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Abstract
Shape of objects, in particular the shape of object outlines, has for a long
time been a focus in the literature and is widely regarded as carrying impor-
tant information for visual and cognitive tasks, such as object recognition
and object tracking. This thesis is concerned with techniques related to
shape information from 2D images. The main contribution is a purely 2D
shape based method for following view point changes of an observer rela-
tive to an object given an image sequence. Several techniques involved in
such a task are covered in some detail. In particular, segmentation methods
yielding contours, and shape representations are treated. On the shape side,
classical representations and methods are included to a smaller extent, and a
more recent, more sophisticated manifold of shapes including computational
technicalities is treated in more detail.
Variational segmentation methods based on the successful level set repre-
sentation are used for segmenting and tracking curves in image sequences.
While this field has grown rapidly and is still developing further, this work
covers enough detail to describe the implementation used for experiments, as
well as useful extensions to the basic methods. Finally, a method for tracking
a view point relative to a moving object based only on 2D shape informa-
tion is investigated and applied in experiments with some success. Future
directions as well as limits of a purely outline based method are examined.



Zusammenfassung
Gestalt, insbesondere die Gestalt von Objektgrenzen, die Objekte in einem
Bild vom Hintergrund trennen, ist seit langem Gegenstand der Forschung.
Die Bedeutung von Gestaltinformation für Aufgaben wie Objekterkennung
und Verfolgung wird im allgemeinen hoch eingeschätzt. Diese Arbeit beschäf-
tigt sich mit Methoden, die im Zusammenhang mit Gestalt von 2D-Kurven
verwendet werden. Der Hauptbeitrag ist eine rein 2D-gestaltbasierte Metho-
de, um Blickpunktänderungen eines Beobachters relativ zu einem Objekt zu
verfolgen, gegeben eine Sequenz von Bildern. Mehrere Methoden, die in die-
sem Zusammenhang wichtig sind, werden beleuchtet. Insbesondere sind dies
Segmentierungsverfahren, die Konturen aus Bildern liefern, und Repräsen-
tierungen für Gestaltinformation. Klassische Gestaltrepräsentierungen und
Methoden sind in kleinerem Umfang enthalten. Speziell eine neuere Möglich-
keit in Form einer Gestaltmannigfaltigkeit wird genauer behandelt, inklusive
einiger wichtiger Details zur Implementierung und zum Rechnen mit Gestalt.
Auf der Segmentierungsseite werden Methoden basierend auf den erfolgrei-
chen Level-Set-Verfahren beschrieben. Diese werden benutzt, um Bilder zu
segmentieren und Kurven über eine Sequenz von Bildern zu verfolgen. Die-
ses Gebiet hat in der Vergangenheit ein starkes Interesse von vielen Seiten
auf sich gezogen und wird an vielen Stellen weiterentwickelt. Innerhalb der
vorliegenden Arbeit werden alle nötigen Details von Level-Set-Verfahren be-
schrieben, die für die in Experimenten benutzte Implementierung wichtig
sind, ebenso wie nützliche Erweiterungen zu den grundlegenden Verfahren.
Schließlich wird eine Methode eingeführt, die die Verfolgung eines Blickpunk-
tes relativ zu einem bewegten Objekt ermöglicht, ohne eine explizite interne
3D-Repräsentierung des Objektes zu verwenden. Einige Experimente zeigen,
daß ein solches Verfahren funktionieren kann; Grenzen des Verfahrens und
ein Ausblick auf mögliche Erweiterungen werden aufgezeigt.
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Notation

Ik Identity matrix in R
k×k

1k or 1k Vector of ones in R
k

SOm Special orthogonal group (the group of rotations in R
m)

Expx(v) Exponential map at point x in tangent direction v
Logx(y) Inverse exponential map — this is at times also

written as −→xy
Tx(M) Tangent space at x ∈M
⊥x(M) Normal space at x ∈M
E[·] Expectation
S

2 The unit sphere in R
3, S

2 = {x ∈ R
3 :
√

x⊤x = 1}



Chapter 1

Introduction

1.1 Motivation

One important cue that has been used frequently in the past for object
detection, object classification, object tracking, pose estimation, and related
tasks, is the shape of a silhouette or contour that separates an object of
interest from the background within an image. Several interrelated questions
arise when thinking about images and this notion of shape — one is “How
can we extract meaningful silhouettes from an image?” and leads to the field
of image segmentation. Another is “How can we represent shape in a useful
manner?”. There has been much research going on in recent years revolving
around possible representations and methods to utilise shape representations
for computer vision tasks.
In a classical approach, contours are represented as a set of points on the
contour curve. However, an important class of contours can more naturally
be described as two-dimensional, simple, closed curves. This has been taken
up in the past by a few researchers and spaces of curves have been introduced
that allow for calculating distances between two curves and for calculating
smooth interpolations.

Now, thinking about images of simple, three-dimensional, rigid objects,
it is clear that most objects will look differently from different points of view,
and produce different silhouettes. Also, from our everyday experience, we
expect that when smoothly turning an object, the object’s silhouette will
also change more or less smoothly. Another question then could be whether
we are able to infer a change of view point relative to the object, only by
observing a change in the object contour. This task has been tackled before,
utilising three-dimensional object models to internally represent objects; but
can this also be done not knowing the 3D object model, but only knowing
how the object outline looks like from a number of view points?
A related, more speculative question is “How does the brain do it?”, so how
do humans store information about object outlines and how do humans use

13



14 CHAPTER 1. INTRODUCTION

it to deduce three-dimensional pose, or pose change, of an object when con-
fronted with a new outline? Is a brain capable of actually constructing a 3D
model and using that, or does it refer to previously seen contours and then
infers assumptions about new ones from them? While it seems unlikely that
humans use only contour information to infer knowledge about an object, it
is certainly a part of the whole.
The importance of contours or outline-shape for human object recognition
has also been assessed in psychological experiments, for example [55, 54,
82, 56], and interestingly, also the recognition performance in conjunction
with changes in view point were apparently of some interest to Psychologists
[54, 56].

In the scope of this thesis, it was tried to use changing contour infor-
mation of images of an object moving and specifically rotating in three di-
mensions, in order to track the view position on a view sphere around the
object. A 3D model was not used for internal representation, but a different
representation relying on observed shape was employed. For contour extrac-
tion and evolution, some aspects of the successful level set based methods
for image segmentation have been examined and compiled.

1.2 Related Work

Work related to the specific topics is cited in the right context in their re-
spective chapters.

1.2.1 Object Representation

Edelman and Bülthoff [36], Poggio and Edelman [105], Ullman and Basri
[134], Edelman and Weinshall [37] use the idea of interpolation using a finite
number of 2D object representations, in the context of object recognition.
Poggio and Edelman [105] and Edelman and Bülthoff [36] use radial basis
functions to interpolate non-linearly between sets of features from several
familiar views of an object, in order to recognise objects, not using 3D models
directly. Edelman et al. [36] stress the similarity of object representation
using 2D views to human performance.
Ullman and Basri [134] use linear combinations of edge maps of images of
an object with known correspondences to model all 3D views of the object
under the assumption of orthographic projection.

Some works [105, 36, 37] stress the presence of psychophysical evidence
that object representation by a collection of 2D views may be related to
the internal representation used in human cognition [35, 10, 11], and there
appear to be several experiments suggesting that human brains might work
with a finite set of known 2D representations of 3D objects rather than
view-independent 3D representations. Edelman and Bülthoff [35] describe
experiments where the same input stimuli were used for humans as well as for
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computational models using 2D-views based object representations. They
show a limited range of views of previously unknown computer generated
objects to humans for training, and then show different views to the same
subjects. They claim that according to their experiments and experiments
from others referenced in [35], humans have difficulties generalising views
of objects rotated further than about 30 degrees from a known view. That
is even though the objects are shown as wire frames. They point out that
this behaviour is close to their computer models using interpolation of 2D
views. Bülthoff and Edelman [10] also come to that conclusion. These
works also divide the theories of object representation into 3D object centred
and 2D viewer centred. Somewhat simplified decision criteria for recognition
are stated in [10]. For 3D representations, that is ‖P T X3D − X2D‖ < θ
with projection P , transformation T , 3D object X3D and 2D measurement
X2D. For 2D representations, there using a linear combination, the decision
criterion is ‖∑i αi Xi−X‖ < θ, with known 2D views Xi, measurement X,
and weights αi. While this thesis does not deal with recognition, the latter
is somewhat similar to the approach taken to follow a changing contour on
a view sphere later in Chapter 5, and the former is closer to works based on
3D internal representations such as [108].

1.2.2 View Point Tracking

On the level of view point or rather pose tracking of rigid objects, there have
been many approaches using 3D models as internal representation, such as
[45, 71, 121, 8, 108, 114]. Stark and Fuchs [121] use a 3D object represen-
tation for pose estimation combined with an active contour model for 2D
tracking in the image plane. They use corner points of the contour of pro-
jected 3D objects as landmarks, modelling contours with B-splines.
Earlier works include Gennery [45] or Koller et al. [71], both using 3D object
models.

Kollnig and Nagel [72] track vehicles in traffic scenes using 3D models.
They compute artificial “gradient” images from projections of these models
and align those to a given gradient image. Alignment is done by minimising
an energy for pose parameters specialised for the situation at hand (position
relative to street plane, vehicle orientation, velocity, and angular velocity).

Brox et al. [8] use a 3D object model to combine the tasks of image seg-
mentation and pose estimation. Even though their work does not primarily
focus on tracking an object pose, they nevertheless present experiments us-
ing image sequences. For segmentation, they use a level set formulation of a
statistical image energy with curve length regularisation, and an additional
prior term incorporating information from a 3D pose estimation they pro-
pose in their paper. Given a fixed segmentation, they optimise for a 3D pose
fitting the current segmentation well, and fixing that in turn optimise for a
segmentation. These two steps are iterated to gain both pose and segmen-
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tation.
Rosenhahn et al. [108] also propose using a 3D object model, taking up the
ideas of [8]. They focus on tracking of pose in image sequences, also using a
region based level set segmentation method with the same region terms and
prior as [8].
Schmaltz et al. [114] also use 3D models as internal object representation,
like in [8, 108]. They do not use a segmentation algorithm, but optimise a
region based energy in the style of [8] directly using the projection of the 3D
model, without an additional contour evolution.

A survey of 3D tracking methods can be found in [77]. Notice that 3D
tracking as such involves all six degrees of freedom of 3D motion (observer’s
position on the view sphere, camera tilt, and translation), while the methods
described later in this thesis concentrate on view sphere position.

1.2.3 Segmentation

In the light of the task of curve extraction, there are relations of this work to
image segmentation. By image segmentation, one usually means the subdi-
vision of an image into semantically or otherwise meaningful regions. While
this task is done practically continuously by normally developed humans, it
has so far proven to be very difficult to do by algorithms running on com-
puters. Therefore, there has been a considerable amount of research in the
past in this field.
The active contours type of segmentation methods have been very successful
in the past, following the original work on snakes by Kass et al. [63]. Caselles
et al. [14] used an implicit level set representation [97] for curves instead of
an explicit representation, and Caselles et al. [15] introduced the geodesic
active contours, also using level sets. There has been a large amount of work
following this direction. While the active contour methods were so far using
information about edges in an image, there have also been approaches using
region information, most prominently Chan and Vese, and Chan, Sandberg
and Vese [130, 131]. Following this, there has been a plethora of work relat-
ing to the same basic approach. There has, for instance, been much effort to
extend the energy that is minimised in order to do image segmentation. Such
extensions include terms incorporating external, prior knowledge about the
segmented object or background, for example Cremers et al. [28, 26], Leven-
ton et al. [78], Chen et al. [19], and Cremers [30].
For tracking a 2D contour along an image sequence, a simple region based
method using level sets was proposed by Moelich and Chan [93]. Active
contours and level set methods have also been used in 3D pose tracking as
mentioned in the previous section, introducing prior knowledge from an in-
ternal object representation into the curve evolution.
Further, less directly related work includes Etyngier et al. [39], who use
Laplacian eigenmaps [6] for embedding a set of training shapes into a low
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dimensional euclidean space. They present a method for projecting previ-
ously unseen shapes to the submanifold represented by the training samples,
in order to model a shape prior for image segmentation.

1.3 Contribution

While the works mentioned in the previous section, and many others, em-
ploy 3D models for internal representation of objects, within this thesis an
internal representation is considered that uses only 2D shape information of
rigid objects from known view points, but not a complete 3D model. This
representation approach is also motivated by a suspicion that some Psychol-
ogists appear to have: that human brains might make use of contour data
in a similar way [54, 56], as mentioned above. This work should therefore,
from the perspective of pose, not be considered a competitor to established
pose estimation methods (estimation is not even considered, only view point
tracking).
In Chapter 2, a few important things from classical, statistical shape anal-
ysis are explained, which are partly used in the implementation used for
experiments in this thesis. Chapter 3 then moves on to explain some general
concepts and a specific space of shapes that had recently been introduced
and that is later used as the space containing shape samples from rigid ob-
jects. Details are given about implementation issues. Working with outline
shape, a way of extracting contours from images needs to be accounted for.
There is certainly not one method that can be said to be “best”; noting that
there are other ways to obtain contours, this thesis concentrates for this task
on the level set segmentation framework. Chapter 4 therefore accumulates
several aspects of the powerful level set method for representing segment
boundaries. The chapter covers as much as possible that is useful for the
task of contour extraction and has been used for experiments in this the-
sis. Additionally, leads are provided for the reader that can be followed to
get into further detail and more current research. Included are also some
issues regarding a finite difference implementation. There is still much ac-
tive research going on in the field of segmentation using active contours, in
which the level set method has been employed many times. Additionally, in
Appendix B a quite recently introduced segmentation method is described
that is closely related to a binary region based level set segmentation method
covered in Chapter 4, and that under certain circumstances can find a global
solution to the respective minimisation problem. This method could be used
as a replacement for the conventional region-based segmentation in some
situations. In Chapter 5, the newly introduced view point tracking method-
ology is explained, using the previously described methods and shape space.
Utilising the shape description and space from Chapter 3, an object shape
representation is developed that does without an explicit 3D model. This
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representation of a known object is subsequently used in the task of track-
ing the view point of an observer with respect to the object in an image
sequence, based only on object outline. To represent and evolve a contour in
an image, the level set segmentation methods described in Chapter 4 are put
into action and combined with the object shape representation, in that the
latter is included as “prior knowledge” in the contour evolution to keep the
evolving contour close to a known shape. Finally, Chapter 6 concludes and
the Appendix gives some details which are referenced from the main text.



Chapter 2

Shape and Classical Shape

Distances

“ ’What was that?’
’Something red.’
’Where are we?’
’Somewhere green.’
’Shapes’, muttered Arthur, ’I need shapes!’ ” (Douglas Adams)

2.1 Defining Shape

When we want to talk about shape, the first natural step is to find a defini-
tion of shape that captures what we normally mean. The notion of shape has
been used in various contexts. The spatial configuration of several features
defining an object in an image has been called shape, for example Shokoufan-
deh et al. [3] use configurations of ellipses to capture the shape of objects
in two-dimensional images. Crandall et al. [24] introduced simple graph
structures to encode configurations of object parts. Others, like [58, 51], use
skeletons to describe an object’s shape. There is an abundance of literature
on using shape information in segmentation, detection, and recognition of
objects. This chapter is concerned with shape information contained in ob-
ject contours represented by landmark points, and particularly with some
aspects of a classical approach of shape representation and shape distances.

One problem with shape is that in practice, there is not the representa-
tion of object shape. This chapter accounts for a fairly wide spread theory
and introduces concepts common to different approaches to shape, in par-
ticular the notion of mean shape.
In this spirit, this chapter first introduces some important ideas from classi-
cal, landmark based statistical shape analysis, before Chapter 3 goes on to
more recent approaches to modelling shape of two-dimensional curves.
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20 CHAPTER 2. SHAPE AND CLASSICAL SHAPE DISTANCES

A quite generic, intuitive definition1 of shape can be made by defining
when two shapes are equivalent:

Definition 2.1.1 (Shape) Two spatial configurations are said to have equiv-
alent shape if they are equivalent with respect to an “irrelevance transforma-
tion”.

Kendall [64, 57] gives a more specific definition for the case of Euclidean
transformations, that appears appropriate in this context:

Definition 2.1.2 (Shape) Shape is all the geometrical information that re-
mains when location, isotropic scale, and rotational effects are filtered out
from an object.

An object here denotes a 2D contour. Notice that it may be arguable whether
these definitions should actually be called definitions. However, they do give
an intuitively clear idea of what we mean when we say “shape”.
When speaking of contours, we usually mean two-dimensional regular curves,
that means smooth, differentiable curves c(t) : I 7→ R

2 with ċ(t) 6= 0∀t,
defined on an interval I = [a, b], R ∋ a < b ∈ R. Many times, contours are
additionally closed curves, so that c(a) = c(b) and ċ(a) = ċ(b).

In the framework of statistical shape analysis [57, 66], shapes are usually
represented by landmark points. In case of a contour, these landmark points
would typically be points situated on the contour, like in the active shape
model from Cootes et al. [22]; however, they may in general just be point
clouds not related to a curve at all. These landmark points are conveniently
given as configuration matrices containing the coordinates of one point per
row.

Definition 2.1.3 (Configuration matrix) A matrix X ∈ R
k×m containing k

landmark points in m dimensions is called a configuration matrix.

To remove variance with respect to location from a configuration matrix
X ′, one simply translates all landmark points so that their combined centre
of mass coincides with the origin. This can be written compactly with a
centring matrix

C = Ik −
1

k
1k 1⊤k

by setting the centred configuration matrix X = C · X ′. Ik is the identity
matrix in k dimensions, 1k is a k-vector of ones.

Definition 2.1.4 (Pre-shape) Let X ′ ∈ R
k×m be a configuration matrix and

C = Ik − 1/k 1k 1⊤k the centring matrix. Then the landmark points in the
rows of the matrix

X =
C X ′

‖C X ′‖
1This definition was given by Jan Koenderink at the Workshop on Shape Perception

in Human and Computer Vision (SPHCV), Marseille, 2008.
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constitute what is called pre-shape. The used norm is the Frobenius norm.

A pre-shape is invariant with respect to translation and scale, but not to
rotation. Note that in later chapters, the notion of shape and pre-shape will
be altered a little.

2.2 Shape Matching and Distance

To be able to compare different shapes, we need a notion of distance between
them. There are several possibilities, of which a few will be introduced in
this section. Namely, the widely established full Procrustes distance and an
affine invariant distance will be discussed.

2.2.1 Procrustes Distance

The Procrustes2 distance is found by minimising over Euclidean transforma-
tions to find the minimal Euclidean distance between two shapes.
The full Procrustes distance [48, 57] is defined as

dF (X1, X2) = inf
Γ∈SOm,β∈R

||Z2 − β Z1 Γ||,

with Zi the pre-shape of Xi, β the scaling parameter and Γ a rotation matrix.
Notice that despite the fact that the pre-shape representation is invariant to
isotropic scale, the scaling parameter is needed to allow for a relative scale
between Z1 and Z2.
The task of finding the transformation parameters of one shape with respect
to another is called ordinary full Procrustes analysis. Obviously, the full
Procrustes distance is invariant to the euclidean transformations rotation,
translation, and isotropic scale. This distance is given by

dF (X1, X2) =



1−
(

m∑

i=1

λi

)2




1
2

(2.1)

with the singular value decomposition Z⊤
2 Z1 = V Λ U⊤, Λ = diag(λ1, . . . , λm);

the optimal rotation and scale parameters Γ̂, β̂ are given by

Γ̂ = UV ⊤ (2.2)

β̂ =
m∑

i=1

λi (2.3)

[57, 65, 116, 117]. There are modified versions of the full Procrustes distance,
specifically the partial Procrustes distance and Procrustes distance, which do
not optimise for the scale parameter [57]. Figure 2.1 illustrates calculating
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Figure 2.1: Illustration for Procrustes alignment and distance. Top left:
Two input configuration matrices X1, X2. Bottom left: The centred and
normalised matrices Z1, Z2. Right: The aligned curves β̂ Z1 Γ̂, Z2 using (2.2)
and (2.3).

the full Procrustes distance. For the two-dimensional case, it turns out that
writing the configurations in terms of complex-valued vectors is beneficial
for calculating the full Procrustes distance.
Writing two centred configurations of k points as x, y ∈ C

k, the problem at
hand is then to minimise

d2(x, y) = ‖y − β eiθ x‖2 (2.4)

= y⋆y − β e−iθ x⋆y − β eiθ y⋆x + β2 x⋆x . (2.5)

2There is a story as to where the name Procrustes came from in [57] on page forty-two.
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Deriving with respect to the turning angle θ and setting the derivative to
zero gives

∂d2(x, y)

∂θ
= i β e−iθ x⋆y − i β eiθ y⋆x = 0 (2.6)

⇒ e−iθ x⋆y = eiθ y⋆x (2.7)

⇒ x⋆y

y⋆x
= e2 iθ . (2.8)

Setting γ eiφ := x⋆y this becomes

eiφ

e−iφ
= e2 iφ = e2 iθ (2.9)

⇒ θ = arg(x⋆y) . (2.10)

Next, deriving (2.4) with respect to the scale β and also setting to zero gives

∂d2(x, y)

∂β
= −e−iθ x⋆y − eiθ y⋆x + 2β x⋆x = 0 (2.11)

⇒ 2 β x⋆x = eiθ y⋆x + e−iθ x⋆y (2.12)

= eiθ γ e−iφ + e−iθ γ eiφ (2.13)

= 2 γ (2.14)

since we set φ = θ from (2.10). So,

β =
γ

x⋆x
=
|x⋆y|
x⋆x

. (2.15)

The full Procrustes distance for normalised (notice x, y have not been
required to be normalised above) configurations can then be calculated as

d(x, y) =

(
1− y⋆x x⋆y

x⋆x y⋆y

) 1
2

. (2.16)

Equation (2.16) will be needed a little further down in Section 2.4.1.

2.2.2 Matching Under Affine Transformations

To see a different shape distance allowing for a wider class of transforma-
tions, assume for a moment that we want not only invariance to translation,
rotation, and scale, but to the whole set of affine transformations.
Consider we want to find an affine transformation consisting of a linear trans-
formation matrix A ∈ R

n×n and translation vector t ∈ R
n, so that the

square error between X2 ∈ R
m×n and X1 · A⊤ − 1m · t⊤ is minimal, where

X2, X1 ∈ R
m×n are configuration matrices like before, containing coordinates

of one point per row. That means we have to minimise the trace

F (A, t) = tr(D ·D⊤) (2.17)
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with

D = X2 − (X1 ·A⊤ − 1m · t⊤) . (2.18)

A solution to the minimisation of (2.17) can be found in Appendix C.1.
Figure 2.2 shows an alignment using euclidean transformations found with
Procrustes analysis as described above, and one using affine transformations
for comparison. One of the contours has been sheared prior to alignment to
show the difference more clearly.

Figure 2.2: Alignments using euclidean transformations (left) and affine
transformations. Left: Alignment using Equations (2.2) and (2.3). Right:
Alignment using affine transformations minimising (2.17).

2.2.3 Affine Invariant Shape Distance

In order to calculate a distance between shapes that is invariant under affine
transformations, we need to normalise the shapes appropriately. Notice that
for Euclidean transformations, as for the Procrustes distance, the point con-
figurations are normalised with respect to translation by translating each
point configuration’s origin to its centre of mass, and with respect to scale
by dividing by the matrix norm of the centred point configuration. In the
affine case, as for example mentioned by Werman and Weinshall [136], we
need a different normalisation so that the distance is symmetric. In addition
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to the translation of the origin to the centre of mass, one applies a moment
normalisation [136]

X ′ = X · SX . (2.19)

X ∈ R
m×n is the configuration matrix containing the centred landmark

points, and SX ∈ R
n×n is chosen so that X ′⊤ ·X ′ = I, with I ∈ R

n×n the
identity matrix. That given, one calculates SX as

S⊤
XX⊤XSX = I

⇔ X⊤X =
(
S−1

X

)⊤ (
S−1

X

)

⇒ SX =
(
X⊤X

)− 1
2

and can use

d(X2, X1) = inf
A,t

∥∥∥X2SX2 − (X1A
⊤ − 1t⊤)

∥∥∥

= inf
A′,t′

∥∥∥X1SX1 − (X2A
′⊤ − 1t′⊤)

∥∥∥ = d(X1, X2)

as distance between X1, X2.
As an aside, it is noted that Begelfor and Werman [5] present a very different
representation of affine invariant shape by identifying point configurations
with elements of a specific manifold, allowing for calculation of local means
and covariances in an elegant manner. This is not followed here any further,
as another shape space will be introduced and used later on.

2.3 Registration

So far, it was assumed that pairwise point correspondences between the two
shapes are known. Now, suppose we are given two 2D curves and do not
know the exact point correspondences except start and end point. Or worse,
closed contours without even knowing corresponding starting points. Look-
ing only at the problem of finding a suitable starting point in case of closed
curves, the brute force method to find a starting point that minimises a given
distance measure is to just try every possible starting point, which increases
computation time significantly.
A few researchers have tackled these problems and provided algorithms for
matching curves and also to alleviate the computational cost of matching
closed curves. Sebastian et al. [118] presented a dynamic programming
method for matching two curves, and also present a modification for match-
ing closed curves that only increases the computational complexity from
O(n2) to O(n2 log n), instead of O(n3) for the brute force approach. This
method was later also used in [91] and related work, modified to use another
metric; this will in another context be described in Chapter 3.
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Schmidt, Farin et al. [40, 115] present a related method for which they also
give a worst case run time on the order O(n2 log n), but claim that on aver-
age the run time was lower in their experiments and outperformed [118] for
very large point counts.

2.4 Mean Shape

When we calculate shape distances, we will often also want to calculate
means of sets of shapes, like for example for k-means type clustering al-
gorithms [81, 7] or for interpolating between several shapes using weighted
averages.
The following sections briefly discuss an approach using full Procrustes dis-
tance. Following that, the next chapter will introduce more recent ap-
proaches to shape representation and also to means on shape spaces.

