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Zusammenfassung 

Ein besseres Verständnis der Muskelregeneration würde es uns ermöglichen, 

effektivere Therapien für Patienten zu entwickeln, die unter degenerativen 

Muskelerkrankungen leiden, wie zum Beispiel muskuläre Dystrophien. 

Modellorganismen erleichtern das Verständnis von Muskelregeneration, jedoch 

wurden bis jetzt nur Nagetiere und Hühner entsprechend untersucht. 

In der vorliegenden Arbeit wurden drei verschiedene Ansätze angewendet, um 

ein Modell der Muskelregeneration im Zebrafisch zu erstellen.  

Erstens, wurde ein ENU-Mutagenese-Screen durchgeführt, um Mutanten mit 

defekter Muskelerhaltung zu identifizieren, die möglicherweise auf fehlerhafter 

Regeneration basiert. Es wurde eine Mutante identifiziert und charakterisiert (gum), 

die einen fortschreitenden Verlust von Beweglichkeit und myofibrillärer Organisation 

aufweist. Charakterisierung der gum Mutanten ließ multiple Defekte in der 

Muskulatur und in neuronalem und Neuralleisten-Gewebe erkennen. 

Zweitens, wurde durch Verwendung eines Acetylcholinesterase-Inhibitors 

(GAL) ein chemisch induzierbares Modell für Myopathie im Zebrafisch entwickelt. 

Entfernung von GAL erlaubte es den Muskeln sich zu regenerieren und ihre normale 

Funktion wiederzuerlangen. Basierend auf Elektronenmikroskopie und 

Antikörperfärbung wurden vermeintliche Muskelstammzellen (Satellitenzellen) des 

Zebrafischs identifiziert. Pax7, ein Hauptmarker für Satellitenzellen in allen 

Wirbeltieren, markiert im Zebrafisch eine Zellschicht, das Dermomyotom, auf der 

Oberfläche der Somiten ab dem 24 Stunden Stadium (24 hpf). Diese Zellen bilden 

zunächst FT Muskelfasern (weiße Muskelfasern) und später Satellitenzellen. In dieser 

Arbeit wurde beobachtet, dass Pax7-positive Dermomyotomzellen erhöhte 
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Proliferation aufweisen und eine gesteigerte Bewegung in tiefere Schichten des 

Myotoms nach Beschädigung der Muskulatur. 

Drittens, zeigte die Erstellung eines genomweiten Transkriptionsprofils von 

mit GAL behandelten Zebrafisch-Larven eine Heraufregulierung von zahlreichen 

Genen als Reaktion auf die Myopathie. Ein Vergleich dieser Gene mit 

Muskelregenerationsmodellen in der Maus zeigte eine signifikante Übereinstimmung 

(ca. 25%). Eine Expressionsanalyse einiger dieser Gene (cmya1, zgc:100919) deutet 

darauf hin, dass sie möglicherweise eine Rolle in der Biologie von Satellitenzellen 

spielen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  iii

Abstract  

A better understanding of muscle regeneration would allow us to devise 

therapies that are more effective for patients suffering from myodegenerative diseases 

such as muscular dystrophies. Animal models facilitate the understanding of muscle 

regeneration, but so far, only rodents and chicken have been suitably exploited in this 

regard.  

In the present study, I adopted three different approaches to establish a model of 

muscle regeneration in zebrafish. Firstly, an ENU mutagenesis screen was performed for 

mutants with defective muscle maintenance that might result from faulty regeneration. I 

identified and characterized one mutant (gum) showing progressive loss of motility and 

myofibrillar organization. Characterization of gum mutants revealed multiple defects in 

muscle, neuronal and neural crest derived tissues. 

Secondly, using an inhibitor of acetycholinesterase (GAL), I established a chemically 

inducible model of myopathy in zebrafish. Removal of GAL allowed the muscles to 

regenerate and restored their normal function. Based on electron microscopy and 

immunohistochemistry, the zebrafish putative muscle stem cells (satellite cells) were 

identified.  Pax7, a key marker for satellite cells in all vertebrates, labels a layer of cells, the 

dermomyotome, on the surface of zebrafish somites from 24 hpf onwards. These cells give 

rise initially, to the fast muscle fibers and later to the satellite cells. In this study, it was 

observed that the Pax7+ve dermomyotome cells show increased proliferation and migration 

into deeper myotome upon muscle damage.  

 Thirdly, unbiased genome wide transcriptional profiling of GAL treated zebrafish 

larvae showed numerous genes upregulated in response to the myopathy. Comparison of these 

genes to mouse models of muscle regeneration showed a significant (about 25%) overlap. 

Expression analysis of some of the genes (cmya1, zgc:100919) indicates that they might have 

a role in satellite cells biology. 
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Introduction 

1 

"Nature must be explained by Nature, not by our own views." Abraham Trembley 

1 Introduction 

1.1  Regeneration in metazoans 

Regenerating body parts has fostered human imagination like few other things. 

Aristotle (384–322 BC) was perhaps the first scientist to observe that the tails of 

lizards and snakes, as well as the eyes of swallow-chicks, could regenerate (Peck AL, 

1965). In 1712, the French scientist René-Antoine Ferchault de Réaumur turned this 

fascination into a proper scientific enquiry when he published his seminal work on 

crayfish limb and claw regeneration (Réaumur, 1712). Soon after, a wide variety of 

animals were described to show regeneration of different body parts, in the works of 

Abraham Trembley (Hydra, 1740) (Lenhoff SG, 1986), Peter Simon Pallas 

(planarians, 1766) (Pallas, 1766), and Lazzaro Spallanzani (tadpole tails; salamander 

jaws, limbs, tails and eyes, 1768) (Spallanzani, 1769). As for humans, it was shown 

after two centuries of Trembley’s discovery that human liver can regenerate 

(Widmann JJ 1975).  

 Despite a long history of reports about regeneration, and the knowledge that 

understanding regeneration would shed light on issues such as tissue polarity, 

patterning, and the control of size and proportion in animals, our understanding of 

regenerative biology is woefully inadequate. The reasons for this are many. For 

example, one puzzling aspect of regeneration that has limited our understanding is 

why the regenerative capacity manifests itself during evolution in some organisms 

and not in others, even within the same phyla. The model organisms such as 

Drosophila melanogaster, Caenorhabditis elegans, Xenopus, chicken and mice that 

proved so useful in advancing our knowledge in genetics and developmental biology 
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and later molecular biology, display either limited abilities to regenerate or were 

overlooked in the context of studies on regeneration. On the other hand, those model 

organisms which show tremendous regenerative abilities, such as axolotls, urodeles 

and salamanders, have been extremely refractory to genetic and molecular 

manipulations. However, the last twenty years have seen a spurt in growth of our 

understanding of regenerative processes as basic advances in genetics; genomics, 

development and molecular biology have been successfully applied to study of 

regeneration. Moreover, developmental biologists have begun to investigate the so far 

overlooked regenerative abilities of genetic model systems such as Drosophila 

melanogaster (Bosch et al., 2008; Marsh and Theisen, 1999; McClure and Schubiger, 

2007). The introduction of methodologies such as RNA-mediated genetic interference 

(RNAi) and the introduction of functional genomics and transgenic methodologies in 

hydra, planarians, and salamanders (Sanchez Alvarado and Tsonis, 2006) have 

increased the resolution of molecular analyses in those animals species showing a 

high degree of regenerative ability. The emergence of new vertebrate models such as 

zebrafish that are highly amenable to genetic manipulations yet show a greater degree 

of regenerative ability than most mammals has also advanced the acceleration of 

research in this field (Curado et al., 2007; Lepilina et al., 2006; Stoick-Cooper et al., 

2007). 

 

1.2 Mechanism of Regenerations: Stem Cells vs. De-differentiation 

1.2.1 Stem cells and stem cell niche 

 The consensus amongst researchers is that so-called progenitor cells are 

required for most regenerative processes. However, the origin of these progenitor 
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cells varies between regenerating systems. The progenitor cell could be either set 

aside during development or arise de novo by a mechanism involving reversal of 

embryonic development where a terminally differentiated cell reverts to its 

uncommitted state. This process, termed as cellular dedifferentiation, is especially 

prominent in animals with exceptional regenerative abilities like salamanders. 

 The progenitors set aside during development, called “stem cells”, are 

normally mitotically quiescent and respond to normal tissue wear and tear or tissue 

damage by taking on a program of multiplication and differentiation to lead effective 

regeneration. The regular turnover or regeneration of skin, blood, muscle and bone in 

mammals and the replacement of lost tissues in the flatworm planarian are but a few 

examples of such stem cell mediated regeneration. The quintessential stem cell would 

be capable of limitless self-renewal and differentiation capability. The closest 

mammalian stem cells comes to this “ideal” state is the cells of the inner cell mass 

(ICM) that are found in the blastocyst. These cells from the inner cell mass give rise 

to the entire embryo (Rossant, 2008) and perhaps some extra-embryonic membranes 

(Solter, 2006). When taken out and grown in culture these cells give rise to the 

embryonic stem (ES) cells.  

 Although it has been show shown that an entire mouse could be generated 

from a single ES cell, the extra embryonic membrane and the placenta were derived 

from a tetraploid embryo (Nagy et al., 1993). For this reason an ES cell could not be 

considered a “totipotent” cell. The terms “stem cell” and “progenitor cell” are 

sometimes used interchangeably but strictly speaking stem cells, such as the ES cells, 

are capable of unlimited self renewal and are pluripotent while progenitor cells have a 

limited capacity to self renew and are only multipotent. “Pluripotent” cells can give 

rise to derivatives of all three germ layers whereas “multipotent” cells can only give 
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rise to several cell types which are restricted to the derivatives of a single germ layer 

or to a specific sublineage (Solter, 2006).  By these strict criteria, all adult “stem 

cells” should rather be termed multipotent progenitor cells which would become 

increasingly fate restricted as they move through their lineage. Since the term stem 

cell is now widely used in the literature also describing these cell types, here we 

include pluripotent cells in this term. Examples of such tissue specific progenitor cells 

include, in Drosophila melanogaster, germline stem cells (Lopez-Onieva et al., 2008; 

Yamashita et al., 2007), follicle stem cells (Nystul and Spradling, 2007), intestinal 

stem cells (Ohlstein and Spradling, 2007),  and escort stem cells (Gilboa and 

Lehmann, 2006). In mammals some of the examples of such progenitor cells are 

haematopoetic stem cells (Adams and Scadden, 2006), the neural “stem cells” in the 

subventricular zone and the dentate gyrus of the hippocampus in the mammalian adult 

central nervous system (Taupin and Gage, 2002), skeletal muscle satellite cells 

(Dhawan and Rando, 2005), and interfollicular epidermis cells (Clayton et al., 2007). 

 The stem cells reside in restricted tissue microenvironments known as 

“niches”. The niche provides localized signals for the maintenance of the stem cell 

population and houses one or more stem cell(s) of the same kind.  To be definitely 

qualified as a stem cell niche, a candidate niche must be transiently depleted of its full 

complement of stem cells and then be shown to take up and maintain a newly 

introduced stem cell. For example, the demonstration that new Drosophila germline 

stem cells (GSCs) can be introduced and maintained at the gonad tips by local signals 

provided the clearest evidence of gonad tips acting as GSC niche (Brawley and 

Matunis, 2004; Tulina and Matunis, 2001; Xie and Spradling, 2000). Other examples 

of stem cell niches in Drosophila are the follicle stem cell niche (Nystul and 

Spradling, 2007) and the intestinal stem cell niche (Ohlstein and Spradling, 2007). In 
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vertebrates, the stem cells niches have been defined for haematopoetic stem cells 

(Adams and Scadden, 2006), central nervous system subventricular zone stem cells 

(Doetsch, 2003), intestinal epithelium (Barker et al., 2007), hair follicle bulge 

(Blanpain and Fuchs, 2006), spermatogonial stem cells (Blanpain and Fuchs, 2006; 

Yoshida et al., 2007a; Yoshida et al., 2007b) and muscle satellite cells (Dhawan and 

Rando, 2005), among others. Upon sensing tissue damage by local signals such as 

mechanical stress or secreted signals (for example, from macrophages) the stem cells 

leave their niche, transiently amplify, generate tissue precursors and finally repair or 

regenerate the damaged tissue. At the same time, the stem cells must also replenish 

themselves and repopulate the niche. 

1.2.2 Strategies of stem cell propagation: Asymmetric vs. Symmetric division 

 A stem cell must self renew as well as produce differentiated progeny to 

achieve these dual tasks and it must do so while maintaining the tissue homeostasis; 

too much self renewal would lead to cancer and too much differentiation would lead 

to depletion of the stem cell pool. The mechanisms of how stem cells generate 

asymmetric progeny have begun to emerge with the discovery of asymmetric cell 

division. Stem cells maintain a balance between self-renewal and differentiation by 

employing both asymmetric cell division as well as symmetric cell divisions 

according to the requirements of the organism. Under normal conditions of tissue 

maintenance, stem cells can employ asymmetric divisions to produce one daughter 

stem cell and one cell capable of differentiation. The asymmetry can be “intrinsic” to 

the stem cell itself in the form of asymmetrically localized proteins during cell 

division to generate a polarity within the cell. These proteins act as cell fate 

determinants to give rise to the divergent progeny of stem cells. A good example of a 
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cell showing intrinsic asymmetric cell divisions is the C. elegans zygote, where 

asymmetry is defined by the sperm entry site (Cowan and Hyman, 2004; Goldstein 

and Hird, 1996). The C. elegans zygote divides into a large blastomere that would 

give rise to ectoderm and a smaller blastomere that would produce mesoderm, 

endoderm and germline in a series of asymmetric cell divisions (Doe and Bowerman, 

2001). Although the zygote is not a typical stem cell, it uses many of the molecules 

used by stem cells for asymmetric divisions in a similar manner. These include PAR3, 

PAR6 and atypical protein kinase C (aPKC) that are all asymmetrically localized 

during cell cycle. These proteins in turn govern cell fate determinants like 

ribonucleoprotein particles known as P granules and PIE-1, a transcriptional repressor 

required for germline fate determination (Mello et al., 1992; Mello et al., 1996; Reese 

et al., 2000; Shimada et al., 2006; Strome, 2005; Strome and Wood, 1983). Also in 

Drosophila neuroblast cell divisions, Numb, an evolutionarily conserved cell fate 

determinant is asymmetrically localized to the cells that are destined to differentiate 

(Spana et al., 1995). Another mechanism to generate asymmetric progeny is via the 

so-called “extrinsic” asymmetry, where the stem cells divide with a reproducible 

orientation relative to the niche. In this case the fate acquisition depends on external 

signals emanating from the niche and loss of contact with the niche can trigger 

differentiation in one of the progeny. A classic example are the Drosophila germline 

stem cells (Spradling et al., 2001; Xie and Spradling, 2000; Yamashita et al., 2005). 

The niche is created by the cap cells in the Drosophila ovary (Xie and Spradling, 

2000) and the hub cells in the Drosophila testis (Kiger et al., 2001; Tulina and 

Matunis, 2001). In the ovary, the members of Bone Morphogenetic Protein (BMP) 

family of growth factors, Decapentaplegic (DPP) and Glass Bottom Boat (GBB), 

emanating from the niche serve to repress the differentiation promoting gene bag-of-
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marbles (Chen and McKearin, 2003; Song et al., 2004). In the testis, a ligand called 

Unpaired is expressed by the hub cells. Unpaired activates the JAK-STAT (Janus 

kinase and signal transducer and activator of transcription) signaling cascade in the 

germline cells to keep them undifferentiated (Kiger et al., 2001; Tulina and Matunis, 

2001; Yamashita et al., 2005).  

 Asymmetric cell divisions maintain a steady supply of progeny capable of 

differentiation and stem cells. However, during development or regeneration there is a 

demand for exponential increase in numbers of both cell types. This demand can be 

met by the stem cells by switching to a mode of symmetric divisions. Under such 

conditions stem cells can rapidly multiply either to increase or to replenish a 

diminished stem cell pool. Once enough stem cells have been generated, some of 

them would start to differentiate stochastically. For example, mouse haematopoietic 

stem (HS) cells double in number every day during mid-gestation (Morrison et al., 

1995), a rate of expansion that cannot be achieved by asymmetric cell division. Also 

direct imaging of the divisions of neural progenitors in slice cultures of the 

developing rodent cerebral cortex (Chenn and McConnell, 1995; Huttner and Kosodo, 

2005; Noctor et al., 2004) has revealed an exponential expansion that seems to 

produce morphologically identical undifferentiated cells. However, it remains 

possible that these cells retain a divergent developmental potential than their siblings. 

In the absence of more direct evidence of their developmental fate inferences 

regarding the involvement of symmetric divisions remain provisional. 

1.2.3 Cellular dedifferentiation  

 In certain cases, the progenitor cells can be created de novo through a process 

in which fully differentiated cells reverse their normal developmental processes and 
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revert to proliferating progenitor cells. This alternative regeneration strategy relies on 

the ability of some post-mitotic cells to dedifferentiate or transdifferentiate to repair 

damaged organs. Hydra’s extreme regenerative capacity is well documented. Hydra 

does not regenerate by cell proliferation. For example, decapitation of Hydra resets 

positional information along the remaining body axis, forcing the cells in the gastric 

column to undergo transdifferentiation and form the missing head (Wolpert et al., 

1971). Certain tissues in higher vertebrates such as the mammalian pancreas also 

employ a similar strategy. Studies in rodents have shown that during acute 

pancreatitis ß- cells are derived from non-endocrine cells (Adler et al., 1979; Hao et 

al., 2006). Among vertebrates, cellular dedifferentiation is especially prominent in 

animals with exceptional regenerative abilities, such as Urodele amphibians like 

salamanders and newts. The red spotted newt (Notophthalmus viridescens) can 

regenerate entire limbs, brain, jaw, heart, intestines, spinal cord, tail, retina, lens and 

optic nerve (Jamie Morrison Pers. Comm., MYORES Workshop: Muscle 

Regeneration and Stem Cells: a multiorganismic approach in Niepolomice, Poland, 

October 12- 15, 2008). During salamander limb regeneration, cells from muscle, 

bone, cartilage, nerve sheath, and connective tissues participate in the 

dedifferentiation process to form a pool of proliferating progenitor cells in the 

regeneration blastema (Bodemer CW, 1959; Chalkley, 1954; Hay and Fischman, 

1961; Kumar et al., 2000; Lo et al., 1993; Wallace et al., 1974). These blastemal cells 

redifferentiate and give rise to all the internal tissues of the regenerated limb. 

Therefore, in contrast to hydra, cellular dedifferentiation followed by amplification is 

the mode of regeneration in salamanders. 
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1.3  Muscular Dystrophies: The need for understanding Muscle 

Regeneration  

 Unlike many other mammalian tissue types, skeletal muscle tissue shows very 

high regenerative capacity (Charge and Rudnicki, 2004). On one hand, this provides 

us with an excellent model to study basic processes involved in tissue regeneration. 

On the other hand, understanding these processes better would help us in designing 

more effective treatment strategies for patients suffering from heritable muscle 

wasting diseases such as muscular dystrophies.  

 Muscular dystrophies range from early onset, debilitating conditions, which 

confine the patient to a wheelchair and lead to an early death resulting from cardiac or 

respiratory failure, to late onset conditions (40 years and beyond), in which the patient 

can lead an almost normal life with varying degrees of muscle loss. The most 

common muscular dystrophies are the Duchenne, Becker, Limb Girdle, Congenital, 

Facioscapulohumeral, Myotonic, Oculopharyngeal, distal and Emery-Dreifuss 

muscular dystrophies. Altogether there are over 25 genes now known to produce 

various muscular dystrophies (Heydemann et al., 2007). Duchenne muscular 

dystrophy (DMD), a debilitating X linked disorder, is the most common form of 

muscular dystrophy (Emery, 1991). It results from mutations in the dystrophin gene 

and is found at a high frequency of 1 in 3500 male newborns (Hoffman et al., 1992). 

The dystrophin gene is the largest human gene to be identified so far (Koenig et al., 

1987). It comprises of 79 exons spanning atleast 2,300 kilobases (kb) (Tennyson et 

al., 1995). Consequently, it is a prime candidate for accumulating mutations. It 

encodes a 427 kDa protein that becomes strongly glycosylated (Ozawa et al., 1995; 

Yoshida et al., 1994) and forms a mesh with cytoskeletal intracellular proteins like F-

Actin, dystrophin, dystrobrevin and syntrophins, the transmembrane proteins 
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dystroglycans, sarcoglycans and integrins, and the extracellular matrix proteins such 

as Laminins and agrins (Ervasti et al., 1990). This meshwork, called the Dystrophin 

Associated Protein Complex (DAPC), is a major structural link holding the myofibers 

and the basal lamina together. Mutations in several of these genes result in a 

weakening of the DAPC complex and can result in a muscular dystrophy. For 

example, the four recessive limb girdle muscular dystrophies 2D, 2E, 2C and 2F are 

caused by absence of α, ß, γ or δ sarcoglycans, respectively (Hack et al., 2000; 

Heydemann et al., 2007; Wagner, 2002). Disrupting the cytoskeletal-ECM 

connections renders the myofiber membrane fragile, as the contractile forces of the 

myofiber are not transferred to the ECM. As a consequence of this intense stress the 

the muscle plasma membrane (sarcolemma) develop tears. Indeed, electron 

microscopy analysis and biopsies of muscular dystrophy patients have revealed 

numerous membrane lesions (Mokri and Engel, 1975) and also showed an increased 

uptake of membrane-impermeable dyes, and presence of non-muscle proteins inside 

of dystrophic muscle (Pestronk et al., 1982; Straub et al., 2000). Disruption of 

myofibers by membrane instability probably leads to elevated intracellular calcium 

levels. Elevated calcium in muscle fibers of muscular dystrophy patients and mdx 

mice (a mouse model of human Duchenne Muscular Dystrophy) has been 

demonstrated (De Backer et al., 2002; Robert et al., 2001; Turner et al., 1991). A high 

intracellular concentration of Ca+ can lead to activation of Ca++ activated neutral 

proteases such as Calpain3. Calpain3 is a muscle specific calpain that is essential for 

sarcomeric organization by modulating stability of structural proteins such as myosin 

light chain 1 (Cohen et al., 2006) and titin (Huebsch et al., 2005). Moreover, Calpain 

3 can cleave filamin C and regulate its ability to bind to γ- and δ-sarcoglycans (Guyon 

et al., 2003). Hyperactive Calpain may thus digest more structural proteins and 
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dynamics of protein turnover are disturbed thus weakening the muscle further. 

Increased intracellular Ca++ may also cause mitochondrial dysfunction in the muscles, 

thus resulting in a dystrophy via an alternative pathway (Robert et al., 2001; 

Vandebrouck et al., 2006). Hence, elevated levels of Ca++ ions could lead to a 

myopathy that could manifest itself as a muscular dystrophy. Additionally, 

dystrophin-deficient myotubes are susceptible to oxidative damage (Rando et al., 

1998). The initial damage to myotubes activates satellite cells and they proceed to 

repair the dystrophic muscles (Charge and Rudnicki, 2004; Wallace and McNally, 

2008). However, repeated rounds of satellite cells activation and muscle repair might 

cause replicative senescence of the satellite cell pool (Bigot et al., 2008) that may 

further contribute to the progression of the disease. How this may happen is not 

understood and is an active area of research. 

 As of now there are no definite treatments available for muscular dystrophies 

and they are treated mostly symptomatically. Promising therapeutic avenues of gene 

replacement, stem cell transplantation, pharmaceuticals, and upregulation of 

endogenous compensatory proteins have all been explored. Some of these methods 

are in clinical trials. For example, one of the therapies undergoing clinical trials till 

recently was based on using an antibody (MYO-029) blocking the activity of 

myostatin (initially called growth/differentiation factor-8 [GDF-8]), a TGF-ß family 

member that is a negative regulator of muscle growth. Normally, myostatin  activity 

would regulate the skeletal muscle mass and terminate myofiber growth (Joulia et al., 

2003; Langley et al., 2002; McPherron et al., 1997; Rios et al., 2002). Mutations in 

the myostatin gene result in animals with a huge increase in muscle mass (Kambadur 

et al., 1997; McPherron and Lee, 1997; Westhusin, 1997). Therefore, using an 

antibody against myostatin seemed like a promising way to counter muscle wasting 
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diseases. Unfortunately, even though the use of MYO-029 in adult subjects with 

muscular dystrophy produced a significant increase in muscle fiber size (10-15%), it 

did not result in increased muscle strength in a nine month trial period (Wagner et al., 

2008). Wyeth pharmaceuticals, Madison, New Jersey, USA, the manufacturers of 

MYO-029 have decided not to continue development of this recombinant antibody. 

The details of the clinical trials can be accessed at United States National Institute of 

Health website at http://www.clinicaltrials.gov/ct2/show/NCT00104078?term=MYO-

029&rank=2. This study, among others, underscores the importance of having a 

better understanding of both the diseases themselves and the biology of muscle 

regeneration and muscle stem cells. Coherent systemic ability to quantitatively 

manipulate information from a systems biology level understanding of muscle 

regeneration might be necessary to design therapies that influence multiple processes, 

just the right amount, at a time in a spatially and temporally coherent manner. 

 

1.4 Embryonic myogenesis and the origin of muscle stem cells 

 Since any regenerative event may tend to recapitulate an embryonic 

development paradigm (such as dedifferentiation), let us now take a brief look at the 

development of musculature in vertebrates. Most of our understanding about 

vertebrate myogenesis comes from the work done in chick and mouse models, 

although in recent years zebrafish has emerged as an important contributor to this 

field. We will first briefly review the basic paradigms of myogenesis in mouse/chick 

model and then compare these to what is known in zebrafish. 
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1.4.1 Early mesoderm and its derivatives 

 In vertebrate embryos, during gastrulation the mesoderm comes to lie 

underneath the ectoderm. Shortly after gastrulation, during neurulation, the 

invagination and folding of ectoderm to form the neural tube, the mesodermal cell 

population is split into two halves on either side of the neural tube. Some mesodermal 

cells left underneath the ventral section of the neural tube (the chordamesoderm) 

develop into the notochord. As the embryonic development proceeds, the masses of 

mesodermal cells placed on either side of the neural tube become organized into 

somites, transient condensations of mesodermal tissue that form in a metameric 

fashion as they are pinched off the pre somitic mesoderm (PSM). At this time the 

mesoderm can be subdivided into five regions. 1) The “chordamesoderm”, the tissue 

that gives rise to the notochord, a transient organ that establishes the anterior-posterior 

body axis. 2) The “paraxial mesoderm” that forms the somites. The somites give rise 

to many of the tissues of the back such as muscle, cartilage, bone, and dermis. 3) The 

“intermediate mesoderm” which forms the urinogenital system, comprising of the 

kidneys, the gonads and their associated ducts. It also forms the cortical part of 

adrenal gland. 4) The “lateral plate mesoderm” gives rise to the heart and the 

circulatory system, blood cells, lining of the body cavities and all the mesodermal 

components of the limbs except muscle. Finally 5) the “head mesenchyme” gives rise 

to the connective tissue and muscles of the face. A schematic of mesoderm derived 

tissues is shown in Fig. 1. 
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1.4.2 The formation of somites 

 Neurulation and the formation of somites proceed in an anterior to posterior 

manner such that the anterior somites are formed first and the posterior somites later 

(Fig. 3 and Fig. 4). The segmentation of the PSM is a complex process that depends 

on complex genetic interactions involving highly dynamic gene expression. Despite 

identification of several key molecular players in this process it is not understood very 

well. A few models have been proposed to understand certain subsets of segmentation 

but a mechanistic understanding of the whole process has not yet been achieved. 

Since somites form at regular intervals; every 2 hours in mouse, 90 minutes in chick 

and 30 minutes in zebrafish; it has been proposed that there is a segmentation clock at 

work during segmentation. . First proposed by Cooke and Zeeman in 1976, the 

Figure1: Transverse section of an idealized chick embryo showing mesoderm and tissues 
derived from it (except neural tube). See text for details. Figure adapted from 
Developmental Biology by Scott F. Gilbert (6th Edition). 
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“clock-and-wavefront model” proposes the existence of a cellular clock that might 

interact with a slowly progressing wave (wavefront) that moves along the presomitic 

mesoderm from anterior to posterior at a constant velocity to produce the periodic 

series of somites (Cooke and Zeeman, 1976). The interaction between the wave and 

the oscillator was proposed to allocate cells to individual somites in a regular fashion 

along the anteroposterior axis.  

 The first evidence for segmentation clock came from the observations that a 

Notch target gene, c-hairy 1, is expressed in rhythmic waves in the PSM in chick 

embryos with the same periodicity as the somite formation (90 minutes) (Palmeirim et 

al., 1997). Thereafter, several genes exhibiting a dynamic oscillatory expression 

pattern in PSM were identifies in fish, frog, chick and mouse embryos, pointing 

towards a conserved mechanism of segmentation clock in vertebrates. These genes 

include lunatic fringe (lfng) (Aulehla and Johnson, 1999; Forsberg et al., 1998), Hes1 

(Jouve et al., 2000), Hey2 (Leimeister et al., 2000) and Hes7 (Bessho et al., 2003; 

Bessho et al., 2001) in mouse; c-hairy2, c-Hey2/HRT2 (Leimeister et al., 2000) and 

Lfng (Aulehla and Johnson, 1999; McGrew et al., 1998) in chick; her1 (Holley et al., 

2000; Sawada et al., 2001), deltaC (Jiang et al., 2000) and her7 (Gajewski et al., 

2003; Oates and Ho, 2002) in zebrafish; and esr9 and esr10 in Xenopus (Li et al., 

2003b). In accordance with the cyclic nature of somitogenesis, these genes oscillate in 

phase and their expression is driven by Notch signaling (Barrantes et al., 1999; Jouve 

et al., 2000; Leimeister et al., 2000; Oates and Ho, 2002; Sieger et al., 2003; Takke 

and Campos-Ortega, 1999). Several of these genes have been demonstrated to form 

part of a negative feedback transcriptional regulatory loop which keeps the 

segmentation clock ticking.  
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 Activation of Notch signalling via Delta cleaves the Notch intracellular 

domain (NICD) (Huppert et al., 2005; Morimoto et al., 2005) and it translocated to the 

nucleus (Kidd et al., 1998; Kopan et al., 1996; Lecourtois and Schweisguth, 1998; 

Struhl and Adachi, 1998). Once within nucleus NICD binds to Supressesor of Hairless 

(SuH)/RBP Jκ (Jarriault et al., 1995; Lu and Lux, 1996) and activates Notch 

responsive genes including the glycosyltransferase, Lunatic fringe (Lnfg) (Cole et al., 

2002; Morales et al., 2002). Lnfg can modulate ligand-receptor affinity of Notch by 

modification of the extracellular domain of Notch (Bruckner et al., 2000; Moloney et 

al., 2000; Panin et al., 1997). Since Notch signaling becomes constitutively active in 

lunatic fringe mutants (Morimoto et al., 2005) it is believed that Lunatic Fringe acts to 

inhibit Notch, forming a negative feedback loop. This would lead to a diminished 

activity of Notch as Lfng accumulates. The repression on Notch activity is removed as 

Lfng undergoes degradation and no fresh Lfng is transcribed (due to Notch activity 

being compromised). A reduction in Lfng causes increased Notch activity which in 

turn continues the whole cycle again (Fig. 2). 
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The second key component of the model proposed by Cooke and Zeeman was 

the “wavefront”, a maturation wave moving in the anterior to posterior direction (A-

P) (Cooke and Zeeman, 1976). It was observed that fibroblast growth factor 8 (fgf8) 

transcripts form an A-P gradient along the PSM (Dubrulle et al., 2001). Increasing the 

local concentration on FGF8 protein in the PSM caused reduction in somite size, and 

inhibition of FGF8 signaling resulted in generation of larger somites. Recent work by 

Dubrulle and colleagues showed that the de novo fgf8 mRNA synthesis is restricted to 

the tail bud and that the fgf8 mRNA as well as the protein gradient is formed as a 

result of mRNA decay (Dubrulle and Pourquie, 2004). Blocking the FGF signaling in 

mouse tail explants with SU5402, an inhibitor of the tyrosine kinase activity of the 

FGF Receptor, resulted in quick loss of cyclic expression of axin2 and sprouty2 (an 

FGF target gene) but Lfng oscillations took a day to subside. This clearly shows that 

Figure 2: Model of an oscillator mechanism based on negative feedback. Notch signalling 
activates cyclic gene transcription. Lfng then closes the loop by modifying Notch, thereby 
inhibiting Notch signalling. This negative effect is transient owing to the rapid turnover of 
Lfng. NICD, NotchICD. Adapted from (Dale et al., 2003). 
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Notch signaling is an indirect target of FGF signaling during segmentation (Wahl et 

al., 2007).  

 Although the clock and wavefront model explains some aspects of 

somitogenesis, it does not explain the anterior-posterior polarity generated within the 

somite. Other models have been proposed to explain specific aspects of somitogenesis 

(Collier et al., 2000; Flint et al., 1978; Kerszberg and Wolpert, 2000; Meinhardt, 

1986; Polezhaev, 1992) but none of them, as yet, give a holistic explanation of 

somitogenesis. Finally, depending on their position along the anteroposterior (AP) 

axis, somite derivatives acquire a defined anatomical identity that is imposed mainly 

by Hox genes that control their subsequent regional differentiation (Kmita and 

Duboule, 2003; Wellik, 2007). 

1.4.3 Muscle development from the somites: A morphological overview 

 Different regions in the somite give rise to different kind of cells. The most 

ventral cells become mesenchymal and form the sclerotome (Fig. 4), which gives rise 

to the ribs and vertebrae. The dorsal part of the somite forms the dermomyotome (Fig. 

4) which gives rise to muscles and the dermis of the skin. The dermomyotome itself is 

subdivided into medial and lateral halves. The medial part, also called epaxial 

dermomyotome, is closer to the neural tube and the lateral part (also called hypaxial 

dermomyotome) is furthest away from the neural tube (Fig. 4). Cells from the medial 

dermomyotome turn inwards (called the Dorsomedial lip, DML) (Denetclaw et al., 

1997) and form the myotome (Fig. 4), from which the muscle progenitor cells called 

embryonic myoblasts (Fig. 4) will arise and form the axial muscles (Fig. 4) of the 

body. The cells at the ventral most edge of the hypaxial dermomyotome also turn 

inwards and the edge is now called the Venterolateral lip, VLL (Denetclaw and 
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Ordahl, 2000) (Fig. 4). The behavior of cells at the VLL depends on their axial level. 

At the limb bud level, cells from VLL will delaminate and migrate into the lateral 

plate mesoderm where they would differentiate to form limb and limb girdle 

muscles(Chevallier et al., 1977). At interlimb levels, cells at the VLL translocate 

underneath to produce the hypaxial myotome (Cinnamon et al., 1999; Denetclaw and 

Ordahl, 2000). The VLL and hypaxial myotome invade the lateral plate mesoderm 

together as a somitic bud, which gives rise to the body wall and abdominal muscle 

(Christ et al., 1983).  

