








Zusammenfassung

Die Beobachtung der Gravitationslinseneffekte von Galaxien auf andere Galaxien, das
sogenannte “Galaxien-Galaxien-Linsensignal” (G-G-Signal), ist ein ideales Werkzeug,
um die Verteilung der Dunklen Materie auf den Skalen von Galaxien zu untersuchen.
Die nötige Fehlergenauigkeit bei der Messung dieses Signals kann nur dadurch erreicht
werden, dass Bilder von unzähligen Vordergrundsgalaxien (“Linsen”) aufaddiert wer-
den und dann die durchschnittliche Elliptizität der Hintergrundsgalaxien (“Objekte”)
ermittelt wird. Allerdings verhindert die Mittelung über die Vordergrundsobjekte je-
de direkte astrophysikalische Interpretation, weswegen ein verlässliches Modell für die
Verteilung von Galaxien in Dunkle-Materie-Halos verfügbar sein muss, um kosmologi-
sche Schlüsse aus dem mittleren Linsensignal zu ziehen. Hier stellen wir ein realisti-
sches Modell für die Statistik von Halo-Besetzungszuständen vor, die auf der beding-
ten Leuchtkraftfunktion aufbaut. Diese gibt eine statistische Beschreibung der Anzahl
von Galaxien mit einer bestimmten Leuchtkraft, die in Halos von einer bestimmten
Masse zu finden ist. Da sie a priori durch die Leuchtkraftabhängigkeit der groräumigen
Galaxienverteilung eingegrenzt ist, erlaubt es die bedingte Leuchtkraftfunktion, das G-
G-Signal ohne zusätzliche Feintarierung vorherzusagen. Unser Modell ermöglicht ein
intuitives Verständnis der verschiedenen Terme, die zu diesem Signal beitragen. Die
Auswirkungen der verschiedenen Annahmen, die in das Modell einflieen, werden detai-
liert untersucht. Unsere theoretischen Vorhersagen stimmen gut mit Beobachtungen aus
der SDSS-Durchmusterung überein. Da die Vorhersagen des Modells sich sehr stark mit
unterschiedlichen Annahmen über die zugrundeliegende Kosmologie verändern, stellen
wir mit der gemeinsamen Analyse von Galaxienverteilung und G-G-Signal eine neu-
artige Methode fr̈ die Bestimmung kosmologischer Parameter wie Ωm und σ8 vor. Wir
zeigen, dass Unsicherheiten und systematische Fehler imModell seine Vorhersagen nicht
signifikant beeinflussen. Daher ist unsere neuartige Methode ein geeignetes Mittel, um
kosmologische Parameter komplementär zu bisherigen Verfahren zu bestimmen.



Abstract

Galaxy-galaxy (g-g) lensing represents an ideal technique to constrain the dark matter
distribution on galaxy scales. The required accuracy in the signal can be achieved only
by stacking many foreground galaxies and averaging the ellipticity of the resulting back-
ground galaxies. Unfortunately, the stacking procedure complicates any astrophysical
interpretation. In order to extract information from the composite g-g lensing signal, a
reliable model of the way galaxies populate dark matter haloes is required. We use a
realistic description of the halo occupation statistics based on the conditional luminosity
function. It provides a statistical prescription for the number of galaxies with a given
luminosity living in dark matter haloes of a given mass. Being “a priori” constrained by
the luminosity dependence of the galaxy clustering, it can be used for predicting the g-g
lensing signal without any additional tuning. Our model allows a thorough understand-
ing of the different terms contributing to the signal. We carefully explore the effect of the
assumptions entering the model. Our theoretical predictions are in very good agreement
with SDSS data. Furthermore, we use the sensitivity of this technique to the underlying
cosmological model to study the feasibility of a joint analysis of galaxy clustering and g-
g lensing as a novel technique to constrain the values of cosmological parameters such as
Ωm and σ8. We show that uncertainties and systematics in the model do not significantly
affect the model predictions. We conclude that a combined analysis of galaxy clustering
and g-g lensing can be used as a novel, complementary and competitive technique to
constrain cosmological parameters.
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1

Overview

Mankind has always been wondering about the origin and the history of the universe. However,
only in the last century, it has become possible to address in an empirical manner specific questions
about the nature of extragalactic phenomena. Particularly in the last decades, the increasing technical
capability in observations has led to deep insights in extragalactic astronomy and cosmology. As a
result, a concordance model has emerged within which astrophysical observations can be successfully
explained and accurate theoretical predictions can be provided. As we aim towards an ever increas-
ing understanding, every answer to astrophysical problems raises yet more fundamental questions
about the physics of the universe. In this perspective, it is extremely fascinating that the study of
the luminous matter yields to the discovery and the analysis of the intrinsic properties of the “dark”
constituents of the universe.

The history of this connection goes back to 1933 when Zwicky realized that the mass resulting
from the sum of the masses of individual galaxies in the Virgo cluster was not sufficient to explain
the mass of the cluster inferred from a dynamical study of these galaxies. This “missing mass”
problem gave birth to the inference of the presence of dark matter in the universe. Since then, our
understanding of the physics in galaxy clusters has surely developed (see Abell & Eastmond 1975;
Bahcall 1977; Biviano 2000 and reference therein for detailed reviews). However, the precise nature
of the dark matter still eludes us. Intensive experimental searches have being carried out for “direct”
(e.g. ANAIS, Cebrián et al. 2000; CDMS and XENON, Baudis 2006; DAMA/LIBRA, Bernabei et al.
2008; EDELWEISS, Sanglard et al. 2005; ZEPLIN-III, Lebedenko et al. 2008; MACHO, Bennett et
al. 1991; OGLE, Udalski et al. 1994) and “indirect” (e.g. PAMELA, Bonvicini et al. 2001) detection
of dark matter. Although such a detection has not yet happened, there are favored particle candidates,
namely weakly-interacting massive particles (WIMP) that are believed to have survived since the very
early phases of the universe. However, still major progresses in understanding the extreme physics
of that cosmological era are required to infer what particles might have existed then, and how many
would have survived. Thus, the search for dark matter particles has made astrophysics the test bed of
the new horizons of particle physics.
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1. OVERVIEW

In this thesis, we address the study of dark matter in the universe in a pure astrophysical perspec-
tive. In particular, we study the properties of dark matter distribution rather than the nature of such
particles. Moreover, since we are interested in the properties of dark matter distribution on galaxy
scales and beyond, we define the scope of this thesis as galaxy-dark matter connection.

For different types of galaxies, different methods have been developed in order to constrain the
properties of this connection. For example, it has been noted that the rotation velocity of many spiral
galaxies stays roughly constant out to large radii rather than declining, as would be expected if the
visible stars provided all the gravitating mass. This phenomenon was observed through both optical
and extended neutral hydrogen (HI) rotation curves (e.g. Bosma 1978; Faber & Gallagher 1979;
Rubin, Ford and Thonnard 1980; Rubin et al. 1982). HI observations have the advantage that they
can be extended up to large radii, so the rotation curves can probe the mass distribution far from the
center of a galaxy. A flat rotation curve at large radii is interpreted as a strong evidence of the presence
of a dark matter halo around spiral galaxies. For elliptical galaxies, dynamic tracers as planetary
nebulae and globular clusters have been successfully used to probe the existence of dark matter haloes
around these kind of galaxies. Recently, multiple images due to strong gravitational effects have been
also used to probe the properties of the dark matter distribution around ellipticals (see e.g. Treu &
Koopmans 2002 and reference therein). Furthermore, for the case of galaxy clusters twomethods have
been extremely powerful in determining the properties of the dark matter distribution: the analysis of
the X-ray emission of the hot intra-cluster gas and the study of (both weak and strong) gravitational
lensing effects. While the first method relies on the assumption of hydrostatic equilibrium of the gas
in the potential well of the dark matter halo, gravitational lensing is not based on any assumption
about the physical state of the luminous matter. However, typical galaxy cluster mass reconstructions
based on lensing have the shortcoming of probing the distribution of mass inside a cylinder rather
than in a spherical region around the galaxy cluster.

With strong support from all these observational probes, a theoretical framework has been devel-
oped for galaxy formation in a cold dark matter scenario. It is generally accepted that every galaxy
resides in a a dark matter halo. Moreover, we refer to central galaxies to those located more or less
at rest at the center of the halo’s potential well, whereas we refer to satellite galaxies as those orbit-
ing within the halo. Note also that, in jargon, one refers to galaxy groups as to sets of a handful of
galaxies sharing the same dark matter halo. Instead, if the satellite galaxy population is numerous
(i.e. hundred to thousands of galaxies) one refers to galaxy clusters. The line-of-sight (hereafter los)
velocity dispersion of satellite galaxies reflects the depth of the halo’s potential well, and is thus a
measure for the halo’s mass. In the case of rich galaxy clusters, the number of satellite galaxies can
be sufficient to properly sample the los velocity distribution of its dark matter halo (Carlberg et al.
1997) and this method can be used, in addition to the X-ray and lensing studies, to estimate the halo
mass. In the case of galaxy groups, the number of (detectable) satellite galaxies is generally too small
to obtain a reliable measure of the los velocity dispersion. However, under the assumption that central
galaxies with similar properties (i.e. luminosity) are hosted by haloes of similar masses, one can stack
central galaxies and combine the kinematic information of their associated satellites to improve the
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statistics. Pioneering efforts in this direction were made by Erickson et al. 1987, Zaritsky et al. 1993,
and Zaritsky et al. 1997. With the advent of large galaxy redshift surveys such as the two degree field
galaxy redshift survey (hereafter 2dFGRS; see Colless et al. 2001) and the Sloan Digital Sky Survey
(hereafter SDSS; see York et al. 2000), it has become possible to apply this method to much larger
samples of satellite galaxies. Consequently, sophisticated techniques have been introduced to prop-
erly account for all uncertainties related with this methodology (see e.g. McKay et al. 2002; Prada et
al. 2003; Brainerd & Specian 2003; van den Bosch 2004; Conroy 2007; Becker 2007; Norberg et al.
2008; More et al. 2009a,b).

The advent of galaxy redshift surveys has also allowed one to obtain accurate measurements of
the spatial distribution of galaxies. In particular, it has been possible to determine the clustering of
galaxies as a function of their properties, such as luminosity, morphology and color (e.g. Guzzo et
al.2000; Norberg et al.2001, 2002; Zehavi et al.2005; Wang et al.2007). Since galaxies are believed to
form and reside in dark matter haloes, the clustering strength of a given population of galaxies can be
compared to that of dark matter haloes as predicted by numerical simulations or the extended Press-
Schechter formalism. Such a comparison reveals a wealth of information about the way galaxies
populate dark matter haloes (e.g. Jing, Mo & Börner 1998; Peacock & Smith 2000; Berlind &
Weinberg 2002; Yang, Mo & van den Bosch 2003; van den Bosch, Yang & Mo 2003; van den
Bosch et al.2007). Unfortunately, this method of constraining the link between galaxies and dark
matter haloes using galaxy clustering has one important shortcoming: the halo occupation statistics
inferred from the observed clustering properties depend on the adopted cosmological model. More
precisely, models based on different cosmologies can fit the clustering data almost equally well by
simply relying on different halo occupation statistics or, equivalently, different mass-to-light ratios.
In order to break this degeneracy independent constraints on the mass-to-light ratios are required (e.g.
van den Bosch, Mo & Yang 2003; Tinker et al.2005). One method that can provide these constraints
is galaxy-galaxy lensing (hereafter g-g lensing), which probes the mass distributions (and hence the
halo masses) around galaxies.

Galaxy-galaxy lensing measures the tangential shear distortions in the shapes of background
galaxies (hereafter sources) induced by the mass distribution around foreground galaxies (hereafter
lenses). The first attempt to detect g-g lensing was made by Tyson et al.(1984), but because of the rel-
atively poor quality of their data they were unable to detect a statistically significant signal. The first
clear detection was obtained only twelve years later (Brainerd et al. 1996). With wider and deeper
surveys becoming available, however, g-g lensing has been detected with very high significance, and
as function of various properties of the lensing galaxies (e.g. Griffiths et al.1996; Hudson et al.1998;
McKay et al.2001; Guzik & Seljak 2002; Hoekstra et al.2003, 2004; Sheldon et al.2004, 2007a,b;
Mandelbaum et al.2006; Heymans et al.2006; Johnston et al.2007; Parker et al.2007; Mandelbaum,
Seljak &Hirata 2008). Unfortunately, a proper interpretation of these data in terms of the link between
galaxies and dark matter haloes has been hampered by the fact that the lensing signal can typically
only be detected when stacking the signal of many lenses. Since not all lenses reside in haloes of the
same mass, the resulting signal is a non-trivial average of the lensing signal due to haloes of different
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1. OVERVIEW

masses. Most studies to date have assumed that the relation between the luminosity of a lens galaxy
and the mass of its halo is given by a simple power-law relation with zero scatter (see Limousin et
al.2007 for a detailed overview). However, it has become clear, recently, that the scatter in this relation
between light and mass can be very substantial (More et al.2009b, and references therein). As shown
by Tasitsiomi et al.(2004), this scatter has a very significant impact on the actual lensing signal, and
thus has to be accounted for in the analysis. In addition, central galaxies (those residing at the center
of a dark matter halo) and satellite galaxies (those orbiting around a central galaxy) contribute very
different lensing signals, even when they reside in haloes of the same mass (e.g. Natarajan, Kneib
& Smail 2002; Yang et al.2006; Limousin et al.2007). This has to be properly accounted for (see
e.g. Guzik & Seljak 2002), and requires knowledge of both the satellite fractions and of the spatial
number density distribution of satellite galaxies within their dark matter haloes.

Over the years, numerous techniques have been developed to interpret galaxy-galaxy lensing
measurements (Schneider & Rix 1997; Natarajan & Kneib 1997; Brainerd & Wright 2002; Guzik &
Seljak 2001). Several authors have also used numerical simulations to investigate the link between
g-g lensing and the galaxy-dark matter connnection (e.g., Tasitsiomi et al.2004; Limousin et al.2005;
Natarajan, De Lucia & Springel 2007; Hayashi &White 2007). It has become clear from these studies
that g-g lensing in principle contains a wealth of information regarding the mass distributions around
galaxies; in addition to simply probing halo masses, g-g lensing also holds the potential to measure
the shapes, concentrations and radii of dark matter haloes, and the first observational results along
these lines have already been obtained (Natarajan et al.2002; Hoekstra et al.2004; Mandelbaum et
al.2006; Limousin et al.2007; Mandelbaum et al.2008).

In this thesis we use an analytical model, similar to that developed by Seljak (2000) and Guzik &
Seljak (2001), to predict the g-g lensing signal as a function of the luminosity of the lenses starting
from a model for the halo occupation statistics that is constrained to fit the abundances and clustering
properties of the lens galaxies. A comparison of these predictions with the data thus allows us to
test the mass-to-light ratios inferred from the halo occupation model. The occupation statistics are
described via the conditional luminosity function (CLF; see Yang et al.2003), which specifies the
average number of galaxies of given luminosity that reside in a halo of given mass. This CLF is ideally
suited to model g-g lensing, as it allows one to properly account for the scatter in the relation between
luminosity and halo mass, and to split the galaxy population in centrals and satellites. We demonstrate
how these different galaxy populations contribute to the lensing signal in different luminosity bins,
and show the impact on our results of the uncertainties related to the expected concentrations of dark
matter haloes and the radial number density distributions of satellite galaxies.

Assuming a flatΛCDM cosmology with parameters supported by the third year data release of the
Wilkinson Microwave Anisotropy Probe (WMAP, see Spergel et al.2007), we obtain a CLF that ac-
curately fits the abundances and clustering properties of SDSS galaxies. Using our analytical model,
we show that this same CLF also accurately matches the g-g lensing data obtained from the SDSS by
Seljak et al.(2005) and Mandelbaum et al.(2006) without any additional tuning of the model param-
eters. However, if we repeat the exercise of constraining the CLF parameters using the abundance
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and clustering of galaxies for a cosmology with slightly higher (∼ 20%) matter density and power-
spectrum normalization, the model that fits the clustering data can no longer reproduce the g-g lensing
data. This means that one cannot arbitrarily modify the halo occupation statistics and simultaneously
reproduce all the statistical properties of galaxies for any cosmology. More specifically, this result
clearly shows that a joint analysis of clustering and g-g lensing is extremely sensitive to the under-
lying cosmological model. Thus, we study to which extent such a joint analysis may be used as a
possible novel and competitive method to constrain cosmological parameters.

In this thesis, we only consider inflationary CDM cosmologies with the initial conditions for
structure formation set by density perturbations which follow a power spectrum assumed to have a
power law form. In addition, we assume that the vacuum energy is described by a cosmological
constant. Furthermore, the geometry of the universe is assumed flat as suggested by the location of
the first peak in the angular power spectrum of cosmic microwave background (CMB) temperature
fluctuations (e.g., Balbi et al.2000; Lange et al.2001; Pryke et al.2002; Netterfield et al.2002; Ruhl et
al.2002). Such a cosmological model can be characterized by 5 parameters: the energy densities (in
terms of the critical density) of baryons, Ωb and of cold dark matter, Ωdm, the Hubble parameter, h =
H0/(100 km s−1 Mpc−1), the spectral index, n, and normalization, σ8, of the initial power spectrum.
We define Ωm ≡ Ωb + Ωdm as the matter density and we thus have that the ΩΛ = 1 − Ωm defines the
cosmological constant energy density.

Recent years have seen a tremendous improvement in the constraints on the cosmological param-
eters listed above. Clearly, a concordance cosmological model has emerged with well constrained
values for (Ωm,ΩΛ,Ωb, h, n). High redshift supernovae (SN) Ia indicate that ΩΛ ∼ 0.7 (e.g., Riess
et al.1998; Perlmutter et al.1999, Astier et al. 2006). The contribution from the baryons is deter-
mined either from primordial nucleosynthesis models and measurements of the primeval deuterium
abundance for which Ωbh2 = 0.020 ± 0.001 (Burles, Nollett & Turner 2001) or via CMB anisotropy
measurements (Hanany et al.2000; de Bernardis et al.2002; Pryke et al.2002; Netterfield et al.2002,
Dunkley et al. 2009) which suggest Ωbh2 = 0.022 ± 0.004. The HST Key project has constrained
the Hubble constant to h = 0.72 ± 0.08 (Freedman et al.2001). Using this as a prior, the CMB data
yield values for Ωm within the range [0.2, 0.4] (depending on the assumptions in the analysis, see
e.g., Lewis & Bridle 2002; Dunkley et al. 2009) and the analysis of SN Ia gives Ωm = 0.26 ± 0.03
(Astier et al. 2006) in agreement with combined analyses of SN Ia, CMB and baryonic acoustic
oscillation (BAO) in galaxy correlation function data which yield Ωm = 0.249 ± 0.018 (Percival et
al.2007, Komatsu et al. 2009) and Ωm = 0.27± 0.02 (Eisenstein et al. 2005). Additional (and equally
consistent) constraints on the amount of matter in the universe were found by using the galaxy power
spectrum (Padmanabhan et al. 2007, Blake et al. 2007, Spergel et al. 2007). The spectral index of the
initial power spectrum has been constrained by CMB anisotropy measurements to n = 0.96+0.014−0.015 (see
Dunkley et al.2009 and reference therein), in excellent agreement with the inflation paradigm which
predicts values of n close, but not necessarily equal, to unity.

It must be noticed that in such a concordance cosmology the value of the normalization parameter,
σ8, has not yet been determined with high accuracy. In the literature, one can find different attempts to
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1. OVERVIEW

determine σ8. Perhaps, the two most widely applied methods are the observed abundance of clusters
of galaxies (Bahcall et al.2003; Pierpaoli et al.2002; Reiprich & Böhringer 2002; Seljak 2002; Viana,
Nichol & Liddle 2002) and the cosmic shear measured from weak lensing (Hamana 2002; Hoekstra,
Yee &Gladders 2004; vanWaerbeke et al. 2002; Bacon & Taylor 2003). Unfortunately, both methods
are actually dependent on a combination of both σ8 andΩm. Moreover, the cluster abundance method
requires accurate mass estimates of individual clusters, whereas the weak lensing method relies on
difficult cosmic shear measurements (e.g. Jarvis et al.2003 and references therein). Current estimates
for σ8 range from ∼ 0.6 (e.g., Borgani et al.2001; Reiprich & Böhringer 2002; Seljak 2002; Viana,
Nichol & Liddle 2002; Spergel et al. 2007) to ∼ 1.0 (e.g., Bacon et al.2002; Fan & Bahcall 1998;
Pen 1998; Pierpaoli, Scott & White 2001; van Waerbeke et al.2002, Spergel et al. 2003). Note that
this range is much wider than the typical statistical uncertainty derived by the individual methods. In
particular, note that the WMAP team itself has suggested σ8 = 0.84 ± 0.04 (after the first year data
release), σ8 = 0.76 ± 0.04 (after the third year data release), and σ8 = 0.796 ± 0.036 (as result of the
fifth year data analysis).

As shown in chapter 6, the method proposed in this thesis allows us to determine the value of
both Ωm and σ8 with high accuracy. Since galaxy clustering and galaxy-galaxy lensing probe the
galaxy-dar matter connection in complementary ways, the degeneracy between these two parameters
is almost entirely lifted. The method reveals itself as a new tool to constrain cosmological parameters.
Note that it is complementary to all the other cosmological probes because it is based on the purely
non-linear regime of the structures in the local universe. In fact, it uses the information encoded on
galaxy scales through galaxy clustering and g-g lensing. In addition, the analytical character of the
CLF allows us to study the systematics involved in the method and to verify that they do not strongly
affect the results.

This thesis is organized as follows. We present the properties of the Sloan Digital Sky Survey
(SDSS) in chapter 2. Furthermore, in the same chapter, we introduce the data used throughout the
thesis: the galaxy luminosity function, the projected galaxy correlation function, the galaxy correla-
tion lengths as a function of luminosity and the excess surface density of galaxies selected according
to their absolute magnitude. Note that all these data have been obtained with SDSS. In chapter 3, we
review the basic theory of structure formation in the universe. In chapter 4, we introduce the ana-
lytical model used throughout the thesis to interpret the data. In particular, note that in this chapter
we introduce the CLF used to describe the connection between galaxies and dark matter haloes. In
chapter 5, we constrain the CLF parameters establishing then the galaxy-dark matter connection in a
quantitative way. Finally, In chapter 6, we study the sensitivity of such an analysis to the underlying
cosmology and we introduce a novel method to constrain cosmological parameters based on a joint
analysis of galaxy clustering and g-g lensing. We summarize the findings of this thesis in chapter 7,
in which we also provide indications for possible future applications.
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Some of the results presented in this thesis have been submitted to a referred journal and accepted
for publication1:

• Cacciato M., van den Bosch F.C., More S., Li R., Mo H.J., Yang X., 2009, MNRAS, 394, 929

• Li R., Mo H.J., Fan Z., Cacciato M., van den Bosch F.C., Yang X., More S., 2009, MNRAS,
394, 1016

1The analysis presented in chapter 6 is in preparation for submission to a refereed journal
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2

Observational Data

In this chapter, we introduce the data that we will use throughout the thesis. Note that the entire thesis
is based on data obtained with the Sloan Digital Sky Survey (SDSS). Therefore, in the first section
we describe the general properties of this survey, whereas in the remaining sections we describe
the galaxy luminosity function, the two-point galaxy correlation function for galaxies of different
luminosity, the luminosity dependence of the correlation length, and the galaxy-galaxy lensing signal.
One great advantage of using SDSS is that the same galaxies can be used for abundance, clustering,
and lensing analysis. This ensures homogeneity in the selection effects of the catalogue.

2.1 Observing galaxies with SDSS

The Sloan Digital Sky Survey is an ongoing project to map approximately a quarter of the sky using a
dedicated instrument located at the Apache Point Observatory in southern NewMexico. The telescope
provides a nearly 3◦, virtually undistorted field of view. The SDSS imaging camera (Gunn et al.
1998) is a mosaic of 30 2048 × 2048 pixel CCDs used for the primary imaging. The imaging CCDs
are arranged in six columns of 5 CCDs each. Each of the 5 CCDs in a column views the sky through
a different broadband filter. The five filters (u, g, r, i, z, see Fukugita et al. 1996 for details) span a
range from the atmospheric cutoff at 300nm to the limit of CCD sensitivity at 1100nm.

SDSS imaging data are obtained in drift scan mode. In general, the telescope is driven along a
great circle on the sky in such a way that objects pass directly down a column of CCDs. This allows
essentially simultaneous observations to be obtained in each of the five passbands and provides very
efficient survey observing (the shutter never closes). Because the CCD columns are separated by
nearly a CCD width, a single SDSS observation of a strip of sky contains large gaps. The gaps in a
single “strip” are then filled in on a subsequent night to obtain a completely filled “stripe”. Moreover,
because of the Galactic extinction, only certain region of the sky are covered (see fig. 2.1). Successful
drift scanning with a wide field system requires an optical design with very low distortion, which has
the added benefit of removing an important shape systematic facilitating gravitational lensing studies.
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2. OBSERVATIONAL DATA

Figure 2.1: The sky coverage of the SDSS DR4 galaxies, overlaid on the Galactic extinction contours of
Schlegel, Finkbeiner & Davis (1998). Note that the SDSS probes regions of low galactic extinction.

Detailed descriptions of the data acquisition, reduction and calibration can be found in Uomoto et al.
(2000) and in Pier et al. (2000).

SDSS has obtained deep, multi-color images covering a quarter of the sky and it has created 3-
dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. SDSS data
have been provided to the scientific community in various releases. In this thesis, we use the version
based on SDSS Data Release 4 (Adelman-McCarthy et al. 2006). Fig. 2.2 shows a slice through
the SDSS 3-dimensional map of the distribution of galaxies. Earth is at the center, and each point
represents a galaxy. Galaxies are colored according to the ages of their stars, with the redder showing
galaxies that are made of older stars. The outer circle is at a distance of z ∼ 0.15. The region between
the wedges was not mapped by the SDSS because of Galactic extinction.

2.2 Galaxy Luminosity Function

The galaxy luminosity function specifies the way in which galaxies are distributed with respect to
their luminosity. More precisely, one can define Φ(0.1Mr) d0.1Mr as the number density of galaxies
with absolute magnitude in the interval [0.1Mr,

0.1Mr + d0.1Mr]. Here 0.1Mr indicates the r-band
magnitude K+E corrected to z = 0.1 following the procedure of Blanton et al.(2003b). Throughout
this thesis, we use the luminosity function (hereafter LF) of Blanton et al (2003a) uniformly sampled
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2.2 Galaxy Luminosity Function

Figure 2.2: Slices through the SDSS 3-dimensional map of the distribution of galaxies. Earth is at the
center, and each point represents a galaxy. Galaxies are colored according to the ages of their stars, with
the redder points showing galaxies that are made of older stars. The outer circle is at a distance of z ∼ 0.15.
The region between the wedges was not mapped by the SDSS because of Galactic extinction. Both slices
contain all galaxies within -1.25 and 1.25 degrees declination. [Ref. www.sdss.org]
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Figure 2.3: The galaxy luminosity function, Φ, derived from SDSS (see Blanton et al. 2003a).
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2.3 Galaxy Correlation Function

at 41 magnitudes covering the range −23.0 ≤ 0.1Mr − 5 log h ≤ −16.4 as shown in fig. 2.3. Here, we
briefly describe the procedure to obtain the galaxy luminosity function, Φ(0.1Mr) from SDSS data.
Each galaxy has a measured magnitude mr and an associated uncertainty ∆mr. The magnitude 0.1Mr

may be constructed from the apparent magnitude mr and the redshift z:

0.1Mr − 5 log h = mr − DM(z,Ωm,ΩΛ, h) − K(z) . (2.1)

Note that one needs to calculate the distance modulus, DM(z,Ωm,ΩΛ, h), for a given distance and
cosmology (for example using the method suggested by Hogg 1999) and the K-correction at the any
given z. In order to fit the distribution of the absolute magnitudes and redshifts of galaxies one uses a
maximum likelihood method which allows for a generic luminosity function shape (see Blanton et al.
2003b for detail). If expressed as a function of the luminosity, L, instead of the absolute magnitude,
the measured galaxy luminosity function turns out to be well described by the functional form

Φ(L) =
(

Φ∗

L∗

)

( L
L∗
)α

exp(−L/L∗) , (2.2)

where L∗ is a characteristic luminosity above which the function drops exponentially, α is the faint end
slope, and Φ∗ is a normalization. The use of this functional form to describe galaxy number density
was first introduced by Schechter (1976) and this is the reason why in the astronomical community
this function is known as Schechter function.