2.4.1 Full Procrustes Mean

The mean pre-shape µ of a set of pre-shapes {Z1, . . . , Zn} using full Pro-
crustes distance is estimated using full generalised Procrustes analysis [49,
57]. This method augments ordinary full Procrustes analysis for more than
two shapes. The aim of generalised Procrustes analysis is to find transfor-
mation parameters

{β⋆
i , Γ⋆

i , t
⋆
i } := arg min

βi,Γi,ti

n∑

i=1

∥∥∥(βi Zi Γi + 1k t⊤i )− µ
∥∥∥

2
(2.20)

with

µ :=
1

n

n∑

j=1

(βj Zj Γj + 1k t⊤j ) . (2.21)

In [57], an iterative algorithm is given for solving (2.20) and finding the
average µ for N dimensional data.
For the two dimensional case, which is more interesting in our context, the
solution can be found in closed form by writing the point configurations as
complex vectors.
Given centred and normalised configurations {z1, . . . , zn}, find an average µ̂
for which

µ̂ = arg min
µ

n∑

i=1

d2(zi, µ) . (2.22)

Using the formula for full Procrustes distance for complex configurations
(2.16), the right hand sum is

n∑

i=1

d2(zi, µ) =
n∑

i=1

(
1− µ⋆ziz

⋆
i µ

µ⋆µ

)
= n− µ⋆Sµ

1

µ⋆µ
, (2.23)
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so one looks for a normalised µ that maximises µ⋆Sµ with

S =

n∑

i=1

ziz
⋆
i , (2.24)

µ̂ = arg max
‖µ‖=1

µ⋆Sµ , (2.25)

which can be found by solving

µ̂ = arg max
µ

F (µ) (2.26)

with

F (µ) = µ⋆Sµ− λ (µ⋆µ− 1) (2.27)

by setting

∂F

∂µ
= S µ− λ µ = 0 (2.28)

⇒ S µ = λ µ , (2.29)

so µ̂ is the eigenvector corresponding to the largest eigenvalue of S. Note
that µ̂ is a pre-shape. Figure 2.3 shows a collection of similar, noisy curves
and a mean µ̂.

Mean

Figure 2.3: Full Procrustes mean of a collection of curves. The mean is
shown in thick, red lines.
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Full Procrustes Mean with Cyclic Permutations

If one is dealing with point configurations of closed contours and if the start-
ing point correspondences of {z1, . . . , zn} are not known, calculating the
mean becomes more computation-intensive, because the minimisation must
be carried out for every possible choice of starting point for each of the point
configurations.
Therefore, Cremers [30, p. 41] proposes an iterative method for finding an
alignment, which alleviates the computational burden. No proof of conver-
gence for that method is given, but nevertheless it seems to work fine in
experiments.



Chapter 3

Spaces of Elastic Shape

“Finally, the shapes were becoming proper shapes, instead of
vague and wobbling shapeless shapes.” (Douglas Adams)

3.1 Motivation

So far, in classical, statistical shape analysis, the considered space of shapes
is the space consisting of all elements

{Z Γ : Z ∈ R
k×m is a pre-shape and Γ ∈ SOm} ,

equipped with the inner product tr(X⊤Y ) used to define the full Procrustes
distance. While this is useful in many situations and has been used exten-
sively in the past, other representations of shape and other metrics have
been introduced and investigated more recently. The shape representation
so far has also assumed the knowledge of landmark points. This is sensible in
many applications where landmark points can either be found automatically
or where human expert knowledge is available. When looking at shape in the
confines of this thesis, 2D contours of objects are examined, which can much
more naturally be described by curves. So from a more theoretical point
of view, it makes sense to represent shape as functions describing smooth
curves instead of as a finite number of landmark points. In this light, recent
approaches from Klassen, Mio, Srivastava, Joshi, and others [38, 90, 4, 92, 91]
have been taken into account. Object contours are represented as differen-
tiable curves α : R 7→ R

2, α̇(s) 6= 0. A curve α(s) is normalised with respect
to length, and described by a pair of functions: an angle function Θ(s) and
a log speed function Φ(s). The two-dimensional plane is identified with the
complex number plane. The angle function defines the angle of the curve
tangent with the positive real axis of the complex number plane, while the
log speed function defines the logarithm of the length of the tangent, so that

α(s) = α0 +

∫ s

0
eΦ(τ) ei Θ(τ)
︸ ︷︷ ︸

α̇

dτ ,

29
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with α0 an integration constant that is not considered any further. Figure
3.1 illustrates a closed curve with a few velocity vectors. Notice that this

Figure 3.1: Shape representation. A closed curve α is shown in red and a
few velocity vectors α̇ are indicated in blue.

representation works only for regular curves, since eΦ(τ) 6= 0 ∀ τ . This
representation, together with normalisation with respect to curve length, is
already invariant to scale and translation, and it describes curves as con-
tinuous functions. To add structure to the space of all curves described by
such function pairs (Φ, Θ), one introduces a Riemannian metric, namely an
incarnation of the elastic shape metric [91] introduced by Younes [143], as
will be detailed later on.
In the following section this shape space is described, and a few details needed
for an actual implementation and used computational methods are worked
out.

3.2 Space of Elastic, Closed Pre-Shapes

This section introduces a space of shapes represented by continuous func-
tions, which also satisfy Definition 2.1.2 with the additional requirement
that shape must be invariant with respect to re-parametrisation. The name
pre-shape has a different meaning here than in the classical Definition 2.1.4 in
that it denotes shape without parametrisation invariance. This formulation
was developed in [90, 91] with a predecessor in [38].

Shapes are represented by pairs of log speed and angle functions. Given
a planar regular curve α, i.e. α : I 7→ R

2 is smooth on the interval I, α̇ 6= 0.
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Let I = [0, 1] for convenience. The curve α(t) can then be written as

α(t) = α0 +

t∫

0

α̇(τ) dτ

with the velocity vector α̇ in complex coordinates

α̇(t) = eΦ(t)eiΘ(t)

and α0 an integration constant.
Dropping α0, which only accounts for translation, the shape of a curve will be
represented by the pair of functions (Φ, Θ). It is easy to see from the above
equation that Φ is the logarithm of the speed of a particular parametrisation
of α, and Θ is the function giving the angle of the velocity vector with the
real axis. Notice that this representation contains both closed and open
curves. In order to restrict the pairs (Φ, Θ) to closed curves, one demands
that the integral over the velocity vector function is zero:

1∫

0

eΦ(t)eiΘ(t) dt = 0 . (3.1)

The shape of a curve should be invariant under Euclidean transforma-
tions of the curve, that is under rotation, uniform scaling, and translation.
Additionally, it should be invariant under different parametrisations of the
same curve.
The (Φ, Θ) representation is so far already invariant with respect to transla-
tion. The scale and rotational invariances are enforced by taking only those
(Φ, Θ) into account which fulfil

1∫

0

eΦ(t) dt = 1 and

1∫

0

Θ(t)eΦ(t) dt = π , (3.2)

that means all curves of length 1 and mean turning angle π. This choice is
of course arbitrary, it just has to be fixed.
The authors of [91] call the space of pairs (Φ, Θ) fulfilling Equations (3.1)
and (3.2) closed pre-shape space.

Definition 3.2.1 Let I = [0, 1] and α : I 7→ R
2 a regular curve. Let

Φ : I 7→ R and Θ : I 7→ R so that α̇(t) = eΦ(t)eiΘ(t).
The space H is the space of all pairs of such functions (Φ, Θ).

Definition 3.2.2 The closed pre-shape space C ⊂ H is defined as the sub-
space of H for which Equations (3.1) and (3.2) hold:

C :=





(Φ, Θ) ∈ H :

∫ 1
0 eΦ(t)eiΘ(t) dt = 0 (closure)
∫ 1
0 eΦ(t) dt = 1 (scale)
∫ 1
0 Θ(t)eΦ(t) dt = π (rotation)





.



32 CHAPTER 3. SPACES OF ELASTIC SHAPE

The space C is called pre-shape and not shape space because its elements are
still not invariant under the action of re-parametrisation. A re-parametrisation
of a curve α(t) is expressed with an orientation preserving diffeomorphism1

γ : I 7→ I, so that the curve becomes β(t) = α(γ(t)). The velocity then
becomes

α̇ (γ(t)) = γ̇(t)eΦ(γ(t))eiΘ(γ(t)) = eΦ(γ(t))+log(γ̇(t))eiΘ(γ(t)) . (3.3)

In a pre-shape space, if (Φ1, Θ1) and (Φ2, Θ2) define two pre-shapes that
differ only by parametrisation, then in a shape space they should both identify
the same element. This means that the action of re-parametrisations needs
to be removed from the closed pre-shape space C in order to yield a closed
shape space.
A way to incorporate parametrisation is mentioned in [91]. In the calculation
of the inverse exponential map, a diffeomorphism is included directly in the
energy (3.29) to be minimised for that purpose. The calculation of the inverse
exponential or Log map will be described further in Section 3.2.4.
Since incorporating parametrisation adds a significant computational cost
[91], it is not done here, but instead the alternative solution is adopted,
which is to re-parameterise one pre-shape with respect to the other using a
matching algorithm prior to computing geodesics. This is explained in more
detail in Section 3.2.5.
For practical computations, a discrete version of the closed pre-shape space
will also be needed, where functions are replaced by N -vectors:

Definition 3.2.3 Given (Φ, Θ) ∈ H, let Φ̃, Θ̃ ∈ R
N with

t1 = 0 < t2 < · · · < tN = 1 ,

ti+1 − ti = ∆t = const ∀ i ∈ {1, . . . , N − 1} ,

and with Φ̃i = Φ(ti) and Θ̃i = Θ(ti). The space of all (Φ̃, Θ̃) is called HN ,
the discrete pre-shape space. Analogously, CN is the discrete closed pre-shape
space.

Let us from now on write (Φ, Θ) instead of (Φ̃, Θ̃) to ease notation wherever
ambiguities are unlikely.

1A diffeomorphism is a differentiable, bijective map f for which the inverse map f−1

is also differentiable.
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3.2.1 Riemannian Metric

The inner product on H that has been introduced in [90],

〈(h1, f1), (h2, f2)〉(Φ,Θ) = a

1∫

0

h1(t)h2(t) eΦ(t) dt

+ b

1∫

0

f1(t) f2(t) eΦ(t) dt , (3.4)

is applied to elements (hi, fi), i ∈ {1, 2} of the tangent space T(Φ,Θ)(H). See
the beginning of the next Section 3.2.2 for a quick recap.
The idea of an elastic shape metric has been established in [143] and has
been further discussed by other researchers, predominantly Michor, Mum-
ford [88, 89]. The metric induced by the inner product (3.4) introduces a
certain steerability of stretching versus bending. a is called the tension, and
b the rigidity coefficients. [90, 91]. By choice of these coefficients, the metric
can be adjusted to put more weight on stretching or on bending when com-
paring two elements.
Consider in the following a discretised version of this inner product on
T(Φ,Θ)(HN ),

〈(h1, f1), (h2, f2)〉(Φ,Θ) =
a

N

N∑

i=1

h1,i h2,i eΦi +
b

N

N∑

i=1

f1,i f2,i eΦi . (3.5)

3.2.2 Tangents

For a k-dimensional submanifold of R
n such as CN , the tangent space at

x ∈ CN is defined as Tx(CN ) := Dfu(Tu(Rk)) for a parametrisation f :
U 7→ CN , f(u) = x. The differential Df of a differentiable map f is a map
Dfx : Tx(Rk) 7→ Tf(x)(R

n).
Tx(CN ) does not depend on the parametrisation f [73]. The tangent space
Tu(Rk) is formally defined as an element of the tangent bundle T (Rk) :=
R

k × R
k by Tu(Rk) := {u} × R

k [73]. The tangent bundle of CN is again
defined as T (CN ) :=

⋃
x∈CN

Tx(CN ), the union of all tangent spaces. For
more detail, see e.g. [73].

The tangent space at any element of the linear space H is H itself. From
this point on, we are working in the spaces of discretised function pairs
and pre-shapes, HN and CN . For practical, approximative calculations of
geodesics, we will need to project an element from the surrounding space
HN to a tangent space Tx(CN ). This projection is described in detail in the
following sub-section.
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Projection of Elements from HN to Tx(CN )

In order to project (h, f) ∈ HN to T(Φ,Θ)(CN ), define the map

G = (G1, G2, G3, G4) : HN 7→ R
4 ,

the continuous version G of which reads

G1(Φ, Θ) =

∫

I
eΦ(t) dt (3.6)

G2(Φ, Θ) =

∫

I
Θ(t)eΦ(t) dt (3.7)

G3(Φ, Θ) =

∫

I
cos(Θ(t))eΦ(t) dt (3.8)

G4(Φ, Θ) =

∫

I
sin(Θ(t))eΦ(t) dt . (3.9)

Replacing the integrals by sums, the discrete versions are

G1(Φ, Θ) =
1

N

N∑

i=1

eΦi (3.10)

G2(Φ, Θ) =
1

N

N∑

i=1

Θie
Φi (3.11)

G3(Φ, Θ) =
1

N

N∑

i=1

cos(Θi)e
Φi (3.12)

G4(Φ, Θ) =
1

N

N∑

i=1

sin(Θi)e
Φi . (3.13)

G1 and G2 express Equations (3.2) while the second two stem from (3.1)
because ei x = cos(x) + i sin(x).
Using this map, the closed pre-shape space CN can be defined as the level
set G−1(1, π, 0, 0). The discrete maps (3.10)–(3.13) will differ when other
approximations for the integrals are used.
The gradient of Gi(Φ, Θ) is defined by

〈grad Gi(Φ, Θ), (h, f)〉(Φ,Θ) = D(h,f)Gi(Φ, Θ) ,

with D(h,f)Gi(Φ, Θ) denoting the directional derivative at (Φ, Θ) in the di-
rection (h, f), see for example [73]. Calculating the directional derivatives
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for (3.6)–(3.9) (see also Appendix D.1),

〈grad G1(Φ, Θ), (h, f)〉(Φ,Θ) =

∫

I
eφ(τ)h(τ) dτ

〈grad G2(Φ, Θ), (h, f)〉(Φ,Θ) =

∫

I
eφ(τ) [f(τ) + h(τ)θ(τ)] dτ

〈grad G3(Φ, Θ), (h, f)〉(Φ,Θ) =

∫

I
eφ(τ) [cos(θ(τ))h(τ)− f(τ) sin(θ(τ))] dτ

〈grad G4(Φ, Θ), (h, f)〉(Φ,Θ) =

∫

I
eφ(τ) [cos(θ(τ))f(τ) + h(τ) sin(θ(τ))] dτ ,

one then completes the left hand sides to

grad G1(Φ(t), Θ(t)) =

(
1

a
, 0

)
(3.14)

grad G2(Φ(t), Θ(t)) =

(
Θ(t)

a
,
1

b

)
(3.15)

grad G3(Φ(t), Θ(t)) =

(
cos Θ(t)

a
,−sinΘ(t)

b

)
(3.16)

grad G4(Φ(t), Θ(t)) =

(
sin Θ(t)

a
,
cos Θ(t)

b

)
. (3.17)

The gradients of Gi in equations (3.14)–(3.17) span the normal space of the
space of continuous closed pre-shapes, C, at (Φ, Θ).
Similarly, the gradient of the discrete map G in equations (3.10)–(3.13) is
then

grad G1(Φ, Θ) =

(
1

a
, 0

)
(3.18)

grad G2(Φ, Θ) =

(
Θ

a
,
1

b

)
(3.19)

grad G3(Φ, Θ) =

(
cos Θ

a
,−sinΘ

b

)
(3.20)

grad G4(Φ, Θ) =

(
sin Θ

a
,
cos Θ

b

)
. (3.21)

The calculation can be found in Appendix D.1. Note that 1, 0, and the
values of the trigonometric operators in the above equations (3.18)–(3.21)
are vectors. Also mind that these gradients may vary when using other
discretisations for the integrals than (3.10)–(3.13).

To project from (h, f) ∈ HN to T(Φ,Θ)CN , one first finds an orthonor-
mal basis of the normal space ⊥(Φ,Θ)(CN ) spanned by the gradients2 of
G1,G2,G3,G4, and then simply subtracts the normal components from (h, f).
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Algorithm 1 Projection from (h, f) ∈ HN to T(Φ,Θ)(CN ). The QR decom-
position A = QR gives an orthonormal matrix Q that spans the same space
as A [47]. In fact, any orthogonalisation would do.

Require: (h, f) ∈ HN , (Φ, Θ) ∈ CN
1: procedure ProjectToTCn((h, f), (Φ, Θ))
2: Calculate the QR decomposition of

{grad G1(Φ, Θ), grad G2(Φ, Θ), grad G3(Φ, Θ), grad G4(Φ, Θ)}

using the inner product (3.5). This yields an orthonormal basis
{e1, e2, e3, e4} of the normal space ⊥(Φ,Θ)(CN ).

3: Calculate the projection by subtracting the normal component:

Π(Φ,Θ)(h, f) = (h, f)−
4∑

i=1

〈(h, f), ei(Φ, Θ)〉(Φ,Θ)ei(Φ, Θ) .

4: return Π(Φ,Θ)(h, f)
5: end procedure

This is detailed in Algorithm 1. For implementation, we use the modified
Gram-Schmidt algorithm [47] for computing the QR decomposition for or-
thogonalisation, see Algorithm 2. The inner products used in the algorithm
were replaced by the inner product (3.5).

3.2.3 Projecting from HN to CN
Like for elements of the tangent spaces, elements of CN may in the course
of numerical computations leave the actual manifold CN . They will in that
case be projected back to CN by Algorithm 3, which is further described in
this sub-section.
Recalling that for any c ∈ CN it must hold that G(c) = (1, π, 0, 0), a root
of the residual vector r(c) = (1, π, 0, 0) − G(c) is sought using Newton’s
method, restricted to changes in normal direction at c. To see how that
works, consider

F (c) = (1, π, 0, 0)−G(c)

of which we seek a nearby root. The Jacobi matrix of F is then

F ′(c) = JF (c) = −JG(c)

with the i-th row of JG(c) given by

JG
i (c) = grad Gi(c) i = 1, . . . , 4 .

2For the normal space it must hold that 〈n, v〉 = 0 for each n ∈ ⊥(Φ,Θ)(CN ) and
v ∈ T(Φ,Θ)(CN ).
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Algorithm 2 Upper algorithm: The modified Gram-Schmidt algorithm
taken from [47]. The input is a matrix A ∈ R

m×n which is orthogonalised
to yield A = QR, with Q orthonormal and R upper triangular. The colon
operator denotes the usual slicing operator for vectors and matrices. Lower
algorithm: Rewritten Gram-Schmidt algorithm using elements of Hm/2 and
the inner product (3.5). Note that here, A = ((Φ1, Θ1), . . . , (Φn, Θn)) is a
tuple where each element is an element of Hm

2
.

1: for k = 1 to n do

2: R(k, k) = ‖A(1 : m, k)‖
3: Q(1 : m, k) = A(1 : m, k)/R(k, k)
4: for j = k + 1 to n do

5: R(k, j) = Q(1 : m, k)⊤A(1 : m, j)
6: A(1 : m, j) = A(1 : m, j)−Q(1 : m, k)R(k, j)
7: end for

8: end for

1: for k = 1 to n do ⊲ n = 4 for CN
2: R(k, k) = ‖Ak‖(Φ,Θ)

3: Qk = Ak/R(k, k)
4: for j = k + 1 to n do

5: R(k, j) = 〈Qk, Aj〉(Φ,Θ)

6: Aj = Aj −Qk R(k, j)
7: end for

8: end for

The Newton method would then give

〈JG
i (ck),

−−−−→ckck+1〉ck
= Fi(ck) .

Restricting to the normal space, use instead

JG(ck) (B(ck) (xk+1 − xk)) = F (ck) ,

where R
2 N×4 ∋ B(c) = (grad G1(c), grad G2(c), grad G3(c), grad G4(c))

contains a normal space basis in its columns. Seeing that the columns of
B(c) are just the rows in JG(c), set

J⊥
ij (c) = 〈grad Gi(c), grad Gj(c)〉c ,

using the inner product on HN . Then solve

J⊥(ck)x = F (ck)



38 CHAPTER 3. SPACES OF ELASTIC SHAPE

for x ∈ R
4 and seeing that

4∑

j=1

xj grad Gj(ck) = ck+1 − ck , (3.22)

⇒ ck+1 = ck +
4∑

j=1

xj grad Gj(ck) . (3.23)

Algorithm 3 Projection from HN to CN using Newton’s method restricted
to the normal spaces.
Require: c = (Φ, Θ) ∈ HN and ε > 0 fixed
1: procedure ProjectToCn(c)
2: r ←∞
3: while ‖r‖ > ε do

4: r ← (1, π, 0, 0)−G(c)
5: Compute Jacobi matrix J⊥

ij = 〈grad Gi(c), grad Gj(c)〉c
6: Solve J⊥ · x = r for x
7: c← c +

∑
i xi · grad Gi(c)

8: end while

9: return c
10: end procedure

3.2.4 Geodesics and Geodesic Distances

Given two points p1, p2 in a Riemannian manifold M equipped with the inner
product gp(v, w) = 〈v, w〉p, a path γ(t) ⊂M with

t ∈ [t1, t2] , γ(t1) = p1 , γ(t2) = p2

is called a geodesic connecting p1 and p2 if it has zero tangential acceleration
everywhere. Intuitively, this means that a point following γ moves with
constant velocity with respect to the structure of the manifold.
For any point p1 ∈ M , v ∈ Tp1(M) there exists an ε > 0 and exactly one
geodesic γp1,v(t), t ∈ (−ε, ε) with

γp1,v(0) = p1 , γ̇p1,v(0) = v .

Given p1 and v,
Expp1

(v) := γp1,v(1)

is called the exponential map at p1 in the tangential direction v. Similarly, we
call the inverse exponential map Logp1

(p2) := Exp−1
p1

(p2) = v the logarithmic
map or log map, assuming that Expp1

(v) = p2. We thereby keep an analogy
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to the usual log operator and follow the notation of Pennec et al. [140],
Fletcher et al. [42], and possibly others. For the general concepts, refer to
books such as [33, 34, 73].
The geodesic distance between two points p1, p2 ∈ M is the length of a
shortest geodesic connecting the two points. Note that only if the definition
domain of all geodesics can be extended to R, a geodesic distance can be
computed for all point pairs. We assume that the manifolds we consider
have this property called geodesic completeness (see Definition 5.3.3). This
implies the absence of any boundary or singular points on M .

Computing the Exponential Map

Geodesics in CN are computed as follows. Given an element x ∈ CN and
v ∈ Tx(CN ), the geodesic γx,v(t) is calculated by numerically approximating
an infinitesimal step in the direction of the geodesic by adding a small fraction
of the tangent vector v to x and projecting the result back to CN yielding x′;
see Figure 3.2 for a simple illustration. The tangent v is parallel transported
to the updated x′; this procedure is detailed on in the next sub-section.
The resulting transported vector is then projected to Tx′(CN ) and scaled
back to the original tangent vector’s length to remove any artificially added
acceleration — recall that a point moving along a geodesic is non-accelerated.
The procedure is repeated until the resulting path has the requested length.
The exponential map is then calculated by using the above approximation
to calculate Expp(v) = γx,v(1). Algorithm 4 summarises this procedure.

Figure 3.2: Illustration of the approximative computation of a geodesic path
on CN . The steps are 1. take an infinitesimal step (black arrows), 2. project
back to CN (red arrows), 3. transport tangent in parallel to geodesic (green
arcs).

Approximating Parallel Transport. From the requirement that a geodesic
curve γ(t) = (u1(t), . . . , un(t)) must have zero geodesic curvature, ∇γ̇ γ̇ = 0,
follows the system of differential equations

ük(t) +
∑

i,j

u̇i(t) u̇j(t) Γk
ij(γ(t)) = 0 ∀k , (3.24)
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Algorithm 4 Numerical approximation of a geodesic on CN . The used
projection procedures are defined in Algorithms 3 and 1.
Require: 0 < ε≪ 1
1: procedure GeodesicApprox(x,v,t)
2: x′ ← x
3: T ← 0
4: while T < t do

5: x′ ← ProjectToCn(x′ + ε v)
6: T ← T + ε
7: Parallel transport v along geodesic using Equation (3.28)
8: v ← ProjectToTCn(v, x′).
9: end while

10: end procedure

see for example [73, 34]. Γk
ij denote the Christoffel symbols. For each com-

ponent of the discrete inner product (3.5), these must hold. So writing the
inner product for one component (φ, θ) = (Φi, Θi) as

〈x, y〉φ,θ = a eφ x1 y1 + b eφ x2 y2 ,

the local representation of the metric is

g =

(
a eφ 0
0 b eφ

)
. (3.25)

The Christoffel symbols can then be calculated with

Γk
ij =

1

2

∑

ℓ

gkℓ

(
∂

∂uj
giℓ +

∂

∂ui
gjℓ −

∂

∂uℓ
gij

)
, (3.26)

where u1 = φ, u2 = θ and gkℓ denotes (g−1)kℓ. Doing this by hand or with
a computer algebra program as shown in Appendix D.2 yields

Γ1
11 = Γ2

12 = Γ2
21 =

1

2
, Γ1

22 = − b

2 a
, (3.27)

the other four symbols are zero. Using these in the differential equations for
the geodesic (3.24), one gets for the geodesic γ(t) = (u1(t), u2(t))

ü1 +
1

2

(
u̇1
)2 − b

2 a

(
u̇2
)2

= 0

and
ü2 + u̇1 u̇2 = 0 .

For the numerical approximation, this leads to an update of (h, f) ∈ T(Φ,Θ)(CN )
in the direction of the geodesic γ(Φ,Θ),(h,f) of

(h, f)updated = (h, f)− ε

((
h2

2
− b f2

2 a

)
, h f

)
(3.28)

where the products in the right hand term are element-wise products.
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Computing the Inverse Exponential Map

The logarithmic map Logp0
: CN 7→ Tp0(CN ) is the inverse of the exponential

map at p0. In order to find a geodesic connecting two given points p0, p1 ∈
CN , one can compute a tangent vector −−→p0p1 = (h⋆, f⋆) = Logp0

(p1). In [91],
it is proposed to calculate (h⋆, f⋆) by minimising a functional

E(h, f) = ‖Expp0
(h, f)− p1‖2 (3.29)

for (h, f) ∈ Tp0(CN ), as had already been done in [135, 38]. We use gradient
descent:

(h, f)i+1 = (h, f)i − ε · ∇E(hi, fi) .

In order to compute a gradient of E, define a linear map L projecting from
HN to the normal space at p0 = (Φ0, Θ0), using the fact that grad Gi(p)
spans the normal space at p:

L(h, f) :=





〈(h, f), grad G1(p0)〉p0

〈(h, f), grad G2(p0)〉p0

〈(h, f), grad G3(p0)〉p0

〈(h, f), grad G4(p0)〉p0



 .

We can write L(h, f) as a matrix L ∈ R
4×2·N by setting

Li,j =
1

N
· a · eΦ0,j ·

(
grad Gi(p0)

)
j

Li,N+j =
1

N
· b · eΦ0,j ·

(
grad Gi(p0)

)
N+j

for i ∈ {1, . . . , 4} and j ∈ {1, . . . , N}.
L maps to the normal space at p0, so that ker(L), the null space of L, is
the tangent space at p0. We use the singular value decomposition to find
an orthonormal basis of ker(L). Let L = U · S · V ⊤ be the singular value
decomposition of L. Assuming the singular values on the diagonal of S are
sorted in descending order, take B = (V5, . . . , V2·N ), the last 2·N−4 columns
of V , the singular values of which are zero. The columns of B are then an
orthonormal basis of ker(L).
Now, (h, f) ∈ Tp0(CN ) can be represented as (h, f) = B · x with x ∈ R

2·N−4.
One then estimates the partial derivatives needed for the gradient of E as

∂E

∂xi
≈ E(h + ε hi, f + ε fi)− E(h, f)

ε
,

with (hi, fi) being just the basis vector contained in the i-th column of B.



