 Uromodulin (uromucoid, Tamm-Horsfall glycoprotein) 2E-05 

tam61e02 dr_ens_cdna:ENSDART00000080446 Major vault protein (MVP). 1E-59 

B. Hydractinia sequences uniquely shared with invertebrates   
HEAB-0041C23 ce_ens_cdna:C07E3_1A Unknown 1E-07 

tai25e05 aae_ens_cdna:AAEL003750-RB Nucleoplasmin 2E-04 

tai29g03 dm_ens_cdna:CG9983-RF Heterogeneous nuclear ribonucleoprotein A1 (hnRNP core protein 
A1-A) 7E-04 

tam61h03 ag_ens_cdna:AGAP009040-RA Unknown 3E-08 
 
The Hydractinia sequences best match on BLASTX comparisons to the vertebrate or the invertebrate cDNA databases are 
given together with the corresponding E-value. Vertebrate’s cDNA datasets included Macaca mulatta, Canis familiaris, Rattus 
norvegicus, Gallus gallus, Danio rerio, Xenopus tropicalis; and the invertebrate’s cDNA datasets included Aedes aegypti, 
Anopheles gambiae, Caenorhabditis elegans and Drosophila melanogaster. The ensembl ID entry is provided together with 
the sequence annotation curated on ensembl and vega databases. Unknown or un-informative sequences presented no 
protein domain structure annotations. 
 

 

3.1.5. Unique sequences of Hydractinia 
 

Attempting to detect genes present in the Hydractinia transcriptome but absent in other 

cnidarians, the Hydractinia sequences were compared by TBLASTX with all available 

cnidarian sequences including the ESTs of Acropora millepora, Hydra spp., Nematostella 

vectensis and its genomic DNA data. With an acceptance significance E-value of less than 10-

3 and excluding all ESTs related to a non-metazoan sequence (discussed above), 23 unique 
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Hydractinia sequences with a known protein or protein-domain hit were detected (Table 4). 

Some sequences pointed to the same protein domain hit. However, analysis by specialized 

BLAST algorithms such as Bl2seq (data not shown) revealed that theses sequences do not 

have a significant sequence similarity among each other, corroborating that they were not 

clustered by the Gel assemble program in the sequences analysis pipeline. Regarding the 

consensus sequences having a non-metazoan match, 393 sequences were uniquely present in 

the Hydractinia dataset. 

 

Table 4 - Hydractinia echinata unique sequences 
Clone name Sequence GenBank ID Protein match ID number at Sequence/domain annotation  
    GenBank /Inter Pro   
HEAB-0027M01 68411965 IPR008412 Bone sialoprotein II 

HEAB-0034N17 74135604 IPR002952 Eggshell protein 

HEAB-0036J11 74132951 IPR001876 Zinc finger, RanBP2-type 

HEAB-0038D19 74134674 IPR005649 Chorion 2 

HEAB-0038H17 74134662 IPR006706 Extensin-like region 

HEAB-0039H23 74134110 IPR005649 Chorion 2 

HEAB-0040M05 74134400 IPR003908 Galanin 3 receptor 

HEAB-0042M23 74134684 IPR001841 Zinc finger, RING-type 

tah96a10 49453351 IPR006706 Extensin-like region 

tah98e04 49451948 IPR002952 Eggshell protein 

tah99a03 49453544 IPR007087 Zinc finger, C2H2-type 

tai01f07 50347174 gi: 62510506 CHCH5_HUMAN 

tai01g09 50347183 IPR006706 Extensin-like region 

tai08h10 50351274 IPR000637 HMG-I and HMG-Y, DNA-binding 

tai10f09 50348080 IPR007087 Zinc finger, C2H2-type 

tai21h03 50351781 IPR005649 Chorion 2 

tai32e08 50351456 IPR001152 Thymosin beta-4 

tai35e09 50352319 IPR010800 Glycine rich 

tai46c12 50697716 IPR007223 Peroxin 13, N-terminal 

tam53h06 59829660 IPR007718 SRP40, C-terminal 

tam54c10 59829689 IPR002952 Eggshell protein 

tam55f08 59829784 IPR006706 Extensin-like region 

tam57a05 59829876 IPR007223 Peroxin 13, N-terminal 
 
The left column gives the clone ID number of the Hydractinia library. Along is provided identifier ID of the sequence 
at GenBank as well as the InterPro or Swissprot identifier of the sequences best match and its annotation obtained 
directly by the BLASTX algorithms (with an E-value acceptance threshold of less than 10- 6) or after the 
Domainsweep analysis. 
 

 

3.1.6. Searching for genes associated with the marine or colonial characteristics 
of Hydractinia 

 

The few cnidarians that are being used as model systems differ markedly in many aspects of 

their biology, morphology and life history. Among these cnidarians are solitary as well as 

colonial species, polyps living in freshwater environment and marine organisms. In addition, 
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these species have different stem cell systems, reproduce non-sexually or sexually and inhabit 

different ecological niches. Taking marine vs. freshwater and solitary vs. colonial as working 

examples, the cnidarian datasets were analyzed to find genes unique to two different 

combinations of cnidarians as follows: (i) Hydra and Nematostella are solitary polyps 

whereas Acropora and Hydractinia are colonial. (ii) Hydra is a freshwater organism whereas 

Hydractinia, Nematostella and Acropora are marine animals. Seeking for genes linked to 

these traits, with TBLASTX algorithms all Hydractinia sequences shared with Acropora and 

Nematostella but not with Hydra were extracted, as well as all sequences present in 

Hydractinia and Acropora but missing in the Hydra and Nematostella datasets. Using the 

same significance criteria as above (E-values less than 10-3), 11 Hydractinia sequences shared 

by Acropora and Nematostella were absent in Hydra. Only one of the sequences did not have 

any GO terms or match in the Swissprot-Trembl databases. The 10 remaining sequences were 

mainly related to metabolism including catalytic activities, protein modification, protein 

mediated transport, physiological processes, and signal transduction (Table 5A; Table S2A in 

Additional data 1, section 6.1). In the second analysis, 15 sequences were uniquely found in 

Hydractinia and Acropora. Despite the fact that most of these sequences were primarily 

considered by the BLASTX annotation as unknown or un-informative, Domainsweep and GO 

analyses helped to determine a functional annotation in some of them. As in the first group of 

sequences, they were also associated with metabolism (catalytic and biosynthesis), nucleotide 

binding, signal transduction, and one was related to an intracellular non membrane-bound 

organelle (Table 5B; Table S2B in Additional data 1, section 6.1).  
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Table 5 - Hydractinia sequences compared to other cnidarians model organisms 
A. Hydractinia protein sequences present in Acropora, Nematostella but not in Hydra     

Clone name  ID Sequence/domain annotation E-value 
GO: 

Biological  GO: Molecular  
  GenBank     Process Function 

HEAB-0029E05 74134839 Lanin A-related sequence 1 protein 1E-16 GO:0007582  n/a 
HEAB-0029J09 74133868 Nuclear protein 1 (p8) 4E-08 n/a n/a 
HEAB-0038N23 74134624 MKIAA0230 protein (Fragment) 1E-41 n/a GO:0004601  
tai09b01 50352378 Guanine nucleotide-binding protein Υ-e subunit  precursor 2E-09 GO:0008277  GO:0004871  
tai11f02 50348136 Malate synthase  1E-91 GO:0008152  GO:0004474  
tai11g12 50348149 lysosomal thioesterase ppt2 precursor 2E-45 GO:0006464 GO:0016787  
tai20d03 50351692 AP-4 complex subunit sigma-1  2E-08 GO:0016192  n/a 
tai33g08 50352245 Isocitrate lyase 2E-72 GO:0008152  GO:0016829  
tam56f07 59829849 Cephalosporin hydroxylase family protein 1E-08 n/a n/a 
HEAB-0023B24 68411515 Unknown function n/a GO:0005975  GO:0004033  
tam53d11 59829628 Unknown function n/a n/a n/a 
B. Hydractinia protein sequences present in Acropora but not in Nematostella and Hydra     

HEAB-0020F05 68411267  2-c-methyl-d-erythritol 4-phosphate cytidylyltransferase 1E-24 n/a GO:0008299 
HEAB-0024D20 68411599  Response regulator receiver protein 6E-09 n/a GO:0000166  
HEAB-0028A08 68334384  Major facilitator superfamily MFS_1 1E-38 n/a n/a 
HEAB-0028B20 68334404  Fatty-acid desaturase. 2/2007 2E-16 n/a n/a 
HEAB-0037F13 74133658  PcaB-like protein. 2/2007 1E-94 n/a GO:0016829 
HEAB-0039G08 74134978  Signal peptidase I precursor (EC 2E-24 n/a GO:0000155  
HEAB-0042I20 74133750 Glucose-methanol-choline oxidoreductase, N-terminal n/a n/a n/a 
HEAB-0020L20 68411323 Unknown function n/a n/a GO:0005884 
HEAB-0026O12 68411824 Unknown function n/a n/a n/a 
HEAB-0029G01 74134845 Unknown function n/a n/a n/a 
HEAB-0036O10 74133537 Unknown function n/a GO:0006810  GO:0000166  
HEAB-0042L12 74133375 Unknown function n/a n/a n/a 
tai07g10 50350972 Unknown function n/a n/a n/a 
tai16a08 50352144 Unknown function n/a n/a n/a 
tai40g01 50697024 Unknown function n/a n/a n/a 
 
The left column gives the clone ID on the Hydractinia library. Along is provided identifier of the sequence at GenBank as well as the 
 annotation obtained by BLASTX comparison to the Swissprot/Sptrembl databases with the corresponding e-value. In case of  
annotation by domain analyses, the Inter Pro domain ID was provided. The last two right columns show the sequences GO annotations  
from two main GO categories. For the GO description terms see Supplementary data. Non applicable (n/a) was considered when  
sequences had no significant match to either domain-Swissprot/Sptrembl or GO databases. 
 
 

 

3.1.7. Analysis of selected genes by semi­quantitative RT­PCR 
 

From the unique Hydractinia transcripts and the ones shared with one or more cnidarians, a 

subset was selected to analyze their expression pattern during the life cycle of the hydroid by 

semi-quantitative RT-PCR. Their transcriptional level was compared by agarose gel 

electrophoresis and ethidium bromide staining, using actin gene as reference. In the different 

life stages, the transcripts HEAB-0042L12, Tai20D03 and Tai09B01 showed an invariant and 

similar amount of mRNA as the reference. The HEAB-0034N17 gene also followed the same 

transcription pattern, in spite of its low expression level. In the case of Tai16A08, a transcript 

only shared with Acropora, a strong gene expression level was detected in the adult, while a 

mild one occurred during early embryo, pre-planula and primary polyp stages. Interestingly, 
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no expression was observed during larvae. Similar was the case of the Hydractinia unique 

transcript Tai08H10 presenting a high abundance in the primary polyp stage, a mild one in 

early embryo, larva and adult stages, and was undetectable in pre-planula. Finally, the 

Hydractinia transcript Tai11F02, shared only with Acropora and Nematostella, exhibited a 

mild expression in pre-planula and adult, a strong one in primary polyp, but was undetectable 

in early embryo and larva stages (Fig. 11). These three transcripts, having a specific 

expression pattern, are interesting candidates for further functional analysis. 

 

 

 
Figure 11 - Semi-quantitative RT-PCR analysis. (sq)RT-PCR products were loaded in an 
agarose gel to determine their relative level of expression. Actin was considered as reference. 
HEAB-0042L12 and Tai16A06 sequences are only shared with Acropora and the function of 
both protein products is unknown. HEAB-0034N17 and Tai08H10 are unique sequences of 
Hydractinia, the former carrying an eggshell protein domain and the latter with a DNA-
binding activity, respectively. The rest sequences are shared with Nematostella and Acropora 
but not Hydra. Tai20D03 is annotated as an AP4S1 homologue, Tai09B01 as a guanine 
nucleotide-binding protein Y, and Tai11F02 as malate synthase. 
 

3.1.8. Hydractinia Database 
 

A database was created in order to optimize the handling of all generated data, including the 

physical information of each EST clone but also the results of the EST-clustering, the 

representative consensus sequences, or the BLAST programs (Fig. 12). Searches within the 

database can be done with GeneBank identification numbers, clones or consensus sequence 
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names, etc. It is possible to simultaneously query different fields by combining search criteria 

with “AND” and “OR”. Query results are listed on screen, with direct links to the detailed 

clone or sequence information, which can be easily extracted for further analysis. The EST 

database can be accessed at: http://www.mchips.org/hydractinia_echinata.html. 

 

 

Figure 12 - The Hydractinia EST database web interface and information page. The 
database can be accessed on the web at http://www.mchips.org/hydractinia_echinata.html.  
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3.2 Hydractinia cDNA­microarray  
 

3.2.1. Construction of the Hydractinia cDNA microarray  
 

The Hydractinia chip-library was amplified by PCR in a 96-well plate format. To assess the 

quality and quantity of the PCR products, an aliquot of the total PCR reaction volume (100 

µl) was analyzed by agarose gel electrophoresis and ethidium bromide staining (Fig. 13).  

From the 9,216 clones present in the library, 87 % were successfully amplified.   
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Figure 13 - PCR amplification of the Hydractinia-chip library. Two 96-well plates where 
amplified in a 100 µl PCR reaction, from where 2 µl were loaded in a 1.5% agarose gel. The 
ladder L used is the GeneRuler 1k DNA ladder. 
 

Considering that each PCR probe was printed out in duplicate, the cDNA microarray 

comprised 19,200 spots with a diameter of approximately 100 µm and separated from each 

other by 140 µm (Fig. 14). The spots were organized in 48 blocks of 400 spots each, with 20 

spots in X axis and 20 spots in the Y axis (Fig. 14B). To account for local intensity 

differences within the array, the duplicate (primary and secondary) spots were distributed in 

different blocks. With the first visit of the pins to the PCR source, all primary spots were 

delivered on the left side of the slide (blocks 1 to 24). Then, in a second visit, the pins 

delivered the secondary spots on the right side of the slide (blocks 25 to 48). Thus, in one 

aminosilane slide of 25 x 75 mm two identical arrays (primary and secondary) were printed 

out (Fig. 14B). Homogeneity in the size and shape of the spots was achieved with the 

inclusion of 6 ‘pre-spot slides”, which were visited 8 times by the pins directly after the up-
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take of the probe. Per printing run the robot was able to produce 108 cDNA-microarrays 

slides, from which 80% of them were used for hybridization experiments. The 10 first and last 

microarrays-slides were used for optimization procedures. 
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Figure 14 - Construction and design of the Hydractinia microarray. A. In one single run, 
the MicroGrid II robot printed out 108 slides with 9,600 spots in duplicate. B. Schematic 
representation of the array. Within each block, the upper spot lines correspond to the external 
and null controls, followed by the un-sequenced PCR products. The lower part of the array 
contains the already sequenced and annotated Hydractinia genes. 
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3.3 Transcription profiling experiments 
 

3.3.1. Searching for i­cell related genes in Hydractinia – the mitomycin microarray 
experiment 

 

3.3.1.1. The mitomycin treatment 

The Hydractinia microarray was used to analyze the gene expression profile of colonies 

depleted from their i-cells using the antibiotic mitomycin-C, and after their recovery from the 

treatment. For this purpose, three female Hydractinia colonies -F0, FM and K12, the last two 

having the same genotype- were incubated with mitomycin-C as described in section 2.2.1.2. 

A clone member of the K12 colony served as control. For each colony, three small subclones 

were used as biological replicates.  

At 24 hours post-treatment, the first drug effects were observed in the F0 colonies assessed by 

a continuously contraction of the tentacles. In the following 24 hours the same effect but 

milder was observed in the K12 colonies, while the FM colonies still looked unaffected. The 

latter showed a relatively mild effect at 72 hours post-treatment (Fig. 15). By this time the 

K12 polyps started to resorbe their tentacles, while the rest of the colony seemed intact. 

However, F0 colonies exhibited a dramatic drug response. Their tentacles completely 

disappeared and polyps started to be resorbed or degraded. In addition, a significant amount 

of death tissue detached from the colony (Fig 15). 
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Figure 15 – The mitomycin phenotype effect at 72 hrs post-treatment. A. Wild type B. 
FM colonies showed tentacle-tip contraction, representing a mild response to the drug. C.  
K12 colonies showed a markedly tentacle contraction and some polyps exhibited signs of 
tentacle resorbtion. D.  F0 colonies presented polyps depleted of tentacles and signs of polyps 
resorbtion. 
 

At 96 hours post-treatment, small explants of treated and control colonies were fixed and 

stained to assess drug i-cell depletion (see methods, section 2.2.1.4). I-cells, rich in ribosomes, 

were stained with basic blue dyes as May-Gründwald and Giemsa. Cytological examinations 

of the colonies stolonal compartment revealed that in F0 colonies most if not all i-cells were 

eliminated. In addition, no nematoblasts were found and a significant amount of apoptotic 

material was observed (Fig. 16D). This suggests that the harsh treatment did not specifically 

target the i-cell population of the F0 colonies. In regard to the K12 colonies, the treatment 

resulted in strong i-cell depletion, identifying only a couple of i-cells in all analyzed fields 

(Fig. 16C). However, other cell types, as nematoblasts and epithelial cells, seemed unaffected. 

In FM colonies several i-cells were detected, but its density still presented a significant 

difference in comparison to the untreated control (Fig. 16A-B).  
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Figure 16 - Mitomycin i-cell depletion at 96 hrs post treatment.  Whole mount preparation 
of the stolon plate of control and mitomycin treated colonies stained with May-Grünwald and 
Giemsa. A. high number of i-cells can be detected throughout the interstitial space of wild 
type colonies. B. FM colonies showed mild i-cell depletion, which is still significant in 
comparison to the control. C.  Only few i-cells were detected in K12 stolons. As in the case of 
the FM colonies, nematoblasts seemed unaffected by the drug. D. F0 colonies presented a 
complete i-cell and nematoblast depletion. 
 

Once the success of the drug treatment was determined, explants from the middle and the 

edge of each colony were extracted. Immediately, RNA was isolated for the microarray 

experiments. Then, to recover the wild type phenotype, the corresponding donor-explants 

were grafted to the central and peripheral region of the treated colonies. After three days, the 

donor stolons started to weakly fuse with the FM and K12 colonies. However, this did not 

occur in the F0 colony and therefore, no donor i-cell was delivered. Consequently, the colony 

followed a complete polyp re-absorption and was unable to bud new ones. The drug treatment 

was too strong for the F0 colony, which after two weeks, showed signs of stolon plate 

degradation and necrosis. This colony was discarded for any further analysis. 
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K12 colonies maintained their condition for up to 3 weeks. Despite that the colonies did not 

show any signs of degradation, no new polyps budded. The colony-donor junctions were 

weak and continuously disrupted. This suggests that i-cell migration, if occurred, was not 

constant. Thus, the polyps that survived the drug treatment were probably able to continue 

feeding the colony. Nevertheless, at the 4th week the colony started to resorb polyps and 

degradation of stolon tissue was observed.  

In contrast, the FM colony presented stable donor-colony junctions and started to bud new 

polyps at the 3rd- 4th week. For this colony the drug treatment had a milder effect, and 

therefore, presented better chances for survival. After 4 weeks, the wild type phenotype of the 

FM colony was recovered in different parts of the stolon mat (Fig. 17). Interestingly, the 

budding of new polyps was not exclusive to the place where the donor-explants were grafted. 

Finally, RNA was only isolated from active polyps budding areas.  