 

 

 

 

Figure 3: Hamburger Hamilton stage 10 chick embryo showing development of 
somites. The left panel shows a dorsal view and the right panel shows transverse 
sections at different axial levels. Note that the rostral somites are more developed than 
the caudal somites (see text). Adapted from Vade mecum, an interactive guide to 
developmental biology, the CD companion to Developmental Biology by Scott F. 
Gilbert (6th Edition). 
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Currently, in chick, there are two models proposed to explain the generation of 

myotome from dermomyotomal cells. The Kalcheim model (Fig. 5A-C) proposes that 

there are distinct waves of myotomal growth. In the first wave of myogenesis, the 

myogenic precursors from the DML, instead of translocating directly into the 

myotome, first migrate to the rostral lip of the dermomyotome and then as they 

differentiate into the myofibers, elongate along the rostro-caudal axis. Subsequent 

growth occurs when the second wave of myogenic precursors translocates directly 

Figure 4: The embryonic origin of limb and trunk skeletal muscle. The presomitic 
paraxial mesoderm is located on either side of the notochord. The lateral-plate mesoderm 
is positioned tangentially to the intermediate mesoderm, which in turn is positioned 
laterally to the paraxial mesoderm. Segmentation of the paraxial mesoderm into somites 
occurs along the dorsal–ventral axis and in a rostral to caudal direction. In response to 
signals from the notochord and the neural tube, the somites differentiate and subdivide to 
give rise to the dermomyotome and the sclerotome. The dermomyotome is subdivided into 
the hypaxial and the epaxial dermomyotome, and is the source of cells for the lateral trunk 
musculature and deep back musculature, respectively. Cells of the dorsal medial lip 
(DML) migrate under the dermomyotome to form the epaxial myotome. A similar event 
occurs at the ventral lateral lip (VLL), which results in the formation of the hypaxial 
myotome. Cells of the VLL also undergo an epithelial to mesenchymal transition, 
delaminate and migrate to regions of presumptive muscle development in the limbs 
(migrating hypaxial cells).  Adapted from (Parker et al., 2003). 



Introduction 

21 

into the myotome from the rostral and caudal dermomyotome lips, and intercalates 

with preexisting myofibers (Kahane et al., 1998a; Kahane et al., 1998b). A later, third 

wave of myotome growth occurs when another mitotically active population of 

myoblasts enters the myotome from rostral and caudal dermomyotome edges (Kahane 

et al., 2001) to continue the expansion of myotome. In contrast, Ordhal and colleagues 

(Fig. 5D-F) state that DML and VLL cells translocate directly underneath the 

dermomyotome to form the subjacent myotome. Once in the myotome, the myofibers 

elongate in a rostro-caudal direction, while the myotome expands medio-laterally. In 

this way older myofibers are displaced laterally as newer myofibers translocate into 

the myotome medially. Surgical ablation and dye labeling studies reveal that the DML 

is both necessary and sufficient for formation and growth of epaxial myotome and 

that DML cells translocate directly into the myotome without prior translational 

movement (Denetclaw et al., 2001; Ordahl et al., 2001). Shortly afterwards, the 

central dermomyotomal sheet undergoes epithelial to mesenchymal transition (EMT) 

(Tosney et al., 1994) and its progeny, composed of at least bipotent cells, forms both 

the dermis (Olivera-Martinez et al., 2000), and a majority of mitotic muscle 

progenitors (Ben-Yair et al., 2003; Ben-Yair and Kalcheim, 2005). The final fate of 

these cells is varied with most of them undergoing myogenesis, but other contributing 

to muscle fibroblasts, endothelial cells and muscle satellite cells (Gros et al., 2005; 

Kassar-Duchossoy et al., 2005; Relaix et al., 2005; Scaal and Christ, 2004).  
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Figure 5: The Kalcheim and the Ordhal models of myoblast migration and myofibre 
growth during avian myotome formation. The dermomyotome epithelium (DM) has been 
lifted, leaving the myotome and the dermomyotome edges, the dorsomedial lip (DML), 
the ventrolateral lip (VLL), the rostral lip (R) and the caudal lip (C). Blue arrows represent 
migration of myoblasts, red arrows represent growth of myofibres and black lines 
represent elongated myofibres. (A–C) In the Kalcheim model (see text for details), the 
progenitor myoblasts originate along the rostral–caudal extent of the dorsomedial wall, 
delaminate and migrate to rostral positions (A), and the myofibres then grow in a rostral-
to-caudal direction (B). A second wave of fibres arises from all four myotome edges; the 
myoblasts from the rostral and caudal edges directly generate myofibres, whereas those 
from the DML and VLL first migrate to the rostral and caudal edges before entering the 
myotome (C). The second wave causes expansion of the myotome in both the rostrocaudal 
and dorsoventral directions and also increases the myotome thickness in the transverse 
plane. (D–F) In the Ordahl model (see text for details), myoblasts enter from the DML 
along its rostral–caudal extent (D), and myofibres grow out towards the rostral and caudal 
edges simultaneously from many points along the rostral–caudal extent of the myotome 
(E).Myoblasts continue to be added from the DML, and the VLL, and older fibres are 
displaced more laterally (F). NC, notochord; NT, neural tube. Figure adapted from 
(Hollway and Currie, 2003).
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1.4.4 The spatial patterning of somite occurs in response to signals emanating 

from adjacent tissues 

 One pertinent question in somitogenesis is whether different regions in a 

somite are lineage restricted or whether they acquire their identity in response to the 

signals in the range of which they find themselves in. Grafting a part of the somite to 

another region of the somite or transplantation of a somite rotated through 180° have 

shown that cells in the newly formed somite are not lineage restricted (Aoyama and 

Asamoto, 1988; Dockter and Ordahl, 2000; Ordahl and Le Douarin, 1992). Rather, 

the somatic compartments are determined in response to extrinsic signals emanating 

from surrounding tissues (Dockter and Ordahl, 1998; Williams and Ordahl, 1997) 

(Fig. 6). Expression of Sonic hedgehog (Shh) and Noggin in the floorplate of the 

neural tube and notochord is required for inducing and maintaining the sclerotome 

(Borycki et al., 1998; Brand-Saberi et al., 1993; Chiang et al., 1996; Dietrich et al., 

1997; Fan and Tessier-Lavigne, 1994; Johnson et al., 1994; McMahon et al., 1998; 

Munsterberg et al., 1995; Munsterberg and Lassar, 1995; Pourquie et al., 1993; 

Watterson et al., 1954).  The Wnts, Wnt1 and Wnt3a from the dorsal neural tube play 

an inductive role in formation of the epaxial dermomyotome (Capdevila et al., 1998; 

Christ et al., 1992; Dietrich et al., 1997; Fan et al., 1997; Fan and Tessier-Lavigne, 

1994; Ikeya and Takada, 1998; Munsterberg et al., 1995; Munsterberg and Lassar, 

1995; Olivera-Martinez et al., 2001; Spence et al., 1996; Wagner et al., 2000), while 

hypaxial dermomyotome induction requires contact mediated signaling by Wnt4, 

Wnt6 and Wnt7a from the surface ectoderm (Dietrich et al., 1997; Fan et al., 1997; 

Fan and Tessier-Lavigne, 1994) and Bmp4 from the lateral plate mesoderm (Pourquie 

et al., 1996). Thus, the somite is patterned by the dorsalizing influence of Wnts from 
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the dorsal neural tube and the surface ectoderm and the ventralizing influence of Shh 

activity from the ventral midline.  

 Since both Wnts and Shh are morphogens that have been shown to act, in 

vitro, at a distance greater than the diameter of the somite (Fan et al., 1997; Fan et al., 

1995; Fan and Tessier-Lavigne, 1994), it is surprising how precisely the range of 

dorsalizing and ventralizing influences is maintained. It seems that dorsalizing and 

ventralizing signals not only induce cell fate but that they also induce competitive 

inhibitors of the opposing signaling molecule. Therefore, a higher concentration of 

Shh is inhibitory to Wnt influence and a higher concentration of Wnts curbs Shh 

influence. For example, it has been shown that the Wnt antagonist Soluble frizzled 

related protein 2 (Srfp2) is expressed in the sclerotome (Lee et al., 2000). It has also 

been shown that Srfp2 is upregulated in PSM explants in response to Shh and can 

block the activity of Wnt1 and Wnt4 in these explants (Lee et al., 2000). Similarly, 

Growth-arrest specific gene1 (Gas1), a glycosyphosphatidylinositol (GPI)-anchored 

membrane protein, is expressed in the dorsal somite (Lee et al., 2001). In PSM 

explant cultures, Gas1, induced in response to Wnts, can bind recombinant Shh and 

reduce the transcriptional read out of Shh target genes like pax1 and patched (Lee et 

al., 2001). Thus, Shh and Wnts use a combination of induction and competitive 

inhibition to precisely pattern the somite.  
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Even though the skeletal muscles in the vertebrate body in different locations 

are quite similar in form and function, there are four distinct muscle groups based on 

their developmental origins and genetic hierarchies: the trunk muscles, the cranio-

facial muscles, the extra-ocular muscles and the pharyngeal arch muscles. For the 

purpose of this report, the discussion on myogenesis will be limited to the trunk 

muscles. The common feature during development among all skeletal muscles is the 

expression of and subsequent impartment of the genetic program driven by members 

Figure 6: Genetic 
interactions in the 
dermomyotome. A 
schematic showing 
how Wnts from the 
dorsal neural tube and 
the dorsally lying 
ectoderm and Shh 
from the notochord 
and the floor plate 
pattern the somite by 
inducing dorsal and 
ventral fates, 
respectively, and also 
limiting the influence 
of other signaling 
molecule by inducing 
inhibitors. See text for 
details. Figure adapted 
from “Development of 
Somitic Lineages” 
poster from the R&D 
Systems website 
(http://www.rndsystem
s.com/DAM_public/58
34.pdf) 
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of basic Helix loop Helix (bHLH) domain containing transcription factors called the 

Myogenic Regulatory Factors (MRFs). Once a myoblast starts expressing MRFs it is 

committed to become a skeletal muscle. MRFs include myogenic factor 5 (myf5) 

(Emerson, 1990; Rudnicki et al., 1993), myogenic differentiation 1 (myod1 also 

called myod) (Rudnicki et al., 1993), myf6 (also called MRF4) (Montarras et al., 

1991) and myogenin (Myog) (Edmondson and Olson, 1989; Emerson, 1990; Wright 

et al., 1989). MRFs, along with a number of cofactors, are responsible for the 

expression of genes that are required to make the contractile apparatus of a mature 

skeletal muscle cell. The upstream genetic regulators of MRFs might vary depending 

on whether the skeletal muscles being formed are cranio-facial, extraoccular, 

pharyngeal arch or trunk muscles. For example, mice knockouts of transcription 

factors Tbx1, Pitx2, Transcription factor 21 (tcf21), and musculin, all show defects in 

the formation of distinct cranial muscles (Arnold et al., 2006; Dastjerdi et al., 2007; 

Dong et al., 2006; Kelly et al., 2004; Lu et al., 1999; Lu et al., 2002). For generating 

trunk muscles though, the MRFs act downstream or in parallel with the paired box 

transcription factors Pax3 and Pax7 (Kassar-Duchossoy et al., 2005). This is obvious 

since the loss of Pax3/7 results in loss of all but very early (prior to E10.5) muscles 

(Fig. 7). Pax3 itself is regulated by the activity of members of sine occulis (six) 

(Grifone et al., 2005) and eyes absent (eya) (Heanue et al., 1999) protein family 

members. The Six proteins have also been shown to directly regulate Myf5 and 

Myogenin in specific contexts (Giordani et al., 2007; Laclef et al., 2003). 
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Figure 7: Pax3/7 function during the formation of skeletal muscle. (a) The epithelial 
dermomyotome of a somite (green) and the underlying skeletal muscle of the myotome 
(beige) are initially formed by delamination of cells from the edges of the dermomyotome 
(blue arrows). Subsequently, as the central dermomyotome loses its epithelial structure 
and resident myogenic progenitor cells enter the myotome (red arrows). The transcription 
factors that regulate these events are shown in red. (b) A schematic of the progenitor cells 
and their muscle derivatives, together with the timing of these events in the mouse 
embryo. Circular gray arrows indicate proliferation. The gray box shows myogenic events 
that are lost in the absence of Pax3 and Pax7. E, embryonic day. Figure adapted from 
(Buckingham and Relaix, 2007). 
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In the context of a somitic muscle development, pax3 is already transcribed in 

presomitic paraxial mesoderm just prior to segmentation. Thereafter, it is transcribed 

throughout the epithelial somite before becoming restricted dorsally to the 

dermomyotome, where its expression extends to the extremities of the epaxial and 

hypaxial dermomyotomes. In contrast, pax7 transcripts are concentrated in the central 

domain. Pax3 is required for the formation of hypaxial muscles of the trunk and for 

the delamination and migration of myogenic progenitor cells to other sites of 

myogenesis such as those in the limb (Tajbakhsh and Buckingham, 2000). As cells 

leave the dermomyotome and enter non-myogenic lineages, Pax3/7 expression is 

downregulated (Ben-Yair and Kalcheim, 2005; Esner et al., 2006; Gros et al., 2005). 

As stated above, the differentiation of skeletal muscles is totally dependent on MRFs. 

Myf5, MyoD and MRF4 govern the acquisition of a myoblast fate whereas Myogenin, 

MyoD and MRF4 are needed for terminal differentiation (Buckingham et al., 2006). 

As the myogenic progenitor cells enter the myotome from the extremities of 

dermomyotome, Myf5 and MRF4 regulate their myogenic program independently of 

Pax3/7.  

 In mice, Myf5 and MyoD are activated at different times and in different 

domains. Myf5 is first expressed in the DML epaxial myotome and later in the 

myotome itself. MyoD is expressed somewhat later, first in the somitic dorsomedial 

quadrant and thereafter in the incipient myotome. Till recently it was believed that 

Myf5 and MyoD can act in a largely redundant manner as mice knockouts for either 

gene have normal myogenesis but a double knockout was described as completely 

devoid of trunk musculature (Rudnicki et al., 1993). Since mice mutant for both Pax3 

and Myf5 do not show any MyoD expression or trunk muscle formation, two parallel 

pathways for trunk myogenesis have been proposed in mice. Either Myf5 or MyoD is 
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sufficient to regulate myogenesis but MyoD is turned on by Myf5 in one pathway and 

Pax3 in the other pathway (Tajbakhsh et al., 1997) (Fig. 8, black arrows). However, 

recent data from Kassar-Duchossoy et al. suggest that MRF4 acts as a cell fate 

determination gene in absence of both Myf5 and MyoD (Kassar-Duchossoy et al., 

2004). Kassar-Duchossoy et al. used an allelic series of three Myf5 mutants that 

differentially affect the expression of the genetically linked Mrf4 gene, showing that 

skeletal muscle is lost in the Myf5:MyoD double null mice only when Mrf4 

expression is also compromised (Kassar-Duchossoy et al., 2004). It is likely that Pax3 

also regulates Mrf4 expression (Fig. 8, shown as red arrow). In contrast to mice, the 

evidence for involvement of Notch signaling in the chick, points to a slightly different 

hierarchy between Pax3, Myf5 and MyoD. Initially Myf5 is co-expressed with Pax3 

in the DML, where proliferating cells are believed to reside (Hirsinger et al., 2001). 

MyoD expression is turned on later when the myoblasts have entered the myotome 

and are believed to be postmitotic. So here it seems that proliferative cells express 

Pax3 and Myf5 and once the cells are postmitotic, they express MyoD. Components 

of the Notch pathway such as the Notch1 receptor and its ligands Delta1 and Serrate2 

are expressed in differentiating myoblasts (Hirsinger et al., 2001). Overexpressing 

Delta1 leads to down regulation of MyoD and results in a complete lack of 

differentiated muscles, although initial formation of the myotome is unaffected 

(Hirsinger et al., 2001). Therefore, Notch signaling acts downstream of Pax3/Myf5 

and upstream of MyoD to regulate myogenic differentiation. 

 In the lateral dermomyotome the precursors of hypaxial muscles are 

demarcated by Pax3 expression as is evident by loss of all hypaxial muscles in Pax3 

mutant mice. The first step in migration of muscle precursors is their delamination 

from the hypaxial dermomyotome. This delamination is mediated by the receptor 
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tyrosine kinase c-Met and its ligand Scatter Factor/Hepatocyte Growth Factor 

(SF/HGF) (Bladt et al., 1995; Dietrich et al., 1998). c-Met is expressed throughout the 

hypaxial dermomyotome, and this is consistent with it being a direct target of Pax3 

(Epstein et al., 1996; Relaix et al., 2003). SF/HGF, the ligand of c-Met however, is 

expressed only at the axial levels of limb buds. Ectopic application of HGF has shown 

to cause delamination of dermomyotomal cells at axial levels on which these cells 

never delaminate (Brand-Saberi et al., 1996; Heymann et al., 1996). Once 

delaminated, the muscle precursors migrate and are guided to their targets by 

“guidance cues” such as SDF1 (Ratajczak et al., 2003). For details of myoblast 

migration please see (Vasyutina and Birchmeier, 2006). 

 Amidst all these myogenic events the proliferating central dermomyotomal 

population that co-expresses Pax3 and Pax7 undergoes EMT, with cells entering 

either the myotome or the dermis as the dermomyotome disintegrates (Tosney et al., 

1994). Elegant quail-chick chimera experiments have revealed that the majority of the 

cells in this myotomal population starts expressing Myf5/MyoD and will eventually 

contribute to muscle growth in late fetal and postnatal life. A quail central 

dermomyotomal tissue was grafted into a region of the central dermomyotome of 

chick after chick tissue had been excised. Thereafter, an antibody specifically 

recognizing quail cells was used to identify the quail cells in post hatch chicks. This 

lead to the finding that most of the cells derived from the central dermomyotomal 

region (quail derived) contributed to the post natal muscle. 
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1.5 Skeletal muscle regeneration: The role of satellite cells 

 Mammalian muscle regeneration has been shown to proceed almost 

exclusively through a “stem cell” population responsible for postnatal muscle growth 

and regeneration. Although cells from sources other than muscles, such as cell from 

bone marrow or pericytes, the blood vessel associated mesenchymal like cells 

(Grounds et al., 2002), might contribute to skeletal muscle regeneration under culture 

or experimental conditions, the extent of their contribution to regenerating muscles in 

Figure 8: Differences in 
mouse vs. chick 
myogenesis. Myogenic 
pathway is inherently 
dependent on MyoD in 
chick where as in mouse 
MyoD independent 
pathways can compensate 
for loss of MyoD activity. 
See text for details. See 
text for details (Brent and 
Tabin, 2002; Kassar-
Duchossoy et al., 2004).  
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physiological conditions remains unknown. In 1961, Mauro described a population of 

cells lying under the basal lamina, juxtaposed to the myofiber, in a “satellite” position 

(Fig. 12). He decided to call these cells “satellite cells” and speculated that they 

“might be” pertinent to the vexing problem of skeletal muscle regeneration” (Mauro, 

1961). Mauro also speculated on the origin of these cells and hypothesized that they 

might be remnants of the embryonic myoblasts and recapitulate embryonic 

development when the main multinucleated cell is damaged. 

 Indeed this is the case, as it has been shown with quail chick chimera and long 

term lineage tracing experiments. Using the quail chick chimera methodology, in 

conjunction with Pax7 antibody staining to mark satellite cells, it was shown that over 

90% of the satellite cells identified in the graft region came from quail (Gros et al., 

2005). Hence most of the satellite cells found in postnatal muscle are dermomyotomal 

in origin and share a common origin with embryonic myoblasts.   

 Much of the research focused on satellite cells has been performed on single 

fiber cultures, where satellite cells are isolated with their associated fibers still 

covered by the basal lamina that surrounds each muscle fiber (i.e., within their niche). 

Isolated myofibres provide an accessible means to study the activation, proliferation, 

and differentiation of satellite cells in their native position. This model preserves 

potentially important interactions between satellite cells and/or myofiber.  

 The general mechanism of muscle repair via satellite cell has now been 

established, although the details of several of the processes are not understood very 

well. Normally quiescent satellite cells lie under the basal lamina adjacent to the 

myofiber. Following activation, satellite cells, now termed skeletal myoblasts, leave 

their niche and undergo repeated rounds of self replication (Fig. 9). The skeletal 

myoblasts have to survive and proliferate initially in a severe inflammatory response 
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from immune cells and macrophages as the degraded muscle fibers around them 

become necrotic and are cleared away by the immune cells (not shown in Fig. 9). 

When the skeletal myoblasts have amplified to a sufficient number, most of these 

cells start expressing markers committing them to differentiation (Fig. 9). Some 

myoblasts however do not proceed to differentiation and go back to expressing 

markers of quiescent satellite cells and populate the satellite cell niche (not shown in 

Fig. 9). Finally they fuse forming multinucleated myofibers and start expressing genes 

encoding for sarcomeric proteins (Fig. 9). The entire process is highly dynamic and is 

tightly regulated by genetic networks, the details of which have begun to emerge only 

in last 10 years. For a review see (Charge and Rudnicki, 2004). In the subsequent 

sections we would take a look at these events and the underlying mechanisms in more 

detail. 

 

 

 

 

 

 

Figure 9: A satellite cell progressing from quiescence, through activation to fully mature 
myofiber. See text for details. Figure adapted from (Le Grand and Rudnicki, 2007). 
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1.5.1 The role of pax3/7 genes in satellite cell biogenesis and function 

 Pax7 is the key genetic regulator required for satellite cell generation and 

function. Pax7 is expressed by all satellite cells (Kuang et al., 2006; Seale et al., 2000) 

and has been the most commonly used marker for their study. Although neonatal Pax7 

null mice have a significant number of satellite cells, a major fraction of these cells is 

lost via apoptosis as the mice reach adulthood (Relaix et al., 2005; Seale et al., 2000). 

A few Pax3 positive satellite cells are observed in some muscles, but Pax3 is mostly 

downregulated before birth and is unable to substitute for the anti-apoptotic effects of 

Pax7. Posttranscriptional regulations also differentially affect Pax3 and Pax7 stability. 

Specific lysine residues at the C-terminal region of Pax3 protein get mono-

ubiquitinated, leading to proteasome mediated degradation (Boutet et al., 2007). 

However, Pax7 lacks such lysine residues and therefore escapes this degradation, as it 

has been shown that addition of these lysine residues to the Pax7 protein can cause 

mono-ubiqitination and subsequent proteasomal degradation (Boutet et al., 2007). 

Since Pax3 null mice are embryonic lethal, a true evaluation of the role of Pax3 in 

regulation of satellite cell biology must await the generation of a conditional null 

allele of Pax3. The mechanism by which Pax7 governs adult myogenesis has been 

under intense investigation. Recent work has suggested a direct regulation of Myf5 by 

Pax7 binding a paired domain motif containing enhancer and driving expression in 

myoblasts derived from satellite cells (Buchberger et al., 2007). Another recent study 

demonstrated that Myf5 is regulated by Pax7 through a histone methylation 

mechanism when ChIP analysis and Mass spectrometry revealed that Pax7 in a 

complex with Wdr5 and Ash2L, members of a histone methyl transferase complex, 

binds to -57.5 kb region of myf5 gene (McKinnell et al., 2008). 
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These results suggest a sequential activation of Myf5 by Pax7 that directs the 

subsequent myogenic program via MyoD and other MRFs till finally muscle 

differentiation genes are expressed. However they do not explain the heterogeneity 

that exists within satellite cell pools in vivo, and the cross-inhibitory interaction 

between Pax7 and certain MRFs that seems to be independent of the transcriptional 

regulatory ability of Pax7 (Olguin et al., 2007) (discussed in Fig. 10 and accompanied 

text). 

1.5.2 Satellite cell activation 

 The adult skeletal muscle satellite cells are normally quiescent and exhibit 

limited gene activity and protein synthesis. Upon muscle injury, such as those induced 

by load bearing exercise, by trauma, or by myo-degenerative diseases, such as 

muscular dystrophies, the satellite cells are activated and enter the cell cycle (Charge 

and Rudnicki, 2004). It remains largely unknown which signal triggers this activation, 

although recent reports point towards involvement of both intrinsic as well as 

extrinsic signals. A signal intrinsic to the cell itself, sphingosine-1-phosphate (S-1-P), 

synthesized from sphingomyelin from the inner leaflet of the satellite cell plasma 

membrane, seems to be required for satellite cell entry into the cell cycle, and 

inhibition of its synthesis drastically abrogates muscle regeneration (Nagata et al., 

2006b). However it is not clear what extracellular signals regulate generation of S-1-P 

from sphingomyelin. Extracellular signals such as stretch induced nitric oxide 

synthesis that results in release of hepatocyte growth factor (HGF) can lead to 

activation of satellite cells via the HGF receptor c-MET (Wozniak and Anderson, 

2007). Nitric oxide also induces expression of Follistatin (Pisconti et al., 2006), a 

fusigenic (causing membrane fusion) secreted molecule, known to antagonize 
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myostatin. Myostatin, expressed by quiescent satellite cells, is a negative regulator of 

myogenesis. Thus nitric oxide may contribute to the satellite cells’ exit from 

quiescence. Microenvironment-secreted growth factors are another stimulus for 

satellite cell activation. Fibroblast growth factors (FGF) are known to induce 

promyogenic Mitogen Activated Protein Kinases (MAPK) signaling cascades and the 

p38α/ß MAPK acts as a molecular switch by activating satellite cells when it is 

activated and by maintaining quiescence when it is inactivated (Jones et al., 2005). 

 A conundrum related to satellite cell activation is why there is a decrease in 

regenerative potential during senescence. Satellite cells from aged mice show reduced 

proliferative potential and a decline in numbers. It was shown that satellite cells from 

aged rats can proliferate and lead to effective regeneration when transplanted into a 

younger host while satellite cells from a young donor are unable to do the same when 

transplanted into a senescent host (Carlson and Faulkner, 1989). This has been 

attributed to a shift of balance between Notch and Wnt signaling pathways during 

aging.  Satellite cells from aged muscles fail to upregulate the Notch ligand Delta, 

resulting in a lower level of Notch activation in muscles of senescent animals 

(Conboy et al., 2003). This hypothesis is supported by the evidence that forced 

activation of Notch restored the regenerative potential of aged muscle and that 

blocking Notch signaling impairs muscle regeneration in young mice (Conboy et al., 

2003). Satellite cells from aged animals upregulate the canonical Wnt signaling 

pathway, thereby acquiring an increased tendency to differentiate into a fibrogenic 

lineage (Brack et al., 2007). Presence of Klotho, a secreted protein with glucosidase 

activity that is capable of binding and antagonizing Wnts, seems to be a likely 

component in the young systemic milieu leading to an effective regeneration (Liu et 
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al., 2007a). Indeed, mice mutant for Klotho exhibit premature aging like phenotype 

(Kuro-o et al., 1997), however, a direct role for Klotho in muscle is yet to be tested. 

1.5.3 Myogenic progression of satellite cells 

The myogenic potential of the satellite cells relies on their ability to 

sequentially express Pax3/7 genes and subsequently express the MRFs (myoD, Myf5, 

myogenin, and MRF4). As mentioned before, Pax7 is expressed by all satellite cells 

and Pax3 by a subset of satellite cells. After activation, however, Pax3 can be detected 

in most skeletal myoblasts (Relaix et al., 2006) but its role in muscle regeneration is 

not clear as Pax3 knock outs die in utero and a conditional knock out of Pax3 does not 

exist. Pax3 and Pax7 both can activate myogenic genes like myoD but only Pax7 

possesses the antiapoptotic function (Relaix et al., 2006). Therefore, continued 

expression of Pax7 after their activation ensures that satellite cells survive a massive 

surge in production of free radicals and the inflammatory response that digests the 

necrotic myofibers after injury. It has recently been shown that signaling via erbB 

receptors, members of the EGF receptor tyrosine kinase family, is involved in 

mediating this anti-apoptotic role (Golding et al., 2007) although it is not known if 

Pax7 plays a direct role in this process. Pax3 expression prevents differentiation of 

skeletal myoblasts, and proteasomal degradation of Pax3 by mono-ubiquitination 

paves the way for their differentiation (Boutet et al., 2007). This is evident from the 

observation that expressing a mutant form of Pax3 that is resistant to this 

ubiquitination and thus proteasomal degradation leads to inhibition of differentiation 

in skeletal myoblasts (Boutet et al., 2007). Pax7 induces myoblast proliferation and 

delays their differentiation by decreasing MyoD protein stability (Olguin et al., 2007).  

This activity of Pax7 however, seems to be independent of its function as a 
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transcriptional activator (Olguin et al., 2007). Therefore Pax7 can act both at a 

transcriptional level as well as at protein level.  

In contrast to the Pax proteins, MyoD and Myf5 have very well defined roles 

in satellite cells. MyoD is essential for the differentiation potential of skeletal 

myoblasts (Cornelison et al., 2000; Sabourin et al., 1999) while Myf5 regulates their 

proliferation rate and homeostasis (Gayraud-Morel et al., 2007; Ustanina et al., 2007). 

Unlike in embryonic myogenesis, Myf5 and MyoD cannot effectively compensate for 

the loss of each other in adult context. This is evident from the fact that mdx mice, 

when crossed into either Myf5 null or MyoD null mice, did not show efficient muscle 

regeneration (Gayraud-Morel et al., 2007; Megeney et al., 1996; Ustanina et al., 

2007).  After several rounds of cell proliferation a majority of skeletal myoblasts start 

expressing myogenin. The expression of myogenin is not only essential and sufficient 

for formation of myotubes and myofibers but also for downregulating pax7 

expression (Olguin et al., 2007) (cells with red nucleus, Fig. 10).  

In single fiber cultures, a small proportion of skeletal myoblasts downregulate 

myoD, upregulate pax7 and eventually leave the cell cycle and reenter the niche under 

the basal lamina (Olguin and Olwin, 2004; Zammit et al., 2004). It has been shown, 

especially by clonal analysis of Pax7+ve/MyoD+ve expressing skeletal myoblasts, 

that some cells in the clone could downregulate MyoD expression. These 

Pax7+ve/MyoD-ve skeletal myoblasts could only arise from Pax7+ve/MyoD+ve cells 

and have thus been postulated to form the self-renewing fraction of satellite cells 

(cells with green nucleus, Fig. 10). 
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Several markers have been identified that label the different stages during the 

course of satellite cells’ journey from muscle progenitor to a fully formed myotube 

(Fig. 11). CD34, Pax7, and Myf5/ß-gal, among others, are expressed in quiescent 

satellite cells. Myf5/ß-gal denotes the fusion protein product of the targeted allele of 

the Myf5nlacZ/1 mouse (Tajbakhsh et al., 1997). Satellite cell activation is marked by 

the rapid onset of MyoD expression, whereas myogenin later marks the commitment 

to differentiation. MLC3F-tg is the product of the 3F-nlacZ-E transgene (Kelly et al., 

Figure 10: Reciprocal regulation of Pax7 and MRFs during myogenic cell fate commitment. 
Satellite cells (Pax7+/MyoD−/myogenin−) must commit to proliferate, differentiate, or renew 
the progenitor population to maintain muscle function. Commitment to proliferation requires 
environmental cues (gray arrows) that activate satellite cells and up-regulate MyoD (blue) 
with a concomitant decline in Pax7 expression (green). Upon commitment to terminal 
differentiation, up-regulation of myogenin (red) down-regulates Pax7. In a small cell 
population, up- regulation of myogenin is prevented; Pax7 is up-regulated by unknown 
mechanisms, resulting in MyoD down-regulation (green nucleus and dashed cytoplasm cell) 
leading to the commitment to a quiescent, undifferentiated phenotype. In this model, the 
Pax7/MRF expression ratio is critical and integrates with environmental signals (gray 
arrows, question mark) to regulate cell fate commitment. Figure adapted from (Olguin et al., 
2007). 
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1995). The temporal expression pattern of MLC3F-tg is typical of many structural 

muscle genes such as skeletal muscle actin and MyHC, which mark sarcomeric 

assembly in the later stages of differentiation.  

 
 
 
 
 
 
 
 
 
 
 
 

Marker Speciesa Expression 
 

Function 

  Q A D  
Cell surface      

c-met m, h + + + HGF receptor (reviewed in [1]) 
Caveolin-1 m + - - Cell-cycle arrest [43,44] 

CD34 m + + + Unknown, isotype switching 
during activation (reviewed in [1]) 

CTR m + - - Regulation of quiescence [41] 
CXCR4/SDF-1b m, h + + + Migration [52,102,103] 
ErbB receptor m - + + Anti-apoptotic [46] 

Figure 11: Schematic of satellite cell myogenesis and markers typical of each stage. 
Satellite cells are quiescent in normal adult muscle and can be activated by muscle 
damage. Once activated, satellite cells divide to produce skeletal myoblasts that further 
proliferate, before committing to differentiation and fusing to form myotubes, which then 
mature into myofibers (for clarity, satellite cell self-renewal is not included). See text for 
details. Figure adapted from (Zammit et al., 2006). 
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Igsf4a m + + - Unknown [104] 
Integrin a7 m, h + + + ECM signaling, fusion [104,105] 
Integrin b1 m, h + + + ECM signaling, fusion [106,107] 
M-cadherin m, h + + + Anchoring (reviewed in [1]) 

Necdin m - + + Promotes differentiation [45] 
Megf10 m +/ - + - Regulation of quiescence [108] 
NCAM m, h + + + Adhesion (reviewed in [1]) 

Neuritin-1 m + + - Unknown [104] 
p75NTR/BDNFc m + + - Inhibition of differentiation [109] 

Pb99 m + + - Unknown [104] 
SM/C-2.6 m + + - Unknown [110] 

Sphingomyelin m + - - Cell-cycle entry [42] 
Syndecan 3/4 m + + + ECM signaling [111] 

TcRb m + + - Unknown [104] 
VCAM-1/VLA-4d m + + + Myoblast fusion [104,112] 

Transcription factor      
Foxk1 m + + + Proliferation or cell cycle 

[113,114] 
HoxC10 m + + + Unknown [104] 

Lbx1 m - + + Forcing activated cells to 
quiescence [47] 

Myf5 m, h + + + Myogenic commitment and 
transient amplification [18,115] 

MyoD m, h - + + Activation and myogenic 
differentiation (reviewed in [1]) 

Msx1 m + - - Inhibition of differentiation 
[116,117] 

Pax3 m +/- +/- - Multiple roles (see text) 
Pax7 m, h + + - Multiple roles (see text) 

Sox8/9 m + + - Inhibition of differentiation [118] 
Other      

Desmin m, h +/- + + Cytoskeleton [40,119] 
Myostatin/ACVR2 m, h? + + + Inhibit satellite cell activation and 

muscle growth [73,120] 
Nestin m, h + - - Cytoskeleton, nuclear 

organization? [40,104,121] 
 

 

 

 

 

 

 

Table 1. Satellite cell markers  
Abbreviations: A, activated (cycling) satellite cell; ACVR2, activitin receptor type 2; CTR, 
calcitonin receptor; D, differentiating myoblast; ECM, extracellular matrix; Q, quiescent 
satellite cell. 
a Species column only includes mouse (m) and human (h). 
b CXCR4/SDF-1: stromal derived factor 1 (SDF-1) is a ligand for CXCR4 receptor. 
c p75NTR/BDNF: p75NTR is a neurotrophin receptor for BDNF (brain-derived neurotrophic 
factor). 
d VCAM-1/VLA-4: very late antigen-4 (VLA-4) or integrin a4b1 is a receptor for vascular cell 
adhesion molecule 1 (VCAM-1). 

