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Zusammenfassung

Paarerzeugung aus dem Vakuum durch elektromagnetische Felder ist wahrscheinlich
eines der faszinierendsten Phänomene der Physik. Falls die Felder genügend stark sind
wird das QED-Vakuum instabil. Infolge des enormen Fortschritts in der Lasertech-
nologie während der letzten Jahre kommt eine experimentelle Untersuchung rein Laser
induzierter Paarerzeugung in Reichweite. Der Schwerpunkt dieser Arbeit liegt auf der
Paarerzeugung in gegenläufigen Laserfeldern. Dabei wird die Erzeugungswahrschein-
lichkeit durch die Benutzung numerisch gewonnener Lösungen der Dirac Gleichung berech-
net. Falls die Felder rein zeitabhängig sind birgt der numerische Ansatz das Poten-
tial die Impulsverteilung der erzeugten Teilchen in einer einzigen Propagation zu er-
halten. Darüber hinaus ermöglicht er die Magnetfeldkomponente der Laserfelder mit
einzubeziehen, welche normalerweise vernachlässigt wird. Diese hat einen starken Ein-
fluss auf den Paarerzeugungsprozess für hohe Laserfrequenzen.
Die angewandten numerischen Rechnungen stellen einen erheblichen Zeitaufwand dar,
deshalb war das zweite Projekt dieser Arbeit die Entwicklung eines effizienten Pro-
gramms um relativistische quantenmechanische Probleme zu lösen. Dies wurde durch
die Anwendung des split-operator Verfahrens auf die Klein-Gordon Gleichung erreicht.
Hierbei ergibt sich die Möglichkeit paralleles Rechnen einzusetzten. Jedoch spielt die
damit zusammenhängende Spinstatistik eine entscheidende Rolle bei der Paarproduk-
tion, welches an mehreren Beispielen gezeigt wird.

Abstract

Pair creation from vacuum induced by electromagnetic fields is probably one of the most
intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum
become unstable. Due to the remarkable progress in laser technology during recent years
an experimental investigation of pair creation by pure laser light is coming into reach.
The focus of this thesis is on pair creation in counterpropagating laser beams. The pair
creation probability is calculated employing the numerically obtained solutions of the
Dirac equation. This numerical ansatz has the capability of calculating the momentum
distribution of the created pairs in a single propagation, for pure time dependent field
configurations. Furthermore, it allows to take the magnetic component of the laser fields
into account, which is usually neglected. The latter strongly affects the creation process
at high laser frequency.
The involved numerical calculations are rather time consuming, therefore the second
project of this thesis was to develop a highly efficient code for solving relativistic quan-
tum mechanical problems. This is accomplished by adopting the split-operator method
to the Klein-Gordon equation. Here the possibility arises to use parallel computing.
However the corresponding spin-statistics becomes crucial in the case of pair creation,
demonstrated in several examples.
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Introduction

In the presence of very strong electromagnetic fields the quantum electrodynamic vacuum
may become unstable and decay into electron-positron (e+e−) pairs [1–3]. The character-
istic field strength for this vacuum instability is the Schwinger field Ec ≡ m2c3/(|e|~) =
1.3 × 1016 V/cm, where m is the electron mass, c the speed of light, ~ the Planck con-
stant, and e is the electron charge. This critical value corresponds to a field strength
which generates an energy of the order of the rest mass on the Compton wavelength.
One of the ways to produce such strong fields in the laboratory are heavy-ion collisions
which have been extensively studied, both theoretically and experimentally (see e.g. the
reviews in [4–7]).

Shortly after the invention of the laser almost 50 years ago, theoreticians began to study
pair creation by intense laser light [8, 9]. In view of spectacular achievements in the gen-
eration of strong laser fields [10–12] and of opening perspectives for short wavelengths
[13–16] and ultra-high intensities [17–19] (see also reviews [20–22]) the question arises
whether the vacuum instability can also be tested with laser fields [23, 24]. The only
observation of laser-induced pair creation until now was accomplished ten years ago at
SLAC (Stanford, California), where a 46 GeV electron beam was brought into collision
with an intense optical laser pulse [25]. In this experiment, a γ-photon produced via
Compton scattering or the electron Coulomb field assisted the laser beam in the pair
creation.

Pair creation from pure laser light has not been observed until now. It can, in princi-
ple, be realized e.g. in the superposition of two laser waves, since a single plane-wave
laser field cannot extract any e+e− pairs from the vacuum, no matter what its inten-
sity and frequency are. The special case of counter-propagating laser beams of equal
intensity and frequency results in a standing laser wave. All theoretical investigations
so far have approximated this standing laser wave by a spatially homogeneous electric
field oscillating in time. This dipole approximation is expected to be well-justified in
optical laser fields, where the wavelength is much larger than the typical length scale
of the process. Several theorists have addressed pair creation in this field configuration
employing various methods. The investigations started shortly after the invention of the
laser in the 1970s [8, 9, 26–29] (see also [30] for a book review) and have recently been
revived [31–43] by the large technological progress in laser technique. Also effects of the
finite extent of focused laser pulses in space and time have been explored [44–49], as well
as the influence of the laser magnetic-field component [50]. In general, the treatment of
processes occurring in external fields which are inhomogeneous both in space and time,
represents a challenging task for nonperturbative Quantum Field Theory [51–53].
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2 Introduction

The focus of this theoretical thesis is on pair creation in such a field configuration. The
pair creation probability is calculated employing the solution of the Dirac equation,
according to the field theoretical approach to vacuum decay in external fields with un-
stable vacuum [54]. In intuitive terms, this procedure is equivalent to describing the
pair production as an electron transition from an initial negative-energy state (which
corresponds to a positron in the final state) to a final positive-energy state.

The solutions of the Dirac equation are obtained numerically. An advanced com-
puter code that solves the Dirac equation in an arbitrary external potential on a two-
dimensional spatial grid [55, 56] is employed. However, these calculations are very
time consuming. Therefore the second project of this thesis was to develop a highly
efficient code for solving relativistic quantum mechanical problems. One step in this
direction is the possibility to employ parallel computing. The split-operator method
employed in the Dirac code utilizes Fourier transformations, and thus cannot be paral-
lelized efficiently. Another relativistic quantum mechanical wave equation is given by
the Klein-Gordon equation. However, the form of the Klein-Gordon equation differs
from the usual Hamiltonian form of quantum mechanical equations of motion, because
it is of second order in time. Therefore it is not directly accessible for the split-operator
method. This obstacle may be overcome by introducing a new two-component wave
function which transforms the Klein-Gordon equation into the desired form. Employing
the split-operator method to the two-component Klein-Gordon equation provides some
enormous advantages, among others the avoidance of Fourier transformations, and thus
the possibility of parallelization. The Klein-Gordon equation describes spinless parti-
cles (bosons), whereas the Dirac equation describes sin-1

2 particles (fermions). However,
the Klein-Gordon equation represents a good approximation to the Dirac equation, as
long as the spin plays a minor role in the investigated problem. It turns out, that
for the particular case of pair creation in external fields, the spin of the created parti-
cle is crucial, thus the investigation of e+e− pair creation has to employ the Dirac theory.

During this thesis, a highly efficient parallel computer code has been developed, propa-
gating the Klein-Gordon equation on a one- or two- dimensional grid. This program was
applied to several toy systems to test the performance and the correctness of the results.
Furthermore, having a computer code at hand which propagates the Dirac equation, it
was possible to investigate e+e− pair creation in counterpropagating laser fields for both
dipole- and nondipole-approximation. The results obtained in the dipole case (oscillat-
ing electric field) are in accordance to former predictions, like Rabi oscillations of the
transition probabilities. The numerical ansatz employed, has the capacity to yield the
momentum distribution of the created particles in a single propagation, for pure time
dependent external fields. A dramatic spin dependence is revealed for circular laser po-
larization, not obtained before, which can be explained by a spin modified quasiclassical
calculation. Finally the influence of the magnetic field component of the laser pulse to
the pair creation process was investigated. Here a strong influence is obtained for high
laser frequency: the production probability is reduced, the resonant Rabi-oscillation pat-
tern is distorted and the resonance positions are shifted, multiplied and split.
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This thesis is structured as follows. The first chapter is dedicated to the Klein-Gordon
equation and presents the application of the split-operator method to it. The main
features of the Klein-Gordon code and the resulting advantages are shortly described,
followed by a few simple but instructive examples, like the potential step leading to
the Klein paradox. Here an alternative interpretation of this phenomenon is presented,
which differs slightly from the usual textbook argument. Afterwards, the main topic of
this thesis - pair creation in counterpropagating laser fields - is investigated. The first
section of chapter 2 presents the Quantum Field Theoretical (QFT) fundament of the
utilized computations. Apart from this section, the dipole approximation is employed
throughout this chapter. Subsequent to a quasiclassical approach the main results are
presented for both the Dirac and Klein-Gordon theory, to emphasize the influence of
the spin statistics. The last section of this chapter presents a modified quasiclassical
approach, including the spin degree of freedom. The last chapter refrains from the
dipole approximation and takes the magnetic component of the laser fields into account.
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Chapter 1

Klein-Gordon theory and

algorithm

The first section of this chapter introduces the split-operator algorithm, a scheme to
propagate an initial wave function in time, for the example of the Schrödinger equa-
tion. After this the Klein-Gordon equation is introduced, a relativistic wave equation
for spinless particles. The main goal is to apply the split-operator algorithm to this
equation. However, the form of the Klein-Gordon equation differs from the usual Hamil-
tonian form of quantum mechanical equations of motion, because it is of second order
in time. Therefore it is not directly accessible for the split-operator method. One can
overcome this obstacle by introducing a new two-component wave function which trans-
forms the Klein-Gordon equation into the desired form. The third section illustrates
the explicit application of the split-operator method onto the Klein-Gordon equation
and the resulting advantages. In section 1.4 the main features of the computer code are
presented, followed by a section with a few simple but instructive examples. The final
section introduces the Dirac equation and the application of the split-operator method
to it.

1.1 The split-operator algorithm

The state of a quantum mechanical system is described in position representation by a
wave function ψ(t, r). In nonrelativistic quantum mechanics the time evolution of this
wave function under the influence of an external electromagnetic potential is governed
by the Schrödinger equation [57]

i~
∂ψ(t, r)
∂t

=

[
1

2m

(

p̂ − q

c
A(t, r)

)2
+ qφ(t, r)

]

ψ(t, r), (1.1)

here m and q are the mass and the charge of the particle, p̂ denotes the momentum
operator, whereas φ(t, r) and A(t, r) denote the scalar and vector potential of the external
electromagnetic field, respectively. We shortly describe, how this equation is obtained to
see later on the connection to the relativistic case. Starting with the usual nonrelativistic
energy-momentum relation

E =
p2

2m
, (1.2)

5



6 Klein-Gordon theory and algorithm

the free Schrödinger equation is obtained by replacing the physical quantities by opera-
tors, due to the correspondence rule:

E → i~
∂

∂t
, p → p̂ = −i~∇. (1.3)

In order to take the interaction with an external electromagnetic field into account, the
free operators have to be modified, following the minimal coupling scheme:

i~
∂

∂t
→ i~

∂

∂t
− qφ, p̂ → p̂ − q

c
A. (1.4)

In this way one obtains the Schrödinger equation (1.1). It has a characteristic Hamilto-
nian form, defined by introducing the Hamilton operator Ĥ,

i~
∂ψ(t, r)
∂t

= Ĥ(t, r)ψ(t, r). (1.5)

The main task is to obtain the time evolved wave function at a final time tf , given an
initial wave function at an initial time ti. A formal solution of this problem is given by
the time-evolution operator [58]

Û(t2, t1) = T̂ exp

(

− i

~

∫ t2

t1

dt′Ĥ(t′)

)

, (1.6)

ψ(tf , r) = Û(tf , ti)ψ(ti, r), (1.7)

which is unitary, if the Hamiltonian is Hermitian, and T̂ denotes the Dyson time ordering
operator. However this is just a formal solution of equation (1.5), and in most cases the
time-evolution operator (1.6) is not analytically computable. Many relevant systems
require numerical methods, e.g. the split-operator method.
This numerical scheme goes back to a work by Feit et al. [59], where it was applied to the
Schrödinger equation with a time-independent Hamiltonian. Later the method has been
generalized to the Schrödinger equation with a time-dependent Hamiltonian [60]. Since
then it was applied successfully to several other equations, e.g. the Dirac equation [55, 56,
61], the time-dependent Gross-Pitaevskii equation [62], and the nonlinear Schrödinger
equation [63].
In general it is very difficult to transfer the time evolution operator (1.6) into a numerical
propagation scheme. The crucial point is to split the time-evolution operator (1.6) into a
product of operators which are diagonal either in position or momentum representation.
For this reason, letting Ô denote an arbitrary operator, we introduce a new operator by

ÛÔ(t2, t1, κ) = exp

(

−κ i
~

∫ t2

t1

dt′Ô(t′)

)

. (1.8)

Furthermore, we assume that the Hamiltonian can be written as a sum of two operators

Ĥ(t) = K̂(t) + V̂ (t), (1.9)

e.g. the kinetic and the potential energy part. With this we are able to factorize the
time-evolution operator (1.6) as

Û(t+ ∆t, t) = ÛV̂

(

t+ ∆t, t,
1

2

)

ÛK̂ (t+ ∆t, t, 1) ÛV̂

(

t+ ∆t, t,
1

2

)

+ O(∆t3). (1.10)
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The error O(∆t3) stems from the non-commutativity of the kinetic and potential energy
operators, i.e. [K̂, V̂ ] 6= 0. However, neglecting terms of order O(∆t3) equation (1.10)
gives an explicit unitary time-stepping scheme for the propagation of a wave function,
which is accurate to second-order

ψ(t+ ∆t, r) ≈ ÛV̂

(

t+ ∆t, t,
1

2

)

ÛK̂ (t+ ∆t, t, 1) ÛV̂

(

t+ ∆t, t,
1

2

)

ψ(t, r). (1.11)

In the case of the Schrödinger equation (1.1) it is often possible to find a splitting of the
Hamiltonian Ĥ such that the operator ÛK̂ is diagonal in momentum representation and

the operator ÛV̂ is diagonal in position representation. Thus, the calculation of these
operators becomes feasible in the appropriate space.
As an illustrative example we consider now the so-called dipole approximation, where
it is assumed that the vector potential is homogeneous and thus purely time dependent
A(t, r) ≈ A(t). This approximation is applicable to a large class of potentials, where
the interaction length is small compared to the spatial variation of the vector potential.
Here it is possible to split the Hamiltonian into two operators

K̂(t) = − ~
2

2m
∇2 + i

~q

mc
A(t) · ∇ +

q2

2mc2
A(t)2, (1.12)

V̂ (t) = qφ(t, r), (1.13)

which separate the spatially dependent parts from spatial derivatives. Thus ÛV̂ is diag-

onal in position space and ÛK̂ is diagonal in momentum space. The crucial point in this
example is the fact, that the vector potential does not depend on the spatial coordinate
r explicitly. If it would depend on the spatial coordinate, the middle term in equa-
tion (1.12) would change into i~q

2mc (∇A(t, r) + 2A(t, r) · ∇), which is spatially dependent
and also contains spatial derivatives. Such a term makes it generally impossible to find
an appropriate splitting.
In a numerical implementation, the wave function ψ(ti, r) is discretized on a rectangular
grid of N points, and the time interval tf − ti is divided into M steps of size ∆t =

(tf−ti)/M . After applying ÛV̂ (t+∆t, t, 1
2) which is a multiplication in position space, one

applies a Fourier transformation F onto the wave function, making the transition from
position into momentum space. Here ÛK̂(t+ ∆t, t, 1), which contains spatial derivatives
in position space, becomes a trivial multiplication-operator. After the application of this
operator one has to Fourier-transform back into position space to apply ÛV̂ (t+ ∆t, t, 1

2)
again. This elementary step has to be applied until the final time tf is reached:

ψ(tf , r) ≈ ÛV̂

(

tf , tf − ∆t,
1

2

)

F−1ÛK̂(tf , tf − ∆t, 1) (1.14)

×
M−1∏

n=1

[

F ÛV̂

(

ti + (n+ 1)∆t, ti + (n− 1)∆t,
1

2

)

F−1ÛK̂(ti + n∆t, ti + (n− 1)∆t, 1)

]

× F ÛV̂

(

ti + ∆t, ti,
1

2

)

ψ(ti, r).

The most time consuming part in these calculations are the transformations from posi-
tion into momentum space and vice versa. If these are accomplished by a Fast-Fourier-
Transformation (FFT) the computation of an elementary step of the split-operator



8 Klein-Gordon theory and algorithm

method takes O(N logN) operations. A big drawback is the bad scaling behavior of
the FFT in parallel implementations. One can overcome this obstacle in the case of the
Klein-Gordon equation to which we will turn in the next section.