 

 

Figure 17 - Recovery of the FM mitomycin treated colony. The FM colony budded new 
polyps in different spots throughout the colony. At these areas, no difference was observed in 
comparison to the wild-type colony. A. wild type colony. B.  An active polyps budding area 
of the recovery FM colonies. 
 

3.3.1.2. Quality control of the isolated RNA  

The quality of the RNA sample used in a microarray experiment is critical to obtain 

meaningful gene expression data. Therefore, only high quality RNA samples with integrity 

values (RIN) above 6,5 and absorbance ratios of at least 1,9 were selected. 

For the mitomycin microarray experiment total RNA was isolated from the control condition 

(untreated colony) and from the FM milder and K12 stronger i-cell depletion phenotypes at 96 

hours post treatment. Three biological replicates were used per sample. In addition, the 

recovery phenotype of the FM colony (FMR) was represented by RNA isolated from new 

polyps budding areas at 4 weeks post treatment. To accomplish a higher RNA yield from each 
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tissue, several RNA isolations were done in parallel (Fig. 18). Finally, for each sample 

condition the RNAs were pooled and their concentration was determined. 

 
L             FM1        FM2 FM3         FM4       FM5        FM6   K12_1    K12_2      K12_3     K12_4    K12_5   K12_6 FMR1   FMR2   FMR3

 
 

Figure 18 - analysis of the RNA quality. For each condition, RNA samples having a RIN ≥ 
6.5 and an abs. ratio (260 nm/280 nm) above 1.9 were pooled. This was done with six FM, six 
K12 and 3 FM recovery (FMR) samples. In the case of the wild type colonies, 8 high quality 
samples were pooled (not shown). The two main bands in the figure correspond to the 28s and 
18s rRNA. 
 

3.3.1.3. Labelling of RNA samples and microarray experimental design  

Each RNA sample to be hybridized into the array was labelled with Cy3-dCTP or Cy5-dCTP 

through reverse transcription (RT) (see methods, section 2.2.5.2). For the labelling reaction 

different quantities of RNA were tested, without finding any difference in the product yield if 

7,5 or 15 µg were used. Therefore, for all microarray experiments, 7,5 µg of total RNA were 

defined as the starting material for RT, producing between 1.5 and 2.5 µg of labelled cDNA. 

To prevent bias due to preferential label incorporation, an even microarray design including 

dye-swap was followed (Fig. 19). In addition to the duplicate spots of each gene per array, 

error measurement and noise were addressed by six technical replications per sample 

hybridization. This means that in a profiling experiment of two RNA samples, 12 data points 

per gene were generated for each condition.  
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Control wild type
FM mild mitomycin
response

K12 strong 
mitomycin response

FMR recovery 
phenotype

3 X

3 X

3 X

3 X

3 X

3 X

Cy5
Cy3

 
Figure 19 - Double reference design of the mitomycin microarray experiment.  Duplicate 
spots per gene in the array generated 2x data points per gene, which can be used for quality 
control of individual arrays. In addition, in each competitive comparison, each sample was 
labelled 3X with Cy3 and 3X with Cy5 (dye swap). 
 

3.3.1.4. Signal detection and quantification of the hybridizations   

All hybridizations comparing a sample condition against a control were performed in parallel 

and with the same amount of labelled material. For a successful hybridization at least 1.5 µg 

of labelled cDNA per sample were needed. Hybridized slides were scanned at different PMT 

levels and the signal intensities were quantified and analyzed with the Genepix software. We 

selected all images in which the brightest pixels were just below the level of saturation. By 

this, the sensitivity of the image analysis for the less bright pixels was increased. This resulted 

in the use of different PMT levels for the Cy3 and Cy5 channels.  

The Genepix software quantifies the signal intensity of each gene printed on the array. By 

overlying the image of the Cy3 and Cy5 intensity channels, it was possible to have a rough 

estimation of the number of differentially expressed genes. In neither of the hybridized slides 

unspecific hybridization to the external controls LORECs occurred, since all these fragments 

produced equal signal intensity to the background (Fig. 20). 

Background and foreground intensities were analyzed to determine local intensity variation on 

the array surface. All arrays showing bad quality hybridizations, unreliable spots, artefacts, 

bad reproducibility, or a strong background were eliminated from further analysis. From the 

22 randomized microarray slides hybridized with mitomycin and control labelled material, 16 

(73%) scanned images were selected for gene expression analyses. All information, including 
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signal intensity values of the Cy3 and Cy5 channels, local background data, pixels, saturation 

levels, etc. were exported as a table (.GPR) for normalization. 

 

 

Figure 20 - The Hydractinia microarray.  Labelled-cDNAs from FMR and wild-type 
colonies were co-hybridized in the array. The left scanned image correspond to the complete 
cDNA microarray. Yellow boxes represent the block borders. Within each block it is possible 
to observe that the sequenced PCR products –red box- are highly hybridized. The blue box 
corresponds to external and negative controls. White spots resemble signal saturation. 
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3.3.1.5. Normalization and filtering of the microarray data 

In a two-colour array experiment one of the measurements (Cy3 or Cy5) corresponds to the 

reference. Thus, there are an equal number of control and condition measurements. Since the 

same reference (wild-type colony) was used in all hybridizations, it was possible to combine 

all experimental conditions (FM, FMR and K12) in one analysis.  

The M-CHiPS software package was used for data normalization and analysis. The entire 

gene set printed on the array was used for the fitting normalization algorithms, since many of 

them are not differentially expressed. The performance of the normalization was assessed by 

plotting the fitted intensities of the condition and the control measurements together with the 

logarithmic regression curve [65]. All 16 normalized hybridizations presented a regression 

curve with correlation coefficients above 0.85 (data not shown). 

Practically, only a limited number of genes can be followed up in a biological study. 

Therefore, after normalization, we selected and ranked the genes according to their good 

evidence of being differentially expressed. First, all genes above the detection limit i.e. 

exhibiting saturation effects, were filtered out. This resulted in the elimination of 40 genes. 

However, in an array experiment the majority of the genes are not expressed to a measurable 

level. Thus, in a second filtering step, we selected 2,614 genes exhibiting a considerable 

absolute expression level (i.e. with median of fitted intensities > 1.000 AU) at least in one of 

the analyzed conditions. The number of replicates in each experimental condition (12 data 

points per gene per condition) allowed a robust statistical analysis (SAM). This was used to 

select 167 genes with a significant differential gene expression (corrected p-value < 0.05) 

between the control measurements and at least one of the other conditions (Fig. 21). Finally, 

we selected 162 genes (1,8% from the whole gene-set) displaying a minimum of 2-fold 

difference in their expression level. Plots of the Log10 fitted intensities of all three conditions 

against the control showed, that most of the genes are tightly clustered along the diagonal line 

(Fig. 21A). This suggests a high correlation between the two channel intensity data. However, 

there is a significant subset of outlier-genes with nonlinear relationships between the Log 

intensities. They represent successfully selected transcripts that are significantly differentially 

regulated in the experimental conditions analyzed (Fig. 21B) 
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Figure 21 - Pair-wise comparison of the fitted intensities from the conditions FM, FMR 
and K12 with the reference control.  A. Scatter plot of Log10 R (red) vs. Log10 G (green) 
including all genes and B. only the filtered ones. The differentially expressed genes stand 
clearly out of the main cloud of un-regulated genes. 
 

3.3.1.6. Correspondence analysis 

For data interpretation, the selected differentially expressed genes were analyzed with 

different applied statistic methods.  Correspondence Analysis (CA), available in the M-CHiPS 

software package, was used to determine the association both within and between genes and 

conditions (section 2.2.9.2). In Figure 22, each hybridization separated into primary and 

secondary spot (duplicates within array) is represented as colour boxes. Condition replicates 

(same colour boxes) were clustered together and each cluster-condition was properly 

separated between each other. 

The plot evidently shows that the K12 condition (pink), representing a strong i-cell depleted 

phenotype, spread far away from the wild type control (red). FM condition (green) follows 

another direction, between K12 and FMR hybridizations, correlating to a mild i-cell depletion. 

The recovery phenotype (FMR, blue) was distributed in a completely opposite direction to the 

K12 hybridizations, providing the higher distance in the biplot (Fig. 22). In a broad view it is 

possible to consider a closer relationship between the wild type, FM and FMR phenotypes. 

For an easy interpretation, lines representing standard coordinates of the measurement 

conditions were introduced into the plot. These lines were generated by the addition of 

hypothetical virtual gene-vectors that have an ideal transcriptional profile for each condition. 

The “real” selected genes are visualized as gray dots. Thus, the association between genes and 
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conditions can be determined by the position of the genes with respect to the standard 

coordinate lines and their distance from the centroid [73]. Genes located in the direction of a 

particular standard coordinate line show a strong expression in such condition. The further 

away from the centroid, the stronger is the association. Consequently, down-regulated genes 

appeared in the opposite site of the centroid. In the biplot, it is possible to observe that most of 

the genes were down-regulated in the K12 condition (Fig. 22).  
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Figure 22 - Correspondence analysis of FM, FMR and K12 conditions. All 162 selected 
genes are represented as gray dots. The biplot clearly shows four directions corresponding to 
FMR, FM, K12 and control conditions. The duplicate spots of the array, primary (p) and 
secondary (s), are displayed with the hybridization numbers and in light and dark colours, 
respectively. Lines follow the direction of the standard coordinates of the condition medians 
with the respective colours. 
 

3.3.1.7. Hierarchical clustering  

The relationships between the biological samples were analyzed based on their different gene 

expression patterns, represented by the logarithmic ratio between the median signal intensities 

of the conditions and control measurements (Conditions/Control) [71]. For this purpose, the 

TIGR Multiexperiment Viewer (MeV) was used. 
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In the mitomycin experiment, the values of the Log2-transformed expression ratios varied 

between 5 and -5. K12, FM and FMR experimental conditions presented expression ratio 

medians of -2.1, -0.1 and -0.4, respectively. For an easy visualization of the data, the 

logarithmic ratios were represented as a colour-code heat map. Relative to the wild type 

control, green shading indicates decreased gene expression, red shading indicates increased 

gene expression and black was used in case of no regulation (Fig. 23). 

Based on the premise that co-expression is a result of co-regulation, genes were grouped into 

expression clusters. Ordering genes into meaningful groups provides the genetic fingerprint of 

a particular condition, allowing the extraction of gene networks and the functionality of even 

unknown genes. The selected microarray data was clustered using two different methods.  

First, a hierarchical clustering (HCL) algorithm using Pearson correlation as a distance 

metrics was applied. The HCL resulted in a tree representation of the data, whose leaves are 

the input patterns and the nodes represent a hierarchy of groupings [65]. In order to reduce the 

complexity of the tree and extract meaningful information of co-regulated genes, an inter-

node distance threshold of -0.99 was applied. This resulted in 15 main nodes or clusters (Fig. 

23). Elements on nodes, with distances below this threshold, can be considered as one entity. 

Correlating the results from the CA biplot, most of the genes can be grouped into two main 

clusters with a high down-regulation expression profile for the K12 condition. These two 

clusters differentiate between each other, because one of them presented a marginal gene up-

regulation in the FM condition. The rest of the genes can be subdivided into small groups of 

two to 13 genes per clusters with different expression profiles. Experimental conditions were 

separated into the FMR node and the FM - K12 cluster, again supporting the CA (Fig. 22-23). 
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Figure 23 - HCL analysis of the mitomycin microarray data.  All 162 selected genes are 
individually ordered as rows, while the samples are ordered in columns. HCL was used to 
group the data into 15 main clusters or nodes. They are represented by dark blue branches and 
a translucent wedge from that node to all enclosed elements. Sub-nodes, below the cluster 
distance threshold are shown as light gray branches. The length of the branches is 
proportional to the distance between the nodes. The scale followed up the median of the data, 
between -2 and 2. 
 

3.3.1.8. Figure of Merit algorithm and k­means clustering  

We sustained the analysis of the microarray data with k-means clustering algorithm (KMC). 

First, the predictive power of the KMC in generating the clusters was assessed using a Figure 

of Merit (FOM).  

FOM values were calculated for 40 clusters using KMC and both variables were plotted to 

define the optimal clustering parameters for k-means (Fig. 24). In the first k-means runs, the 
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value of the adjusted FOM drastically decreased. At 9 clusters, the slope of the curve changed 

to a smooth profile. However, the FOM number still presented a significant difference if 10 or 

20 clusters were used. For this microarray data, it was considered that KMC performs 

optimally for 15 clusters. Additional clusters will not provide meaningful information. This 

was also empirically demonstrated, by testing k-means using 20 and 25 clusters. This resulted 

in several single-gene (singletons) or even empty clusters. 

 
Figure 24 - FOM analysis for k-means algorithm.  FOM helps to define the best parameters 
to use for the k-means clustering algorithm. The lower is the FOM value, the higher is the 
predictive power of k-means. 200 FOM iterations were performed in the analysis. The mean 
FOM values are showed as red dots with the corresponding standard deviation. 
 
In KMC there is a partition of the dataset into defined clusters. From the FOM analysis we 

defined 15 clusters for k-means (Fig. 24). Again Pearson correlation as distance metrics was 

used. For an easy visualization of the clustered data, the Log2-transformed expression ratios 

(conditions/control) were plotted for the recovery (FMR), mild (FM) and strong i-cell 

depletion (K12) phenotypes (Fig. 25-28). K-means successfully distributed the genes into 

clusters having a similar transcription profile. Pearson correlation grouped genes with 

different intensity levels but with same expression patterns. Besides confirming the results of 

HCL, k-means showed a better distribution of the clustered genes. Redundant genes were 

grouped in the same cluster or distributed in clusters with a similar expression pattern, only 

differentiated due to a small variation in the weight of the cluster curves. This is the case of 

RNA-binding protein 12b, mini-collagens or genes with egg-shell domains in clusters 1, 8 and 
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5 respectively (Fig. 25-27). In order to extract all possible information from the expression 

kinetics of the three conditions analyzed, a GO-term colour-code annotation was added to the 

graphic representation of the data. Subsequently, clusters with genes exhibiting a similar and 

specific expression pattern for a particular condition were grouped for individual analysis. A 

selection of the most interesting clusters is described below. The rest of the clusters are 

provided in the Additional data 2 (section 6.2). 

 

3.3.1.9. Genes  up­regulated  in  organisms  mildly  depleted  from  i­cells  (FM 

condition) 

A total of 24 genes, grouped into two clusters, were highly regulated in the FM condition 

(Fig. 25). In cluster 1, the centroid curve (red) – which represents the mean expression profile 

of the cluster– reached a 3-fold up-regulation. This average expression level could be affected 

by the extreme activation of the Gluthation S- tranferase gene. In cluster 12, most of the genes 

followed an expression profile curve with a 2-fold up-regulation in the FM condition (Fig. 

25). In both clusters, gene expression profiles were accompanied by a down-regulation in the 

FMR phenotype and almost no regulation in the K12 condition. GO annotation revealed that 

the majority of the genes presented a binding activity. Interestingly, several lectin genes 

appeared in these clusters and a putative Bone morphogenetic protein-4 (Bmp-4) homologue 

was identified.  
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HEAB-0035E15g1.con RNA-binding protein 12b

tai04c03x1_PT_O.con Glutathione S-transferase

tai47g07y1.con GO:0000166 F nucleotide binding 

HEAB-0020F15g1_PT.con RNA-binding protein 12b

HEAB-0044B02 RNA-binding protein 12b

HEAB-0045D05 IPR002952 Eggshell protein

HEAB-0046D08 RNA-binding protein 12b

tai12h10_J.con Rhamnose binding lectin STL4

tai23d10y1.con GO:0016787 F hydrolase activity  

tai48h01y1.con RNA-binding protein 12b

tai26c04y1.con Rhamnospondin 2 (Fragment)

Cluster 1 (14 genes)

GO Terms

Centroid curve

Binding activity

Growth / Transcription factor activity

Catalityc activity

Transporter activity

Unknown

Clone ID Sequence annotation

HEAB-0027G10 Predicted protein IPR006210; EGF

HEAB-0028P12g1.con Protein putative kinase

HEAB-0029K06g1.con Putative Bone morphogenic protein 4

HEAB-0034H12g1.con L-rhamnose-binding lectin

HEAB-0041M08g1.con Rhamnose-binding lectin OLL

HEAB-0041P11g1.con Conodipine-M alpha chain

HEAB-0049C03 IPR016090 Phospholipase_A2

tai15f07y1.con Protein kinase

HEAB-0020E07g1.con 8(R)-lipoxygenase
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Figure 25 - Genes highly expressed in FM condition.  Expression level of each condition 
was referenced to the control using Log2 ratio. Recovery phenotype corresponds to FMR 
condition. Mildly and a strongly i-cell depletion represent FM and K12 condition, 
respectively. Logarithmic is in units of 2-fold changes, e.g. Log2 ratio = 0 corresponds to an 
equal gene expression between the condition and the control. The gene identification ID and 
annotations are listed in the table. Gene annotation was performed through BLAST, GO and 
Domain analysis. Unknown genes were plotted in gray colour, but are not listed in the table. 
 

3.3.1.10. Genes  highly  down­regulated  in  organisms  strongly  depleted 

from i­cells (K12 condition) 

Most of the selected genes (46%) were distributed in four clusters exhibiting a dramatic 

decrease in their expression level in the K12 condition, reaching in average a 6-fold down-

regulation with respect to the control. In contrast, the expression profiles of the FM and FMR 

conditions were not affected (Fig. 26). All these sequences were also detected with the HCL 

algorithms, but grouped into just two main clusters (Fig. 23). Thus, k-means was more 

sensitive to identify similar patterns between these sequences and provided a better 
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representation of the data. These clusters contained several collagen related genes; including 

genes encoding for collagen like proteins, mini-collagens, and genes with collagenase 

domains. The different identified mini-collagen genes showed no similarity between their 

sequences. In clusters 2 and 8; most of the sequences presented a binding, transport or 

structural activity, while in cluster 15; genes with a catalytic activity were highly represented. 

 

3.3.1.11. Genes down­regulated in the recovery (FMR) and strongly i­cell 

depleted phenotype (K12) 

The expression profiles represented in the following clusters are quite similar to the ones of 

clusters 2, 8, 10 and 15. However, by careful analysis of the expression patterns, it is possible 

to detect their differences. First, down-regulation in gene expression in the K12 condition was 

milder, exhibiting a mean of 4-fold change. In addition, in the recovery phenotype all genes 

showed a down-regulation effect of about 1 fold-change, having a clear difference to their 

expression level in the FM condition (Fig. 27). This was not the case for the clusters of Figure 

26, where no change in expression was observed in the FM and FMR conditions.  

