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Abstract

Tomography in its broadest sense concerns the reconstruction of cross section images which

permits the visualization of the interior of objects. From the medical application, computerized

tomography (CT) and magnetic resonance imaging (MRI) are well-known for delivering high

quality images from inside the human body and, thus, support physicians at their diagnosis.

Generally speaking, tomographic images depict the spatially varying density of objects; in the

medical case for instance different sorts of tissue are distinguishable because of their diverse

densities. Nevertheless, the values that density attains must not be constant, not even in the

same class of tissue. Instead, it might continuously vary and therefore this type of tomography

is referred to as continuous tomography.

In contrast to continuous tomography, discrete tomography concerns the reconstruction of ob-

jects that are made up from a few different materials, each of which comprising a homogeneous

density distribution. Consequently, the involved densities can only embrace a certain set of

discrete values. Such reconstruction scenarios arise for instance in quality protection by non-

destructive testing where manufacturers seek for involvements or cracks inside their cast or

metal parts. The reconstruction process assigns a single value from the discrete set to each

spatial position which in the simplest case, single material and air (environment), yields a binary

image with 0 corresponding to air (environment) and 1 to material. In fact the binary case is

mostly studied in the relevant literature. There, it is typically also assumed that the discrete

values are either known in advance and are, thus, directly accessible as a priori knowledge or

that at least a reasonably good estimate can be provided. Similarly as continuous functions

generalize discrete functions, discrete tomography can be perceived as a special case of contin-

uous tomography. This, however, poses the question why to deal with a special case while there

already exists a solution to the more general case? The answer is that algorithms which are

specialized to the discrete problem have many advantages if both assumptions, (i) discreteness

of the solution and (ii) discrete values are a priori known, hold for the underlying reconstruction
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problem. If they are met then specialized algorithms typically need a significant smaller amount

of projection data since they explore the a priori knowledge in order to reduce the space of

possible solutions. Further, due to the construction of the scanning device it might not be

possible to perform a scan over a range of 180◦ which is, however, mandatory in order to apply

the transform-based methods among the continuous reconstruction approaches. Specialized

algorithms, conversely, do not underlie any restrictions on the scanning range and are, thus,

applicable to limited angle tomography. Another advantage is that many discrete approaches

allow to actively include additional a priori knowledge, e.g. the smoothness of the solution, into

the reconstruction process which in turn makes even less projections necessary. Nonetheless,

the restriction to a discrete set also entails some difficulties as it renders the reconstruction

task into a combinatorial problem, in fact its NP-completeness can be proven for more than

two projections. As a result stochastic approaches, like simulated annealing, are frequently

employed which can be applied straightforwardly due to their flexibility concerning objective

criteria. It is known, however, that these approaches converge slowly if applied properly and

their results cannot be reproduced due to their non-deterministic procedure.

This work addresses the development of new and theoretically sound algorithms which are suit-

able for reconstruction problems as they appear in discrete tomography. At this, we pursue a

pure deterministic approach and our principal strategy is to solve a relaxation of the original

problem at first. This part equals the minimization of a convex optimization problem which is

good natured from a mathematical point of view and is efficiently solvable by linear or quadratic

programming in our case. Subsequently, the relaxation is gradually released and a solution in the

sense of the original problem is enforced. The non-linear subproblems which accrue during that

process are rendered to sequences of convex optimization problems by means of an optimization

approach based on d.c. (∼ difference of convex functions) programming. This provably assures

the convergence of our algorithms which is not obvious for this type of optimization strategy.

In order to numerically demonstrate the performance of our algorithms we solve several recon-

struction problems setup from different phantom images and a varying number of projections.

At first, we consider reconstructions of binary images only but eventually extend our approach

to the general discrete reconstruction problem such that it can be successfully applied to the

non-binary case.
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Zusammenfassung

Tomographie befasst sich im weitesten Sinne mit der Rekonstruktion von Querschnittsbildern

aus Projektionen und ermöglicht es damit das Innere von Objekten visuell darzustellen. Aus dem

medizinischen Anwendungsbereich sind die Computertomographie und die Kernspintomographie

sehr bekannt, die in diesem Zusammenhang Schichtaufnahmen des menschlichen Körpers liefern

und so den Arzt bei seiner Diagnose unterstützen. Im Allgemeinen gibt ein tomographisches Bild

die unterschiedlichen, örtlichen Dichteverhältnisse wieder. So grenzen sich beispielsweise in einer

medizinischen Aufnahme unterschiedliche Gewebsarten aufgrund ihrer verschiedenen Dichten

gegeneinander ab. Der Wert der Dichte muss dabei, selbst innerhalb einer Gewebsart, nicht

unbedingt gleichbleibend sein und darf sich kontinuierlich ändern. Diese Form der Tomographie

wird daher auch als kontinuierliche Tomographie bezeichnet.

Im Gegensatz zur kontinuierlichen Tomographie befasst sich die diskrete Tomographie mit

der Rekonstruktion von Objekten, die sich aus Materialien mit gleichbleibender (homogener)

Dichteverteilung zusammensetzen. Die Dichte kann daher in der tomographischen Rekonstruk-

tion nur bestimmte, diskrete Werte annehmen. Dies ist unter anderem interessant für die Qual-

itätssicherung durch zerstörungsfreies Prüfen, bei der beispielsweise Gussteile auf Einschlüsse

oder Risse untersucht werden sollen. Im rekonstruierten Bild sind dann die entsprechenden

Bereiche den jeweiligen Dichten zugeordnet, was im einfachsten Fall von nur einem Material

und Luft (Umgebung) einem binären Bild entspricht; 0 entspricht Umgebung und 1 Material.

Tatsächlich findet der binäre Fall in der einschlägigen Literatur die meiste Beachtung. Dort

wird meist auch angenommen, dass die diskreten Werte entweder zuvor bekannt sind und daher

als Vorwissen zur Verfügung stehen oder zumindest ein entsprechender Schätzwert bekannt ist.

Ähnlich wie diskrete Funktionen eine echte Teilmenge kontinuierlicher Funktionen darstellen,

kann man die diskrete Tomographie als Spezialfall der allgemeineren kontinuierlichen Tomogra-

phie verstehen. Dies berechtigt die Frage, warum man sich überhaupt mit einem Spezialfall

beschäftigen soll, wo doch bereits eine Lösung für das allgemeinere Problem existiert. Die
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Zusammenfassung

Antwort darauf ist folgende: Algorithmen, die auf das diskrete Problem spezialisiert sind, weisen

viele Vorteile auf, wenn die beiden Annahmen, (i) diskretwertige Lösung und (ii) Bekanntheit

der diskreten Werte, auf das zugrundeliegende Rekonstruktionsproblem zutreffend sind. Falls

dies gilt, dann kommen spezialisierte Algorithmen typischerweise mit signifikant weniger Projek-

tionsdaten aus, da der Lösungsraum unter Ausnutzung des Vorwissens reduziert werden kann.

Desweiteren ist es bei manchen Anwendungen aufgrund der Gerätekonstruktion nicht möglich

Projektionen über einem Winkelbereich von 180◦ zu schießen, was unter den kontinuierlichen

Rekonstruktionstechniken, insbesondere für die transformationsbasierten, eine notwendige Vo-

raussetzung ist. Spezialisierte Algorithmen unterliegen diesbezüglich in den meisten Fällen kein-

erlei Beschränkung. Ein weiterer Vorteil der diskreten Ansätze liegt auch darin, dass weiteres

Vorwissen, wie Glattheit der Lösung, aktiv in den Rekonstruktionsprozess mit eingebracht wer-

den kann, wodurch weitere Projektionen eingespart werden können. Die Einschränkung auf eine

diskrete Menge von zulässigen Dichtewerten bringt allerdings auch Schwierigkeiten mit sich, da

durch sie das Rekonstruktionsproblem einen kombinatorischen Charakter erhält und man zeigen

kann, dass es für mehr als zwei Projektionen NP-vollständig ist. Aus diesem Grund kommen

zur Lösung des Problems häufig stochastische Ansätze, wie beispielsweise Simulated Annealing

zum Einsatz, die wegen ihrer hohen Flexibilität in Bezug auf das Optimierungskriterium direkt

anwendbar sind. Falls richtig angewandt, sind diese bekanntermaßen langsam und erlauben

aufgrund ihrer nicht-deterministischen Vorgehensweise keine Reproduktion der Ergebnisse.

Diese Arbeit beschäftigt sich mit der Entwicklung neuer, theoretisch fundierter Algorithmen für

Rekonstruktionsprobleme wie sie typischerweise in der diskreten Tomographie auftreten. Wir

verfolgen dabei einen rein deterministischen Ansatz, dessen grundlegende Strategie zunächst

eine Vereinfachung (Relaxation) des ursprünglichen Problems löst. Dieser Teil entspricht der

Minimierung eines konvexen Optimierungsproblems und ist daher aus mathematischer Sicht

gutartig und mittels linearer oder quadratischer Programmierung effizient lösbar. Im An-

schluss daran wird die Relaxation graduell aufgehoben und eine Lösung im Sinne des ur-

sprünglichen, nicht–konvexen Problems erzwungen. Die dabei entstehenden Teilprobleme wer-

den unter Einbeziehung eines auf d.c. (∼ difference of convex functions) Programming basieren-

den Optimierungsansatzes jeweils in Sequenzen von konvexen Optimierungsproblemen über-

führt. Dadurch ist die Konvergenz unserer Algorithmen nachweislich gewährleistet, was für diese

Optimierungsstrategie nicht offensichtlich ist. Um die Leistungsfähigkeit unserer Algorithmen

numerisch zu demonstrieren, rekonstruieren wir verschiedene, zunächst binäre Phantombilder

aus unterschiedlichen Projektionen. Anschließend erweitern wir unseren Ansatz auf allgemeine

diskrete Rekonstruktionsprobleme, so dass er auch für den nicht-binären Fall angewendet werden

kann.
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Notation

Throughout this work the following notation will be used, if not explicitly stated otherwise:

N Natural numbers, 0 /∈ N.

N0 := N ∪ {0}
Z Integers.

Q Rational Numbers.

R Real numbers.

R := R ∪ {−∞,+∞} Extended real numbers.

C Complex numbers; symbol for the imaginary unit

i :=
√
−1.

A,B,C, ... Arbitrary sets.

x Scalar value.

x := (x1, ..., xn)⊤ Vector, typically x ∈ Rn, n ∈ N.

0 := (0, ..., 0)⊤ =: 0n Special vectors of size n containing only 0 or 1

1 := (1, ..., 1)⊤ =: 1n entries. If size is not given explicitly it should be

clear from the context.

ei := (0, ..., 0, 1, 0, ..., 0) Vector with i-th component 1 and 0 otherwise.

〈a,b〉 := a⊤b =
∑n

i=1 aibi Scalar product of the vectors a and b.

‖x‖p := p
√
∑n

i=1 |xi|p p-norm of a vector x, p ≥ 1, p ∈ R.

‖x‖1 =
∑n

i=1 |xi| Manhattan norm.

‖x‖2 =: ‖x‖ Euclidean norm.

‖x‖∞ := max {|x1| , ..., |xn|} infinity or maximum norm.
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Notation

A :=









a11 ... a1n

...
...

am1 ... amn









Matrix, A ∈ Am×n, m,n ∈ N, aij ∈ A, ∀i, j.

diag(a) :=









a1

. . .

an









Diagonal matrix.

I := diag(1) Identity matrix.

λk(A), λmin(A) The k-th and the smallest eigenvalue of matrix A.

A ≻ 0 Positive definiteness of matrix A.

A � 0 Positive semidefiniteness of matrix A.

δ(x) :=

{

∞ x = 0

0 x 6= 0
Dirac delta function, see also appendix A.

N (i) := {j | j is neighbor of i} Given a pixel i the set N (i) contains the indices to

all its neighboring pixels j.

〈i, j〉 ∼ j ∈ N (i) This notation is convenient when building the sum

over all pairs of neighbors, e.g.
∑

〈i,j〉 f(i, j) =
∑

i

∑

j∈N (i) f(i, j).

E[X] :=
∑

i pi xi Expectation value in case of a discrete random vari-

able X ∈ {x1, ...} with probabilities pi

E[X] :=
∫∞
−∞ xf(x) dx and in case of a continuous random variable X with

probability density function f(x).
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1 Introduction

Tomography literally descends from the Greek terms “tomos”, transl. “slice”, and “graphia”,

transl. “describing”, and deals with the reconstruction of objects from which only some kind of

projection data is known. Nowadays, tomographic imaging techniques impact diverse scientific

fields and have been successfully applied to a variety of applications. For instance, computerized

tomography (CT) is well-known in the context of medicine, as it provides insight into the human

body without surgical intervention [63]. Tomographic techniques support archaeologists by

gathering data from the inside of ancient excavations which would suffer tremendous damage

otherwise due to their fragile condition, e.g. the investigation and 3D visualization of Egyptian

mummies [90, 139]. A special type of tomography, called seismic tomography [72], is employed

by geologists to examine the interior of the earth in search for raw materials, like oil deposits,

and, as a final example, in non-destructive material testing highly reliable metal parts, like the

turbine blades of an airplane, are reconstructed and scanned for cracks or involvements [6].

Projection data is often acquired by X-rays, like in computerized tomography where an X-ray

emitting source and detectors are rotated around the patient. While X-rays travel through the

human body they become partly absorbed depending on the density of the tissue at the current

spatial position. The detectors finally measure the remaining radiation and, hence, the amount

of absorbed intensity is known as the initial intensity is known as well. From this information,

reconstruction algorithms retrieve an image of the spatial distribution of the density inside the

object. Also based on X-rays, a slightly different type of projection is used in positron emission

tomography (PET), a method which is, alongside CT, frequently applied in nuclear medicine.

In contrast to computerized tomography a short-lived, radioactive tracer isotope which emits

positrons is injected into the patient’s blood circuit. Inside the body, the positrons annihilate

with electrons, thereby, dispatching a pair of photons in opposite directions. The PET scanning

device detects such pairs and reconstructs the position where the annihilation occurred. By

this, physicians gather information about the metabolism inside the human brain or heart for

1



1 Introduction

instance. A tomographic technique, closely related to PET, is single photon emission computed

tomography (SPECT) which also provides functional data of the metabolism. However, it

differs as single photons and not pairs of photons are detected and used to retrieve the spatial

information.

In contrast to the previous methods, magnetic resonance imaging (MRI) [117, 89] acquires

projection data in completely different way, since it exploits the magnetic moment of the atomic

nuclei with an odd number of protons and neutrons (non-zero spin), such as hydrogen and

phosphorus. Therefore, the object is placed in a extremely strong (0.3 to 3 tesla) and uniform

magnetic field which aligns the spins either parallel or anti-parallel to the magnetic field. The

object is then excited by electromagnetic pulses perpendicular to the magnetic field leading

some nuclei to temporarily enter a non-aligned high energy state. While realigning, the nuclei

emit an electromagnetic signal which is measured by coils surrounding the object and permits

the reconstruction of the nuclei’s distribution.

Under mathematical considerations, tomographic reconstruction problems belong to the class

of inverse problems which, informally speaking, are concerned with the determination of pa-

rameters in order to explain some observations or measurements. According to Hadamard [64]

mathematical problems are termed well-posed if they fulfill the following criteria,

(i) a solution exists,

(ii) the solution is unique, and

(iii) the solution depends continuously on the data.

On the opposite, problems that do not meet these criteria are called ill-posed and their math-

ematical analysis is subtle [43]. Inverse problems are frequently ill-posed and arise, besides

tomographic imaging, in many computer vision and image processing problems [37]. In contra-

diction to criterion (ii), the solution space of tomographic reconstruction problems can be huge,

particularly, if only a small number of projections can be taken and/or the range from which

the projections are gathered is restricted, the latter is usually termed limited angle tomography.

In such cases, a large number of images can be in prefect agreement with the projection con-

straints while the individual images might not possess similar features and can, thus, appear

quite differently. Assuming that some prior knowledge about the expected images is known

in advance, a common remedy is to impose additional constraints on the space of solutions.

Hence, solutions fitting that prior information are favored while others are suppressed. This

process is typically referred to as regularization [128] and will play an important role concerning

this work.
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1.1 Thesis Statement and Contribution

It is characteristical to all the tomographic techniques discussed so far that the reconstructed

values may continuously range over the real numbers and, from this consideration, we might

gather the problem addressed by these methods under the term continuous tomography. How-

ever, in other scenarios it might be known in advance that these values attain only a few

different discrete values. For instance, if we think of material testing problems we have perfect

knowledge about the object and the materials involved. Nevertheless, we do not know if there

are any defects present in the object’s structure and this is precisely what we are interested in.

In a similar way, as discrete problems form a subclass of the more general continuous problems,

one could certainly apply continuous reconstruction algorithms also to discrete problems. In

this case, however, it is not guaranteed that the solution obtained by a continuous method is

indeed valid within the discrete space of the problem, even if a lot of projections are taken.

Even worse, for some applications the number of projections is crucial since more projections

correspond to a higher X-ray exposure of the patient or the deterioration of a fragile material.

Both, few projections and a limited range for projection acquisition, exclude continuous meth-

ods since they typically require a large amount of projection data and some of them even a full

scan over 180◦. Therefore, the demand for reconstruction methods which are specialized for

the discrete case and their theoretical investigation is of broad interest and motivates the field

of discrete tomography.

1.1 Thesis Statement and Contribution

This work is devoted to the development of efficient and theoretically sound reconstruction

algorithms applicable for binary and, more generally, discrete tomography. This is a challenging

task since methods suitable for discrete reconstruction problems and their theory are by no

means settled and still reveal many interesting and surprising results.

At first, we consider relaxations of the problem based on linear programming and, therefore,

avoid the problem’s inherent combinatorial complexity. However, this approach requires an

explicit rounding step afterwards which does not actively include the projection constraints

and, thus, might lead to suboptimal results. In order to improve on this, we introduce a

reconstruction framework based on convex-concave regularization and DC (difference of convex

functions) programming which in turn implicitly performs the rounding. However, this leads to

the minimization of a non-linear optimization problem which generally suffers from many local

minima. In order to prevent our approach from getting trapped in a poor local optimum our

optimization strategy is to relax the problem at first, such that it becomes convex and, thus,
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tractable. At this stage, the problem is readily solved to global optimality. In the subsequent

stages, the relaxation is then gradually removed and, hence, the overall optimization process

leads to an optimizer of the original, difficult problem. If the convex solution is in some sense

close to a discrete solution, there is some hope that the final solution is also a proper solution

of the original problem.

Similar strategies have been previously used in deterministic annealing [112] and by the grad-

uated non-convexity (GNC) approach of Blake and Zisserman [15] which concerning image

reconstruction has been applied in [101]. Convergence of this type of optimization is by no

means obvious, it is however guaranteed for our approach due to the optimization method we

adopt from DC programming [105, 106] leading, thus, to a sequence of convex subproblems.

DC programming usually refers to algorithms for the global optimization of a certain class of

non-convex functions [69]. Since global optimality is feasible only for small-sized problems we

focus on the local optimization of large-scale problems.

Finally, we extend our reconstruction framework such that it can be successfully applied not

only to binary but more generally to discrete tomography. We demonstrate that our algorithms

perform competitive and yield high quality reconstructions in both binary and discrete tomog-

raphy. Additionally, we apply our extended approach to image labeling and, thus, emphasize

the relevance of our results to other optimization settings.

1.2 Related Work

Though discrete tomography1 is still a young and active research field it roots back to mathe-

matical problems concerning the determination of binary matrices from their row and column

sums [115, 39, 40, 27, 28, 26, 29, 30]. In this context, the first discrete reconstruction algorithm

has been proposed by Ryser who also introduced the concept of switching components [115]

as elementary operations,

1 0

0 1

0 1

1 0
. (1.1)

Both patterns, equation (1.1), share the same vertical (column sum) and horizontal projections

(row sum) and can, thus, be interchanged if they occur in a binary matrix. He further showed

that such matrices are uniquely determined by their row and column sum if no switching

1The name “discrete tomography” is due to Larry Shepp who organized the first meeting on the topic in 1994,

see chapter 1 of [66].
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components are present and any two images with the same row and column sum can be

transformed into each other through a sequence of switchings. While former research was

mainly motivated by mathematical interest concerning the consistency of such problems or

the existence and uniqueness of a solution, this changed when attention was drawn to the

reconstruction of materials at the atomic layer [125, 79], see also section 3.1.1.

Due to the combinatorial nature of the problem stochastic optimization approaches like simu-

lated annealing (SA) [56] are frequently applied [38, 94, 68, 91, 98, 86] in order to minimize

an estimation problem based on Markov-random field models.

Concerning the complexity of the problem, Gardner [52] proved that the discrete reconstruction

problem becomes NP-complete for more than two projections. Further NP-completeness results

including the cardinality of the discrete set can be found in [53, 41]. Nevertheless, the problem

can be solved efficiently for two projections using a network flow formulation which is due to

Gale [51], section 3.3.3. Interestingly, Gale’s results lead to the same consistency condition as

proved by Ryser [115]. Some approaches [116, 8, 9, 7] use this network flow approach and try

to combine solutions obtained from several pairs of projections in order to have a solution for

all projections.

More related to our work is the approach proposed by Censor [34], section 3.3.2, which is

mounted on top of a non-binary iterative algorithm and steers the reconstruction process towards

a binary solution. This steering procedure is, however, more heuristic than our approach.

For a detailed introduction to the field of discrete tomography, we kindly refer the reader to

the books of Herman and Kuba [66, 67] and particularly recommend chapter 1 of [66] for a

historical overview on the subject.

In chapter 6, we examine the case of image labeling for the evaluation of our multiclass approach.

At this, we compare our proposed method to the α-expansion method from Boykov et al [23]

which has become quite popular for the optimization of various computer vision problems,

i.e. image segmentation [21] and restoration [19, 23], medical imaging [20], stereo [83] and

motion [119]. Besides the α-expansion algorithm, we consider relaxations based on semidefinite

programming (SDP) which have been applied to image labeling by Keuchel [76, 75]. SDP

relaxations are well-known to provide reasonable approximations to combinatorial problems

[137] but are inherently slow as they square the number of variables. Therefore, we also

consider relaxations based on second-order cone programming (SOCP) [92] which have been

proposed in [77] and [97]. In particular the latter approach has been used in connection with

image labeling in [88].
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1.3 Outline

Chapter 2 is devoted to continuous tomography and the reconstruction methods applied

thereby. At this, we derive the Fourier slice theorem which forms the basis for all transform-

based reconstruction methods. As a representative for this class, we investigate the filtered

backprojection algorithm which is nowadays widely employed in real-world applications. Finally,

we survey iterative reconstruction methods which in contrast to the transform-based methods

pursue an algebraic reconstruction strategy.

In chapter 3, we introduce the field of discrete tomography restricted, however, to the case

of binary tomography which is mostly addressed in the relevant literature. We overview re-

construction algorithms based on simulated annealing, binary steering, and network flow and

compare them to conventional methods (chapter 2) in order to exemplificate their advantage

with respect to binary tomography.

In chapter 4, we relax the original binary reconstruction problem in order to circumvent the

problem’s inherent combinatorial complexity. This gives rise to approximations by linear pro-

gramming which in turn can be solved efficiently even for large problem instances. Due to the

relaxation, however, an additional rounding step is necessary in order to finally obtain a discrete

solution.

In chapter 5, we incorporate a binary concave regularizer which performs the rounding implic-

itly but involves the optimization of a non-convex functional. In order to proceed, we derive an

optimization framework by means of a primal-dual subgradient method based on DC (∼ dif-

ference of convex functions) programming. Concerning the LP-based algorithms (chapter 4),

this leads to a sequence of linear programs where, however, the framework is not restricted

to linear programming. In order to demonstrate the flexibility of our framework, we consider

binary reconstructions under the assumption that projections are either only accessible from

blurred objects or the projections themselves are blurred. Thus, the modified problem involves

the estimation of a deblurring parameter within the overall reconstruction process. We show,

nonetheless, that this problem can be cast into our framework and that our approach provides

very promising reconstructions also for this type of problem.

Motivated by the results obtained in case of binary tomography so far, we develop in chapter 6

a generalized approach for multiple discrete values. This extension is not straightforward and

we, therefore, propose a new concave regularizer. However, we shown that our new regularizer

reduces to our previous binary regularizer (chapter 5) in case of binary tomography. Hence,

the multiclass approach properly generalizes the previous results. Besides, we are concerned

6
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with edge-preservation since we have to deal with blurring effects along object borders in the

non-binary case. Finally, we derive global optimality conditions for our multiclass approach.
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2 Computerized Tomography

Beginning with the discovery of X-rays by Conrad Wilhelm Röntgen (1845-1923) in 1895, it was

not before 1972 till the first computed tomographic scanner was build by Sir Geofrey Hounsfield

(1919-2004) and Allan MacLeod Cormack (1924-1998). They both independently developed

some of the algorithms and shared the Nobel price for their pioneering work in 1972.

Since then, the typical setup of a scanning device includes a single or multiple X-ray sources on

one side and detectors on the opposite side. Together, they are partly or fully rotated around

the object while the source constantly emits X-rays towards the detectors. While travelling

through the object, radiation becomes partly absorbed depending on the material’s density at

the current spatial position and, finally, when the X-rays arrive at the detectors, their remaining

intensity is measured. Therewith and with the intensity emitted at the source the amount of

radiation absorbed by the object follows immediately. Reconstruction algorithms explore this

information in order to recover an image of the object’s spatially varying density.

It is interesting that the mathematical foundation for tomographic reconstructions has already

been laid in 1917 by Johann Radon (1887-1956) [109] who was even able to provide a solution

to the reconstruction problem, decades before the first scanner was build. This is even more

astonishing as Radon considered the problem from a pure mathematical point of view without

any awareness of its practical implications.

This chapter begins with further information concerning the physical background of X-rays,

section 2.1. Subsequently, section 2.2, we present the most prominent imaging geometries,

a description of the regular pattern in which the X-rays are arranged. In section 2.3, we

introduce two different types of reconstruction algorithms, the filtered backprojection and the

algebraic reconstruction method (ART), each approaching the reconstruction problem from a

different direction. The filtered backprojection, on one hand, exploits the result of the Fourier

slice theorem and belongs to the class of transform-based methods. ART, on the other hand,

9
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Figure 2.1: Radiation at various wavelengths is created by colliding electrons with atoms (a). This

leads to the continuous part of the curve in figure (b) and is termed after the German expression

”Bremsstrahlung”. The discontinuities, called characteristic radiation, occur if the collision energy is

sufficient to push an electron out of the inner shell whose place is immediately filled by another electron.

utilizes an algebraic formulation of the reconstruction problem and is, therefore, more related

to the approaches typically used in discrete tomography.

2.1 Physics of Computerized Tomography

In contrast to microwaves and ultrasound, X-rays are ideally non-diffracting, i.e. they describe

a straight line L while travelling from the source to the detector. On their way, some of the

initial radiation becomes absorbed depending on the density at the current spatial position. Let

I0 denote the original intensity of an X-ray and let µ(x) be the function that relates the spatial

position x to the attenuation of the object at x. The remaining intensity I of the radiation

which arrives at the detector is explained by the Beer-Lambert law,

I = I0 exp

(

−
∫

L

µ(x(τ)) dτ

)

⇐⇒ log
I0

I
= log I0 − log I =

∫

L

µ(x(τ)) dτ. (2.1)

The process that recovers the attenuation function µ(x) from measurements I and I0 is called

reconstruction and is, in mathematical terms, an inversion of the integral operator on the right

side of equation (2.1).

From a physical point of view, X-rays are electromagnetic radiation with a wavelength of

about 10−10 meters. They are produced by accelerating electrons and colliding them with

atoms, e.g. in medical applications metal atoms like Tungsten or Molybdenum are typically

employed as target materials. Upon collision, the electrons emit energy in form of X-rays, see
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figure 2.1 (a) for an illustration of this process, and as they are differently decelerated their

energy is emitted at different wavelengths. This leads to the continuous part of the distribution

shown in figure 2.1 (b) and is termed after the German word “Bremsstrahlung”. There is also

a minimal wavelength corresponding to the maximal collision energy. This energy is reached

if an electron is completely stopped and, thus, all its energy is converted into radiation. The

discontinuous peaks in the distribution, figure 2.1 (b), are called characteristic radiation and

occur if the energy of an electron is high enough to push out an electron from the inner shell

of the target atom. The free position is immediately filled up with electrons from higher levels

whereby X-ray photons are emitted. This kind of radiation must necessarily be discontinuous

since there are only specific jumps possible.

2.2 Imaging Geometries
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Figure 2.2: Parallelbeam geometry: (a) A set of parallel rays is shot through the object from different

directions. (b) Illustration of a second-generation CT-scanner. Source and detectors are both moved

(vertically) perpendicular to the projection direction (horizontally). Therefore, it is possible to measure

not only the horizontal projection (first-generation) but at the same time also slightly rotated parallel

projections.

During the scanning process, source and detector move around the object and the source emits

X-rays towards the detector. For this purpose, the X-rays are typically arranged according to

some regular pattern which is referred to as scanning or imaging geometry [99]. Among the

11
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(b)

Detector ring

(a) (c)

Figure 2.3: Fanbeam geometry: (a) In contrast to the parallelbeam geometry, where the source has

to be moved by a small increment in a single projection, the fanbeam geometry shots a whole fan of

rays and remains stationary within each projection. (b), (c) Illustration of a third and fourth generation

scanner.

most prominent are the parallelbeam, fanbeam, and conebeam geometry.

In parallelbeam geometry a set of parallel X-rays is shot from each direction, figure 2.2. This

geometry is implemented physically in the first-generation of scanners with a single source and

a single detector cell [99]. For a fixed angle, source and detector are moved by a small amount

perpendicular to the projection direction. By this, the object is scanned by a set of parallel rays

and afterwards the procedure is repeated from a different angle, figure 2.2 (a).

In the second-generation of CT-scanners the single detector cell has been replaced by multiple

detector cells [99] which allows to measure multiple projections at the same time, figure 2.2 (b).

Besides that, the overall operation of the scanner remains the same as for the first-generation

scanners.

The major drawback of the parallelbeam geometry is that the source has to be mechanically

12
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Figure 2.4: Conebeam geometry: The parallelbeam and fanbeam geometry aligns the rays within a plane

and respectively the detectors are 1-dimensional arrays of detector cells. The conebeam geometry, in

contrast, makes use of a 2-dimensional arrangement of detector cells and, therefore, aligns the rays

within a cone.
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2 Computerized Tomography

moved to a new position for each single ray. This not only affects the quality of the projection

but is time consuming as well. The fanbeam geometry, figure 2.3 (a), improves on both as

each projection is acquired by a whole fan of rays shot from a stationary source. Further,

refinements of the fanbeam geometry were introduced in the third and fourth generation of

computer tomographs where either a rotating detector-source system, figure 2.3 (b), or a ring

of stationary detectors and a rotating source, figure 2.3 (c), is used. Particularly, the latter

enhances the imaging quality as the mechanical movement of the heavy detectors has been

abandoned as well. However, a whole ring of detectors is quite expensive.