2.3 Galaxy Correlation Function

One of the principal scientific objectives of SDSS is to map the large scale structure traced by optical
galaxies with unprecedented precision and over a wide range of scales. The large sample of galaxies
observed by SDSS allows one to study the clustering of galaxies with different properties, such as
luminosity, color, spectral type, morphology, and stellar mass (see e. g. Guzzo et al.2000; Norberg et
al.2001, 2002; Zehavi et al.2005; Wang et al.2007). All these studies show that galaxies of different
kinds have different clustering properties. This indicates that galaxies are biased tracers of the dark
matter distribution. Therefore, one has to be careful when using the observed galaxy distribution to
infer the mass distribution in the universe to ultimately provide tests of galaxy formation theory.

In this thesis, we use galaxy clustering data obtained via a sample of 284489 galaxies from SDSS.
These galaxies are distributed over a range 0.01 < z < 0.3 and have absolute magnitude in the range
−23 < 0.1Mr < −18. We quantify the clustering properties using the 2-point correlation function
(see chapter 3 and 4 for a theoretical definition of this quantity). Different method can be used to
estimate the 2-point galaxy correlation function. We adopt the definition introduced by Davis &
Peebles (1983),

ξgg(R, rπ) =
DD(R, rπ)
DR(R, rπ)

− 1 (2.3)
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2. OBSERVATIONAL DATA

Figure 2.4: The projected correlation function, wp, calculated from SDSS (see Wang et al. 2007).
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2.3 Galaxy Correlation Function

where DD is the count of galaxy pairs at distance (R, rπ), whereas DR is the count of galaxy-random
pairs. Note that R and rπ are the separation of pairs perpendicular and parallel to the line of sight. For
this thesis, the projected 2-point correlation function, wp(R), has been calculated as follows

wp(R) = 2
∫ ∞

0
ξgg(R, rπ)drπ = 2

∑

k
ξgg(R, rπ,k)∆rπ,k , (2.4)

where the summation has been done for 1 < k < 40 corresponding to rπ = 0.5h−1 Mpc to rπ =
39.5h−1 Mpc. Furthermore, the projected 2-point correlation function has been evaluated for galaxies
in different luminosity bins.

Since SDSS is a flux limited survey, it is affected by theMalmquist bias, i.e. brighter galaxies are
observed up to higher redshift than fainter galaxies. When splitting the galaxy sample into luminos-
ity bins, this translates into having sub-samples of galaxies with different mean redshift. Table 2.2
displays the different luminosity bins together with mean redshift for every luminosity bin. Fig. 2.4
shows the 2-point projected galaxy correlation function obtained by Wang et al. (2007). Note that the
overall normalization of the signal increases with increasing luminosity. It is, in fact, well established
that brighter galaxies are more strongly clustered. Note also that, although a power law may describe
the data reasonably well, one can argue that small deviations from a simple power law are observed.
As we will see in chapter 4, these deviations are expected as a feature of the transition between the
small and the large scale clustering. Finally, we would like to comment on the data of the brightest
bin. We interpret the clustering at small scales as a lack of bright galaxies in the sample used from
Wang et al. (2007). In fact, since extremely bright galaxies are expected to reside at the center of
extremely large dark matter haloes, it is expected that on scales smaller than twice the typical radius
of these haloes the correlation is suppressed simply due to lack of galaxies.

2.3.1 The correlation length

On relatively large scales (1 ! r ! 10h−1Mpc), the 2-point galaxy correlation function is described
reasonably well by a power law

ξgg(r) =
(

r
r0

)α

(2.5)

where r0 and α are respectively the correlation length and the slope of the correlation function. We
stress that r0 is defined such that ξ(r0) = 1. The value of r0 can thus be used to quantify the strength of
the correlation function. In this thesis, we use the correlation lengths of galaxies selected according
to luminosity. In particular, we use the results obtained by Wang et al.(2007) for six volume limited
samples selected from the SDSS DR4. For completeness, these data are listed in Table 2.1. In
Fig.(2.5), we show these correlation lengths as a function of the r-band magnitudes. Note that the
error bars along the x-axis represent the width of the magnitude bins.
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Figure 2.5: The luminosity dependence of the correlation length, r0, calculated from SDSS (see Wang et
al. 2007).
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2.4 Galaxy-Galaxy Lensing

Table 2.1: Correlation lengths.

Sample 0.1Mr − 5 log h < z > r0
V1 (−23.0,−21.5] 0.173 7.59 ± 0.75
V2 (−21.5,−21.0] 0.135 6.11 ± 0.33
V3 (−21.0,−20.5] 0.109 5.62 ± 0.16
V4 (−20.5,−20.0] 0.089 5.38 ± 0.16
V5 (−20.0,−19.0] 0.058 4.90 ± 0.18
V6 (−19.0,−18.0] 0.038 4.17 ± 0.23

Galaxy-galaxy clustering correlation lengths of Wang et al.(2007). Column (1) lists the ID of each
volume limited sample, following the notation of Wang et al. (2007). Columns (2) and (3) indicate the
absolute magnitude range and the mean redshift of each sample, while column (4) lists the correlation
length plus its standard deviation (in h−1 Mpc), obtained by fitting a power-law to the projected
correlation function over the radial range [0.98, 9.6]h−1 Mpc. See Wang et al.(2007) for details.

2.4 Galaxy-Galaxy Lensing

Galaxy-galaxy lensing measures the tangential shear distortions, γt, in the shapes of background
galaxies (hereafter sources) induced by the mass distribution around foreground galaxies (hereafter
lenses). Since the tangential shear distortions due to a typical lens galaxy (and its associated dark
matter halo) are extremely small, and since background sources have non-zero intrinsic elliptici-
ties, measuring γt with sufficient signal-to-noise requires large numbers of background galaxies. In
general, however, the number density of detectable background sources is insufficient for a reliable
measurement of γt around individual lenses. This problem is circumvented by stacking many lenses
according to some observable property. For example, Mandelbaum et al. (2006) measured γt as a
function of the transverse comoving distance R by stacking thousands of lenses in a given luminosity
bin [L1, L2].

The tangential shear as a function of the projected radius R around the lenses is related to the
excess surface density (ESD) profile, ∆Σ(R), according to

∆Σ(R) = γt(R)Σcrit . (2.6)

where the so-called critical surface density, Σcrit, is a geometrical parameter given by

Σcrit =
c2

4πG
ωS

ωLωLS(1 + zL)
, (2.7)

with ωS, ωL and ωLS the comoving distances to the source, the lens and between the two, respectively,
and with zL the redshift of the lens.
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Figure 2.6: The excess surface density, ∆Σ, calculated from SDSS (see Mandelbaum et al. 2006)
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2.4 Galaxy-Galaxy Lensing

The g-g lensing data used here is described in Seljak et al.(2005) and Mandelbaum et al.(2006)
and has been kindly provided to us by R. Mandelbaum. The catalogue of lenses consists of 351, 507
galaxies with magnitudes −17 ≥ 0.1Mr − 5 log h ≥ −23 and redshifts 0.02 < z < 0.35 taken from
the main galaxy catalogue of the SDSS Data Release 4 (Adelman-McCarthy et al.2006). This sample
is split in luminosity bins (see Table 2.2), and for each of these luminosity bins the excess surface
density profiles, ∆Σ(R), have been determined from measurements of the shapes of more than 30
million galaxies in the SDSS imaging data down to an apparent r-band magnitude of r = 21.8.
The resulting data cover the range between 0.04 and 2 h−1 Mpc. Data are shown as solid dots with
errorbars in Fig. 2.6. We refer the reader to Mandelbaum et al.(2005b, 2006) for a detailed description
of the data and of the methods used to determine the ESD profiles. In what follows, we comment only
on the properties of the g-g lensing data of interest for this thesis. First, notice that the shear map is
obtained by measuring the ellipticity of background galaxies as a function of the angular separation
in the sky. This map can be converted in γt(R) and then in ∆Σ(R) only if the average redshift of the
stacked foreground galaxies (lenses) is known. This is one of the reasons why SDSS represents a
milestone in g-g lensing measurements. In fact, as it will be clear from the description of the model
used to analyze the signal, a proper interpretation of g-g lensing data would be extremely difficult
without the knowledge of the redshift of the lenses. Second, since not all the galaxies with the same
luminosity reside in haloes of the same mass, the signal resulting from the stacking procedure is a
non-trivial average of the lensing signal due to haloes of different masses. From an observational
point of view, an attempt to limit this effect consists in using luminosity bins which are as narrow as
possible. However, it must be noticed that even if one could use infinitesimally narrow bins, a scatter
in the luminosity-halo mass relation is expected. Thus, in order to properly interpret the g-g lensing
signal one has to account for this scatter as, for example, done in the model presented in chapter 4.

19



2. OBSERVATIONAL DATA

Table 2.2: Luminosity bins and mean redshifts

ID 0.1Mr − 5 log h 〈z〉
(1) (2) (3)
L1 (−18.0,−17.0] 0.032
L2 (−19.0,−18.0] 0.047
L3 (−20.0,−19.0] 0.071
L4 (−21.0,−20.0] 0.10
L5f (−21.5,−21.0] 0.14
L5b (−22.0,−21.5] 0.17
L6f (−22.5,−22.0] 0.20

Luminosity bins of the lenses. Column (1) lists the ID of each luminosity bin, following the notation
of Mandelbaum et al.(2006). Column (2) indicates the magnitude range of each luminosity bin (all
magnitudes are K+E corrected to z = 0.1). Note that clustering data refer to the luminosity bins L2 −
L6f. Column (3) indicates the mean redshift of the galaxies in each luminosity bin. See Mandelbaum
et al.(2006) and Wang et al. (2007) for details.

20



3

Theoretical Framework

In this chapter, we present the paradigm within which we interpret theoretical predictions and ob-
servational data throughout the thesis. In particular, in section § 3.1, we introduce two analytical
tools which will be extensively used throughout the thesis: the correlation function and the power
spectrum. We then describe the main assumptions of the hierarchical structure formation scenario
(§ 3.2) and we define the linear and non linear regime of the growth of perturbations in the density
field. After a brief description of the principles of the formation of dark matter haloes, we present
the theoretical predictions for their internal structure (§ 3.3), their spatial abundance (§ 3.4), and their
clustering properties (§ 3.5).

3.1 Statistical tools: Correlation Function & Power Spectrum

In the current paradigm, we believe that structures in the universe form by the growth of tiny inho-
mogeneities in the dark matter density field. The origin of these inhomogeneities is usually related
to inflationary models of the early stages of the universe. In this thesis, we are not concerned about
the physical origin of the fluctuations but we simply assume that their evolution can be described by
gravitational instability. Let us define the quantity δ(r) as fluctuations relative to the mean background
density, ρ̄:

δ(r) = ρ(r) − ρ̄
ρ̄

, (3.1)

where ρ(r) defines the density distribution of dark matter in the universe. For a statistical analysis
of the fluctuations in the density field, it is convenient to describe them as a superposition of many
modes. Throughout the thesis we assume that the universe has a flat geometry. Since, in a flat space,
plane waves are a complete set of functions, we decompose the density fluctuations in Fourier modes:

δ(r) =
∑

k
δk exp[−ikr] , (3.2)
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where k is the wave-vector of components (kx, ky, kz). This decomposition is exact if one assumes
that the field is periodic over a box of side L. If we let the box become arbitrarily large, the sum will
go over to an integral that incorporates the density of states in k−space. We thus have

δ(r) = 1
(2π)3

∫

δk exp[−ikr] d3k . (3.3)

Since the cosmic density field is believed to be a random field generated by some random pro-
cesses, one is interested in its statistical properties. One of these properties is the clustering which we
study through the 2-point correlation function defined as

ξ(r) ≡ 〈δ(r1)δ(r2)〉 = 〈δ(r1)δ(r1 + r)〉 , (3.4)

where r2 = r1 + r. Note that 〈 〉 denotes an ensemble average, meaning that one should average over
an ensemble of universes. Obviously, that is not possible and one has to rely on the assumption of
egodicity, i.e. the ensemble averages can be written in terms of a spatial averages. Throughout the
thesis, ensemble averages will be evaluated via spatial averages.

Since the real space density fluctuations can be written as a sum over Fourier modes, (see eq. [3.2]),
we can write

ξ(r) = 〈
∑

k
δk exp[−ikr1]

∑

k’
δk′ exp[−ik′(r1 + r)] 〉 =

= 〈
∑

k

∑

k’
δk δ−k′ exp[−i(k′ − k)r1] exp[−ik(r)] 〉 =

= 〈
∑

k

∑

k’
δk δ

∗
k′ exp[−i(k

′ − k)r1] exp[−ikr] 〉 =

= 〈
∑

k
|δk|2 exp[−ikr] 〉 =

=
1

(2π)3

∫

〈|δk|2〉 exp[−ikr] d3k =

=
1

(2π)3

∫

P(k) exp[−ikr] d3k , (3.5)

where we have used the fact that δ−k = δ∗k and that cross terms with k
′
! k average to zero. The last

equality defines the power spectrum P(k) = 〈|δk|2〉. In an isotropic universe, the density fluctuation
correlation (and therefore the power spectrum) cannot have a preferred direction, and we therefore
have an isotropic correlation function, ξ(r), and an isotropic power spectrum, P(k) where r = |r1 − r2|
and k = |k1 − k2|. This allows us to write

ξ(r) =
1

(2π)3

∫

P(k) exp[−ikr] d3k . (3.6)

Introducing spherical coordinates with the polar axis along k and using the fact that ξ(r) is a real
quantity, we have

ξ(r) =
1

(2π)3

∫

P(k)
sin(kr)
kr

4πk2 dk . (3.7)
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It is convenient to define the quantity ∆(k), as

∆(k) =
k3P(k)
2π2

. (3.8)

Eq. (3.7) can then be written as

ξ(r) =
1

(2π)3

∫

P(k)
sin(kr)
k2r

4πk3 dk

=

∫

∆(k)
sin(x)
x2

dx with x = kr . (3.9)

Since ∆(k) is a dimensionless quantity, it is often considered the natural Fourier-space counterpart to
the dimensionless correlation ξ(r).

In what follows, we want to link the above definition of correlation function with an intuitive
picture of pair counting. Following the definition of correlation function, we have

ξ(r) = 〈δ(x)δ(x + r)〉 =

= 〈
(

ρ(x) − ρ̄
ρ̄

) (

ρ(x + r) − ρ̄
ρ̄

)

〉 =

=
1
ρ̄2

(

〈ρ(x)ρ(x + r)〉 − 〈ρ(x)ρ̄〉 − 〈ρ̄ρ(x + r)〉 + ρ̄2
)

=
1
ρ̄2

(

〈ρ(x)ρ(x + r)〉 − ρ̄2 − ρ̄2 + ρ̄2
)

(3.10)

which gives
ρ̄2
[

1 + ξ(r)
]

= 〈ρ(x)ρ(x + r)〉 . (3.11)

Let us now construct a distribution of objects which follows ρ(r). This means that, at each volume
element δV , one places an object with probability

δP = ρ(r)δV . (3.12)

The joint probability that objects are assigned to the volume elements δV1 and δV2 placed around r1
and r2, or, in other words, the probability to have a pair with one object in δV1 around r1 and the other
in δV2 around r2 can be written as

δP = ρ(r1)δV1 ρ(r2)δV2 . (3.13)

Averaging this expression over the ensemble, and considering r = |r1 − r2|, one gets

δP = 〈 ρ(r1)ρ(r2) 〉δV1 δV2 =
= ρ̄2[1 + ξ(r)] δV1 δV2 . (3.14)
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Remembering that in the case of a random distribution the same probability is simply

δP = ρ̄2 δV1 δV2 , (3.15)

it becomes evident that the correlation function quantifies deviations from random distributions. In
particular, ξ(r) > 0 means excess over a random distribution, whereas ξ(r) < 0 means deficiency over
a random distribution.

The above discussion clearly shows that the correlation function can be evaluated by counting
the number of pairs as a function of their separation and comparing this with that given by a random
sample (see chapter 2 for an application to SDSS data).

3.2 Structure Formation

Fluctuations in the density field are assumed to grow over time due to their self gravity. In particular,
overdense regions increase their density contrast. In what follows, we refer to to the regime in which
the density contrast is well below unity as linear regime, whereas we refer to the case δ " 1 as non-
linear regime. The reason behind this name resides in the fact that the former can be described by
using linear perturbation theory while this is not possible for the latter. In fact, to describe structure
formation in the non-linear regime one needs to rely on numerical simulations. In the following sec-
tions, we describe the quantitative results related to the growth of perturbations from the linear regime
to the formation of dark matter haloes. Finally, we describe dark matter halo statistical properties such
as density profile, abundances and clustering. Note that basic concepts of cosmology (e.g. horizon
and matter-radiation equality) are not defined in the scope of this chapter because these concepts are
assumed to be known.

3.2.1 The linear regime

The physical properties of the early universe determine the initial power spectrum of the fluctuations
in the density field. It is common to use a single power law form

Pinit(k) ∝ kn , (3.16)

where n is known as the initial spectral index.
The choice behind this functional form is not completely arbitrary. First of all, a power law

does not introduce any characteristic scales. This is reasonable in absence of a physical justification
to introduce such scales. In the literature, the power-law form with n = 1 is known as Harrison-
Zel’dovich-Peebles spectrum (see e.g. Peebles 1982).

Since the density field evolves with time, the corresponding power spectrum will also evolve.
More precisely, since in the matter dominated era, the density contrast grows proportionally to the
growth factor, G(t),

δ(x, t) = G(t)δ(x) , (3.17)
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the power spectrum is expected to grow with the second power of G(t):

P(k, t) = G2(t)Pinit(k) = G2(t)Akn , (3.18)

where A is the amplitude of the initial power spectrum. Note, however, that the above description is
based on the growth of perturbations in the matter dominated era. The growth of perturbation in the
radiation-dominated era proceeds differently though, also depending on the scale of the perturbations
in comparison to the length of the horizon. The form of the power spectrum thus needs to incorporate
such a correction term. As common in the literature, we write

P(k, t) = A(t)knT 2(k) , (3.19)

where we have written A · G(t) = A(t) to have a more concise expression, and T (k) is the so-called
transfer function. One way to fix the amplitude of the power spectrum at a given time, A(t), is by
using its variance smoothed over a scale R

σR(t) = 4π
∫

k2dk
(2π)3

P(k, t) |W(kR)|2 , (3.20)

where W(kR) is the Fourier transform of a window function. Throughout, we will use a spherical
top-hat in real space for which W(kR) = [3/(kR)3](sin kR − (kR) cos kR). For historical reasons, it
is common to quantify the variance at a scale of 8h−1 Mpc. In particular, we will refer to σ8 as
the variance in the density field (smoothed over 8h−1Mpc) and corresponding to a power spectrum
linearly evolved to today.

The transfer function T (k) entering in eq.(3.19) depends on the wavenumber k but also on the
energy content of the Universe. It is possible to evaluate the precise shape of this function by solving
the linearized Boltzmann equations for the distribution function of photons, baryons, and dark matter
(see e.g. Seljak & Zaldarriaga 1996). However, in the literature, fitting functions have been provided
that can accurately describe the shape of the transfer function. In this thesis, we will use the functional
form suggested by Eisenstein & Hu (1998). in what follows, we describe the qualitative behavior of
the transfer function in order to understand the shape of the power spectrum.

In jargon, one says that a mode enters the horizon when the comoving length, λ = a 2π/k, associ-
ated to this mode equals the size of the horizon, rH:

λ = rH . (3.21)

We indicate with L0 the comoving size of the horizon at the matter radiation equality:

L0 = aeq
2π
k0
= rH(aeq) . (3.22)

Accordingly, density fluctuations with λ > L0 enter the horizon in the matter dominated era. On
the other hand, density fluctuations with λ < L0 enter the horizon during the radiation dominated
era. Since during this epoch perturbations do not grow. All modes with with λ < L0 are frozen till
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the matter will dominate. Their relative growth up to the present time have then been suppressed
compared to the modes with λ > L0. The corresponding suppression factor is fsuppr = (aenter/aeq)2.
Since the Hubble radius, rH, scales as a2 during the radiation dominated era, we have

aenter
2π
k
∝ a2enter , (3.23)

which gives
aenter ∝ k−1 . (3.24)

We thus obtain
fsuppr = (aenter/aeq)2 = (k0/k)2 . (3.25)

The corresponding power spectrum will be suppressed by a factor f 2suppr ∝ k−4, which gives

P(k) ∝ kn−4 if k > k0 . (3.26)

In other words, bearing in mind eq. (3.19), we can see that the transfer function T (k) is equal to 1 for
k < k0 and it is proportional to k−2 for k > k0. In fig.3.1, one can notice the suppression of modes
with k > k0. Note that the same figure shows also the dark matter power spectrum in the non linear
regime which we describe in the next section.

3.2.2 From the linear to the non-linear regime: the HKLM procedure

The description of the evolution of the density perturbations presented in the previous section is valid
only in the so called linear regime. This means that the density contrast is assumed to be much smaller
than unity, δ(x) << 1. As soon as this condition is not verified, one has to find an appropriate treatment
for the description of the evolution of the density field. One can develop an analytical perturbation
theory which describes the mildly non linear regime (δ(x) ∼ 1) but as the density contrast becomes
much bigger than unity no analytical approach can be used to describe the property of the dark matter
density field. In general, studying the non-linear structure evolution requires the use of numerical
methods. All the quantitative results presented in the next sections are, indeed, derived via numerical
simulations. However, in what follows, we describe an attempt to link the results from the linear to
the purely non-linear regime in an analytical way.

Hamilton et al. (1991, hereafter HKLM) developed a method for interpolating between linear
theory on large scales and the nonlinear predictions on small scales. Here, we briefly describe it. Let
the mass enclosed within a spherical overdensity in the initial stages of evolution be M0 (< *) and its
mass at some later time be M (< x). According to the spherical collapse model (see next section), this
region will reach a maximum expansion point, turn around and collapse. If there is no shell crossing,
then mass is conserved and

M0 (< *) =
4
3
πρ (< *) *3 =

4
3
πρ (< x) x3 = M (< x)) . (3.27)
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Figure 3.1: The dark matter power spectrum calculated following the fitting function provided by Smith
et al (2003). The black solid line represents the linear dark matter power spectrum, whereas the red
dotted line represents the non-linear dark matter power spectrum. Note that the lower panel shows the
dimensionless power spectrum, ∆.
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This implies that
x3
[

1 + ξ̄NL(x, t)
]

= *3 . (3.28)

Note that ξ̄NL(x, t) represents the nonlinear volume averaged two-point correlation function:

ξ̄NL(x) ≡
3
x3

∫ x

0
y2ξNL(y) dy , (3.29)

so 1 + ξ̄NL(x, t) is the factor by which the density is enhanced relative to the mean.
After this translation of scales has been performed, the second step is to assume that the nonlinear

correlation is a universal function of the linear one:

ξ̄NL(x, t) = fNL
[

ξ̄L(*, t)
]

. (3.30)

The asymptotic behavior of the function fNL is straightforward to calculate. For small arguments,
fNL(x) = x because, when fluctuations are not much evolved, the linear correlation is low and the non-
linear correlation equals the linear one. Under the assumption of stable clustering, it can be shown that
for highly evolved field (corresponding to high values of the correlation) fNL(x) ∝ x3/2 (with a small
dependence on the particular cosmological model). The interpolation between the linear and purely
non-linear regime was determined empirically by HKLM, by comparison with numerical simulations.

HKLM’s nonlinear scaling argument was further developed by Peacock & Dodds (1994; PD94),
who proposed that the scaling ansatz could be used for predicting power spectra by simply replacing
ξ̄ → ∆ and letting the linear and nonlinear scales represent linear and nonlinear wavenumbers: * = k−1L
and x = k−1NL . This suggested the formalism

∆NL(kNL) = fNL [∆L(kL)] ;

kNL = [1 + ∆NL(kNL)]1/3 kL. (3.31)

The accuracy of the HKLM and PD94 scaling formulae has been intensively tested and further
refined over the past years (Jain, Mo&White 1995; Peacock &Dodds 1996; Mo, Jing & Börner 1997;
Jain & Bertschinger 1998; Ma & Fry 2000; Scoccimarro et al. 2001, Smith et al. 2003). Fig. 3.1
shows the dark matter power spectrum corresponding to the WMAP3 set of cosmological parameters
(see chapter 5) calculated following the fitting function of Smith et al. (2003). Throughout the thesis,
we indeed use Smith et al. fitting formula which has been shown to be in excellent agreement with
the results from numerical simulations.

3.3 Formation of haloes in the Spherical Collapse Model

In what follows we discuss the spherical collapse model as a specific case for which an analytical
description can be used to describe the non-linear evolution of the density field. Rather than a detailed
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description of the non-linear regime of structure formation, this simplified model must be considered
as a guideline to understand the behavior of perturbations in the non-linear regime.

Let us consider a spherically symmetric perturbation with a top hat profile of radius R and initial
overdensity δ. For simplicity, we assume that the background universe has a critical density, Ωbackgr =
1. The perturbed region evolves independently of the behavior of the surrounding region, behaving
as a universe with critical overdensity Ωp = Ωbackgr + δ. In other words, the spherical overdensity
can be treated as a closed universe which eventually will collapse. For such a universe, one can use
parametric solutions to describe the behavior of the size of the perturbation, r, with time, t. Such
parametric solutions have the form

r = A(1 − cos θ) ,

t = B(θ − sin θ) , (3.32)

where the development angle θ goes from 0 to 2π and A3 = GMB2, with M the mass within the
spherical perturbation. Note that the value θ = π corresponds to the maximum expansion. We refer
to this point as the turnaround. If one assume that the overdensity evolves linearly, it turns out that
the value of the overdensity at the time of the turnaround is about unity. Basically this tells us that
the end of the linear regime, δ ∼ 1, corresponds roughly to the moment in which the perturbation
breaks away from the background expansion (the turnaround point). Note, however, that if only
gravity operates, the spherical perturbation will collapse to a singularity at θ = 2π. The value of the
linearly evolved overdensity at this time is δ ∼ 1.69. This means that the value 1.69 corresponds
to the complete gravitational collapse of a spherical perturbation. In reality, collapse to singularity
will never occur. Clearly, dissipative physics will eventually intervene. If we calculate the point at
which the potential energy is twice the kinetic energy (virial equilibrium), we find that this happens
at half the maximum radius. One can show that the non-linear overdensity of the collapsing object at
the virial equilibrium, ∆V, is about 178. This kind of analysis was first presented in the late sixties
by Peebles and collaborators and later on by Gunn and Gott (1972). Note that in the nineties these
results have been confirmed by numerical simulations (Cole and Lacey 1996; Eke et al 1996). Note
that, although we used the expression for an homogeneous universe with Ωbackgr = 1, the result is
more general. However, extending these calculations into more general cosmologies requires the
use of numerical solutions. In general, the linear overdensity required for the collapse to happen
(δ ∼ 1.69) does not depend drastically on the cosmological model. It is indeed common practice
to use this value to identify dark matter halo formation. Moreover, the value for ∆V is often used
to define the mass of a dark matter halo. Accordingly, throughout the thesis, we define dark matter
haloes as spheres with an average overdensity of 180, with a mass given by

M =
4π
3
(180ρ) r3180 . (3.33)
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Here r180 is the radius of the halo. We assume that dark matter haloes follow the NFW (Navarro,
Frenk & White 1997) density distribution

ρ(r) =
δ ρ

(r/r∗)(1 + r/r∗)2
, (3.34)

where r∗ is a characteristic radius and δ is a dimensionless amplitude which can be expressed in terms
of the halo concentration parameter cdm ≡ r180/r∗ as

δ =
180
3

c3dm
ln(1 + cdm) − cdm/(1 + cdm)

. (3.35)

Numerical simulations show that cdm is correlated with halo mass. For example, Macciò et al.(2007)
have used a series of cosmological numerical simulations for a flat cold dark matter cosmology to
investigate the concentration, cdm, in the halo mass range [∼ 109,∼ 1013]h−1M/ (these boundaries
are enforced by the numerical resolution and the volume of the numerical simulation). Fig. 3.2 shows
the relation cdm − M for the model proposed by Macciò et al.(2007). Although this dependence has
been found at redhift zero, it has been shown that it holds at higher redshifts (z < 2) and it scales as
(1 + z)−1. Throughout this thesis, we use the relation given by Macciò et al.(2007), converted to our
definition of halo mass.

