

 i

 ii

Proceedings of the First International Workshop on HyperTransport Research and
Applications (WHTRA2009), held Feb. 12th, 2009, Mannheim, Germany
ISBN: 978-3-00-027249-3

EDITORS
Holger Fröning — Universität Heidelberg, Germany
Mondrian Nüssle — Universität Heidelberg, Germany
Pedro Javier García García — Universidad de Castilla-La Mancha, Spain

KEYNOTE SPEAKER
Prof. José Duato — Universidad Politècnica de Valencia, Spain

PROGRAM COMMITTEE
Francisco J. Alfaro — Universidad de Castilla-La Mancha, Spain
Ulrich Brüning — Universität Heidelberg, Germany
José Duato — Universidad Politècnica de Valencia, Spain
Hans Eberle — Sun Microsystems, USA
Holger Fröning — Universität Heidelberg, Germany
Pedro Javier García García — Universidad de Castilla-La Mancha, Spain
Brian Holden — HyperTransport Consortium, USA
Wolfgang Karl — Universität Karlsruhe, Germany
Mondrian Nüssle — Universität Heidelberg, Germany
Rich Oehler — AMD, USA
Sven-Arne Reinemo — Simula Research Lab, Norway
Jeff Underhill — AMD, USA
Sudhakar Yalamanchili — Georgia Tech, USA

 iii

INFORMATION ON PUBLICATION
To ensure a high level of academic content, a peer review process has been used. Each
submission has been reviewed by a minimum of two separate reviewers on the Program
Committee list.

The proceedings are available electronically at the website of the HyperTransport Center
of Excellence as well as on HeiDOK, the Open Access document server of the University
of Heidelberg (see links below). This publication platform offers free access to full-text
documents and adheres to the principles of OpenAccess as well as the goals of the
Budapest Open Access Initiative (BOAI). The papers are accessible through a special
sub-portal and are fully citable.

The Open Access Document Server of the University library of Heidelberg also offers the
possibility to order hardcopies of the proceedings.

Open Access Document Server:

http://archiv.ub.uni-heidelberg.de/volltextserver/portal/whtra09

Workshop Website:
http://whtra2009.uni-hd.de

HyperTransport Center of Excellence:

http://htce.uni-hd.de

 iv

WELCOME MESSAGE FROM THE EDITORS
As organizers of the First International Workshop on HyperTransport Research and
Applications (WHTRA), it is our pleasure to present these proceedings, and we hope you
will find them interesting and useful.

In response to the WHTRA call for papers, we received interesting submissions, covering
either research on key aspects of HyperTransport technology or applications of
HyperTransport in different systems. Each of these papers has been carefully and
rigorously reviewed by three members of the Program Committee, which have provided
not only detailed evaluations of the submissions but also valuable suggestions to enhance
them. As a result of the review process, we have selected the seven papers which
compose the present proceedings, and whose scope and high technical quality make them,
in our opinion, very relevant for the HT community.

Of course, we would like to thank all the members of the Program Committee for their
great amount of effort and time they devoted to support this first edition of WHTRA. All
PC members are experts of the highest level, from both industry and academia, and their
collaboration has been essential for the existence of this workshop.

We would also like to especially thank Prof. José Duato for accepting to deliver the
opening keynote of the workshop. Taking into account the experience and brilliance of
this prominent researcher, we are sure this keynote was one of the strongest contents we
could add to the WHTRA program.

We have to thank the University of Heidelberg and the HyperTransport Center of
Excellence for hosting this event, and the University Library of Heidelberg for publishing
the proceedings.

Finally, we would like to thank authors and attendees for their interest in this first
WHTRA. We hope all of them had a very nice and productive meeting.

Holger Fröning*, Mondrian Nüssle* and Pedro Javier García García†

* Universität Heidelberg, Germany
† Universidad de Castilla-La Mancha, Spain

 v

 vi

CONTENTS

A HyperTransport-Enabled Global Memory Model for Improved
Memory Efficiency

J. Young, S. Yalamanchili, F. Silla, J. Duato..1

HyperTransport 3 Core: A Next Generation Host Interface with
Extremely High Bandwidth

B. Kalisch, A. Giese, H. Litz, U. Bruening..11

Exploiting the HTX-Board as a Coprocessor for Exact
Arithmetics

F. Nowak, R. Buchty, D. Kramer, W. Karl ...20

A general purpose HyperTransport-based Application
Accelerator Framework

D. Kramer, T. Vogel, R. Buchty, F. Nowak, W. Karl....................................30

PGAS Model for the Implementation of Scalable Cluster Systems

J.A. Villar, F. Andújar, F.J. Alfaro, J.L. Sánchez, J. Duato39

Extending HyperTransport Protocol for Improved Scalability

J. Duato, F. Silla, B. Holden, P. Miranda, J. Underhill, M. Cavalli, S.
Yalamanchili, U. Bruening ...46

Run-Time Reconfiguration for HyperTransport coupled FPGAs
using ACCFS

J. Strunk, A. Heinig, T. Volkmer, W. Rehm, H. Schick54

 vii

A HyperTransport-Enabled Global Memory Model For Improved Memory
Efficiency

Jeffrey Young, Sudhakar Yalamanchili∗ Federico Silla, Jose Duato
Georgia Institute of Technology Universidad Politecnica de Valencia, Spain

jyoung9@gatech.edu, sudha@ece.gatech.edu {fsilla, jduato}@disca.upv.es

Abstract

Modern data centers are presenting unprecedented
demands in terms of cost and energy consumption, far
outpacing architectural advances. Consequently, blade
designs exhibit significant cost and power inefficien-
cies, particularly in the memory system. We propose
a HyperTransport-enabled solution called the Dynamic
Partitioned Global Address Space (DPGAS) model for
seamless, efficient sharing of memory across blades in
a data center, leading to significant power and cost sav-
ings. This paper presents the DPGAS model, describes
HyperTransport-based hardware support for the model,
and assesses this model’s power and cost impact on
memory intensive applications. Overall, we find that
cost savings can range from 4% to 26% with power re-
ductions ranging from 2% to 25% across a variety of
fixed application configurations using server consoli-
dation and memory throttling. The HyperTransport im-
plementation enables these savings with an additional
node latency cost of 1,690 ns latency per remote 64
byte cache line access across the blade-to-blade inter-
connect.

1. Introduction

The current solution to satisfying increasing de-
mand for memory on a blade server is to provision
memory on each blade for the worst case demand. One
recent study empirically measured memory footprints
from non-virtualized applications across 3,000 servers
under normal applications and found the average phys-
ical memory usage to be about 1 Gigabyte [3]. How-
ever, this study also found that memory requirements
can vary greatly, with 50% of the applications requiring
between 1 GB and 4 GB of memory at certain points
∗This research was supported in part by NSF grant CCF-0874991,

and Jeffrey Young was supported by a NSF Graduate Research Fel-
lowship

during the five-week period of data collection. Thus,
provisioning blade memory for the average case can
prove to be inadequate with respect to the subsequent
page fault rate while provisioning for the worst-case
memory footprint can lead to servers that are substan-
tially overprovisioned and consequently expensive and
power inefficient. Furthermore, the cost of DRAM is
a non-linear function of density and memory size, thus
small increases in provisioned memory lead to dispro-
portionate increases in cost.

We hypothesize that while memory demands of in-
dividual applications can vary substantially, rarely, if
ever, do all applications make peak demands concur-
rently. The idea proposed by this work is to reduce
the cost and power associated with memory by provi-
sioning blades with less than worst-case memory de-
mand and sharing memory across blades during periods
of localized, high memory demand. Thus, the physi-
cal memory accessible to a blade can vary over time,
increasing during periods of peak load by “borrowing”
physical memory from an adjacent blade. This idea of
shared memory is clearly not new. However, memory
sharing via traditional means can exact significant per-
formance penalties through the interconnect and oper-
ating system management functions rendering them in-
feasible in commodity server configurations.

What has changed is the recent introduction of fast
interconnects integrated onto the multi-core die close to
the memory controllers. The advent of HyperTransport
technology reduced the distance from the “wire” to the
on-chip memory controller providing low-latency ac-
cess to remote memory controllers. Thus the hardware
cost to access remote memory, e.g., adjacent blades, is
no longer prohibitive. However, to productively har-
ness this raw capability, a global system model must be
defined to direct how the system-wide memory is allo-
cated/accessed and thereby shared across the operating
system domains of distinct blades. This is where our ap-
proach differs from prior non-uniform memory access
(NUMA) architectures. Each blade is under the con-

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 1 -

trol of a distinct OS. However a blade may periodically
become a NUMA machine that has access to a portion
of the physical memory of an adjacent blade. The ad-
vent of on-die integrated HT makes this feasible from a
performance perspective.

This paper proposes a dynamic global address
space model (DPGAS) by modifying the existing par-
titioned global address space model (PGAS) [4] to
support a global, noncoherent physical address space
where an application’s virtual address space can be dy-
namically allocated physical memory located on local
and remote nodes. Architectural support for address
space management is tightly integrated into the Hyper-
Transport interface to minimize the performance over-
head of remote memory accesses and to permit fast,
dynamic changes in physical address space mappings.
Physical memory is dynamically shared by spilling
memory demand on a blade to neighboring blades as
necessary during peak periods. Consequently, the to-
tal amount of memory to be provisioned across the data
center can be significantly reduced, leading to substan-
tial cost and power savings with minimal loss of perfor-
mance (an increase in the page fault rate).

Specifically, this paper contributes the following:

1. A physical address space model, Dynamic Parti-
tioned Global Address Space (DPGAS), for man-
aging system-wide physical memory in large-scale
server systems.

2. Design, implementation, and evaluation of hard-
ware support for the DPGAS model via a memory
mapping unit that is integrated with a HyperTrans-
port local interface and tunnels memory requests
via commodity interconnect—in this case Ether-
net.

3. An evaluation of DPGAS with 1) traces from
memory-intensive applications, 2) an on-demand
memory spilling policy to allocate off-blade mem-
ory when local demand exceeds available physi-
cal memory, and 3) an evaluation of the cost and
power savings from more efficient DRAM usage.

The following sections present the model, its archi-
tectural support integrated into the HT interface, and a
simulation-based evaluation of the potential for cost and
power savings.

2. A Dynamic Partitioned Global Address
Space model

The DPGAS model is a generalization of the par-
titioned global address space (PGAS) model to permit

flexible, dynamic management of a physical address
space at the hardware level—the virtual address space
of a process is mapped to physical memory that can
span multiple (across blades) memory controllers. The
two main components of the DPGAS model are the ar-
chitecture model and the memory model.

2.1. Architecture model

Future high-end systems are anticipated to be com-
posed of multi-core processors that access a distributed
global 64-bit physical address space. Cores nominally
have dedicated L1 caches for instructions and data, but
may share additional levels of cache amongst them-
selves in groups of two cores, four cores, etc. A set
of cores on a chip will share one or more memory
controllers and low-latency link interfaces integrated
onto the die such as HyperTransport [15]. All of the
cores also will share access to a memory manage-
ment function that will examine a physical address and
route this request (read or write) to the correct mem-
ory controller—either local or remote. For example, in
the current-generation Opteron systems, such a mem-
ory management function resides in the System Request
Interface (SRI), which is integrated on-chip with the
Northbridge [6].

2.2. Memory model

The memory model is that of a 64-bit partitioned
global physical address space. Each partition corre-
sponds to a contiguous physical memory region con-
trolled by a single memory controller, where all parti-
tions are assumed to be of the same size. For example,
in the Opteron (prior to Barcelona core), partitions are
1 TB corresponding to the 40-bit Opteron physical ad-
dress. Thus, a system can have 224 partitions with a
physical address space of 240 bytes for each partition.
Although large local partitions would be desirable for
many applications, such as databases, there are non-
intuitive tradeoffs between partition size, network diam-
eter, and end-to-end latency that may motivate smaller
partitions. Further, smaller partitions may occur due
to packaging constraints. For example, the amount of
memory attached to an FPGA or GPU accelerator via a
single memory controller is typically far less than 1 TB.
Thus, the DPGAS model incorporates a view of the sys-
tem as a network of memory controllers accessed from
cores, accelerators, and I/O devices.

Two classes of memory operations can be gener-
ated by a local core: 1) load/store operations that are
issued by cores to their local partition and are serviced
per specified core-semantics, and 2) get/put operations

- 2 -

that correspond to one-sided read/write operations on
memory locations in remote partitions [22].

Coherence is separated from the issues central to
defining the DPGAS model because large, scalable co-
herence is still an unsolved research problem, and many
systems do not require full-scale coherence across large
numbers of servers. Additionally, coherence can be en-
forced between the one to eight Opteron-based sockets
on a server blade to provide local “islands” of coher-
ence. In this case one can view the DPGAS model
as dynamically increasing the size of physical mem-
ory (across blades) that is associated with a coherence
domain although the specific protocols are beyond the
scope of this paper.

A sample get transaction on a memory location in
a remote partition must be forwarded over some sort of
network to the target memory controller and a read re-
sponse is transmitted back over the same network. The
specific network is not germane to the DPGAS model
implementation. However, being constrained by com-
modity parts, this study utilizes Gigabit Ethernet.

Once the DPGAS memory model is enabled, an ap-
plication’s (or process’s) virtual address space can be al-
located a physical address space that may span multiple
partitions (memory controllers), i.e., local and remote
partitions. The set of physical pages allocated to a pro-
cess can be static (compile-time) or dynamic (run-time).
Multiple physical address spaces can be overlapped to
facilitate sharing and communication.

This paper is only concerned with a very spe-
cific application of DPGAS, namely sharing of mem-
ory across blades. Dynamic memory requests at a blade
can be satisfied by spilling—allocating memory from a
neighboring blade with spare capacity. We demonstrate
in section 5 that this simple allocation policy can have a
significant impact. The following section addresses the
feasibility of a hardware implementation.

3. DPGAS: implementation

Hardware support for DPGAS has two basic com-
ponents. The first is a memory function that distin-
guishes between local and remote memory requests.
The second is a memory mapping unit that maps remote
physical addresses to specific destination memory con-
trollers. The former is available in modern processors
such as the Opteron. The latter is contributed by this
paper and is tightly integrated into the HyperTransport
interface as shown in Figure 1. The proposed memory
mapping unit or bridge performs several functions, in-
cluding 1) managing remote accesses, 2) encapsulating
remote requests into an inter-blade communication fab-
ric (the demonstrator uses Ethernet), and 3) extending

Figure 1. HToE Bridge with Opteron Memory
Subsystem

Figure 2. HT read request packet format

noncoherent HT packet semantics across nodes. This
section describes the design and implementation of the
bridge.

3.1. HyperTransport overview

HT is a point-to-point packet switched interconnect
standard [15] that defines features of message-based
communication, including 1) the use of groups of vir-
tual channels, 2) read/write transactions with posted and
non-posted semantics, 3) naming and tracking of multi-
ple outstanding transactions from a source, and 4) spec-
ification of ordering constraints between messages. In
addition, the HT specification defines flush and fence
commands to manage updates to memory on a node.
Our model extends the flush command to a remote ver-
sion while conforming to normal HT ordering and dead-
lock avoidance protocols.

A typical command packet is shown in Figure 2,
where the fields specify options for the read transac-
tion and preservation of ordering and deadlock freedom.
Our implementation specifically relies on the UnitID,
SrcTag, SeqID, and address fields. The UnitID speci-
fies the source or destination device and allows the lo-
cal host bridge to direct requests/responses. The Src-
Tag and SeqID are used to specify ordering constraints
between requests from a device, for example, ordering
between outstanding, distinct transactions. Finally, the
address field is used to access memory that is mapped to
either main memory or HT-connected devices. An ex-
tended HT packet can be used that builds on this format

- 3 -

(a) Outgoing datapath (b) Incoming datapath

Figure 3. HToE Bridge Components

to specify 64-bit addresses [15].

3.2. HyperTransport over Ethernet—address
translation and Ethernet encapsulation

Our demonstrator is based on the use of Ether-
net as the commodity inter-blade interconnect primar-
ily due to ready availability of hardware implementa-
tions. The bridge design itself does not rely on Eth-
ernet and is easily replaced with other commodity or
specialized interconnects. We refer to this demonstra-
tor bridge as the HT-over-Ethernet (HToE) implementa-
tion. The HToE bridge implementation uses the Univer-
sity of Heidelberg’s HyperTransport Verilog implemen-
tation [25], which implements an noncoherent HT cave
(endpoint) device. Our bridge interfaces with the Hei-
delberg core so that we can demonstrate functionality
with a realistic HT cave implementation. Figures 3(a)
and 3(b) show the outbound and inbound components
of our HToE bridge along with interface signals for the
Heidelberg core and Ethernet MAC.

The HToE implementation is based on a system
with Opteron nodes where each Opteron node has an
Ethernet-enabled FPGA card available in the HTX con-
nector slot, such as the University of Heidelberg HTX
card [2]. Several nodes are connected via an inexpen-
sive Ethernet switch, and it is assumed that HyperTrans-
port messages sent to remote addresses via the HToE
bridge are routed using one of two methods: 1) access to
the northbridge address mapping tables (via the BIOS)
in order to specify the physical address space mappings
for the HToE bridge device, or 2) an intelligent MMU
that distinguishes between accesses to the local memory
and the I/O address space and HT packets that are sent
for non-local addresses through the HToE bridge.

Consider a system that has been properly initialized
and consider an application that generates a read oper-
ation to an address that is in a remote partition. There
are three stages in each individual communication op-
eration (e.g., a read request command) at a given source
host and attached devices: 1) extension from the 40-bit

physical address in the Opteron to the 64-bit physical
address, 2) creation of a HT packet that includes a 64-bit
extended address, and 3) mapping the most significant
24 bits in the destination address to a 48-bit MAC ad-
dress and encapsulation into an Ethernet frame. An ef-
ficient implementation could pipeline the stages to min-
imize latency, but retaining the three stages has the fol-
lowing advantages: 1) It separates the issues due to cur-
rent processor core addressing limitations from the rest
of the system, which will offer a clean, global shared ad-
dress space, thus allowing implementations with other
true 64-bit processors, and 2) it will be easy to port to
other platforms that do not encapsulate by using Eth-
ernet frames, but use other link layer formats such as
Infiniband. Thus, some efficiency was sacrificed for ini-
tial ease of implementation and for a cleaner, modular
design.