As the term conebeam suggests the source emits the X-rays in a cone shape. Thus, the detectors

consist of a two-dimensional array of cells, in contrast to the previous geometries where either

a single or a one-dimensional array is used. This leads to better reconstruction results as source

and detector are usually not only rotated around the object, within the x-y-plane, but also

moved along the rotation axis, z-axis. Due to the three-dimensional alignment of the rays, the

conebeam geometry leads to a significant better resolution in the z-direction and is, therefore,

mostly applied in modern medical CT-scanners.

2.3 Mathematics of Computerized Tomography

Today, the filtered backprojection is the method of choice for many CT applications. It is

based on the Fourier slice theorem which yields a correspondence between projections in the

spatial domain and subspaces in the frequency domain. In contrast, iterative reconstruction

methods, like the algebraic reconstruction technique (ART), provide an algebraic approach

to the reconstruction problem and are in this sense more closely related to typical discrete

reconstruction methods.

This section introduces the Radon transform at first and provides the mathematical background

of the filtered backprojection and ART subsequently. Further details, concerning CT and ART,

can be found in [74] and [100, 99] where the latter cover the broad range of tomographic re-

construction methods, among them also non-linear tomography. Readers particularly interested

in the filtered backprojection and its efficient implementation should consider [129] as well.

2.3.1 Radon Transform

Given a function f : R2 → R, the Radon transform of f is then defined as the integral of f

restricted to a straight line. More specifically, let the minimal signed distance between the origin

14
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Figure 2.5: (a) A line in R2 defined by the angle θ ∈ [0, π[ and the minimal distance to the origin

ρ ∈ R. (b) Given a function f : R2 → R, the Radon transform of each line is defined as the integral of

f(x, y) restricted to that particular line. In view of the parallelbeam geometry, section 2.2, the family

of all Radon transforms with fixed angle θ yields the projection of f under θ.

and that line be denoted by ρ and assume the line is parameterized by t and θ, figure 2.5 (a).

The parameter space (ρ, t) and the coordinate space (x, y) are related to each other by a

rotation of the coordinate system,

(

x

y

)

=

(

cos θ − sin θ

sin θ cos θ

)(

ρ

t

)

. (2.2)

A substitution of the arguments of f with equation (2.2) delivers the formal definition of the

Radon transform,

R(ρ, θ) [f(x, y)] :=

∫ ∞

−∞
f(ρ cos θ − t sin θ, ρ sin θ + t cos θ) dt (2.3)

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ− x cos θ − y sin θ) dx dy. (2.4)

Using
∫ ∞

−∞
f(x) δ(ax + b) dx =

1

|a|

∫ ∞

−∞
f

(

x− b

a

)

δ(x) dx =
1

|a|f
(−b

a

)

, (2.5)
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equality of equation (2.3) and equation (2.4) holds for the case of sin θ 6= 0 due to

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ − x cos θ − y sin θ) dx dy = (2.6)

1

| sin θ|

∫ ∞

−∞

∫ ∞

−∞
f
(

x,− y

sin θ
+

ρ

sin θ
− x cot θ

)

δ(y) dx dy = (2.7)

1

| sin θ|

∫ ∞

−∞
f
(

x,
ρ

sin θ
− x cot θ

)

dx = (2.8)

∫ ∞

−∞
f (ρ cos θ − t sin θ, ρ sin θ + t cos θ) dt, (2.9)

while the case sin θ = 0 follows similarly. Further, equation (2.9) follows from equation (2.8)

by substituting x with ρ cos θ − t sin θ.

Concerning the parallelbeam geometry from section 2.2, the Radon transforms of all lines with

angle θ setup the projection of f under θ,

Pθ(t) := R(t, θ). (2.10)

A frequently employed representation of projections are sinograms which are obtained by stack-

ing all projections. Hence, sinograms are plots of Pθ(t) in the variables θ and t where θ varies

along the rows and t along the columns. Figure 2.7 (b) shows the sinogram of the Lena image,

figure 2.7 (a).

2.3.2 Fourier Slice Theorem

The Fourier slice theorem is fundamental to all transform-based reconstruction techniques, such

as the filtered backprojection, as it relates the Fourier transform1 of an image to the Fourier

transform of a projection obtained from this image.

Let us identify the Fourier transform of projection Pθ(t) with respect to parameter ν by

Sθ(ν) := F [Pθ(t)] =

∫ ∞

∞
Pθ(t) exp (−i 2πνt) dt. (2.11)

After supplementing equation (2.4) in (2.11) and rearranging terms we obtain

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

{ ∫ ∞

−∞
δ(t − x cos θ − y sin θ) exp (−i 2πνt) dt

}

dx dy. (2.12)

1Note that there exist different definitions of the Fourier transform, throughout this work we use the definitions

described in appendix B
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Applying equation (2.5), finally, yields the Fourier slice theorem

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp (−i 2πν (x cos θ + y sin θ)) dx dy = (2.13)

F [f(x, y)]
∣

∣

∣u=ν(cos θ,sin θ)⊤ , (2.14)

which reads in condensed form as

Sθ(ν) = F [Pθ(t)] = F [f(x, y)]
∣

∣

∣u=ν(cos θ,sin θ)⊤ = F (ν cos θ, ν sin θ). (2.15)

Concrete, the Fourier slice theorem states that the 1-dimensional Fourier transform of the

projection taken from an angle θ equals the slice obtained by restricting the 2-dimensional

Fourier transform of the image to the line under angle θ. Although we specifically consider here

projections obtained from an image using the parallelbeam geometry, analogous forms of the

theorem can be found for projections of volumes and other imaging geometries.

2.3.3 Direct inverse Radon transform

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7
u
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Figure 2.6: Direct inverse Radon transform: Given projection data Pθ(t) from a scan over 180◦, first

the 1-dimensional Fourier transform is applied to each projection, Sθ(ν) := F [Pθ(t)]. The Fourier

slice theorem, equation (2.15), states that each Sθ(ν) is a slice of the image in the Fourier domain,

black dots. Thus, the idea of the direct inverse Radon transform is to obtain the 2-dimensional Fourier

transform of the image by interpolating the polar grid, black dots, of Sθ(ν) into the Cartesian grid, gray

dots, (regridding). Unfortunately, this approach is numerically instable and the data in polar coordinates

becomes sparser with increasing distance from the origin. Hence, this approach is not used for real

applications.
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The Fourier slice theorem, equation (2.15), provokes the idea of a simple reconstruction al-

gorithm. Given some projection data Pθ(t) the Fourier slice theorem tells us that the Fourier

transform of Pθ(t) equals a slice of the Fourier transformed image. Hence, we could interpolate

the polar grid of F [Pθ(t)] into the Cartesian grid of the frequency domain, this is called regrid-

ding. Afterwards, we simply apply the inverse Fourier transform and would expect a solution

of the reconstruction problem. This procedure is known as direct inverse Radon transform for

which it is, unfortunately, reported [74, 99, 31] that it is not advisable for at least two good rea-

sons. First of all, regridding is numerically instable as it introduces errors leading to significant

artifacts in the resulting image. Secondly, as can be seen in figure 2.6 the data available for

the interpolation becomes sparser with increasing distance from the origin. Consequently, the

approximation gets worse for higher frequencies and accuracy of finer details gets lost inevitably.

2.3.4 Filtered Backprojection

A slightly different, yet much more fruitful idea than the direct inverse Radon transform is to

exchange the Cartesian coordinate system in the frequency domain of the Fourier transform

through a polar coordinate system. This is achieved by a substitution of u with (ν cos θ, ν sin θ)⊤

in the formula of the 2-dimensional inverse Fourier transform, see appendix B. Then, the inverse

Fourier transform reads

f(x, y) =

∫ 2π

0

∫ ∞

0
νF (ν cos θ, ν sin θ) exp (i2πν(x cos θ + y sin θ)) dν dθ. (2.16)

By splitting the integral, equation (2.16), into θ ∈ [0, π] and θ ∈ [π, 2π],
∫ π

0

∫ ∞

0
νF (ν cos θ, ν sin θ) exp (i2πν(x cos θ + y sin θ)) dν dθ + (2.17)

∫ π

0

∫ ∞

0
νF (ν cos(θ + π), ν sin(θ + π)) exp (i2πν(x cos(θ + π) + y sin(θ + π))) dν dθ,

and using the fact that
(

ν cos(θ + π)

ν sin(θ + π)

)

=

(

−ν cos θ

−ν sin θ

)

(2.18)

equation (2.16) can be written as
∫ π

0

∫ ∞

0
νF (ν cos θ, ν sin θ) exp (i2πν(x cos θ + y sin θ)) dν dθ (2.19)

+

∫ π

0

∫ ∞

0
νF (−ν cos θ,−ν sin θ) exp (−i2πν(x cos θ + y sin θ)) dν dθ.
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(a) Original (b) Sinogram

(c) 50 projections (d) 100 projections

(e) 300 projections (f) 1000 projections

Figure 2.7: (a) Original of the famous Lena image, 128× 128. (b) Sinogram over 1000 projections, i.e.

the projections are (vertically) stacked together such that each row contains a projection from a differ-

ent angle θ. (c)-(f) Reconstructions obtained with our implementation of the filtered backprojection

algorithm 1. For each experiment, the number of projections has been increased. However, projection

were always taken equally spaced over 180 degrees: (c) 50, (d) 100, (e) 300, and (f) 1000 projections.
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X

Y

Figure 2.8: Schematic drawing of the filtered backprojection algorithm. In the “filtering” step, the

algorithm computes the Fourier transform F [Pk] of each projection Pk and applies a highpass filter H

in the frequency domain H · F [Pk]. Afterwards, the filtered frequency signals are transformed back

to the spatial domain F−1[H · F [Pk]] (inverse Fourier transform). For illustration purposes only two

of these highpass filtered projections are depicted in this figure. The subsequent “backprojection” step

projects each pixel (again, this is shown here only for two pixels) into all filtered projections, evaluates

F−1[H · F [Pk]] at the projected position, and sums the latter values.

Substituting and exchanging of integration borders yields

f(x, y) =

∫ π

0

[∫ ∞

−∞
|ν|F (ν cos θ, ν sin θ) exp (i2πν(x cos θ + y sin θ)) dν

]

dθ. (2.20)

By virtue of the Fourier slice theorem, equation (2.15), we write

f(x, y) =

∫ π

0

[∫ ∞

−∞
|ν|Sθ(ν) exp (i2πν(x cos θ + y sin θ)) dν

]

dθ (2.21)

or alternatively

f(x, y) =

∫ π

0
Qθ(x cos θ + y sin θ) dθ (2.22)

with

Qθ :=

∫ ∞

−∞
|ν|Sθ(ν) exp (i2πν(x cos θ + y sin θ)) dν. (2.23)

Usually, equation (2.23) is referred to as filtering and equation (2.22) as backprojection part.

Due to the convolution theorem which relates convolution and multiplication in spatial and
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Figure 2.9: Filters: Let νu denote the length of the data array and νl the size of the filter,

νl ≤ νu. (a) Ram-Lak filter: H(ν) := |ν|, |ν| ≤ νl; (b) Shepp Logan filter: H(ν) :=
1

2
|ν| sin (πν/2νl) / (πν2νl) , |ν| ≤ νl; (c) Hann filter: H(ν) := |ν| (1 + cos (πν/νl)) , |ν| ≤ νl;

(d) Generalized Hamming filter: H(ν) := |ν| (α + (1− α) cos (πν/νl)) , |ν| ≤ νl, typically α ranges

within 0.5− 0.54. Values of ν between νl < νu are set to zero.

frequency domain, it is also possible to perform the filtering part in the spatial domain which

is then called convolution backprojection [129]. Yet another alternative is filtering after back-

projection [129].

According to equation (2.23) a highpass filter |ν|, Ram-Lak filter, has to be applied to the

projection data. For practical applications, this is, however, not the best choice since the

Ram-Lak filter tends to amplify noise which is usually contained in the higher frequencies as

well and, hence, other filters, figure 2.9, are often used instead [129]. Though we consider

the filtered backprojection in our experiments only for noiseless projections, we also used other

filters in order to get best possible results. However, as expected, these results were quite similar

and, therefore, we provide only the results obtained from a varying number of projections in

figure 2.7. All our experiments were performed with the filtered backprojection according to

algorithm 1 which we implemented with Mathematica2.

2Mathematica is a commercial computer algebra system available from Wolfram Research, www.wolfram.com.
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Algorithm 1 Filtered Backprojection
Require: P1, ..., Pn projections

Require: φ1, ..., φn angles {corresponding to Pk}

Require: ρ distance between rays {Assumed to be constant for all projections}

Require: m number of rays per projection

Require: I(x, y) := 0 initialized for all 1 ≤ x ≤ sX, 1 ≤ y ≤ sY

Require: H highpass filter in frequency domain

for k := 1 to n do

P̃k := F−1[H · F [Pk]]

end for

for y := 1 to sY do

for x := 1 to sX do

for k := 1 to n do

s := 1
2 (2x− sX − 1) sin(φk)− 1

2 (2y − sY − 1) cos(φk)

t :=
(

s + 1
2 m ρ

)

(m− 1)/(m ρ) + 1

λ := t− ⌊t⌋
v := (1− λ) P̃k(⌊t⌋) + λ P̃k(⌈t⌉)
I(x, y) := I(x, y) + v

end for

end for

end for

2.3.5 Iterative Reconstruction Methods

In contrast to transform-based methods, like the filtered backprojection, iterative reconstruction

methods pursue an algebraic approach to the reconstruction problem. By this, they are appli-

cable even if it is not possible to acquire a large amount of data or projections over 180◦, both

is mandatory for the filtered backprojection algorithm. However, due to their lack of accuracy

and speed of convergence they are only used when both is not critical.

In the discretized image domain each pixel is associated with an unknown variable and each ray

composes a linear equation. Thus, the whole reconstruction problem is described by a linear

equation system. We will elaborate this further in section 3.2 since our approaches utilize the

very same discretization model. For now, however, it is sufficient to consider the reconstruction

problem as given by means of the linear equation system, Ax = b, x ∈ Rn, where we stress

that it is not practicable to solve such systems directly as the number of unknowns becomes
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Figure 2.10: (a) ART (algebraic reconstruction technique) solves a linear equation system approximately.

Starting from an initial point x0, ART proceeds by iteratively projecting onto the hyperplanes defined by

the linear equation system. This results in a sequence of vectors xi converging towards the solution of

the equation system. As depicted in figure (b) the order in which the hyperplanes are visited influences

the speed of convergence. The angle between two succeeding planes should preferably be orthogonal.

typically very large.

Based on the “method of projections”, Kaczmarz [73] and Tanabe [127], the algebraic recon-

struction technique (ART) is an iterative method for approximately solving linear equation

systems. In general, a single equation a⊤x = b describes a hyperplane {x | a⊤x−b = 0} in Rn

and the solution space is the intersection of all such hyperplanes. If the intersection contains

only a single point then this point is the unique solution of the linear equation system and if the

intersection is empty there is no solution at all. The idea of ART is to consider each equation

separately, instead of the whole equation system at once. Let us, therefore, assume that the

row vectors of matrix A are uniquely enumerated by a⊤
i . Starting with an initial guess x0, the

ART method computes in the first iteration the projection onto the first equation which yields

a new solution vector x1. In the next iteration, x1 is then projected onto the second equation

and so on, see figure 2.10. The general formula for the projection of a point xi−1 onto equation

i is derived below:

a⊤
i xi = bi

xi
!
= xi−1 + λ ai ⇐⇒ λ =

b− a⊤
i xi−1

a⊤
i ai

, a⊤
i ai 6= 0

xi = xi−1 −
a⊤

i xi−1 − bi

a⊤
i ai

ai (2.24)
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Alternatively to equation (2.24), one computes the update for xi directly,

∆xi := xi − xi−1 =
bi − a⊤

i xi−1

a⊤
i ai

ai. (2.25)

Once all equations have been visited, a new cycle starts by repeating the procedure initialized

with the last vector xk. The overall ART algorithm is shown in algorithm 2. In case of a

unique solution, convergence has been proven in [127] and, further, if an infinite number of

solutions exists ART converges towards the solution which is closest to the initial starting point.

If there is no solution at all, the ART method oscillates in a neighborhood of the hyperplanes’

intersections. The order in which the equations are visited, greatly influences the speed of

Algorithm 2 Algebraic Reconstruction Technique (ART)
Require: ǫ > 0

Require: cmax maximal numbers of cycles.

x := 0

n := Number of rows of A.

σ := Permutation such that |a⊤
σi+1

aσi
| becomes small.

A := Permute rows of A according to σ.

b := Permute components of b according to σ.

c := 1

xo := x + 1

while ‖x− xo‖2 ≤ ǫ and c < cmax do

xo := x

for i := 1 to n do

xi := xi−1 − ai (a⊤
i xi−1 − bi)/(a

⊤
i ai) cf. equation (2.24)

end for

c := c + 1

end while

convergence. As illustrated in figure 2.10, it is favorable if the angle between two hyperplanes

is large, i.e. ideally the planes are perpendicular. Hence, the ART procedure is accelerated by

carefully choosing the order of the hyperplanes [70] in a preprocessing step. The reconstruction

quality can be further improved by relaxing the update scheme to λ∆xi where λ is chosen less

than 1 or is a function decreasing towards 0 with increasing number of iterations. However,

this usually deteriorates the overall convergence speed.

Originally proposed in [42], simultaneous reconstruction methods, like the simultaneous iterative

reconstruction technique (SIRT) and simultaneous algebraic reconstruction technique (SART),
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improve ART by updating the new solution only after all equations have been visited,

xi = xi−1 − λi

n
∑

i=1

ωi
a⊤

i xi−1 − bi

a⊤
i ai

ai. (2.26)

In equation (2.26) the ωi are weighting parameters with
∑

i ωi = 1. As a single ray traverses

only a small fraction of pixels, matrix A is typically sparse and unpropitiously selected weighting

parameters can lead to slow convergence. For this case, component averaging (CAV) [35] is a

simultaneous reconstruction approach which is improved especially for sparse systems.

The common structure of all iterative reconstruction methods is that they first compute some

kind of correction from the previous solution and use this correction in order to obtain a new

solution, see figure 2.11.

x k

kx d k x k+1

generator applicator
CorrectionCorrector

Data

Figure 2.11: Iterative reconstruction methods: This drawing outlines the general structure of a single

iteration. The current solution xk is fed to the corrector generator which determines the correction

vector dk by means of given data. Afterwards, the correction applicator finds a new approximate

solution xk+1.
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3 Discrete Tomography

The continuous tomographic reconstruction methods from the previous chapter recover a real-

valued function f : Rn → R from its projections. Assuming the image of f is some discrete set

which is a priori known, e.g. the case f : Rn → {0, 1} is widely concerned in literature [66],

discrete tomography deals with this new type of reconstruction problem and algorithms designed

for the discrete case posses several advantages compared to their continuous counterparts.

We have seen in the previous chapter that conventional tomographic methods typically require

a lot of projection data in order to reveal satisfying results. For instance, compare the results in

figure 2.7 where the Lena image has been reconstructed from a varying number of projections

and the result obtained from as much as 300 projections is still not satisfying. Of course, this

image is more complex than images which contain only a small number of values. However,

the quality of the reconstruction only partly depends on the complexity of the image. In case

of the filtered backprojection, a huge amount of projections is simply needed for the numerical

approximation of the equations (2.22) and (2.23). Furthermore, a scan over 180◦ is prerequisite

since the integration of θ in equation (2.22) ranges from 0 to π.

In order to demonstrate the performance of the filtered backprojection, algorithm 1, in case of

binary tomography anyway, we conducted appropriate experiments with a varying number of

projections ranging over 90◦ and 180◦. The results are shown in figure 3.1 and suggest that

a large number of projections, ≈ 30 is necessary to be able to recognize the objects at least,

and a scan over 180◦ is mandatory, as expected. Regarding discrete reconstruction algorithms,

we stress the fact that it is possible to retrieve the original image from no more than three

projections over 90◦.

Besides a formal definition of the reconstruction problem, this chapter presents potential ap-

plications for discrete tomography and different discrete reconstruction approaches. Among

them are simulated annealing which has become popular [38, 94, 68, 91, 98, 86] due to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: (a) Original image. (b)-(e) 5, 10, 30, 100 projections equally spaced over 90◦ and (f)-

(i) over 180◦ respectively. The results demonstrate that the filtered backprojection does not provide

accurate reconstructions for less than 180◦. Though the object is recognizable in (e) and maybe in

(d) additional steps are necessary to retrieve the binary image. Concerning the results from 180◦ the

reconstruction from 100 projections (i) yields a good reconstruction. Nonetheless, with algorithms

specialized for discrete tomography image (a) can be perfectly reconstructed from no more than three

projections, 0◦, 45◦, over 90◦.
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inherent combinatorial complexity of the problem. Concerning the filtered backprojection, we

have seen already that it is not suitable for our needs, figure 3.1. The same is, however, not

true for iterative reconstruction algorithms, like ART, since the idea to steer the overall con-

tinuous reconstruction process in some way towards a binary or discrete solution is tempting.

Section 3.3.2 describes the binary steering approach proposed in [34] and shows that it indeed

improves the results of ART for binary tomography. Finally, section 3.3.3 presents approaches

based on network flows [51, 116, 8, 9, 7].

3.1 Applications

We present three selected applications for discrete tomography but emphasize that this is far

from being complete. Discrete reconstruction problems belong to a broad class of optimization

problems arising in a variety of contexts.

3.1.1 Electron Microscopy

The first application motivating and still impelling the field of discrete tomography is the re-

construction of crystalline structures. This is interesting in quality control where semiconductor

materials for computer chips must possess certain features in order to work properly. A tech-

nique based on high resolution transmission electron microscopy, called QUANTITEM [125, 79]

(QUANTITative analysis of the information provided by transmission Electron Microscopy),

allows to measure the number of atoms lying on each line parallel to a set of directions. A

natural way to define the problem mathematically is to assume that each atom is located at

some integer position in Z3. Let S ⊂ G ⊂ Z3 where S is the set of positions occupied by an

atom and G is a finite set such that only a finite number of positions must be considered. The

reconstruction problem is to determine S from the projections provided by QUANTITEM. This

can be regarded as a labeling problem where each element z ∈ G is assigned a label 0 or 1 de-

pending whether z /∈ S or z ∈ S. It might also be tempting to use conventional reconstruction

algorithms here but, unfortunately, only a small number of projections can be taken, i.e. 3,4,

or 5, since the energy needed to acquire more projections would damage the object otherwise.

Certainly, this amount of projection data is not sufficient for conventional algorithms and there

is only hope for satisfying results by exploiting the discrete nature of the problem.
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Mask image Fill image DSA image

Figure 3.2: The fill and the mask image show X-ray projections of a human head. In the fill image

the vessels supplying the brain with blood are enhanced with contrast agent whereas the mask image

is without. Digital subtraction angiography (DSA) subtracts the mask image from the fill image, thus,

only the contrast agent inside the vessel remain.

3.1.2 Medical Imaging

In medical imaging, the X-ray expose of the patient is proportional to the amount of gathered

projections and is, thus, a crucial parameter. A typical and frequently recurring task is to inspect

the vascular system for pathological abnormalities, such could be a stenosis or an aneurysm, i.e.

constriction and protuberance of a blood vessel respectively. Both are life-threatening if not

treated properly and, in this context, digital subtraction angiography (DSA) is a well-known

technique for separating the vessels and the remaining image parts. The key step is to take two

X-ray images from the same perspective, one with contrast agent (fill image) which enhances

the visual perception of the vessels and one without (mask image). Afterwards, both images

are subtracted from each other and, thus, only the distribution of the contrast agent inside the

vessel remains in the resulting image, figure 3.2. Under the assumption that the contrast agent

is homogeneously and completely distributed within the organ, it is possible to reconstruct the

distribution of the contrast agent as a binary volume from DSA projections. At this, 0 indicates

the absence and 1 the presence of contrast agent at some spatial position.

Let µF ill, µMask be functions describing the density of the volume filled with and without

contrast agent, then the primary assumption, a homogeneous distribution of the contrast agent,

can be written as

µF ill(x) = µMask(x) + ρ χ(x) (3.1)

where χ is the binary indicator function describing the distribution of the contrast agent, scaled
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(a) (b)

Figure 3.3: Non-destructive material testing: Cross sections through metal parts: (a) turbine blade and

(b) cylinder block.

with the density of the contrast agent ρ. According to the Beer-Lambert law, equation (2.1),

we have

log
I0

I
=

∫

L

µ(x) dx (3.2)

where X-ray devices typically provide the value on the left of equation (3.2). The measured fill

and mask projections are related to the projection of the binary volume by

log
I0

IF ill
− log

I0

IMask
=

∫

L

µF ill(x) dx−
∫

L

µMask(x) dx (3.3)

=

∫

L

µMask(x) + χ(x)ρ− µMask(x) dx

= ρ

∫

L

χ(x) dx.

Surveys of discrete tomography in medical imaging can be found in [85] and [68]. A simulated

annealing approach for the reconstruction of vascular structures has been proposed in [104]

and [126] suggests a network flows approach in order to determine the structure of the left

ventricle from two projections. The reconstruction of the heart chamber from biplane cardiac

angiograms has been considered more recently in [108, 103]. Their algorithm reconstructs the

volume slice by slice, thereby, propagating information not only from the previous slice but also

over time as the heart muscle contracts and relaxes.
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3 Discrete Tomography

3.1.3 Non-destructive Material Testing

In material testing, tomographic imaging techniques are applied in order to find defects, like

cracks or involvements, inside materials. Imagine for instance the turbine blades of an aircraft

or other highly reliable products whose breaking resistance is very crucial. Due to the fact that

tomographic methods are non-destructive the tested samples can be used further on and it is

possible to test each piece individually and not only a set of random samples.

Material testing problems are just as made for discrete tomography since the object and the

specific densities, respectively, are perfectly known in advance. Furthermore, it is even possible

to use a specific prior model for the object itself since defects usually affect only small portion

of the object. Figure 3.3 gives some impression of images as they might appear in material

testing, a turbine blade on the left side and the cylinder block of a vehicle on the right side.

For further details on the topic see for instance [84].

3.2 Problem Statement

In order to access the reconstruction problem algebraically the integral in equation (2.1) must

be discretized properly. Therefore, two different discretization schemes are commonly used in

discrete tomography, the fully-discrete and the image-based discretization scheme . Although

we consider only the latter here, we emphasize that our algorithms are applicable in both cases,

as we explain later on.

The fully-discrete scheme, figure 3.4 (a), involves discreteness in both, the image domain and the

range, and originates from reconstruction problems arising in electron microscopy, section 3.1.1.

Given finite subsets S and G of the integer lattice such that S ⊂ G ⊂ Zn. A single ray is

conceived as a straight line and its corresponding projection counts the number of points in S

traversed by that line. At this, the set G formally assures that only a finite number of points has

to be considered, points outside of G do not contribute to the projections. Furthermore, lines are

typically restricted to be discrete, i.e. lines with a rational slope traveling at least through one

integer point in G. Given such projections and assuming S to be unknown the reconstruction

problem seeks to recover S from the projection data. Note that the problem becomes trivial if

the restriction to discrete lines is dropped, i.e. there exists a unique correspondence between

points and lines in case of an irrational slope. Although this is sometimes mentioned in literature

it is, nonetheless, of minor interest since it is impractical for real world applications.

In contrast to the fully-discrete scheme, the image-based discretization requires discreteness
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X

Y

X

Y

(a) (b)

Figure 3.4: (a) Fully-discrete discretization scheme: Given two subsets S (black dots) and G (black

and white dots) of the integer lattice Z2 with S ⊂ G ⊂ Z2. A projection is performed by counting the

number of black dots along a line. Usually only lines with a rational slope and occupying at least one

integer point in G, i.e. discrete lines, are permitted and it is assumed that points outside of G do not

contribute to the projections. The reconstruction problem is then to recover the set S from the given

projection data. (b) Image-based discretization scheme: The image domain is considered as tiled into

squared areas (pixels) or mathematically Haar-basis functions. By this, the projection of a single ray

corresponds to the integration over a piecewise constant function. This is depicted by the individual

line-segments between each pair of succeeding black dots. As both schemes (a) and (b) are covered

by the same algebraic formulation of the reconstruction problem our algorithms are independent of the

underlying discretization.

only for the range, i.e. each pixel is associated with some unknown binary variable xi ∈ {0, 1}.
The continuous image domain is tiled into a set of Haar-basis functions, each amplified by the

corresponding value xi. Thus, the projection of a single ray corresponds to the integration along

the path of the ray which is described by a piecewise constant function. Hence, the integral

can be split into the sum of products xi · ai where ai is the length of the ray’s line-segment

through pixel i. Denoting ai = 0 if pixel i is not traversed at all, the projection of a single ray

can be modelled more generally by a⊤x = b, where x is the vector over all binary variables.

Stacking the equations of all rays together leads to a linear equation system and provides the

following algebraic representation of the reconstruction problem,

A x = b , x ∈ {0, 1}n. (3.4)
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Observe that the fully-discrete scheme also fits equation (3.4), i.e. matrix A is then the binary

matrix with ai,j = 1 if and only if ray i hits pixel j and ai,j = 0 otherwise. The extension to

three or more dimensions is obvious for both discretization schemes.

Throughout this work, we setup reconstruction problems using the parallelbeam geometry,

section 2.2, but stress that other geometries are just as fine. The choice of geometry only

affects the structure of matrix A in equation (3.4).

3.3 Optimization Approaches

We introduce three selected optimization strategies which are often used in order to solve

discrete reconstruction problems: Simulated annealing, binary steering of non-binary iterative

algorithms, and netflow approaches.

Simulated annealing is a non-deterministic sampling procedure frequently employed for the

optimization of discrete or combinatorial problems. At this, it is quite flexible since it only

demands the evaluation of the objective function, i.e. there is no need to evaluate the gradient

or even the Hessian. On the opposite side, however, it known for its vast time consumption.

In the beginning of this chapter we demonstrated that the filtered backprojection algorithm is

not adequate for discrete tomography, figure 3.1, since many projections and a scan over 180◦

are mandatory to obtain adequate results. Besides filtered backprojection, we also introduced

iterative reconstruction techniques for continuous tomography in chapter 2 which utilize, if we

neglect the binary constraint in equation (3.4) for the moment, the same algebraic formulation as

discrete reconstruction algorithms. From this perspective, the question arises if these methods

are extendible in a way that they additionally obey the binary constraint? The answer is yes,

this has been done by Censor and Matej in [34] where a heuristic steering process is mounted

on top of a non-binary iterative algorithm guiding the overall reconstruction process eventually

to a binary solution.

The discrete reconstruction problem, equation (3.4), is NP-complete for more than two projec-

tions but efficient algorithms exist in case of only two projections, i.e. the horizontal and the

vertical projection or equivalently the row and the column sum. The key step of this approach is

to formulate the problem as maximum flow problem on a netflow graph which provably reveals

an integer solution.
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3.3.1 Simulated Annealing (SA)

As the name implies, simulated annealing is inspired by a technique used in metallurgy for

controlling the cool-down process of heated materials. At this, the goal is to increase the size

of the crystals inside the material but preventing the appearance of defects in the crystalline

structure at the same time. In the heated material atoms are free to wander randomly through

states of higher energy and by cooling them down slowly, there is a chance that they will

eventually find an arrangement at a low energy state.

Analogously, each step of the simulated annealing algorithm introduces small modifications in

the current solution at random. Depending on the difference between the corresponding energy

and an artificial temperature parameter T this random process does not only accept changes

that decrease the energy but with a certain probability also changes that lead to an increase of

the energy. As a consequence, simulated annealing can potentially escape local optima whereas

local search algorithms might get trapped.