Only four of the six clusters exhibiting this expression pattern are shown in Figure 27 (for the 

rest of the clusters see Fig. S1 in Additional data 2, section 6.2). Most of the gene sequences 

presented no match to the protein, protein-domain or GO databases. From the genes with a 

known functional annotation, we detected the CnPL10 homologue which encodes a protein 

that belongs to the DEAD-box RNA helicase family [95]. The Hydractinia homologue of 

RAD23, encoding a protein involved in DNA repair, was identified in cluster 4. Again, several 

genes carrying similar functional information appeared in the same clusters which 

corroborates the quality of the microarray data and clustering algorithm. An example is 

provided by the three genes bearing the same eggshell protein-domain grouped in cluster 5. 
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Figure 26 - Genes highly down-regulated in K12 condition.  The expression level of the 74 
genes in each condition was referenced to the control using Log2 ratio. List of genes with the 
corresponding annotation are provided in the table. For an easy overview, a GO colour code 
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annotation for each gene is provided in the transcriptional profiling curve. Unknown genes 
were plotted in gray colour, but are not listed in the table. 
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Figure 27 - Genes down-regulated in FMR and K12 conditions.  From the six clusters (34 
genes in total) following this expression pattern, only four are shown. Expression level of 
each condition was referenced to the control using Log2 ratio. List of genes with the 
corresponding annotation are provided in the table. For an easy overview, a GO colour code 
annotation for each gene is provided in the transcriptional profiling curve. Unknown genes 
were plotted in gray colour, but are not listed in the table. 
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3.3.1.12. Clusters with other gene transcriptional profiles 

Only cluster 3 grouped genes, which were up-regulated by a factor of 2 in the K12 condition 

(Fig. 28). The expression of most of these genes seemed unaffected in the FMR phenotype 

while in FM, they showed a slight up-regulation. Only the mini-collagen gene (purple curve) 

was slightly down-regulated, of about 1- fold, in the recovery condition. The genes of this 

cluster were mainly related to structural or enzymatic activities. Interesting is the up-

regulation of a gene encoding for Cathepsin-L, an enzyme with a major role in protein 

catabolism using substrates as collagen and elastin [96]. 

An up-regulation of the gene expression in the FMR condition was only observed in cluster 7 

(Fig. 28). The gene encoding for Heat shock protein 90 was up-regulated by a factor of 4. 

This gene was represented by two clones with an almost equal expression level. One of these 

genes was previously sequenced in the EST project and the second gene comes from the un-

sequenced part of the library.  

Cluster 9 grouped 19 genes mostly down-regulated in the recovery phenotype and activated in 

the FM condition. A few of them were also activated in the K12 condition (Fig. 28). In this 

cluster it is possible to appreciate how Pearson correlation works; where all genes following 

the same transcription pattern - i.e. same curve slope- are clustered in spite of their different 

expression levels. A gene with a chitin-binding domain provided the lowest expression level 

in the FMR condition, with a 7-fold down-regulation. In addition, genes encoding for 

transcription factors, like Bzip/MafL and trefoil factors, were detected. The gene encoding for 

Astacin-3 presented a 2-fold down-regulation in the FM condition, and an increased 

expression of about 1-fold in FMR and K12 phenotypes. The profile of the growth factor 

Bone morphogenetic protein 2 (BMP-2) was similar, but without the expression change in the 

K12 condition. 
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tai02e07_J.con Bzip transcription factor MafL
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tai33b04y1.con IPR002557 Chitin binding protein, peritrophin-A 
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Figure 28 - Genes with different expression profiles.  Approximately, 20% of the genes 
were distributed in these three clusters. Expression level of each condition was referenced to 
the control using Log2 ratio. List of genes with the corresponding annotation are provided in 
the table. For an easy overview, a GO colour code annotation for each gene is provided in the 
transcriptional profiling curve. Unknown genes were plotted in gray colour, but are not listed 
in the table. 
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3.3.2. Searching for allorecognition and immune related genes in Hydractinia –the 
immune microarray experiment 

 
The microarray was used to identify the Hydractinia immune gene repertoire involved in 

infection and allogeneic reactions. For this purpose, the following experiments were 

performed; four adult colonies with the same genotype (termed K4) were incubated with 

Lipopolysaccharide (LPS) as described in methods (section 2.2.1.3). Subsequently, RNA was 

isolated from two colonies, each at 1 and 3 hours after treatment. To asses for allorecognition 

related genes, four adult K4-clones were allowed to grow into contact with a genetically 

distinct colony. Then, RNA was isolated only from the contact area that exhibited signs of 

rejection. As a reference control, RNA was isolated from untreated K4 colonies. The quality 

of the RNA was analyzed with the Agilent Bioanalyzer and by spectrophotometric readings as 

described in section 2.2.2.3. For each sample condition, only high quality isolated RNAs were 

pooled (Fig. 29). In the microarray experiment, allorecognition was represented by 4 

biological replicates, while each time point after the LPS-infection was represented by 2 

biological replicates. 

 
L               Allo1      Allo2     Allo3     Allo4         LPS1ha   LPS1hb  LPS3ha  LPS3hb    

 
Figure 29 – Analysis of the RNA quality. All RNA samples presented a RIN ≥ 6.5 and an 
abs. ratio (260nm/280 nm) above 1.9. For each condition, all samples were pooled. In the case 
of the wild-type colonies, 4 high quality RNA samples were isolated and pooled (data not 
shown). The two main bands in the figure correspond to the 28s and 18s rRNA.  
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3.3.2.1. Generation of the microarray data 

The optimized protocols for the labelling reaction defined in the mitomycin microarray 

experiment were used, producing between 1,5 and 2,5 µg of labelled cDNA. Then a double 

reference design was followed (Fig. 30). Six technical replications (including dye-swap) were 

performed for each comparison between a condition and the reference. Therefore, together 

with the duplicate spots within the microarray, 12 data points per gene were generated in each 

hybridization. To diminish any additional technical biases, all replicates were hybridized in 

parallel and with the same amount of labelled material. The slides were hybridized, scanned 

and analyzed with Genepix software as described in methods. Genepix graphic display 

showed a good hybridization quality in the scanned arrays with respect to the background 

intensity level, reproducibility and physical characteristics of the spots. Thus, signal data 

coming from 16 hybridized slides were exported as a .GPR file for further analysis.  

 

Control wild type
3h after LPS 
treatment

1h after LPS 
treatment

Allorecognition 
response

2 X

2 X

3 X

3 X

3 X

3X

Cy5
Cy3

 
Figure 30 - Double reference design of the immune microarray experiment. For within 
array quality control, duplicate spots were included in the array. Six competitive 
hybridizations between condition (applying dye-swap) and the reference were performed for 
each experiment. This resulted in the acquisition of 12 data points per gene, allowing the use 
of a robust statistic analysis. Only in the condition 1h after LPS treatment, 4 hybridizations 
were considered, i.e. 8 data points per gene. 
 

3.3.2.2. Normalization and filtering of the microarray data 

88 
 

First, the green and red intensity channel data was extracted from the .GPR table file. Then, 

the conditions and reference measurements were defined for all hybridizations, and all 

experimental conditions (allorecognition, LPS; 1 and 3 hours after induction) were analyzed 

together using the same wild-type control as reference. Again, normalization was done with 

the M-CHiPS software package using the original intensities of each measurement and the 
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logarithmic regression as fitting method algorithm (section 2.2.9.1). Plotting the fitted 

intensities of the condition and control measurements resulted in an adjusted regression curve 

matching the main body of the data-point cloud, with a correlation coefficient above 0.85 in 

all 18 hybridizations (data not shown).  

Genes with a strong evidence of being differentially expressed were identified from the 

normalized data. This was done following a similar four-step filtering criterion used in the 

mitomycin microarray experiment (section 3.3.1.5). First, 56 genes showing saturated 

intensities were subtracted from the data set. The second filtering step resulted in the selection 

of 1,565 genes having a substantial absolute expression level (> 2,000 AU) in at least one of 

the conditions. Using SAM statistics, we extracted 284 genes with a significant difference in 

their transcription level (corrected p-value < 0.05). Finally, the fourth filtering criterion 

resulted in the selection of 245 transcripts (2.6 % from the whole gene-set) with a minimum 

of a 2-fold expression change.  

Fitted intensity plots of all conditions compared to the reference control clearly demonstrated 

that in spite of the high correlation between the two channel data, the normalization and 

filtering steps were successful in the selection of a substantial number of differentially 

regulated genes (Fig. 31).  

 

 
Figure 31 - Pair-wise comparison of the fitted intensities of the LPS (1h and 3h post 
induction) and allorecognition challenges refereed to the control A. Scatter plot of Log R 
(red) vs. Log G (green) including all genes and B. only the filtered ones. Filtering allowed the 
selection of the best 245 differentially expressed genes, which clearly stand out from the data 
points cloud. 
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3.3.2.3. Correspondence analysis  

To reveal the relationships among and between genes and conditions, the differentially 

expressed genes identified in LPS and allorecognition experiments were analyzed using 

correspondence analysis (for CA descriptions see section 2.2.9.2). For this, the distance 

among these variables were displayed in a low dimensional biplot (Fig. 32). Replicate 

hybridizations of each experimental condition (represented by colour boxes) were 

successfully clustered. The fitted intensity values of the primary and secondary spots, which 

are within array controls, presented a minimal variation. This sustains a high experimental 

reproducibility. The plot showed a clear separation of all different conditions, supporting a 

good normalization and filtering of the data. Allorecognition response measurements (pink) 

branched out from the central region of the biplot, where both LPS hybridizations grouped 

together with the control (red). A dense cloud of genes, with up- and down-regulation 

expression profiles, were associated to the allorecognition response. These results 

demonstrate that allogeneic reactions generated the highest change in expression in the 

analyzed data. In contrast, few genes were specific to the LPS treatment. No gene dots were 

distributed in the centroid of the plot, supporting the elimination of non-regulated genes by 

the filtering criteria. 
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Figure 32 - Correspondence analysis of LPS (1 and 3 hours after treatment) and 
allorecognition conditions. The biplot clearly shows four directions corresponding to the two 
LPS treated conditions, the allorecognition phenotype and the control reference. The 245 
selected genes are represented as gray dots. Dots distributed in the centroid of the biplot 
correspond to non-regulated genes. The duplicate spots of the array, primary (p) and 
secondary (s), are displayed with the hybridization numbers and in light and strong colours, 
respectively. Lines follow the direction of the standard coordinates of the condition medians 
with the respective colours.  
 

3.3.2.4. Hierarchical clustering  

As in the mitomycin microarray experiment, the M-CHiPS results were exported to the TIGR 

Multiexperiment Viewer (MeV). Again, the logarithmic ratios between the median signal 

intensities of the conditions and control measurements were used to determine differential 

gene expression patterns. Log2-transformed expression ratios varied between -5.5 and 2.5, 

with a median of zero for both LPS induced conditions and a slightly higher value (0.21) for 

the allorecognition phenotype. An easy visualization of the logarithmic data was obtained 

displaying all the information in a colour-coded heat map and applying HCL algorithms in 

order to cluster the genes and conditions according to their expression pattern. The results 

observed in the CA biplot were confirmed, showing that most of the selected genes were 
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differentially regulated in the allogeneic provoked organisms. Considering a threshold of 2-

fold expression change, 108 and 116 genes were down- and up- regulated in this condition, 

respectively. The two other conditions, 1 and 3 hours after LPS treatment, presented a similar 

expression pattern as the control; having only seven and 13 genes with a 2-fold down- and up- 

regulated profile, respectively. However, the transcription pattern of the few regulated genes 

at 3 hours after the LPS treatment was similar to the one observed in an allogeneic reaction. 

This can be seen in the genes of sub-clusters I and II, with a down-regulated (green) profile 

for this two conditions while having an up-regulation (red) in the 1h after LPS induction 

phenotype, or vice versa (Fig. 33). Therefore, HCL -using Pearson correlation as distance 

metrics- clustered allorecognition with the 3 hours after LPS treatment condition, rather than 

the two LPS induced organisms together. In contrast, CA grouped both LPS conditions quite 

close to the control and centroid of the biplot (Fig. 32). Thus, while CA clustering was 

influenced by the high number of genes regulated in allorecognition, giving the maximum 

weight in the plot, the profile of the few LPS regulated genes substantially influenced the 

HCL clustering. With a threshold node distance of -0.99, HCL created 21 main nodes or 

clusters (Fig. 33). Interesting to mention is that most of the generated clusters carried several 

sequences except in the case of the sub-clusters I and II, were the clusters contained between 

2 and 5 sequences each. 
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Sub‐cluster I

Sub‐cluster II

 
Figure 33 - HCL analysis of the differentially expressed genes in the immune microarray 
experiment.  All 245 selected genes are ordered individually in rows, while the samples are 
ordered in columns. HCL resulted in 21 main clusters or nodes. They are represented by dark 
blue branches and a translucent wedge from that node to all enclosed elements. Sub-nodes, 
below the cluster distance threshold are shown as light gray branches. The length of the 
branches is proportional to the distance between the nodes. The scale followed up the median 
of the data, between -2 and 2. 
 

3.3.2.5. Figure of Merit algorithm and k­means clustering  

Before applying k-means clustering, the optimal clustering parameters were defined using the 

Figure of Merit algorithm (see section 2.2.9.3). FOM values were calculated for 40 clusters 

using k-means and both variables were subsequently plotted (Fig. 34). The plot shows that the 
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FOM values drastically decreased in the first k-means runs. Then, the curve slope smoothly 

decreased with each new added cluster to the algorithm. As in the case of the FOM analysis in 

the mitomycin microarray data, it was difficult to determine whether 20, 25 or more clusters 

improve the representation of the data. For a better support in defining the number of clusters 

to be used in KMC, the performance of k-means was empirically tested with 15, 20, 23, 25 

and 30 clusters (data not shown). The use of more than 23 clusters resulted in the generation 

of several singletons and empty clusters. With less than 20 clusters, k-means resulted in 

highly populated clusters, limiting the analysis of the expression profiling data. Finally, 

supporting the analysis done with the HCL clustering, k-means was best performed with 21 

clusters. 

 
Figure 34 - FOM analysis for k-means algorithm.  FOM helps to define the predictive 
power of the k-means algorithm in generating clusters. The lower is the FOM value, the 
higher is the predictive power of k-means. The mean FOM values are showed as red dots with 
the corresponding standard deviation. 
 

Pearson correlation was used as distance metrics for the k-means clustering algorithm. For 

each cluster, the Log2-transformed expression ratios (conditions/control) of all the analyzed 

conditions –the two LPS and allorecognition provoked phenotypes- were plotted. As in the 

analysis of the mitomycin microarray data, k-means produced clusters containing genes with 

similar transcription profiles but different expression levels. The good performance of the 

clustering method was confirmed by the detection of redundant genes within a cluster or in 
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different clusters having a similar expression pattern. Thus, gene replicates were equally or 

similarly affected in the analyzed conditions. This was the case for mini-collagens, present in 

all clusters exhibiting an up-regulation in the gene expression during an allogeneic reaction 

(Fig. 35). Also lectins were grouped together but mainly in clusters showing a down-

regulation pattern in the allorecognition condition (Fig. 36).  

As in the mitomycin KMC analysis, GO terms were added to the graphic display of the 

clusters and, clusters showing a similar and specific expression pattern for a certain condition 

were grouped for individual analysis. A selection of the most interesting clusters is described 

below. The rest of the clusters are available in Additional data, section 6.2. 

 

3.3.2.6. Genes specifically up­regulated in an allogeneic reaction  

K-means grouped 109 genes (44%) into 5 clusters showing in average a 2.8-fold up-

regulation in the allorecognition condition (Fig. 35). These genes presented no change in their 

expression profile when the animals were treated with LPS. In HCL, these allorecognition 

specific genes were grouped in three main clusters. This means, that k-means was more 

effective in finding similarity patterns between the expression profiles, allowing a better 

characterization of the genes. In spite of the broad variety of GO terms through all the 

clusters, the majority of genes were related to a binding, structural or catalytic activity. This 

included several genes encoding for mini-collagen or collagen–like peptides as well as the 

already identified RAD23 and CnPL10 genes (Fig. 35 and Fig S2 in Additional data 2). A 

total of 38 genes did not present any similarity match in the databases used for annotations 

(gray curves). Below are shown the clusters 5, 6 and 15. The two other clusters exhibiting this 

expression pattern are available in Additional data 2 (Fig. S2, section 6.2). 



Results 

Clone ID Sequence annotation

HEAB-0047O01 Amidase

HEAB-0020D15g1.con IPR010515 Collagenase NC10- endostatin

HEAB-0048G21 Mini-collagen

HEAB-0049L07 Minicollagen 1

HEAB-0049O19 Minicollagen 3-4a

HEAB-0050D08 Minicollagen 3-4a

HEAB-0050L06 Mini-collagen

HEAB-0053F18 RAD23 homolog

tah99a08_J.con Uncharacterized protein

tai20h08y1.con Mini-collagen precursor

tam59e09y2.con Collagen-like protein 7

HEAB-0052B04 Cytochrome c-type biogenesis protein

tai43a12y1.con HSC70-interacting protein (hip)
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tai44b07y1_PA.con GO:0016787 F hydrolase activity
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HEAB-0029J13g1.con Oxidative stress

HEAB-0030L03g1.con Minicollagen 3-4a

HEAB-0046M07 Minicollagen 1

HEAB-0049C18 Minicollagen 1

HEAB-0050O12 IPR002952 Eggshell protein

HEAB-0053I14 Predicted regulator of arylsulfatase activity
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HEAB-0029A21g1.con IPR002952 Eggshell protein

HEAB-0035E14g1.con General secretion pathway protein C

HEAB-0050G02 IPR002952 Eggshell protein

HEAB-0054J19 IPR010515 Collagenase NC10, endostatin

tah96f12x1_PT_O.con Predicted protein

tai15e03y1.con hnRNP H

tai33d09y1.con GO:0016787 F hydrolase activity

HEAB-0053N22 Transcriptional regulator LysR family

HEAB-0054J22 Mini-collagen

tam54c10y2.con IPR002952  Eggshell protein
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 Figure 35 - Genes specifically up-regulated in an allogeneic reaction.  The expression 
level of the 109 genes in each condition was referenced to the control using Log2 ratio 
(Condition/Control). Logarithms are in units of 2-fold changes, e.g. Log2 ratio = 0 
corresponds to an equal gene expression between the condition and the control. In the table 
are listed the gene identification ID and their annotation. Gene annotation was performed 
through BLAST, GO and Domain analysis. For an easy overview, a GO colour-code 
annotation for each gene is provided in the transcriptional profiling curve. Unknown genes 
were plotted in gray colour but are not listed in the table. 
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3.3.2.7. Genes specifically down­regulated in an allogeneic reaction  

A total of 62 genes, distributed in four clusters, presented in average a 5-fold down-regulation 

in the allorecognition condition. As in the clusters analysed in section 3.3.2.6, these genes 

were un-affected during an LPS treatment and most of them were associated to a binding or 

catalytic activity (Fig. 36). In accordance with this, Rhamnose-binding lectin (RBL) genes and 

Rhamnospondin-2 (Rsp-2) -a gene that contains one RBL and eight thrombospondin type 1 

domains (TSR)- were detected mainly in cluster 21. Interestingly, four genes encoding for 

enzymes of the Phospholipase A2 (PLA2) family (two of them correspond to Conodipine-M 

alpha chain, a novel class of PLA2), were reported. In addition, three different genes encoding 

for protein kinases were detected including; the Pantothenate kinase (PANK) and the C. 

elegans Mitogen-activated protein kinase (MAPK) homologue mpk-1 (Fig. 36 and Fig. S3 in 

Additional data 2, section 6.2). Only four growth and transcription factors were found through 

all the clusters, including the fibroblast growth factor 2 and trefoil factors. Again, a significant 

number of the clustered genes (22) presented no functional sequence annotation. They were 

displayed as gray curves in the plots (Fig. 36). 