The references in the brackets refer to the ones from (Kuang and Rudnicki, 2008) from where 
the table is adapted from.  
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1.5.4 Satellite cell self renewal and the stem cell potential: the role of the niche 

and the heterogeneity within 

 Satellite cell self renewal and stem cell potential is one of the most intensely 

researched topics in muscle regeneration research. Several lines of evidence point 

towards a mechanism of self renewal of satellite cells. For example, satellite cells that 

comprise only 3-5.5% of the myonuclei of their associated fiber can produce enough 

myoblasts to replace all the myonuclei of the myofiber within 4-5 days (Zammit et al., 

2002). More importantly, the satellite cell pool continues to replace more myonuclei 

when the muscle is subjected to repeated severe damage (Luz et al., 2002; Sadeh et 

al., 1985). Transplantation of myoblasts has shown that grafted myoblasts not only 

generate myonuclei (Lipton and Schultz, 1979) but also give rise to viable myogenic 

precursors(Cousins et al., 2004; Gross and Morgan, 1999; Heslop et al., 2001; 

Morgan et al., 1994; Yao and Kurachi, 1993). Later it was shown that engrafting a 

single extensor digitorum longus myofiber, containing approximately 7 satellite cells, 

produced about 11 times as many new satellite cells in addition to many more 

myonuclei (Collins et al., 2005).  

 So how do satellite cells self renew? One line of evidence for satellite cell self 

renewal came from clonal analysis of single fiber associated satellite cells 24 hours 

after isolation and culture of single myofibers most satellite cells are activated, as 

revealed by their co-expression of Pax7 and MyoD (Zammit et al., 2002). By 48 

hours, these cells proliferated, as revealed by uptake of BrdU, and continued to 

express both Pax7 and MyoD. Beyond 48 hours however, some cells lost MyoD 

expression while others gained myogenin expression. A significant proportion of 

satellite cell progeny were pax7 +ve but devoid of MyoD and they withdrew from the 
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cell cycle (Zammit et al., 2004). Since such cells could only have arisen from 

Pax7+ve/MyoD+ve cells, the authors concluded that this fraction that downregulates 

MyoD while maintain Pax7 expression must constitute the self renewing fraction of 

satellite cell progeny (Zammit et al., 2004). The re-entry of such cells in quiescence 

was proven by their re-expression of a nestin transgene (Day et al., 2007) and 

increased levels of sphingomyelin (Nagata et al., 2006a), definite markers of satellite 

cells quiescence. In such a scenario all satellite cells are homogenous to start with but 

with time acquire heterogeneity based on extrinsic cues that force some of the 

progeny of satellite cells to adopt divergent fates and some to retain the stem cell fate. 

 An alternate scenario has been proposed by studies of Kuang and colleagues 

based on lineage tracing of Myf5 expressing satellite cells (Kuang et al., 2007). The 

authors used Myf5-Cre expressing mice to permanently label satellite cells that have 

expressed Myf5 at any stage by driving constitutive expression of YFP under the 

Rosa 26 locus in response to Cre. Thus, such YFP labeled cells would have had a 

‘myogenic experience’ at some point in their life. Using this method the authors 

reported that about 10% of satellite cells have never ever expressed Myf5 (Kuang et 

al., 2007). The authors hypothesize this to be the stem cell fraction of the satellite cell 

population and support their hypothesis by showing that the YFP-ve satellite cells can 

give rise to both YFP+ve and YFP-ve cells (thus myogenic and stem cell lineage) by 

asymmetric cell division or only YFP–ve cells by symmetric cell division (Kuang et 

al., 2007). Furthermore, their data suggest that the plane of cell division decides 

whether the division is symmetric or asymmetric: the divisions parallel to the 

myofiber being symmetric and the divisions perpendicular to the myofiber being 

asymmetric (Fig. 12). They show an involvement of Notch signaling in this process; 

the YFP+ve cells showing a higher expression of Notch ligand Delta1 (Fig. 12) (Kuang 
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et al., 2007). When grafted into Pax7 null mice, the YFP-ve cell fraction was able to 

give rise to 3 times as many Pax7+ve satellite cells as the YFP+ve fraction (Kuang et al., 

2007). In this study the transient amplifying progenitors (YFP+ve cells) were defined 

by the ability of Cre to effectively cause recombination at the ROSA 26 locus. 

However, effective recombination may not occur in case of too brief an expression (or 

too little) of Myf5-Cre or an inability of the ROSA 26 locus to drive the expression of 

YFP in all quiescent satellite cells. More importantly, the YFP+ve population gives rise 

to Myf5-ve cells (that would still express YFP). Indeed it was shown that YFP+ve cells 

give rise to satellite cells when grafted into Pax7 null mice, although at a lower 

frequency than YFP-ve population. 

 As mentioned before, the balance between self-renewal and differentiation is 

crucial for stem cell maintenance and tissue homeostasis, and satellite cells are no 

exception to this. Recent findings, in addition to the lineage tracing study of Kuang et 

al. have pointed towards an involvement of asymmetric cell division in maintaining 

this balance. Asymmetric co-segregation of parental and daughter DNA strands into 

different daughter cells was reported in a fraction of satellite cells (Conboy et al., 

2007; Shinin et al., 2006). Newly synthesized DNA strands were labeled using a short 

BrdU pulse during the S phase while a longer pulse of BrdU was used to label all 

DNA strands cells during consecutive rounds of S phase. This was followed by a 

chase period where no BrdU was present to allow the segregation of labeled strands. 

These experiments demonstrated that the older “immortal” DNA strands (Immortal 

strand hypothesis, (Cairns, 1975)), co-segregated into the self renewing daughter cell, 

that expresses the stem cell marker Sca1 and the younger “replication error prone” 

DNA strands cosegregated into the daughter cells fated for differentiation and 

expressing the differentiation marker Desmin (Conboy et al., 2007; Shinin et al., 
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2006). One of these studies also showed that the cell fate determinant Numb 

cosegregated with the older DNA strand into the stem cell (also consistent with its 

role in repressing Notch (Shinin et al., 2006).  This data fits in with the study from 

Kuang et al. where Notch was repressed in the self renewing (YFP-ve) and 

consequently Delta1 was upregulated in the differentiation prone (YFP+ve) cell during 

asymmetric cell division (Fig.12) (Kuang et al., 2007). It is worth noting that 

cosegregation has been shown in some (epithelial and neural) (Karpowicz et al., 2005; 

Smith, 2005) but not in other (haematopoietic) stem cells(Kiel et al., 2007). This 

ability to asymmetrically coseggregate DNA is dramatically reduced with time in 

vitro (Conboy et al., 2007; Shinin et al., 2006) implying that stem cell niche mediated 

influence might be imperative in maintaining this ability of the satellite cells for 

asymmetric division. Also, since asymmetric cosegregation occurs only in a limited 

number of satellite cells (Conboy et al., 2007; Shinin et al., 2006), it is tempting to 

speculate whether this is a property of a subpopulation of satellite cells. As a caveat to 

these arguments, it should be noted that BrdU can act as a negative repressor of 

MyoD expression (Ogino et al., 2002) and inhibit myogenic differentiation (Bischoff 

and Holtzer, 1970). It might then be that the real reason for non-random segregation 

of DNA strands is to enable differential gene expression-the “silent sister” hypothesis 

(Lansdorp, 2007).  
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Stem cell niches have come to be recognized as a crucial component of stem 

cell maintenance and function and regulate, in particular, the generation of the 

asymmetry so critical for asymmetric (or asymmetric outcome of) cell division. 

Satellite cells possess a very well defined anatomical niche, sandwiched between the 

host muscle fiber and the ensheathing basal lamina. There is increasing evidence that 

the niche and the systemic environment also regulate the regenerative potential of 

Figure 12: Adult myogenesis. Quiescent satellite cells are marked by the expression of 
paired box gene 7 (PAX7), met proto-oncogene (MET), M-cadherin and other satellite-cell 
markers, and differ from cells that are committing to a muscle-progenitor fate, which begin 
to express myogenic factor 5 (MYF5). More recently, analysis of cultured fibres has 
identified that the plane of satellite-cell division determines the fate of the daughter cells. 
Satellite cells (green) carrying out planar division (parallel to the myofiber) generally give 
rise to daughter cells with symmetric MYF5 expression. Cells dividing along an apical–
basal plane (perpendicular to the myofiber) generally have asymmetric expression of MYF5. 
In this way, a satellite cell can divide and give rise to committed progenitors (MYF5 
positive) as well as maintain a pool of uncommitted satellite cells (MYF5 negative). Figure 
adapted from (Bryson-Richardson and Currie, 2008). 
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satellite cells (Shefer et al., 2006). Mechanical, chemical and electrical signals have all 

been shown to be involved in regulation of satellite cell function (Charge and 

Rudnicki, 2004; Molgo et al., 2004; Tatsumi et al., 2006). On the other hand, 

extracellular matrix associated proteins such as laminin, collagen, and proteoglycans 

from the basal lamina anchor the satellite cell (Fuchs et al., 2004). A large majority, up 

to 70-80% of satellite cells in mice and humans reside within 5mm of the 

microvasculature that is a constant source of various extrinsic signals (Christov et al., 

2007). Since satellite cell activation accompanies their vacation of the niche, it is 

possible to speculate whether the two events are linked. Recent evidence shows that 

Caveolin-1 and sphingomyelin, both are specifically localized to the caveolae, 

membrane invaginations composed of lipid rafts, of quiescent satellite cells (Nagata et 

al., 2006b; Schubert et al., 2007; Volonte et al., 2005). Caveolin-1 regulates 

internalization of caveolae (Navarro et al., 2004) and thus might activate 

sphingomyelin signaling, converting sphingomyelin into sphingosine-1-phosphate, 

known to activate satellite cells. It has been observed that caveolin-1 dependent 

internalization of caveolae occurs concomitantly with cell detachment from the ECM 

and regulates the integrin mediated Erk MAP kinase, PI3K, and Rac signaling 

pathways (del Pozo et al., 2005). It is therefore tempting to speculate that laminin-

integrin adhesions might regulate the quiescence of satellite cells by inhibiting 

caveolin-1 dependent endocytosis of sphingomyelin signaling. Fig. 13 summarizes the 

different signals a satellite cell is subjected to from various niche components. Both 

the daughter cell of a satellite cell undergoing planar division would get exposed to 

both apical and basal signals in equal measure. However the progeny of a satellite cells 

undergoing apical-basal cell division would be subjected to either apical or basal 

signals and could therefore influence the cell fate decision. This line of discussion is 
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supported by the evidence from Kuang et al. who showed that the apical cell gives rise 

to the self renewing stem cell and the basal cell gives rise to differentiation destines 

progeny (Kuang et al., 2007). Such a progeny being apposed to a muscle fiber is also 

likely to fuse to the host myofiber more readily. However, the key signals that organize 

the satellite cell polarity and the mitotic spindle orientation need to be determined. 

 

 

 

 

 

 

 

Figure 13: Regulation of Satellite Cell Polarity and Daughter Cell Fate by Niche (A) 
Immunostaining of a freshly isolated single myofiber showing some key components of a 
satellite cell niche. The satellite cell is labeled with Pax7 (in blue). Red, laminin; green, M-
cadherin; white, nuclei revealed with DAPI.(B) A diagram redrawn from (A) showing how 
differential signals from the extracellular matrix (ECM) (black arrow) and the host myofiber 
(yellow arrow) might impose on the satellite cell to establish a polarity. (C) A planar-
oriented division would deposit both daughter cells under identical influence of apical and 
basal signals.(D) In contrast, an apical-basal-oriented division(the mitotic spindle is 
perpendicular to the basal laminin) would result in a situation where the daughter cell 
attached to the basal lamina and the one attached to the host myofiber are exposed to 
different signals. Figure adapted from (Kuang et al., 2008). 



Introduction 

49 

1.5.5 Therapeutic Potential of Satellite cells 

 The report in 1989, that cultured myoblasts can restore dystrophin in muscles 

of mdx mice stimulated great interest and clinical trials (Partridge et al., 1989). 

However it was soon offset by the realization that autologous satellite cells cannot 

produce dystrophin and to lead effective muscle regeneration large numbers of 

myoblasts would need to be transplanted. The grafted cells suffer from poor survival, 

self renewal and migration and incompatibility with systemic delivery methods. It was 

argued that a very small number of the self renewing fraction of muscle precursors 

could solve the problem, as the self renewing myoblasts will give rise to both 

regenerated muscle tissue as well as future satellite cells. Several recent studies have 

indicated that freshly isolated or single fibers harboring quiescent satellite cells when 

transplanted give rise to new satellite cells in the host (Cerletti et al., 2008; Collins et 

al., 2005; Kuang et al., 2007; Montarras et al., 2005; Sacco et al., 2008). Of particular 

note is the study from Cerletti and colleagues reporting Fluorescence-Activated Cell 

Sorting (FACS) of a subset of satellite cells based on their expression of certain 

markers. This CD45-Sca-1-Mac-1-CXCR4+ß1-integrin+ (CSM4B) fraction was 

designated as Skeletal Muscle Precursors (SMPs). These cells were verified to be 

highly enriched in the expression of markers for quiescent satellite cells, expressed no 

markers characteristic of differentiation and were in the G0 phase of the cell cycle 

(Cerletti et al., 2008). These SMPs (isolated from a GPF+ve donor) were then injected 

into the muscles of mdx mice and the number of GPF+ve fibers was used as readout of 

the regeneration ability. Quantification of the results showed that purified SMPs 

contributed to up to 94% of the myofibers in the host animals, restored dystrophin 

expression to these fibers and significantly improved the contractile function of the 

muscle. Furthermore, these SMPs inhabited satellite cell compartments and continued 
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to contribute to muscle growth and regeneration till four months after transplantation 

(the longest stage till the study was carried to) (Cerletti et al., 2008).  

1.5.6 Non-satellite cell mediated muscle regeneration 

 Although satellite cells are the most prominent species of progenitors leading 

to muscle regeneration, a number of other sources contributing to muscle regeneration 

have been reported (Price et al., 2007). The most prominent amongst these are the 

“side population” (SP) cells, first identified as a sub-fraction of mouse haematopoetic 

stem cells by their ability to exclude the DNA binding dye Hoechst 33342 (Goodell et 

al., 1996; Goodell et al., 1997). SP cells possess long term multilineage reconstitution 

abilities and exist in diverse organs such as bone marrow, skeletal muscle, liver, brain, 

lung, skin and heart (Asakura et al., 2002; Goodell et al., 1996; Goodell et al., 1997; 

Montanaro et al., 2003). Bone marrow derived or muscle derived SP cells do not 

possess an intrinsic ability to differentiate into myocytes, yet upon injection into 

muscle or coculture with satellite cells they give rise to myocytes (Asakura et al., 

2002; Gussoni et al., 1999). The muscle derived SP cells from Pax7 null mice can 

undergo myogenic specification, thereby indicating that SP cells and satellite cells 

constitute distinct populations (Seale et al., 2000). In contrast to satellite cells, SP 

cells are suitable for systemic delivery via bloodstream, have been reported to take up 

satellite cell position (Asakura et al., 2002; Bachrach et al., 2006; Gussoni et al., 

1999) and provide dystrophin to diseased muscle via arterial transplantation 

(Bachrach et al., 2004; Bachrach et al., 2006). It is therefore puzzling why they do not 

contribute to long term muscle regeneration. 

 Cell populations other than satellite cells and SP cells have also been observed 

to contribute to muscle regeneration. These include the multipotent mesenchymal 
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stem cells capable of producing skeletal muscle in addition to osteoblasts, 

chondroblasts, and adipocytes (Caplan, 1991; Friedenstein et al., 1966; Prockop, 

1997). Blood vessel derived mesangioblasts were recently shown to restore 

expression of α-sarcoglycan when injected into α-sarcoglycan deficient mice, to 

improve muscle fiber morphology and to ameliorate muscle function in dystrophic 

dogs (Sampaolesi et al., 2006; Sampaolesi et al., 2003). Pericytes have also been 

reported to form a class of myogenic precursors distinct from satellite cells 

(Dellavalle et al., 2007; Sampaolesi et al., 2006; Sampaolesi et al., 2003). 

 

1.6 Myogenesis in zebrafish 

 Zebrafish is an ideal model system to study motility behavior and muscle 

development. In addition to the general advantages outlined above there are several 

advantages specific to muscle development. Motility develops relatively early at 

around 18 hpf and the embryo exhibits spontaneous twitching of the body axis. By 48 

hpf, the larva responds to touch by swimming away from the stimulus, the so called 

‘escape response’. Within this period all the muscle lineages are established in the 

trunk musculature. Furthermore, the zebrafish myotomal structure is well studied and 

in contrast to chick and mouse, consensus about cell structure and cell migration has 

been achieved. As the zebrafish myotome continues to expand, it exhibits two types 

of growth; hyperplasia, an increase in cell numbers that occurs in larval stages and 

hypertrophy, an increase in the size of existing fibers that occurs in the juveniles and 

adults (Rowlerson A, 2001). In teleosts, the addition of new fibers initially occurs at 

the dorsal and the ventral edges of the myotome (Galloway et al., 1999). This type of 

regional growth is termed stratified hyperplasia and is reminiscent of the growth that 

occurs in chick myotome (Amthor et al., 1999; Rowlerson A, 2001). 
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1.6.1 Somite patterning in zebrafish 

 Unlike amniotes, zebrafish do not need a robust skeleton as they live in an 

aquatic habitat. However, to traverse the relatively viscous medium (water) they 

require substantial musculature. Therefore most of the zebrafish somite is composed 

of the myotome, with sclerotome forming a minor proportion. Consequently the fish 

sclerotome, although still ventral to myotome (like amniotes), does not lie adjacent to 

the notochord. The zebrafish sclerotome could be first identified, either 

morphologically, as a cluster of cells under on the venteromedial surface of the somite 

(. 14 A), or by the expression of markers such as pax9 and twist1a (Germanguz et al., 

2007; Morin-Kensicki and Eisen, 1997; Nornes et al., 1996). Many of these cells 

would migrate to encircle the spinal cord and the notochord (Fig. 14B) to give rise to 

the vertebrae.  

 In zebrafish, muscle fibers fall into two broad anatomical subclasses, slow 

twitch fibers and fast twitch fibers depending on expression of the genes that encode 

lineage specific isoforms of sarcomeric structural proteins such as Myosin Heavy 

Chain (MyHC) and troponin. Slow twitch fibers are required for slow swimming that 

the fish employ most of the time and fast twitch fibers are necessary for rapid bursts 

of speed as required when escaping a predator or chasing a prey. Anatomically, the 

slow fibers are located at the periphery of the myotome and in the adult they form a 

triangular wedge shape at the horizontal myoseptum. Being heavily vascularized the 

slow fibers are darker in color. Fast muscle fibers are located deeper in the myotome 

and are lighter in color than slow fibers.  

 The slow and the fast muscle cells are lineage restricted and their lineages are 

established very early in development (Devoto et al., 1996). Fate mapping has 
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revealed that cells that ultimately form skeletal muscles are present in the marginal 

zone of the embryo (Kimmel et al., 1990) and even at this early stage the slow and 

fast muscle precursors have different locations (Hirsinger et al., 2004). By the time 

gastrulation ends, the muscle precursor are arranged either side of nascent notochord 

as a monolayer of cuboidal cells, adaxial cells, called so by the virtue of their position 

(Fig. 12) (Devoto et al., 1996). Adaxial cells are the precursors of all slow muscles 

and form the earliest muscle fibers to develop, the muscle pioneer cells (van 

Raamsdonk et al., 1982; Waterman, 1969). These are a subset of embryonic slow 

muscle fibers, are formed at the level of horizontal myosepta, and were later shown to 

express the homeodomain transcription factor Engrailed (Hatta et al., 1991). As the 

somite matures the adaxial cells undertake a remarkable journey to migrate radially 

towards the somite periphery (Fig. 14C-E) (Devoto et al., 1996). This journey is 

completed in two phases: in the first phase the adaxial cells migrate dorso-ventrally 

and elongate while they are still medially located, in the second phase the elongated 

adaxial cells migrate radially outwards to the somite surface (Devoto et al., 1996). As 

the slow muscle fibers migrate outwards they induce differentiation and elongation of 

fast muscle fibers in their wake (Henry and Amacher, 2004). By 24 hpf the muscle 

pioneer cells become separated from the notochord and by 36 hpf slow muscle 

migration is complete (Devoto et al., 1996). By 24 hpf, Engrailed protein could be 

detected not only in muscle pioneer cells but also at a lower level in nuclei of fibers 

surrounding the muscle pioneers (Hatta et al., 1991; Wolff et al., 2004). Because these 

cells lack expression of slow MyHC (characteristically expressed by muscle pioneers 

and slow muscle cells) they are designated as medial fast fibers (Wolff et al., 2004). 

So far no specific function has been ascribed to them. 
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Figure 14:  (A-B) Schematic representation of a transverse section of zebrafish somite at 
13hpf (A) through the anterior PSM, and at 24hpf (B), showing relative positions of fast 
muscle precursors (lateral presomitic), twist 1a expressing (sclerotome) and slow muscle 
precursors (adaxial cells, A) that form pioneer slow muscles and non-pioneer slow 
muscles (B). (C-E) Multiple populations of cells move at similar times. (C-E) Schematic 
views of a developing posterior trunk somite. Adaxial cells (in C)/slow muscle (in D and 
E) cells are depicted in red, and sclerotome in blue. The clear, 3-dimensional space in the 
somite represents fast muscle cells. (C) At 12 hr adaxial cells are positioned adjacent to 
the notochord medial to both fast muscle and the sclerotome. (D) At about 18 hr, slow 
muscle cells are migrating toward the surface with fast muscle precursors positioned both 
medial and lateral to them. Muscle pioneer cells, however, remain adjacent to the 
notochord. (E) Muscle pioneer cells become separated from the notochord at about 24 hr. 
The sclerotome is now adjacent to the notochord. Fast muscle is completely medial to the 
slow muscle fiber monolayer. Neural crest cells in orange and motor neurons in green are 
also depicted though and undergoing migration at the same time but are not discussed 
here. Figure adapted from (Stickney et al., 2000). 
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1.6.2 Patterning of the zebrafish myotome 

 In zebrafish, availability of gamma ray and ENU induced mutants (Fritz et al., 

1996; Haffter and Nusslein-Volhard, 1996; Whitfield et al., 1996) have provided new 

insights and has implicated novel genes in myogenesis.   

 The expression of myoD is first observed at 75% epiboly (Weinberg et al., 

1996) in a triangular patch of cells on either side of the embryonic shield and the 

expression of myf5 slightly later, at 80% epiboly (Coutelle et al., 2001) in the strips of 

PSM adjacent to the notochord. The expression of myogenin is not detected till 

segmentation period (Weinberg et al., 1996) and the expression of Mrf4 (myf6) has 

not been reported. The zebrafish MRFs have not been studied as extensively as their 

chick or rodent homologs so their roles in muscle specification and differentiation are 

as yet unclear. The current body of knowledge suggests that the myogenesis in 

zebrafish relies on the interplay between FGF and Hh signaling pathways and 

members of Tbx family of transcription factors, notail (ntl) and spadetail (spt).  

 The zebrafish fgf8 mutant (acerebellar) embryos show reduced myoD 

expression in adaxial cells but somite expreesion of myoD is normal (Reifers, Bohli et 

al. 1998). However, blocking fgf24 expression in fgf8 mutant background completely 

abolishes myoD expression (Draper et al., 2003) indicating critical importance of 

FGF8 and FG24 for zebrafish myotome formation. 

 Mutations in zebrafish T-box family member genes notail (ntl, brachyury) 

(Kimmel et al., 1991) and spadetail (spt, Tbx16) (Kimmel et al., 1989) result in 

absence of or a great reduction in the size of tail due to failure of somite formation 

(Griffin et al., 1998; Halpern et al., 1993). In either of the ntl-/- or spt-/- single 

mutants, myoD expression is not initiated until the end of gastrulation but recovers 
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partially during segmentation (Amacher et al., 2002; Weinberg et al., 1996). In 

contrast the ntl/spt double mutants are completely lacking in myoD expression 

(Amacher et al., 2002). Therefore ntl and spt are both required for zebrafish 

myogenesis. 

 In zebrafish, Hedgehogs plays a critical role in muscle development. For a 

review see (Ingham and Kim, 2005). Hedgehogs (Hh) are secreted signaling 

molecuales that are essential for a number of developmental processes. They can act 

as morphogens and mediate their effects through the receptor complex consisting of 

Patched (Ptc) and Smoothened (Smo) transmembrane proteins. In the absence of Hh, 

Ptc represses Smo so that Smo cannot signal. When Hh binds to Ptc the repression on 

Smo is removed and Smo can transduce the signal. In vertebrates this signal is 

mediated through Gli proteins that can act as transcriptional activators of repressors. 

The whole process is complicated by the fact that usually there are several paralogs of 

Hh, Ptc and Gli proteins. For a review of Hedgehog signaling see (Ingham and 

Placzek, 2006). 

 In zebrafish, Hh activity from midline is necessary and sufficient to induce 

slow muscle and muscle pioneer cells, both in vivo and in vitro (Du et al., 1997; 

Norris et al., 2000; Weinberg et al., 1996; Wolff et al., 2003). An entire class of 

mutants, called you-type (because of the U-shaped somites that they have) include 

you-too (yot), sonic-you (syu), you (you), u-boot (ubo) and chameleon (con) have been 

shown to have muscle defects (van Eeden et al., 1996). These mutations show muscle 

defects and the genes disrupted by these mutations were shown to encode components 

of the hedgehog pathway  (Baxendale et al., 2004; Hollway et al., 2006; Karlstrom et 

al., 1999; Nakano et al., 2004; Schauerte et al., 1998; van Eeden et al., 1996). 

Analysis of these mutants as well as chemical inhibitor experiments have led to a 



Introduction 

57 

consensus that a near complete loss of Hh activity results in almost complete absence 

of the adaxial cell derived slow muscles (Barresi et al., 2000) but the fast muscle cells, 

that derive from paraxial mesoderm, remain relatively unaffected (Barresi et al., 2000; 

Chen et al., 2001).  

 Genetic and embryological analysis in zebrafish has revealed novel regulators 

of Hh pathway in vertebrates. Two such mutants are you (encoding Scube2) and 

iguana (encoding Dzip) (Hollway et al., 2006; Kawakami et al., 2005; Sekimizu et al., 

2004; van Eeden et al., 1996; Wolff et al., 2004; Woods and Talbot, 2005). Epistatic 

and molecular analysis suggests that Scube2 is functions upstream of Smoothened 

(the signal transducer in the Smoothened-patched complex) (Hollway et al., 2006). 

The Dzip1 protein is expressed ubiquitously throughout the embryo through the 

segmentation state (Sekimizu et al., 2004; Wolff et al., 2004). It has been shown that 

Dzip1 shuttles between the nucleus and cytoplasm and may regulate Hh signaling 

both positively and negatively (Sekimizu et al., 2004; Wolff et al., 2004). The Hh 

dependent muscle cell types form aberrantly in dzip1 (iguana) mutants (Wolff et al., 

2004). Hedgehog interacting protein (Hhip) is another vertebrate specific Hh activity 

regulator required for formation of muscle pioneers (Ochi et al., 2006). Hhip, a type I 

transmembrane protein was originally identified in a biochemical screen for finding 

out interacting partners of Shh (Chuang and McMahon, 1999). Genetic and 

biochemical evidence suggests that Hhip sequesters Hh thus acting as a negative 

regulator to modulate the amount of Hh present on the cell surface (Chuang et al., 

2003; Kawahira et al., 2003; Treier et al., 2001). In zebrafish, Hhip is first expressed 

by adaxial cells and later by muscle pioneers and a subset of fast muscle cells (Ochi et 

al., 2006). Gain and loss of function experiments have revealed a requirement of Hhip 
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for myoD expression in adaxial cells, and subsequently slow muscle and muscle 

pioneer development (Ochi et al., 2006).  

 In zebrafish, prdm1 (also called blimp-1) expression comes on in adaxial cells 

after myoD and myf5 expression (Baxendale et al., 2004; Wilm and Solnica-Krezel, 

2005). Prdm1 expression is lost in smo mutants and overexpression of shha can lead 

to ectopic expression of prdm1 (Baxendale et al., 2004). Therefore prdm1 expression 

is believed to be Hh dependent in adaxial cells. In prdm1 mutants (u-boot) slow 

muscles fail to express the slow muscle specific marker Prox1 and instead express fast 

MyHC (Roy et al., 2001). It is therefore believed that prdm1 expression functions as a 

point of choice in slow or fast muscle differentiation program. How Prdm1 governs 

slow muscle identity remained unknown till recently when it was shown that Prdm1 

represses the transcription of sox6 in adaxial cells (von Hofsten et al., 2008). 

Repression of sox6, a known repressor of slow muscle fate allows adaxial cells to 

adopt a slow muscle identity. Moreover, analysis of DNA sequences recovered after 

performing ChIP with an antibody against Prdm1 revealed that putative promoters of 

several of the fast-fibre-specific isoforms of sarcomeric proteins, including those 

encoding fast MyHC and troponins, were enriched while no slow muscle specific 

gene promoter were found (von Hofsten et al., 2008). Taken together, this data 

strongly suggest that Prdm1 promotes slow muscle fate in adaxial cells by repression 

of sox6, a repressor of slow muscle fate and repressing activation of atleast some fast 

muscle specific isoforms of sarcomeric proteins. 
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1.6.3 Gene networks in skeletal muscle development in zebrafish  

 Having looked at the various genetic pathways that are responsible for muscle 

development in zebrafish we can integrate and summarize them in the schematic 

depicted in Fig. 15. Unlike chick and mouse, in zebrafish myogenesis the roles of 

Pax3 and pax7 are not understood very well. Instead, as indicated above, T-box genes 

and FGF are implicated in the expression of myoD (and hence myogenesis) (Fig. 

15A). Although it is accepted that the interactions between FGF and Ntl are important 

for myoD expression, both these genes are expressed are earlier (30% epiboly) that 

the time that myoD expression is initiated (75% epiboly) (Griffin et al., 1998; 

Rodaway et al., 1999; Schier and Talbot, 2005). Thus it is not clear if FGFs and T-box 

genes function in an inductive or a permissive way for muscle induction.  

 It has now been established that the precursors of slow muscles are formed 

independent of Hh signaling but Hh signaling is required later for the commitment to 

slow muscle fate (Du et al., 1997; Hirsinger et al., 2004; Norris et al., 2000; Wolff et 

al., 2003). Furthermore it is the concentration of Hh activity that decides the ultimate 

fate of muscle cells. Adaxial cells that express high levels of Ptc (Lewis et al., 1999a; 

Lewis et al., 1999b) and Hhip (Ochi et al., 2006), thus sequestering Shh emanating 

from the notocord. Thus local high concentration of Shh leads to formation of muscle 

pioneers from adaxial cells and medial fast fibers from fast muscle precursors 

immediately adjacent to them (Fig. 15B and D). Another member of Hh pathway; 

Fused (Fu), a serine/threonine kinase, is required for cells to respond to maximum 

levels of Hh signaling (Ingham and McMahon, 2001). Inhibition of Fu activity in 

zebrafish causes a loss of muscle pioneers without affecting other cell types in the 

myotome (Wolff et al., 2003) indicating that Fu might function as a choice point in 
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the differentiation of muscle pioneers (Fig. 15D) (Ingham and Kim, 2005). In iguana 

(Dzip) mutants, both muscle pioneers (requiring high levels of Hh activity) and slow 

muscle fibers (requiring high levels of Hh activity) that are specified by early Hh 

signaling are reduced in numbers (Wolff et al., 2004), whereas the number of medial 

fast fibers that require intermediate levels of Hh, at a later time, are substantially 

increased (Wolff et al., 2004). Therefore, it is believed that Dzip may act on Hh 

activity as a positive regulator for early developing slow muscle fibers or negative 

regulator for later developing fast medial fibers (Fig. 15D) (Sekimizu et al., 2004; 

Wolff et al., 2004). The role of prdm1 in choice of slow/fast muscle fate has already 

been outlined above (Fig. 15D). 

 As described before, slow muscle fiber migration induces differentiation and 

elongation of fast muscle fibers in their wake (Henry and Amacher, 2004). During 

segmentation, Fgf8 regulates myoD expression thereby regulating terminal 

differentiation of a subset of fast muscle cells (non-medial fast fibers) (Groves et al., 

2005). Fgf8 itself might be induced by retinoic acid that has been shown to inhibit 

proliferation and promote terminal differentiation of myoblasts in cell culture 

experiments (Alric et al., 1998). In zebrafish, the main retinoic acid synthesizing 

enzyme, Retinaldehyde dehydrogenase 2, is expressed in the somites where it 

activates fgf8 expression thus inducing fast muscle differentiation (Fig. 15C and D) 

(Hamade et al., 2006).  
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Figure 15: Model of skeletal muscle development in zebrafish. (A) Schematic 
illustration of the genetic regulation of early myogenesis in zebrafish. Both fibroblast 
growth factor (Fgf) signaling and T-box genes are required for early myod expression. 
(B) Molecular mechanisms that specify the formation of slow and muscle pioneer 
cells from adaxial cells. Expression of Patched (Ptc) may allow adaxial cells to 
respond to high levels of Hh activity and, together with Hedgehog interacting protein 
(Hhip), prevent the lateral diffusion of Hh proteins. (C) Specification of fast muscle 
cells. A combination of Retinoic acid (RA) and Fgf8 regulates myod expression in the 
somites and promotes fast muscle differentiation. (D) Model explaining how Fgf and 
Hh signal pathways function in the specification of zebrafish skeletal muscle cell 
types. NT, neural tube; N, notochord. Figure adapted from (Ochi and Westerfield, 
2007) 
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1.7 Zebrfaish as a model for developmental genetics  

 In the last twenty years zebrafish has emerged as an important model system 

to study genetics, genomics and developmental biology. Zebrafish are small (3-4 cms 

in length) and easily housed in aquaria at relatively high densities, are highly fecund 

(produce up to 150-200 embryos per mating pair), develop ex utero, and are optically 

transparent at embryonic and larval stages. The embryonic development of zebrafish 

is quite fast and within 24 hours all major organ systems have started to form. They 

have a short generation time (3-4 months) and live up to 3-5 years with optimal 

fertility between 6-18 months. 