Simulated annealing is a generalization of a Monte Carlo method originally proposed by Metropo-

lis et al [95] in order to search for equilibrium configurations of atoms at a given temperature

level. Later a generalized version of the Metropolis’ algorithm was published by Hastings [65],

known as the Metropolis-Hastings algorithm, which is the foundation for the simulated an-

nealing algorithm. The relation between the Metropolis-Hastings algorithm and mathematical

minimization was first noted by Pincus [107]. However, it was Kirkpatrick et al [78] and Cerny

[36] who both independently found that this forms the basis of a combinatorial optimization

method. In computer vision, simulated annealing has been popularized by [56].

Markov Chains

We start with a preliminary excursion to Markov chains but confine ourselves to Markov chains

defined on a finite state space S which is sufficient for all remaining considerations. A Markov

chain (MC) is a sequence of random variables Xn, n ∈ N0, which can take on values from a

finite state space S. The random variables are equipped with the Markov property, that is

P (Xn+1 = s | Xn = sn, ...,X0 = s0) = P (Xn+1 = s | Xn = sn) (3.5)

with s, s0, ..., sn ∈ S. In other words this means that the probability of moving to a certain

future state only depends on the present state and is, thus, independent from all past states.

In case of a finite state space S the transition probability distribution can be represented by
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.5: Image (a) shows the original image from which three projections, 0◦, 45◦, and 90◦ were

taken. The remaining images (b)-(l) provide intermediate results obtained at decreasing temperature

levels during the simulated annealing process. Though there are only three projections involved the re-

construction result (l) is much better than the results achieved with the filtered backprojection algorithm

from many projections, cf. figure 3.1.
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a matrix P, called transition matrix, where the entries of P are defined by pij := P (Xn+1 =

sj | Xn = si). Consequently, P is a stochastic matrix, i.e. all rows of P sum to 1.

Important properties of Markov chains are irreducibility and periodicity . The first means that

each state s is reachable from all other states in S otherwise the chain is reducible. The second

property says that starting from a state s it is only possible to return to s in a periodic number

of time steps, otherwise the Markov chain is considered aperiodic.

Starting from some initial distribution π0 the stationary distribution π is a row vector satisfying

π = πP, (3.6)

which means that π is the eigenvector of P corresponding to the eigenvalue 1. In general neither

existence nor uniqueness of a stationary distribution are guaranteed. However, in case of an

irreducible and aperiodic Markov chain a unique stationary distribution exists. Additionally, the

Perron-Frobenius theorem states convergence of Pk to a rank-one matrix where each row is

the stationary distribution,

lim
k→∞

Pk = 1π. (3.7)

SA Approach

Let S be the finite set of feasible solutions and c : S → R≥0 be the cost function of a

minimization problem. We further assume that there exists a neighborhood relation N such

that N (x) ⊂ S contains all neighbors of x ∈ S and N is symmetric, i.e. y ∈ N (x) if and only

if x ∈ N (y). Assume that we are in state x the probability that we choose neighbor y ∈ N (x)

is covered by Px(y) with
∑

y∈N (x) Px(y) = 1. In order to move from state x we randomly

select neighbor y with probability Px(y). According to the Metropolis scheme, we compare

c(x) and c(y) and move to state y if c(y) ≤ c(x) holds. In case of c(y) > c(x) we accept the

move with probability

exp

(

−c(y) − c(x)

T

)

(3.8)

and reject otherwise. The parameter T introduces an artificial temperature controlling the ac-

ceptance of a move that increases the costs. If T is low such moves are unlikely to occur whereas

for high temperatures c(y)− c(x) loses its influence on the probability, cf. equation (3.8), and

suboptimal moves become more and more acceptable.

Suppose Xt is the state of the algorithm after t iterations, then Xt is a Markov chain with

state space S. The transition probabilities P (Xt+1 = y | Xt = x) for y ∈ N (x) are defined
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Algorithm 3 Simulated Annealing (SA)

Require: Tinit > 0 {Initial temperature}
Require: 0 < Tfactor < 1
Require: Nattempts > 0
Require: Naccepts > 0
Require: 0 < minefficiency ≤ 1
Require: vtolerance > 0

x := Random({0, 1}n)
T := Tinit

History := ∅
E := ‖Ax− b‖+ α S(x)
k := 1
a := 0 {Count accepted moves}

repeat
p := Random({0, ..., n − 1})
l := Random(L)
x̃ := x

x̃[p] := l
Enew := ‖Ax̃− b‖+ α S(x̃)

{Accept move if ...}
if Enew < E or exp(−(Enew − E)/T ) > Random([0, 1]) then

x := x̃

E := Enew

History := History ∪ {Enew}
a := a + 1

end if

{Adjust temperature}
... see algorithm 4 ...

{Evaluate efficiency}
if k == Nattempts then

cefficiency := a/Nattempts

a := 0
k := 1

else
k := k + 1

end if

until cefficiency < minefficiency
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Algorithm 4 Simulated Annealing (SA): Adjust temperature

if |History| == Naccepts then

vnew := Compute variance of History

if v < vnew or |v − vnew| < vtolerance then

T = T · Tfactor

end if

v := vnew

History := ∅
end if

by

P (Xt+1 = y | Xt = x) :=

{

Px (y) exp (−c(y) − c(x)/T ) , if c(y) > c(x)

Px (y) , otherwise.
(3.9)

Further, we define

π(x) :=
exp (−c(x)/T )

∑

z∈S exp (−c(z)/T )
(3.10)

which is a probability distribution since π(x) ≥ 0 and
∑

x∈S π(x) = 1.

Theorem 1 ([13]). Suppose the Markov chain Xt is irreducible and that Px(y) = Py(x)

for every x and every y in N (x). Then, the vector with components π(x), x ∈ S, defined

according to equation (3.10) is the unique steady state distribution of the Markov chain Xt.

Consequently, the probability that state Xt equals a certain state x is approximately the steady

state probability of π(x) provided that one iterates for sufficiently long time t. As π(x) falls

exponentially with c(x) and for T → 0, cf. equation (3.10), almost all the steady state

probability is concentrated on states at which c(x) is globally minimized.

Reconstruction Algorithm

Consider the binary reconstruction problem as defined in equation (3.4) and let X := {0, 1}n
denote the space of all binary images. An adequate cost function on X is defined by E(x) :=

‖Ax − b‖2 + α S(x) where S(x) denotes an prior function with regularization parameter α,

in our SA experiments

S(x) :=
∑

〈i,j〉

(xi − xj)
2 =

∑

i

∑

j∈N (i)

(xi − xj)
2. (3.11)
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Figure 3.6: Referring to the discrete reconstruction experiment, figure 3.5, the left figure shows the

behavior of the energy function while the right figure plots the temperature T correspondingly.

An implementation of the SA algorithm according to our previous discussion is shown in algo-

rithm 3. In order to demonstrate the SA algorithm and to exemplify the benefits of discrete

reconstruction algorithms we reconstructed again the phantom image previously used in con-

nection with the filtered backprojection algorithm, figure 3.1. This time, however, we took only

three projections equally spaced over 90◦. Besides intermediate results at various temperature

levels, the final result of this experiment is shown in figure 3.5 (l) which almost revealed the

original image. This experiment shows that despite a small number of projections which were

taken only over 90◦ it is, nonetheless, possible to achieve high quality reconstructions.

3.3.2 Binary Steering of Non-binary Iterative Algorithms

In case of iterative reconstruction methods, section 2.3.5, the algebraic formulation of the con-

tinuous and the discrete reconstruction problem, section 3.2, differ only in the binary constraint,

equation (3.4). Therefore, it is tempting to apply iterative techniques which have been proven

to be useful for the continuous case also in the discrete case. Before, however, modifications

are necessary in order to enforce the binary constraint, x ∈ {0, 1}n.

Censor and Matej [34] proposed a heuristic procedure which is mounted on top of an iterative

non-binary reconstruction algorithm and steers the solution vector x towards x ∈ {0, 1}n. Their

method consists of two additional steps, the binarizer and the conflict settler, which are attached

to the original algorithm as outlined in figure 3.8, compare figure 3.8 also to figure 2.11 where

the outline of a general iterative reconstruction algorithm is shown. The algorithm uses three

sequences, αk, βk, and tk, of real numbers obeying 0 ≤ αk < tk, αk < αk+1, tk < βk ≤ 1,

and βk+1 < βk. A single iteration k of the modified algorithm starts with the binarizer which
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(a) (b)

Figure 3.7: Reconstruction results obtained by ART, see algorithm 2, (a) without and (b) with binary

steering. The binary reconstruction problem is similar to the one previously used for simulated annealing,

figure 3.5, only the image size has been reduced.

according to

x̃k
j :=















0, if xk
j ≤ αk

1, if xk
j ≥ βk

xk
j , otherwise

(3.12)

partially binarizes the solution xk of the previous iteration. As the algorithm proceeds the αk

values increase and the βk values decrease, thus, more and more components of xk become

binary. The next two steps, corrector generator and correction applicator, depend on the

iterative algorithm employed for the reconstruction process, cf. figure 2.11. A conflict has

occurred if a component yk
j is larger than or equal to the threshold tk while its corresponding

component xk
j was below αk. Similarly, a conflict occurs if yk

j is less than or equal to tk but xk
j

was greater than βk. In both cases no decision concerning this component is made and instead

the conflict is settled by setting

xk+1
j :=















tk − ǫ, if xk
j ≤ αk and yk

j ≥ tk

tk + ǫ, if xk
j ≥ βk and yk

j ≤ tk

y, otherwise

(3.13)

In order to demonstrate the influence of the steering process we applied the ART method as

described in section 2.3.5 with and without binary steering to a similar reconstruction experiment

as previously used for simulated annealing, figure 3.5. As can be seen in figure 3.8 (a) the pure

ART solution contains many fractional values and, thus, makes it hard to conclude which
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binary objects were present in the true image. On the other the side, figure 3.8 (b), the

solution obtained with the binary steering process is much better than the pure ART solution.

However, even with binary steering it cannot compare to the solution obtained by simulated

annealing, figure 3.5 (l). The reason for this discrepancy between ART with binary steering

and SA emerges from the spatial prior included in the SA algorithm. Concerning iterative

methods it is difficult to additionally supplement them with a spatial smoothness prior which

is a major drawback in view of images mainly consisting of homogeneous regions. Additionally,

the steering process is a purely heuristic step with no deeper mathematical justification.

We kindly refer the more interested reader to [11] which includes a detailed evaluation of the

binary steering process for discrete tomography and considers other iterative reconstructions

methods, like component averaging (CAV) [35] which accommodates to the sparseness of matrix

A, equation (3.4).

x k x kβkαk

x k x k+1y kkx d k

Binarizer
generator applicator

Correction Conflict
settler

Corrector

Data

~ ~ 

Figure 3.8: Outline of the overall steering process: The inner steps, corrector generator and correction

applicator, are steps from the original non-binary algorithm, figure 2.11. The outer steps, binarizer and

conflict settler, are introduced by the binary steering process.

3.3.3 Network Flow

The discrete reconstruction problem, equation (3.4), can be efficiently solved for two projections

and is known to be NP-complete otherwise. We study the case where the horizontal and the

vertical projection are given and show how the reconstruction problem can be solved efficiently

as a maximum-flow problem.

A flow network is a directed graph G = (V,E) where V is the set of vertices and E is the

set of edges. There exist two distinguished vertices s, t ∈ V called the source and the sink

respectively. For convenience it is typically assumed that each vertex is on a path from the

source to the sink and, thus, the graph is connected. For each edge (u, v) ∈ E a capacity

function c(u, v) ≥ 0 assigns the maximal flow that can be passed through this edge. A flow,

forwarded from the source towards the sink, is send over the network where the amount of flow

is restricted by the individual edge capacities.

42



3.3 Optimization Approaches

The net flow is a function f : V × V → R that provides the flow at each edge of G with

f(u, v) := 0 if (u, v) /∈ E. At this, f must not exceed the capacities of the edges,

f(u, v) ≤ c(u, v), (3.14)

and the flow from vertex u to vertex v is supposed to be the negative in the opposite direction,

f(u, v) = −f(v, u). (3.15)

Further, except for the source s and the sink t, all flow that enters a vertex u ∈ V − {s, t}
must also leave u such that no flow remains in the vertices,

∑

v∈V

f(u, v) = 0. (3.16)

As a consequence, the total flow emitted by the source,

|f | :=
∑

v∈V

f(s, v), (3.17)

must finally enter the sink.

The residual network Gf of G induced by the flow f is defined by Gf := (V,Ef ) with the

residual capacity

cf (u, v) := c(u, v) − f(u, v), ∀(u, v) ∈ E, (3.18)

and

Ef := {(u, v) ∈ V × V : cf (u, v) > 0}. (3.19)

Max-Flow

We assume here that the horizontal and vertical projection are given but emphasize that the

procedure is not necessarily restricted to these projections. Further, we consider in the following

the small, 3 × 3, reconstruction problem provided in figure 3.9 with unknowns xi ∈ {0, 1},i ∈
{1, ..., 9}, where the extension to larger problems is straightforward.
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Figure 3.9: For illustration purposes we consider the following small 3 × 3 image, shown in figure (a),

where each pixel is associated with an unknown variable xi ∈ {0, 1}. Figure (b) depicts the imaging

process, the horizontal and the vertical projection are taken as described in section 3.2. Hence, the

projections equal the row and the column sums.

As described in section 3.2 the corresponding algebraic formulation leads to the following linear

equation system,























1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1





























































x1

x2

x3

x4

x5

x6

x7

x8

x9







































=























b1

b2

b3

b4

b5

b6























. (3.20)

Let G := (V,E) be an undirected graph then G is called bipartite if and only if there exists a

partition of V = S ∪ T , S ∩ T = ∅, such that for all v1, v2 ∈ V , {v1, v2} ∈ E, v1 ∈ S and

v2 ∈ T or vice versa. The incidence matrix Ainc of G is defined by

(av,e)v∈V,e∈E :=















1 if v ∈ e

0 if v /∈ e

.
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Figure 3.10: (a) Bipartite graph G := (V, E) that represents the imaging process which is shown in

figure 3.9 (b). The incidence matrix of G is the same as the projection matrix in equation (3.20).

(b) The bipartite graph from the left side is embedded into a flow network in order to solve the

reconstruction problem, figure 3.9(b).

With S := {r1, r2, r3} and T := {c1, c2, c3} the imaging process, figure 3.9, is represented as

a bipartite graph, figure 3.10(a), and the corresponding incidence matrix is just the projection

matrix shown in equation (3.20). Each edge of the bipartite graph corresponds to an unknown

xi. In order to actually solve the reconstruction problem the bipartite graph is embedded into

the flow network, as shown in figure 3.10 (b), and the maximal amount of flow transported

from the source to the sink yields a solution of the reconstruction problem. This problem can

efficiently be solved for instance by the Ford-Fulkerson method [44] which iteratively seeks the

residual network for a path in order to push more flow from the source to the sink. If such

an augmenting path exists the residual network is adapted along this path and otherwise the

algorithm stops.

Theorem 2 (Integrality theorem [44]). If the capacity function c takes on only integral values,

then the maximum flow f produced by the Ford-Fulkerson method has the property that |f | is
integer-valued. Moreover, for all vertices u and v, the value of f(u, v) is an integer.

Note that according to theorem 2 the integrality of the maxflow solution depends also on the

optimization method. This becomes clear since we shall soon see, equation (3.23), that the
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3 Discrete Tomography

maximum flow problem can be converted into a linear program with integer solutions at the

vertices. If the solution of the problem is not unique there also exists non-binary solutions

lying within the convex set spanned by the optimal binary vertices. It now depends on the

optimization method itself which solution it reveals. See in this context also figure 4.3 in

chapter 4 where we compare an interior point optimizer to the well-known simplex algorithm.

Regarding the maximum flow problem, there meanwhile exist faster methods than the Ford-

Fulkerson algorithm, like preflow-push algorithms [44], which, however, must not necessarily

preserve integrality.

Binary reconstruction approaches based on network flows have been considered in various papers

[116, 8, 9, 7]. The basic network flow approach is limited to two projections which is insufficient

even for object of moderate complexity. Therefore, efforts have been made in order to overcome

this systematic drawback by combining reconstruction results obtained from pairs of projections.

In [116] a heuristic based on an additional network is used merging pairwise reconstructions.

Another heuristic is proposed by Batenburg [8, 9, 7] which additionally incorporates spatial

smoothness while merging different reconstructions. We compare and comment our results in

chapter 4 to the results reported in [7].

In view of the reconstruction approach that will be introduced in the next chapter it is worth

taking a look at network flows from a slightly different perspective. Therefore, we define the

constraint matrix C and the constraint vector d of the bipartite graph G,

C :=









Ainc

−I

I









and d :=









b

0

1









, (3.21)

and consider the polytope

P̃ := {x | C x ≤ d}. (3.22)

A matrix is said to be totally unimodular if the determinant of every square submatrix is either

-1, 0, or 1. The following theorem states the total unimodularity of matrix C, equation (3.21),

Theorem 3 ([120]). A graph G := (V,E) is bipartite if and only if its constraint matrix is

totally unimodular (see appendix C for a proof).

Since the right hand side vector d, equation (3.21), is integral the following theorem holds,

Theorem 4 ([120]). Let matrix A be totally unimodular and b be an integer vector, then the

vertices of the polytope

P := {x | A x ≤ b}
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3.3 Optimization Approaches

are all integer vectors (see appendix C for a proof).

By this, the maximum-flow approach for two projections can be equivalently written as the

following maximization problem

max
x
{1⊤x | x ∈ P̃}. (3.23)

Equation (3.23) motivates the use of linear programming in connection with binary reconstruc-

tion problems and we take on this in the next chapter.

Graph Cuts

Graph cuts [60] are global optimization techniques for binary functions, equation (3.24), based

on netflows. Therefore, the energy function is represented as flow network and a cut of the

graph yields the minimal energy.

E(x), x ∈ {0, 1}n. (3.24)

Let G(V,E) be a flow network, a cut (S, T ) is a partition of V into S and T = V − S such

that s ∈ S and t ∈ T . Further, if f is a flow in G then the flow between S and T is defined as

f(S, T ) and respectively the capacity c(S, T ). One of the fundamental results in combinatorial

optimization is the max-flow min-cut theorem 5 which connects the maximal flow problem from

the previous section with the minimal cut of a flow network.

Theorem 5. [Max-flow min-cut theorem [44]] If f is a flow in a flow network G = (V,E) with

source s and sink t, then the following conditions are equivalent:

(i) f is a maximum flow in G.

(ii) The residual network Gf contains no augmenting paths.

(iii) |f | = c(S, T ) for some cut (S, T ) of G.

Computer vision algorithms based on graph cuts have been suggested and successfully applied in

[19, 23, 22, 82]. In the typical outline of a binary image labeling problem all pixels are associated

with nodes which are connected according to some neighborhood structure N . Additionally,

all these nodes are connected to the source and sink which correspond to the binary labels

and weights reflecting the individual terms of the energy function are assigned to the edges.

Figure 3.11 depicts the overall graph structure. Due to the structure of the graph a cut implies a

one to one correspondence with a binary image, x ∈ {0, 1}n. A pixel is assigned 1, respectively
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t

s

Figure 3.11: Graph cuts flow graph: The pixels correspond to the intermediate nodes which are internally

connected according to the neighborhood structure induced by the image. Additionally, the intermediate

nodes are connected to the source s and sink t. Dotted edges denote edges that belong to the cut. If

we assume the source labels a pixels 0 and the sink 1 then a pixel receives label 1 if it is connected to

the sink and the edge to the source is in the cut.

0, if the edge between its node and s respectively t is in the cut. One of both edges must be

in the cut since a connection between the source and the sink would exist otherwise. Further,

it is not possible that both edges are in the cut since then the cut cannot be minimal anymore.

Kolmogorov and Zabih [82] investigated the types of energy functions that can effectively

minimized by graph cuts. In particular, they consider the class that includes all binary functions

of type

E2(x) :=
∑

i

Ei(xi) +
∑

i<j

Ei,j(xi, xj), (3.25)

where Ei(·) and Ei,j(·, ·) are arbitrary terms depending on a single variable or two variables

respectively. Their main result, concerning equation (3.25), shows that graph cuts are applicable

if each term Ei,j obeys

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (3.26)

In [82] this condition is referred to as regularity and is equivalent to submodularity. The presence

of non-regular terms imposes negative edge weights which in turn prohibits the use of maxflow

approaches.
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Concerning the tomographic reconstruction problem, equation (3.4), in terms of a quadratic

data term

E(x) = ‖Ax− b‖22 = x⊤A⊤Ax− 2 b⊤Ax + b⊤b. (3.27)

Matrix Q := A⊤A contains only non-negative entries since matrix A is non-negative, see

section 3.2. The positive off-diagonal entries of Q, Ei,j(xi, xj) := qi,jxixj , 0 < qi,j, i 6= j,

lead to 0+ qi,j � 0+0 and, thus, to the non-regularity of E(x), compare equation (3.26). For

this reason, it is not possible to apply graph cuts directly which otherwise would contradict the

NP-completeness of the reconstruction problem anyway.

In order to optimize non-regular functions with graph cuts at least approximately different

approaches have been proposed in [113], [110] and more recently in [81]. We will focus on [81]

here since it seems to be the most promising approach.The key step is to introduce additional

binary variables yi for all xi and to transform the original energy function E(x), equation (3.27),

into

Ẽ(x,y) =
1

2

(

∑

i

Ei(xi) +
∑

i

Ei(1− yi)+

∑

i,j

Ei,j(xi, xj) +
∑

i,j

Ei,j(yi, yj)+

∑

i,j

Ei,j(xi, 1− yj) +
∑

i,j

Ei,j(1− yi, xj)
)

. (3.28)

If xi = 1− yi holds then the pair (xi, yi) is called consistent and inconsistent otherwise. It is

clear that the minimum of E(x), equation (3.27), and Ẽ(x,y), equation (3.28), coincides if

all variables i are consistent. However, it is not possible to enforce consistency as this would

introduce non-regular terms again. Therefore, depending on the structure of the optimization

problem there is hope that inconsistency affects only a small number of variables. In this

context, it has been proven [17] that if (xi, yi) is consistent it is also optimal, this property is

called persistence. Consequently, the number of inconsistent variables gives some hint about

the distance between the approximate solution and the optimal solution. Unfortunately, the

approximation Ẽ(x,y), equation (3.28), can achieve much smaller energies than E(x∗) at the

global optimal solution x∗. We will demonstrate that this leads to problems when energy,

equation (3.28), is applied to discrete reconstruction problems. Therefore, we reconsider the

imaging geometry as shown in figure 3.9, i.e. we are given the row and column sum, and
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assume that the projections are taken from the following binary image:

0 1 0

1 1 1

0 1 0

(3.29)

Clearly, this reconstruction problem is trivial and its solution is unique. However, if we formulate

the problem according to equation (3.28) and seek for all its global optimal solutions by brute

force computation we obtain three different optima. The top row images, equation (3.30),

show the original variables x and the bottom row images, equation (3.31), the corresponding

complementary variables y. The approximation is not unique anymore, all three solutions are

equally good with respect to equation (3.28) but only the solution in the middle column fulfills

the projection constraints of the original problem.

0 0 0

0 1 0

0 0 0

0 1 0

1 1 1

0 1 0

1 1 1

1 1 1

1 1 1

(3.30)

0 0 0

0 0 0

0 0 0

1 0 1

0 0 0

1 0 1

1 1 1

1 0 1

1 1 1

(3.31)

We also performed larger experiments using again the reconstruction problem from figure 3.5.

The results are shown in the figure 3.12 where the top row shows, as previously, the original

binary variables x and the bottom row the complementary variables y. In contrast to the smaller

experiment the computation of all global optimal solutions is prohibitive due to the size of the

problem. However, as can be clearly seen the results are far away from the true image and the

energy of the reconstructed images is significantly below the energy of the groundtruth image,

table 3.1. Therefore, we must conclude that the introduction of complementary variables does

not make graphcuts applicable for the reconstruction of binary images.

3.4 Error Measures for Binary Images

We introduce different error measurements in this section which will be used in the following

chapters for the evaluation our algorithms. At this, there are two aspects that we are inter-

ested in: first, we want the reconstructions to be in good agreement with the projections, i.e.
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Reconstruction results: The reconstruction problem shown and described in figure 3.5 was

formulated with the approximate energy, equation (3.28), in order to overcome non-regular terms and

optimized via graph cuts. As can be seen, the reconstruction is far away from the true image which

shows three ellipses. However, the energy of the reconstructed images is significantly below the energy

of the groundtruth image due to the construction of the approximate energy.

A x = b, and, second, we want them to be close to the groundtruth images used for problem

generation. Due to the ill-posedness of reconstruction problems there might, however, exist

different images which perfectly agree with the projection constraints. Our measurements give

considerations to both facets.

Let x∗ be the groundtruth image from which the reconstruction problem, A x∗ = b, has

been setup as described in section 3.2. Assume, further, that x ∈ {0, 1}n is a binary solution

to the problem obtained by some optimization algorithm. To analyze the quality of x with

respect to the reconstruction problem and the groundtruth x∗ we employ the following error

measurements,

Err1(x) := ‖Ax− b‖2 , (3.32)

Err2(x) :=
1

∑n
i=1 xi

‖x− x∗‖1 . (3.33)

Additionally to the error measures, Err1 and Err2, we comprise two error measurements

commonly applied in object matching for the comparison of binary images.
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smoothness energy reconstruction energy groundtruth

0 -157796 0.015625

1 -157777 656.016

5 -157716 3280.02

Table 3.1: Comparison of the energy values: We applied graph cuts to the reconstruction problem

shown and described in figure 3.5 using the approximate energy function, equation (3.28). Comparing

the energy of the optimal graph cut solution (middle column) to the groundtruth solution (right column)

shows that the energy of the global optimum is significantly below the energy of the groundtruth image.

However, the reconstruction is quite different from the original image, figure 3.12.

In many computer vision tasks it is necessary to find a certain object in an arbitrary image,

in order to detect pedestrians in a street scene for instance [54, 55]. At this, it is popular

to represent the object edges and the image edges as binary images and to compare both at

several positions [16, 71]. The object is found if both, object edges and image edges, match at

this position. So far, the procedure would lead to poor results since it relies on the fact that

the edges must be perfectly aligned. For this reason, a distance transform is firstly applied to

the object edges, then for any point in the edge image the distance to its closest object point

is known. Formally, let P denote the set of object points the distance for an arbitrary point x

is defined by

DP (x) := min
y∈P
‖x− y‖. (3.34)

The distance transform of an binary image A provides a grayvalued image with Dp(x) for each

pixel x ∈ A. We denote this briefly by D(A) and provide an example in figure 3.13. Based on

the distance transform, the Chamfer [5, 16] and the Hausdorff [2, 3, 71] distance are frequently

applied for image comparison.

The Hausdorff distance is defined [71] as

H(A,B) := max{h(A,B), h(B,A)} (3.35)

with

h(A,B) := max
x∈A

min
y∈B
‖x− y‖ = max

x∈A
DB(x). (3.36)

The function h(A,B) is called direct Hausdorff distance and measures the distance from a

point x that is farthest away from any point in B. While h(A,B) is non-symmetric in general,

i.e. h(A,B) 6= h(B,A), the Hausdorff distance H(A,B) is symmetric again.
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(a) (b)

Figure 3.13: Distance transform: Image (a) provides a binary test image with black pixels corresponding

to background and white to object respectively. The distance transform of image (a) is shown in (b);

darker grayvalues indicate greater distances from the objects.

In contrast to the Hausdorff distance which aims at the worst mismatched point the Chamfer

distance overlays the binary image and the distance transform and averages the distances of all

edge pixels. In [16] the root mean square has been proposed for averaging

c(A,B) :=
1

3

√

∑

i,j(Ai,j · D(B)i,j)2
∑

i,j Ai,j
. (3.37)

which is non-symmetric, analogous to h(A,B). The symmetric Chamfer distance is defined by

C(A,B) :=
c(A,B) + c(B,A)

2
. (3.38)

According to the definition above, we associate the Hausdorff distance, equation (3.35), and

the Chamfer distance, equation (3.38), with the following error measures

Err3(x,x∗) := H(x,x∗) (3.39)

Err4(x,x∗) := C(x,x∗). (3.40)
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Due to the inherent combinatorial complexity, the binary reconstruction problem, equation (3.4),

belongs to the class of NP-complete problems, section 1.2, and is, therefore, hard to optimize.

In this situation, it is often beneficial to relax the constraints of the original problem such that

the resulting problem is less difficult. If the relaxed problem does not differ too much there is

hope that a solution of the relaxation is also a good approximation to the original problem.

Since we consider the case of binary tomography in this chapter a natural relaxation is to

replace the constraint x ∈ {0, 1}n by x ∈ [0, 1]n. This allows a formulation of the relaxed

problem in terms of linear programming which in turn can be globally optimized, even for large

instances, by modern interior point solvers. Within this context, we additionally introduce a

smoothness prior which favors spatially homogeneous reconstructions and consider different

rounding strategies which must be applied to eventually yield a binary solution.

4.1 Linear Programming (LP)

Although there exist different definitions for linear programming problems the following is usually

referred to as the standard form of a linear program,

min c⊤x subject to A x = b , x ≥ 0, (4.1)

where c,x ∈ Rn, b ∈ Rm, and A is a Rm×n matrix. Other definitions involve maximization

instead of minimization, inequality constraints, or allow negative components in x. However,

it is not difficult to see that all these formulations are essentially equal. By changing the sign

of c, the minimization problem converts into a maximization problem, min c⊤x = max−c⊤x.

Furthermore, given that some or all rows a⊤
i of matrix A are associated with inequalities,

a⊤
i x ≤ bi or a⊤

i x ≥ bi, then, through the introduction of slack variables λi, each inequality is
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replaced by a⊤
i x+ λi = bi, λi ≥ 0, or respectively a⊤

i x−λi = bi, λi ≥ 0, which again yields a

linear program in standard form. A similar trick is used if some or all components of x are free,

i.e. xi ∈ R instead of xi ≥ 0, then each free variable xi is replaced by λ1 − λ2 with λ1 ≥ 0

and λ2 ≥ 0.

If a vector x satisfies the constraints A x = b and x ≥ 0, it is called a feasible point and the

set of all feasible points defines the feasible set. Let S be the feasible set of the linear program

P then there are three possible cases concerning the solvability of P:

• S = ∅: P is not feasible.

• S /∈ ∅, ∄ min{c⊤x | x ∈ S}: P is feasible but unbounded.

• S /∈ ∅, ∃min{c⊤x | x ∈ S} = c⊤x∗: P is feasible and x∗ is an optimal point.

Associated with every linear program is the dual linear program. Equation (4.2) shows the dual

of the standard linear program, equation (4.1), then also called primal program.

max b⊤y subject to A⊤y ≤ c (4.2)

There exist strong connections between primal and dual problems. Given feasible vectors for

both of them, the dual objective lower bounds the primal objective, and, vice versa, the primal

upper bounds the dual, see equation (4.3).

c⊤x ≥
(

A⊤y
)⊤

x = y⊤ (A x) = y⊤b (4.3)

Further, the values of both objective functions, equation (4.1) and equation (4.2), coincide if

the points for the primal x∗ and the dual y∗ are optimal points, c⊤x∗ = b⊤y∗. Let P be a

primal linear program in standard form and D its dual then the following holds:

• If P is feasible and unbounded then D is not feasible.