 

3.3.2.8. Genes up­regulated immediately after LPS treatment  

Six clusters grouped a total of 42 genes exhibiting an enhanced transcription directly after the 

LPS treatment. The majority of these genes were distributed in two clusters, presenting in 

average a 1.2 fold up-regulation (Fig. 37A). At 3 hours post LPS induction, these genes were 

equally expressed as in the untreated organism. However, allogeneic encounters resulted in a 

drastically 5-fold down-regulation in the gene expression. GO annotation revealed that most 

of these genes were associated with a binding activity. In cluster 19, the putative genes 

encoding for the growth factor BMP-2 and the cell cycle regulator G2/M cyclin were 

detected. Cluster 2 and 12 included seven genes with a slightly different expression pattern 

(Fig. 37B). They presented an expression level with a 2-fold up-regulation directly after the 

LPS incubation but, in contrast to the clusters of Figure 37A, a 1-fold down-regulation in the 

following 3 hours and no alteration after an allorecognition challenge. Two genes encoding 

for histone H1 and H1/H5 domains were reported in these clusters. From the genes up-

regulated at 1 hour after LPS treatment, 20 were unknown or annotated with non-informative 

terms. Cluster 10, 11 and 20 are available in Fig. S4 in Additional data 2 (section 6.2).  
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Clone ID Sequence annotation

HEAB-0053N12 Putative uncharacterize protein

tai06g05_J.con FGF-2 binding protein

HEAB-0049C03 IPR016090 Phospholipase_A2

HEAB-0052O21 IgA-binding beta antigen

tam53h06y2.con Surface protein PspC

HEAB-0028C03g1.con Multiple epidermal growth factor-like domains-6

HEAB-0041P11g1.con Conodipine-M alpha chain

HEAB-0043F19 Predicted protein

HEAB-0052G04 Actin, non-muscle 6.2

HEAB-0054C18 IPR005028 Herpes virus intermediate

Cluster 7 (15 genes)
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Clone ID Sequence annotation

HEAB-0049G05 Trefoil factor

HEAB-0053H21 Type III pantothenate kinase

HEAB-0049I14 Conodipine-M alpha chain

HEAB-0055C06 Fluorescent protein raspberry

HEAB-0044H22 Putative IPR016090 Phospholipase_A2 

tai12h10_J.con Rhamnose binding lectin STL4

tai29e11y1.con GO:0016787 F hydrolase activity

HEAB-0024D19g1.con Trefoil factor

HEAB-0048H16 Transmembrane sensor

HEAB-0055O16 IPR003095 Heat schock protein DnaJ

tah98b07_J.con IPR012677; a_b_plait_nuc_bd / IPR000504; RRM_RNP1

tai12d06_O.con Rhamnose binding lectin

HEAB-0046H17 Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B
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Figure 36 - Genes specifically down-regulated in an allorecognition challenge.  The plots 
show the expression level of the 62 genes in each condition referred to the control using Log2 
ratio (Condition/Control). Log2 ratio = 0 corresponds to an equal gene expression between the 
condition and the control. The gene identification ID and annotations are listed in the table. 
For an easy overview, a GO colour-code annotation for each gene is provided in the 
transcriptional profiling curve. Unknown genes were plotted in gray colour but are not listed 
in the table. 
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Figure 37 - Genes up-regulated immediately after LPS induction.  Few genes were up-
regulated after an LPS treatment. In A. genes up-regulated immediately after LPS induction 
were down-regulated at 3 hours post LPS induction and in an allorecognition response. In B. 
genes up-regulated at 1 hour after LPS induction followed a down-regulation at 3 hour post 
LPS treatment and were not affected in an allorecognition response. Each condition referred 
to the control using Log2 ratio (Condition/Control). The gene identification ID and 
annotations are listed in the table. Unknown genes were plotted in gray colour but are not 
listed in the table. 
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3.3.2.9. Genes up­regulated at three hours after LPS treatment  

The next four clusters display 28 genes activated after 3 hours of the LPS induction. In spite 

of having similar profile patterns, the clusters showed significant differences in their gene 

expression levels. Clusters 14 and 16 presented smoothly profile curves, with genes down- 

and up- regulated by 1-fold at 1 and 3 hours post-LPS treatment, respectively. After an 

allorecognition response, these genes were significantly affected, reaching in average a 3-fold 

down-regulation (Fig. 38A). Some of these genes encode for Heat shock protein 70 (HSP70). 

In cluster 16, two genes reached a 2-fold up-regulation at 3 h post LPS induction. One of 

these genes presented a high sequence similarity to Tachylectin. The second gene contains a 

Thrombospondin type 1 domain, also observed in several lectin proteins. As in the mitomycin 

microarray analysis, again a putative gene encoding for bone morphogenic protein 4 (BMP-4) 

was reported.  

A slightly different expression profile pattern exhibited the genes of cluster 1 (Fig. 38B) and 

13 (not shown). These genes showed a smoothly down-regulation directly after the LPS 

induction but an enhanced 3-fold up-regulation in the next 3 hours and no regulation during 

allorecognition. In cluster 13, all sequences are unknown and therefore, are good candidates 

for the identification of novel pathogen-induced specific genes. In contrast, all sequences of 

cluster 1 were annotated with a catalytic activity. Some of the identified genes encode for the 

metalloprotease Astacin and the serine protease inhibitor Antistasin. 
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Figure 38 - Genes specifically up-regulated at three hours after LPS treatment.  In total 
28 genes (11% from the selected genes) showed an up-regulation at 3 hours post LPS 
induction. In A. this up-regulation profile was accompanied by a down-regulation in both at 
1h after LPS treatment and allorecognition condition. In B. the up-regulation profile at 3 
hours post LPS induction was accompanied only by a down-regulation at 1 hour post LPS 
induction. The transcription level of each condition was referenced to the control using Log2 
ratio. List of genes with the corresponding annotation are provided in the table. Unknown 
genes were plotted in gray colour but are not listed in the table. 
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4. Discussion 
 

4.1 The Hydractinia echinata EST project 

 

4.1.1. The Hydractinia EST dataset 
 

The quality of EST collections highly depends on the selection of the RNA sources employed 

for the generation of the cDNA library. It is well described that in standard libraries it is 

difficult to discover rarely expressed genes. The yield in gene discovery can be increased by 

in-depth sequencing or by broadening the diversity of source materials [97, 98]. In the case of 

Hydractinia, its complex life cycle provides a broad spectrum of temporarily and spatially 

regulated genes. To obtain a more complete representation of the Hydractinia transcriptome, a 

RNA pooling strategy was used for the construction of the cDNA library (see section 2.2.3.1). 

Using this approach, the information related to gene expression at any particular stage was 

lost, but all life stages were covered. Thus, the chance to include rare transcripts in the library 

was increased. Despite having a non-normalized library, EST clustering resulted in 60% of 

the ESTs being singletons or grouped in clusters of 2-5 sequences (Fig. 6). Only relatively 

few ESTs were highly redundant. They mainly correspond to housekeeping genes. The 3,808 

consensus sequences generated by FAS may be considered as an overestimation of the real 

number of unique transcripts isolated. EST end-sequencing usually does not retrieve the 

complete cDNA sequence of a clone, because genes are too long to be covered or because 

there is a decrease in the quality at the end of the reads. This complicates assembly and 

clustering, which may result in different unique consensus sequences carrying the same 

information. On the other hand, it is also possible to have an under-representation of the real 

number of unique sequences in case of members of closely related gene families [98]. With 

the availability of genome data, it might be possible to test and improve the EST assembly, 

but this information has not been generated in Hydractinia so far [99]. However, the quality 

of the assembly was assessed by two different ways. At the nucleotide level, BLASTN 

comparison of the consensus sequences against all Hydractinia ESTs corroborated the 

physical clustering done by the FAS programs (data not shown). At the protein level, 

BLASTX comparison to different protein databases revealed a redundancy of 1.6 % in all 

consensus sequences with a significant hit. These redundant consensus sequences represent 
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different parts of genes and could therefore not be clustered by FAS for the lack of 

overlapping sequences. Most of these genes encode ribosomal, actin and lectin proteins, or 

proteins related to an enzymatic activity.  

 

4.1.2. Functional annotation of the ESTs 
 

Despite the success of having cDNA inserts with an average length of 1.8 kb, suggesting 

sequences with open reading frames (ORFs), a significant number of them could not be 

annotated. Consequently, these sequences were considered as unknown or with an un-

informative description (Fig. 7A). Analyses of the unknown sequences revealed a lower 

average sequence length of approximately 300 bp with a median of 160 bp. Thus, it is 

reasonable to assume that the majority of these sequences do not represent an ORF, but 

correspond mainly to the 3` rather than 5` non-coding region of a gene [11]. In contrast, 

sequences with a positive match in the protein databases presented an average and median of 

639 bp and 629 bp, respectively. In addition, a better characterization of these sequences was 

possible since more than 60% of the reads corresponded to ORFs. The inclusion of a protein 

domain annotation step allowed characterizing 55% of the Hydractinia consensus sequences.  

The program GOPET, which can perform an organism-independent GO annotation [84, 100], 

successfully assigned GO terms to the Hydractinia sequences. This classification was 

supported with a generic GO slim, which by limiting the level of detail of the GO-specific 

fine terms, revealed a broad range of functions and processes in the Hydractinia dataset (Fig. 

7B). GO classification correlated to the BLAST gene product predictions, assessing the 

accuracy and quality of the sequence annotation. Nevertheless, some sequences encoding 

members of gene families with known function were not annotated with GO terms. This was 

probably because most of these sequences were of a short-length. In such cases, the function 

was assigned based on fairly weak matches (close to the BLASTX cut-off E-value of 10-6). 

Conversely, sequences considered as unknown by BLASTX analyses were annotated with 

GO terms. GOPET uses BLAST approaches that, besides searching in the SwissProt database, 

include searches in 16 GO-mapped protein databases of different model organisms. Hence, 

using an organism-independent prediction performance and with a prediction quality assessed 

by assigned confidence values, GOPET provides a rich reference platform for annotation [84]. 

Improvements in the functional annotation of Hydractinia genes may be achieved with an 

increasing amount of EST reads. This may allow larger consensus sequences representing 

nearly complete coding sequences to be generated, providing more accurate annotations 
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[101]. In addition, the ongoing cnidarian sequencing projects as well as the improvements of 

the GO annotation of other organisms will provide better platforms for sequence comparisons 

[7, 8]. 

Another possible explanation for the unknown sequences is that they could be cnidarian, or 

even smaller taxon specific genes (i.e. absent even from Hydra and Nematostella). These 

taxon-specific genes may either be the result of the conservation of ancient genes, lost in all 

other animals, or evolutionary novelties. For example, cnidarians possess many unique 

features such as their stinging cells, known as nematocytes or cnidocytes, which are not found 

in any other group of animals. 

 

4.1.3. Hydractinia sequences with non­metazoan hits 
 

A significant amount of the Hydractinia consensus sequences presented a non-metazoan hit in 

the protein databases (Fig 7A). The majority corresponded to bacterial sequences with a high 

GC content that was significantly different to the amount of GC observed in sequences with a 

metazoan match (Fig. 8). Therefore, based on the GC content, the annotated Hydractinia EST 

dataset seems to contain two physically different kinds of sequences. This was confirmed by 

comparing the GC profiles of the Hydractinia sequences to those observed in other organisms 

including bacteria, cnidarians, invertebrates and vertebrates (Fig. 9) [91-94]. In the case of 

sequences without a functional annotation, the broad range of GC percentage suggests that 

some of them may have a GC composition characteristic of bacterial sequences. However, for 

the group of unknown sequences, the majority exhibited a low GC percentage suggesting a 

higher relationship to metazoan rather than to bacterial proteins. In contrast, most of the 

sequences with un-informative terms seem to be described by a bacterial GC profile. This can 

be expected since several bacterial annotations on the protein databases contain un-

informative terms (Fig. 8). 

These sequences are unlikely to represent a bacterial contamination, since a poly A+ selection 

and oligo-dT priming was used for mRNA isolation and cDNA construction, respectively. 

Hydractinia sequences with a bacterial hit can be divided into two different groups. The first 

group consists of 487 sequences, which were also found in the ESTs of Acropora, Hydra 

and/or Nematostella genome. Approximately two thirds of them might be present in the 

genome of Hydractinia, since 331 sequences were identified in the genome of Nematostella. 

At the nucleotide level, fewer bacterial sequences (24%) were shared within cnidarians, 

probably due to the suspected sequence divergence between anthozoans and hydrozoans [7]. 
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Almost half of the sequences exhibited a best match to a particular class of bacteria 

(Pseudomonas spp.), which suggests that their appearance in the cnidarians may have been 

the result of lateral gene transfer (LGT) events. The fact that these sequences are being shared 

by Hydractinia, Hydra, Nematostella and Acropora suggests that the LGTs predate the 

Anthozoa-Hydrozoa divergence. Perhaps this transfer occurred only in ancient Cnidaria, or 

the transferred sequences were subsequently lost in other animal lines. Therefore, despite the 

fact that recent LGTs have already been observed in Cnidaria, an ancient common origin for 

the majority of these sequences is the favoured hypothesis [8, 102]. In accordance with the 

analyses done by Technau et al. [8] on Acropora and Nematostella, Hydractinia non-

metazoan sequences containing introns (data not shown) and sequences with homologues in 

diverse organisms were also found, which argues against recent LGT events [8, 103].  

The second group of non-metazoan sequences consists of 357 sequences with a bacterial hit 

and no counterparts in other cnidarians. It is possible to consider them as unique Hydractinia 

sequences, taking into account the suggested substantial variation in gene content within the 

Cnidaria [7]. In contrast to the majority of cnidarian sequencing projects done so far, adult 

material was included in the Hydractinia cDNA library. This may have resulted in the 

discovery of expressed genes related to an adult condition, for example genes related to 

nutrition or reproduction, which could not be detected in the other EST projects carried out 

using embryos [104, 105]. Consequently, the majority of these non-metazoan sequences were 

related to enzymatic activities. Nevertheless, for Hydractinia bacterial-like sequences without 

a clear genomic cnidarian representation, it is not possible to exclude symbiotic, parasitic or 

epiphytic bacterial sources. Commensal microbes or microbes living epiphytically on the 

exoskeleton are common in adult cnidarians as well as in higher metazoans [104-107].  

 

4.1.4. Characteristics of the Hydractinia transcriptome and its contribution 
defining the cnidarian gene repertoire 

 

Hydractinia homology analyses against other bilaterian organism revealed a substantial 

number of ESTs with a significantly higher sequence similarity to vertebrate sequences rather 

than to their fly, mosquito or nematode counterparts (Fig. 10). Additionally, 28 sequences 

with only a vertebrate homologue were found (Table 3A). Thus, despite having a small 

dataset, the Hydractinia ESTs corroborate a cnidarian ancestral genetic complexity, providing 

more examples of gene loss or secondary sequence modification in ecdysozoans [7, 8, 12, 14]. 

In contrast, fewer sequences possessed a higher similarity or were even uniquely identified in 



Discussion 

106 
 

the invertebrates analyzed (Table 3B). Apparently, we are also faced with genes that have 

been lost or are highly diverged in vertebrates. 

One of the objectives in the generation of Hydractinia ESTs is a complementation of the 

information obtained from others cnidarian genome projects, identifying the genes maintained 

or added during the evolution of cnidarians. Comparing the Hydractinia ESTs to all other 

available cnidarian datasets, a list of 23 unique Hydractinia genes with known protein domain 

architectures were identified (Table 4). Despite the fact that some genes shared protein 

domains, their sequences did not overlap and were considered unique Hydractinia sequences. 

Examples of these are the six sequences showing a chorion or eggshell protein domain. These 

protein families are associated with a tissue- and temporal-specific gene expression pattern in 

ovaries, and are highly conserved in evolution [108, 109]. Their presence in our cDNA library 

may result from the inclusion of sexual mature female colonies in the mRNA pool rather than 

being Hydractinia-specific. Some of the identified putative proteins are unexpected and their 

functions are hard to interpret at present. For example, a sequence homologue to the 

vertebrate bone sialoprotein was found. This protein seems to be involved in bone 

mineralization and remodelling [110]. Another example is the Galanin receptor. In vertebrates 

this receptor is expressed in the peripheral and central nervous system, activating K+ channels 

by coupling G proteins [110, 111]. In addition, several unknown sequences appeared to be 

unique to Hydractinia. For this result, two interpretations can be considered. First, as 

previously described, it is expected that several of these sequences represent short ORFs or 

non-coding sequences, resulting in fewer sequences that can be matched by BLAST. This 

holds true not only for the Hydractinia ESTs in question but also for the other EST databases 

that were used for comparison. Second, we may reconsider the option that the divergence of 

the Anthozoa and Hydrozoa is expected to be as extent as the protostomia and deuterostomia 

split. This implies large genetic differences and gene family diversity within the Cnidaria [7]. 

Indeed, there are marked differences in cnidarian morphology and physiology. Trying to 

extract genes which might be related to such differences, comparison of the databases resulted 

in a list of sequences probably linked either to physiological demands due to the environment 

(e.g. sea or fresh water) or to the colonial phenotype displayed by Hydractinia and Acropora. 

Despite the fact that most of the sequences identified in the first analysis showed an 

enzymatic (reductase, hydrolase) activity, which may correspond to the regulation of 

intracellular osmolarity, it is not possible to satisfactorily conclude a direct relation of these 

sequences to such physiological functions (Table 5A). The same holds true for the 

Hydractinia sequences shared only with Acropora (Table 5B). As most of these sequences are 
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unknown or associated with a diverse functionality, it is not possible to establish a firm 

linkage to colonial growth using only the bioinformatics tools currently available. However, 

such a linkage can be considered as a working hypothesis for further analyses. 

To support the previous approach, semi-quantitative (sq) RT-PCR was performed on genes 

selected from the previous list, and some of them showed a specific expression pattern in the 

different life stages of Hydractinia (Fig. 11). For example, the unknown transcript Tai16A08 

was highly expressed in the adult phenotype while exhibiting a relatively low abundance of 

other stages or even absence in the case of larvae. This indicates that the gene is probably 

related to development and is especially linked to the colonial condition. This result sustains 

the hypothesis which, by detecting a homologue only in the Acropora dataset, considers this 

transcript as a good candidate associated with the colonial phenotype. Another example is the 

sequence Tai11F02 encoding for malate synthase. (sq) RT-PCR showed a high transcriptional 

activity in primary polyp and a milder one in pre-planula and adult stages (Fig. 11). This 

correlates to previous observations done in C. elegans where this protein, specifically 

localized in the differentiating intestinal and body-wall muscle cells, exhibited an increased 

activity during embryogenesis but decayed in larval stage [112]. This enzyme is involved in 

the conversion of acetyl CoA into succinate. Thus, it might be related to the metabolic 

requirements in the developing embryo, pre-planula and primary polyp. The bioinformatics 

approach showed that this sequence was shared by all analyzed cnidarians except Hydra. 

Based on this, it is possible to speculate that this enzyme is functionally associated to a 

seawater physiological condition. For a satisfactory explanation it will be necessary to 

perform in situ hybridization analysis in order to better characterize the gene and its 

association to marine cnidarians.  

 

4.1.5. The combination of bioinformatics and molecular tools  leads to a better 
functional annotation  

 

 It is well accepted that sequence comparison between different organisms can be used to 

designate the function of unknown genes and even provide their evolutionary history [113]. 

However, it was previously demonstrated that the combination of bioinformatics and 

molecular biological approaches can lead to more solid functional statements. Especially in 

the case of organisms poorly represented in the public databases, sequence characterization 

with solely bioinformatics might lead to functional annotation bias. An example is the 

cnidarian tachylectin-related gene in neurons (CTRN) identified in the Hydractinia dataset 
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[114]. Tachylectin proteins belong to the group of pattern recognition molecules and its 

function in innate immunity is evolutionary conserved, from sponges to vertebrates [115-117]. 