1.7.1 Genetic methods to study zebrafish muscle development and regeneration 

1.7.1.1 Forward genetics approaches to study zebrafish 

 Zebrafish possess a diploid genome and are the rare vertebrate model system 

in which large scale forward genetic screens have been possible. Large scale 

mutagenesis screens such as the Boston and Tübingen screens of 1996 (Driever and 

Fishman, 1996; Haffter et al., 1996; Haffter and Nusslein-Volhard, 1996) brought 

zebrafish to the forefront of developmental biology research. In these screens the 

premeiotic germ cells of the male fish were mutagenised using ethyl nitrosyl urea 

(ENU). The mutagenized males (founders) were crossed with wildtype fish to produce 

F1 progenies that contained heterozygotes for mutations within the zebrafish genome 

at a rate of 100-200 mutations per fish. The F1 fish were mated to wildtype fish to 

obtain the F2 generation. Siblings from F2 generation were incrossed and their 

progeny, the F3 generation, were screened in a Mendelian manner (Fig. 16) (Haffter 

et al., 1996). These screen produced more than 4000 embryonic lethal mutants that 

were characterized (Driever and Fishman, 1996; Haffter et al., 1996). 
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 An alternate approach to chemical mutagenesis has been the retroviral vector 

mediated insertional mutagenesis approach. This method does away with the 

painstaking positional cloning to identify the mutagenized gene as the sequence of the 

insert is known and could be used to determine the site of insertion. However the 

efficiency of insertional mutagenesis is reported to be only as much as about 10% of 

ENU based mutagenesis (Amsterdam et al., 1999; Amsterdam and Hopkins, 2004; 

Golling et al., 2002) Another disadvantage of insertional mutagenesis is that it is less 

likely to produce subtle phenotypes, such as temperature sensitive mutations, than 

ENU mutagenesis could produce due to point mutations. 
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1.7.1.2 Reverse genetics approaches to study zebrafish 

 The most common reverse genetics approach used in zebrafish is based on use 

of antisense morpholino oligos (MOs), first developed for clinical therapeutic 

applications, later introduced into developmental biology, and have been in use since 

2000 in organisms as diverse as sea urchin, ascidians, frog, chick, and mouse besides 

Figure 16: Screening 
protocol for identifying 
mutants of zebrafish 
development. The male 
parent is mutagenized, 
such that some of its 
sperm contains a mutant 
allele. It is then mated 
with a wild-type female. 
The F1 progeny of this 
mating (here shown as a 
male carrying the mutant 
allele m), are mated with 
wild-type partners. This 
creates an F2 generation 
wherein some males and 
some females carry the 
recessive mutant allele. 
When the F2 fish are 
mated, some of their 
progeny will show the 
mutant phenotype. 
Figure adapted from 
(Haffter et al., 1996) 
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zebrafish (Heasman, 2002; Nasevicius and Ekker, 2000). MOs act by blocking 

translation of mRNA into polypeptide or by interfering the splicing of mRNA. Unlike 

DNA analogs they are resistant to enzymatic degradation. The advantages of MOs are 

their ease of use, high specificity and simple delivery methods; in case of zebrafish: 

microinjection. The disadvantages are that they become diluted as development 

persists and their effect does not last beyond 3-6 days (Heasman, 2002).  

 Recent advances in techniques, such as TILLING (Targeting Induced Local 

Lesions IN Genomes) or development of methods such as engineering zinc finger 

nucleases to generate targeted heritable gene inactivation promise to expand the 

repertoire of reverse genetics approaches in zebrafish. TILLING allows the 

identification of single-base-pair allelic variation in a target gene, screened from a 

library generated from (mutagenised zebrafish sperm) in a high-throughput manner 

(Draper et al., 2004). The use of zinc finger nucleases (ZFNs) to cause targeting 

disruption of genes relies on the ability of ZFNs to induce targeted double-strand 

break that is repaired to generate small insertions or deletions (Doyon et al., 2008; 

Meng et al., 2008). 

1.7.2 Zebrafish genomics 

 The Sanger Institute started sequencing zebrafish genome from February 

2001. The zebrafish genome is about 1977Mb, spread over 25 chromosomes. Of this 

about 1,475Mb of genome is sequenced (http://www.sanger.ac.uk/Projects/D_rerio/). 

To obtain the genome sequence clones from BAC libraries are being used for 

mapping and sequencing with a whole genome shotgun (WGS) assembly. The 

finished clones are manually annotated and are accessible in Vega 

(http://vega.sanger.ac.uk/Danio_rerio). Sequences release from Vega, as of now (Nov 



Developing a Zebrafish Model for Muscle Regeneration 

66 

2008), cover around 1,290 Mb of zebrafish genome, of which about 420 Mb has been 

manually annotated. The assembly is generated based on the integration of the 

finished clone sequences and WGS sequences which are filled in the gaps between 

these clone contigs. The assembly is automatically annotated and can be browsed on 

the Ensembl wesite at http://www.ensembl.org/Danio_rerio/Info/Index. Currently the 

Sanger centre has released the seventh assembly of the zebrafish genome (Zv7) in 

Ensembl, which includes 17,330 known protein-coding genes, 1,177 projected 

protein-coding genes, 2,815 novel protein-coding genes and 98 pseudogenes. Having 

a well annotated genome greatly facilitates the mapping of mutant genes and the 

reverse genetics approaches mentioned above.  

1.7.3 Transgenic reporters: live imaging possibilities 

Microinjection of DNA constructs into one cell stage zebrafish embryos has 

been successfully used to generate transgenic zebrafish carrying reporters such as 

green fluorescent protein (GFP). By selecting the right promoter (and other cis-

regulatory) elements precise spatio-temporal expression pattern of a gene could be 

mimicked (de Jong and Zon, 2005).  Any regenerative process is highly dynamic and 

their study would benefit greatly from an in vivo model. The development of new 

fluorophores with wide spectral range, photoswitchability, and photoconversion from 

one spectral range to another coupled with the optical clarity of young zebrafish 

embryos or larvae could be harnessed to generate an impressive array of tools for 

following regeneration processes in vivo. The fluorescent transgenic fish could also 

be used in mutant screening, cellular defect analysis in mutants, cell fate mapping and 

cell transplantation experiments (Langenau et al., 2004; Traver et al., 2003). 
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1.7.4 High throughput analysis 

 Zebrafish is perhaps a unique vertebrate in that it can be adapted easily for 

high throughput analyses. The analyses can itself widely range from a small molecule 

treatment screens (MacRae and Peterson, 2003), toxicology screens (Hill et al., 2005) 

or pharmaceutical screens (Zon and Peterson, 2005).  The high fecundity and small 

size of zebrafish embryos makes it easy to raise 1-3 embryos per well in a 96 well 

microtiter plate. The liquid handling for introduction of small 

biomolecules/toxicants/pharmaceuticals could be performed by a robot. Similarly a 

robotic arm can grip and place the microtiter plate on the stage of a microscope for 

imaging and remove it afterwords. The automated stage would move from well to 

well either capturing the whole well or specific features of embryos using an 

autofocus camera. In this way multiple plates could be used for generating a large 

amount of data in a very short time. This approach would definitely supplement 

existing methods of drug screens and would greatly speed up the same.   

 

1.8 The need for a new model: using zebrafish to study muscle 

regeneration  

 All the above mentioned reasons make zebrafish an ideal model to study a 

regenerative event in vivo. To be able to develop a systemic approach towards 

treatment of muscle degenerative diseases we need to approach the challenges of 

muscle regeneration from a whole organism level. Traditionally most of the studies 

performed on satellite cells were performed in single fiber culture system. Such a 

model ignores valuable information from the systemic environment and the 

extracellular matrix. The dynamic nature of regeneration could best be understood in 
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the context of a whole organism. Therefore, with this study we aimed to develop a 

zebrafish model to study muscle regeneration, establish similarity with other models 

and identify putative genes involved in this process.  
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2 Materials and Methods 

2.1 General Procedures 

2.1.1 Fish breeding and maintenance 

Zebrafish (Danio rerio) were maintained at 28° C, according to The Zebrafish 

Book (Westerfield, 2000). Wild-type embryos were obtained by pairwise matings of 

adult zebrafish (AB, AB202 or leo strains) raised in the fish facility of the FZK. 

Mutant embryos were obtained by crossing heterozygote carriers. were identified 

based on published descriptions and mendelian inheritance. The stages in hours post 

fertilization (hpf) or days post fertilization (dpf) were identified using the 

morphological features described by (Kimmel et al., 1995). Embryos were collected 

in a fine plastic mesh and raised in egg water (Westerfield, 2000) with 0.01% 

methylene blue to prevent fungal growth and treated at 18 hpf with PTU (Sigma, 30 

mg/ml) to block pigment formation. Bulk de-chorionation was performed using 

pronase and MESAB (0.5 mM 3-aminobenzoic acid ethyl ester, 2 mM Na2HPO4) 

was added to the egg water at a final concentration of 0.5 mg/ml for anesthesia. 

2.1.2 Using the escape response as an assay for motility  

At 48 hpf, wild-type embryos exposed to a tactile stimulus at the side of the trunk 

responded with a strong bend of the body axis away from the source of stimulation, 

followed by an extended episode of swimming (Behra et al., 2002). I used this 

“escape response” in thr assay for motility mutant screen or as an assay for recovery 

from chemically induced myopathy. Larvae were touched by a blunt needle on their 

flank and observed under a stereo microscope. The embryos showing diminished or 

uncoordinated movement were counted to ascertain the Mendalian ratio of 1:4 for 
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recessive mutants. These observations were followed by daily observation for 

progressive motility loss as well as observation under polarized light for reduction or 

loss of muscle birefringence.  

2.1.3 Birefringence assay to assess the myofibrillar structure 

The integrity of muscles can be assayed by illuminating embryos with plane 

polarized light. Since muscles contain Anisotropic (A-) band, they shine when 

illuminated with plane polarized light, just like anisotropic crystals. This property was 

used to assay the muscle integrity in zebrafish larvae as in previous studies (Behra et 

al., 2002; Behra et al., 2004). 

2.1.4 Galanthamine treatment 

Viable embryos were sorted and raised in batches of 50 embryos, per 6 cm 

petri dish, in embryo medium. At 60-80% epiboly all embryo media was aspirated 

using a fine Pasteur pipette and 10mL of GAL solution of various concentrations was 

added. If blockage of pigmentation was desired for microscopy or ISH/IHC methods, 

GAL stocks were made in 1x PTU. For microarray analysis, PTU was omitted as it 

could induce off target genes. The embryos were monitored daily until harvesting at 

the desired stage and dead embryos/larvae were promptly removed. 

 

2.2 Molecular Biology Methods 

 Unless otherwise stated all molecular biology methods were performed 

according to standard procedures (Sambrook, 2001). The following protocols, 

described briefly, were most commonly used. 
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2.2.1 PCR, semi-quantitative RT-PCR, and cDNA Cloning 

 Primers were designed using Primer3 (Table 5) and/or oligo calculator and 

were purchased from Metabion (Germany). Regular PCR was performed using 

GoTaq DNA polymerase or with pfu DNA polymerase (Promega, Germany) for high 

fidelity amplification from the BAC. Standard cycling conditions were: an initial 

denaturation at 94 ºC for 2 mins, 25 to 32 cycles of denaturation at 94 ºC for 30 secs, 

annealing at 55 ºC (dependent on primer melting point) for 30 secs and extension at 

72 ºC for 1 min/target Kb, followed by a final extension at 72 ºC for 10 mins. 

Sequencing was performed by GATC (Germany) using RUN24. cDNA was generated 

from reverse transcribed total RNA. 

2.2.2 Restriction Digestion and Ligation of DNA  

 The digestion of DNA with restriction endonucleases was performed 

according to the instructions of the enzyme supplier (Promega or Fermentas, 

Germany). Approximately one unit of enzyme per 1μg DNA in appropriate buffered 

digestion reaction was used. Unless otherwise specified by the manufacturer, the 

reaction was incubated for 1-4 hours at 37 °C, depending on the amount of DNA. 

Ligation was performed either, for two hours at room temperature (25°C) or overnight 

at 16°C with 3-5 units of T4 DNA ligase (Promega, Germany) and insert:vector molar 

ratios of 1:3, 1:1 or 3:1. 

2.2.3 Extraction of DNA from agarose gel 

 For cloning or homologous recombination of BACs, the DNA fragments were 

separated by agarose gel electrophoresis. The band containing the desired DNA 

fragment was cut out from the gel and the DNA was extracted with the SV Gel and 
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PCR Clean-Up System or with the QIAquick Gel Extraction kit according to the 

manufacturer’s instructions. 

2.2.4 TOPO-cloning of genes perturbed in microarray studies 

 TOPO TA cloning kit (Invitrogen) was used for fast direct cloning of PCR 

amplified fragments with T overhangs (fragments amplified with Taq polymerase or 

Taq polymerase based enzyme blends). When the PCR amplification resulted in one 

specific band 2-4 μl from the PCR were used directly (without any purification) for 

the cloning reaction. After 5-10 min. incubation at room temperature, the cloning 

reaction was transformed into XL1 blue chemically competent cells (see below).The 

set of primers used for generating probes for the genes described in this study are 

given in the Table 2, along with restriction enzyme used to digest the vector and RNA 

polymerase used to synthesize the riboprobe. 

 

Probe for ISH Primer used for amplification Vector Restriction 
enzyme/ 

RNA Pol. used 
for antisense 

probe 
hspb1 FP:CATCCCATTCTCCTTCATGC 

RP: GGCAATCCAGCCTCTCATAC 
pCR 

Topo II 
Hind III/ T7 

zgc:103408 (MIBP) FP:GGGAGATTCTGGGAGAAAGG 
RP:GATCAGCCCAGAGAGTGAGG 

pCR 
Topo II 

Not I/ SP6 

L-threonine 
dehydrogenase 

FP:GAAACAGCTGCCTGACCTTC 
RP:GATGTGGATGCAAAGCTTGA 

pCR 
Topo II 

BamH I; T7 

Agxt FP:CTCGGAAATGTTCGGGATTA 
RP:GGCTCCATTTCACCAACTGT 

pCR 
Topo II 

Not I/ SP6 

zgc:100919 FP:CGCAATGCGAGTATGAGAAA 
RP:TGGCAGAAAAACATCAACCA 

pCR 
Topo II 

Hind III/ T7 

hspb11 FP:CCAAACAGCTCAACAGCAAA 
RP:CTCCAATTTGCAACTTCACAA

pCR 
Topo II 

EcoR V; SP6 

 

 Table 2: Primers used for the cloning genes upregulated in GAL microarray with restriction 
enzyme and RNA polymerase used for generating riboprobe 
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2.2.5 Transformation of competent E. coli cells and electroporation of targeting 

vector fragment in electrocompetent BAC containing EL250 cells 

 The chemo-competent XL1 blue cells were thawed on ice for 5 minutes. 

Subsequently 10-50 ng plasmid DNA or 5 μl of a ligation reaction was added and the 

cells incubated with the DNA for 35 minutes on ice, heat shocked at 42°C for 40 

seconds and placed again on ice for 5 min. Then the cells were incubated in SOC 

medium without antibiotics at 37°C and 200 rpm for 30 minutes (ampicillin as 

selectable marker) and 1 hour (kanamycin or chloramphenicol as selectable marker) 

before plating them on LB-agar plates with appropriate antibiotics. The plates were 

incubated overnight (12-16 hours) at 37°C. The concentration of the used antibiotics 

was 100 μg/ml for ampicillin and 50 μg/ml for kanamycin and chloramphenicol. 

 For EL250 cells harbouring BACs, the following differences were followed: 

The culture of EL250 cells, with or without BAC was always performed on or below 

32°C to prevent premature expression of recombinase. Subsequently the culture times 

for these cells were increased for upto 24-32 hours. 

 The targeting vector fragment was electroporated in the EL250 cells 

containing specific BAC. The cells were made electrocompetent by raising a fresh 

culture (at 32°C, 200 RPM) to the log phase (O.D.600 = 0.4 to 0.6). The recombinase 

was induced by incubating the culture as 42°C for exactly 15 minutes with periodic 

vigorous shaking. The culture was then chilled in ice-water slush for 30 minutes. 

Thereafter the cells were precipitated (2000 RPM, 30 minutes) at 4°C and the 

supernatant discarded. The cells were washed three times with ice cold autoclaved, 

distilled water and finally resuspended in appropriate volume of water. Final 

concentration of electrocompetent cells was adjusted to 2x1010 cells/ml. 



Developing a Zebrafish Model for Muscle Regeneration 

74 

 100-300ng of targeting vector fragment (maximum 4µl) was placed in a 

chilled electroporation cuvette with 2mm gap. To this, 42µl of freshly made, 

electrocompetent, BAC containing EL250 cells were added. Electroporation was 

performed at 2.5 kilovolt as 500µl of SOC media was added to the cells immediately 

after electroporation. The cells were then incubated at 32°C for 2 hours before being 

plated on LB-agar plates containing chloramphenicol and kanamycin. 

 

2.3 Histological Methods 

2.3.1 Whole mount in-situ hybridization (WISH) 

Dixoxigenin whole mount in-situ hybridisation was performed as described 

(citation). Zebrafish embryos were dechorionated manually using two pairs of sharp 

forceps at the desired stage and were fixed in BT fix (4% paraformaldeyde, 4% 

sucrose, 0.12mM CaCl2, 0.1M NaPi pH 7.4) at 4°C overnight. After fixation, 

embryos were rinsed with PBS, 2x5 min. For storage, embryos were dehydrated 

stepwise through a series of methanol-PBS, from 25%, 50%, 75% and 100% 

methanol gradient, and stored at -20°C till desired. Prior to staining embryos were 

rehydrated through the methanol series and then washed 4x5 minutes in PTW 

(1xPBS, 0.1% Tween-20). Embryos were then treated with Proteinase K (10 μg/ml) in 

PTW for 2-6 mins (for 24 hpf) 30 min (for 48hpf) and 60 minutes (for 72 hpf), 

followed by two washes in PTW, re-fixation in BT fix for 20 mins and washes in 

PTW 2x5 mins. After this treatment, embryos were transferred to hybridisation buffer 

(HYB: 50% Formamide, 5x SSC, 0.5 mg/ml yeast RNA, 50 μg/ml heparin, 0.1 % 

Tween 20.9 mM citric acid). After pre-hybridisation for 3-4 hrs at 65°C, the buffer 

was replaced by fresh HYB containing 1/400 dilution of the dixoxigenin labelled 
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antisense RNA probe and embryos were incubated overnight at 65°-70°C. Embryos 

were washed serially 2x30 min in 50% formamide/50% 2xSSC, 0.1% Tween 20; 

1x15 min in 2x SSC, 0.1% Tween 20 ; 2x30 min in 0.2x SSC, 0.1% Tween 20 and 2x 

5 min blocking buffer( 1x PBS, 0.1% Tween 20, 5% sheep serum, 0.2% BSA, 1% 

DMSO). The embryos were kept in blocking buffer at room temperature for 2 hours 

and then incubated in 1/4000 dilution of the anti- dixoxigenin alkaline phosphatase 

Fab fragments. The antibody incubation was done overnight at 4°C. Embryos were 

then washed in PTW 6x20 mins followed by 2x5 mins rinsing in staining buffer (100 

mM Tris-HCl pH 7.9, 100mM NaCl, 0.1% Tween 20, 50mM MgCl2). The bound 

antibody was revealed by adding the substrates, NBT and BCIP (0.34 mg/ml and 

0.175 mg/ml). Reaction was stopped by repeated rinses in PTW.  

2.3.2 Plastic sections of epon mounted WISH embryos 

 Wholemount in situ hybridized larvae were fixed and stored in Karnovski 

fixative (0.5 mL 20% PFA, 2.5 mL 25% Glutaraldehyde, 40 mL 0.2 M Sodium 

Cacodylate pH7.3, 7 mL water) over night at 4°C. For embedding, several larvae were 

collected in 1.5mL microfuge tube and washed in 0.2M Sodium Cacodylate buffer. 

The samples were then dehydrated in a dilution series of water and ethanol (50%, 

70%, 95%, 100% ethanol, 1 hour each), followed by rinsing in propylene oxide. For a 

better penetration of the embedding resin the tissue was serially incubated in a 30% 

EPON (36.8 g Glycid ether 100, 21.8 g 2-Dodecenyl succinic anhydride, 24.4 g 

Methylnadicanhydrate)/70% propylene oxide solution, with a dilution of 70% 

EPON/30% propylene oxide solution and finally 100% EPON for 1 hour each. 

Thereafter the tissue was embedded in shallow molds and the samples incubated for 

two to three days at 65°C till the resin solidified. 5µm thin sections were cut using a 
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diamond knife (ultra 35°, MA 4693 DiATOME) on a Leica RM 2065 microtome 

following the trimming of the tissue blocks (performed on Leica (Reichert) 

Ultratrim). 

2.3.3 Immunohistochemistry 

 The primary antibodies and their concentration used in this study have been 

listed in the Table 3. The secondary antibodies used were coupled to either Cy3, Cy5 

(Vector labs) or the Alexa series of fluorophores (Molecular Probes). 

  Manually dechorionated larvae were fixed with BT fix for 1 hour at room 

temperature after which they were washed with 1x PTw (0.1% Tween-20 in 1x PBS) 

or 1x PBST (0.7% TritonX-100 in 1x PBS) 4x30 minutes to remove  traces of fixative 

left in the buffer. The fixed larvae were stored at 4°C in 1x PBS till required (no 

longer than 1 week). Larvae were washed with 1x PTw (if less than 50hpf) or 1x 

PBST (if more than 50hpf) 6x30 minutes and were then immersed in pre-chilled (-

20°C) acetone and incubated at -20°C for exactly 7 minutes. The larvae were then 

rehydrated in autoclaved deionized water till they swell and finally sank to the bottom 

of the glass vial. Then 3 mL of 1x PTw or 1x PBST was added. Finally they were 

washed 4x15 minutes with PTw or PBST, 2x10 min. with 1x BDP (1% BSA, 1% 

DMSO in 1x PBS), and were blocked overnight in 1x BDP. The next day the larvae 

were distributed to 24 well plates and primary antibodies at required concentrations 

were added. The incubation with primary antibody was carried out over night at 4°C. 

On day 3, the primary antibody was retrieved and the embryos were washed with 1x 

BDP 6x30 minutes and the secondary antibody was added. Following a 2 hour 

incubation period at room temperature, the secondary antibody solution was aspirated 

and the embryos washed with 1x PTw or 1x PBST 6 time every 15 minutes. The 
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larvae were then mounted on Super Frost Plus glass slides (Menzel-Glaeser, cat. No. 

J1800AMZZ) in Aqua polymount (Polyscience) for imaging.  

Marker    Antigen   
 Species of origin 
(conc. used)    Source   

 PH3    Phosphorylated histone H3   Rabbit (1:1000)    Upsate biotechnology   

 HuC/D   
 RNA binding protein, marker 
for differentiating neurons   Mouse (1:50)    Molecular Probes   

 Pax7  chick Pax7 a.a. 352-523 

Mouse (1:20 to 1-
200, depending on 
batch)   

 Developmental Studies 
Hybridoma Bank 

F59 Slow muscle myosin Mouse (1:10) 
 Developmental Studies 
Hybridoma Bank 

Laminin Laminin Rabbit (1:50) Sigma-Aldrich, Inc. 

znp-1 recognizes nuronal processes Mouse (1:50) 
Zebrafish Information 
Resourse Centre (ZIRC) 

 

 

2.3.4 Tissue preparation for Electron Microscopy  

 For electron microscopy, the larvae were embedded and sectioned in a similar 

way as for epon embedding and sectioning for WISH larvae (section 2.3.2) with the 

following exceptions. Following the Sodium cacodylate buffer wash the larvae were 

incubated in 1% Osmium tetroxide (diluted in 0.1M Sodium Cacodylate) solution. 

The larvae were then washed twice with 0.1 M Sodium Cacodylate buffer before 

proceeding with ethanol series dehydration. Following embedding and trimming, 70 

nm thin sections were cut from the larvae, using a Leica EM UC6 microtome and 

collected on gold grids (Gilder grids/Plano G300HH).    

 For contrast staining, each grid was incubated on a drop of 50% Uranyl acetate 

(2g Uranyl acetate in 60ml water)/50% methanol mixture for three minutes. 

Thereafter the grids were rinsed once in 50% methanol (in water) and three times in 

water, incubated two minutes on a drop of lead citrate (1.33g Pb(NO3)2 1.76g 

C6H5Na3O7 x 2H2O in 30ml dH2O) and rinsed three times in water. Transmission 

Table 3: Primary antibodies and the concentrations used in this study. 
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electron microscopy was performed on a Zeiss EM 109 at the magnification various 

magnifications. 

2.4 Optical Microscopy and Image Acquisition  

 Visualization of the expression pattern of in-situ hybridized embryos or 

epifluorescence of transgenic animals was performed using a stereomicroscope 

(Leica, MZ16F) equipped with a CCD digital camera (DFC320). For higher 

magnification and detailed analyses of embryos or plastic sections, an upright 

compound microscope (Leica, DM5000B with DFC300FX digital camera) equipped 

with DIC optics was used. Images in TIFF format were acquired using IrfanView. Co-

localization of multiple fluorophores was performed using Leica SP2 laser-scanning 

microscope, equipped with the optics described in Table 4. Subsequent image 

processing, color channel overlays projections and 3D reconstructions were 

performed with Photoshop CS2 or CS3 (Adobe), ImageJ (NIH) or Volocity 4 

(Improvision). 

 
Model Lens Type Magnification Numerical aperture 

HC PL APO Dry 10X 0.4 

HC PL APO Oil, water, 
glycerol 20X 0.7 

HCX PL APO 
CS Oil 40X 1.25 

HCX PL APO 
CS Oil 63X 1.4 

HCX APO Dip In 63X 0.9 
 
 
 

 Table 4: Objectives used for confocal analysis in this study 
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2.5 Microarray Procedure 

2.5.1 Sigma Compugen Microarray 

 Printing of microarrays chips; RNA isolation and labeling; hybridization, 

washing and scanning chips; data preprocessing, quality control, transformation, and 

normalization was all performed as previously described by Yang et al. (Yang et al., 

2007). The number of effective 65mer oligos on this microarray was about 10,000.  

2.5.1.1 RNA extraction, cDNA synthesis, probe labeling and hybridization 

 Total RNA was isolated from GAL treated and control embryos in every 

experiment in parallel using the Nucleospin RNA L Kit (Macherey-Nagel, Düren, 

Germany) and mRNA was extracted with the Ambion Purist Kit (Austin, TX). 

Labelled cDNA was synthesized from 1-2 μg mRNA using the Amersham direct 

cDNA labeling kit (Amersham Europe, Freiburg, Germany). Upon removal of 

unincorporated nucleotides over Microcon 30 spin columns (Millipore, Bedford, 

MA), the concentrated probes were hybridized to the microarray in 1× DIG Easy-Hyb 

buffer (Hoffmann-La Roche, Basel, Switzerland) overnight at 42°C. Coverslips were 

removed from the slides by flushing with 4× SSC and slides were washed in 

prewarmed wash buffer 1 (2× SSC, 0.1% SDS) for 5 min at 42°C, then in buffer 2 

(0.1× SSC, 0.1% SDS) for 10 min at room temperature, and finally in 0.1× SSC four 

times for 1 min at room temperature. The slides were briefly dipped into 0.01× SSC at 

room temperature before centrifugation for 7 min at 800 rpm in an Eppendorf 5810R 

centrifuge.  

 Arrays were scanned using the Axon model 4000B dual-laser scanner and the 

corresponding GenePix 6 software (Molecular Devices, Union City, CA). Both 

channels (532 nm for Cy3 and 635 nm for Cy5) were scanned in parallel and stored as 
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16-bit TIFF files. Each array was scanned three times (low, medium, and high scan) 

with different signal-amplification factors (voltage settings of the photomultiplier 

tubes), but with the same laser power. The channels for Cy3 and Cy5 were balanced 

in each scan for approximately the same intensity range. For the low scan no spot was 

saturated; in the high scan the signal amplification for Cy5 was set to approximately 

80% of maximum and Cy3 amplification was adjusted to this. The settings used in the 

medium scan lie between the low and the high scan. The absolute intensity values 

span the range from 0 to 65536. The scans were performed with a resolution of 10 

μm. From each spot with a mean diameter of 100 μm, 70-80 pixels were recorded. 

Individual local background areas around the spots were defined, which comprised 

approximately 400 pixels. For each channel, the spot signals were calculated as the 

median intensity of all foreground pixels minus the median intensity of all 

background pixels. 

2.5.1.2 Data preprocessing, quality control, transformation, and normalization 

 Raw data was derived from the result files generated by the GenePix 6 suite 

and analyzed with the R software (The R Project for Statstical Computing, 

http://www.r-project.org/). Preprocessing of data comprises mapping of scans, quality 

control, transformation, and normalization steps. Signal intensities from low, medium, 

and high scans are mapped onto the same scale by an affine transformation. 

Transformation parameters are estimated based on a least-squares optimization. 

Averaging the transformed intensities gives the consensus signals, which are 

independent of the voltage settings of the photomultiplier tube. Quality control was 

performed on a spot and array level. Spots ideally have a diameter of 100 μm. 

Diameters less than 70 μm and greater than 140 μm are indicative of scratches and 

printing problems and the corresponding data was discarded. In addition, inconsistent 
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spots with a coefficient of variance of pixels bigger than 0.7, and weak spots with a 

foreground signal less than 175% of the background signal were removed from 

further analyses. Strong but unreliable signals with at least 20% of pixels in saturation 

were discarded. Quality control on array level determined the overall quality of each 

single chip. Therefore, results from different arrays were compared with each other on 

the basis of correlation parameters, scatterplots and chi-plots for all combinations of 

arrays for a particular treatment (Fisher, 1985; Fisher, 2001). Raw intensities were 

transformed with the natural logarithm. A locally weighted regression smoother 

(LOESS) was applied to correct intensity dependent signal patterns (Cui et al., 2003). 

The regression is a first-order polynomial that takes into account the subset of 25% of 

spots that yield a signal with similar intensities. Variance stabilization for weakly 

expressing genes was not performed as such effects were not apparent. All chips 

hybridized for a particular treatment were scaled to a common median absolute 

deviation from median (MAD) of the logarithmic fold change (M value) (Yang et al., 

2002). Statistical analysis was based on the assumption that the majority of genes are 

not changed in their expression and that the overall up- and down regulations 

compensate each other in sum. Each individual gene was tested for difference in 

expression under toxic conditions with a t-test where an adjusted p value (padj) of less 

than 0.025 indicated significant differential expression. Statistical requirements of 

normal distribution and homoscedasticity are tenable. A robust variance estimation 

was derived by balancing gene-specific and pooled variance Baldi, 2001 #633}. The 

number of false positives due to multiple testing was reduced by adjusting the 

resulting p values by controlling the Benjamini-Hochberg false discovery rate 

(Benjamini, 1995). Multivariate analysis was based on a subset of genes of interest. 

Genes that remain unchanged under all conditions were ignored. Marker genes that 
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are significantly changed by exposure to a particular toxicant were taken into account. 

In addition, the selected subset included genes that showed a global response across 

many chemicals. The selected subset included: the top 20 up- or downregulated genes 

based on fold change (minimum fold change > 2); the top seven genes with the 

highest correlation among at least two toxicants (minimum correlation > 0.7); the top 

100 genes with the highest MAD across all treatments; and the marker genes that are 

regulated at least threefold for just one treatment. Most multivariate approaches 

require a complete dataset without missing values. Under the condition that more than 

80% of the data for a particular gene is available, missing data for gene g are imputed 

by a k-nearest-neighbor algorithm (Troyanskaya et al., 2001). Missing values are 

estimated as weighted average of the values for the k genes with the closest Euclidean 

distance to gene g. 

2.5.2 Agilent Microarray 

2.5.2.1 RNA extraction, cDNA synthesis, probe labeling and hybridization 

 In order to perform the technique reproducibly with enhanced sensitivity, 

proprietary reagents and an optimized procedure for a two-color gene expression 

platform based on the zebrafish 22K 60-mer oligonucleotide microarray (G2518A-

001, Agilent Technologies, Santa Clara, CA, USA) was acquired and adapted.  

Pooled galanthamine treated or untreated larvae, snap-frozen in liquid 

nitrogen, were homogenized using an 18 gauge needle followed by a rotor stator 

homogenizer. Total RNA from the homogenate was extracted using “Nucleospin 

RNA L” RNA extraction kit (Macherey-Nagel), following the manufacturers 

protocol. The yield and quality of the RNA was assessed using a NanoDrop 

spectrophotometer and by formaldehyde gel electrophoresis.  
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For the synthesis of cDNA, the low RNA input linear amplification kit 

(Agilent), which produces an initial RNA amplification of at least 100-fold, was used. 

This strategy utilizes an adapter T7 primer for first-strand cDNA synthesis with 

MMLV reverse transcriptase, followed by in vitro transcription using T7 RNA 

polymerase to simultaneously amplify target material and incorporate Cy3 or Cy5-

labeled CTP (Perkin Elmer). Removal of unincorporated dye and purification of the 

amplified cRNA was performed with RNeasy mini columns (Qiagen), followed by 

quantification and determination of the specific activity of the labeled dye with 

NanoDrop (absorbance at 260 nm with either 550 nm for Cy3 or 650 nm for Cy5). 

Typically, the yield is above 750 ng and the specific activity is greater than 8 pmol 

Cy3 or Cy5 per μg of cRNA.  

In order to obtain high specificity with low background, the labeled cRNA 

was treated with blocking agent and fragmented prior to hybridization. The 

hybridization mixture was then applied to a gasket slide, on which the oligo 

microarray is placed to form a ‘sandwich slide’. This unit was sealed with a 

hybridization assembly and transferred to a rotisserie in a hybridization oven set to 65 

ºC for 17 hours. The next day, the microarray ‘sandwich’ was disassembled and 

rinsed in three changes of wash buffer before scanning. 

2.5.2.2 Scanning, quality control, normalization and evaluation 

Differential gene expression was assessed by scanning the hybridized arrays 

using a high-resolution laser scanner (GenePix 4000B, Molecular Devices), capable 

of acquiring data at two wavelengths simultaneously at 532 nm and 635 nm. For each 

array, scanning was performed at a constant laser power but with two different 

voltage settings of the photomultiplier tubes to obtain a high (~80% PMT power) and 

a low range (~60% PMT power) scan image. The pixel intensity histogram at the 
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scanned wavelengths was used to balance the signal in each channel by adjusting the 

Cy5:Cy3 count ratio to 1. The absolute intensity values span the range from 0 to 

65536 and the scans were performed with a resolution of 10 μm. From each spot with 

a mean diameter of 100 μm, 70-80 pixels were recorded. Individual local background 

areas around the spots were defined, which comprised ~400 pixels. For each channel, 

the spot signals were calculated as the median intensity of all foreground pixels minus 

the median intensity of all background pixels. The scanned 16-bit tiff image was then 

analyzed using the embedded functions of the accompanying GenePix Pro 6.0 

software. 

Raw data from the replicates were analyzed with the R software (Fisher, 

1985). Signal intensities from the low and high scans were mapped onto the same 

scale by an affine transformation, based on Least Square optimization. Averaging the 

transformed intensities gives the consensus signals, which are independent of the 

voltage settings of the photomultiplier tube. Quality control was performed on the 

spot and array level. The spots representing the arrayed genes were identified with a 

grid and spurious signals or irregularities were flagged. In addition, inconsistent spots 

with a coefficient of variance of its pixels bigger than 0.7 and weak spots with a 

foreground signal less than 175% of the background signal were removed from 

further analyses. Strong but unreliable signals with at least 20% of its pixels in 

saturation were discarded. Quality control on array level determined the overall 

quality of each single chip. Therefore, results from different arrays were compared to 

each other based on correlation parameters, scatter plots and chi-plots (Fisher, 1985; 

Fisher, 2001). Raw intensities were transformed with the natural logarithm. A locally 

weighted regression smoother (LOESS) was applied to correct intensity-dependent 

signal patterns (Cui et al., 2003). The regression is a first order polynomial that takes 



Materials and Methods 

85 

into account the subset of 25% of spots that yield a signal with similar intensities. All 

the hybridized chips for age group or mutant versus wild type comparisons were 

scaled to a common median absolute deviation from median (MAD) of the 

logarithmic fold change (M value) (Altman, 2005). 