1.2 The Klein-Gordon equation

The goal of this section is to obtain a relativistic generalization of the Schrödinger
equation shortly described in the previous section, and bringing it to a form suitable
for the split-operator method. Such an equation is the Klein-Gordon equation, which
is a relativistic equation of motion for a scalar wave function [64–69]. It governs the
behavior of a charged spinless particle under the influence of external electromagnetic
potentials. The discovery of the Klein-Gordon equation may be attributed to various
physicists. Depending on who is credited, the equation is named differently, see [70] for
the history of the Klein-Gordon equation.
As in the previous section, we start with the now relativistic energy-momentum relation

E = c
√

p2 +m2c2. (1.15)

Employing the correspondence rule directly to equation (1.15) would introduce an asym-
metry between space and time components, which is not favorable in a relativistic theory.
Furthermore it would lead to nonlocality effects. To avoid this, we take as a starting
point the square of the relativistic energy-momentum relation (1.15) and substitute the
classical quantities by operators as in equation (1.3). This leads to the free Klein-Gordon
equation

− ~
2∂

2ψ(x)

∂t2
=
[
−c2~2∇2 +m2c4

]
ψ(x), (1.16)

which has the following solutions

ψ
(±)
p =

√

mc2

EV
exp

(

∓ipµx
µ

~

)

. (1.17)

Here the plus-minus sign indicates the sign of the energy of the solutions, which can
be both, positive or negative, and V denotes a normalization volume. The symbols x
and p denote the four-vectors x = (xµ) = (ct, r) and p = (pµ) = (E/c, p), respectively.
We employ the metric g = (gµν) = diag(1,−1,−1,−1), therefore the product of two
four-vectors a = (aµ) = (a0, a) and b = (bµ) = (b0, b) is given by ab = aµb

µ = a0b0 − ab.

At first sight a solution with negative energy might sound unphysical, and this was the
first of two reasons why people abandoned this equation in the beginning and searched
for another relativistic wave equation. However, as we will see later, these solutions are
related to antiparticles and really have a physical meaning.

The next step is to employ the minimal coupling scheme, which enables us to take
the interaction with an electromagnetic field into account. The explicit form of this
coupling (1.4) follows from the requirement, that the equation has to be invariant under
local gauge transformations, leading to the canonical form of the Klein-Gordon equation

[(

i~
∂

∂t
− qφ

)2

− c2
(

−i~∇− q

c
A
)2

−m2c4

]

ψ(x) = 0. (1.18)
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In order to emphasize the relativistic character of this equation, it may be written in a
manifestly covariant form

[(

p̂µ − q

c
Aµ

)(

p̂µ − q

c
Aµ
)

−m2c2
]

ψ(x) = 0, (1.19)

with the four-momentum operator p̂ = (p̂µ) = i~(∂µ) = i~(∂/c∂t,−∇) and the four
vector A = (Aµ) = (φ,A). To gain more insight, we derive now the equation of conti-
nuity. Multiplication of the Klein-Gordon equation by ψ∗ from the left, followed by a
subtraction of the complex conjugate leads to

∂ρ(x)

∂t
+ ∇j(x) = 0 or ∂µj

µ(x) = 0, (1.20)

with the four-current (jµ) = (cρ, j) given by

jµ =
i~

2m
(ψ∗∂µψ − ψ∂µψ∗) − q

mc
Aµψ∗ψ. (1.21)

This equation leads immediately to the conserved quantity

Q =

∫

d3r ρ(x) = const. (1.22)

Here the second problematic issue of the Klein-Gordon equation becomes visible, be-
cause the density ρ = j0/c can become negative. This is for example the case for all
negative-energy solutions (1.17). At first sight, this renders a probabilistic interpretation
of the density impossible. It is instructive at this point to examine the negative-energy

solutions once again. The charge conjugation of a negative-energy solution ψ
(−)
C = ψ(−)∗

fulfills the canonical Klein-Gordon equation (1.18) in the same potentials with positive-
energy and opposite charge q → −q. So the negative-energy solutions become physically
meaningful as representations of antiparticles. Therefore the Klein-Gordon equation de-
scribes two kinds of spinless particles, each with opposite charge, e.g. π+ and π−. With
this new interpretation at hand it is possible to reinterpret the probability density ρ(x)
as a charge density qρ(x). Now it becomes also obvious why we chose the letter Q for
the conserved quantity (1.22); it denotes the total charge which is of course conserved.
Also the density current j is now reinterpreted as a charge current q j.

As in the case of the Schrödinger equation, it is generally not possible to find analytic
solutions of the Klein-Gordon equation (1.18). Therefore a numerical ansatz has to be
found. Unfortunately, it is not possible to apply the split-operator method described in
the previous section directly to this equation, because it is of second order in time and
has not the usual Hamiltonian form (1.5) like the Schrödinger equation. However it is
possible, by introducing a new two-component wave function, to transform the canonical
Klein-Gordon equation into the desired Hamiltonian form [68, 69]. For this reason we
introduce two new wave functions ϕ and χ as

ϕ+ χ = ψ, (1.23)

ϕ− χ =
1

mc2

[

i~
∂

∂t
− qφ

]

ψ, (1.24)
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resulting in the explicit expressions

ϕ =
1

2mc2

[

mc2 + i~
∂

∂t
− qφ

]

ψ, (1.25)

χ =
1

2mc2

[

mc2 − i~
∂

∂t
+ qφ

]

ψ. (1.26)

Now the Klein-Gordon equation (1.18) can be rewritten as

[

i~
∂

∂t
− qφ

]

(ϕ+ χ) = mc2(ϕ− χ), (1.27)

[

i~
∂

∂t
− qφ

]

(ϕ− χ) =

[
1

m

(

p̂ − q

c
A
)2

+mc2
]

ψ. (1.28)

Subtracting and adding these two equations leads to a coupled system of differential
equations, which both are of first order in time

i~
∂ϕ

∂t
=

1

2m

(

p̂ − q

c
A
)2

(ϕ+ χ) + (mc2 + qφ)ϕ, (1.29)

i~
∂χ

∂t
= − 1

2m

(

p̂ − q

c
A
)2

(ϕ+ χ) − (mc2 − qφ)χ. (1.30)

Combining ϕ and χ into a single two-component wave function

Ψ =

(
ϕ
χ

)

(1.31)

leads to the final Klein-Gordon equation in the desired Hamiltonian form

i~
∂Ψ

∂t
= ĤΨ, (1.32)

with the new Klein-Gordon Hamiltonian

Ĥ =
τ3 + iτ2

2m

(

p̂ − q

c
A
)2

+ τ3mc
2 + qφ. (1.33)

Here τ1, τ2 and τ3 are the usual Pauli matrices

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

. (1.34)

They obey the following algebra

τiτj = iǫijkτk + δij , (1.35a)

[τi, τj ] = 2iǫijkτk, (1.35b)

{τi, τj} = 2δij . (1.35c)

Note that this two-component wave function is not related to spin and is therefore not
a spinor. To distinguish it explicitly from a spinor, we name this new two component
quantity a “plexor”. Also the Pauli matrices have in this framework no connection to
spin.
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It is an easy task to obtain the free solutions of the Klein-Gordon equation (1.32)

Ψ
(r)
p (x) =

1

2
√
mc2EV

(
mc2 + ǫrE
mc2 − ǫrE

)

exp

[

−iǫr
pµx

µ

~

]

. (1.36)

The value of r ∈ {1, 2} specifies the sign of the energy: r = 1 corresponds to a positive-
energy solution (ǫ1 = 1), and r = 2 correspond to a negative-energy solution (ǫ2 = −1).
They are normalized in the following way:

∫

d3rΨ
(r)†
p (x)τ3Ψ

(r′)
p′ (x) = ǫr

(2π)3

V
δrr′δ(p − p′), (1.37)

which is in accordance with the charge density (1.46) below.

The Klein-Gordon Hamiltonian (1.33) is not Hermitian (Ĥ† 6= Ĥ) , because the matrix
τ3 + iτ2 is not a Hermitian matrix. Instead, the Klein-Gordon Hamiltonian is a τ3-
pseudo-Hermitian operator [71, 72]. A linear operator Ĥ acting on a Hilbert space H is
called η̂-pseudo-Hermitian if there is a Hermitian operator η̂ such that

η̂−1Ĥ†η̂ = Ĥ. (1.38)

So let Ψ1, Ψ2 ∈ H and 〈Ψ1|Ψ2〉 be the inner product in H. The operator η̂ defines the
pseudo-inner product

〈Ψ1|Ψ2〉η̂ = 〈Ψ1|η̂|Ψ2〉. (1.39)

Note, that the inner product (1.39) is not necessarily positive definite. The η̂-pseudo-
Hermitian operator Ĥ is Hermitian with respect to this inner product (1.39)

〈ĤΨ1|Ψ2〉η̂ = 〈Ψ1|Ĥ†η̂|Ψ2〉 (1.40)

= 〈Ψ1|η̂Ĥ|Ψ2〉
= 〈Ψ1|ĤΨ2〉η̂.

Having defined the notion of a pseudo-inner product and a pseudo-Hermitian operator,
the next step is the definition of pseudo-unitarity. A linear invertible operator Û acting
on H is called η̂-pseudo-unitary if

η̂−1Û †η̂ = Û−1. (1.41)

The inner product (1.39) is invariant under η̂-pseudo-unitary transformations

〈ÛΨ1|ÛΨ2〉η̂ = 〈Ψ1|Û †η̂Û |Ψ2〉 (1.42)

= 〈Ψ1|η̂Û−1Û |Ψ2〉
= 〈Ψ1|Ψ2〉η̂.

With regard to the split-operator method and the time evolution operator we show, that
if Ĥ is an η̂-pseudo-Hermitian operator, then the operator Û = exp[iĤ] is η̂-pseudo-
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unitary:

η̂−1Û †η̂ = η̂−1 exp[−iĤ†]η̂ (1.43)

=
∞∑

n=0

(−i)n

n!
η̂−1(Ĥ†)nη̂

=
∞∑

n=0

(−i)n

n!
(η̂−1Ĥ†η̂)n

=
∞∑

n=0

(−i)n

n!
Ĥn

= exp[−iĤ]

= Û−1.

With these tools at hand, the pseudo-inner product of the Hamiltonian form of the
Klein-Gordon theory is defined as

〈Ψ1|Ψ2〉τ3 =

∫

d3rΨ†
1(x)τ3Ψ2(x). (1.44)

The pseudo-expectation value of an operator Ô is given by

〈Ô〉τ3 = 〈Ψ|Ô|Ψ〉τ3 =

∫

d3rΨ†(x)τ3ÔΨ(x), (1.45)

and the charge density (1.21) converts into the following instructive form

ρ(x) = Ψ†(x)τ3Ψ(x) = |ϕ(x)|2 − |χ(x)|2. (1.46)

From this it is quite obvious, that the density is not positive definite.

1.3 Application of the split-operator method to the Klein-

Gordon equation

In section 1.1 we stated that the split-operator method is not applicable to the Schrödinger
equation (1.1) for a particle in arbitrary electromagnetic potentials φ(t, r) and A(t, r),
because there does not exist a splitting (1.9) of the Hamiltonian such that the opera-
tors ÛV̂ (t2, t1, κ) and ÛK̂(t2, t1, κ) are diagonal in position space or in momentum space,
respectively. The structure of the Klein-Gordon equation (1.32) is very similar to the
Schrödinger equation (1.1). In fact, there is no appropriate splitting of the Klein-Gordon
Hamiltonian (1.33) such that the operators ÛV̂ (t2, t1, κ) and ÛK̂(t2, t1, κ) are diagonal
in position or in momentum space, respectively. However, as shown below, it is possible
to apply the split-operator method to the Klein-Gordon equation (1.32) without making
ÛK̂(t2, t1, κ) diagonal in momentum space.
The Klein-Gordon Hamiltonian (1.33) is split into a kinetic energy part

K̂(t, r) =
τ3 + iτ2

2m

(

−i~∇− q

c
A(t, r)

)2
, (1.47)
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and a potential energy part

V̂ (t, r) = qφ(t, r) + τ3mc
2. (1.48)

With this splitting and the Pauli matrices (1.34), the operator ÛV̂ (t2, t1, κ) becomes
diagonal in position space and reduces to a simple multiplication operator

ÛV̂ (t+ ∆t, t, κ) = exp

[

−κ i
~

∫ t+∆t

t
dt′ V̂ (t′, r)

]

(1.49)

= exp

[

−κ i
~

∫ t+∆t

t
dt′
(
qφ(t′, r) + τ3mc

2
)
]

=




exp

[

−κ i
~

(

mc2∆t+
∫ t+∆t
t dt′ qφ(t′, r)

)]

0

0 exp
[

κ i
~

(

mc2∆t−
∫ t+∆t
t dt′ qφ(t′, r)

)]



 .

The operator ÛK̂(t2, t1, κ) is neither diagonal in position space nor in momentum space.
However this operator can be rewritten in position space by the Taylor series of the
exponential function

ÛK̂(t+ ∆t, t, κ) = exp

[

−κ i
~

∫ t+∆t

t
dt′ K̂(t′, r)

]

(1.50)

=
∞∑

n=0

(τ3 + iτ2)
n

n!

[−iκ
2m~

∫ t+∆t

t
dt′
(

−i~∇− q

c
A(t′, r)

)2
]n

The infinite series comprises spatial derivatives of arbitrarily high order. However, the
features of the Pauli algebra (1.35) allows to calculate (1.50) effortlessly, taking into
account first- and second-order derivatives only. It turns out, that the matrix (τ3 + iτ2)
is nilpotent

(τ3 + iτ2)
2 = i{τ2, τ3} = 2iδ23 = 0. (1.51)

Therefore the series (1.50) reduces to

ÛK̂(t+ ∆t, t, κ) = 1− iκ
(τ3 + iτ2)

2m~

∫ t+∆t

t
dt′
(

−i~∇− q

c
A(t′, r)

)2
. (1.52)

In a numerical implementation of the split-operator method the wave function Ψ(t, r) is
discretized on a rectangular grid. It is propagated from time t to time t+ ∆t by (1.11)
where ÛV̂ (t + ∆t, t, κ) and ÛK̂(t + ∆t, t, κ) are given by equations (1.49) and (1.52),
respectively. The first- and second-order derivatives included in the operator (1.52) are
approximated by a finite difference scheme. If the integrals over the potentials are not
given analytically, they can be approximated numerically, e.g.

∫ t+∆t

t
dt′φ(t′, r) ≈ ∆tφ(t, r). (1.53)

Note that in contrast to traditional split-operator methods, which operate alternately in
position and momentum space, our split-operator scheme for the Klein-Gordon equation
acts exclusively in position space. Thus, the application of (1.11) does not require the
computation of a Fourier transform. This has two computational advantages:
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• An elementary step of the split-operator method for the Klein-Gordon equation
requires only O(N) operations, where N denotes the number of spatial grid points.

• The split-operator method for the Klein-Gordon equation can be parallelized effi-
ciently on shared-memory parallel computers by domain decomposition.

1.4 The Klein-Gordon code in a nutshell

One of the main tasks of this work was to build up a computer code to propagate the
Klein-Gordon equation. As the previous section described, the split-operator method is
applicable to the Klein-Gordon equation in the Hamiltonian form. Using this numerical
scheme has some essential advantages. It provides the possibility to circumvent the usual
time consuming Fourier transformations from position into momentum space and vice
versa, apparent in traditional split-operator schemes. Therefore arbitrary potentials with
no further restrictions can be employed. As a second consequence, the algorithm can
be parallelized on shared memory parallel computers by breaking the grid into smaller
pieces. This is a huge advantage, because relativistic propagation methods suffer from
the problem, that the time steps ∆t have to be considerably smaller compared to nonrel-
ativistic propagation schemes. For propagation schemes like the split-operator method,
the requirement ∆t < ~/E has to be fulfilled. Due to the rest mass of the particle,
the energy has a large numerical value, leading even for free particles to the condition
∆t < ~/mc2. Taking the electron as an example, the energy involved in the estimation
of the time step for a nonrelativistic theory is of the order of several eV, whereas for the
relativistic case one have E ∼ 511 keV. This leads to a reduction of the time step size
by approximately 4 to 5 orders of magnitude.

In the following, we present the main features of our numerical implementation of the
Klein-Gordon theory.