Sequence comparison against other tachylectins and related genes revealed that CTRN 

presented a highly conserved structure. Therefore, solely from the bioinformatics analysis it 

will be logical to conclude that the CTRN gene is involved in immunity, but this does not 

seem to be the case in Hydractinia. Semi-quantitative RT-PCR performed for the different 

developmental stages of Hydractinia showed that CTRN is expressed after metamorphosis, 

with undetectable mRNA levels in the embryo and larval stages. This feature has already been 

observed in other immune molecules. However, it was unexpected that after LPS induction 

the mRNA expression level was not affected (this point will be further discussed in section 

4.3.8). So far, no specialized immune cells have been identified in cnidarians, but it is 

reasonable to expect that cells producing immune molecules should have an efficient 

accessibility to potential pathogens, like in endodermal cells. In contrast, in situ hybridization 

analysis revealed that CTRN have a specific expression in the ectodermal tissues, restricted to 

particular neurons and their precursor cells around the mouth (Fig. S5 in Additional data 3, 

section 6.3) [114]. Thus, at the functional level the CTRN gene showed some discrepancies 

with respect to its homologue immune genes; having rather than a function related to 

immunity a role in neuronal development [114].  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



Discussion 

109 
 

4.2 Technical aspects of the Hydractinia echinata 
microarray  

 

Gene expression profiling experiments provide a straightforward approach to assign the 

functionality for many thousands of genes in a single assay [64, 71]. In the case of un-

sequenced organisms, it allows a rapid identification of interesting transcripts for sequencing. 

This offers an economical alternative to redundant whole library sequencing methods. 

Therefore, in order to extract the maximal information from the generated transcriptome 

dataset, the EST project was supported with a microarray comprising the most representative 

cDNA sequences for each 3,808 generated EST clusters but also ~5,000 un-sequenced cDNA 

clones. 

Microarray experiments, from the experimental design until the final analysis of the data, are 

a time consuming approach. It involves several distinct stages that have a direct impact in the 

final results. The biggest disadvantage is that the various factors affecting the construction, 

handling, target labelling and hybridization of the array are difficult to address before the final 

statistical analyses. Thus, it is necessary to repeat the experimental tests several times to 

optimize each laboratory protocol, in order to improve the quality of the generated data.  

 

4.2.1. Construction of the cDNA microarray  
 

As one of the fundamental microarray components, the amplified cDNAs printed on the array 

are the principal determinants of the hybridization outcomes. They are used to query the pool 

of differentially labelled targets in order to determine the relative expression level of each 

gene [71]. As explained before in sections 3.1.1 and 3.2.1, the Hydractinia-chip library used 

for the production of the probe contains cDNA inserts with a high size heterogeneity (Fig. 5 

and 13). This highlights some of the pitfalls of cDNA microarrays. First, clone-collection 

handling is expensive, time consuming and can be a source of contamination. Second, long 

fragments are limiting steps for clone culture and PCR amplification [65]. To solve these 

problems all reactions were managed in a 96-well plate format, which together with the 

avoidance of plasmid preparation diminished the handling work and cross-contamination. 

Optimization in the culture of the clones and PCR protocols allowed the amplification of 

cDNA inserts with more than 6 kb. Clones with repeatedly negative amplification were 

separately handled or alternatively, other EST clones from the same contig, i.e. carrying the 
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same information, were selected as probe. This resulted in the successful amplification of 

87% of the library-cDNAs with an average concentration of 150-300 ng/µl. 

Size heterogeneity of the amplified probes can generate bias in the hybridization results due to 

for example; non-uniformity of the spots, differences in the available amount of probe and the 

annealing melting temperatures [65]. While short probes have poor hybridization efficiencies, 

longer fragments can have secondary structures, which might affect the binding kinetics [66]. 

Furthermore, it is necessary to consider the specificity of the probe. In case of family related 

genes or alternatively spliced variants, both short but principally longer probes, are prone to 

cross hybridization. It has been reported that if different targets have more than 70% sequence 

similarity to the cDNA probe, they can indiscriminately hybridize to such spots. Cross or 

missing hybridization particularly affects the analysis of transcripts expressed at low levels, 

since a small variation will be enough to provide significant false signals [118].  

The quality of the spot directly influences the hybridization kinetics. If we consider a 

minimum PCR yield of ~150 ng/µl and a pin delivery of ~1 nl, each spot should contain 

approximately 0.75 ng of cDNA. Under this condition, and specially having long fragments, it 

is expected that GC rich regions can form secondary structures directly affecting the binding 

of complementary sequences. The use of Betain in the spotting solution diminished such 

structures equilibrating the effect of AT and GC base pairs in the stability of the DNA [119]. 

This additive also increases the viscosity, allowing the cDNA probes to be equally distributed 

on the spot surface. Betain also minimizes the evaporation rate resulting in longer ionic-

binding reaction times between the negatively charged phosphate groups of the cDNA and the 

positively charged glass surface. All this helped to provide a maximum concentration of probe 

and a good homogeneity in the morphology of the spot, allowing the maintenance of a linear 

relationship between the detected signal intensity of a gene and their expression rate in the 

analyzed sample. 

The selection of the highly hydrophobic aminosilane-slides as glass surface allowed, in spite 

of the hydrophilic feature of the printing solution, a relatively small spot diameter of 100 µm 

and a spot-to-spot distance of 140 µm (Fig. 14). 108 slides with 19,200 spots were produced, 

whereby 6 slides corresponded to “pre-spot slides”. The pre-spot run is essential for a 

continuous delivery of the same sample volume and for maintaining the spot uniformity. It 

induces the elimination of air bubbles within the pin reservoir or extra-drops in the tip 

borders, normally occurring in the probe up-take.  
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4.2.2. Hybridization of the cDNA microarray 
 

An efficient labelling method is a critical parameter to acquire high quality microarray images 

[120]. For labelling the target RNA, the direct labelling approach was used due to its 

simplicity. With the incorporation of fluorescently modified deoxynucleotides during the first 

strand cDNA synthesis, molecule labelling is done in a single and cost effective step [120]. 

The enzymatic reaction was initialized with Oligo (dT) primers for two reasons. First, it 

focused on the labelling of mRNA molecules and not ribosomal RNA, which constitute 

approximately 90% of total RNA. Second, the EST project revealed a significant amount of 

sequences with bacterial hits, which may have come from a contamination source. Thus, poly 

(A) priming also diminished the chances to label such bacterial materials in the target sample. 

A disadvantage of this enzymatic approach is that the labelled cDNA predominantly 

represents the 3’ ends of the mRNA, due to the limited processivity of the reverse 

transcriptase. In addition, incomplete denaturation of secondary RNA structures can shorten 

the cDNA copies [121].  

To assess for dye imbalance incorporation in the reaction resulting in different product yields 

[122], always the same amount of labelled target was used competitively on the array.  

Taking into consideration both array experiments, 80% of the hybridizations were of high 

quality, demonstrating a good optimization of the spotting, hybridization, washing, blocking 

and scanning protocols (see section 2.2.6 and 2.2.7). Preliminary Genepix analysis showed, 

besides the high quality foreground but low background intensities, a high reproducibility and 

a good spot morphology. However, approximately 30% of the chip presented a low or even 

absent signal (Fig. 20). In most cases those spots corresponded to the un-sequenced clones of 

the array. In all performed experiments, negative controls showed no cross hybridization, 

having an equal signal intensity level to empty spots or even background. This demonstrates 

that LORECs sequences are unique and can be successfully used as negative or spiking 

controls [75].  

Signal intensities are proportional to the target concentration, but also to the hybridization 

time and the amount of immobilized material. It is described that only 0.1 to 1% of the 

immobilized molecules in each spot are still bound to the labelled target at the end of the 

experiment [68]. Thus, it might be possible to obtain more signals if the labelled starting 

material is increased. Glass microarrays have a sensitivity of approximately 2 X 107 

molecules, relatively to the mRNA abundance; which means that this corresponds to the 

minimum number of molecules of a given sequence in the starting sample that can be detected 
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after hybridization [68]. Assuming no background effects, the signals are multiplied by a 

factor of ten if the starting material is ten-fold concentrated. As mentioned in section 3.3.1.3, 

different amounts of starting target-materials were tested without improving the detection 

sensitivity. Yet, better signals might be obtained if more than 15 µg of total RNA are used. 

However, in most cases and including our experiments, sample availability is the limitation 

factor. 

 

4.2.3. Experimental design 
 

The design layout of a microarray experiment is essential to estimate the precision and 

statistical power of the analysis. For both, mitomycin and immune microarray experiments, an 

even double reference design was followed (Fig 19 and 30). This permitted to indirectly 

compare every condition with each other, as they are directly compared to the same reference. 

Moreover, in this even design dye bias is not affecting the estimates of gene expression 

because every sample is labelled with both dyes, and each differently labelled sample is used 

equally often in the experimental layout [65]. Technical replicates of the assay and spot 

duplication resulted in 12 data points per gene for each compared condition, allowing robust 

statistical analysis. For the representation of the biological replicates, a pooling strategy was 

followed. This approach requires less RNA material to be hybridized in the array. Pooling 

equalizes the variability of the samples (e.g. different genotype, age, etc.). Yet, that variability 

cannot be measured and therefore, it is not possible to determine how such variability affect 

the final results [65]. Nevertheless, organisms with the same genotype (clones) were used in 

the mitomycin and LPS experiments. In contrast, in the allorecognition challenge sample 

material was only extracted from the contact area between clone members of the previously 

used colony and a genetically distinct one. Therefore, it is necessary to take into account that 

the genetic variability of the colonies is not assessed in this experiment. To provide higher 

robustness and diminish the influence of a different genotype in the expression profiles of 

allorecognition induced organisms, this data was analyzed together with the one obtained 

from the LPS treated organisms as a multiconditional experiment in M-CHiPS [72, 73]. This 

resulted in the selection of genes related to both experimental conditions.  
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4.2.4. Analysis of signal intensities 
 

To adjust for any bias affecting the average ratio of the two dyes due to technical variation 

rather than biological differences, M-CHiPS re-scaled the raw intensity values [71, 73]. There 

are different strategies to normalize gene expression data, but all start with the selection of 

genes for the fitting normalization algorithms. All the genes present in the array were used, 

since they represent the complete transcriptome of Hydractinia and many of them have an 

invariant expression level in the condition and reference samples. This can be observed 

directly from Fig. 21 and 31, where the majority of the plotted gene intensities of the different 

samples clustered along the diagonal line. One of the advantages in normalizing with all 

spotted genes is that the algorithm properly estimates the spatial and intensity-dependent 

trends of the data [70].   

The intensity data was standardized based on a logarithmic regression model. The distortion 

of the measured intensities influenced by the background was corrected subtracting an 

additive constant or offset. To account for the multiplicative factors affecting the gene 

intensities due to, for example, different labelling rates; the medians of the intensity ratios 

(Cy3/Cy5) from equally expressed genes were used as an adjusting factor, such that the ratio 

for these genes becomes one [71, 73, 74, 87]. In all mitomycin and immune array 

hybridizations, the normalization data presented good fitting performance with correlation 

values between 0.85 and 0.98. 

After normalization, M-CHiPS was used to remove all genes with an invariant expression 

profile or a poor reproducibility, while selecting those with a significant evidence of being 

differentially expressed across the conditions. The first filtering criteria eliminated all genes 

with saturation effects. Signal saturation proportionally increases the bias estimation of the 

gene expression level. However, it is important to consider that saturation is directly related to 

the settings of the photomultiplier tube (PMT) and RNA abundance, and it is not necessarily 

associated with a poor quality of the spot [123]. This suggests that just highly expressed genes 

are being eliminated, which might be particular informative for a certain condition. To 

diminish the saturation effects, the lowest PMT values were selected while maintaining a 

good signal-to-noise ratio for spots having a low intensity. In all microarray experiments only 

1% of the genes still showed saturation, and most of them presented such an effect in both, 

condition and control measurements.  

Spots with low intensities, similar to the background, may display notable ratios due to 

measurement fluctuations. To avoid this bias a second filtering criteria was used, which 
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selected all genes having at least in one of the conditions a considerable absolute expression 

level. This filtering step eliminated approximately 70% of the microarray data. It is important 

to mention that in two-channel data, low spot signal intensity could occur not only because of 

a low concentration of the corresponding mRNA in the sample but also due to the saturation 

of all binding possibilities of the probe by one of the target mRNAs. Therefore, it is necessary 

to treat the normalized intensities as ratios of the relative mRNA expression in the condition 

with respect to the control [73]. In subsequent analysis, the logarithm of the expression ratio 

was used. In contrast to the solely expression ratio, the logarithmic function treats the values 

symmetrically and does not limit down-regulation genes to a scale between 0 and 1 [71].  

Quality filtering steps were applied as final selection criterion. A statistical method 

specifically adapted for microarray (SAM) was used, based on the assimilation of a set of 

gene-specific t-tests [88]. The aim was to identify a large number of differentially expressed 

genes with a minimum of false positives. Genes were selected if they exhibited a significant 

and reproducible (corrected p-value < 0.05) different expression level between at least one 

condition and the control. In addition, only genes with a 2-fold change in expression were 

considered. In both microarray experiments, this filtering resulted in the selection of 1 to 3% 

of all analyzed data (Fig. 21 and 31). They represent the best candidate-genes to be associated 

with a mitomycin treatment or an LPS and allorecognition response. 

 

4.2.5. Finding genes with common expression patterns 
 

The final and most important goal of microarray experiments is to analyze several 

hybridizations in order to identify genes having a common expression pattern [71]. This 

suggests that those genes are more likely co-regulated under a particular condition and 

therefore, perform similar or related biological functions. There are different methods to 

cluster microarray data. In the present project, data was first analyzed in M-CHIPS using 

Correspondence Analysis (CA). This projection method, similar to Principal Component 

Analysis (PCA), successfully represented in a two dimensional scenario all possible 

associations between and within the genes and hybridizations (Fig. 22 and 32). However, one 

of the drawbacks of CA is the low precision to define the borders of the clusters [124, 125]. 

CA analysis was complemented with two other methods, Hierarchical clustering and k-means 

algorithms. In general we can consider that both methods confirmed the CA results, but slight 

differences were observed in the generated clusters. It is necessary to take into account that 

clustering results are sensitive to the used algorithms, normalization and distance metrics [71, 
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126]. Hierarchical clustering has the advantage of being a simple approach with an easy 

visualization (Fig. 23 and 33). But this method is also imprecise in defining the clusters, and 

there are no confidence values to support the performance of the algorithm. In addition, this is 

an agglomerative method and therefore, wrong assignment in the first clusters cannot be 

corrected. This means that subsequent clusters are constructed based on false assumptions 

[71]. This could be one of the reasons why several genes having the same function were 

distributed in different clusters.  

Alternatively, the k-means clustering approach was tested. This partitional algorithm orders 

the genes into a fixed number of clusters which are internally similar but externally dissimilar 

and therefore, avoid the bias discussed above [71]. Nevertheless, in this case it is necessary to 

determine the number of clusters in which the data will be distributed. To define the optimal 

number of clusters for k-means, a figure of merit algorithm was used. The analysis showed for 

both arrays that in the first KMC generated clusters the calculated FOM values drastically 

decreased (Fig. 24 and 34). This correlates to the CA biplot, where in a first view the data can 

be mainly distributed in few main clusters. However, both cases also suggest that additional 

clusters might provide a better overview of the relationships of the expression data. The CA 

biplots clearly show the presence of sub-clusters, especially in outlier genes (Fig. 22 and 33). 

Correspondingly, the curve representing the calculated FOM values continuously decreased, 

whereby the predicting power of k-means increased (Fig. 24 and 34). Different numbers of 

clusters for k-means were empirically tested, finally deciding that it performs optimally for 15 

and 21 clusters in the mitomycin and immune array, respectively. The addition of a colour-

coded GO term annotation in the graphic representation of the k-means clusters provided 

maximal functional information of the candidate genes. 

While there is no perfect clustering classification method, there are some that are more 

appropriated for a certain data-set [71]. In this project it is possible to confirm that the 

combination of different approaches improves the detection of data relationships, resulting in 

a powerful tool to group genes with similar expression patterns. 
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4.3 Hydractinia microarray experiments 
 

The unexpected representation of most vertebrate gene families in cnidarians resulted in an 

emerging interest to trace the evolutionary origin of different metazoan features, like the 

regeneration of stinging tissues by stem cells, and the response to infection or allogeneic 

reactions. While bioinformatics approaches have already started to reveal such traits in 

cnidarians, the acquired EST information was combined with a microarray to directly address 

the genetic repertoire of the stem cell and innate immune system of Hydractinia.  

 

4.3.1. The use of mitomycin­C to target the i­cell population  
 

Stem cell properties of the interstitial-cell lineage have attracted significant attention since 

decades. Recent studies reported that several metazoan stem- and germ cell genes are 

represented in cnidarians [19, 40]. However, it is still unclear if the identified cnidarian 

homologues are also functionally conserved. Furthermore, the complete gene repertoire and 

the associated molecular pathways involved in the maintenance and differentiation of 

cnidarians stem cells is unknown. 

The first step to approach this problem was to identify genes associated with the i-cell lineage. 

To achieve this, following the experiments of Müller and colleagues, the i-cell population was 

partially and completely depleted from Hydractinia colonies using the antibiotic mitomycin-C 

(MMC) [27, 41]. This drug is normally used in the treatment of cancer and other tumours due 

to its capacity to interfere with DNA replication, leading to rapidly induced cell death [127]. 

Thus, all Hydractinia cells having a high division rate were targeted by MMC. These included 

proliferating stem cells and uni-potent germ cells. In addition, cells committed to 

differentiation were also targeted since previous studies suggested that these cells undergo 

one or more cell divisions before complete differentiation [26]. So far, the fraction of the i-

cell population that actually functions as stem cells and the number of the different stem cell 

sub-types is unknown. It is expected that a subpopulation of progenitor cells, which are 

proliferating cells in between the multipotent and the committed state, are present in 

Hydractinia [26, 28]. Accordingly, Giemsa/May-Grünwald staining of i-cells showed that in 

spite of their relative homogeneous morphology, cells presented slightly differences in size 

(Fig. 16). It has been proposed that large cells correspond to stem cells, while relatively small 

cells resemble the presence of intermediates or differentiating cells [19].  
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4.3.2. Microarray analysis of colonies treated with mitomycin  
 

Drug doses were adjusted to specifically target the i-cell population but not the differentiated 

cells. To achieve this,  the treatment started with a lower amount of drug compared to the one 

suggested in previous publications, but always maintaining a periodical delivery [27]. Only 

after applying higher doses (30 µM) the first phenotypical changes were observed in the 

colonies (Fig. 15). As expected, colonies with different genotypes varied in the response to 

the drug. In the F0 clones the drug rapidly eliminated all dividing cells, resulting in severe 

apoptosis and necrosis all over the colony. Cytological examinations confirmed the probably 

complete but not exclusive elimination of i-cells (Fig. 16D). Based on these results, F0 

colonies were discarded for further analysis. In contrast, drug responsiveness of the FM and 

K12 colonies was milder, but more accentuated in the latter. K12 animals were clones of a 

FM colony and therefore, genetically identical organisms. The different age, size, thickness of 

the stolon mat and the chitin-layer may have differentially affected drug uptake, resulting in 

the slight time-shift drug response observed in these two clones. At 96 hours post treatment, 

significant phenotypic changes with respect to the control were observed (section 3.3.1.1). 

Cytological examinations corroborated the exclusive elimination of most i-cells (~90 %) from 

the K12 clones. In the case of the FM colonies, the amount of remaining i-cells (~52 %) was 

significantly lower than the control (Fig. 16A-C). 

Recovery from the mitomycin treatment was only achieved in the FM colonies (Fig. 17). 

These were the only clones having a stable junction with the grafted donor-explants. 