First, the HT packet type is decoded into a re-
quest or response command packet in the module called
Seq2Mac in Figure 3(a). For request packets the two
most significant bits of the 40-bit address are decoded to
select one of four partition registers to access the 24-bit
partition address—the two most significant bits in the
40-bit address used to address the partition register are
reset in parallel with the access to the partition register.
Now three pieces of information are needed: 1) the ex-
tended 24-bit address to form an HT read request packet
with extended address, 2) the MAC address of the des-
tination bridge to encapsulate the extended HT packet
into Ethernet, and 3) the local MAC address, according
to Ethernet frame format to enable the response. Item
3 has been set during initialization, and access to the
source MAC address is not in the critical path. Items 1
and 2 have a direct correspondence among them—given
a destination node ID or the remote partition address,
there is a unique MAC address associated with both data
fields. Therefore, the partition register can store both
the 24-bit partition address and the destination MAC ad-
dress together, thus reducing access time when forming
the Ethernet frame. Once the remote MAC address and
the 64-bit address have been found in the partition ta-

- 4 -

ble, the new HT packet is constructed and encapsulated
in a standard Ethernet packet, illustrated in the figure
as the Ethernet Frame Assembly module. The encapsu-
lated packet is then buffered until it can be sent using
the local node’s Ethernet MAC and the physical Ether-
net interface. For packets that send a set amount of data,
the control and data packets must be buffered until all
the data has been encapsulated into Ethernet frames.

The receive behavior of the bridge on the remote
node will require a “response matching” table where
it will store, for every non-posted HT request (request
that requires a response), all the information required to
route the response back to the source when it arrives.
This table is required since HT is strictly a local inter-
connect and response packets have no notion of a des-
tination 40-bit (or extended 64-bit) address. Since the
formats of HT request and response packets differ and
this implementation desires not to change local HT op-
eration, the SrcTag field of each packet is used to match
MAC addresses from an incoming request packet with
an outgoing response packet. Note that each request
packet contains the source MAC address, and this is
the address stored in the “response matching” table and
later used as the destination MAC address for the corre-
sponding response. Encapsulation and buffering occur
once again until the response and data can be transmit-
ted over Ethernet. In the HToE bridge, this module is
listed as the Pending Request Store in Figure 3(b) and
is shared between incoming and outgoing packets.

It should also be noted that since HT SrcTags are
5 bits, a maximum of 32 outstanding requests can be
handled concurrently using the Pending Request Store.
This limitation means that additional requests must be
queued in the bridge until space is free in the Pending
Request Store. If two request packets arrive with the
same SrcTag, then the latter packet is remapped before
being stored in the table. When the corresponding re-
sponse leaves the HToE bridge, the SrcTag is mapped
back to its original value to ensure proper HT routing
on the requesting local node. Once the response reaches
the local HToE bridge that initiated the read request, the
HT packet is removed from its Ethernet encapsulation.
The UnitID is changed again to that of the local host
bridge and the bridge bit is set to send the packet up-
stream. This allows the local host bridge to route re-
sponses to the originating HT device. Other transac-
tions, such as a posted write or a non-posted write, in-
volve similar sequences of events. The differences in
these transactions are that for posted writes, no data is
stored to create a response; for non-posted writes, only
a “TargetDone” response is returned and no data needs
to be buffered before the response is sent over Ethernet.
Similarly, atomic Read Modify Write commands can be

Table 1. Latency results for HToE bridge
DPGAS operation Latency (ns)

Heidelberg HT Core (input) 55
Heidelberg HT Core (output) 35
HToE Bridge Read (no data) 24

HToE Bridge Response (8 B data) 32
HToE Bridge Write (8 B data) 32

Total Read (64 B) 1692
Total Write (8 B) 944

treated as non-posted write commands for the purposes
of this model.

4. DPGAS: evaluation of hardware sup-
port

Memory mapping is on the critical path for re-
mote accesses. This section reports on the evaluation
of a hardware implementation of DPGAS support, the
bridge, and the integration into the HyperTransport in-
terface and remote extensions to the HyperTransport
protocol required to support DPGAS.

4.1. Bridge implementation

Xilinx’s ISE tool was used to synthesize, map, and
place and route the HToE Verilog design for a Virtex
4 FX140 FPGA. Synthesis tests using Xilinx software
have indicated that the four major modules that make
up the bridge are individually capable of speeds in ex-
cess of 160 MHz—combined, unoptimized results indi-
cate that the HT bridge is more than capable of feeding
a 1 Gbps or faster Ethernet adapter with a 125 MHz
clock speed. Evaluations for each of the request and re-
ply critical paths suggest that the latency overhead of
the bridge is on the order of 24 to 72 ns (for a control
packet with no data and a read request response with
eight doublewords of data, respectively). In a Xilinx
Virtex 4 FX140 FPGA, an unoptimized placement of
the bridge uses approximately 1,300 to 1,500 slices, or
approximately 5% to 6% of the chip. Overheads that
reduced performance included the use of a serial Gi-
gabit Ethernet MAC interface and the use of only one
pipeline to handle packets for each of the three avail-
able virtual channels. The latency results for our bridge,
the Heidelberg core (used to interface with our bridge)
[25], and total latency for the entire path from local to
remote memory are listed in Table 1. The bridge la-
tency numbers assume a 125 MHz clock and discount
any serialization latency normally associated with Xil-
inx Ethernet MAC interfaces.

- 5 -

4.2. Bridge and memory subsystem latencies

While our synthesis results proved that the HToE
bridge is low-latency, it is also important to understand
the overall latency penalty that the memory subsys-
tem contributes to remote memory accesses. The la-
tency values for the HToE bridge component and related
Ethernet and memory subsystem components were ob-
tained from statistics from other studies [6] [25] [17]
and from the above place and route timing statistics for
our bridge implementation. An overview is presented
in Table 2. Our HToE implementation was based on a 1
Gbps Ethernet MAC included with the Virtex 4 FPGA,
but latency numbers were not available for this IP core.
10 Gbps Ethernet numbers are shown in this table to
demonstrate the expected performance with known la-
tency numbers for newer Ethernet standards.

Table 2. Latency numbers used for evaluation
of performance penalties

Interconnect Latency (ns)
AMD Northbridge 40

CPU to on-chip memory 60
Heidelberg HT Cave Device 35 - 55

HToE Bridge 24 - 72
10 Gbps Ethernet MAC 500

10 Gbps Ethernet Switch 200

Utilizing the values from Tables 1 and 2 for using
the HToE bridge to send a request to remote memory,
the performance penalty of remote memory access can
be calculated using the formula:

trem req = tnorthbridge + tHToE + tMAC + ttransmit

where the remote request latency is equal to the time for
an AMD northbridge request to DRAM, the DPGAS
bridge latency (including the Heidelberg HT interface
core latency), and the Ethernet MAC encapsulation and
transmission latency. This general form can be used to
determine the latency of a read request that receives a
response:

trem read req = 2*tHToE req 2*tHToE resp + 2*tMAC +
2*ttransmit + tnorthbridge + trem mem access

These latency penalties compare favorably to other
technologies, including the 10 Gbps cut-through latency
for a switch, which is currently 200 ns [23]; the fastest
MPI latency, which is 1.2 µs [21]; and disk latency,
which is on the order of 6 to 13 ms for hard drives such
as those in one of the server configurations used below
for the evaluation of DPGAS memory sharing [26]. Ad-
ditionally, this unoptimized version of the HToE bridge

is fast enough to feed a 1 Gbps Ethernet MAC with-
out any delay due to encapsulating packets. Likely
improvements for a 10 Gbps-comptable version of the
HToE bridge would include multiple pipelines to allow
processing of packets from different virtual channels
and the buffering of packets destined for the same des-
tination in order to reduce the overhead of sending just
one HT packet in each Ethernet packet in the current
version.

5. DPGAS: evaluation of memory sharing

In the absence of a full hardware testbed, we em-
ploy a trace-driven analysis of the potential savings of-
fered by a DPGAS implementation. Virtual address
traces were acquired using an instrumented SIMICS
3.0.31 model [20] and fed through an internally devel-
oped C++ page table simulator to determine the num-
ber of page faults as a function of physical memory
footprints ranging from 32 MB to 1 GB. Five bench-
marks were selected: Spec CPU 2006’s MCF, MILC,
and LBM [11]; the HPCS SSCA graph benchmark [1];
and the DIS Transitive Closure benchmark [7]. These
benchmarks had maximum memory footprints ranging
from 275 MB to 1600 MB. A 2.1 billion address trace
(with 100 million addresses to warm the page table)
was sampled from memory intensive program regions
of each benchmark.

5.1. Memory allocation

We analyze the impact of DPGAS by simulating a
workload allocation across a multiblade server config-
uration using a simple greedy bin packing algorithm.
An application is randomly selected and its maximum
memory footprint is allocated on a random blade. This
process is repeated until some termination criterion is
met, e.g., allocation failure, fixed workload, etc. The
workload is recorded and the same set of memory foot-
prints is allocated across the same server configuration
using DPGAS as follows. When an application cannot
be allocated on a blade due to a lack of memory, ad-
ditional memory is allocated on an adjacent blade, i.e.,
spilling the memory request. This is repeated until all
application footprints have been allocated.

Two HP Proliant server configurations were se-
lected for analysis, representing high-end and low-end
performance points. Both configurations are expected
to execute at least two instances of a benchmark appli-
cation trace per core. These server configurations are
detailed in Table 3. All associated system and memory
costs and power statistics were derived from [13] and
[14].

- 6 -

Table 3. HP Proliant server configurations
Model (HP) CPU Cores

(Opterons)
Max.
Memory

Base Cost/Power

DL785 G5 8 quad-core
2.4 GHz

512 GB ˜$42,000/1110 W

DL165 G5 2 quad-core
2.1 GHz

64 GB ˜$2,000/197 W

5.2. Cost and power evaluation

Results from two classes of experiments are shown
here based on results from experiments (as described in
Section 5.1) averaged over 50 iterations.

5.2.1. Fixed workload and scale out. These experi-
ments considered fixed workloads where a workload is
a fixed number of applications. We based our workload
model results from Intel’s study of candidate applica-
tions for virtualization [3] where an average number of
applications per core were identified. We extrapolated
this number to a data center with 250 servers (which
translates to 2,000 or 500 processor sockets for our
server configurations) that could support either 19,500
applications using high-end servers or 4,700 applica-
tions using low-end servers. Additionally, we investi-
gated the effects of scaling the number of blades while
keeping the workload fixed.

This set of experiments used a baseline configura-
tion with a fixed 64 GB of memory per blade and stan-
dard bin packing allocation where application mem-
ory footprint had to reside within a blade. The result-
ing fragmentation left unused memory across blades al-
though several blades exhibited very high memory uti-
lization (in excess of 60 GB). For comparison purposes,
we considered a DPGAS-enabled server configuration
where half the blades were provisioned with 64 GB
and half with less memory. The aggregate difference
in memory is roughly equal to the unutilized memory
in the first configuration. This latter configuration cor-
responds to a data center with half of the servers over-
provisioned (receivers in our model) and half of the
servers minimally provisioned (spill memory to other
nodes). Finally we repeated the experiment with 56 GB
per blade rather than 64 GB, which reduced memory
fragmentation.

The total cost savings for the low- and high-end
server configurations are shown in Figures 4 and 5
with savings between standard and DPGAS allocation
graphed as the third column of each group. As we see in
the base (250-server) case, DPGAS has the potential to
save 15% to 26% in memory cost when the initial provi-
sioning is high (64 GB), which translates into a $30,736
savings for the low-end servers and $200,000 for the
high-end servers. On the other hand, with lower initial

 10000

 100000

 1e+06

250 225 200

C
os

t (
$)

Number Physical Blades

HP Proliant DL165 G5 Scale Out - Cost vs Number Blades

Normal Allocation
DPGAS Allocation

DPGAS Savings

Figure 4. Scale out cost for Proliant DL165 G5

memory (56 GB), the savings in Figure 5 are 13%, or
$103,365

 10000

 100000

 1e+06

250 225 200
C

os
t (

$)
Number Physical Blades

HP Proliant DL785 G5 Scale Out - Cost vs Number Blades

Normal Allocation: 56 GB
DPGAS Allocation: 56 GB

DPGAS Savings: 56 GB
Normal Allocation: 64 GB

DPGAS Allocation: 64 GB
DPGAS Savings: 64 GB

Figure 5. Scale out cost for Proliant DL785 G5

It is also important to notice that savings with DP-
GAS allocation drops as applications are consolidated
onto fewer servers. This is likely due to the fact that
there is less fragmentation with no sharing and there-
fore less inefficiency to be recovered.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

250 225 200

P
ow

er
 (

W
)

Number Physical Blades

HP Proliant DL165 G5 Scale Out - Power vs Number Blades

Normal Allocation
DPGAS Allocation

DPGAS Savings

Figure 6. Scale out power for Proliant DL165 G5

Similarly, the power savings using DPGAS alloca-
tion (Figures 6 and 7) is substantial in the base case,
with savings of 3,625 (25%) and 5,875 (22%) watts of
input power for the low-end and high-end server config-
urations, respectively. When server consolidation onto
200 servers is used, power savings drops substantially
to 800 and 500 watts for the same configurations. The
smaller memory configuration results for the high-end
server also demonstrate smaller savings of 2500 watts in
the 250 server case. Both the cost and power results in-
dicate that DPGAS memory allocation is most effective
when fragmentation is normally high and when vari-
ance in workload memory footprint is high.

- 7 -

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

250 225 200

P
ow

er
 (

W
)

Number Physical Blades

HP Proliant DL785 G5 Scale Out - Power vs Number Blades

Normal Allocation: 56 GB
DPGAS Allocation: 56 GB

DPGAS Savings: 56 GB
Normal Allocation: 64 GB

DPGAS Allocation: 64 GB
DPGAS Savings: 64 GB

Figure 7. Scale out power for Proliant DL785 G5

 1e+06

 1e+07

250 225 200

C
os

t (
$)

Number Physical Blades

HP Proliant DL785 G5 Scale Out - Cost vs Number Blades, Varying Apps

Normal: Large Apps
DPGAS: Large Apps

DPGAS: High Var Apps
Normal: High Var Apps

Figure 8. Scale out cost for Proliant DL785 G5 -
varying workload sizes

 10000

 100000

250 225 200

P
ow

er
 (

W
)

Number Physical Blades

HP Proliant DL785 G5 Scale Out - Power vs Number Blades, Varying Apps

Normal: Large Apps
DPGAS: Large Apps

Normal: High Var Apps
DPGAS: High Var Apps

Figure 9. Scale out power for Proliant DL785 G5
- varying workload sizes

To further investigate the effects of memory frag-
mentation on cost and power, we also ran two separate
sets of allocations using workloads drawing from 1) a
pool of three applications with large memory footprints
and 2) a pool of two applications with small and very
large footprints. This experiment included the use of a
synthetic benchmark with a memory footprint of 2275
MB that represented a large, unknown enterprise work-
load similar to those in [3]. The results can be seen in
Figures 8 and 9 with cost savings of 2% to 3% for the
large applications and 2% to 4% for the second applica-
tion set. Power savings range from 6% to 7% for large
applications and 8% to 12% for the second set of appli-
cations. The dropoff in performance can be explained
as follows. When application footprints are of similar
size, the bin packing behavior of allocation produces
little fragmentation, but when applications have small
footprints, they can fill unallocated memory and reduce
fragmentation. DPGAS seems to work best when the

dynamics are such that a wide range of footprints are
likely, leading to fragmentation that can be otherwise
recovered by DPGAS.

5.2.2. Memory throttling. Memory throttling is
where the allocated footprint per application is less
than the maximum footprint at the expense of an
increased page fault rate. We compared two additional
cases with 250 servers: 1) Each server had 50% of the
original memory and each application was allocated
50% of its maximum memory footprint, and 2) each
server had 25% or the original memory, and each
application received 25% of its maximum footprint.
The results for cost and power in the high-end server
are shown in Figures 10 and 11. The effects of memory
throttling are significant. For instance, reducing
memory from 64 GB to 32 GB in each server reduces
memory cost by $478,000 and memory power by
17,750 watts (from a base cost of $897,000 and base
power of 35,500 watts). The usage of DPGAS allo-
cation with 50% memory throttling with the high-end
server configuration can reduce the total memory cost
by $570,000 and total memory power by 21,125 watts.

 100000

 1e+06

100 50 25

C
os

t (
$)

Percentage of Physical Memory

HP Proliant DL785 G5 Memory Throttling - Cost vs Amount of Memory Available

Normal: 56 GB
DPGAS: 56 GB
Normal: 64 GB

DPGAS: 64 GB

Figure 10. Memory throttling cost for Proliant
DL785 G5

 1000

 10000

 100000

100 50 25

P
ow

er
 (

W
)

Percentage of Physical Memory

HP Proliant DL785 G5 Memory Throttling - Power vs Amount of Memory Available

Normal: 56 GB
DPGAS: 56 GB
Normal: 64 GB

DPGAS: 64 GB

Figure 11. Memory throttling power for Proliant
DL785 G5

At the lower bound of savings, reducing memory
in the high-end server from 56 GB to 28 GB or 14 GB
results in similar savings due to memory throttling, but
the savings from using DPGAS is somewhat lower with
cost savings of 4% to 14% and power savings of 2%
to 10%. This translates to cost savings of $12,000 to

- 8 -

Table 4. HP Proliant 165 G5 cost and power with
memory throttling

Allocation No Throttling 50% Throttling 25% Throttling
Normal ($) $230,750 $111,250 $51,500
DPGAS ($) $183,000 $97,125 $51,500
Normal (W) 14,250 7,000 3,500
DPGAS (W) 11,250 5,875 3,500

$24,000 over the normal case and power savings of 250
to 500 W, using 50% and 25% memory throttling.

Additional statistics for the low-end server configu-
ration are shown in Table 4. These experimental results
concur with the high-end server configuration, except
that power and cost savings are smaller due to less mem-
ory fragmentation and less memory overall for remote
sharing. In the 25% memory throttling case, there is not
enough leftover memory to be utilized with DPGAS,
so no savings are incurred. Overall, DPGAS enables a
4% to 22% reduction in memory cost and a 2% to 25%
reduction in memory power when compared to normal
allocation for both the low- and high-end servers.