Algorithm: An initial plexor-valued wave function Ψ(ti, r) is discretized on a one- or
two-dimensional rectangular grid, with a constant grid increment. The propagation
algorithm employed is similar to the one introduced in section 1.1 by equations (1.11)
and (1.14). Applying successively the elementary propagation step from t to t+ ∆t

Ψ(t+ ∆t, r) ≈ ÛV̂

(

t+ ∆t, t,
1

2

)

ÛK̂ (t+ ∆t, t, 1) ÛV̂

(

t+ ∆t, t,
1

2

)

Ψ(t, r), (1.54)

the initial wave function evolves in time under the influence of the given external electro-
magnetic potentials. Here the operators ÛV̂ (t + ∆t, t, κ) and ÛK̂(t + ∆t, t, κ) are given
by the equations (1.49) and (1.52), respectively. The propagation algorithm has the



1.4 The Klein-Gordon code in a nutshell 15

following explicit form

Ψ(tf , r) ≈
M∏

n=1

[

ÛV̂

(

ti + n∆t, ti + (n− 1)∆t,
1

2

)

(1.55)

× ÛK̂ (ti + n∆t, ti + (n− 1)∆t, 1) ÛV̂

(

ti + n∆t, ti + (n− 1)∆t,
1

2

)]

Ψ(ti, r)

= ÛV̂

(

tf , tf − ∆t,
1

2

)

ÛK̂ (tf , tf − ∆t, 1)

×
M−1∏

n=1

[

ÛV̂

(

ti + (n+ 1)∆t, ti + (n− 1)∆t,
1

2

)

ÛK̂ (ti + n∆t, ti + (n− 1)∆t, 1)

]

× ÛV̂

(

ti + ∆t, ti,
1

2

)

Ψ(ti, r),

where M indicates the number of time steps ∆t = (tf − ti)/M . Advantage was taken in
the above propagation algorithm of the fact, that it is possible to combine two succes-
sive ÛV̂ -operators stemming from the left and right side of two neighboring elementary
propagation steps (1.54).
The first- and second-order spatial derivatives in the operator ÛK̂(t + ∆t, t, κ) are cal-
culated by finite difference approximations. Here the accuracy can be improved by
employing higher order formulae, which are implemented up to 9-point approximations.
The accuracy of an n-point approximation is of the order O(hn−1), where h denotes the
grid increment. The explicit formulas are given in Appendix A. It is also notable, that
although the wave function has two components it suffices to calculate the derivatives
of a single function, due to the explicit form of the matrix in (1.52)

τ3 + iτ2 =

(
1 1
−1 −1

)

. (1.56)

Acting with this matrix on a plexor results in

(τ3 + iτ2)Ψ = (τ3 + iτ2)

(
ϕ
χ

)

= (ϕ+ χ)

(
1
−1

)

. (1.57)

So the differential operators act only on the former scalar wave function ψ = ϕ + χ,
equation (1.23).

Absorbing Boundary: During the propagation, there may be the possibility that
parts of the wave packet hit the boundary, introducing reflection effects. To avoid these
undesirable boundary effects, an absorbing boundary is employed. The wave function is
damped to zero on the boundary by a successive application of the damping function

f(z) =







0 , for z ≤ a
(

1 + exp
[

−2 tan
(

π
2 − π(b−x)

b−a

)])−1
, for a < z < b

1 , for b ≤ z

(1.58)

as shown in Figure (1.1). It is a smooth function f ∈ C∞, meaning that it has continuous
derivatives of all orders.
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Figure 1.1: Shown is the boundary damping function (1.58) for the values a = 0 and
b = 6. It is successively applied to the discretized wave packet in order to damp the
function down to zero towards the boundary. This procedure avoids unwanted grid
boundary effects, occurring otherwise whenever parts of the wave function move against
the grid boundary.

Grid Adjustment: A crucial step to gain a highly efficient numerical code is to adjust
the underlying grid to the propagated wave function in order to keep it as small as possi-
ble. The grid should follow the movement of the main part of the wave packet. It should
also take into account the possibility that the wave packet changes its shape, becoming
broader or narrower during the propagation. Adjusting the grid to a minimal required
size will save valuable computing time. We implemented this idea by introducing two
regions at the grid boundary, named “risk-zone” and “grey-zone”, see Figure (1.2).

During the propagation of the wave function, the magnitude of the density (the density
itself could be negative) is calculated after a specified number of time steps. Start-
ing from the boundary, the positions are calculated where it reaches a pre-defined level
height. In this way the “natural” boundary of the wave-packet is defined. The critical
positions are those, which are nearest to the boundary. If these critical positions lie
in the grey-zone, the grid has the optimal size. However, if a critical point lies in the

risk−zone grey−zone grid

} critical level

grid boundary

critical position |ρ|

Figure 1.2: Schematic representation of the grid adjustment. The black solid curve
represents the magnitude of the density, and the black dashed line corresponds to the
critical level. The critical point is the position of the intersection of the former two,
which lies nearest to the boundary. The grid is adjusted, depending on the location of
the critical point compared to the two marked zones of the grid. In the example shown,
the critical point lies in the grey-zone, meaning that the distance to the grid boundary
has an optimal size on this side.
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risk-zone, it is too close to the boundary. Therefore the grid is enlarged at this side until
the critical position is in the middle of the grey-zone. On the contrary, if the critical
point does not lie in the risk- or grey-zone, it is too far from the boundary, and the grid
is too large at the investigated side. So it can be shrunk till the critical point lies again
in the middle of the grey-zone. This grid adjusting method is schematically shown in
Figure (1.2).

Parallelization: Due to the avoidance of Fourier transformations, the algorithm can be
parallelized on shared-memory parallel computers by a grid decomposition. Here the grid
is split into smaller ones, which are propagated individually. For the application of the
operator ÛV̂ (t+∆t, t, κ) this causes no difficulties. However the operator ÛK̂(t+∆t, t, κ)
requires the calculation of derivatives. Therefore neighboring subgrids have to exchange
the content of their boundary region, schematically shown in Figure (1.3). This was
implemented by MPI (message passing interfaces) routines.
To test the parallel efficiency of our parallel Klein-Gordon code we examine how the
computing time of the parallel code scales with the number of CPU’s employed. For this
reason we propagated freely a Gaussian wave packet over a fixed time interval, varying
the number of CPU’s. The purely computational time spend on each subgrid would scale
in a perfectly linear manner. However the individual subgrids have to communicate with
neighboring subgrids by sending and receiving data from their boundary regions. This
data transfer is quite time consuming and the reason for a possible nonlinear behavior.
The speed-up factor is given by s = t1/tn, where tn denotes the running time of the
program for n CPU’s. The result is shown in Figure 1.4. It is notable that the speed-
up factor follows almost the optimal linear behavior, showing the huge reduction of
computational time via parallelization. All bumps belong to a prime number of CPU’s
employed, where the grid cannot be efficiently split. In fact in these cases, it is broken
up into small stripes which causes a higher amount of exchanged data and therefore
reduces the gain considerably.

Figure 1.3: Splitting of the overall grid into smaller subgrids. During the application of
the operator (1.52), neighboring subgrids have to exchange the content of their boundary
regions (grey areas). This exchange is depicted by the black arrows.
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Figure 1.4: Speed-up factor versus the number of CPU’s. The green solid curve repre-
sents the optimal linear behavior. The red triangles indicate that the number of CPU’s
is prime. At these points the grid cannot be split in an optimal fashion and therefore
the data transfer is increased, which results in a breakdown of the speed-up factor.

1.5 Numerical examples of the Klein-Gordon code

Several instructive examples are presented in this section, serving two purposes: First to
test, that the Klein-Gordon code yields correct results. At the same time, the examples
are chosen in such a way, that relativistic effects become important. The first example
considers the evolution of a free Gaussian wave packet, and introduces the concept of a
Lorentz-boosted wave packet. For high values of the initial momentum and small spatial
width, the results are substantially different compared to the nonrelativistic case. In the
next example the propagation of an initially free particle under the influence of a plane-
wave laser field is examined. The third example employs a two-dimensional harmonic
oscillator potential. Here we focus on the relativistic influence on the motion along a
circular orbit. After this, the potential step is investigated, which leads to the Klein
paradox. We provide a slightly modified interpretation compared to the usual textbook
explanation, e.g. [65–69]. Atomic units (~ = |e| = me = 1, c = 137.036) are employed
throughout this section.

1.5.1 Evolution of a free Gaussian wave packet

A free Gaussian wave packet at rest is given in the scalar Klein-Gordon theory by

ψ
(±)
p̄=0(x) = Ñ

∫

d3p
1√
E

exp

[

− p2

2σ2

]

exp [∓ipµx
µ] , (1.59)

with the normalization constant Ñ and the width σ of the Gaussian distribution in
momentum space. For nonzero momentum p̄ 6= 0, the free particle wave packet should
also have this Gaussian form in its rest frame. In order to find the wave function in
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the laboratory frame, we need to apply a Lorentz transformation to the wave function
(1.59):

ψ
(±)
p̄=0(x) → ψ

(±)
p̄ (x) = L(p̄)ψ

(±)
p̄ (Λ−1(p̄)x). (1.60)

Here Λ denotes the boost into the laboratory frame. Because we have a scalar-valued
function, the Lorentz transformation introduces just a constant phase factor L(p̄), which
can be absorbed into the normalization constant. In this way we obtain the desired wave
function in the laboratory frame:

ψ
(±)
p̄ (x) = N

∫

d3p
1√
E

exp

[

− p2

2σ2

]

exp
[
∓ipµ(Λ−1)µ

ν x
ν
]
. (1.61)

This may be rewritten, employing the substitution pµ = Λα
µ p

′
α

ψ
(±)
p̄ (x) = N

∫

d3p′
det(J)
√

E(p′)
exp

[

−p2(p′)

2σ2

]

exp
[
∓iΛα

µ p
′
α(Λ−1)µ

ν x
ν
]

(1.62)

= N
∫

d3p′
det(J)
√

E(p′)
exp

[

−p2(p′)

2σ2

]

exp
[
∓ip′ν xν

]
.

Here det(J) is the Jacobian of the above substitution. Because our code is two-dimensional,
we restrict the Lorentz transformation to the x-y-plane. It can be decomposed into two
rotations and a boost along the x-direction. The explicit form is given by

Λ =







γ βγ cos(θ) βγ sin(θ) 0
βγ cos(θ) γ cos2(θ) + sin2(θ) (γ − 1) cos(θ) sin(θ) 0
βγ sin(θ) (γ − 1) cos(θ) sin(θ) γ sin2(θ) + cos2(θ) 0

0 0 0 1







(1.63)

with γ =
√

1 + p̄2/(m2c2), β = p̄/(mcγ), β = |β|, and θ denotes the angle between p̄
and the x-axis. The inverse Lorentz transformation is given by Λ−1(β) = Λ(−β). The
substitution from p to p′ in the integral can be rewritten in matrix form as

(
E
c
p

)

= Λ−1

(
E′

c
p′

)

. (1.64)

From this, the Jacobian determinant is easily obtained

det(J) = γ

(

1 − cβp̄
E′

)

. (1.65)

The last step which remains to be done, is the transition from the scalar-valued function
to the plexor-valued two-component representation. This is achieved by the transforma-
tions (1.25) and (1.26):

Ψ
(±)
p̄ (x) =

1

2mc2

(
mc2 + i ∂

∂t

mc2 − i ∂
∂t

)

ψ
(±)
p̄ (x) (1.66)

= N ′

∫
d3p′

E′

√

E′ − cβp̄ exp

[

−p2(p′)

2σ2

](
mc2 ± E′

mc2 ∓ E′

)

exp
[
∓ip′ν xν

]
.
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In the laboratory frame, these free Gaussian wave packets are Lorentz-contracted in the
direction of their initial momentum p̄.

We turn now to the time evolution of such free Gaussian wave packets. As an example
we consider propagations in one and two dimensions with an initial width σ = 400 a.u.,
an initial momentum p̄ = (100 a.u., 0) and positive energy. Due to the high value of σ,
these wave packets are sharply peaked in position space ∆x ≈ 0.002 a.u..
The one-dimensional evolution is shown in Figure 1.5. From the nonrelativistic theory,
one expects a broadening of the wave packet, accompanied by an additional movement
in the direction of the initial momentum. However, instead of moving to the right in
accordance with the initial momentum, the wave packet splits up in two parts, traveling
into opposite directions. In addition, not shown in Figure 1.5, the initial wave packet
has a negative charge density in the outer region.
Figure 1.6 shows the result for the two-dimensional calculation. Here even the initial
wave packet in position space has not the expected Gaussian form. Although the initial
state consists of a superposition of positive-energy states only, there are regions (the
outer part around the main peak) where the charge density becomes negative. Similarly
to the one-dimensional case, the behavior differs markedly from that of nonrelativistic
theory. Instead of the usual broadening of the wave packet, a ring structure evolves with
an inherent asymmetry with respect to the direction of the initial momentum.

The reason for the appearance of a partly negative charge density and the strange evolu-
tion behavior of the wave packet is provided by the following arguments. In a relativistic
theory, it is not possible to measure the position of a particle to an arbitrary high pre-
cision. This is reflected in our case by the appearance of a negative charge density if
the width in position space becomes smaller than a critical value ∆xc ∼ λC = 1/mc,
given by the Compton wave length λC of the particle. This critical value corresponds to
a momentum uncertainty of ∆pc ∼ mc, which corresponds to the lowest bound of pair
creation. The approach to measure the position of a particle to a higher accuracy than
∆xc, would lead inevitably to particle-antiparticle pair creation, rendering the position
measurement meaningless [73].
The deformation of the wave packet during the propagation from the usual Gaussian
shape is due to the finite speed of light c <∞. In order to keep the Gaussian shape, the
portions with high momentum would have to move faster than the speed of light. This
is of course impossible. Therefore, shock fronts build up which move approximately with
the speed of light. In the one-dimensional simulation, these shock fronts correspond to
the two parts traveling in opposite directions, whereas for the two-dimensional simula-
tion the shock front occurs as the outward traveling ring.

These two examples of an extremely narrow Gaussian wave packet show rather drastically
the difference between the nonrelativistic and relativistic theory. We point out that for
a moderate width of the Gaussian distribution the differences become negligible.
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Figure 1.5: The time evolution of a narrow positive-energy Gaussian wave packet in
one dimension with initial momentum p = 100 a.u. and a width in momentum space of
σ = 400 a.u.. Plotted are the charge densities on a logarithmic scale. Instead of traveling
along the initial momentum direction, the wave packet splits into two separating parts.

Figure 1.6: The time evolution of a narrow positive-energy Gaussian wave packet in two
dimensions with initial momentum p = (100 a.u., 0) and a width in momentum space
of σ = 400 a.u.. Plotted is the logarithm of the magnitude of the density. (a) Shown
is the initial wave packet at t = 0 a.u., where the outer part around the main peak
exhibits a negative charge density. The contour lines start at −2 with a spacing of 1.
(b) Shown is the propagated state at t = 0.0005 a.u.. The contour lines drawn start at
0.5 with a spacing of 0.25. Instead of traveling along the initial momentum direction, a
ring structure develops.
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1.5.2 Motion in a relativistic laser field

During recent years, there has been an enormous progress in laser technology, reaching
intensities of 1022W/cm2. Even for much lower intensities, relativistic effects may become
important for investigations of laser-matter interactions. A charged particle in a laser
field represents a first step in this direction. A free electron in an external laser field enters
the relativistic regime when the relativistic laser parameter ξ = E0/c ω approaches or
exceeds unity. Here ω and E0 denote the laser frequency and field strength, respectively.
We chose a linearly polarized plane-wave laser pulse, where the polarization axis cor-
responds to the y-direction and the pulse propagates from the left to the right in the
x-direction. Introducing the laser phase η = ω(x/c− t), the vector potential is given by

A(η) = ey
cE0

ω
cos(η)g(η). (1.67)

The pulse shape function g(η) consists of a sin2-turn-on, followed by a constant plateau
region and a sin2-turn-off.
For Figure 1.7 we took ω = 5 a.u., E0 = 300 a.u. and a pulse shape of the form (1|1|1),
indicating that the turn-on, plateau and turn-off phases comprise one cycle each. With
these field values we enter the weakly relativistic regime ξ = 0.44 < 1, and the signature
of the relativistic Lorentz force becomes observable. This field is applied to a free
positive-energy Gaussian wave packet at rest at the origin. The black curve depicts
the center-of-charge trajectory and displays the typical zig-zag motion. The particle
oscillates along the polarization axis with an amplitude [74]

∆y =
E0

ω2
. (1.68)

In addition it moves a distance ∆x per cycle along the propagation direction

∆x =
πE2

0

2cω3
. (1.69)

This second motion is due to the magnetic component of the Lorentz force, acting on
the particle and pushing it along the laser propagation direction.
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Figure 1.7: Example of the propagation of a free positive-energy Gaussian wave packet
under the influence of an intense laser pulse (E0 = 300 a.u., ω = 5 a.u., (1|1|1) pulse
shape). The black curve denotes the position expectation value, corresponding to the
center of charge. Note how the grid moves along the particle trajectory and adjusts its
size to the growing wave packet.
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1.5.3 Harmonic oscillator

Here we investigate a circular orbit in a two dimensional harmonic oscillator potential.
The initial position and momentum of the particle are ri = (r0, 0) and pi = (0, p0) in the
x-y-plane. In nonrelativistic mechanics, this particle moves in an effective potential

Veff (r) = V (r) +
l2

2mr2
, (1.70)

where l = r0p0 denotes the angular momentum. It is assumed that the potential V (r)
is invariant under rotations. For a harmonic oscillator the potential is given by V (r) =
1
2mω

2r2. The position r0 for which the trajectory is a circle depends on the initial
momentum, and is found at the minimum of the effective potential

∂Veff
∂r

∣
∣
∣
∣
r=r0

= 0, (1.71)

resulting in a radius of the circular orbit of

r0 =
p0

mω
, (1.72)

for our harmonic oscillator potential.