• If P is feasible and bounded then so is D.

Concerning the optimization of linear programs, the simplex algorithm, invented by George

Dantzig in 1947, has been the first applied algorithm and, at this, marks a breakthrough in

modern optimization, see [45] for a historical overview. Starting at some arbitrary corner point,

also called vertex or extreme point, of the polytope, Ax ≤ b, the algorithm proceeds to one of

the neighboring vertices as long as it leads to an improvement of the objective function. The

algorithm terminates once it reaches a vertex where no further improvement is possible. Such

a point must necessarily be globally optimal due to convexity of the polytope. Though the

simplex algorithm has exponential worst-case complexity it performs much better in practice.
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In 1984 Karmarkar introduced interior-point algorithms which have a polynomial-time worst-

case complexity. These methods rely on barrier functions which attend a finite value within the

polytope but increase towards infinity near the borders of the polytope. Starting from a point

inside the polytope, this point is pushed in a direction where the objective function improves

while the barrier functions ensure that the point is kept inside the polytope. If there is no

further improvement for a certain number of iterations the interior-point algorithm terminates.

In contrast to the simplex method which always returns a vertex of the polytope, interior-point

solvers are more likely to pick a solution in the center of the polygon spanned by the optimal

vertices. A detailed introduction to interior-point algorithms and linear programming can be

found in [138].

4.2 LP Relaxations

Linear programming in connection with binary tomography has been firstly suggested in [1] and

corresponding LP-based relaxations have been proposed in [50] and [62]. In this section, we

introduce the relaxations [50, 62] besides others and incorporate, at this, a smoothness prior

which favors spatially homogeneous solutions.

4.2.1 FSSV Approach

Fishburn, Schwander, Shepp, and Vanderbei [50] proposed the following LP-relaxation which

we call (FSSV ):

(FSSV ) min
x∈Rn

0⊤x, Ax = b, 0 ≤ xj ≤ 1, ∀j (4.4)

As can be seen, this is a degenerated form of a linear program since the target function is

constantly zero. Nevertheless it, provides a sufficient condition for the feasibility of the recon-

struction problem. If the linear program returns a binary solution then this is certainly a solution

of the reconstruction problem while otherwise it is unclear if the problem is feasible or not. The

major drawback of this approach is that solutions must fulfill the projections constraints exactly

which renders this approach very sensitive to noise. For this reason, we consider this approach

theoretically but exclude it from our experiments later on. An evaluation of (FSSV ) can be

found in [133].
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4.2.2 Best Inner Fit Approach (BIF)

Equation (3.23) from the last chapter motivates the best inner fit criterion and establishes a

close connection to network flow approaches. This criterion has been first applied to binary

tomography by Gritzmann et al [61] using, at this, a greedy optimization strategy in order to

avoid fractional solutions:

(BIF ) max
x∈Rn

1⊤x, Ax ≤ b, 0 ≤ xj ≤ 1, ∀j (4.5)

In contrast to the (FSSV ) approach the (BIF ) criterion is less sensitive to noise since each

projection ray is allowed to either fit or under fit its constraint. Thus, the feasibility of the

linear program is obvious since x = 0 is a feasible point.

Concerning reconstructions from two projections1, we have seen in section 3.3.3 that the (BIF )

and max flow approach are closely related since solutions obtained for this specific reconstruction

setup are guaranteed to be binary due to the total unimodularity of the constraint matrix.

4.2.3 Norms

Besides the approaches in section 4.2.1 and 4.2.2, we consider relaxations that minimize the

difference between A · x and b according to some norm ‖ · ‖p. At this, it is possible to give a

closed form for x in case of the L2-norm,

argmin
x

{E(x) := ‖Ax− b‖2} = (4.6)

argmin
x

{

E(x)2 = ‖Ax− b‖22 = x⊤A⊤Ax− 2b⊤Ax + b⊤b
}

(4.7)

∇E(x)2 = 2A⊤Ax− 2A⊤b
!
= 0 ⇐⇒ x =

(

A⊤A
)−1

A⊤b. (4.8)

However, equation (4.8) is of limited gain since the inversion of A⊤A is prohibitively expensive

for larger problems, silently assuming that the inverse actually exists. In the subsequent chap-

ters, we will revise the quadratic minimization problem, equation (4.7), but it is of less interest

in view of linear programming.

Concerning the L1- and L∞-norm, it is well-known that they can be well approximated via

linear programming.

1Note that not only the projections of the row and the column sum are suitable but any pair of projections

which leads row-wise to constant entries in matrix A. By this, one can factor out this entry for each

row/equation independently, divide the corresponding projection value b on the right hand side through it,

and, thus, obtains a binary matrix A and an integral vector b.
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To begin with the L1-norm, the relaxed reconstruction problem reads

min
x∈[0,1]n

‖Ax− b‖1. (4.9)

In order to approximate the absolute value of each component in vector (Ax − b), we first

introduce corresponding slackvariables s⊤ := (s1, ..., sm). The objective function minimizes

the sum over all slackvariables and, hence, approximates equation (4.9) implicitly. Let x̃⊤ :=

(x⊤s⊤) and c̃⊤ := (0⊤1⊤), the linear program approximation of equation (4.9) is given by

min
x∈Rn

c̃⊤x̃ subject to

(

A −I

−A −I

)

x̃ ≤
(

b

−b

)

, 0 ≤ xi ≤ 1 ∀i. (4.10)

In case of the L∞-norm,

min
x∈[0,1]n

‖Ax− b‖∞, (4.11)

only a single slackvariable s is necessary approximating the maximal disagreement of a compo-

nent in (Ax − b). Similarly to the L1 reconstruction, equation (4.10), the linear program is

described in terms of x̃⊤ := (x⊤s) and c̃⊤ := (0 1),

min
x∈Rn

c̃⊤x̃ subject to

(

A −1

−A −1

)

x̃ ≤
(

b

−b

)

, 0 ≤ xi ≤ 1 ∀i. (4.12)

In retrospect of minimizing the L∞-norm and L1-norm, it seems natural to deliberate the

differences between several choices of p ∈ {1, 2,∞}. Let us, therefore, consider the individual

residuals

ri(x) := yi − a⊤
i x , ∀i = 1, ...,m , (4.13)

and suppose that the ri are double-sided exponentially distributed, ,

pa(z) :=
1

2a
exp

(

−|z|
a

)

. (4.14)

Accordingly, their likelihood function L(y|x) is defined by

L(y|x) :=

m
∏

i=1

pa(ri(x)) =

(

1

2a

)m

exp(−1

a

m
∑

i=1

|ri(x)|) (4.15)

and, respectively, the log likelihood function

lnL(y|x) = −(2 + ln a) m− 1

a

m
∑

i=1

|ri(x)|. (4.16)
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Figure 4.1: We minimized ‖Ax − b‖p for p ∈ {1, 2,∞} with A ∈ [0, 1]200×30 and b ∈ [0, 10]200

randomly generated. All three plots show histograms of the individual residuals ri. In case of the

L1-norm the residual has the widest spread and a strong peak at 0. On the other side, the L∞-norm

gives the smallest interval containing all ri. The L2-norm is in between L1 and L∞.

Maximizing the log likelihood function, equation (4.16), with respect to x yields the L1-estimate

as maximum likelihood (ML) estimate

max
x

lnL(y|x) = max
x
− 1

a

m
∑

i=1

|ri(x)| = min
x
‖y −Ax‖1 . (4.17)

Similarly, if we assume a normal distribution,

pσ(z) :=
1

√

(2πσ2)
exp(− 1

2σ2
z2), (4.18)

the L2-estimate is obtained as maximum likelihood estimate,

min
x
‖y −Ax‖2 . (4.19)

Finally, in case of a uniform distribution,

pa(z) :=















1
2a
−a ≤ z ≤ a

0 otherwise

, (4.20)

any x that satisfies

‖y −Ax‖∞ ≤ a (4.21)

is a maximum likelihood estimate.
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To illustrate this further, we randomly generated a matrix A and a vector b and set up opti-

mization problems of the form minx ‖Ax−b‖p with p ∈ {1, 2,∞}. We optimized the problems

with the suggested relaxations, where in case of p = 2 we used the pseudoinverse instead of

a direct matrix inversion since A⊤A is likely to be singular. Figure 4.1 shows the distribution

(histogram) of the residuals ri and, as can be seen, the results nicely reflect the distributions

assumed for the maximum likelihood estimation.

4.3 Regularization

The approaches introduced in section 4.2 compute approximations to the binary reconstruction

problem. At this, their results can significantly differ from the underlying image due to the

ill-posedness of problem. Since we are particularly interested in objects that exhibit some kind

of spatial homogeneity we focus on the regularization of the former approaches in favor of more

coherent solutions [133, 135, 136, 121].

We explicitly demonstrate the regularization in case of the (FSSV ) and (BIF ) approach and

stress that the procedure is analogous for the norm approximations, equations (4.10) and (4.12).

In reference to the notation used in former sections, we denote the corresponding regularized

LP relaxations by (reg − FSSV ), (reg −BIF ), (reg − L1), and (reg −L∞).

4.3.1 Smoothness Prior

A natural way to derive a smoothness term is to consider proper discretizations of smoothness

functionals in the continuous space Rm

‖L(f)‖22 . (4.22)

At this, the operator L measures the spatial variation of the attenuation function f . The

simplest example for a suitable L is the gradient operator

L(f) = ∇f = (
∂

∂ x1
f, ...,

∂

∂ xm
f)⊤. (4.23)

We confine ourselves to the simplest choice, equation (4.23), which, by discretizing equa-

tion (4.22), leads to the well–known 5–point stencil for the Laplacian. At the functional level

this simply corresponds to summing up the differences at adjacent pixel positions, in our case

the 4-neighborhood of a pixel,
∑

〈j,k〉

(xj − xk)
2 , (4.24)
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where only horizontal and vertical (not diagonal) positions are considered as nearest neighbors.

In order to derive a suitable LP–relaxation based on [80], we replace the squared terms in

equation (4.24) by their absolute values,

∑

〈j,k〉

|xj − xk| , (4.25)

which in view of the original integer constraint xj ∈ {0, 1} is a reasonable approximation.

Following the general approach described in [80], we introduce a vector z with auxiliary variables

z⊤ = (. . . , z〈j,k〉, . . . ) and approximate each term |xj − xk| by minimizing z〈j,k〉 subject to

z〈j,k〉 ≥ xj − xk and z〈j,k〉 ≥ xk − xj in the linear program.

4.3.2 Regularized FSSV

Revising the (FSSV ) approach from section 4.2.1 the objective function supplemented with

the smoothness prior, equation (4.24), reads

(reg − FSSV ) min
x∈[0,1]n

0⊤x +
α

2

∑

〈j,k〉

|xj − xk| , Ax = b , (4.26)

and therewith the corresponding linear program comes out as

min
x,z

0⊤x +
α

2

∑

〈j,k〉

z〈j,k〉 subject to
Ax = b

z〈j,k〉 ≥ xj − xk

z〈j,k〉 ≥ xk − xj

0 ≤ xj ≤ 1 , ∀j.

4.3.3 Regularized BIF

In case of the (BIF ) approach, section 4.2.2, we proceed analogously to section 4.3.2, i.e. we

consider

(reg −BIF ) min
x∈[0,1]n

−1⊤x +
α

2

∑

〈j,k〉

|xj − xk| , Ax ≤ b, (4.27)

and obtain the corresponding linear program as
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min
x,z
−1⊤x +

α

2

∑

〈j,k〉

z〈j,k〉 subject to Ax ≤ b

z〈j,k〉 ≥ xj − xk

z〈j,k〉 ≥ xk − xj

0 ≤ xj ≤ 1 , ∀j.

Referring to the total unimodularity of A which guaranteed a binary solutions for certain pairs

of projections, section 4.2.2 and 3.3.3, it is worth mentioning that adding the smoothness

constraints z〈j,k〉 ≥ xj − xk and z〈j,k〉 ≥ xk − xj necessarily leads to a submatrix

det

(

1 −1

−1 1

)

= 2

and, thus, deteriorates the total unimodularity of the constraint matrix of (reg −BIF ).

4.4 Rounding

Due to the linear programming relaxation, we only obtain a fractional solution x ∈ [0, 1]n so

far, instead of x ∈ {0, 1}n. In order to finally achieve a reasonable binary approximation of the

original problem, we consider randomized and deterministic rounding procedures applied to the

fractional LP solution afterwards.

4.4.1 Randomized Rounding

Probably the simplest randomized or probabilistic rounding procedure is to consider the frac-

tional values of the solution x as some kind of assignment probabilities, i.e. pixel i receives

label 1 with probability xi and label 0 with probability 1 − xi. By choosing a random value

γ ∈ [0, 1] individually for each pixel, one assigns 1 if γ ≤ xi and 0 otherwise. It is, however,

reported by Kleinberg and Tardos [80] that this rounding scheme leads to poor results and,

instead, they suggest the rounding procedure which is adapted in algorithm 5 for our needs.

Again, the fractional values are considered as assignment probabilities but in contrast to the

simple approach above several pixels are assigned during a single iteration.

Let I denote the set of pixels, i ∈ {1, ..., n} and consider all pixels as unassigned initially, a

single iteration of the algorithm randomly selects a label l ∈ {0, 1} and a value γ ∈ [0, 1], and
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assigns label l to all unassigned pixels i if γ ≤ xi,l with xi,0 := 1 − xi and xi,1 := xi. The

algorithm terminates if there are no unassigned pixels left, i.e. Q = ∅.

Algorithm 5 Randomized Rounding [80]

1: L := {0, 1}
2: I := {1, ..., n}
3: Q := I

4: while Q 6= ∅ do

5: l := random(L)

6: γ :=random([0, 1])

7: for all i ∈ Q do

8: if l = 0 and γ ≤ 1− xi then

9: xi := 0

10: Q := Q− {i}
11: else if l = 1 and γ ≤ xi then

12: xi := 1

13: Q := Q− {i}
14: end if

15: end for

16: end while

With respect to algorithm 5, the work of Kleinberg and Tardos [80] includes the following results

which are adapted to our binary case here.

Lemma 6 ([80]). The probability that an unassigned pixel i is assigned label l in a given

iteration is precisely xi,l/2, the probability that pixel i is assigned any label is precisely 1/2.

Further, over all iterations, the probability that a pixel i is assigned label l is precisely xi,l.

Proof. We uniformly choose a label l with probability 1/2 and the probability that pixel i

is assigned label l is xi,l/2. Hence, the probability that pixel i is assigned to any label is
∑

l∈{0,1} xi,l/2 = 1/2 and that pixel i is assigned label l over all iterations is

1

2
xi,l

∞
∑

p=0

1

2p
= xi,l.
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Following [80], two neighboring pixels i and j are separated by an iteration if they were unas-

signed before and exactly one of them is assigned during that iteration. It is worth noting that

if two neighboring pixels receive different labels then they were separated during some iteration,

the opposite is obviously not true since the rejected pixel might obtain the same label during

an iteration later on.

Lemma 7 ([80]). Let pixel i and j be neighbors, the probability that both pixels are separated

during an iteration is exactly |xi,1 − xj,1|. The probability that the two pixels i and j are

assigned differently by the process is at most 2|xi,1 − xj,1|.

Proof. Without loss of generality we assume xi,l ≥ xj,l for some selected label l and γ ∈ [0, 1]

chosen uniformly. Case (i) γ > xi,l, both pixels remain unassigned. Case (ii) xi,l ≥ γ > xj,l,

label l is assigned to pixel i but not to pixel j. Case (iii) xj,l ≥ γ, label l is assigned to both

pixels. Consequently, only case (ii) separates pixels and occurs with probability |xi,l − xj,l|.

The probability that exactly one of the objects is assigned during an iteration is covered by

PS :=
1

2

∑

l∈{0,1}

|xi,l − xj,l| =
|xi,0 − xj,0|+ |xi,1 − xj,1|

2
= |xi,1 − xj,1|.

Further, let PA be the probability that both pixels are assigned in the current iteration and PR

be the probability that both pixels are rejected, obviously PA + PS + PR = 1. One observes

that the overall process will surely not separate the pixels i and j if they receive their label

assignment in the same iteration and the probability for this case is

PA

∞
∑

p=0

(PR)p =
PA

1− PR
=

1− PS − PR

1− PR
= 1− PS

1− PR
= 1− PS

PA + PS
.

Thus, the probability that pixel i and j are separated by the process is upper-bounded by

PS

PA + PS

where PA + PS is the probability that at least one of both pixels is assigned. This is at least

the probability that one pixel is assigned which is 1/2 according to lemma 6. Consequently, the

probability that two pixels i and j are assigned to different labels is at most 2|xi,1 − xj,1|.

Lemma 7 makes precise that the randomized procedure, algorithm 5, preserves spatial smooth-

ness to some extent. For practical purposes the rounding procedure is repeated several times

and the binarization with the lowest Err1 measure, section 3.4, is kept as result.

65



4 Linear Optimization

4.4.2 Deterministic Rounding

In [133, 135, 136, 121], we obtained reasonable binarizations using a simple deterministic

rounding scheme which thresholds the fractional solution x with a certain predefined global

threshold parameter t, i.e. if xi ≤ t then xi = 0 and xi = 1 otherwise.

A more sophisticated deterministic method has been proposed by Kleinberg and Tardos [80]

which is a derandomized version of the probabilistic algorithm 5, see our adaption in algorithm 6.

The outline of the algorithm is quite simple. Consider the set of all fractional values occurring in

the fractional LP solution and assume all elements of this set arranged in a list with increasing

order. Note that each grayvalue appears only once in the list although it might appear several

times in the fractional solution. We obtain the set of all thresholds as mean values of any pair

of grayvalues succeeding in the list. By this, all thresholds leading to different binarizations are

considered which certainly includes the results of the randomized algorithm 5. Each threshold is

applied to the fractional solution and the rounding with the lowest Err1 measure, section 3.4,

is returned.

Algorithm 6 Deterministic Rounding [80]
Require: x - fractional solution.

Require: g - contains the different fractional values of x increasingly ordered.

1:

2: T := {(gi + gi+1)/2, 0 ≤ i < n}
3: x̂ := threshold x with arbitrary t ∈ T .

4: emin := Err1(x̂) = ‖Ax̂− b‖2
5:

6: for all t ∈ T do

7: x̂ := threshold x at t.

8: e := Err1(x̂)

9: if e < emin then

10: emin := e

11: x̂min := x̂

12: end if

13: end for

14:

15: return x̂min and emin

For practical implementations, this procedure might be considered as too expensive since in
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worst case all pixels contain different values, hence, a large number of thresholds must be

applied. From our experience, this should, however, not be the case as it contradicts the

influence of the smoothness prior. Besides, our experiments, section 4.5, indicate that the

optimal threshold is significantly close to t = 0.5 which equals the fixed predefined global

threshold we used in [133, 135, 136, 121].

4.5 Numerical Evaluation

We evaluate the approaches (reg − BIF ), (reg − L1), and (reg − L∞) for scenarios involv-

ing noiseless and noisy projections. We, however, exclude the (reg − FSSV ) approach from

our experiments as it is clearly inferior, the equality constraint prevents its application to in-

consistent equation systems which occur in many real world situations due to the presence of

noise. Instead, we refer the interested reader to [133] for a comparison of (reg − FSSV ) and

(reg −BIF ). Furthermore, we do not evaluate the enhancing influence of the smoothness

prior on reconstruction results since this has been extensively studied in [133, 135, 136, 121].

Using the parallel beam geometry and the image-based discretization scheme, section 3.2, we

setup different reconstruction problems from the images shown in figure 4.2. In each projection

the distance between two closest rays is set to the side length of a pixel which is assumed to

be 1 and, consequently, the horizontal and the vertical projection coincide with the row and the

column sum.

For the implementation of our algorithms, we used the gcc C++ compiler and the C interface to

CPLEX, a commercial optimization package from the ILOG2 company which provides a simplex

and an interior point solver for linear programming. Depending on the chosen solver, not only the

speed of the reconstruction process can differ remarkably, interior point methods are typically

faster than simplex optimizers, but also the reconstruction results which we demonstrate in

figure 4.3. As can be seen there, the total unimodularity of matrix A guarantees that all

vertices of the polytope are integer, section 3.3.3, and in case of the simplex algorithm the

solution is an optimal vertex (or basic solution) of the polytope, section 4.1. However, as

the solution of the reconstruction problem is not unique, there also exist other basic solutions

and interior point solvers typically locate a non-basic solution somewhere in the middle of the

polygon spanned by the optimal vertices. Of course, this solution must not be binary anymore,

even in case of total unimodularity. To have a basic solution again, it is possible to use the

crossover method, also part of the CPLEX package, which transforms a non-basic to a basic

2www.ilog.com
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three ellipses donut

single object many ellipses

turbine cylinders

Figure 4.2: Different phantom images which are used throughout this work for the generation of

reconstruction problems. Thanks are due to Joost Batenburg [7] who kindly provided us with the single

object, many ellipses, turbine, and cylinders image.
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(a) (b)

Figure 4.3: Using the horizontal and the vertical projection (rows and columns sums), a reconstruction

problem has been setup from the three ellipses image and was solved with (a) the simplex algorithm

and (b) the interior point solver. Due to the unimodularity of the problem the simplex solution is binary

while the interior point solution is still fractional.

CPLEX parameter Value

CPX_PARAM_LPMETHOD Barrier optimizer (CPX_ALG_BARRIER)

CPX_PARAM_BARSTARTALG Dual is 0 (default)

CPX_PARAM_BARCROSSALG No crossover (-1)

CPX_PARAM_BAREPCOMP Convergence tolerance (1e-3)

Table 4.1: Settings used in connection with the CPLEX interior point solver.

solution. This is, however, a time-consuming process and abolishes the gain of using faster

interior point solvers.

The simplex algorithm is only preferable if total unimodularity is exploited which is not the case

for us since two projections are certainly not sufficient, even for moderate complex objects, and

we prefer to optimize over all projection at once. Besides, our regularization term does not

preserve total unimodularity, as can be seen in section 4.3.3. For these reasons, we decided to

use the CPLEX interior point solver for optimization purposes with the settings and options

summarized in table 4.1.

Thoroughly, projection angles are selected at equally spaced positions over 180◦ (excluding

the projection at 180◦). Hence, it is sufficient to refer to the number of projections without

explicitly specifying the actual angles. Note that we use a range of 180◦ here in order to be

comparable to the results published in [7]. The number of projections is usually chosen very
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Figure 4.4: Evaluation of the randomized rounding procedure, algorithm 5: (left) Number of trials

needed in order to achieve the same result as the deterministic rounding, algorithm 6. On average

only a few trials were needed except in a few cases (outliers). (right) In each run the currently best

rounding obtained by the randomized algorithm is kept. This plot shows the decrease of the relative

energy, defined by currently best randomized energy - best deterministic energy, over all experiments.

As can be seen, in all cases only a few trials are necessary in order to reach a sufficient rounding.

small such that the reconstruction problems becomes even more difficult. However, we stress

that our approaches reveal the groundtruth image from more projections. Some results of the

noiseless experiments can be found in figures 4.8 – 4.11 where the fractional solution is always

shown in the first and third row and the corresponding binary solution is placed just below

in the second and fourth row. In case of the noisy experiments, a normally distributed error

N (µ := 0, σ) has been added to the projections in advance, results of these experiments can

be found in figure 4.16.

The rounding of the fractional solution was performed by first computing the optimal determin-

istic rounding with algorithm 6 and, afterwards, starting the randomized rounding, algorithm 5,

until it achieves the same result. Figure 4.4 (left) plots the number of trials needed by the

randomized procedure in order to find the same result as its deterministic counterpart and

shows that on average only a few trials were necessary. The right side of figure 4.4 plots the

relative energy (currently best randomized energy - optimal deterministic energy) and it can be

seen that the energy in all experiments has been reduced significantly after a few trials (≈ 40).

Therefore, the randomized method is advisable if a potentially suboptimal but still reasonable

rounding is sufficient.

Referring to the list of thresholds found and used by the deterministic rounding procedure, al-

gorithm 5, we consider the binary images corresponding to each threshold and plot the energy,
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Figure 4.5: Optimal thresholds found by the deterministic rounding procedure, algorithm 5: (left) Plot

of the optimal deterministic thresholds against a fixed threshold at 0.5 over all noiseless experiments.

As can be seen, there is a correlation between both, except for a deviation in the middle which is caused

by reconstructions from an insufficiently small number of projections. By increasing the number of

projections, however, the optimal threshold moves towards 0.5 again. (right) The experiments from

noisy projections additionally confirm this correlation. Thus, we conclude that a reasonable rounding

can be achieved by simply applying a fixed threshold at 0.5.

figures 4.6 and 4.7, which is just the error measure Err1 of the binary image from section 3.4.

In nearly all cases the optimal threshold is close to 0.5, see figure 4.5 (left), except for a dis-

agreement in the middle part which is caused by reconstructions of the many ellipses image

from an extremely small number of projections. However, as can be seen, figure 4.7 (left side),

the optimal threshold also inclines towards 0.5 in this experiments if the number of projec-

tions increases. Our experiments from noisy projections additionally support this correlation of

the optimal deterministic threshold with 0.5, figure 4.5 (right). Therefore, we can expect a

reasonable rounding by simply applying a fixed threshold at 0.5 [133, 135, 136, 121].

In order to evaluate the quality of the reconstructions with respect to the groundtruth phantom

images and the projection constraints we apply the error measures from section 3.4. Fig-

ures 4.12 – 4.15 plot the measurements for the noiseless and 4.17 – 4.20 for the noisy ex-

periments. Apparently, the (reg − BIF ) approach performs worst in the noiseless case while

(reg − L1) and (reg − L∞) yield comparable results. In some experiments the results of

(reg−L1) are better while in others (reg−L∞) is ahead, nevertheless, the difference is quite

small. Regarding the experiments from noisy projections the (reg−L1) approach delivered the

best results with respect to Err1, Err2, and Err4 in most cases. However, there is no clear

preferable approach with respect to the Err3 measure.

Concerning the time consumption, table 4.2, the (reg −BIF ) approach is clearly favorable in
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comparison to (reg−L1) and (reg−L∞). In the turbine experiment the (reg−L∞) approach

performed comparable to (reg −L1) but in others, particularly the more ellipses and cylinders

experiments, it was clearly inferior.

A comparison of our (reg − BIF ) approach and a network flow approach, section 3.3.3, has

been conducted in [7]. According to this, both algorithms deliver reconstructions of comparable

quality but (reg−BIF ) seems to be inferior concerning the time consumption. Some of our own

experiments are quite similar, i.e. same reconstruction phantom, same projections, however,

our machine was a bit stronger (3 GHz Intel Pentium 4) than the one used in [7] (2.4 GHz). In

view of our own experiments the network approach is expectedly faster but, nevertheless, the

gap appears to be smaller, even if we take into account that the experiments were performed on

different machines. A possible explanation could be the settings used for the CPLEX optimizer

which greatly affect the time consumption of the algorithm. The default setting leads CPLEX to

optimize until a tolerance is reached which is simply unreasonable for reconstruction purposes.
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Nr. projections (reg −BIF ) [sec] (reg − L1) [sec] (reg − L∞) [sec]

turbine 3 60 573.5 652

4 56 691 756

5 63.5 1277 918

6 77 1375 1042.5

single object 3 220.5 813 764

4 195 1357 1217.5

5 297 1632 1244

many ellipses 3 80 429 391

4 46 632.5 726

5 73 688 1133

6 70 901 1397

7 139 1032 1368

8 82.5 1577 1960

cylinders 3 152.5 485 641

4 131 748 1071

5 167 1212 912

6 194.5 1514 1594

8 238 1925 2471

10 380 960.5 3359

Table 4.2: This table lists the time consumption of the experiments in seconds and, as can be seen,

the (reg−BIF ) approach is significantly faster than (reg−L1) or (reg−L∞). In case of (reg−L1)

and (reg − L∞), the first approach needs less computational time than the latter, especially in the

experiments with the many ellipses and the cylinders phantom images.
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Figure 4.6: Deterministic rounding: For each threshold the energy (Err1), section 3.4, of the resulting

binary image is plotted. As can be observed, the optimal threshold leading to the image with the lowest

energy is closely located around 0.5.
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Figure 4.7: Deterministic rounding: For each threshold the energy (Err1) of the resulting binary image

is plotted. As can be observed, the optimal threshold leading to the image with the lowest energy is

closely located around 0.5. The largest deviation is observed for the experiments from a very small

number of projections on the left side. However, as can be seen the optimal threshold moves again

towards 0.5 for an increasing number of projections.
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4 Linear Optimization

(reg −BIF ) 4 proj. (reg −L1) 4 proj. (reg − L∞) 4 proj.

(reg −BIF ) 4 proj. (reg −L1) 4 proj. (reg − L∞) 4 proj.

(reg −BIF ) 6 proj. (reg −L1) 6 proj. (reg − L∞) 6 proj.

(reg −BIF ) 6 proj. (reg −L1) 6 proj. (reg − L∞) 6 proj.

Figure 4.8: Reconstructions of the turbine image without noise. Throughout these experiments the

regularization parameter α was set to 0.5 for (reg −BIF ) and (reg −L1) and in case of (reg −L∞)

to 0.001.
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(reg −BIF ) 3 proj. (reg −L1) 3 proj. (reg − L∞) 3 proj.

(reg −BIF ) 3 proj. (reg −L1) 3 proj. (reg − L∞) 3 proj.

(reg −BIF ) 5 proj. (reg −L1) 5 proj. (reg − L∞) 5 proj.

(reg −BIF ) 5 proj. (reg −L1) 5 proj. (reg − L∞) 5 proj.

Figure 4.9: Reconstructions of the single object image without noise. Throughout these experiments

the regularization parameter α was set to 0.5 for (reg−BIF ) and (reg−L1) and in case of (reg−L∞)

to 0.001.
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4 Linear Optimization

(reg −BIF ) 5 proj. (reg −L1) 5 proj. (reg − L∞) 5 proj.

(reg −BIF ) 5 proj. (reg −L1) 5 proj. (reg − L∞) 5 proj.

(reg −BIF ) 8 proj. (reg −L1) 8 proj. (reg − L∞) 8 proj.

(reg −BIF ) 8 proj. (reg −L1) 8 proj. (reg − L∞) 8 proj.

Figure 4.10: Reconstructions of the many ellipses image without noise. Throughout these experiments

the regularization parameter α was set to 0.5 for (reg−BIF ) and (reg−L1) and in case of (reg−L∞)

to 0.001.
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4.5 Numerical Evaluation

(reg −BIF ) 6 proj. (reg −L1) 6 proj. (reg − L∞) 6 proj.

(reg −BIF ) 6 proj. (reg −L1) 6 proj. (reg − L∞) 6 proj.

(reg −BIF ) 10 proj. (reg − L1) 10 proj. (reg − L∞) 10 proj.

(reg −BIF ) 10 proj. (reg − L1) 10 proj. (reg − L∞) 10 proj.