Generation of new tissues and polyps was not exclusive to the grafted regions, taking place all 

over the colony. It is known that i-cells can migrate a considerable distance [27].  However, 

recovery may also have occurred due to the survival of a significant number of stem cells 

rather than from the newly populating stem cells acquired from the donor.  

With the microarray, i-cells related genes were identified by comparing these three distinct 

phenotypes -the mild and strong i-cell depleted colonies and a recovered condition- against 

the same reference control (Fig. 19). From this first analysis it is not possible to determine 

which particular cells are expressing those genes and therefore, distinguish different cell types 

within the i-cell population. Yet, 162 good candidate genes could be identified which might 

differentially mark such cells.  

The comparison of the logarithmic fitted intensity from all conditions with respect to the 

reference, demonstrated that the expression level of most of the genes spotted on the array 

were not affected during the treatment (Fig. 21). This not only supports the fact that the array 
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represents a broad variety of genes, but also that the drug treatment affected a particular 

population of cells rather than the complete organism. As expected, most of the differentially 

expressed genes were associated to and down-regulated in the strongly i-cell depleted 

phenotype (K12, Fig. 21-22). Few genes were differentially transcribed in the other two 

conditions and even less were up-regulated.  

Correspondence analysis allowed a clear overview of the transcription profile of each 

different condition. Correlating to the phenotypic changes observed after the MMC treatment, 

organisms differed in their expression pattern proportional to their drug response. This can be 

observed in the clockwise distribution of the condition-clusters in the plot, where most of the 

detected expression changes occurred in the K12 phenotype and were closer to FM (mild 

depletion of i-cells) than FMR (recovery). Subsequently, k-means was used to analyze this 

data in detail and distribute the genes into clusters of similar expression pattern. 

 

4.3.3. Genes associated with organisms having a mild response to mitomycin  
 

After drug treatment, FM colonies still presented a substantial amount of cells from the 

interstitial lineage. The array results support the hypothesis that, mainly those surviving i-cells 

committed to recover the colony, regenerating new stolon tissues and polyps. K-means 

analysis showed that some of the genes specific to the FM condition are related to a metabolic 

or detoxification function. For example, a gene encoding for glutathione S- transferase was 

identified (cluster 1, Fig. 25). This family of enzymes, besides their function in cell signalling 

and S-glutathiolation, is involved in the detoxification of lipid peroxidation products as well 

as in anti-neoplastic drug resistance of carcinogens and xenobiotics in germ- and other cells 

[128-130]. In addition, several genes encoding for RNA binding proteins were identified, 

suggesting that the cells of the FM condition exhibited active mechanisms of post-

transcriptional regulation, e. g. splicing [131]. Metabolic regulation is also supported by the 

presence of kinases and other catalytic proteins (cluster 12, Fig. 25).  

Genes with a high expression in the FM phenotype were also distributed in cluster 9. In 

contrast to the previously described clusters, these genes presented a broader spectrum of 

expression with a strong inactivation in FMR but some of them highly expressed in K12 (Fig. 

28). Nevertheless, these clusters shared the identification of several growth and transcription 

factors. For example, putative genes encoding for BMP-2 and -4 were identified. Despite the 

relatively low score of their BLAST similarity match, domain analysis identified a TNRF 

cysteine-rich domain at the N-terminal region and a TGFβ/Netrin-module (non TIMP type) 
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domain at the C-terminal part of these sequences. BMP proteins can be considered as 

multifunctional growth factors of the TGFβ superfamily associated with the development of 

different tissues [132-134]. In cnidarians, BMPs are involved in axial patterning, neurogenesis 

and epithelial differentiation. In addition, it has been shown that BMP 2/4 expression levels 

increased in stress responses, e.g. wounding [135].  

Several genes encoding for Trefoil factors (TFF) were also identified. In higher vertebrates, 

these peptides are involved in the integrity of the mucous epithelia, influencing migration of 

cells and actively participating in tissue healing by a process called restitution [136, 137]. 

After damage, TFF peptides and epidermal growth factors (EGF) are highly expressed in the 

nearby tissue. This suggests that the interaction of these peptides is beneficial in the defence 

and repair of the mucosa [137]. Moreover, in vitro studies demonstrated that under the 

presence of glutathione, human-Trefoil factors are able to promote proliferation. Interestingly, 

our list of genes in cluster 1, 9 and 12 includes not only the Hydractinia homologue to TFF-

peptide but also genes carrying EGF domains and encoding for glutathione. The presence of 

genes involved in the protection and regeneration of damaged tissue is also sustained by the 

identification of several Rhamnose-binding lectins (Fig. 25). In cnidarians, the function of 

these molecules is still unclear but it is suggested that beside their role as PRRs they might act 

in tissue remodelling and repair [138].   

The active response of i-cells in detoxification, proliferation, wound healing, and cell fate 

determination (including epithelial muscle or nerve cells) is further supported with the 

identification of the basic leucine zipper (Bzip) transcription factor Mafl, zinc finger proteins 

and astacin metalloproteinases [139-142]. 

 

4.3.4. Genes associated with organisms having a strong response to mitomycin  
 

As expected, colonies exclusively and almost completely depleted from their i-cells exhibited 

a down-regulation in the expression of several genes (Fig. 26 and 27). Indeed, only one 

cluster with 8 genes showed activation in the gene expression in this phenotype (cluster 3, 

Fig. 28). The identification of genes without or with a decreased expression in the K12 

condition with respect to the control should directly reflect that those genes are functional 

associated with i-cells. As previously mentioned, the i-cell population comprises a 

heterogeneous group of cells including stem and differentiating cells. This was corroborated 

by the microarray results, showing that the MMC treatment eliminated cells committed to 

nematocytes production. This was extrapolated from the identification of more than 15 genes 
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encoding for three different types of minicollagens. These are small collagens-like proteins, 

major components of the capsule wall and tubule of nematocyst and therefore, specific 

markers of nematogenesis [143, 144]. It is also possible to speculate that neuron precursor 

cells were targeted since it is thought that bipotent stem cells give rise to both nematocytes 

and gland cells [145].  

As in the FM condition, several genes encoding for metabolic proteins with probable roles in 

the development of new tissues were identified [146]. This included the RNA-protein binding 

cabeza, RNA-binding region RNP A1, RAD23 and the E3 ubiquitin protein ligase (Fig. 26, 

clusters 2 and 8). Interestingly, the RNA-protein binding cabeza transcript showed high 

sequence similarity to two human genes, TLS (Transcribed in LipoSarcomas) and EWS 

(Ewing’s Sarcoma). It has been shown that if these proteins fuse to transcription factors (e.g. 

C/EBP), they can induce chromosomal translocations leading to tumour formation [147].  

Another gene following this expression pattern was the homologue of the Hydra 

magnipapillata CnPL10. PL10s are members of the DEAD-box RNA helicase protein family 

and have an important role in translational control. The identified sequence is relatively short 

representing the N-terminal region of the transcript and is probably the reason why there is no 

match to the Hydractinia homologue already identified by Mochizuki and Fujisawa. The 

down-regulation of CnPL10 in the K12 colonies correlates to the observations done in Hydra, 

where this gene is expressed in multipotent and germline stem cells, ectodermal epithelial 

cells in the body column, and differentiating cells of the interstitial lineage [95].  

It is appropriate to mention that, despite the harsh MMC treatment, in the FM or K12 

conditions only one activated gene was associated with an apoptotic function. This was the 

gene encoding for Cathepsin, which besides its function in degradation and digestion of 

phagocytosis products it has also been associated to programmed cell death [148]. Indeed, 

most up-regulated genes exhibited a catalytic function -like amidohydrolase- or a structural 

activity –including fibrillar collagen precursor or clathrin proteins.  

 

4.3.5. Transcriptional profile of the recovery FMR phenotype  
 

It was expected that expression profile analysis of recovering colonies will identify genes 

associated with migratory donor i-cells and to the ones actively regenerating damaged tissues; 

including stem-cells and cells in their differentiation process. In comparison to the control, 

such genes should be up-regulated in this condition and correspondingly down-regulated in 

the i-cell depleted phenotypes. As discussed above, the recovery of FM may have occurred 
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due to the migration of donor i-cells but also because a significant amount of stem cells 

survived the MMC treatment. Unfortunately, there was not enough material to determine the 

amount of donor or host i-cells in the FMR organisms by cytological examinations. Recovery 

occurred in small spots spread all over the colony, and despite that RNA was isolated just 

from these regions, the amount of new emerging polyps or stolon tissue was significantly 

lower than the untreated colony. This is supported by the fact that almost all k-means clusters 

showed a down-regulation profile in the FMR condition. Only one cluster included up-

regulated genes encoding stress related proteins (e.g. Heat shock proteins).   

The FMR phenotype helped performing a robust multiconditional experiment analysis. 

However, most of the information obtained in the mitomycin experiment was retrieved from 

the FM and K12 conditions. The detection sensitivity of our experimental design did not 

allow to identify the stem- or germ- cell markers already known in cnidarians; like Sox, Nanos 

or Vasa [19, 40, 95]. Probably stem- or germ- cell related genes are not expressed at high 

levels and therefore are difficult to be represented in a RNA sample [95]. Considering that a 

colony comprises cells in heterogeneous stages, the pooling of RNA material will diminish 

the possibility to detect lower expressed transcripts. The previous fact does not only affect the 

target sample but also the RNA and cDNA material used as a probe for the array.  

Nonetheless, this first array analysis identified several genes associated to the i-cell 

population of Hydractinia, including transcription or growth factors. In addition, various 

genes involved in detoxification and wound healing were found. More interesting is the fact 

that many of the identified sequences are still unknown. For a better characterization of these 

genes, it is necessary to acquire their complete open reading frame sequence and combine 

bioinformatics functional annotation with in situ hybridization experiments. This will not only 

describe the action of previously unknown genes but together with the already annotated ones 

will help to define and characterize the i-cell population of Hydractinia. 

 

4.3.6. Identification of genes associated with the Hydractinia immune system  
 

Genomic data suggests that the eumetazoan ancestor had a complex tool kit for defence 

against pathogens and aggressors. However, with the available information it is still unclear to 

which extent the innate immune system of higher metazoans derives from cnidarians. The 

genetic diversity of the phylum Cnidaria further complicates this analysis, since not all the 

identified genes are equally represented in the different cnidarian classes (section 1.1.4.1) 

[16]. Moreover, not all cnidarians have demonstrated the highly specific system of allo- and 
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xeno- recognition observed in anthozoans and hydrozoans. This particular feature allows 

considering Hydractinia as a suitable model organism to define the immune gene repertoire of 

the cnidarian ancestor [1, 138]. 

To identify genes involved in the immune system of Hydractinia, the microarray was used to 

analyze the expression profiles of animals with two different immune responses (Fig. 30). 

First, the colonies were incubated with LPS mimicking a Gram-negative bacterial infection. 

Expecting a fast immune reaction in the host, two different time points were analyzed after 

the LPS induction. Second, colonies were challenged by allogeneic contact. To mainly 

represent genes involved in an allogeneic reaction in the target-sample, the RNA used in the 

array experiments was exclusively isolated from the contact area of allogeneic colonies 

showing signs of rejection.  

First analysis of the microarray data showed that most spots correspond to housekeeping 

genes (Fig. 31). This allowed a good normalization of the intensity values, which together 

with a robust statistical analysis identified 245 genes being significantly differentially 

expressed in the analyzed condition (Fig. 31). While some genes were associated with a LPS 

response, the allorecognition reaction seems to affect the expression level of several hundreds 

of genes demonstrating a complex process. CA not only sustained this result but also reported 

the high reproducibility and quality of the produced microarray data. In CA, all LPS 

hybridizations clustered quite close to the control and centroid of the biplot (Fig. 32). This 

suggests that LPS has a mild impact on the gene expression level of few genes. In contrast, 

the allorecognition condition spread out from the centroid of the biplot, providing the major 

difference in the expression data. This is also clearly observed in the amount of either up or 

down-regulated genes associated with this condition. It was also possible to identify two sub-

clusters with genes that were initially up-regulated after 1 hour of the LPS induction but were 

down-regulated in the subsequent 3 hours. The reverse situation was also observed (sub-

cluster I and II, Fig. 33). Interestingly, in these two sub-clusters, animals at 3 hours post LPS 

induction displayed a similar expression pattern as the allogeneic challenged colonies (Fig. 

33). K-means clustering was used for the detailed analysis of the gene expression patterns. 

 

4.3.7.  Genes associated with organisms undergoing allorecognition  
 

The ability of multicellular organisms to discriminate between self and alloantigens should be 

modulated by the antigens itself, recognition molecules and positive or negative reaction 

pathways [54, 149]. This suggests that several genes must be involved in both, fusion and 
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rejection processes. Colony rejection resembles an inflammatory response, where the 

interacting tissues swell due to the active migration of nematocytes aimed to discharge toxins 

and damage the competitor [144, 148]. In the allorecognition condition, an increased 

production and activity of nematoblasts was confirmed by the up-regulation of the 

nematoblast marker CnPL10 and several different genes encoding for mini-collagens (Fig. 35, 

and Fig. S2 in Additional data 2). The diversity in nematocysts morphology is achieved by the 

different types of minicollagens and their disulfide association with an additional capsule 

protein, NOWA [143]. Hydrozoans have the largest repertoire of nematocysts within the 

phylum, with the representative Hydra comprising 17 different minicollagens [143, 144]. 

Based on their N and C terminal cysteine rich domains (CDR), minicollagens are organized in 

three groups. In our list of genes, the Hydractinia homologue to the Hydra minicollagen 1 

(Hm-Ncol1) was identified; which with identical cysteine pattern in their N- and C-terminal 

CDRs belongs to the group 1. In addition, a gene encoding for the Hydra minicollagen 3/4 

was found; which with their variable CDR motifs are organized in group 3. While additional 

minicollagen related genes were identified in the array, it is necessary to acquire their 

complete cDNA sequence for a proper characterization. Other collagen-like peptides were 

detected, of which their associations with nematocysts must be further analyzed (Fig. 35).  

The activation of genes involved in the mitochondrial electron transporter chain, like the ABC 

transporter or cytochrome c-type, suggests that allorecognition is a highly demanding energy 

process [148]. Active metabolic regulation occurred since several genes with a nucleic acid 

binding or splicing related activity were identified (Fig. 35). It is expected that in an 

antagonistic response oxidative stress may play an important role in cell damage and 

correlating with this, we found several enzymes with a protective function against reactive 

oxygen metabolites including; oxidoreductases, the antioxidant zinc-metalloproteinase and the 

slightly activated glutathione-S transferase (Fig. 35, Fig. S2 in Additional data 2) [128, 148]. 

While this kind of protective activity was taking place, nematocysts toxins delivery was 

probably supported by preliminary digestion of the opponent tissue using degrading enzymes 

such as collagenase (cluster 1, Fig. 35) [150, 151]. In addition, a gene encoding for a 

deoxyribonuclease was found in our data. This protein has been reported in nematocyst 

extracts and it is thought that at least in the anemone, they exhibit a hemolytic effect [150]. 

A significant amount of genes were down-regulated during the allorecognition response (Fig. 

36). Six of them were lectins. In Hydractinia, they probably act as secreted PRRs binding 

conserved surface epitopes of microorganism invading the colony. Alternatively, their 

function might be also related to development, tissue remodelling and repair [114, 138, 148, 
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152]. Previous analysis done in the tunicate Botryllus schlosseri have shown an up-regulation 

of lectins following allogeneic contact and suggested that these genes are actively involved in 

allorecognition [148]. In Hydractinia, different lectins, e.g. Rhamnospondin (Rsp) and 

Tachylectins, are constitutively expressed in a ring-like pattern around the polyp’s 

hypostomes (see section 4.1.5) [114, 138]. This restricted expression pattern and the fact that 

the RNA for allorecognition sample only included rejecting stolon tissue bearing just a few 

polyps, leads to the assumption that the latter sample contains less amount of lectin mRNA 

with respect to a colony highly populated with polyps. Therefore, in this particular case it is 

not possible to satisfactorily define the expression profile of these genes during an 

allorecognition process. But we can confirm the presence of different lectins, suggesting that a 

high variability exists in the immune-molecule repertoire of Hydractinia [138] . 

With the same down-regulation profile during allorecognition, genes encoding for 

Phospholipase (PLA2) and Conodipine were found (Fig. 36). These proteins have been 

isolated from a wide variety of venoms as well as from mammalian pancreatic and 

inflammation fluids. Besides their catalytic activities on lipid metabolism, some of the PLA2s 

show potent pro-inflammatory, antimicrobial or neurotoxicity effects [153-155]. According to 

these descriptions and to their presence in nematocysts, it would theoretically be expected that 

these genes are activated in allorecognition [150]. Instead, their down-regulation suggests that 

in nematocytes, the mRNA level of such venom related genes does not correlate to the 

amount of their final protein products. It has been described by immunocytochemical 

approaches that in the resting nematocysts this toxins are stored in the outer membrane of the 

inverted tubule. Upon discharge, the toxin is translocated to the internal surface of the 

everting tubule and its delivery by the dart-like spines occurs in the nanosecond scale [156]. 

Under these conditions, one could expect that nematocysts reaching the points of rejection 

(POR) carry toxins ready for delivery. In addition, because of the explosive discharge of the 

toxins, slightly different time frames might vary significantly the transcriptome analyses. 

Alternatively, as already observed in Hydra, such toxins might also be found in tissues devoid 

of nematocytes. This suggests that such proteins perform multiple roles in the organism. 

Particularly, PLA2s fulfil the criterion of a bioactive protein involved in toxic and digestive 

roles [143, 150].  

Tissues in the periphery of the colony are devoid of undifferentiated cells [27]. Therefore, the 

use of such tissue in the allorecognition experiment resulted in a down-regulation of several 

genes encoding for transcription and growth factors; including the already identified trefoils, 

BMP-4 and fibroblast growth factor-2 (FGF-2) [157]. Moreover, several kinases with the 
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same expression profile were identified; including PANK, which have been shown to 

physically regulate the intracellular concentration of coenzyme A (CoA), and mpk-1 involved 

in a variety of cellular functions including proliferation, differentiation, development and 

transcriptional regulation [158, 159].  

When colonies get into contact, incompatibility reactions are observed in the reactive stolons 

but not in adjacent tissues. It is known that prolonged allogeneic contacts affect the entire 

colony, but in the initial phase of the reaction, allogeneic responses are rather local. Although 

some tissues are actively delivering nematocytes, others are recruiting several genes to 

recover the colony, like for example RAD23 or the antioxidants genes previously described. 

Thus, allorecognition seems to be a complex process that includes a whole genome response 

with up- and down-regulation of several genes [148]. Highly interesting are those 60 genes 

from our list which are still unknown. In order to better characterize those, and further analyze 

the rejection processes, the candidate’s genes must be completely sequenced and in situ 

hybridization analysis has to be applied.  