An effective potential may also be introduced in the relativistic case. Starting from the
relativistic Lagrangian in polar coordinates (r, ϕ)

L = −mc2
√

1 − 1

c2
(ṙ2 + r2ϕ̇2) − V (r), (1.73)

one finds the conserved quantity

pϕ = l =
∂L
∂ϕ̇

=
mr2ϕ̇

√

1 − 1
c2

(ṙ2 + r2ϕ̇2)
= const., (1.74)

and the Hamiltonian

H =
mc2

√

1 − 1
c2

(ṙ2 + r2ϕ̇2)
+ V (r). (1.75)

For a circular orbit, the condition ṙ = 0 has to be fulfilled. Inserting this in the Hamil-
tonian (1.75) and eliminating ϕ̇ by equation (1.74), it is possible to define a relativistic
effective potential

Veff (r) =

√

m2c4 +
c2l2

r2
+ V (r). (1.76)

From the minimum of this effective potential one can again extract the relativistically
modified radius of the circular orbit

r̃0 =
p0

mω

(

1 +
( p0

mc

)2
)−1/4

(1.77)

=
p0

mω

[

1 − 1

4

( p0

mc

)2
+

5

32

( p0

mc

)4
+ O

(( p0

mc

)6
)]

. (1.78)
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The parameters have now to be chosen in such a manner, that the relativistic effect
on the radius becomes visible. For this reason we take ω = 20 a.u. and p0 = 150 a.u.,
corresponding to a nonrelativistic radius of r0 = 7.5 a.u.. The relativistic radius turns
out to be r̃0 ≈ 6.16 a.u.. This is confirmed by our numerical propagation shown in
Figure 1.8. The center of charge describes exactly a circle with a radius predicted by
equation (1.77).
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Figure 1.8: Time evolution of a wave packet in a harmonic oscillator potential with
ω = 20 a.u.. The initial parameters are chosen in such a way, that the particle undergoes
a circular motion. This is also an instructive example of the grid adjustment.

1.5.4 Potential step and the Klein paradox

The problem of a quantum particle impinging on a potential step is not only a toy
system to check the numerical correctness of the Klein-Gordon code. It also leads to
the famous Klein paradox [75]. This phenomenon, which is not known in nonrelativistic
quantum mechanics, is connected to the phenomenon of pair creation due to the existence
of negative-energy solutions. These, however, represent a major problem in the one-
particle picture, which we have not met before. To elucidate this issue let us consider,
for example, a pionic atom in its ground state, where the level scheme is schematically
shown in Figure 1.9a. A radiation catastrophe would occur because there is no lowest
allowed energy state. The particle could undergo transitions into lower and lower energy
states by spontaneous emission of photons, resulting in unstable matter.
Not only the Klein-Gordon theory, describing spinless particles, is afflicted by this prob-
lem. The Dirac theory, describing spin-1

2 particles like the electron, has also the problem
of negative-energy states. To resolve it, Dirac had the genius idea to postulate that all
negative-energy states are occupied. Hence the vacuum is described by this so-called
Dirac sea, Figure 1.9b. Because fermions satisfy the Pauli principle, transitions into
negative-energy states would be prohibited, which solves the problem of the radiation
catastrophe for the Dirac theory. This model leads also to an intuitive picture of the
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concept of pair creation. Induced by the interaction of an external field, an electron
from the Dirac sea may undergo a transition into a positive-energy state, Figure 1.9c,
describing the creation process of an electron. The hole which is left behind behaves like
a particle with opposite charge, opposite momentum and positive energy, thus repre-
senting a created positron. However this departs from the intended one-particle theory.

The problem still remains in the Klein-Gordon theory, because for bosons the Pauli prin-
ciple is not valid. So, to postulate the occupation of all negative-energy states does not
lead to a solution. However, for the one-particle theory one just postulates that transi-
tions from positive- to negative-energy states or vice versa are not allowed, which leads
to the same results as in the one-particle Dirac theory. Whenever such transitions oc-
cur, independent of the theory applied, one has to leave the one-particle picture, because
pair creation processes become involved. One has to be very careful in interpreting such
results from the one-particle theory which are composed of both, positive- and negative-
energy states. We will encounter this issue later on when interpreting the Klein paradox.

We focus now on the potential step given by

φ(r) =

{
0 , for x < 0
φ0 , for 0 ≤ x.

(1.79)

In all cases considered, a positive-energy particle approaches the potential step from
the left under an angle of π/4, i.e., with the initial momentum p0 = (p, p) in the x-y-
plane. The magnitude of the initial momentum determines the energy of the incoming
particle. Of course, the potential step is an analytically solvable problem, giving two
different wave functions for the left side (region I) and the right side (region II) of the
step. These two wave functions and also their derivatives have to match at the common
boundary. If the step height is sufficiently low, meaning φ0 < 2mc2, energies fulfilling
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Figure 1.9: (a) Radiation catastrophe. The existence of negative energy states would
lead to unstable matter. (b) Postulation of the Dirac sea: all negative-energy states
are occupied, circumventing the radiation catastrophe. (c) Pair creation process in the
framework of the Dirac sea. A particle undergoes a transition from the Dirac sea into a
positive-energy state. The hole which is left behind, represents the antiparticle.
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Figure 1.10: Time evolution of a wave packet approaching a potential step, indicated
by the black solid line. Here the energy exceeds the height of the potential step. The
black dashed lines depict the propagation directions for the individual parts of the wave
packet in correspondence with equation (1.80). This is also a beautiful example of the
grid adjustment indicated by the grey boxes.

E > φ0 +mc2 result in oscillating functions in both regions. For lower energies, the wave
function is exponentially damped in region II.
As a first example we consider an energy which is higher than the potential step. Thus
a part of the wave packet propagates further to the right whereas a portion of it is
reflected. A simple calculation gives the angle between the x-axis and the direction in
which the transmitted part of the wave packet propagates

tan(θ) =
p

mc





(√

1 + 2
( p

mc

)2
− φ0

mc2

)2

−
( p

mc

)2
− 1





−1/2

. (1.80)

For φ0 < 2mc2, equation (1.80) delivers real values only for energies which are higher
than (φ0 +mc2), with the limit

lim
p→∞

θ =
π

4
. (1.81)

The time evolution is shown in Figure 1.10 for a step height of φ0 = 0.1mc2 ≈ 1877.9 a.u.
and an initial momentum of p = 68 a.u.. For these parameters equation (1.80) predicts
an angle of θ = 77.6◦, which corresponds to the angle of the black dashed line on the
right side of the pictures.
In the second example the step height is increased till it exceeds the critical value of
2mc2, taking φ0 = 2.5mc2. Here the solution shows a different behavior than the one
known from nonrelativistic theories. We have to examine three different energy regimes
of the incoming particle. The solutions in region I are oscillating functions in all three
cases. For region II one finds:

• For φ0 + mc2 < E, the solutions are oscillating functions as expected. So the
wave packet can propagate further to the right and splits up into a reflected and
a transferred part.
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Figure 1.11: Time evolution of a wave packet approaching a supercritical potential step.
The initial momentum is large, so the Klein paradox does not occur. The wave packet
is totally reflected at the potential step.

• For φ0 − mc2 < E < φ0 + mc2, the solutions are again exponentially damped.
Therefore the wave packet will be completely reflected in this case.

• A new situation arises for mc2 < E < φ0 −mc2. Here the solutions show again an
oscillating behavior. Therefore a transmitted wave exists with an energy smaller
than the step height. This phenomenon is known as the Klein paradox [75].

The last two cases are shown in Figure 1.11 and 1.12, respectively. First we chose
p = 133.2 a.u., corresponding to an energy which lies in the second regime. Here the
wave packet is totally reflected. If the momentum is decreased until it falls under a critical
value, in our case p = 80.5 a.u. < pc ≈ 108.3 a.u., one enters the regime of the Klein
paradox. In addition to a reflected part, a portion of the wave packet propagates further
into the normally forbidden region. This portion has negative density, and consists in
fact of negative-energy states. So both negative- and positive-energy states are involved
in this regime and one is forced to leave the one-particle picture.
The usual textbook argument [65–69] states, that the incoming particle is totally re-
flected at the potential step. However, during this reflection a particle antiparticle pair
is created additionally. So the portion of the wave packet which propagates into the
forbidden region to the right is interpreted as the created antiparticle. Coming from
the one-particle picture this interpretation might seem correct. However, from a phys-
ical point of view the question arises, why there is only pair creation for small initial
momenta and not for higher energetic ones?
To resolve this problem one has to leave the one-particle picture. In a quantum field
theoretical treatment, it can be shown that a supercritical potential step produces in-
trinsically pairs out of the vacuum. Here it becomes obvious, that a one-particle inter-
pretation cannot be correct. For the Dirac theory it was shown recently [38, 39] that the
incoming particle actually suppresses this intrinsic pair creation process. This provides
a slightly modified explanation of the Klein-Gordon paradox, which fits also quite well
into the Dirac sea picture, shown in Figure 1.13. For subcritical φ0 the incoming par-
ticle encounters an usual potential step (Figure 1.13a). However, if the potential step
becomes supercritical, particles from the Dirac sea in region II can leak out into region
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Figure 1.12: Time evolution of a wave packet approaching the same supercritical poten-
tial step as in Figure 1.11. In this case however, the initial momentum is low, leading to
the Klein paradox. Although the main part is reflected, a small component of the wave
packet propagates into the forbidden region, having negative density.

I, describing in this way the intrinsic pair creation process (Figure 1.13b). As one may
see, only particles in the energy regime mc2 < E < φ0 − mc2 are created. If now a
particle, which energy is also in this regime, approaches the potential step from the left,
the particles leaking out from the Dirac sea can no longer occupy this energy state, due
to the Pauli principle. Therefore the appearance of the external particle suppresses the
intrinsic pair creation process. This explains also, why more energetic particles have no
influence at all. Although this explanation works fine for the Dirac theory it is unclear
yet, how it translates to the Klein-Gordon theory where no Pauli principle exists. It is
clear, that a supercritical potential step produces pairs independent of the spin of the
particles involved. However, the question remains, how an incoming boson influences
this production process. This is of course one of the next steps which have to be tackled.

It is worth to note, that equation (1.80) agrees with the numerically found propagation
directions even for the case of the Klein paradox; a minus sign has to be introduced to
take the negative energy into account. An example of this is given in Figure 1.14, where
final results are shown for three different initial momenta p = 0.333mc, p = 0.505mc and
p = 0.582mc, corresponding to the angles θ = 20◦, θ = 40◦ and θ = 60◦, respectively.
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Figure 1.13: (a) Energy level scheme for a subcritical potential step. The shaded areas
depict the free energy states. (b) For a supercritical potential step φ0 > 2mc2, the field
creates pairs out of the vacuum. Particles from the Dirac sea in region II (right) may
leak out into region I (left), thus describing pair creation. The energy of the created
pairs is bounded by mc2 ≤ E ≤ φ0 −mc2.
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Figure 1.14: Klein paradox for different initial momenta, with φ0 = 2.5mc2. A part of
the wave function propagates into the normally forbidden region to the right along the
direction predicted by equation (1.80). (a) p = 0.333mc, θ = 20◦; (b) p = 0.505mc,
θ = 40◦; (c) p = 0.582mc, θ = 60◦.
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1.6 The Dirac equation

The second main topic of this work was to investigate e+e− pair creation in counterprop-
agating laser fields. However, electrons are spin-1

2 particles and therefore not described
properly by the Klein-Gordon equation. Therefore this section departs from the Klein-
Gordon theory and introduces the Dirac equation,

i~
∂ψ(x)

∂t
=
[

cα
(

p̂ − q

c
A
)

+ qφ+mc2β
]

ψ(x), (1.82)

a relativistic wave equation describing fermions, discovered in 1928 by Dirac. It may
be derived from the Lorentz group, enlarged by parity, as a connection between the
fundamental (1

2 , 0) and (0, 1
2) representations of the underlying SU(2)×SU(2) Lie algebra

[76]. Here α and β denote four-by-four matrices, which obey the following algebra

{αi, αj} = 2δij , {αi, β} = 0, β2 = 1. (1.83)

In the Dirac representation they are given by

αi =

(
0 σi

σi 0

)

and β =

(
1 0
0 −1

)

, (1.84)

with the identity 1 and the Pauli matrices

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (1.85)

By introducing the four γ-matrices

γ0 = β, γi = βαi, (1.86)

satisfying the Clifford algebra

{γµ, γν} = 2gµν , (1.87)

the Dirac equation (1.82) may be written in a manifestly covariant form

[

γµ
(

p̂µ − q

c
Aµ

)

−mc
]

ψ(x) = 0. (1.88)

Like in the Klein-Gordon theory, the spectrum of solutions contains positive- and negative-
energy states. The free solutions are given by

ψr
p =

√

Ep +mc2

2V Ep

(

ϕr
cσp

Ep+mc2
ϕr

)

exp

[

−ipµx
µ

~

]

, for r ∈ {1, 2} (1.89a)

ψr
p =

√

Ep +mc2

2V Ep

(
cσp

Ep+mc2
ϕr

ϕr

)

exp

[

+i
pµx

µ

~

]

, for r ∈ {3, 4}, (1.89b)

with ϕ1,3 = (1, 0)T and ϕ2,4 = (0, 1)T , specifying the two possible spin states, and

Ep = c
√

p2 +m2c2 denoting the relativistic energy. The spinors (1.89a) with r ∈ {1, 2}
represent particles (electrons) with positive energy, whereas the spinors (1.89b) with
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r ∈ {3, 4} represent particles with negative energy.

The Dirac equation (1.82) is already in a Hamiltonian form. Therefore, the split-operator
method is directly applicable. The Hamiltonian can be split into

Ĥ(x) = cα
(

p̂ − q

c
A(x)

)

+ qφ(x) +mc2β (1.90)

=
[
−i~cα∇ +mc2β

]
+ [qφ(x) − qαA(x)] (1.91)

= K̂ + V̂ (x). (1.92)

Here the problem of mixing space dependent terms with spatial derivatives does not
occur. Therefore arbitrary potentials may be examined. The numerical implementation
follows the steps described in the Schrödinger theory in section 1.1. Here one cannot
avoid the necessity of time consuming Fourier transformations as in the case of the Klein-
Gordon equation. Details to the Dirac code (D++) utilized in our numerical calculations
can be found in [55, 56].



Chapter 2

Electron-positron pair creation by

counterpropagating laser fields

In the presence of very strong electromagnetic fields the quantum electrodynamic vac-
uum may become unstable and decay into e+e− pairs. The characteristic field strength
for vacuum instability is the Schwinger field Ec = m2c3/|e|~ = 1.3 × 1016V/cm [1–
3]. Due to the enormous progress in laser technology during recent years [10–12], the
question arises wether this vacuum instability can be tested by laser fields. As a well
known result, a single plane-wave laser field cannot extract pairs out of the vacuum, due
to energy and momentum conservation. However, with the additional assistance of a
Coulomb field [81–87] or a high energy γ-photon [88–91] the pair creation process be-
comes possible. Until now, pair creation by pure laser light has not been observed. The
most simple field configuration for a realization of this pair creation process consists
of two counterpropagating laser pulses of equal frequency and intensity [23, 24, 27–
29, 31, 32, 34, 35, 47–49, 92–96].

This chapter is dedicated to the pair creation process in such a field configuration, with
the vector potential

A =
1

2
A0 [ex cosω(z + t) + θey sinω(z + t)] +

1

2
A0 [ex cosω(z − t) − θey sinω(z − t)]

= A0 cos(ωz) [ex cos(ωt) + θey sin(ωt)]

≈ A0 [ex cos(ωt) + θey sin(ωt)] . (2.1)

Note that natural units (~ = c = 1) are employed throughout this chapter. The laser
frequency is denoted by ω, the field strength is given by E0 = ωA0 and the ellipticity
parameter θ distinguishes between linear (θ = 0) and circular (θ = 1) polarization. In
the last step of equation (2.1) the dipole-approximation was employed. Here the spa-
tial dependence of the potential and thus the magnetic field is neglected, resulting in
an oscillating electric field. This is justified when the characteristic length of the pro-
cess (lc) is less than the laser wave length λ: lc ≪ λ. In the pair creation process the
characteristic length can be evaluated as a length on which the laser field imparts an
electron with the characteristic energy εc = m: lc = εc/|e|E0 = Ec/mE0, where in the
last step the Schwinger field strength Ec has been employed. This leads to the condition
ω ≪ mE0/Ec, for which the dipole approximation is valid. The influence of the magnetic

33
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field for high frequencies is investigated in the next chapter.