Figure 4.11: Reconstructions of the cylinders image without noise. Throughout these experiments the

regularization parameter α was set to 0.5 for (reg −BIF ) and (reg −L1) and in case of (reg −L∞)

to 0.001.
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Figure 4.12: Error measurements, section 3.4, for the turbine experiment without noise.
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Figure 4.13: Error measurements, section 3.4, for the single object experiment without noise.
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Figure 4.14: Error measurements, section 3.4, for the many ellipses experiment without noise.
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Figure 4.15: Error measurements, section 3.4, for the cylinders experiment without noise.
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4.5 Numerical Evaluation

(reg −BIF ) 6 proj. (reg −L1) 6 proj. (reg − L∞) 6 proj.

(reg −BIF ) 4 proj. (reg −L1) 4 proj. (reg − L∞) 4 proj.

(reg −BIF ) 8 proj. (reg −L1) 8 proj. (reg − L∞) 8 proj.

(reg −BIF ) 10 proj. (reg − L1) 10 proj. (reg − L∞) 10 proj.

Figure 4.16: Reconstructions results from noisy projections, N (µ := 0, σ) added to projection vector b:

For (reg −BIF | reg −L1 | reg −L∞), α was set to (1.0 | 1.0 | 0.005) in case of turbine (σ := 3.0),

single object (σ := 3.0),many ellipses (σ := 3.0), and to (0.75 | 0.75 | 0.0025) for cylinders (σ := 1.0).
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Figure 4.17: Error measurements (noisy projections): turbine (the reconstructions from 7 projections

were not performed for σ := 3.0).
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Figure 4.18: Error measurements (noisy projections): single object.

85



4 Linear Optimization

7 8
0

50

100

150

200

250

300

σ = 0.5

Nr of projections

E
rr

o
r 

(E
rr

1)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

50

100

150

200

250

300

σ = 1

Nr of projections

E
rr

o
r 

(E
rr

1)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

50

100

150

200

250

300

350

400

σ = 3

Nr of projections

E
rr

o
r 

(E
rr

1)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

σ = 0.5

Nr of projections

E
rr

o
r 

(E
rr

2)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

σ = 1

Nr of projections

E
rr

o
r 

(E
rr

2)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ = 3

Nr of projections

E
rr

o
r 

(E
rr

2)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3 σ = 0.5

Nr of projections

E
rr

o
r 

(E
rr

3)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

1

2

3

4

5

6

7

8

9

x 10
−3 σ = 1

Nr of projections

E
rr

o
r 

(E
rr

3)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

σ = 3

Nr of projections

E
rr

o
r 

(E
rr

3)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 σ = 0.5

Nr of projections

E
rr

o
r 

(E
rr

4)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

1

2

3

4

5

6
x 10

−3 σ = 1

Nr of projections

E
rr

o
r 

(E
rr

4)

 

 
ILP−BIF

ILP−L1
ILP−L∞

7 8
0

1

2

3

4

5

6

7
x 10

−3 σ = 3

Nr of projections

E
rr

o
r 

(E
rr

4)

 

 
ILP−BIF

ILP−L1
ILP−L∞

Figure 4.19: Error measurements from noisy projections: many ellipses (reconstructions from 7 projec-

tions were not performed for σ := 3.0). Similar to the other results obtained from noisy projections,

the (reg−L1) approach typically yields best results with respect to Err1, Err2, and Err4. In case of

the Err3 measure there is no clear favorite.
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Figure 4.20: Error measurements of the experiments from noisy projections: cylinders (the reconstruc-

tions from 6 projections were not performed for σ := 1.0).
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In the previous chapter we investigated different linear programming approaches which solve

a relaxed form of the originally binary constrained reconstruction problem. As this yields only

a fractional approximation, i.e. x ∈ [0, 1]n, a postprocessing step is necessary in order to

round the fractional solution to x ∈ {0, 1}n. At this, the drawbacks of this approach are

that there is no interference between the rounding and the optimization process and that the

binary constraint is not further enforced within the actual optimization process. We address

these disadvantages of the former approaches in the present chapter in which we systematically

develop a mathematically sound optimization framework that implicitly performs the rounding

step and is guaranteed to converge.

Additionally, our optimization framework is quite general and extensible, as for instance the

approaches from the former chapter, (reg−BIF ), (reg−L1), and (reg−L∞), can be ”plugged-

in”, except (reg−FSSV ). In case of (reg−FSSV ) the equality constraint is troublesome, e.g.

rounding obviously contradicts the equality constraint if there exists no feasible binary solution

at all. However, the framework is by no means restricted to linear programming but any other

convex constrained optimization technique is just fine. For this reason, we also use quadratic

programming and demonstrate its expandability in a scenario where the reconstruction process

involves the estimation of an unknown parameter, section 5.5. We therefore include the well-

known expectation-maximization (EM) algorithm into our framework and remark that under

certain circumstances the M-step can be solved analytically. This case has been considered

in [123] where it is assumed that the absorption parameters are not exactly 0 and 1 and

must be estimated during the reconstruction process. The situation dealt with in section 5.5

is, however, different as there is no analytical solution of the M-step and, thus, it must be

numerically approximated. From this perspective, the approach taken here is more general and

should, therefore, be applicable to an even larger class of optimization problems.
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5.1 Convex and Concave Functions

In mathematics, convex and concave functions constitute a class of functions which are excep-

tionally valuable for optimization since global optimality instantly follows from local optimality

and the uniqueness of the global optimum follows from strict convexity or strict concavity. This

allows to use elaborate local optimization techniques and still to obtain global optimal solutions.

As a few basic facts from convex analysis are necessary concerning our work we provide the

necessary definitions and details in this section. However, excellent introductions on the subject

can be found in [111] and [18].

Throughout this chapter we shall assume S to be a convex set, i.e. for any two points u,v ∈ S

the line segment defined by (1 − λ) u + λ s, λ ∈ [0, 1], belongs to S. Let f be a function,

f : S → R, then f is convex if and only if f((1 − λ) x + λ y) ≤ (1 − λ) f(x) + λ f(y) for

all λ ∈ [0, 1] and x,y ∈ S. Conversely, f is concave if and only if −f is convex. Further, if

the inequality holds strict f is called strictly convex or strictly concave respectively. A convex

function f is called proper if its effective domain dom f :=
{

x ∈ S
∣

∣ f(x) < +∞
}

is non-empty

and the restriction of f to dom f is finite.

Based on differentiability convexity and concavity can be further characterized, assume therefore

f to be differentiable on dom f . From the first-order condition we have, f is convex if and

only if

f(y) ≥ f(x) +∇f(x)⊤(y − x),∀ x,y ∈ dom f (5.1)

and, thus, the first-order approximation of f is a global underestimator and, vice versa, for

concave f a global overestimator.

If f is twice differentiable on dom f then the second-order condition yields, f is convex if and

only if the Hessian of f is positive semidefinite,

∇2f(x) � 0,∀x ∈ dom f, (5.2)

and f is strictly convex if positive definiteness, ∇2f(x) ≻ 0, holds for all x ∈ dom f.

In case f is non-differentiable at x0 the subgradient of f at x0 is a vector v such that

f(x) ≥ f(x0) + 〈v,x− x0〉 , ∀x, (5.3)

and can, thus, be considered as a generalized gradient. The set of all subgradients of f at x0

constitutes the subdifferential ∂f(x0) of f at x0.
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The conjugate function of f , not necessarily convex, is defined by

f∗(y) := sup
x∈S

{

〈x,y〉 − f(x)
}

= − inf
x∈S

{

f(x)− 〈x,y〉
}

(5.4)

and is also referred to as the Legendre-Fenchel transform of f . This establishes a one to one

correspondence in the class of proper, lower-semicontinuous, and convex functions, as stated

by the next theorem.

Theorem 8 ([111]). Let f be proper, lower-semicontinuous, and convex then it holds that

f = f∗∗ = (f∗)∗.

Given a convex function f , we start with rearranging the definition of subdifferentials in order

to derive equation (5.5) and (5.6),

∂f(x0) = {y | f(x) ≥ f(x0) + 〈y,x− x0〉, ∀x}
= {y | f(x) ≥ f(x0) + 〈y,x〉 − 〈y,x0〉, ∀x}
= {y | 〈y,x0〉 − f(x0) ≥ 〈y,x〉 − f(x), ∀x}.

Note, that the inequality becomes equal if x = x0 and, thus, we write

∂f(x0) = {y | 〈y,x0〉 − f(x0) = supx∈S{〈y,x〉 − f(x)}}
= {y | 〈y,x0〉 − f(x0) = f∗(y)}
= {y | 〈y,x0〉 − f∗(y) = f(x0)}.

By means of conjugate functions, the equation above reads

f∗∗(x0) := sup
y∈S

{〈y,x0〉 − f∗(y)} !
= f(x0)

where we have

f∗∗(x0) = f(x0)

due to theorem 8. Consequently, y is a subgradient of f at x0 if and only if

∂f(x0) = argmax
y∈S

{〈y,x0〉 − f∗(y)} (5.5)

and similarly we derive

∂f∗(y0) = {x | f∗(y) ≥ f(y0) + 〈x,y − y0〉, ∀y}
= argmax

x∈S

{〈y0,x〉 − f(x)}. (5.6)
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Figure 5.1: Concave regularizer: Considering a single variable x, the plot shows the term µ x (1 − x),

0 ≤ x ≤ 1, for increasing values of µ. During the minimization process, values of x within (0, 1)

become more and more penalized as µ increases.

5.2 Convex-Concave Regularization

Convex-concave regularization is the crucial step that is necessary to include the binary con-

straints into the overall optimization process. Let us, therefore, consider binary optimization

problems of the following type,

min
x∈Rn

f(x) subject to x ∈ {0, 1}n, (5.7)

where f(x) is assumed to be a convex function. Obviously, problem (5.7) is equivalent to

min
x∈Rn

f(x) subject to 0 ≤ x ≤ 1 (5.8)

x⊤ (1− x) = 0

where x⊤ (1− x) = 0 describes the binary constraint and entails difficulties on the optimization

of (5.8). Corresponding to problem (5.8) we obtain the Lagrangian function E(x;µ) by adding

the tedious constraints as concave penalty term to the objective function,

k(x;µ) :=
µ

2
〈x ,1− x〉 (5.9)

min
x∈Rn

E(x;µ) := g(x) + k(x;µ) subject to 0 ≤ x ≤ 1, (5.10)

where µ penalizes non-binary components in x. If x is binary then the penalty term k(x;µ)

vanishes and E(x;µ) equals the original objective function f(x).

The key of our optimization approach is to start from the convex solution of problem (5.10), i.e.

µ = 0, and then to gradually include the binary constraint by increasing µ, figure 5.1. This is

further justified by theorem 9 which explains the connection between problem (5.7) and (5.10).
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Theorem 9 ([57, 69]). Suppose that f(x) is twice continuously differentiable on [0, 1], then

there exists µ∗ ∈ R such that for all µ > µ∗

(i) problem (5.7) and the minimization of E(x;µ), equation (5.10), are equivalent.

(ii) E(x;µ) is concave on [0, 1]n.

This connection between integer programming and concave maximization is well-known. The-

orem 9(i) states that for sufficiently large µ the global optima of problem (5.7) and (5.10)

coincide. However, due to theorem 9(ii) not only the global optimum satisfies the binary con-

straints but any vertex of [0, 1]n is a local minimum and, thus, the profit of our approach

depends on how severely local minima affect the concave minimization problem.

5.3 DC Programming

The presence of convex and concave terms in functional E(x;µ), equation (5.10), suggests a

mathematical programming method concerned with the minimization of the difference of two

convex functions (difference of convex functions ∼ d.c. programming). Such approaches are

typically used in connection with global optimization [69] which is, however, only permissive

for small scale problems. Our focus, in contrast, is on the local optimization of large scale

problems which has been considered in context of d.c. programming in [105, 106].

Let S be a convex set and f : S → R be a lower semicontinuous (lsc), proper, and convex

function, then f is said to be d.c. decomposable if and only if there exist two lsc., proper, and

convex functions g, h : S → R such that

f(x) = g(x) − h(x). (5.11)

Let us now consider the following optimization problem where the objective function f(x) is

assumed to be d.c. decomposable

min
x

f(x) = min
x

g(x) − h(x) (5.12)

and

dom g ⊂ dom h and dom h∗ ⊂ dom g∗ (5.13)

is required in order to have a finite minimum. Problem (5.12) is equivalent to the general

d.c. program

inf
x
{g(x) − h(x)} (5.14)
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for which its dual is obtained by means of conjugate functions,

inf
x
{g(x) − h(x)} = inf

x

{

g(x) − sup
y
{〈x,y〉 − h∗(y)}

}

= inf
x

{

g(x) + inf
y
{h∗(y)− 〈x,y〉}

}

= inf
x

inf
y
{g(x) − [ 〈x,y〉 − h∗(y)]}

= inf
y

{

h∗(y) + inf
x
{g(x) − 〈x,y〉}

}

= inf
y

{

h∗(y)− sup
x
{〈x,y〉 − g(x)}

}

= inf
y
{h∗(y)− g∗(y)}. (5.15)

In order to optimize problem (5.14) we adopt the following primal-dual subgradient method,

algorithm 7, from [105, 106]

Algorithm 7 DC Algorithm (DCA)

Choose x0 ∈ dom g arbitrary

for k = 0,1,... do

yk ∈ ∂h(xk) (y-step)

xk+1 ∈ ∂g∗(yk) (x-step)

end for

where the investigation of the algorithm in [106] includes the following properties:

Theorem 10 ([106]). Assume g, h : Rn → R to be proper, lower-semicontinuous and convex,

and dom g ⊂ dom h, dom h∗ ⊂ dom g∗. Then

(i) the sequences {xk}, {yk} are well-defined, cf. x- and y-step of algorithm 7.

(ii) the sequence
{

g(xk)− h(xk)
}

is decreasing and so is
{

f(xk)
}

.

(iii) every limit point x∗ of {xk} is a critical point of g − h which means that 0 ∈ ∂f(x∗).

Starting from an initial point x0 ∈ dom g, the algorithm develops sequences {xk} and {yk}
which converge to a locally optimal duality pair of the primal (5.14) and the dual problem (5.15).

Given xk ∈ ∂g∗(yk−1), the y-step replaces g∗(y) in the dual problem with its affine minorization

at yk−1,

inf
y
{h∗(y) − g∗(y)} ≤ inf

y
{h∗(y) −

[

g∗(yk−1) + 〈xk,y − yk−1〉
]

} ,
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and, thus, amounts, by virtue of equation (5.5), in a convex program

yk ∈ ∂h(xk) =argmin
y
{h∗(y) −

[

g∗(yk−1) + 〈xk,y − yk−1〉
]

} (5.16)

=argmin
y
{h∗(y) − 〈xk,y〉}. (5.17)

In return, the x-step uses yk ∈ ∂h(xk) in order to have an affine minorization of the primal

problem at xk,

inf
x
{g(x) − h(x)} ≤ inf

x
{g(x) −

[

h(xk) + 〈yk,x− xk〉
]

} ,

and similarly leads, by means of equation (5.6), to a convex program

xk+1 ∈ ∂g∗(xk) =argmin
x
{g(x) −

[

h(xk) + 〈yk,x− xk〉
]

} (5.18)

=argmin
x
{g(x) − 〈yk,x〉}. (5.19)

5.4 Iterating Linear Programs (ILP)

We supplement the linear programming approaches from the previous chapter with the convex-

concave regularization from section 5.2 and proceed with the derivation of the d.c. based

reconstruction framework for binary tomography.

5.4.1 Approach

Let us consider the general form of a reconstruction approach based on linear programming

with the concave regularizer, equation (5.9), added to the objective,

min
x∈[0,1]n,s∈R

m
≥0

,{z〈i,j〉}
c̃⊤x̃ +

α

2

∑

〈i,j〉

z〈i,j〉 +
µ

2
〈x,1− x〉 (5.20)

subject to Ã x̃ ≤ b̃ , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi.

At this, we define x̃⊤ := (x⊤, s⊤) such that the problem description in equation (5.20) fits the

approaches (reg −BIF ), (reg − L1), and (reg − L∞) from chapter 4.

Further, we put

z := (x̃⊤, . . . , z〈i,j〉, . . . )
⊤ (5.21)
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and rewrite all constraints of (5.20)

0 ≤ xi ≤ 1 , Ã x̃ ≤ b̃ , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

as

Â z ≤ b̂ . (5.22)

Using the notation

δC(z) :=







0 , z ∈ C

+∞ , z 6∈ C
(5.23)

for the indicator function of a convex set C, problem (5.20) reads:

min
z

f(z) ,

where, confer definition (5.21),

f(z) := c̃⊤x̃ +
α

2

∑

〈i,j〉

z〈i,j〉 +
µ

2
〈x,1− x〉+ δK(b̂− Âz) , (5.24)

and K is the standard cone of non-negative vectors.

Although the d.c. decomposition of a function is not unique in general a straightforward de-

composition in case of f , equation (5.24), is readily found by

g(z) = c̃⊤x̃ +
α

2

∑

〈i,j〉

z〈i,j〉 + δK(b̂− Âz) , (5.25)

h(z;µ) = −µ

2
〈x,1− x〉 =

µ

2
〈x,x − 1〉 . (5.26)

Obviously, both functions g(z) and h(z;µ) are convex and g(z) is non-smooth because of δK .

Note that this does not prevent the application of algorithm 7 from section 5.3 as smoothness

of g or h is not required.

Furthermore, the assumptions of theorem 10 hold because of dom g ⊂ domh, and g∗(y) =

supz

{

〈z,y〉 − g(z)
}

<∞ for any finite vector y . Hence, the y-step of algorithm 7 reads

yk = ∇h(zk;µ) = µ(xk − 1

2
1) (5.27)

due to

∂h(z0;µ) =
{

∇h(z0;µ)
}
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if h is differentiable [111].

Since g is proper, lower-semicontinuous, and convex, the x-step of algorithm 7 leads to

zk+1 ∈ argmin
z

{

g(z) − 〈yk, z〉
}

where we finally compute zk+1 by inserting yk from equation (5.27) and by virtue of (5.25), (5.22),

and (5.21) as minimizer of the following linear program:

zk+1 := min
x∈[0,1]n,s∈R

m
≥0

,{z〈i,j〉}
〈 c̃ , x̃ 〉 +

α

2

∑

〈i,j〉

z〈i,j〉 −
〈

µ (xk − 1

2
1),x

〉

(5.28)

subject to Â z ≤ b̂.

The complete reconstruction algorithm, shown in algorithm 8, consists of two loops where the

outer loop increases the penalty parameter µ and the inner loop executes the DC algorithm 7.

The procedure terminates if all components of x are sufficiently close to a binarization, i.e.

∀i, min{xi, 1− xi} < ε.

Algorithm 8 DC-Framework with Linear Programming (ILP)

Require: Choose z0 ∈ dom g arbitrary.

Require: 0 < ∆µ

Require: 0 < ǫ

µ := 0

repeat

k := 0

repeat

Compute zk+1 by means of the linear program (5.28) with current value of µ.

k := k + 1

until ‖xk − xk−1‖2 < ǫ (DC-loop)

µ := µ + ∆µ

until ∄ xk
i ∈ [ǫ, 1− ǫ] (µ-loop)

Note that in case of µ := 0, we minimize the original linear program from chapter 4, whereas

µ > 0 shifts the current iterate in the direction of the negative gradient of the “binarization”
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functional, equation (5.9). While this is an intuitively clear modification of the linear program-

ming approaches from the former chapter, convergence of algorithm 8 is not obvious but is

proven by theorem 10. In correspondence to the regularized linear programming approaches

from chapter 4, we denote the approaches which include the convex-concave regularization by

(ILP −BIF ), (ILP − L1), and (ILP − L∞).

5.4.2 Numerical Evaluation

To provide an illustration of the convex-concave regularizer we present intermediate results in

the figures 5.2 and 5.3 which were obtained with (ILP − BIF ). In both cases the images

in (a) show the convex solution which equals the fractional solution found by (reg − BIF ),

section 4. In the succeeding images (b)–(e), it can be seen how the individual components of the

solution vector x are gradually pushed towards 0 or 1, as the concave regularizer, equation (5.9),

becomes more and more involved, until all entries of x are binary, image (e). In view of the

convex solution, shown in figure 5.3 (a), which is used in connection with (reg − BIF ) as

input for the rounding procedure, it seems unlikely to achieve a decent reconstruction result

with the (reg−BIF ) approach. In contrast, figure 5.3 (b)–(e) shows that the (ILP −BIF )

approach is still able to obtain a very nice reconstruction result, e.g. the ring-shaped object is

closed during the iterations.

We evaluate the proposed ILP reconstruction methods with respect to the linear programming

approaches from section 4 and simulated annealing, algorithm 3, in that we repeatedly solved the

reconstruction problems from the previous chapter. The results in case of noiseless projections

can be found in the figures 5.4–5.7 and in case of noisy projections in figure 5.12. It can be

seen there that the ILP methods achieve better results compared to the linear programming

approaches. Further, we obtained best results with (ILP −L1) which usually performed better

than simulated annealing and the other ILP approaches with respect to Err1. For a comparison,

we present all error plots similarly to the previous chapter in the figures 5.10–5.11 (noiseless

projections) and figures 5.13–5.14 (noisy projections).

Concerning the number of iterations needed by the ILP approaches in order to achieve a binary

solution, the figures 5.8–5.9 plot the number of undecided pixels, that is the amount of xk
i ∈

[ǫ, 1 − ǫ] in iteration k. As can be seen, the number of iterations becomes smaller with

increasing number of projections and is typically smallest for (ILP − L∞) and largest for

(ILP − BIF ). Nevertheless, in any case the amount of undecided pixels drops significantly

after a few iterations. The total number of iterations that was used in each experiment can be

found in table 5.1 along with the average time consumption of a single iteration.
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[iterations]/[seconds] Nr. projections (ILP −BIF ) (ILP − L1) (ILP − L∞)

turbine 3 73 / 74 70 / 701 12 / 1736

4 83 / 71 82 / 794 5 / 1343

5 93 / 82 8 / 871 6 / 1587

6 12 / 70 5 / 997 5 / 1490

single object 3 75 / 313 77 / 859 6 / 1769

4 5 / 155 3 / 852 5 / 1340

5 5 / 202 1 / 1632 1 / 1244

ellipses 3 77 / 84 84 / 526 10 / 607

4 76 / 54 95 / 648 6 / 688

5 83 / 65 116 / 916 5 / 1187

6 78 / 72 7 / 647 6 / 1353

7 14 / 115 4 / 963 4 / 1597

8 4 / 73 3 / 1117 6 / 2053

cylinders 3 84 / 219 78 / 550 6 / 1899

4 84 / 171 91 / 719 7 / 2012

5 115 / 257 108 / 987 6 / 1232

6 114 / 266 139 / 1317 6 / 2557

8 50 / 254 5 / 1593 6 / 2751

10 5 / 347 3 / 978 9 / 2695

Table 5.1: This table lists the total number of iterations for each experiment and the average time

consumption of a single iteration in seconds.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5. (f) Original.

Figure 5.2: Reconstruction with (ILP − BIF ) from three projections, 0◦, 45◦, and 90◦ which were

taken from the image shown in figure (f). After 5 iterations already, algorithm 8 returns a solution,

figure (e), equal to the groundtruth image.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 36. (f) Original.

Figure 5.3: Similar to figure 5.2, the images (a)–(e) show results at different iteration steps of algo-

rithm 8. The reconstruction problem has been set up from three projections, 0◦, 45◦, and 90◦, taken

from the image shown in (f).
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(ILP −BIF ) 4 proj. (ILP −BIF ) 5 proj. (ILP −BIF ) 6 proj.

(ILP − L1) 4 proj. (ILP − L1) 5 proj. (ILP − L1) 6 proj.

(ILP − L∞) 4 proj. (ILP − L∞) 5 proj. (ILP − L∞) 6 proj.

(SA) 4 proj. (SA) 5 proj. (SA) 6 proj.

Figure 5.4: The figure shows reconstruction results obtained with the ILP approaches using the turbine

image with various noiseless projections. We used the same problem settings as previously in connection

with the linear programming experiments, figure 4.8, i.e. the same reconstruction problems and the

same choices for the smoothness parameter: α := 0.5 in case of (ILP − BIF ) and (ILP − L1) and

α := 0.001 for (ILP − L∞).
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(ILP −BIF ) 3 proj. (ILP −BIF ) 4 proj. (ILP −BIF ) 5 proj.

(ILP − L1) 3 proj. (ILP − L1) 4 proj. (ILP − L1) 5 proj.

(ILP − L∞) 3 proj. (ILP − L∞) 4 proj. (ILP − L∞) 5 proj.

(SA) 3 proj. (SA) 4 proj. (SA) 5 proj.

Figure 5.5: In comparison to figure 4.9, this figure shows the reconstruction results obtained by the

ILP approaches for the single object image from noise-free projections. Analogously, the regularization

parameter α has been set to 0.5 for (ILP − BIF ) and (ILP − L1) and in case of (ILP − L∞) to

0.001 throughout these experiments.
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(ILP −BIF ) 5 proj. (ILP −BIF ) 6 proj. (ILP −BIF ) 8 proj.

(ILP − L1) 5 proj. (ILP − L1) 6 proj. (ILP − L1) 8 proj.

(ILP − L∞) 5 proj. (ILP − L∞) 6 proj. (ILP − L∞) 8 proj.

(SA) 5 proj. (SA) 6 proj. (SA) 8 proj.

Figure 5.6: In comparison to figure 4.10, this figure shows the reconstruction results obtained by the

ILP approaches for the many ellipses image from noise-free projections. Analogously, the regularization

parameter α has been set to 0.5 for (ILP − BIF ) and (ILP − L1) and in case of (ILP − L∞) to

0.001 for all experiments.
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(ILP −BIF ) 6 proj. (ILP −BIF ) 8 proj. (ILP −BIF ) 10 proj.

(ILP − L1) 6 proj. (ILP − L1) 8 proj. (ILP − L1) 10 proj.

(ILP − L∞) 6 proj. (ILP − L∞) 8 proj. (ILP − L∞) 10 proj.

(SA) 6 proj. (SA) 8 proj. (SA) 10 proj.

Figure 5.7: In comparison to figure 4.11, this figure shows the reconstruction results obtained by the

ILP approaches for the cylinders image from noise-free projections. Analogously, the regularization

parameter α has been set to 0.5 for (ILP − BIF ) and (ILP − L1) and in case of (ILP − L∞) to

0.001.
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Figure 5.8: These plots present the amount of undecided pixels, i.e. pixels which have no binary decision

yet, for the turbine, single object, and many ellipses experiment.
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Figure 5.9: These plots present the amount of undecided pixels, i.e. pixels which have no binary decision

yet, for the cylinders experiment.
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Figure 5.10: Error measurements (without noise): (left) single object and (right) cylinders.
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Figure 5.11: Error measurements (without noise): (left) turbine and (right) many ellipses.
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Figure 5.12: Reconstructions results from noisy projections, N (µ := 0, σ) added to projection vector b:

For (ILP−BIF | ILP−L1 | ILP−L∞), α was set to (1.0 | 1.0 | 0.005) in case of turbine (σ := 3.0),

single object (σ := 3.0),many ellipses (σ := 3.0), and to (0.75 | 0.75 | 0.0025) for cylinders (σ := 1.0).
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Figure 5.13: Error measurements (noisy projections): (top) turbine and (bottom) single object.
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Figure 5.14: Error measurements (noisy projections): (top) many ellipses and (bottom) cylinders.
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5.5 Binary Tomography with Deblurring

So far we considered only linear programming in order to solve the convex optimization problem

within the d.c. based optimization framework but stressed that it is by no means restricted it.

In this section, we demonstrate its flexibility in two different ways: i) we include quadratic

programming for the optimization in the x-step and ii) we supplement our d.c. framework with

an additional expectation maximization (EM) step which estimates a hidden parameter during

the reconstruction process.

5.5.1 Motivation

It is a general characteristic of imaging systems that the acquired images are some distorted

versions of the ideal images of real objects. The distortion is due to physical limitations, e.g.

finite resolution in space and time, non-uniform sensitivity in the field of view, etc. In many

cases the distorted image can be modeled as the convolution of the ideal image with some

function describing the distortion [59].

The situation is the same in tomography since the pixel values in the projection images are

usually only some approximation of the line integrals to be measured by a perfect imaging

system in an ideal physical situation. In different application areas of tomography there are

several correction methods to improve the quality of the reconstructed images. The correction

strategies can be roughly divided into two classes. The first class contains the methods aiming

to correct the projection data before reconstruction (let us call them preprocessing) and then

the reconstruction is performed from the corrected projection data. The second class is the

family of special methods which include the correction into the reconstruction process. We

believe that both strategies can be useful. If the correction can be done as a preprocessing step

before reconstruction then one of the methods from the first class is preferable. However, there

are situations when the correction is impossible or too complicated before reconstruction, e.g.

scatter correction in CT or in SPECT, then the correction during the reconstruction can still

give a good solution.

The distortion of tomographic images has become an important issue also in case of binary

tomography since it is getting to be applied in several areas. There are several publications

discussing different corrections in DT, e.g. in X-ray and neutron tomography [4, 87], and

electron microscopy [33]. Concerning our work, we deal with the general distortion model

when the distortion can be described by the convolution with a Gaussian kernel Gσ(·). If

the parameter σ is known in advance then the correction (deconvolution) can be done as a
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preprocessing step before the reconstruction. However, if the parameter is not known then

we are going to show that there is still a way to perform binary tomography by including this

parameter as an unknown value to be determined. To motivate our approach we present some

reconstructions, see figure 5.15, without deblurring.

(a) Original (b) σ = 0.5 (c) σ = 1.0 (d) σ = 2.0

Figure 5.15: Reconstruction without deblurring fails: Panel (a) shows an object which was blurred

with a Gaussian convolution kernel Gσ at three different scales σ ∈ {0.5, 1.0, 2.0}, and then projected

along 5 directions 0◦, 22.5◦, 45◦, 67.5◦, 90◦. Panels (b)-(d) show the reconstruction results without

deblurring. The performance considerably deteriorates for increasing σ. Note that the original object

(a) can be reconstructed without any error from three projections.

5.5.2 Problem Statement

Let Gσ denote the matrix that represents the linear mapping of some data by convolving it with

an isotropic Gaussian kernel and scale-parameter σ. We generalize the reconstruction problem

along two directions:

(i) Reconstruction from projections of blurred objects:

The corresponding generalization of the reconstruction problem reads

A Gσ x = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm. (5.29)

(ii) Reconstruction from blurred projection data:

The corresponding generalization of the reconstruction problem reads

GσA x = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm. (5.30)

For notational simplicity, we use in both cases the same symbol Gσ, although Gσ denotes a

block-circulant matrix in (5.29) corresponding to the convolution of multi-dimensional data x,

whereas Gσ represents the one-dimensional convolution of the projection data in (5.30).
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5.5 Binary Tomography with Deblurring

5.5.3 Quadratic Optimization and DC Framework

In [122, 118] we investigated the reconstruction problem as defined in section 5.4 and considered,

at this, the family of quadratic minimization problems

min
x∈[0,1]n

E(x;µ) :=
1

2

[

‖A x− b‖2 + α ‖L x‖2 + µ 〈x,1 − x〉
]

(5.31)

=
1

2
x⊤A⊤A x− b⊤A x +

1

2
b⊤b +

α

2
x⊤L⊤L x +

µ

2
x⊤(1− x)

=
1

2
x⊤(A⊤A + α L⊤L− µ I) x +

1

2

(

µ 1⊤ − 2b⊤A
)

x +
1

2
b⊤b

where each row of matrix L measures the difference xi−xj of spatially neighboring pixels i and

j, i.e. i ∈ N (j) and j ∈ N (i) due to symmetry. Consequently, the second term of E(x;µ)

corresponds to the smoothness prior

‖L x‖2 =
∑

〈i,j〉

(xi − xj)
2 (5.32)

with regularization parameter α.