Following normalization, the spots were referenced to Agilent’s 22K gene list 

to identify the genes that are differentially expressed. Three independent microarray 

assays (biological repeats) for Galanthamine treatment experiment, starting from 

independent Galanthamine treatment and total RNA isolations, were performed to 

exclude stochastic changes and to identify the genes that are truly differentially 

expressed. Genes with p-value fold change > |1.7|, were uploaded to The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/) for gene ontology analysis. 

 

2.6 Generation of Tol2 based constructs 

 The Tol2 arms containing vector used was pT2KXIGΔin (Urasaki et al., 

2006), that contained an EF1 promoter, a ß-globin intron, eGFP, and finally an SV40 

late poly A signal, within the two Tol2 arms. I replaced the EF1 promoter and ß-

globin intron with the putative promoter sequences of pax7, met, and myoD. The web 

based resource ECR browser Ovcharenko et al. (2004) (http://ecrbrowser.dcode.org/) 

(Fig. 17) was used to identify evolutionary conserved regions upstream of the 

transcription start site of these genes in zebrafish. Subsequently, these sequences (-

3.3kb region for pax7, -5.3kb region for met, and -5kb region for myoD) were PCR 

amplified using primers containing Xho I and BamH I sites and were cloned into the 

pT2KXIGΔin vector (Fig. 18). The promoter:reporter construct were then co-injected 
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with the in-vitro transcribed transposase mRNA to allow for integration of the tol2 

repeat flanked sequences into the genome. 

 

 

 

 

 

 

Figure 17: The ECR browser comparision of zebrafish Pax7 genomic region with fugu, 
xenopus, mouse, rat and human (top panel). The lower panel represents the boxed area in 
the top panel, showing the first four exons and about 2 kb upstream region. A highly 
conserved sequence (arrow) is observed 1 kb upstream of the first exon. Blue lines 
represent the known exons, yellow ones show the non-coding exons while pink/red depict 
non-coding, non-genic evolutionary conserved elements which represent the putative cis-
regulatory elements. Width in the conservation panel tells the size, while the height shows 
the degree of conservation. 
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2.7 Generation of BAC s modified with fluorescent reporters 

2.7.1 Identification and verification of Pax7, Pax3, and Myf5 containing BACs 

 Pax7, Pax3 and Myf5 BACs were identified from zebrafish information 

network (www.zfin.org) and ordered from either BACPAC resources (Children's 

Hospital Oakland Research Institute, California, USA) or from Imagenes GmbH 

(previously called RZPD). The presence of gene of interest in the BAC was verified 

by PCR approach using set of primers described below (also Fig. 20). 

 

Fig. 18: pT2KXIGΔin vector used as a base for construction of Tol2 constructs harboring  
pax7, met and myoD promoter regions. See text for details. 



Developing a Zebrafish Model for Muscle Regeneration 

88 

2.7.2 Generation of Targeting Vectors for BACs 

2.7.2.1 The choice of fluorescent reporter proteins 

 For Pax7 and Pax3 BACs the fluorescent proteins chosen was KikGR1. 

KikGR1 was isolated from the stony coral, Favia favus and green-to-red 

photoconvertibility was conferred to it by in vitro, semi-rational, mutagenesis of the 

amino acids surrounding the chromophore (Tsutsui et al., 2005). KikGR1 contains the 

tripeptide chromophore, His 62-Tyr 63-Gly 64, that is photoconvertible to red 

following (ultra-) violet irradiation (Tsutsui et al., 2005). This allows it to be used as 

an efficient highlighter for labeling specific cells using photoconversion of kikGR1 in 

single cell using two photon microscopy (Hatta et al., 2006). The excitation and 

emission spectra for native kikGR1 is 507 and 517 nm respectively. A brief pulse of 

violet/ultraviolet light (350-410 nm) will irreversibly convert the yellow/green 

fluorescent kikGR1 to Red kikGR1. The photoconversion could also be achieved 

using two photon laser at 780nm. Although the use of two photon requires over 1000 

times more scanning (over several minutes) than conventional confocal microscopy, it 

does improve the resolution especially along the z-axis and it is possible to label 

single cells in a tissue expressing (Hatta et al., 2006). This allows labelling and 

tracking the fate of single cell in the whole organism. 

 For Myf5 BAC a Nuclear localization signal (NLS) sequence, a 9 amino acid 

peptide (MAPKKKRKV), was generated by using primers containing the sequence to 

amplify monomeric Teal fluorescent protein (mTFP1). The restriction sites XmaI and 

BglII were also incorporate in the 5’ and 3’ region of NLS-mTFP via these primers. 

Finally, NLS-mTFP was cloned into pPCR-eGFPkan after excision of 5’-XmaI-eGFP-

BglII-3’ fragment. 
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2.7.2.2 Generation of targeting vectors for individual BACs 

 The kikGR1/NLS-mTFP containing vectors (designated as a generic 

‘Fluorescent Reporter’ in the Fig. 19) were used as base vectors to incorporate the 

BAC 5’ and 3’ homology arms. PCR generated 5’ and 3’ homology arms were cloned 

in KpnI/HindIII and SacII/SacI restriction sites respectively.  The BAC targeting 

strategy is illustrated in Fig. 20 for the Pax7 BAC (CH211-119A10). Since the 

sequence between primers C and D would be lost in the recombination step, primers 

C and D was designed to lose as little of  non coding region as possible. 

 

 

 

 

 

2.7.3 BAC modification by homologous recombination 

Fig. 19: Depiction of a generic fluorescent protein containing vector used for generating 
targeting vectors for BAC transgenesis. KikGR1/nlsTeal were used as reporters and cloned in 
XmaI/BglII site. The 5’ homology arm was PCR amplified from BAC and cloned into 
KpnI/HindIII site and the 3’ homology arm was cloned into SacII/SacI site after PCR 
amplification. The completed targeting vector was digested with KpnI and SacI to liberate the 
fluorescent reporter flanked by homology arms that was subsequently electroporated into BAC 
containing EL250 cells to cause homologous recombination. See text for details.  
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The strategy to modify a BAC clone for transgenesis was adapted from (Shin 

et al., 2003). KikGR1 was targeted to the translation start site of Pax7 gene (schematic 

depicted in Fig. 20).  

 

 

 

Briefly, the 5’ and the 3’ homology arms were PCR amplified from the BAC 

and restriction sites, KpnI and HindIII (5’ homology arm) and SacII and SacI (3’ 

homology arms) restriction digested and cloned into the respective sites of pPCR-

kikGR1kan vector to genetare a targeting vector for Pax7 BAC. The pPCRkikGR1kan 

Figure 20: Strategy for homologous recombination for BAC modification. Primers B 
and C were used to amplify the 5’ homology arm and primers D and E were used to 
amplify 3’ homology arm. These arms were cloned into a targeting vector either side of 
the sequence containing kikGR1, polyA, FRT-Kan-FRT, by conventional molecular 
biology. This targeting vector fragment was electroporated into Pax7 BAC containing 
EL250 cells and homologous recombination performed, followed by kanamycin cassette 
excision via induced Flippase activity by arabinose treatment. The modified BAC was 
verified by PCR and sequencing and used for microinjection. 
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vector was earlier generated by cloning PCR amplified kikGR1 from AM-V0084 

phKikGR1-S1 (MBL international) into the XmaI and BglII sites of pPCReGFPkan 

vector (Shin et al., 2003). The Pax7 BAC (CH211-119A10) was electroporated into 

the EL250 cells, the recombinase induced by placing the cells in 42°C water bath for 

15 minutes, and the cells made electrocompetent again. Gel purified targeting vector 

fragment was electroporated into the BAC containing, recombinase induced EL250 

cells and the cells were plated over LB plates containing both kanamycin and 

chloramphenicol. The colonies were picked and verified for recombination by PCR. 

Finally, kanamycin cassette was excised by inducing Flippase by addition of 

arabinose to the recombinant BAC culture. Flippase causes FRT mediated 

recombination and thus excision of kanamycin cassette. The culture was again plated, 

on LB plates with chloramphenicol only, and colonies verified for kanamycin 

excision by PCR. Glycerol stock of such positive prep was made to keep the 

recombined BAC from getting lost. The integration of fluorescent reporter was further 

confirmed by sequencing using a BAC specific primer. Pax3 and Myf5 BACs were 

modified in a similar manner with fluorescent reporters. 

 

2.8 Preparation of DNA/mRNA for microinjection 

2.8.1 Preparation of mRNA 

 Capped mRNA was synthesized using mMessage mMachine High Yield 

Capped RNA Transcription Kit from Ambion following the manufacturer’s 

recommendation. For Tol2 mediated transgenesis mRNA was injected with the 

plasmid at 25ng/µl. 
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2.8.2 Preparation of BAC DNA  

 BAC DNA was isolated using the Qiagen Large construct kit (Qiagen) using 

the manufacturer’s instructions.  Supercoiled BAC was resuspended in nuclease free 

water and digested with PI-SceI for 6 hours at 37°C. BAC thus linearized was 

dialyzed overnight against 1L 0.5X TE buffer at 4°C on 0.025 µm Millipore 

membrane filters (Millipore, Cat. No. VSWP04700). Dialyzed BAC was injected into 

fertilized zebrafish embryos at 30-50ng/µl concentration. The injected larvae were 

screened for transgene expression and those showing specific expression were raised 

to adulthood. 

 

2.9 ENU mutagenesis 

 The ENU mutagenesis was performed according to the standard protocol with 

minor modifications (Mullins et al., 1994; Solnica-Krezel et al., 1994). Ten male of 

AB* strain fish were placed in a plastic cylindrical container with a fine mesh bottom 

and immersed in 300 ml of ENU working solution (3mM ENU in 10mM sodium 

phosphate buffer) at 22.5°C and left for 1 hour in dark. The fish were transferred to a 

cylinder with 50% 10mM sodium phosphate buffer and 50% fish water. After one 

hour the fish were transferred to fish water and kept for another hour. Finally, the fish 

were transferred to mouse cages and returned to fish room at 28°C. The treatment was 

repeated 3 times within 1-3 weeks. The ENU working solution was inactivated by 

incubating with equal amount of 2x inactivating solution (20% sodium thiosulphate, 

1% NaOH) before discarding. 
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2.9.1 Generation of F1 fish and F2 families 

 After three weeks of last round of ENU treatment, the mutagenised fish were 

crossed with wildtype females every week till viable embryos were obtained. The 

viable progeny were raised to generate F1 fish, which were then crossed with each 

other to produce F2 families. 

 

2.10 Reagents 

2.10.1 Solutions, Buffers and media 

 Unless otherwise specified, all solutions and buffers have been prepared in 

autoclaved, deionized water. 

 
Buffer/Solution Composition 

TAE Buffer 40 mM Tris-Base, 1 mM EDTA, 5 mM Acetic acid; pH=7,8 

TBE-Buffer 90 mM Tris-Base, 1 mM EDTA, 44 mM Boric acid; pH=8,0 

TE-Buffer 10 mM Tris-HCl (pH = 7,4), 1mM EDTA; (pH = 8) 

Pancreatic ribonuclease A 
(RNase A) stock solution 

20 mg/ml RNase A in 1 mM sodium acetate; pH=4,5 

Proteinase K stock solution 10mg/ml in PBS 

LB-Agar 1,5% Bacto-Agar in LB-Medium 

LB-Medium 1% Bacto-Trypton, 0.5% Yeast extract, 1% NaCl; pH=7.0 

SOC–Medium 2% Bactotrypton, 0.5% Yeast extract, 10 mM NaCl, 25 mM 
KCl 

Hank´s solution 0,14 M NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM 
KH2PO4, 1.3 mM CaCl2, 1 mM MgSO4, 4,2 mM NaHCO3. 

System water in the fish 
facility 

120 mg/l “Ocean Sea Salt”, 45 mg/l NaHCO3 in desalted 
water 

Phenol red solution (10x) 10% Phenolred, 0,2 M KCl; pH=7,5 

Methylene blue solution 
(2000x) 

0,1% methylene blue in distilled water 

ENU working solution 3 mM in 10 mM sodium phosphate buffer 
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ENU inactivating solution 20% sodium thiosulphate, 1% NaOH 

 

2.10.2 Chemicals, enzymes, kits and equipment 

Reagent  Supplier 

Acetic acid  Merck, Darmstadt 

Agarose  Sigma, Taufkirchen 

Ammonium acetate  Merck, Darmstadt 

Ampicillin  Roche, Mannheim 

Bacto-Agar  Roth, Karlsruhe 

Bacto-Trypton Roth, Karlsruhe 

Bacto-Yeast extract   Roth, Karlsruhe 

Boric acid Roth, Karlsruhe 

BSA  Serva, Heidelberg 

Calcium chloride  Merck, Darmstadt 

Calf intestine alkaline phosphatase  Promega, Mannheim 

Disodium hydrogen phosphate  Roth, Karlsruhe 

DNA-Ladder (1 kb)  New England Biolabs, Frankfurt 
a.M. 

DNA-Ladder (100 bp) New England Biolabs, Frankfurt 
a.M. 

DNA-Ladder (Mix)  Peqlab, Erlangen 

dNTPs  Promega, Mannheim 

EDTA  Roth. Karlsruhe 

Ethanol    Roth. Karlsruhe 

Ethidium bromide   Roth. Karlsruhe 

Gentamicin  Sigma, Taufkirchen 
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Isoamyl alcohol   Roth, Karlsruhe 

Isopropanol  Merck, Darmstadt 

Magnesium sulphate  Merck, Darmstadt 

Methanol   Roth, Karlsruhe 

Nuclease free water  Ambion, Huntigdon, UK 

Ocean Sea Salt  Kölle-Zoo, Karlsruhe 

Oligonucleotides  Metabion, Planegg 

Pancreatic ribonuclease A  Sigma, Taufkirchen 

PBS  Invitrogen, Karlsruhe 

Phenol   Roth, Karlsruhe 

Phenol red   Roth, Karlsruhe 

Potassium acetate   Roth, Karlsruhe 

Proteinase K  Sigma, Taufkirchen 

QIAGEN Plasmid Maxi Kit  Qiagen, Hilden 

QIAquick Gel Extraction Kit Qiagen, Hilden Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden Qiagen, Hilden 

QuickLyse Miniprep Kit Qiagen, Hilden Qiagen, Hilden 

Restriction endonucleases Promega, Mannheim or New 
England Biolabs, Frankfurt a.M. 

SDS  Roth, Karlsruhe 

Sodium acetate Roth, Karlsruhe 

Sodium chloride Roth, Karlsruhe 

Sodium dihydrogen phosphate  Roth, Karlsruhe 

Sodium hydrogen carbonate  Roth, Karlsruhe 

Sodium hydroxide  Sigma, Taufkirchen 

T4 DNA ligase  Promega, Mannheim 
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T4 DNA polymerase  Promega, Mannheim 

GoTaq DNA polymerase  Promega, Mannheim 

TOPO TA Cloning Kit  Invitrogen, Karlsruhe 

Triple Master PCR System  Eppendorf, Hamburg 

Tris-Base  Roth, Karlsruhe 

Tris-HCl  Roth, Karlsruhe 

Wizard SV Gel and PCR Clean-Up System Promega, Mannheim 

 
Equipment and materials Supplier 

Bacteria incubators  Heraeus, Hanau 

Borosilicate glass capillaries  Harvard Ltd., Kent, UK 

Cooling centrifuge J2-HS  Beckman, Stuttgart 

Digital camera DFC300 FX  Leica, Bensheim 

Electrophorese chambers  Peqlab, Erlangen 

Eppendorf microcentrifuge tubes  Eppendorf, Hamburg 

Falkon tubes  Greiner, Nürtingen 

FemtoJet microinjector  Eppendorf, Hamburg 

Flaming-Brown Needle puller  Sutter Instruments, USA 

Fluorescent stereomicroscope MZ FLIII Leica, Bensheim 

Gas microinjector Tritech research inc.  L.A., USA 

Incubator for fish embryos  Heraeus, Hanau 

Magnetic thermomixer  Heidolph, Rosenfeld 

Microcentrifuge 5417 R and C  Eppendorf, Hamburg 

Microcentrifuge Biofuge pico  Heraeus, Hanau 

Microfiltration columns  Pall, Ann Arbor, USA 
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NanoDrop ND-1000  Peqlab, Erlangen 

PCR-Thermocycler  MJ Research Biozym, Oldendorf 

Petri dishes  Greiner, Nürtingen 

Pipette tips  Corning, Corning 

Spectrophotometer  Eppendorf, Hamburg 

Stereomicroscope SMZ645  Nikon, Düsseldorf 

Sterile filters  Renner, Darmstadt 

Thermomixer  Eppendorf, Hamburg 

UV Transilluminator  Saur, Reutlingen 

Vac-Man Vacuum manifold  Promega, Mannheim 

Vortex  Bender & Hohbein, Karlsruhe 

Water bath  Kötterman, Uetze-Hänigsen 

Leica Confocal Microscope TCS SP2 Leica, Bensheim 

Transmission Electron Microscope (TEM) Zeiss 
EM 109 

Carl Zeiss MicroImaging GmbH, 
Göttingen   
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3 Results 

3.1 ENU mutagenesis screen to identify motility mutants 

 An ENU mutagenesis screen was performed to identify motility mutants using 

the escape response and measurement of muscle birefringence by plane polarized 

light as assays for motility and for muscle integrity, respectively. Specifically, I 

screened for progressive loss of motility and birefringence, which would indicate that 

the development of muscles is normal, but maintenance is defective. Such defective 

maintenance could result from mutations in genes required for muscle regeneration.  

I performed mutagenesis on males of AB* wild type fish. Three mutagenised 

males (founders) were crossed with 12 golden WT fish to give rise to the F1 

generation. 238 families, each containing around 50 individuals, were established 

from the mating of siblings from the F1 generation.  Out of these, 84 families, with 

224 egg lays were screened in a seven week period. Seven motility mutants were 

identified based on a reduced or aberrant escape response and reduced birefringence. 

The numbers of mutant embryos were always in accordance with the Mendelian ratio 

of 1:4 for recessive mutants. Out of the seven mutants, I selected ENU-Gold 202.1 for 

further analysis as it showed a gradual loss of motility (Fig. 21). Based on its 

morphological phenotype and expression of certain markers I decided to call this 

mutant, gumrah (Hindi for someone or something that has lost its path). 
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Figure 21: The seven mutants obtained after screening of 84 families. Polarized light images of 3 
dpf larvae show severely reduced birefringence, indicative of muscle damage. The number of 
embryos with reduced birefringence was always in the Mendelian ratio of 1:4 for recessive 
mutants. 
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3.1.1 Characterization of the gumrah mutant 

3.1.1.1 Morphological phenotype of the gumrah mutant  

At 24 hpf gumrah (gum) embryos are slightly smaller than the wildtype 

siblings, sometimes have a kink in the tail and have a smaller head which is pointed 

like a beak. Around 30 hpf necrosis (darkened area) is observed in the hindbrain, just 

after the midbrain-hindbrain boundary, which is sometimes pinched. The yolk is more 

rounded and the yolk extension is thinner when compared to the non-mutant siblings. 

The somites are U-shaped rather than chevron shaped (Fig. 22 and Fig. 24) and the 

motility of the gum-/- embryos is reduced.  

 

 

 

During the second day of development, the smaller size of the head becomes 

very apparent and the hindbrain develops edema.  The size of the otic vesicle is also 

reduced. The embryo movement is uncoordinated. By the fourth day post fertilization 

(4 dpf) the size of the head and the eyes is severely reduced, membrane blebs appear 

Figure 22: Control (A) and mutant (A’) gum embryos showing reduced size, necrosis in the 
hindbrain (arrow) and a kink in tail (arrowhead) at 30 hpf. 56 hpf control (B) and gum embryo 
(B’) showing hindbrain edema (arrow) and a reduced size of the otic vesicle (arrowhead). 
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on the cornea of some embryos and the jaw is malformed. The motility is drastically 

affected by now and the birefringence (a measure of muscle fiber integrity) goes 

down significantly. Sometimes, the location and/or size of one or both lenses is 

effected in the gum mutant embryos.  The pigmentation pattern is also abnormal and 

the mutant embryos develop cardiac edema (Fig. 23).  
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Figure 23: 4 dpf DIC images of control (A, B, D) or gum  mutant (A’, B’, D’)  embryos 
showing blebbing on the corneal surface (arrow, A’), pointed snout (asterisk, A’),  thinner and 
curved trunk (B’) and aberrant pigmentation resulting in the shortening of the pigmentation 
gap in the tail fin (asterisk, D’). Plane polarized light images of the control (C) and the gum 
mutant embryos show reduced birefringence (C’) 
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3.1.1.2 Muscle fibers are generated but not maintained normally in gumrah 

mutants 

Loss of motility could result from a mutation leading to a defect in either 

muscle development or neuronal development. To distinguish between the two 

possibilities I employed immunohistochemical (IHC) analysis to check for the 

presence of various molecular markers for neuronal and myofibrillar organization.  

U-shaped somites are a characteristic feature of sonic hedgehog (shh) pathway 

mutants (van Eeden et al., 1996). Loss of Shh activity results in an almost complete 

absence of slow muscle fibers (Barresi et al., 2000; Blagden et al., 1997; Lewis et al., 

1999b). Therefore, I stained gum embryos with the F59 antibody that specifically 

labels slow muscle myosin in zebrafish (Miller et al., 1989). F59 staining revealed the 

presence of muscle pioneer cells and slow muscle fibers that are lost in the absence of 

Shh activity. The slow muscle fibers were present in gum mutants but they developed 

gaps around 50 hpf (Fig. 24) and these gaps increased with age. Slow muscle fibers 

also tended to separate from the edges of the myosepta at the somite boundaries. The 

angle between the vertical myosepta is around 120° in the mutant embryos compared 

to around 90° in the wildtype embryos (Fig. 24). F59 staining, as well as staining with 

anti-titin, anti-troponin and anti α-actinin (Costa et al., 2002) showed that the 

myofiber specification and the sarcomeric organization is correct by 50 hpf (data not 

shown) in the gum embryos but their maintenance is defective, as the structures are 

progressively disorganized by 5 dpf.  
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Laminins form a sheet-like matrix that is a major component of basal lamina. 

They form an important component of proteins linking the myofiber to the basement 

membrane providing mechanical stability. Gaps within myofibers/myosepta might 

result from a loss of laminin. I therefore performed IHC with an anti-laminin antibody 

(Sigma, Cat. No. L9393).This reveals that the gaps in F59 staining along the 

myosepta correlate with gaps in laminin staining implying a loss of myosepta in that 

region (Fig. 25). Also, laminin immunoreactivity is absent or greatly reduced in the 

horizontal myosepta (Fig. 25). 

Figure 24: 50hpf gum (A’, B’) and control embryos (A, B).Slow muscles are formed 
normally (F59 staining) but develop gaps (arrows, A’) as the larva ages. Sometimes the 
muscle fibers show breaks (arrow head, A’). The angle between the vertical myosepta is 
around 120° in gum compared to around 90° in the control larvae. Panels B and B’ are 
different areas from the same larvae in panels A and A’ respectively. 
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To further characterize the muscle structure I performed electron microscopy 

on gum mutant embryos at 5 dpf. Electron microscopy confirmed the observation that 

muscle fibers are formed normally but huge gaps appear between the fibers as the 

embryo ages. Sometimes remnants of myofibers are seen in these gaps (Fig. 26). The 

thickness of myofibers is also lesser compared to the fibers of the wildtype controls. 

 

 

 

Figure 25: F-59 and anti laminin co-staining of 50 hpf control (A, B) and gum (A’, B’) larvae 
shows that gaps in laminin expression coincide with gaps in muscle fibers (arrows A’ and B’). 
Anterior is to left and dorsal to top. 
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3.1.1.3 gumrah mutants have multiple neuronal defects 

To check if the motility defect in the gumrah embryos is due to the neuronal 

defects, antibodies staining the secondary neurons (Anti Hu-C) as well as the neuronal 

processes (znp-1) were employed (Fashena and Westerfield, 1999). To visualize 

whether the clustering of nicotinic acetylcholine receptors (nAChR) takes place, α-

bungarotoxin (which binds to the nAChRs) coupled to the fluorophore FITC was 

used.  

Figure 26: Transmission Electron Micrographs of the coronal sections of the 5 dpf old control 
and the gum mutant embryos. Myofibers in the gum larvae are thinner, with huge gaps, where 
the remnants of degraded myofibers can be observed. Sometime breaks in the myofibers are 
also observed (arrow). MF myofiber, MN myoneuclei, Mito mitochondria.  
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Staining with anti Hu-C antibody revealed that the dorsal root ganglia (DRG) 

are either missing or located at an ectopic location in the gum embryos. In gum 

mutants certain neurons (arrows, Fig. 27B’) are observed almost at the level of 

midline. These could be the missing or ectopic DRG although specific markers for 

DRG would have to be used to confirm this. Enteric neurons are almost completely 

absent in the gum mutants (asterisk, Fig. 26B’) when compared to the control larvae 

(arrowheads, Fig. 27B). Staining with the Znp-1 antibody revealed gaps in neuronal 

processes in the posterior half of the somite (asterisk, Fig. 27A’) when compared to 

the wildtype sibling (Fig. 27A). This aberrant staining of znp-1 might reflect the gaps 

in muscle fibers in gum mutants. However, α-bungarotoxin, that binds to the nicotinic 

acetylcholine receptors (nAChR), co-staining with znp-1 revealed that nAChRs are 

correctly assembled (Fig. 28). 

 

 Figure 27: znp-1 staining shows gaps in the posterior half of the somites (asterisks, A’) and 
anti-HuC staining reveals ectopic location of dorsal root ganglia (arrows) and loss of enteric 
neurons (asterisks, B’). Stage 72 hpf.
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3.1.1.4 gumrah mutants have defects in neural crest derived tissues 

Since dorsal root ganglia as well as enteric neurons are neural crest derived 

tissues and since gum mutants show a near complete loss of the jaw (as shown by 

alcian blue staining, Fig. 29), another neural crest derived tissue, it is feasible to 

speculate that gum-/- mutants might be defective in the specification and/or the 

migration of the neural crest cells. I also observed an almost complete absence of 

placodal derived neuromast cells. DASPEI stain, a vital dye that stains the sensory 

hair cells of the neuromasts, was used to visualize neuromasts in 5 day old embryos. 

gum mutants had almost nonexistent posterior neuromast hair cells and very weakly 

stained anterior neuromast hair cells (Fig. 30). 

Figure 28: FITC tagged α-bungarotoxin (green) and znp-1 (red) co-staining shows that the 
nAChRs are present and correctly assembled.  
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Figure 30: DASPEI staining for the control (A, B) and the gum (A’B’) 5dpf larvae. gum 
mutants have very few anterior neuromast hair cells (arrows B’) and almost no posterior 
neuromast hair cells. B and B’ represent the boxed areas in A and A’ respectively. 

Figure 29: Alcian Blue staining for cartilage shows severely malformed cartilage. Ventral 
view of 5dpf old larvae, anterior is to the top. 
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Therefore whole mount in situ hybridization (WISH) was performed on gum-/- 

mutant embryos with an antisense probe against the neural crest marker crestin (Luo 

et al., 2001). crestin Dorsal views of the gum larvae whole mount in situ hybridized 

for crestin staining at 28hpf, 31hpf and 33hpf revealed that the migratory neural crest 

cells over the yolk sac had not migrated as far as their wildtype siblings (arrows, 

central panel, Fig. 31). The number of neural crest cells on the yolk sac is also 

reduced although it is not clear whether this is because of delayed development or loss 

of hind brain tissue due to necrosis that occurs around the same time (Fig. 22A’). 
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Transverse sections (at the level of the yolk extension) performed on crestin 

stained embryos revealed that indeed the migratory trunk neural crest cells tended to 

stay adjacent to neural tube and do not take the sub-dermal migratory route while 

migrating ventrally. In the gum mutants the trunk neural crest cells were observed 

Figure 31: Time course of crestin staining for control and gum larvae of 28, 31 and 33 hpf 
stages. In both the dorsal (B) as well as the lateral (C) views crestin positive cells seem to 
be reduced and/or migrate less in the gum larvae (arrow, B) relative to the control larvae. 
In the trunk the gum larvae form a single stripe (arrowheads, C) of crestin positive cells 
rather that a speckled appearance of the control larvae. 
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only adjacent to or abutting the neural tube as opposed to a sub-dermal path followed 

by wildtype trunk neural crest cells (arrowheads, Fig. 32). The missing enteric neuron 

precursors are also evident in the gum mutant larvae (asterisk, Fig. 32) while they are 

abundant in control larvae (arrows, Fig. 32). 

 

 

 

 

I also performed ISH for another neural crest marker pax7. The 33hpf gum 

embryos have a huge reduction in pax7 expressing cells in the brain (arrow, Fig. 33) 

although the posterior neural crest (arrowheads, Fig. 33) as well as myotomal 

expression of pax7 was not affected (Fig. 33). 

Figure 32: Transverse section of crestin stained gum embryos at 31hpf reveals that the 
trunk neural crest cells in the gum mutants do not undertake the sub-dermal migratory 
route and prefer to stay abutting the neural tube. Absence of neural crest derived enteric 
neuronal precursors (asterisks) is also evident. NT, Neural tube, No, Notochord, So, 
somite (half of which is depicted in blue shaded area), Ye, Yolk extension. 
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 To identify the genetic defect and molecular mechanism underlying the gum 

mutant phenotype, we are currently mapping the mutation by a positional cloning 

approach (collaboration with Dr. Christelle Etard). At the time of writing this report 

the mutation was localized to a 2 Mb region on chromosome 14 (Ensembl ZV 7).  

 

Figure 33: pax7 ISH on 33 hpf gum embryos shows reduced expression levels in the brain 
of the gum embryos (arrows) although the trunk neural crest (arrowheads) appears to be 
normal. The higher levels of trunk neural crest staining in gum embryos could be a result of 
a lag in development. 
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3.2 Developing an inducible zebrafish model for muscle 

regeneration 

 I also looked at the previously isolated progressive myopathy mutants from 

earlier mutagenesis screens in the lab. One such mutant, with a mutation in the 

acetylcholinesterase (ache) gene, develops a progressive myopathy (Behra et al., 

2002). Homozygous ache mutant embryos are motile at 24 hours post-fertilization 

(hpf) but become almost paralyzed by 72 hpf. Further work showed that the mutant 

phenotype could be mimicked with bath application of acetylcholinesterase inhibitors 

such as eserine (ESE), tacrine (TAC), edrophonium (EDRO) and Galanthamine 

hydrobrobide (GAL) (Behra et al., 2004).  

Galanthamine hydrobromide was found to phenocopy the mutant best, without 

inducing secondary effects.  Galanthamine is an alkaloid which occurs naturally in 

various plant species of Galanthus and Narcissus, including the Caucasian snowdrop, 

Galanthus woronowii (Amaryllidaceae), and Narcissus confusus (Lopez, Bastida et al. 

2002). It is a reversible inhibitor of cholinesterase activity and has been used in 

studies of nicotinic receptors (Pereira et al., 2002).  

 

3.2.1 Galanthamine treatment causes an inducible myopathy 

The ache mutant shows decrease of birefringence and galanthamine treatment 

is able to reproduce this effect (Behra et al., 2004). Lack of AchE activity, whether 

genetic or chemically induced, can cause an accumulation of acetylcholine since the 

acetylcholine scavenger is missing. This excessive acetylcholine in the neuromuscular 

junction can render the nicotinic acetylcholinesterase receptors (nAChRs), ligand 
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gated ion channels required for muscle excitation, open constitutively. nAChRs are 

permissive to Na+ and K+ but can also allow Ca++ ions into the muscle fiber. A high 

intracellular concentration of Ca++ can lead to activation of Ca++ activated neutral 

proteases such as Calpain3. As described in earlier work, an increased activity of 

Calpain 3 could lead to a myopathy such as the one observed in ache mutants or 

galanthamine treated embryos (Behra et al., 2004). 

3.2.2 Galanthamine treatment induced myopathy is reversible  

Galanthamine treatment gives us an exciting possibility of generating a 

conditional myopathy at specific time points. This is a major advantage of using a 

chemical inhibitor approach that is not possible with the genetic mutants, where 

developmental defects might overshadow more direct effects of acetylcholine excess. 

Furthermore, withdrawal of the drug might allow for recovery from the induced 

muscle damage and allow us to examine the process of regeneration. Therefore, we 

asked next whether the galanthamine induced myopathy was reversible. We treated 

the embryos with 10-3M galanthamine for 48 hours which causes them to become 

paralytic and then transferred the larvae back to embryo medium. We observed that 

the larvae recovered motility gradually over a period of the next 48 hours and were 

then virtually indistinguishable from untreated larvae. The recovery was very robust, 

as 96% (n = 144/150 in three different repeats of 50 embryos each, Tab. 1) of the 

treated embryos completely recovered from galanthamine treatment. The remaining 6 

embryos died. The survival rate was comparable to the wild type, untreated control 

embryos (145/150 survivors). Continued treatment of embryos with galanthamine 

resulted in death for all embryos (150/150) presumably because of extensive muscle 

damage and cardiac edema. This is in accordance with the life expectancy for ache 
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mutants that rarely survive beyond 5 days. Thus, the zebrafish embryos can recover 

from a severe paralysis induced by galanthamine treatment.  

 

 

 

 

Since the recovery of galanthamine embryos was quite rapid, we decided to 

repeat the birefringence results from Behra et al. (Behra et al., 2004). It is possible 

that galanthamine tretment had caused a temporary blockage of electrical activity in 

the skeletal muscle (similar to the way conotoxin or tetrodotoxin cause paralysis) thus 

leading to a lack of motility while no structural damage was endured.  To rule out this 

possibility we confirmed the motility findings with birefringence images of 

galanthamine treated larvae. Embryos at 80% epiboly were treated with 10-3M or    

10-4M GAL for 48 hours. Following this treatment birefringence images were 

acquired and larvae were transferred to fresh embryo medium. After another 48 hour 

 GAL –ve Control 
(Untreated) 

GAL +ve control 
(continuous treatment 

for 96 hours) 

GAL Treatment (48 
hours)-Recovery (48 

hours) 
Sets I II III I II III I II III 

Total 
number of 
embryos 

50 50 50 50 50 50 50 50 50 

Immobile 
after 48h 
treatment 

0 0 0 50 50 50 50 50 50 

Regained 
motility 

after 48h 
recovery 
period 

NA NA NA 0 0 0 50 50 50 

Survival 48 
Alive 

48 
Alive 

49 
Alive 

All 
Dead 

All 
Dead 

All 
Dead 

48 
Alive 

49 
Alive 

47 
Alive 

Table 5: Recovery from galanthamine treatment is very robust and reproducible.  150 
embryos were treated with GAL in three sets of 50 embryos each. 48 hours of treatment 
resulted in a severe loss of motility that was reversed after removal of galanthamine and 
subsequent recovery of another 48 hours. Continued treatment with galanthamine resulted 
in death of all embryos (similar to the longevity of ache mutants). The survival rate among 
the experimental group was similar to the untreated controls.
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period, the same larvae were imaged again for birefringence. We found that the 

birefringence of GAL treated larvae to be indeed diminished in a concentration 

dependent manner similar to previous report. Upon removal of galanthamine and 

following the subsequent recovery period, the birefringence levels increase 

dramatically (Fig. 34). Although the birefringence was not back to the same levels as 

the wildtype untreated controls there was not much difference in the motility levels of 

the larvae, indicating substantial functional regeneration. Thus, it is obvious that GAL 

treatment leads to disruption of higher order muscle structure and that the larvae are 

able to mount a very rapid repair/regeneration response after galanthamine induced 

muscle damage. 