By introducing the relativistic laser parameter

ξ =
|e|E0

mω
, (2.2)

different interaction regimes of pair creation in laser fields may be distinguished [8]. For
ξ ≪ 1, the process probability follows a perturbative power law:

W ∼ ξ2n, (2.3)

where n is the number of absorbed photons. While for ξ ≫ 1, the probability shows a
tunneling behavior:

W ∼ exp

(

−πEc

E0

)

. (2.4)

Because we are mostly interested in the intermediate regime, where no simple asymp-
totic formulas exist, we restrict the following discussions to ξ = 1 in almost all of our
calculations.

The first section establishes the theoretical fundament, how numerical solutions of the
Dirac equation can be utilized for the investigation of the pair production process. We
present an intuitive approach based on the Dirac sea picture, and show that it is in
accordance with a rigorous QED calculation for unstable vacuum in external fields.
Before presenting the numerical results, the next chapter represents a detour employing
a quasiclassical calculation. Here, the important notion of the quasi-energy of a particle
in a periodic external field is introduced. The third section presents and compares
numerical results, like transition probabilities and resonances, obtained from the Dirac
and Klein-Gordon equation. Moreover, as explained in this section, it seems impossible
to obtain the momentum distribution of the created electrons from these calculations.
However, due to a numerical trick, presented in the fourth section, it is possible to run the
code in a nonstandard mode, which enables us to obtain the momentum distributions in
a single numerical propagation. For linear polarization, a remarkably good agreement is
found with the results obtained from the quasiclassical calculation. However, for circular
polarization the particular spin state of the electron becomes crucial. Therefore the final
section describes a modification of the quasiclassical approach including the spin degree
of freedom.

2.1 Theoretical fundament - from the Dirac sea to QFT

In the one-particle Dirac theory, pair creation is described as the transition of an electron
from a negative-energy state out of the Dirac sea, into a positive-energy state, see sec-
tion 1.5.4. Thereby, the hole which is left behind is interpreted as the created positron.
In our calculations we employ an advanced computer code which solve the Dirac equa-
tion in an arbitrary external potential on a two dimensional grid. An initial free wave
packet in the negative-energy continuum, representing an electron in the Dirac sea, is
propagated via the split-operator algorithm. Under the influence of the external field an
e+e− pair may be produced. The transition amplitude of this process is determined by
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projection of the wave function onto positive-energy states after the external field has
been turned off.

In this approach an intuitive graphical interpretation for the creation process is possi-
ble. As an example, Figure 2.1 shows the time evolution of an initially negative-energy
Gaussian wave packet at rest under the influence of an oscillating electric field. When
the e+e− pair is produced, a droplet is separated from the wave packet which moves
opposite to the initial one. The droplet is a positive-energy state and represents the
created electron. The change of the sign of energy is evidenced by the change of the
droplet group velocity.
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Figure 2.1: Pair creation in an oscillating electric field with ω = m/200 and the critical
Schwinger field strength E0 = Ec = m2/|e|. Three snapshots of the probability distri-
bution are taken at times as indicated from the evolution of an initially negative-energy
Gaussian wave packet at rest at the origin. The length is scaled in multiples of the
Compton wave length λC = 1/m.

This intuitive picture based on the framework of the one-particle time-dependent Dirac
equation finds its rigorous foundation in the well-established revised version of Furry’s
formulation of QED in external fields with unstable vacuum [54, 77], outlined now.

The Dirac Hamiltonian (1.82) is given by

H = α (−i∇− qA(x)) + qφ+mβ. (2.5)

We assume that the potentials are nonzero only during a finite time interval, and thus
vanishing in the remote past t → −∞ and in the distant future t → ∞. Therefore one
obtains two complete and orthonormal sets of solutions { (±)ϕp} and { (±)ϕp}, of the
Dirac equation

[

i
∂

∂t
−H

]

ϕp(x) = 0, (2.6)

where p denotes a generalized index, e.g., the momentum of the particle. The difference
between these sets, lies in the asymptotic limit for t → ±∞. The basis { (±)ϕp} cor-

responds to free positive- and negative-energy solutions in the remote past (t → −∞),
whereas the basis { (±)ϕp} corresponds to free positive- and negative-energy solutions in



36 Electron-positron pair creation by counterpropagating laser fields

the distant future (t → ∞). The Heisenberg field operator can be decomposed in these
basis sets as

ψ̂(x) =
∑

p

âp(in)
(+)
ϕp(x) + b̂†p(in)

(−)
ϕp(x), (2.7)

=
∑

p

âp(out) (+)ϕp(x) + b̂†p(out) (−)ϕp(x). (2.8)

Note, that the time dependence of the creation and annihilation operators is not shown
explicitly. The equal-time anticommutation relations follow from the equal-time anti-
commutation relations of the field operator, and are given for the IN operators by

{âp(in), â†p′(in)} = {b̂p(in), b̂†p′(in)} = δpp′ , (2.9)

with all other equal-time anticommutators equal to zero. The same relations follow for
the OUT operators:

{âp(out), â†p′(out)} = {b̂p(out), b̂†p′(out)} = δpp′ , (2.10)

where again all other equal-time anticommutators are equal to zero.

The IN creation and annihilation operators define the vacuum state in the remote past
via

âp(in) |0, in〉 = 0, b̂p(in) |0, in〉 = 0, (2.11)

whereas the OUT creation and annihilation operators define the vacuum state in the
distant future via

âp(out) |0, out〉 = 0, b̂p(out) |0, out〉 = 0. (2.12)

The IN- and OUT-vacua may differ from each other. So if the vacuum-to-vacuum ampli-
tude is not equal to unity, 〈0, out| 0, in〉 6= 1, the vacuum is unstable under the influence
of the external field, meaning that pairs are created from the vacuum.
To find the amount of electrons and positrons produced, one has to find a connection
between the IN and OUT creation and annihilation operators. Therefore, the next step
is to introduce the Dirac propagator in external fields, defined through

[

i
∂

∂t
−H

]

G(x, y) = 0, (2.13)

with the initial condition

G(x, y)
∣
∣
∣
x0=y0

= δ(x − y). (2.14)

It satisfies the following relations:

∫

d3x′G(x, x′)G(x′, y) = G(x, y) (2.15)

G†(x, y) = G(y, x) (2.16)

G(x, y) =
∑

p

ϕp(x)ϕ
†
p(y) (2.17)
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The propagator relates the solutions of the Dirac equation, and thus the spinor field
operators, at different spatiotemporal points according to

ψ̂(x) =

∫

d3y G(x, y)ψ̂(y). (2.18)

We are now able to find the connection between the IN and OUT creation and annihi-
lation operators.

∫

d3x (+)ϕ†
p(x)ψ̂(x) =

∑

p′

âp′(out)

∫

d3x (+)ϕ†
p(x)

(+)ϕp′(x)

︸ ︷︷ ︸

=δ
pp′

+b̂†p′(out)

∫

d3x (+)ϕ†
p(x)

(−)ϕp′(x)

︸ ︷︷ ︸

=0

= âp(out). (2.19)

Simultaneously one finds

∫

d3x (+)ϕ†
p(x)ψ̂(x) =

∫

d3x d3x′ (+)ϕ†
p(x)G(x, x′)ψ̂(x′) (2.20)

=

∫

d3x d3x′ (+)ϕ†
p(x)G(x, x′)

∑

p′

(

âp′(in)
(+)
ϕp′(x

′) + b̂†p′(in)
(−)
ϕp′(x

′)
)

=
∑

p′

(∫

d3x d3x′ (+)ϕ†
p(x)G(x, x′)

(+)
ϕp′(x

′)

)

âp′(in)

+
∑

p′

(∫

d3x d3x′ (+)ϕ†
p(x)G(x, x′)

(−)
ϕp′(x

′)

)

b̂†p′(in)

=
∑

p′

Gpp′(
+ |

+
)âp′(in) +Gpp′(

+ |
−
)b̂†p′(in).

This may be written in matrix notation as

â(out) = G(+ |
+
)â(in) +G(+ |

−
)b̂†(in), (2.21)

b̂(out) = â†(in)G(
+
|−) + b̂(in)G(

−
|−), (2.22)

â(in) = G(
+
|+)â(out) +G(

+
|−)b̂†(out), (2.23)

b̂(in) = â†(out)G(+ |
−
) + b̂(out)G(− |

−
). (2.24)

The last three relations, stated for completeness, are obtained in the same way as the
first one.

Starting from an initial vacuum, the external field may create e+e− pairs. The mean
number of the created electrons with momentum p is given by

np = 〈0, in| â†p(out)âp(out) |0, in〉 (2.25)

=
∑

p′

∣
∣Gpp′(

+ |
−
)
∣
∣2 .
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Evidently, the mean number of created positrons is equal to the mean number of created
electrons. The sum of equation (2.25) over all states p gives the total number of created
electrons, and thus of created pairs

n =
∑

p p′

∣
∣Gpp′(

+ |
−
)
∣
∣2 . (2.26)

This final result yields now the connection to the Dirac sea approach, because the quan-
tity

Gpp′(
+ |

−
) = lim

t→∞
lim

t′→−∞

∫

d3x d3x′ (+)ϕ†
p(x)G(x, x′)

(−)
ϕp′(x

′) (2.27)

= lim
t→∞

∫

d3x (+)ϕ†
p(x)ψ(x), (2.28)

coincides with the projection of the exact solution ψ(x) of the time-dependent Dirac
equation, which evolves from an initial negative-energy state, onto a final free positive-
energy solution (+)ϕp(x). Our numerical approach, outlined at the beginning, utilizes
the result of this rigorous second-quantized QED calculation in external fields. At this
step, no approximation is employed, apart from the well-justified assumption that the
given external field is not substantially modified due to the interaction.

2.2 Quasiclassical approach

To gain a qualitative understanding of the e+e− pair creation process, we first apply a
quasiclassical method, in which the phase of the Dirac wave function is approximately
given by the classical action, satisfying the Hamilton-Jacobi equation [58, 78, 79],

ψ±(t, r) ∼ exp (iS±(t, r)) . (2.29)

The (±) sign takes the two possible signs of energy into account. This quasiclassical
description is valid if the conditions

ω ≪ m and E0 ≪ Ec (2.30)

are fulfilled. These stem from the two requirements, that the Compton wavelength has
to be smaller than the characteristic length of the process (lc): λC ≪ lc, and that the
photon energy has to be less than the characteristic energy of the process (εc): ω ≪ εc.
The characteristic energy of the pair creation process is given by the mass of the elec-
tron: εc = m, and the characteristic length may be obtained as the length along which
the laser field (E0) imparts an electron with the characteristic energy: lc = εc/|e|E0. By
taking the Schwinger field Ec = εc/λC |e| into account, this leads to the conditions of
equation (2.30).

The Hamilton-Jacobi equation is given by

H(r,∇S(t, r), t) +
∂S(t, r)
∂t

= 0, (2.31)
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where the classical relativistic Hamiltonian reads

H(r, q, t) = H(q, t) = ±
√

m2 + (q − eA(t))2. (2.32)

We introduced here the possibility of positive and negative energies explicitly. Because
we employ the dipole approximation, the vector potential and therefore the Hamiltonian
does not depend on the spatial coordinate. In fact, the vector potential A is only a
function of the phase η = ωt. An ansatz for the action S, fulfilling the Hamilton-Jacobi
equation (2.31), is given by

S± = qr ∓ S0(η) (2.33)

= qr ∓ 1

ω

∫ η

η0

dη′
√

m2 + (q − eA(η′))2.

It separates into a spatial and a time dependent part S0(η). Due to the periodicity of
the vector potential A(η + 2π) = A(η), the time dependent portion may be split further
into a linear and a periodic part.
In order to see this, let f(η) be a 2π-periodic function. Then the function

F (η) =
η

2π

∫ 2π

0
dη′ f(η′) −

∫ η

η0

dη′ f(η′) (2.34)

is also 2π-periodic:

F (η + 2π) =
η

2π

∫ 2π

0
dη′ f(η′) +

∫ 2π

0
dη′ f(η′) −

∫ η

η0

dη′ f(η′) −
∫ η+2π

η
dη′ f(η′)

= F (η), (2.35)

as the second and forth term on the right hand side cancel each other. Applying this to
the time dependent part of the action S0 ,we may rewrite (2.33) as

S± = qr ∓ q0t± Sp(η). (2.36)

Introducing in this way the quasi-energy q0, which is just the instantaneous energy (2.32)
averaged over a field oscillation.

q0 =
ω

2π

∫ 2π

0
dη

∂S

∂η
=

1

2π

∫ 2π

0
dη

√

m2 + (q − eA(η))2 (2.37)

Therefore the time dependent portion of the action separates into a quasi-energy part,
which is linear in time, and a 2π-periodic part Sp.

Due to the pure time dependence of the external potential, the momentum is conserved.
Therefore only transitions between negative- and positive-energy states with the same
momentum are permitted in the pair creation process. According to this, the transition
amplitude is given by

ψ†
−ψ+ ∼ exp

(
2i (Sp(η) − q0t)

)
. (2.38)

Now we can employ the fact, that Sp is 2π-periodic and expand the equation (2.38) into
a Fourier series

ψ†
−ψ+ ∼

∞∑

n=−∞

Cn exp
(
i (nω − 2q0) t

)
. (2.39)
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Here Cn denote the Fourier coefficients from the expansion. The index n has a physi-
cal meaning, it indicates the number of photons involved in the process. In an exact
treatment, this amplitude would be time independent, leading in our case to the energy
conservation condition

n0ω = 2q0. (2.40)

So, n0 photons are required to overcome the energy gap of 2q0. One should note that
the laser-dressed energy enters here instead of the free energy. The other summands in
equation (2.39), not fulfilling the resonance condition (2.40), are oscillatorily damped.

The Fourier coefficients

Cn =
1

2π

∫ 2π

0
dη exp

(
i (2Sp(η) − nη)

)
(2.41)

are related to the probability of the pair creation process involving n-photons

Wn ∼ |Cn|2. (2.42)

As a first example, we chose a rather large frequency of ω = 0.49072m and ξ = 1 in
order to compare these results with the one obtained by the Dirac code in the next
section. Although these parameters lie at the boundary of the region of validity (see
equation (2.30)), the resemblance to results obtained in later sections is remarkably
well. The scaled quasi-energy 2q0/ω is shown in Figure 2.2 for linear polarization (blue
line) and circular polarization (red line). At the momenta, where it coincides with an
integer (drawn as black lines), the resonance condition (2.40) is fulfilled. These momenta
will show up as resonances in the momentum spectrum of the created electrons. The
reason why the quasi-energy for circular polarization is larger than for linear polarization
is the fixed value of ξ, which we set in both cases equal to one. Therefore, the particle
encounters a larger effective field in the circular case than in the linear one, resulting in
a larger quasi-energy. Figure 2.3 shows the magnitude squared of the Fourier coefficients
belonging to these resonant momenta. As stated by equation (2.42), the probability for
the multiphoton process of pair creation is essentially determined by these functions.
The dashed lines have been inserted to guide the eye and have no physical meaning.

As a second example we decrease the frequency to ω = 0.2m, keeping ξ = 1. The results
are shown in Figure 2.4 and Figure 2.5. One should note, that the maximum of the
probability for linear polarization appears always at the minimal resonant momentum,
whereas the maximum for circular polarization is shifted to higher resonant momentum
values. This feature is similar to the one encountered in above-threshold ionization of
atoms [97]. In both cases, the electron driven by a strong oscillatory electromagnetic
field has to travel through a classically forbidden region to reach the continuum. The
momentum of the electron after the tunneling is determined by the value of the vector
potential. the maximal tunneling probability occurs at maximal field strength. For a
linear polarized laser, this happens when the vector potential vanishes, leading therefore
to a vanishing electron momentum. On the other hand, for circular polarized lasers
the magnitude of the field and the vector potential is constant, leading to a nonzero
momentum of the electron.
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Figure 2.2: Shown is the scaled quasi-energy 2q0/ω versus the momentum of the created
electron for circular and linear laser polarization with a laser frequency of ω = 0.49072m
and ξ = 1. The crossings with the black integer lines denote the momenta which fulfill
the resonance condition (2.40). At these momenta an n-photon resonance occur in the
momentum distribution of the created electron.
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Figure 2.3: The triangles show the magnitude of the Fourier coefficients squared at the
resonant momenta, proportional to the creation probability. The dashed lines have been
drawn to guide the eye and have no physical meaning.
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Figure 2.4: Shown is the scaled quasi-energy 2q0/ω versus the momentum of the created
electron for circular and linear laser polarization, similar to Figure 2.2, with a decreased
laser frequency ω = 0.2m and ξ = 1. The crossings with the black integer lines denote
the momenta which fulfill the resonance condition (2.40). At these momenta an n-photon
resonance occur in the momentum distribution of the created electron.
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Figure 2.5: The magnitude of the Fourier coefficients squared at the resonant momenta,
proportional to the creation probability. The dashed lines drawn are to guide the eye
and have no physical meaning.
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The shown results have been obtained by numerical integration of equations (2.37) and
(2.41). For much lower frequency values, the numerical integration becomes more in-
volved, because of accumulating roundoff errors. However, it is possible to apply the
saddle point approximation, and thus to obtain the scaling behavior of the creation
probability in the multiphoton regime [80]. It can be shown, that in the strong field
limit ξ ≫ 1 the probability at the maximal contributing resonance scales in accordance
to the known tunneling behavior [8, 80]:

W ∼ exp

(

−πEc

E0

)

. (2.43)

In the weak field limit where ξ ≪ 1, the probability shows a perturbative power law
dependence [8, 80]:

W ∼ ξ2n0 . (2.44)

For the intermediate regime ξ = 1, the probability exhibits an exponential behavior [80]:

W ∼ exp

(

−αEc

E0

)

, (2.45)

with α ≈ 3, in close similarity to equation (2.43).