In view of equation (5.31) we may also write

E(x;µ) :=
1

2
x⊤Qµ x + q⊤

µ x + c (5.33)

where Qµ, qµ, and c are defined according to

Qµ := A⊤A + α L⊤L− µ I (5.34)

q⊤
µ :=

µ

2
1⊤ − b⊤A (5.35)

c :=
1

2
b⊤b. (5.36)

Similarly to section 5.4, we equivalently express the minimization of functional (5.31) over the

convex set of feasible solutions [0, 1]n with the indicator function δ[0,1]n(x), equation (5.23),

min
x∈Rn

E(x;µ) :=
1

2

[

‖A x− b‖2 + α ‖L x‖2 + µ 〈x,1 − x〉
]

+ δ[0,1]n(x) (5.37)

and find a proper d.c. decomposition by

g(x) :=
1

2

[

‖A x− b‖2 + α ‖L x‖2
]

+ δ[0,1]n(x) (5.38)

h(x;µ) :=
µ

2
〈x,x− 1〉. (5.39)
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We stress again that such decompositions are not unique in general and in case of functional

E(x;µ) a different decomposition has been used in [122, 134] leading to a special instance of

the Goldstein-Levitin-Polyak gradient projection method in the x-step.

Proceeding with the decomposition in (5.38) and (5.39), the complete reconstruction ap-

proach reads as shown in algorithm 9. The regularization parameter µ must initially be chosen

smaller than the smallest eigenvalue λmin(Q0) of matrix Q0 since the quadratic problem, equa-

tion (5.31) and (5.33), remains strictly convex then and, thus, minimizing still yields the global

optimum.

In case of x 6= 0 the smoothness term, equation (5.32), becomes only zero for constant x, i.e.

x = c 1, c 6= 0, which is, however, not true for A⊤A. Consequently, the positive definiteness

of Q0 follows and thus 0 < λmin(Q0). Increasing parameter µ during the iterations shifts the

eigenvalues of Q0 in negative direction, as can be seen from equation (5.34), and matrix Qµ

becomes indefinite for λmin(Qµ) < 0 < λmax(Qµ) which is equivalent to λmin(Q0) < µ <

λmax(Q0).

For practical implementations the smallest eigenvalue of Q0 is found numerically using either the

power or the inverse power iteration, see appendix E. While the inverse iteration is able to locate

the smallest eigenvalue and its corresponding eigenvector directly the power method computes

only the absolute largest eigenpair of a matrix. However, by means of a simple trick it can be

used to find the smallest eigenpair as well and thus avoids the linear equation systems which must

be solved in case of the inverse power iteration. Therefore, we start with computation of the

absolute largest eigenvalue of Q0 and have that 0 < λmin(Q0) < λmax(Q0) due to the positive

definiteness of Q0. If we apply the power iteration to matrix (λmax(Q0)I−Q0) afterwards we

obtain (λmax(Q0)− λmin(Q0)) as absolute largest eigenvalue and, thus, λmin(Q0).

We consider problem (5.33) here only insofar as it necessary to cover the subject of this section.

For more details, we would like to encourage the reader to have a view at [122, 118, 124].

Particularly [124] includes many more interesting aspects of the d.c. optimization framework in

terms of quadratic optimization which are not in the scope of this work, like more sophisticated

update schemes for µ and the selection of individual penalty parameters µi for each variable xi.

Coming back again to the scenario of blurred image or projection data as described in sec-

tion 5.5.2, the reconstruction problem (5.31) generalizes to

min
x∈[0,1]n

Eσ(x;µ) :=
1

2
[D(x;σ) + α S(x) + µ 〈x,1− x〉] (5.40)
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Algorithm 9 DC-Framework with Quadratic Programming

Require: Choose x0 arbitrary (our choice: x0 := (1
2 , ..., 1

2)⊤)

Require: 0 < ∆µ (our choice: ∆µ ∈ (0, 0.5])

Require: 0 < ǫ (our choice: 10−4 ≤ ǫ ≤ 10−2)

µ < λmin(Q0)

repeat

k := 0

repeat

yk := ∇h(xk;µ) = µ(xk − 1
21) {See equation (5.27).}

xk+1 := argmin
x∈[0,1]n

{

g(x)− 〈yk,x
〉

}

k := k + 1

until ‖xk − xk−1‖2 < ǫ (DC-loop)

µ := µ + ∆µ

until ∄ xk
i ∈ [ǫ, 1− ǫ] (µ-loop)

where either

D(x;σ) := ‖A Gσ x− b‖2 or D(x;σ) := ‖GσA x− b‖2 (5.41)

and S(x) indicates a smoothness prior, e.g. equation (5.32). The optimization of Eσ(x;µ)

in (5.40) is complicated through the unknown scale-parameter σ of the convolution operator Gσ.

A common and natural approach to solve this problem is to apply the well-known expectation-

maximization (EM) [46, 93] iteration to the probabilistic interpretation of the data term D(x;σ)

as a likelihood term, provided this is computationally feasible. We briefly introduce the EM

algorithm in the next section and elaborate our approach afterwards.

5.5.4 Expectation-Maximization (EM)

Let X be a random set of samples drawn from a distribution P parameterized with Θ where

X is usually denoted as measured or observed data. The likelihood function is defined by

L(Θ|X ) := P(X|Θ) (5.42)

and is considered as a function of Θ where X is fixed. The maximum likelihood (ML) problem

seeks for parameters Θ∗ such that the likelihood function becomes maximal,

Θ∗ := argmax
Θ

L(Θ|X ), (5.43)
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at which often the log likelihood function logL(Θ|X ) is used instead of L(Θ|X ). Given some

estimate Θk of the parameters the idea is to compute an update Θ such that

logL(Θ|X ) > logL(Θk|X ) (5.44)

which is equivalent to the maximization of

logL(Θ|X )− logL(Θk|X ) = logP(X|Θ) − logP(X|Θk). (5.45)

At this, the EM-algorithm additionally includes the case where some data is hidden or missing.

Let us, therefore, denote the hidden parameters with Y, then the total probability P(X|Θ) is

obtained by marginalizing over Y,

P(X|Θ) =
∑

y∈Y

P(X|y,Θ) P(y|Θ). (5.46)

For the subsequent derivation of equation (5.47) we take advantage of
∑

y∈Y P(y|X ,Θk) = 1

and use Jensen’s inequality which proves that for a convex function f defined on an interval I,

x1,x2, ...,xn ∈ I, and λ1, λ2, ..., λn ≥ 0 with
∑n

i=1 λi = 1, the following inequality holds

f

(

n
∑

i=1

λixi

)

≤
n
∑

i=1

λif(xi).

Using Jensen’s inequality, a lower bound on equation (5.45) is found by

logL(Θ|X )− logL(Θk|X ) = log
∑

y∈Y

P(X|y,Θ) P(y|Θ) − logP(X|Θk)

= log
∑

y∈Y

P(X|y,Θ) P(y|Θ)
P(y|X ,Θk)

P(y|X ,Θk)
− logP(X|Θk)

= log
∑

y∈Y

P(y|X ,Θk)

(P(X|y,Θ) P(y|Θ)

P(y|X ,Θk)

)

− logP(X|Θk)

≥
∑

y∈Y

P(y|X ,Θk) log

(P(X|y,Θ) P(y|Θ)

P(y|X ,Θk)

)

− logP(X|Θk)

=
∑

y∈Y

P(y|X ,Θk) log

(P(X|y,Θ) P(y|Θ)

P(y|X ,Θk)

)

− logP(X|Θk)
∑

y∈Y

P(y|X ,Θk)

=
∑

y∈Y

P(y|X ,Θk) log

( P(X|y,Θ) P(y|Θ)

P(y|X ,Θk) P(X|Θk)

)

=: ∆(Θ|Θk) (5.47)
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which in turn yields a lower bound B(Θ|Θk) on logL(Θ|X ) defined by

logL(Θ|X ) ≥ B(Θ|Θk) := logL(Θ|X ) + ∆(Θ|Θk). (5.48)

One observes that

B(Θk|Θk) = logL(Θk|X ) + ∆(Θk|Θk)

= logL(Θk|X ) +
∑

y∈Y

P(y|X ,Θk) log

( P(X|y,Θk) P(y|Θk)

P(y|X ,Θk) P(X|Θk)

)

= logL(Θk|X ) +
∑

y∈Y

P(y|X ,Θk) log

(P(X ,y|Θk)

P(X ,y|Θk)

)

= logL(Θk|X ) +
∑

y∈Y

P(y|X ,Θk) log 1

= logL(Θk|X ) (5.49)

which states that the lower bound touches logL(Θ|X ) at Θk. When maximizing B(Θ|Θk),

consequently, the new choice Θk+1 is at least as good as the previous parameters Θk and, thus,

the EM procedure converges towards a fix point, see [93] for detailed convergence results. For

the maximization of B(Θ|Θk), all terms independent of Θ are not essential and can therefore

be omitted. Hence, we have

Θk+1 :=argmax
Θ

{B(Θ|Θk)}

=argmax
Θ







∑

y∈Y

P(y|X ,Θk) log (P(X|y,Θ) P(y|Θ))







=argmax
Θ







∑

y∈Y

P(y|X ,Θk) log

(P(X ,y,Θ) P(y,Θ)

P(y,Θ) P(Θ)

)







=argmax
Θ







∑

y∈Y

P(y|X ,Θk) log (P(X ,y|Θ))







=argmax
Θ

{

Ey|X ,Θk
{log (P(X ,y|Θ))}

}

. (5.50)

The EM algorithm iteratively evaluates the last expression of equation (5.50) which is the

estimation (E-step) and the maximization (M-step) of the conditional expectation, as shown in

algorithm 10.
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Algorithm 10 EM Algorithm
Require: X
Require: Θ0 - initial guess on the parameters.

1: repeat

2: Setup the conditional expectation Ey|X ,Θk
{log (P(X ,y|Θ))} (E-step)

3: Θk+1 ← argmaxΘ

{

Ey|X ,Θk
{log (P(X ,y|Θ))}

}

(M-step)

4: until Θk+1 = Θk

5.5.5 Approach

Data Term and Scale Estimation

We regard the minimization of Eσ(x;µ) in (5.40) as maximum-a-posteriori (MAP) estimation

of x, given the data b:

P(x|b) ∝ exp
(

− Eσ(x;µ)
)

∝ P(b|x)P(x) (5.51)

P(b|x) ∝ exp
(

−D(x;σ)
)

(5.52)

P(x) ∝ exp
(

− αS(x) + µ
1

2
〈x,x− 1〉

)

(5.53)

The normalizing term in (5.51) is missing since it only depends on b and, hence, is unessential

for estimating x. The data likelihood P(b|x) is unknown due to the dependency of the data

term D(x;σ) on the unknown parameter σ. Given some estimate x̂, the continuous counterpart

of equation (5.50) reads

Q(x|x̂,b) :=

∫

R+

P(σ|b, x̂) logP(b, σ|x) dσ. (5.54)

To compute (5.54), the first term under the integral is evaluated via Bayes’ rule

P(σ|b, x̂) =
P(b|σ, x̂)P(σ|x̂)

P(b|x̂)
.

The denominator does not depend on σ and is, therefore, unessential for the marginalization of

σ in equation (5.54). The first term of the numerator is given by the data term P(b|σ, x̂) =

Z−1 exp(−D), where Z is a normalizing constant. Furthermore, it is reasonable to assume

independency P(σ|x) = P(σ) and, thus, we obtain

P(σ|b, x̂) ∝ 1

Z
exp

(

−D(x̂;σ)
)

P(σ). (5.55)
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For the second term under the integral in (5.54), we compute

logP(b, σ|x) ∝ logP(b|σ,x) + logP(σ) ∝ −D(x;σ) + logP(σ) (5.56)

using again P(σ|x) = P(σ), and dropping the normalizing constant of the first term on the

right, as explained above after the equations (5.51)–(5.53). Furthermore, we can drop the last

term logP(σ) in (5.56) because it neither depends on x, nor does it contribute to the averaging

of D(x;σ) with respect to σ. As a result, we insert the remaining term −D(x;σ), together

with (5.55), into (5.54) and denote the resulting expression again with Q:

Q(x|x̂,b) :=

∫

R+

1

Z
exp

(

−D(x̂;σ)
)

p(σ)
(

−D(x;σ)
)

dσ (5.57)

This expression clearly shows how the unknown dependency on σ of the objective criterion (5.40)

is dealt with. Given a current estimate x̂ and a prior distribution P(σ), the unknown data term

D(x;σ) is replaced by maximizing the average (5.57). Consequently, we replace functional

Eσ(x;µ) in (5.40) with the approximation

E(x; x̂, µ) := −Q(x|x̂,b) + α S(x) − µ
1

2
〈x,x− 1〉. (5.58)

In practice, we choose the prior P(σ) to be uniform within a reasonable interval [σmin, σmax], and

x̂ is the current estimate on x. Q(x|x̂,b) is then evaluated by computing the one-dimensional

integral (5.57) numerically using the trapezoidal rule, see figure 5.16.

Smoothness Term

As smoothness prior S(x) in (5.58), we choose a discrete approximation of the total-variation (TV)

measure
∫

Ω
|∇x| dΩ

of x (here temporarily regarded as a function), whose edge-preserving properties are well-known

in image processing [114]. This prior has also been successfully used in connection with discrete

tomography, see [32].

5.5.6 Optimization

Following section (5.5.3), we include the convex set of feasible solutions into functional E(x; x̂, µ),

equation (5.58), by using the indicator function δ[0,1]n(x), equation (5.23), and consider the
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Figure 5.16: In order to numerically approximate the integration in (5.57), we consider a n×n Gaussian

filtermask as a function of σ. For instance, (a) plots the behavior of some mask entries, where the

highest function corresponds to the central mask position. We use a subdivision scheme to find suitable

support points for all functions such that the approximation becomes finer in areas of higher curvature

and coarser otherwise. The plots (b)-(g) depict the approximation of the functions in (a). As can

be seen there, the support points become very dense for small values of σ which makes it reasonable

to choose 0 < σmin in order to reduce the number of support points. This cut-off is justified as the

blurring effect caused by very small values of σ does hardly impact any reconstruction algorithm.

following d.c. decomposition

g(x; x̂) := −Q(x|x̂,b) + α S(x) + δ[0,1]n(x) (5.59)

h(x;µ) := µ
1

2
〈x,x− 1〉. (5.60)

The full reconstruction algorithm is listed in algorithm 11 where the estimation of the unknown

scale-parameter σ through the EM-iteration, section 5.5.5, is done as part of the reconstruction

algorithm. The global optimum of the convex optimization problem can be computed using any

method. However, in view of the simple structure of the box-constraints x ∈ [0, 1]n, we used

the spectral projected gradient algorithm proposed in [14], appendix D, in our implementation.
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5.5 Binary Tomography with Deblurring

Algorithm 11 DC-Framework with Quadratic Programming and Deblurring

Require: Choose x0 arbitrary (our choice: x0 := (1
2 , ..., 1

2)⊤)

Require: 0 < ∆µ (our choice: ∆µ ∈ (0, 0.5])

Require: 0 < ǫ (our choice: 10−4 ≤ ǫ ≤ 10−2)

µ := 0

repeat

k := 0

repeat

yk := ∇h(xk;µ) = µ (xk − 1
21)

l := 0

x̂0 := xk

repeat

x̂l+1 := argmin
x∈[0,1]n

{

g(x; x̂l)− 〈yk,x〉
}

l := l + 1

until ||x̂l − x̂l−1||2 < ǫ (EM-loop)

xk+1 := x̂l

k := k + 1

until ||xk − xk−1||2 < ǫ (DC-loop)

µ := µ + ∆µ

until ∄ xk
j ∈ [ǫ, 1− ǫ] , j = 1, . . . , n (µ-loop)

5.5.7 Evaluation

In figure 5.15, we showed that the binary reconstruction fails in case of blurred objects. We

repeated the experiment, however, this time taking deblurring into account. The results shown

in figure 5.17 reveal that our novel reconstruction algorithm copes with both problems, de-

blurring by scale-parameter estimation and binary reconstruction, at the same time. Further

experiments showed, that the original object can be reconstructed in case of σ = 1.0 even from

four projections (0◦, 45◦, 90◦, and 135◦).

Concerning reconstructions from blurred projections, the upper-left image shown in figure 5.18

was projected along four directions 0◦, 45◦, 90◦, 135◦. Panel (b) shows these projections for

illustration, and panel (c) its blurred version (σ = 1.5). The latter data was used to compute

the reconstruction shown in panel (f). Panels (d) and (e) show the reconstruction results

for σ = 1.0 with and without deblurring, respectively. While the latter result clearly shows
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(a) Original (b) Convolved object (c) Convolved object

(σ = 1.0) (σ = 2.0)

(d) Reconstruction (e) Reconstruction (f) Reconstruction

(3 proj.; σ = 0.5) (5 proj.; σ = 1.0) (5 proj.; σ = 2.0)

Figure 5.17: Reconstruction from blurred objects: (a) Original image, 32×32. (b) and (c): original im-

age convolved with different Gaussian kernels, σ ∈ {1.0, 2.0}. 5 projections were taken for both images

(0◦, 22.5◦, 45◦, 67.5◦, 90◦). Figures (d) and (f) show the corresponding results of our reconstruction

algorithm. Since we obtained for σ = 0.5 the original image we present in this case the reconstruction

from only three projections, 0◦, 45◦, and 90◦. Throughout the experiments the smoothing parameter

α was set to 0.01.

the ill-posedness of the combined deblurring-reconstruction problem, the results (d) and (f)

demonstrate the stability of our reconstruction algorithm even under such severe conditions.

Additional reconstruction results from blurred projections can be found in figures 5.20 and 5.21.

To illustrate the deblurring process further, figure 5.19 depicts the expressions exp(−D(x̂;σ))/Z

and D(x̂;σ), respectively, as a function of σ during the experiment in figure 5.18 (c). It can

be clearly seen that the former expression peaks most around the correct value σ = 1.5,

whereas the latter term attains its global minimum there. Our experiments also revealed that
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5.5 Binary Tomography with Deblurring

reconstructions from blurred projections are typically more difficult than from projections of

blurred objects.
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(a) Original (b) Correct projection (c) Convolved projection

(σ = 1.5)

(d) With deblurring (e) Without deblurring (f) With deblurring

(σ = 1.0, α = 0.01) (σ = 1.0, α = 0.01) (σ = 1.5, α = 0.05)

Figure 5.18: Reconstruction from blurred projections: Projections at 0◦, 45◦, 90◦, and 135◦ were taken

from the image shown in panel (a) and convolved with a Gaussian kernel, σ = 1.5. Panels (b) and

(c) show the correct projections and the blurred projections, respectively. Panel (d) and (e) show

the reconstruction from projection data blurred with σ = 1.0 with and without taking deblurring into

account. Panel (f) shows the reconstruction result for σ = 1.5 with α = 0.05.
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Figure 5.19: The exp(−D(x̂; σ))/Z term, upper half, and D(x̂; σ) term, lower half, as a function of

σ at various iterations. While the former term peaks most near the correct value σ = 1.5, the latter

attains its global minimum there.
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5.5 Binary Tomography with Deblurring

(a) Original (b) Original

(c) Without deblurring (σ = 1.0) (d) Without deblurring (σ = 1.0)

(e) With deblurring (σ = 1.0) (f) With deblurring (σ = 1.0)

Figure 5.20: Reconstruction from blurred projections: (a),(b) Original image, 128× 128. For both im-

ages, reconstruction problems were set up from 5 projections, 0◦, 36◦, 72◦, 108◦, and 144◦, each blurred

with a Gaussian kernel, σ = 1.0. (c),(d) Reconstruction without deblurring. (e),(f) Reconstruction

with deblurring.
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5 DC Framework

(a) Original (b) Original

(c) Without deblurring (σ = 1.5) (d) Without deblurring (σ = 1.5)

(e) With deblurring (σ = 1.5) (f) With deblurring (σ = 1.5)

Figure 5.21: Reconstruction from blurred projections: (a),(b) Original image, 128 × 128. From both

images reconstruction problems were setup from 5 projections, 0◦, 36◦, 72◦, 108◦, and 144◦, and the

projections were convolved with a Gaussian kernel, σ = 1.5. (c),(d) Reconstruction without deblurring.

(e),(f) Reconstruction with deblurring.
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6 Multi-Valued Discrete Reconstruction

In the preceding chapters we considered the reconstruction of binary objects and successfully

derived a family of algorithms based on convex-concave regularization and d.c. programming.

Therefore, the question about an extension of our approach to the general case of discrete

tomography, i.e. reconstruction of objects made up from multiple discrete values, seems to

arise naturally. Besides, the fact that the related literature is mostly concentrated on binary

tomography endows us with further motivation to put our efforts in this research direction.

A first attempt to the multi-valued problem has been published in [123], where, in analogy to

the binary case, the space between any two consecutive discrete values is relaxed to an interval.

The concave regularizer, equation (5.9), is placed in each interval, and starting from the convex

solution the intermediate values are pushed towards the boundaries of the corresponding interval.

This method is easy to implement and does not need additional variables but includes a heuristic

step which allows the pixels to move from one interval to another. Consequently, a pixel has to

travel through several intervals in order to reach more distant values and is likely to get stuck.

Regarding to this previous method we pursue a different strategy here which does not require

any heuristic step but involves additional variables. As we will see, this new method indeed

generalizes the family of d.c.-based algorithms to multiple classes. In addition, we show that

the global optimality conditions proposed in [10] for the binary quadratic programming, sec-

tion 5.5.3, can be adapted to the multiclass case as well.

The formal description of the reconstruction problem we use here allows our approach to

become more appealing to a larger class of optimization problems, for instance image labeling.

Therefore, we consider the image labeling problem besides the reconstruction problem in the

evaluation part of this chapter, section 6.5.1, and compare our results to labeling algorithms

based on graphcuts [23, 24, 82], section 3.3.3, semidefinite programming (SDP) [76, 75], and

second-order cone programming (SOCP) [97, 88].
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6 Multi-Valued Discrete Reconstruction

6.1 Problem Statement

We consider objects that are composed of different, not necessarily two, homogeneous materials

and conceive the corresponding densities as associated with prototypical grayvalues gj ∈ R,

j ∈ {1, ..., l} in the image domain. We synonymously refer to the grayvalues gj as labels and,

thus, define the set of labels as L := {g1, ..., gl} and the label vector as g := (g1, ..., gl)
⊤.

Additionally, it is convenient to assume that gj < gk for j < k.

A single pixel i ∈ {1, ..., n} is represented by a vector xi := (xi,1, ..., xi,l)
⊤ where each compo-

nent corresponds to a label. If pixel i attains label j we want component xi,j to be 1 and all

others to be 0. Consequently, we want xi to be a canonical basis vector of Rl and we refer to

the set of all 0-1 representations as Ω{0,1} := {ej |1 ≤ j ≤ l} ⊂ {0, 1}l.

The entire image is described by a set of binary vectors x⊤
i , i ∈ {1, ..., n}, which can be written

in form of the assignment matrix X simply by stacking all x⊤
i on top of each other,

X :=









x1,1 · · · x1,l

...
. . .

...

xn,1 · · · xn,l









=: (x∗,1, ...,x∗,l) , (6.1)

where the columns of X are denoted by x∗,j.

Using this notation, we state the multiclass reconstruction problem,

A X g = b, xi ∈ Ω{0,1}, ∀i, (6.2)

in analogy to the binary reconstruction problem, section 3.2.

Sometimes, however, it is convenient to gather all unknowns xi,j in a single vector,

x := (x1,1, . . . , x1,l, x2,1, . . . , x2,l, . . . . . . , xn,1, . . . , xn,l)
⊤ , (6.3)

which we call assignment vector. Hence, the reconstruction problem, equation (6.2), can be

equivalently written in terms of the assignment vector x,

A G x = b, xi ∈ Ω{0,1}, ∀i, (6.4)

where G := diag(g⊤) is a n-blockdiagonal matrix.
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6.2 Approach

6.2 Approach

6.2.1 Relaxation

In order to avoid the inherent combinatorial complexity of the problem, equation (6.2) and

equation (6.4), we relax the difficult constraint xi ∈ Ω{0,1} to

xi ∈ Ω1 := {xi ∈ Rl | xi ≥ 0 and
l
∑

j=1

xi,j = 1} (6.5)

which is known as the standard simplex, canonical simplex, or probability simplex. In other

words, this is the convex set spanned by the standard basis vectors or more importantly for us

the elements of Ω{0,1}. Notice, that this is also equivalent to consider xi as the Barycentric

coordinates with respect to the vectors in Ω{0,1}.

We can easily imagine this set in case of only three labels, see figure 6.1 where black dots depict

the elements of the discrete set Ω{0,1} and the triangular area depicts the relaxed space Ω1.

X1

X2

X3

Figure 6.1: Besides the formal discussion of our approach, we subsequently consider the case of three

labels for illustration purposes. In this scenario Ω1, equation (6.5), equals the triangular area spanned

by the unit vectors in R3, depicted by the black dots.

Concerning the entire set of pixels the overall space is defined by Ωn
1 := Ω1 × · · · × Ω1 which

inherits convexity from Ω1, equation (6.5).
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6 Multi-Valued Discrete Reconstruction

6.2.2 Concave Regularization

Binary Concave Regularizer

It is tempting to apply the concave regularization term, equation (5.9), from the previous

chapter also in the multiclass scenario,

〈x,1− x〉, x ∈ Ωn
1 . (6.6)

As we will explain here this attempt does, however, not yield the desired result. For illustration

purposes we examine the regularizer in a scenario involving only three labels, L := {g1, g2, g3},
but it should become clear that this does not limit our considerations. Figure 6.2 (a-c) shows

the concave regularizer, equation (6.6), for a single pixel i. Starting in figure 6.2(a), µ is set

to zero xi and no penalty is imposed on xi. By increasing µ, xi is pushed towards the vertices

of Ω1, figure 6.2(b,c). Akin to the binary case, the regularizer vanishes if xi ∈ Ω{0,1} and

therewith does not alter the value of an energy functional at the vertices of Ω1.

(a) (b) (c)

Figure 6.2: Concerning a single pixel in case of three labels, figures (a)-(c) show the concave regularizer

which is derived from the binary case, equation (6.6), for increasing values of µ. For illustrative purposes

the function is projected onto the set Ω1, compare figure 6.1.

Concerning equation (6.2) a potential data term D(x) typically measures the difference between

A G x and b. For simplicity we set A := I and D(x) := ‖G x−b‖22 and focus on a singe pixel

i with b being its corresponding component in b. By this, we are concerned with (〈g,xi〉− b)2

which is plotted in figure 6.3 for different values of b. As can be observed, D(x) attains a

unique minimum if b = g1, figure 6.3 (a), and b = g3, figure 6.3 (c). However, in case of

b = g2 a linear subspace exists where D(x) becomes minimal, figure 6.3 (b), since g2 can be

linearly combined, g2 = 〈g,xi〉, xi ∈ Ω1. In general any value between g1 < gl is represented

by the intersection of an affine subspace with Ω1, figure 6.4.
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6.2 Approach

(a) (b) (c)

Figure 6.3: Similar to figure 6.2, we consider a single pixel i and a gray value g̃, g1 ≤ g̃ ≤ g3, and

assume that both are related due to the simplified data term Dg̃(xi) := (〈g,xi〉 − g̃)2. The plots

illustrate the data term in case of (a) g̃ := g1, (b) g̃ := g2, and (c) g̃ := g3. As can be seen in (a) and

(c) the minima are unique with respect to Ω1, figure 6.1, and coincide with the correct corner. In (b),

however, there is a one-dimensional subspace of Ω1 where Dg2
(x) becomes minimal.

Imagine now, the data term in figure 6.3 (b) superimposed with the concave regularizer rearing

up as shown in figure 6.1. As the data term becomes minimal within a linear subspace the

concave regularizer is allowed to push xi either towards the vertex representing g2 as desired

or towards the opposite direction, i.e. the edge between the vertices g1 and g3. If the latter

case happens the optimizer gets trapped in a local optimum from which it becomes unlikely to

escape. Consequently, pixel i will be incorrectly labeled either g1 or g3.

g1

g2

g3

g1

g2

g3

g1

g2

g3

(a) (b) (c)

Figure 6.4: Figures (a)-(c) show the set Ω1 in the three label case, g1 < g2 < g3, see also figure 6.1.

The hatched lines indicate the affine subspaces which proceed parallel to the lines and are aligned

depending on the ratio between the grayvalues g1, g2, g3. Each subspace uniquely represents a grayvalue

g, g1 < g < g3.
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6 Multi-Valued Discrete Reconstruction

Multiclass Concave Regularizer

As described above, the convex-concave regularization of the multiclass case is difficult as linear

combinations emerge. In order to cope with this situation, we introduce a novel regularizer as

replacement for the concave regularizer, equation (6.6),

µ

n
∑

i=1

l
∑

j=1

c(gj , 〈g,xi〉) xi,j . (6.7)

Depending on L, each position xi ∈ Ω1 is associated with some affine subspace which represents

some value g̃ := 〈g,xi〉, g1 ≤ g̃ ≤ gl. Our new regularizer, equation (6.7), includes a cost

function c(·) which measures the difference between g̃ and each label in L. As a suitable choice

for c(·) we confine ourselves to

c(gj , 〈g,xi〉) := (gj − 〈g,xi〉)2. (6.8)

As can be seen in equation (6.7), the costs associated with label gj are further linked to the

corresponding component in xi. Thus, it becomes preferable to assign higher values to xi,j if

gj is similar to g̃ and lower values if gj differs from g̃. By increasing µ the cost function c(·)
becomes more and more concentrated on the label that fits best.

Figure 6.5: This plot shows the multiclass regularizer, equations (6.7) and (6.8), in case of three labels.

Comparing this to the regularizer originating from the binary case in figure 6.2 it becomes perceivable

how the new regularizer overcomes the difficulties discussed in section 6.2.2.

Let x ∈ Ω{0,1}, without limitation x = ei, then we have

l
∑

j=1

c(gi, 〈g,xi〉)xi,j = (gi − 〈g, ei〉)2 = (gi − gi)
2 = 0. (6.9)
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6.2 Approach

Thus, added to an energy function E(x) our new regularizer vanishes and does not alter the

value of E(x) if x ∈ Ωn
1 attains a 0-1 representation.