When using memory throttling, performance must
also be taken into account. The results from our trace-
driven analysis of the benchmark applications provide
data on page fault rates that directly correspond to the
amount of memory a benchmark is allocated. These re-
sults are used to generate Figures 12 and 13 that demon-
strate the effects of memory throttling on random allo-
cations of each of our benchmark applications. In gen-
eral, the usage of memory throttling leads to an order-
of magnitude increase in the number of page faults for
all applications, but some applications with small mem-
ory footprints or random access patterns (poor spatial
reuse) are affected much more by using memory throt-
tling with normal allocation.

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

DIS SSCA LBM MILC MCF

P
ag

e
F

au
lts

Benchmarks

HP Proliant DL165 G5 Memory Throttling - Page Faults vs Number Blades

No Throttling
50% Throttling
25% Throttling

Figure 12. Memory throttling performance for
Proliant DL165 G5

6. Related Work

Other researchers have also been focused on the
growing power and cost implications of large clusters
and server farms. Feng, et al. [5] discussed the ef-
ficiencies associated with large servers and proposed

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

DIS SSCA MCF MILC LBM

P
ag

e
F

au
lts

Physical Memory Size (GB)

HP Proliant DL785 G5 Memory Throttling - Page Faults vs Number Blades

No Throttling
50% Throttling
25% Throttling

Figure 13. Memory throttling performance for
Proliant DL785 G5

a power-efficient supercomputer called Green Destiny.
Other strategies have included dynamic voltage scaling
for power-aware computing [10] with a focus on CPU
power. Raganathy, et al. [24] has also suggested that
power-management should take place at the server en-
closure levels so that individual systems are not over-
provisioned. This study also focused mainly on high-
level CPU power management, not memory power.

However, Lefurgy’s 2003 study [18] cited impor-
tant reasoning behind why DRAM cost and power
should be considered as a major component in improv-
ing overall server efficiencies. Several other researchers
have also begun focusing on memory power manage-
ment at the architecture level, including [16], which
proposes using adaptive power-based scheduling in the
memory controller, and [9], which uses power “shift-
ing” driven by a global power manager to reduce power
of the overall system based on runtime applications.

At the operating system level, [12] proposed a
power-aware paging method that utilizes fast MRAM to
provide power and performance benefits. Tolentino [27]
also suggested a software-driven mechanism to limit ap-
plication working sets at the operating system level and
reduce the need for DRAM overprovisioning.

An evaluation of power and cost trends similar to
the ones in this paper was conducted in [19], concluding
that separate PCI Express-based memory blades could
be used to reduce overall memory usage and memory
cost and power. [8] investigated real-world statistics for
some of the large “warehouse-sized” server farms that
Google runs.

7. Conclusion

With increasing server power and cost outpacing
related performance gains, a focus on making data cen-
ters and clusters as efficient as possible is vital from a
business perspective. We present a new address space
model, the Dynamic Partitioned Global Address Space,
and define an associated dynamic hardware-based ad-
dress translation scheme for efficiently utilizing remote

- 9 -

memory with low-latency interconnects such as Hyper-
Transport. An implementation of this model has been
developed by encapsulating HyperTransport packets in
Gigabit Ethernet via our HT over Ethernet bridge, and
initial synthesis results indicate that remote read and
write operations are low-latency and comparable to fast
message-passing implementations. The impact of low-
latency remote access on the ability to share memory
is significant, and future plans include the pursuit of a
HW/SW testbed to evaluate a complete solution. Addi-
tional future work is described in [28].

References

[1] David A. Bader and Kamesh Madduri. Design and im-
plementation of the hpcs graph analysis benchmark on
symmetric multiprocessors. In HiPC, pages 465–476,
2005.

[2] Ulrich Bruening. The htx board: The universal htx
test platform. http://www.hypertransport.
org/members/u_of_man/htx_board_data_
sheet_UoH.pdf.

[3] S. Chalal and T. Glasgow. Memory sizing for server vir-
tualization. 2007. http://communities.intel.
com/docs/.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
OOPSLA ’05, pages 519–538, New York, NY, USA,
2005. ACM.

[5] Wu chun Feng. Making a case for efficient supercom-
puting. ACM Queue, 1(7):54–64, 2003.

[6] Pat Conway and Bill Hughes. The amd opteron north-
bridge architecture. IEEE Micro, 27(2):10–21, 2007.

[7] Dis stressmark suite, updated by uc irvine. 2001.
http://www.ics.uci.edu/˜amrm/hdu/DIS_
Stressmark/DIS_stressmark.html.

[8] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Bar-
roso. Power provisioning for a warehouse-sized com-
puter. In ”ISCA 2007: Proceedings of the 34th an-
nual international symposium on Computer architec-
ture”, pages 13–23, New York, NY, USA, 2007. ACM.

[9] Wes Felter, Karthick Rajamani, Tom Keller, and Cosmin
Rusu. A performance-conserving approach for reducing
peak power consumption in server systems. In ICS ’05,
pages 293–302, New York, NY, USA, 2005. ACM.

[10] Rong Ge, Xizhou Feng, and Kirk W. Cameron. Im-
provement of power-performance efficiency for high-
end computing. In IPDPS ’05, page 233.2, Washington,
DC, USA, 2005. IEEE Computer Society.

[11] John L. Henning. Spec cpu2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News, 34(4):1–17,
2006.

[12] Y. Hosogaya, T. Endo, and S. Matsuoka. Performance
evaluation of parallel applications on next generation
memory architecture with power-aware paging method.

IPDPS ’08, pages 1–8, April 2008.
[13] Hp proliant dl servers - cost specifications. 2008.

http://h18004.www1.hp.com/products/
servers/platforms/.

[14] Hp power calculator utility: a tool for estimating power
requirements for hp proliant rack-mounted systems.
2008. http://h20000.www2.hp.com/bc/
docs/support/SupportManual/c00881066/
c00881066.pdf.

[15] Hypertransport specification, 3.00c, 2007. http://
www.hypertransport.org.

[16] Ibrahim Hur and Calvin Lin. A comprehensive approach
to dram power management. In HPCA ’08, 2008.

[17] Intel 82541er gigabit ethernet controller. http://
download.intel.com.

[18] Charles Lefurgy, Karthick Rajamani, Freeman Rawson,
Wes Felter, Michael Kistler, and Tom W. Keller. En-
ergy management for commercial servers. Computer,
36(12):39–48, 2003.

[19] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang,
Chandrakant Patel, Trevor Mudge, and Steven Rein-
hardt. Understanding and designing new server architec-
tures for emerging warehouse-computing environments.
In ISCA ’08, pages 315–326, Washington, DC, USA,
2008. IEEE Computer Society.

[20] Peter S. Magnusson, Magnus Christensson, Jesper
Eskilson, Daniel Forsgren, Gustav Hållberg, Johan
Högberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, 2002.

[21] Mellanox connectx ib specification sheet, 2008. http:
//www.mellanox.com.

[22] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J.
Littlefield. Global arrays: a portable ”shared-memory”
programming model for distributed memory computers.
In Supercomputing ’94, pages 340–349, New York, NY,
USA, 1994. ACM.

[23] Quadrics qs ten g for hpc interconnect product family.
2008. http://www.quadrics.com/.

[24] Parthasarathy Ranganathan, Phil Leech, David Irwin,
and Jeffrey Chase. Ensemble-level power management
for dense blade servers. In ISCA ’06, pages 66–77,
Washington, DC, USA, 2006. IEEE Computer Society.

[25] David Slogsnat, Alexander Giese, Mondrian Nüssle, and
Ulrich Brüning. An open-source hypertransport core.
ACM Trans. Reconfigurable Technol. Syst., 1(3):1–21,
2008.

[26] Storagereview.com drive performance resource center.
2008. http://www.storagereview.com/.

[27] Matthew E. Tolentino, Joseph Turner, and Kirk W.
Cameron. Memory-miser: a performance-constrained
runtime system for power-scalable clusters. In CF ’07,
pages 237–246, New York, NY, USA, 2007. ACM.

[28] Jeffrey Young, Sudhakar Yalamanchili, Federico Silla,
and Jose Duato. A hypertransport-enabled global mem-
ory model for improved memory efficiency (tech re-
port), 2008. http://www.cercs.gatech.edu/
tech-reports/index08.shtml.

- 10 -

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany
HyperTransport 3 Core: A Next Generation Host Interface with Extremely
High Bandwidth

 Benjamin Kalisch, Alexander Giese, Heiner Litz, Ulrich Brüning
University of Heidelberg

Computer Architecture Group
{benjamin.kalisch, alexander.giese, heiner.litz, ulrich.bruening}@ziti.uni-heidelberg.de

Abstract This fact was first realized by AMD which replaced
As the amount of computing power keeps increas-
ing, host interface bandwidth to memory and input-out-
put devices (I/O) becomes a more and more limiting
factor. High speed serial host interface protocols like
PCI-Express and HyperTransport (HT) have been
introduced to satisfy the applications’ ever increasing
demands for more bandwidth. Recent applications in
the field of General Purpose Graphic Processing Units
(GPGPUs) and Field Programmable Gate Array
(FPGA) based coprocessors are an example. In this
Paper we present a novel implementation of an FPGA
based HyperTransport 3 (HT3) host interface. To the
best of our knowledge it represents the very first imple-
mentation of this type. The design offers an extremely
high unidirectional bandwidth of up to 2.3 GByte/s. It
can be employed in arbitrary FPGA applications and
then offers direct access to an AMD Opteron processor
via the HT interface. To allow the development of an
optimal design, we perform a complexity and require-
ments analysis. The result is our proposed solution
which has been implemented in synthesizable Hard-
ware Description Language (HDL) code. Microbench-
marks are presented to show the feasibility and high
performance of the design.

1. Introduction

Following Moore’s Law, computing power has dou-
bled every 18 months over the last years. While scaling
the operating frequency of high end processors has
come to an end, exponential gains in computing power
are still anticipated through the use of parallel process-
ing. In either case, providing the processor with enough
duty will require the increase of I/O bandwidth signifi-
cantly. In fact, the processor - I/O bandwidth perfor-
mance gap has increased in the last years [1] making it
even more crucial to improve I/O performance.

the outdated front size bus (FSB), that is used to inter-
connect the CPU, memory and I/O devices, with a
novel packet based point-to-point interconnect called
HyperTransport (HT) in their Opteron processors. HT
offers high bandwidth, extremely low latency [2] and
can support cache coherency which makes it ideally
suited for communication between CPUs, memory and
IO. The high performance of the HT interconnect is the
main reason for the much better scalability of Opteron
based symmetric multiprocessor (SMP) with non uni-
fied memory architecture (NUMA) machines in com-
parison to Intel Xeon based SMPs [3].

HT supports variable link widths and up to 2 Gbit/s
on each lane in protocol version 2.x, also referred to as
Gen1. This leads to a maximum unidirectional band-
width of 4 GByte/s for a 16 bit link. Apart from the
Opteron CPUs, HT 2.x is successfully implemented by
peripheral hardware devices like the Pathscale network
interface [4], Cray’s Seastar [5] and the Field Program-
mable Gate Array (FPGA) based rapid prototyping
board [6]. HT devices can directly communicate with
the processors without any intermediate bridges using
the HyperTransport Extension (HTX) connector [7].
HTX is a PCI-Express slot like standard defined by the
HyperTransport Consortium (HTC).

Recently, the HTC introduced HT 3.1, also referred
to as Gen3, which increases the supported speeds to 6.4
Gbit/s on a lane equalling a theoretical unidirectional
peak bandwidth of 12.8 GByte/s for a 16 bit link. The
first integrated circuits (ICs) that will support HT 3.x
are the Shanghai Opteron processors, however, no non
Opteron implementations are currently available. The
reason for this is, that currently no HTX3 capable main-
boards are available and the lack of an open source
HT3-Core like the HT2-Core [8]. To solve the latter
issue, in this paper we present the very first high perfor-
mance HT3-Core for FPGA implementations. The core
provides very high bandwidth even for FPGA imple-
- 11 -

mentations, and therefore presents the ideal building
block for high performance next generation I/O
devices. Our solution promises to deliver a bidirec-
tional bandwidth of up to 9.2 GByte/s for a 16 bit link.
To the best of our knowledge this makes it the fastest
host interface implementation currently available for
FPGAs.

The rest of the paper is organized as follows. Sec-
tion 2 will provide background information and define
the requirements for an FPGA based HT3 core. Section
3 will present a complexity analysis and describe the
challenges of such an implementation. Our proposed
architecture is presented in Section 4. It is followed by
an evaluation in Section 5 and we draw a conclusion in
Section 6.

2. Background

To define the requirements of an HT3 core a short
introduction to the HT protocol will be given. The HT
specification defines the entire protocol stack ranging
from the physical layer up to the transaction level layer.
The physical layer defines the electrical parameters
which have to be adhered by HT device implementa-
tions and include jitter, slew rate and common mode
characteristics. Physical layer compliance is already
provided by the physical layer device (PHY) and there-
fore out of scope of this paper. The PHY also takes care
of serialization/deserialization (SERDES) of the high-
speed serial data stream. For signalling HT defines 2, 4,
8, 16 and 32 bit command-address-data (CAD) busses
which are accompanied by a set of control (CTL) lanes
and clock (CLK) lanes. Most common are 8 or 16 bit
configurations, whereby multiples of 8 CAD lanes, one
CTL and one CLK lane are considered as a link. A link
connects exactly two endpoints whereas switches have
to be employed to realize topologies of multiple end-
points.

The transaction layer defines the packets which are
transmitted over HT links. A transaction consists of a
command packet and an optional data packet carrying
1-16 doublewords (32 bit) which allows to send maxi-
mum sized transactions of 64 Byte. This size is equiva-
lent to a cacheline on current x86 systems. In Gen3
mode each transaction is also appended with a CRC.
The specification defines a large number of commands
with the main purpose of data movement. Therefore,
write, read and response operations are defined. To
avoid deadlocks, which may be caused by cyclic depen-
dencies from split phase transactions, the different com-
mands are assigned to different virtual channels (VC).
This allows reordering of the data stream and breaking
up cyclic dependencies. Furthermore, the commands

implement low level functionality like flow control and
fault tolerance. The required functionality which has to
be provided by an HT3-Core implementation is there-
fore as follows:
• Packetization: Extracts Transactions from the data

stream and sorts them into their according virtual
channel queue and vice versa.

• Flow control: HT defines a credit based flow con-
trol which has to be supported by the core.

• Fault tolerance: HT3 defines an advanced CRC
mechanisms for increased reliability

• Scrambling: To support clock data recovery in
Gen3 mode, the data stream is scrambled.

• Low level initialization methods
As the HT2-Core presented in [8] implements the

same functionality according to the HT2 specification
and HT3 is downwards compatible, it is reasonable to
analyze, whether a modified HT2-Core would be a suf-
ficient solution. Therefore, it is useful to examine the
novel features which have to be supported by Gen3
devices. The most important modifications are the
increased frequency support of up to 3.2 GHz and the
enhanced fault tolerance mechanic. Additionally to the
periodic CRC, which can be used to detect, but not to
correct errors, HT3 introduces a retry mechanism with
per-transaction CRC. Every transaction sent out by the
transmitter is appended with a CRC and stored into a
retry buffer. On reception the receiver calculates the
CRC again and in the case of a successful match sends
an acknowledge back. In the case of a mismatch a nack
packet is generated which leads to a retransmission of
the original transaction. Implementation of the retry
mechanism requires heavy modification of the HT2-
Core. Even more significant, however, is the increased
bandwidth that has to be supported internally. The HT2-
Core supports an internal data width of 64 bit which
requires an internal core clock frequency of 600-1600
MHz for a 16 bit link at Gen3 frequencies, and a fre-
quency of 300-800 MHz for a 8 bit link.

Last but not least is the introduction of a new data
sampling scheme for Gen3 devices. Instead of the
source synchronous mechanism sampling incoming
data with the link clock, HT3 devices use a clock data
recovery (CDR) technique. The CDR circuit recovers a
dedicated clock for each lane and uses it to sample the
data. As static data patterns occurring in IDLE phases
prohibit reliable clock recovery, a data scrambling
mechanism is used in Gen3 mode.

The required change to a 128 bit internal interface
and the additional modifications regarding retry mode
demand for a complete redesign of the HT2-Core.
- 12 -

3. Complexity analysis

As mentioned before HT3 is a packet-based point to
point interconnect, which operates on a minimum
packet size of 32 bit, one doubleword (DW). To support
the provided bandwidth of HT3 an analysis of the data
stream is required.

The data stream of HT3 can be distinguished into
three different DW types which are command (CMD),
data (DATA), and a cyclic redundancy check (CRC)
checksum. To keep the decoding of the data stream as
simple as possible, an internal data width of 32 bit
would be ideal, so every clock cycle one of only three
different types of DWs must be interpreted. To support
higher bandwidth on the HT link, the data stream has to
be parallelized which leads to wider internal data buses,
as the maximum frequency is the limiting factor in
FPGAs. Due to the fact that the HT3 protocol does not
allow all combinations of different DW types, the com-
plexity does not increase quadratically, but as can be
seen in Figure 1, the increase in complexity is signifi-
cant. Multiple consecutive command DWs may belong
to two separate command packets without a separating
CRC due to command packet insertion. The number of
combinations for a 256 bit wide data path is not
depicted due to the large number of possible combina-
tions.

Figure 1: Complexity growth

HT3 has a minimum link frequency requirement of
1.2 GHz. Depending on link width and parallelization
degree this results in different possible core frequencies
shown in Table 1.

The target device is a state of the art Virtex 5 FPGA
which can be clocked at a theoretical maximum fre-
quency of 550 MHz for the core logic. For a design that
contains complex logic as the HT3-Core a core fre-
quency of 300 MHz is difficult to achieve but possible.
This reduces the possible combinations of link width
and parallelization degree that can be realized.

In the HT3-Core design an internal data width of
128 bit is implemented, as it provides the best combina-
tion between feasible core frequency and logic com-
plexity. The core logic mainly consists of multiplexing
structures which sort the DWs to form complete pack-
ets. Analysis of these multiplexing structures has
shown that two different factors influence the reachable
frequencies of such multiplexers. One is the number of
the input bits of the multiplexer, the other is the number
of control signals of the multiplexers. Figure 2 shows
that increasing the multiplexer width reduces the
achievable core frequency significantly. Doubling the
width from two to four doublewords reduces the operat-
ing frequency by almost 100 MHz.