2.3 Numerical results on the pair creation process

The starting point of our numerical calculations, as explained in section 2.1, is a free
negative-energy Gaussian wave packet with initial momentum pi, representing an elec-
tron in the Dirac sea. The width of the wave packet in momentum space is taken to
be ∆p ≈ mα, with the fine structure constant α. It is chosen sufficiently narrow to
closely approximate a momentum eigen-state. The wave packet is propagated in time
under the influence of the external field (2.1). If the field is sufficiently strong, an e+e−

pair can be produced. The transition amplitude is determined by projection of the wave
function onto all positive-energy states after the external field has been switched off. In
the numerical implementation the potential (2.1) is modified by a pulse shape function
consisting of a sin2 turn-on, followed by a plateau region and a final sin2 turn-off. In
order to examine the influence of the pulse length onto the process, the duration of the
plateau region is variable whereas the fixed turn-on and turn-off last half a cycle each.
The ellipticity parameter θ is set to zero, so only linearly polarized laser light is investi-
gated in this section. In addition, the relativistic laser parameter is fixed to ξ = 1. We
examine the outcome of both the Dirac and Klein-Gordon equation, where the second
case treats spinless boson pair creation. We will find fundamental differences due to the
underlying spin statistics. For the Dirac case, the spin is always chosen perpendicular
to the x-y-plane of interaction.

The first observation is connected to the dipole approximation employed. Due to the pure
time dependence of the vector potential, the problem is translational invariant, which
leads to the conservation of momentum. Therefore only transitions from a negative-
energy state with momentum p into a positive-energy state with the same momentum
p are allowed. This reduces the problem essentially to a two level system, where the



44 Electron-positron pair creation by counterpropagating laser fields

two states are coupled via the external oscillating electric field. As a well known result,
such a system under resonant driving undergoes Rabi oscillations [98], which are also
discovered in the pair creation process [27–29, 31, 32]. Figure 2.6 shows the dependence
of the creation probability on the pulse duration for three different frequencies. Here and
in the following results, we set the initial momentum pi = 0, and thus restrict ourselves
to the transition with the smallest energy gap. We return to nonzero initial momenta at
the end of this section, leading us to a modified numerical approach introduced in the
next section.

The creation probability in Figure 2.6 shows a characteristic oscillating behavior, where
the amplitude depends on the laser frequency. At ω = 0.49072m, a resonance oc-
curs in correspondence to the multiphoton resonance condition (2.40). The quasi-
energy (2.37) entering the resonance condition is analytically computable and equates
to q0(0) ≈ 1.21m. So the maximal frequency shown, corresponds to an n = 5 photon
resonance named ω5. The numerically obtained value of ω5 = 0.49072m differs slightly
from the analytical one, given by ω′

5 = 2q0(0)/5 = 0.484m, as a result of the finite pulse
length not incorporated in the analytical calculation. Taking for each frequency the max-
imum of the creation probability as a function of the laser pulse duration, one arrives at
the spectrum given in Figure 2.7. This way, the normally superimposed pulse length de-
pendent oscillations of the probability are omitted, and the resonances are clearly visible.

Note that the even-n resonances are suppressed. For zero momentum, the final e+e−

state is odd under charge-conjugation [99]. This can only be achieved by the absorption
of an odd number of photons so that even-n resonances are forbidden in this case. How-
ever, the Gaussian wave packet employed comprises nonzero momentum components
for which the charge conjugation argument does not hold, and thus lead to suppressed
resonances.

We turn now from the Dirac equation to the Klein-Gordon equation, starting with the
same initial negative-energy state and propagate it under the influence of the oscillating
electric field. After the interaction we project onto all positive-energy states and integrate
over their contributions. If we would have a single momentum state instead of a Gaus-
sian momentum distribution, this integration would be unnecessary. The pulse length
dependent result of this projection is shown in Figure 2.8 for different frequencies. Note
that it is plotted on a logarithmic scale. The highest frequency given corresponds again
to a resonance. For off-resonant frequencies it shows an oscillating behavior similarly
as in the Dirac case. However, for near-resonant frequencies it becomes exponentially
growing. This is directly related to the bosonic character of the particle. Fermionic
particles coming out of the vacuum are not allowed to fill already occupied states, due
to the Pauli exclusion principle. Therefore the occupation number of a particular state
cannot exceed unity. However, no such restriction holds for bosonic particles, and the
occupation number is not limited.

Taking the maximum of the projection for different frequencies yields the resonance
spectrum Figure 2.9. Due to the parallelization of the Klein-Gordon code, the limita-
tion on the examined frequency range is much lower compared to the one given by the
Dirac code. However there would be no further physical insight for smaller frequencies.
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Figure 2.6: Pair creation probability versus pulse length in the Dirac theory for three
different frequencies and ξ = 1. The considered initial electron momentum was taken to
be pi = 0. The highest frequency shown by the green triangles corresponds to a 5-photon
resonance and exhibits the characteristic Rabi oscillation pattern.
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Figure 2.7: Resonant probability spectrum in the Dirac theory: Maximal value of the pair
creation probability during Rabi oscillations at ξ = 1, varying the pulse length up to 200
cycles. The peak labels denote the absorbed photon number. The frequency is plotted
reciprocally so the distance between the resonances is constant (2.40). The applied Dirac
code gives a limitation on the smallest frequency examined in the simulations, due to the
enormous computational time consumption. We therefore restrict the frequency range
to ω ≥ 0.4m.
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Therefore we restricted the calculations to ω ≥ 0.2m. Because there is no upper bound
for the occupation number, we limited the pulse length to twenty cycles. Compared to
the fermionic case, the pattern of pronounced and suppressed resonances is reversed.
The reason is, that for vanishing momentum the final bosonic state is even under charge
conjugation, which can only be achieved by absorption of an even number of photons.

In the calculations above, we have focused on a single electron with vanishing initial
momentum. The question arises how one may obtain the momentum distribution of
the produced electrons or even total rates out of these calculations. Applying the one-
particle approach would be quite tedious, because it would require a propagation for
every initial momentum. However, due to the momentum conservation one can employ
a mathematical trick which yields the entire momentum distribution in a single numer-
ical propagation. This trick is presented in the next section, along with the resulting
momentum distributions.
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Figure 2.8: Projection onto positive-energy states versus pulse length in the Klein-
Gordon theory for four different frequencies and ξ = 1 on a logarithmic scale. The
initial electron momentum was taken to be pi = 0. For off-resonant frequencies an
oscillating pattern was found, whereas reaching a resonance it becomes exponentially
growing. The highest frequency shown by the blue curve corresponds to a 2-photon
resonance.
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Figure 2.9: Resonant spectrum in the Klein-Gordon theory: Maximal value of the pro-
jection at ξ = 1, varying the pulse length up to 20 cycles. The peak labels denote the
required photon number to overcome the energy gap. The frequency is plotted recipro-
cally so the distance between the resonances is constant (2.40).
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2.4 Momentum distribution and total creation probability

The calculations presented in this section are for fermions and thus based on the Dirac
theory. In order to obtain the presented results for the Klein-Gordon theory, one has to
follow the same steps, neglecting the spin degree of freedom whenever it occurs. One of
the final goals is to obtain the momentum distribution of the created pairs. With the
numerical method employed so far, this is in principle possible but tedious, since each
propagation yields only a single point of the (px, py) momentum distribution. Therefore
we employ a different approach, which allows the inclusion of all particle momenta in a
single calculation due to the purely time-dependent nature of the external field. In order
to see this, we first consider the general expression for the momentum distribution

4∑

r=3

∫
V d3p

(2π)3

∣
∣
∣

〈

φr′

p′

∣
∣
∣ψr

p

〉∣
∣
∣

2
, (2.46)

where φr′

p′ are the free positive-energy (r′ ∈ {1, 2}) solutions (1.89) of the Dirac equation
with momentum p′, and ψr

p is the propagated state initially given by an electron with
negative energy and momentum p, i.e. ψr

p(t < 0) = φr
p, with r ∈ {3, 4}. We assume,

that the external field acts on the vacuum only during a finite time range between t = 0
and t = T . Here T denotes the interaction time, which is equal to the pulse duration.

A special feature of the linear polarization case, is the symmetry of the potential. The
system is invariant under rotations around the polarization axis, which we chose to be
the y-axis. The dynamics of an electron therefore stays in the plane containing this axis
and the direction of the initial momentum. By virtue of this rotational symmetry, the
matrix element in expression (2.46) is also rotationally invariant about the field axis.
It is therefore possible to choose a system of coordinates such that the momentum of
the electron is given by p1 = (px, py, 0). This will enable us, to obtain 3-dimensional
total probabilities per volume from our 2-dimensional simulations. For the circular case,
no such symmetry exists. In order to keep the dynamics 2-dimensional here, we have
to restrict the direction of the initial momentum to the plane spanned by the rotating
field vector, corresponding to the x-y-plane. In either case, we may introduce a spin-like
operator

Σ̃ = −iβα1α2 =

(
σ3 0
0 −σ3

)

, (2.47)

which commutes with the Hamiltonian, and is thus conserved. Therefore, an initial
negative-energy spin state couples only to one, out of the two possible positive-energy
spin states, i.e., the spin state r = 3 couples to r = 2 and the spin state r = 4 couples
to r = 1. As always assumed, the spin lies along the axis perpendicular to the compu-
tational plane (along the z-axis).

Starting from an initially free negative-energy momentum eigen-state

ψr
p(t < 0) = φr

p, (2.48)

and taking the spin flipping and the momentum conservation into account, the final
state after the interaction is of the form

ψr
p(t > T ) = c1(p, r)φ5−r

p + c2(p, r)φr
p, (2.49)
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where T denotes the interaction time. Inserting this into expression (2.46) yields

4∑

r=3

∫
V d3p

(2π)3

∣
∣
∣

〈

φr′

p′

∣
∣
∣ψr

p

〉∣
∣
∣

2
=

4∑

r=3

∫
V d3p

(2π)3

∣
∣
∣
∣
c1(p, r)

(2π)3

V
δr′,5−rδ(p

′ − p)

∣
∣
∣
∣

2

=
4∑

r=3

∫

d3p |c1(p, r)|2 δr′,5−rδ(p
′ − p)

=
∣
∣c1(p′, 5 − r′)

∣
∣2 . (2.50)

Here we employed the following normalization condition, satisfied by the free solu-
tions (1.89) of the Dirac equation:

〈

φr′

p′

∣
∣
∣φr

p

〉

=
(2π)3

V
δr′r δ(p

′ − p), (2.51)

where V denotes a normalization volume. Moreover, we utilized the relation

δ(p′ − p)2 =
V

(2π)3
δ(p′ − p). (2.52)

Now we establish the mathematical trick, which allows us to calculate the whole momen-
tum distribution in a single propagation. So far, we approximated the negative-energy
momentum eigenstate by a Gaussian distribution normalized to one, representing a sin-
gle particle in the Dirac sea. To obtain the whole momentum distribution of the created
electrons one has to integrate over all initial momenta after the propagation. However,
it is possible to do the integration beforehand. Instead of employing a Gaussian mo-
mentum distribution, we may start the calculation from a very different negative-energy
state that includes all possible electron momenta within the x-y-plane up to a certain
maximum magnitude. The new initial state reads

ψr
Υ(t < 0) =

V 1/3

2π

∫

d3p δ(pz)Θ(Υ2 − p2)φr
p, (2.53)

where r ∈ {3, 4}, Θ denotes the usual step function and Υ stands for the maximum
momentum as imposed by the spatial grid resolution. Note that ψr

Υ is not normalized
to one, instead the norm is given by

√
πΥ. It may be viewed as a state that represents

essentially the whole Dirac vacuum. Note however, that this is only an intuitive picture,
ψr

Υ does not represent a multi-particle wave function. Employing equation (2.49), the
new wave function is given after the propagation by

ψr
Υ(t > T ) =

V 1/3

2π

∫

d3p δ(pz)Θ(Υ2 − p2)
(
c1(p, r)φ5−r

p + c2(p, r)φr
p

)
. (2.54)

Projection onto positive-energy states and summation over the initial spin variable after
the interaction yields

4∑

r=3

∣
∣
∣

〈

φr′

p′

∣
∣
∣ψr

Υ

〉∣
∣
∣

2
=

4∑

r=3

∣
∣
∣
∣
∣

V 1/3

2π

∫

d3p δ(pz)Θ(Υ2 − p2)c1(p, r)
(2π)3

V
δr′,5−rδ(p

′ − p)

∣
∣
∣
∣
∣

2

=
(2π)4

V 4/3

4∑

r=3

∣
∣
∣δ(p′z)Θ(Υ2 − p′2)c1(p′, r)δr′,5−r

∣
∣
∣

2

=
(2π)3

V
δ(p′z)Θ(Υ2 − p′2)

∣
∣c1(p′, 5 − r′)

∣
∣2 . (2.55)
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In comparison with equation (2.50), we obtain essentially the two dimensional momen-

tum spectrum |c1(p′, 5 − r′)|2
∣
∣
p′

z
=0

in the region
√

p′x
2 + p′y

2 < Υ.

Figure 2.10 and Figure 2.11 show two examples of momentum distributions for linear
polarization, ξ = 1 and frequency ω = ω5 = 0.49072m which corresponds to a 5-photon
resonance for p = 0. The results are independent of the specific spin state, chosen
perpendicular to the interaction plane. In Figure 2.10 a (0.5|13.0|0.5) cycle pulse was
applied; the pulse length corresponds to the first maximum in the Rabi oscillation of the
transition probability for p = 0. To show the ensuing minimum in the Rabi oscillation a
longer pulse length of (0.5|27.5|0.5) cycles was applied in Figure 2.11. The momentum
distributions display a characteristic resonance-ring structure, originating from the mo-
mentum dependence of q0 (see equation (2.37)). It arises from higher photon number
contributions, where the condition in equation (2.40) can be satisfied for certain momen-
tum values and photon numbers n > n0 with n = 2q0(p)/ω ∈ N. Here n0 is defined as
the lowest possible photon number fulfilling the resonance condition. The finite width
of the resonance-rings and the suppressed structure between them arise from the finite
pulse length and the resultant spectral width. For longer pulse duration the width of
the rings becomes sharper and the intermediate structure flattens out.

Moreover, the resonance-rings show a regular substructure of minima. For even photon
numbers (e.g. n = 6) the minima are located at positions where py is an integral multiple
of the photon frequency. In contrast to that, for odd photon numbers (e.g. n = 7) minima
arise at odd multiples of half the field frequency. This superimposed substructure is a
consequence of the periodicity of the applied field. Each cycle contributes coherently
to the momentum distribution. Due to a phase shift between these contributions, there
is an interference effect causing the aforementioned minima [100]. For an infinite pulse
length these interferences lead, for ξ = 1, to the appearance of a factor

[
1 + (−1)n+2s cos(2πpy/ω)

]
, (2.56)

in the resonant pair creation probability1. The number s takes the spin statistics into
account, for bosons s = 0 and for fermions s = 1/2. So the position of the maxima and
minima on the resonance-rings is reversed for bosonic systems. One should mention,
that even a few-cycle pulse is enough to establish this pronounced substructure.

1It seems to us, that in equation (17) of [100] a factor of 2 is missing in the definition of β. There
the function β reduces for ξ = 1 to β = πpy/ω. For other values of ξ the numerical factor in β would be
different, leading to a correspondingly modified substructure.
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Figure 2.10: Momentum distribution of the created electrons for linear laser polarization,
a pulse shape of (0.5|13.0|0.5), and a laser frequency of ω = 0.49072m, corresponding to
a five photon resonance at p = 0. The polarization direction corresponds to the py-axis.
In order to show the Rabi oscillation, the pulse length was chosen in such a way, that
this Figure and the following Figure 2.11 show a maximum and a minimum for p = 0,
respectively. The ring structure originates from higher photon resonances representing
in this case n = 6, 7, 8, . . . photon absorption. Solid lines corresponding to py = lω and
dashed lines corresponding to py = (2l+ 1)ω/2 for l ∈ Z are drawn to show the position
of the maxima and minima in the substructure of the resonance-rings more clearly.
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Figure 2.11: Same as Figure 2.10 but for a longer pulse length of (0.5|27.5|0.5). The
latter was chosen such that the Rabi oscillation passes through a minimum at p = 0.
Note that for longer pulse duration, the width of the resonance-rings becomes sharper.
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To compare the positions of the resonance-rings obtained with the results found in the
quasiclassical approach, we consider a cut of the momentum distribution from Figure 2.10
along the py-axis. This cut is shown in Figure 2.12 with the frequency-scaled quasi-energy
from Figure 2.2. The agreement of the resonance positions is almost perfect. The small
deviations are due to the finite pulse length, not included in the quasiclassical calculation.