Concerning concavity, we derive for our particular choice of c(·), equation (6.8),

n
∑

i=1

l
∑

j=1

c(gj ,g
⊤xi) xi,j =

n
∑

i=1

l
∑

j=1

(

gj − g⊤xi

)2
xi,j =

n
∑

i=1

l
∑

j=1

(

g2
j − 2gjg

⊤xi + (g⊤xi)
2
)

xi,j =

n
∑

i=1

l
∑

j=1

(

g2
j xi,j − 2gj g⊤xi xi,j + (g⊤xi)

2xi,j

)

=

n
∑

i=1





l
∑

j=1

g2
j xi,j −

l
∑

j=1

2gj g⊤xi xi,j +

l
∑

j=1

(g⊤xi)
2xi,j



 =

n
∑

i=1





l
∑

j=1

g2
j xi,j − 2 g⊤xi

l
∑

j=1

gj xi,j + (g⊤xi)
2

l
∑

j=1

xi,j



 =

n
∑

i=1





l
∑

j=1

g2
j xi,j − 2 (g⊤xi)

2 + (g⊤xi)
2



 =

n
∑

i=1





l
∑

j=1

g2
j xi,j − (g⊤xi)

2



 (6.10)

By exploiting the sum constraint from Ω1, equation (6.5), in the transformations above, our

regularizer reduces to a new function

n
∑

i=1





l
∑

j=1

g2
j xi,j − (g⊤xi)

2



 (6.11)

which equals our regularizer on Ω1 and can be different outside of Ω1. Consequently, concavity

of function (6.11) on Rn×l directly implies concavity of our regularizer on Ω1. Therefore, we

consider the Hessian of function (6.11) which is a n-blockdiagonal matrix with each block

containing −2 ( g g⊤). For an arbitrary z ∈ Rl, we have that

−2 z⊤( g g⊤) z = −2 (z⊤g)2 ≤ 0

which shows the negative semidefiniteness of the Hessian matrix and, thus, implicitly shows

that our novel regularizer, equation (6.7), is indeed concave on Ω1.
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6 Multi-Valued Discrete Reconstruction

6.2.3 Discontinuity-preserving Smoothness Priors

It is well-known that some smoothness priors, like for instance
∑

〈i,j〉(xi−xj)
2, tend to blur the

borders of objects. Therefore, edge or discontinuity preserving smoothness priors are usually

applied in order to circumvent this effect, see figure 6.6. The image on the right side originally

contained four different grayvalues but has been corrupted by noise. The problem is to remove

the noise in order to recover the original image. This is a typical computer vision task which we

will give a closer look in section 6.5.1 as it is quite related to our discrete tomography problem.

Noisy image No edge-preservation Edge-preservation

Figure 6.6: The left image shows an image which originally contained four graylevels, see figure 6.11 (a).

However, the image is moderately distorted with noise and a typical computer vision task is to recover the

original image, see section 6.5.1. Using a smoothness prior without edge-preservation yields unsatisfying

results as it blurs the borders of different regions, middle image. This effect is circumvented if a edge-

or discontinuity-preserving smoothness prior is used instead, right image.

As long as we considered binary images, like in the previous chapters, the blurring effect could

be neglected since a single pixel was represented by a single variable and the concave prior

decided the variable to be either 0 or 1. With respect to our approach we suggest two priors

here which preserve discontinuities and suit our optimization framework.

A common way to introduce edge-preservation is to truncate the smoothness prior after a

certain level such that larger deviations between neighboring pixels are constantly penalized.

These priors are called robust priors and are non-convex due to the truncation. Hence, the

applicability of robust priors is restricted, however, we will see that they fit quite naturally into

our d.c. framework.
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6.2 Approach

We consider the robust smoothness prior SI(x) defined by

SI(x) :=
∑

〈i,j〉

fc(〈g,xi〉 − 〈g,xj〉), with fc(t) :=















1
c2

t2 if |t| < c

1 otherwise

, (6.12)

which is a truncated quadratic function [15] where parameter c adjusts the truncation. As

illustrated in figure 6.7, S(x) is d.c. decomposable and a formal decomposition is given in

equation (6.13). It is incorporated into our d.c. framework simply by adding each term to the

appropriate part of the energy functional, i.e. either g(x) or h(x). At this, the fact that the

decomposition, equation (6.13), includes a non-differentiable term, hc(t), is not obstructive

since the d.c. framework is based on subdifferentials.

= −

Figure 6.7: This figure illustrates the d.c. decomposition of the robust smoothness prior S(x), equa-

tion (6.12), shown on the left side. As can be seen there, the prior is decomposed into the difference

of two convex functions which is formally shown in equation (6.13). Note that our d.c. framework is

able to handle this decomposition although the function on the right side is non-differentiable at c.

gc(t) := 1
c2

t2

fc(t) := gc(t)− hc(t) with

hc(t) := 1
c2

max{0, t2 − c2}
(6.13)

The robust smoothness prior penalizes deviations in the grayvalues and, hence, implicitly acts

on x. Alternatively, x is explicitly included if we use the assignment matrix X, equation (6.1),

that finally contains a binary image in each column x∗,i. Hence, we can apply the smoothness

prior ‖ L x ‖ from the previous chapter independently to the columns of X,

SII(x) :=
l
∑

j=1

‖ L x∗,j‖2 =
l
∑

j=1

x⊤
∗,j L⊤L x∗,j =: ‖L̃ x‖2. (6.14)

As all terms in SII(x) are convex, there is no need for a d.c. decomposition and we can simply

add the whole term to g(x), unlike SI(x).
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6 Multi-Valued Discrete Reconstruction

6.2.4 Optimization

With respect to multiclass reconstructions, we minimize the following energy functionals,

min
x∈Rnl

E(x;µ) :=
1

2

[

‖A G x− b‖2 + α S(x) + 2 λ (〈x,x〉 − n)
]

+ µ

n
∑

i=1

l
∑

j=1

(gj − 〈g,xi〉)2 xi,j (6.15)

subject to E x = 1n, x ≥ 0,

where E := diag(1⊤
l ) is a n-blockdiagonal matrix and S ∈ {SI , SII}, see equations (6.12)

and (6.14). We also write

EI(x;µ) and EII(x;µ) (6.16)

if we want to distinguish between the functionals E(x;µ) supplemented with either SI or SII .

As d.c. decomposability is required for SI , we generally write

S(x) =: Sg(x)− Sh(x) (6.17)

which in terms of the smoothness priors from section 6.2.3 reads

SI(x) → Sg(x) :=
1

c2
‖ L G x‖2 (6.18)

Sh(x) :=
1

c2

∑

〈i,j〉

max{0, (〈g,xi〉 − 〈g,xj〉)2 − c2} (6.19)

SII(x) → Sg(x) :=
l
∑

j=1

‖ L x∗,j‖2 (6.20)

Sh(x) := 0. (6.21)

The term λ (〈x,x〉 − n) in functional, equation (6.15), is redundant with respect to the

constraints. It is, however, important for the optimization as we will explain later.

By virtue of the equations (6.10) and (6.17), functional E(x;µ), equation (6.15), is d.c.
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decomposable according to

E(x;µ) = g(x)− h(x;µ) with

g(x) :=
1

2

[

‖A G x− b‖2 + α Sg(x) + 2 λ (〈x,x〉 − n)
]

(6.22)

h(x;µ) :=
α

2
Sh(x)− µ

n
∑

i=1

l
∑

j=1

(gj − 〈g,xi〉)2 xi,j (6.23)

and, thus, fits the d.c. framework in section 5.4.

With respect to the (y-step), we compute the partial derivative at xs,t of the convex-concave

regularizer in equation (6.23) by

∂

∂xs,t



 −µ

n
∑

i=1

l
∑

j=1

(gj − g⊤xi)
2 xi,j



 =
∂

∂xs,t



 −µ

l
∑

j=1

(gj − g⊤xs)
2 xs,j



 =

∂

∂xs,t



 −µ



(gt − g⊤xs)
2 xs,t +

l
∑

j=1,j 6=t

(gj − g⊤xs)
2 xs,j







 =

− µ



2(gt − g⊤xs)(−gt) xs,t + (gt − g⊤xs)
2 +

l
∑

j=1,j 6=t

2(gj − g⊤xs)(−gt) xs,j



 =

− µ



(gt − g⊤xs)
2 +

l
∑

j=1

2(gj − g⊤xs)(−gt) xs,j



 =

− µ



(gt − g⊤xs)
2 + 2(−gt)

(

l
∑

j=1

gj xs,j − g⊤xs(

l
∑

j=1

xs,j)
)



 =

− µ

(

(gt − g⊤xs)
2 + 2(−gt)

(

g⊤xs − g⊤xs

)

)

= −µ
(

gt − g⊤xs

)2
(6.24)

and, thus, obtain the subgradient of h(x;µ) with

∂h(x;µ) =
α

2
∂Sh(x)− µ

(

gj − g⊤xi

)2

1≤i≤n, 1≤j≤l
. (6.25)

In reference to algorithm 7, section 5.3, the (y-step), equation (6.26), and (x-step), equa-
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6 Multi-Valued Discrete Reconstruction

tion (6.27), of the multiclass d.c. approach read

yk := ∂h(xk;µ) (6.26)

xk+1 := argmin
x∈Ω1

{

g(x)− 〈yk,x〉
}

(6.27)

= argmin
x∈Ω1

{1

2

[

‖A G x− b‖2 + α Sg(x) + 2 λ (〈x,x〉 − n)
]

− 〈yk,x〉
}

.

The (x-step), equation (6.27), involves the minimization of a quadratic optimization problem.

As previously in the binary case, section 5.5 and [123], we can use the spectral projected

gradient (SPG) method, appendix 15, which requires only the evaluation of the function, the

gradient, and the projection onto the convex set. The latter is trivial in the binary case because

of the simple box constraints but is more intricated in the multiclass case due to the shape of

Ω1. Therefore, appropriate projection methods have been proposed in [96] and [131] which

we both implemented and tested. Summarizing our experience, the convergence behavior of

the SPG algorithm was comparable for both methods but was too slow for our needs in total.

According to [12] and [102] the profit of projection methods in optimization strongly depends

on the complexity of the underlying projection method. Thus, we compared the time spent

in the projection methods against the remaining part of SPG and found that about 50% was

needed only for the projections. For this reason we decided not to pursue SPG any further for

the multiclass approach and to use a different optimization strategy instead.

Reconsidering the constraints introduced by the convex set Ω1, we observe that they partly

consist of equality and inequality constraints,

E x = 1n and x ≥ 0. (6.28)

By introducing the augmented Lagrangian function Lcj(x; yk, λj), equation (6.29), we sim-

plify the constraints above and, hence, the optimization problem involved in the (x-step),

equation (6.27),

Lcj(x; yk, ξj) := min
x≥0

1

2

[

‖A G x− b‖2 + α Sg(x) + 2 λ (〈x,x〉 − n)
]

− 〈yk,x〉

+(ξj)⊤ ( E x− 1n) +
cj

2
‖E x− 1n‖2, (6.29)

where ξj denotes the vector of Lagrange multipliers. Increasing the penalty parameter cj

enforces the equality constraints and updates ξj according to

ξj+1 := ξj + cj (E x− 1n), (6.30)
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6.2 Approach

as recommended in [12]. Notice that Lcj(x; yk, ξj) is a quadratic minimization problem over

the cone of non-negative vectors, i.e. x ∈ Rln
≥0,

Lcj(x; yk, ξj) := min
x≥0

1

2
x⊤Q x− q⊤x + c, (6.31)

with

QI := G⊤A⊤A G + α G⊤L⊤L G + 2 λ I + cj E⊤E (6.32)

QII := G⊤A⊤A G + α L̃⊤L̃ + 2 λ I + cj E⊤E (6.33)

q := b⊤A G + 〈yk,x〉 − (ξj)⊤E + cj 1⊤
n E (6.34)

c :=
1

2
b⊤b− λ n− (ξj)⊤1n +

cj

2
1⊤

n 1n, (6.35)

where the choice of smoothness prior, SI or SII , affects matrix Q and, thus, leads to QI and

QII respectively. For the sake of simplicity, we sometimes write Q and distinguish between QI

and QII only if necessary. Also, we do not explicitly denote that Q depends on the parameters

α, λ, and cj .

Concerning the minimization of the quadratic optimization problem, equation (6.31), we use the

MPRGP (modified proportioning with reduced gradient projections) optimizer, see algorithm 12,

which has been proposed by Dostál and Schöberl in [49]. MPRGP is explicitly adviced and

applied by the authors for quadratic auxiliary problems in augmented Lagrangian type algorithms

[48, 47] which are restricted to the non-negative cone. At this, MPRGP requires matrix Q to

be positive definite. This is exactly were parameter λ in functional, equation (6.15), enters the

stage.

Assuming for the moment that λ = 0, in case of QII the smoothness prior x⊤L̃⊤L̃ x is 0

iff all columns of X are constant, e.g. X = (α11n, ..., αl1n). Additionally, x⊤E⊤E x =

0 holds iff
∑l

j=1 αj = 0. Equation x⊤G⊤A⊤A G x is at least zero if Gx = 0 and,

thus, we obtain
∑l

j=1 gjαj = 0. Summarizing, we have two equations and at least two

unknowns. Consequently, if λ = 0 the smallest eigenvalue of matrix QII is 0 and we have

positive semidefiniteness. However, matrix QII becomes positive definite for λ > 0 where λ

equals the smallest eigenvalue. Similar in case of QI , x⊤G⊤A⊤A G x and x⊤G⊤L⊤L G x

are zero at least if Gx = 0. This leads to g⊤xi = 0, for all i, and from x⊤E⊤E x = 0 we

obtain 1⊤
l xi = 0, for all i. By this, we have 2 · n equations and l · n, l ≥ 2, unknowns. Thus,

matrix QI is positive semidefinite but becomes positive definite for λ > 0 and λ is the smallest

eigenvalue. Hence, we conclude that positive definiteness holds for our quadratic functionals,

equation (6.31), iff λ > 0.
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6 Multi-Valued Discrete Reconstruction

Algorithm 12 MPRGP (Modified Proportioning w. Reduced Gradient Projections) [49]

Require: Quadratic optimization problem, min
x

1
2 x⊤Q x− q⊤x, subject to x ≥ 0.

Require: Q is symmetric positive definite
Require: Γ > 0, ᾱ ∈ (0, ‖Q‖−1], and ǫ > 0.
Require: x0 ≥ 0 {Initial x.}
1: {See equations (6.36) et seq. for the definitions of ϕ, ϕ̃, β, ν, and P≥0.}
2: r := Q x0 − q {Residual of the gradient.}
3: p := ϕ(x0) {Direction}
4: k := 0
5: while ‖ν(xk)‖ > ǫ do
6: if ‖β(xk)‖2 ≤ Γ ϕ̃(xk) ϕ(xk) then
7: αcg := r⊤p/p⊤p {Compute conjugate gradient step size.}
8: αmax := max

α
{xk − α p ≥ 0} {Compute maximal step size.}

9: if αcg < αmax then
10:

11: {Conjugate gradient step.}
12: xk+1 := xk − αcg p {Update x.}
13: r := Q xk+1 − q {Update residual of the gradient.}
14: γ := ϕ(xk+1)⊤Q p/p⊤p

15: p := ϕ(xk+1)− γ p {Update direction.}
16:

17: else
18:

19: {Expansion step.}

20: xk+ 1

2 := xk − αmax p

21: xk+1 := P≥0

(

xk+ 1

2 − ᾱ ϕ(xk+1)
)

{Update x.}
22: r := Q xk+1 − q {Update residual of the gradient.}
23: p := ϕ(xk+1) {Update direction.}
24:

25: end if
26: else
27:

28: {Proportioning step.}
29: d := β(xk)
30: α := r⊤d/d⊤Q d

31: xk+1 := xk − α d {Update x.}
32: r := Q xk+1 − q {Update residual of the gradient.}
33: p := ϕ(xk+1) {Update direction.}
34:

35: end if
36: k := k + 1
37: end while
38: return x := xk {Return solution.}
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6.3 Relation to the Binary Case

Let g(x) := Q x−q be the gradient of equation (6.31). The MPRGP optimizer, algorithm 12,

involves the following definitions,

ϕi(x) :=

{

gi(x) if xi 6= 0

0 if xi = 0
(6.36)

ϕ̃i(x) := min{xi/ᾱ, ϕi(x)} (6.37)

βi(x) :=

{

0 if xi 6= 0

min{gi(x), 0} if xi = 0
(6.38)

ν(x) := ϕ(x) + β(x) (6.39)

P≥0(x) :=

{

xi if xi ≥ 0

0 otherwise
, (6.40)

where ϕi is the free gradient, ϕ̃ the reduced free gradient, β the chopped gradient, ν the

projected gradient, and P≥0 the projection on the non-negative cone. For further details we

kindly refer the more interested reader to [49, 48, 47].

The overall multiclass d.c. approach is summarized in algorithm 13 and leads to the following

interpretation. As µ is initially set to 0, the concave prior does not interfere with the first

iterations of the inner loops and the algorithm yields the convex solution of the problem.

Afterwards, µ is incremented in the outer loop, µ > 0, and the subsequent y-step computes

costs for all xi,j depending on the grayvalue g⊤xk
i obtained from the previous solution,

µ
(

gj − g⊤xk
i

)2
, (6.41)

compare equations (6.25) and (6.26) and see also figure 6.8. During the next x-step, the

optimizer favors components xi,j of x if their label gj matched the value of the pixel in the

previous solution, and penalizes them otherwise.

6.3 Relation to the Binary Case

In section 5.5.3 we briefly presented a quadratic optimizer for the binary case, see Schüle [124]

for a through introduction. Originally, this suggested a quadratic formulation for multiple classes

which, however, failed as described in section 6.2.2. From this background, the question arises

how the behavior of both, i.e. the original binary optimizer and the MC-DCA applied to binary

problems, differs.
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6 Multi-Valued Discrete Reconstruction

Algorithm 13 Multiclass DC Algorithm (MC-DCA)

Require: x0 ∈ Ω1 {for example x0 := 1
l
(1, ..., 1)⊤.}

Require: ∆µ > 0

Require: ǫDC , ǫL > 0

Require: c0 ≥ 0

Require: ∆c > 0

1: i := 0 {Outer loop counter.}

2: j := 0 {Penalty counter.}

3: µ0 := 0

4: repeat

5: k := 0 {Inner loop counter.}

6: repeat

7: yk := ∇h(xk;µi) {(y-step); equation (6.26).}

8:

9: l := 0 {BEGIN (x-step); equation (6.27).}

10: x̂0 := xk

11: λ0 := (0, ..., 0)⊤

12: repeat

13: λl+1 := λl + cj (E x̂l − 1n) {Update Lagrange multiplier λ.}

14:

15: {MPRGP optimizer, algorithm 12, with starting point x̂k.}

16: x̂l+1 := minx≥0{Lcj (x; yk, λl+1)}
17:

18: cj+1 := cj + ∆c {Update penalty parameter c.}

19: j := j + 1

20: l := l + 1

21: until ‖E x̂l − 1n‖2 < ǫL

22: xk+1 := x̂l {END: (x-step); equation (6.27).}

23:

24: k := k + 1

25: until ‖xk − xk−1‖2 < ǫDC

26: µi+1 := µi + ∆µ {Update µ.}

27: i := i + 1

28: x0 := xk

29: until ∄ xk
j ∈ [ǫDC , 1− ǫDC ], ∀j

30: return x := xk {Return solution.}
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6.3 Relation to the Binary Case

(a) (b) (c)

(d) (e) (f)

Figure 6.8: Concerning a single pixel i the plots illustrate the costs assigned by the cost function

c(·), equation (6.8), for increasing values of µ and the resulting behavior of our approach. The x-axis

(bottom) ranges from the left to the right over the interval of possible grayvalues [g1, gl] and a vertical

line is drawn at each position gj ∈ L. Consider plot (a) which shows the first iteration of the algorithm.

All costs are 0 since µ = 0 and the algorithm computes the convex solution leading pixel i to attain

some grayvalue in [g1, gl]. In the next inner pass of the algorithm, plot (b), costs (depicted by black

dots) are assigned for each label gj by the y-step depending on the grayvalue of pixel i in the previous

solution. However, pixel i is able to change its value even to distant grayvalues since only moderate

costs have been assigned. During the following passes the costs are increased by µ and thus pixel i

becomes more localized, plots (c)-(e). At some point, it is preferable in the (x-step) to stay at the

current grayvalue gj since the costs for moving, even to a close grayvalue gj−1 or gj+1, become too

expensive, plot (f).
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6 Multi-Valued Discrete Reconstruction

We apply the multiclass functional in equation (6.15) supplemented with smoothness prior

SII(x), equation (6.14), to a binary problem. At this, we exploit that x∗,1 = 1 − x∗,2 and,

thus, we drop the variables x∗,1,
(

g1

g2

)

=

(

0

1

)

(6.42)

and

X =









x1,1 x1,2

...

xn,1 xn,2









=









1− x1,2 x1,2

...

1− xn,2 xn,2









. (6.43)

Note, that vector x∗,2 here is equal to the solution vector x in the binary case, see previous

chapters.

Using equation (6.42) and (6.43), yields

G x = x∗,2 (6.44)

and, consequently, the data and smoothness term of our multiclass functional reduce to

‖A G x− b‖2 = ‖A x∗,2 − b‖2 and ‖L G x‖2 = ‖L x∗,2‖2 (6.45)

which are exactly the same for the binary optimizer, section 5.5.3. Concerning our concave

regularizer, section 6.2.2, we derive

n
∑

i=1

l
∑

j=1

c(gj ,g
⊤xi) xi,j =

n
∑

i=1

l
∑

j=1

(gj − g⊤xi)
2 xi,j

=

n
∑

i=1

x2
i,2 (1− xi,2) + (1− xi,2)

2 xi,2

=

n
∑

i=1

(1− xi,2)(x
2
i,2 + (1− xi,2) xi,2)

=
n
∑

i=1

(1− xi,2) xi,2

= 〈x∗,2,1− x∗,2〉 (6.46)

and, hence, obtain the concave regularizer used for the binary case. Only the term λ(〈x,x〉 −
n) remains which was introduced in order to ensure the positive definiteness of matrix Q,
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6.4 Global Optimality Conditions

equation (6.31). However, concerning equation (6.45) matrix Q is only positive semidefinite

for trivial problems, i.e. constant images. Thus, we can confidently choose λ = 0 and obtain

1

2

[

‖A G x− b‖2 + α‖L G x‖2
]

+ µ

n
∑

i=1

l
∑

j=1

c(gj , 〈g,xi〉) xi,j =

1

2

[

‖A x∗,2 − b‖2 + α‖L x∗,2‖2
]

+ µ 〈x∗,2,1− x∗,2〉. (6.47)

This result ensures that both functionals are the same in the binary case and, thus, the multiclass

optimizer is indeed a generalization of the binary quadratic optimizer from section 5.5.3.

6.4 Global Optimality Conditions

Concerning the optimization of quadratic problems with binary constraints,

min
x

1

2
x⊤Q x− q⊤x, x ∈ {0, 1}n, (6.48)

global optimality conditions, theorem 11, have been proposed in [10].

Theorem 11 ([10]). Assume x ∈ {0, 1}n then referring to the quadratic minimization problem

in equation (6.48) the following inequalities, to be read elementwise, provide sufficient (SC)

and necessary (NC) conditions for the global optimality of x.

(SC):
1

4
λmin(Q) 1 ≥ (diag(x)− 1

2
I)(Q x− q) (6.49)

(NC):
1

4
diag(Q) 1 ≥ (diag(x)− 1

2
I)(Q x− q) (6.50)

While these conditions can straightforwardly be checked in case of the binary quadratic opti-

mizer, section 5.5.3, it is different in the multiclass case due to the restriction x ∈ Ωn
{0,1}. For

this reason, we follow the ideas of [10] and elaborate analogous conditions for the multiclass

problem.

With respect to (SC) and our multiclass problem, we consider the quadratic minimization

problem,

min
x

E(x) with E(x) :=
1

2
x⊤Q x− q⊤x, x ∈ Ωn

{0,1}, (6.51)

and associated with E(x) the Lagrangian function L(x; c),

L(x; c) := E(x) + c ‖E x− 1‖2 s.t. x ∈ {0, 1}nl, (6.52)
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6 Multi-Valued Discrete Reconstruction

which yields a quadratic optimization problem with binary constraints again. Observe that

‖E x − 1‖2 penalizes solutions x /∈ Ωn
{0,1} for c > 0. Thus, the key is to select a fixed ĉ

deteriorating all x /∈ Ωn
{0,1} such that the global optimum x∗ ∈ {0, 1}nl of minx L(x; ĉ) is

guaranteed to be in Ωn
{0,1}.

Lemma 12. Let x̂ ∈ Ωn
{0,1} and x∗ be the global minimum of L(x; ĉ), x ∈ {0, 1}nl, then

x∗ ∈ Ωn
{0,1} for all ĉ > E(x̂).

Proof. Given x ∈ {0, 1}nl and let X be the corresponding assignment matrix, equation (6.1).

Since x is an arbitrary binary vector, X might not contain exactly a single 1 entry per row and

‖E x− 1‖2 measures this disagreement. For any binary vector x /∈ Ωn
{0,1} the following lower

bound holds

1 ≤ ‖E x− 1‖2 (6.53)

since matrix X must contain at least one row with at least two 1 entries or at least one row

with only zero entries.

Consider any x /∈ Ωn
{0,1}, by means of inequality (6.53) and ĉ > E(x̂) we have

L(x; ĉ) = E(x) + ĉ ‖E x− 1‖2 ≥ E(x) + ĉ > E(x̂) = L(x̂; ĉ) ≥ L(x∗; ĉ)

and x∗ ∈ Ωn
{0,1} follows.

Note that for practical purposes we get a reasonable small lower bound without any additional

effort simply by taking ĉ > E(x) where x is the solution to be checked for global optimality. If

ĉ is chosen with respect to lemma 12 we obtain sufficient conditions for the multiclass problem

by applying (SC) of theorem 11 to L(x; ĉ).

Unfortunately, this does not work out analogously for the necessary conditions (NC) in theo-

rem 11 since they check if the inversion of a single component in x leads to a lower minimum.

If so, x obviously cannot be globally optimal while otherwise it might be. As a consequence,

(NC) applied in the same way as (SC) will always be true because flipping a single compo-

nent of x ∈ Ωn
{0,1} must lead to x /∈ Ωn

{0,1} which will never attain a lower minimum due

to lemma 12. Therefore, we follow the lead of Beck and Teboulle [10] for (NC) and derive

necessary conditions, theorem 13, which are appropriate for the multiclass problem.

Theorem 13. Given the quadratic minimization problem,

min
x

P (x) :=
1

2
x⊤Q x− q⊤x, x ∈ Ωn

{0,1}, (6.54)
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6.4 Global Optimality Conditions

with real and symmetric matrix Q. If x ∈ Ωn
{0,1} is globally optimal for problem (6.54), then

1

2
Qj,j −

b(j)
∑

k=a(j)

(

Qj,k −
1

2
Qk,k

)

xk ≥
(

b(j)
∑

k=a(j)

xk ek − ej

)⊤(

Q x− q
)

with

a(j) := ⌊j − 1

l
⌋ · l + 1 and b(j) := ⌈j

l
⌉ · l

holds for all j ∈ {1, ..., l · n}.

Proof. We have that if x ∈ Ωn
{0,1} is globally minimal then

P (x) ≤ P (z), ∀ z ∈ Ωn
{0,1}. (6.55)

With respect to x we consider

zj := (ej −
b(j)
∑

k=a(j)

xk ek + x) ∈ Ωn
{0,1} (6.56)

which changes the labeling of a single pixel in x for each j ∈ {1, ..., l · n}, e.g. j = 1 leads to

z1 = (1 0 0 ... 0 x⊤
2 x⊤

3 ... x⊤
n )⊤, j = 2 to z2 = (0 1 0 ... 0 x⊤

2 x⊤
3 ... x⊤

n )⊤, ... , j = n · l to

zn·l = (x⊤
1 x⊤

2 ... x⊤
n−10 ... 0 1)⊤. Consequently, the following inequalities provide necessary

conditions for the global optimality of x ∈ Ωn
{0,1},

P (x) ≤ P (zj) =
1

2
(ej −

b(j)
∑

k=a(j)

xk ek + x)⊤Q (ej −
b(j)
∑

k=a(j)

xk ek + x)

− q⊤
(

ej −
b(j)
∑

k=a(j)

xk ek + x
)

, ∀j. (6.57)

The remaining part of the proof concerns the simplification and rearrangement of equation (6.57).
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6 Multi-Valued Discrete Reconstruction

We focus on the quadratic term of P (zj) and obtain

1

2
(ej −

b(j)
∑

k=a(j)

xk ek + x)⊤Q (ej −
b(j)
∑

k=a(j)

xk ek + x) =

1

2

[

e⊤j Q ej +
(

b(j)
∑

k=a(j)

xk ek

)⊤
Q
(

b(j)
∑

k=a(j)

xk ek

)

+ x⊤Q x
]

− e⊤j Q
(

b(j)
∑

k=a(j)

xk ek

)

+ e⊤j Q x− x⊤Q
(

b(j)
∑

k=a(j)

xk ek

)

=

1

2

[

Qj,j +

b(j)
∑

k=a(j)

xk Qk,k + x⊤Q x
]

−
b(j)
∑

k=a(j)

xk Qj,k + e⊤j Q x− x⊤Q
(

b(j)
∑

k=a(j)

xk ek

)

(6.58)

thereby exploiting that

(

b(j)
∑

k=a(j)

xk ek)
⊤Q (

b(j)
∑

k=a(j)

xk ek) =

b(j)
∑

k=a(j)

xk Qk,k (6.59)

since xk1
xk2

= 0 for k1 6= k2, k1, k2 ∈ {a(j), ..., b(j)}. Expressing equation (6.57) with (6.58)

leads to

1

2
x⊤Q x− q⊤x ≤ 1

2

[

Qj,j +

b(j)
∑

k=a(j)

xk Qk,k + x⊤Q x
]

−
b(j)
∑

k=a(j)

xk Qj,k + e⊤j Q x− x⊤Q
(

b(j)
∑

k=a(j)

xk ek

)

− q⊤
(

ej −
b(j)
∑

k=a(j)

xk ek + x
)

where P (x) chancels out on both sides. Thus, we have

x⊤Q
(

b(j)
∑

k=a(j)

xk ek

)

− e⊤j Q x + q⊤
(

ej −
b(j)
∑

k=a(j)

xk ek

)

≤

1

2

[

Qj,j +

b(j)
∑

k=a(j)

xk Qk,k

]

−
b(j)
∑

k=a(j)

xk Qj,k.
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6.5 Numerical Evaluation

which finally completes the proof,

1

2
Qj,j −

(

b(j)
∑

k=a(j)

Qj,k −
1

2
Qk,k

)

xk ≥
(

b(j)
∑

k=a(j)

xk ek − ej

)⊤(

Q x− q
)

.

6.5 Numerical Evaluation

The d.c. based extension to multiple labels opens our algorithms to a much broader class

of problems, besides the tomographic reconstruction of discrete images. In many computer

vision tasks, for instance, one wishes to find an assignment between pixels and labels such that

each pixel uniquely corresponds to a label (labeling problem). This describes, for instance, the

situation in image denoising where an image, containing a certain set of grayvalues, has been

corrupted by noise and, therefore, one must remove the noise in order to restore the true image.

Image denoising is related to our problem, in fact, it can be understood as a special instance

of the discrete reconstruction problem.

We consider the problem of image denoising first since it allows us to study the behavior of

our algorithm and the smoothness priors without any additional effects caused by a very small

number of projections. At this, we compare our approach to different algorithms well-known in

the computer vision community. The second part of the evaluation is then, of course, devoted

to the tomographic reconstruction of multiclass images.