If the dark matter follows a NFW density profile, the halo mass within r180 can be written as

M = 4πδ ρ r3∗
[

ln(1 + cdm) −
cdm

1 + cdm

]

. (3.36)

3.4 The Halo Mass Function

The halo mass function, n(M), gives the number of haloes in a comoving volume in the mass interval
[M,M + dM]. In what follows, we summarize the simple idea proposed by Press and Schechter
(1974) in which the comoving number density of virialized haloes is analytically predicted on the
basis of some statistical arguments. Despite several shortcomings (which we will mention soon), the
Press-Schechter formalism is still widely used because it provides an intuitive way to think about the
abundance of haloes in the universe.

Press-Schechter theory simply asserts that if we smooth the linear density field on some scale R
(and accordingly M), then the fraction of space in which the smoothed density field exceeds a given
threshold, δc, is in collapsed objects of mass greater than M. If one assumes that the linear density
field is a Gaussian field, this fraction, F(M, z), can be calculated analytically:

F(M, z) =
1
2
erfc
(

δc√
2σR(z)

)

, (3.37)

where erfc is the complementary error function. This equation represents maybe the major problem of
the Press-Schechter theory. In fact, for a Gaussian field, half the volume of the universe is necessarily
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3.4 The Halo Mass Function

Figure 3.2: The concentration-halo mass relation proposed by Macciò et al. (2007).
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underdense, and will never exceed the threshold regardless of how much the density field evolves.
Consequently, only half of the mass in the universe can form collapsed haloes. This is, obviously, not
the case in a realistic picture of structure formation in the universe. The expression in eq. (3.37) needs
to be multiplied by a factor of 2:

F̃(M, z) = 2F(M, z) = erfc
(

δc√
2σR(z)

)

, (3.38)

Although one could argue that this problem is enough to invalidate the Press-Schechter theory,
the “modified” expression was accepted in the astronomical community because in good agreement
with results of numerical simulations. More importantly, several studies after the pioneering work of
Press and Schechter have been able to justify the factor of two with statistical arguments known as
absorbing barrier (Sheth & Tormen 1999). We do not describe here in further detail these solutions.
In fact, we are interested in the Press-Schechter formalism only to get insights into the expected
number density of haloes of given masses. For all practical purposes, we will always use results
from numerical simulations. In this respect, it is worth mentioning that the modified Press-Schecther
formalism exhibits small departures from the results of the most recent numerical simulations. Thus,
we conclude that this simple analytical model is perhaps able to capture the main essence of the
problem but it fails in providing accurate detailed predictions.

To conclude, we provide here the expression for the comoving number density of haloes of mass
M, per mass interval dM, at redshift z, as derived from the modified Press and Schechter formalism.
By differentiating eq. (3.38) with respect to the filtering mass, we obtain the change in the volume
fraction of the universe , brought about by increasing the filter mass by dM:

∂F̃(M, z)
∂M

=
dσR(z)
dM

∂F̃(M, z)
∂σR(z)

=

=
dσR(z)
dM

∂ erfc[δc/(
√
2σR(z)]

∂σR(z)
=

=
dσR(z)
dM

√

2
π

δc

σ2R(z)
exp












−
δ2c

2σ2R(z)













, (3.39)

where we have used the fact that

d erfc(y)
dy

= −
2
√
π
exp(y2) . (3.40)

Dividing eq. (3.39) by the mean volume occupied by M, i.e. M/ρ0, we obtain the comoving number
density of haloes of mass M:

n(M) =
dσR(z)
dM

√

2
π

δc

σ2R(z)
ρ0
M
exp












−
δ2c

2σ2R(z)













. (3.41)

Note that the term dσR(z)/dM requires to specify the window function (see § 2 of this chapter).
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Figure 3.3: The halo mass function proposed by Sheth & Tormen (2002).
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Figure 3.4: Skematic representation of the origin of the halo bias. The blue solid line represents a super-
position of a small scale fluctuation with a large scale fluctuation (indicated by the dashed gray line). The
threshold for the spherical collapse, δsc, is indicated by the red straight line.

The Press-Schechter formalism thus allows one to make predictions about the shape of the mass
function of dark matter haloes. Two assumptions are necessary: (i) haloes collapse spherically; (ii)
initial density fluctuations are Gaussian and small. While the predicted mass function is overall in
good agreement with numerical simulations, small differences can be observed. It has been suggested
that this discrepancy between theory and simulations can be reduced substantially if haloes are as-
sumed to form from an ellipsoidal, rather than a spherical collapse. Sheth, Mo & Tormen (2001)
have incorporated the ellipsoidal collapse into the Press-Schechter formalism and they have shown
that with these modifications theoretical predictions are in good agreement with numerical simula-
tions (Sheth & Tormen 2002). Throughout the thesis, we use the expressions introduced by Sheth &
Tormen (2002) to describe the halo mass function. Fig. 3.3 shows the halo mass function calculated
via the fitting formula of Sheth & Tormen (2002) for the WMAP3 set of cosmological parameters.

3.5 The Clustering of Dark Matter Haloes

In the previous sections, we have explained the formation of dark matter haloes and their spatial
abundance. Here, we show that the dark matter halo distribution is biased with respect to the under-
lying dark matter distribution. Consider, for example, the schematic illustration in fig. 3.4. The one
dimensional dark matter overdensity is plotted as a function of the spatial location. The blue solid
line represents a superposition of a small scale fluctuation with a large scale fluctuation (indicated by
the dashed gray line). Since haloes can form only where the density field exceeds a certain threshold
(here indicated with the red straight line), the location of dark matter haloes is highly correlated with
the location of the peaks of the large scale fluctuations. In other words, on large scales, the correlation
function of haloes and that of dark matter particles are related. Since it has been shown that on scales
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much larger than the typical extension of a dark matter halo, the overdensity of haloes is linearly pro-
portional to the overdensity of mass (e.g. Cooray & Sheth 2001) with the constant of proportionality
depending on the mass of the haloes and on the redshift at which they virialize:

δh(m, z) = b(m, z)δ , (3.42)

one expects that, on large scales,
ξhh(r) = b2(m, z)ξdm(r) , (3.43)

where ξhh is the halo-halo correlation and ξdm is the dark matter correlation.
The function b(m, z) is known in the literature as asymptotic bias function. Different fitting func-

tions have been proposed over the last ten years. In this thesis, we use the relation proposed by Sheth
& Tormen (2002). Notice that the main features of this function can be predicted analytically on the
basis of the Press-Schechter formalism. In particular, one expects that massive haloes have b(m, z) > 1
and therefore they are said to be biased with respect to the dark matter distribution. On the contrary,
less massive haloes have b(m, z) < 1 and they are said anti-biased with respect to the dark matter
distribution. Fig. 3.5 shows the halo bias relation calculated with the fitting function proposed by
Sheth & Tormen (2002).
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Figure 3.5: The black solid line represents the halo bias function proposed by Sheth & Tormen (2002). In
the inner panel, a close-up of the halo bias function is shown. The red straight line represents the unbiased
relation. Thus, low mass haloes are anti-biased and high mass haloes are biased with respect to the dark
matter distribution.
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The Analytical Model

The analytical model presented in this chapter is embedded in the framework of the halo model (see
Cooray & Sheth 2001 for a review). With this term, one refers to a model in which all the dark matter
in the universe is partitioned up into distinct units called haloes. The left panel of fig. 4.1 shows
the dark matter distribution derived via numerical simulations and color coded according to density.
Such a complicated distributions simplifies drastically in the halo model view. In fact, the right panel
shows the corresponding density field when only spherical overdense regions (haloes) above a given
mass are considered. Basically, in such a simplified configuration, one can describe the statistics
of the dark matter distribution in the universe in two steps: on small scales one needs to know the
spatial distribution within the haloes, whereas on large scales the important ingredient is the spatial
distribution of the haloes . Throughout the thesis, we will refer to these two regimes as one halo (1h)
and two halo (2h). The choice for this name will became obvious during the description of the model.

The halo model provides a natural way to link the statistical properties of the dark matter distri-
bution with the statistical properties of the observed galaxies. In fact, baryons can cool and form stars
only when “trapped” in the gravitational potential of dark matter haloes. As a result, all galaxies
are expected to be embedded in dark matter haloes (see White & Rees 1978). More massive haloes
may contain many galaxies, whereas low mass haloes may contain fewer or no galaxies. Our inter-
ests concern the statistical properties of galaxies and their relation with the underlying dark matter
distribution. For this reason, we investigate the clustering properties of galaxies and of dark matter
around galaxies. In the next sections, we will describe the clustering of galaxies (§ 4.1), dark matter
(§ 4.2), and dark matter around galaxies (§ 4.3) in the framework of the halo model. In particular, we
introduce the expressions for the 2-point galaxy correlation function and for the 2-point galaxy-dark
matter cross-correlation function. These last two quantities allows us to compute the projected galaxy
correlation function wp and the excess surface density, ∆Σ, respectively. The halo occupation statis-
tics required by the correlation functions is derived via the conditional luminosity function in § 4.5,
where we also provide the theoretical predictions for the galaxy luminosity function.
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Figure 4.1: The distribution of dark matter in the complex configuration derived by numerical simulations
(left) and in the halo model view (right). [Ref. Cooray & Sheth 2001]

4.1 Galaxy Clustering

We begin the discussion about the clustering of galaxies by introducing the galaxy 2-point correlation
function in the halo model formalism. We recall that the galaxy correlation function has been defined
in chapter 2 from an observational point of view:

1 + ξgg(r, L1, L2) =
DD(r, L1, L2)
DR(r, L1, L2)

(4.1)

where DD(r, L1, L2) is the number of galaxy pairs (with luminosity within [L1, L2]) at distance r
as measured from the data and DR(r, L1, L2) is the number of galaxy pairs (with luminosity within
[L1, L2]) at distance r as expected in a random distribution with the same number density of galaxies
as in the data. Note that the galaxy correlation function is defined as a function of the distance r and
the luminosity range [L1, L2]. This is done because the data described in chapter 2 are obtained using
galaxies selected in a given absolute magnitude bin. Since our model will ultimately be compared
with these data, theoretical quantities as the correlation function incorporates this information in their
definition.

In the halo model, it is common to describe galaxy properties in relation with their host dark
matter halo. For example, it is commonly accepted that a galaxy can either reside at the center of the
host dark matter halo or it can orbit around the center. One refers to the former as central galaxies
and to the latter as satellite galaxies (see fig. 4.2 for an illustration of this concept). In modelling
the galaxy 2-point correlation function, it is recommended to take into account the distinction in
central and satellite galaxies. This means that DD(r, L1, L2) can be split into different terms each of
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which describes different kind of pairs. In fact, inside the same dark matter halo, one can have pairs
consisting of a central galaxy with a satellite galaxy, namely one halo central-satellite term (1h, c-s);
or one can have pairs using satellite galaxies only, namely one halo satellite-satellite term (1h, s-s).
Moreover, in considering pairs between galaxies belonging to different haloes one can connect central
galaxies, namely two halo central-central term (2h, c-c); a central galaxy with satellite galaxies,
namely two halo central-satellite term (2h, c-s); satellite galaxies between each others, namely two
halo satellite-satellite term (2h, s-s). Fig. 4.3 provides a schematic representation of all these terms.

We thus have

DD(r, L1, L2) = Npairs(r, L1, L2) = N1h,c−spairs (r, L1, L2) + N
1h,s−s
pairs (r, L1, L2)

+ N2h,c−cpairs (r, L1, L2) + N
2h,c−s
pairs (r, L1, L2) + N

2h,s−s
pairs (r, L1, L2) ,

(4.2)

where the notation follows from the discussion above.
As clear from eq (4.1), in order to obtain the galaxy correlation function one needs to specify the

number of galaxy pairs in a random distribution, DR(r, L1, L2). In doing that, one has

DR(r, L1, L2) =
[∫

〈Ntot〉M(L1, L2) n(M) dM
]2
= n̄2tot(L1, L2) , (4.3)

where n̄tot(L1, L2) is the average number of galaxies in the luminosity bin [L1, L2]. Note that n̄tot(L1, L2)
does not depend on r due to the fact that we are considering a sample of randomly distributed galaxies
and we are applying the ergodic principle (see chapter 3). Moreover, we have not split DR(r, L1, L2)
into different terms. This is a somewhat technical, and to some extent conceptual, choice. In fact, our
aim is to describe the complete 2-point galaxy correlation function. For this purpose, one can write

1 + ξgg(r, L1, L2) =
N1h,c−spairs (r, L1, L2) + N

1h,s−s
pairs (r, L1, L2)

n̄2tot(L1, L2)
+

+
N2h,c−cpairs (r, L1, L2) + N

2h,c−s
pairs (r, L1, L2) + N

2h,s−s
pairs (r, L1, L2)

n̄2tot(L1, L2)
=

= ξ̃1h,c−sgg (r, L1, L2) + ξ̃1h,s−sgg (r, L1, L2) +

+ ξ̃2h,c−cgg (r, L1, L2) + ξ̃2h,c−sgg (r, L1, L2) + ξ̃2h,s−sgg (r, L1, L2) .

(4.4)

where .̃ is used as a reminder that this terms represent only a convenient split of the total correlation
function.
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Figure 4.2: Halo model representation of a dark matter halo. A central galaxy is sitting at the center of
the halo. There are sub-haloes orbiting around the center of the dark matter halo. Some of them may host
a (satellite) galaxy and some of them may not because their potential well is not deep enough “to capture”
baryons.
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Figure 4.3: Schematic representation of the different terms of the galaxy correlation function.
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Note, however, that one could also define

N1h,c−spairs (r, L1, L2)
n̄c(L1, L2) n̄s(L1, L2)

≡ ξ̆1h,c−sgg (r, L1, L2) ,
N1h,s−spairs (r, L1, L2)

n̄2s (L1, L2)
≡ ξ̆1h,s−sgg (r, L1, L2)

N2h,c−cpairs (r, L1, L2)

n̄2c(L1, L2)
≡ ξ̆2h,c−cgg (r, L1, L2) ,

N2h,c−spairs (r, L1, L2)
n̄c(L1, L2) n̄s(L1, L2)

≡ ξ̆2h,c−sgg (r, L1, L2) ,

N2h,s−spairs (r, L1, L2)

n̄2s (L1, L2)
≡ ξ̆2h,s−sgg (r, L1, L2) ,

(4.5)

where n̄c(L1, L2) and n̄s(L1, L2) are the average number of central and satellite galaxies, respectively.
However, in this case, in order to obtain the total galaxy correlation function as a sum of the single
terms, one must consider the fraction of central and satellite galaxies with luminosity in the range
[L1, L2]:

fc(L1, L2) =
n̄c(L1, L2)
n̄tot(L1, L2)

and fs(L1, L2) =
n̄s(L1, L2)
n̄tot(L1, L2)

. (4.6)

We thus have

1 + ξgg(r, L1, L2) = fc(L1, L2) fs(L1, L2) ξ̆1h,c−sgg (r, L1, L2) + f 2s (L1, L2) ξ̆1h,s−sgg (r, L1, L2) +

+ f 2c (L1, L2) ξ̆2h,c−cgg (r, L1, L2) + fc(L1, L2) fs(L1, L2) ξ̆2h,c−sgg (r, L1, L2) +

+ f 2s (L1, L2) ξ̆2h,s−sgg (r, L1, L2) =

= ξ̃1h,c−sgg (r, L1, L2) + ξ̃1h,s−sgg (r, L1, L2) +

+ ξ̃2h,c−cgg (r, L1, L2) + ξ̃2h,c−sgg (r, L1, L2) + ξ̃2h,s−sgg (r, L1, L2) . (4.7)

Throughout the thesis, we use the split presented in eq. (4.4). In the following sections, we shall
introduce and describe the single terms in detail.

Before moving to the description of the different terms, we emphasizes that the split into one halo
and two halo term has been used by many other authors in this field. Similarly, the division into central
and satellite has been already applied in the description of galaxy correlation function. However, all
previous studies have assumed that the distinction into central and satellite term is relevant only on
small scales (one halo term) and it is negligible on large scales (two halo term). With the quality
of the data that we use in this thesis, such an assumption is not accurate and, also on relatively large
scales, the split into central and satellite is extremely important for an accurate modelling of the galaxy
correlation. From the description of the single terms it will become apparent that it is often convenient
to work in Fourier space. Since the 2-point correlation function and the (2-point) power spectrum are

42



4.1 Galaxy Clustering

Fourier pairs (see chapter 3), we shall also introduce the galaxy (2-point) power spectrum:

Pgg(k) = P̃1h,c−sgg (k) + P̃1h,s−sgg (k)
+ P̃2h,c−cgg (k) + P̃2h,c−sgg (k) + P̃2h,s−sgg (k) =
= fc(L1, L2) fs(L1, L2) P̆1h,c−sgg (k) + f 2s (L1, L2) P̆1h,s−sgg (k)
+ f 2c (L1, L2) P̆2h,c−cgg (k) + fc(L1, L2) fs(L1, L2) P̆2h,c−sgg (k) +
+ f 2s (L1, L2) P̆2h,s−sgg (k), (4.8)

where .̃ and .̆ follow the same convention used for the correlation function.
In the next sections, we define all the terms of the galaxy correlation function and the correspond-

ing power spectra.

4.1.1 The one halo central-satellite term

Let us evaluate the number of galaxy pairs, N1h,c−spairs (r, L1, L2), consisting of a central galaxy and a
satellite galaxy at distance r and with luminosity within [L1, L2]. In the halo model, this quantity can
be written as a sum over all haloes of the number of these pairs per halo:

N1h,c−spairs (r, L1, L2) =
∑

all haloes
N1h,c−spairs (r, L1, L2|M) (4.9)

where M is the halo mass and here is used only as a label to identify the halo. Let us begin the
derivation of N1h,c−spairs (r, L1, L2|M) considering simply a halo of mass M for which we indicate the radial
distribution of satellite galaxies as Ns(L1, L2,M) n̂s(r, L1, L2|M). Let us now average the number of
satellite galaxies over all haloes of mass M:

∞
∑

Ns=0
P(Ns|M)Ns(L1, L2,M) ≡ 〈Ns〉M(L1, L2) . (4.10)

This equation thus defines the number of satellite galaxies with luminosity in [L1, L2] which, on
average, reside in a halo of mass M.

To evaluate N1h,c−spairs (r, L1, L2|M), let us first consider the simplistic case in which every halo, re-
gardless of the mass, has a central galaxy in the considered luminosity bin and the satellite galaxies,
on average, are distributed according to the description provided above. We then have

N1h,c−spairs (r, L1, L2|M) = 〈Ns〉M(L1, L2) n̂s(r, L1, L2|M) . (4.11)

Note that throughout the thesis, we do not consider the effect of luminosity segregation. This means
that we do not allow satellite galaxies of different luminosity to have different radial profile. This
means that we can conveniently rewrite n̂s(r, L1, L2|M) = n̂s(r|M).

In a realistic model, however, one has to consider the probability that a halo of mass M contains a
central galaxy with luminosity within [L1, L2]. We can write this probability as 〈Nc〉M(L1, L2), which
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4. THE ANALYTICALMODEL

is the number of central galaxies that, on average, resides in haloes of mass M. To be more explicit,
imagine to have a certain number of haloes of mass M and only a fraction of these haloes actually
contains a central galaxy in the considered luminosity bin. Since in our model there is at most one
central galaxy in a given halo, we have

∞
∑

Nc=0
P(Nc|M)Nc(L1, L2,M) ≡ 〈Nc〉M(L1, L2) . (4.12)

In this realistic description of the number of central-satellite galaxy pairs, we thus have

N1h,c−spairs (r, L1, L2|M) = 〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2) n̂s(r|M) . (4.13)

Finally, by summing over all haloes, we take into account the number density of haloes of different
mass, i.e. the halo mass function, n(M), introduced in chapter 3. We thus have

N1h,c−spairs (r, L1, L2) =
∑

all haloes
N1h,c−spairs (r, L1, L2|M) =

=

∫

〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2) n̂s(r|M) n(M) dM . (4.14)

The one halo central-satellite term of the galaxy 2-point correlation function then reads

ξ̃1h,c−sgg (r|M, L1, L2) =
N1h,c−spairs (r, L1, L2)

n̄2tot
=

=

∫

〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2)
n̄2tot

n̂s(r|M) n(M) dM =

= fc(L1, L2) fs(L1, L2)
∫

〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2)
n̄c(L1, L2) n̄s(L1, L2)

n̂s(r|M) n(M) dM =

= fc(L1, L2) fs(L1, L2) ξ̆1h,c−sgg (r, L1, L2) . (4.15)

This expression is quite straightforward to calculate in real space. However, we define its Fourier
space counterpart:

P̃1h,c−sgg (k|L1, L2) =
∫

〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2)
n̄2tot(L1, L2)

us(k|M, L1, L2) n(M) dM =

= fc(L1, L2) fs(L1, L2)
∫

〈Nc〉M(L1, L2) 〈Ns〉M(L1, L2)
n̄c(L1, L2) n̄s(L1, L2)

us(k|M, L1, L2) n(M) dM =

= fc(L1, L2) fs(L1, L2) P̆1h,c−sgg (k|L1, L2) (4.16)

where us(k|M, L1, L2) is the Fourier transform of the normalized radial distribution of satellite galax-
ies, n̂s(r|M, L1, L2),

us(k|M) = 4π
∫ r180

0
n̂s(r|M)

sin kr
kr

r2 dr . (4.17)
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Throughout the thesis, for the number density distribution of the satellite galaxies, we assume the
following functional form (see e.g., van den Bosch et al.2004):

ns(r|M) ∝
(

r
Rr∗

)−α (

1 +
r

Rr∗

)α−3
, (4.18)

which scales as ns ∝ r−α and ns ∝ r−3 at small and large radii, respectively. The profile ns(r|M) has
an effective scale radius Rr∗. Observations of the number density distribution of satellite galaxies in
clusters and groups seem to suggest that ns(r|M) is in good agreement with a profile for which α = 1
(e.g., Beers & Tonry 1986; Carlberg, Yee & Ellingson 1997a; van der Marel et al.2000; Lin, Mohr &
Stanford 2004; van den Bosch et al.2005a). Furthermore, several studies have suggested that satellite
galaxies may be distributed according to the profile in eq. (4.18) with R > 1 (e.g., Yang et al.2005;
Chen 2007; More et al.2008b). For our fiducial model we assume that satellite galaxies follow the
profile in eq. (4.18) with α = 1 and R = 1. In §5.2.3.3 we examine how the results depend on α and
R.

4.1.2 The one halo satellite-satellite term

In explaining the one halo-satellite term of the galaxy correlation function we will follow exactly the
same line of reasoning used for the one halo central-satellite term. The main difference resides in the
fact that one needs to correlate satellite galaxies between each others. By definition, satellite galaxies
do not reside at the center of their dark matter halo, but follow a number density distribution ns(r|M).
It is then intuitive that the number of satellite galaxy pairs at distance r depends on the convolution of
ns(r|M) with itself. Let us consider a single halo of mass M whose volume is VM, we then have

N1h,s−spairs (r, L1, L2|M) =
∫

VM
d3y ns(y, L1, L2|M) ns(y + r, L1, L2|M) . (4.19)

Using the same arguments of eq. (4.10), we have

N1h,s−spairs (r, L1, L2|M) =
∫

VM
d3y ns(y, L1, L2|M) ns(y + r, L1, L2|M) =

=

∫

VM
d3y

∞
∑

Ns=0
P(Ns|M)Ns(L1, L2,M)n̂s(y|M)

Ns(L1, L2,M)n̂s(y + r|M) =

=

∫

VM
d3y

∞
∑

Ns=0
P(Ns|M)N2s (L1, L2,M)n̂s(y|M) n̂s(y + r|M) =

=

∫

VM
d3y 〈N2s 〉M(L1, L2)n̂s(y|M) n̂s(y + r|M) =

= 〈N2s 〉M(L1, L2)
∫

VM
d3y n̂s(y|M) n̂s(y + r|M) =

= 〈Ns〉2M(L1, L2)
∫

VM
d3y n̂s(y|M) n̂s(y + r|M) , (4.20)
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where the last equality holds under the assumption that satellite galaxies are Poisson distributed.
In order to quantify the total number of satellite galaxy pairs at a given distance r and in a lumi-

nosity bin [L1, L2], we simply sum N1h,s−spairs (r, L1, L2|M) over all haloes,

N1h,s−spairs (r, L1, L2) =
∑

all haloes
N1h,s−spairs (r, L1, L2|M) =

=
∑

all haloes
〈Ns〉2M(L1, L2)

∫

VM
d3y n̂s(y|M) n̂s(y + r|M) =

=

∫

n(M) dM 〈Ns〉2M(L1, L2)
∫

VM
d3y n̂s(y|M) n̂s(y + r|M) .