42 CHAPTER 3. SPACES OF ELASTIC SHAPE

3.2.5 Shape Matching

Given two shapes p0, p1 ∈ CN and the methods from the previous sections,
it is possible to calculate a geodesic between p0 and p1. If we want to use
this to calculate a shape distance, it is required that the curves representing
the shapes are parametrised so that the geodesic distance between p0 and p1

is minimal3. Since for computation time reasons we do not put optimisation
for parametrisations into the Log map calculation [90] as mentioned in Sec-
tion 3.2, we need to find suitable parametrisations by means of a matching
procedure prior to calculating a geodesic.
In order to match two curves α0(t), α1(t), one can use a dynamic program-
ming strategy similar to the one used in [118] to find a homeomorphism
γ̃(t) that gives correspondences between the curves by associating α0(t)
with α1(γ̃(t)). The curves are represented by their respective pre-shapes
(Φi, Θi) ∈ C, i ∈ {0, 1}.
Before continuing with the energy to be minimised for matching, note that
applying a re-parametrisation by a diffeomorphism γ(t) to a curve α(t) gives
for the velocity

d

dt
α(γ(t)) = γ̇(t) α̇(γ(t))

= γ̇(t) eΦ(γ(t)) ei Θ(γ(t))

= eΦ(γ(t))+log(γ̇(t)) ei Θ(γ(t)) . (3.30)

Assuming two shapes (Φ0, Θ0) and (Φ1, Θ1), a suitable diffeomorphism γ(t)
is sought for by minimising the functional

E(γ) = ‖(Φ0, Θ0)− (Φ1, Θ1) ◦ γ(t)‖2(Φ0,Θ0)

=
〈
[(Φ0, Θ0)− (Φ1, Θ1) ◦ γ(t)], [(Φ0, Θ0)− (Φ1, Θ1) ◦ γ(t)]

〉

(Φ0,Θ0)

=
〈(

Φ0 − [Φ1(γ(t)) + log(γ̇(t))], Θ0(t)−Θ1(γ(t))
)
,

(
Φ0 − [Φ1(γ(t)) + log(γ̇(t))], Θ0(t)−Θ1(γ(t))

)〉

(Φ0,Θ0)

= a

∫

I
[Φ0(t)− (Φ1(γ(t)) + log(γ̇(t)))]2 eΦ0(t) dt+

b

∫

I
[Θ0(t)−Θ1(γ(t))]2 eΦ0(t) dt (3.31)

3Recall that the elements of the shape space (as opposed to pre-shape space) should be
invariant with respect to re-parametrisation, and that we use parametrised representations
for the curves.
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where the elastic metric from Equation (3.4) and the derivative from (3.30)
are used.

In order to approximate a solution for (3.31), a dynamic programming scheme
is used which will now be summarised. γ is approximated by a piecewise lin-
ear function γ̃ defined on an N ×N grid, where N is the number of points
sampled equidistantly on both curves using arc length. γ̃ starts on the grid
at (0, 0) and ends at (N − 1, N − 1). In between, the slopes of the line
segments that make up γ̃ are always strictly positive. γ̃ is only a homeomor-
phism (and not a diffeomorphism), since it is not differentiable at the finite
number of points where one linear segment ends and the next begins.
Theoretically, to obtain the optimum, one would have to compute the energy
on segments from each grid point i, j to all other grid points “below” that
point, i.e. for all 0 < k < i, 0 < l < j. To reduce the computational cost, the
energy is computed only on a smaller, fixed neighbourhood Nij and used to
find a locally optimal line segment, as proposed by [118, 91], to reduce the
complexity from O(N3) to O(N2). The neighbourhood that has been used
in this work is illustrated along with the grid in Figure 3.3.

Figure 3.3: Illustration of a possible neighbourhood Nij that can be used in
the dynamic programming approach to matching. Points on (i, x) or (x, j)
do not make sense, since they would imply that two points on the resulting
curve coincide, which contradicts the requirement that the curve must be
regular. Note that for closed curves, it makes sense to duplicate the start
point and therefore add another column and row to the grid (not shown
here).

Say that two grid points are labelled as (k, l) and (i, j), with k, l, i, j ∈
{0, . . . , N − 1} and k < i, l < j. The energy (3.31) on a line segment joining
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(k, l) and (i, j) is written as

E(k, l, i, j) = a

∫

Iki

[
Φ0(t)− (Φ1(γ̃klij(t)) + log( ˙̃γklij(t)))

]2
eΦ0(t) dt+

b

∫

Iki

[Θ0(t)−Θ1(γ̃klij(t))]
2 eΦ0(t) dt . (3.32)

Iki is the sub-interval of I corresponding to the segment from k to i, and
γ̃klij is the linear segment of γ̃ joining the grid points (k, l), (i, j).
The minimum energy is then found by computing intermediate energies

H(0, 0) = 0 (3.33)

H(i, j) = E(k̂, l̂, i, j) + H(k̂, l̂) (3.34)

with
(k̂, l̂) = arg min

(k,l)∈Nij

(E(k, l, i, j) + H(k, l)) .

Nij is the aforementioned neighbourhood of grid points of point (i, j). H(i, j)
is computed from (0, 0) to (N−1, N−1) and then the optimal path is found
by back tracking.

Figure 3.4: Example for curve matching. The indicated points indicate a
few roughly corresponding points found by minimising Equation (3.31); only
some correspondences are indicated by arrows in order not to obscure the
image too much. Note that we have pre-determined a common start point by
applying full Procrustes matching for all cyclic permutations. The matching
homeomorphism and angle functions are depicted in Figure 3.5. These curves
are taken from the Surrey fish data base from Mokhtarian et al. [94].

Notice that in order to find correspondences for closed curves, one would
have to run the matching process for all possible start points on one curve. In
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γ Θ0 matched Θ1

Θ0 unmatched Θ1

Figure 3.5: Homeomorphism γ̃ for the matching in Figure 3.4, and the an-
gle functions Θ0 and Θ1 before and after matching. Notice how Θ0 of the
matched curve is changed to fit Θ1. Here, a/b = 1.

the discrete case, this would mean that the complexity for matching increases
from O(n2) for open curves to O(n3) for closed ones. One can alleviate the
problem to O(n2 log n) as described in [118], but the computation time is of
course still increased.
Figures 3.4 and 3.5 depict an example for the result of this matching pro-
cedure similar to one of the examples in [91]. One can also resort to pre-
determining a start point by first applying full Procrustes matching for all
cyclic permutations of one of the curves, instead of running the minimisation
for all possible start points.

3.3 Alternative Shape Representation with a Single
Function

Joshi et al. [60] propose an alternative representation of shape using only
one function instead of a pair of functions. In contrast to the approach using
function pairs from [91], the inner product defined on the tangent space at
a point p is not depending on p, so computation is simplified.
While this model is not used in this thesis, it is still mentioned briefly to
point out another direction of development.
Given a regular curve β : [0, 2π] 7→ R

n, the authors of [60] introduce the
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shape function

q(s) =
β̇(s)√
‖β̇(s)‖

. (3.35)

The used norm is the canonical Euclidean norm. Using this, ‖q(s)‖ is the
square root of the curve’s speed, as can be seen by calculating

‖q(s)‖ = 〈q(s), q(s)〉 12 =

〈
β̇(s)√
‖β̇(s)‖

,
β̇(s)√
‖β̇(s)‖

〉 1
2

=

(
〈β̇(s), β̇(s)〉
‖β̇(s)‖

) 1
2

=

(
‖β̇(s)‖2
‖β̇(s)‖

) 1
2

= ‖β̇(s)‖ 1
2 .

Therefore, the curve β(t) can be expressed by

β(t) =

∫ t

0
‖q(τ)‖ q(τ) dτ , (3.36)

leaving out the constant accounting for translation only.
For open curves, it is noted in [60] that the space of elastic curves of length
1 using the above representation is the unit sphere:

B ≡
{

q : [0, 2π] 7→ R
n

∣∣∣∣
∫ 2π

0
〈q(s), q(s)〉 ds = 1

}
. (3.37)

Using the geometry of the sphere, simple formulas are provided in [60] for
calculating a geodesic given two points and the tangent vector between them,
as well as parallel transport of tangent vectors along a geodesic.
For closed curves, the matter is once again more involved. Similar to [91],
the inner product is defined in [60] as

〈u, v〉 :=

∫ 2π

0
〈u(s), v(s)〉 ds . (3.38)

Note that by not distinguishing speed and angle functions, an adjustment of
stretching and bending as before is no longer possible.
In the case of closed curves, similar to [91], a map G : Q 7→ R

n is defined
on the space of all elastic curves Q := {q : [0, 2π] 7→ R

n}. G is, component-
wise, defined as Gi =

∫ 2π
0 qi(s) ‖q(s)‖ ds, i = 1, . . . , n. This map is then used

to implicitly define the space of all closed elastic curves as A := G−1(0).
Together with B, A is used to define the space of all elastic, closed curves of
unit length, C := A ∩ B ⊂ Q. The elements of C are therefore invariant to
scale and translation, but not to rotation.
Instead of the method proposed before, a path straightening method [70] is
suggested in [60] to compute a geodesic: An initial solution for the geodesic is
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assumed and then refined in order to minimise an energy which measures the
length of the considered curve on C. This involves computation on the space
of all curves on C, for which numerical algorithms are given in [60]. They
claim that the path straightening method is more stable than a shooting
method, by keeping the start and end points fixed and optimising over all
paths connecting the two points.
The lack of rotation invariance is tackled in [59], by introducing another
minimisation into the calculation of geodesics, over rotations and re-parame-
trisations. This adds computational complexity, and [59] no longer explicitly
claims to be more efficient than the previous model using function pairs. This
was not verified in the scope of this thesis.
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Chapter 4

Level Set Segmentation

4.1 Introduction

Topics discussed in this thesis revolve around shape. That is in this con-
text the information contained in object contours, or silhouettes, which is
invariant to a set of transformations.

A natural question is how these contours come to be in the first place,
how to acquire them given that all we have are two dimensional grey value
or colour images.
To this end, one can use a segmentation algorithm which segments an image
into regions, and then use the boundaries of the regions. Active contour
techniques have emerged in the past, starting with the snakes model from
Kass et al. [63] in 1988. Active contour methods evolve one or more curves
by minimising some energy functional, which usually consists of one energy
that is internal to the curve, that means it depends only on the curve itself,
and one that depends on image data and is called external. Other terms
adding prior knowledge about the curve to be extracted have been proposed
as well. While the original work of Kass used splines to describe and evolve
the curve, later work [15] used the level set framework, which had been in-
troduced originally for front propagation in computational physics [97].
When using parametric representations of curves, topological changes and
reparameterisation usually have to be handled by more or less complicated
and arbitrary extra algorithms. The level set framework, representing con-
tours implicitly as level sets of a higher dimensional function, has the unar-
guable advantages that

1. changes in topology of an evolving contour are naturally handled, with-
out any additions to the model.

2. it is parameter-free.

3. it allows for simple ways to approximate geometric properties of the
embedded curve.

49
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However, the flexibility does not come for free. There are numerical issues
which must be taken into account and the computational work load is gen-
erally larger than for parametric models. A good speed up can be achieved
by using multi resolution techniques for implementing level sets, and also by
using so called narrow band methods, which restrict calculations to a narrow
band around the level set of interest. Parallel computation can also speed
up implementations.

In this chapter, several aspects of image segmentation and curve evolution
using the level set framework are discussed. The level set method for active
contours has attracted the interest of many researchers in recent years, so
that many facets have been examined and countless additions to the basic
method have been published. Some of these facets are described in this
chapter, with the aim to compile the information needed to actually use the
method in an implementation and to understand the implementation used
in this thesis, in which many of the described techniques are present.

It is, in the scope of this thesis, not possible to mention and describe
each and every aspect of the method, which is still a field of active research,
nor the large variety of applications and modifications it has undergone and
is still undergoing.

4.2 Level Sets

Let Ω ⊂ R
2, representing the image domain, and let Φ : Ω 7→ R be a smooth

function so that the interface C of dimension 1 is the zero level set of Φ,

C = {x |Φ(x) = 0} . (4.1)

The interface has here codimension 1 since it is one dimensional and em-
bedded in a two dimensional function. We do in this thesis not look into
interfaces of higher codimension.
In image segmentation tasks, the iso contours of this function Φ are used to
represent curves. So Φ acts as an embedding function for the actual curve,
and the curve is implicitly given by Φ. One of the main advantages of using
level sets is their capability to deal naturally with changing topology without
the need for complicated manoeuvres to split or merge curves [97, 32].
Evolution of the embedding function over time can be used to simulate a
changing interface due to some external force or velocity field, and due to
internal forces. While the external force drives the contour towards pos-
sible boundaries of objects using image or other data, the purpose of the
internal force is usually to impose certain properties onto the curve, such as
smoothness.
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4.3 Tools and Notation

The descriptions and examples in this chapter are mostly for R
2, but can

generally be used for R
n. Ω ⊂ R

n denotes the image domain. Φ : Ω 7→ R is
the embedding function. We call

Ω− = {x |Φ(x) < 0}
the inside of the area that is bounded by the contour C. Analogously,

Ω+ = {x |Φ(x) > 0}
is called the outside. The contour itself, the zero level set of the embedding
function Φ,

C = {x |Φ(x) = 0}
is also known as the interface between Ω− and Ω+.

The normal N of a level set can be expressed as

N =
∇Φ

|∇Φ| .

Furthermore, when expressing a functional in terms of an embedding func-
tion, the Heaviside function

H(Φ) =

{
0 Φ ≤ 0
1 Φ > 0

comes in handy to distinguish between two different phases. A volume in-
tegral over two different phases divided by the zero level set which one may
call inside and outside can then be expressed as

∫

Ω
f(x) (1−H(Φ(x))) dx

and ∫

Ω
f(x)H(Φ(x)) dx

respectively.
For numerical implementations, a regularised version Hε of the Heaviside-

function is used, with some small parameter ε. Chan [17] delivers an argu-
ment on what happens if one leaves out the approximation to H(·) in the
two-phase, piecewise constant segmentation model from [18] and what the
consequences are. This can be found in Appendix B.
Possible regularised functions are

Hε,1(Φ) =






0 Φ < −ε
1
2 + Φ

2ε + 1
2π sin

(
πΦ
ε

)
−ε ≤ Φ ≤ ε

1 ε < Φ

(4.2)

δε,1(Φ) = H ′
ε,1(Φ) =






0 Φ < −ε
1
2ε + 1

2ε · cos
(

πΦ
ε

)
−ε ≤ Φ ≤ ε

0 ε < Φ

, (4.3)
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or a non-clamped version

Hε,2(Φ) =
1

2

(
1 +

2

π
arctan

(
Φ

ε

))
(4.4)

δε,2(Φ) =
1

π
(

Φ2

ε2 + 1
)

ε
, (4.5)

see for example [130, 18]. Both regularised versions of H(Φ) are illustrated
in Figure 4.1.
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Figure 4.1: Upper: clamped, regularised Heaviside function. Lower: non-
clamped, regularised Heaviside function. Here, we chose ǫ = 0.1.
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4.4 Signed Distance Functions

There are infinitely many implicit functions Φ to embed a zero level set.
Theoretically, any embedding function would do. Minding that one needs to
calculate numerically on Φ, specifically to approximate derivatives, Φ should
certainly be smooth and should not exhibit extremely large or extremely
small slope. So called signed distance functions are good candidates and are
being used in the level set segmentation method; some desirable properties
of signed distance functions will be mentioned a little further down.

Definition 4.4.1 (Distance function) A function

d : Ω 7→ R
+ ,

d(x) = min
xI∈C

(|x− xI |) (4.6)

with
|∇d| = 1 , (4.7)

that maps to each x the distance to the closest point x̂I on the boundary C
is called a distance function.

Definition 4.4.2 (Signed distance function) A function

Φ : Ω 7→ R ,

|Φ(x)| = d(x) ∀x ∈ Ω (4.8)

Φ(x) =






0 ∀x ∈ C

−d(x) ∀x ∈ Ω−

d(x) ∀x ∈ Ω+

(4.9)

is called a signed distance function.

The choice of sign for the inside and outside regions of Ω is arbitrary, but
in this text the set {x : Φ(x) < 0} is called the inside of a contour C.
Notice that the property |∇Φ| = 1 is not true for points that are equidis-
tant from two points on the zero level set C: this leads to a “kink” in Φ.
Theoretically, this is a problem since at these points, the derivative of Φ is
not defined; Φ is not smooth. If one is calculating with Φ defined only on
a finite grid, this does not pose a real problem in practice: the derivative
is indeed not 1 around these points, but it is smeared by the discretisation
[120]. Therefore, one should keep in mind that the derivative near the kinks
will be between −1 and 1, but the numerical results will be well behaved.
An illustration of a signed distance function embedding the contour of an
elephant is shown in Figure 4.2.
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Figure 4.2: A signed distance function embedding the contour of an elephant
at its zero level. The upper image shows only the embedding function. The
lower image shows the same embedding function together with a plane drawn
at the zero level z = 0 and the isocontour at z = 0 drawn at the bottom.
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The use of signed distance functions as embedding functions also results
in a few simplifications, which can be desirable for the reduced amount of
computation needed. Specifically,

N =
∇Φ

|∇Φ| = ∇Φ

κ = ∇ ·N (4.10)

= ∇ · (∇Φ)

= ∆Φ

= Φxx + Φyy + Φzz

where κ is the curvature of the interface or equivalently the divergence of the
normal field N .

Summarising, signed distance functions are good candidates for embed-
ding functions, since they exhibit the desirable properties that they are
smooth except for certain points where their numerical implementations are
expected to fail in a predictable, “graceful” manner, and that they can lead
to a reduction of computational costs, depending on the algorithms which
are applied.

4.5 Moving Interfaces

4.5.1 Explicit Formulation

We are interested in simulating the motion of a contour C. Let V (x) be a
vector field describing an external velocity. We can write the motion of the
interface C under the influence of that velocity field explicitly as

dx

dt
= V (x) ∀x ∈ C . (4.11)

This brings problems with distortions in the discretised case and with topo-
logical changes of the interface (like splitting and merging) [120]. The dis-
tortion problems stem from the fact that we calculate only on a finite set of
points representing C and that these points can move very far apart during
the evolution process, making the representation of C very inaccurate, or
move very close together, which would introduce numerical problems calcu-
lating with point distances. Topological changes, splitting and merging of
interfaces, is not handled automatically. As a result of these considerations,
one will have to introduce specialised methods to deal with these situations,
as has been done for example in [76, 129, 87, 32].
However, one should not forget that the explicit method also has two prac-
tically appealing advantages, namely that it is usually very fast, and that it
is memory efficient.



4.6. LEVEL SETS IN IMAGE SEGMENTATION 57

4.5.2 Implicit Formulation

Consider the evolution of Φ(x) over time t through simple convection [120]
under a vector field V , governed by the partial differential equation

Φt + V · ∇Φ = 0 . (4.12)

Since ∇Φ is parallel to the normal field of the level sets of Φ, and thereby
normal to the embedded interface C, only the component Vn of V that is
normal to C has an actual impact on the rate of change Φt.
Using the normal vector N , we obtain

Vn ·N · ∇Φ = Vn ·
∇Φ

|∇Φ| · ∇Φ ,

and (4.12) becomes
Φt + Vn · |∇Φ| = 0 , (4.13)

describing motion in normal direction. In this form, it is also referred to as
level set equation.

4.6 Level Sets in Image Segmentation

Level set methods can be used for image segmentation using active con-
tours, contours that evolve from an initial configuration following an en-
ergy minimisation. In the original work by Kass et al. [63], active contours
were implemented using parametric spline functions. The advantage of us-
ing parametric functions to describe a contour is clearly their speed. The
major drawback, however, is the lack of the ability to automatically cope
with changes in curve topology, as has been explained previously.
This drawback is overcome when using an implicit function that embeds the
contour as its zero level set [97] (or any other fixed level set). Since the
evolution is carried out on the embedding function, topology changes can
occur naturally and no additional heuristics need to be used.

4.7 Active Contours

In [63], Kass, Witkin, and Terzopoulos introduced a parametric active con-
tour model which they christened snakes. A curve s(t) defined by a spline
is pushed towards sought image features by optimising an energy functional
E(s(t)), defined on the snake, to a local minimum — this is why they call
the model active.
The energy functional originally proposed by [63] is quite general and consists
of a regularising term Eint, an image term Eim to drive the snake towards
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desired image features, and some external energy Eext which can represent
user control or some other constraints:

E(s(t)) =

∫ 1

0
Eint(s(t)) + Eim(s(t)) + Eext(s(t)) dt (4.14)

Here it is assumed that the snake s(t) is parametrised by arc length in the
interval [0, 1].
The internal energy in the original work involves the first and second spatial
derivatives of the snake, and therefore has a smoothing effect on the snake
when the energy is minimised. As image terms Eim, [63] proposes the im-
age intensity itself, pulling the snake towards a specific grey value, or an
edge term depending on the image gradient, which pulls the snake towards
intensity edges.

4.8 Geodesic Active Contours

In [14, 15], Caselles et al. derive a model of curve evolution that is related
to the mean curvature flow1 in a Riemannian space of curves s(t) with a
metric induced by the image I. They introduce an edge detector function
g : [0,∞) 7→ R+ that must be strictly decreasing, and show that if one
chooses

E(s(t)) = α

∫ 1

0
|s′(t)|2 dt + λ

∫ 1

0
g(|∇I(s(t))|)2 dt

for the active contour model (4.14), its minimisation is equivalent to min-
imising ∫ 1

0
g(|∇I(s(t))|) |s′(t)| dt , (4.15)

which can be seen as the length of the curve s(t) under the metric

γij = g(|∇I(s(t))|)2 δij , i, j ∈ {1, 2} .

Minimising (4.15) means to follow a curve shortening flow according to the
metric γij .
In [15], the authors provide an implicit formulation using the level set method
to solve for a minimiser of (4.15).
This geodesic active contour model is not, like the original snake model from
Kass et al., dependent on the parametrisation of the contour.

Note that with the geodesic active contour model, curves are always
attracted to high absolute image gradients, which gives rise to the following
problems: If the image is blurry, gradients may be quite small, while in areas
with a large amount of noise, gradients will be high where there are no actual

1The mean curvature flow minimises the area of a surface patch (or in this case the
length of a curve) [73].
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object boundaries. Objects with fuzzy boundaries are hard to segment with
this approach, since the boundaries would in such cases not lead to high
image gradients; think for example of astronomical images of nebulae.

4.9 Region Based Active Contours

Instead of letting a curve evolve towards intensity edges, another strategy is
to search for a curve that divides an image into homogeneous regions; this was
formulated by Mumford and Shah [95]. An approximation using regions of
constant grey value was formulated by Chan and Vese [131]. The advantage
over edge based models is that objects with more diffuse boundaries can
be better segmented from the background, if the image conforms to the
model assumptions. Also, depending on certain user parameters, region
based methods can be quite robust against noise.

4.9.1 The Mumford-Shah Functional

Mumford and Shah [95, 46] formulated the image segmentation problem
as the minimisation of the energy functional (4.16). Let u0 : Ω 7→ R be
the original image on a domain Ω, and C ⊂ Ω a set of discontinuities (the
region boundaries) dividing the image domain into a number of open, disjoint
subsets with Ω1 ∪ · · · ∪Ωn ∪C = Ω, then to segment u0 into smooth regions,
solve

min
u

F (u, C) =

∫

Ω\C

(u− u0)
2 dx + α ·

∫

Ω\C

|∇u|2 dx + β

∫

C

dσ (4.16)

for a piecewise smooth u(x) with discontinuities along the boundaries C.
The first term is a fidelity term that asserts that the minimiser u should not
be too different from u0, the second term penalises variations on the sought
regions, and the third term penalises the length of the region boundaries.
Mumford and Shah conjectured that there is a minimiser of (4.16) for which
C is a union of differentiable curves [95, 46].

4.9.2 The Chan and Vese Model

Chan and Vese [131] have introduced a region based segmentation method
using the level set framework, that is based on the idea of the Mumford-Shah
functional. Assuming the piecewise constant case instead of a piecewise
smooth approximation, and that exactly two regions are to be found, the
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energy to be minimised is

F (c1, c2, C) = µ · Length(C) + ν ·Area(inside(C))

+λ1 ·
∫

outside(C)
|u0(x, y)− c1|2 dx dy

+λ2 ·
∫

inside(C)
|u0(x, y)− c2|2 dx dy (4.17)

with µ, ν, λ1, λ2 fixed parameters. µ weights the penalisation of the contour’s
length. The area term has the effect of a so called balloon term by “blowing
up” (or shrinking) the contour C. The parameter ν is often set to zero, so
that no area term is used. λ1, λ2 weight the influence of the image data and
most often are fixed to 1.
The original input image is denoted with u0. The values c1, c2 minimising
(4.17) for fixed C are the average grey values outside and inside the curve
C, respectively.

To write this with C expressed in terms of an embedding function Φ, one
uses the Heaviside function H(Φ) to express the inside (or outside) A of a
curve C as

A = {x : H(Φ(x)) < 0}
while the curve itself can be represented as

C = {x : Φ(x) = 0} .

In practice, an approximation Hε of H(·) is used, such as (4.2). Then,

Length(C) ≈
∫

Ω
|∇Hε(Φ(x, y))| dx dy

=

∫

Ω
δε(Φ(x, y))|∇Φ(x, y)| dx dy

and

Area(Φ ≥ 0) ≈
∫

Ω
Hε(Φ(x, y)) dx dy

with Φ ≥ 0 inside the contour C defined by the zero level set.
The energy is then written as

F (c1, c2, Φ) =µ ·
∫

Ω
δε(Φ(x, y))|∇Φ(x, y)| dx dy

+ ν ·
∫

Ω
Hε(Φ(x, y)) dx dy

+ λ1 ·
∫

Ω
|u0(x, y)− c1|2 ·Hε(Φ(x, y)) dx dy

+ λ2 ·
∫

Ω
|u0(x, y)− c2|2 · (1−Hε(Φ(x, y))) dx dy . (4.18)
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In order to do gradient descent to minimise the above functional, one
calculates the Euler-Lagrange equation and introduces an artificial time,
which leads to the gradient flow

∂Φ

∂t
= δε(Φ)

[
µ · div

( ∇Φ

|∇Φ|

)

− ν

− λ1(u0 − c1)
2

+ λ2(u0 − c2)
2
]

= 0 (4.19)

with a given initial Φ0 at time t = 0. When using this for gradient descent,
c1 and c2 are taken to be fixed for one time step, and then are recalculated
taking Φ fixed, minimising (4.18) for Φ and c1, c2 in turn.
For Hε, the authors in [131] use (4.4):

Hǫ(x) =
1

2

(
1 +

2

π
arctan

(x

ǫ

))

for some ǫ > 0. This function is greater than zero everywhere, so it is possible
for zero level curves to “pop out of nowhere”, so that even inner contours can
occur during evolution. Interestingly, Chan comes back to this in [17] where
it is shown that when using Hε as above, the flow (4.19) is related to a very
similar algorithm described in [17] which, for constant c1, c2, finds global
minimisers; see also Appendix B. For an alternative approximation of the
Heaviside function with limited support, see Section 4.3.