Figure 2: Multiplexer width influence

DW0
DW1

DW0

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

Packet Combinations at 32 bit data width

Packet Combinations at 64 bit data width

Packet Combinations at 128 bit data width

= CMD = DATA = CRC

Table 1: Internal clock frequencies

At 1.2GHz link
frequency

External Link Width

8bit 16bit

32bit 600MHz 1200MHz

Internal 64bit 300MHz 600MHz

Link Width 128bit 150MHz 300MHz

256bit 75MHz 150MHz

300

350

400

450

500

550

1 2 3 4

Width of multiplexer DW

M
H

z

Frequency
- 13 -

Increasing the number of control signals of the mul-
tiplexer also reduces the maximum operating fre-
quency. This is shown in Figure 3, where all other
parameters besides the control signals remain unmodi-
fied.

Figure 3: Multiplexer control signal influence

To handle all different traffic types, a multiplexer
width of 128 bit which selects between two sets of
seven DW wide registers is needed. The input and out-
put path is four DWs wide, and if only one DW can be
forwarded three DWs must be stored. If the multiplexer
width would be increased to 256 bit the above
explained factors for frequency decrease would take
effect. Obviously, the input width would have to be
doubled and also the number of control inputs would
have to increase, as the decoding complexity increases
due to different cases that have to be handled. These
two combined factors result in a much larger amount
and deeper hierarchy of multiplexers inside the design.
Thereby the routing of the control signals to all multi-
plexers becomes so difficult that routing delay and
fanout get extremely high and reduces the reachable
frequency. This reduction outweighs the advantage
gained through doubling the data path, which is a
reduction of the necessary core frequency by a factor of
two.

These results show that an internal data width of 64
bit is not sufficient to reach a clock frequency which is
feasible in today FPGAs. A multiplexer width of 256
bit increases the complexity of the logic nearly quadrat-
ically, which is a point where no advantage of the lower
internal frequencies can be achieved due to the routing
overhead. Therefore a multiplexer width of 128 bit was
chosen for the design.

4. Proposed architecture

Due to the addition of a retry mode implementation
for HT3 devices, as well as the increased internal data
path width, a new architecture has been created to ful-

fill these needs. The increased data path width, neces-
sary to handle the complexity, also results in an
increased pipeline depth to reach timing closure.

Due to the nature of the HT protocol, it is necessary
to support Gen1 operation as well as Gen3 operation.
As the goal of the architecture is to operate in HT3
mode, Gen1 operation is only intended for configura-
tion access following cold reset, to transition the con-
troller into Gen3 operation.

The controller can be separated into two functional
main components. One is handling the reception of
incoming traffic (RX), while the other is responsible for
creating and transmitting an outbound transaction
stream (TX). These two entities largely operate inde-
pendently from one another. Only the exchange of flow
control credits links both components. An overview is
given in Figure 4.

Figure 4: Top-level HT3-Core overview

The application interfaces consist of a number of
traffic buffers, and support fully asynchronous clock-
ing. This enables the application to run at an arbitrary
frequency, independent of the link frequency. The inter-
faces contain separate command and data packet buff-
ers for each VC. All contents of these buffers start at
naturally aligned borders, whereby command packets
are reordered to gain a continuous address field for
transactions with address extension (64 bit addresses).

The PHY operates with a deserialization factor of 8.
So for a 16 bit link, this results in 128 bits of CAD and
16 bits of CTL information each cycle. The core always
operates on the same amount of data, independent of
link width. This means that an 8 bit link only requires
half the internal frequency of a 16 bit link.

The RX side architecture imposes no restrictions of
command throttling, and permits command insertion.
The TX architecture is more restrictive. Command
insertion is not performed, and the number of command
packets in each octaword is limited to one each cycle. If
data transactions travel in the same VC, they can be
streamed back-to-back.

RX and TX paths will be discussed in more detail in
paragraphs 4.1 and 4.2 respectively. Two additional
paragraphs highlight some of the more interesting
implementation details. Paragraph 4.3 details the imple-

150

180

210

240

270

300

330

1 2 3 4

Multiplexer control signals

M
H

z

Frequency

TX Logic

Application
Interface

Application
Interface

PHY

RX

TX

credit

Source
Sync RX Logic
- 14 -

mentation of the user application interface, and para-
graph 4.4 describes the CRC implementation.

4.1 RX path
The RX path reorders and decodes the incoming

transaction stream, so that it can forward octaword
aligned command and data packets. Such an alignment
is rarely given in the data stream itself. It is further
responsible for handling some low-level signaling (ini-
tialization), and must handle no-operation (NOP) pack-
ets.

All RX functionality can be divided into five major
functional blocks, shown in Figure 5, and further
described below. Each block contains multiple pipeline
stages.

Figure 5: Functional pipeline of the RX path

The Source Sync block operates at the frequency of
the recovered link clock. Its functionality includes han-
dling the Gen1 initialization and the Gen3 training
sequences. These sequences are used to communicate
the start of the first DW between two participants in an
HT chain. Due to the deserialization factor of 8, it
might further be necessary to align the 8 bit received
from each lane to reflect the DW alignment. During
Gen3 operation the individual lanes are deskewed to
return the same link bit-time, and the data stream is also
descrambled. The last function this block fulfills is to
check the periodic CRC DW and remove it from the
data stream. The data stream is then stored in an asyn-
chronously clocked FIFO to leave the source synchro-
nous clock domain.

The Splitting block separates the incoming transac-
tion stream into info and non-info traffic. Info traffic
refers to NOPs and credits, whereas non-info traffic
consists of all other transactions. This is necessary, as
the following block buffers the non-info transactions.
Buffering is enabled by the fact that VC traffic is flow
controlled and therefore limited, whereas info traffic is
not limited. Info packets are handled in the NOP block
in parallel to the non-info transaction processing.

The NOP block evaluates received info packets.
This includes extraction of flow control credits, as well
as evaluation of other info packet fields, such as LDT-
STOP/retry indication. During Gen3 operation the per-

transaction CRC of the NOP packets is also checked
and the acknowledge count included in the NOP is used
to remove the acknowledged transactions from the retry
logic.

The Sorting and Decoupling stage contains three
major blocks. The first separates the incoming transac-
tion stream into the basic transaction building blocks,
which are command packets, data packets, and CRC
packets. These packets are then stored in independent
buffers. This buffering allows the remaining controller
logic to operate at reduced bandwidth in cases where
the input stream contains more than one command
packet every octaword. A worst-case maximum of three
command packets can be located inside of an octaword.
The logic can compensate the reduced bandwidth if
data transactions are processed. This is possible as
commands and data, of up-to 128 bit size each, are pro-
cessed simultaneously.

The Checking and Routing block of the RX path
implements forwarding of the decoded transactions to
their corresponding VC buffer within the application
interface. During Gen3 operation, it calculates the per-
transactions CRC of the forwarded transaction and indi-
cates a successful check to the VC buffers. The VC
buffers are implemented in such a way that a stored
transaction only becomes visible to the application after
it has been validated.

4.2 TX path
The TX path creates a HT compliant transaction

stream from the command and data packets provided by
the application interface. If no transactions are available
in the user buffers, NOP packets are transmitted. The
retry functionality required for Gen3 operation is not
implemented with an explicit retry buffer, but reuses
the TX application interface buffers to reduce complex-
ity and area in terms of SRAM.

TX functionality can be divided into four major
functional blocks, shown in Figure 6, which are further
described below. Each TX block contains multiple
pipeline stages.

Figure 6: Functional pipeline of the TX path

The Stream Creation block merges the command
and data packets from the application interface buffers
and creates a rudimentary transaction stream for each
VC, which is limited to one command packet per octa-
word. These streams do not yet contain the per-transac-
tion CRC or any info packets. The VC transaction-

Source Splitting
Decoupling Routing

Checking

Sync

&
Sorting

NOP

&

non-info traffic only

credits

Stream
Creation

Stream
Extension

Stream
Completion

Low
Level
- 15 -

streams are multiplexed into a single stream via round
robin arbitration. The order in which transactions from
different VCs are transmitted is tracked as well. This
allows to correctly assign received acknowledges to the
corresponding VCs. The arbitrated transaction stream is
stored into a decoupling buffer to ease implementation
of backward flow control between the complex pipeline
stages.

The Stream Extension block adapts the transactions
retrieved from the decoupling buffer to the actual link
width. During this adjustment, it also appends a per-
transaction CRC placeholder after each transaction,
independent of the operation mode, and is filling possi-
ble gaps between transactions with NOP placeholders.

The Stream Completion block is filling the place-
holders inserted by the previous block with the required
information. This means that it is computing the per-
transaction CRC during Gen3 operation and inserting it
into the CRC placeholder. NOP placeholders are filled
with valid information, including the release of flow-
control credits. During Gen1 operation all CRC place-
holders are replaced with empty NOP packets, as this
helps reduce the amount of necessary complexity for
Gen1 operation in prior pipeline stages.

The Low Level stage implements a multiplexer
between the assembled transaction stream and special
low-level signaling schemes. The low-level signaling
includes Gen1 initialization, Gen3 training, as well as
sync-flooding. During Gen3 operation the transaction
stream is also scrambled in this block, before it is for-
warded to the PHY.

4.3 Application interface buffers
During Gen3 operation the core must support the

retry mode defined by HT. This retry mode secures
every transaction with a per-transaction CRC, and
introduces two requirements to the architecture:
a) Received transactions are only forwarded after

their CRC has been successfully verified
b) Transmitted transactions, barring info traffic, must

be stored to allow a retransmission

Point a) is solved by the use of a special buffer that
stores unverified transactions until their CRC has been
checked. Entries in the buffer only become visible to
the application after the CRC check was successful.
This allows the decoding of the transaction to continue
concurrently with the verification of the transaction’s
CRC, as even unverified transactions can already be
added to the buffer and get validated later on. It further-
more, reduces area as transactions do not have to be
intermittently stored in registers, but can be forwarded
to the buffers immediately. To keep the interface simple

and easy to use, while still fulfilling all needs of the
retry mode, the RX application buffers are implemented
as FIFO buffers with an additional validated write
pointer (ValWr). Stored values are written to the write
pointer (Wr) address, whereas the output is read from
the read pointer (Rd) address. The operation of this
FIFO is illustrated in Figure 7. Entries located between
the ValWr pointer and the write pointer are unvalidated
(shaded dark) and not visible to the application. Entries
located between the read and the ValWr pointer are val-
idated entries that the application can access through
the defined mechanism. If a retry is executed, the write
pointer will be set to the current ValWr pointer address,
thereby removing all unvalidated entries.

Figure 7: RX application buffer operation

A solution to issue b) would be the addition of a
retry buffer that stores all transmitted non-info transac-
tions. Our proposed implementation avoids this addi-
tional retry buffer by reusing the already existing TX
application buffers. This is possible as HT makes no
assumption about the order in which unacknowledged
transactions are replayed in case of an error.

The TX application buffers are implemented as
FIFO buffers with a second unacknowledged read
pointer (URd). Whenever a transaction gets acknowl-
edged by the remote device, the URd pointer is incre-
mented and thereby the addressed transaction is
effectively removed from the retry buffer. Figure 8
illustrates the operation of this FIFO. All transactions
located between the URd pointer and the read pointer
resemble the retry buffer, as they are unacknowledged
(shaded dark). Entries located between the read and the
write pointer resemble the application interface buffer
with transactions that still have to be transmitted
(lightly shaded). During a retry, the read pointer is reset
to the current value of the URd pointer. As the VC mul-
tiplexing in TX is done behind the application buffers,

Validated entries removed

W
r

R
d Va
lW

r

Unvalidated entries added (empty)

Entries validated (no longer empty)

R
d

Va
lW

r

W
r

R
d

Va
lW

r

W
r

Fallback removes unvalidated entries

R
d

Va
lW

r
W

r

- 16 -

this means that retried transactions are not sent in the
same order they were initially sent.

Figure 8: TX application buffer operation

To maintain the simple FIFO interface, both addi-
tional pointers can be incremented in single steps via an
additional input signal to the buffers. Incrementing of
the additional pointers is done after a successful packet-
CRC check for RX, and the additional TX pointer is
incremented whenever a new acknowledge counter is
received from the remote device.

4.4 CRC calculation of non-info transactions
Calculation of the 32 bit per-transaction CRCs used

for the retry mode during Gen3 operation is dependent
on the degree of used data parallelism. The CRC calcu-
lation is commonly implemented as linear feedback
shift registers (LFSR) for the polynomial division. Fig-
ure 9 depicts an example of a CRC calculation imple-
mented as LFSR, where in each cycle one bit of data is
serially added to the checksum. The calculation shown
is based on the polynomial x4+x2+x+1.

Figure 9: CRC LFSR example

The operation performed by the LFSR can be
expressed through the following formulas, where t
identifies time (cycles).

crc3t+1 = crc2t
crc2t+1 = crc1t + crc3t + datat
crc1t+1 = crc0t + crc3t + datat
crc0t+1 = crc3t + datat

These formulas describe the addition of one bit of
data to a checksum. It can also be seen that each new
result directly depends upon the previous cycle’s result.
More practical formulas, describing how multiple bits
are added to a checksum in parallel, can be produced by
recursively iterating these formulas.

The complexity of the formulas increases with more
data to be included into the calculation. They can
always be expressed as XOR combinations of the input
data and the state of the CRC register from the previous
cycle. This determines the maximum number of param-
eters one formula can include to be parameter_limit =
CRC_size + data_size and the worst case number of nec-
essary XOR operations is xor_limit = parameter_limit - 1.
So each formula grows linear with both CRC and data
size. All formulas together grow quadratically with the
CRC size and linear with the data size, because there
are as many formulas as there are bits in the CRC.

In HT, the minimum transaction unit (mTU) is one
DW of CAD plus 4 bit of CTL, which are all covered
by the per-transaction CRC. The maximum size of an
HT transaction that is supported by the proposed archi-
tecture is 19 mTUs, excluding the per-transaction CRC.
Such a transaction contains a 3 mTU command packet
with address extension plus a 16 mTU data packet. Any
received HT transaction can have an arbitrary size rang-
ing from 1 to 19 mTUs. The CRC calculation must be
capable of calculating the per-transaction CRC for all
possible transaction sizes. For the given architecture
operating on four mTUs per cycle, this means that in
each clock cycle 0 to 4 mTUs may be added to the cal-
culation of one per-transaction CRC. This results in
four sets of different CRC formulas, for adding 1 to 4
mTUs that all operate on the same 32 bit CRC register.

A formula f used to calculate one bit of a CRC for
one parallel data input combination can be divided into
a recursive function g and a non-recursive function h.

crct+1 = f(crct, data) = g(crct) + h(data)

This reduces the impact of the cycle-to-cycle depen-
dency on the CRC calculation and relaxes timing, as
functions g and h can be implemented in different pipe-
line stages. This is especially attractive for large
amounts of data, as function h can be further pipelined.
Function g however contains the cycle-to-cycle depen-
dency of the CRC calculation and cannot directly be
pipelined further, which also means that it includes the
critical timing path.

This approach was used to implement the CRC cal-
culation of non-info transactions in the proposed archi-
tecture. As the architecture must handle 1 to 4 mTUs,
four different g and h formulas exist for each CRC bit.
These are multiplexed in the last pipeline stage which

Entries speculatively removed

Entries added

Speculatively removed entries have been validated

Fallback returns unvalidated entries

W
r

U
R

d
R

d
U

R
d

R
d

W
r

U
R

d

R
d W
r

U
R

d
R

d W
r

crc0crc1crc2crc3

data

+++
- 17 -

then contains all recursive logic. Figure 10 gives an
overview of the CRC calculation pipelining.

Figure 10: CRC pipelining overview

5. Evaluation

The bandwidth results shown in this paragraph were
gathered from simulation of the synthesizable HDL
description of the core. An implementation of the pro-
posed architecture, using an 8 bit link operating at 2.4
Gbit/s. The bandwidth was measured through the trans-
mission of 2,000 write transactions which introduces 3
DWs of overhead to the data payload. One DW per-
transaction CRC and two DWs command packet con-
taining a 40 bit address. The simulation have been
repeated for all sizes of data packets to show the overall
performance of the core.

Figures 11 and 12 show the measurement results of
the RX and TX path. Both paths were simulated sepa-
rately to avoid performance influences. In these figures
Transaction Bandwidth refers to the bandwidth being
used for non-info transactions, including command
packets, data packets and per-transaction CRCs, calcu-
lated as (((DATA DW + CMD DW + CRC DW) * 2000 * 4 *
(1 / time)) / 10^9) GByte/s. Transaction Bandwidth with-
out CRC does not count the CRCs, calculated as
(((DATA DW + CMD DW) * 2000 *4 * (1 / time)) / 10^9)
GByte/s. Lastly Payload Bandwidth shows the effective
bandwidth that is used for data forwarding, excluding
command packets and CRCs, calculated as ((DATA DW *
2000 * 4 * (1 / time)) / 10^9) GByte/s.

 For sufficient payload sizes the architecture reaches
a total bandwidth of 2.38 GByte/s. The periodic CRC
slot accounts for a bandwidth loss of about 0.775% or
0,0186 GByte/s on an 8 bit link as it is recommended
by HT so every 512 bit times a 4 bit CRC has to be
transmitted. If this bandwidth loss is added to the
Transaction Bandwidth it results in a total utilized
bandwidth of 2.3986 GByte/s which is extremely close

to the theoretical maximum of 2.4 GByte/s for an 8 bit
link.

Due to the increased number of pipeline stages the
bandwidth drops with lower data payloads. This hap-
pens because of credit starvation. Then all available
credits can be in use. But if high bandwidth is required,
sending smaller data payloads is counterproductive
because the further command overhead will decrease
the usable bandwidth additionally.

Figure 11: RX bandwidth for data transfers

Figure 12: TX bandwidth for data transfers

Due to the increased datapath of the core and the
fact that this increase also adds complexity, the resource
usage of the HT3-Core is higher than it was for the
HT2-Core. Table 2 shows the total and percentage
resource usage of the core on a Xilinx Virtex-5 LX110T
FPGA device.