(4.21)

This expression allows us to write the one halo satellite-satellite term of the galaxy correlation func-
tion as

ξ̃1h,s−sgg (r, L1, L2) =
N1h,s−spairs (r, L1, L2)

n̄2tot(L1, L2)
=

=

∫

n(M) dM
〈Ns〉2M(L1, L2)
n̄2tot(L1, L2)

∫

VM
d3y n̂s(y|M) n̂s(y + r|M) =

= f 2s (L1, L2)
∫

n(M) dM
〈Ns〉2M(L1, L2)
n̄2s (L1, L2)

∫

VM
d3y n̂s(y|M) n̂s(y + r|M) =

= f 2s (L1, L2) ξ̆1h,s−sgg (r, L1, L2) (4.22)

Since convolution can be extremely tedious to calculate numerically, it is convenient to use the Fourier
transform of eq. (4.22). We then obtain

P̃1h,s−sgg (k, L1, L2) =
∫ 〈Ns〉2M(L1, L2)

n̄2tot(L1, L2)
|us(k|M)|2 n(M) dM =

= f 2s (L1, L2)
∫ 〈Ns〉2M(L1, L2)

n̄2s (L1, L2)
|us(k|M)|2 n(M) dM =

= f 2s (L1, L2) P̆1h,s−sgg (k, L1, L2) (4.23)

4.1.3 The two halo central-central term

The two halo term of the galaxy correlation function encodes the information about the clustering of
the galaxies belonging to different dark matter haloes. See fig. 4.3 for a visualization of the galaxy
pairs involved in this term. One can describe the clustering of galaxies as a biased dark matter cluster-
ing. This “bias” has to take into account the average number of galaxies in haloes of different masses,
as well as their distribution inside the halo. As it will be clear from what follows, also for the two halo
term (large scales) the halo occupation statistics is a crucial ingredient to define the 2-point galaxy
correlation function.
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In the case of the two halo central-central term, one has to correlate central galaxies living in a halo
of mass M1 with central galaxies living in a halo of mass M2. Roughly speaking, it is expected that
the correlation function of central galaxies living in separate haloes is tightly related to the correlation
function of the haloes. Basically one can write

ξ̆2h,c−cgg (r, L1, L2) =
1
n̄2c

∑

M1

∑

M2

ξhh(r|M1,M2) =

=
1
n̄2c

∫

〈Nc〉M1(L1, L2)n(M1)dM1

∫

〈Nc〉M2 (L1, L2)n(M2)dM2 ξhh(r|M1,M2) =

=
ξdm(r)
n̄2c

∫

〈Nc〉M1 (L1, L2) b(M1)n(M1)dM1

∫

〈Nc〉M2 (L1, L2) b(M2)n(M2)dM2 =

=
ξdm(r)
n̄2c

[
∫

〈Nc〉M(L1, L2) b(M)n(M)dM
]2
, (4.24)

where we have used the fact that the halo bias is assumed to be scale independent:

ξhh(r|M1,M2) = b(M1) b(M2) ξdm(r) . (4.25)

Note also that we have considered the probability that, on average, a halo of mass M hosts a cen-
tral galaxy in the considered luminosity bin by using the halo occupation statistics 〈Nc〉M(L1, L2).
Ultimately, we are interested in the total galaxy correlation function, ξgg(r, L1, L2). As explained at
the beginning of this chapter, the relative contribution due to central galaxies has to take into account
the fraction of these galaxies, that is

ξ̃2h,c−cgg (r, L1, L2) = f 2c (L1, L2) ξ̆2h,c−cgg (r, L1, L2) =

=
ξdm(r)
n̄2tot

[
∫

〈Nc〉M(L1, L2) b(M)n(M)dM
]2
. (4.26)

The corresponding Fourier transform simply reads

P̃2h,c−cgg (k, L1, L2) =
Pdm(k)

n̄2tot(L1, L2)

[
∫

〈Nc〉M(L1, L2) b(M)n(M)dM
]2
=

= f 2c (L1, L2)
Pdm(k)

n̄2c(L1, L2)

[
∫

〈Nc〉M(L1, L2) b(M)n(M)dM
]2
=

= f 2c (L1, L2) P̆2h,c−cgg (k, L1, L2) . (4.27)

4.1.4 The two halo central-satellite term

For the two halo central-satellite term, one has to correlate central galaxies with luminosity L within
[L1, L2] residing in a halo if mass M1 and satellite galaxies with the same luminosity residing in an
other halo of mass M2 (see fig. 4.3 for a schematic representation).
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Following the arguments presented in the previous section, we have

ξ̆2h,c−sgg (r), L1, L2 =
1

n̄c(L1, L2)n̄s(L1, L2)

∑

M1

∑

M2

〈Nc〉M1 (L1, L2) 〈Ns〉M2 (L1, L2)

∫

d3y n̂s(y + x′ − x|M2) ξhh(y,M1,M2) =

=
1

n̄c(L1, L2)n̄s(L1, L2)

∫

〈Nc〉M1 (L1, L2) n(M1)dM1

∫

〈Ns〉M2 (L1, L2)n(M2)dM2
∫

d3y n̂s(y + x′ − x|M2) ξhh(y,M1,M2) , (4.28)

where r = |x′ − x| and we have indicated the distance between dark matter haloes of mass M1 and M2
with y = x1 − x2. Moreover, we have made explicit use of the fact that the central galaxy resides at
the center of the dark matter halo of mass M1. Note that the expression in eq. (4.28) depends on the
convolution of the radial distribution of the satellite galaxies with the correlation function of haloes.
We can rewrite eq. (4.28) as

ξ̃2h,c−sgg (r, L1, L2) = fc(L1, L2) fs(L1, L2) ξ̆2h,c−cgg (r, L1, L2) =

=
1

n̄2tot(L1, L2)

∫

〈Nc〉M1 (L1, L2) n(M1)dM1

∫

〈Ns〉M2 (L1, L2)n(M2)dM2

∫

d3y n̂s(y + x′ − x|M2) ξhh(y,M1,M2) . (4.29)

The Fourier counterpart is

P̃2h,c−sgg (k, L1, L2) =
∫

〈Nc〉M1 (L1, L2) n(M1)dM1

∫

〈Ns〉M2(L1, L2) us(k|M2) n(M2)

Phh(k,M1,M2) dM2 =

=
Pdm(k)

n̄2tot(L1, L2)

∫

〈Nc〉M1 (L1, L2) b(M1) n(M1)dM1

∫

〈Ns〉M2 (L1, L2) us(k|M2) b(M2) n(M2)dM2 =

= fc(L1, L2) fs(L1, L2) P̆2h,c−sgg (k, L1, L2) (4.30)

where the first equality holds because a convolution becomes a simple multiplication in Fourier space.
Moreover, the second equality is based on the fact that, if the halo bias is scale-independent, the halo-
halo power spectrum is

Phh(k,M1,M2) = b(M1)b(M2)Pdm(k) . (4.31)

4.1.5 The two halo satellite-satellite term

For the two halo satellite-satellite term, one has to correlate satellite galaxies with luminosity Lwithin
[L1, L2] residing in a halo of mass M1 and satellite galaxies with the same luminosity residing in an
other halo of mass M2 (see fig. 4.3 for a schematic representation).
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Following the arguments presented in the previous sections, we have

ξ̃gg(r, L1, L2) = f 2s (L1, L2) ξ̆gg(r, L1, L2) =

=
1

n̄2tot(L1, L2)

∫

n(M1) 〈Ns〉M1 (L1, L2) dM1

∫

n(M2) 〈Ns〉M2 (L1, L2) dM2

∫

d3x1 n̂s(x − x1|M1)
∫

d3x2 n̂s(x′ − x2|M2) ξhh(x1 − x2,M1,M2) , (4.32)

where, as usual, we have written the sum over all haloes as an integral over halo masses weighted
with the halo mass function. Note that the presence of a convolution of the satellite distribution with
the halo-halo correlation function. The Fourier counterpart is simpler to calculate due to the fact that
convolutions simply become multiplications in Fourier space. The two halo satellite-satellite term of
the galaxy power spectrum then reads

P̃gg(k, L1, L2) =
1

n̄2tot(L1, L2)

∫

n(M1) 〈Ns〉M1(L1, L2) us(k|M1) dM1

∫

n(M2) 〈Ns〉M2 (L1, L2) us(k|M2) Phh(k,M1,M2)dM2 =

=
Pdm(k)

n̄2tot(L1, L2)

∫

〈Ns〉M1 (L1, L2) us(k|M1) b(M1) n(M1) dM1

∫

〈Ns〉M2 (L1, L2) us(k|M2) b(M2) n(M2) dM2 =

=
Pdm(k)

n̄2tot(L1, L2)

[
∫

〈Ns〉M(L1, L2) us(k|M) b(M) n(M) dM
]2
=

= f 2s (L1, L2) P̆2h,s−sgg (k, L1, L2) (4.33)

where we have used the usual approximation for the halo-halo power spectrum

Phh(k,M1,M2) = b(M1)b(M2)Pdm(k) , (4.34)

and we have substituted the variables M1 and M2 with M.

4.1.6 The Projected Galaxy Correlation Function

We have shown in chapter 2 that it is convenient to measure the galaxy clustering properties using the
2-point projected galaxy correlation function, wp. From the theoretical point of view, this quantity
can be straightforwardly calculated once the spatial 2-point correlation function, ξgg, is known. In
fact we have

wp(R) =
∫ ∞

R
ξgg(r)

r dr
(r2 − R2)1/2

, (4.35)

where R is the comoving separation in the sky (2-D distance) and r is the comoving spatial (3-D)
separation. Here, we have implicitly made use of the fact that ξgg(r) goes to zero in the limit r → ∞

49



4. THE ANALYTICALMODEL

and in practice the angle under which R is observed is small. Note that eq. (4.35) can be rewritten as

wp(R) = 2R
∫ 1

0
ξgg(R/y)

dy
y2(1 − y2)1/2

. (4.36)

4.1.7 The Galaxy Correlation Length

At very large scales, the two halo term of the galaxy correlation function can be further simplified.
At distances r much larger than the typical extension r180 of dark matter haloes, the location of the
galaxies inside the halo is not relevant, r + r180 ∼ r. At these scales thus

ξgg(r|L1, L2) ∼
ξdm(r)

n̄2tot(L1, L2)

[
∫

〈Ntot〉M(L1, L2) b(M) n(M) dM
]2
=

= b2g(L1, L2) ξdm(r) (4.37)

with

b2g(L1, L2) =
[
∫

〈Ntot〉M(L1, L2)
n̄tot(L1, L2)

b(M) n(M) dM
]2
, (4.38)

where 〈Ntot〉M(L1, L2) = 〈Nc〉M(L1, L2) + 〈Ns〉M(L1, L2) comes from the fact that all galaxies are taken
into account without the split into central and satellite. In the literature (see e.g. Tinker et al.2005), a
correction to this expression has been suggested to take into account the scale dependence of the bias.
This correction changes eq. (4.37) in

ξgg(r|L1, L2) = b2g(L1, L2) ζ(r) ξdm(r) , (4.39)

with

ζ(r) =
[1 + 1.17ξdm(r)]1.49

[1 + 0.69ξdm(r)]2.09
. (4.40)

Eq. (4.39) links the large scale galaxy clustering properties to the underlying dark matter clustering.
Since the observed galaxy correlation function is fairly well described by a power law,

ξgg =

(

r
r0(L1, L2)

)α(L1,L2)
, (4.41)

one can use the correlation length, r0(L1, L2) to quantify the galaxy clustering strength as a function
of the luminosity. Note that the correlation length is defined such that ξgg[r0(L1, L2)] = 1.

As already illustrated in chapter 2, the correlation length is larger for brighter galaxies. This means
that brighter galaxies are, on average, more strongly clustered than fainter galaxies. Since numerical
simulations indicates that more massive haloes are more strongly clustered than less massive ones,
this suggests that bright galaxies live, on average, in massive haloes.
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4.2 Dark Matter Clustering

The aim of this section is to introduce the treatment of the dark matter clustering within the framework
of the halo model. In chapter 3, we have already introduced the statistical tools to investigate the
properties of the dark matter density field. In particular, we have described the clustering of dark
matter via the correlation function and the power spectrum. A basic assumption in that treatment
was that the density of dark matter can be described as a continuous field, ρdm(x). However, in the
halo model, we assume that the dark matter distribution can be partitioned up into haloes of different
masses. This means that we treat the dark matter density field as a discrete field. In such a discretized
model, one can describe the clustering of dark matter as the clustering of objects (in a similar fashion
as for the galaxy clustering). It is worth stressing that, in the limit in which also extremely small halo
masses can be considered, the discretized description approaches the continuous treatment. Therefore,
there is no loss of generality in using the halo model approach to describe the properties of the dark
matter density distribution. As in the case of the galaxy clustering, we will use the 2-point correlation
function (and the corresponding power spectrum) for quantifying the clustering properties.

Given the above discussion, it is expected that the dark matter distribution will be divided into two
parts: the one halo and the two halo regime. Accordingly, the one halo term describes the distribution
of dark matter inside haloes of a given mass, whereas the two term relies on the knowledge of the
spatial distribution of haloes. Note, however, two obvious difference between galaxies and dark
matter distribution: (i) the dark matter does not have the split into central and satellite term, (ii) the
dark matter properties do not depend on luminosity.

Following the same line of reasoning used for the galaxy correlation function, we have

1 + ξdm(r) =
DD(r)
DR(r)

, (4.42)

where DD(r) is the number of dark matter pairs as “observed” in a given realization of dark matter
distribution, whereas DR(r) is the number of dark matter pairs in a random distribution. Adopting the
ergodic principle (see chapter 3), we write DR(r) = ρ̄2. Dividing the number of pairs into one and
two halo, we have

1 + ξdm(r) =
DD1h(r) + DD2h(r)

ρ̄2
= ξ̃1hdm(r) + ξ̃

2h
dm(r) . (4.43)

The Fourier counterpart, the power spectrum, can be written as

Pdm(k) = P̃1hdm(k) + P̃
2h
dm(k) . (4.44)

4.2.1 The one halo term

We write the number of dark matter pairs as a sum over all haloes of the number of pairs per halo:

DD1h(r) =
∑

all haloes
DD1h(r|M) . (4.45)
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If the dark matter inside a halo follows a density distribution, ρdm(r|M), then it is clear that DD1h(r|M)
consists of a convolution of the density profile with itself

DD1h(r|M) = 〈ρdm(y|M) ρdm(y + r|M)〉 . (4.46)

By writing the density profile as
ρdm(y|M) = Mρ̂dm(y) , (4.47)

we have
DD1h(r|M) = M2 〈ρ̂dm(y|M) ρ̂dm(y + r|M)〉 , (4.48)

where, by definition,

4π
∫ r180

0
dr2ρ̂dm(r|M) = 1 . (4.49)

Note that we have assumed that the dark matter density profile is actually radially symmetric.
By summing over all haloes, we integrate over all halo masses using the halo mass function n(M):

DD1h(r) =
∑

all haloes
DD1h(r|M) =

=

∫

n(M)DD1h(r|M) dM =

=

∫

M2 〈ρ̂dm(y|M) ρ̂dm(y + r|M)〉 n(M) dM =

=

∫

M2 n(M) dM
∫

d3y ρ̂dm(y|M) ρ̂dm(y + r|M) . (4.50)

The one halo term of the dark matter correlation then reads

ξ̃1hdm(r) =
DD1h(r)
ρ̄2

=

=
1
ρ̄2

∫

M2 n(M) dM
∫ r180

0
d3y ρ̂dm(y|M) ρ̂dm(y + r|M) . (4.51)

The Fourier counterpart is then

P̃1hdm(k) =
1
ρ̄2

∫

M2 u2dm(k|M) n(M) dM . (4.52)

Here, udm(k|M) is the Fourier transform of the normalized dark matter density profile within a halo of
mass M

udm(k|M) = 4π
∫ r180

0
ρ̂dm(r|M)

sin kr
kr

r2 dr . (4.53)

For the NFW profile (see chapter 3),

udm(k|M) =
4πρ∗r3∗
M

{

sin(kr∗)
[

Si([1 + cdm]kr∗) − Si(kr∗)
]

−
sin(cdmkr∗)
(1 + cdm)kr∗

+ cos(kr∗)
[

Ci([1 + cdm]kr∗) − Ci(kr∗)
]

}

, (4.54)
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where the sine and cosine integrals are

Ci(x) = −
∫ ∞

x

cos t
t

dt and Si(x) =
∫ x

0

sin t
t

dt . (4.55)

Figure 4.4 shows udm(k|M) as a function of k for different values of M (assuming NFW profiles).
In general, the shape of udm(k|M) depends both on the halo concentration parameter, cdm, and the
mass M. The figure shows an important feature: the small scale power (large k) is dominated by low
mass haloes. This will be relevant for performing the actual calculation of the power spectra (see
§4.4)

4.2.2 The two halo term

The expression that describes the two halo term of the dark matter correlation function can be derived
following the same line of reasoning valid for the one halo term. The only substantial difference is
that the correlated dark matter particles must reside in separate haloes. This implies

ξ̃dm(r) =
1
ρ̄2

∫

n(M1)M1 dM1

∫

n(M2)M2 dM2
∫

d3x1 ρ̂dm(x − x1|M1)
∫

d3x2 ρ̂dm(x′ − x2|M2) ξhh(x1 − x2|M1,M2) ,

(4.56)

The Fourier counterpart of the two halo term of the dark matter correlation function is

P2hdm(k) =
1
ρ̄2

∫

M1 udm(k|M1) n(M1) dM1

∫

M2 udm(k|M2) n(M2) dM2 Phh(k|M1,M2) .

(4.57)

Under the assumption that the bias between haloes and dark matter is scale independent (see chap-
ter 3), we have that

Phh(k|M1,M2) = b(M1) b(M2) Pdm(k) , (4.58)

where b(M) is the value of the halo bias function for a halo of mass M. Using eq. (4.58), one can take
Pdm(k) outside of the integrals over M1 and M2, making the two integrals separable. This simplifies
the expression of the 2-halo term of the power spectrum as follows:

P2hdm(k) =
Pdm(k)
ρ̄2

[∫

M udm(k|M) b(M) n(M) dM
]2
. (4.59)

Note that we have used the fact that M1 and M2 can be substituted by M.
At a first look, eq. (4.59) seems to suggest that the halo model introduces a vicious loop. In fact,

the idea is to be able to describe the power spectrum of the dark matter distribution but in order to do
it one requires the knowledge of Pdm(k) (see eq. 4.59). This is only partially true. In fact, eq. (4.58)
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Figure 4.4: The Fourier transform of the dark matter density profile, udm(k|M) for different halo masses.
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is true only in the regime where b(k) is independent of k (the bias must be scale-independent). In this
regime, Pdm(k) ∼ Plindm(k) which can be evaluated from linear theory (see chapter 3). However, by
comparing the power spectrum provided by numerical simulations with the one derived via the halo
model approach where P2hdm(k) ∝ P

lin
dm(k), one can notice that the analytical approach underestimates

the power spectrum on scales 0.2 ! k ! 1.2hMpc−1 (see e.g. Cooray & Sheth 2001). These are indeed
the scales at which the scale-dependence of the bias starts to be relevant and eq. (4.58) fails. The only
formally correct solution to this problem would be having an analytical estimation of the dark matter
power spectrum also in the midly-nonlinear regime (a sort of quasi-non linear power spectrum).
Although there have been attempts to find such a power spectrum (e.g. one-loop perturbation theory,
see Cooray & Sheth 2001 and reference therein) a definitive answer has not yet been found. Some
authors have tried to overcome this problem by using a scale-dependent bias, b(M, r) (see e.g. Tinker
et al. 2005). Although this attempt improves the quality of the agreement with numerical simulations,
it is anyway approximated because it cannot account for the profile of the dark matter inside the
haloes (see eq.[4.59]). In this thesis, unless otherwise specified, we don’t describe the dark matter
power spectrum in the halo model formalism but we use the result from numerical simulations any
time that Pdm(k) is required. This section is thus mostly an introduction to the description of the dark
matter correlation function and power spectrum in the halo model formalism. As explained in the
next section, this will be useful to describe the clustering of dark matter around galaxies.

4.3 Dark Matter Clustering around Galaxies

To describe the clustering of dark matter around galaxies, we use the 2-point galaxy-dark matter cross
correlation function, ξg,dm. To define this quantity, we will follow the line of reasoning already applied
to the clustering of dark matter and that of galaxies. We, therefore, have

1 + ξg,dm(r, L1, L2) =
DD(r, L1L2)
DR(r, L1, L2)

, (4.60)

where DD(r, L1L2) is the number of galaxy-dark matter pairs in the “data”, whereas DR(r, L1, L2) is
the number of galaxy-dark matter pair in a random realization. Bearing in mind the arguments used
for the 2-point correlation function of galaxies and dark matter and the distinction into central and
satellite galaxies, it is straightforward to split the number of pairs into four terms:

DD(r, L1L2) = N1h,cpairs(r, L1, L2) + N
1h,s
pairs(r, L1, L2) + N

2h,c
pairs(r, L1, L2) + N

2h,s
pairs(r, L1, L2) . (4.61)

See fig. 4.5 for an illustration of these pairs. Moreover, it follows from previous discussion that
DR(r, L1, L2) = n̄tot(L1, L2) ρ̄.

Accordingly, the cross-correlation function ξg,dm(r, L1, L2) can be split into four terms

ξdm(r, L1, L2) = ξ̃1h,cdm (r, L1, L2) + ξ̃
1h,s
dm (r, L1, L2) + ξ̃

2h,c
dm (r, L1, L2) + ξ̃

2h,s
dm (r, L1, L2) =

= fc(L1, L2) ξ̆1h,cdm (r, L1, L2) + fs(L1, L2) ξ̆1h,sdm (r, L1, L2) +
+ fc(L1, L2) ξ̆2h,cdm (r, L1, L2) + fs(L1, L2) ξ̆2h,sdm (r, L1, L2) (4.62)
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Figure 4.5: Schematic representation of the different terms of the galaxy-dark matter cross correlation
function.

and we can define the corresponding power spectra as

Pdm(k, L1, L2) = P̃1h,cdm (k, L1, L2) + P̃
1h,s
dm (r, L1, L2) + P̃

2h,c
dm (k, L1, L2) + P̃

2h,s
dm (k, L1, L2) =

= fc(L1, L2) P̆1h,cdm (k, L1, L2) + fs(L1, L2) P̆
1h,s
dm (r, L1, L2) +

+ fc(L1, L2) P̆2h,cdm (k, L1, L2) + fs(L1, L2) P̆
2h,s
dm (k, L1, L2) . (4.63)

Note that the notation .̆ follows from the discussion in the previous sections. In what follows, we
describe the four terms of the galaxy-dark matter cross correlation function (and corresponding power
spectra) in detail.

4.3.1 The one halo central term

The one halo central term describes the correlation between central galaxies with luminosity in the
range [L1, L2] and the dark matter in the halo hosting these galaxies. As usual, we write the number
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of pairs as sum over the pairs per halo

N1h,cpairs(r, L1, L2) =
∑

all haloes
N1hpairs(r, L1, L2|M) . (4.64)

Since, by definition, the central galaxy sits at the centre of the dark matter halo and the dark matter
distribution follows a radial profile, Mρ̂dm(r|M), we have

N1h,cpairs(r, L1, L2|M) = 〈Nc〉M(L1, L2)Mρ̂dm(r|M) , (4.65)

where the term 〈Nc〉M(L1, L2) describes the probability that a halo of mass M contains, on average, a
central galaxy with luminosity in the range [L1, L2]. By summing over all haloes, we obtain

N1h,cpairs(r, L1, L2) =
∑

all haloes
N1h,cpairs(r, L1, L2|M) =

=

∫

n(M) 〈Nc〉M(L1, L2)M ρ̂dm(r|M)dM . (4.66)

The one halo central term of the galaxy-dark matter cross correlation then reads

ξ̃1h,cg,dm(r, L1, L2) =
∑

all haloes

N1h,cpairs(r, L1, L2)
ρ̄n̄tot(L1, L2)

=
1

ρ̄n̄tot(L1, L2)

∫

n(M) 〈Nc〉M(L1, L2)M ρ̂dm(r|M)dM =

= fc(L1, L2)
1

ρ̄n̄c(L1, L2)

∫

n(M) 〈Nc〉M(L1, L2)M ρ̂dm(r|M)dM =

= fc(L1, L2) ξ̆1h,cg,dm(r, L1, L2) (4.67)

The corresponding power spectrum then reads

P̃1h,cg,dm(k, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

n(M) 〈Nc〉M(L1, L2)M udm(k|M)dM =

= fc(L1, L2)
1

ρ̄n̄c(L1, L2)

∫

n(M) 〈Nc〉M(L1, L2)M udm(k|M)dM

= fc(L1, L2) P̆1h,cg,dm(k, L1, L2) (4.68)

4.3.2 The one halo satellite term

Similarly to the one halo central term, we can define satellite galaxy-dark matter pairs as a sum over
haloes of the satellite-dark matter pairs per halo

N1h,spairs(r, L1, L2) =
∑

all haloes
N1h,spairs(r, L1, L2|M) . (4.69)
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Since, by definition, satellite galaxies are distributed according to a radial profile, 〈Ns〉M(L1, L2)n̂s(r|M),
and the dark matter distribution follows a radial profile, Mρ̂dm(r|M), we have

N1h,spairs(r, L1, L2|M) = M 〈Ns〉M(L1, L2)
∫

VM
d3y n̂s(y|M) ρ̂dm(y + r|M) . (4.70)

Summing over all the haloes and dividing by ρ̄n̄tot(L1, L2) we get the expression for the one halo
satellite term of the galaxy-dark matter correlation function:

ξ̃1h,sg,dm(r, L1, L2) =
N1h,spairs(r, L1, L2)
ρ̄n̄tot(L1, L2)

=

=
1

ρ̄n̄tot(L1, L2)

∑

all haloes
N1h,spairs(r, L1, L2|M) =

=
1

ρ̄n̄tot(L1, L2)

∑

all haloes
M 〈Ns〉M(L1, L2)

∫

VM
d3y n̂s(y|M) ρ̂dm(y + r|M) =

=
1

ρ̄n̄tot(L1, L2)

∫

M 〈Ns〉M(L1, L2) n(M)dM
∫

VM
d3y n̂s(y|M) ρ̂dm(y + r|M) =

= fs(L1, L2)
1

ρ̄n̄s(L1, L2)

∫

M 〈Ns〉M(L1, L2) n(M)dM
∫

VM
d3y n̂s(y|M) ρ̂dm(y + r|M) =

= fs(L1, L2) ξ̆1h,sg,dm(r, L1, L2) . (4.71)

Note that this expression involves a convolution of the distribution of galaxies with the dark matter
density profile. However, the Fourier counterpart simplifies notably:

P̃1h,sg,dm(k, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

M 〈Ns〉M(L1, L2) n(M)dM us(k|M) udm(k|M) =

= fs(L1, L2)
1

ρ̄n̄s(L1, L2)

∫

M 〈Ns〉M(L1, L2) n(M)dM us(k|M) udm(k|M) =

= fs(L1, L2)P̆1h,sg,dm(k, L1, L2)

(4.72)

4.3.3 The two halo central term

Since central galaxies reside at the centre of the dark matter haloes, dark matter is distributed with
a density profile, Mρ̂(x|M), and the spatial distribution of haloes can be described via the halo-halo
correlation function, the expression for the two halo central term of the galaxy-dark matter cross
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correlation can be written as

ξ̃2h,cg,dm(r, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

〈Nc〉M1(L1, L2) n(M1) dM1

∫

M2 n(M2) dM2
∫

d3y ρ̂dm(y + x′ − x|M2) ξhh(y,M1,M2) =

= fc(L1, L2)
1

ρ̄n̄c(L1, L2)

∫

〈Nc〉M1 (L1, L2) n(M1) dM1

∫

M2 n(M2) dM2
∫

d3y ρ̂dm(y + x′ − x|M2) ξhh(y,M1,M2) =

= fc(L1, L2) ξ̆2h,cg,dm(r, L1, L2) (4.73)

The Fourier counterparts reads

P̃2h,cg,dm(k, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

〈Nc〉M1 (L1, L2) n(M1) dM1
∫

M2 udm(k|M2) n(M2) Phh(k|M1,M2) dM2 =

=
Pdm(k)

ρ̄n̄tot(L1, L2)

∫

〈Nc〉M1 (L1, L2) b(M1 )n(M1) dM1
∫

M2 udm(k|M2) b(M2)n(M2) dM2 =

= fc(L1, L2)
Pdm(k)
ρ̄n̄c(L1, L2)

∫

〈Nc〉M1 (L1, L2) b(M1 )n(M1) dM1
∫

M2 udm(k|M2) b(M2)n(M2) dM2 =

= fc(L1, L2) P̆2h,cg,dm(k, L1, L2) (4.74)

where we have used the assumption that the halo bias is scale independent, i.e.