The influence of the length and area terms in the above equations is illus-
trated in Figures 4.3, 4.4, 4.5, with a given initial embedding function and all
other terms set to zero. The shortening effect of mean curvature flow can be
seen in Figure 4.3. In comparison, the impact of another useful regularising
term from Delingette [32], called curvature diffusion regularisation, can be
seen in Figure 4.11. It will be described in Section 4.9.6.

An example of an image segmented with the level set method using Chan
and Vese’s functional [131] is shown in Figure 4.6. Noise has been added to
the image to show the influence of the regularising terms — Figure 4.7 shows
the evolution of the zero level set for the same image without using any reg-
ularising terms, leaving only the data terms. While the segmentation using
smoothness terms in Figure 4.6 is quite close to the truth, the unregularised
version in Figure 4.7 of course results in a segmentation which includes the
noise.

The region-based segmentation method can easily be augmented to vector
valued input data. In [130], a method is proposed which boils down to using
an average over all colour channels (or other modalities) of an input image,
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Figure 4.3: Influence of the length term when minimising functional (4.18)
with µ > 0, ν = λ{1,2} = 0. The process is initialised with the curves shown
in the upper left image. Following the mean curvature flow, the curves get
smoothed and shortened until they finally vanish.

so that Equation (4.18) becomes

F (c1, c2, Φ) = µ ·
∫

Ω
δ(Φ(x, y))|∇Φ(x, y)| dx dy

+

∫

Ω

1

N

N∑

i=1

λ1,i · |u0,i(x, y)− c1,i|2 ·H(Φ(x, y)) dx dy

+

∫

Ω

1

N

N∑

i=1

λ2,i · |u0,i(x, y)− c2,i|2 · (1−H(Φ(x, y))) dx dy . (4.20)

Here, c1,i, c2,i are the average values of each colour channel outside and inside
the zero level contour, respectively. Note c{1,2} are now N -vectors. u0,i

denotes the ith colour channel of the original image, and λ{1,2},i can be used
to weight each channel independently. Figure 4.8 depicts a simple RGB
image segmented with different values for the vector λ to select each colour
channel, and for all of them together.
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Figure 4.4: Influence of the area term when minimising functional (4.18):
µ = 0, ν > 0, λ{1,2} = 0. The curve gets “blown”, hence the area term is also
called balloon term. The initial contour is shown in the upper left image.
If the process was continued, the contours would eventually pass the image
borders and vanish.
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Figure 4.5: Influence of the area term when minimising Equation (4.18), here
with a negative weight: µ = 0, ν < 0, λ{1,2} = 0. The curve shrinks, without
smoothing effect as opposed to the length term.
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Figure 4.6: Binary segmentation using the level set model after Chan and
Vese from Equation (4.18). Here, µ = 0.1, λ{1,2} = 1.0, and in addition the
regulariser from Delingette, Equation (4.34) was used with a weight of 0.15.
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Figure 4.7: Binary segmentation using the level set model after Chan and
Vese from Equation (4.18). To show the impact of regularisers, no regular-
ising term was used in this example, only the data terms.
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Figure 4.8: Example of segmentation using the vector valued Chan and Vese
model from Equation (4.20). Top left: Initialisation. Middle: λ{1,2} =

(1, 0, 0)⊤ and λ{1,2} = (0, 1, 0)⊤. Bottom: λ{1,2} = (0, 0, 1)⊤ and λ{1,2} =

(1, 1, 1)⊤.
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So far, the Chan and Vese model allows to segment data into two phases;
for completeness, a multi-phase extension will be mentioned here in the fol-
lowing. In [83], the same authors introduce a modification that allows for 2m

segments using m embedding functions. This method guarantees that every
pixel is element of exactly one segment of the image. In order to label 2m dif-
ferent segments, m embedding functions Φ = (Φ1, . . . ,Φm) and m Heaviside
functions H(Φ) = (H(Φ1), . . . , H(Φm)) are used. H(Φ) is a binary vector
that is used for labelling segments, which leads to the number of 2m distin-
guishable segments. Going back to the scalar version of the original Chan
and Vese model, Equation (4.17), the problem is restated using a vector of
average intensities c = (c1, . . . , c2m) and characteristic functions

χi, i = 1, . . . , 2m

χi(x) =

{
1 if x inside segment i

0 otherwise

to

F (c,Φ) =
2m∑

i=1

∫

Ω
(u0 − ci)

2 χi ds + µ
2m∑

i=1

∫

Ω
|∇χi| ds . (4.21)

The second, length term in (4.21) is approximated with the simpler

µ
m∑

i=1

∫

Ω
|∇H(Φi)| ds . (4.22)

Notice that (4.22) is not the same as in the original equation, where the
characteristic functions are combinations of the Heaviside functions of the
embedding functions Φ. In (4.22), each Heaviside function is accounted for
individually, which leads to boundaries being counted multiple times. The
authors of [83] mention that their results were nevertheless still good on
account of the dominance of the image term.

4.9.3 Statistics Based Data Terms and Texture Segmentation

The original, purely colour based data terms from Chan and Vese [131, 130]
work well in settings with images that are close enough to being piecewise
constant, and can also cope with noise in simple images. There is nothing
that keeps one from using other features than colour or intensity in the
models introduced so far, so it seems only logical to apply other features
wherever appropriate, and so this has been done extensively in the past.
For natural images and with the aim to enable segmentation with respect
to texture as opposed to colour, other data terms have been shown to work
quite well in many cases. Sandberg et al. [113] propose to use the multi-
channel Chan and Vese model for texture segmentation by using the output
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of a set of filters as input image.
Rousson and Deriche [109] generalise the vector valued region based method
[130] by describing the regions using probability distributions of grey or
colour values. They rewrite the energy functional to minimise for an image
g(x) as

F =
N∑

i=1

∫

Ωi

− log pi(g(x)) dx + Length(∂Ω) (4.23)

with probability densities pi(g) for each region Ωi. Using Gaussians, they
put

pi(g) =
1

(2π)n/2|Σi|1/2
e−

1
2
(g−µi)

⊤Σ−1
i (g−µi) (4.24)

with means µi and covariances Σi. Noting that means and covariances can
be calculated with

µi =

∫
Ωi

g(x) dx
∫
Ωi

1 dx
(4.25)

Σi =

∫
Ωi

(µi − g(x)) (µi − g(x))⊤
∫
Ωi

1 dx
(4.26)

and simplifying the log density functions a little yielding

ei(x) := log |Σi|+ (g(x)− µi)
⊤Σ−1

i (g(x)− µi) , (4.27)

they then end up with an update equation for the level set evolution of

∂Φ

∂t
= δε(Φ)

(
µ div

( ∇Φ

|∇Φ|

)
+ e2 − e1

)
. (4.28)

These equations can then be used for gradient descent to solve for Φ, up-
dating µi, Σi after each time step similar to Chan and Vese’s region based
algorithm [130] described previously in this chapter.
A good review of the statistical point of view of region based level set seg-
mentation can be found in Cremers et al. [27].

In [9], the authors propose to use not only colour information, but also
structural information and motion information to drive the evolution pro-
cess. In addition, probability distributions over the feature image are used
instead of using only a mean. In this section, only the colour and structural
components will be mentioned, for the motion component refer to [9]. The
general idea is to do the energy minimisation not on the original input image,
but on a field of feature vectors computed from the image, using the vector
valued approach in Equation (4.20). These feature vectors can, of course,
also contain the colour channels of the original image.
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Given a feature image u with N channels, the authors of [9] propose to
minimise for the data term

E(Ωi, pij) = −
N∑

j=1

(∫

Ω1

log p1j(uj(x)) dx +

∫

Ω2

log p2j(uj(x)) dx

)
, (4.29)

with Ω1, Ω2 denoting the inner and outer image regions, respectively, and pij

denoting probability density functions for all channels j and regions i.
Written in terms of an embedding function Φ, this reads

E(Φ, pij) = −
2∑

i=1

N∑

j=1

(∫

Ω
log pij(uj)χi(Φ) dx

)
, (4.30)

where χ1(x) = H(x), χ2(x) = 1 −H(x). The update term for the gradient
descent is then

∂Φ

∂t
=

N∑

j=1

(
log

p1j(uj)

p2j(uj)
H ′(Φ)

)
(4.31)

where H ′(·) denotes the spatial derivative of H(·) (see Appendix A.3 for the
derivation of (4.31)).

This can readily be used to replace the data terms in Equation (4.19),
resulting in

∂Φ

∂t
= δε(Φ)

[
µ · div

( ∇Φ

|∇Φ|

)

+
N∑

j=1

(
log

p1j(uj)

p2j(uj)

)]
. (4.32)

As possible distributions pij , [9] suggests Gaussians and non-parametric
histograms. The distributions are updated, like the mean colour values for
the standard Chan and Vese data terms, in each iteration of the level set
evolution.
In addition to the already available colour channels from the original image
data, the use of the structure tensor J is also proposed in [9] as additional
features to capture the local structure of the image I:

Jρ = Kρ ⋆ (∇I∇I⊤) =

(
Kρ ⋆ I2

x Kρ ⋆ IxIy

Kρ ⋆ IxIy Kρ ⋆ I2
y

)
, (4.33)

with Kρ a Gaussian kernel with standard deviation σ = ρ. The operator ⋆
denotes convolution, so that Jρ is smoothed. The elements Kρ ⋆ I2

x, Kρ ⋆ I2
y ,

and Kρ ⋆ IxIy are then used as additional elements in the feature vector
for each image pixel. Note that for multi-channel data like RGB images, the
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values are simply added over all channels. Also note that in [9], not Gaussian
smoothing, but non–linear diffusion is used to smoothen the structure tensor.
This is done in order to reduce the blurring of edges which leads to inexact
segmentations.
An example segmentation using Gaussian distributions of the colour channels
and the structure tensor is shown in Figure 4.9.
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Figure 4.9: Example of using statistics based terms from [9] for level set
segmentation. Here, a Gaussian of all three colour channels and the structure
tensor was used in Equation (4.32). The weight for the curvature term was
chosen to be µ = 0.0001 · 2552.
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4.9.4 Texture Segmentation with Wavelet Features

Besides the colour or grey value segmentation, segmentation using texture in-
formation has also been proposed in connection with the level set framework.
Features capturing local texture information have already been introduced
by using the non-linear structure tensor in Equation (4.33) for segmentation
using statistics on a feature vector.
This is quite similar to using a set of wavelet features and one would expect
the segmentation to be similar when using either the non-linear structure ten-
sor or wavelet transform coefficients as image features. For dyadic wavelets,
the transformed coefficients are

• A low pass filtered version of the original data

• A complementary high pass filtered version

• For 2-D images, the high pass coefficients consist of horizontally, ver-
tically, and both horizontally and vertically high pass filtered versions
of the original data

Consider discrete wavelet frames (see for example [12, 85, 41]), where the
output of the complementary filters is not decimated like in usual wavelet
transform implementations. Furthermore, consider Haar wavelets (see for
example [12]). The output of this transform would then be very similar to
the information conveyed by the non-linear structure tensor. Namely,

• Two high pass parts corresponding to the derivatives Ix, Iy in the struc-
ture tensor

• One high pass part corresponding to the diagonally directed derivative
Ixy which takes the place of IxIy in the structure tensor

Notice that the derivatives Ix, Iy are used in the structure tensor as squares,
and that IxIy is of course different from Ixy.
Nevertheless, from the wavelet decomposition one can get similar results,
as is illustrated by comparing Figures 4.9 and 4.10, where the same image
was segmented using colour and structure tensor on the one hand, and the
coefficients of a discrete wavelet decomposition of the input image on the
other hand.
Moreover, using more than one level of any hierarchical decomposition as
image features also intrinsically introduces segmentation on multiple scales.
Using wavelet frames, there is obviously no speed-up by using multiple scales,
since the transform is not decimated.
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Figure 4.10: Example of using statistics based terms for level set segmenta-
tion. In this example, Gaussian distributions of all bands of a 2-stage discrete
wavelet decomposition of the image were used in Equation (4.32). The weight
for the curvature term was chosen to be µ = 0.0001 · 2552. Comparing this
to Figure 4.9, one can see that the results are similar, as expected.
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4.9.5 Combination of Geodesic and Region Based Segmenta-
tion

Kimmel and Bruckstein [68, 69] integrate the geodesic active contour model
(4.15) and the piecewise constant region terms from the region based active
contour model (4.17) by using the former as regularisation term, replacing
the length term in the original region based model. In fact, choosing the
edge detector function g in (4.15) to be g(x) = 1 yields the original length
term.
Sagiv, Sochen, and Zeevi [20] revive this idea for a texture segmentation
approach, using the responses of a set of directed band pass filters as feature
vectors for a model similar to the multi channel Chan and Vese model (4.20).
As proposed previously in [68, 69], they replace the first, regularising term
by a geodesic length term, using as g a function that detects discontinuities
in texture rather than colour. Bresson et al. [138] also combine the geodesic
boundary term and the region term, additionally introducing a shape prior.

4.9.6 Additional Regularising Terms

Curvature Diffusion Regularisation

In the context of parametric active contours, Delingette et al. [32] propose
to push a curve towards a linear curvature profile by imposing a force

fnormal(s) =



 1

2 · |s0|

s+s0∫

s−s0

κ(σ) dσ − κ(s)



 · n(s) (4.34)

which depends on the deviation from the mean curvature κ around a neigh-
bourhood of size 2 · s0 on the curve. Here, n(s) denotes the outward normal
at point s on the curve.
The force (4.34) will drive a closed curve locally towards a smooth circle,
without the effect of shortening the curve as does the length term in (4.19).
Since using finite difference schemes to numerically calculate this force tends
to be unstable, Delingette et al. propose a geometric approach using trigono-
metric functions on point triples involving the tangent of the local turning
angle Φ of the curve.2 This regularising force is meant to be used in the
context of evolution of a parametric curve, for which Delingette’s geometric
implementation can readily be used. For an implicit method using level sets,
Delingette proposes that to get decent estimates for each level set, one should
extract parametric contour lines for each level set and apply (4.34) to the
parametric contour. Working on the whole embedding function would mean
to extract a parametric contour for each level set, in practice that means for

2There appears to be a typing error in the original paper where they explain the
calculation of L(r, Φ, e) — the signs of parameter µ in the case switch is swapped.
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a large number of level sets. This would be computationally expensive, but
an approximation for a level set method has been proposed in the master
thesis of Picinbono [104]. Equation (4.34) for two dimensions reads

F (u, v) =



 1

(2u0 + 1)(2v0 + 1)

u+u0∫

u−u0

v+v0∫

v−v0

κ(x, y) dx dy



− κ(u, v) (4.35)

where the neighbourhood is now (2 · u0) · (2 · v0). The mean curvature
regularisation is approximated on the two dimensional embedding function
by applying a linear filter to the curvature term ∇ · (∇Φ/|∇Φ|) in order to
get a local mean of the curvature. In the implementation used in this thesis,
the filter mask 



1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1




(4.36)

was applied to the discretised curvature term. Trying Picinbono’s approx-
imation suggested that the results are quite acceptable, depending on the
image and the chosen multiplicative factor for the force term (4.34). Figure
4.11 illustrates the impact of the approximation on an embedded curve: The
contours are smoothed, but are not globally shrunk like when using mean
curvature flow. Figure 4.12 illustrates the effect of Delingette’s regulariser
on a parametric curve. Here also, it can be seen that the curve is smoothed,
but not shrunken very much. Local features tend to be preserved, depending
on the width parameter s0 in (4.34).
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Figure 4.11: Influence of the level set approximation of Delingette’s curvature
diffusion regularisation (4.34) [32, 104]. The zero level set is smoothed, but
is not shrinked as opposed to the mean curvature flow. See also Figure 4.3.
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Angle functions

Original curve Smoothed curve

Original
450 iterations

Figure 4.12: Illustration of the effect of Delingette’s curvature diffusion regu-
larisation force, applied to a parametric curve. This shown curve, discretised
with 200 points, is smoothed for 450 iterations with a neighbourhood size of
5 points to each side. Top left: Original and smoothed curve, with interme-
diate steps shown every 50 iterations. Top right: The corresponding angle
functions of the curves, showing the smoothing effect there as well. Bottom
row: Original curve and the smoothed curve after 450 iterations.
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Signed Distance Penalisation

Li et al. [21] suggest to add another regularisation term P (Φ) to a segmen-
tation energy such as (4.17). P (Φ) is designed to penalise the deviation of
the embedding function Φ from the signed distance property and is given as

P (Φ) =

∫

Ω

1

2
(|∇Φ| − 1)2 dx dy , (4.37)

which leads to an additional internal force

∂φ

∂t

∣∣∣∣
Li

= α

(
∆Φ−∇ ·

( ∇Φ

|∇Φ|

))
. (4.38)

Even though they claim adding this term made re-initialisation obsolete for
their implementation of geodesic active contours, this term adds a very strong
regularisation which smoothes the contour very much. See Figure 4.13 for an
example of the Chan and Vese model with and without the term (4.38). It
can be seen that the curve is smoothed very much, while the signed distance
property is not maintained very well.
By adding the regularisation term (4.38), the energy minimisation itself
drives the embedding function towards the signed distance property.
The signed distance property is merely a property that leads to more stable
evolution and nothing that we particularly demand of the embedding func-
tion in order to minimise an energy that was originally crafted to yield image
segmentation. It is therefore intuitively better to let the embedding function
evolve so that the original energy functional is minimised and to re-initialise
from time to time in order to get the embedding function into a shape which
allows stable evolution, but without changing the interface curve. Note that
in practice, when using the standard approach for re-initialisation from Equa-
tion (4.45) [120], there is a usually small displacement of the interface curve
which depends on the used discretisation. However, the effect of this has only
a small impact on the final result compared to adding a term like (4.38).
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Figure 4.13: Influence of the term (4.38) on level set evolution. Top row:
initialisation and segmentation result with the term (4.38) with weight α =
0.4 · 2552. Middle row: initialisation and segmentation result without term
(4.38), but with re-initialisation every 10 time steps. In both cases, µ =
0.1 · 2552 (see Equation (4.19)). The rightmost image shows the resulting
embedding function Φ with contour lines indicated at the bottom. Bottom
row: resulting embedding function when using term (4.38) (left side) and
when using neither this nor re-initialisation (right side). It can be seen in the
top row that the signed distance property is hardly maintained, even though
it seems better than when using neither regularisation nor re-initialisation,
as shown in the bottom row. However, the unwanted smoothing effect on
the contour can clearly be seen, and the result of just using re-initialisation
looks much more pleasing.
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4.9.7 Prior Knowledge

Using a level set algorithm for image segmentation in a setting with more
realistic images, one faces a few problems. Those problems can be sum-
marised under the keywords noise, clutter, and occlusion. Noise can depend
on detector quality, the circumstances of image acquisition, or the modality
of the data. For example, images taken at night will usually contain a certain
amount of colour noise, or images taken in the rain will contain a bunch of
information on rain drops which we may not be interested in; images taken
with a high-quality astronomical camera might result in less noisy data than
still images from an ultra sound device.
Clutter usually refers to non-smooth image areas which do not belong to any
object, and which make the segmentation process considerably harder.
Occlusion of course means that parts of the object we would like to seg-
ment are not visible, but are for example occluded by other objects in the
foreground.

In order to alleviate some of the problems arising with realistic images,
prior knowledge about the objects to be segmented has been introduced by a
number of researchers, for example in [78, 79, 19, 30, 98, 106, 138, 144, 61].
This knowledge, or shorthand prior, can in energy minimisation schemes be
introduced as an extra term in the energy that is to be minimised.
Chen et al. have used a simple model of shape to steer a level set evolution
in [19]. In the simplest case, the shape is the average curve C⋆ of a set
of known curves, which may stem from a set of example images manually
segmented by a human expert. Chen adds a distance term to the geodesic
active contour model, which then reads

E(C, µ, R, T ) =

∫ 1

0



g(|∇I|C(p)) +
λ

2
d2(µR C(p) + T )

︸ ︷︷ ︸
prior term



 |C
′(p)| dp

(4.39)
where d(·) is the distance function of the argument from the prior curve C⋆.
µ, R, and T are a scaling factor, rotation matrix, and translation vector.
The energy functional is then minimised with respect to these parameters as
well.

Leventon et al. [79] have incorporated a statistical prior knowledge term
in the geodesic active contour model. They represent each of N given train-
ing curves as signed distance functions ui. The variability of the training
set is calculated with principal component analysis, which had been used
previously to model shape variability [57]. Using the matrix

M = (vec(u1 − µ), . . . , vec(uN − µ)) ,

with vec(·) an operator that creates a column vector from a d-dimensional
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grid, and with

µ =
1

N

N∑

i=1

ui ,

the eigenvalue decomposition U Σ U⊤ = 1/N M M⊤ of the covariance matrix
gives the principal modes of variation as the eigenvectors, which are the
columns of U . Using U , any signed distance function u, embedding a curve,
is approximated using α = U⊤

k (u−µ), the coefficients of the first k principal
components of the model learned from the training samples. The vector
α gives an approximation of u by u ≈ Uk α + µ. Leventon then uses the
vector α and eigenvalue matrix Σ to model the probability of a curve with
a Gaussian distribution. α and the pose of the target curve are estimated
in each evolution step and an additional force term is added to the update
equation.
Notice that the dimension of M M⊤ is K2, where K is the number of grid
points used to represent each embedding function. So, implicitly representing
the (d− 1)-dimensional level sets, say a curve for 2D images or a surface for
3D images, results in a considerable inflation of the amount of data compared
to a parametric representation.
An approach similar to Leventon [79] has been taken in [132].

Cremers et al. describe linear and non-linear statistical shape models
for segmentation with a parametric snake model [28, 25, 26, 30]. The lin-
ear model comprises a principal component analysis of a set of properly
aligned training curves. The model is incorporated in the energy minimisa-
tion scheme by adding a shape energy, for which it is suggested to use the
Mahalanobis distance [84] of the evolving curve, given the model computed
from the training set.

Bresson et al. [138] combine the shape term from Chen et al. [19] and
Leventon et al. [79], yielding a term depending on the PCA coefficients of
a shape and its euclidean transformation parameters with respect to the
segmented image.

Riklin-Raviv et al. [106] extend the standard Chan and Vese model as in-
troduced in Section 4.9.2 with a prior knowledge term. Their prior is exactly
one fixed embedding function Φ̃, which they transform similar to Chen et
al. [19]: they additionally allow for perspective transformations of the prior
embedding function Φ̃, which is the generalised cone consisting of all rays
passing through a fixed vertex and the points on the contour in the image
plane. Thereby, this model allows for a certain amount of perspective distor-
tion of the resulting prior contour, in addition to euclidean transformations.
Their shape energy is formulated in terms of the area of non-overlapping
regions of the current contour embedded in Φ, and the transformed prior
contour embedded in T (Φ̃), where T (·) denotes the transformation:

ERiklin-Raviv(Φ) =

∫

Ω

(
H(Φ)−H(T (Φ̃))

)2
do .
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The transformation parameters are optimised for in alternation with the
embedding function Φ.

This energy also has the effect that the term does not depend on the
size of the background area anymore [107], as in the method from Chen
in (4.39). This question has also previously been tackled by Cremers and
Soatto [29], see also references therein. For this reason, it may be a good
idea to consider it for prior integration into a level set method also without
perspective transformations as

EShape =
1

2

∫

Ω

[
H(Φ(x))−H(Φ̃(sΓ x + T )

]2
dx . (4.40)

Note that T now denotes translation. In order to find directions for gradient
descent, one derives

dEShape

dT
= −

∫

Ω

[
H(Φ(x))−H(Φ̃(sΓ x + T ))

]

·H ′(Φ̃(sΓ x + T )) · ∇Φ̃(sΓ x + T ) dx (4.41)
dEShape

ds
= −

∫

Ω
Γ x

[
H(Φ(x))−H(Φ̃(sΓ x + T ))

]

·H ′(Φ̃(sΓ x + T )) · ∇Φ̃(sΓ x + T ) dx (4.42)
dEShape

dθ
= −

∫

Ω

[
H(Φ(x))−H(Φ̃(sΓ x + T ))

]

·H ′(Φ̃(sΓ x + T )) · s · dΓ

dθ
· ∇Φ̃(sΓ x + T ) dx , (4.43)

assuming that

Γ =

(
cos θ − sin θ
sin θ cos θ

)
.

The transformation parameters are optimised for in turn with the augmented
general segmentation energy functional

E = µESmooth + EData + α EShape . (4.44)

The procedure is given in Algorithm 5.
To illustrate the process of segmentation with a prior template, Figure

4.14 shows a sequence of a segmentation using the colour based, two-phase
segmentation of Chan and Vese [131], including the prior term (4.40). The
same image was segmented without prior and the result is shown in Fig-
ure 4.15. Clearly, the gaps in the cross-shaped structure can be filled by
using the simple template prior, while the normal segmentation procedure
unsurprisingly results in several connected components.
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Algorithm 5 Level set segmentation with prior (4.40).

Require: Φ: embedding signed distance function, Φ̃: embedding signed
distance function of the prior contour, s, θ, T : initial scale, rotation, and
translation parameters

1: while Φ has not reached steady state do

2: Update Φ using gradient descent of E in (4.44), for one time step
3: s, θ, T ← arg mins,θ,T EShape ⊲ from Equation (4.40), using (4.41),

(4.43), optionally (4.42)
4: end while
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Figure 4.14: Level set segmentation with prior using (4.44), with µ =
0.2, α = 0.8, λ1,2 = 1. The data term is the colour based term after Chan
and Vese [131]. The upper left image shows initialisation, the lower right
shows the final result. The red, thin line outlines the prior template, the
blue line outlines the zero level set. See also Figure 4.15.
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Figure 4.15: Level set segmentation without prior after (4.44), with µ =
0.2, α = 0, λ1,2 = 1. The data term is the colour based term after Chan and
Vese [131]. The upper left image shows initialisation, the lower right shows
the final result. The red line outlines the zero level set. See also Figure 4.14
for the same segmentation with a prior.
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More recently, Rousson and Paragios [110] use a prior energy based
on pixel-wise Gaussian distributions of aligned training samples given as
signed distance functions {Φ̃1, . . . , Φ̃n}. From these, an average Φ̃m and
standard deviation σ̃m are calculated. These are not signed distance func-
tions any longer; this issue is resolved in [110] by applying signed distance
re-initialisation and using the resulting Φm and “confidence map” σm in place
of the mean and standard deviation for the Gaussian distributions.

4.10 Initialisation

The results of Chan and Vese’s region based level set method for image
segmentation depend on the initial embedding function Φ0. The reason is
that calculating on the zero level curve, one ends up in a local extremal of the
energy functional, which is non-convex. Depending on how Φ is initialised,
different local optima will be found. A few widely used possibilities for the
initial zero level set are

1. One centred circle of varying radius.

2. Several small circles, spread evenly across the image.

3. One large box near the boundary of the image. This has mainly been
used for geodesic active contours. For region based active contours, it
does not make a lot of sense, since one of the two initial regions will
be initially very small compared to the other.