1 mTU

2 mTU

3 mTU

4 mTU

data
XOR

4 mTU

3 mTU

2 mTU

1 mTU

data
XOR

data
XOR

data
XOR

crc
XOR

crc
XOR

crc
XOR

crc
XOR

1-4 mTU
data
input

CRC

Table 2: Resource usage on LX110T

Resource Used Percentage

Slice Registers 18,905 27%

Slice LUTs 37,094 53%

Occupied Slices 11,098 64%

Block RAMs 78 52%

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Payload size / doublewords

Ba
nd

w
id

th
 /

 G
B

yt
e/

s

Transaction Bandwidth
Transaction Bandwidth without CRC
Payload Bandwidth

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Payload size / doublewords

B
an

dw
id

th
 /

 G
B

yt
e/

s

Transaction Bandwidth
Transaction Bandwidth without CRC
Payload Bandwidth
- 18 -

6. Conclusion and outlook

We have proposed a novel architecture of an HT3
controller for FPGAs. To the best of our knowledge this
is the first implementation for such reconfigurable plat-
forms. We have performed a complexity analysis and
shown the issues of modern high bandwidth I/O tech-
nologies like HT. Solutions for these problems and a
very efficient implementation of the core is provided.
The benchmarks show the excellent performance of the
architecture with maximum achievable bandwidth of
2.3 GByte/s, which is close to the theoretical optimum.

Our future work will focus on the bringup of the
design in real world systems using various FPGA tech-
nologies. The architecture will also be further improved
as more real world data can be gathered. A 16 bit link
version, currently in development, promises to double
the achievable bandwidth to 4.6 GByte/s. There are also
plans to push the 8 bit link version beyond the current
lane rate of 2.4 Gbit/s.

7. References

[1] Mahapatra, N. R. and Venkatrao, B.: The processor-
memory bottleneck: problems and solutions. Proc.
Crossroads 5, 3, 1999

[2] Bees, D. and Holden B. 2004. HyperTransport re-
duces delays in some applications.

[3] C. Guiang, K. Milfeld, A. Purkayastha, J. Boisseau.
"Memory Performance on Dual-Processor Nodes:

Comparison of Intel Xeon and AMD Opteron Mem-
ory Subsystem Architectures," Proceedings of the
ClusterWorld Conference and Expo, San Jose, CA,
June 24-26, 2003.

[4] R. Brightwell, D. Doerfler, K.D. Underwood, "A
preliminary analysis of the InfiniPath and XD1 net-
work interfaces," ipdps,pp.311, Proceedings 20th
IEEE International Parallel & Distributed Process-
ing Symposium, 2006

[5] Ron Brightwell, Kevin T. Pedretti, Keith D. Under-
wood, Trammell Hudson, "SeaStar Interconnect:
Balanced Bandwidth for Scalable Performance,"
IEEE Micro, vol. 26, no. 3, pp. 41-57, May/Jun,
2006

[6] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U.
Brüning: The HTX-Board: A Rapid Prototyping
Station. Proc. of 3rd annual FPGAworld Confer-
ence, Nov. 16, 2006, Stockholm, Sweden.

[7] HyperTransport Consortium: The Future of High-
Performance Computing: Direct Low Latency
CPU-to-Subsystem Interconnect. HTC whitepaper,
2008

[8] David Slogsnat, Alexander Giese, Mondrian
Nüssle, Ulrich Brüning: An Open-Source Hyper-
Transport Core. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), Vol. 1,
Issue 3, p. 1-21, Sept. 2008.
- 19 -

Exploiting the HTX-Board as a Coprocessor for Exact Arithmetics

Fabian Nowak Rainer Buchty David Kramer
and Wolfgang Karl

Institute of Computer Science & Engineering
Universität Karlsruhe (TH)

Zirkel 2
76131 Karlsruhe, Germany

{nowak, buchty, kramer, karl}@ira.uka.de

Abstract

Certain numerical computations benefit from dedicated
computation units, e.g. providing increased computation
accuracy. Exploiting current interconnection technolo-
gies and advances in reconfigurable logic, restrictions and
drawbacks of past approaches towards application-specific
units can be overcome. This paper presents our implemen-
tation of an FPGA-based hardware unit for exact arith-
metics. The unit is tightly integrated into the host system us-
ing state-of-the-art HyperTransport technology. An accord-
ing runtime system provides OS-level support including dy-
namic function resolution. The approach demonstrates suit-
ability and applicability of the chosen technologies, setting
the pace towards broadly acceptable use of reconfigurable
coprocessor technology for application-specific computing.

1 Introduction

One major requirement of certain numerical applications
is computation accuracy. Depending on the application, us-
ing standard floating-point implementation does not provide
necessary resolution, especially due to accumulating round-
ing errors. This may lead to more required iterations, thus
degrading the overall application performance. The solu-
tion to such problems is the use of dedicated precise arith-
metic routines, ideally provided as a dedicated application-
specific hardware accelerator.

Such approaches were already targeted in the past, but
were typically hampered by insufficient hardware resources
and, most notably, the used interconnection technology: pe-
ripheral buses usually do not provide significant bandwidth
to enable a tight cooperation between an application run-
ning on the host CPU and the according hardware accelera-
tor.

With the advances in programmable logic and intercon-
nection technology, using so-called FPGAs as application-
specific computation devices tightly integrated into the host
system via current interconnection technology such as Hy-
perTransport delivers a promising concept for arbitrary co-
processor solutions. Suiting the programmers’ needs, such
a solution should be easily accessible, not requiring a new
programming model or dedicated, heavyweight execution
environments.

We therefore chose the original work of Kulisch et al. for
exact arithmetics [21], which delivered impressive numbers
on raw computation throughput. Unfortunately, the back
then available state-of-the-art interconnection bus turned
out to be severely limiting. Using current HyperTransport
and FPGA technology, we adopted the original design prin-
ciple. Based on the UoH HTX-Board [2], a dedicated unit
supporting exact arithmetics was developed. We further-
more provide a runtime system supporting dynamic reso-
lution and mapping of function calls that enables seamless
switching between standard and exact computation. Such
a runtime system not only fulfils the requirements for ad-
vanced, parallel arithmetics as mentioned before, but also
for irregularly memory-demanding applications such as nu-
merical applications on adaptive meshes and graph analy-
sis problems [14] as it allows redirecting resource accesses,
which is substantial to tackling these issues.

In the following section, we will give an overview over
the field of dedicated application accelerators and their in-
tegration into the host system, outlining the individual pe-
culiarities of each approach. Section 3 then introduces the
concept of exact arithmetics as proposed by Kulisch, and its
implementation on the UoH HTX-Board using the Open-
Source HyperTransport Core [27]. An overview of our run-
time system and its general usage is given in Section 4. Our
experimental setup is presented in Section 5, its results are
shown in Section 6. Finally, we give an outlook over future
work in Section 7 after drawing some conclusions.

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 20 -

2 Related Work

A significant amount of research on the arithmetic part,
dynamically reconfigurable application accelerators, and
according runtime systems and programming models ex-
ists. For this paper, we will therefore restrict to some focal
points, outlining the intended problem solution and eventual
drawbacks.

Targeting the domain of error estimation, interval arith-
metic was developed in the 1950s and 1960s [23] and is still
actively researched today [25, 8].

Several approaches targeting hardware implementations
of more exact arithmetics exist, ranging from multi-
precision fixed-point vector MAC [29] to quad-precision
floating-point units [11] or fixed-point computations. A
major problem with floating-point operations is the accu-
mulation of rounding errors: for this, the extension of the
radix avoiding time-consuming rounding operations is a po-
tential solution [26]. Using reconfigurable logic lays the
foundation for arbitrary-precision arithmetic units on FP-
GAs for rational numbers [7]. While the cited approach
lacks floating-point support, it demonstrates feasibility and
achievable speed-up in comparison to software emulation
by the GMP library [12].

As of now, a vast number of also commercially avail-
able hardware accelerators exists for different goals, among
them acceleration of computation and algorithms on dedi-
cated hardware. The ClearSpeed series of accelerators [5]
might serve as an example of current state-of-the-art accel-
erator architectures, providing 96 floating-point processing
cores. An even bigger number of processing cores is pro-
vided by current graphics cards being used as floating-point
accelerators, also employing a multi-level memory hierar-
chy to overcome bus bandwidth limitations resulting from
the used PCI express bus (PCIe).

All these hardware approaches have in common that in-
terconnection bandwidth and therefore data transport be-
tween host system and accelerator becomes a bottleneck.
This makes the use of such units only sensible when the
gained speedup outweighs transfer time.

In order to avoid transport delay issues when tackling
precision, the available precision can be extended inside
floating-point units: in the IBM P6 [30], this technique is
well-employed with buffering of intermediate results and
providing further rounding operations in addition to those
specified in the 754 standard. Still, precision is not enough
for numerically unstable algorithms.

Approaches such as IRAM [24] and PIM [28] target the
problem of data transport and transport latencies directly
by calculating inside memory, what requires their own pro-
gramming models as well. Both exact arithmetic and inter-
val arithmetic are also available as software libraries for a
large number of programming environments and systems,

even bindings for high-level programming languages are
available [20, 12, 9].

Reconfigurable logic offers the possibility of providing
required arithmetic operations as demanded by the compu-
tation, therefore offering the same flexibility as software li-
braries but at significantly higher speed. With the advent
of high-performance interconnection buses such as Hyper-
Transport [16], this approach has gained widespread ac-
ceptance ranging from reconfigurable accelerator cards like
Nallatech’s FPGA Computing platforms [17] to reconfig-
urable supercomputing systems like Cray XD-1 [6]. On
these accelerator cards, the available FPGAs are big enough
to hold a couple of acceleration units.

Our approach follows the reconfigurability concept,
making use of reconfigurable FPGA hardware to model a
dedicated, high-performance acceleration unit focusing on
exact arithmetics. To avoid limitations from communica-
tion bottlenecks, we employ HyperTransport as state-of-
the-art interconnection technology. The case study for our
approach is Kulisch et al.’s first implementation of a hard-
ware unit for exact arithmetic. As mentioned before, this
work suffered from bandwidth limitations of the PCI bus
while the unit was sufficiently fast [18].

The use of application-specific and potentially reconfig-
urable hardware from within the application is targeted by
several approaches ranging from description languages to
integrated environments, consisting of dedicated compil-
ers and runtime systems. The scope ranges from program-
ming languages such as Handel-C [4], abstraction via ISA
extensions such as MOLEN [31] and EXOCHI [32], and
runtime environments such as LIME [15], and combined
API/Runtime systems like the recent OpenCL [13].

The above solutions typically require either additional
software layers for accessing accelerator hardware, are fo-
cused on a dedicated system setup, or both. What is missing
from these approaches is an easy and lightweight method
to dynamically resolve function calls at runtime so that a
different implementation or a different library be used for
the same function call. This is very desirable, as it offers
the possibility to hide transport and computation latency by
switching to different implementations as long as the hard-
ware is occupied, and it is also important for dynamic sys-
tems where hardware resources are allocated and freed at
runtime for the best mapping of an application onto the
respective hardware, enabling more precise, faster or less
power-consuming execution of the application.

We therefore developed a lightweight extension to the
Linux OS’s runtime system providing a method for dy-
namic control of function mapping as a convenient means
to change between different arithmetic implementations as
required by the running computation.

In the following, we will present the implementation and
integration of the accelerator into HT-equipped systems, fo-

- 21 -

cusing on the hardware design, and will include software
and runtime implications where appropriate.

3 Exact Arithmetics

As basic design of an exact accumulator, we imple-
mented the approach proposed by Kulisch et al. [21]. The
idea behind their approach is to avoid rounding results as
much as possible, because rounding leads to accumulation
of rounding errors after a couple of computations in conven-
tional FPUs, such as adding small values multiple times to a
rather big value. For double precision, the computation win-
dow is much larger than for single precision operation, but
breaks with three more orders of magnitude as well. Such
computation schemes however, are common to a wide range
of numerical applications.

As already mentioned, their implementation in CMOS
technology was fast enough, but did not keep pace with ad-
vances in processor technology as the interconnection relied
on the PCI bus.

3.1 Concept

In order to avoid rounding, a different presentation than
the conventional one consisting of the well-known sign-
characteristic-mantissa encoding where numbers are com-
posed like

number = 2exponent ∗ 1.mantissa (1)

with m the length of the characteristics field and n
the length of the mantissa field and exponent =
characteristic − 2m−1 + 1 (i.e. the characteristic is the
exponent plus the required bias), is needed for intermediate
representation of the values, because with the exponent rep-
resentation, only a “window” of a float number is precise.

The flat two’s complement encoding suits very well as
rational numbers can be stored in fix-comma representation
easily enabling both very large and very small numbers to
be represented at once:

number = whole-number.fraction (2)

with a length of k and l respectively where whole-number
ranges from −2k−1 to 2k−1 − 1 and fraction is in

between 2−l and
l∑

i=1

2−i for both positive and negative

numbers as well as zero is possible. Considering IEEE
754 single-precision format with m = 8 and n = 23,
0x00000001 = 2−2m−1+2−n = 2−149 is the small-
est representable number; whereas the largest number is
0x7FFFFFFF = 22m−1 − 2−n < 2128. Thus, for ac-
cumulating these precisely, the following inequation must
be held:

k >= 128; l >= 149 (3)

Host System

HT HT XC4VFX100

UoH HTX Board

Opteron #1

Opteron #2

Figure 1. HTX testsystem

For double-precision with m = 11 and n=52, the re-
quirements are huge:

k >= 1024; l >= 1074 (4)

Adhering to these requirements does however only al-
low accumulation within this range, but accumulation of
the largest possible values would result in infinity. Thus,
additional bits are recommendable; and for multiplication
of float-format encoded numbers, we need to double the
amount of bits at least. Accommodating the possibility for
a billion accumulations only does not seem very reasonable
as numerical applications frequently iterate over meshes
with some million elements per dimension. Hence, Kulisch
proposes 86 additional bits for single-precision and 92 bits
for double-precision accumulations.

With this in mind, when implementing an exact accumu-
lator for single-precision arithmetics, 2 ∗ 277 + 86 = 640
seem to suffice.

3.2 Implementation

For accessing the exact arithmetics unit (EAU), we used
the HyperTransport (HT) evaluation design of the Univer-
sity of Heidelberg with a Xilinx Virtex-4 FX100 in an AMD
Opteron system (cf. Figure 1).

The EAU as an accelerator unit is wrapped in a memory-
mapping HT interface, which is linked to the IO buffer
wrappers for the evaluation board and the HTX socket, as
is shown in Figure 2. Note that the reset and clock wires
are not drawn for simplicity. A simplification unit has been
inserted to merge the posted and non-posted requests. The
memory-mapping interface allows addressing of up to 16
EAUs; however, only 14 MAC-equipped EAUs fit onto the
FPGA, while 16 simpler accumulation-only units fit very
well. The resource usage is discussed in more detail in
Section 6.1. The design runs at a clock frequency of 100
MHz, hence allowing a theoretical unidirectional through-
put of 800MB/s with 16 bits per each clock edge of the 200
MHz HT clock.

Accumulation of the decoded IEEE-754 represented val-
ues happens in small blocks of 32 bits each. The exponent
determines both the block’s position inside the big accumu-

- 22 -

Figure 2. Device architecture

lation register and the proper shifting of the mantissa value
before accumulating.

When adding the possibility for multiplication of two
floating-point format data values, the sum of parts of their
exponents is used for addressing the register position, with
each data being shifted by the lower parts of its own expo-
nent only. Using dual-port registers, reading the data to be
accumulated to while writing the last sum to the last posi-
tion is possible during the same cycle.

By using bit masks, fixing carry-resolution becomes an
easy task: it requires only one additional cycle. Speaking of
cycles, a regular accumulation of a single value requires up
to 6 cycles after transmitting the data, where the last cycle
may even overlap with the first cycle of another computa-
tion; so already with 6 accumulators we could hide the to-
tal latency completely if the calculation was split and data
transfer lasted one cycle only. Multiply-accumulate, how-
ever, is finished no earlier than 18 cycles after starting the
transfer of the first data word. The data transfers account
for 8 of these cycles, among which 6 are due to the internal
communication structure between the HT Link and the HT
interface. These 6 additional transport cycles cannot be hid-
den by simply addressing other accumulations units as only
one connection is possible during theses transfers. But one
cycle can be saved when starting the next computation al-
ready during the last cycle. This leads to a latency of at least
17 cycles. With data transfers for a multiply-accumulate
operation taking 3 and 5 cycles respectively, it is clear that
three accumulation units can already make up for at least
the computation latency; a higher number does not provide
any additional advantage with regard to processing speed
and hiding this latency. Throughput is therefore limited to
less than 50MB/s because of the aforementioned 8 internal

transport cycles when multiplying-accumulating. 4 cycles
are needed for computing the addendum, and another three
for writing the shifted sum in blocks to the accumulation
register. This way, a clock rate of more than 100MHz can
still be obtained, making the implementation suitable for the
HTX bus specification, but currently suffering from high la-
tency.

Speaking of addressing the accumulation units via the
HT bus, all the units on the HT-core enabled HTX Board
are memory-mapped into the processor’s address space with
4kB page size, where different areas of a memory-mapped
page denote different operations such as value-reading,
writing flags or adding a product to the current accumulator
value. This is illustrated in Figure 3. For example, writing
to a page offset of 136 will prepare a multiply-accumulate
operation and require a subsequent write to offset 140 for
the next single-precision value to be multiplied. When read-
ing from the first five words (i.e. addresses 0, 4, 8, 12, 16),
the register value is returned as single-precision floating-
point number rounded to 0, away from 0, towards negative
infinity, towards positive infinity or towards nearest number,
respectively.

All the accumulators are completely independent from
each other except for the data transfer, which is multiplexed
by the HT Memory-Mapping Interface to only one of the
EAUs based on the target address. This interface passes the
bundles of command, data, and address to the arithmetic
units as operation code and associated data, thereby also
handling replies.

The HT Simplify module then merges posted and non-
posted requests, preferring the posted requests, passes them
to the memory-mapping interface and cares for fetching and
buffering new commands or data.

- 23 -

Figure 3. Memory-mapping of EAUs

4 Runtime System

When executing numerical programs exploiting external
hardware units, it is crucial to allow regular program con-
tinuation during calculation in hardware while also main-
taining flexibility for choosing which software, hardware
or hybrid implementation of a function to use. We devel-
oped a runtime system [3] coming in two different flavours,
a Global Linking System (GLS) and a Dynamic Linking
System (DLS). Both can be controlled via the Proc file sys-
tem.