Figure 2.13 shows the momentum spectrum obtained by the same field configuration as
in Figure 2.10, but for the case of a bosonic system. Here the momentum p = 0 corre-
sponds to a stationary minimum, explained by the charge conjugation argument given
before. The notion stationary means, that the minimum is independent of the applied
pulse duration. In contrast to this, the minima at p = 0 in Figure 2.11 corresponds to a
minimum of the Rabi oscillation and occurs therefore only for specific pulse durations.
The substructure of the resonance-rings is switched in accordance with equation (2.56).
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Figure 2.12: The black line denotes a cut along the py-axis of the momentum distribution
from Figure 2.10. The laser is linearly polarized with ω = 0.49072m and ξ = 1. The blue
curve shows the frequency-scaled quasi-energy. Crossings of this curve with the integer
lines (black) indicate momenta that meet the resonance condition.
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Figure 2.13: Momentum distribution of the created Klein-Gordon particles for linear
laser polarization, a pulse shape of (0.5|13.0|0.5), and a laser frequency of ω = 0.49072m,
corresponding to a five photon resonance at p = 0. The polarization direction corre-
sponds to the py-axis. Due to charge conjugation symmetry, the momentum p = 0 corre-
sponds to a stationary minimum here (cp. Figure 2.10 for the Dirac case). The ring struc-
ture originates from higher photon resonances representing in this case n = 6, 7, 8, . . .
photon absorption. Solid lines corresponding to py = lω and dashed lines correspond-
ing to py = (2l + 1)ω/2 for l ∈ Z are drawn to show the position of the maxima and
minima in the substructure of the resonance-rings more clearly. The positions of the
minima and maxima are interchanged compared to the Dirac case shown in Figure 2.10,
in accordance to equation (2.56).
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A special feature of the linear polarization case is the possibility to obtain 3-dimensional
total probabilities per volume, due to the aforementioned symmetry of the potential. The
total probability is given by the sum over all final spin states followed by an integration
over all final momenta of the density distribution (2.46)

Wtot =
2∑

r′=1

4∑

r=3

∫
V d3p′

(2π)3

∫
V d3p

(2π)3

∣
∣
∣

〈

φr′

p′

∣
∣
∣ψr

p

〉∣
∣
∣ . (2.57)

By virtue of the rotational symmetry of the problem, the matrix element is rotationally
invariant around the field axis. Introducing cylindrical coordinates (ρ, ϕ, y) with respect
to the field axis, equation (2.57) therefore becomes

Wtot =
V 2

(2π)6
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This leads to the total probability per volume
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V
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Taking the modified wave function into account, we define

W̃tot(Υ) =
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By employing equation (2.55) this may be written as

W̃tot(Υ) =
V
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By comparing equation (2.59) with equation (2.61), it follows that

Wtot

V
= lim

Υ→∞

W̃tot(Υ)

V
. (2.62)
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In the above, we have exploited the fact, that within the x-y-plane we have
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In practical considerations, we cannot perform the infinite limit as in (2.62), because
Υ is limited by the momentum-space grid size. Instead we pick a value Υ ≃ 3m that
is large enough to cover all relevant contributions of |c1(px, py, 0)|2 [cf. Figure (2.10)].
We also replace the step function by a sine-squared smoothed version, where the finite
width of 0.2m helps to avoid numerical instabilities.

In performing the integral (2.61) one arrives at total probability densities, as shown in
Figure 2.14 for a (0.5|13|0.5) cycle pulse in comparison with the theoretical prediction
from [8]. We note that the latter was derived under the assumption ω ≪ m. Our
numerical results agree with the analytical prediction within an order of magnitude.
The pair creation probability density shows an exponential increase with the electric
field frequency. At the lowest frequency shown (ω = 0.2m), the total probability den-
sity amounts roughly to 5 · 10−8/λ3

C . This means that in a typical interaction volume
V = (10λ)3, with the laser wavelength λ = 2π/ω, about one pair is produced. The step-
like behavior of the numerical result is a vestige from the multiphoton regime (ξ ≪ 1)
where such characteristic jumps in the probability Wtot ∼ ξ2n0 are expected whenever
the minimal number n0 of required photons changes by one.
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Figure 2.14: Total pair creation probabilities per volume for linear polarization and
ξ = 1. The black crosses correspond to a (0.5|13.0|0.5) cycle pulse and the green crosses
correspond to a (0.5|27.5|0.5) cycle pulse. The red curve denotes a theoretical prediction
from [8] which was derived under the assumption ω ≪ m. In our numerical calculation,
we set Υ ≃ 7m.
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Total rates are given by dividing the total probability per volume through the pulse
duration. It is notable, that the Rabi oscillation has a negligible influence on these total
rates for the examined frequency range ω ∈ (0.3m, 0.5m). The red crosses correspond
to a pulse duration in accordance with the first maximum in the Rabi oscillation for the
mainly contributing resonance at p = 0, whereas the green crosses correspond to a pulse
duration which is twice as large in accordance with a minimum in the Rabi oscillation.
There is approximately a factor of 2 difference between the two, therefore the total rates
are almost equal. So the Rabi oscillation may only be experimentally observable in the
momentum distribution, but not in the total rates.

Turning now to circular polarized fields, Figure 2.15 and Figure 2.16 show the momentum
distributions for ω = 0.49072m, ξ = 1 and a (0.5|13.0|0.5) cycle pulse. As expected, the
substructure of the resonance-rings disappears and the momentum distribution becomes
rotationally symmetric about the spin-axis, because the field introduces no preferential
direction in the interaction plane. The small deviations from a perfect rotational sym-
metry originate from the finite pulse duration.

The difference between the two figures is given by the spin orientation. In contrast to
the linear polarization case, where the particular spin orientation has no influence on the
momentum distribution, pronounced differences are encountered here. The resonance
positions appear at different momentum values, and additionally the overall height is
reduced by approximately one order of magnitude for the spin-up state (Figure 2.16),
compared to the spin-down state (Figure 2.15). The last observation is most obviously
seen by Figure 2.17, where we compare the integral over the momentum distribution for
different values of ω. This is a striking result, meaning that in the plane of investigation
counterpropagating circularly polarized laser fields extract electrons from the vacuum
with an imbalance of the spin orientation of approximately one order of magnitude,
independent of the laser frequency.

The reason for the difference between linear and circular polarization is explained by the
scheme shown in Figure 2.18, where the red lines denote the field. Although a linear-
polarized field introduces a preferential direction in the interaction plane (x-y-plane),
there is no such direction along the spin orientation axis. Therefore it does not break
the symmetry between spin-up and spin-down states, they are indistinguishable for the
field. On the contrary, the circular polarization introduces no preferential direction in
the interaction plane but a rotational direction along which the electron spin may be
oriented parallel or antiparallel, thus breaking the symmetry between the two different
spin states.

For circular polarization the quasiclassical result of the resonance positions differs from
the numerically found values especially for low momenta as seen in Figure 2.19. This
is because the quasiclassical calculation has not taken the spin degree of freedom into
account. Therefore the next section explains how the quasiclassical approach has to be
modified in order to fix this discrepancy.
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Figure 2.15: Momentum distribution of the created electrons for circular laser polariza-
tion, a pulse shape of (0.5|13.0|0.5), a laser frequency of ω = 0.49072m, and an initial
spin-down state along the field rotational direction. The ring structure originates from
higher photon resonances representing in this case n = 7, 8, 9, . . . photon absorption,
where the photon number was deduced by the spin-modified quasiclassical approach of
section 2.5. The substructure of the resonance-rings encountered for linear polarization
has disappeared (see Figure 2.10).
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Figure 2.16: Same as Figure 2.15 but for a spin-up state along the laser field rotational
direction.
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Figure 2.17: Integrated momentum distribution for the spin-up (blue curve) and spin-
down (black curve) states for various laser frequencies and circular polarization. The
difference is approximately independent of frequency and amounts to one order of mag-
nitude.
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(a) (b)

Figure 2.18: Schematic diagram illustrating the relation between the electron spin and
the polarization of the laser field inducing the pair creation. The grey plane indicates the
interaction plane, the two different spin orientations are denoted by the black arrows,
and the red lines correspond to the laser field polarizations. (a) Linear polarization: the
field does not break the symmetry between the two different spin states. (b) Circular
polarization: the field introduces a preferential direction along which the electron spin
may be oriented parallel or antiparallel, thus breaking the symmetry between the two
different spin states.
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Figure 2.19: Comparison of the numerically found resonance positions and the result
obtained from the quasiclassical consideration for circular polarization. The black curve
corresponds to a cut through the spin-down momentum distribution (Figure 2.15),
whereas the blue curve corresponds to a cut through the spin-up momentum distri-
bution (Figure 2.16). The red line denotes the frequency scaled quasi-energy obtained
by the quasiclassical approach in section 2.2. Every time it crosses an integer line the
resonance condition is fulfilled. However, the quasiclasically found resonances do not
agree with the observed ones.



2.5 Spin-modified quasiclassical approach 61

2.5 Spin-modified quasiclassical approach

As seen in the previous section, the spin orientation plays a crucial role in the e+e− pair
creation process for circular laser polarization. However, the quasiclassical calculation
presented in section 2.2 has not taken the spin degree of freedom into account. The
quasiclassical approach was based on the classical relativistic Hamiltonian

H(q, t) =
√

m2 + (p − eA(t))2. (2.64)

This has to be supplemented by the electron spin interaction energy. Although the mag-
netic field vanishes identically in the laboratory frame, due to the pure time dependence
of the vector potential, the electron encounters a magnetic field in its rest frame leading
to a nonvanishing spin interaction energy. The equation of motion for the spin vector s
is given by the Thomas equation [101]

ds
dt

=
e

m
s ×

[(
g

2
− 1 +

1

γ

)

B −
(g

2
− 1
) γ

γ + 1
(β · B)β −

(
g

2
− γ

γ + 1

)

β × E
]

, (2.65)

where β is the velocity of the electron, γ = (1− β2)−1/2, g is the Landé-g factor, and E
and B denote the magnetic and electric field, respectively. Taking B = ∇× A = 0 and
g = 2 into account yields

ds
dt

= − e

m

(

1 − γ

γ + 1

)

s × (β × E). (2.66)

Equation (2.66) corresponds to a spin interaction energy of

U =
e

m

(

1 − γ

γ + 1

)

s · (β × E). (2.67)

We now employ the approximation, that β and γ are given via the unperturbed Hamil-
tonian (2.64)

β ≈ p − eA
mγ

, (2.68)

γ ≈ H

m
. (2.69)

With E = −Ȧ = −∂A/∂t, this leads to a spin interaction energy of

U = − e

H(H +m)
s ·
(

p × Ȧ − eA × Ȧ
)

. (2.70)

Employing the specific form of the vector potential (2.1) and the fact that p lies in the
x-y-plane, leads finally to

U = −σ mωξ

2H(H +m)
[θξ + θpx cos(η) + py sin(η)] , (2.71)

where σ = 1 for spin-up and σ = −1 for spin-down. This spin interaction energy has to
be added to the Hamiltonian (2.64), leading to a new spin modified Hamiltonian

H → Hσ = H + U. (2.72)
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Now one may follow the same path as in section 2.2 to obtain the quasiclassical approx-
imation for the Dirac wave function

ψσ
± ∼ exp(iSσ

±), (2.73)

where the (±) sign indicates the two possible signs in energy, and σ denotes explicitly
the dependence on the spin orientation.

The first step is to find the classical action Sσ
± obeying the Hamilton-Jacobi equa-

tion (2.31), but now with respect to the new spin-modified Hamiltonian (2.72). It
separates again into a spatial and a temporal part, where the temporal part may be
further decomposed into a linear and a periodic component, according to

Sσ
± = qr ∓ 1

ω

∫ η

η0

dη′Hσ(η′) (2.74)

= qr ∓ qσ
0 t± Sσ

p (η). (2.75)

This results in an explicitly spin dependent quasi-energy qσ
0 , given by

qσ
0 =

1

2π

∫ 2π

0
dη′Hσ(η′). (2.76)

According to the conservation of momentum and additionally the conservation of the
spin like-operator (2.47), the transition amplitude for pair creation is given by

ψσ†
− ψ

σ
+ ∼ exp

(
2i(Sσ

p (η) − qσ
0 t)
)
. (2.77)

Due to the 2π-periodicity of Sσ
p this can be expanded into a Fourier series

ψσ†
− ψ

σ
+ ∼

∞∑

n=−∞

Cσ
n exp

(
i(nω − 2qσ

0 )t
)
, (2.78)

where the index n indicates the number of photons involved in the process, and the
Fourier coefficients

Cσ
n =

1

2π

∫ 2π

0
dη exp

(
i
(
2Sσ

p (η) − nη
) )

(2.79)

are related via
W σ

n ∼ |Cσ
n |2 (2.80)

to the n-photon e+e− pair creation probability. The energy conservation condition is
recovered as

n0ω = 2qσ
0 , (2.81)

leading to different resonance conditions for the two spin orientations.
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The spin modification is now illustrated on the example of the last section, in which
the discrepancy between the numerical and former quasiclassical results appeared. Fig-
ure 2.20 shows the influence of the two spin orientations on the quasi-energy for circular
polarization and ω = 0.49072m. The red curve denotes the former spin independent re-
sult obtained in section 2.2. Due to the spin, it is split into two different quasi-energies,
corresponding to spin up (blue curve) and spin down (black curve), respectively. This
leads to different resonance positions for the two different spin orientations.

The comparison of these new spin-dependent resonance positions and the numerically
found momentum distributions is shown in Figure 2.21. Here the blue curves correspond
to the spin-up state, whereas the black curves correspond to the spin-down state. With
the spin degree of freedom included, the resonance positions now agree satisfactorily.

Moreover, Figure 2.22 shows the magnitude of the Fourier coefficients, which exhibit the
same decrease in probability as encountered in the momentum distributions.

One should note, that although the spin-interaction energy (2.71) does not vanish for
linear polarization, it has no influence on the resonance positions in this case, because
the additional term disappears when integrated over. Therefore the quasi energy and
the Fourier coefficients stay the same for linear polarization, so that the spin-modified
calculation gives the same results obtained before in accordance with our observations.
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Figure 2.20: Spin modification of the quasi-energy q0 for circular polarization, ξ = 1,
and ω = 0.49072m. The red curve denotes the spin-independent quasi-energy obtained
in section2.2. The spin introduces a shift in energy with opposite sign for the two
possible spin orientations along the field rotational axis. The black curve corresponds
to spin-down, and the blue curve corresponds to spin-up. The crossings with the black
integer lines denote the positions of the resonance momenta, which occur now at different
positions for the two different spin states, in accordance with the results obtained in the
last section.
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Figure 2.21: Same as Figure 2.19, but with the new spin-modified quasi-energies. The
new obtained resonance positions agree satisfactorily with the numerically found reso-
nances of the momentum distributions.
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Figure 2.22: Spin corrected Fourier coefficients at the resonance momenta for circular
polarization, ξ = 1, and ω = 0.49072m. The same difference in probability of approx-
imately one order of magnitude between the spin-up (blue curve) and the spin-down
(black curve) states is recovered.



Chapter 3

Magnetic field effects

In the last chapter we investigated purely laser-induced pair creation for two coun-
terpropagating laser pulses of equal frequency and intensity, resulting in a standing
wave. This standing laser wave has been approximated by a spatially homogeneous
electric field oscillating in time. So far, all theoretical investigations have employed this
dipole approximation [8, 23, 24, 27–29, 31, 32, 34, 35, 47–49, 92–96]. In optical laser
fields, where the wavelength is much larger than the typical length scale of the process:
λ ≫ lc = m/(|e|E), this dipole approximation is expected to be well-justified. In terms
of the relativistic parameter ξ, this relation corresponds to ξ ≫ 1. Nowadays the ex-
perimental realization of laser-induced pair production is also extensively discussed in
connection with upcoming x-ray free-electron laser (XFEL) facilities [24, 95, 96]. In this
case, however, the laser frequency is high, ξ . 1 and the magnetic field component is not
negligible. The latter, in general, can have an important influence on the pair creation
process. This is most evidently demonstrated by the fact that a single plane laser wave
cannot extract pairs from vacuum, whereas a purely electric field can. The investigation
of fields, which are both inhomogeneous in time and space represents a formidable task
for the nonperturbative quantum field theory, see e.g. [51–53]. However, employing the
numerical approach, presented in the last chapter, enables us in principle to examine
pair creation in external potentials independently of their specific form.