4. An ellipse or circle overlapping the object of interest. This is then of
course depending on the individual image.

One can also use the iso curve of the mean grey value of an image as initial
zero level curve. This has proven to give good results on a few images, which
can be understood when realising that the assumption we implicitly make
about an image is that we can segment it into two more or less homogeneous
regions. So at least for the image term in (4.19), it is at least not counter-
intuitive that the mean grey value iso curve will in many cases give a good
initialisation. Figure 4.16 shows results for a few different initialisations for
one image.
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Figure 4.16: Impact of initialisation on level set segmentation. Left column:
Initialisation. Right column: Respective segmentation results. One can
see how different initialisations lead to different results. The region based
stopping condition (4.50) was used. All parameters are the same for all
three segmentations — only initialisations differ. Clearly, the segmentation
ends up in a different local minimum for the first initialisation (one big
circle) than for the other two. Using multiple small circles (middle) or mean
grey value (bottom) as initialisation in this case apparently lead to the same
minimum, or at least very similar minima. Notice that this is not necessarily
so. However, a grid of small circles seems to be a good choice in many
experiments. The data term used here is the Gaussian grey value distribution
from [109] described in Section 4.9.3.
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4.11 Re-Initialisation (a.k.a. Re-Distancing)

The signed distance function has nice properties with respect to the be-
haviour of the level set evolution. Since |∇Φ| = 1, the normal of the embed-
ding function Φ becomes

N = div
∇Φ

|∇Φ| = ∆Φ,

where ∆ is the Laplace operator, and working with normals becomes much
simpler. Also, there are no areas where |∇Φ| is extraordinarily large or
small, which can cause numerical problems. However, even if the embedding
function is initialised to be a signed distance function, this property is in gen-
eral not automatically maintained by the evolution process. This means the
signed distance function will generally develop into something different dur-
ing evolution. This is why many researchers decide to use a re-initialisation
procedure to regain the signed distance property during evolution. The stan-
dard approach introduced in [128] is to solve the re-initialisation equation

Φt + S (Φ0) · (|∇Φ| − 1) = 0 (4.45)

to steady state. S(·) denotes the sign of its argument, Φ0 is the initial
embedding function. In [128, 120] it is mentioned that using a smeared
version of the sign function S adds numerical stability, as they found out by
experimentation; Sussman et al. [128] suggest using

S(Φ0) =
Φ√

Φ2
0 + (∆x)2

.

For functions Φ which are initially far from a signed distance function, [99]
introduces

S(Φ) =
Φ√

Φ2 + |∇Φ|2(∆x)2
. (4.46)

Equation (4.46) then has to be updated in each step when solving (4.45).
It does in fact work better in practice and can even be used to initialise a
signed distance function from an initially binary function Φ0. An illustration
is shown in Figure 4.17.
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Figure 4.17: Illustration of re-initialisation by solving Equation (4.45) with
the sign approximation (4.46). The initial Φ0, shown at the top left, is a
binary function with values {−0.5, 0.5}. The following graphs show the re-
initialisation at intermediate steps and at the lower right the final result can
be seen. Clearly, the indicated zero level set changes slightly during the re-
initialisation. Compare also with Figure 4.18. A direct comparison of the
resulting zero level sets can be seen in Figure 4.19.
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Ideally, the interface {x|Φ(x) = 0} will not be changed by re-initialisation.
In numerical implementations, however, the interface will be moved, as indi-
cated in Figures 4.17 and 4.19. To minimise this effect, Sussman et al. [127]
introduce a local area preserving constraint, demanding that the area inside
(and outside) the boundary does not change. This is done by adding a term
on the right hand side of Equation (4.45):

Φt + S(Φ0) · (|∇Φ| − 1) = λ ·H ′(Φ) · |∇Φ| . (4.47)

The right hand side will only be acting on grid points close to the in-
terface. Taking that the area of a grid cell (i, j) is Ai,j =

∫
Ωi,j

H(Φ) dx,
demanding the area change to be zero amounts to

∫

Ωi,j

H ′(Φ) · Φt dx = 0 . (4.48)

Inserting Φt from Equation (4.47) into (4.48) leads to λ:

∫

Ωi,j

H ′(Φ) ·
[
−S(Φ0) (|∇Φ| − 1) + λ H ′(Φ) |∇Φ|

]
dx = 0

⇒ λi,j =

∫
Ωi,j

H ′(Φ)S(Φ0) (|∇Φ| − 1) dx
∫
Ωi,j

H ′2(Φ) |∇Φ| dx
.

One then calculates λ and uses it in (4.47). This retains the zero level set
more accurately in comparison to (4.46) at the cost of a higher computational
burden. An illustration can be found in Figure 4.18. It can be seen that the
zero level set changes a lot less than in Figure 4.17. A direct comparison
between the zero level sets resulting from re-initialisation and the initial zero
level set can be seen in Figure 4.19.
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Figure 4.18: Illustration of re-initialisation by solving Equation (4.47) with
the sign approximation (4.46). The initial Φ0, shown at the top left, is a
binary function with values {−0.5, 0.5}. The following graphs show the re-
initialisation at intermediate steps and at the lower right the final result can
be seen. Observe here that the indicated zero level set is changed less than
in Figure 4.17. A direct comparison of the resulting zero level sets can be
seen in Figure 4.19.
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Osher and Fedkiw [120] note that this approach significantly improves
upon spatial discretisations using low order polynomial approximations, but
that more accurate discretisations may not need this extension.

Figure 4.19: Comparing the resulting and initial zero level sets of re-
initialisation using Equation (4.45) with (4.46) (left hand side) and Equation
(4.47) (right hand side). The initial zero level set is indicated in blue, dashed
lines, the resulting re-initialised zero level set in a red, thicker line. Clearly,
on the left side the result is moved more from the initialisation than on the
right side.

4.11.1 Drawbacks of Re-Initialisation

The practice of re-initialising the embedding function is beneficial to the
stability of the level set method, but is also somewhat random. It is unclear
if and when the re-initialisation should take place. After 10 iterations? 100
iterations? When a fraction of the gradient of Φ is “sufficiently far” away
from one? The choice of if and when to re-initialise seems arbitrary. Often,
authors state that they re-initialise after each time step of the actual gradient
descent. This is crucial when the implementation numerically relies on the
signed distance property.

There are other approaches to force Φ to be a signed distance function,
for example one by Li [21] where a term for penalising deviation from the
signed distance property was added to the energy functional that is being
minimised by the level set evolution. Restating from Section 4.9.6, this term
has a strong regularising effect that can smoothen the zero level curve more
than may be wanted by the user; in fact, one can even leave out the mean
curvature term from the standard Chan and Vese model if using Li’s regu-
lariser. Since the aim of the energy minimisation is to yield a segmentation
and not to push Φ to signed distance, adding a term as in [21] is not a good
choice.
Re-initialisation, having very little impact on the zero level curve itself, there-
fore appears to be by far superior.



92 CHAPTER 4. LEVEL SET SEGMENTATION

Another more recent approach that tries to free the level set method from
the need for re-initialisations was provided by Gelas et al. in [44]. They model
the embedding function Φ and the zero level set with compactly supported
radial basis functions to get a continuous representation.

4.12 Stopping Condition

Minimising an energy, we would like to stop the evolution process when a
steady state is reached, that means when the energy is not further minimised
by the gradient descent. In terms of a software implementation, one can con-
tinue the evolution until the energy Et no longer decreases. In practice, when
the numbers involved are on the order of magnitude of machine precision,
one can use the condition

Et > Et−1 . (4.49)

Another possibility is to examine the step ∆Φ and stop whenever

max{∆Φ} < ε

for some small, fixed ε.
A third way to detect stationarity is to examine the change of the inside (or
outside) region of the zero level set within n time steps,

D =

∫

Ω
[H(Φt−n)−H(Φt)]

2 dx ,

and stopping if
D < ε . (4.50)

Note that using the actual energy value as stopping condition only works
when we are capable of calculating the energy. For terms like the curvature
diffusion regularisation in Equation (4.35), where only a force is given, it is
not clear how to calculate the energy. Therefore, it is generally a good idea
to use the region based stopping condition (4.50).

4.13 Numerical Implementations

This section describes the numerical methods that were used to create the
segmentation examples shown in this thesis. Given a partial differential
equation such as (4.19), one seeks a numerical solution. The implementa-
tion used in this work uses finite differences and an explicit scheme, which
simplifies the task of augmenting the basic method with new experimental
terms. Such terms can for example be additional priors, or different regu-
larising terms. Fully implicit schemes require considerably more effort, but
on the other hand they are unconditionally stable and allow for large time
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steps. Such schemes may therefore be of interest in cases where the involved
system of equations can be expected to remain the same, and where these
systems can be compiled and solved efficiently.

4.13.1 Finite Differences

When calculating with data defined on a discrete grid, one has to approxi-
mate derivatives numerically. Let us assume that the grid is always regular.
A widely used method that is relatively easy to use, are finite differences. The
derivative of a function f(x) can be approximated in several ways. Consider
the forward (4.51), backward (4.52), and central (4.53) differences

∆+xf(x) := f(x + ∆x)− f(x) (4.51)

∆−xf(x) := f(x)− f(x−∆x) (4.52)

δxf(x) := f(x +
1

2
∆x)− f(x− 1

2
∆x) (4.53)

with the grid spacing ∆x. These can be used as approximation of derivatives
by multiplying by a factor 1/∆x — but care must be taken in many cases as
to which approximation is appropriate and which is not. A prominent case
is the upwind scheme which will be mentioned further down in this section
in the context of the discretisation of the signed distance re-initialisation.
A second order central difference can be obtained by applying the central
difference operator twice:

δ2
xf(x) := f(x + ∆x)− 2 f(x) + f(x−∆x) . (4.54)

4.13.2 Temporal Discretisation

Discretising the left hand term of

∂Φ

∂t
+ f(Φ) = 0 (4.55)

can be done in the simplest case with a forward difference as

Φn+1 − Φn

∆t
+ f(Φ) = 0 . (4.56)

This is also called forward Euler scheme and leads to a truncation error of
first order, O(∆t). More accurate schemes for the temporal discretisation can
be used, although [120] notes that in most cases, forward Euler discretisation
suffices. If necessary, higher accuracy can be achieved by applying a higher
order Runge-Kutta scheme (see e.g. [137]): At time step n, calculate Φn+1

with the forward Euler method. Using this, go one step further to get Φn+2

in the same manner and calculate a weighted average

Φn+1 =
1

2
(Φn + Φn+2) .
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This scheme would be second order accurate.
A third order scheme starts like the second order scheme, but in the averaging
step one calculates

Φn+ 1
2

=
3

4
Φn +

1

4
Φn+2 ,

then uses this intermediate solution to calculate another forward Euler step
to yield Φn+ 3

2
, and finally averages again to get

Φn+1 =
1

3
Φn +

2

3
Φn+ 3

2
.

However, now having mentioned higher order approximations for the time
discretisation, all results depicted in this thesis were obtained using the sim-
ple forward Euler scheme.

4.13.3 Spatial Discretisation

Curvature Term

The term

div

( ∇Φ

|∇Φ|

)
(4.57)

in the basic evolution equation (4.19) for the Chan and Vese model can for
a signed distance function with |∇Φ| = 1 be simplified to

∇ · ∇Φ = ∆Φ =
d∑

i=1

∂2Φ

∂x2
i

.

Here, d is the dimensionality of the domain of Φ; in the case of 2D images,
d = 2.
Then, leaving all other terms out of the evolution equation, one ends up with
the heat equation3

∂Φ(x, t)

∂t
=

d∑

i=1

∂2Φ(x, t)

∂x2
i

.

For the sake of simplicity, let us look only at one dimension. One can then
write the discretisation

Φn+1 − Φn

∆t
=

δ2
xΦn

(∆x)2
, (4.58)

assuming a regular grid with grid spacing ∆x.

3This equation is used to model the distribution of heat over time. The same equation
is also called diffusion equation, since it is also used to model diffusion processes.
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Not relying on the signed distance property, one can also choose to use
a direct discretisation of (4.57) by using a forward difference for ∇Φ/|∇Φ|
and a backward difference for the second derivatives (or vice versa),

div

( ∇Φ

|∇Φ|

)
≈

d∑

i=1

D−xi



 D+xi
Φ√∑d

j=1(D+xj
)2 + ε



 , (4.59)

where we set

D±xi
f(x) :=

∆±xi
f(x)

∆xi
.

The term ε is a small constant to guarantee numerical stability at grid points
where the forward differences are near zero, that is near machine precision
in a computer implementation.

Re-initialisation

The differential equation (4.45) to solve for re-initialisation is

Φt + S (Φ0) · (|∇Φ| − 1) = 0 (4.60)

and describes motion in normal direction similar to the level-set equation
(4.13). When discretising (4.60), some care must be taken concerning the
term S(Φ0) · |∇Φ|. We must use an upwind scheme (see Appendix A.2),
writing

S (Φ0) · |∇Φ| (4.61)

as (
S (Φ0)

∇Φ

|∇Φ|

)

︸ ︷︷ ︸
=:a

∇Φ . (4.62)

But now, the sign of term a depends on the sign of S∇Φ. This is not a
problem as long as the signs of the forward and backward differences ∆+Φ
and ∆−Φ are equal. If they are not, the upwind scheme will break down
since the choice of forward or backward difference alters the sign of a. This
is the case in “V”-shaped situations as indicated in Figure 4.20. At the cusp,
the forward and backward differences yield different signs. These situations
are handled explicitly by Godunov’s scheme [120, 111].
Let us look at only one dimension in the following. The choice for a finite

difference is made for each dimension independently.
If S ∆−xΦ ≤ 0 and S ∆+xΦ ≥ 0, the motion is expansive, which means
information flows out towards the left side and towards the right side. Go-
dunov’s scheme sets the derivative Φx = 0 in this case. If S ∆−xΦ ≥ 0
and S ∆+xΦ ≤ 0, information is flowing in from both directions. In this
case, Godunov’s scheme chooses the direction from which information flows
in faster, that means it chooses Φx = ∆−xΦ if |S ∆−xΦ| > |S ∆+xΦ|, and
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Figure 4.20: Critical situations handled by Godunov’s scheme.

Φx = ∆+xΦ otherwise.
In case S ∆−xΦ and S ∆+xΦ both have the same sign, Godunov’s scheme
gives the same results as the simple upwind scheme.

4.13.4 Implicit Methods

Instead of assuming only values from the past in calculating finite differences,
one can also choose to use values from the future. This results in implicit
finite difference schemes which are always stable and convergent, but at a
higher computational cost per time step compared to explicit schemes. Also,
the implementation effort is usually higher for implicit schemes. Generally,
the approximation of a PDE in our level set setting is then

Φi+1 − Φi

∆t
= −∇E(Φi+1) (4.63)

and we are seeking the values for Φi+1 at time step ti+1. Transforming (4.63),
one gets the system

Φi+1 +∇E(Φi+1)∆t = Φi

which must then be solved in each time step. For a simple example, consider
the heat equation

∂Φ

∂t
−∇2Φ = 0 .

Using second order central differences for ∇2Φ, the discretisation then reads

Φi+1(x)− Φi(x)

∆t
=

Φi+1(x + 1)− 2 Φi+1(x) + Φi+1(x− 1)

h2
.

For the sake of clarity, the above equation is written only for one space
dimension with grid spacing h. Then, solving for Φi(x),

Φi+1(x)
h2

∆t
− (Φi+1(x + 1)− 2 Φi+1(x) + Φi+1(x− 1)) = Φi(x)

h2

∆t
(4.64)
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⇒ (1 + 2 r)Φi+1(x)− r Φi+1(x + 1)− r Φi+1(x− 1) = Φi(x) (4.65)

with r := ∆t/h2. This is a tri-diagonal linear equation system which is solved
in each step.

While implicit methods are stable, they also generally require more com-
putational effort per time step and more implementation effort than explicit
methods. On the other hand, the time step is not restricted as in explicit
methods. Also, modification of an existing implementation is much simplified
by using an explicit implementation. For these reasons, the experimentation
code that was used in the scope of this thesis is using the explicit method.
New terms can in this way simply be added and no equation systems need
to be assembled.

4.14 Further Extensions and Perspectives

In this section, some directions of recent research that have so far not been
mentioned are pointed out. While none of this was actually used in the
experiments within this thesis, it should be understood as leads to other
interesting topics connected to level set segmentation. It should be pointed
out again at this point, that the literature about curve evolution and level
set based segmentation is vast and constantly evolving, and not everything
can be mentioned here.

4.14.1 Topology Preservation

The idea of preservation of topology during level set evolution has been pre-
sented by a few authors, as mentioned further below. This sub-section does
not claim to be a concise overview of methods.
Most recently, Le Guyader and Vese [75] proposed an extension of the geodesic
active contour model to preserve the topology of an evolving contour. While
the freedom to change topology can be one of the big strengths of the im-
plicit level set formulation of image segmentation, this may not in all cases
be wanted. If, for example, objects of known topology are to be extracted
from images, then this property of the level set method is clearly a drawback.
However, one would still like to benefit from the independence of parametri-
sation that comes with the implicit formulation.
With this motivation, [75] introduces a topology preserving method based on
geodesic active contours. This idea of topology preservation was not new at
that time, and [75] has been preceded by works from Han et al., Alexandrov
et al., Sundaramoorthi et al., and Rochery et al. [86, 2, 52, 53, 126, 125].
The advantage of [75] lies in its simplicity and seamless integration into the
implicit framework. Topology preserving extensions to the basic segmenta-
tion method can for instance be of interest in the application of tracking,
where a known object is to be tracked that is not supposed to change its
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topology during tracking. Also, when segmenting certain objects of which
the topology is known, separating a curve or merging two curves may be un-
wanted during curve evolution. The authors of [75] mention some examples,
like the segmentation of brain tissue from magnetic resonance images, or the
segmentation of multiple cells from microscopic images, where single cells
may be very close to each other, so that conventional level set segmentation
will surely result in one curve, even if initialised with more than one. So
clearly, for these use cases and specifically for semi–automatic segmentation
where the user initialises with a few separate curves, topology preservation
can be a very nifty feature.
The topology constraint is incorporated in [75] by adding an energy to the
segmentation energy F (Φ), so that the minimisation task is now

min
Φ

F (Φ) + µE(Φ) . (4.66)

The idea is to forge E so that on any two distinct points x, y on the zero
level set C := {z|Φ(z) = 0} which are close to each other and about to split
or merge C, an additional, repelling potential is added. Assume that Φ is
a signed distance function, so that |∇Φ(x)| = 1, and that Φ(x) < 0 in the
inside of C and Φ(x) > 0 in the outside. In that case, ∇Φ(x) is the unit
outward normal vector of any level set at point x. In case a split or merge is
imminent close to two points x, y ∈ C, the directions of the normals at x, y
will be about opposite:

〈∇Φ(x),∇Φ(y)〉 ≈ −1 .

Le Guyader et al. [75] propose the energy

E(Φ) = −
∫

Ω

∫

Ω

[
exp

(
−‖x− y‖22

d2

)
· 〈∇Φ(x),∇Φ(y)〉

·H(Φ(x) + ℓ)H(ℓ− Φ(x))︸ ︷︷ ︸
h(Φ(x))

·H(Φ(y) + ℓ)H(ℓ− Φ(y))︸ ︷︷ ︸
h(Φ(y))

]
dx dy . (4.67)

The exponential term weights the rest of the energy depending on the dis-
tance of points x, y. The terms h(Φ(x)), h(Φ(y)) effectively restrict the cal-
culation to a band of width ℓ around the zero level set. Finally, when the
inner product 〈∇Φ(x),∇Φ(y)〉 of the two normals at x, y is negative, the
energy gets large, while if it is positive, the energy is lower.
Calculation of the first variation of (4.67) is presented in [75] along with
numerical methods to compute the gradient descent. Notice that the term
(4.67) introduces a global dependence between data, and that the evolution is
computationally intensive at first sight. The update for one time step would
be of order O(n2), when n is the number of data points — the evolution
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equation contains an integral over the whole image domain. To soften the
impact of this drawback, [75] proposes to only calculate the integral locally
on a square around a point x, the size of which depends on ℓ. This does
make sense since the integral also contains the windowing functions h(·).

4.14.2 Metric Issues

Sundaramoorthi et al. [124] point out that it had previously been observed
[88, 141] that all previous work on active contour evolution had implicitly
assumed a specific metric when calculating gradient flows; the gradient de-
pends on the used inner product by

Dhf = 〈h, grad f〉 ,

Dhf denotes the directional derivative of f in the direction h. After defining
their shape space M which consists of closed, regular curves, they define a
set of inner products on the tangent space Tc(M), c ∈M . Let h, k ∈ Tc(M),
L the length of the curve c, then the considered inner products from [124]
are

〈h, k〉H0 :=
1

L

∫

c
h(s) k(s) ds (4.68)

〈h, k〉Hn := 〈h, k〉H0 + λ L2 n
〈
h(n), k(n)

〉

H0
. (4.69)

Here, h(n) = dnh(s)
dsn denotes the n-th derivative of h. The usually implied

inner product (4.68) is called the H0 inner product. The authors of [124]
stress some undesirable features of flows based on H0 gradients, such as non-
smoothness of gradient flows, sensitivity to noise, locality of deformations.
Because of this, they consider using higher order inner products (4.69) for
active contours. Looking at (4.69), it is stressed in [124] that when increasing
λ so that ultimately λ→∞, translations are preferred in gradient flows in a
natural way. So by choosing λ, one can steer the preference of translations
over other deformations during contour evolution — notice this is in contrast
to H0 gradient flows, which as mentioned allow only for local deformations
and do not include a global regularity term.
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Chapter 5

View Point Tracking Using

Shape Sub-Manifolds

5.1 Notation

The lower case φ, θ denote spherical coordinates and should not be confused
with (Φ, Θ), which denotes an element of the pre-shape space C.

5.2 Introduction

Chapter 3 introduced a space of shapes, or rather pre-shapes with a matching
procedure, that will now be put into action. Recall from the introductory
Chapter 1 that we would like to investigate tracking of a view point relative
to an object, using samples of shapes from different view points only. The
considered setting is as follows. Given that we know shapes ci ∈ CN of one
specific object, taken from a number of positions on a view sphere around the
object. These may have been extracted from photographs taken from around
the object, possibly in a controlled environment, or stem from a model of the
object in question. Now, associate a view position pi ∈ S

2 with each shape
ci sampled in this way. Given a sequence of images in which the object is
moving in 3D, we would then like to approximately track the position of the
view point on S

2 relative to the object, based only on the given sampled
pairs of shape and position (ci, pi).
For extraction and tracking of a silhouette in a sequence of images, the level
set method for segmentation can be readily applied. An extension to the
basic region based level set method will be used, introducing a prior term
stemming from the object model. The level set method is detailed on in
Chapter 4.
As it will be needed in what follows, a concept of means on Riemannian
manifolds is discussed in the following section.
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5.3 Statistics on Shape Manifolds

When working with a shape manifold, we will have to calculate empirical
means. Pennec [101, 139] has detailed on means, and also covariances, and
a normal law on manifolds — this allows one to even use statistical methods
locally on manifold data, such as principal component analysis.
This section describes Karcher means [62] and a gradient descent algorithm
to calculate a Karcher mean in practice. Covariance and Gaussian distribu-
tions are not needed in what follows, but they may be of interest in further
work. For details, the reader is referred to [139]. Note also that these tech-
niques are of course not restricted to shape manifolds, but can be applied to
any Riemannian manifold.

5.3.1 Karcher Means

Given a Riemannian manifold M , with a geodesic distance d(x, y) defined
for x, y ∈M .

Definition 5.3.1 (Variance) Let P be a probability on M .

σ2(y) = E[d2(y, x)] =

∫

M
d2(y, x) dP (x)

is called variance with respect to y.

Definition 5.3.2 (Fréchet expectation) The set of points

E[X] = arg min
y∈M

E[d2(y, x)]

are called Fréchet expectation. X is the support of P (x) on M .

In the following, the notion of geodesic completeness will be used, and is
therefore defined here.

Definition 5.3.3 (Geodesic completeness) A Riemannian manifold M is
called geodesically complete, if every geodesic γ can be extended to R, i.e.
γ : R 7→M .

We will later also need the notion of cut locus and geodesic ball [33]:

Definition 5.3.4 (Cut locus) Given a geodesically complete Riemannian
manifold M , x ∈M , and v ∈ Tx(M). If a finite R ∋ t0 ≥ 0 exists for which
the geodesic Expx(t v) is still a geodesic of minimal length for t ∈ [0, t0], but
not for t > t0, then Expx(t0 v) is called cut point for x. The set of all cut
points for all v ∈ Tx(M) is called the cut locus C(x).

For instance, the cut locus of a point on the sphere consists of the respective
antipodal point.
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Definition 5.3.5 (Geodesic ball) Let B(y, r) = {x ∈M |d(x, y) < r} so that
B(y, r) does not contain the cut locus of the centre y, so that for every point
in B there exists a unique, minimal geodesic to y. Then B(y, r) is called
geodesic ball. B(y, r) is called regular if 2 · r · √κ < π, for κ the maximal
Riemannian curvature in B(y, r).

Note that the Fréchet expectations are global minima — Karcher means,
in contrast, are local minima (and thereby are a superset of Fréchet expec-
tations). The original notion from Karcher [62], which is used synonymously
with Karcher mean, is Riemannian centre of mass. Under certain conditions,
the Riemannian centre of mass always exists and is even unique. With p a
probability density function for elements of a Riemannian manifold M , these
conditions, enumerated in [139], are:

Property 5.3.6

1. If the support of p is completely inside a regular geodesic ball B(y, r),
there exists exactly one Riemannian centre of mass within B.

2. If the support of p is completely inside a regular geodesic ball B(y, r)
and if B(y, 2 · r) is also geodesic and regular, then σ2

x(z) is convex
and has exactly one critical point in B(y, r), which is the Riemannian
centre of mass.

The two were established by Kendall [67] and Karcher [62], respectively.
Property 5.3.6 implies that if the neighbourhood on M of which a Karcher
mean is calculated is local enough, then there is a unique Karcher mean. In
practice, this means given a finite number of points on M , a unique empirical
mean

µ̃ = arg min
µ

1

N

N∑

i=1

d2(µ, xi)

exists if the points are close enough in the sense stated above, i.e. if xi ∈
B(µ̃, r) as above and if B(µ̃, 2 · r) is geodesic and regular.

5.3.2 Computing the Mean with Gradient Descent

Assuming a probability P (x) defined on x ∈M , we seek

µ = arg min
y

σ2(y) = arg min
y

∫

M
d2(y, x) dP (x) .

Notice that the cut locus C(y) of y must be “out of the scope” of P (x),
meaning that P (x) = 0 whenever x is in the cut locus of y, to ensure differ-
entiability of σ2(y). Then, the gradient of σ2(y) is

(grad σ2)(y) = −2

∫

M
Logy(x) dP (x) = −2 · E[Logy(x)] . (5.1)
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Figure 5.1: Illustrating Karcher means. Left: Karcher mean (red cross) of
a set of points in the canonical 2D vector space. Middle: Karcher mean
(red cross) of a set of points on the unit sphere S

2. Right: Karcher mean
in the space of rotations in 3D. The rotations are illustrated here as tripods
representing the rotated standard basis {e1, e2, e3} in red, green, and blue,
respectively. The input data points are shown as dashed, thin lines, the
mean as solid, thicker lines. All means were calculated using exactly the
same algorithm using the gradient descent (5.3).