6.5.1 Image Labeling

Image labeling, or image denoising in our particular case, is closely related to the tomographic

reconstruction problem. Imagine a noisy image, n ×m, embedded into the three dimensional

space, i.e. its dimension is then n×m×1, and take a single projection parallel to the z-axis such

that each ray passes exactly a single pixel. The corresponding projection matrix A contains

a single 1 entry per row since the side length of a squared pixel or respectively cubic voxel is

assumed to be 1. Particularly, A becomes the identity matrix if we enumerate the rays and

pixels accordingly and, thus, the data term in equation (6.15) reduces to

1

2
‖G x− b‖2. (6.60)

Note that all other terms of equation (6.15) are not affected by this and, hence, remain un-

changed.
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6 Multi-Valued Discrete Reconstruction

Original 4 labels, α = 0 6 labels, α = 0

4 labels, α = 200 6 labels, α = 200 4 labels, α = 400

6 labels, α = 400 4 labels, α = 600 6 labels, α = 600

Figure 6.9: Image labeling: Regarding energy functional EII , equations (6.16) and (6.15), this figure

shows the labeling results of the MC-DCA applied to the Lena image (128 × 128; upper left) with 4

and 6 predefined labels. This results nicely show the increasing influence of the smoothness prior for

different values of α.
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6.5 Numerical Evaluation

In case of image denoising, we compare our approach to the α-expansion algorithm of Boykov

et al [23] which is a popular energy minimization technique in computer vision. It can be shown

that its solution is within a certain range of the global optimum [23]. The expansion algorithm

has been successfully applied to image segmentation [21] and restoration [19, 23] as well as to

medical imaging [20], stereo [83] and motion [119]. The algorithm iteratively selects a label

and tries to expand the set of pixels assigned to this label. Though the overall problem is

non-binary, each step of the α-expansion algorithm yields a binary minimization problem which

is solved by a single graph cut [60], see section 3.3.3. The algorithm terminates if no further

improvement is possible.

Original (16 × 16) Original (32 × 32) Original (64 × 64)

Noisy (16× 16) Noisy (32 × 32) Noisy (64 × 64)

Figure 6.10: Image labeling: This figures shows the groundtruth and noisified images. The (16× 16)

image on the lower left is used in connection with the SDP relaxation which is, compared to the

(32× 32) test image for SOCP, reduced in size in order to have reasonable computation times. Finally,

the α-expansion approach is evaluated with the image on the lower right.

In contrast to the α-expansion which directly acts on the discrete label set we assign a binary
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6 Multi-Valued Discrete Reconstruction

vector to each pixel where a single 1 entry indicates the label associated with the pixel. A

similar description is used for instance by Keuchel [76] and [75] who suggests a relaxation

based on semidefinite programming (SDP) in order to approximatively solve the image labeling

problem. It is known [137] that such relaxations are able to find good approximations to

combinatorial problems, however, the application of semidefinite programming is limited to

small size problems only since it squares the number of variables. In order to circumvent

this drawback, relaxations based on second-order cone programming (SOCP) [92] have been

proposed in [77] and [97] where the latter has been applied to computer vision problems in

[88]. In contrast to our MC-DCA approach, semidefinite and second-order cone programming

relaxations do not provide hard decisions, instead, they deliver a soft assignment, i.e. the vector

must be positive and sum to one but is not necessarily binary. Hence, a rounding step must be

applied afterwards to eventually yield a binary solution, i.e. in our SDP and SOCP experiments

we assign the maximal component to 1 and all others to 0. Note, that this is somewhat similar

to the linear programming relaxations we considered in chapter 4 which originally motivated us

to include the rounding step in the overall optimization process and, thus, led us to our d.c.

framework, chapter 5.

For evaluation purposes we consider the semidefinite [76] and the second-order cone program-

ming relaxation [97, 88] besides the α-expansion algorithm [23]. We implemented the α-

expansion algorithm in C++ including the graph cut C library gratefully provided by Vladimir

Kolmogorov1. For the second-order cone programming approach of [97, 88] we setup a matlab

program invoking the external mosek2 solver to perform the actual optimization task. Simi-

larly in case of semidefinite programming [76] where also a matlab script was used calling the

PENSDP3 solver.

Our first experiment concerns the behavior of the smoothness prior SII , equation (6.14), for

different values of α. Therefore, we applied our MC-DCA approach with a set of either 4 or 6

labels to the Lena image, 128 × 128, shown in figure 6.9, where the labels were just roughly

picked from the histogram of the Lena image but without any deeper justification. This scenario

does not involve any noise which has been added to the original image. However, the original

image contains much more grayvalues besides the prototypical labels, thus, we simply considered

these grayvalues as corrupted by noise. As can be seen in figure 6.9 which shows the results of

this experiment, all labels are present in the labeling images. Additionally, one can nicely see

the influence of the smoothness prior for different weighting factors α.

1http://www.adastral.ucl.ac.uk/∼vladkolm/software.html
2www.mosek.com
3http://www.penopt.com/
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6.5 Numerical Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Image labeling: (a)–(c) MC-DCA with smoothness prior SI and parameters c := 10

and α ∈ {10, 12, 14} from left to right. (d)–(f) MC-DCA with smoothness prior SII and α ∈
{3500, 4250, 5750}. (g)–(i) Graphcuts with L2-norm smoothness prior truncated at c := 50, equa-

tion (6.12), and regularization parameter α ∈ {4, 5, 6}. It can be seen that the smoothness prior SI

is too sensitive in case of heavy noise while SII is robust. Further, MC-DCA supplemented with SII

leads to good results, also compared to the results of the α-expansion algorithm.

The figures 6.11, 6.12, and 6.13 show the results of the α-expansion, SDP, and SOCP ap-

proaches compared to the MC-DCA. As can be seen, our approach yields in all cases comparable

results.
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6 Multi-Valued Discrete Reconstruction

SDP, α = 500 SDP, α = 600 SDP, α = 700 SDP, α = 800

MC-DCA, α = 225 MC-DCA, α = 275 MC-DCA, α = 325 MC-DCA, α = 350

Figure 6.12: Image labeling: Results of SDP and MC-DC algorithm.

6.5.2 Image Reconstruction

In order to get a first impression of the MC-DC approach with respect to image reconstruction

we conduct a small experiment and present some of its intermediate solutions, figure 6.14.

The problem was setup from the image shown in the upper left corner of figure 6.14 by taking

the horizontal, vertical, and one diagonal projection. The middle image in the upper row of

figure 6.14 shows the convex solution obtained right after the first iteration of the algorithm.

As can be seen, the content of the image is hard to perceive from the convex solution, even if

we know the four different graylevels involved in the true image. However, as the number of

iterations increase, more and more details become recognizable until we finally end up with a

solution containing only the a priori supplied graylevels. The final solution furthermore happened

to be the original image in this case. Note that we originally considered both functionals,

equations (6.15) and (6.16), for this experiment. However, EI was clearly inferior compared

to EII since it was not possible to reconstruct the original image from three projections using

EI . Another point that makes functional EII preferable is that the concave part consists only

of the concave regularizer which vanishes for all x ∈ Ωn
{0,1} and the convex part contains the

quadratic form we wish to minimize. Thus, we can apply the global optimality conditions

from section 6.4 to EII . For this reasons, we consider only functional EII for the remaining

reconstruction experiments.
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6.5 Numerical Evaluation

SOCP, α = 25 MC-DCA, α = 200 α-exp., α = 0.8, c = 30

SOCP, α = 30 MC-DCA, α = 300 α-exp., α = 1.4, c = 30

SOCP, α = 40 MC-DCA, α = 400 α-exp., α = 1.7, c = 30

SOCP, α = 50 MC-DCA, α = 500 α-exp., α = 1.9, c = 30

Figure 6.13: Image labeling: Results of SOCP, α-expansion, and MC-DC algorithm.
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6 Multi-Valued Discrete Reconstruction

Original Iteration 1 Iteration 2

Iteration 5 Iteration 6 Iteration 89

Figure 6.14: Image reconstruction: We setup a reconstruction problem using three projections, i.e.

0◦, 45◦, and 90◦, from the image shown in the upper left corner. The image at iteration 1 shows the

convex solution of the relaxed problem while the remaining images were obtained at various iterations

afterwards.

For our next experiment we took a varying number of projections from the well-known Shepp-

Logan phantom image which was of size 100 × 100 and contained 6 different grayvalues. The

phantom can be seen in the lower right corner of figure 6.15 since the reconstruction shown

there led to the very same. As previously, projections were taken equally spaced over either 90◦

or 180◦ degree. Clearly, the problems over a range of 90◦ are much more difficult which reflects

in the number of projections that were necessary in order to reach similar results between the

90◦ and 180◦ experiments, figures 6.15 and 6.16.

As mentioned in the introductory part of this chapter, we proposed a different approach to

the multiclass reconstruction problem in [123] which is also based on d.c. programming but

still quite different from the MC-DCA presented here. The former approach places a binary

regularizer in each subinterval [gi, gi+1] of [g1, gl] and then starts to push each variable towards

the borders of a subinterval. The advantage of this method is that it always uses a single variable

per pixel, no matter how many labels are involved in the problem. On the other side, however,
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6.5 Numerical Evaluation

6 proj.; 180◦ 8 proj.; 180◦

14 proj.; 180◦ 18 proj.; 180◦

Figure 6.15: Image reconstruction: Using projections over 180◦ we setup different reconstruction

problems for the Shepp-Logan phantom; the result in the lower right corner equals the original. The

results were obtained from our MC-DCA optimizing functional EII , equations (6.15) and (6.16).

a heuristic procedure must be invoked which allows to exchange variables between different

subintervals. Its evaluation in [123] includes the same experiments over 180◦ we conducted

here with the Shepp-Logan phantom. Comparing both shows that our new approach already

yields high quality reconstructions from 8 projections, second image from the left in the top row
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6 Multi-Valued Discrete Reconstruction

16 proj.; 90◦ 18 proj.; 90◦

20 proj.; 90◦ 22 proj.; 90◦

Figure 6.16: Image reconstruction: Using projections over 90◦ we setup different reconstruction

problems for the Shepp-Logan phantom; the result in the lower right corner equals the original. The

results were obtained from our MC-DCA optimizing functional EII , equations (6.15) and (6.16).

of figure 6.15, while our former approach was still not able to reconstruct the original image

from 64 projections.
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Figure 6.17: These figures plot the number of violated sufficient (SC) and the necessary conditions

(NC), section 6.4, for the Shepp-Logan experiments over 90◦ and 180◦. Since we did not perform

any reconstructions over 90◦ with less than 16 projections the first half of the dark bars is left out.

As can be seen in the left plot, the sufficient condition does not drop when increasing the number of

projections, even if the results become close or equal to the groundtruth image. We have observed a

similar behavior also in the binary case where it is possible to apply the optimality conditions without

further modifications, section 6.4. This indicates that the sufficient condition itself is too strict for our

purposes. In contrast to (SC) the violated necessary conditions (NC), shown on the right side, decrease

as the amount of projections growth and finally become zero.
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7 Conclusion and Further Work

In the present work, we considered the problem of binary tomography and more generally

discrete tomography, section 3.2. Related to the optimization of such problems, stochastic

sampling methods like simulated annealing, section 3.3.1, have become quite popular due to

the inherent combinatorial complexity. Although it can be proven that simulated annealing

locates a globally optimal solution it is less advantageous in practice. If applied properly the

computational time exceeds the time spent for a complete search and, further, its probabilistic

procedure prohibits the reproduction of results.

In contrast, we pursued a different optimization strategy since we focused on continuous re-

laxations and concentrated on purely deterministic optimization approaches. Motivated by the

work of [50, 62] and [80], we introduced different linear programming relaxations in chapter 4

and, as we are primarily interested in spatially coherent objects, we supplemented an additional

prior which favors smooth solutions. Therewith, we efficiently computed a globally optimal

solution of the relaxed problem and applied, subsequently, different rounding schemes in order

to obtain a binary solution as approximation to the original problem. Our results, section 4.5,

indicate that our algorithms yield reasonable approximations of the binary problem and, fur-

thermore, a comparison in [7] shows that the results of (reg − BIF ) are comparable to their

network flow approach.

Considering the evaluation, section 4.5, of the threshold-based rounding procedures, sec-

tion 4.4.1, it is interesting that the optimal threshold seems to be systematically distributed

around t = 0.5. This can be further exploited as it renders the rounding scheme to a simple

threshold operation of the fractional solution at 0.5 which is cheap concerning computational

times and trivial to implement. The investigation of this observation from a theoretical point

of view will be part of our further work.

Although the results of the linear programming relaxations are quite promising a drawback

163



7 Conclusion and Further Work

of our approach so far has been the decoupling of the optimization and the rounding stage.

Therefore, we proposed an optimization framework based on d.c. programming in chapter 5

which performs the rounding within the optimization process and is, further, general enough to

fit the linear programming approaches from chapter 4. A comparison of the results obtained

with the new implicit, section 5.4.2, and the old explicit rounding step, section 4.5, shows that

the novel approaches improve the results, even from a smaller number of projections. Further,

our experiments show that the d.c. and linear programming based reconstruction algorithms

yield comparable results to simulated annealing if the latter is run for a long period of time

and carefully cooled down. Concerning the d.c. framework with quadratic programming and

simulated annealing the same conclusion can be found in [132].

The d.c. based linear programming approaches consist of a sequence of linear programs which

are subsequently solved. Using, at this, interior point solvers is fast for the individual linear

programs but contains redundancy when iteratively solving similar problems. Therefore, so

called warm-start strategies [140] utilize that the subsequent linear program is just a perturbed

version of the previous problem in order to reduce the number of interior point iterations. Note

that this perfectly suits our situation as the constraint set remains the same throughout all

iterations, only the objective vector changes. So far, we do not exploit any accelerations but

expect a significant reduction of the reconstruction time and, thus, include such considerations

in our future work.

In section 5.5, we additionally extended our iterative reconstruction framework for binary to-

mography with an Expectation-Maximization (EM) step to improve its behavior in the presence

of degradations during data acquisition and considered, at this, quadratic programming instead

of linear programming, see also [124]. For evaluation purposes we defined two different degra-

dation models. The same reconstruction algorithm can be applied to either of them which

accurately estimates an unknown scale-parameter σ, during the reconstruction. Our results

show that our approach stabilizes the reconstruction process in the presence of degradations.

Regarding the Q function in the EM-step, further work includes an adaptive sampling strategy

of the supporting points. This is important for two reasons: First, it is expected to produce a

more accurate approximation of the integral especially in areas where the true σ is suspected.

Second, it should also reduce the number of supporting points since we can skip areas which

are of low interest. The latter is expected to further speed up our algorithm.

We suppose that our approach is sufficiently general to be applied to other combined recon-

struction and missing parameter estimation scenarios as well. This will also be subject to our

future work.
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In chapter 6, we successfully extended our so far binary d.c. based reconstruction framework

to the case of multiple discrete values. We, therefore, proposed a novel concave regularization

term which yields, if applied to binary tomography, our former binary regularizer as special case,

section 6.2.2 and 6.3.

In contrast to the binary case, the multiclass scenario requires to treat blurring effects caused

by smoothing over the borders of objects properly. For this reason, we introduced two different,

discontinuity-preserving smoothness priors, SI and SII , which are suitable for the multiclass

optimization framework, section 6.2.3. Our results indicate that SII is preferable as it is more

robust than SI and, thus, typically yields better results.

In [10] sufficient and necessary conditions have been proposed regarding the global optimality

of quadratic minimization problems subject to binary constraints. We showed in section 6.4

that these can be adapted such that they also fit the multiclass problem. Similarly to the

results published concerning binary tomography [118], the sufficient condition is too strict for

our needs while the necessary condition applies, figure 6.17.

We numerically evaluated our multiclass algorithm with respect to image reconstruction and

image labeling, as the later can be perceived as a special case of the reconstruction problem.

At this, we compared our approach to state of the art labeling algorithms, namely the graph

cuts based α-expansion algorithm [23], the second-order cone programming (SOCP) relaxation

proposed in [97, 88], and the semidefinite programming (SDP) relaxation in [76]. Section 6.5.1,

shows that our approach achieves competitive results and is, further, applicable to large scale

problem instances, in contrast to (SDP). Concerning image reconstructions, we demonstrated

in section 6.5.2 that our approach yields very promising results and improves the results of

our former multiclass d.c. approach which has been proposed in [123]. We believe that our

multiclass framework can be usefully applied also to other discrete optimization scenarios,

besides image labeling and image reconstruction. Therefore, our future work also concerns its

application to related optimization problems.

Speaking about the DC framework in general, we have still open questions concerning the

optimal selection of the penalty parameter µ: Is there an optimal schedule for µ such that we

can guarantee to obtain the best solution achievable with our DC framework? Note that this

is somewhat similar to the cooling schedule in simulated annealing algorithm. Another related

and open question is to somehow bound the distance to the globally optimal discrete solution.

Can we guarantee in advance that we miss the globally optimal solution at most by a certain

amount? As these questions are extremely difficult, answers to any of them are quite precious

and will be part of our future considerations.
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A Dirac Delta distribution

From a mathematical point of view the Dirac delta function cannot be considered as a function

due to its singularity, instead it is called a distribution.

A distribution g generalizes the concept of a function and is introduced by

{g(t), φ(t)} → Z

where an arbitrary function φ from a prescribed set of test functions is mapped to a number

Z. The mapping itself is usually written in terms of an integral

〈g(t), φ(t)〉 :=

∫ ∞

−∞
g(t)φ(t) dt = Z

which is, however, not meant in the sense of Riemannian integration.

Particularly, the Dirac delta distribution δ maps any continuous (test) function φ to
∫ ∞

−∞
φ(t)δ(t) dt = φ(0).
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B Fourier transform

The definition of the Fourier and the inverse Fourier transform might slightly vary between

different books. Nevertheless, we stick to the following definitions concerning our work.

Continuous Fourier transform

Let f : Rn → Cn be a function, then its Fourier transform (FT) F and its inverse Fourier

transform (IFT) F−1 are defined by

F (u) = F [f(x)] :=

∫

Rn

f(x) exp
(

−i 2π u⊤x
)

dx (B.1)

f(x) = F−1 [F (u)] :=

∫

Rn

F (u) exp
(

i 2π u⊤x
)

du. (B.2)

Discrete Fourier transform

Let x := {xi ∈ C}, i ∈ {0, ..., N − 1}, be a sequence of complex numbers then the

discrete Fourier transform (DFT) transforms x into another sequence of complex numbers

X = {Xs ∈ C}, s ∈ {0, ..., N − 1}, and vice versa the inverse discrete Fourier transform. The

transformations for a one-dimensional arrays are defined by

Xs = F [x] :=
N−1
∑

j=0

xj exp

(

−i2π
js

N

)

(B.3)

xj = F−1 [X] :=
1

N

N−1
∑

s=0

Xs exp

(

i2π
js

N

)

(B.4)

and for a two-dimensional arrays x := {xj,k ∈ C}, j ∈ {0, ..., N − 1}, k ∈ {0, ...,M − 1},
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B Fourier transform

respectively as

Xs,t = F [x] :=
M−1
∑

k=0

N−1
∑

j=0

xj,k exp

(

−i2π

(

js

N
+

kt

M

))

(B.5)

xj,k = F−1 [X] :=
1

NM

M−1
∑

t=0

N−1
∑

s=0

Xs,t exp

(

i2π

(

js

N
+

kt

M

))

(B.6)

See for instance [25] for a comprehensive introduction to the continuous and the discrete Fourier

transform.
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C Total Unimodularity and

Bipartite Graphs

Definition 14. A matrix A is said to be totally unimodular if the determinant of every square

submatrix is either -1, 0, or 1.

Theorem 4 [120] Let matrix A be totally unimodular and b be an integer vector, then the

vertices of the polytope

P := {x | A x ≤ b}

are all integer vectors.

Proof. Assume z to be a vertex of P , then there exists a subset of inequalities in P , defined by

Ã and b̃, such that z is the unique solution of Ã z = b̃. Matrix Ãi,k is obtained by eliminating

the i-th row and the k-th column from Ã, the cofactor matrix is then defined by

cof i,kÃ := (−1)i+k det Ãi,k.

We solve Ã z = b̃ by means of Cramer’s rule for each component of z,

zk =

∑

i b̃i cof i,kÃ

det Ã
=















∑

i b̃i cof i,kÃ if det Ã = 1

−∑i b̃i cof i,kÃ if det Ã = −1.

Note, that the case det Ã = 0 cannot occur since Ã is non-singular.

Consider
∑

i b̃i cof i,kÃ, by the total unimodularity of Ã we have that cof i,kÃ ∈ {−1, 0, 1}.
Since b is integer it follows that the sum and thus zk must be integer.
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C Total Unimodularity and Bipartite Graphs

Definition 15. The incidence matrix Ainc of a graph G := (V,E) is defined by

(av,e)v∈V,e∈E :=















1 if v ∈ e

0 if v /∈ e

Definition 16. The constraint matrix A of a graph G := (V,E) is defined by

A :=









Ainc

−I

I









Theorem 3 [120] A graph G := (V,E) is bipartite if and only if its constraint matrix is totally

unimodular.

Proof. Let A be the constraint matrix of the bipartite graph G.

"⇒"

Consider any k×k submatrix Ã of A, we prove by induction on k that Ã is totally unimodular.

For k = 1 this is trivially true. Assume the induction hypothesis is true for all submatrices of

size (k − 1)× (k − 1).

(i.) If there exists a row in Ã with only zero entries we have det Ã = 0.

(ii.) If there exists a row in Ã with only a single non-zero entry a ∈ {−1, 1} then by means of

Laplace’s formula we expand around a and apply the induction hypothesis on the resulting

(k − 1)× (k − 1) submatrix. Hence we have det Ã ∈ {−1, 0, 1}.

(iii.) Every row of Ã has more than one non-zero entry. Since the lower part of A contains

only a negative and a positive identity matrix Ã must be entirely from the upper part of

A, i.e. Ainc, and thus all its entries are either 0 or 1.

By the fact that G is bipartite we partition the rows of Ã into two sections corresponding

to the partitioning of the vertices V . Consider the row sum vector r and the column sum

vector c of Ã, it holds that
k
∑

i=1

ri =
k
∑

i=1

ci (C.1)

since Ã is a square matrix with binary entries. In case of a bipartite graph G each column

of Ainc contains exactly one entry in each partition. From ci ≤ 2, ri ≥ 2, and equation

(C.1) it follows that ci = ri = 2. Therefore each column of Ã contains a 1 entry in
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the upper section and 1 entry in the lower section. If we add the row vectors in each

section we obtain the 1 vector in both cases. Using the coefficient 1 for the vectors in

one section and -1 for the vectors in the other section we construct a linear combination

which equals 0. Consequently, the rows of Ã are linearly dependent and det Ã = 0.

"⇐"

Let A be totally unimodular and assume that G is not bipartite, then G contains an odd cycle.

In contradiction to the total unimodularity of A the submatrix corresponding to the odd cycle

has determinant 2.

Corollary 17. A graph G := (V,E) is bipartite if and only if its incidence matrix A is totally

unimodular.

Proof. Consequence of theorem 3.
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D Spectral Projected Gradients (SPG)

Considering optimization problems of the following type

(P ) min
x

f(x) subject to x ∈ Ω

where Ω is a convex and closed set. It is further required that f has continuous partial derivatives

on an open set containing Ω and we denote the gradient of f with g. The following spectral

projected gradient (SPG) method, algorithm 15, has been proposed in [14] for the optimization

of problem (P ).

Algorithm 14 Line Search (called from SPG algorithm 15)

fmax := max{f(xk−j) | 0 ≤ j ≤ min{k,m − 1}}
x+ := xk + dk

δ := 〈g(xk),dk〉
α := 1

while f(x+) > fmax + α γ δ do

αtemp := −1
2 α2 δ/(f(x+)− f(xk)− α δ)

if αtemp ≥ σ1 and αtemp ≤ σ2 α then

α := αtemp

else

α := α/2

end if

x+ := xk + α dk

end while

return αk := α
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Regarding the parameters involved in algorithm 15 the following values were suggested in [14]

and worked without any difficulty in our case:

• m := 10

• λmin := 10−3

• λmax := 103

• λ0 := min{λmax,max{λmin, 1/‖PΩ(x0 − g(x0))− x0‖∞}}

• γ := 10−4

• σ1 := 0.1

• σ2 := 0.9

Algorithm 15 Spectral Projected Gradients (SPG)

Require: x0 ∈ Rn, m ≥ 1, λmin > 0, λmax > λmin, γ ∈ (0, 1)

Require: 0 < σ1 < σ2 < 1, λ0 ∈ [λmin, λmax]

x0 := PΩ(x0)

k := 0

while Stopping criterion is not satisfied do

dk := PΩ(xk − λkg(xk))− xk

Compute αk using line search algorithm 14.

xk+1 := xk + αkdk

sk := xk+1 − xk

yk := g(xk+1)− g(xk)

βk := 〈sk,yk〉
if βk ≤ 0 then

λk+1 := λmax

else

λk+1 := min
(

λmax,max
(

λmin, 〈sk, sk〉/βk
))

end if

k := k + 1

end while

x∗ := xk

return x∗
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E Power Iteration and Inverse Iteration

We briefly introduce two algorithms useful in certain situations for the numerical computation

of eigenvalues and eigenvectors of a matrix A. For further details, we refer the reader to [130]

or [58].

It is required that the matrix is symmetric and real, A = A⊤ ∈ Rn×n, which ensures real

eigenvalues λ1, ..., λn and the existence of a complete set of orthogonal eigenvectors, v1, ...,vn,

v⊤
i vj = 0, i 6= j, ‖vi‖ = 1 ∀i.

The first algorithm, typically referred to as power iteration or power method, can be applied if

only the absolute largest eigenvalue and its corresponding eigenvector are needed.

Algorithm 16 Power Iteration

Require: v0 some initial vector with ‖v0‖ = 1

1: for all k = 1, 2, ... do

2: w = Avk−1

3: vk = w/‖w‖
4: λk = (vk)⊤Avk

5: end for

At this, the sequence λk converges towards |λi| ≥ |λj |, ∀j, and vk to the corresponding

eigenvector vi respectively.

The second algorithm, known as inverse iteration, permits the computation of an eigenvalue

closest to an given estimate µ. However, it requires the solution of a linear equation system

during each iteration. Analog to the first algorithm, the desired eigenvalue and corresponding

eigenvector are given by the final values of λk and vk.
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E Power Iteration and Inverse Iteration

Algorithm 17 Inverse Iteration
Require: µ ∈ R estimate of the eigenvalue

Require: v0 some initial vector with ‖v0‖ = 1

1: for all k = 1, 2, ... do

2: Solve (A− µ I)w = vk−1 for w

3: vk = w/‖w‖
4: λk = (vk)⊤Avk

5: end for
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discretization scheme, 32

fully discrete, 32

image-based, 32

distance transform, 52

double-sided exponential distribution, 59

DSA, 30

digital subtraction angiography, 30

DT, 27

applications, 29

discrete tomography, 3, 27

effective domain, 90

electron microscopy, 29

EM

expectation-maximization, 89, 117

error measures, 50

extreme point, 56

feasible point, 56

feasible set, 56

filtered backprojection , 18, 27

backprojection part, 20

filtering part, 20

filtering after backprojection, 20

Ford-Fulkerson algorithm, 45

Fourier slice theorem, 16

FSSV, 57

regularized, 62

FT

continuous, 169

discrete, 169

Fourier transform, 169

Gaussian function, 167

generalized Hamming filter, 21

global optimality, 147

necessary conditions, 148

sufficient conditions, 147

Goldstein-Levitin-Polyak

gradient projection method, 116

graduated non-convexity, 4

graph cuts, 47

Hadamard, Jacques Salomon, 2

Hann filter, 21

Hausdorff distance, 52

histogram, 61

Hounsfield, Sir Geofrey, 9

IFT

continuous, 169

discrete, 169

inverse Fourier transform, 169

ill-posedness, 2, 51

ILP, 95

decomposition, 96

iterating linear programs, 95

image denoising, 151

image labeling, 129, 151

imaging geometry, 9, 11

conebeam, 13, 14

fanbeam, 12, 14
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parallelbeam, 11, 12

incidence matrix, 44, 172

integrality theorem, 45

interior-point algorithm, 57

inverse problems, 2

inverse Radon transform, 17

iterative reconstruction methods, 21

Jensen’s inequality, 118

Karmarkar, 57

Lagrange multiplier, 140

Lagrangian function, 92, 140, 147

Legendre-Fenchel transform, 91

likelihood function, 59

limited angle tomography, x, 2

log likelihood function, 59

Lorentzian function, 167

LP

dual linear program, 56

linear programming, 3, 55

primal linear program, 56

relaxation, 57

standard form, 55

MAP

maximum-a-posteriori estimation, 120

Markov chain, 35

irreducibility, 37

periodicity, 37

stationary distribution, 37

transition matrix, 37

Markov property, 35

material testing, 32

max-flow min-cut theorem, 47

maxflow, 43

medical imaging, 30

method of projections, 22

Metropolis algorithm, 35

Metropolis-Hastings algorithm, 35

microwaves, 10

ML, 60

maximum likelihood estimate, 60

Monte Carlo method, 35

MPRGP

modified proportioning with reduced gra-

dient projections, 141

MRI

magnetic resonance imaging, 2

multi-class reconstruction, 129

multi-valued reconstruction, 129

netflow, 42

netflow

edge capacity, 43

residual capacity, 43

residual network, 43

non-destructive material testing, 1

non-destructive testing, 3, 32

non-diffracting, 10

norm approximations, 58

normal distribution, 60

optimal point, 56

Perron-Frobenius theorem, 37

PET

positron emission tomography, 1

polytope, 46

power method, 177

probability simplex, 131

projection, 140
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projection, 16

proper function, 90

prototypical grayvalues, 130

quadratic optimization, 115

quadratic programming, 115

QUANTITEM, 29

Radon transform, 14, 15

Radon, Johann, 9

Ram-Lak filter, 21

reconstruction, 10

regularization, 2, 61

regularized best inner fit, 62

relaxation, 3, 55

residual, 59

rounding, 63

deterministic, 66

non-deterministic, 63

probabilistic, 63

randomized, 63

Röntgen, Conrad Wilhelm, 9

SA , 35

simulated annealing, 35

SART

simultaneous algebraic reconstruction

technique, 24

scanner

first-generation, 12

fourth-generation, 12, 14

second-generation, 12

third-generation, 12, 14

SDP

semidefinite programming, 154

seismic tomography, 1

Shepp-Logan filter, 21

simplex algorithm, 56

simultaneous reconstruction method, 24

sinogram, 16, 19

SIRT

simultaneous iterative reconstruction

technique, 24

slack variables, 55, 59

smoothness prior, 61, 115, 121

discontinuity preserving, 136

edge preserving, 136

SOCP

second-order cone programming, 154

SPECT

single photon emission computed

tomography, 2

SPG

spectral projected gradients, 122, 140,
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standard simplex, 131

projection, 140

stochastic matrix, 37

strictly concave, 90

strictly convex, 90

subdifferential, 90

subgradient, 90

total unimodularity, 46, 63, 67, 171

trapezoidal rule, 121

TV

total-variation measure, 121

ultrasound, 10

uniform distribution, 60

X-rays, 10
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