This chapter continues the numerical study of e+e− pair creation by two counterprop-
agating strong laser pulses (CLP) of high frequency, taking into account explicitly the
spatiotemporal dependence of the laser fields and their magnetic components. This
limits our considerations to the case of linear polarized laser fields, because circular
polarization would automatically lead to 3-dimensional dynamics. Due to the space
dependence of the fields, the momentum is no longer conserved. This means, that the
mathematical trick for obtaining the momentum distributions of the created electrons,
presented in section 2.4, is not applicable. Therefore we have to investigate the transi-
tion from an initially negative-energy state under the influence of the external field, into
the positive continuum, for each individual initial momentum. This renders the task
to gain momentum distributions impossible, irrespectively of the enormous computer
capacity available. For this reason, our calculations assume an initially narrow Gaussian
wave-packet centered around p = 0 of width ∆p ≈ αm, lying in the negative-energy
continuum. The width is chosen sufficiently narrow to closely approximate a momentum

65
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eigen-state and to exclude unphysical interference effects between different momentum
components as ∆p ≪ ω always holds. A particular spin state along the magnetic field
direction (normal to the plane of calculation) is chosen; the opposite spin orientation
would give identical results. The wave-packet is exposed to two linearly polarized plane-
wave laser pulses counterpropagating along the z-axis, with fixed ξ = 1 (taken for both
laser pulses together), and featuring sin2 turn-on and turn-off phases of half a cycle each.
The number of plateau cycles with constant intensity is variable. To save computing
time the fields are switched off when they do not overlap anymore.

The first section presents the results of the obtained transition probabilities and the
corresponding resonance spectrum. The magnetic component of the laser field strongly
affects the creation process: the resonant Rabi oscillation pattern is distorted and the
resonances are shifted, multiplied and split. The origin of the observed resonance peak
splitting is explained in the second section.

3.1 Modified Rabi oscillations and multiplied resonances

The pair production probability is expected to depend on the pulse length as known
from the oscillating electric field case in section 2.3, where resonant Rabi oscillations
were encountered. In order to depict the influence of the magnetic component of the
laser field, the red curve in Figure 3.1 (a) shows the found Rabi oscillation in an oscil-
lating electric field for ω = ω5 = 0.49072m corresponding to an n = 5 photon resonance.
To compare this with the results obtained in the CLP case one has to find the n = 5
resonance frequency for the latter. However, for the CLP case the quasi-energy q0 is no
longer analytically computable. Figure 3.1 (b) shows therefore the transition probabil-
ities for various frequencies starting from ω = 0.46m. The closest obtained resonance
frequency, compared to ω5, is given by ω = 0.4721m. Actually, this corresponds to an
n = 5 photon transition. The identification of the photon numbers n for the resonances
in the CLP case will be explained below. The oscillation pattern is strongly modified by
inclusion of the laser magnetic field, which is seen most clearly in Figure 3.1 (b). The
probability oscillates around a plateau value with a frequency five times smaller than
the Rabi frequency Ω in an oscillating electric field. Note that the pair production rate
at small times t ≪ Ω−1 scales as Ω2 [27–29, 31, 32] and is therefore reduced due to the
magnetic field effect by 1-2 orders of magnitude. The question arises, if this reduces the
probability for an observation of this process at facilities like the XFEL considerably.
For ξ . 1 the answer is yes. However, some of the more favorable and principally feasible
regimes of the XFEL for pair production requires ξ ∼ 10 [24], where the reduction of
the process probability by the laser magnetic field is not significant.

Taking for each frequency the maximum of the production probability as a function of
the laser pulse duration, one arrives at the resonance spectrum shown in Figure 3.2. This
way the normally superimposed pulse length-dependent oscillations of the probability
are omitted, and the resonances are clearly visible. The picture changes significantly
when real laser fields are applied: The height of the probability spectrum is reduced
by approximately one order of magnitude, the resonances are shifted, several new reso-
nances occur, and the resonance lines are split.
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Figure 3.1: Distorted Rabi oscillations: Pair production probability versus pulse length
at ξ = 1. (a) The red and the black curve show the case for an oscillating electric field
with ω = 0.49072m and the CLP case for ω = 0.4721m, respectively, each corresponding
to a 5-photon resonance. (b) CLP case for various frequencies on a logarithmic scale.
The black solid curve coincides with the resonant case in part (a), while the others
correspond to off resonant situations.

In order to explain these modifications, we examined the corresponding momentum
distributions of the created electron as shown in Fig. 3.3 for the peaks labeled by (3-1),
(4-1), (2-2) and (3-2). In contrast to the oscillating electric field, the photons in the
CLP carry momentum along the beam propagation axis, which is transferred to the
electron wave-packet upon absorption. Only the transversal momentum components
are conserved here. By energy-momentum conservation, a number of n+ (n−) photons
absorbed from the beam propagating to the right (left) determine the laser-dressed final
particle 4-quasi-momenta:

q′0 =(n+ + n−)ω − q0 (3.1a)

q′3 =(n+ − n−)ω − q3 (3.1b)

where q and q′ are the electron initial and final 4-quasi-momenta, respectively. Our
numerical calculations of the final momentum distribution after the laser fields have
passed in Figure 3.3 confirm equation (3.1): the mainly contributing region for each
peak corresponds to p′3 = (n+ − n−)ω, for example p′3 ≈ 2ω at ω = 0.735m. The latter
means that the final dressed momenta q′3 do not differ essentially from the momenta
outside the laser field p′3. In order to determine the resonance frequencies, we assume
that the effective mass m∗, defined via q2 = m2

∗, depends only on ξ as for an oscillating
electric field, and that the initial quasi-momentum vanishes (q = 0) because of the initial
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Figure 3.2: Resonant probability spectrum: Maximal value of the pair creation proba-
bility during Rabi oscillation at ξ = 1, varying the pulse length up to 200 cycles. The
red crosses show the spectrum for an oscillating electric field; the peak labels denote the
absorbed photon number. The black triangles show the CLP spectrum. Here the label-
ing signifies the number of absorbed photons from the right-left propagating waves. A
splitting occurs, as indicated by arrows for the example of the (3-2) peak. The frequency
axis is plotted reciprocally.

vanishing momentum p = 0. Taking these assumptions into account, the resonance
frequencies are given by

ω =
m∗

2

n+ + n−
n+n−

. (3.2)

This should be compared with the resonance condition obtained for an oscillating electric
field [see equation (2.40)]. One may determine the laser dressed mass m∗ with the aid of
the highest frequency resonance peak at ω = 1.1m in Figure 3.2. The main contribution
to the momentum spectrum for this peak comes from p′3 = 0, therefore the number of
absorbed photons from the left and right laser beam are the same. This peak belongs
to the lowest possible photon number n+ = n− = 1, resulting in m∗ = 1.11m. For
a certain multiphoton order there are now multiple resonance frequencies, e.g., for an
n = n+ + n− = 5 photon transition there are two different resonance frequencies ω3,2

and ω4,1. The number of resonance lines is enhanced correspondingly. For the n = 3
photon resonance equation (3.2) predicts a unique frequency ω2,1, which however is not
confirmed by the numerical results. Instead, for n+ 6= n− the resonant peaks are always
split into doublets, leading to a further enhancement of the number of resonance lines.
This effect is not covered by equation (3.2) which rather predicts the center of the split
lines.
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Figure 3.3: Final positive-energy momentum distributions Wp′ = |<Φ
(+)
p′ |Ψ(T )>|2 after

the interaction with two counterpropagating laser pulses (ξ = 1, T = 150π/ω). Due to
its magnetic component the field transfers longitudinal momentum to the wave packet.
Shown are the results for four different frequencies corresponding to four peaks in the
resonance spectrum in Fig. 3.2. Due to the symmetry of the spectra under momentum
inversion p′3 → −p′3, we only show the positive half of them.

Neglecting the splitting, which is explained in the next section, all peaks encountered in
the resonance spectrum Figure 3.2 can be explained by equation (3.2) and correspond
to the given labeling (n+ - n−). The interchange of n+ ↔ n− gives the same resonant
frequency, therefore we chose n+ ≥ n− for the labeling. All resonances with n− = 1 lie
above ω = m∗/2, according to equation (3.2), which have been found up to a photon
number of n+ + 1 = 7. Their height decreases with increasing photon number.

The anticipated bandwidth of x-ray-free-electron lasers [102] would be sufficient to re-
solve the influence of the magnetic field component onto the resonance spectrum, due to
a change of the relative resonance line separation: While, like in equation (2.40), a rela-
tive separation of ∼ 1/n remains between the most probable (n+ ≃ n−) resonance lines
of different n = n+ + n− values, the relative distance between the newly occurred reso-
nance lines belonging to the same n value follows a ∼ 1/n2 behavior [see equation (2.40)].

So far we have explained the overall structure of the resonance spectrum in Fig. 3.2.
There is however a substructure inherent to all resonance peaks with n+ 6= n−. The
resonances are split into doublets which do not occur for an oscillating electric field. The
origin of this splitting is explained in the following section.
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3.2 The origin of the peak splitting

In the last section, the appearance of new resonances has been explained by the non-
vanishing momentum of the laser photons, leading to different resonance frequencies
for the absorption of different numbers of photons from the left and right coming laser
pulse. There is however an additional substructure inherent to all resonance peaks with
n+ 6= n−. The resonances are split into doublets which do not occur for an oscillating
electric field. The keypoint to understand this splitting is again the photon momentum.
In the case of CLP, the negative-energy electron can absorb n+ photons from the left
beam and n− from the right, or vice versa, reaching two different final positive energy
states with equal energy but opposite momentum. Therefore, the former two-level sys-
tem in the case of an oscillating electric field is broken into a V-type three-level system
(if n+ 6= n−) for CLP, depicted in Figure 3.4. The upper two levels have the same
positive-energy but opposite momentum and are coupled via Compton scattering. This
leads to a splitting of these levels and, consequently, to a splitting ∆ω of the resonant
transition frequency, analogous to the Autler-Townes effect [103].

We investigated the splitting for the (2 -1) resonance more closely. For this n = 3 photon
transition, the emergence of the splitting is shown in Figure 3.5 for increasing values of
ξ. Figure 3.6 shows the found quadratic dependence of the splitting width ∆ω ∼ ξ2,
leading to an increase of the splitting from ξ = 0.5 to ξ = 1.0 by a factor of 3.5. In
addition we investigated the Compton oscillation between the two positive-energy states
for two different ξ values. For this purpose, we started the calculation with an initial
wave function in one of the upper levels, and examined the transition into the mirror
state with the same energy but opposite momentum, shown in Figure 3.7. The Rabi
frequency ΩC due to Compton scattering increases by a factor of 3.6 when ξ is varied
from 0.5 to 1. This indicates that the observed peak fine structure of the spectra is
indeed an Autler-Townes-like effect. An equivalent explanation of the peak splitting
can also be offered: The spatial periodicity of the field induces a band structure of the
electron energies [104] which inhibits electron creation in certain energy regions. The
splitting becomes larger with increasing ξ, following the energy gap behavior.

p = (n −n )
z z

p = 0

ω+ −

p
z

−p

pair creation

Compton coupling
energy

Figure 3.4: The two-level scheme of the oscillating electric field is broken into a V-type
three-level scheme. The upper two levels have the same positive-energy but opposite
momentum and are coupled via Compton scattering.
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Figure 3.5: Splitting of the n = 3 photon resonance peak for various values of ξ. Note
that the position of the main resonance increases, in accordance with the ξ dependent
enhancement of m∗.
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Figure 3.7: Coupling between the two upper states of the V-type system via Compton-
scattering for the (2-1) peak. Shown is the population of the initially empty mirror state
with p′3 = −pinitial = −ω: (solid line) ω = 0.766m and ξ = 0.5, resulting in the Rabi
frequency of ΩC = 0.018m due to Compton scattering; (dashed line) ω = 0.812m and
ξ = 1.0 resulting in ΩC = 0.066m. In both cases Ω ≪ ΩC , where Ω is the associated
Rabi frequency due to pair creation.



Chapter 4

Conclusion

Employing the split-operator method to the Klein-Gordon equation in the two-component
representation, enabled us to develop a highly efficient parallel computer code, propagat-
ing the Klein-Gordon equation on a one- or two- dimensional grid in arbitrary external
potentials. The most noteable feature is the scaling behavior of the code for different
numbers of employed CPU’s; the speedup factor follows almost an optimal linear behav-
ior. This program was applied to several toy systems to test the performance and the
correctness of the results. Although simple but still especially interesting is the potential
step, where a new physical interpretation of the Klein paradox was presented, different
to the usual textbook arguments.

Furthermore we investigated e+e− pair creation in counterpropagating laser fields. The
employed approach based on the intuitive picture of the Dirac sea. However, it has been
shown, that this is in accordance to the field theoretical approach to vacuum decay in
external fields with unstable vacuum [54]. In intuitive terms, this procedure is equivalent
to describing the pair production as an electron transition from an initial negative-energy
state (which corresponds to a positron in the final state) to a final positive-energy state.
In the dipole approximation, a mathematical trick was established, enabling us to ob-
tain the momentum distributions of the created particles in a single propagation. For
circular polarization we encountered a crucial dependence on the spin orientation, which
leads to an imbalance on the spin states of the produced electrons of approximately one
order of magnitude. This difference has been explained by a spin-modified quasiclassical
calculation.

Nowadays the experimental realization of laser-induced pair production is extensively
discussed in connection with upcoming x-ray free-electron laser (XFEL) facilities. In
this case, however, the laser frequency is high, ξ . 1 and the magnetic field component
is not negligible. The latter, in general, can have an important influence on the pair
creation process. Therefore we departed from the dipole approximation. This strongly
influences the pair creation process for high laser frequencies. One of the most funda-
mental changes is the appearance of new resonances, due to the nonvanishing momentum
of the laser photons. The anticipated bandwidth of x-ray-free-electron lasers [102] would
be sufficient to resolve this new resonance structure.
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74 Conclusion

The second important difference to the dipole approximation, is the splitting inherent to
resonances where different numbers of photons are absorbed from each laser pulse. The
simple two-level system of the oscillating electric field is broken into a V-type three-level
system. A coupling of the upper two levels, due to Compton scattering gives rise to the
observed peak doubling.
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Appendix A

Numerical differentiation by finite

differences

The calculation of the first and second order derivatives required in the Klein-Gordon
algorithm are accomplished by finite differences. Here the order of accuracy depends on
the order of the used approximation. The implementation provides n-point approxima-
tions from n = 3 up to n = 9. The index n in the expression “n-point approximation”
denotes the number of points involved in the calculation.

For the first derivatives the following approximations are implemented:

f ′(x) =
1

2h

[
− f(x− h) + f(x+ h)

]
+ O(h2) (A.1a)

f ′(x) =
1

12h

[
f(x− 2h) − 8f(x− h) + 8f(x+ h) − f(x+ 2h)

]
+ O(h4) (A.1b)

f ′(x) =
1

60h

[
− f(x− 3h) + 9f(x− 2h) − 45f(x− h)

+ 45f(x+ h) − 9f(x+ 2h) + f(x+ 3h)
]
+ O(h6) (A.1c)

f ′(x) =
1

840h

[
3f(x+ 4h) − 32f(x− 3h) + 168f(x− 2h) − 672f(x− h)

+ 672f(x+ h) − 168f(x+ 2h) + 32f(x+ 3h) − 3f(x+ 4h)
]
+ O(h8) (A.1d)

Note that here the value of the function at the position x is not required. Therefore the
calculation of the first derivatives needs only n− 1 values of the function. However, we
still call these n-point approximations.
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The approximations of the second order derivatives are given by:

f ′′(x) =
1

h2

[
f(x− h) − 2f(x) + f(x+ h)

]
+ O(h2) (A.2a)

f ′′(x) =
1

12h2

[
− f(x− 2h) + 16f(x− h) − 30f(x)

+ 16f(x+ h) − f(x+ 2h)
]
+ O(h4) (A.2b)

f ′′(x) =
1

180h2

[
2f(x− 3h) − 27f(x− 2h) + 270f(x− h) − 490f(x)

+ 270f(x+ h) − 27f(x+ 2h) + 2f(x+ 3h)
]
+ O(h6) (A.2c)

f ′′(x) =
1

5040h2

[
− 9f(x+ 4h) + 128f(x− 3h) − 1008f(x− 2h)

+ 8064f(x− h) − 14350f(x) + 8064f(x+ h) − 1008f(x+ 2h)

+ 128f(x+ 3h) − 9f(x+ 4h)
]
+ O(h8) (A.2d)

The order of accuracy goes like O(hn−1) for an n-point approximation. Here h denotes
the grid increment. Although the employment of higher order approximations gives
larger accuracy, it also slows down the computation for the parallel implementation,
because higher amounts of data have to be exchanged. All of the calculations presented
employed the 5-point approximation with an accuracy of order O(h4).
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