E[·] denotes expectation, and Ty(M) ∋ Logy(x) = Exp−1
y (v) if Expy(v) = x.

Pennec notes in [139] that the variance

σ2(y) =

∫

M\C(y)

d2(y, x) dP (x) (5.2)

is in general defined only on M excluding the cut locus C(y) which depends
on the variable y, and that therefore, it is not immediately clear that just
differentiating under the integral is valid. In the same paper, Pennec proves
that (5.1) is indeed the gradient of (5.2). Using this result, one can define
a gradient descent algorithm to find a local Riemannian centre of mass. For
an empirical mean, given xi ∈ M , i ∈ {1, . . . , N}, this leads to the update
rule

yi+1 = Expyi



 1

N

N∑

j=1

Logyi
xj



 . (5.3)

The exponential map is taking the combination of tangent vectors from
Tyi

(M) back to M to yield the update yi+1 ∈ M . The choice of initial
value y0 is of some importance, since the minimum constituting the mean is
local; one can for example set y0 ← xi for some i ∈ {1, . . . , N}.
Notice that Karcher means are very general, and not restricted to specific
manifolds, like shape manifolds. In the case of a vector space with the stan-
dard inner product, the Karcher mean is just the usual mean. Figure 5.1



5.4. OBJECT APPEARANCE 105

shows means for points in R
2 with the canonical inner product, for the unit

sphere, and for the group of rotations SO3. For all three, the exact same
implementation of Karcher means was used, only with different exponential
and logarithmic maps, and inner products. Definitions for a covariance on
Riemannian manifolds are also available; they are not used within this work,
so the reader is referred for example to [139].

5.4 Object Appearance

5.4.1 Sampling a Pre-Shape Sub-Manifold

Let us assume to be given a set of contours of a fixed object collected from
different viewpoints (see Figure 5.2), and regard these contours as samples of
a sub-manifold CS,N of CN , that we assume parameterised by the view-sphere
S

2.

Figure 5.2: Illustration of a view sphere. Right hand: Indicated are three
sampled contours of an aeroplane seen through a camera from points on the
view sphere. The object is located at the centre of the sphere. Left hand:
Illustration of the shape sub-manifold. The green lines between sphere and
manifold indicate corresponding points, the blue arrow indicates a point
that is interpolated using, in this case, three points which are neighbours
on the sphere. This specific object was taken from the Princeton 3D shape
benchmark [103].

Specifically, we take sample points from a unit sphere and approximate con-
tours using these samples. It should be noted that these approximations can
be expected to deviate from the true points on the sub-manifold CS,N . This
deviation will likely depend on the local properties of the pre-shape manifold
and the density of the sample points. Furthermore, we conjecture it may be
helpful to have the view sphere sampling depend on the local properties of
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CN to lower the deviation from CS,N . This line of thought is discussed a little
further in Section 6.1.

5.4.2 Interpolation with Weighted Karcher Means

Recalling that we do not really know the sub-manifold containing all shapes
generated by all possible views of an object, but are given only a finite
number of shape samples C = {c1, . . . , cn} at known associated view sphere
positions, we need to be able to approximate shapes corresponding to an
arbitrary view point p ∈ S

2. This is done by locally interpolating using the
shape samples C. Locally means that one finds a small neighbourhood M of
samples from C so that the corresponding view coordinates are close to p.
Using this neighbourhood, a weighted Karcher mean

µ = arg min
m∈C

|M |∑

i=1

ai · d(m, ci)
2 (5.4)

can be used as an approximation of the shape in CS,N corresponding to the
view sphere position p. The weights ai are of course depending on the point
p.
One may argue that this would not make a lot of sense in general since, given
contours of different views of the same 3D object,

1. corresponding points on the contour may be invisible due to self-
occlusion, and

2. the path found on CN may not at all correspond to the change that
the contour undergoes when a camera moves around the object on a
view sphere.

Given that the view sphere is sampled densely enough, our hope is that
effects like these are sufficiently small, and specifically considering point 2 it
can be said from experiments that the interpolated changes are indeed close
to the real change in object silhouette, depending on how much change is
going on at the respective position on the view sphere.
Figures 5.6 and 5.7 give an idea of the interpolation quality at a few chosen
locations for one object. The locations were deliberately chosen to show
useful and less useful interpolations.

The quality of interpolation also depends on the complexity of the object
in question — a simple cube will exhibit similar contours within a wider range
of viewing angle than a more complex object, say an office chair, the shape
of which may change more dramatically in the same range of angle. This
leads to the conclusion that more complex objects need to be sampled more
densely.
After these considerations, the interpolation will now be described. Please
keep in mind that here, (φ, θ) in lower case greek letters denote a point on the
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sphere S
2, not an element of the space of vector pairs HN which is denoted

in upper case greek letters (Φ, Θ).

s3

s2

s

s1

Figure 5.3: Triangle of shapes or sphere points, respectively. Using the
shapes at {s1, s2, s3}, a shape at s is to be interpolated. On the left hand,
the (shape) manifold is illustrated.

Let ci = (Φi, Θi) ∈ CN , i = {1, 2, 3} be three shapes corresponding to
three points si = (φi, θi) ∈ S

2 on the unit sphere which are the closest known
points to a point s = (φ, θ) ∈ S

2 as illustrated in Figure 5.3. In order to
interpolate, we calculate a Riemannian centre of mass (cf. Section 5.3) by
minimising the variance using gradient descent with the update rule

pk+1 = Exppk

(
3∑

i=1

ai · Logpk
(ci)

)
,

3∑

i=1

ai = 1 . (5.5)

Let
p0 := c1 .

Then, compute the convex sum, using the barycentric coordinates a of (φ, θ)
in the triangle on S

2, on the tangent space and go back to CN using the
exponential map. Finally, update p0 with this point and repeat until conver-
gence. The steps are summarised in Algorithm 6. Illustrations can be found
in Figures 5.4 and 5.5. The three shapes shown in the triangle corners were
chosen randomly from shape databases, and others within the triangle are
interpolated as described before.
This is of course not restricted to 3 neighbours, but can be done with any
number of neighbours. The neighbourhood should not be too large in order
to match only shapes against each other which can be matched in a mean-
ingful way — otherwise, one would have to expect interpolations which do
not resemble an actual view of the object.

5.4.3 Approximation by Kernel Regression Estimator

Beside the use of barycentric coordinates in a triangle as described above,
a further possibility for obtaining weights for weighted Karcher means is



108 CHAPTER 5. VIEW POINT TRACKING

Algorithm 6 Geodesic interpolation in a triangle of points sampled from a
view sphere. Match is the matching procedure described in Section 3.2.5,
returning the matched curve.

Require: ci ∈ CN , si, s ∈ S
2 , i ∈ {1, 2, 3}

1: procedure KarcherInterpolation({c1, c2, c3}, {s1, s2, s3}, s)
2: Find start points and orientation of {c2, c3} w.r.t. c1 ⊲ or w.r.t.

another fixed curve
3: {e, e1, e2, e3} ← The 3D coordinates of {s, s1, s2, s3} on the unit

sphere
4: {a1, a2, a3} ← The barycentric coordinates of e w.r.t. {e1, e2, e3} (e

is for this purpose projected onto the plane spanned by {e2−e1, e3−e1})
5: j = arg maxi ai

6: p0 ← cj ⊲ Or an initialisation from a previous result
7: repeat

8: {c′1, c′2, c′3} ← Match(p0, {c1, c2, c3})
9: {t1, t2, t3} ← Logp0

({c′1, c′2, c′3})
10: t←∑3

i=1 ai · ti
11: p0 ← Expp0

(t)
12: until Convergence
13: end procedure

to use a kernel regression estimation [7] motivated method, which has been
proposed by Davis et al. in [31] in order to do regression on general manifold-
valued data and on brain MRT1 images in particular. They provide an
estimator using the Karcher expectation with kernel weights. Where the
usual (set of) weighted Karcher expectation(s) on a Riemannian manifold
M with geodesic distance d(·, ·) is

µ = arg min
m∈M

n∑

i=1

ai d(m, pi)
2 ,

it now becomes

m̂h(t) = arg min
m∈M

(∑n
i=1

[
Kh(t− ti) · d(m, pi)

2
]

∑n
i=1 Kh(t− ti)

)
. (5.6)

The kernel functions Kh(t) with width parameter h are in [31] taken to be
Gaussians, where the parameter space is a one dimensional time interval.
In our case, the manifold M is the closed pre-shape space CN , and the param-
eter space is the view sphere S

2. So, m, pi ∈ CN and t, ti ∈ S
2 , i ∈ {1, . . . , n}.

While one can in theory use all samples to calculate the weights in (5.6), it is
of course not advisable to do so and instead to constrain the neighbourhood
of relevant samples by choosing the kernel width sensibly, since

1Magnetic resonance tomography.
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Figure 5.4: Experiment illustrating the interpolation in the triangle. The
three corners show the three given shapes {c1, c2, c3}, the other contours
are interpolated using Algorithm 6. The triangle is sampled in barycentric
coordinates at points pi = (0.2, 0.2, 0.2) · (k, l, m), N ∋ k, l, m ≥ 0,

∑
j pi,j =

1, with “·” denoting point-wise product. These contour curves were taken
from the popular Surrey fish data base [94].

1. the distance d(m, pi) could generally decrease with increasing distance
on the sphere, since an object may look similar from different angles.

2. as has already been mentioned before, the expectation (5.6) may not
be meaningful otherwise, because we would be unable to match two
contours so that naturally corresponding point pairs are associated —
because naturally corresponding point pairs would likely not be visible
if two contours are sampled from points too far apart on S

2.

A number of neighbouring sampled shapes can be selected for consideration
prior to calculating m̂h(t) in (5.6).
While this was implemented and tried, it is not further used in experiments,
since a noteworthy difference in results compared to using three neighbouring
shapes with barycentric coordinates could not be seen.
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Figure 5.5: Another interpolation experiment, with different curves. See also
Figure 5.4. These curves are randomly chosen from the MPEG-7-CE1 shape
data base.
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Figure 5.6: Area on the view sphere where there is acceptable agreement be-
tween sampled and interpolated shapes.The green shapes are sampled views
of a 3D object model, the other shapes are interpolated at the correspond-
ing spherical positions using the three shapes at the corners and barycentric
weights. The colour coding indicates where the geodesic distances are low-
est (green) and highest (violet). The numbers are the respective geodesic
distances.
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Figure 5.7: Area on the view sphere where there is much change and par-
tially bad agreement between sampled and interpolated shapes.The green
shapes are sampled views of a 3D object model, the other shapes are inter-
polated at the corresponding spherical positions using the three shapes at
the corners and barycentric weights. The colour coding indicates where the
geodesic distances are lowest (green) and highest (violet). The numbers are
the respective geodesic distances.
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5.4.4 Comment on Submanifold

At this point, let us take a look at the notion of submanifold, which we have
been using loosely (in the form “sub-manifold”). We can think of objects
which due to symmetry lead to the same shape at two different view points.
This means that the subset of shapes defined by the shapes for all possible
view points will have self-intersections, so it can not generally be said to be
a submanifold in a mathematical sense (see e.g. [33]).

5.5 Mechanical Motion Model

Section 5.6 will introduce a method for obtaining pairs of view sphere points
and shapes, (p, c) ∈ S

2 × CN , given a starting point (p, c)0 and a sequence
of updated shapes q1, . . . , qn ∈ CN from which points p1, . . . , pn ∈ S

2 are
inferred. These points are used as potentially noisy measurements for a mo-
tion model. This model can be utilised to get a smooth continuous motion
from the measurements pi and to locally predict p into the near future. Such
predictions can then be used to influence the contour extraction in the next
frame of an image sequence, for instance. Using a mechanical model is a sim-
ple solution, which nonetheless appears to work fairly well in experiments.
Of course, that depends on the choice of user parameters like friction coeffi-
cient and inertia. So as a lookout, one may want to look into Kalman filters
or more advanced methods of model predictive control, also known as receding
horizon control, see for example [13]. Simpler trackers like linear quadratic
trackers, see for example [80], are out of question because they rely on the
availability of data for the complete tracked path prior to computation.
Model predictive control methods, if applicable, would then have to be
adapted to the geometry of the sphere.
This section now proceeds with introducing the applied mechanical model.

5.5.1 Mechanics on T (SO3) or T (S2) with Stokes Friction

We propose to use a motion model that is motivated by a physical model,
considering motion under the influence of a potential field, with friction.
The following generic treatment is in terms of time t, a position s(t), and
forces are generally denoted by F . The potential field will be termed V .
Notice that the potential field V does not necessarily have to be something
physical; it was only motivated by physics to have a meaning like some sort
of attraction.
Stokes friction is a popular approximation to a friction force for motion in
viscous liquids [50]:

FR = −β · ṡ(t) .
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Assuming a potential field of the form

V = m · g · (s(t)− P )2 ,

with m a constant akin to inertia and P a “centre of attraction”, the force
acting on a mass point in the field will be the negative gradient of the po-
tential. The factor g is a weight for the potential, which one can perhaps
think of as being related to the acceleration of gravity when imagining a
gravitational field. Thus

FV = −∇V = −2 ·m · g · (s(t)− P ) .

In order to get a law of motion, we apply Newton’s second axiom

F = m · s̈(t) ,

which, when adding the frictional force and the force induced by the potential
field then yields

F = FV + FR = −2 ·m · g · (s(t)− P )︸ ︷︷ ︸
−∇V

−β · ṡ(t)︸ ︷︷ ︸
Friction

= m · s̈(t) . (5.7)

This is an inhomogeneous differential equation of second order, for which
boundary conditions

s(0) = 0 (5.8)

ṡ(0) = v0 (5.9)

are assumed. A solution for (5.7)–(5.9) can be found in Appendix E.3.
Simulating this kind of motion in one and two dimensions yields trajectories
as illustrated in Figures 5.8 and 5.9 for several values of the friction coefficient
β. For these illustrations, it was taken that m = 1. In the one dimensional
case, initial velocity v0 = 0 was used, for the two-dimensional case it was
set to v0 = (−50,−25)⊤. The centre of the potential field was P = 10 and
P = (10, 10)⊤, respectively.

To describe motion on a sphere or in the space of rotations, we can apply
these motion equations locally on the tangent spaces of the unit sphere, or
equivalently on the tangent spaces of the group SO3 of rotations, and take
the resulting path back to the unit sphere or the group of rotations by means
of the respective exponential map. Whether one chooses to use SO3 or S

2 to
describe the motion is somewhat arbitrary. While calculating on T (SO3) is
slightly more complicated, it naturally delivers a rotation as position, while
on the sphere, the natural result is a point on the sphere. So the choice
depends on if one wants to describe the relative camera pose by rotation or
by a sphere point.
In the following, the calculations for SO3 are detailed. For the sphere S

2,
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Figure 5.8: 1D motion simulated with the equations and values described in
Section 5.5.1. See Figure 5.9 for a 2D example.

the calculations are a little simpler and can be done using the formulas given
in Appendix E.2. Details on exponential and inverse exponential maps on
SO3 can be found in Appendix E.1.
Very generally, the motion in the potential field can be calculated in the
tangent spaces of a smooth manifold M as follows. Let σ0 ∈ M be a start
position, B(σ0, r) ∋ P ∈ M a centre of gravitation (p in Equation (5.7)).
B(·, ·) is a geodesic ball as in Definition 5.3.5. One then uses the tangent
space representation of the centre of attraction P , calculates the motion in
the linear tangent space, and goes back to M by means of the exponential
map:

p := Logσ0
(P ) (5.10)

σ(t) := Expσ0
(s(t)) (5.11)

σ̇(t) := ṡ(t) . (5.12)

One should carefully note that σ̇(t) is in Tσ0(M), so that it needs to be
parallel transported if it is to be used at, say, σ(t).

Using the space of rotations, the motion model can be used to model the
position of a point on the sphere, and also an equivalent rotation, like this:
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Figure 5.9: 2D motion simulated with the equations and values described in
Section 5.5.1. The red cross marks the start point of motion at (0, 0). See
Figure 5.8 for a 1D example.

Let

v0 ← (0, 0, 0)⊤

s0 ← (0, 0, 0)⊤

R0 ← I

t0 ← 0 ,

and set p0 ∈ R
3 to the fixed start position. Say at time t = tk, k ∈ N ≥ 1,

a new measurement, represented by a centre of attraction pk, comes to our
knowledge. Then

R(t) = ExpI(s(t)) ·R0 (5.13)

is used to calculate a rotation R(t) using the origin R0 and a “relative”
rotation given by s(t).

TR0(SO3) ∋ v(t) = ṡ(t) (5.14)

is the velocity along the path s(t) on TR0(SO3).

v0 ← v(tk − tk−1) (5.15)
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s(t)

Exp(s(t))

Figure 5.10: Illustrating motion on SO3, see Equation (5.13). The motion
s(t) is applied in the tangent space at identity, the result is pulled back to
the space of rotations by the exponential map. To apply the motion not at
identity, but at R0, the result is then applied from the left to R0.

then becomes the new initial velocity, used in the equations given in appendix
E.3, and

R0 ← R(tk − tk−1) (5.16)

becomes the new origin. Then a rotation axis a can be computed by

a← (R0 · p0)× pk

‖(R0 · p0)× pk‖
(5.17)

and the angle of rotation θ from the initial point R0 p0 on the sphere to the
new pk is set to

θ ← arccos(p⊤k ·R0 · p0). (5.18)

So the “centre of attraction” P ∈ TR0(SO3) is

P ← a · θ (5.19)

and the path on S
2 can, until the next point pk+1 comes up, be calculated

with
p(t) := R(t− tk) · p0 . (5.20)

The functions s(t) and ṡ(t) are given by the equations (E.7)–(E.12), whichever
apply. Note that it should always hold that the absolute angle of rotation
applied by R(t) from the current R0 does not exceed π so that one never
reaches the cut locus, where the resulting rotation would not be unique
anymore — that means R(t) must remain in a geodesic ball around R0.
Pictorially speaking, R(t) being on the cut locus would yield a reflection in
(0, 0, 0)⊤.
Figure 5.11 provides an illustration of what is happening on SO3: shown are
two tripods representing orthonormal coordinate systems. One is rotated to
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the other following the force generated by the potential field V . The first
plot was generated without an initial velocity v0, the other with an initial
velocity v0. The tripod drawn in thinner lines is rotated into the tripod with
thicker lines, that means the latter is P in the equations above, while the
former is rotated into identity and therefore represents the starting point,
which we set to 0 in all equations. The curved, dashed lines illustrate the
path that the end points of the tripod took along its journey towards P
under the influence of V and a friction-like force.

Figure 5.11: Application of the motion model to rotations, as described in
Section 5.5.1. Left: v0 = 0. Right: v0 6= 0. The start and target rotations
are represented by the rotated tripod of standard basis vectors {e1, e2, e3}
drawn in red, green, and blue, respectively. The tripod drawn in thin lines
is the start rotation, the one in thick lines the target rotation. The dashed
lines indicate the paths taken by the end points of the basis vectors during
motion under a force field with friction.
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5.5.2 Predictions

Given past measurements pi ∈ S
2, we would like to predict s(t) locally.

Assume to be given a new measurement Pk at time tk, and the motion
model to be at point s(tk). We then follow the trajectory governed by (5.7)
until the distance d(s(tk), Pk) has been travelled, say at time t′k, so that
d(s(tk), s(t

′
k)) = d(s(tk), Pk), and then continue for an additional fixed time

period ∆t = t′k − tk to obtain the prediction

ppred := s(t′k + ∆t) . (5.21)

As illustrated in Figure 5.12, this simple “mechanical” model can result in
rather sensible paths. The model can result in bad paths if one chooses bad
values for the parameters m, g, β; an example for badly chosen parameters
can be seen in Figure 5.13. However, it is not hard to find sensible values
experimentally.

Figure 5.12: Representing and tracking shape changes as motion on the view
sphere. Blue: measurements pk. Red: path s(t) of the mass point. Magenta:
predicted points. The start point of the trajectory is at the far left end. The
green grid lines indicate the underlying sphere. The parameters are here
m = 0.2, g = 0.5, β = 0.1. The same illustration with badly chosen motion
parameters can be seen in Figure 5.13.
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Figure 5.13: Simple motion model with badly chosen parameters m = 2, g =
5, β = 0.1.
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5.6 Change in View Point

In the remainder of this chapter, most of the techniques and concepts dis-
cussed so far are integrated into a method for tracking a view point based on
object outline. This section in particular deals with the task of keeping track
of the view point relative to an object, given an initial view point position
and a sequence of shapes capturing changes in view point.
The object is assumed to undergo some smooth rigid transformation in 3D
space. For instance, imagine an aeroplane flying, turning, and thereby chang-
ing its silhouette, or a car driving along a road and maybe changing direction
at a crossroads.
The contour extraction from the images is here achieved by using either the
level set method or the closely related global method [17] sketched in Ap-
pendix B. In the following, a newly developed tracking mechanism for the
spherical view position is introduced.

5.6.1 Problem Statement

Assume that we know initially a point ck ∈ C and the corresponding position
tk ∈ S

2. Now, suppose a new shape q ∈ C is to be considered, typically
delivered by an image segmentation algorithm that is used to track an object
over a number of frames. Figure 5.14 illustrates the problem at hand when
we want to update the view position tk: We wish to determine a point
ck+1 ∈ C, corresponding to tk+1 ∈ S

2, on the sub-manifold modelled by the
samples pi ∈ C from the view sphere at spherical coordinates ti ∈ S

2, which
is as close as possible to q. That is, we would like to minimise the geodesic
distance d(m, q) = ‖Logm(q)‖m by minimising

F (m, q) = ‖Logm(q)‖2m , (5.22)

where m results from solving (5.4) (or (5.6)),

m(t) = arg min
m̃∈C




|M |∑

i=1

ai(t) · d(m̃, pi)
2



 (5.23)

with both the neighbourhood M and the weights ai depending on the spher-
ical position t.

5.6.2 Solution

We then solve at frame k + 1

t⋆k+1 = arg min
t

F (m(t), q) (5.24)

using non-linear conjugate gradient descent on the view sphere, as follows:
Choose bℓ,1, bℓ,2 ∈ R

3 to be orthonormal basis vectors of the tangent space
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Figure 5.14: Keeping track of the spherical position: Shape ck and position
tk are known, as well as a new shape q. What is the (approximate) position
tk+1 on the view sphere corresponding to q?

Ttℓ(S
2), and a small constant ∆ > 0. Notice that in the following equations,

Exp and Log denote the exponential and inverse exponential maps on the
sphere S

2, not on the pre-shape space C.

trans : T (S2)× S
2 × S

2 7→ T (S2), v2 = trans(v1, t1, t2) (5.25)

is a function that takes a tangent vector v1 ∈ Tt1(CN ) and translates it along
a geodesic from t1 to t2, resulting in v2 ∈ Tt2(CN ). Formulas for calculating
exponential, inverse exponential, and parallel transport on a sphere are given
in Appendix E.2. Then, let

t0 = t⋆k , β−1 = 0 , d̃−1 = 0 ,
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and

vℓ =
2∑

i=1

bℓ,i ·
F (m(Exptℓ(∆ · bℓ,i)), q)− F (m(tℓ), q)

∆
(5.26)

dℓ = −vℓ + βℓ−1d̃ℓ−1 (5.27)

tℓ+1 = Exptℓ(α · dℓ) (5.28)

d̃ℓ = trans(dℓ, t
ℓ, tℓ+1) (5.29)

ṽℓ = trans(vℓ, t
ℓ, tℓ+1) (5.30)

βℓ =
[vℓ+1 − ṽℓ]

⊤vℓ+1

v⊤ℓ vℓ
. (5.31)

Here, vℓ takes the role of the gradient direction, in the tangent space of S
2 at

the current point tℓ. From the gradient vℓ and the previous search direction
d̃ℓ−1, the search direction dℓ is computed. The factor βℓ−1 is calculated
using the Polak-Ribière variant of the conjugate gradient method in Equation
(5.31). The latter is according to [96] more robust than the alternative
Fletcher-Reeves variant.
The rest of the above equations are needed to adapt to the geometry of the
sphere. Specifically, we have to translate tangent vectors to the next iterate
tℓ+1, so that all involved tangents are elements of the same tangent space
and can be combined (equations (5.29) and (5.30)). Since calculations take
place in the tangent spaces, we also need to go back to the sphere using the
exponential map in Equation (5.28).
In order to find a step length R ∋ α > 0 for use in Equation (5.28), we
use a standard line search procedure with the Armijo or sufficient decrease
condition

F (m(Exptℓ(α · dℓ)), q) ≤ F (m(tℓ), q) + c · α · (v⊤ℓ dℓ) , 0 < c < 1 (5.32)

and choose the step length α according to Algorithm 7.

Algorithm 7 Back-tracking line search: step size selection for gradient
descent using the Armijo condition.

procedure ArmijoStepLength

Choose a fixed α0

α← α0

Choose 0 < τ < 1
while α does not meet Armijo condition do

α← α · τ
end while

return α
end procedure
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Figure 5.15 shows the result of an experiment using the method proposed
in this section. The green contours (left column) show shapes which were
obtained from the same 3D object model that was used to create the samples
modelling the view sphere. The red contours (right column) show the results
from applying the view point tracking method from this section to each new
frame. A frame is, in this experiment, only the respective contour, so curve
extraction is so far not needed. Depicted on the right hand side of Figure
5.15 are the points on the view sphere corresponding to the input (green,
left curve) and the result from the view point tracking (red, right curve).
Both the resulting shapes and the curve on the view sphere suggest that the
method works reasonably well here.
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Figure 5.15: Estimating shapes on a sample path from the view sphere.
Green (left): Input shapes sampled from the view sphere. Red (right): Es-
timated shapes using the methods from Section 5.6. On the left are the
contours which correspond to the paths on the sphere shown on the right.
The grid lines on the right indicate the sphere.
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5.6.3 Convergence

Finally, note that the above application of conjugate gradient has been de-
scribed in [1] (see also references therein). The treatment is quite general
and covers any method utilising a sequence of gradient related2 tangent vec-
tors to minimise a function F : M ⊇ U 7→ R on a manifold M . The general
line search algorithm assumes a Riemannian manifold M , a retraction (see
Definition 5.6.2 below) on M , and a continuously differentiable scalar field
F on M . The latter is the issue in our context — it is not guaranteed
that F from (5.22) is continuously differentiable everywhere. One can ex-
pect this to depend on the object in question, by the following argument:
Imagine for example the object depicted in Figure 6.1 in the next chapter.
Due to self-occlusion, there are several situations where the outline changes
abruptly, so F can not be expected to be continuous at these views. This
may also motivate the search for representations allowing for inner contours
to be retained.