Phh(k|M1,M2) = b(M1)b(M2)Pdm(k) . (4.75)

4.3.4 The two halo satellite term

Following the same line of reasoning of the previous sections, we can write the two halo satellite term
of the galaxy-dark matter cross correlation function as

ξ̃2h,sgdm(r, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

n(M1) 〈Ns〉M1 (L1, L2) dM1

∫

n(M2)M2 dM2
∫

d3x1 n̂s(x − x1|M1)
∫

d3x2 ρ̂dm(x′ − x2|M2) ξhh(x1 − x2,M1,M2) =

= fs(L1, L2)
1

ρ̄n̄s(L1, L2)

∫

n(M1) 〈Ns〉M1 (L1, L2) dM1

∫

n(M2)M2 dM2
∫

d3x1 n̂s(x − x1|M1)
∫

d3x2 ρ̂dm(x′ − x2|M2) ξhh(x1 − x2,M1,M2) =

= fs(L1, L2) ξ̆2h,sgdm(r, L1, L2) (4.76)
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This expression involves the convolution of the distribution of satellite galaxies inside a halo with
the dark matter density with the halo-halo correlation function. The Fourier counterpart simplifies
particularly:

P̃2h,sgdm(k, L1, L2) =
1

ρ̄n̄tot(L1, L2)

∫

n(M1) 〈Ns〉M1 (L1, L2) dM1

∫

n(M2)M2 dM2

us(k|M1) udm(k|M2) Phh(k,M1,M2) =

=
Pdm(k)

ρ̄n̄tot(L1, L2)

∫

〈Ns〉M1 (L1, L2) us(k|M1) b(M1) n(M1) dM1
∫

M2 udm(k|M2) b(M2) n(M2) dM2 =

= fs(L1, L2)
Pdm(k)
ρ̄n̄s(L1, L2)

∫

〈Ns〉M1 (L1, L2) us(k|M1) b(M1) n(M1) dM1
∫

M2 udm(k|M2) b(M2) n(M2) dM2 =

= fs(L1, L2) P̆2h,sgdm(k, L1, L2) (4.77)

where we have used the assumption that the halo bias is scale independent, i.e.

Phh(k|M1,M2) = b(M1)b(M2)Pdm(k) . (4.78)

4.3.5 The Excess Surface Density

The excess surface density is defined as

∆Σ(R) = Σ(< R) − Σ(R) , (4.79)

where
Σ(< R) =

2
R2

∫

Σ(R′)R′dR′ (4.80)

and the projected surface density, Σ(R), is related to the galaxy-dark matter cross correlation, ξg,dm(r),
according to

Σ(R) = ρ
∫ ωs

0

[

1 + ξg,dm(r)
]

dω , (4.81)

where ρ is the average density of matter in the universe and the integral is along the line of sight with
ω the comoving distance from the observer. The three-dimensional comoving distance r is related to
ω through r2 = ω2L + ω

2 − 2ωLω cos θ (see Fig. 4.6 for an illustration of the geometry).
Since ξg,dm(r) goes to zero in the limit r → ∞, and since in practice θ is small, we can approximate

Eq. (4.81) using

Σ(R) = 2ρ
∫ ∞

R

[

1 + ξg,dm(r)
] rdr
√
r2 − R2

, (4.82)

which is the expression we adopt throughout.
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Figure 4.6: Illustration of the geometry between source, lens and observer

4.4 Technical detail: the actual evaluation of the integrals

A technical, as well as conceptual, issue arises in calculating the two halo terms of the galaxy-dark
matter cross correlation function. Let us rewrite these two equations in the following compact form:

P̆2h,cg,dm(k) =Pdm(k) INc IM(k)

P̆2h,sg,dm(k) =Pdm(k) INs (k) IM(k) , (4.83)

where INc , INs (k) and IM(k) are

INc =

∫

〈Nc〉M(L1, L2)
nc

b(M) n(M) dM ,

INs (k) =
∫

〈Ns〉M(L1, L2)
ns

us(k|M) b(M) n(M) dM ,

IM(k) =
∫

M
ρ
udm(k|M) b(M) n(M) dM . (4.84)

The evaluation of these integrals is somewhat tedious numerically, as it requires knowledge of the
halo mass function and the halo bias function over the entire mass range [0,∞[. Since these have
only been tested against numerical simulations over a limited range of halo masses (109h−1M/ <∼
M <∼ 1015h−1M/), it is also unclear how accurate they are. In practice, though, these problems can be
circumvented as follows. First of all, because of the exponential cut-off in the halo mass function, it is
sufficiently accurate to perform the integrations of Eq. (4.84) only up to M = 1016h−1M/. Secondly,
INc and INs (k) contain the halo occupation statistics, 〈Nc〉M(L1, L2) and 〈Ns〉M(L1, L2), respectively,
which, for all luminosities of interest in this thesis, are equal to zero for M <∼ 109h−1M/. Therefore,
INc and INs (k) can be computed accurately by only integrating over the mass range [109−1016]h−1M/.
Unfortunately, the integrand of IM(k) does not become negligibly small below a given halo mass.
However, in this case we can use the approach introduced by Yoo et al.(2006): we write IM(k) as the
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sum of two terms, IM(k) = IM1 (k) + IM2 (k), where:

IM1 (k) =
∫ Mmin

0

M
ρ̄
udm(k|M) b(M) n(M) dM ,

IM2 (k) =
∫ ∞

Mmin

M
ρ̄
udm(k|M) b(M) n(M) dM . (4.85)

Following Yoo et al.(2006), we use the fact that udm(k|M) = 1 over the relevant range of k as long as
M is sufficiently small (see also fig. 4.4). This allows us to write

IM1 (k) 1
∫ Mmin

0

M
ρ̄
b(M) n(M) dM

= 1 −
∫ ∞

Mmin

M
ρ̄
b(M) n(M) dM . (4.86)

where the last equality follows from the fact that the distribution of matter is by definition unbiased
with respect to itself. Detailed tests have shown that this procedure yields results that are sufficiently
accurate as long as Mmin <∼ 1010h−1M/. Throughout we adopt Mmin = 109h−1M/.

As a final remark, we would like to emphasize the phenomenological character of the halo model.
Although the model is fully analytical, it is tightly linked to numerical simulations. In fact, the
halo mass function, n(M), the halo density profile, ρdm(r|M), the halo bias function, b(M), must be
provided by numerical simulations.

4.5 The Conditional Luminosity Function

The analytical definitions of the correlation functions and power spectra defined above require the
halo occupation statistics, 〈Nc〉M(L1, L2) and 〈Ns〉M(L1, L2). In order to obtain it, we use the condi-
tional luminosity function (CLF), Φ(L|M)dL, which specifies the average number of galaxies with
luminosities in the range L± dL/2 that reside in a halo of mass M (Yang, Mo & van den Bosch 2003;
van den Bosch, Yang, Mo 2003). Following Cooray & Milosavljević (2005) and Cooray (2006), we
write the CLF as

Φ(L|M) = Φc(L|M) + Φs(L|M) , (4.87)

where Φc(L|M) and Φs(L|M) represent central and satellite galaxies, respectively. The occupation
numbers required for the computation of the galaxy-dark matter cross correlation then simply follow
from

〈Nx〉M(L1, L2) =
∫ L2

L1
Φx(L|M)dL . (4.88)

where ‘x’ refers to either ‘c’ (centrals) or ‘s’ (satellites).
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4.5.1 The Central Galaxy Term

Motivated by the results of Yang, Mo & van den Bosch (2008; hereafter YMB08), who analyzed the
CLF obtained from the SDSS galaxy group catalogue of Yang et al.(2007, hereafter Y07), we assume
the contribution from the central galaxies to be a log-normal:

Φc(L|M) =
1

√
2π ln(10)σc L

exp
[

−
(log L − log Lc)2

2σ2c

]

. (4.89)

Note that σc is the scatter in log L (of central galaxies) at a fixed halo mass. Moreover, log Lc is, by
definition, the expectation value for the (10-based) logarithm of the luminosity of the central galaxy,
i.e.,

log Lc =
∫ ∞

0
Φc(L|M) log L dL . (4.90)

4.5.2 The Satellite Galaxy Term

For the contribution from the satellite galaxies we adopt a modified Schechter function:

Φs(L|M) =
φ∗s
L∗s

(

L
L∗s

)αs

exp














−
(

L
L∗s

)2












. (4.91)

which decreases faster than a Schechter function at the bright end. Note that Lc, σc, φ∗s , αs and L∗s are
all functions of the halo mass M. In the parametrization of these mass dependencies, we again are
guided by the results of YMB08. In particular, for the luminosity of the central galaxies we adopt

Lc(M) = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
, (4.92)

so that Lc ∝ Mγ1 for M 2 M1 and Lc ∝ Mγ2 for M 3 M1. Here M1 is a characteristic mass scale,
and L0 = 2γ1−γ2Lc(M1) is a normalization. Using the SDSS galaxy group catalogue, YMB08 found
that to good approximation

L∗s (M) = 0.562Lc(M) (4.93)

and we adopt this parameterization throughout. For the faint-end slope and normalization of Φs(L|M)
we adopt

αs(M) = −2.0 + a1
(

1 −
2
π
arctan[a2 log(M/M2)]

)

, (4.94)

and
log[φ∗s (M)] = b0 + b1(logM12) + b2(logM12)2 , (4.95)

with M12 = M/(1012h−1 M/). This adds a total of six free parameters: a1, a2, b0, b1, b2 and the
characteristic halo mass M2. Neither of these functional forms has a physical motivation; they merely
were found to adequately describe the results obtained by YMB08. Finally, for simplicity, and to
limit the number of free parameters, we assume that σc(M) = σc is a constant. As shown in More
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et al.(2009b), this assumption is supported by the kinematics of satellite galaxies in the SDSS. Thus,
altogether the CLF has a total of eleven free parameters.

Note that, with the parametrization of the CLF introduced above, the halo occupation statistics
can be rewritten as:

〈Nc〉M(L1, L2) =
∫ L2

L1
Φc(L|M)dL =

1
2
[

erf(x2) − erf(x1)
]

(4.96)

and

〈Ns〉M(L1, L2) =
∫ L2

L1
Φs(L|M)dL =

φ∗s
2

{

Γ















αs
2
+
1
2
,

(

L1
L∗s

)2












− Γ















αs
2
+
1
2
,

(

L2
L∗s

)2












}

, (4.97)

where erf(xi) is the error function calculated at xi = log(Li/Lc)/(
√
2σc) with i = 1, 2 and Γ is the

incomplete gamma function. Moreover, we write the galaxy luminosity function, Φ(L), as

Φ(L) =
∫

Φ(L|M)n(M)dM . (4.98)

4.6 The setting of the reference model

This section is basically a list of all the assumptions that enter the model which we shall use through-
out the thesis. In practice, the correlation functions introduced in this chapter rely on the knowledge
of certain relations quantifying the properties of dark matter haloes and of galaxies within them.
Moreover, specific choices have been made in order to simplify the analytical approach. In what
follows, we list all the assumptions characterizing our reference model.

• Dark matter haloes are spherical overdense region with mass M = (4π/3)180ρ̄r3180.

• The dark matter density profile is assumed to follow the NFW functional form.

• For the concentration-halo mass relation, which characterizes the NFW profile, we use the
relation suggested by Macciò et al. 2007.

• The number density of dark matter haloes, n(M), follows the EPS formalism and in particular
the fitting function provided by Sheth & Tormen (2002) is used.

• A central galaxy is sitting exactly at the center of the dark matter halo (no off-set is taken into
account).

• Satellite galaxies are assumed to follow a Poisson distribution.

• The radial distribution of galaxies within a halo is assumed to be independent of the luminosity,
n̂s(r|M, L1, L2) = n̂s(r|M). This means that no luminosity segregation is taken into account.
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• The radial distribution of satellite galaxies within the halo is assumed to be the same as the one
for dark matter, namely n̂s(r|M) = ρ̂dm(r|M).

• The halo occupation statistics, 〈Nc〉M(L1, L2) and 〈Ns〉M(L1, L2), is provided by the conditional
luminosity function.

• The halo bias is assumed to be scale-independent. Only in defining the correlation length, the
scale dependence is taken into account following the prescription from Tinker et al. (2005).

• The halo bias-halo mass relation is the one suggested by Sheth & Tormen (2002)

• The two halo terms of the power spectra are written as a function of the non-linear dark matter
power spectrum, Pdm(k) = Pnldm(k).

• The non-linear dark matter power spectrum, PNLdm(k), is calculated via the relation suggested by
Smith et al. (2003)
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5

Galaxy Clustering & Galaxy-Galaxy
Lensing:
An Astrophysical Perspective

In this chapter, we establish in a quantitative way the connection between galaxies and dark mat-
ter haloes by constraining the parameters which identify the conditional luminosity function (CLF).
Furthermore, we predict the galaxy-galaxy lensing signal using the halo occupation statistics derived
from the CLF. We extensively investigate the impact of the assumptions which enter our analytical
treatment. We then conclude that the CLF is ideal for an accurate description of the g-g lensing signal
and the uncertainties due to the model assumptions do not substantially affect the predictions.

5.1 Establishing the Galaxy-Dark Matter Connection

As shown in Yang et al.(2003) and van den Bosch et al.(2003), the CLF can be constrained using the
observed luminosity function, Φ(L), and the galaxy-galaxy correlation lengths as a function of lumi-
nosity, r0(L). Here we use the luminosity function (hereafter LF) of Blanton et al.(2003a) uniformly
sampled at 41 magnitudes covering the range −23.0 ≤ 0.1Mr − 5 log h ≤ −16.4. Here 0.1Mr indicates
the r-band magnitude K+E corrected to z = 0.1 following the procedure of Blanton et al.(2003b). For
the correlation lengths as function of luminosity we use the results obtained by Wang et al.(2007) for
six volume limited samples selected from the SDSS DR4. For a thorough description of the data see
chapter 2. Finally, to strengthen our constraints, and to assure agreement with the CLF obtained from
a SDSS group catalogue, we use the constraints on Lc(M), αs(M) and φ∗s(M) obtained by YMB08.
We present the main results of this catalogue in the next section, whereas the method to constrain the
CLF is explained in § 5.1.2.
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5.1.1 The SDSS Galaxy Group Catalogue

A direct way of studying the galaxy-dark matter halo connection is by using sets of galaxies that reside
in the same dark matter halo. In our jargon, we refer to such systems as galaxy groups regardless of
the number of galaxies in them (i.e. from groups with a single member to rich clusters of galaxies).
During the past two decades, numerous galaxy group catalogues have been constructed from various
galaxy redshift surveys, e.g. the CfA redshift survey (e.g. Geller & Huchra 1983), the 2-degree Field
Galaxy Redshift Survey (hereafter 2dFGRS; Merchán & Zandivarez 2002; Eke et al.2004, Yang et
al.2005; Tago et al.2006; Einasto et al.2007), the high-redshift DEEP2 survey (Gerke et al.2005),
and the Two Micron All Sky Redshift Survey (Crook et al.2007). Various group catalogues have
also been constructed from the SDSS redshift samples (e.g. Berlind et al.2006; Abazajian et al.2004;
Merchán & Zandivarez 2005) and from the SDSS photometric data (e.g. Koester et al.2007). All
these catalogues differ either for the selected galaxies or for the criteria used to identify the groups.

Yang et al.(2005) have developed a halo-based group finder that is optimized for grouping galaxies
that reside in the same dark matter halo. Using mock galaxy redshift surveys constructed from the
conditional luminosity function model (see Yang et al. 2004), they found that this group finder is
very successful in associating galaxies according to their common dark matter haloes. In particular,
the group finder performs also reliably for poor systems, including isolated galaxies in small mass
haloes. This makes this halo-based group finder ideally suited to study the relation between galaxies
and dark matter haloes over a wide dynamic range in halo masses. In this section, we briefly describe
a version applied to the NYU-VAGC based on the SDSS DR4 (see Yang et al. 2007 for a thorough
description of the methodology used to build this galaxy group catalogue). The strength of the group
finder adopted here, hereafter referred to as the halo-based group finder, is that it is iterative and based
on an adaptive filter modeled after the general properties of dark matter haloes. In addition, unlike
the traditional FOF method, this group finder can also identify groups with only a single member.
Furthermore, we stress that an important aspect of each galaxy group catalogue is the determination of
the masses of the groups. Most studies infer the (dynamical) group mass from the velocity dispersion
of their member galaxies. However, the vast majority of the groups in our sample contain only a
few members making a dynamical mass estimate based on its members extremely unreliable. Mass
estimates based on gravitational lensing (either strong or weak) or on X-ray emission, also can only be
applied to the most massive systems. Furthermore, these latter two methods require high-quality data
in excess to the information directly available from the redshift survey used to construct the group
catalogue, rendering them impractical.

In the galaxy group catalogue used in this thesis, group masses are estimated from the group
luminosities. We define the group’s characteristic luminosity, L19.5, as the combined luminosity of
all group members with 0.1Mr − 5 log h ≤ −19.5 (here again, all absolute magnitudes are K + E
corrected to z = 0.1). In order to convert the characteristic luminosities to halo masses, we make the
assumption that there is a one-to-one relation between L19.5 and M. For a given (comoving) volume
and a given halo mass function, n(M), one can then link the characteristic luminosity to a halo mass
by matching their rank orders. The use of the group’s characteristic luminosity has the advantage
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that (i) it is equally applicable to groups spanning the entire range in richness, and (ii) it does not
require any additional data. However, a shortcoming of this method is that it requires the halo mass
function, which is cosmology dependent (e.g. Sheth, Mo & Tormen 2001; Warren et al. 2006).
However, as explained in Yang et al. (2007) , it is extremely easy to convert the group masses to
another cosmology, without having to rerun the group finder. Clearly, the assumption of a one-to-one
relation between the characteristic luminosity and the halo mass is oversimplified. In reality, this
relation contains some scatter, which results in errors in the inferred group masses. However, detailed
tests with mock galaxy redshift surveys have shown that this method nevertheless allows for a very
accurate recovery of average halo occupation statistics. In particular, the group finder yields average
halo occupation numbers and average mass-to-light ratios that are in excellent agreement with the
input values (Yang et al.2005; Weinmann et al.2006a).

For the purposes of this thesis, the relevance of the group catalogue resides indeed in providing
information about statistical properties of the halo occupation statistics. Firstly, the average luminos-
ity of central galaxies is provided as a function of the host halo mass. Secondly, the group catalogue
provides quantitative constraints on the average number of satellite galaxies living in a halo of a
certain mass. More precisely, if the number of satellite galaxies of a given luminosity residing in a
halo of a certain mass is assumed to follow a given functional form, the parameters which define this
functional form may be constrained by the group catalogue. In chapter 4, we have introduced the
conditional luminosity function, Φ(L|M), as the sum of two contributions: the one which describes
the central galaxies and the one which describes the satellite galaxies. The analytical form assumed
in that chapter has 11 free parameters. In the next section, we show how to constrain these parameters
with observational data and with the indications from the group catalogue.

5.1.2 Constraining the CLF

For a given set of model parameters, we compute the LF using

Φ(L) =
∫ ∞

0
Φ(L|M) n(M) dM . (5.1)

The galaxy-galaxy correlation function for galaxies with luminosities in the interval [L1, L2] is com-
puted using

ξgg(r) = b2gal(L1, L2) ζ(r) ξ
NL
dm (r) . (5.2)

Here ξNLdm(r) is the non-linear correlation function of the dark matter, which is the Fourier transform
of PNLdm(k). Moreover

ζ(r) =
[1 + 1.17ξNLdm (r)]

1.49

[1 + 0.69ξNLdm (r)]2.09
(5.3)

is the radial scale dependence of the bias as obtained by Tinker et al.(2005), and bgal(L1, L2) is the
bias of the galaxies, which is related to the CLF according to

bgal(L1, L2) =

∫ ∞
0 〈N〉M b(M) n(M) dM
∫ ∞
0 〈N〉M n(M) dM

, (5.4)
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Figure 5.1: Upper row, left and central panels. The luminosity function of galaxies and the luminos-
ity dependence of the galaxy correlation length are plotted. Data come from the analysis of Blanton
et al.(2003a) and Wang et al.2007. The blue contours indicate the 68 and 95 percent confidence level
obtained from the MCMC. The agreement is extremely accurate for the luminosity function whereas is
modest for the correlation length. Lower row, three panels. The additional information coming from the
group catalogue of YMB08 is plotted together with the corresponding 68 and 95 percent confidence level
derived with the MCMC. In particular, the halo mass dependence of the central galaxy luminosity, the
satellite conditional luminosity function normalization φ∗s and the the exponent αs are shown in the left,
central and middle panel, respectively. Upper row, right panel. The 68 and 95 percent confidence levels
of the satellite fraction, fs, obtained from the CLF (see eq. [5.10]).
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with

〈N〉M =

∫ L2

L1
Φ(L|M)dL = 〈Nc〉M(L1, L2) + 〈Ns〉M(L1, L2) . (5.5)

the average number of galaxies with luminosities in the range [L1, L2] that reside in a halo of mass M.
To determine the likelihood function of our 11 free parameters we follow van den Bosch et

al.(2007) and use the Monte-Carlo Markov Chain (hereafter MCMC) technique. We construct a
chain of 5 million models. Each element of the chain is a model consisting of 11 parameters. At
any point in the chain we generate a new trial model by drawing the shifts in the 11 free parameters
from 11 independent Gaussian distributions centered on the current value of the corresponding model
parameter. The chain is thinned by a factor of 2500 to remove the correlations between neighboring
models. The end result is a MCMC of 2000 independent models properly sampling the posterior
distributions of the 11 free parameters. The probability of accepting the trial model is

Paccept =















1.0 if χ2new < χ2old
exp[−(χ2new − χ2old)] if χ2new # χ2old

(5.6)

Here χ2 = χ2
Φ
+ χ2r0 + χ

2
GC with

χ2Φ =

41
∑

i=1

[

Φ(Li) − Φ̂(Li)
∆Φ̂(Li)

]2

, (5.7)

χ2r0 =
6
∑

i=1













ξgg(r0,i) − 1
∆ξ̂gg(r0,i)













2

, (5.8)

and

χ2GC =

9
∑

i=1

[

log Lc(Mi) − log L̂c(Mi)
∆ log L̂c(Mi)

]2

+

9
∑

i=1

[

αs(Mi) − α̂s(Mi)
∆α̂s(Mi)

]2

+

9
∑

i=1

[

φ∗s(Mi) − φ̂∗s(Mi)
∆φ̂∗s(Mi)

]2

. (5.9)

Here .̂ indicates an observed quantity and the subscripts ‘Φ’, ‘r0’ and ‘GC’ refer to the luminosity
function, the galaxy-galaxy correlation length and the group catalogue, respectively. Note that, by
definition, ξ̂gg(r0,i) = 1. Table 5.1 lists the best-fit parameters with the corresponding 95% confidence
levels obtained with the MCMC technique, as well as the corresponding value of χ2red = χ

2/Ndof .
Here Ndof = 74 − 11 = 63 is the number of degrees of freedom.
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Table 5.1: Best-fit CLF parameters obtained from SDSS clustering analysis

WMAP3
χ2red 1.42
log L0 9.935 ±0.043
logM1 11.07 ±0.11
γ1 3.273 ±0.575
γ2 0.255 ±0.008
a1 0.501 ±0.069
a2 2.106 ±1.437

logM2 14.28 ±0.16
b0 -0.766 ±0.146
b1 1.008 ±0.197
b2 -0.094 ±0.065
σc 0.143 ±0.005

The best-fit CLF parameters and the corresponding 95% confidence levels obtained from the MCMC
analysis and the value of the corresponding reduced χ2. Masses and luminosities are in h−1 M/ and
h−2 L/, respectively. Note that all the parameters are tightly constrained except γ1, a2 and b2.
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5.1.2.1 Results

Fig. 5.1 shows the results of the MCMC which explores the 11 parameter space defining the CLF.
In each panel the blue contours indicate the 68 and 95 percent confidence levels obtained from the
MCMC. The upper left-hand panel shows that the CLF model accurately fits the galaxy LF of Blanton
et al.(2003a). The fit to the correlation lengths as function of luminosity, shown in the upper middle
panel, is less accurate, although data and model typically agree at the 1σ level. We have been unable
to obtain a better fit, despite various attempts, including small changes in the CLF model. The lower
panels of Fig. 5.1 show the 68 and 95 percent confidence levels on Lc(M), φ∗s (M) and αs(M), compared
with the results obtained by YMB08 from the SDSS group catalogue of Y07. Since these data have
been used as additional constraints, it should not come as a big surprise that the CLF is in good
agreement with these data. We emphasise, though, that it is not trivial that a single halo occupation
model can be found that can simultaneously fit the LF, the luminosity dependence of the galaxy-
galaxy correlation functions, and the results obtained from a galaxy group catalogue. Note that the
lower left panel of Fig. 5.1 plots the CLF predictions down to log Lc = 9. Although there are no data
from the group catalogue at this luminosity scale, the central galaxy luminosity-halo mass relation at
the faint end is tightly constrained by the clustering data and the luminosity function.

Finally, the upper right-hand panel of Fig. 5.1 shows the satellite fraction,

fs(L) =
1
Φ(L)

∫ ∞

0
Φs(L|M) n(M) dM . (5.10)

as function of luminosity. This is found to decrease from ∼ 0.27 ± 0.03 at 0.1Mr − 5 log h = −17
to virtually zero at 0.1Mr − 5 log h = −23. The fact that the satellite fraction decreases with increas-
ing luminosity is in qualitative agreement with previous studies (Tinker et al.2006; Mandelbaum et
al.2006; van den Bosch et al.2007).

5.2 Predicting the Excess Surface Density

Although the advent of wide and deep surveys has resulted in clear detections of galaxy-galaxy lens-
ing, a proper interpretation of these data in terms of the link between galaxies and dark matter haloes
has been hampered by the fact that the lensing signal can only be detected when stacking the signal of
many lenses. Since not all lenses reside in haloes of the same mass, the resulting signal is a non-trivial
average of the lensing signal due to haloes of different masses. In addition, central galaxies (those
residing at the center of a dark matter halo) and satellite galaxies (those orbiting around a central
galaxy) contribute very different lensing signals, even when they reside in haloes of the same mass
(e.g., Yang et al.2006). Fig. 5.2 shows a schematic representation of this concept. All these compli-
cations have to be properly accounted for, and require knowledge of both the satellite fractions and of
the spatial number density distribution of satellite galaxies within their dark matter haloes.

The CLF presented in this thesis is ideally suited to model galaxy-galaxy lensing. In particular, it
is straightforward to account for the fact that there is scatter in the relation between the luminosity of
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Stacking

Figure 5.2: Schematic representation of the stacking of galaxies. Pink circles represents dark matter
haloes, whereas red and blue circles represent galaxies of different luminosity. By stacking all galaxies
with the same luminosity (all those in blue), haloes of different masses are stacked together. Note also that
satellite galaxies contribute to the stack in a different way than central galaxies.

a central galaxy and the mass of its dark matter halo. This represents an improvement with respect to
previous attempts to model the g-g lensing signal obtained from the SDSS, which typically ignored
this scatter (e.g. Seljak et al.2005; Mandelbaum et al.2006). However, in agreement with Tasitsiomi
et al.(2004), we show that the scatter in this relation has an important impact on the g-g lensing signal
and cannot be ignored. Given this dependence on the scatter it may seem advantageous to use stellar
mass as a stacking property rather than luminosity (r-band). However, as shown in Yang, Mo &
van den Bosch (2008), although the scatter in stellar mass-halo mass is significantly smaller than for
the luminosity-halo mass relation, it is still substantial. Consequently, it is important that scatter is
properly accounted in the model when stellar mass is used to stack lens galaxies. We also improved
upon previous studies by modelling the two halo term (the contribution to the lensing signal due to
the mass distribution outside of the halo hosting the lens galaxy), including an approximate treatment
for halo exclusion.