 

 

 

 

 

In order to gain more insight about the precise nature of the structural defects, 

I next carried out electron microscopy of galanthamine treated embryos as well as 

recovered embryos to assess the muscle ultrastructure before and after recovery. 

Figure 34:  Plane polarized light images of 56 hpf (A, A’, A’’) and the same embryos at 104 
hpf (B, B’, B’’). Galanthamine treatment reduces birefringence intensity in a dose dependent 
manner (10-3 M for A’, 10-4 M for A’’, untreated control A). GAL treatment was from 8 hpf to 
56 hpf. Upon removal of GAL and subsequent recovery period of 48 hours birefringence 
intensity increases (B’, B’’, untreated control B) 



Developing a Zebrafish Model for Muscle Regeneration 

118 

56hpf embryos that were treated with galanthamine for the past 48 hours had totally 

fragmented myofibers that were mis-oriented (Fig. 35A and A’). Following a 48 hour 

recovery period the myofibers of these larvae were virtually indistinguishable from 

untreated controls of the same age (Fig. 35B and B’). Thus electron microscopy 

confirms the birefringence data and reveals a striking regeneration by the larvae at the 

ultrastructural level within two days. 

 

 

 

 

 

Figure 35: Electron Micrographs of coronal sections of zebrafish larvae showing 
regeneration from GAL treatment at the ultrastructural level. 10-3 M GAL treatment from 
8 to 56 hpf (A’) leads to severe loss of myofibers at an ultrastructural level, in 
comparison to wildtype 56 hpf (A) larvae. When the treated embryos are allowed to 
recover for 48 hours in absence of GAL their muscles regenerate very robustly (B’) and 
are almost indistinguishable from untreated control embryos (B). Scale bar is 2 µm. 
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3.2.3 What is the cause of this repair/regeneration?   

Skeletal muscle is a post-mitotic, terminally differentiated tissue.  

Regeneration in this tissue would require; a) a specialized population of cells capable 

of generating new myofibers, or b) the ability of injured myofibers to de-differentiate 

into mononuclear cells which can amplify and then fuse together and differentiate into 

new myofibers. As outlined in the introduction, it seems that both these mechanisms 

were employed in evolution. To understand what mechanism is at work in zebrafish 

muscle regeneration we would have to distinguish between the two alternatives, the 

stem cell vs. the de-differentiation model. 

During the course of the electron microscopy studies we observed certain cells 

that based on their morphology and location could be prime candidates for being 

classified as satellite cells. These cells were adjacent to the myofibers, generally at the 

myosepta, had large nuclei and a large nuclear to cytoplasmic ratio, and lay under the 

basement membrane, characteristic morphological hallmarks of satellite cells (Fig. 

36) as outlined in the introduction. Over the last decade identification of several 

molecular markers has provided genetically amenable tools for the study of satellite 

cells. The spatio-temporally restricted expression pattern of these markers has also 

revealed that the satellite cells are a heterogeneous population consisting of at least 

two classes, Myogenic precursor cells (MPCs) that undergo several rounds of self 

duplication and ultimately differentiate to muscles, whereas the real stem cells can 

repopulate the satellite cell niche when transplanted into dystrophic animals and give 

rise to differentiated muscle fibers, yet maintain the satellite cell compartment after a 

long period  (Cerletti et al., 2008; Kuang et al., 2007). In order to develop the 

zebrafish as a model for the study of muscle regeneration it is very important to 
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understand the basic biology of satellite cells in zebrafish. Therefore we need to 

establish the similarities and differences in zebrafish versus rodent/avian models: 

whether they express the same makers, whether they are also a heterogeneous 

population,   and ultimately whether they can lead to efficient muscle regeneration 

and repopulate the satellite cell niche. 

 

 

 

Figure 36: Electron 
micrograph (top) of a 
coronal section of a 104 
hpf zebrafish larva, and a 
scheme of the micrograph 
(bottom), showing a 
putative satellite cell. The 
satellite cell is adjacent to 
the myofibers, lies under 
the basal lamina, and has 
a large nuclear to 
cytoplasmic ratio. SC, 
satellite cell; BL, Basal 
Lamina; MF, Myofiber; 
Ms, Myoseptum. The 
scale bar in the top panel 
is 5 microns long. 
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3.2.4 Markers for satellite cells 

Although electron microscopy is the most unambiguous way to distinguish a 

satellite cell it is not a good tool for functional studies as it is slow and laborious and 

the animal has to be sacrificed. Therefore we decided to look for molecular markers 

that could facilitate investigation of satellite cell involvement in the regenerative 

process and allow us to image them in vivo. 

In addition to Pax7, various markers such as Pax3, Myf5, MyoD, and Met 

have been used to label satellite cells in rodents. Pax7 and Pax3 label a vast majority 

of satellite cells, both uncommitted ones and those committed to muscle fate 

(myogenic precursors). Myf5 and MyoD are myogenic regulatory factors (MRFs) that 

are expressed by satellite cells committed to a myogenic fate. To determine whether 

the same markers label satellite cells in zebrafish we decided to do in situ 

hybridizations for Pax3 and Pax7 and look at their expression pattern in developing 

zebrafish larvae.  

3.2.5 ISH for Pax3 and Pax7 

3.2.5.1 Pax3 expression pattern 

 At 22hpf, Pax3 is highly expressed in the midbrain (green arrows, Fig. 37A), 

the hindbrain (red arrows, Fig. 37A), neural crest cells and the dorsal neural tube 

(black arrows, Fig. 37A). Migratory neural crest cells in the trunk also express pax3, 

along with the myogenic precursors (black arrowheads Fig. 37A). By 48hpf the trunk 

expression has ceased although the midbrain expression and hindbrain expression is 

still robust for Pax3. Additionally, Pax3 is expressed in the precursors of the pectoral 

fin muscles (Fig. 37C arrowheads, also in the inset). This is in accordance with Pax3’s 
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role in regulating limb muscle progenitor migration to distal parts of the limbs in 

rodents (Birchmeier and Brohmann, 2000). By 72hpf, Pax3 expression in the brain is 

diminished, but it is expressed in the newly forming jaw and cranial muscles. 

3.2.5.2 Pax7 expression pattern  

At 22hpf Pax7 is highly expressed in midbrain (green arrows, Fig. 37B), 

hindbrain (red arrows, Fig. 37B), neural crest cells and dorsal neural tube (black 

arrows, Fig. 37B). Migratory neural crest cells in the trunk also visible in the trunk, 

along the myogenic precursors (black arrowheads, Fig. 37B). By 48hpf the trunk 

expression has ceased although the midbrain expression (green arrows Fig. 37D) is 

still robust for Pax7 and hindbrain expression is lost, after the isthmus (black arrow, 

Fig. 37D). By 72hpf Pax7 is still robustly expressed in the midbrain (green arrow, Fig. 

37F) and the newly forming jaw and cranial muscles (black arrowheads, Fig. 37F). 
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Figure 37: Wholemount ISH for pax3 (A, C, E) and Pax7 (B, D, F) at 22 hpf (A, B), 48 hpf 
(C, D) and 72 hpf (E, F). Insets in C-F show dorsal views of the same embryo. At 22 hpf, 
predominantly the midbrain (green arrows in A and B), the hindbrain (red arrows in A and B), 
neural crest and the dorsal spinal cord (black arrows in A and B) are stained by both pax3 as 
well as pax7 (black arrow in A and B), although migratory trunk neural crest and myogenic 
precursors are also evident in the staining (arrowheads in A and B). At 48 hpf, the trunk 
expression is not evident for both pax3 and 7, presumably due to very low level of expression 
of the transcript, although brain expression is robust in the midbrain (green arrows in C and 
D) for both and in the hindbrain (red arrows in C) for pax3 only. pax7 expression is not 
observed behind the isthmus (black arrow in D). Additionally, pax3 expression is also seen in 
myogenic precursors of the pectoral fin (arrowheads in C). At 72 hpf newly formed jaw 
muscle precursors also express pax3 and 7 (arrowheads in E and F). pax3 brain expression has 
mostly subsided but pax7 continues to be expressed at high levels in midbrain (green arrows 
in F). 
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We next carried out immunohistochemistry for the Pax7 protein to better 

characterize Pax7 expression, as protein expression might show a lag relative to 

mRNA expression and also because immunohistochemistry can provide information 

on the subcellular localization of the protein. 

3.2.6 IHC for Pax7 

 At 26 hpf, the Pax7 protein is expressed in the trunk in two distinct 

populations of cells that differ by the intensity of staining (Fig. 38). The weakly 

stained Pax7+ve nuclei are spread all over the somite whereas there are fewer strongly 

stained nuclei. When the confocal stacks were used to generate a 3D reconstruction 

and the reconstruction  rotated through 90°, we found that all the Pax7+ve cells are 

restricted to the external surface of the somite, the so-called “external cell layer”. By 

75 hpf most of the Pax7+ve nuclei are lined along the dorsal and the ventral edges of 

the myotome and along the horizontal and the vertical myosepta (Fig. 39; 

Supplementary movie S1). Most of the Pax7+ve cells though are still in the external 

layer and it is very rare to find a Pax7+ve nucleus in the deeper myotome. Having thus 

established the location of Pax7+ve cells, we examined whether myopathic states 

change the expression pattern of Pax7. 
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Figure 38: IHC for Pax7 at 26 hpf. Maximum projection images of confocal 
sections scanned by a 20x objective (A) and a 63x objective (B) through the trunk 
region. The right panels (A’ and B’) show 3D reconstructions of z-stacks from 
corresponding panels on the  left rotated through 90°, to reveal the presence of Pax7 
positive nuclei in a layer external to the somites. The image has been pseudo 
colored, with black as minimum and white as maximum intensity, to highlight the 
two distinct sub populations of Pax7 +ve nuclei based on their level of expression. 
Anterior is to the left and dorsal is towards the top. Scale bar is 100µm. 
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3.2.7 Pax7 expression in myopathic states 

I performed IHC for Pax7 on galanthamine treated embryos (Fig. 41A, A’) to 

examine if there was a change in satellite cell localization or numbers. The regular 

arrangement of Pax7+ve nuclei along the myosepta is disturbed in embryos treated 

with GAL. More Pax7+ve nuclei seem to be in the inter-myosepta region (arrowheads 

Fig. 41A’) than in untreated controls. Also the number of Pax7+ve cells appeared to be 

higher in the GAL treated group than in the control group.  To determine whether 

Figure 39: IHC for Pax7 at 75 hpf. Maximum projection images of confocal sections 
scanned by a 20x objective with a zoom factor of 2x through the trunk region. By this 
stage most Pax7 +ve nuclei are localized to the edges of the somites. The right panel 
shows 3D reconstruction of the z stack rotated through 90°, to show that the Pax7+ve 
nuclei are still found in an external layer (also see Supplementary movie S1). Anterior is 
towards the left and dorsal is towards the top. Scale bar is 100µm. 
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there is really an increase in number of Pax7+ve cells we decided to quantify the 

numbers of Pax7+ve nuclei upon GAL treatment vs. untreated controls. We found an 

increase of 8.7% in the number of Pax7+ve nuclei in GAL treated embryos (Fig. 40) 

when we counted Pax7+ve nuclei in 4 somites of 6 embryos in each condition. However 

after taking into account the standard deviation, the increase in the number of Pax7+ve 

nuclei is insignificant. 

 

 

 

 

In order to examine whether the changes in number or localization of Pax7+ve 

cells constitute a hallmark of myopathy, or if they are specifically caused by 

galanthamine, we decided to repeat the Pax7 IHC staining with two more myopathic 

Figure 40: Quantification of Pax7+ve nuclei upon GAL treatment. GAL treatment causes 
a slight increase in the number of Pax7+ve cells. Pax7+ve cells were counted in 2 somites 
either side of anus (4 somites in total) in 6 embryos for each state (n=6). Error bars 
indicate standard deviation. Since the error bars overlap, the increase in number of 
Pax7+ve nuclei in GAL treated condition was deemed insignificant. 
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mutants, steif and gumrah. Steif encodes Unc-45b, an Hsp90 co-chaperone required 

for correct folding of myosin heads, the loss of which causes a myopathy more severe 

than galanthamine treatment, with the embryos being completely immotile and 

without any birefringence (Etard et al., 2007). In contrast, gumrah is the as yet 

unidentified motility mutant, described in section 3.1 that develops myopathy 

gradually and shows diminished motility and birefringence as the larva ages. 

Comparison of pax7 expressing cells in these slightly different motility mutants 

should thus reveal whether the phenotype observed in galanthamine treated larva 

reflects a common mechanism in development of the myopathy. In steif mutants the 

pax7+ve nuclei are scattered all over the surface of the somite (arrowheads, Fig. 41B’). 

In contrast, in the case of gumrah mutants the Pax7+ve nuclei seem to be clustered 

around the edges of myosepta (arrowheads, Fig. 41C’). It has been shown in section 

3.1.1.2 that the muscle fibers tend to break off from the myosepta in gum mutants, 

especially at the edges of the somite (Fig. 24). The Pax7+ve cells therefore may be 

attracted to such damaged fibers in order to repair them. Comparing three slightly 

different myopathic states showed that the localization of Pax7+ve nuclei is perturbed 

in all of them. Thus we hypothesize that a myopathy resulting from chemical 

treatment or mutation can cause Pax7+ve cells to become migratory and/or mitotic. To 

verify these hypotheses we performed co-staining of phosphorylated Histone H3, a 

mitosis marker, with Pax7.  
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3.2.8 GAL induced myopathy increases the number of mitotic satellite cells 

 Co-staining of Pax7+ve cells with Phospho Histone H3 revealed an increased number 

of satellite cells entering mitosis (arrowheads, Fig. 42B; Supplementary movie S3) as 

compared to untreated control (arrows Fig. 42A; Supplementary movie S2). I quantified the 

Pax7+ve/Phospho Histone H3+ve nuclei as described earlier. I found a 79% increase in 

the mitotic satellite cells based on the co-expression of the two markers (Fig. 43). This 

showed us that although there is hardly any increase in satellite cells (Pax7+ve nuclei) 

upon GAL treatment (Fig 40), the number of mitotic satellite cells (Pax7+ve/Phospho 

Histone H3+ve nuclei) is dramatically increased (Fig. 43). 

Figure 41: Pax7+ve nuclei in myopathic states. Anti-Pax7 staining on wildtype untreated 
(control) and Galanthamine treated (A, A’) steif (unc45b) wildtype sibling (control) and 
mutant (B, B’) and gumrah wildtype sibling (control) and mutant (C, C’) larvae at 75 hpf. 
The images in the right panel are myopathic states that show a greater tendency of pax7+ve 
nuclei to occur in the “inter-myosepta” regions. In addition, the myosepta boundaries are 
not as clearly defined by Pax7+ve nuclei as in the control group, the left panel. Anterior is 
to the left and dorsal up. 
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Figure 42:  Mitotic Pax7+ve cells are found deeper in the myotome in regenerating 
muscles. Pax7 (red) and Phospho Histone H3 (green) co-localization in Control (A, A’) 
and GAL treated (B, B’) embryos. Maximum projection images of confocal sections 
scanned by a 20x objective with a zoom factor of 1.5x.  GAL treatment causes more 
Pax7+ve cells to enter the cell cycle (arrowheads, B; supplementary movie S3) than in the 
control embryos (arrows, A; supplementary movie S2). The middle panel (A’, B’) 
shows maximum projection images of 3-D reconstructions rotated through 90° to reveal 
mitotic Pax7+ve cells located deeper in the myotome (arrowheads, B’’) that are very rare 
in untreated embryos. The scheme in the right panel (A’’, B’’) indicates the positioning 
of mitotic pax7+ve cells (yellow, arrowheads, B’’) relative to the somite surface (red) 
compared with control embryos (arrows, A’’). The anterior is towards left and the dorsal 
towards top. The scale bar is 100µm. 
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Rotating 3D reconstructions generated from confocal stacks through 90° 

shows that many of these mitotic Pax7+ve cells in GAL treated embryos are found 

deeper in myotome (arrowheads, Fig. 42B’; Supplementary movie S3) than in the 

untreated embryos (arrows, Fig. 42A’; Supplementary movie S2). This implies that 

the mitotic satellite cells migrate deeper into the myotome upon injury, presumably to 

repair damaged myofibers. Thus we observed that a myopathic state causes satellite 

cells to enter the cell cycle at a greater rate and also causes them to become migratory. 

Figure 43: Quantification of mitotic Pax7+ve nuclei upon GAL treatment. GAL treatment 
causes 79% increase in the number of Pax7+ve/PHH3+ve cells. Pax7+ve/PHH3+ve nuclei were 
counted in 2 somites either side of the anus (4 somites in total) in 6 embryos for each state 
(n=6). Error bars indicate standard deviation. * indicates that the results are statistically 
significant with a p value of ≤ 0.05. 
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To assess the migratory behavior of activated satellite cells we would need tools for in 

vivo imaging such as transgenic lines fluorescently labeling satellite cells. 

3.2.9 Generating tools for in vivo imaging of satellite cell 

 All the above mentioned data led us to conclude that an in vivo analysis of 

satellite cells, by live imaging, during normal development and during myopathic 

conditions would be very advantageous for understanding how they migrate. 

Therefore, we decided to generate transgenic animals expressing fluorescent proteins 

that would label satellite cells. We would thus be able follow satellite cell fate during 

quiescence, activation, migration to the site of injury and differentiation into 

myofibers. Having a transgenic line would also allow us to FACS sort the satellite 

cells to obtain a very pure population which could be used for analyzing gene function 

by RT-PCR or microarrays.  

3.2.9.1 The Tol2 Strategy 

 As a first approach we used the Tol2 transposon mediated transgenesis (for a 

review see Kawakami, (Kawakami, 2007), Fig. 44) to generate fish carrying promoter 

driven reporter constructs that would drive gene expression specifically in satellite 

cells. The Tol2 element is a naturally occurring transposable element found in 

vertebrate genomes. An autonomous member of the Tol2 element has been identified 

(Kawakami et al., 1998), which contains a gene encoding a fully functional 

transposase that is capable of catalyzing transposition (Kawakami and Shima, 1999; 

Kawakami et al., 2000). Tol2 element is about 4.7 kilobases (kb) in length and 

contains a gene encoding a transposase protein of 649 amino acids. The transposase 

protein causes the excision of sequence within the Tol2 flanking sites (the Left and 

the Right Tol2 arms) and inserts it into another location in the genome (i.e. causes 
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Transposition) (Kawakami et al., 2000). For transgenesis, the transposon encoding 

gene is replaced by the foreign DNA, such as the promoter::reporter sequence, to be 

integrated into the zebrafish genome, yielding a vector construct with the DNA of 

interest flanked by tol2 repeats. The modified Tol2 plasmid is co-injected with in vitro 

transcribed transposase mRNA into one cell stage zebrafish embryos.  Germ cells, as 

other cells, of the injected fish, show mosaic transgene expression; therefore, after 

outcrossing the injected fish (founder) with wild-type fish, non-transgenic fish and 

transgenic fish heterozygous for the Tol2 insertion are obtained in variable ratios, 

depending on insertion efficiency.  

We used the web based resource ECR browser (Ovcharenko, Nobrega et al. 

2004) (http://ecrbrowser.dcode.org/) (Fig. 44) to identify evolutionary conserved 

regions upstream of the transcription start site of the pax7, met, and myoD genes in 

zebrafish and cloned a -3.3kb region for pax7, a -5.3kb region for met, and a -5kb 

region for myoD into the Tol2 vector.   
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Figure 44: Construction of a Tol2 vector from the original Tol2 (A). The full-
length Tol2 (4682 bp) encodes the transposase gene. Exons are shown in gray 
(untranslated region) and black (translated region) boxes. Lines (exons), dotted 
lines (intron), and AAAA (polyadenylation) above Tol2 indicate mRNA for the 
transposase. The left end (5’-end) and the right end (3’-end) are designated with 
respect to orientation of the transcript.  
Transgenesis in zebrafish (B).The synthetic transposase mRNA and a transposon 
donor plasmid containing a Tol2 construct with a promoter and the gene 
encoding green fluorescent protein (GFP) are co-injected into zebrafish fertilized 
eggs. The Tol2 construct is excised from the donor plasmid [2] and integrated 
into the genome. Tol2 insertions created in germ cells are transmitted to the F1 
generation. Germ cells of the injected fish are mosaic for the transgene, and, by 
crossing the injected fish (founder) with wild-type fish, non-transgenic fish and 
transgenic fish heterozygous for the Tol2 insertion are obtained. In this figure, 
the promoter is a spinal cord specific enhancer/promoter and the spinal cord of 
the embryo is depicted in green. Figure (part A) adapted from Urasaki et.al. 
(Urasaki et al., 2006) and (part B) (Kawakami, 2007). 
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 The -5.3kb met::eGFP construct drove expression in heart, muscle fibers, 

spinal neurons, and liver (Fig. 45). This is in accordance with the reported expression 

pattern of met in the mouse (Yang et al., 1996). In the zebrafish, the expression of met 

has been reported in spinal neurons (Tallafuss and Eisen, 2008). At 6 dpf, there are 

some eGFP expressing cells localized to the vertical myosepta. These are the 

locations where Pax7+ve cells are normally found and hence these might be satellite 

cells.  

 We observed similar persistent muscle fiber specific expression of eGFP with 

the -5kb myoD::eGFP construct (data not shown) and the -3.3kb pax7::eGFP construct 

(data not shown). The eGFP expression in muscle fibers could be from the eGFP that 

was expressed by satellite cells before they fused to form muscle fibers, since the 

half-life of eGFP is quite long. However, the persistence of eGFP during later stages 

could also mean that the upstream regions of these genes are lacking in enhancer 

elements that might be required to shut down gene expression after progression of the 

satellite cell through differentiation and maturation into a muscle fiber.  
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3.2.9.2 Generation of a pax7 containing BAC tagged with fluorescent protein 

reporters 

 The use of traditional transgenic approaches such as the ones employing basal 

promoters and upstream elements has several disadvantages. In vertebrates enhancer 

elements could be scattered over large distances and basal promoter::reporter 

constructs missing these elements may not properly reflect the dynamics of gene 

Figure 45:  eGFP expression driven by 5.3 kb region upstream of the met transcription 
start site. The expression is most notable in the heart at 30 hpf, 48 hpf and 6 dpf (white 
arrowheads A, D, G), muscle fibers (B, E, G), and spinal neurons (white arrows C, F, 
G). At 6 dpf some cells at myosepta (red arrows) express eGFP that could be satellite 
cells. At this stage expression is also observed in the liver (white asterisk). The strong 
expression in the ventral fin-fold in figure G is an artifact resulting from ectopic 
expression. 
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expression, especially as alternative promoters/enhancers may be involved in 

regeneration as opposed to normal development (Catherina Becker, pers. Comm.). 

Indeed, zebrafish myf5 has been shown to be regulated by enhancer elements located 

80 kb upstream from the transcription start site (Chen et al., 2007). Moreover, the 

fluorescent protein most commonsly used as a reporter (GFP or eGFP) is cytoplasmic 

and would diffuse throughout the muscle fiber when satellite cells fuse during repair 

or development making it quite difficult to pick out single cells or count the number 

of cells in a fluorescent haze. Therefore we decided to approach this problem by using 

two different approaches; first by adding a nuclear localized signal before the 

fluorescent protein, and second, by using a photo-convertible fluorescent protein 

(marketed  under the tradename of Kikume Green-Red, kikGR1). 

KikGR1 is a green to red photoconvertible fluorescent protein. A 

photoconvertible protein (such as kikGR) undergoes an irreversible structural change 

upon irradiation with a particular wavelength of light, converting its 

absorption/emission spectra from one wavelength to another (usually longer) 

wavelength.  This allows it to be used as an efficient highlighter for labeling specific 

cells using photoconversion of kikGR1 in single cell using two-photon microscopy 

(Hatta et al., 2006). The excitation and emission spectra for native kikGR are 507 and 

517 nm (GFP/YFP filter) respectively. A brief pulse of violet/ultraviolet light (350-

410 nm, CFP filter) will irreversibly convert the yellow/green fluorescent kikGR to 

Red fluorescent form. The photoconversion can also be achieved using two photon 

laser at 780nm. Although the use of two photon requires over 1000 times more 

scanning time (over several minutes) than conventional confocal microscopy, it does 

improve the resolution especially along the z-axis and it is possible to label single 

cells in a tissue expressing kikGR (Hatta et al., 2006). Two photon microscopy can 
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target a single cell buried deep in the tissue without illuminating the plane above or 

below it (unlike conventional confocal microscopy) thus it would allow labeling a 

single satellite cell in a mass of closely located satellite cells This would allow us to 

not only label and follow the fate of single satellite cells in regenerating animals but 

also to study the dynamics of transcriptional response of pax7 to a muscle injury.  

I modified the pax7 containing BAC by replacing the start codon of the first 

exon with the start codon of kikGR1 as described in section 2.7.3 (Fig. 20). This 

modified BAC should express kikGR1 under the regulatory region of the pax7 gene 

after injection into the zebrafish embryos. We tested the photoconvertiblity of kikGR1 

by subjecting a green fluorescent region to irradiation by standard mercury lamp 

under a CFP filter (Fig. 46).  

 

 

Figure 46:  kikGR1 expression in YFP and Cy3 channels before (A, A’) and after 
photoconversion (B, B’). Photoconversion was achieved by illuminating the embryos 
with illumination from standard mercury arc lamp using a CFP filter for 6 seconds.   
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 Next I decided to check whether the pax7BAC::kikGR1 faithfully 

recapitulates the expression of endogenous pax7 gene.  Therefore I injected the 

pax7BAC::kikGR1 into fertilized one-cell staged zebrafish embryos and reaised the 

embryos. At 3 dpf, I photoconverted the entire embryo, from green to red, using the 

technique mentioned above. After another two days (5 dpf) I again observed the 

embryos for expression of kikGR1 in the YFP and Cy3 channels. I found that the fiber 

associated satellite cells in these embryos expressed freshly synthesized kikGR1 as 

evident from the observed signal observed in the YFP channel (Fig. 47). The fiber 

itself, however, did not show any freshly synthesized kikGR1 (yellow/green), 

although a low level of photoconverted kikGR1 (red) was visible in the Cy3 channel. 

Thus, pax7Bac::kikGR1 seems to report transcription of Pax7 effectively, although a 

more thorough analysis with a stable transgenic line will be required to confirm these 

results.  

Therefore, I am currently screening the pax7BAC:kikGR1 injected embryos to 

screen for germline transmission. So far I have found 14 positive larvae from a group 

mating of these fish indicating that at least one adult out of two females and one male 

used for mating is positive. Once the founder is identified, it would be outcrossed to 

the wildtype fish and the kikGR1+ve larvae raised to adulthood to generate a stable 

transgenic line. 

 In addition to pax7, I have also modified BACs containing myf5, pax3 and met 

genes and I am currently injecting these BACs into embryos and raising these larvae 

to adulthood.  These BACs have been modified with different fluorescent proteins 

such as nuclear localized signal-Teal (NLS-Teal) (cyan), cytoplasmic kikGR1, NLS-

mCherry (red), membrane tagged-mCherry and NLS-Venus (yellow). Once stable 

transgenic lines have been established for these reporters, I would intercross them to 
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generate multi-colour double or triple transgenic fish to establish the inter relationship 

of these genes in satellite cell function during normal development and regeneration.  

 

Figure 47: Transient expression of 
pax7BAC::kikGR1. At 3dpf the 
whole embryo was photoconverted 
from green to red. At 5 dpf (time of 
imaging) only the satellite cells 
(arrow, arrowhead in cartoon, D) 
express freshly synthesized 
kikGR1. The fiber retains red 
“residual” kikGR1 that it may have 
received from the pax7+ve cells that 
gave rise to it. 
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3.3 Microarray analysis of Galanthamine induced myopathy 

 To get a holistic view of the gene expression changes induced by a myopathic 

state I performed an unbiased genome wide expression profile of the galanthamine 

treated embryos vs. untreated controls using microarray technology. Based on the 

hypothesis that myopathic animals would express transcripts encoding for proteins 

involved in the muscle regeneration pathway at an increased level as opposed to non-

myopathic animals, comparison of the two transcriptomes may reveal novel potential 

candidates responsible for muscle regeneration.  

 The embryos were treated with 10-3M galanthamine for 48 hours and 64 hours 

from the 8 hpf stage on in two separate experiments. Because chemical treatments can 

produce a varying degree of phenotypes, even within the same batch, around 600 

embryos were pooled together to extract RNA at any given stage. I used entire 

embryos for the microarray analysis. Although this would dilute the readout of 

specific RNA transcripts, since the starting sample would not just contain muscle 

tissue but a multitude of other tissue types, this approach would provide a more 

accurate representation of the “in vivo” trancriptome of a myopathic animal rather 

than a tissue enriched one.  

3.3.1 Sigma Compugen Microarrays 

 Initially I used 10K zebrafish microarrays produced by the ITG Microarray 

facility as previously described (Yang et al., 2007). I selected genes with a p-value of 

≤ 0.05 and a fold change of ≥ │2.0│in either the 48 hour (56 hpf) or the 64 hour (72 

hpf) GAL treatment group. Unfortunately, the number of transcripts perturbed in this 

range was only 13 (Table 1); substantially smaller than expected. However, one of the 

transcripts upregulated in the GAL treatment group was desmin, a well known marker 
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of satellite cell differentiation and for regenerating/neonascent myofibers (for a 

review see (Charge and Rudnicki 2004). This is evident from the phenotype of desmin 

knock-out mice that show slight degeneration of adult muscles but have delayed 

muscle regeneration following injury (Li et al., 1997; Smythe et al., 2001). Most of 

the genes upregulated seem to be rather ubiquitous or widely expressed ones (atf3, 

SOCS-3, ucp4). However, one of the genes to be upregulated in both 48 hour and 64 

hour treatment groups was cardiomyopathy associated 1 (cmya1), known to be 

expressed specifically in striated muscles and described in more detail in the 

following section. 

Gene name FC at 56 hpf 
(P-value) 

FC at 72hpf 
(P-value) 

Reference 

zgc:92069 (Protein phosphatase 1 
regulatory subunit 3C) 

2.19 (0.0038) 1.71 (0.0154)  

Q6PBK2_BRARE 2.05 (0.0160) 1.88 (0.0182)  
zgc:92851 4.83 (0.0016) 2.00 (0.0133)  

phosphoenolpyruvate carboxykinase 1 1.62 (0.0189) 2.07 (0.0070)  
coagulation factor XIII, A1 polypeptide 2.00 (0.0156) 2.19 (0.0065)  

uncoupling protein 4 1.44 (0.0283) 2.23 (0.0048)  
activating transcription factor 3 2.14 (0.0060) 2.43 (0.0066)  
cardiomyopathy associated 1 3.32 (0.0021) 3.22 (0.0023) (Hawke, 

Atkinson et al. 
2007) 

Desmin 1.61(0.0141) 3.38 (0.0013) (Charge and 
Rudnicki 2004)

complement component 6 2.06 (0.0156) 3.67 (0.0022)  
SOCS-3b 2.53 (0.0025) 3.94 (0.0019)  

fibronectin 1b 2.37 (0.0023) 8.46 (0.0004)  
SOCS-3a 6.89 (0.0008) 8.57 (0.0007)  

 

 

 

3.3.1.1 ISH verification of cmya1 upregulation upon GAL treatment 

 cmya1, initially called xin, is a striated muscle specific gene (Wang, Hu et al. 

1996) with multiple actin binding domains called Xin repeats (Jung-Ching Lin et al., 

Table 6: Genes upregulated after GAL treatment for 48 hours or 64 hours (on Sigma-
Compugen Oligonucleotide arrays). FC, Fold Change. 
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2005; Pacholsky et al., 2004; Wang et al., 1999). Therefore it is believed to play an 

important role in cytoskeletal organization of skeletal and cardiac muscle. 

 The zebrafish Cmya1 is a 2297 amino acid protein and the ORF is contained 

within a single exon (according to Ensembl version Zv7). It contains 25 Xin repeats in 

the N-terminal half (Fig. 48B). In situ hybridization against cmya1 mRNA shows that 

it is expressed in nascent myofibers, the heart and the lens (top panel, Fig. 48A) at 30 

hpf stage. By 72 hours the expression can be still seen in the lens and the heart and 

newly forming jaw and ocular muscles also start expressing cmya1, but the expression 

in the trunk muscles is lost (lower panel, Fig. 48A). The ventral view of the head 

shows that the expression in the lens is limited to the proximal part of the lens only 

(black arrows, lower panel, Fig. 48A). 

 Upon GAL treatment, 72 hpf larvae showed increased staining in the head and 

trunk (Fig. 48B and C). The increase in staining is most evident in the trunk 

musculature of GAL treated larvae whereas no staining is present in control embryos. 

Cross sections of the larvae reveal the presence of cmya1 transcripts into deeper 

myotome tissue in a punctuate manner (Fig. 49D). Therefore by wholemount ISH it is 

clear that cmya1 transcripts are upregulated in the muscles of GAL treated larvae 

possibly as a repair mechanism. Since mouse Cmya1 has been shown to bundle actin 

filaments (Choi et al., 2007), it might have a role in cytoskeletal organization and 

therefore be required for nascent/regenerating myofibers. 
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 To investigate the role of cmya1 in muscle regeneration, we next injected an 

anti-sense morpholino against the translations start site of cmya1 mRNA (MO-

cmya1). Blockage of cmya1 translation resulted in the appearance of huge gaps in the 

muscles at the 48 hpf stage, but unfortunately the control morpholino (with 5 bp 

mismatch) tended to produce a much more severe (though unrelated) phenotype (data 

not shown). One possible reason for this could be that the control morpholino blocks 

non-specific targets, although the morpholino sequence did not show homologies to 

any known zebrafish gene. We therefore ordered a targeted TILLING mutant from the 

Sanger Institute to be able to perform a loss of function analysis of the cmya1 gene. 