4.3.8. Genes associated with organisms having an LPS challenge 
 

Lipopolysaccherides (LPS), peptidoglycans and glucans have been successfully used to 

activate the invertebrates and vertebrates immune system [160, 161]. Particularly in lower 

metazoans, Gram-negative bacterial infections mimicked by the use of purified LPS resulted 

in the identification of pattern recognition receptors and antimicrobial peptides [138, 162, 

163]. In the current analysis 70 genes being specifically associated with a response to LPS 

exposure were identified, from which 42 were slightly up-regulated directly after the immune 

challenge (Fig. 37). From these, half of the genes are unknown and most of the ones with a 

functional annotation are related to a binding activity. For example RNA-binding molecules 

and translation elongation factors were detected, which suggest the activation of post-

transcriptional regulation mechanisms. In addition, the presence of histone genes indicates 

that chromatin modifications also took place during an LPS response. It is well described that 

histone H1 facilitates the condensation of the chromatin fiber and therefore, regulates the 

expression of specific genes [164]. Recent reports demonstrated that besides the well accepted 

transcriptional repressor activity, H1 can also up-regulate gene expression [165]. In our 

analysis, histone activation was further demonstrated with the identification of a gene carrying 

a H5 domain which in mammals can replace the function of H1 in certain cells [166]. These 

histones seem to affect the expression of a variety of genes with functions related to e.g. cell 

cycle, cellular development, growth and proliferation, cell-cell signalling, drug and nucleic 
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acid metabolism [165]. In addition to transcriptional and translational regulation, the cell-

cycle was probably actively regulated by the high expression of G2 cyclin (cluster 19, Fig. 

37). Cyclins are able to bind cyclin-dependent kinases (CDKs), and the resulting complex is 

involved in all cell cycle transitions. In Hydra, cyclins transcription expression level dropped 

down immediately after injury but subsequently, increased especially in regions populated 

with highly proliferating cells [167].  

At a first glance, the genes described above have a relatively broad functionality and 

therefore, do not satisfactorily describe a specific response to LPS. Moreover, these genes 

followed non- or a down- regulation in their expression level at 3 hpi of LPS. This supports 

the idea that they merely represent a stress response to the treatment (Fig. 37). However, 28 

genes that were initially not affected or even down-regulated by the LPS treatment, started to 

be actively expressed at 3 hpi of LPS (Fig. 38). Sequence analysis demonstrated that most of 

these genes have a clear functional relation to an immune response. For example, genes 

encoding the Heat shock protein 70 were redundantly found (cluster 16, Fig. 38). In addition 

to their primary function as molecular chaperones, Heat shock proteins from the HSP60, 

HSP70 and HSP90 families, are potent activators of the innate immune system [168, 169]. It 

has been shown that inflammatory responses mediated by LPS accumulate Hsp70 and plasma 

pro-inflammatory cytokines [170]. Hsp70 and cytokine effects are probably mediated via 

Toll-like receptor signal transduction pathways towards the activation of NF-κB and MAPKs 

[169].  In addition to these results, a gene encoding for a lipocalin-like protein was identified 

(cluster 1, Fig. 38). Lipocalins or lipid binding proteins have diverse functions, including 

among others nutrient and pheromone transport, control of cell cycle and synthesis of 

prostaglandins. But they are also involved in the innate immune response to bacterial 

infections [171-173]. In higher vertebrates it has been described that LPS activation of Toll 

like receptors resulted in a stimulation of transcription, translation and secretion of Lipocalin 

2. The secreted protein mediates the host defence against infection by sequestrating iron, 

which is essential for the growth and activity of most bacteria [172, 174, 175].  

Antistasin, a serine protease inhibitor, exhibited a similar expression profile as the previously 

described genes (Fig. 38). Former analyses in cnidarians (e.g. Hydra) suggested that this 

anticoagulant might function in digestion of prey but also in the protection of the mucous cells 

from its own digestive enzymes [176]. Alternatively, as already observed in other metazoans, 

this gene might be directly involved in the regulation of inflammation [177].  

The LPS challenge also stimulated the expression of growth and transcription factors as well 

as enzymes involved in detoxification, wound healing and cell differentiation (Fig. 38). 
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Although PRRs were expected to be activated after the exposure of the colony to LPS, most 

of the genes encoding for lectins showed no significant changes in their expression level. This 

result correlates to previous reports done in cnidarians, where tachylectin and rhamnospondin 

(Rsp) genes presented an invariant expression profile after the incubation with LPS, bacteria 

or fungi, respectively [114, 138]. It is thought that the constitutively secreted Rsp molecules 

act as a mouth immunological filter, but they also may have functional roles in remodelling 

and repair. In the case of tachylectin, its involvement in neuronal development is suggestive, 

based on its spatial and temporal expression pattern (4.1.5, see Fig. S5 in Additional data 3) 

However, the possibility that tachylectin molecules are able to specifically identify others 

PAMPs and not LPS cannot be excluded. Interestingly, two genes encoding for a cnidarian 

like tachylectin were identified in the microarray experiment. One of them (HEAB-0028L01) 

confirmed the previous analysis and presented an invariant expression level after the LPS 

exposure, but the other (HEAB-0031J15) showed a 2 fold up-regulation at 3 hpi of LPS (Fig. 

38 and Fig. S3 in Additional data 2). These sequences are ~70 % identical among each other 

and 63-66% identical to the already identified CTRN (section 4.1.5). From this first analysis, 

it is possible to speculate that the several point mutations identified in the sequences resulted 

in the polymorphism of the gene. This suggests that these genes are specialized to bind 

different targets. Further genetic and functional analysis should be done to clarify their 

diversification and functionality. 

The gene with a Thrombospondin type 1 repeat (TSR) also deserves special attention (Cluster 

16, Fig. 38). The TSR domains are present in a large number of proteins involved in cell-cell 

and cell-extracellular matrix interactions. Several TSR proteins also have a direct role in 

immunity. Indeed, the Hydractinia Rsp molecule contains eight tandemly repeated TSR 

domains which probably act as an extracellular signalling tag for cross-communication with 

other immune molecules or receptors [138].  

This first microarray analysis identified several immune related genes for a detailed functional 

characterization. Particularly interesting are those transcripts which still have an unknown 

function. In order to better describe how Hydractinia responds against an infection, the 

complete gene sequences will be acquired and whole mount in situ hybridizations will be 

performed.  
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4.4 Conclusion and future perspectives 
 
 
This project is the first high-throughput effort aimed to identify and characterize the 

transcriptome of the colonial marine hydroid Hydractinia echinata. The generated EST 

dataset, supported with a database harbouring all the acquired information and a microarray 

for transcriptional profiling analysis, provides a platform to promote and facilitate molecular 

research not only in Hydractinia but also in other cnidarians. 

The Hydractinia ESTs confirmed that cnidarians have a remarkable genetic complexity, with 

a pattern of a high gene-sequence maintenance and relatedness to vertebrates rather than to 

ecdysozoan invertebrates. In addition, the Hydractinia non-metazoan sequences found in the 

different cnidarians corroborates the present view that a substantial number of ancient 

prokaryotic genes have been maintained in cnidarians' genomes and were either cnidarian-

specific or lost in other metazoans [7, 8, 11]. The detection of genes specific to Hydractinia 

demonstrates that the cnidarians analyzed to date do not represent all the features present in 

the phylum and therefore, a better overview of cnidarians might be possible with additional 

sequencing data from different basal metazoans. 

To characterize the genetic repertoire associated with the i-cell population and the innate 

immune system of Hydractinia, transcriptional profiling experiments were performed which 

identified 162 and 245 good candidate genes being significantly related to such traits, 

respectively. Gene expression pattern in the different experiments provided insights into the 

function of many genes which are still unknown. In the case of genes with a known functional 

annotation, the microarray experiments either corroborated their characterization or defined 

an alternative one for Hydractinia. This demonstrates that the Hydractinia platform provides a 

straightforward approach for functional analysis and the discovery of new genes. 

These microarray results should be confirmed by Real-time PCR. Furthermore, genes' 

functional characterization will be improved by acquiring the complete ORF sequences and 

combining bioinformatics functional annotation with in situ hybridization experiments. 

Additional microarray experiments can be performed to increase and improve the acquired 

data. For example; the results of the immune microarray suggest that the analysis of more 

time points in the LPS challenge or with different PAMPs can be quite informative. 

Additional expression profiling analysis in colonies having different types of allogeneic 

responses (passive or active rejection, transitorily fusion, etc.) might help to unravel the 

allorecognition system of Hydractinia. In the case of the mitomycin array, genes that can 
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mark particular undifferentiated cells could be used to enrich such population and analyse it 

on the array.  

All the sequences and functional information that are generated in cnidarians together with the 

ongoing genome projects in other unusual model organisms (e.g. sponges, chætognath or 

lophotrochozoans), is helping to reconstruct the genetic design of the common metazoan 

ancestor and provides further insight into the maintenance, loss or divergence of genes in the 

vertebrates [7, 8, 16, 17, 178]. 
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6. Appendix 
6.1  Additional data 1  

Supplementary data related to the sequence analysis pipeline. 

Table S1. Annotation of Hydractinia un-informative and unknown sequences using Domainsweep 

Clone name 
 

Inter Pro annotation 
number 

Sequence annotation 
 

HEAB-0018B03 IPR007116 6-pyruvoyl tetrahydropterin synthase 

HEAB-0020B05 IPR001680/IPR007190 WD-40 repeat/Periodic tryptophan protein-associated region 

HEAB-0020C15 IPR000719 Protein kinase 

HEAB-0020D15 IPR001442 Type 4 procollagen, C-terminal repeat 

HEAB-0020L12 IPR002086 Aldehyde dehydrogenase 

HEAB-0021B13 IPR003660 Histidine kinase, HAMP region 

HEAB-0021B17 IPR001202 WW/Rsp5/WWP 

HEAB-0023G03 IPR001283 Allergen V5/Tpx-1 related 

HEAB-0024F14 IPR002323 Cytochrome c, class IE 

HEAB-0024L07 IPR000905 Peptidase M22, glycoprotease 

HEAB-0024L20 IPR001497 Methylated-DNA-[protein]-cysteine S-methyltransferase, active site 

HEAB-0025A24 IPR007087 Zinc finger, C2H2-type 

HEAB-0025F04 IPR005028 Herpes virus intermediate/early protein 2/3 

HEAB-0026I15 IPR010528 TolA 

HEAB-0027F04 IPR005116 TOBE 

HEAB-0027F07 IPR001754 Orotidine 5'-phosphate decarboxylase, core 

HEAB-0027I05 IPR001564 Nucleoside diphosphate kinase 

HEAB-0027J22 IPR004012 RUN 

HEAB-0027M01 IPR008412 Bone sialoprotein II 

HEAB-0028B05 IPR003780 Cytochrome oxidase assembly 

HEAB-0028B06 IPR002364/IPR011597 Quinone oxidoreductase/zeta-crystallin/GroES-related 

HEAB-0028B17 IPR003236 Mitochondrial ribosomal protein L5 

HEAB-0028D13 IPR001650/IPR012541 Helicase, C-terminal/DBP10CT 

HEAB-0028D14 IPR001506 Peptidase M12A, Astacin 

HEAB-0028E20 IPR000892 Ribosomal protein S26E 

HEAB-0028F19 IPR000695/IPR004714 H+ transporting ATPase, proton pump/Cytochrome oxidase maturation protein cbb3-type 

HEAB-0028G18 IPR002123 Phospholipid/glycerol acyltransferase 

HEAB-0028H01 IPR001611 Leucine-rich repeat 

HEAB-0028J07 IPR005119 LysR, substrate-binding 

HEAB-0028K15 IPR002155 Thiolase 

HEAB-0028L21 IPR003122/IPR004089/IPR004090 Ligand binding Tar/Bacterial chemotaxis sensory transducer/Chemotaxis methyl-accepting protein/Histidine kinase 

HEAB-0028N06 IPR006108/IPR006176 3-hydroxyacyl-CoA dehydrogenase, C-terminal/3-hydroxyacyl-CoA dehydrogenase, NAD-binding 

HEAB-0028N08 IPR004089/IPR004090 Bacterial chemotaxis sensory transducer/Chemotaxis methyl-accepting protein/Histidine kinase 

HEAB-0028O11 IPR001638/IPR003439/IPR005074 Bacterial extracellular solute-binding protein, family 3/ABC transporter related/Peptidase C39, bacteriocin processing 

HEAB-0028O22 IPR003439/IPR005116/IPR008779 ABC transporter related/TOBE/Plasmodium histidine-rich 

HEAB-0029C14 IPR006674 Metal-dependent phosphohydrolase, HD region, subdomain 

HEAB-0029C20 IPR005829 Sugar transporter superfamily 

HEAB-0029E04 IPR001303 Class II aldolase/adducin, N-terminal 

HEAB-0029G07 IPR001190 Speract/scavenger receptor 

HEAB-0029H20 IPR003042 Aromatic-ring hydroxylase 

HEAB-0029I17 IPR011603 2-oxoglutarate dehydrogenase, E1 component 

HEAB-0029K24 IPR001404 Heat shock protein Hsp90 

HEAB-0029L13 IPR007838 Protein of unknown function DUF710 

HEAB-0029L19 IPR000281/IPR001347 Helix-turn-helix protein RpiR/Sugar isomerase (SIS) 
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Clone name 
 

Inter Pro annotation 
number 

Sequence annotation 
 

HEAB-0029N13 IPR000289 Ribosomal protein S28e 

HEAB-0029O15 IPR002823 Protein of unknown function DUF112, transmembrane 

HEAB-0030C13 IPR000524 Bacterial regulatory protein GntR, HTH 

HEAB-0030I07 IPR001123 Lysine exporter protein (LYSE/YGGA) 

HEAB-0030M14 IPR002792/IPR013848 Deoxyribonuclease/rho motif-related TRAM/Protein of unknown function UPF0004, N-terminal 

HEAB-0030N07 IPR002652 Importin-alpha-like, importin-beta-binding region 

HEAB-0031B09 
IPR000515/IPR001638 
 

Binding-protein-dependent transport systems inner membrane component/Bacterial extracellular solute-binding 
protein, family 3 

HEAB-0031C21 IPR003768 Prokaryotic chromosome segregation and condensation protein ScpA 

HEAB-0031D20 IPR003439 ABC transporter related 

HEAB-0031F21 IPR000160 GGDEF 
HEAB-0031F22 
 

IPR001176/IPR004113/IPR004838 
/IPR006094 

aminocyclopropane-1-carboxylate synthase/FAD linked oxidase, C-terminal/Aminotransferases class-I 
 pyridoxal-phosphate-binding site 

HEAB-0031I13 IPR006143 Secretion protein HlyD 

HEAB-0031N18 IPR000481 Pheromone B alpha-1 receptor 

HEAB-0031N22 IPR007087 Zinc finger, C2H2-type 
HEAB-0031P18 
 

IPR003122/IPR003660/IPR004010 
/IPR004089/IPR004090 

Ligand binding Tar/Histidine kinase, HAMP region/Cache/Bacterial chemotaxis sensory transducer 
/Chemotaxis methyl-accepting protein 

HEAB-0032P06 IPR000988 Ribosomal protein L24E 

HEAB-0033C06 IPR001387 Helix-turn-helix type 3 

HEAB-0033C24 IPR001452 Src homology-3 

HEAB-0033D24 IPR011712 Histidine kinase, dimerisation and phosphoacceptor region 

HEAB-0033E23 IPR003115 ParB-like nuclease 

HEAB-0033F09 IPR002371 Flagellar hook-associated protein 

HEAB-0033G05 IPR003397 Mitochondrial import inner membrane translocase, subunit Tim17/22 

HEAB-0033I16 IPR000449 Ubiquitin-associated/Translation elongation factor EF1B, N-terminal 

HEAB-0033I17 IPR003778 Allophanate hydrolase subunit 2 

HEAB-0033K02 IPR000884 Thrombospondin, type I 

HEAB-0033M09 IPR012987 ROK, N-terminal 

HEAB-0033O24 IPR002347 Glucose/ribitol dehydrogenase 

HEAB-0034A23 IPR000873 AMP-dependent synthetase and ligase 

HEAB-0034B11 IPR002925 Dienelactone hydrolase 

HEAB-0034B16 IPR003920 Cellulose synthase, subunit B 

HEAB-0034B24 IPR001611 Leucine-rich repeat 

HEAB-0034E15 IPR002504 ATP-NAD/AcoX kinase 

HEAB-0034E16 IPR001442/IPR002541 Type 4 procollagen, C-terminal repeat/Cytochrome c assembly protein 

HEAB-0034I24 IPR000015 Fimbrial biogenesis outer membrane usher protein 

HEAB-0034J18 IPR000754 Ribosomal protein S9 

HEAB-0034K20 IPR004827 Basic-leucine zipper (bZIP) transcription factor 

HEAB-0034N17 IPR002952 Eggshell protein 

HEAB-0034O22 IPR001188 Bacterial periplasmic spermidine/putrescine-binding protein 

HEAB-0035D08 IPR007087 Zinc finger, C2H2-type 

HEAB-0035E21 IPR000595/IPR001808 Cyclic nucleotide-binding/Bacterial regulatory protein, Crp 
HEAB-0035G21 
 

IPR000951/IPR001221/IPR001709/ 
IPR001834/IPR008333 

Phthalate dioxygenase reductase, FPNCR module Phenol hydroxylase reductase 
/Flavoprotein pyridine nucleotide cytochrome reductase 

HEAB-0035I13 IPR001638/IPR003439 Bacterial extracellular solute-binding protein, family 3/ABC transporter related 

HEAB-0035J12 IPR001545 Gonadotropin, beta chain 

HEAB-0035L05 IPR000759/IPR000960 Adrenodoxin reductase/Flavin-containing monooxygenase FMO 

HEAB-0035L08 IPR000592 Ribosomal protein S27E 

HEAB-0035N14 IPR003219 Cytochrome c, alcohol dehydrogenase-like subunit 

HEAB-0036G06 IPR004358 Histidine kinase related protein, C-terminal 

HEAB-0036G16 IPR005064 Bordetella uptake gene 

HEAB-0036J11 IPR001876 Zinc finger, RanBP2-type 

HEAB-0036J18 IPR005835 Nucleotidyl transferase 

HEAB-0036N05 IPR003711/IPR005118 Transcription factor CarD/TRCF 

HEAB-0037A22 IPR007476 Putative exonuclease, RdgC 

HEAB-0037F23 IPR001789 Response regulator receiver 
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Clone name 
 

Inter Pro annotation 
number 

Sequence annotation 
 

HEAB-0037I16 IPR000160 GGDEF 

HEAB-0037J03 IPR007087 Zinc finger, C2H2-type 

HEAB-0037L12 IPR001419 HMW glutenin 

HEAB-0038C07 IPR000515 Binding-protein-dependent transport systems inner membrane component 

HEAB-0038C12 IPR005565 Hemolysin activator HlyB 

HEAB-0038D19 IPR005649 Chorion 2 

HEAB-0038G01 IPR001387 Helix-turn-helix type 3 

HEAB-0038G06 IPR000196 Ribosomal protein L19e 

HEAB-0038H11 IPR008168 Cytochrome c, class IC 

HEAB-0038H17 IPR006706/IPR007223/IPR010800 Extensin-like region/Peroxin 13, N-terminal/Glycine rich 

HEAB-0038I20 IPR000719 Protein kinase 

HEAB-0038O03 IPR001283/IPR002413 Allergen V5/Tpx-1 related/Ves allergen 

HEAB-0039H08 IPR000504 RNA-binding region RNP-1 (RNA recognition motif) 

HEAB-0039H23 IPR005649 Chorion 2 

HEAB-0039K09 IPR001673/IPR001881/IPR002212 Dictyostelium (slime mold) repeat/EGF-like calcium-binding/Matrix fibril-associated 