5.2.1 Model Predictions

In order to compute the ESD, ∆Σ, as a function of the comoving separation on the sky, R, we proceed
as follows. We start by calculating the four different terms of the galaxy-dark matter cross power
spectrum defined in chapter 4. Next, we inverse Fourier transform each of these terms using

ξ
µ,x
g,dm(r) =

1
2π2

∫

fx P̆
µ,x
g,dm(k)

sin(kr)
kr

k2 dk =
1
2π2

∫

P̃µ,xg,dm(k)
sin(kr)
kr

k2 dk , (5.11)
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Figure 5.3: The predicted ESD up to large scales (R ∼ 30h−1Mpc) for three luminosity bins, as indicated.
The solid lines refer to the total signal as predicted according to our model. The dotted lines refer to the
one halo central term, whereas the dashed lines refer to the one halo satellite term. Note that they dominate
the signal on different scales (see text). The long dashed lines refer to the two halo central term. It rises
steeply at relatively large scales due to our halo exclusion treatment (see § 5.2.3.4). The two halo satellite
term is indicated with the dotted-dashed line.

where ‘µ’ stands for 1h or 2h, and ‘x’ refers to either ‘c’ (centrals) or ‘s’ (satellites). These are used
to compute the corresponding four terms of the surface density, Σµ,x(R),

Σµ,x(R) = 2ρ
∫ ∞

R
ξ
µ,x
g,dm(r)

rdr
√
r2 − R2

. (5.12)

Note that we are allowed to neglect the contribution coming from the constant background density, ρ̄,
(cf. equation [4.82]) because it will cancel in defining the ESD (this is known in gravitational lensing
theory as the mass-sheet degeneracy). The final ESD then simply follows from

∆Σ(R) = ∆Σ1h,c(R) + ∆Σ1h,s(R)
+ ∆Σ2h,c(R) + ∆Σ2h,s(R) . (5.13)

in which the relative weight of each term is already included via the central and satellite fractions in
the definitions of the corresponding power spectra.

Before comparing the g-g lensing predictions from our CLFmodels to actual data, we first demon-
strate how the four different terms contribute to the total ESD. The left-hand panel of Fig. 5.3 shows
the ∆Σ(R) obtained from our best-fit CLF model for three different luminosity bins, as indicated1.
Note that the fainter luminosity bins reveal a more ‘structured’ excess surface density profile, with

1Here, for simplicity, we have used the halo mass function and halo bias function computed at z = 0. When we compare
our models to data, we will use the halo mass function and halo bias function at the average redshift of the lenses instead.
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Figure 5.4: The excess surface density ∆Σ as a function of the comoving transverse separation R is plotted
for different bins in luminosity of the lens galaxy (see Table 2.2). The solid line represents the total signal
as predicted by the model, data points and error bars come from Seljak et al.(2005), see text. The different
contributions to the signal are also plotted. The dotted line represents the one halo central term which
obviously dominates at the smallest scales in all cases. Note that this term dominates on larger and larger
scales when brighter galaxies are considered, reflecting the idea that brighter galaxies live on average in
more massive haloes. The dashed line represents the one halo satellite term which is dominant only for
faint galaxies and only on intermediate scales (0.1-1 h−1Mpc). The two halo central is plotted with a
long dashed line and it becomes relevant on large scales (R > 1h−1Mpc). Note that the strong truncation
of this term at small scales is due to our implementation of halo exclusion. The two halo satellite term
(dotted-dashed line) never dominates but it can contribute up to 20% of the total signal.
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a pronouced ‘bump’ at R ∼ 1h−1 Mpc, which is absent in the ∆Σ(R) of the brighter galaxies. The
reason for this is evident from the middle and right-hand panels of Fig. 5.3, which show the contri-
butions to ∆Σ(R) from the four different terms for the faint (−16 ≥ 0.1Mr − 5 log h ≥ −17) and bright
(−21 ≥ 0.1Mr − 5 log h ≥ −22) luminosity bins, respectively. In both cases, the one halo central term
dominates on small scales. In the case of the faint galaxies, the one halo satellite term dominates over
the radial range 0.1h−1 Mpc <∼ R <∼ 5h−1 Mpc, and is responsible for the pronounced bump on inter-
mediate scales. In the case of the bright bin, however, the one halo central term dominates all the way
out to R ∼ 2h−1 Mpc. This owes to the fact that bright centrals reside in more massive haloes, which
are larger and cause a stronger lensing signal, and due to the fact that the satellite fraction of brighter
galaxies is smaller. The fact that the one halo satellite term peaks at intermediate scales, rather than at
R = 0, owes to the fact that ∆Σ1h,s(R) reflects a convolution of the host halo mass density profile with
the number density distribution of satellite galaxies. On large scales (R >∼ 3h−1 Mpc), which roughly
reflects two times the virial radius of the most massive dark matter haloes, the ESD is dominated by
the two halo terms. Note that the faint galaxies, with −16 ≥ 0.1Mr − 5 log h ≥ −17, have the same
large scale ESD as the bright galaxies with −21 ≥ 0.1Mr − 5 log h ≥ −22, indicating that they have
similar values for their bias. This owes to the fact that many of the faint galaxies are satellites which
reside in massive haloes. Note also that the two halo central term reveals a fairly abrupt truncation at
small radii, which owes to halo-exclusion (see § 5.2.3.4). This truncation also leaves a signature in
the total lensing signal, which is more pronounced for the fainter lenses. We caution, however, that
the sharpness of this feature is partially an artefact due to our approximate implementation of halo-
exclusion. Nevertheless, it is clear from Fig. 5.3 that the excess surface densities obtained from g-g
lensing measurements contain a wealth of information regarding the galaxy-dark matter connection.

5.2.2 Results for the WMAP3 Cosmology

Using the methodology outlined in chapter 4 and in §5.2.1, we now apply the CLF for the WMAP3
cosmology obtained in §5.1.2.1 to predict the g-g lensing signal for the 7 luminosity bins listed in
Table 2.2. For each luminosity bin we compute the ESD profile, ∆Σ(R), at the mean redshift of the
sample, i.e., we use the halo mass function, n(M), the halo bias function, b(M), and the non-linear
power spectrum, PNLdm(k) that correspond to the mean redshift listed in the third column of Table 2.2.
We have verified, though, that computing ∆Σ(R) simply at z = 0 instead has a negligible impact on
the results.

The results are shown in Fig. 5.4, where the solid dots with errorbars correspond to the SDSS
data and the solid lines are the predictions of our best-fit CLF model (whose parameters are listed in
Table 5.1). Note that this model fits the data remarkably well, which is quantified by the fact that the
reduced χ2 is 3.1. We emphasize that there are no free parameters here: the ESD has been computed
using the CLF that has been constrained using the LF and the clustering data. The good agreement
between model and lensing data thus provides independent support for the halo occupation statistics
described by our WMAP3 CLF model, in particular for the mass-to-light ratios and satellite fractions,
which have an important impact on the lensing signal.
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The different curves in each of the panels in Fig. 5.4 show the contribution to the lensing signal
due to the four separate terms: ∆Σ1h,c (dotted lines), ∆Σ1h,s (short-dashed lines), ∆Σ2h,c (long-dashed
lines), and ∆Σ2h,s (dot-dashed lines). In agreement with the examples shown in Fig. 5.3, the one halo
central term becomes increasingly more dominant for more luminous lenses. In fact, in the brightest
luminosity bin (L6f) it dominates over the entire radial range probed. In the low-luminosity bins,
most of the observed lensing signal at R >∼ 200h−1 kpc is dominated by the one halo satellite term.
The fact that our model accurately fits the data, thus supports the satellite fractions inferred from our
CLF model, and shown in the upper right-hand panel of Fig. 5.1.

Both Seljak et al.(2005) and Mandelbaum et al.(2006) did not account for the contributions of
the two halo terms in their analyses of the galaxy-galaxy lensing signal. Our model indicates that,
although the two halo terms never dominate the total signal, they can contribute as much as 50 percent
at large radii (R 1 1h−1 Mpc). We thus conclude that the two halo terms cannot simply be ignored.

5.2.3 The Impact of the Model Assumptions

Although our computation of the g-g lensing signal does not involve any free parameters (these are
already constrained by the clustering data), a number of assumptions are made. In particular, haloes
are assumed to be spherical and to follow a NFW density distribution, central galaxies are assumed
to reside exactly at the center of their dark matter haloes, and satellite galaxies are assumed to follow
a radial number density distribution that has the same shape as the dark matter mass distribution. In
addition, we made assumptions regarding the functional form of the CLF. Although most of these
simplifications are reasonable, and have support from independent studies, they may have a non-
negligible impact on the predictions of the g-g lensing signal. In this section we therefore investigate
how strongly our model predictions depend on these oversimplified assumptions.

Some of these dependencies have been investigated together with Li and collaborators and they
have been published in Li et al.(2009). Fig. 5.5 summarizes the results. We have examined the
impact of our assumption of halo sphericity. For this purpose, we have considered a tri-axial density
distribution as an alternative to the fiducial NFW density profile. We have labeled this model as ‘TRI’
(see Li et al. 2009 for detail). The impact that the triaxial density profile has on the g-g lensing
predictions is shown in fig. 5.5 where it can be seen that the fact that realistic dark matter haloes
are ellipsoidal, rather than spherical, can be safely ignored (i.e., its impact on the ESD profiles is
completely negligible). Moreover, if central galaxies are not located exactly at the center of their
dark matter haloes, this may have a non-negligible impact on the lensing signal on small scales (R <∼
0.1h−1Mpc). Fortunately, for realistic amplitudes of this offset (van den Bosch et al.2005b), the effect
is fairly small and only restricted to the most luminous galaxies. More quantitatively, in haloes with
masses Mh > 1013h−1M/ there is evidence to suggest that central galaxies are offset from their halo
centers by ∼ 3 percent of the virial radius (e.g. van den Bosch et al. 2005 and Berlind et al. 2003 who
obtained a similar result by using SPH simulations of galaxy formation). To examine how such an
offset impacts on the ESDs, we have considered two models (see Li et al. 2009 for detail). Following
van den Bosch et al. (2005) and Yang et al. (2006), we have assumed that central galaxies in haloes
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with Mh > 1013h−1M/ are offset from their halo centers by an amount that is drawn from a Gaussian
distribution with zero mean. We have used two different values for the dispersion of the distribution:
3% of the virial radius (model ‘Dev1’) and 6% of the virial radius (model ‘Dev2’). The corresponding
lensing predictions are shown in the middle column of fig. 5.5 as the dotted (Dev1) and dashed (Dev2)
lines. Note that the offsets only affect the lensing signal for the brightest sample (L6f), where a larger
offset results in a stronger suppression of the ESD on small scales (R < 0.1 h−1Mpc). For fainter
samples, no (significant) differences with respect to the fiducial model are apparent, which owes to
the fact that fainter centrals typically reside in haloes with Mh < 1013h−1M/ which do not have an
offset (at least in our models).

Furthermore, we have made two additional assumptions: (i) we have neglected the contribution
to the ESD due to sub-haloes hosting satellite galaxies, and (ii) we have assumed that luminosity
segregation in satellite galaxies can be neglected. As shown in Li et al. (2009), the contribution
due to sub-haloes hosting satellite galaxies is confined on the smallest scales of interest here and it
accounts for few percent of the signal. Moreover, van den Bosch et al. (2009) have shown that,
although present, luminosity segregation in satellite galaxies is negligible.

Below we investigate four additional model dependencies: the scatter in the relation between light
and mass, the concentration of dark matter haloes, the radial number density distribution of satellite
galaxies, and the approximate treatment of halo exclusion. To that extent we compare our fiducial
model (the best-fit CLF model for the WMAP3 cosmology presented above), to models in which we
change only one parameter.

5.2.3.1 Scatter in the Lc − M relation

An important improvement of our halo occupation model over that used by Seljak et al.(2005) and
Mandelbaum et al.(2006) is that we allow for scatter in the relation between light and mass. In par-
ticular, we model the probability function Pc(L|M) = Φc(L|M) as a log-normal with a scatter, σc, that
is assumed to be independent of halo mass. As demonstrated in More et al.(2009b), this assumption
is consistent with the kinematics of satellite galaxies, and it is supported by semi-analytical models
for galaxy formation. Note, though, that this does not imply that the scatter in Φc(M|L), which is
the probability function which actually enters in the computation of the g-g lensing signal, is also
constant. In fact, it is not. This is illustrated in Fig. 5.6, which shows, for four luminosity bins, the
halo occupation statistics of central galaxies which reflects Pc(M|L1, L2) of our fiducial model. Two
trends are evident: more luminous centrals reside, on average, in more massive haloes, and they have
a larger scatter in halo masses. As discussed in More, van den Bosch & Cacciato (2009), the fact
that the scatter in Pc(M|L) increases with luminosity simply owes to the fact that the slope of Lc(M)
becomes shallower with increasing M (see the lower right-hand panels of Figs. 5.1 and 6.3). As is
extremely evident from Fig. 5.6, this is a strong effect, with the scatter in Pc(M|L) becoming very
large at the bright end. Note that this scatter is not dominated by the width of the luminosity bin.
Hence, even if one were able to use infinitesimally narrow luminosity bins when stacking lenses, the
scatter in Pc(M|L) will still be very appreciable.
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Figure 5.5: Impacts of some model assumptions on the predicted ESD. The effect is shown only for four
luminosity bins. For comparison, the observational data are included as data points with error-bars. The
left column shows the dependence on halo concentration: the halo concentrations in CL (dotted line) and
CH (dashed line) are assumed to be 1/2 and 2 times those in the fiducial model (solid line), respectively.
The middle column shows the effects of halo center offset. The dotted line and the dashed line show the
results of models Dev1 and Dev2 model, respectively, while the solid line is the fiducial model. The right
column shows the effect of assuming triaxial halo density profile. The dotted line shows the result of
model TRI, while the solid line again shows the fiducial model. Both the observation and model predicted
∆Σ(R) are normalized by the fiducial prediction.
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Figure 5.6: Halo occupation distribution for central galaxies. Different lines refer to different luminosity
buns as explained in the legend. Note that brighter central galaxies reside, on average, in more massive
haloes. Note also that the scatter increases as luminosity increases (see text).
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As first shown by Tasitsiomi et al.(2004), scatter in the relation between light and mass can have a
very significant impact on the ESDs. This is demonstrated in the upper panels of Fig. 5.7, which show
the impact on ∆Σ(R) of changing σc by 0.05 compared to our best-fit CLF value ofσc = 0.14; all other
parameters are kept fixed at their fiducial values (see Table 5.1). Note that these changes in σc have a
negligible impact on ∆Σ(R) for the low luminosity bins. At the bright end, however, relatively small
changes in σc have a very significant impact on ∆Σ(R). In particular, increasing the amount of scatter
reduces the ESD. This behavior owes to the shape of the halo mass function. Increasing the scatter
adds both low mass and high mass haloes to the distribution, and the overall change in the average
halo mass depends on the slope of the halo mass function. Brighter galaxies live on average in more
massive haloes where the halo mass function is steeper. In particular, when the average halo mass is
located at the exponential tail of the halo mass function, an increase in the scatter adds many more
low mass haloes than massive haloes, causing a drastic shift in the average halo mass towards lower
values. On the other hand, fainter galaxies live in less massive haloes, where the slope of the halo
mass function is much shallower. Consequently, a change in the scatter does not cause a significant
change in the average mass. Note that from the clustering analysis presented in §5.1.2.1, we obtain
σc = 0.14 ± 0.01. This is in good agreement with previous studies: Cooray (2006), using a CLF to
model the SDSS r-band LF, obtained σc = 0.17+0.02−0.01. YMB08, using a SDSS galaxy group catalogue,
obtained σc = 0.13 ± 0.03, and More et al.(2009b), using the kinematics of satellite galaxies in the
SDSS, find σc = 0.16 ± 0.04 (all errors are 68% confidence levels).

5.2.3.2 The dark matter halo concentration

The g-g lensing signal on small scales reflects the projected mass distribution of the haloes hosting
the lensing galaxies. Therefore, the detailed shape of ∆Σ(R) on small scales is sensitive to the mass
distribution of dark matter haloes. In our model, we have assumed that dark matter haloes follow
NFW profiles, which are characterized by their concentration parameters, cdm. Halo concentrations
are known to depend on both halo mass and cosmology, and various analytical models have been
developed to describe these dependencies (Navarro et al.1997; Bullock et al.2001; Eke, Navarro
& Steinmetz 2001; Neto et al.2007; Macciò et al.2007, 2008). Unfortunately, these models make
slightly different predictions for the mass dependence of cdm (mainly due to the fact that the numerical
simulations used to calibrate the models covered different limited mass ranges). In Li et al.(2009),
we have shown that changing cdm by a factor of two has a very large impact on the ESD profiles (see
fig.5.5). However, this is much larger than the typical discrepancies between the different models for
cdm(M). The second row of panels in Fig. 5.7 shows ∆Σ(R) obtained for three of these models: the
solid lines (labelled MAC) corresponds to our fiducial model for which we have used the cdm(M)
relation of Macciò et al.(2007). The dotted lines (labelled BUL) and dashed lines (labelled ENS)
correspond to the cdm(M) relations of Bullock et al.(2001) and Eke et al.(2001), respectively. The
BUL model predicts halo concentrations that are about 15 percent higher than for the MAC model.
The ENS model predicts a cdm(M) that is somewhat shallower than the BUL and MAC models. As
evident from Fig. 5.7, though, the results based on these three different models are very similar. We
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thus conclude that our results are robust to uncertainties in the relation between halo mass and halo
concentration.

5.2.3.3 Number density of satellite galaxies

In our modelling of the g-g lensing signal, we have assumed that the number density distribution
of satellite galaxies can be described by a generalised NFW profile, which is parameterized by two
free parameters: α and R. In the models presented above, we have assumed that α = R = 1,
so that the number density distribution of satellite galaxies has exactly the same shape as the dark
matter distribution. Note that there is observational evidence which suggests that satellite galaxies are
spatially anti-biased with respect to the dark matter (i.e., their radial distribution is less concentrated
than that of the dark matter). This is also supported by numerical simulations, which show that dark
matter subhaloes (which are believed to host satellite galaxies) are also spatially anti-biased with
respect to the dark matter (e.g., Moore et al.1999, De Lucia 2004).

The panels in the third row of Fig. 5.7 show the impact of changing the concentration of the
radial number density distribution of satellite galaxies. In particular, we compare the ESD profiles
obtained for our fiducial model (R = 1.0, solid lines) with models in which R = 0.5 (dotted lines)
and R = 2.0 (dashed lines). Recall that R = cdm/cs, so that R > 1 (R < 1) corresponds to satellite
galaxies being less (more) centrally concentrated than the dark matter. Note that changes in R have a
negligible effect on ∆Σ(R) for the bright luminosity bins. This simply owes to the fact that the ESD of
bright lenses is completely dominated by the one halo central term (i.e., the satellite fraction of bright
galaxies is very small). For the fainter luminosity bins, however, an increase (decrease) in R causes a
decrease (increase) in ∆Σ(R) on intermediate scales (0.1h−1 Mpc <∼ R <∼ 1h−1 Mpc), which is the scale
on which the one halo satellite term dominates. The effect, though, is fairly small (typically smaller
than the errorbars on the data points).

The last row of Fig. 5.7 shows the impact of changing the central slope, α, of ns(r). If the number
density distribution of satellite galaxies has a central core (α = 0), rather than a NFW-like cusp
(α = 1), it has a similar impact on the lensing signal as assuming a less centrally concentrated ns(r).
In fact, the ESD profiles for (α,R) = (0.0, 1.0) are very similar to those for (α,R) = (1.0, 2.0). The
main conclusion is that our results are not very sensitive to the exact form of ns(r) (see also Yoo et
al.2006).

5.2.3.4 Halo exclusion

In the halo model, haloes can not overlap. Note that our analytical model presented in chapter 4 does
not account for that explicitely. In this section, we present an approximate method to account for this
effect. As many other authors in this field, we will refer to it as halo exclusion. We discuss the impact
of halo exclusion only for the case of ∆Σ(R). Qualitatively, the same considerations hold for the case
of the projected correlation function.
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Figure 5.7: The impact of various model parameters on ∆Σ(R). Results are shown for three luminosity
bins, as indicated at the top of each column. In each panel the solid line corresponds to our fiducial model
(the best-fit CLF model for the WMAP3 cosmology presented in Fig. 5.4), while the dotted and dashed
lines correspond to models in which we have only changed one parameter or model ingredient. Upper
panels: the impact of changes in the parameter σc, which describes the amount of scatter in Φc(L|M)
(see equation [4.89]). Second row from the top: the impact of changes in the halo concentration, cdm(M).
In particular, we compare three models for the mass dependence of cdm: Macciò et al.(2007; MAC),
Bullock et al.(2001; BUL), and Eke et al.(2001; ENS). Third row from the top: the impact of changes in
R = cdm/cs, which controls the concentration of the radial number density distribution of satellite galaxies
relative to that of the dark matter. Lower panels: The impact of changes in α, which specifies the central
slope of the radial number density distribution of satellite galaxies. See text for a detailed discussion.

84



5.2 Predicting the Excess Surface Density

Far from being a detailed treatment, the suggested procedure accounts only for the most relevant
effect, i.e. the exclusion of dark matter particles residing in the same host halo of central galaxies.
By definition, the two halo terms of the galaxy-dark matter cross correlation, ξg,dm(r), only considers
pairs of galaxies and dark matter particles that reside in different haloes. Since two haloes can not
overlap spatially, this implies that the two halo terms given in chapter 4 need to be modified to take
account of halo exclusion. The concept of halo exclusion is illustrated in Fig. 5.8 for the two halo
central and two halo satellite terms separately. Consider a spherical halo of mass M and radius r180
that hosts a central galaxy. It is clear that this central galaxy cannot contribute any signal to the two
halo term on scales smaller than r180. Hence, if all central galaxies lived in haloes of a fixed mass
M, then there would be no pairs contributing to the 2h,c term for r < r180. In reality, though, one
needs to account for the fact that centrals occupy haloes that span a range in halo masses, even if the
centrals all have the same luminosity. In the case of the satellite galaxies the situation is even more
complicated. In particular, since satellite galaxies can reside at the outskirts of dark matter haloes,
the two halo satellite term can still have non-zero power at r 2 r180. Thus, halo exclusion has less
impact on the two halo satellite term than on the two halo central term.

Although the concept of halo exclusion is quite simple, a proper implementation of it in the halo
model is extremely tedious numerically. We therefore use only an approximate treatment, which
has the advantage that it is straightforward to implement numerically. First of all, we ignore halo
exclusion for the two halo satellite term. Since this term is always smaller than the two halo central
term, and since halo exclusion is less important for satellites than for centrals, this should not have
a significant impact on the results. For the two halo central term we proceed as follows: for each
luminosity bin, [L1, L2], we simply set to zero the contribution from pairs in the 2h,c term at distances
r < r180(M̄). Here M̄ is the average halo mass of the central galaxies

M̄ =
∫ ∞

0
Pc(M|L1, L2)M dM , (5.14)

where Pc(M|L1, L2) is the probability that a central galaxy with luminosity L1 ≤ L ≤ L2 resides in a
halo of mass M, and is given by

Pc(M|L1, L2) =
〈Nc〉M(L1, L2)n(M)

n̄c(L1, L2)
. (5.15)

The corresponding radius, r180(M̄), follows from Eq. (3.33).
Although this treatment of halo exclusion is clearly oversimplified, we emphasize that previous

attempts to include halo exclusion in the halo model are also approximations (e.g. Magliocchetti &
Porciani 2003; Tinker et al.2005; Yoo et al.2006). In a numerical approach, Li et al. (2009) have
taken halo exclusion into account. Our oversimplified approach shows a qualitative agreement with
the numerical method presented in Li et al. 2009.

In Fig. 5.9 we show the model predictions for the excess surface density in three different luminos-
ity bins. As is evident from Fig. 5.9, halo exclusion only has a mild impact on the overall results.The
black lines, labelled HE, show the ESDs obtained from our fiducial model in which halo exclusion
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Figure 5.8: Illustration of halo exclusion. The upper panel shows two haloes, of masses M and M′, and
corresponding radii r180 and r′180, respectively. The halo of mass M hosts a central galaxy. Since two
haloes cannot overlap, this central galaxy does not contribute any signal to the two halo central term of
the galaxy-dark matter cross correlation function on scales r < r180. In the case of the two halo satellite
term, illustrated in the lower panel, there is still a contribution even on very small scales (r 2 r180), simply
because satellite galaxies can reside near the edge of the halo.
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Figure 5.9: The ESD is shown for three luminosity bins. The black lines refer to the fiducial model (HE)
and the red lines to the model without halo exclusion (NOHE). The solid lines indicate the total signal,
whereas the long dashed lines show the two halo central terms (note that the we ignore halo exclusion for
the two halo satellite term). Although the two halo central term is strongly affected by halo exclusion, the
impact on the total ESD is only mild. Note that the sharpness of the dip in the black solid lines is (at least
partially) an artefact of our oversimplified treatment of halo exclusion, as discussed in the text..

is implemented using the method outlined above. For comparison, the red lines, labelled NOHE,
show the results in which we ignore halo exclusion altogether (i.e. in which the two halo terms are
simply computed using the equations in chapter 4). The dashed lines show the corresponding two
halo central terms, which are clearly suppressed on small scales in the HE model. Since brighter
central galaxies are hosted by more massive (and therefore more extended) haloes, the effect of halo
exclusion is apparent out to larger radii for brighter galaxies. Note also that the truncation is fairly
sharp; this, however, is partially an artefact due to our approximate treatment in which we have only
considered the average halo mass M̄(L1, L2). In reality, the central galaxies live in haloes that span a
range in halo masses, and thus a range in sizes. If this were to be taken into account, the truncation
would still occur at roughly the same radius, but would be less sharp.

Although halo exclusion clearly has a strong impact on the two halo central term, the impact on
the total ESD is only modest. This mainly owes to the fact that the total signal on small scales is
completely dominated by the one halo terms. Overall, halo exclusion only results in a small reduction
of the total ESD on intermediate scales. Due to the arteficial sharpness of the break in the two halo
central term, halo exclusion introduces a sharp feature in the total ESD at the radius corresponding
to this break. Although the sharpness of this feature is an artefact of our oversimplified treatment of
halo exclusion, it does not influence our overall results.
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6

Galaxy Clustering & Galaxy-Galaxy
Lensing:
Constraining Cosmological Parameters

In chapter 5, we have shown that the g-g lensing signal holds a great amount of information about the
galaxy-dark matter connection. However, a proper interpretation requires a detailed modeling which
accounts for the main complications affecting the g-g lensing measurements. The model based on the
CLF is able to incorporate these complications in a straightforward manner. As a result, the g-g lens-
ing signal can be described in great detail with the approach based on the CLF formalism. However,
the CLF approach presented in chapter 5 relies on the assumption that the underlying cosmology is
known a priori. In the first part of this chapter, we shall explain in detail what is the impact of the
underlying cosmology on the properties of the dark matter distribution and on the halo occupation
statistics. We thus investigate how a change in the underlying cosmology affects theoretical predic-
tions of galaxy clustering and g-g lensing. In the second part of this chapter, we address the same
topic under a different perspective: we use the information encodes in the observed galaxy clustering
and g-g lensing to infer the underlying cosmology. In particular, we introduce a novel method to
constrain the value of cosmological parameters.

6.1 The Relevance of the Underlying Cosmology

In chapter 3, we have introduced the cold dark matter paradigm and the basic quantities for the
description of the dark matter density field. Moreover, in chapter 4, we have described the analyti-
cal model which provides theoretical predictions for the clustering of galaxies and the g-g lensing.
The analytical expressions provided in that chapter rely on two kinds of information: (i) the prop-
erties of the dark matter distribution; (ii) the halo occupation statistics. More specifically, from the
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Table 6.1: Cosmological Parameters

Ωm ΩΛ Ωb h n σ8

WMAP3 0.238 0.762 0.041 0.734 0.951 0.744
WMAP1 0.3 0.7 0.040 0.7 1.0 0.9

first category one requires the knowledge of halo mass function, n(M), halo bias function, b(M),
concentration-halo mass relation, cdm(M), and dark matter power spectrum, Pdm(k). From the sec-
ond category, all that is required is the average number of central and satellite galaxies of a given
luminosity residing in haloes of a given mass.

In our analytical approach, we describe the dark matter quantities listed above by using fitting
functions proposed in the literature and derived by numerical simulations. These fitting functions are
clearly cosmology dependent in the sense that the values of the cosmological parameters shape these
relations. The way galaxies populate dark matter haloes is also, to some extent, cosmology dependent.
In fact, we will see that, in order to reproduce the clustering of galaxies, the halo occupation statistics
varies according to the underlying dark matter distribution.