Keeping this in mind, for functions to be minimised which are contin-
uously differentiable, the following theorem on convergence is stated in [1]
(theorem 4.3.1):

Theorem 5.6.1 If {xk} is an infinite sequence generated by Algorithm 8,
stated below, then every accumulation point of {xk} is a critical point of the
cost function F .

For more details, see [1]. For completeness, the outline of the general
gradient-based search method is given in Algorithm 8.
A retraction is defined in [1] as

Definition 5.6.2 (Retraction) Given a manifold M . A smooth mapping
R : T (M) 7→M with Rx the restriction of R to Tx(M), for which hold

1. Rx(0x) = x with 0x denoting the zero element (origin) of Tx(M)

2. Identifying T0x(Tx(M)) ≃ Tx(M), Rx satisfies

DRx(0x) = idTx(M)

with idTx(M) denoting the identity mapping on Tx(M)

is called retraction on M .

2A sequence {xk, ηk} of points xk on a manifold M and corresponding tangent vectors
ηk ∈ Txk

(M) is called gradient related if for any subsequence {xk}k∈I converging to a
non-critical point of a function F on M , it holds that lim supk→∞, k∈I〈grad f(xk), ηk〉 < 0
[1].
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Algorithm 8 General gradient based search method from [1].

Require: Riemannian manifold M , continuously differentiable scalar field
F on M , retraction R on M , initialisation x0 ∈M , 0 < c < 1

1: function GeneralLineSearch(x0)
2: k ← 0
3: while Stopping condition not met do

4: Choose some ηk ∈ Txk
(M) so that the sequence {ηi} is gradient

related
5: Let xk+1 the next iterate satisfying

F (xk)− F (xk+1) ≥ c [F (xk)− F (Rxk
(αk ηk))]

for αk obtained using line search with the Armijo condition
6: end while

7: return The sequence {xi}
8: end function

5.7 Integrating with Segmentation

To put the object tracking to work, we first consider integrating the esti-
mated shape from the methods described in this chapter into a level set
segmentation algorithm, details of which can be found in Chapter 4. That
method has been used for tracking deforming contours in image sequences in
[93]; the very simple idea is to use the outcome of one frame as initialisation
for segmenting the next.
The variant used for our experiments uses the vector-valued image energy
from Chan and Vese from Equation (4.20) with the additional regularisa-
tion term (4.35). To constrain the level-set evolution to remain close to the
object shape during tracking, a term accounting for a shape prior is added
which was introduced in Chapter 4 in Equation (4.40). This prior is almost
identical to the one proposed by Riklin-Raviv et al. [106], but allowing only
for euclidean and not for perspective transformations.

5.7.1 Combination with Level Set Image Segmentation

Given a sequence of images gi, i = 1, . . . , n and an initial embedding function
Φ1 and spherical position (φ1, θ1) ∈ S

2, we would like to apply the methods
for tracking on the view sphere from the previous sections for subsequent
frames. That means, we would like to find the movement of a hypothetical
camera on the view sphere, or equivalently the pose change of the object in
subsequent frames.
Given the initialisation, the task is then to combine the sphere tracking
methods with ways to keep track of the object while it moves in the image
plane. Our approach then consists of the steps summarised in Algorithm 9.
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Algorithm 9 View point tracking on the view sphere using an implicit curve
representation for segmentation. The current or predicted shape can be used
as prior knowledge to help steering the segmentation algorithm.
1: Let Ω be the image domain. Initialise manually

Φ : Ω 7→ R, |∇Φ| = 1 and (φ1, θ1) ∈ S
2

2: for i = 2 to n do

3: Extract the curve Ci−1 ← {x : Φ(x) = 0}
4: Set Pi to the curve corresponding to (φi−1, θi−1) ∈ S

2 or to a predicted
curve using a motion model on S

2

5: Align Pi to Ci−1 w.r.t. scale, rotation, and translation
6: Keep track of the view sphere position: Set (φi, θi) to the minimiser

of Equation (5.22),

(φi, θi)← arg min
m
‖Logm(q)‖2m

with q ∈ CN corresponding to the contour Ci−1.
7: Optionally set prior Φ̃i to the signed distance function for which

Pi = {x : Φ̃i(x) = 0}

8: Evolve Φ, optionally with prior Φ̃i

9: end for
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5.7.2 Problems and Limitations

Problems can occur in various situations. If the object is changing position
in the image plane from frame i to i + 1 very rapidly, so that there is no
or very little overlap with the initial embedding function Φi+1, the level set
evolution will usually fail to segment the object, as illustrated in Figure 5.16.

Figure 5.16: Example for the failure of the level set segmentation to capture
the tracked object. Yellow/red: zero level set and prior, respectively. Shown
on the far left is the initialisation from the previous frame in the sequence.
The other images depict several stages of the level set evolution. It can be
seen that the movement of the object with respect to the image plane is too
large, so that the subsequent level set evolution does not segment the object.
In the image plane, no motion model was used.

This problem could be alleviated for example by solving

T̃ = arg min
T

∫

Ω
(g(x)− cI)

2 (1−H(Φ(x + T ))) dx , (5.33)

before the actual evolution, with respect to a translation T and setting

Φi+1 ← Φ(x + T̃ )

as initialisation for frame i + 1. Equation (5.33) results in a translation
that, keeping the inside component cI fixed, maximises the overlap with
respect to grey value difference (or, for that matter, any other data modality).
Alternatively, we let the evolution run while keeping the mean colour values
c1, c2 in Equation (4.19) fixed. As long as there is some overlap between
initial Φ and object, and the object is not occluded in object colour (so that
the zero level set cannot “leak out” of the object), this solves the problem
for cases as depicted in Figure 5.16. Notice that this problem might also
be addressed by the recently proposed Sobolev active contours [124, 142],
where the underlying metric leads to preference of translation over local
deformation in a natural way when evolving a contour; see also Section
4.14.2 for references. That is in essence also what is done when solving
(5.33) before commencing the normal level set evolution: first translate, then
deform. Moelich and Chan [93] also use an intermediate step that enlarges
the initial contour in the current frame if the evolving contour collapses, and
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repeat that enlargement step followed by curve evolution until a steady state
is reached without the zero level set vanishing. In our experiments, however,
this situation did not occur.

Another limitation is given by the segmentation approach that is applied.
In the case of level set evolution after Chan and Vese with a weighted prior
term, problems usually occur when the object is occluded in object colour,
or more generally, when the occlusion yields very similar features which are
used for segmentation, be it colour, texture statistics, or anything else. The
same naturally holds for background areas. In such cases, the data term of
the level set segmentation will drive the contour in one direction, while the
prior term has to stand against that force. Raising the weight of the prior
term only moves the problem somewhere else: Then, the prior will be too
strong to allow for contour changes necessary for the view sphere tracking
— this means that view sphere tracking will get stuck.

5.7.3 Possible Priors

Points on the view sphere predicted by the motion model can be used to
provide a prior when segmenting subsequent frames of an image sequence.
This can be done in several ways — the most obvious is to take the shape at
ppred ∈ S

2 from Equation (5.21) as a template. It is also possible to use the
shape at the current view point to compute a prior. The used segmentation
method should be able to account for silhouette changes by itself, given that
the prior information does not get weighted too strongly. This proved to be
working in experiments with the level set method and the above mentioned
prior. To incorporate the prior into the segmentation method, it would also
be appealing to impose a vector field defined on a contour C that drives C
along a geodesic in shape space towards the prior; this appears to be a sensi-
ble choice and has been proposed amongst others in [61]. Parametric active
contour methods seem to be naturally suited for this sort of modification,
since they work directly on points lying on the contour. For the implicit level
set method, applying a vector field that is defined only on the level set defin-
ing the interface is a little more involved. Imposing a flow along a geodesic
in the implicit framework for other distance measures has been proposed,
for example, in [119]. The prior we use is a single shape either predicted
by the motion model on the view sphere, or optionally by considering the
result from the previous frame. The shape is interpolated using a weighted
Karcher mean and converted to a binary image. This binary image is then
used as a prior for segmentation, using the shape energy term (4.40).

5.8 Experiments and Evaluation

Figures 5.17, 5.18 and 5.19 show the results of the following experiment:
for a given sequence {I1, . . . , In} of images depicting a moving object, the
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contour c1 and view sphere position t1 for the first image were initialised
manually. Then, using the methods from this chapter, for each subsequent
image Ii+1 the contour ci+1 and the respective view sphere point ti+1 were
updated. The contour ci from the previous image was used for initialisation
and as a weak prior for the segmentation of image Ii+1. The segmentation
result from Ii+1 was then used to calculate ti+1, starting at ti, using the
method described in Section 5.6.
In Figure 5.19, an occluding object was added in a different scene, which
could be successfully handled by using ci as prior template for the level set
segmentation algorithm.

In these figures, only a few snapshots of the whole sequences can be seen.
The complete sequences consist of 100 frames for the experiments in Figures
5.17 and 5.18, and 50 frames for the one in Figure 5.19.
These experiments show that the sphere tracking mechanism is capable of
keeping track of the view sphere position fairly well in these sequences, given
a sufficient number of samples on the view sphere for interpolating the shape
sub-manifold corresponding to the object.

The sequences from Figures 5.17, 5.18, and 5.19 are artificial in the sense
that in front of a background image, a 3D computer graphics model of an
object was moved.
Figure 5.20 shows images from a real recorded sequence. The shape samples
to model the view sphere sub-manifold were still taken using a 3D model.
The image sequence is showing a real scene. The tracking algorithm was able
to track a sensible view position for a large part of that sequence. When the
object contours become too ambiguous, however, view sphere tracking will
fail.

Another case of failure can be seen in Figure 5.21. Level set evolution was
in that case not used, but the effect is independent of the used segmentation
method. It can be seen that the contour of the object looks very similar at
some point regardless of whether the view point moved forward or backward
a specified path. By this symmetry, the view sphere tracking mechanism gets
confused and possibly turns around, instead of following the correct path.
These sorts of problems may be alleviated by using better motion models,
but they will still be imminent. The information purely from outline shape
is not sufficient to resolve these ambiguities.
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Figure 5.17: Tracking the view sphere position using only the segmented
contours from a sequence of images. A few images from the sequences are
shown on the left hand sides, the corresponding interpolated contours from
the shape space C on the right. The initial position t0 ∈ S

2 and shape s0

were given manually. Then for each image, the result from the previous one
was used as initialisation. A region based level set segmentation was used,
with a curvature regularisation term after [32]. (Figure is continued)
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Figure 5.17: Bottom: shown are measurements obtained on the view sphere,
for the complete sequence.
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Figure 5.18: Tracking the view sphere position using only the segmented
contours from a sequence of images. A few images from the sequences are
shown on the left hand sides, the corresponding interpolated contours from
the shape space C on the right. The initial position t0 ∈ S

2 and shape s0

were given manually. Then for each image, the result from the previous one
was used as initialisation. A region based level set segmentation was used,
with a curvature regularisation term after [32]. (Figure is continued)
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Figure 5.18: Bottom: shown are measurements obtained on the view sphere,
for the complete sequence.
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Figure 5.19: Sphere tracking experiment with occlusion. The upper image
shows an illustration of the image sequence. The lower image shows the
tracked view sphere path (the arrows indicate the direction of motion). The
colour coding shows the corresponding contours and view sphere positions.
Using the resulting shape from each previous frame to create a prior for the
segmentation algorithm enables the sphere tracking to keep going for this
sequence, where an occluding object moves in front of the object. (Figure is
continued)
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Figure 5.19: Each row shows the area of interest from every other frame with
the superimposed segmentation result, followed by the contour representing
the shape tracked on the view sphere. (Figure is continued)
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Figure 5.19: Each row shows the area of interest from every other frame with
the superimposed segmentation result, followed by the contour representing
the shape tracked on the view sphere.
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Frame 0 Frame 97

Figure 5.20: Sphere tracking with a real recorded sequence totalling 97
frames. Roughly every 20th is shown, the last three are closer. Indicated
in each frame are the segmentation result (green) and aligned interpolated
shape (red). Difficult situations where the view tracking goes wrong are in-
dicated in red, yellow are situations which are just ok. The time line on the
bottom indicates the situation for the whole 97 frames. The spheres on the
right indicate the inferred view positions along the sequence.
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5.9 Integrating with Template Matching

Until now, the introduced sphere tracking method uses the level set segmen-
tation method to extract contours, and steers the segmentation by a pre-
dicted or previously obtained contour from the view sphere sub-manifold.
Even though the results indicate that this can work quite well, some reasons
for trying something different may come to mind:

1. The segmentation method inherently adds freedom for the curve to
evolve to any shape, even those which are not in the modelled sub-
manifold. While one can argue that this may in the future enable
methods to detect loss of object, that means leaving the sub-manifold,
detection is currently not the focus of this method.

2. The level set segmentation method adds more parameters that need to
be tuned, specifically the weights for the various energy terms.

This section points out one rather obvious alternative, despite the fact
that in this work, we keep using level set segmentation for its greater flexi-
bility towards possible extensions.
As a replacement for the curve evolution in the proposed sphere tracking
method, we tried a template matching approach. This is somewhat similar
to Schmaltz et al. [114] who match the projection of a 3D model directly to
image data.
For a simple, closed, regular curve c, let Ac : R

2 7→ {0, 1} be an indicator
function mapping each position on the 2D image to 0 or 1, so that

Ac(x) =

{
0 if x is outside the curve c

1 if x is inside the curve c .

Next, consider an energy

E(Ac, s, β, T, c1, c2) :=

∫

Ω
Ac(sΓ x + T )

1

N

N∑

i=1

λ1,i (gi − c1,i)
2 dx

+

∫

Ω
[1−Ac(sΓ x + T )]

1

N

N∑

i=1

λ2,i (gi − c2,i)
2 dx , (5.34)

for an N -channel image g : R
2 ⊃ Ω 7→ R

N , gi ≥ 0, scale s ∈ R
+, 2D rotation

matrix Γ(β) ∈ SO2 with angle β, translation T ∈ R
2, and c1, c2 ∈ R

N .
λ1, λ2 are vectors of weights with λj,i ≥ 0, j = 1, 2, i = 1 . . . N . This is
minimised for the transformation s, β, T and c1, c2 in alternation, similar to
the minimisation in e.g. [131]:

1. Minimise E for s, β, T with fixed c1, c2
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2. Minimise for c1, c2; the optimal values are just the the mean inner and
outer grey values

3. Repeat until convergence

Notice that to be differentiable, Ac can be approximated by, for example,

Aε = Hε,1

(
Ac −

1

2

)

with Hε,1 from (4.2).
Then we replace the energy F in (5.22) by

F (c, g) := min
s,β,T,c1,c2

E(Ac, s, β, T, c1, c2) .

F (c, g) maps to each pair of curve c and image g an energy. This is used to
replace F in Equation (5.26), where we use F (curve(m(t)), g) with a map

curve : CN 7→ R
N×2

that takes each shape m to a corresponding discrete representation of a curve
c = curve(m) that is aligned to the image structure, for example using the
resulting curve from the previous frame or the given initial curve.
Figure 5.21 illustrates with an experiment that this template matching based
sphere tracking also works in principal. In the same figure, another problem
can be seen that is not directly connected with the method used for contour
evolution or extraction: if the object exhibits silhouettes which are very
similar in distinct directions of motion along the view sphere, the view point
tracking can possibly follow the wrong direction — there is no way it can
differentiate good from evil. In the depicted example, the actual path on the
view sphere goes just one time around the sphere, while sphere tracking turns
around at a critical position where there is a symmetry in shape change.
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Figure 5.21: Sequence showing sphere tracking using the template match-
ing method described in Section 5.9. Shown are the object image and the
interpolated contour at the respective tracked sphere position, for every few
frames. It is evident that the basic mechanism works here. What can also
be seen on the following pages is that symmetries in the object contour lead
to problems. (Figure is continued)
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Figure 5.21: (Figure is continued)
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Figure 5.21: Looking at the boxed frames, it can be seen that the silhouettes
are very similar in opposite directions of rotation. Therefore, sphere tracking
can follow the wrong direction: instead of going on around the sphere, it
turns around at about half the way (the rotation is once around the whole
sphere). In the following frames, the tracked position is therefore wrong and
tracking breaks down.(Figure is continued)
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Figure 5.21: The shapes from the previous page are shown here, aligned and
in different colours for better visibility. Red framed, upper box: the two
shapes from the upper and lower frame on the previous page. They are so
similar that a difference is barely discernible. The same holds for the lower,
green framed box: it shows the two shapes from the middle two frames from
the previous page.



146 CHAPTER 5. VIEW POINT TRACKING



Chapter 6

Conclusions

6.1 Discussion and Possible Future Work

In this work, we considered contours with one connected component. One
possible future line of thinking could be to investigate possibilities for models
with multiple connected components, that means multiple curve segments. If
such models can be found and applied, they could possibly help in situations
like the one depicted in Figure 6.1. In the figure you can see the outer contour
of a rotating office chair in the upper row, while the bottom row shows also
inner contours of the same rotation sequence. The outer contour changes
quite abruptly at times, which is problematic if we are relying on smooth
changes. The sequence showing also inner contours looks overall smoother
and also contains more information about the object.

Figure 6.1: Contours of a rotating office chair. The upper row shows just the
outer contour of the chair, while the bottom row shows also inner contours.
It can be seen that the outer contour here exhibits abrupt changes, while
outer and inner contours together change more smoothly.

Another point that may be added are different flows for the evolution
of curves, such as flows along geodesics in C. Although, whether that could
improve the actual sphere tracking is not obvious.

147



148 CHAPTER 6. CONCLUSIONS

Looking at modelling motion of a point on a sphere, model predictive control
methods [13] may be investigated, which would then have to be applied to
spheres.
On the computational side, taking exponential and logarithmic maps on CN
are the most time consuming parts of the proposed sphere tracking method.
Are there faster and/or more exact alternatives?
The initialisation of the sphere tracking mechanism is done manually, so
the starting conditions are known. One can think of automatic or semi-
automatic initialisation schemes if such a method should be considered for
use; for example, starting at several sampled sphere points close to an ini-
tial segmentation result and using these for sphere tracking concurrently,
subsequently dropping all but one following some quality criterion.

Interpolation Quality and Adaptive Sampling

It is obvious that the quality of the interpolation at a point s ∈ S
2 depends on

the neighbouring shapes. Quality here means how sensible is the interpolation
compared with a real outline taken at s. Clearly, it must be possible to
automatically match the neighbouring shapes to one another in a way that
matches naturally corresponding points. Therefore, the local variation in
shape among the samples taken from around the view sphere must not be
too large.
The local shape variation on S

2 will be depending on the object at hand.
Imagine the example of an aeroplane, and imagine it first seen from the
top: when varying the camera position, one would still expect to get similar
silhouettes which can be matched well. Now, imagine the same aeroplane
seen from one side. In that case the silhouettes can change quite rapidly,
for example due to the wings being visible after a small change of the view
point.
So in the first case, one can sample less densely, while in the latter case
one would need to sample more densely to get shapes which can indeed be
matched in a way that makes sense. Just sampling very densely everywhere is
not an option if an additional aim is to keep the number of sampled shapes
low. Consequently, the sampling should be done in an adaptive manner,
steered by a measure of local variability in shape, whenever possible.
The alternative to a denser sampling would be hand-labelled landmarks for
each neighbouring pair of contours, which is a lot of tedious work we would
like to avoid. However, this may be the only way out in cases where shape
matchings can be ambiguous. For an illustration of the problem, refer first
to Figures 6.2 and 6.3. Both show a triangle of shapes taken from the view
sphere, together with a few additional contours obtained using images of
the object, and their interpolated counterparts. The latter figure shows a
triangle spanning a wider area of angle than the former. An example for a
blatantly failed matching can be seen in Figure 6.4.
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Figure 6.2: A first illustration of the difference between samples actually
taken from the view sphere (green) and contours interpolated geodesically
as described in Section 5.4.2 (red). Each pair is for visual purposes aligned
using Procrustes distance minimisation. The differences in detail in the
curve pairs, notably in the corners of the triangle, stem from the fact that
the sampled (green) curves are the original curves from an image, while the
interpolated (red) curves are reconstituted from (Φ, Θ) pairs.
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Figure 6.3: The same illustration as in Figure 6.2, but here the triangle spans
a wider angle on the view sphere at different positions. The deviation of the
interpolation from the sampled curves clearly gets larger.
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Figure 6.4: Illustration of bad matching while approximating a contour on
the view sphere. The three green contours are samples from CS,N , the red
contour is an approximation using equal weights for the green contours. It
can be seen that the upper contour was not matched sensibly to the others.
This example shows contours of an aeroplane sampled from the vertex points
of a triangulated sphere with 162 roughly equidistant vertices.
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Figures 5.6 and 5.7 show triangles from the discretisation of the view
sphere, with corresponding sampled and interpolated shapes from the exam-
ple object m1249. The geodesic distances between interpolation and sample
are also given in numbers and colour coded in the colour of the interpolated
shape. Figure 5.6 shows an area on the view sphere where the interpolation
results are quite acceptable. Figure 5.7 shows an area where the interpola-
tion is partly quite bad. A map of the geodesic distances between sampled
and interpolated shapes for all view coordinates can be seen in Figure 6.5.
One can see there that there are a few peaks pointing out areas where the
interpolation gets bad. A possible future extension would be to use such
information to adjust the sampling density on the view sphere.
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Figure 6.5: Geodesic distance between interpolated and sampled shapes for
all view sphere positions, here given in spherical coordinates. Given is an
approximation of the sphere by a mesh of triangles. In each triangle, dis-
tances between interpolated and sampled shapes were calculated at positions
pi = (0.2, 0.2, 0.2) · (k, l, m), N ∋ k, l, m ≥ 0,

∑
j pi,j = 1, such as illustrated

in Figures 5.6 and 5.7. While this plot itself is interpolated from scattered
data and therefore not exact, the important thing to notice is that there are
regions where interpolations are quite close to sampled shapes, and some
regions exhibit peaks where the interpolations are bad. See also Figures
5.6 and 5.7 for depictions of sampled versus interpolated shapes in selected
triangles from the view sphere of this object (m1249).

Motion Model

As has already been mentioned in the beginning of this section, replacing
the simple mechanical motion model by a model predictive control approach
is a possibility for future extension.

Integration of Shape Term

A drawback of the simple integration of shape into the segmentation frame-
work described in Section 5.7 is that this type of prior integration does not
honour the structure imposed by the inner product (3.4) on the space CN .
A different approach is to calculate an external vector field that reflects the
amount of stretching and bending that needs to be applied to a curve C so
that it approaches another curve Cp along a geodesic in CN .
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Assume the embedding function Φ(x) and C = {x : Φ(x) = 0}, and also
a given prior curve P . Since we work with implicit and explicit representa-
tions, we unfortunately have to extract C from Φ(x) in order to calculate a
geodesic, noting that this kind of prior integration would be more natural to
do in parametric active contour models [61].
The way the proposed approach would work with level sets is then

1. Extract C from Φ(x)

2. Let p, c ∈ CN represent P, C ∈ R
M×2 in closed pre-shape space

3. Match p to c

4. Calculate Vc := curve(Expc(Logc(p) · ∆)) − curve(c), a velocity field
defined on C which evolves C towards the prior along a geodesic; ∆
is a small constant; curve(·) takes an element from CN and creates a
configuration matrix

5. Transform Vc back to the original curve C using the optimal euclidean
transformation that takes curve(c) to C (e.g. from full Procrustes
distance minimisation) and call the result VC

6. Initialise grid cells of Φ(x) adjacent to the zero level set using VC

7. Extrapolate the velocity field

8. Evolve with this external field using (4.12)

6.2 Summary

Thinking about different properties of objects contained in images, and using
these properties for machine vision tasks, object shape is certainly a strong
one: While colour and texture can change due to influences like object in-
stance or lighting conditions, the object outline may remain relatively stable
considering similar views. This makes shape an attractive cue for object
recognition, view tracking and pose estimation, and possibly other goals of
machine vision. However, the problem of how to reliably obtain object con-
tours from image data looms constantly over all applications using shape
information. This leads to image segmentation, a problem which has proven
to be notoriously difficult, and to which there has not been a general solu-
tion. Instead, there are many approaches to image segmentation that mostly
deal with a very specific range of images, making certain assumptions about
objects to be segmented. Some of the approaches which employ curve evo-
lution techniques using the level set method have been reviewed in Chapter
4.
Summarising, the level set, region based methods have some attractive prop-
erties. For one, embedding curves in a higher dimensional function allows
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for parameter-free representation, at the cost of higher computational com-
plexity. The region based methods are naturally more resistant to noise than
edge based methods, and more diffuse object boundaries are not so much a
hindrance in segmentation, since boundaries are not detected using gradient
information like for example in the geodesic active contour formulation. An-
other good property is the relative ease of integration of additional terms into
the segmentation energy, such as the priors mentioned in Chapter 4. Finally,
a drawback of the level set method compared to a parametrised represen-
tation is computation speed. This can be alleviated a little by computing
only on a narrow band around the zero level set, but that makes contours
“popping out of nowhere” impossible.

Working with contour shape requires a way of representation, and in our
case also a way of calculating weighted averages. A glimpse of classical shape
analysis was given in Chapter 2, and a more recent approach using an elastic
shape metric in Chapter 3. Using these techniques, a method for tracking a
view point relative to an object was introduced in Chapter 5. This technique
uses only 2D shape information as input and also only 2D shape for internal
object representation, with additional information about view position. 3D
models were only used in order to automate and simplify experiments, not
for object representation. While using 2D shape is potentially more memory
efficient than using 3D information, especially in conjunction with an opti-
mised sampling strategy when obtaining model shapes, it is also potentially
closer to a representation of object shape in human brains as mentioned in
the introductory Chapter 1. Whether leering at biological systems is always
a good idea or not is of course open for discussion. My own point here is
that since brains appear to do some things very efficiently, it is worth trying.

Change in contour shape does appear to convey considerable information
about changing view points, even if considered isolated like in this thesis.
But obviously, experiments also show that additional information is needed
to conceive models incorporating shape as principal source of information
for view point tracking that could be truly robust in practice. Directly using
recently described shape manifolds allows us to work with object models that
result in reasonable shape deformation, without using 3D models as internal
object representation. This does, however, depend on the complexity of local
shape changes of the object in question.
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Appendix A

Level Sets

A.1 Method of Characteristics

The method of characteristics is a method for solving partial differential
equations (PDE) of the form

∂u(x, t)

∂t
+ a(x, t)

∂u(x, t)

∂x
= b(x, t) (A.1)

u(x, 0) = u0(x) (A.2)

with x ∈ R, t > 0. It is used to explain upwind differencing in the next
section and is therefore summarised here.
Consider the differential equation in x(t)

dx(t)

dt
= a(x(t), t) (A.3)

x(0) = x0 . (A.4)

(x(t), t) is a curve starting in the point (x = x0, t = 0) and is called a
characteristic. Exploring the change of u along this curve, one gets

du(x(t), t)

dt
=

∂u(x, t)

∂t
+

∂u(x, t)

∂x

dx(t)

dt
=

∂u(x, t)

∂t
+a(x, t)

∂u(x, t)

∂x
= b(x(t), t) .