 

Figure 48: (A) cmya1 WISH at 30 hpf and 72 hpf. cmya1 is expressed in nascent myofibers as 
is evident from staining in the posterior somites that are formed later than the anterior ones. It 
is also expressed in the heart (white arrowhead) and the lens (black arrow). At 72 hpf, cmya1 
expression can be detected in newly forming muscles of jaw and ocular muscles, but not in the 
trunk muscles. The expression in the lens is limited to the proximal part of the lens. (B) The N 
terminal half of the Cmya1 protein contains 25 highly conserved actin binding XIN repeats, 
containing 16 amino acids each.  
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Figure 49: 72 hpf wildtype control (A) and GAL treated (B) larvae. GAL treatment 
causes robust upregulation of cmya1 transcripts (B, C, D, and E).  The expression in 
regenerating larvae can be seen in regenerating fibers (arrows, C and E) as well as 
punctuate staining that could be satellite cells (arrowheads, C and E). See text for 
details. 
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3.3.2 Agilent Microarrays 

 Since the number of differentially expressed genes in galanthamine treated 

larvae was quite low using the in house spotted microarrays from the Sigma-Genosys-

Compugen library, I decided to use Agilent 22k zebrafish microarrays. Since two 

different durations of GAL exposure microarrays upregulated almost the same genes 

on the Sigma Compugen chips, I performed microarray analysiss with agilent chips 

only on embryos that were treated with GAL for one of the previously used durations, 

namely 64 hours (ie 8-72 hpf). I selected genes with a p-value of ≤ 0.05 and a fold 

change of ≥ │1.7│.  

3.3.2.1 Genes upregulated upon galanthamine treatment 

 There were a total of 95 genes upregulated in response to galanthamine 

(Appendix A1). First and foremost, I looked to verify whether the genes those are 

upregulated in the Sigma Compugen microarrays are also upregulated in the Agilent 

microarrays. We found that 9 of the 13 genes are also upregulated in Agilent 

microarrays (Table 2). These are Suppressor of cytokine signaling 3a (Socs3a), 

Socs3b, Fibronectin 1b, complement component 6, desmin, activating transcription 

factor 3 (atf3), uncoupling protein 4 (ucp 4), zgc:92851, and zgc:92069. 

Unfortunately, cmya1 was not represented in the 22,000 oligo set spotted on the 

microarrays. We performed gene ontology (GO) analysis on the upregulated genes 

and were able to assign GO categories to 95 of these genes (Fig. 50). Where gene 

ontology was not available for zebrafish genes, we used human or mouse orthologs to 

retrieve the GO categories. 

 The largest category was the one with genes involved in ‘receptor/signal 

transduction’ with 15 candidates. The members included socs3a and socs3b, the genes 



Results 

147 

that are known to be expressed by activated satellite cells in mouse single fiber 

cultures (Jonathan Beauchamp, Pers. Comm., MYORES Workshop: Muscle 

Regeneration and Stem Cells: a multiorganismic approach in Niepolomice, Poland, 

October 12- 15, 2008). Another gene to be upregulated in this category is ZGC:92886 

(calcitonin/calcitonin-related polypeptide, alpha), the ligand for the calcitonin 

receptor, known to be expressed by, and correlated with the quiescence/activation 

state of satellite cells (Fukada, Uezumi et al. 2007). Another interesting candidate in 

this class is angiopoietin-like 7. The name and the expression (at the borders of the 

somites, along myosepta) (ZFIN in situ expression database) both suggest a role in 

angiogenesis. It should be noted that mammalian satellite cells are always found in 

close proximity to blood vessels (Christov et al., 2007). 

 The second largest category was ‘regulators of transcription’ with 13 genes. 

The most prominent of these genes is the myogenic regulatory factor myogenin. As 

mentioned in section 1.4.4,  myogenin is the MRF that acts during terminal 

differentiation of myoblasts by not only activating muscle specific genes but also by 

downregulating pax7 in myogenic progenitor cells (MPCs) thus pushing them towards 

differentiation. Upregulation of myogenin therefore is a conclusive proof that muscle 

regeneration is occurring in GAL treated embryos. Two of the genes upregulated in 

this category belong to the interferon regulatory factor family, IRF7 and IRF11, 

pointing towards activation of an immune response to the myopathic condition.  

 The third largest group belongs to the category ‘enzymes’, with 10 members. 

This category contains two members of cathepsin family of cystein proteases; 

Cathepsin La and zgc:103438 (a paralog of the human Cathepsin W), along with 

Complement factor B; further evidence of a strong immune response to the myopathic 

condition. An interesting member of this category is zgc:56376 (human paralog of 
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Murf3). MuRF3 (Muscle specific Ring Finger 3) also called TRIM54 is a cardiac and 

skeletal muscle specific E3 ubiquitin ligase that functions in striated muscle 

maintenance and remodeling and the loss of which leads to a predisposition for 

cardiac rupture after myocardiac infarction (Fielitz et al., 2007b). Together with 

MuRF1, MuRF3 is required for sarcomeric protein turnover and their loss leads to a 

myopathy characterized by accumulation of myosin (Fielitz et al., 2007a).  

 The next two categories are those of genes encoding for ‘kinase/phosphatases’ 

and genes involved in ‘cell death’, both with 8 members. Six of the eight genes 

included in the kinase/phosphatase category are uncharacterized, the other two being 

dual specificity phosphate 5 and pyruvate dehydrogenase kinase, isoenzyme 2. Dual 

specificity phosphatases are a subclass of the protein tyrosine phosphatase gene 

superfamily, which appears to be selective for dephosphorylating the critical 

phosphothreonine and phosphotyrosine residues within MAP kinases (for a review see 

(Camps et al., 2000)). 

 The most prominent gene upregulated in the cell death category is BCL2-

associated athanogene 3 (bag3). bag3 is an anti-apoptotic gene expressed primarily in 

striated muscles and the Bag3 protein is localized to the Z-discs in skeletal muscles 

(Homma et al., 2006). Loss of bag3 expression in cultured C2C12 myoblasts 

increases apoptosis upon induction of differentiation, revealing a role for bag3 in 

myotube survival in a cell autonomous manner. bag3 is essential for maintenance but 

not development of myofibers, as is evident from the fact that Bag3 deficient mice 

generate muscles, but develop a severe myopathy characterized by neonatal disruption 

of Z-disk architecture followed by myofibrillar degeneration (Homma et al., 2006). 
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 Of the remaining upregulated genes the most interesting members are from the 

category of genes involved in ‘cell adhesion’ with 5 genes. Two of these genes, 

ZGC:103425 and ZGC:103408, the zebrafish homologues of human CD151 and 

Integrin beta-1-binding protein 3 or Muscle integrin binding protein (MIBP), interact 

with integrins (Baldwin et al., 2008; Li et al., 2003a; Liu et al., 2007b; Yamada et al., 

2008; Yang et al., 2008). As stated in the section 1.3, integrins are important 

scaffolding proteins involved in myofiber attachment to the extracellular matrix and 

therefore play a critical role in cell migration. In addition MIBP functions in the 

control of myogenic differentiation by regulating α7ß1 integrin-mediated cell 

interactions with the laminin matrix and intracellular signaling through paxillin (Li et 

al., 2003a). Another interesting gene in this category is matrix metalloproteinase 9 

(MMP9). The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases, 

believed to play a major role in cell proliferation, migration (adhesion/dispersion), 

differentiation, angiogenesis, apoptosis and host defense. Specifically MMP9 has 

been shown to be expressed by regenerating but not healthy muscle tissue where it has 

been suggested to play a role in the inflammatory response and activation of satellite 

cells. 
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Figure 50: Gene ontology categorization of genes upregulated by GAL treatment. See 
text for description of the categories. 
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3.3.2.2 Verfication of upregulated genes by in-situ hybridization 

 To verify the microarray results we cloned the 30 highest upregulated genes 

and performed wholemount in-situ hybridization to look at changes in expression 

pattern and expression level upon GAL treatment. 

Zgc:100919 

 Zgc:100919 is a four pass transmembrane protein belonging to the 

tetraspannin family. Tetraspanins are transmembrane proteins with both N- and C- 

terminus lying on the intracellular side of the membrane. Tetraspanins are involved in 

diverse processes such as cell adhesion, proliferation and migration. They can form 

clusters forming a multimolecular network via multiple dimerization domains. 

Zgc:100919 is expressed in neural crest cells at 28 hpf (arrows, Fig. 51A) and the 

expression is restricted to the dorsal and ventral edges of the myotome and horizontal 

myosepta by 48 hpf (arrows Fig. 51B). By 72 hpf the expression is maintained at 

these sites (black arrows, Fig 51C), but in addition expression is also visible in single 

cells along vertical myosepta (red arrows, Fig. 51C). Upon GAL treatment, the 

expression is greatly increased in muscle fibers (Fig. 51D). 

 To gain a better spatial resolution of expression, I performed transverse 

sections of embryos for which wholemount in-situ hybridized embryos at the level of 

the yolk extension. In the untreated control 72hpf larvae, zgc:100919 transcripts could 

be observed in single cells in a sub-dermal location or along the myosepta (Fig. 52A, 

A’) and also in the dorsal and the ventral zones showing stratified hyperplasia (as 

mentioned in section 1.6) (Fig. 52A). In contrast, GAL treated embryos show much 

more extensive staining with zgc:100919 antisense probe. The staining is also 
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observed in deeper myotome (boxed area, Fig. 52B, arrowheads, Fig. 52B’) that in 

uninjured larvae contained mature muscle fibers. 

 Thus it is clear that GAL treatment leads to increased expression of 

zgc:100919 in injured muscles and that this gene could have a role in regeneration 

process. 

 

 

Figure 51: zgc:100919, a member of the tetraspannin family of transmembrane 
proteins, is expressed in neural crest cells at 28 hpf stage (white arrows, A). By 48 hpf 
the expression is limited to the dorsal and ventral edge of the myotome and also along 
the horizontal myosepta (black arrows, B). In wildtype 72 hpf larvae the expression is 
similar to the 48 hpf larva except that the expression could also be seen in vertical 
myosepta (red arrows, C) in individual cells. Upon GAL treatment the regenerating 
muscles upregulate the expression significantly, validating the microarray results (D). 
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Figure 52: Transverse section of zgc:100919 wholemount in-situ hybridized larvae through 
the level of yolk extension at 72 hpf control (A, A’) and GAL treated larva (B,B’). In the 
control larvae most of the staining is limited to the areas that show stratified hyperplasia 
i.e., the dorsal and the ventral edge of the myotome. A few cells expressing the gene can be 
seen at the surface of the somite and horizontal myosepta. The GAL treated larvae show 
staining deeper within the myotome. The right hand panels (A’, B’) show the boxed area in 
the left hand panels (A, B) at a higher resolution. The cells expressing zgc:100919 seem to 
have migrated deeper into the myotome upon GAL treatment (arrowheads, B’). Note the 
relatively small diameter of the stained cells (B’), indicating that they are myoblasts or 
newly forming myofibers. 
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l-threonine dehydrogenase (tdh) 

 At 28hpf tdh is expressed in the midbrain (arrowhead, Fig. 53A), spinal 

neurons (arrows, Fig. 53A and B) and the myotome (Fig. 53A and B). By 48hpf the 

myotomal expression is not detected anymore, but spinal neuron expression is 

maintained (arrows, Fig. 53C, and D). The developing pectoral fin precursors also 

show expression of tdh at this stage (arrowheads, Fig. 53C, inset). By 72hpf, 

expression is also observed in individual cells in the trunk (arrowheads, Fig. 53E). On 

GAL treatment, 72hpf larvae show expression of tdh in trunk muscles and the number 

of small spherical cells expressing tdh also increases (arrowheads, Fig. 53F inset). 

Zgc:103408 

 Zgc:103408 is the zebrafish homologue of human Integrin beta-1-binding 

protein 3, also known as Muscle Integrin Binding Protein (MIBP). At 28hpf 

zgc:103408 is expressed in the axial muscles of the larvae (Fig. 54A and B). By 48hpf 

the expression in axial muscles continues (Fig. 54C) and it is also observed in pectoral 

fin muscles (arrows, Fig. 54D) and the heart (arrowheads, Fig. 54D inset). 72hpf 

larvae show a decrease in expression of zgc:103408 expression in axial muscles (Fig. 

54E) but the newly formed jaw muscles (black arrows, Fig. 54E) start expression. 

Strong expression is also visible in muscles of the pectoral fins (asterisk, Fig. 54E) 

and hypaxial muscles (red arrows, Fig. 54E, inset). GAL treated 72hpf larvae show 

increased levels of zgc:103408 expression not just in axial muscles (Fig. 54F), but 

also in jaw muscles (black arrows, Fig. 54F), pectoral fin muscles (asterisk, Fig. 54F) 

and hypaxial muscles (red arrows, Fig. 54F inset). 
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Figure 53: Expression pattern of l-threonine dehydrogenase (tdh). 28 hpf larvae show 
express tdh in the midbrain (arrowhead, A), spinal neurons (arrows, A and B) and the 
myotome. By 48hpf expression is maintained in spinal neurons (arrows, C and D) and 
pectoral fin muscles (arrowheads inset, C) also start expressing tdh. By 72 hpf the wildtype 
larvae express tdh at the ventral and dorsal edges of the myotome and horizontal myosepta, 
besides individual roundish cells (arrowheads, E). GAL treatment increases the expression 
of tdh significantly in the myotome and also a number of small round cells (arrowheads, F).  
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heat shock protein, alpha-crystallin-related, 1 (hspb1) 

 Hspb1, also called Heat-shock 27-KDa protein 1 is a stress induced chaperone 

that is suggested to have a protective role against oxidative stress (Wyttenbach et al., 

2002). At 24 hpf, hspb1 is expressed in the midbrain-hindbrain boundary (MHB) 

(arrow, Fig.55A and B), in axial muscles, the heart, and fin folds of the tail fin 

(arrowhead, Fig. 55A). By 72 hpf the expression in the MHB is weak (arrow, Fig. 

Figure 54: Expression pattern of zgc:103408 (Muscle Integrin Binding Protein, MIBP). At 28 
hpf (A and B) MIBP is expressed in the axial muscles of the larvae. By 48 hpf the expression 
continues in axial  muscles (C) and is also visible in pectoral fin musculature (arrows, D)  and 
the heart (arrowhead inset, D). At 72 hpf the wildtype larvae show faint expression in axial 
muscles but newly forming jaw muscles start expressing MIBP. At this time hypaxial muscles 
(red arrows, inset, E) and pectoral fins muscles (asterisk, main figure and inset, E) also start 
expressing MIBP. GAL treated embryos express MIBP transcripts at an elevated level not just 
in the axial muscles, but also in the jaw muscles (black arrows, F), pectoral fin muscles 
(asterisk, main figure and inset, F) and hypaxial muscles (red arrows, inset, F). 
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55C) and the extra-ocular muscles start expressing hspb1 (arrowhead, Fig. 55C’’). 

The expression in the axial muscles has become reduced by now, the heart expression 

is maintained, and the hypaxial muscles start to express hspb1 (arrowhead, Fig. 55C). 

In 72hpf GAL treated larvae the axial muscles show a very intense staining and the 

increase in staining is also noticeable in the MHB (arrow, Fig. 55D), the hypaxial 

muscles (arrowhead, Fig. 55D) and the-extra ocular muscles (arrowhead, Fig. 55D’’). 

 

 

heat shock protein, alpha-crystallin-related, b11 (hspb11) 

  At72 hpf very faint hspb11 expression was observed in the in the extra-

ocular muscles and muscles of the jaw (Fig. 56A and A’). Upon treatment with GAL 

there is a massive upregulation of hspb11 expression in the somites and also in the 

extra-ocular muscles (Fig. 56B and B’). 

Figure 55: Expression pattern of hspb1. Please see text for details. 
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alanine-glyoxylate aminotransferase (agxt) 

 agxt is a liver-specific, pyridoxal-phosphate-dependent enzyme. It is localized 

to the peroxisomes of normal hepatocytes and is known to catalyze the transamination 

of the intermediary metabolite, glyoxylate, to glycine. This can be considered as a 

detoxification reaction because the loss of function of Agxt allows glyoxylate to 

escape from the peroxisomes into the cytosol where it is oxidized to oxalate, and then 

reduced to glycolate (Danpure and Rumsby, 2004). In humans, at least, oxalate cannot 

Figure 56: 72 hpf larvae show very low level expression of hspb11 in the developing 
cranial muscles (top panel). The expression in the somites was not detected. However, 
upon treatment with GAL, 72 hpf larvae show a robust expression in somitic muscles 
in a mosaic manner and the cranial muscles also upregulate the expression. 
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be further metabolized and its increased synthesis and urinary excretion leads to the 

progressive deposition of insoluble calcium oxalate in the kidney and urinary tract, 

resulting in development of kidney stones and subsequent renal failure.  

 The zebrafish agxt is expressed in the liver (white arrowhead, Fig. 57A and 

A’) at 72hpf. Treatment with GAL not only results in an increase in expression in the 

liver (white arrowhead, Fig. 57B and B’) but the expression is now also visible in 

large cells over the surface of the yolk (Fig. 57B and B’) where staining is not 

detected in untreated controls (asterisk, Fig. 57A and A’). 

 

 

 

 

 In summary, of the initial 30 genes cloned, expression analysis has been 

performed for six genes while expression analysis of the rest is currently in progress. 

Figure 57: 72 hpf larvae reveal alanine-glyoxylate aminotransferase (agxt) expression 
in liver (white arrowhead, A, A’). GAL treatment causes not only increased staining in 
liver (white arrowheads, B, B’) but also expression in large cells over the surface of the 
yolk (B, B’) where staining is not detected in untreated controls (asterisk, A,A’).  
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However, already based on the results so far, the expression analysis of above 

mentioned genes has generally validated the microarray data. Of the six genes 

analyzed, five genes showed an increased muscle specific expression when treated 

with GAL and the sixth showed increased expression in liver, an organ involved in 

detoxification of the body. This, at least partially, validates our initial hypothesis that 

microarrays of GAL treated larvae should upregulate muscle specific genes. Further 

investigation of these genes shall reveal their specific roles in the regenerative 

pathway.  
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4 Discussion 

4.1 A genetic screen for motility mutants 

 An ENU induced mutagenesis screen was performed to identify mutants with 

progressive loss of motility. Additionally, birefringence was used as an assay to assess 

muscle integrity. Such mutants would develop musculature or nervous system 

normally, but the muscle or neuronal maintenance might be defective. This defective 

maintenance could result from a lack of functional regeneration. Seven motility 

mutants displaying reduced birefringence were found in the screen. 

4.1.1 gumrah mutant shows multiple defects muscles, neurons and neural crest 

derived tissues 

 Isolation and characterization of one such mutant (gumrah) that shows 

progressive loss of motility and concomitant muscle degeneration was performed. 

gum mutants seem to move normally at 24hpf, but develop uncoordinated movements 

over next few days, ultimately leading to death by the 5th or 6th dpf. In addition, the 

gum mutants develop necrosis in the hindbrain that leads to a severe reduction of the 

size of the head. The mutants also develop U-shaped somites, an aberrant 

pigmentation pattern and cardiac edema.  

 The presence of U-shaped somites is a characteristic feature of Shh pathway 

mutants. However, gum mutants develop slow muscles that are typically absent or 

severely reduced in mutants lacking Shh activity, arguing that gum does not act in the 

Shh pathway. gum mutants also show normal organization of sarcomeric proteins, but 

muscle maintenance seems to be defective. As the gum mutant larvae age, the 
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myofibers tend to detach from the myosepta, especially at the dorsal and ventral 

borders of the somites (Fig. 24 and 25). Sometimes myosepta/myofibers also develop 

gaps (section 3.1.1.2).  

 Detachment of myofibers from myosepta is a characteristic feature of many 

myopathies in zebrafish. Fiber detachment could result either from a loss of 

sarcolemmal integrity or from loss of a component of extracellular matrix at the 

attachment site. One example of the former is the sapje mutant (the zebrafish 

orthologue of the human Duchenne muscular dystrophy gene) (Bassett et al., 2003), 

while an example of the latter scenario is the candyfloss mutant (zebrafish laminin α2 

gene) (Hall et al., 2007). The observation that gaps in myosepta and muscle fiber 

detachment sites coincide with gaps in anti-Laminin staining suggests that gum 

embryos might suffer from a loss in a component of the ECM at the fiber attachment 

site and thus may belong to the latter category. Once the fibers are detached from 

myosepta, they undergo degeneration. This is obvious from the decrease in 

birefringence of gum larvae over time, as well as from the electron micrographs taken 

at 5 dpf that show large gaps between the muscle fibers, muscle fibers with reduced 

thickness, and remnants of many fibers in the gaps. Therefore it appears that the 

maintenance of contact (and possibly signaling) between sarcolemmal and ECM 

components, such as laminin and integrins, is essential for maintenance of muscle 

fibers. For example, in both mouse and humans, loss of α7 integrin function causes a 

myopathy that is distinct from those caused by the loss of dystrophin-dystroglycan 

complex (Hayashi et al., 1998; Mayer et al., 1997). Other ligands of integrins include 

fiberonectin, vitronectin and collagen, and signaling mediated by these might regulate 

growth, cell adhesion, cell migration and differentiation (for a review see (Harburger 

and Calderwood, 2009)).  Loss of function of certain other integrins such as αV 
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integrin can be ameliorated by concomitant loss of p53 function, indicating a role for 

integrin signaling in programmed cell death (Stromblad et al., 2002). Hence, in the 

context of gum mutants, it would be important to find out whether the fiber 

detachment seen is a primary or a secondary event of the mutation. 

 IHC analysis with antibodies labeling various neuronal structures revealed 

several neuronal defects in gum larvae. The neuronal processes, labeled by znp-1 

antibody, showed gaps and irregular arrangements in contrast to control larvae (Fig. 

27A and A’). This could be a direct result of the gaps shown by the muscle fibers, 

since the neuronal processes would be innervating these muscles. The Dorsal Root 

Ganglia (DRGs) seem to be reduced in numbers or located at an ectopic location in 

gum mutants (Fig 27B and B’) and the enteric neurons are missing. Some ectopic 

neurons were observed at the level of midline (arrows, Fig. 27B’). These could be 

either misplaced DRGs or precursors of enteric neurons that did not migrate to their 

correct destination.  

 Both the DRGs and the enteric neurons are neural crest derived tissues. 

Besides these, gum mutants showed defects in other neural crest derivatives like 

pigmentation and exhibited severe jaw malformations. gum mutant larvae showed less 

crestin positive cells and the cells seemed to be less migratory (Fig. 31). Migratory 

trunk neural crest cells in gum mutant larvae tended to stay close to the neural tube 

and were never observed taking the sub-dermal path while migrating ventrally (Fig 

32). Cell migration is a complex phenomenon governed by several factors such as 

cell-cell adhesion, cell-ECM adhesion, guidance cues emanating from the destination 

of the migrating cell etc. In addition, in a developing embryo, many morphological 

changes are taking place and multiple cell populations are undergoing migration. The 

migrating cells must recognize their specific signal amid a large variety of signals 
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they might encounter. It is possible that the mutation in gum leads to a loss of a 

guidance cue or of another component of the neural crest migration pathway. This 

might also lead to ectopic DRGs and/or missing enteric neurons. Alternatively, a 

mutation in a cell-cell or cell-ECM adhesion protein may lead to an altered migration 

path. It is also possible that an ECM component serves as a guidance cue in this case 

as this can explain both the muscle as well as neural crest migration defects. 

 One way to study aberrant migration of neural crest cells would be to perform 

time-lapse imaging of neural crest cells expressing a fluorescent marker in gum 

mutant background. To achieve this, I outcrossed gum heterozygous fish into -7.2kb 

sox10::EOS-FP fish. -7.2kb sox10::EOS-FP (Takamiya, M. unpub.) is a transgenic 

line expressing the reporter EOS-FP (Nienhaus et al., 2006) under the control of the -

7.2 kb sox10 promoter (Hoffman et al., 2007) and is expressed by all neural crest 

cells. The -7.2kb sox10::EOS-FP fish in gum background are currently growing and 

will soon be ready for mating. 

 To understand the nature of the muscle and neuronal defects in gum mutants, 

we need to know the gene mutated in gum mutants. Therefore, a positional cloning 

approach was adopted to map the gum locus (in collaboration with Dr. Christelle 

Etard). By the time of writing this report, gum had been localized to a 2MB region on 

chromosome 14. Unfortunately, this region is too large and contains several genes to 

be tested by a candidate approach. Therefore, fine mapping of the locus is necessary 

and is currently underway. 

4.2 Zebrafish as a model for muscle regeneration 

 In the last twenty years, the zebrafish has become an important vertebrate 

model organism to study development and disease. Recent studies show that it is also 
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an excellent model to study regeneration events. Zebrafish show exceptional 

regenerative abilities after damage to various tissues such as fin, heart, central nervous 

system (CNS), retina, and kidney (for recent reviews see, (Becker and Becker, 2008; 

Hitchcock and Raymond, 2004; Poss et al., 2003; Raya et al., 2004; Reimschussel, 

2001)).However, so far no report has described muscle regeneration in fish.  

 In this study, I have tried to redress this issue by developing a model of 

inducible myopathy and performing a preliminary characterization of the putative 

muscle stem cells in the zebrafish. On one hand, this would allow us to harness the 

advantages of the zebrafish genetics and development and allow a possibility of in 

vivo imaging of regeneration. Live imaging would provide an increased temporal 

resolution of the events during regeneration, thus providing an opportunity to 

modulate these events and uncover their roles in regeneration. On the other hand, the 

use of zebrafish would facilitate drug/small molecule screening at an unprecedented 

rate to screen or at least pre-screen for potential modulators of muscle regeneration. 

4.2.1 Galanthamine treatment: a conditional myopathy model 

 We report here the development of a conditional myopathy model of 

zebrafish: galanthamine treatment induces muscle degeneration and subsequent 

removal of galanthamine allows the injured muscle to regenerate. A previous study 

had demonstrated a loss of larval motility and muscle structure when 

acetylcholinesterase (ache) function was lost (Behra et al., 2002). The ache mutation 

can be phenocopied by application of acetylcholinesterase inhibitors such as 

galanthamine. I found that the removal of the inhibitor and a subsequent recovery 

period leads to a full functional recovery of the larvae. Therefore, I developed a 

treatment regime, where GAL application for up to 64 hours leads to complete 
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paralysis of treated larvae. Subsequent removal of GAL leads to a functional recovery 

of motility within 48-72 hours. As shown in section 3.3.2, birefringence 

measurements (Fig. 34), as well as electron microscopy (Fig. 35) observations, are 

consistent with the finding that GAL treatment causes muscle degeneration and that 

the muscles can regenerate following removal of embryos from the GAL containing 

medium and raising in fish water.  

 This approach has several important advantages over various techniques used 

in rodent muscle regeneration research. For example, methods of inducing focal 

injury in rodents include injection of cardiotoxin, a snake venom derived toxin that 

acts via compromising membrane permeability, injury induced by crushing, injury 

induced by application of dry ice and muscle overload by hanging. Of these, only 

cardiotoxin injection is a viable option for zebrafish larvae due to their small size. 

However, microinjections in older larvae are tedious and time consuming and it is not 

possible to perform them in a high throughput manner. Therefore, for induction of a 

systemic myopathy, GAL treatment is highly desirable as this can be performed in 

high numbers and automated if needed; a prerequisite to exploit the advantages of the 

zebrafish model system for drug screening.  

4.2.2 Presence of putative muscle stem cells in zebrafish 

 Observation of electron micrographs obtained from 104 hpf larvae showed 

cells displaying typical characteristics of satellite cells: large nuclear to cytoplasmic 

ratio and lying adjacent to the muscle fiber under the basal lamina. These cells also 

express Pax7, the most commonly used marker for satellite cells and one that labels 

all satellite cells, as revealed by Immuno-electron microscopy (unpub. observations). 

This indicates that zebrafish, like mammals, might use stem cells for muscle 
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regeneration as opposed to the dedifferentiated tissue used by newts. Additionally, 

single fibers isolated from adult zebrafish have revealed associated satellite cells 

(Peter Zammit, pers. comm.). 

 To characterize zebrafish satellite cell distribution, a monoclonal antibody 

recognizing zebrafish Pax7 was used to ascertain the location of Pax7+ve cells at 24-75 

hpf. As described before (section 3.2.6) Pax7+ve nuclei were observed at the 

superficial somite surface (Fig. 38 and 39). At 24 hpf there are two distinct classes of 

Pax7+ve nuclei: a larger number of weakly stained nuclei spread all over the 

superficial surface of the somite and a smaller number of very intensely stained 

nuclei. Given such striking differences in the intensity of staining and hence levels of 

Pax7 protein, one might speculate that there are two subclasses of Pax7+ve nuclei in 

the trunk at this stage. Indeed, it was shown recently that the fewer, higher intensity 

Pax7+ve cells, belonged to the neural crest lineage, as opposed to the more abundant, 

lower intensity Pax7+ve cells, that belonged to the somitic lineage (Hammond et al., 

2007). The more intensely labeled Pax7+ve nuclei are lost in the colourless (sox10) 

mutants while low intensity Pax7+ve nuclei are not affected (Hammond et al., 2007). 

By 72 hpf, most Pax7+ve cells are lined along the dorsal and the ventral edges of the 

somite, and along the horizontal and vertical myosepta (Fig. 39). The Pax7+ve cells are 

rarely observed in the deeper myotome at this stage. Also, by 72 hpf, all trunk neural 

crest cells have migrated to their destination and most likely, differentiated. A review 

of the literature did not yield any reports of trunk neural crest cells still present at 72 

hpf. Still the superficial Pax7+ve cells at 72 hpf show varying levels of Pax7 protein 

expression (as inferred by the intensity of antibody staining, color coded in Fig. 39). 

One possible explanation for this is that since Pax7 protein is required to maintain 

cells in an undifferentiated state, and at least some MRFs are known to directly 
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repress pax7 transcription as well as Pax7 protein stability, the lower intensity Pax7+ve 

cells might be the ones committed to differentiation. The Pax7+ve cells at the 

superficial somite surface are quite flat, with oblong rather than spherical nuclei (Fig. 

39), the orientation of these cells depends on their location; the ones at the myosepta 

are mostly perpendicular to the somite surface, while the ones superficial to the 

somites are parallel to the somite surface. Whether the cells at the superficial somite 

surface are more prone to differentiate vs. the cells at the myosepta, is however, not 

clear. These observations raise the questions: what is the lineage of these non neural 

crest Pax7+ve cells and what fate awaits them. Recent evidence for the presence of a 

primitive dermomyotome in zebrafish, as discussed below, partly answers this 

question. 

4.2.3 Presence of a dermomyotome in teleosts 

 The presence of Pax7+ve cells at the superficial surface of the somite agrees 

with evidence for the presence of a functional dermomyotome in teleosts (For a 

review see (Stellabotte and Devoto, 2007)). The dermomyotome is a transient 

structure that, in amniotes, gives rise to both the myotome that generates the muscle, 

and the dermis that forms a layer of the skin. The amniote dermomyotome (section 

1.4.3, Fig. 4) contributes cells to the primary myogenesis that gives rise to the initial 

muscle fibers in the somite as well as the secondary myogenesis that gives rise to the 

myogenic precursors for postnatal muscle growth as well as muscle satellite cells that 

serve as muscle stem cells.  

 The teleost dermomyotome was described as early as in the 19th century 

(Kaestner, 1892) in a manner similar to that of the amniote dermomyotome: by 

developmental state of origin, position, morphology, and the speculated fates of its 
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cells (Ramirez-Zarzosa et al., 1998; Veggetti et al., 1990; Waterman, 1969). Only 

recently has the teleost dermomyotome been shown to express the same markers as 

amniote dermomyotome, including pax3, pax7, mesenchyme homeobox 1 (meox1), 

and dachshund d (dachD) (Devoto et al., 1996; Feng et al., 2006; Groves et al., 2005; 

Hammond et al., 2007; Hollway et al., 2007). In the teleosts, the primary myotome 

forms relatively early and independently of the dermomyotome. This is in contrast to 

the amniotes, where the first fibers elongate after the formation of the dermomyotome 

(section 1.4.3 and above). The first genetic evidence for the presence of a teleost 

dermomyotome came from the observations that the medial and the posterior cells of 

the epithelial somite express Myogenic Regulatory Factor  (MRF) genes while the 

anterior cells don’t; in zebrafish (Weinberg et al., 1996), herring, trout, pearlfish and 

carp (Cole et al., 2004; Delalande and Rescan, 1999; Steinbacher et al., 2006; Temple 

et al., 2001). In many teleosts, the myoD negative cells, anterior somitic cells yet 

uncommitted to myogenic fate, form a single row of cells at the anterior border of the 

somites (green cells, Fig. 58A). These cells are variously described as Anterior Border 

Cells (ABCs) (Stellabotte et al., 2007) or Row 1 cells (Hollway et al., 2007). In 

zebrafish and trout these ABCs subsequently start expressing the markers for 

dermomyotome, such as, pax3, pax7, meox and dacD (Groves et al., 2005; Hammond 

et al., 2007; Hollway et al., 2007; Steinbacher et al., 2007) while the posterior cells 

express myoD (blue cells, Fig. 58A). Single cell lineage tracing and time lapse 

microscopy have revealed that these cells move along the border of the somite to the 

lateral surface (Fig. 58A-C) (Hollway et al., 2007; Stellabotte et al., 2007). The ABCs 

move laterally (green cells, Fig. 58B) while the posterior cells elongate in the anterio-

posterior direction (blue cells, Fig. 58B). By the time the segmentation ends (24 

hours), these Pax7+ve ABCs are restricted to the surface of the somite and acquire flat 
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dermomyotomal cell morphology (Fig. 58C). Initially, the only non dermomyotomal 

fate of these is that of muscle fibers (Stellabotte et al., 2007) (green cells, dorsal view, 

Fig. 58D-F, transverse section, Fig. 58G, H). During early larval stage the 

dermomyotomal cells proliferate (Hammond et al., 2007; Hollway et al., 2007), and 

give rise to the secondary myotome, cells of the dorsal fin, and fin muscles (Hollway 

et al., 2007; Stellabotte et al., 2007). Given the existence of, and conserved gene 

expression patterns with amniotes in the zebrafish dermomyotome, one might 

speculate that this layer of Pax7+ve cells could serve as a source of satellite cells for 

adult muscle regeneration. Evidence from published reports suggests that the 

dermomyotomal layer of Pax7+ve cells remains proliferative through adulthood in 

zebrafish (Hammond et al., 2007; Hollway et al., 2007). This would also explain how 

fish sustain addition of muscle mass throughout life by hyperplasia (increase in fiber 

number) compared to the hypertrophic (increase of fiber size by addition of new cells) 

growth shown by mammals. 
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4.2.4 Pax7 expression is perturbed in myopathic states 

 Comparison of three different myopathic states, namely GAL treatment and 

the myopathies induced by steif and gum mutations, with wild type sibling controls 

revealed subtle differences in the localization of Pax7+ve nuclei in the somites. GAL 

treated larvae and steif mutant larvae showed an increased number of Pax7+ve nuclei 

in the “inter-myosepta region” of the somite (Fig. 41A’ and B’). In the wildtype 

larvae, the Pax7+ve nuclei are localized mostly to the boundaries of the somite, the 

horizontal and the vertical myosepta as well as the dorsal and the ventral edge of the 

myotome (Fig. 41A and B). One could therefore speculate that damage to muscle 

fibers causes these cells to move to the inter-myosepta region in an attempt to repair 

or regenerate damaged muscle fibers. This hypothesis can, to some extent, be 

supported by observing the localization of Pax7+ve nuclei in gum mutant larvae. 