In the first part of this chapter, we consider two flat ΛCDM cosmologies. The first has a matter
density Ωm = 0.238, a baryonic matter density Ωb = 0.041, a Hubble parameter
h = H0/(100km s−1 Mpc−1)=0.734, a power-law initial power spectrum with spectral index n = 0.951
and a normalization σ8 = 0.744. These are the parameters that best-fit the 3-year data release of the
Wilkinson Microwave Anisotropy Probe (WMAP, see Spergel et al.2007), and we will refer to this
set of cosmological parameters as the WMAP3 cosmology. The second cosmology has Ωm = 0.3,
Ωb = 0.04, h = 0.7, n = 1.0 and σ8 = 0.9. With strong support from the first year data release
of the WMAP mission (see Spergel et al.2003), this choice of parameters has been considered in
many previous studies. In what follows we will refer to this second set of parameters as the WMAP1
cosmology. For clarity, the parameters of both cosmologies are listed in Table 6.1.

6.1.1 Comparison with WMAP1 cosmology

As clear from Table 6.1, we are interested in small differences in cosmologies. In fact, WMAP1 and
WMAP3 cosmologies differ only in the values of few parameters. In particular, the values of Ωm and
σ8 differ of ∼ 20%, the value of n differ of ∼ 5% and both h and Ωb are basically unchanged. In what
follows, we investigate how these changes affect the relations we are interested in.

Fig. 6.1 shows the halo mass function, n(M), the halo bias function, b(M), and the concentration-
mass relation, c(M), for WMAP1 and WMAP3 cosmology. From the uppermost panel, one can note
that WMAP1 cosmology predicts that, at the low mass end, the number of haloes in a comoving vol-
ume is basically the same of that predicted byWMAP3. However, a significant difference can be noted
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at the high mass end: in a WMAP1 universe there are many more massive haloes than in a WMAP3
universe. Qualitatively, this can be understood by noticing that in WMAP1 cosmology, the amount
of dark matter is larger (the value of Ωm is higher) and the dark matter is also more strongly clustered
(the value of σ8 is higher). The middle panel shows the halo bias-halo mass relation. Again, differ-
ences between the two cosmologies are relevant only at the high mass end (M > 1012h−1M/). Note,
however, that the halo bias is plotted on a linear scale and the difference between the two cosmologies
are at most of the order of 50%. It is interesting to note that WMAP1 cosmology predicts overall a
halo bias which is lower than the one predicted by WMAP3. This can be understood by considering
that in WMAP1 the dark matter is highly clustered (σ8 = 0.9) and therefore the clustering of massive
haloes (which, by definition, are formed in strongly clustered regions) does not differ drastically from
the clustering of dark matter. This implies that the value of the halo bias for WMAP1 is lower than in
WMAP3. The lowermost panel shows the concentration-halo mass relation. Interestingly, all haloes
are more concentrated in a WMAP1 cosmology than in a WMAP3 one. Note, however, that the
concentration-halo mass relation has a relatively large scatter (not considered in our model and there-
fore not plotted). The scatter is approximately of the order of 0.25 dex at all masses. This means that
the difference between the relations in the two different cosmologies is less than the intrinsic scatter
in the relation. In addition, it is worth noticing that the concentration-halo mass relation enters in the
definition of the NFW radial density profile used throughout the thesis. In fig. 6.2, the effect is shown
on the Fourier counterpart, udm(k|M), for three different masses (M = 5 · 1015, 2.5 · 1012, 109h−1M/).
Fig. 6.2 also shows the dark matter power spectrum as provided by the fitting function of Smith et al.
(2003) for the two different cosmologies. Note that the differences between the two cosmologies are
quite substantial and they look small only because the plot spans fourteen orders of magnitude.

Once the underlying cosmology is fixed (for example with the WMAP1 parameters), one can look
for the CLF parameters which best fit the luminosity function of galaxies, Φ(L), and the luminosity
dependence of the clustering length, r0(L). In practice, we repeat the same exercise presented in
chapter 5. We run a MCMC which explore the 11 CLF parameter space and we look for the set of
parameters which provides the best fit. As for the case of WMAP3 (in chapter 5), we use additional
constraints from the galaxy group catalogue to relate the average central galaxy luminosity and the
number of satellite galaxies to the mass of dark matter haloes. As evident from fig. 6.3, for the
WMAP1 cosmology we can obtain a CLF that fits the data almost as well as for WMAP3 cosmology
(the reduced χ2 values are only slightly different; see Table 6.2). Note that the group data (shown
in the lower panels) differ from that in Fig. 5.1, even though the group catalogue is the same. This
owes to the fact that the halo mass assignments of the groups are cosmology dependent (see Y07 for
details). The satellite fractions inferred for this cosmology, shown in the upper right-hand panel of
Fig. 6.3, are similar, though slightly higher, than for the WMAP3 cosmology, in excellent agreement
with van den Bosch et al.(2007).

Once the best-fit CLF parameters are obtained, one can straightforwardly calculate the corre-
sponding halo occupation statistics, i.e. the average number of central and satellite galaxies in a
luminosity bin as a function of the halo mass. Fig. 6.4 shows the halo occupation statistics derived
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Figure 6.1: Upper panel. The halo mass functions for WMAP3 (blue solid line) and WMAP1 (green
dotted line) are plotted. Both the relations are calculated using the fitting function of Sheth & Tormen
(2002). Note that significant differences can be found only at the massive end. Middle panel. The halo
bias functions forWMAP3 (blue solid line) andWMAP1 (green dotted line) are plotted. Both the relations
are calculated using the fitting function of Sheth & Tormen (2002). Note that the predictions for the two
cosmologies may differ up to ∼ 40% at the high mass end. Lower panel. The halo concentration-halo
mass relation for WMAP3 (blue solid line) and WMAP1 (green dotted line) is plotted. Both the relations
are calculated using the fitting function of Macciò et al. (2007). Note that the WMAP1 concentrations are
systematically above the ones derived for WMAP3. However, the difference is within the intrinsic scatter
(not plotted here).
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Figure 6.2: Upper panel. The dark matter power spectrum for both WMAP3 (blue solid line) and
WMAP1 (green dotted line) is plotted. Both relations are calculated using the fitting function proposed
by Smith et al. (2003). Note that the differences between the two cosmologies appear small only because
the plot covers fourteen orders of magnitude. Lower panel. The normalized Fourier transform of the dark
matter halo profile is plotted for WMAP3 (blue solid line) and WMAP1 (green dotted line). The different
pairs of u(k|M) refers to different halo masses (see text). Note that the halo concentration enters in the
definition of u(k|M) and it is indeed responsible for the differences between the predictions based on the
two different cosmologies.
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Figure 6.3: Upper row, left and central panels. The luminosity function of galaxies and the luminosity de-
pendence of the galaxy correlation length are plotted. Data come from the analysis of Blanton et al.(2003a)
and Wang et al.2007. The blue contours indicate the 68 and 95 percent confidence level obtained from
the MCMC based on WMAP1. The agreement is extremely accurate for the luminosity function whereas
is modest for the correlation length. Lower row, three panels. The additional information coming from
the group catalogue of YMB08 is plotted together with the corresponding 68 and 95 percent confidence
level derived with the MCMC based on WMAP1. In particular, the halo mass dependence of the central
galaxy luminosity, the satellite conditional luminosity function normalization φ∗s and the the exponent αs
are shown in the left, central and middle panel, respectively. Upper row, right panel. The 68 and 95
percent confidence levels of the satellite fraction, fs, obtained from the CLF (see eq. [5.10]).
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Table 6.2: Best-fit CLF parameters obtained from SDSS clustering analysis

WMAP3 WMAP1
χ2red 1.42 1.70
log L0 9.935 ±0.043 9.915 ±0.052
logM1 11.07 ±0.11 11.16 ±0.16
γ1 3.273 ±0.575 3.336 ±1.012
γ2 0.255 ±0.008 0.248 ±0.007
a1 0.501 ±0.069 0.484 ±0.057
a2 2.106 ±1.437 2.888 ±1.943

logM2 14.28 ±0.16 14.54 ±0.14
b0 -0.766 ±0.146 -0.854 ±0.159
b1 1.008 ±0.197 0.906 ±0.187
b2 -0.094 ±0.065 -0.062 ±0.054
σc 0.143 ±0.005 0.140 ±0.005

The best-fit CLF parameters and the corresponding 95% confidence levels obtained from the MCMC
analysis for the WMAP3 and WMAP1 cosmologies and the value of the corresponding reduced χ2.
Masses and luminosities are in h−1 M/ and h−2 L/, respectively. Note that, for both cosmologies, all
the parameters are tightly constrained except γ1, a2 and b2.
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Figure 6.4: The halo occupation statistics (HOS) of the best fit model for WMAP1 and WMAP3. The
blue lines refer to WMAP3 cosmology, whereas the green line refers to WMAP1. Only the HOS for three
luminosity bins is displayed. The left panel shows the total number of galaxies in given luminosity bins
as a function of the halo mass. The middle and right panel show respectively the number of central and
satellite galaxies as a function of the halo mass.

from the best fit CLF parameters based on WMAP3 cosmology (blue lines) and based on WMAP1
cosmology (green lines). Halo occupation statistics for different luminosity bins are indicated with
different line types (see Table 2.2 for definition of the labels). Recall that L3 < L5f < L6f. Regardless
of cosmology, the average number of central galaxies in a luminosity bin has a clear peak at a given
halo mass and a scatter around it. This is the result of the parametrization of the CLF for central
galaxies. Note that the scatter is bigger for brighter luminosity bins. This simply owes to the fact that
the slope of 〈log(Lc)〉 − log(M) becomes shallower with increasing Lc, as qualitatively illustrated in
fig. 6.5. In addition, brighter central galaxies have higher average halo mass. This is in concordance
with the idea that brighter galaxies live on average in more massive haloes. Moreover, note that at
a given luminosity bin, the results from WMAP1 cosmology peak at higher halo masses. In other
words, central galaxies of the same luminosity are hosted in more massive haloes in WMAP1 than
in WMAP3. For the halo occupation of satellite galaxies, one can notice that, independently of cos-
mology, relatively bright galaxies are distributed as a power law, whereas faint galaxies have a more
structured behavior as a function of the halo mass. For what concerns the cosmology dependence, we
can notice the same trend as for the central galaxies. At a given luminosity and at a given number of
satellite galaxies, the halo masses for WMAP1 results are higher than for WMAP3.

Despite all the differences described above (and in particular the relatively large differences in
halo mass function and halo bias), both WMAP1 andWMAP3 cosmologies allow an (almost) equally
good fit to the data. This clearly illustrates that the abundance and clustering properties of galaxies
allow a fair amount of freedom in cosmological parameters. However, as demonstrated in van den
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Figure 6.5: The solid black line indicates the mean of the 〈log(Lc)〉− log(M) relation, while the gray scale
region reflects the scatter. Note that the scatter, σlog L = σc (indicated by vertical arrows) is taken to be
constant with halo mass. Note, though, that the scatter in the horizontal direction (indicated by horizontal
arrows) increases with increasing Lc; this is simply due to the fact that the slope of the 〈log(Lc)〉 − log(M)
relation becomes shallower with increasing halo mass.
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Bosch, Mo & Yang (2003), the best-fit CLFs for different cosmologies predict different mass-to-light
ratios as function of halo mass. This is evident from Fig. 6.6, which shows the mass-to-light ratios
M/〈L19.5〉M as function of halo mass inferred from our CLF MCMCs for the WMAP1 and WMAP3
cosmologies. Here 〈L19.5〉M is the average, total luminosity of all galaxies with 0.1Mr−5 log h ≤ −19.5
that reside in a halo of mass M, which follows from the CLF according to

〈L19.5〉M =
∫ ∞

Lmin
Φ(L|M) L dL , (6.1)

with Lmin the luminosity corresponding to a magnitude 0.1Mr − 5 log h = −19.5. Clearly, the mass-
to-light ratios inferred for the WMAP1 cosmology are significantly higher than for the WMAP3
cosmology (see also van den Bosch et al.2007, where a similar result was obtained using data from
the 2dFGRS). Hence, the abundance and clustering properties of galaxies can be used to constrain
cosmological parameters, as long as one has independent constraints on the mass-to-light ratios of
dark matter haloes. This is exactly what is provided by g-g lensing. It is to be expected that our
WMAP3 and WMAP1 CLFs will predict significantly different ESD profiles, thus allowing us to
discriminate between these two cosmologies.

Fig. 6.7 shows the 95 percent confidence levels for ∆Σ(R) obtained from our CLF MCMCs for
both the WMAP3 (blue) and WMAP1 (green) cosmologies. Indeed, as anticipated, for the WMAP1
cosmology we obtain excess surface densities that are significantly higher than for the WMAP3 cos-
mology, in agreement with the higher mass-to-light ratios (cf. Fig. 6.6). A comparison with the
SDSS data clearly favors the WMAP3 cosmology over the WMAP1 cosmology. In fact, for the latter
our best-fit CLF model yields a reduced χ2 of 29.5, much larger than for the WMAP3 cosmology
(χ2red = 3.1). Note that the cosmological parameters for these two cosmologies are very similar: Ωm
and σ8 differ only by ∼ 20 percent (in addition to a ∼ 5 percent difference in n). Yet, we can very
significantly favor one cosmology over the other. This indicates that the combination of clustering
data and g-g lensing data can be used to put tight constraints on cosmological parameters. A detailed
analysis along these lines is deferred to the next section. Note, additionally, that the most recent re-
sults from the WMAP mission (hereafter WMAP5, Dunkley et al. 2009) favor a cosmological model
with (Ωm, σ8) = (0.258, 0.796). Since these two cosmological parameters are those mostly responsi-
ble for the amplitude of the g-g lensing predictions and since their values lie in between those of the
WMAP1 and WMAP3 cosmologies, we expect the lensing predictions also to lie in between those
corresponding to WMAP1 and WMAP3.

We can conclude that galaxy clustering and galaxy-galaxy lensing probe the galaxy-dark matter
connection in complementary ways. Since the clustering of dark matter haloes depends on cosmology,
the halo occupation statistics inferred from the observed clustering properties of galaxies are degen-
erate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light
ratios for dark matter haloes. Galaxy-galaxy lensing, on the other hand, yields direct constraints on
the actual mass-to-light ratios of dark matter haloes. Combined, clustering and lensing therefore offer
the opportunity to constrain cosmological parameters.
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Figure 6.6: The 68 and 95 percent confidence levels for the mass-to-light ratios, M/〈L19.5〉M , obtained
from the CLF MCMCs for the WMAP3 and WMAP1 cosmologies.
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Figure 6.7: The predictions for the lensing signal, ∆Σ(R), are shown for two different sets of cosmological
parameters (WMAP1 and WMAP3, see text). The green (blue) shaded area corresponds to the 95%
confidence level of the WMAP1 (WMAP3) model. Note that, although the cosmological parameters of
these two cosmologies only differ by < 20 percent (see Table 6.1), the ESD predictions are very different,
and can easily be discriminated.
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6.2 A Novel Method to Constrain Cosmological Parameters

As extensively illustrated in chapter 1, in the last decade many different approaches have been used to
constrain the values of the cosmological parameters which identify a specific cosmological model.
Among them, the analysis of the temperature fluctuations in the cosmic microwave background
(CMB) has certainly been incredibly productive. Non-CMB experiments have also become extremely
useful in what they are crucially needed to break the parameter degeneracies intrinsic in CMB anal-
yses (e.g. Eisenstein, Hu & Tegmark 1999; Efstathiou & Bond 1999; Spergel et al 2007). Note,
however, that galaxy clustering analyses aiming to constrain cosmological models have focused only
on large scales due to the lack of confidence on the knowledge of the non-linear clustering and galaxy
biasing (see e.g. Wang et al. 2002; Tegmark et al. 2004; Pope et al. 2004). So far, only a few studies
have been presented in which the properties of galaxies on small scales are used to infer information
on the underlying cosmology (see Seljak et al. 2005; Yoo et al. 2006 and references therein).

In this section, we present a joint analysis of galaxy clustering and g-g lensing which aims to give
indications about the underlying cosmology. This approach makes use of the information encoded
in the purely non-linear regime of galaxy distribution. It is motivated by the fact that g-g lensing
is extremely sensitive to the underlying cosmology (as demonstrated in the previous section). We
investigate the feasibility of such a joint analysis to constrain the values of Ωm and σ8 because these
are the two cosmological parameters that mostly influence galaxy clustering and g-g lensing. We
also investigate all the systematics involved in such a joint analysis and we conclude that combining
galaxy clustering and g-g lensing is indeed a novel and competitive method to constrain the value of
cosmological parameters.

In chapter 5 and in the previous section, we have shown that given a set of cosmological pa-
rameters one can look for the CLF parameters which best fit the data. In those cases, the data were
the galaxy luminosity function, Φ(L) and the clustering length as a function of luminosity, r0(L).
Furthermore, additional constraints from the galaxy group catalogue of Yang et al. (2007) have been
used. We have seen how the best fit based on WMAP1 set of cosmological parameters was not able
to reproduce g-g lensing data, whereas the best fit based on WMAP3 cosmology was successful in
reproducing g-g lensing data without any additional tuning. In this section, we repeat the analysis
which looks for the CLF parameters which best fit the data but we now include the g-g lensing data
as constraints. Moreover, we will not simply use r0(L) but the projected correlation function, wp(R),
for galaxies selected according to their luminosity and in a range of scales which goes from ∼ 0.1 to
∼ 20h−1Mpc (see chapter 2 for a detailed description of the data).

It is worth stressing that the new set of data used to constrain the CLF parameters is much larger
than the previous one (used in chapter 5 and in the previous section). In fact, as described in chapter 2,
the galaxy luminosity function is sampled in 41 magnitudes, the correlation length in 6, and the data
points from the galaxy group catalogue are 27. This gives a total number of 74 constraints. In the new
approach, we still have the 41 data points for the galaxy luminosity function and the 27 for the galaxy
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group catalogue but in addition we have 72 data points1 for the excess surface density, ∆Σ, and 72
data points for the projected correlation function, wp. This sums up to a total of 212 data points. This
gives already the idea of the power of the new approach: the model must reproduce a large number
of data which hold an enormous amount of information about the galaxy-dark matter connection.

6.2.1 The best fit model

In order to find the CLF parameters which best fit the complete set of data, we run an algorithm
which, for any given cosmology, looks for the set of parameters which maximizes the likelihood (i.e.
minimizes the χ2). Here χ2 = χ2

Φ
+χ2wp +χ

2
∆Σ
+χ2GC with χ

2
Φ
and χ2GC already defined in chapter 5 and

χ2wp =
6
∑

j=1

12
∑

i=1

[

wp, j(Ri) − ŵp, j(Ri)
∆ŵp, j(Ri)

]2
, (6.2)

and

χ2∆Σ =
6
∑

j=1

12
∑

i=1













∆Σ j(Ri) − ∆̂Σ j(Ri)
∆∆Σ j(Ri)













2

. (6.3)

Here .̂ indicates an observed quantity, the subscripts ‘wp’ and ‘∆Σ’ refer to the 2-point galaxy pro-
jected correlation function and the excess surface density, respectively. Note also that the index ‘ j’
runs over the six luminosity bins, whereas ‘i’ runs over the twelve spatial points per luminosity bin.

The minimization algorithm searches for the combination of the 11 CLF parameters which gives
the best agreement between theoretical predictions and observational data. Such a χ2-minimization is
performed by assuming an underlying cosmology. This means that a set of cosmological parameters
is fixed at the beginning of the minimization procedure and the model with the minimum χ2 is found
by the algorithm. One can perform this minimization assuming different underlying cosmologies
(meaning different sets of cosmological parameters) and then compare the lowest χ2 obtained for any
given cosmology. According to the result of chapter 5, one expects that some cosmological models
will allow a better fit than others. This means that the joint analysis of clustering and g-g lensing
will support some cosmological models above others. It is worth stressing that in our approach a
cosmological model is defined by the set of 5 cosmological parameters (Ωm,σ8, n, h,Ωb)2. However,
we expect Ωm and σ8 to be the two cosmological parameters that affect galaxy clustering and g-g
lensing the most. For this reason, in this section we consider only changes in these two parameters.
A detailed analysis which explores the complete cosmological parameter space is deferred to § 6.4.

In what follows, we describe the results of the χ2-minimization procedure. In particular, we focus
on discussing which combination (Ωm, σ8) is favored by the data. As reference we use the results
from the analysis of the temperature fluctuations in the CMB performed by the WMAP team. In
particular, we compare our results with the confidence levels on the values of Ωm and σ8 suggested

1There are 12 data points for a given luminosity bin times six luminosity bins (see chapter 2 for a detailed description).
2Since we assume a flat geometry, the value of ΩΛ is fixed by ΩΛ = 1 −Ωm.
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by the fifth year data release (Dunkley et al. 2009). Fig. 6.8 shows the 68%, 95% and 99% confidence
levels (three tones of blue) on the values of Ωm and σ8 derived from our minimization algorithm for
the fiducial model. In our model, the pair (Ωm,σ8) = (0.225, 0.72) is the one which provides the best
fit to the data (χred = 3.41). Note that our best fit value for Ωm agrees with the one suggested by
WMAP5 on one-sigma level. The value of σ8 is in agreement with WMAP5 on a two-sigma level.
In fig. 6.8, we also plot the value of the best-fit models suggested by the WMAP1 and WMAP3, (0.3,
0.9) and (0.27, 0.74) respectively. Note that, as expected from the result in chapter 5, our results are
closer to that suggested by WMAP3 than that of WMAP1. A major remark is required here. The
analysis of the WMAP team consists of a MCMC over all cosmological parameters. In our approach,
we have explored only the parameter sub-space (Ωm,σ8) and we have kept fixed the values of all
other cosmological parameters. This surely limits the degree of freedom of our model and it is partly
responsible for the extremely small confidence region. It is to be expected that a full MCMC over all
the cosmological parameters would result in a rather larger confidence region. However, note that all
the cosmological parameters which have been kept fixed are expected to have a minor impact on the
galaxy clustering and g-g lensing, this means that the (Ωm,σ8) which allows our model to best fit the
data is not expected to change drastically.

We emphasize here that this result is the clear proof that a joint analysis of clustering and g-g lens-
ing may be used as a new method to constrain cosmological parameters. Note the complementarity
of the method illustrated here with the one on which WMAP analysis is based. In fact, the analysis
of the CMB consists of the study of the temperature fluctuations as an imprint from the cosmological
contents in the early stage of the universe (z ∼ 1000). On the other hand, our method is based on the
analysis of the statistical properties of galaxies observed with SDSS (z ∼ 0.1). This means that the
information we are using is based on the latest evolutionary stages of the universe. The fact that these
two methods based on two different fields of astrophysics agree remarkably well on the values of the
cosmological parameters can be seen as great success of the concordance cosmological model.

Once we have determined the pair (Ωm,σ8) which allows the model predictions to best fit the
data, we construct a MCMC for that given cosmology. This allows us to study spread around the best
fit model allowed by the given cosmology. Technically speaking, we construct a chain of 5 million
models. Each element of the chain is a model consisting of 11 parameters. At any point in the chain
we generate a new trial model by drawing the shifts in the 11 free parameters from 11 independent
Gaussian distributions centered on the current value of the corresponding model parameter. The chain
is thinned by a factor of 2500 to remove the correlations between neighboring models. The end result
is a MCMC of 2000 independent models properly sampling the posterior distributions of the 11 free
parameters. The probability of accepting the trial model is

Paccept =















1.0 if χ2new < χ2old
exp[−(χ2new − χ2old)] if χ2new # χ2old

(6.4)

where the χ2 is defined at the beginning of this section.
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Figure 6.8: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and our joint analysis of galaxy clustering and g-g lensing (three tones of blue).
Note that the best fit value from WMAP1 and WMAP3 are also shown with yellow diamonds.
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Using the output of the MCMC and the best fit model obtained via the minimization routine, we
discuss the quality of the fit to the data in the case of the best-fit cosmology (Ωm,σ8) = (0.225, 0.72).
In particular, we show how the model is able to reproduce the excess surface density, ∆Σ, the projected
correlation function, wp, the galaxy luminosity function, Φ, and the “data” from the galaxy group
catalogue. In order to perform this comparison, we plot the theoretical predictions of the best fit model
together with the data and with the 68%, 95% and 99% confidence levels derived from the MCMC
for the best fit cosmology. Fig. 6.9 show the excess surface density, ∆Σ, as a function of the comoving
separation in the sky, R, for six luminosity bins. The data are the same presented in chapter 2 and used
as observational constraints to find our best fit model. The black solid line represents the theoretical
prediction based on the best fit parameters found via the minimization procedure explained in the
previous section. The two different tones of blue indicates the 68%, 95% confidence levels obtained
via the MCMC for the best fit cosmology1. These confidence levels give the idea of the amount of
spread around the predictions of the best fit model. Note that fainter galaxies have a ESD which is
tighter constrained than brighter galaxies. Fig. 6.10 shows the comparison between model predictions
and data of the projected galaxy 2-point correlation function, wp. Note that very faint and very bright
galaxies show a relatively large scatter around the best fit model than intermediate luminosity galaxies.
Moreover, in all cases, the large scale correlation is more tightly constrained than the small scale
correlation. This is expected because the large scale clustering is linearly related with the dark matter
clustering and it does not depend on the complicated non linear processes affecting the small scale.
It is worth noticing that the quality of the clustering data is such that wp(R) has a strong constraining
power. We have indeed verified that the deviation of the reduced χ2 from unity is nearly entirely
due to the deviations of the model predictions from the galaxy correlation data in the luminosity bin
[−21,−20].

Fig. 6.11 shows the mass-to-light ratio and the satellite fraction as predicted by the best fit model
and by the MCMC for the best fit cosmology. Note that, at the low mass end, the prediction on the
mass-to-light ratio is quite constraining, whereas at large masses (M > 1014h−1M/) the scatter around
the best fit is quite substantial. Notice also that the satellite fraction has, overall, a quite large scatter
around the best fit model. In fig. 6.11 also the galaxy luminosity function is displayed. Note that, at
the bright end, the predictions have larger scatter around the best fit model, whereas the faint end is
quite tightly constrained.

Fig. 6.12 shows the “data” of the galaxy group catalogue for the best fit cosmology together
with the best fit CLF and the MCMC predictions. It is remarkable how accurate the best fit CLF
predictions are. All data points are reproduced with high accuracy and only at the massive end of the
φs − M relation, few data points are reproduced on a 2-sigma level. In general, the spread around
the theoretical predictions is as large as the errors in the data. Note that the galaxy group catalogue
data differ from those presented previously (see e.g. fig. 5.1), even though the group catalogue is the
same. This owes to the fact that, as already mentioned, the halo mass assignments of the groups are
cosmology dependent (see Y07 for details).

1the 99% confidence level is indicated in green
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Figure 6.9: The predictions on the ∆Σ from the best fit model (black solid line), and the MCMC for the
best fit cosmology (two tones of blue and green). For comparison, the data are shown as filled points with
error bars.
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Figure 6.10: The predictions on the wp from the best fit model (black solid line), and the MCMC for the
best fit cosmology (two tones of blue and green). For comparison, the data are shown as filled points with
error bars.
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Figure 6.11: The predictions on the mass-to-light ratio (left panel), satellite fraction (middle panel) and
luminosity function (right panel) are shown for the best fit model (black solid line), and the MCMC for
the best fit cosmology (two tones of blue and green).

Figure 6.12: The predictions on Lc (left panel), φs (middle panel) and αs (right panel) are shown for the
best fit model (black solid line), and the MCMC for the best fit cosmology (two tones of blue and green).
For comparison, the data are shown as points with error bars.
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6.3 The Uncertainties of the Method

In determining the cosmology which allows the CLF to fit the data best, a number of assumptions has
been made. in this section, we show how these assumptions affect the feasibility of a joint analysis of
clustering and g-g lensing to constrain the value of cosmological parameters.