4.1 Global Linking System

The Global Linking System, also referred to as GOT-
based Linking System for the Global Offset Table in the
Linux kernel’s task management, extends the lazy-linking
technique of the kernel by means of the Executable and
Linkable Format (ELF) [19]: the kernel extracts the func-
tion names from an application’s ELF file and resolves each
function symbol when the respective function is accessed
for the first time. Using the Proc file system [22], the GLS
resets a function symbol’s structures and target function so
that upon the next access onto the symbol, the dynamic
linker resolves the symbol again. Function alternatives both
from inside an application and from the linked libraries can
be used for function switching.

The GLS is completely independent from compilers and
programming languages used and also suits closed-source,
proprietary software. However, although providing flexi-
bility for mapping functions to alternate implementations,
different threads will always use the same function; so reg-
ular program continuation cannot be granted when access
to hardware resources used in a function implementation is
exclusive-only.

dls_struct_ptr

this: dls_struct*

next: dls_struct_ptr*

dls.h

Kernel

ProcFS

dls_set_fct() | dls_register()

Control

Daemon

Proxy Function
long (*fct)(int a, ...)

dls_fcts_ptr: dls_fct_type*
num_fcts: int
next: dls_struct*

dls_struct

long libfct_a(int a, ...) long libfct_b(int a, ...)

Figure 4. Switching of proxy functions

4.2 Dynamic Linking System

To overcome the missing support for individual per-
thread function mapping, the DLS changes an application’s
task state segment (TSS) by adding function proxies per
thread for each reconfigurable function. Hence, apart from
linking to an additional library, the program code must
contain statements indicating which functions may be ex-
changed at runtime, and must then indicate which functions
of which libraries are appropriate implementations for the
proxy. An application may hence start a software and a
“hardware” thread, each thread adding a software or hard-
ware implementation function to the list of possible alterna-
tives. A quick overview of the kernel extensions, the Proc
file system interface and the proxy functions is given in Fig-
ure 4.

The DLS can be used in two different ways, either the
static version or the dynamic version.

In the static version, right from the beginning the func-
tion proxy points to a valid function implementation. The
pointer may be changed via the Proc file system to a dif-
ferent implementation. In contrast, in the dynamic ver-
sion the unresolved proxy calls a fix-up function, which
in return starts the dynamic loader and adjusts the function
pointer. When changing that proxy’s target at runtime, a
fix-up function must be given first that again resolves the
proxy’s pointer.

In both versions, functions can be exchanged even from
inside the application itself.

4.3 Employment

Targeting matrix multiplication using exact arithmetics
as a first example for numerical applications, there are two
levels at which the runtime system can be employed: at the
coarse algorithmic level for selecting which of the specific
implementations should the proxy function be resolved to,

- 24 -

and at the fine-grained operation level for deciding whether
calculation on regular FPU, in enhanced-precision library
or on external hardware unit is preferred.

The runtime system offers ultimate flexibility for both
the programmer, the user, and system administrators by
(dis)allowing access onto special hardware for more pre-
cision and numerical robustness or, in contrast, fast compu-
tation. For most of the systems, the programmer wants to
use the DLS, where he picks the static linking variant if all
implementations are already known at compile time, or the
dynamic version, if new implementations become available
at runtime, e.g. for long-running applications where new ac-
celeration functions are constantly being developed. The
system hence is also usable as runtime testing system for
algorithms and their implementations.

5 Architecture

Our approach of combining exact arithmetics with a gen-
eral runtime system for program adaptivity is based on the
afore-mentioned HTX Testsystem (cf. Figure 1). A mod-
ified Linux kernel in version 2.6.20 runs both the runtime
system and the programs, which may connect to the UoH
HTX Board via the HyperTransport Interface of the AMD
Opteron that runs at 2.0 GHz.

On the FPGA of the HTX Board, up to 16 EAUs are cre-
ated and interconnected as illustrated in Fig. 2. The system
clock is 100 MHz, cooperating with the 200 MHz HT clock
(double-edge clocking) at a bandwidth of four 16 bit-wide
transfers per system clock cycle.

The runtime system is responsible for mapping accumu-
late and multiply-accumulate operations onto the respec-
tive library functions, enabling emulated exact arithmetics,
hardware support for exact arithmetics, or execution in reg-
ular single/double floating-point format on the Opteron’s
FPU.

The described 100 MHz system clock is due to hardware
constraints. In order to foster maximum use of the available
accelerator hardware, we employ the dynamic linking sys-
tem to allow different threads to run with different imple-
mentations concurrently, allowing computation in parallel.

6 Results

In this section, we first present our hardware implemen-
tation results for the Virtex-4 FX100 1152-10 as available
on the UoH HTX-Board [10], obtained with XST (ISE
9.2.04). We then give the results of some preliminary
benchmarks results for different libraries both without and
with use of our runtime system. We conclude by showing
some potential benefit for numerical applications that suffer
from convergence problems.

6.1 Implementation Results

Targeting ultimate flexibility, we implemented a basic
EAU with accumulation support only and an enhanced unit
with additional multiply-accumulate support so that based
on available hardware resources, the operating system, dy-
namic runtime system or the user herself can decide how
much and which coprocessor support to exploit in the cur-
rent setup.

Hence, we present in Tables 1 and 2 the results of the
synthesis runs for 1, 2, 4, 8, and 16 accumulator-only and
MAC-extended EAUs, respectively. As we can see, the HT
interface logic and the mapping interface only make up for
a minor part of the system and with increasing number of
EAUs, the routing costs rise enormously. Note that the num-
ber of needed resources depends strongly on several factors
such as software, host system used for synthesis, synthesis
settings, and the hardware description itself. Consequently,
the results cannot be regarded as accurate, but only indicate
the approximate amount of required resources.

The actually better results for the multiplication unit
arise from the need to specify very strict requirements for
synthesis and mapping.

Rather independent from the number of EAUs, the maxi-
mum theoretical design frequency is about 120 MHz for the
accumulate-only design and about 100 MHz for the MAC
design, independent of the number of EAUs. The critical
path is determined by selecting from the large register; this
can however be circumvented by splitting the large register
into several smaller resources or mapping it directly onto
the hardware BRAM resources. The HyperTransport core
requires its client to run at 100 MHz or 200 MHz respec-
tively, using a differential clocking with 200 MHz for the
bus interface and merging the 16 bit connection into an in-
ternal 64 bit wide bus interface.

6.2 Runtime Results

For the results below, we indicate the mean value of
ten runs, measured in clock ticks as reported by the CPU’s
timestamp counter.

First, we measured the time in clock ticks for both an
IJK and IKJ matrix multiplication with arbitrarily chosen
sizes of 30x20 * 20x16 and 100x100 * 100x16. The pro-
grams were compiled with -O2. Note that the enormous
runtime for the 1-MAC-unit version is due to the neces-
sity to read values in between of two same operations or to
do any other operation freeing the virtual HyperTransport
channel for the accumulator. Also, the software-emulated
MAC support for high-precision arithmetics still sometimes
produces erroneous results and cannot be compared there-
fore, but already gives a rough estimate. The results without
any additional runtime support are given in Figure 5.

- 25 -

Table 1. Hardware implementation results for accumulation-only units
Resource Used Resources Available

1 EAU 2 EAUs 4 EAUs 8 EAUs 16 EAUs

Slice Flip Flops 4,835 5,350 6,409 8,536 12,783 84,352
Occupied Slices 7,795 9,501 13,701 19,254 31,923 42,176
4 input LUTs 10,324 13,274 19,312 31,477 55,788 84,352
Logic 10,066 12,888 18,654 30,291 53,562
Route-thru 234 362 634 1,162 2,202
Shift registers 24 21 24 24 21
RAMB16s 26 27 29 33 41
Equiv. gate count 1,811,662 1,902,807 2,085,366 2,451,628 3,184,303

Table 2. Hardware implementation results for multiply-accumulation units
Resource Used Resources Available

1 EAU 2 EAUs 4 EAUs 8 EAUs 16 EAUs

Slice Flip Flops 5,085 5,890 7,505 10,728 17,167 84,352
Occupied Slices 7,955 10,718 14,846 24,008 39,141 42,176
4 input LUTs 11,355 15,535 23,868 40,570 73,868 84,352
Logic 11,059 15,077 23,084 39,134 71,129
Route-thru 272 434 760 1,412 2,715
Shift registers 21 21 21 21 24
RAMB16s 26 27 29 33 41
DSP48s 4 8 16 32 64 160
Equiv. gate count 1,821,103 1,923,091 2,126,585 2,533,808 3,346,401

Execution times increase for the IKJ multiplication as
both compiler optimization makes up for the non-optimally
aligned memory accesses and few potential for overlapping
computation in hardware is given due to the layout of the
algorithm. The runtime of the software-emulated MAC unit
is a rough estimate only as the implementation hampers
from incorrect algorithmic implementation and may pro-
duce wrong results.

Furthermore, we evaluated three different routines for
getting the sine value of the program’s argument. The first
implementation is the regular call of the sine function in the
math library of the GNU C Library, the second uses a look-
up table as has been done for example in Quake III Arena
to offer sufficient speed while achieving good precision on
those days’ PCs, and finally, the Taylor series:

sin(x) =
n∑

i=1

(−1)i+1 x2i−1

(2i− 1)!
= x− x3

3!
+

x5

5!
− . . . (5)

The Taylor series implementation is much slower than
the others, but it allows external coprocessor support for
accumulating each summand in hardware and also swap-
ping the construction of the summands into the hardware
accelerator. Figure 6 presents the runtime results for dif-
ferent implementations with and without support for exact
arithmetics plus the number of iterations needed until the
result was stable. For the three different routines, the run-
time system has been used to allow measuring runtimes of
implementation alternatives by simply switching the func-
tion pointers from inside the application at program run-
time, with the static linking of the DLS being sufficient for

this purpose. The result was stable after 9 iterations for dou-
ble precision, 4 iterations for emulation without MAC sup-
port, and 5 iterations for the remaining runs.

6.3 Exact Arithmetics

Accuracy is achieved as shown in Table 3: with ex-
act arithmetics, the result is more precise than with reg-
ular single-precision operation. The bad runtime for the
MAC-enabled unit is again due to the additional operation
needed for clearing the HT interface registers. Except for
the double-precision runs, after 10 iterations the result is al-
ready stable. This is due to obtaining single-precision val-
ues only when reading the accumulator value: the conver-
gent Euler series is also convergent for the iterations follow-
ing iteration number 10, which hence do not influence the
single-precision value to any extent. Reading double values
from the EAU in subsequent implementations will produce
different results. After 39 and 178 iterations respectively,
the single and double precision windows are too small for
storing the component values of the product to be accumu-
lated.

A more detailed result1 for the EAU can be obtained
from the hardware accumulator when adding the subse-
quently read value to the intermediate coarse result value
after subtracting it from the accumulator. The gain in pre-
cision with the MAC unit is ascribed to not losing the re-

12.71828183528879208097350783646106719970703125 (accumula-
tor only) and 2.71828183518901056459071696735918521881103515625
(MAC-extended)

- 26 -

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

Single
Double
Emulation
MAC Emulation
1 Accumulator
2 Accumulators
4 Accumulators
8 Accumulators
16 Accumulators
1 MAC Unit
2 MAC Units
4 MAC Units
8 MAC Units
16 MAC Units

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

IJK IKJ
Figure 5. Comparison of runtimes for IJK and IKJ matrix multiplication with and without exact arith-
metics

16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(a) Taylor series 16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(b) Look-up table
16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(c) GNU C Library

Figure 6. Runtimes and iterations for calculating the sine value of 1.0

Table 3. Runtimes and iterations for calculating the Euler number
Implementation Result Runtime Iterations

Result fixed Summand! = 0

Single Precision 2.7182819843292236328125 3,150 10 39
Double Precision 2.71828182845904553488480814849026501178741455078125 6,566 17 178
Emulation w/o MAC 2.71828174591064453125 19,935.9 10 39
Emulation w/ MAC 2.71828174591064453125 26,171.3 10 39
Accumulator 2.71828174591064453125 31,486.2 10 39
Multiply-Accumulator 2.71828174591064453125 188,945.7 10 39

- 27 -

mainders of the product. This clearly shows how accurate
the obtainable results are in comparison to single-precision
format. Similarly, when reading from the coprocessor reg-
ister, the results of the Taylor sine routine are a little more
precise than their native FPU counterpart.

With multiplication in hardware, we gain from not be-
ing limited to the format in use, i.e. single floating-point
precision with a mantissa of 23 bits, but instead being able
to accumulate the exact product onto the previous register
value. With accumulation only, the multiplication has to
be carried out on the host processor and only the rounded
result, limited to the precision in use, can be accumulated,
hence loosing valuable information.

For example, multiplying single-precision data con-
verted to double-precision values would achieve a more pre-
cise representation of the product than with single-precision
only; but as soon as the result is converted for adding regular
single-precision values, the additional precision is lots. On
the MAC hardware, though, the result of additional MAC
and accumulation operations onto the previous multiplica-
tion result is still precise and the accumulated error due to
rounding and format limits is much smaller. Of course, its
additional precision will be lost as well when converting to
single-precision format for further processing on the host
processor.

7 Conclusions and Outlook

Developments in interconnection and FPGA technolo-
gies enable the use of reconfigurable logic as application-
specific hardware accelerators.

In this paper, we showed an implementation of an exact
arithmetics hardware unit using an FPGA-equipped Hyper-
Transport device as a coprocessor. Through a lightweight
runtime systems, dynamic per-function control of which
implementation or software to use for calculations is made
possible. The hardware is easy to use from a programmer’s
view and can be completely hidden from the user because
the runtime systems offers the necessary abstraction and
wrapping and because control is possible from within the
application itself, if desired.

The arithmetics unit uses a wide fixed-point representa-
tion of the data, enabling accumulation of both very small
and very large numbers altogether. The hardware unit is ad-
dressed via memory-mapping, which enables separate us-
age of up to 16 arithmetics units at once, thus speeding
up parallel, separate computations by hiding latency. The
HyperTransport bus is controlled by an AMD Opteron, the
Virtex-4 is connected to the HT bus through an HTX board.
For now, only single-precision is supported, but the increase
in exactness due to not loosing the additional bits when mul-
tiplying and adding in our hardware in contrast to comput-
ing on regular floating-point units already proves the bene-

fit of such architectures and proves both feasibility and re-
liability of such an arithmetic coprocessor for exact arith-
metics.

The runtime system is a lightweight extension to the
Linux kernel, altering the dynamic loading of libraries that
can be controlled via the procfs interface. Alternate libraries
may emulate hardware, access it directly, or offer fast and
unreliable implementations – the user or a runtime system
can choose, which one to use in his system based on avail-
ability and load.

We conducted several experiments regarding the basic
operations required by the targeted numerical applications
such as frequent multiply-accumulate as needed in solving
linear equation systems. The results deliver further proof
that supporting single-precision is far not enough when tar-
geting real-world applications as the regularly obtainable
data is not precise enough. We thus deduct that exact
accumulation is only useful when appropriate means are
given for retrieving those bits that cannot be represented
in the regular floating-point format so that additional digits
of a calculated high-precision value be obtainable. It also
becomes more expedient when supporting double preci-
sion, offering more precision than regular double-precision
without introducing the need for additional computation li-
braries such as QD [1].

Thus, we can conclude that 1) using coprocessor tech-
nologies for arithmetics is a valid and suitable approach,
2) HyperTransport fits well as interconnection technology,
and 3) usage of exact arithmetics needs no longer be an is-
sue for programmers due to the achievable enhancements of
dynamic runtime linking.

For the hardware, our ongoing work includes extend-
ing the arithmetic unit by exact multiplication, decreasing
overall latency and area, and increasing clock frequency
of the implementation, thereby enabling usage for even
small amounts of computations without a large amount of
runtime overhead. Support for double-precision is also a
nearby goal, both for reading double values, accumulat-
ing double values and accumulating double-precision prod-
ucts. Further plans for the runtime system include using it
for a wider range of applications such as dynamic systems
and debugging, but also incorporating reconfigurable hard-
ware as memory-mapped devices into the operating system,
which allows building and loading custom accelerators per
application. Access onto the available resources will have
to be managed then by offering only a few virtualized units
to applications.

Acknowledgment

The authors would like to thank Reimar Döffinger for the
initial work on the exact accumulation unit.

- 28 -

References

[1] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and
B. Thompson. QD. Web site: http://crd.lbl.gov/
˜dhbailey/mpdist/.

[2] U. Brüning. The HTX board – a universal HTX test
platform. Web site: http://www.hypertransport.
org/members/u_of_man/htx_board_data_
sheet_UoH.pdf.

[3] R. Buchty, D. Kramer, M. Kicherer, and W. Karl. A light-
weight approach to dynamical runtime linking supporting
heterogenous, parallel, and reconfigurable architectures. In
Architecture of Computing Systems – ARCS 2009, 22nd In-
ternational Conference, Lecture Notes in Computer Science
(LNCS), Delft, Netherlands, March 2009. GI e.V. to appear.

[4] Celoxica. Handel-C Language Reference Manual, 2001.
[5] ClearSpeed Technology plc. ClearSpeed Advance X620 and

e620 Accelerator Boards, 2006. Web site: http://www.
clearspeed.com/products/cs_advance/.

[6] Cray Inc. Cray XD1 Supercomputer, 2004. Web
site: http://www.cray.com/downloads/Cray_
XD1_Datasheet.pdf.

[7] E. Ej-Araby, I. Gonzalez, and T. El-Ghazawi. Bring-
ing High-Performance Reconfigurable Computing to Exact
Computations. Field Programmable Logic and Applica-
tions, 2007. FPL 2007. International Conference on, pages
79–85, Aug. 2007.

[8] C. F. Fang, T. Chen, and R. A. Rutenbar. Floating-point error
analysis based on affine arithmetic. In Proc. IEEE Int. Conf.
on Acoust., Speech, and Signal Processing, pages 561–564,
2003.

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann. MPFR: A multiple-precision binary floating-
point library with correct rounding. ACM Trans. Math.
Softw., 33(2):13, 2007.