Relative to steif mutants and GAL treated embryos, gum mutants show a milder 

Figure 58: Dermomyotome and myotome morphogenesis (A-F) Schematic 
representation of somite cell movements and fates, viewed from dorsal (anterior is up 
and the midline is to the right). (A) In nascent somites, epithelial border cells surround a 
mesenchymal core. The anterior border cells (ABCs) are the anterior-most row of cells 
lateral to the adaxial cells (red) which line the notochord. (B-F) The fate of subsets of 
ABCs (green), posterior cells (blue), and adaxial cells (red) are shown once the somite 
loses its epithelial morphology. Adaxial cells elongate into slow muscle fibers (red) 
along the notochord, as posterior cells initiate elongation (blue), and ABCs (green) 
move laterally. At 24 hr, the posterior cells (blue) have elongated into medial fast fibers 
and a subset of the dermomyotome cells (green) have elongated medial to the superficial 
slow muscle layer (red). Some of the dermomyotome cells remain external to the 
myotome as a layer of flattened cells (green). (G, H) Schematics depicting transverse 
sections through the mid-trunk somite of an embryo partly through the segmentation 
period (20 hr in zebrafish, G), and at the end of the segmentation period (24 hr in 
zebrafish, H). Adaxial cells give rise to superficial slow fibers (red). ABCs give rise to 
dermomyotome cells on the external surface of the somite (green) at mid-segmentation 
stages and then to dermomyotome as well as lateral fast fibers by the end of the 
segmentation stage (green). Posterior cells (blue) have already elongated into muscle 
fibers at the 20-hr stage (G) and occupy distinct, medial positions in the 24 our 
myotome (H). Figure adapted from (Stellabotte et al., 2007) (A-F) and (Stellabotte and 
Devoto, 2007) (G, H). 
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phenotype, with fibers detaching from the somite borders. The Pax7+ve nuclei also 

tend to cluster around the somite borders in gum mutants, presumably in response to 

the detached muscle fibers (arrowheads, Fig. 41C’).  However, further experimental 

proof is needed to validate the hypothesis that Pax7+ve nuclei cluster around the site of 

damaged myofibers. One way to investigate this would be to cause focal injuries and 

then examine the behavior of Pax7+ve cells during repair/regeneration process in vivo.  

4.2.5 The number of proliferative Pax7+ve cells increases dramatically in GAL 

treated larvae 

 One might expect that muscle injury would increase the number of Pax7+ve 

cells. Surprisingly, GAL treated larvae showed a very slight, statistically insignificant, 

increase of total Pax7+ve nuclei counted in four somites (n=6 larvae) despite the 

redistribution within the somite (discussed above). It is possible that upon muscle 

injury the rate of proliferation of Pax7+ve cells increases to provide enough new cells 

to lead effective regeneration. Once the amplified cells enter the myogenic program, 

they would down-regulate pax7 in order to differentiate into muscle fibers. Thus, the 

number of Pax7+ve cells would remain constant, and only the turnover of these cells 

would increase.  Indeed, an increased level of proliferative Pax7+ve cells was observed 

upon GAL treatment (Fig. 42 A and B). Anti-Phospho-histone H3 antibody was used 

as a marker for proliferative Pax7+ve cells. The increase in proliferative Pax7+ve cells 

was around 80%, showing a very robust response to GAL treatment induced 

myopathy.  

 3-D rendering of confocal stacks showed that several of Pax7+ve/PHH3+ve cells 

were located in the deeper myotome that contains mature fast muscle fibers in a 72 

hpf larva. This suggests that not only do Pax7+ve cells undergo increased proliferation; 
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they also migrate to the deeper myotome, where most of the damaged muscles are and 

where therefore their differentiation is required. Thus, once these cells enter the 

myotome, they presumably undergo differentiation and downregulate pax7 

expression, thereby maintaining an almost constant number of total Pax7+ve cells. 

Because a majority of the Pax7+ve/PHH3+ve dual labeled cells are observed deeper into 

the myotome, it can be concluded that the differentiation of the cells follows their 

amplification. It is not clear whether the amplification occurs at the site of muscle 

damage or along the migration to the site of damage. Further work is needed to find 

out whether these cells then go and fuse with damaged fibers or give rise to fibers de 

novo. Furthermore, it would be important to know when and precisely how they 

differentiate and if they need signals from the damaged cells for this. One way to 

address these questions is to have transgenic lines reporting the expression of genes in 

muscle differentiation pathway (myf5, myoD, myogenin). The in vivo imaging of these 

lines under conditions of muscle repair should yield information about kinetics of 

regeneration pathway. Additionally, blocking of genes upregulated in the microarray 

study (discussed below) in the background of these transgenic lines would provide 

information to the roles these genes play in the regeneration pathway. 

 Thus in summary, a drug inducible model of myopathy in zebrafish was 

developed and using this model it was found out that the zebrafish larvae mount a 

very robust regenerative response to this myopathy. The observations in this study 

revealed the presence of cells that show morphological hallmarks of mammalian 

satellite cells in the zebrafish. At 24 hpf, Pax7, a marker for satellite cells, labels 

nuclei at the somite surface.  This is in agreement with recently published reports 

about the presence of a dermomyotome in zebrafish. By 72hpf, most Pax7+ve nuclei 

are restricted to somite borders. Subtle changes were observed in the localization of 
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Pax7+ve nuclei in myopathic states, presumably in response to damaged musculature. 

Pax7+ve cells also showed greatly increased proliferation in response to muscle 

damage, but not an overall increase in number of Pax7+ve cells, presumably due to 

Pax7+ve cells undergoing rapid differentiation into muscle fibers. The proliferative 

Pax7+ve cells were observed in the deeper myotome that contains only mature muscle 

fibers in healthy larvae. 

 One caveat for this study is that it was performed in relatively young animals. 

At this stage, most Pax7+ve cells are not fiber associated and therefore by definition 

not ‘quiescent satellite cells’. Indeed, as has been stated above, Pax7+ve cells in the 

dermomyotome are proliferative. However, these cells have been shown to give rise 

to fiber associated satellite cells later (Hollway et al., 2007). This was also observed 

in the Pax7BAC::kikGR1 transgenic line that is being raised (Fig. 47). Zebrafish 

larvae transiently expressing Pax7BAC::kikGR1 initially show expression in 

dermomyotome cells. From day 5 onwards, fiber associated satellite cells could be 

observed in these larvae (Fig 47). 

 Since the focus of this study was young animals, this model could be useful 

for study of specification, proliferation, migration and differentiation of satellite cells. 

However, to study events involved in initial activation of satellite cells, one may need 

to study older larvae or adult fish. 

4.3 Transcriptomics of GAL treated larvae 

 Tissue regeneration is a complex phenomenon with multiple signaling, cell 

migration, immune reaction and tissue remodeling events taking place 

simultaneously. Severe muscle injuries such as those induced by snake venom (for 

example, cardiotoxin, notexin or bupivacaine) used routinely to cause muscle injuries 
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in rodents lead to severe necrosis of the injected muscles. Soon after injury, cells 

involved in the inflammatory response, such as neutrophils and macrophages, 

infiltrate the injured area and clear away the muscle fibers damaged beyond repair 

(for a review see (Charge and Rudnicki, 2004)). During this period, satellite cells, 

which have been activated following muscle damage, must be prevented from 

undergoing apoptosis in response to the massive release of free radicals from the 

necrotic tissue. For these processes to act in a co-ordinate manner, numerous changes 

in gene expression levels must occur that would be reflected in the transcriptional 

profiling of the regenerating larvae. Therefore, with the hypothesis that the myopathic 

animals would increase expression of transcripts required for and facilitating 

regeneration, an unbiased genome wide expression profile was performed on GAL 

treated larvae compared to wildtype control larvae. 

 Initial microarray experiments were performed on custom build chips with 

oligos spotted onto glass slides at the in house microarray facility at FZK. The 

advantages of such an approach are readily available chips at a substantially lower 

cost than commercial alternatives, allowing a larger number of repeats and conditions. 

However, the initial experiments with custom made chips yielded very few 

differentially expressed genes. Therefore, commercially available chips from Agilent 

were used in subsequent experiments. Commercially available chips have better 

quality control and contain higher number of oligos (22k vs. 10k) spotted on them. 

However, a limitation of the application of microarray technology to the zebrafish is 

the still unfinished annotation of zebrafish genome. Hence, the 22k oligos represented 

on Agilent microarrays may not represent the full complement of zebrafish genes. For 

example, on comparing the genes upregulated in Sigma Compugen microarrays with 

the genes upregulated in the Agilent microarray, only 9 out of 13 upregulated genes 
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from the homemade array were found to be in the upregulated set from Agilent chips. 

The most prominent gene of these, cardiomyopathy associated 1 (cmya1) (discussed 

below), was not represented on Agilent microarrays. Here we discuss the 

categorization of upregulated genes according to the gene ontology (GO) class 

assigned to them and their possible roles in muscle regeneration followed by the most 

prominent upregulated genes upon GAL treatment that have been verified by ISH. 

4.3.1 Genes upregulated upon GAL treatment in Agilent microarrays 

 To validate the hypothesis that the genes upregulated upon GAL treatment, 

and hence due to a myopathy, should be involved in muscle repair/regeneration it is 

important to compare our results with published microarray results in different 

models. A recent study, performed in mice, compared the effects of two different 

kinds of injuries; namely contractile overload induced injury (CI) with direct 

destruction of the muscle tissue (Freeze injury, FI), on the transcriptome (Warren et 

al., 2007). In total, 23 genes that were upregulated in the mouse study overlap with 

the upregulated genes in the GAL treated zebrafish larvae (corresponding to 25 

zebrafish genes) (Table 7). The additional genes in zebrafish result because of gene 

duplications frequently seen in teleosts (Amores et al., 1998; Meyer and Schartl, 

1999; Volff and Schartl, 2003). In several cases, a different member of the same gene 

family (Table yyy, shown in italics) represents the zebrafish genes. Despite 

differences in the mode of causing injury: the mouse study was performed on adult 

mice that were injured once, while the zebrafish study was performed on larval fish 

that were constantly under myopathic conditions; several common genes were 

upregulated. This indicates that there is a strong similarity in regenerative response to 

muscle damage at the transcriptional level. The mouse study also looked at the 
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relative timing of gene expression after injury induction. The earliest induced genes 

common with zebrafish study are the transcription factors atf3, fos, C/EBP-delta, 

GADD45 and btg2 and the stress responsive gene xin (cmya1, discussed later), that 

were induced within 6 hours of causing muscle injury. In contrast, the transcription of 

these genes was still upregulated in zebrafish at 3 dpf, after more than two days of 

treatment with GAL. This is because unlike CI or FI, GAL treatment causes persistent 

muscle damage. The expression of the other transcription factor common to both 

mouse and zebrafish study, myogenin, comes on relatively later in both CI and FI (on 

day 3 after induction of injury), as Myogenin is the MRF required for terminal 

differentiation of myoblasts. 

 Apart from transcriptional and stress response, the major response to 

myopathy is the immune response. Both the mouse study as well as GAL treated 

zebrafish larvae showed upregulation of immune responsive genes such as TNF 

receptor 1 and IRF7 and that of anti-apoptotic genes such as bag3, and clusterin. Of 

particular relevance is Bag3, an anti-apoptotic protein that is expressed predominantly 

in the muscle and localizes to the Z-discs. It is required for maintenance, but not 

development of striated muscles as mice with targeted knockout of bag3 are born 

normal but show stunted growth, poor muscle maintenance and die by 4 weeks of age 

(Homma et al., 2006). In humans, mutations in bag3 cause severe dominant childhood 

muscular dystrophy (Selcen et al., 2009). Bag3 acts as a co-chaperone by binding to 

Hsp70/Hsc70 and thereby modulating their chaperone activity (Takayama et al., 

1999).  

 One prominent member of this list, cathepsin L (cathepsin La in zebrafish) is 

upregulated on day3 in CI and and on day1-day3 in FI groups, respectively. Recent 

work has shown that Cathepsin L proteolytically cleaved the N-terminus region of 
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Histone H3 during mouse embryonic stem cell differentiation, thus potentiating a role 

for chromatin modification during development and disease (Duncan et al., 2008). It 

might be a general phenomenon that Cathepsins could use for modulating chromatin 

structure of stem cells, including satellite cells. 

Genes upregulated in 
(upto 3 days after injury) 
mouse model according to 
(Warren et al., 2007) 

CI 
 
 

FI 
 
 

Genes upregulated in zebrafish upon 
GAL treatment (3 dpf) 
 

Activating Transcription 
Factor 3 x x Activating Transcription Factor 3 
FJB osteosarcoma oncogene 
 x x 

V-FOS FBJ Murine Osteosarcoma Viral 
Oncogene Homologue 

Cardiac morphogenesis (xin) x x Cardiomyopathy associated 1 (xin) 
CCAAT/enhancer binding 
protein (C/EBP), Delta x x 

CCAAT/enhancer binding protein 
(C/EBP), Delta 

B-cell translocation gene 2 x x B-cell translocation gene 2 
Pyruvate Dehydrogenase 
Kinase, isoenzyme 4 x x 

Pyruvate Dehydrogenase Kinase, 
Isoenzyme 2 

Dusp1 x x Dusp5 
GADD45, gamma x x GADD45 alpha, GADD45beta like 
Ras related associated with 
diabetes x x 

ZGC:63471 (Ras-related associated with 
diabetes) 

ankyrin repeat domain 
containing 10 x x ankyrin repeat domain containing 9 
Thioredoxin 1 x x ZGC:92903 (Thioredoxin) 
annexin A2 x x annexin A2A 
Protein phosphatase 1 
regulatory (inhibitor) subunit 
14B x x 

Protein phosphatase 1 regulatory 
subunit 3C 

Cathepsin L x x Cathepsin L, a 
Bcl2 associated  anthogene 3 
(BAG3) x  Bcl2 associated  anthogene 3 (BAG3) 
Clusterin x  Clusterin 
Socs3  x Socs3a, Socs3b 

Jun b oncogene  x 
Jun B proto-oncogene,  Jun B proto-
oncogene like 

arginase, 1 liver  x arginase, type II 
Capping protein (actin 
filament) gelsolin like  x Gelsolin (Amyloidosis, Finnish type) 
TNF receptor superfamily, 
member 1b  x TNF receptor superfamily, member 1a 
Myogenin x x Myogenin 
Interferon regulatory factor 7  x Interferon regulatory factor 7 
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 In the GO analysis of gene upregulated upon GAL treatment, maximum 

numbers of genes (15) belonged to the ‘receptor/signal transduction’ class indicating 

heightened environmental stimuli that evoke response from the cells. Most notable 

amongst these are angiopoietin like 7 (angptl7), C-X-C Ligand 6, and a member of the 

tetraspanin family zgc:100919 (discussed later). As discussed earlier, sever myopathy 

causes massive restructuring of the muscle tissue including but not limited to the 

muscle cells. The blood vessels/capillaries supplying muscles must be repaired as 

well. The upregulation of angptl7 is indicative of the fact that such regeneration of 

blood vessels is occurring.  

 The other key categories of upregulated genes were: ‘regulators of 

transcription’ (most members of which were discussed above) with 13 members, 

enzymes (10 members), kinases/phosphatases (8 members). The high number of 

enzymes and kinase/phosphatases implicates a high degree of energy metabolism 

taking place in regenerating animals. 

 The novel genes identified in this study serve as a starting point for 

identification of new genes involved in muscle regeneration. Therefore, to get a better 

understanding of their spatio-temporal expression pattern as well as the changes 

caused in these by GAL treatment, I used in situ hybridization analysis of selected 

genes. 

Table 7: The list of genes (left column) upregulated at different stages during the first 3 
days of injury in the mouse model according to (Warren et al., 2007) compared with genes 
upregulated (right column) in GAL treated myopathy in zebrafish model. CI and FI 
represent the kind of muscle injury; that caused by contractile overload induced injury 
(CI) or freeze injury (FI). Red colour represents genes upregulated only on Sigma 
Compugen microarrays; green colour represents genes upregulated on Agilent microarrays 
while yellow colour represents genes upregulated in both sets of microarrays. See text for 
details. 
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4.3.2 ISH verification of selected genes from the microarrays 

4.3.2.1 cmya1 

One of the most upregulated gene in response to GAL treatment was 

cardiomyopathy associated 1 (cmya1) (section 3.3.1.1, Table 6). cmya1 is a striated 

muscle specific gene first identified in a differential mRNA display screen in chicken 

(Wang et al., 1996). It was called xin and was shown to be responsible for cardiac 

morphogenesis in chicken (Wang et al., 1999). The Cmya1 protein localizes to 

intercalated discs of the heart and the myotendinous junctions in the skeletal muscles 

(Sinn et al., 2002). The characteristic feature of Cmya1 is the presence of several 

copies of a 16 amino acid repeating unit called the Xin repeat (Jung-Ching Lin et al., 

2005; Pacholsky et al., 2004; Wang et al., 1999). The Xin repeat is an actin binding 

domain, and a minimum of 3 Xin repeats are required to bind actin filaments 

(Cherepanova et al., 2006; Pacholsky et al., 2004). The human Cmya1 protein 

contains a Mena/VASP-binding domain in the N terminal region and Filamin c 

binding regions in the C terminal region (van der Ven et al., 2006). The chick and the 

mouse cmya1 genes also contain a putative DNA-binding domain (Wang et al., 1999).  

The mouse Cmya1 co-localizes with ß-catenin and N-cadherin throughout 

development and adulthood (Sinn et al., 2002).  

 Characterization of the zebrafish expression pattern of cmya1 showed that it 

was expressed in newly developing muscle fibers. cmya1 expression was also 

observed in the trunk muscles of GAL treated larvae, while the expression was at 

undetectable levels in wildtype untreated larvae. Therefore, it seems clear that cmya1 

is upregulated in response to muscle injury. The presence of multiple actin binding 

domains indicates a role for cytoskeletal organization for Cmya1.  It is probable that 

Cmya1 also plays a role in conversion of the satellite cell cytoskeleton, which is that 
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of a motile non-contractile cell, into an organized array of actin and other sarcomeric 

proteins during differentiation. Transverse section as well as lateral view of GAL 

treated larvae stained for cmya1 transcripts shows punctuate staining that might 

correspond to individual satellite cells (Fig. 49). However, co-localization of Pax7 

antibody needs to be performed with cmya1 ISH to definitely state this. Recently it 

has been reported that Cmya1 is expressed within satellite cells and within newly 

regenerated muscle fibers (Hawke et al., 2007). In this study, cmya1 transcripts 

showed a >16 fold upregulation within 12 hours following muscle injury induced by 

cardiotoxin injection in mice. In situ hybridization with a probe specific to cmya1 was 

used in conjunction with syndecan-4 (a marker for satellite cells) antibody to show 

colocalization of the two to muscle satellite cells. In the light of this report, the 

assumption that cmya1 might be required for muscle regeneration by facilitating 

differentiation of satellite cells from motile to sessile, contractile myofibers gains 

support.  

 To understand the role that cmya1 plays in muscle regeneration, a morpholino 

mediated approach to block cmya1 translation was adopted. The MO-cmya1 resulted 

in a muscle phenotype, with huge gaps in the myosepta (data not shown), 

unfortunately however, the control morpholino with 5bp mismatch also showed a 

strong though unrelated phenotype. A blast search of the control morpholino against 

the zebrafish genome did not yield any match. However, in the absence of a 

completely annotated genome sequence it is not possible to rule out the control 

morpholino targeting another transcript. Recently, it has been shown that certain 

morpholino exhibit off target neural apoptotic effects (Robu et al., 2007). These off 

target effects could be attenuated by co-injecting a morpholino against the tumor 

suppressor p53 (Robu et al., 2007). However, it was decided to generate a targeted 
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TILLING mutant in the cmya1 locus and the TILLING mutation was requested from 

the Sanger Institute, UK. With the mutant available, it would be possible to perform a 

loss of function analysis of the cmya1 gene and uncover its role in muscle 

regeneration and satellite cell biology. 

4.3.2.2 zgc:100919 

 zgc:100919 is an as yet uncharacterized gene belonging to the tetraspanin 

superfamily. Tetraspanins are four pass transmembrane proteins characterized by two 

transmembrane extracellular loops, with both the N- and the C-termini lying on the 

intracellular side of the membrane. They are implicated in a diverse range of 

biological phenomena, including cell motility, metastasis, cell proliferation and 

differentiation (for review see (Hemler, 2005). The tetraspanins are associated with 

adhesion receptors of the integrin family and regulate integrin-dependent cell 

migration. 

 The zfin in situ expression pattern database shows that zgc:100919 is 

expressed in the migrating neural crest cells in the lateral pathway at 24-30 hpf. It is 

described that, by 48-60 hpf the staining is restricted to the pigment cells present 

along the dorsal and the ventral edge of the somite as well as along the midline. I was 

able to confirm this expression pattern, and in addition I observed that the GAL 

treatment increased expression of zgc:100919 in regenerating muscles (Fig. 51). On 

performing transverse sections (Fig. 52) of wildtype 72 hpf larvae through mid-trunk 

somites, the staining was seen in single cells on the surface of the somite (Fig. 52A 

and A’). Sometimes, staining was also observed in cells along the medial region of the 

horizontal myoseptum (Fig. 52A). Based on this myoseptal location, given that 

pigment cells are present only in the skin, one can assume that zgc:100919 is not 
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expressed in pigment cells. Upon GAL treatment, the expression of zgc:100919 is 

clearly observed in deeper fast muscle fibers (Fig. 52B, and B’). Since it was 

previously shown in this study that GAL treatment causes Pax7+ve cells to migrate 

into deeper myotome to cause muscle repair it is reasonable to hypothesize that 

zgc:100919 could be expressed by Pax7+ve cells. The expression of Pax7 at 72 hpf 

does look similar to the ISH expression pattern of zgc:100919 in the trunk. However, 

co-localization of the Pax7 antibody with zgc:100919 needs to be performed to test 

this hypothesis. Since tetraspanins are involved in cell adhesion and migration, and 

interaction with integrins, zgc:100919 might regulate migration of Pax7+ve cells upon 

GAL treatment. 

4.3.2.3 zgc:103408 (muscle integrin binding protein) 

 Zgc:103408 is the zebrafish ortholog of human muscle integrin binding 

protein (MIBP). MIBP is known to interact with α7ß1 integrin and regulate cell 

adhesion and laminin matrix deposition (Li et al., 2003a). MIBP also increases the 

protein level and tyrosine phosphorylation of paxillin, an important signaling 

molecule involved in myogenic differentiation (Li et al., 2003a). It should be noted 

that α7ß1 integrin is expressed by satellite cells (Sacco et al., 2008). Therefore, it is 

likely that increased levels of MIBP in GAL treated larvae is indicative of myogenic 

precursors undergoing differentiation to repair or regenerate damaged/lost myofibers. 
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4.4 Generating tools for live imaging of muscle regeneration 

4.4.1 The Tol2 transgenics 

A major advantage of using zebrafish as a model organism is the live imaging 

possibilities it offers due to its relatively transparent larval stages and development 

outside the mother. In order to generate transgenic lines that report expression of 

markers specific for satellite cells, putative promoter sequences of pax7 (-3.3 kb), met 

(-5.3 kb), and myoD (-5 kb) were amplified and cloned into Tol2 expression system 

containing GFP as a reporter  (as described in section 2.6). Transient expression of all 

these constructs yielded persistent GFP expression in muscle fibers, among other 

tissues (Fig. 45). Since the GFP is quite stable (Tombolini, 1997) the GFP observed in 

muscle fibers could be a remnant of the GFP that was expressed by myogenic 

precursors before they fused to form muscle fibers. However, the persistence of GFP 

to later stages could also mean that the met -5.3 kb upstream region is lacking 

enhancer elements that might be required to shut down met expression after 

progression of the satellite cell through differentiation and maturation into a muscle 

fiber. Indeed, similar persistent muscle fiber specific expression of GFP with a myoD 

-5kb::GFP construct (unpub. observations) and the pax7 -3.3kb::GFP construct (data 

not shown) was observed.  One drawback with the Tol2 system is the integration of 

multiple copies of inserts that could lead to integration site dependent effects on 

expression, resulting in ectopic expression that could require several generations of 

outcrosses to get a pure tissue specific line (unpublished observations). Taken 

together, to be able to track satellite cells in vivo, we were confronted with the 

following problems: a) less faithful expression with shorter constructs, b) how to 

ascertain fresh transcription of the transcription factor we were reporting, than the 

accumulated reporter protein, and c) how to discriminate a satellite cell amongst a 
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mass of muscle tissue that might retain fluorescent protein due to their long half life 

(so important for tracking cells over hours or even days). 

4.4.2 BAC transgenics 

 To overcome the limitations of using shorter constructs imposed by Tol2 

system I employed the following approach: 

a) Bacterial Artificial Chromosomes (BACs) were tagged with reporters and 

injected into zebrafish embryos to generate transgenic lines. BACs are 

substantially larger (100-300kb) than promoter constructs and thus in all 

likelihood contain remote enhancers that may control spatio-temporal 

expression pattern of a gene. It has been well established that vertebrate cis-

regulatory elements could be scattered over large distances. For example it has 

been shown that myf5 is regulated by an enhancer -80kb upstream (Chen et al., 

2007). Therefore BAC driven transgenes are generally more faithful than 

those driven by shorter constructs.  

b) GFP is an extremely stable protein (Tombolini, 1997). Therefore, it would be 

difficult to distinguish the newly synthesized protein in response to muscle 

damage vs. the accumulated GFP that was transcribed before damage. Hence, 

to measure the transcriptional response of the gene to muscle damage, kikGR1 

a yellow/green to red photoconvertible fluorescent protein, was used as a 

reporter. Complete photoconversion will therefore mark the accumulated 

fluorescent protein and any new fluorescence in the yellow/green channel 

should be a result of fresh transcriptional activity. Thus, kikGR1 could be used 

as a timer for recording the transcriptional activity of a gene in response to a 

stimulus. Using destabilized version of GFP, with a shorter half-life, was 
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considered initially but ultimately rejected, as the fluorescence of transiently 

expressing larvae was quite low. Therefore, the destabilized protein may be 

undetectable where a stable protein would yield a stronger signal.  

c) KikGR1 could be easily photoconverted using a two-photon laser at 780nm. 

The advantage of using two photon over conventional confocal microscopy is 

that two-photon laser could specifically excite fluorescent proteins expressed 

by single cells buried deep in the tissue without exciting the cells in the planes 

above or below the cell. Therefore, a single cell could be optically highlighted, 

distinguished from the surrounding tissue, and followed over a course of time. 

 

 One significant drawback of using BACs is the reduced frequency of 

transgene insertion on account of substantially large insert size. However, pre 

screening of injected F0 fish for good tissue specific expression generally results in a 

greater frequency of germline transmission.  
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5 Conclusion and outlook 

There is an increasing need for better understanding of muscle regeneration in 

order to devise better therapies for patients suffering from myodegenerative diseases 

such as muscular dystrophies. With this study I have aimed at developing a zebrafish 

model for muscle regeneration to exploit the various advantages offered by this 

model.  

 Several different strategies were used in the present work; first, I used ENU 

mutagenesis screen to identify motility mutants that might have defective muscle 

maintenance, presumably due to ineffective repair. I isolated and characterized one 

such mutant that develops several neuronal and muscle defects. Several of these 

defects seem to result from neural crest tissues being mis-migrated or incorrectly 

specified. Second, I developed a zebrafish model for inducible myopathy by bath 

application of galanthamine hydrobromide (GAL), a blocker of acetylcholinesterase 

signaling. I found that zebrafish larvae showed a robust regeneration following 

muscle damage when the GAL was removed and the larvae were allowed to recover 

from muscle damage. Using electron microscopy and immunoelectron microscopy 

with Pax7 antibody, I identified zebrafish muscle satellite cells. I also identified a 

layer of Pax7+ve cells superficial to the somite that has been recently described as a 

primitive dermomyotome in teleosts. Upon GAL treatment induced muscle damage 

the Pax7+ve cells in the superficial layer become highly proliferative and are also 

observed in deeper myotome where normally only postmitotic muscle fibers are 

observed in healthy animals. Quantification of proliferative Pax7+ve cells showed an 

80% increase in numbers upon GAL treatment. Third, an unbiased genome wide 

transcriptional profile of GAL treated animals vs. untreated animals was carried out to 
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identify transcripts upregulated during muscle regeneration. 95 genes were found to 

be upregulated in GAL treated animals and several of these genes are known to be 

involved in muscle development and maintenance. Some of these genes such as 

myogenin, desmin and cmya1, are expressed by satellite cells/myoblasts during 

differentiation. Others such as BAG3, Murf3 and Filamin C are required for muscle 

development, cytoskeletal organization and maintenance. Characterization of novel 

genes identified (such as zgc:100919) in the screen would give insights about muscle 

regeneration in zebrafish. Finally, I have also developed transgenic lines reporting the 

expression of Pax7 and Pax3 which could be used in long term fate mapping and in 

vivo imaging of satellite cells in zebrafish. 

 Further work in conjunction with the Pax7 and Pax3 transgenic lines could 

establish the putative roles of the genes identified in the microarray screen during 

muscle regeneration and satellite cell biology. On one hand this would help us design 

better strategies for muscle regeneration and high throughput screening platforms for 

drugs/bioactive molecules. On the other hand harnessing these tools would also shed 

light on the fundamental aspects of satellite cells biology. 
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Appendix A1 
Genes upregulated upon GAL treatment in Agilent microarray 

Zfin gene name FC P-value 
myeloid cell leukemia sequence 1a (mcl1a) 1.71 0.0161 
family with sequence similarity 46, member C (fam46c) 1.71 0.0035 
calcium channel, voltage-dependent, gamma subunit 1 (cacng1) 1.72 0.0311 
growth arrest and DNA-damage-inducible, alpha (gadd45a) 1.72 0.0278 
calcitonin/calcitonin-related polypeptide, alpha (calca) 1.73 0.0260 
membrane-spanning 4-domains, subfamily A, member 17A.5 1.73 0.0031 
interferon regulatory factor 7 (irf7) 1.73 0.0192 
foxo1a 1.74 0.0238 
zgc:85866 1.75 0.0274 
tumor necrosis factor receptor superfamily, member 1a 1.75 0.0099 
EH-domain containing 2 1.76 0.0142 
filamin C, gamma b 1.76 0.0073 
v-jun sarcoma virus 17 oncogene homolog (avian) (jun) 1.76 0.0094 
core promoter element binding protein (copeb) 1.76 0.0200 
myeloid cell leukemia sequence 1b (mcl1b) 1.77 0.0095 
zgc:77868 1.77 0.0367 
zgc:56376 1.78 0.0518 
zgc:92069 1.80 0.0010 
v-jun sarcoma virus 17 oncogene homolog (avian) (jun) 1.80 0.0092 
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 1.81 0.0086 
keratin 18 (krt18) 1.81 0.0442 
solute carrier family 16, member 9a (slc16a9a) 1.81 0.0053 
RasGEF domain family, member 1Bb 1.81 0.0288 
zgc:136256 1.81 0.0128 
matrix Gla protein (mgp) 1.82 0.0142 
arginase, type II 1.83 0.0210 
annexin A2a (anxa2a) 1.83 0.0030 
p4ha2 1.84 0.0066 
similar to TRAF2 binding protein [Danio rerio] (XP_001340322) 1.84 0.0198 
angiopoietin-like 7 1.85 0.0064 
transducer of ERBB2, 1b (tob1b) 1.86 0.0037 
Myogenin 1.86 0.0196 
zgc:76966 1.86 0.0352 
uncoupling protein 4 (ucp4) 1.88 0.0119 
solute carrier family 25, member 25 (slc25a25) 1.89 0.0054 
growth arrest and DNA-damage-inducible, beta like 1.89 0.0208 
zgc:100919 1.91 0.0076 
hspb1 1.91 0.0302 
egl nine homolog 3 (C. elegans) (egln3) 1.91 0.0006 
major vault protein 1.94 0.0043 
peptide YYa  1.95 0.0137 
zgc:103408 (Muscle integrin-binding protein) (MIBP) 1.96 0.0067 
hypoxia induced gene 1 (hig1) 1.96 0.0055 
p4ha1 1.98 0.0087 
zgc:91870 2.00 0.0092 
L-threonine dehydrogenase (tdh) 2.03 0.0105 
zgc:92109  2.03 0.0139 
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hypoxia induced gene 1 (hig1) 2.04 0.0036 
clusterin (clu) 2.06 0.0066 
MAP kinase-interacting serine/threonine kinase 2 2.06 0.0108 
heat shock protein 47 (hsp47) 2.08 0.0260 
elongation factor-2 kinase (eef2k) 2.08 0.0038 
zgc:56330 2.10 0.0043 
major vault protein (mvp) 2.11 0.0026 
zgc:91870 2.13 0.0105 
CCAAT/enhancer binding protein (C/EBP), beta (cebpb) 2.14 0.0059 
zgc:56330 2.15 0.0060 
zgc:172053 2.15 0.0079 
dual specificity phosphatase 5 (dusp5) 2.16 0.0123 
major vault protein (mvp) 2.16 0.0024 
zgc:103425 (CD151 molecule) 2.16 0.0026 
B-cell translocation gene 2 (btg2) 2.16 0.0476 
zgc:92069 2.17 0.0015 
zgc:56330 2.17 0.0031 
keratin 18 (krt18) 2.18 0.0035 
FK506 binding protein 5 (fkbp5) 2.22 0.0185 
complement component c3c 2.24 0.0005 
Hsp47 2.38 0.0155 
zgc:100859 2.38 0.0058 
zgc:92903 2.40 0.0042 
cathepsin L1, a (ctsl1a) 2.44 0.0099 
zgc:103566 2.44 0.0036 
XP_690732 : similar to chemokine CXC-like protein  2.44 0.0021 
activating transcription factor 3 (atf3) 2.47 0.0094 
complement factor B (cfb) 2.50 0.0005 
zgc:85616 2.51 0.0061 
tissue inhibitor of metalloproteinase 2, like (timp2l) 2.52 0.0038 
complement component 6 2.56 0.0004 
zgc:103438 2.61 0.0033 
pyruvate dehydrogenase kinase, isoenzyme 2 (pdk2) 2.69 0.0385 
parathyroid hormone 1 (pth1) 2.70 0.0107 
zgc:103566 2.76 0.0031 
LOC794635 similar to complement C4-2 2.78 0.0003 
desmin  2.78 0.0010 
zgc:92851 2.82 0.0019 
heat shock protein 47 (hsp47) 2.86 0.0100 
CCAAT/enhancer binding protein (C/EBP), delta 2.94 0.0100 
alanine-glyoxylate aminotransferase (agxt) 3.09 0.0073 
matrix metalloproteinase 9 (mmp9) 3.10 0.0095 
jun B proto-oncogene (junb) 3.54 0.0013 
heat shock protein 47 (hsp47) 3.73 0.0020 
LOC557301 3.76 0.0000 
jun B proto-oncogene, like (junbl) 3.85 0.0023 
insulin-like growth factor binding protein 1 (igfbp1) 4.06 0.0134 
zgc:123218 4.09 0.0009 
Ras-related associated with diabetes 4.23 0.0039 
SOCS-3b 4.52 0.0024 
v-fos FBJ murine osteosarcoma viral oncogene homolog (fos) 4.64 0.0032 
Fibronectin1b 5.19 0.0002 
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SOCS-3a 6.27 0.0012 
heat shock protein HSPB11 7.95 0.0001 
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