HEAB-0039L13 IPR006686 MscS Mechanosensitive ion channel, middle 

HEAB-0039N14 IPR001005 SANT, DNA-binding 

HEAB-0039P05 IPR002198 Short-chain dehydrogenase/reductase SDR 

HEAB-0040C22 IPR001680 WD-40 repeat 

HEAB-0040H07 IPR001023 Heat shock protein Hsp70 

HEAB-0040I24 IPR008638 Filamentous haemagglutinin, N-terminal, bacterial 

HEAB-0040K05 IPR000914 Bacterial extracellular solute-binding protein, family 5 

HEAB-0040L16 IPR004358 Histidine kinase related protein, C-terminal 

HEAB-0040L19 IPR000637 HMG-I and HMG-Y, DNA-binding 

HEAB-0040M05 IPR003908 Galanin 3 receptor 

HEAB-0040N02 IPR001635 Flagellar hook-length control protein 

HEAB-0041A23 IPR003439/IPR005116 ABC transporter related/TOBE 

HEAB-0041C11 IPR001442 Type 4 procollagen, C-terminal repeat 

HEAB-0041I12 IPR003172 MD-2-related lipid-recognition 

HEAB-0041N22 IPR002078/IPR002197 RNA polymerase sigma factor 54, interaction/Helix-turn-helix, Fis-type 

HEAB-0041O11 IPR002078 RNA polymerase sigma factor 54, interaction 

HEAB-0042A02 IPR000037 SmpB protein 

HEAB-0042C06 IPR001789 Response regulator receiver 

HEAB-0042E11 IPR000708 Prostanoid EP1 receptor 

HEAB-0042I20 IPR000172/IPR007867 Glucose-methanol-choline oxidoreductase, N-terminal/Glucose-methanol-choline oxidoreductase, C-terminal 

HEAB-0042J08 IPR011704 ATPase associated with various cellular activities, AAA-5 

HEAB-0042L09 IPR003265 HhH-GPD 

HEAB-0042L21 IPR006650 Adenosine/AMP deaminase active site 

HEAB-0042M23 IPR001841 Zinc finger, RING-type 

HEAB-0042N17 IPR007630 RNA polymerase sigma-70 region 4 

HEAB-0042P17 IPR003453 Protein of unknown function DUF140 

HEAB-0042P22 IPR001912/IPR002942 Ribosomal protein S4/RNA-binding S4 

tah96a10 IPR006706/IPR007223 Extensin-like region/Peroxin 13, N-terminal 

tah96c11 IPR007087 Zinc finger, C2H2-type 

tah96d03 IPR000194/IPR000790 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding/ATPase, F1 complex, alpha subunit, C-terminal 

tah96e04 IPR000623 Shikimate kinase 

tah97c04 IPR001506 Peptidase M12A, Astacin 

tah97g12 IPR000772 Ricin B lectin 

tah98a10 IPR000008 C2 calcium-dependent membrane targeting 

tah98a11 IPR004045 Glutathione S-transferase, N-terminal 

tah98b04 IPR000301 CD9/CD37/CD63 antigen 

tah98c10 IPR001680 WD-40 repeat 

tah98d10 IPR004000 Actin/actin-like 
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Clone name 
 

Inter Pro annotation 
number 

Sequence annotation 
 

tah98e04 IPR002952/IPR007223 Eggshell protein/Peroxin 13, N-terminal 

tah99a03 IPR007087 Zinc finger, C2H2-type 

tah99b02 IPR001650 Helicase, C-terminal 

tah99d04 IPR000297/IPR001202/IPR002349 Peptidyl-prolyl cis-trans isomerase, PpiC-type/WW/Rsp5/WWP/WW 

tah99f03 IPR005448 P/Q-type voltage-dependent calcium channel alpha 1 subunit 

tah99h06 IPR002478 PUA 

tah99h09 IPR001638 Bacterial extracellular solute-binding protein, family 3 

tai01a04_ IPR002007 Haem peroxidase, animal 

tai01g09 IPR006706 Extensin-like region 

tai02a07 IPR001305 DnaJ central region 

tai02c10 IPR000626 Ubiquitin 

tai02h08 IPR001662/IPR004045 Translation elongation factor EF1B, gamma chain, conserved/Glutathione S-transferase, N-terminal 

tai03g11 IPR001993/IPR002067/IPR002113 Mitochondrial substrate carrier/Mitochondrial carrier protein/Adenine nucleotide translocator 1 

tai04c07 IPR002048 Calcium-binding EF-hand 

tai05b07 IPR000048 IQ calmodulin-binding region 

tai05d07 IPR009828 Protein of unknown function DUF1394 

tai05e10 IPR001650 Helicase, C-terminal 

tai05h01 IPR001506 Peptidase M12A, Astacin 

tai06f03 IPR002049 EGF-like, laminin 

tai07d01 IPR001380 Ribosomal protein L13e 

tai07g11 IPR001752 Kinesin, motor region 

tai08b05 IPR000608 Ubiquitin-conjugating enzyme, E2 

tai08b10 IPR000547 7-Fold repeat in clathrin and VPS proteins 

tai08c10 IPR000608 Ubiquitin-conjugating enzyme, E2 

tai08h10 IPR000637 HMG-I and HMG-Y, DNA-binding 

tai09d11 IPR005028 Herpes virus intermediate/early protein 2/3 

tai09h02 IPR012541 DBP10CT 

tai10a03 IPR004116 Amelogenin 

tai10f05 IPR000926 GTP cyclohydrolase II 

tai10f09 IPR007087 Zinc finger, C2H2-type 

tai11f02 IPR011076 Malate synthase-like 

tai12a08 IPR006706 Extensin-like region 

tai13f04 IPR014038 Translation elongation factor EF1B, beta and delta chains, guanine nucleotide exchange 

tai14a08 IPR006885 ETC complex I subunit conserved region 

tai15b12 IPR001633 EAL 
tai16a07 
 

IPR000585/IPR001506/IPR001818 
/IPR006026 

Hemopexin/Peptidase M12A, astacin/Peptidase M10A and M12B, matrixin and adamalysin/Peptidase, 
metallopeptidases 

tai16g08 IPR001806/IPR002041/IPR003577 Ras GTPase/Ran GTPase/Ras small GTPase, Ras type 

tai16h12 IPR006706 Extensin-like region 

tai17e07 IPR000504 RNA-binding region RNP-1 (RNA recognition motif) 

tai17h06 IPR007087 Zinc finger, C2H2-type 

tai18e07 IPR006706 Extensin-like region 
tai19a12 
 

IPR000719/IPR001772/IPR003527 
/IPR008350 Protein kinase/Kinase-associated KA1/MAP kinase/ERK3/4 MAP kinase 

tai19b07 IPR006649 Like-Sm ribonucleoprotein, eukaryotic and archaea-type, core 

tai19d10 IPR000010/IPR003243 Proteinase inhibitor I25, cystatinProteinase inhibitor I25A and I25B, type 2 and phytocystatins 

tai21a09 IPR000772/IPR006706 Ricin B lectin/Extensin-like region 

tai21h03 IPR005649/IPR006706 Chorion 2/Extensin-like region 

tai22d02 IPR010674/IPR012973 Nucleolar GTP-binding 1/NOG, C-terminal 

tai22g03 IPR002035 von Willebrand factor, type A 

tai22g06 IPR001952 Alkaline phosphatise 

tai25b10 IPR004000 Actin/actin-like 

tai25h08 IPR007783 Eukaryotic translation initiation factor 3, subunit 7 

tai26g03 IPR002007 Haem peroxidase, animal 

tai27c11 IPR002672 Ribosomal L28e protein 
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Inter Pro annotation 
number 

Sequence annotation 
 

tai27f06 IPR008197 Whey acidic protein, core region 

tai27h09 IPR001442/IPR002952 Type 4 procollagen, C-terminal repeat/Eggshell protein 

tai28c11 IPR001993 Mitochondrial substrate carrier 

tai28h10 IPR000741 Fructose-bisphosphate aldolase, class-I 
tai30c12 
 

IPR001305/IPR001623/IPR002939/ 
IPR012895 

DnaJ central region/Heat shock protein DnaJ, N-terminal/Chaperone DnaJ, C-terminal/HSCB oligomerisation, C-
terminal 

tai31e08 IPR007932 Phage tail fibre adhesin Gp38 

tai31e09 IPR000594 UBA/THIF-type NAD/FAD binding fold 

tai32c09 IPR001680/IPR006692 WD-40 repeat/Coatomer WD associated region 

tai32e08 IPR001152   Thymosin beta-4 

tai32e08 IPR001152 Thymosin beta-4 

tai32h11 IPR006652 Kelch repeat 

tai35d12 IPR001196 Ribosomal protein L15 

tai35e09 IPR010800 Glycine rich 

tai36f10 IPR003594/IPR014762 ATP-binding region, ATPase-like/DNA mismatch repair, MutL/HexB/PMS1 

tai37b04 IPR006662 Thioredoxin-related 

tai37d12 IPR007087 Zinc finger, C2H2-type 

tai37f09 IPR000169 Peptidase, cysteine peptidase active site 

tai38f07 IPR000837 Fos transforming protein 

tai39e03 IPR001680 WD-40 repeat 

tai39f05 IPR002952/IPR007223 Eggshell protein/Peroxin 13, N-terminal 

tai39g07 IPR001680 WD-40 repeat 

tai40e06 IPR002048 Calcium-binding EF-hand 

tai40g04 IPR001506/IPR003582 Peptidase M12A, astacin/Metridin-like ShK toxin 

tai41h12 IPR007087 Zinc finger, C2H2-type 

tai42a10 IPR000504/IPR012956 RNA-binding region RNP-1 (RNA recognition motif)/CBF, N-terminal 

tai42b07 IPR008610 Eukaryotic rRNA processing 

tai42d03 IPR012580 NUC153 

tai42h05 IPR005127 Giardia variant-specific surface protein 

tai44a02 IPR006706 Extensin-like region 

tai44e01 IPR001214 SET 

tai45a08 IPR001878 Zinc finger, CCHC-type 

tai46c12 IPR007223 Peroxin 13, N-terminal 

tai46g02 IPR013208 Lipocalin-like 

tai46h04 IPR000626 Ubiquitin 

tai49a01 IPR000163/IPR001107 Prohibitin/Band 7 protein 

tai49b05 IPR007087 Zinc finger, C2H2-type 

tai52b09 IPR000738 WHEP-TRS 

tam53a02 IPR003338/IPR003960/IPR011546 AAA ATPase VAT, N-terminal/AAA ATPase, subdomain/Peptidase M41, FtsH extracellular 

tam53e08 IPR005651 Protein of unknown function DUF343 

tam53e12 IPR013061 Tryptophan/tryrosine permease 

tam53h04 IPR001007 von Willebrand factor, type C 

tam53h06 IPR007718 SRP40, C-terminal 

tam54c10 IPR002952/IPR006706 Eggshell protein/Extensin-like region 

tam54d03 IPR004825 Insulin/IGF/relaxin 

tam55b06 IPR002048 Calcium-binding EF-hand 

tam55f08 IPR006706 Extensin-like region 

tam55f11 IPR002735/IPR003307 Translation initiation factor IF2/IF5/eIF4-gamma/eIF5/eIF2-epsilon 

tam56b03 IPR000885/IPR001442 Fibrillar collagen, C-terminal/Type 4 procollagen, C-terminal repeat 

tam56d01 IPR007502/IPR011709 Helicase-associated region/Domain of unknown function DUF1605 

tam57a05 IPR007223 Peroxin 13, N-terminal 

tam57c12 IPR001680 WD-40 repeat 

tam57e07 IPR002823 Protein of unknown function DUF112, transmembrane 

tam57h04 IPR004033 UbiE/COQ5 methyltransferase 
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tam58a04 IPR001506 Peptidase M12A, Astacin 

tam59b09 IPR000504 RNA-binding region RNP-1 (RNA recognition motif) 

tam60b12 IPR003409 MORN motif 

tam60d03 IPR003084 Histone deacetylase 

tam61d05 
IPR000169/IPR000668/IPR012599 
/IPR013201 

Peptidase, cysteine peptidase active site/Peptidase C1A, papain C-terminal/ 
Proteinase inhibitor I29, cathepsin propeptide 

tam61d06 IPR001650/IPR012541/IPR001304 Helicase, C-terminal/DBP10CT/C-type lectin 

tam62b10 IPR010304 Survival motor neuron 

tam62f09 IPR006662 Thioredoxin-related 

tam64e08 IPR000948/IPR001921/IPR004037 Ribosomal protein HS6/Ribosomal protein L7A/L7AE 

tam64f08 IPR001298 Filamin/ABP280 repeat 

tam64g08 IPR007593 Interferon-induced transmembrane protein 
 
The left column contains the clone ID number of the Hydractinia library. Furthermore, the table lists the sequence domain match 
along with the corresponding InterPro ID number. Different domains within sequences and their corresponding annotations were 
separated by ”/”. 
 

 

 
Table S2. GO annotation of Hydractinia sequences shared with other cnidarians
A. Hydractinia sequences GO terms annotation shared with Acropora, Nematostella but not in Hydra 

Clone name Biological process   Molecular  Function 
 GO number GO terms GO number GO terms 

HEAB-0029E05 GO:0007582  physiological process n/a n/a 

HEAB-0029J09 n/a n/a n/a n/a 

HEAB-0038N23 n/a n/a GO:0004601 peroxidase activity 

tai09b01 GO:0008277 regulation G-protein coupled 
receptor protein GO:0004871 signal transducer activity 

tai11f02 GO:0008152 metabolism GO:0004474 malate synthase activity 

tai11g12 GO:0006464 protein modification GO:0016787 hydrolase activity 

tai20d03 GO:0016192 vesicle-mediated transport n/a n/a 

tai33g08 GO:0008152 metabolism GO:0016829 lyase activity 

tam56f07 n/a n/a n/a n/a 

HEAB-0023B24 GO:0005975 carbohydrate metabolism GO:0004033 aldo-keto reductase activity 

tam53d11 n/a n/a n/a n/a 

B. Hydractinia sequences GO terms annotation shared with Acropora but not in Nematostella and Hydra 

HEAB-0020F05 n/a n/a GO:0008299 isoprenoid biosynthesis 

HEAB-0024D20 n/a n/a GO:0000166 nucleotide binding 

HEAB-0028A08 n/a n/a n/a n/a 

HEAB-0028B20 n/a n/a n/a n/a 

HEAB-0037F13 n/a n/a GO:0016829 lyase activity 

HEAB-0039G08 n/a n/a GO:0000155 two-component sensor activity 

HEAB-0042I20 n/a n/a n/a n/a 

HEAB-0020L20 n/a n/a GO:0005884 actin filament 

HEAB-0026O12 n/a n/a n/a n/a 

HEAB-0029G01 n/a n/a n/a n/a 

HEAB-0036O10 GO:0006810  transport GO:0000166 nucleotide binding 

HEAB-0042L12 n/a n/a n/a n/a 

tai07g10 n/a n/a n/a n/a 

tai16a08 n/a n/a n/a n/a 

tai40g01 n/a n/a n/a n/a 
 
The left column provides the clone ID of the Hydractinia library. Furthermore, GO IDs are listed along with the 
corresponding GO terms of the two main GO categories Biological process and Molecular function. Not applicable (n/a) 
was considered when sequences presented no significant match to any GO term. 
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6.2 Additional data 2 
 

Supplementary data related to the microarray experiments. 
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Figure S1 – Additional clusters with genes down regulated in FMR and K12 conditions.  
Expression level of each condition was referenced to the control using Log2 ratio. List of 
genes with the corresponding annotation are provided in the table. Gene annotation was 
performed through BLAST, GO and Domain analysis. For an easy overview, a GO colour 
code of each annotated gene is provided in the transcriptional profiling curve. Unknown genes 
were plotted in gray colour but are not listed in the table 
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Clone ID Sequence annotation

HEAB-0047I20 IPR007223 Peroxin 13, N-terminal

HEAB-0053F19 DNA polymerase iv

HEAB-0054A01 Integrase

HEAB-0054E08 IPR009305 DUF962

tah96a01y1.con IPR002952   Eggshell protein

tah96c10y1.con Predicted protein

tai02e09_J.con 3-oxoacyl-(Acyl-carrier-protein) reductase

tai04h01_O.con GO:0003676 F nucleic acid binding

tai05d09_J.con E3 ubiquitin-protein ligase DZIP3

tai20h05y1.con RNA binding protein b12

tai30c12y1.con Molecular chaperone MRJ

tai49b10y1.con IPR006706 Extensin-like region

tam56c11y2.con Rhamnose binding lectin

tam57a05y2.con IPR002952 Eggshell protein

tam59a06y2.con Minicollagen 3-4a

HEAB-0020M09g1.con Minicollagen 3-4a

HEAB-0026C19g1.con IPR002952 Eggshell protein

HEAB-0028J22g1.con PL10-related protein CnPL10

HEAB-0034G03g1.con Putative Erythrocyte membrane protein 1

HEAB-0035D10g1.con GO:0016787 F hydrolase activity 

HEAB-0044G19 Mini-collagen

HEAB-0045C06 RNA binding protein b12

tai14c08y1.con Putative oxidoreductase
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HEAB-0048H01 Minicollagen 1
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Figure S2 – Additional clusters with genes specifically up-regulated in an allorecognition 
challenge. Gene expression level was referenced to the control using Log2 ratio 
(Condition/Control). The gene identification ID and annotations are listed in the table. A GO 
colour code of each annotated gene is provided in the transcriptional profiling curve. 
Unknown genes were plotted in gray colour but are not listed in the table. 
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Clone ID Sequence annotation

HEAB-0028E01g1.con Tachylectin-like protein

HEAB-0028J18g1.con Surface protein PspC

HEAB-0044F02 Ovoperoxidase

HEAB-0045H02 Predicted protein

tai09d11y1.con Surface protein PspC 

tam54c08y2.con Surface protein PspC

HEAB-0028G14g1.con Mitogen-activated protein kinase mpk1

HEAB-0030E21g1.con Microneme protein 12
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Figure S3 - Additional cluster with genes specifically down-regulated in an 
allorecognition challenge. Gene expression level was referenced to the control using Log2 
ratio (Condition/Control). The gene identification ID and annotations are listed in the table. A 
GO colour code annotation for each gene is provided in the transcriptional profiling curve. 
Unknown genes were plotted in gray colour but are not listed in the table. 
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Clone ID Sequence annotation

tah97e08_J.con Putative uncharacterized protein

tai06c07y1.con Putative uncharacterized protein
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tam63e08y2.con Sperm nuclear basic protein PL-I isoform PLIa 
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HEAB-0020F15g1_PT.con RNA-binding protein 12b

HEAB-0044J23 IPR000258 Bacterial ice-nucleation

HEAB-0021D19g1.con Uncharacterize IPR010310 DUF909_bac

tai01h10x1_PT_O.con Protein phosphatase 1 regulatory subunit 3B
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Figure S4 – Additional clusters with genes up-regulated immediately after LPS 
induction.  Few genes were up-regulated after an LPS treatment. Gene expression level was 
referenced to the control using Log2 ratio (Condition/Control). The gene identification ID and 
annotations are listed in the table. A GO colour code annotation for each gene is provided in 
the transcriptional profiling curve. Unknown genes were plotted in gray colour but are not 
listed in the table. 
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6.3 Additional data 3 

Supplementary data related to the analysis of CTRN gene. The following in situ hybridization 

was performed by Dr. Brahim Mali and is published in [114]. 

 

 

 
 
 
Figure S5 – Expression of the transcript CTRN in Hydractinia. The in situ hybridization of 
CTRN cRNA was done using a digoxigenin-labeled RNA probe. (a) An overview of a young 
colony. CTRN positive cells form a ring around the mouth. (b) An early polyp bud developing 
from a stolon. CTRN expressing neurons form a ring-like structure around the area of the 
future mouth. (c) A higher magnification of the mouth region of a polyp showing CTRN 
expressing neurons. (d) The same like the previous picture, view from the side. M, mouth; S, 
stolon; T, tentacle. Scale bars approximately 50 mm. 
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