[10] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, and U. Brüning.
The HTX-Board: A Rapid Prototyping Station. Proceed-
ings of the 3rd Annual FPGA World Conference, November
2006.

[11] G. Gerwig, H. Wetter, E. M. Schwarz, and J. Haess. High
Performance Floating-Point Unit with 116 Bit Wide Divider.
In ARITH ’03: Proceedings of the 16th IEEE Symposium on
Computer Arithmetic (ARITH-16’03), page 87, Washington,
DC, USA, 2003. IEEE Computer Society.

[12] T. Granlund. The GNU MP Bignum Library, 2008. Web
site: http://gmplib.org.

[13] K. Group. Khronos OpenCL API Registry. December 2008.
http://www.khronos.org/registry/cl/.

[14] B. Hendrickson and J. Berry. Graph Analysis with High-
Performance Computing. Computing in Science & Engi-
neering, 10(2):14–19, March-April 2008.

[15] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah. Liq-
uid Metal: Object-Oriented Programming Across the Hard-
ware/Software Boundary. In ECOOP 2008 Object-Oriented
Programming, volume 5142/2008 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2008.

[16] HyperTransport Consortium. Low Latency Chip-to-Chip
and beyond Interconnect, 2005. Web site: http://www.
hypertransport.org/.

[17] N. Inc. High Performance FPGA Computing Solutions
for Defense and HPC, 2005. Web site: http://www.
nallatech.com/.

[18] J. Kernhof, C. Baumhof, B. Höfflinger, U. Kulisch, S. Kwee,
P. Schramm, M. Selzer, and T. Teufel. A CMOS Floating-
Point Processing Chip for Verified Exact Vector Arith-
metic. Proceedings ESSCIRC ’94, pages 196–199, Septem-
ber 1994.

[19] J. Koshy. libelf by Example. Web site: http:
//people.freebsd.org/˜jkoshy/download/
libelf/article.html.

[20] U. Kulisch. The XSC tools for extended scientific comput-
ing. In Proceedings of the IFIP TC2/WG2.5 working con-
ference on Quality of numerical software, pages 280–284,
London, UK, 1997. Chapman & Hall, Ltd.

[21] U. W. Kulisch. Advanced arithmetic for the digital com-
puter: design of arithmetic units. Springer, 2002.

[22] M. Tim Jones. Access the Linux kernel using the
/proc filesystem. In IBM developerWorks, 2006. Web
site: http://www.ibm.com/developerworks/
library/l-proc.html.

[23] R. E. Moore. Interval arithmetic and automatic error anal-
ysis in digital computing. PhD thesis, Stanford University,
Stanford, CA, USA, 1963.

[24] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A Case for
Intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[25] J. G. Rokne. Interval arithmetic and interval analysis: an
introduction. Granular computing: an emerging paradigm,
pages 1–22, 2001.

[26] P.-M. Seidel. High-radix implementation of IEEE floating-
point addition. Computer Arithmetic, 2005. ARITH-17 2005.
17th IEEE Symposium on, pages 99–106, June 2005.

[27] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open-
source HyperTransport core. ACM Trans. Reconfigurable
Technol. Syst., 1(3):1–21, 2008.

[28] T. Sterling, J. Brockman, and E. Upchurch. Analysis and
Modeling of Advanced PIM Architecture Design Trade-
offs. In SC’2004 Conference CD, Pittsburgh, PA, November
2004. IEEE/ACM SIGARCH.

[29] D. Tan, A. Danysh, and M. Liebelt. Multiple-precision
fixed-point vector multiply-accumulator using shared seg-
mentation. Computer Arithmetic, 2003. Proceedings. 16th
IEEE Symposium on, pages 12–19, June 2003.

[30] S. D. Trong, M. Schmookler, E. Schwarz, and M. Kroener.
P6 Binary Floating-Point Unit. Computer Arithmetic, 2007.
ARITH ’07. 18th IEEE Symposium on, pages 77–86, June
2007.

[31] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen Polymorphic
Processor. IEEE Transactions on Computers, pages 1363–
1375, November 2004.

[32] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian,
M. Girkar, N. Y. Yang, G.-Y. Lueh, and H. Wang. EXOCHI:
architecture and programming environment for a heteroge-
neous multi-core multithreaded system. In PLDI ’07: Pro-
ceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 156–
166, New York, NY, USA, 2007. ACM.

- 29 -

A general purpose HyperTransport-based Application Accelerator Framework

David Kramer Thorsten Vogel Rainer Buchty Fabian Nowak
and Wolfgang Karl

Institute of Computer Science & Engineering
Universität Karlsruhe (TH)

Zirkel 2
76131 Karlsruhe, Germany

{kramer, thorsten.vogel, buchty, nowak, karl}@ira.uka.de

Abstract

HyperTransport provides a flexible, low latency and high
bandwidth interconnection between processors and also
between processors and peripheral components. There-
fore, the interconnection is no longer a performance bot-
tleneck when integrating application specific accelerators
in modern computing systems. Current FPGAs providing
huge computational power and permit the acceleration of
compute-intensive kernels. We therefore present a general
purpose architecture based on HyperTransport and modern
FPGAs to accelerate time-consuming computations. Fur-
ther, we present a prototypical implementation of our archi-
tecture. Here we used an AMD Opteron-based system with
the HTX Board [6] to demonstrate that common applica-
tions can benefit from available hardware accelerators. A
cryptographic example showed that the encryption of files,
larger then 50 kByte, can be successfully accelerated.

1 Introduction

We still see Moore’s Law [10] being valid with the
transistor count on a single chip doubling every 18 to 24
months. This further increase in technology density has two
significant implications: for processor architectures, the fur-
ther increase in integration does, due to technological con-
straints, not lead to increased individual processor speed,
but rather the creation of multicore processor architectures.
For reconfigurable logic, in term, it results in comparably
large units being able to hold complex systems on chips or
a multitude of dedicated hardware accelerators.

In the past, the use of such hardware accelerators was
mainly hampered by the absence of appropriate intercon-
nection technology. Since the demise of dedicated co-
processor interfaces, which enabled a fine-granular integra-

tion of hardware accelerators into the system, only periph-
eral buses remained as the only way of connection, impos-
ing huge limitations on transfer speed and, therefore, data
exchange between host system and accelerator.

HyperTransport is an example of current interconnec-
tion technology, serving for either CPU/CPU communica-
tion or the connection to peripheral subsystems. It therefore
not only provides necessary speed and bandwidth numbers
to not become a significant communication bottleneck, but
furthermore enables tight integration of arbitrary computa-
tion units into the host system.

This interconnection technology combined with current
FPGA technology enables the development and use of dy-
namically configurable hardware accelerators for vertical
migration of algorithms, i.e. offloading dedicated or oth-
erwise time-consuming computations such as e.g. numer-
ical simulations, cryptographic algorithms, or processing of
streaming media to specialized accelerator units.

In this paper we describe the design and use of an
FPGA-based general-purpose hardware accelerator unit for
HyperTransport-equipped systems. This accelerator unit
comprises up to 6 individual accelerator cores and accord-
ing circuitry providing interfacing with the HyperTransport
bus and higher-level functions such as DMA data transfer
and Monitoring.

This accelerator unit is part of an integrated platform
consisting of a controlling host system, individual hardware
accelerators, and a runtime system [3], enabling dynamic
resolution of computation routines to be executed either in
software on the host processor or offloaded to one or more
accelerators. The platform also features a currently devel-
oped C/C++ language extension to generate control infor-
mation enabling automation of the dynamic function reso-
lution and general automatic optimization in the scope of
Self-X and adaptive systems.

The remainder of this paper is therefore structured as
follows: we will first present related work in Section 2,

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 30 -

shortly introducing other architectures and approaches with
their advantages and drawbacks. In Section 3, we give an
overview of our proposed accelerator architecture and how
it integrates into HyperTransport systems. Section 4 present
the first implementation of our architecture using the HTX
Board from the University of Heidelberg. Section 5 con-
tains an application case study demonstrating the usability
and general applicability of our architecture. An outlook of
ongoing and future is given in Section 6 and the paper is
concluded with Section 7.

2 Related Work

In the past, different approaches for integrating hardware
acceleration into existing systems were introduced, rang-
ing from simple accelerator cards to dedicated co-processor
solutions and completely dynamic processor architectures.
Especially the latter employ FPGA technology to enable on-
demand reconfiguration, therefore leading to increased use
of the silicon area. The existing approaches can be roughly
divided into two categories by granularity, i.e. fine-grained
instruction set extension and coarse-grained extension as
co-processors.

An early research project for using reconfigurable logic
for instruction set extension is PRISM (Processor Re-
configuration Through Instruction-Set Metamorphosis) [2].
PRISM consists of a general purpose processor and an
FPGA, which is connected through a dedicated bus sys-
tem. PRISM focuses on transparent hardware generation
and acceleration of standard C code for single applications
running on a general purpose processor. A configuration
compiler splits the application into a software image and
a hardware image. The software image is a regular binary
which runs on the general purpose processor. This binary
contains code that coordinates the execution of the gener-
ated hardware accelerators. The hardware accelerators are
suggested by the compiler, generated by external synthesis
tools, and included in the hardware image. This image runs
on the connected FPGA. A similar concept is used by Garp
[7], which also relies on compiler-generated predefinition of
a reconfigurable logic section; in contrast to PRISM, how-
ever, a dedicated array enabling easy on-demand reconfig-
uration was used. According instructions were added into
the processor instruction set to enable dynamic loading and
unloading of hardware configurations.

While in PRISM the instruction set is fixed for a specific
application, the instruction set in the DISC (Dynamic In-
struction Set Computer) [16] is completely dynamic. Here,
instructions are implemented as modules which can be
loaded onto an FPGA at runtime. Since the FPGA has a
limited size it can hold only a restricted number of instruc-
tions. In DISC, unused instructions can be replaced at run-
time with the help of Partial Dynamic Reconfiguration. If

not enough FPGA resources are available, LRU strategy is
used to select instruction modules which are removed. A
DISC application consists of instruction modules and soft-
ware which defines their execution order.

The MOLEN Polymorphic Processor [15] is another ap-
proach for a processor which is capable of custom com-
puting. Like Garp, it uses the reconfigurable co-processor
scheme. In contrast to Garp, MOLEN allows parallel exe-
cution of several independent hardware operations. Addi-
tionally it uses standard FPGAs for the reconfigurable co-
processor. Therefore, high-level hardware description lan-
guages can be used to develop the custom configured units
(CCUs).

Although the clock frequency of current FPGA technol-
ogy is a magnitude slower than that of recent CPUs, several
approaches target integration of FPGAs as co-processors in
high-performance computing systems. Common to all ap-
proaches is that they do not accelerate single instruction, but
rather coarse-grained parts of the application as fine-grained
acceleration of individual instructions is not feasible. This
is due to latencies occuring from configuration, data trans-
fer, and triggering computation which limit effectively limit
the granularity of FPGA-based acceleration. Being usually
just peripherals, they are rather loosely coupled to the re-
maining system so that e.g. it is not possible to stall the
processor pipeline when executing a special instruction.

An example for such an architecture is the Cray XD1 [9]
computing platform featuring AMD Opteron processors for
general purpose processing and Xilinx Virtex FPGAs for
accelerating compute intensive kernels. HyperTransport is
used as the interconnection technology between CPU and
FPGA. The bit-streams for the FPGAs are created using a
high-level hardware description language and the standard
Xilinx development tools. An API is provided for accessing
the application accelerators from within the application.

SGI offers the SGI RASC RC100 Blade [12] for accel-
erating HPC applications. The blade features two Xilinx
Virtex 4 LX200 FPGAs and 80 MB of SRAM. It is di-
rectly connected to the system’s shared memory via the pro-
prietary NUMALink interconnection. Intel Itanium CPUs
are used as general-purpose processing units. The provided
software solution allows to run the reconfigurable comput-
ing elements in a multi-user and multi-process environment.
The application accelerators can be developed using a high
level language like Impulse-C.

Our approach, as outlined in the next section, follows
the latter design principles, i.e. enhancing a host system by
a dedicated accelerator board, merging in the parallel as-
pects of MOLEN by providing several individual acceler-
ator units which may be used and configured individually.
Likewise, dynamic reconfiguration of individual accelera-
tor units is possible. Using HyperTransport interconnection
technology enables a tight integration into current state-of-

- 31 -

the-art workstations.

3 Overview

This section describes the structure of our architecture.
Besides the hardware components, our architecture also in-
cludes a software stack for easy use of application accel-
erators form within normal C code and additional monitor-
ing and steering components. The monitors provide sta-
tus information of the hardware to the steering components,
which can use these information, for example, to guide the
reconfiguration process.

3.1 Hardware Components

The overview of the hardware components is depicted in
Figure 1. The hardware consists of seven main parts: the
HT Core, the Command- and Status-Bus (CSB), the Data
Bus, the DMA Unit, the Monitoring Infrastructure, the Re-
configuration Controller, and the Application Accelerators
itself.

3.1.1 HT Core

The HT Core connects our architecture to a
HyperTransport-bus. It provides the application ac-
celerators including the DMA Unit an efficient way to
access the system’s main memory. All protocol handling re-
garding HyperTransport is handled within this component.
The HT Core provides an interface to the HyperTransport
link signals and an uniform, queue-based interface to the
application accelerators and the CSB. Further, the I/O area
of the HT Core is memory-mapped into the virtual memory
of the host system to enable easy usage of the application
accelerators from within application code.

3.1.2 Command- and Status-Bus (CSB)

Components which are connected to the CSB receive com-
mands from and provide status information to the software.
Parallel read and write requests are enabled by using two
separate buses. The CSB has an interface to the HT Core
and the reconfiguration controller and interfaces to the mon-
itors and the application accelerators.

Part of the CSB are two so-called Request Coder. The
Request Coders act as a bridge between HT and CSB and
are used to convert internal messages to HT messages and
vice versa; this is necessary as both buses may be of differ-
ent width.

3.1.3 Data Bus

Like the CSB, the Data Bus is also divided into a write bus
and a read bus. This separation allows handling data reads

and writes independently. The data bus has an interface to
the DMA Unit and interfaces to the application accelerators.
An arbiter is used to grant access rights to the individual
components.

3.1.4 DMA Unit

Our architecture features a Direct Memory Access-Unit to
avoid Programmed Input/Output (PIO). Accounting for the
independent read and write buses, read and write requests
are handled by two distinct components, not only simplify-
ing the design but also allowing concurrent read and write
operations.

The DMA Unit hides HyperTransport-specific details.
HyperTransport does only allow memory access aligned to
a 64 byte boundary [1]. Unaligned accesses or accesses of
more than 64 byte are split by the DMA Unit into multiple
accesses adhering to the bus restrictions.

3.1.5 Monitoring Infrastructure

To support software-based control daemons, a monitoring
infrastructure was introduced. This infrastructure consists
of several, independent monitors, more precisely, one mon-
itor for each application accelerator. The monitor itself con-
sists of multiple 32-bit counters. It monitors the state of the
accelerator. The counter corresponding to the current state
is increased every clock cycle. The monitors provide an in-
terface to the CSB and, upon request, deliver information to
higher control instances.

3.1.6 Reconfiguration Controller

The reconfiguration controller can be used to reconfigure
independent accelerator slots. For this purpose, it has an
interface to both, on-chip bus systems and, if available, an
interface to a reconfiguration port of the FPGA.

3.1.7 Application Accelerators

The application accelerators consists of two main parts,
the Accelerator Interface (AI) and an Accelerator Wrapper
(AW). The latter consists of a Parameter and Result Bridge
(PRB) and the application accelerator itself.

The AI has two main objectives: it provides a uniform
interface to CSB and Data Bus, and forwards commands,
parameters, and data to the AW. The uniform interface en-
sures compatibility among different accelerators, as every
accelerator uses the same interface. The uniform interface is
achieved by parameter serialization, i.e. all parameters for
an application accelerator are serialized on software side.
As a result of this approach, only one parameter per clock
cycle can be passed to the accelerator.

- 32 -

Bus
Data

Mon.

Mon.

Command &

Status Bus

P
R

B

Accelerator

P
R

B

Accelerator

Accelerator Wrapper

Accelerator Wrapper

Accelerator Slot

Accelerator Slot

DMA Unit

HT Core

Interface

Accel.

Accel.

Interface

Reconfiguration
Controller

Request
Coder

Figure 1. Hardware Composition

typedef struct acc_mgnt_struct
{
controller_t controller;
read_access_t read_access;
accel_slot_t slots[SLOT_COUNT];
accel_monitor_t mon[SLOT_COUNT];

} acc_mgnt_struct

Figure 2. Accelerator Management Structure

The PRB, in term, is the interface specific to the individ-
ual application accelerator, transforming serialized uniform
representation into the accelerator’s native format. The PRB
hence deserializes the parameters and stores them inter-
nally, providing all required parameters simultaneously to
the accelerator.

The AW packages the accelerator and its according PRB
into an exchangeable modular entity.

3.2 Software Components

3.2.1 Accelerator Management Structure

To avoid error-prone pointer arithmetic, we provide a con-
venient interface for accessing the application accelerators
from within C Code. We therefore map a supporting accel-
erator management structure (see Figure 2) into the memory
area of the HT Core.

This structure reflects the order of the hardware compo-
nents connected to the CSB. The first item of this structure
is the structure for steering the reconfiguration controller.
The second item can be used to configure the number of
concurrent reads of the DMA Unit. The third structure is
an array for controlling the individual accelerators. The last
array is for status queries to the accelerator monitors.

To access the individual accelerators the application de-
veloper must use the accel_slot_t structure. This
structure contains variables like a parameter sink for pass-
ing the parameter to the accelerator or a command structure
for triggering the computation.

3.2.2 Driver

A kernel driver is required to permit mapping of the HT
Core memory range into the address space of user pro-
cesses. This driver creates two character devices which
can be opened and used with the mmap system call. The
first device represents the HT Core memory range, the latter
the DMA memory range. Additionally, the DMA memory
range can be read for obtaining the overall size and its loca-
tion. Before user processes may map both types of memory
into their address space, they must already be mapped into
the kernel space.

In order to be able to easily use a dedicated DMA mem-
ory area, we must prevent the kernel from managing all
available physical memory. This simplifies the communi-
cation between HT Core and application as no translation

- 33 -

between virtual and physical memory address must be per-
formed. This is done by passing the mem parameter to the
kernel at boot time. The remainder of the main memory
must be made available for handing out to user space. This
is achieved through the ioremap system call.