6.3.1 The Dark Matter Halo Concentration

Among the assumptions which define the fiducial model we have that the concentration-halo mass
relation is given by the model suggested by Macciò et al. 2007. However, since this relation is based
on results from numerical simulations which show a relatively large scatter (∼ 0.25 in dex), we test
how strongly the uncertainty on this relation affects the final result on the value of the pair (Ωm,σ8).
We analyze the case in which the cdm(M) relation is a factor of two higher (lower) than the one
suggested by Macciò et al. Since the scatter around the relation is expected to be much smaller than
a factor of two, the test presented here aims to explore extreme cases in order to see what degree of
limitation the cdm(M) relation represents for constraining cosmological parameters. Fig. 6.13 shows
the result of the minimization algorithm when this model variation is applied. In particular, the
different tones of yellow (red) show the different confidence levels on the value of Ωm and σ8 for
the case in which the halo concentration is a factor of two higher (lower) than the one used for the
fiducial model. Although the best fit (Ωm,σ8) of these two variations is beyond the 3-σ confidence
level of the fiducial model, we conclude that a relatively strong change in the concentration-halo mass
relation does not result in a equally strong change in the value of the cosmological parameters. In
fact, one has to bear in mind that a factor of two is well beyond the uncertainty of any realistic model
for cdm(M). Moreover, the size of the confidence regions derived by WMAP5 is much larger than the
displacement in the (Ωm,σ8) space obtained with our test.

We perform an additional test which concerns the concentration-halo mass relation. In the last
decade, different analytical formula have been proposed to describe the results of numerical simula-
tions. Although the qualitative behavior of all these different relations is very similar, small differ-
ences are present and the question arise whether this has an impact on determining the value of the
cosmological parameters (Ωm,σ8). We address this question by running our minimization algorithm
using the cdm(M) relation proposed by Bullock et al. (2001) and by Eke et al. (2001). Fig. 6.14 shows
the confidence levels on the value of (Ωm,σ8) obtained in these two cases. In particular, the different
tones of yellow show the result when the model of Eke et al. is used and the different tones of red
refer to the model of Bullock et al. Note that the two models agree relatively well with the fiducial
model. In fact, the confidence regions overlap on a 2-σ level. Note also that in the case of Eke et al.
cdm(M) model, the χ2 surface is particularly steep and this causes a much smaller confidence region
than in the other cases.
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Figure 6.13: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and our joint analysis of galaxy clustering and g-g lensing (three tones of blue
for the fiducial model). The different tones of red (yellow) delimitate the model variation with the halo
concentration assumed to be a factor of 2 lower (higher) than the fiducial model. Note that the best fit
value from WMAP1 and WMAP3 are also shown with yellow diamonds.
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Figure 6.14: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and our joint analysis of galaxy clustering and g-g lensing (three tones of blue
for the fiducial model). The different tones of red (yellow) delimitate the model variation with the halo
concentration assumed to follow the Bullock et al. (Eke et al.) fitting function. Note that the best fit value
from WMAP1 and WMAP3 are also shown with yellow diamonds.
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6.3.2 The Radial Distribution of Satellite Galaxies

An assumption which characterizes the fiducial model is that satellite galaxies follow the same dis-
tribution of the dark matter inside haloes. In other words, one can describe the radial distribution of
satellite inside haloes with a NFW profile. We explore the impact of this assumption in determin-
ing the value of the cosmological parameters (Ωm,σ8) by changing the concentration of this profile.
Following the same notation presented in chapter 5, we can assume that satellite galaxies are two
times more centrally concentrated than dark matter by using R equals 0.5. Accordingly, R = 2 cor-
responds to a satellite galaxy distribution which is two times less centrally concentrated. As it can be
seen in fig. 6.15, these two models do not result in statistically different values for (Ωm,σ8). In fact,
the corresponding results agree with the fiducial model on a 2 to 3 σ level. Note also that the model
with R equals 0.5 has a steep χ2 surface which results in an extremely small confidence region.

6.4 Towards a comprehensive analysis

So far, only Ωm and σ8 have been considered as free cosmological parameters. The values of all
other cosmological parameters has been fixed to that suggested by WMAP3. However, some of these
cosmological parameters may play a relatively important role in shaping the quantities which describe
the galaxy-dark matter relation. If that is the case, the result on the value of the pair (Ωm,σ8) may be
affected by having fixed the values of the other cosmological parameters. However, it is worth noticing
that the remaining cosmological parameters are the amount of baryons in the universe, Ωb, the value
of the Hubble constant, h, and the power-law index of the power spectrum of the initial density
fluctuations in the universe, n. The first two parameters are very tightly constrained by primordial
nucleosynthesis models (Burles, Nollet & Turner 2001), from CMB anisotropy measurements (Hanay
et al 2000; de Bernardis et al. 2002; Pryke et al. 2002; Netterfield et al 2002) and by the Hubble Key
Project (Freedman et al. 2002), respectively. The largest uncertainty is present only on the value of n.
Different inflationary models suggest different values of this parameter. Note, anyway, that the results
from the analysis of the temperature fluctuations in the CMB seem to suggest values of n close to
unity. In particular, over the last years, the WMAP team has supported values of n which may vary
from 0.9 to 1.0 (corresponding to different analyses as well as statistical and systematic errors).

As a first preliminary test, we run the same minimization algorithm as in the previous section but
we now assume two different values of n. We use n = 0.925 and n = 0.975 which are values 2-σ
away from the best fit value in WMAP3 results. We again draw the 68%, 95% and 99% confidence
levels on the values of the parameters (Ωm,σ8). Fig. 6.16 shows the results in comparison with the
fiducial model and the WMAP5 results. It is encouraging that even a drastic change in the value of n
is not affecting the overall result about the favored (Ωm,σ8) pair. Note, in fact, that the results of the
two model variations are within three sigma of the fiducial model. This test shows that using Ωm and
σ8 as the two cosmological parameters mostly responsible for the galaxy clustering and g-g lensing
is indeed a fair assumption. It also shows that the value of n, if within the range suggested by WMAP,
is not significantly affecting the result of the best fit (Ωm,σ8).
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Figure 6.15: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and our joint analysis of galaxy clustering and g-g lensing (three tones of blue for
the fiducial model). The different tones of red (yellow) delimitate the model variation with the galaxy
concentration assumed to be a factor of 2 lower (higher) than the fiducial model. Note that the best fit
value from WMAP1 and WMAP3 are also shown with yellow diamonds.
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Figure 6.16: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and our joint analysis of galaxy clustering and g-g lensing (three tones of blue
for the fiducial model). The different tones of red (yellow) delimitate the model variation with n = 0.925
(n = 0.975). Note that the best fit value fromWMAP1 andWMAP3 are also shownwith yellow diamonds.
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Bearing this last result in mind, we can relax the assumption of having only two leading cos-
mological parameters and we can embed the joint analysis of galaxy clustering and g-g lensing in a
cosmological framework which is defined by the five cosmological parameters: (Ωm,σ8, n, h,Ωb). We
can thus run a MCMC in a sixteen free parameter space. Eleven parameters define the CLF, whereas
five define the cosmology. The technical detail about this MCMC is the same as in the previous ones
with the only difference that we have increased the number of model evaluations in the chain by a
factor of two. The end result is thus a MCMC of 4000 independent models properly sampling the pos-
terior distribution of the sixteen free parameters. Note that all previous MCMC have always assumed
flat prior on the values of the parameters. This means that no “a priori” constraints have been required
for the value of the parameters. In what follows, however, we will restrict the range of few cosmolog-
ical parameters following the results of previous studies. In particular, we will impose a top-hat prior
on the value of n, h, and Ωb. Note that the choice of the top-hat prior is motivated by the fact that
these cosmological parameters are already well constrained within a given range by other independent
studies. Since the ultimate goal is to compare all available cosmological probes to use the strength
of each of them in breaking degeneracies, it is sensible and not restrictive to incorporate a top-hat
prior every time a cosmological parameter is “a priori” well constrained. We then have Ωm and σ8 as
completely free cosmological parameters, whereas we impose the prior n ∈ [0.9, 1.1], h ∈ [0.64, 0.8],
and Ωb ∈ [0.03, 0.05]. Fig. 6.17 shows the result of this analysis. The three different tones of blue
shows the 68%, 95%, and 99% confidence level on the value of (Ωm,σ8). Note that, as expected, the
confidence region is larger than the one previously presented. This derives from having treated all five
cosmological parameters as free. However, note also that the confidence region is still much smaller
than the one derived by the WMAP analysis. Having performed a complete marginalization over all
cosmological parameters, we can provide statistical errors, we thus have Ωm = 0.237 ± 0.015 and
σ8 = 0.71± 0.02, where the errors indicate 95% confidence level. We emphasize that these statistical
errors are extremely small compared to those provided by other cosmological probes (e.g. Dunkley
et al. 2009). As already shown in fig. 6.16, there is still evidence for a degeneracy between n, σ8 and
consequently Ωm: lower values of n yielding towards lower values of σ8 and higher values of Ωm.
Furthermore, the posterior distribution of the cosmological parameters Ωb and h is flat. This means
that our analysis does not further constrain the values of these two parameters.

We conclude that combining galaxy clustering and g-g lensing can be used as a novel, competitive
and complementary method to constrain the value of cosmological parameters.
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Figure 6.17: The 68%, 95% and 99% confidence levels on the values of Ωm and σ8 derived by WMAP5
(three tones of green) and the complete MCMC of the joint analysis of galaxy clustering and g-g lensing
(three tones of blue). Note that the best fit value from WMAP1 and WMAP3 are also shown with yellow
diamonds.
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Conclusions

We conclude this thesis summarizing the main aspects of the method used to study the proper-
ties of the galaxy-dark matter connection with emphasis on the original results and achievements.
Furthermore, we speculate about possible future applications which can be considered as natural
follow-up projects of this Ph.D. thesis.

7.1 Summary

Although the advent of wide and deep surveys has resulted in clear detections of galaxy-galaxy lens-
ing, a proper interpretation of these data in terms of the link between galaxies and dark matter haloes
has been hampered by the fact that the lensing signal can only be detected when stacking the signal of
many lenses. Since not all lenses reside in haloes of the same mass, the resulting signal is a non-trivial
average of the lensing signal due to haloes of different masses. In addition, central galaxies (those
residing at the center of a dark matter halo) and satellite galaxies (those orbiting around a central
galaxy) contribute very different lensing signals, even when they reside in haloes of the same mass
(e.g., Yang et al. 2006). This has to be properly accounted for, and requires a detailed understand-
ing of the way galaxies populate dark matter haloes. Furthermore, galaxy-galaxy lensing probes the
galaxy-dark matter connection in complementary way to galaxy clustering. In fact, since the halo
occupation statistics inferred from the observed clustering properties of galaxies are degenerate with
the adopted cosmology, different cosmologies imply different mass-to-light ratios for dark matter
haloes. Galaxy-galaxy lensing, on the other hand, yields “direct” constraints on the actual mass-to-
light ratios of dark matter haloes. Combined, clustering and lensing therefore offer the opportunity to
constrain cosmological parameters.

In this thesis, we have modeled galaxy-galaxy lensing with the CLF,Φ(L|M), which describes the
average number of galaxies of luminosity L that reside in a halo of mass M. This CLF is ideally suited
to model galaxy-galaxy lensing. In particular, it is straightforward to account for the fact that there is
scatter in the relation between the luminosity of a central galaxy and the mass of its dark matter halo.
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This represents an improvement with respect to previous attempts to model the g-g lensing signal
obtained from the SDSS, which typically ignored this scatter (e.g. Seljak et al.2005; Mandelbaum et
al.2006). However, in agreement with Tasitsiomi et al.(2004), we have demonstrated that the scatter
in this relation has an important impact on the g-g lensing signal and cannot be ignored. We also
improved upon previous studies by modelling the two halo term (the contribution to the lensing signal
due to the mass distribution outside of the halo hosting the lens galaxy), including an approximate
treatment for halo exclusion.

Following Cooray & Milosavljević (2005), we split the CLF in two components: one for the
central galaxies and one for the satellites. This facilitates a proper treatment of their respective contri-
butions to the g-g lensing signal. The functional forms for the two CLF components are motivated by
results obtained by Yang et al.(2008) from a large galaxy group catalogue. For a given cosmology, the
free parameters of the CLF are constrained using the luminosity function, the correlation lengths as
function of luminosity, and some properties extracted from the group catalogue. We have performed
our analysis for the so-called WMAP3 cosmology and we have obtained a CLF that can accurately
fit the abundances and clustering properties of SDSS galaxies. The halo occupation statistics corre-
sponding to this CLF can be used to predict the g-g lensing signal. The WMAP3 CLF predictions of
the g-g lensing signal are in excellent agreement with the data obtained with SDSS with no need for
additional tuning of the parameters. In order to test the robustness of our results we have performed
a number of tests. In particular, we have shown that small uncertainties in the expected concentra-
tions of dark matter haloes, or in the radial number density distributions of satellite galaxies, only
have a very small impact on the predicted lensing signal. In addition, although our treatment of halo
exclusion is only approximate, we have demonstrated that it is sufficiently accurate. Finally, making
the oversimplified assumption that dark matter haloes are spherical rather than ellipsoidal also has a
negligible impact on the lensing predictions. We thus conclude that our method yields accurate and
reliable predictions for g-g lensing.

We emphasize that it is not trivial that a single halo occupation model can be found that can
simultaneously reproduce the galaxy abundance, the clustering and lensing properties of galaxies and
the results obtained from a group catalogue. This can be read as a proof that the analytical approach
based on the CLF is able to catch the main properties of the way galaxies populate dark matter haloes
adequately accounting for all the intrinsic uncertainties.

We have repeated the exercise of constraining the CLF using the abundances and clustering of
galaxies assuming a slightly different cosmological model (WMAP1). Although the cosmological
parameters of the WMAP1 and WMAP3 cosmologies only differ at most at a 20 percent level, the
CLF for theWMAP1 cosmology predicts excess surface densities that are much higher than observed.
We have used this result as an evidence that a combined analysis of galaxy clustering and g-g lensing
is extremely sensitive to the underlying cosmology. We thus have performed a detailed study aimed
to understand to which extend a joint analysis of galaxy clustering and g-g lensing may be used as
a new technique to constrain the values of cosmological parameters. It is worth noting that such
a method has not been explored in the literature because of the lack of confidence in the current
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understanding of the properties of galaxies and, in general, of the non-linear regime of the structures
in the universe. However, the success of the CLF model in reproducing the statistical properties of
galaxies (i.e. abundances, clustering and lensing) is encouraging and it can be read as an achievement
in the understanding of the behavior of average quantities which relate galaxies with their dark matter
haloes.

Our approach in testing the feasibility of the method has been quite pedagogical, as often required
in exploring novel techniques. In fact, we have started by limiting to the minimum the amount of
freedom of the model and we have progressively relaxed the assumptions until a full comprehensive
analysis has been performed. More specifically, we have focused on constraining the values of only
two cosmological parameters: Ωm and σ8. These two parameters are, in fact, believed to be the
most important in shaping the galaxy clustering and g-g lensing relations. All other cosmological
parameters have been kept fixed at the value suggested by WMAP3. In this simplified scheme, the
pair (Ωm,σ8) which allows one to best fit the data is in relatively good agreement with results from
other independent probes as the temperature fluctuations in the CMB, the cluster abundance, the
BAO in the galaxy correlation function and combined analyses (see e.g. Spergel et al. 2007). Note
that the fact that all cosmological parameters except Ωm and σ8 were fixed or, in other words, the
lack of marginalization over all cosmological parameters is expected to result in narrow confidence
regions around the best fit (Ωm,σ8). We thus provide 68%, 95% and 99% confidence levels only
as a measure of the uncertainty in the determination of the two cosmological parameters in such
a simplified approach. Furthermore, we investigate the impact of some crucial assumptions which
enter the model. Basically, we study the impact of the assumptions about the radial distribution of
satellite galaxies and about the concentration of dark matter haloes. We conclude that, within the
current uncertainties, these two uncertain quantities do not affect the results on the value of (Ωm,σ8)
in a statistical sense. As a successive step, we relax the assumption about the “a priori” knowledge
of the value of the power law index, n, of the initial power spectrum of density fluctuations. We show
that, if we limit the changes in n to the range suggested by CMB experiments, the final result is not
statistically affected. However, there is evidence for a degeneracy such that the lower is n the lower
is σ8 and thus the higher is Ωm. Finally, we perform a full analysis in which also the value of the
Hubble constant, h, and of the baryon energy density, Ωb, is free to vary within the range suggested
by previous studies (e.g. Spergel et al. 2007; Dunkley et al. 2009). As expected, this has negligible
impact on our method and it thus does not significantly affect the final result on the (Ωm,σ8) pair.
From this analysis, we obtain (Ωm,σ8) = (0.237, 0.71) as the cosmological pair that allows the model
to best fit the data. Having performed a complete marginalization over all cosmological parameters,
we can provide statistical errors, we thus have Ωm = 0.237 ± 0.015 and σ8 = 0.71 ± 0.02, where
the errors indicate 95% confidence level. We emphasize that these statistical errors are extremely
small compared to those provided by other cosmological probes (e.g. Dunkley et al. 2009). This is
mostly due to the fact that galaxy clustering and g-g lensing probe the galaxy-dark matter connection
in complementary ways.
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We conclude that the joint analysis of galaxy clustering and g-g lensing can be used as a new,
complementary and competitive method to constrain the value of cosmological parameters.

7.2 Possible Developments

The technique illustrated in this thesis opens the avenue to possible future applications. Interestingly,
both astrophysical and cosmological aspects can be further investigated. However, at this stage,
we simply mention preliminary ideas whose actual feasibility needs to be tested. In the following
sections, we provide qualitative considerations for any of these applications.

7.2.1 Constraints on galaxy formation and evolution

The ultimate reason for being interested in measurements as galaxy clustering and/or g-g lensing is
to relate galaxies to dark matter haloes in a way that provide informative tests about galaxy formation
theory. In this thesis, we have seen that the CLF approach basically consists of converting galaxy
clustering and g-g lensing into relations between galaxies and their dark matter haloes. The amount
of information that we gain from this kind of analysis is strongly dependent on the quality of the data.
Although the measurements of the clustering of galaxies as a function of their properties have become
relatively accurate, galaxy-galaxy lensing measurements are still very poor. It is worth reminding,
though, that g-g lensing is a relatively new technique with a first clear detection obtained only in 1996
(Brainerd et al.). The state of the art is represented by the measurements obtained with SDSS. It is to
be expected that the quality of g-g lensing data will dramatically improve soon. For example, a g-g
lensing analysis of the COSMOS field (Leauthaud et al. 2007) is underway. Due to the stability of the
point spread function and the deepness of the survey, this analysis is extremely promising for detailed
measurements of the ESD around lens galaxies of different observed properties. Note that two are the
aspects that make this analysis particularly exciting: (i) the possibility to measure a g-g lensing signal
on scales smaller than 40h−1kpc (the current limit in SDSS data); (ii) the extremely small error bars
over the all range of measurements. On one hand, the first of this aspects will allow us to probe the
dark matter (sub-)haloes of satellite galaxies, helping in quantifying the amount of stripped mass in
sub-haloes hosting satellite galaxies. Moreover, one can quantitatively study the impact of the baryon
distributions on the lensing signal. Furthermore, one may try to constrain the dark matter density
profile on scales of interest for probing theoretical predictions based on different kind of dark matter
(e.g. cold vs warm). Although these three studies will be mostly degenerate, the modeling of g-g
lensing via the CLF can be surely used as a tool to give insights about the relative contributions. On
the other hand, aspect (ii) is of interest mainly for probing the radial distribution of satellite galaxies
with the potential of quantifying the effect of luminosity segregation (i.e. the possibility that satellite
galaxies with different luminosity reside, on average, in different part of the host halo). As shown in
detail in chapter 4, the analytical model used throughout the thesis encodes all is required to properly
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account for this complication and, once the data will be released, it will be straightforward to compare
them with model predictions.

An important aspect that we have not emphasized yet is that the study of the galaxy-dark matter
connection should be conducted as a function of time in order to understand the co-evolution of
galaxies and dark matter haloes. One can, in principle, relate galaxies to dark matter haloes using the
CLF approach at different redshifts. Relying on the idea that the evolution of dark matter haloes can
be studied with numerical simulations (e.g. Springel et al. 2006), the evolution in the halo occupations
statistics may provide valuable constraints on baryonic physics in galaxies over time (e.g. accretion
and consumption of gas, star formation and so on). A first step in this direction could be to repeat
the exercise presented in chapter 5 but at redshift higher than z ∼ 0.1 (the average redshift of SDSS
galaxies). This is feasible thanks to the effort that has been placed on surveys as DEEP2 (Davis et
al. 2003), COMBO-17 (Wolf et al. 2004), NDWFS (Jannuzi & Dey 1999) and VVDS (Le Fevre et
al. 2005) and on forthcoming g-g lensing analysis (see e.g. Leauthaud et al. 2007, Bernstein 2009
and reference therein). It is worth emphasizing that our method benefits of the information derived
from g-g lensing mostly for its complementarity to the one derived from galaxy clustering. Therefore,
the ideal observational situation would be to have both clustering and g-g lensing data with relatively
high accuracy and at different redshifts. Once this is achieved, the evolution of the halo occupation
statistics studied via the CLF approach would provide a transparent way to look at the evolution of
statistical properties of galaxies and their relation with dark matter haloes, practically constraining
galaxy formation scenarios.

7.2.2 Constraints on cosmological parameters: degeneracies and systematics

Although the results presented in chapter 6 allows us to conclude that the joint analysis of galaxy clus-
tering and g-g lensing can be used to constrain the value of the cosmological parameters Ωm and σ8,
different directions can be taken to further study the feasibility of this novel technique. It is important
to remind that the functional form used to describe the CLF requires eleven parameters which may be
partly degenerate with the cosmological parameters. In general, one could adopt the Fisher informa-
tion matrix to assess how well the data can constrain the value of the model parameters. Moreover, it
would be ideal to combine the analysis presented in this thesis with other well established cosmologi-
cal probes such as CMB temperature fluctuations, and cluster abundance. In general, different probes
are sensitive to different parameters or they are affected by degeneracies along different directions in
the parameter space. Thus, a combined analysis is the best way to simultaneously break degeneracy
and learn about systematics.

7.2.3 Constraints on dark energy models

When treated as standard candles, the apparent dimming of distant Type Ia supernovae surprisingly
pointed towards an accelerating expansion of the Universe (Riess et al. 1998; Perlmutter et al. 1999).
This was the first piece of observational evidence in favour of the presence of a negative pressure
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component in the energy budget of the Universe. Independent support for this component, called dark
energy, came from the combination of CMB measurements and large scale structure data (Efstathiou
et al. 2002; Tegmark et al. 2004). Understanding the nature of dark energy has become one of
the most important problems in physics today since it has strong implications for our understanding
of the fundamental physical laws of the Universe. The simplest possibility is that the dark energy
corresponds to the vacuum energy, in which case it behaves analogously to the cosmological constant,
Λ, with equation of state p = wdeρde = −1ρde, which is basically the assumption used throughout this
thesis. However, several alternative models are possible. One way to narrow down the wide range
of possible models is to obtain constraints on the dark energy equation of state parameter wde. Note
that one could, in principle, allow for variations in the value of wde and relax the assumption that it is
constant with time by exploring the possible redshift dependence of this parameter. One approach to
constrain the time variation in the equation of state parameter is to express wde as a first order Taylor
expansion around z = 0, e.g. wde(z) = wde(z = 0) + w′de z. The advantage of this method is the
simplicity; any value of w′de ! 0 would indicate a non-constant equation of state parameter. The most
promising approach is to combine information at different epochs. In general, the cosmic acceleration
driven by dark energy entails particular connections between the expansion history, spatial geometry,
and the growth of fluctuations, and hence between the observables measured at low redshift (galaxy
abundances, galaxy clustering and gravitational lensing), and at high redshift (spectrum of the CMB
temperature fluctuations). It is definitively worth exploring the possibility to embed the analysis
presented in this thesis in a more general framewiork which allows us to incorporate the dark energy
equation of state. In particular, it would be interesting to constrain wde(z) by using the combined
analysis of galaxy clustering and g-g lensing for different redshifts.
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Macciò A.V., Dutton A.A., van den Bosch F.C., Moore B., 2008, preprint (arXiv:0804.1926)

Magliocchetti M., Porciani C., MNRAS, 2003, 346, 186

Mandelbaum R., Tasitsiomi A., Seljak U., Kravtsov A.V., Wechsler R.H., 2005a, MNRAS, 362, 1451

Mandelbaum R., Hirata C. M., Seljak U., Guzik J., Padmanabhan N., Blake C., Blanton M.R., Lupton
R., Brinkmann J., 2005b, MNRAS, 361, 1287

Mandelbaum R., Seljak U., Kauffmann G., Hirata C.M., Brinkmann J., 2006, MNRAS, 368, 715

Mandelbaum R., Seljak U., Hirata C.M., 2008, preprint (arXiv:0805.2552)

McIntosh D.H., Zabludoff A.I., Rix H.-W., Caldwell N., 2005, ApJ, 619, 193

McKay et al., 2001, preprint (arXiv: astro-ph/0108013)

McKay T.A., et al., 2002, ApJ, 571L, 85

Merchán M., Zandivarez A., 2002, MNRAS, 335, 216

Merchán M., Zandivarez A., 2005, ApJ, 630, 759

Miralda-Escudé J., 1991, ApJ, 370, 1

Mo H.J., Jing Y.P., Börner G., 1997, MNRAS, 286, 979

Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P., 1999, ApJ, 524L, 19

More S., van den Bosch F.C., Cacciato M., 2009a, MNRAS, 392, 917

128



BIBLIOGRAPHY

More S., van den Bosch F.C., Cacciato M., Mo H.J., Yang X., Li R., 2009b, MNRAS, 392, 801

Navarro J.F., Frenk C.S., White S.D.M., 1997, ApJ, 490, 493

Natarajan P., Kneib J.P., 1997, MNRAS, 287, 833

Natarajan P., Kneib J.P., Smail I., 2002, ApJ, 580, L11

Natarajan P., De lucia G., Springel V., 2007, MNRAS, 376, 180

Natarajan P., Kneib J.P., Smail I., Treu T., Ellis R., Moran S., Limousin M., Czoske O., 2007, preprint
(arXiv:0711:4587)

Netterfield C.B., et al., 2002, ApJ, 571, 604

Norberg P., et al., 2001, MNRAS, 328, 64

Norberg P., et al., 2002, MNRAS, 332, 827

Norberg P., Frenk C.S., Cole S., 2008, MNRAS, 383, 646

Padmanabhan, N., et al., 2007, MNRAS, 378, 852

Parker L..C., Hoekstra H., Hudson M.J., van Waerberke L., Mellier Y., 2007, ApJ, 669, 21

Peacock J.A., Smith R.E., 2000, MNRAS, 318, 1144

Peacock J.A., Doods S.J., 1994, MNRAS, 267, 1020

Peacock J.A., Doods S.J., 1996, MNRAS, 280L, 19

Peebles P.J.E., 1982, ApJ, 263L, 1

Percival W.J., et al., 2007, MNRAS, 381, 1053

Perlmutter S., et al., 1999, ApJ, 517, 565

Pier J.R. et al., 2000, AAS, 197, 1310

Pierpaoli E., Scott D., White M., 2002, ASPC, 268, 90

Pope A. C., et al., 2004, ApJ, 607, 655

Prada F., et al., 2003, ApJ, 598, 260

Press W.H., Schechter P., 1974, ApJ, 187, 425

Pryke C., 2002, ApJ, 568, 46
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