This means the solution of u of the original PDE is constant along (x(t), t)
for homogeneous problems, and given by integrating b over time for non-
homogeneous problems, and therefore

u(x(t), t) = u(x0, 0) = u0(x0) +

∫ t

0
b(x(τ), τ) dτ . (A.5)

To solve the original PDE, one finds the characteristics given by the solutions
to (A.3) – (A.4) and uses those to calculate solutions for the PDE along these
characteristics with (A.5) [133].
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A.2 Upwind Differencing

Consider a partial differential equation

∂u(x, t)

∂t
+ a(x, t)

∂u(x, t)

∂x
= 0 (A.6)

with initial conditions
u(x, 0) = u0(x) (A.7)

and a backward difference scheme, in one dimension to simplify illustration.
Any grid point x depends on one neighbouring grid point, and this results in
a triangular domain of dependence when calculating at point P shown in the
time-space diagram in Figure A.1. In this figure, the lines PQ, PQ2, PQ3 are

t

x

P

QQ3 Q2

Figure A.1: Example for a domain of dependence for a one dimensional finite
difference scheme using backward finite differences. PQ, PQ2, PQ3 illustrate
lines of characteristics, where the solution to the partial differential equation
is constant. PQ lies within the numerical domain of dependence, while the
other two red lines are out of the domain of dependence. For the latter two
characteristics, the scheme would therefore be unusable.

characteristics, along which information is transported over time by a PDE.
These can be seen as defining a domain of dependence of the PDE. Now if
this domain of dependence lies outside the numerical domain of dependence,
the numerical scheme cannot capture the transported information and so
will yield wrong results. This is the statement made by the CFL condition
(after Courant, Friedrichs, Lewy [23]) for the convergence of finite difference
schemes. Figure A.1 also illustrates that if a < 0 in Equation (A.6) (line
PQ2 in Figure A.1), the backward difference scheme is unable to capture
any characteristic. Therefore, if a < 0, forward differences must be used.
What all of this means is that the physical flow of information governed
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by the partial differential equation in question may not be faster than the
numerical flow of information. Or equivalently, the numerical wave must
travel at least as fast as the physical wave. In addition, if a < 0 we must use
forward differences, and if a > 0 we must use backward differences. Schemes
working after the latter principle are called upwind, since they always use
information from the direction from which the information is transported1

in order to approximate derivatives.

A.3 Derivation of Statistical Update Term

The term (4.31) in Section 4.9.3 can be derived as follows. Given

E(Φ) = −
∫

Ω

N∑

j=1

log p1,j(uj)H(Φ) dx−
∫

Ω

N∑

j=1

log p2,j(uj) (1−H(Φ)) dx .

d

dν

∣∣∣∣
ν=0

E(Φ + ν φ) =

d

dν

∣∣∣∣
ν=0

[
−
∫

Ω

N∑

j=1

log p1,j(uj)H(Φ + ν φ) dx

−
∫

Ω

N∑

j=1

log p2,j(uj) (1−H(Φ + ν φ)) dx

]
(A.8)

= −
∫

Ω

N∑

j=1

log p1,j(uj)φH ′(Φ) dx +

∫

Ω

N∑

j=1

log p2,j(uj)φH ′(Φ) dx (A.9)

and setting this equal zero gives for any arbitrary φ

N∑

j=1

(− log p1,j(uj) + log p2,j(uj)) H ′(Φ)

=

N∑

j=1

log
p2,j(uj)

p1,j(uj)
H ′(Φ) = 0 . (A.10)

Taking the negative of this gives the gradient descent (4.31).

1One can think of the direction “from which the wind blows”.
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Appendix B

Global Segmentation

B.1 Introduction

In Chapter 4, a few aspects of level set based segmentation methods were
introduced. For the most part, the basis was the piecewise constant ap-
proximation by Chan and Vese [131] of the Mumford-Shah [95] model for
segmentation. One of the properties of the piecewise constant, region based
segmentation method is that the respective energy has local minima. While
this is no problem in practice if a given initialisation is close enough to the
desired solution and no narrow-band methods are being used, the result
certainly depends on the initial values. Chan et al. [17] introduce ways to
manipulate the original method from [131] for two-phase segmentation so
that the minimisation problem is convex and the result can be transformed
into a global optimum of the original problem for fixed constant grey levels in
the two regions. That work builds largely on previous work from Chan and
Esedoḡlu [16] and on work from Strang [123, 122] on maximal flows through
continuous domains.
Note that [17] and [16] also treat image denoising with the widely spread and
quite successful Rudin-Osher-Fatemi (ROF) model [112] and a modification
of the same. This short appendix can be seen as an addition to Chapter 4
and deals with the image segmentation part, predominantly because it gives
some insight into why the Chan and Vese model works well in practice, and
since it can provide an alternative to the standard level set segmentation
used for sphere tracking, in appropriate situations.

B.2 Globally Optimal Piecewise Constant Segmen-
tation

With an image f : D 7→ R and D ⊂ R
n denoting the image domain, and

Σ ⊂ D a subset of D, write the piecewise constant segmentation functional
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as

E(Σ, c1, c2) := Per(Σ; D)+λ

∫

Σ
(c1−f(x))2 dx+λ

∫

D\Σ
(c2−f(x))2 dx (B.1)

(cf. Section 4.9.2). Per(Σ; D) denotes the perimeter of Σ ⊂ D.
The segmentation task is to solve

min
c1,c2∈R; Σ⊂D

E(Σ, c1, c2) . (B.2)

The set Σ is the set of points segmented as foreground, while D \Σ denotes
background. For any fixed Σ, the optimal c1, c2 are given by the average
over foreground and background, respectively:

c1 =
1

|Σ|

∫

Σ
f(x) dx , c2 =

1

|D \ Σ|

∫

D\Σ
f(x) dx . (B.3)

The minimisation of (B.1) is then usually done in two alternating steps:
firstly, assume Σ constant and calculate c1, c2, and secondly assume c1, c2

constant and minimise for Σ. Since (B.1) is non-convex because the set of
admissible Σ is non-convex, the minimisation is generally difficult and will
get stuck in local minima.
Chan et al. [17] note that if c1, c2 ∈ {0, 1} and if f(x) is a binary function
(image), then the above segmentation problem reduces to the ROF denoising
problem [112] for binary functions.
Chan and Vese [131] model the boundary of Σ with the zero level set of an
embedding function Φ, and the segmentation energy then reads

ECV (Φ, c1, c2) =

∫

D
|∇Hε(Φ(x))| dx

+ λ

∫

D
Hε(Φ(x)) (c1 − f(x))2 + [1−Hε(Φ(x))] (c2 − f(x))2 dx (B.4)

with Hε an approximation of the Heaviside function. The first variation of
(B.4) leads to the gradient descent

dΦ

dt
= H ′

ε(Φ)

[
div

( ∇Φ

|∇Φ|

)
− λ

(
(c1 − f(x))2 − (c2 − f(x))2

)]
. (B.5)

Now, Chan et al. observe in [17] that due to the noncompactly supported
approximation of the Heaviside function that was used in [131], for the sta-
tionary solutions of (B.5) it must hold that

div

( ∇Φ

|∇Φ|

)
− λ

(
(c1 − f(x))2 − (c2 − f(x))2

)
≡ 0 (B.6)

since H ′
ε(Φ) 6= 0 everywhere, so (B.5) and

dΦ

dt
= div

( ∇Φ

|∇Φ|

)
− λ

(
(c1 − f(x))2 − (c2 − f(x))2

)
(B.7)
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have the same stationary solutions.
They also provide an energy for which (B.7) is the gradient descent, which
is

∫

D
|∇Φ(x)| dx + λ

∫

D

(
(c1 − f(x))2 − (c2 − f(x))2

)
Φ(x) dx . (B.8)

Since this is linear in Φ, (B.7) does really not have a stationary state, but
approaches ±∞ depending on the sign of Φ, while the zero level set remains
unaltered. This effect can be seen in experiments, also when one uses the
Hε-term. In that case, the effect is much slower depending on ε, but still
there.
To get rid of this, the embedding function Φ is restricted so that

0 ≤ Φ(x) ≤ 1 ∀x .

In [17] a proof is provided for the following theorem (Theorem 2 in the paper)
by transforming the stated energy into one that differs from (B.1) only by
an additive constant that is independent of u. Note we follow the notation
of [17] and write u instead of Φ now.

Theorem B.2.1 Fix some c1, c2 ∈ R. A global minimiser for (B.1) can be
found by solving

min
0≤u≤1

E(u) (B.9)

E(u) =

∫

D
|∇u(x)| dx + λ

∫

D

[
(c1 − f(x))2 − (c2 − f(x))2

]
u(x) dx (B.10)

followed by setting
Σ = {x : u(x) ≥ µ}

for almost any choice of µ ∈ [0, 1].

To solve (B.9), it is further proved in [17] that

min
0≤u≤1

∫

D
|∇u(x)| dx + λ

∫

D
s(x)u(x) dx

has the same solutions as

min
u

∫

D
|∇u(x)| dx +

∫

D
α ν(u(x)) + λ s(x)u(x) dx (B.11)

for

ν(z) := max

{
0, 2

∣∣∣∣z −
1

2

∣∣∣∣− 1

}

and α > λ/2 ‖s(x)‖L∞ .
Using this, a gradient descent is then given by
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Figure B.1: Left: function ν(z) := max{0, 2 |z − 1
2 | − 1}. Right: regularised

version. The intervals [−ε, ε] and [1− ε, 1 + ε] have here been regularised by
using quadratic functions. In this case, ε = 0.1.

du

dt
= div

( ∇u(x)

|∇u(x)|

)
− λ s(x)− αν ′(u(x)) .

It is worth noting that the said transformation of the original problem
into a convex optimisation problem can be done because of the type of ap-
proximation chosen for the Heaviside function, Hε. Since it has noncompact
support and H ′

ε(Φ(x)) 6= 0 ∀x, calculations can be extended to the whole
domain D, and that is also why the original algorithm from Chan and Vese
[131] is often successful in finding good segmentations. Notice that this will
not be the case when using a narrow band implementation, which computes
only on a narrow band around the zero level set of the embedding function
— and thereby effectively disables finding contours which might otherwise
be found.

Also, as has been noted in the introduction, the optimisation of the
segmentation functional is done in two steps, if c1, c2 are unknown; one is
to find globally optimal grey values c1, c2, the other is to find a globally
optimal set Σ. It is not clear whether the two steps together also result in
a global optimum of the segmentation functional for all three parameters
c1, c2, Σ. Experiments suggest that usually, a good and thereby possibly
global optimum is found — however, there is so far no proof that this is the
case.

B.3 Introducing a Prior Template

A template term representing prior knowledge about the shape of a region
to be segmented can be introduced similar to the level set framework. Given
a template in the form of a characteristic function χp,

χp(x) =

{
1 if x ∈ object region

0 if x ∈ background region,
(B.12)
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consider an additional energy term

E′
p(u) =

∫

Ω
(u(x)− χp(x))2 dx . (B.13)

Setting the first variation to zero yields an update

∂u

∂t
= −2 (u− χp) . (B.14)

Inspired by this, choose

Ep(u) =

∫

Ω
(û(x)− χp(x))u(x) dx (B.15)

and using (B.10) minimise

E′(u, c1, c2) = E(u, c1, c2) + γ Ep(u). (B.16)

The term û is a fixed version of u that gets updated after a solution to
minu E′ is found. Also allowing for the transformations scale 0 < s ∈ R,
translation T ∈ R

2, and rotation Γ ∈ SO2 of the prior template gives

Ep(u, s, T, Γ) =

∫

Ω
(û(x)− χp(sΓ x + T ))u(x) dx . (B.17)

While this works in principle [43], the use in situations where a local optimum
is actually sought may be limited. Thinking about the view tracking appli-
cation introduced in Chapter 5, often a local minimum will be wanted, for
example in situations where background clutter is visible in similar colours
or grey value as the tracked object. In such situations, methods more likely
to find local minima may actually be preferable.
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Appendix C

Shape

C.1 Affine Shape Matching

Expanding (2.18) into (2.17), the problem reads

F (A, t) = tr
[ (

X2 −X1 ·A⊤ + 1m · t⊤
)

·
(
X2 −X1 ·A⊤ + 1m · t⊤

)⊤ ]
(C.1)

{A⋆, t⋆} = arg min
A,t

F (A, t) . (C.2)

We first derive with respect to A [102] to get

d

dA
F (A, t) = −2 ·X⊤

2 X1 + 2 ·
(
AX⊤

1 X1

)
− 2 · t1⊤mX1 (C.3)

= 2 ·AX⊤
1 X1 + const . (C.4)

Setting this to zero yields

2 ·AX⊤
1 X1 + const = 0 (C.5)

⇔ 2 ·AX⊤
1 X1 = −const

⇔ A =
[
2 ·X⊤

2 X1 + 2 · (t1⊤mX1)
]
·
(
X⊤

1 X1

)−1
· 1
2

. (C.6)

Deriving (C.1) with respect to t [102] gives

d

dt
F (A, t) = 2 ·X⊤

2 1m − 2 ·AX⊤
1 1m + 2 · t1⊤m1m . (C.7)

Setting this again to zero, t becomes

t =
(
AX⊤

1 1m −X⊤
2 1m

)
· 1

1⊤m1m
, (C.8)
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where of course 1/(1⊤m1m) = 1/m.
Inserting (C.8) into (C.5) gives

AX⊤
1 X1 −X⊤

2 X1 −
1

m

[
AX⊤

1 1m −X⊤
2 1m

]
· 1⊤mX1 = 0 (C.9)

⇔ A ·
[
X⊤

1 X1 −
1

m
X⊤

1 1m1⊤mX1

]
−X⊤

2 X1 +
1

m
X⊤

2 1m1⊤mX1 = 0 (C.10)

⇔ A =

[
X⊤

2 X1 −
1

m
X⊤

2 1m1⊤mX1

]
·
[
X⊤

1 X1 −
1

m
X⊤

1 1m1⊤mX1

]−1

.

(C.11)
So A and t from (C.11) and (C.8) define the transformation that minimises
(2.17).



Appendix D

Elastic Shape Space

D.1 Gradient of Map G

The gradient of the map G and in the continuous case G, introduced in Sec-
tion 3.2.2, is calculated as follows. Assuming the discrete equations (3.10)–
(3.13), the gradients are defined via

〈grad Gi, (h, f)〉(Φ,Θ) = D(h,f)G
i|(Φ,Θ)

with DXY denoting the directional derivative of a vector field Y in direction
X. With

DXY |p = lim
t→0

Y (p + t X)− Y (p)

t
,

to calculate the directional derivative of G1 with respect to (h, f),

D(h,f)G
1|(Φ,Θ) = lim

t→0

1

t

(
1

N

N∑

i=1

eΦi+t hi − 1

N

N∑

i=1

eΦi

)
,

use L’Hospital’s rule to get

D(h,f)G
1|(Φ,Θ) = lim

t→0

1

N

N∑

i=1

hi e
Φi+t hi =

1

N

N∑

i=1

hi e
Φi . (D.1)

Using the same definition of the directional derivative and also L’Hospital’s
rule for the other three components of G yields

D(h,f)G
2|(Φ,Θ) =

1

N

N∑

i=1

fi eΦi +
1

N

N∑

i=1

Θi hi e
Φi (D.2)

D(h,f)G
3|(Φ,Θ) =

1

N

N∑

i=1

−fi sin(Θi) eΦi +
1

N

N∑

i=1

hi cos(Θi) eΦi(D.3)

D(h,f)G
4|(Φ,Θ) =

1

N

N∑

i=1

fi cos(Θi) eΦi +
1

N

N∑

i=1

sin(Θi)hi e
Φi . (D.4)
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Now, setting (v, w) := grad Gi(Φ, Θ) for each i and looking at

〈(v, w), (h, f)〉(Φ,Θ) =
1

N
a

N∑

i=1

vi hi e
Φi +

1

N
b

N∑

i=1

wi fi e
Φi = D(h,f)G

i|(Φ,Θ) ,

insert Equations (D.1) – (D.4) in turn and complete the left hand sides for
(v, w) to get Equations (3.18)–(3.21). The continuous case (3.6)–(3.9) can
be solved in exactly the same way to yield (3.14)–(3.17).

D.2 Christoffel Symbols for Calculating Geodesics

The Christoffel symbols (3.26) can be calculated with this simple Maxima1

program:

christoffel(g, u) :=

block( [ginv: invert(g), len: length(u)],

chris: array(chris, len, len, len),

for i: 1 thru len do

for j: 1 thru len do

for k: 1 thru len do

(chris[i,j,k]:

1/2 * sum(ginv[k,l] *

(diff(g[i,l],u[j]) + diff(g[j,l],u[i])

- diff(g[i,j],u[l])), l, 1, len),

print ("i,j,k=", i, j, k, ": ", chris[i,j,k]))

);

Entering the local representation of the metric (3.25) in Maxima,

g: matrix([a*exp(phi),0],[0,b*exp(phi)]);

defines

g =

(
a eφ 0
0 b eφ

)
,

and then

christoffel (g,[’phi,’theta]);

1http://maxima.sourceforge.net. This program may be written differently, and us-
ing Maxima’s itensor package.
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gives

i, j, k = 111 :
1

2
i, j, k = 112 : 0

i, j, k = 121 : 0

i, j, k = 122 :
1

2
i, j, k = 211 : 0

i, j, k = 212 :
1

2

i, j, k = 221 : − b

2 a
i, j, k = 222 : 0

from which we can then read the Christoffel symbols (3.27).

D.3 Reconstituting Curves from Elements in HN

Since the curve α(t) : R 7→ R
2 is

α(t) = α0 +

∫ t

0
eΦ(τ)ei Θ(τ) dτ ,

set the discrete points α1, . . . , αM in complex coordinates in the simplest
case to

αk := const +
k∑

j=1

eΦjei Θj

which, written as 2D vectors, is

αk := const +
k∑

j=1

eΦj · (cos(Θj), sin(Θj))
⊤ .

In practice, one may want to use a better approximation to the integral, such
as the Simpson rule.

D.4 Calculating (Φ, Θ) from a Curve

In the following, we describe how to compute a pair (Φ, Θ) ∈ CN from a
curve c : R 7→ R

2 approximated by a given polygon of points that lie on
the curve. We approximate the real continuous curve with piecewise cubic
polynomes. This yields, as an approximation to the velocity vector at the
curve point ci,

ċi :=
ci+1 − ci−1

2
.
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The local turning angle αi is calculated as the angle enclosed by the velocity
vectors at points ci, ci−1:

αi := ∠(ċi, ċi−1) .

Algorithm 10 makes the computation of turning angle and speed explicit.
Notice that the computation is at point p1, not p0.

Algorithm 10 Computing the local turning angle and speed approximation
at point p1 on a curve. signz is a function returning −1 if the sign of the z
component of the argument is negative, or 1 otherwise.

Require: p−1, p0, p1, p2 ∈ R
2 consecutive points on a regular curve

procedure TurningAngle(p−1, p0, p1, p2)
h1 ← p1−p−1

2
h2 ← p2−p0

2
speed← |h2|
h1 ← h1

|h1|

h2 ← h2
|h2|

α← arccos(〈h1, h2〉) · signz

((
h1

0

)
×
(

h2

0

))

return α, speed
end procedure

We assume that it always holds −π < αi < π. This is in fact sensible,
since |αi| = π would mean that the curve directly turns around at a point,
which again means that the curve speed must be zero at this point, which
would contradict the assumption that c is always a regular curve. In order to
compute an approximate angle function Θ, we sum the local turning angles,
yielding

Θi :=
i∑

k=0

αk ,

and similarly, we use the velocity approximations to calculate the log speed
function Φ as

Φi := log(|ċi|) .

D.4.1 Normalising Φ, Θ

Taking into account that Φ, Θ must fulfil G(Φ, Θ) = (1, π, 0, 0), (Φ, Θ) must
be normalised with respect to these conditions before we can use them in fur-
ther calculations. In order to do so, we use a combination of a normalisation
and the procedure to project (Φ, Θ) to CN . Explicitly, given (Φ, Θ) ∈ HN ,
we first find r1, r2 so that

∫ 1

0
eΦ(t)+r1 dt = 1
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and ∫ 1

0
(Θ(t) + r2)e

Φ(t)+r1 dt = π

in order to fulfil the first two conditions G1(Φ, Θ) = 1 and G2(Φ, Θ) = π.
Solving the above equations for r1 and r2, respectively, yields

er1 =
1

∫ 1
0 eΦ(t) dt

and

r2 =
π −

∫ 1
0 Θ(t)eΦ(t)+r1 dt
∫ 1
0 eΦ(t)+r1 dt

.

Notice that with (Φ̃, Θ̃) = (Φ+r1, Θ+r2) we have normalised for only two of
four conditions — the closure condition is not necessarily fulfilled. Assuming
we are close enough to the shape we actually want to achieve, we then use
the projection procedure ProjectToCn from Algorithm 3 and set

(Φ, Θ)← ProjectToCn(Φ̃, Θ̃) .
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Appendix E

View Point Tracking

E.1 Rotations

Rotation matrices are characterised by

R R⊤ = R⊤ R = I, det(R) = 1 ,

so that if one differentiates the above formula, one finds that

dR

dt
R⊤ and R⊤ dR

dt

are skew symmetric matrices, so that

dR

dt
= Swr R = R Swl

.

Let wr = (x, y, z)⊤ ∈ R
3,

Swr
:=




0 −z y
z 0 −x
−y x 0



 .

If R = I, then ṘI = Swr . The space of skew symmetric matrices which
contains Swr is isomorphic to R

3 [100].
Say that

n =
wr

|wr|
and

wr = θ n .

Then a rotation R around the axis n and for the angle θ is given by the
Rodrigues formula

R = I +sin(θ)Sn +(1− cos(θ))S2
n = cos(θ) I +sin(θ)Sn +(1− cos(θ))n n⊤ .
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θ and Sn can be derived from R with

θ = arccos

(
trace(R)− 1

2

)

and

Sn =
R−R⊤

2 sin(θ)
.

The latter formula exhibits problems around θ = π and θ = 0, which can be
tackled with using a Taylor expansion in the latter case; in the former case
one needs to apply some more care, see for example [100].

E.1.1 Exponential and Logarithmic Maps

We assume that we look only at the tangent space at identity, TId(SO3).
We can do this since we can move any point in R ∈ SO3 to identity simply
by applying R⊤, and move back by applying R.
Say (θ, n) ∈ TId(SO3), then the exponential map maps (θ, n) to the rotation
around axis n with angle θ. So, Exp(θ, n) is given by the Rodrigues formula.
This happens to be the same as the matrix exponential exp(θ Sn) [100]. The
logarithmic map can then be calculated by applying the formulas for Sn and
θ from above.

E.1.2 Metric

The metric on SO3 corresponds to the angle travelled from one rotation R1

to another, R2:

d(R1, R2) = arccos

(
trace(R⊤

1 R2)− 1

2

)
.

E.2 Unit Sphere

This section notes how to calculate exponential and inverse exponential maps
on a unit sphere.
Let x1, x2 ∈ S

n−1 ⊂ R
n, v ∈ Tx1(S

n−1),
√

v⊤v = 1, ℓ ∈ R
+. A geodesic is

given by
f(x1, v, t) = cos(t ℓ)x1 + sin(t ℓ) v . (E.1)

ℓ is the angular distance to the point x2 that is reached at t = 1, x2 =
f(x1, v, 1) = Expx1

(v ℓ).
Conversely, given x1, x2 ∈ S

n−1, one calculates the distance along a great
circle as d(x1, x2) = ℓ = arccos(x⊤

1 x2). Then,

x2 = cos(t arccos(x⊤
1 x2))x1 + sin(t arccos(x⊤

1 x2)) v
∣∣∣
t=1

(E.2)

⇒ v =
x2 − (x⊤

1 x2)x1

sin(arccos(x⊤
1 x2))

∀x1 6= x2 . (E.3)
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This delivers the exponential and inverse exponential as

Expx1
(ṽ) =

{
f(x1,

ṽ
|ṽ| , |ṽ|) if ṽ 6= 0

x1 else
(E.4)

and

Logx1
(x2) =






x2−(x⊤
1 x2) x1

sin(arccos(x⊤
1 x2))

arccos(x⊤
1 x2) if x1 6= x2

0 else.
(E.5)

A parallel transport of a tangent vector v from point x1 to point x2 is given
by

v2 = v − 2 (x1 + x2) 〈v, x2〉
〈x1 + x2, x1 + x2〉

. (E.6)

E.3 Motion Model

A solution for the differential equation (5.7)–(5.9) can be obtained with a
computer algebra system1. Distinguishing three cases, it reads

s (t) =
1

m
e−

b t
2 m

(sin

(√
8 g m2−b2 t

2 m

)
(2m (mv0 − b P ) + bmP )

√
8 g m2 − b2

−

m cos

(√
8 g m2 − b2 t

2 m

)
P

)
+ P (E.7)

if 8 g m2 > β2,

s (t) =
1

m
e−

b t
2 m

(sinh

(√
b2−8 g m2 t

2 m

)
(2m (mv0 − b P ) + bmP )

√
b2 − 8 g m2

−

m cosh

(√
b2 − 8 g m2 t

2 m

)
P

)
+ P (E.8)

if β2 > 8 g m2, and

s (t) = e−
b t
2 m

(
t (2m (mv0 − b P ) + bmP )

2 m2
− P

)
+ P (E.9)

if 8 g m2 = β2.

1This solution was computed with Maxima, which is Free Software and can be acquired
at http://maxima.sourceforge.net.
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We will also need to calculate the velocity ṡ(t), which is then

ṡ(t) =
1√

8 g m2 − b2
e−

b t
2 m

(
4 g m sin

(√
8 g m2 − b2 t

2 m

)
P−

b sin

(√
8 g m2 − b2 t

2 m

)
v0+

√
8 g m2 − b2 cos

(√
8 g m2 − b2 t

2 m

)
v0

)
, (E.10)

if 8 g m2 > β2,

ṡ(t) =
1√

b2 − 8 g m2
e−

b t
2 m

(
4 g m sinh

(√
b2 − 8 g m2 t

2 m

)
P−

b sinh

(√
b2 − 8 g m2 t

2 m

)
v0+

√
b2 − 8 g m2 cosh

(√
b2 − 8 g m2 t

2 m

)
v0

)
, (E.11)

if β2 > 8 g m2, and

ṡ(t) =
e−

b t
2 m

(
b2 t P +

(
4 m2 − 2 bm t

)
v0

)

4 m2
(E.12)

if 8 g m2 = β2.
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Used Objects

F.1 Object Models and Shapes

3D computer graphics models were used to generate images from object.
The models were taken from the Princeton 3D shape benchmark data base
[103] and are shown in Figure F.1.
Some shapes from the MPEG-7 core experiment 1 shape data base were
used, see e.g. [74]. The fish shapes in Chapters 2 and 5 are from the Surrey
fish data base [94].

Figure F.1: Objects m1105, m1154, m1249 from left to right. From the
Princeton 3D shape benchmark data base [103].

The spherical positions used to sample object images were pre-calculated
using a 3D modelling program. A sphere was approximated by a refined
icosahedron yielding 162 vertices.
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