Furthermore, the driver provides runtime information
and a command interface through the virtual proc file sys-
tem (procfs), supplying monitoring and controlling possi-
bilities to the Control Daemon. All information provided
by the Monitoring Infrastructure can be obtained via procfs.

3.2.3 Control Daemon

The Control Daemon is a central resource manager. It man-
ages both, accelerators and DMA memory. It consists of a
device handler, an accelerator manager, a memory manager
and a notification broker.

The device handler is used to abstract the kernel driver
interface and handles communication with the driver via its
device nodes. It provides functions for mapping and un-
mapping the Accelerator Management Structure and DMA
memory area into the user address space.

The accelerator manager is responsible for finding
and reserving accelerators of a specific type. The
get_accelerator() function iterates through the ac-
celerator slots and compares their loaded accelerator type to
the requested. The first accelerator with the correct accel-
erator type and unoccupied status is assigned to the thread.
To ensure a clean initial starting environment, a reset fol-
lowed by a request command are sent to newly acquired
accelerators. Likewise, appropriate functions for releasing
accelerators are provided.

The memory manager handles accesses to the DMA
memory area, i.e. requests with sizes being multiples of
the systems page size. This restriction is introduced as
only complete pages can be mapped into the user address
space. The memory manager performs bookkeeping regard-
ing memory areas being already mapped or being free for
further request. Two functions are provided for allocating
and freeing memory. To minimize fragmentation, an ap-
proach similar to free list [11] is used.

Notifying threads when an appropriate application accel-
erator is finished is the task of the notification broker (NB).
It monitors the status of the accelerators slots and calls the
corresponding thread upon status changes to finished or
error. Being a pure software solution, the NB polls the
accelerator status registers periodically. As such a PIO ap-
proach fully utilizes one host processor for busy-waiting,
we therefore instantiated a POSIX message queue between
the NB and the calling thread. These queues support a
blocking mode, i.e. reading from an empty or writing to a
full queue results in the calling thread being blocked. The
NB iterates periodically through the status of each accel-

erator slot and identifies status changes. For each status
change, an event is submitted into the corresponding no-
tification queue. Threads can subscribe to their notification
queue and receive according notifications. If no notification
is available, the thread will be blocked.

4 Prototypical Implementation

In this section we describe the prototype implementation
of our framework based on the HTX Board [6], using the
HT Core [14, 13] provided by the University of Heidelberg.
We present implementational details of our framework as
well as first latency and bandwidth measurements.

4.1 Hardware

The testbed for our prototypical implementation is a sys-
tem comprising an AMD Opteron 870 dual-core processor,
2 GB of main memory, and a HTX slot[8]. The HTX slot
enables the usage of HyperTransport interconnection tech-
nology to extend systems which are based on a processor
that is HyperTransport-capable. This slot is used to connect
a HTX Board with the system, featuring a Xilinx Virtex-4
FX100 FPGA, 128 MB SDRAM, Gigabit Ethernet connec-
tivity, and up to 6 transceiver sockets. An EEPROM is used
to store the initial bitstream for initialization after power-on.
The FPGA’s PowerPC cores are not used in this design.

The protocol handling of the HyperTransport channel is
done by the HT Core [14]. The HT Core, provided by the
University of Heidelberg, is a soft-core and written in the
Verilog hardware description language. In our current syn-
chronous design the HT Core runs at 100MHz clock fre-
quency and provides a 16 bit wide link to the AMD Opteron
processor, resulting in a peak bandwidth of 800MB/s for
each direction. The HT Core uses 4868 slices, equalling
11.5% of the available slices. Due to I/O constraints, the HT
Core is located in the FPGA’s lower right corner (see Figure
3). Our current implementation is completely synchronous
to the 100 MHz board clock, simplifying communication
between individual components.

The floorplan of our current implementation is depicted
in Figure 3. The six available hardware accelerators are lo-
cated on top. The PRBs are already included in this area.
Due to the physical design of the FPGA, the accelerators
slots vary in size and available additional resources. The
size and available resources are listed in Table 1.

Beneath the accelerators are their AIs and AWs. Both
are connected to the CSB, which has a width of 8 bits, and
the Data Bus, which has a width of 64 bits. The DMA
Unit, bus arbiter, and reconfiguration controller are located
in the lower left corner of the floorplan. All hardware com-
ponents, except HT Core and the accelerators themselves,

- 34 -

Figure 3. Floorplan

Table 1. Available Resources per slot

Slot Slices BRAM FIFOs DSPs
1 3944 40 40 -
2 3656 40 40 46
3 4136 23 23 -
4 4136 23 23 46
5 4136 46 46 -
6 4136 46 46 -

occupy 5213 slices, equalling 12.3% of the available slices.
Table 2 shows the resource usage of each component.

4.2 Software

For easing the use of the application accelerators, we de-
veloped a library containing individual functions for system
initialization, acquiring and releasing the accelerators and
DMA memory, starting the accelerators, and for NB com-
munication. In its current implementation, the library can
be used with C and C++ applications.

4.3 Bandwidth and Latency Measure-
ments

We developed a simple accelerator for measuring the
bandwidth from and to main memory. This accelerator
reads and writes a predefined number of QWords (64 Byte)

Table 2. Occupied Resources
Component Slices FF Carry Mux LUTs
Request Coder 201 234 - 34 252
DMA-Unit 1468 943 1043 312 2249
Accel. Interface 600 618 372 204 762
Accel. Monitor 2928 3138 6132 1296 5466
Reconf. Controller 16 15 - - 19
Overall 5213 4948 7547 1846 8748
HT Core 4868 5257 719 209 7382
Complete Design 10081 10205 8266 2055 16130

from/to the main memory. The accelerator monitor is used
to measure the duration of the operations. Because Hyper-
Transport requests are limited to eight QWords, the DMA
Unit prevents sole sequential read requests, but rather per-
forms multiple concurrent read requests. Figure 4 depicts
the achieveable read bandwidth when using multiple con-
current requests. A sole request achieves a bandwidth of
103MB/s. The maximum is reached when using five or
more concurrent requests. A sustained bandwidth of about
311MB/s can be achieved. The write bandwidth is much
higher, as no response from main memory is needed. Us-
ing only one write request, a bandwidth of 763MB/s can be
achieved.

The accelerator monitors are also used for measuring the
read request latency. In our current implementation, each
read request shows a latency of 52 cycles. The DMA Unit
needs three cycles to initiate a write request. But as Hyper-
Transport has no acknowledge signal for indicating a suc-

- 35 -

Figure 4. Achieved read bandwidth

cessful write, the entire write latency cannot be measured.

5 Evaluation

Our framework is designed for acceleration of compute-
intensive kernels, we therefore present in this section an il-
lustrative example. This example shows that even common
and widely used applications can benefit from hardware ac-
celeration.

We implemented a dedicated hardware accelerator per-
forming 3DES, an improved version of the standard DES
algorithm, performing three individual DES rounds, using a
different key for each round.

Along with the hardware accelerator, we implemented
a complete software application enabling en- and decryp-
tion of files. Besides en- and decryption with one or multi-
ple hardware accelerators, the application is capable of per-
forming multi-threaded en- and decryption in software us-
ing the OpenSSL [5] library.

The basis of the hardware accelerator is the freely avail-
able 3DES core provided by CoreTex Systems [4]. This
core is implemented in synthesizeable VHDL, performs op-
erations on blocks of data with a size of 64 bit as required
by DES, and has a maximum bandwidth of 581MBit/s at
162 MHz. We implemented a custom PRB for interfacing
this core to our hardware setup.

The software application can be controlled via command
line arguments at start time or through the control daemon
at runtime. Some parameters have to be specified at start
time, e.g. source and destination file, the individual keys, or
the number of concurrent threads or accelerators to be used.

In our first experiment we measured the time needed for
encryption using one thread or hardware accelerator for files
of varying size resulting in the runtimes shown in Figure 5.

Figure 5. 3DES: Encoding time for software
or hardware encryption

As we can clearly see, for smaller file sizes, the software
implementation is faster than the hardware accelerators due
to data transfer overhead resulting from copying data into
the accelerator and back to main memory.

Figure 6. 3DES bandwidth

Figure 6 shows the achieved bandwidth. The pure
software implementation has a peak bandwidth of about
14MB/s, the hardware accelerator of about 40MB/s.

We also conducted an experiment with multiple threads
or hardware accelerators. The results are shown in Fig-
ure 7 and Figure 8. To avoid interference from slow hard
drive accesses, all data is read from main memory and writ-
ten back to main memory. A file of 500 MB was used in
this experiment. As we can see, the hardware implemen-
tation scales almost perfectly with the number of used ac-

- 36 -

celerators. With six accelerators a peak bandwidth of about
241MB/s is achieved. As our test system has only two pro-
cessor cores, the software implementation scales only with
up to two threads. When using six threads the bandwidth
naturally increases only marginal to 29.7MB/s at most.

Figure 7. 3DES: Bandwidth – concurrent en-
cryption

Figure 8. 3DES: Duration – concurrent en-
cryption

6 Outlook

The achieved results in Section 5 showed the usefulness
of our architecture. Ongoing work focuses on security as-
pects and partial dynamic reconfiguration.

In our current implementation of the software stack, the
accelerator management structure, as shown in Figure 2,
is mapped completely into each user process. That im-
plies that all processes can access each available acceler-
ator, leading to incorrect results. Hence, we are currently
evaluating the possibility of mapping an accelerator spe-
cific management structure into the user process, granting
only access to the assigned accelerator. Other security con-
cerns arise with granting main memory access to the accel-
erators. Each accelerator has a direct access to the complete
main memory. Incorrect memory access could lead to incor-
rect results, or even worse to a corrupt system. Therefore,
we are currently extending our monitoring infrastructure to
observe the main memory accesses of the accelerators and
prevent them of accessing memory regions which are not
assigned to them.

The extension of the reconfiguration controller and gen-
eration of partial bitstream is another ongoing work. The
reconfiguration controller will be extended by an interface
to the FPGAs Internal Configuration Access Port (ICAP).
ICAP can be used for partial reconfiguration of the FPGA.
In combination with the DMA Unit, the reconfigration con-
troller should be able to load upon request partial bitstream
from main memory and forward them to the ICAP port.

7 Conclusion

With the emergence of new interconnection technology
like HyperTransport, the interconnection between applica-
tion specific accelerators and the general-purpose proces-
sor is no longer a bottleneck. Older bus systems such as
PCI could not provide the required bandwidth or direct ac-
cess to the systems main memory to successfully accelerate
compute-intensive kernels. HyperTransport provides a flex-
ible, low-latency and high-bandwidth interconnection be-
tween both, invidiual processors as well as processors and
peripheral components.

In this paper, we presented a versatile HyperTransport-
based architecture providing application-specific hardware
accelerators. The concept itself, while implemented us-
ing standard PC technology and the HTX Reference Plat-
form as introduced in Section 4, is generally applicable and
may be applied to arbitrary HT-equipped embedded or high-
performance computing systems.

References

[1] HyperTransportTMI/O Link Specification Revision 3.10.
2008. http://hypertransport.org/docucontrol/HTC20051222-
00046-0028.pdf.

[2] P. Athanas and H. Silverman. Processor reconfigura-
tion through instruction-set metamorphosis. Computer,
26(3):11–18, Mar 1993.

- 37 -

[3] R. Buchty, D. Kramer, M. Kicherer, and W. Karl. A Light-
weight Approach to Dynamical Run-time Linking Support-
ing Heterogenous, Parallel, and Reconfigurable Architec-
tures. In Proceedings of the 22st International Conference
on Architecture of Computing Systems (ARCS 2009), pages
60–71. Springer, 2009.

[4] L. CoreTex Systems. Triple-DES Encryp-
tion+Decryption Core, November 2006. http:
//www.opencores.org/projects.cgi/web/
3des_vhdl/overview.

[5] Eric Young. OpenSSL Crypto Library Manual. The
OpenSSL Project. https://www.openssl.org/
docs/crypto/des.html.

[6] H. Fröning, M. Nüessle, D. Slogsnat, H. Litz, and U. Brün-
ing. The HTX-Board: A Rapid Prototyping Station. In 3rd
annual FPGAWorld Conference, 2006.

[7] J. Hauser and J. Wawrzynek. Garp: a MIPS processor with
a reconfigurable coprocessor. Field-Programmable Custom
Computing Machines, Annual IEEE Symposium on, 0:12,
1997.

[8] HTX3TMSpecification for HyperTransport 3.0 Daughter-
cards and ATX/EATX Motherboards. June 2008.
http://www.hypertransport.org/docs/uploads/HTX3_ Speci-
fications.pdf.

[9] C. Inc. Cray XD1 Supercomputer, 2004. http://www.

cray.com/downloads/Cray_XD1_Datasheet.pdf.
[10] G. E. Moore. Cramming more components onto integrated

circuits. Electronics, Volume 38, Number 8, 19. April 1965.
[11] Robert J. Baron and Linda G. Shapiro. Data Structures and

Their Implementation. PWS Publishing Co., Boston, MA,
USA, 1983.

[12] Silicon Graphics, Inc. SGI RASC RC100 Blade (Datasheet).
2008.

[13] D. Slogsnat, A. Giese, and U. Brüning. A versatile, low
latency HyperTransport core. In FPGA ’07: Proceedings
of the 2007 ACM/SIGDA 15th international symposium on
Field programmable gate arrays, pages 45–52, New York,
NY, USA, 2007. ACM.

[14] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open-
source HyperTransport core. ACM Trans. Reconfigurable
Technol. Syst., 1(3):1–21, 2008.

[15] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuz-
manov, and E. M. Panainte. The MOLEN Polymorphic
Processor. IEEE Transactions on Computers, 53(11):1363–
1375, 2004.

[16] M. Wirthlin and B. Hutchings. A dynamic instruction set
computer. FPGAs for Custom Computing Machines, 1995.
Proceedings. IEEE Symposium on, pages 99–107, Apr 1995.

- 38 -

PGAS Model for the Implementation of Scalable Cluster Systems∗

Juan A. Villar, Francisco Andújar

Francisco J. Alfaro, José L. Sánchez

DSI – Univ. of Castilla–La Mancha

02071 – Albacete, Spain

{juanan, fandujar, falfaro, jsanchez}@dsi.uclm.es

José Duato

DISCA – Tech. Univ. of Valencia

46022 – Valencia, Spain

jduato@disca.upv.es

Abstract

This paper introduces an extended version of the tra-

ditional Partitioned Global Address Space (PGAS) model,

for the implementation of scalable cluster systems, that the

HyperTransport Consortium Advanced Technology Group

(ATG) is working on. Using the Simics and GEMS simula-

tors, we developed a software module that approximates the

behavior of a PGAS cluster. This approach mainly provides

the simplest mechanism to evaluate how much the PGAS in-

frastructure will affect overall the application performance.

The aim of this work is to study the feasibility of the ATG’s

PGAS model for running applications with high memory

requirements. Such a model, will let manufacturers build

clusters that enable the execution of these applications, in

such a way that it will be impossible to run them in a single

processor, or in a multi–processor.

1. Introduction

Traditionally, shared memory systems have been used

to run applications requiring a high memory space. How-

ever, such as systems do not scale more than tens of pro-

cessors. As memory requirements of applications and the

number of applications that run concurrently on comput-

ers have been increasing, designers have made proposals to

partially solve the lack of memory on computer systems. In

this way, modern operating systems provide advanced vir-

tual memory managers that solve the lack of memory. These

managers utilize secondary devices for freeing contents of

memory whenever it is necessary. This approach provides a

simple way of running applications that have a running im-

age size bigger than available physical memory size. When

∗This work has been jointly supported by the Spanish MEC and Euro-

pean Commission FEDER funds under grants Consolider “Ingenio–2010

CSD2006–00046” and “TIN2006–15516–C04–02”; and by Junta de Co-

munidades de Castilla–La Mancha under grant PCC08–0078–9856 and

Beca Predoctoral de Investigación 07/096.

an application is running and the system is low of memory,

the virtual memory manager can evict it to a special de-

vice called a “swap device”, or swap, to free memory. This

technique is called swapping [17], and there are several ap-

proaches in the literature about it. Just to mention a few,

Unix–based systems use a separate swap partition type that

is hosted in the user file system. In contrast, Windows uses

a user–space file that is hosted inside the file system, while

the MacOS X operating system can use partitions and files.

Nevertheless, swapping has several drawbacks. The first

one comes from the access time of the swapping device,

which is usually a hard disk, therefore, one or more orders

of magnitude higher than the memory access time. The sec-

ond drawback is thrashing, which occurs when the mem-

ory manager evicts parts of the running image of a process

and, after a time, it reallocates those parts in memory again.

Thus, solving the lack of memory always involves a high

run time.

The AMD’s Opteron processor can be used as a com-

modity to build clusters. This processor includes the mem-

ory controller on–die, in such a way that all memory is ac-

cessible from one memory controller. The Opteron proces-

sors use the AMD’s HyperTransport protocol [8] for com-

municating with each other. Moreover, the HyperTransport

protocol enables CPUs to directly connect the Opteron Hy-

perTransport link to add–in card subsystems via the HTX

connector [5], which is placed in the motherboard.

The HyperTransport Consortium Advanced Technology

Group (ATG) is working on an extended version of the

traditional Partitioned Global Address Space (PGAS) pro-

gramming model [3]. Such a model will let manufactur-

ers build clusters with PGAS native support. In this pa-

per we carry out an assessment of “rough” PGAS model

through Simics [10] and GEMS [11] simulators. However,

this work has not attempted to conduct a study using a hard-

ware implementation, because the ATG has not completed

the specification of its PGAS model yet, and therefore it is

impossible to achieve that kind of evaluation. The behavior

of the final system will be similar (bridging the gap) to the

behavior in a cluster with PGAS native support.

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 39 -

holger
Sticky Note

In addition, the increasing use of interconnection net-

works to intercommunicate the processor and memory, such

as AMD HyperTransport, might allow the construction of

scalable systems, from hundreds to thousands of nodes

composed of multicore processors. Therefore, the Opteron

processors will provide the basis to build the clusters with

PGAS native support.

The remainder of this paper is structured as follows: In

the next section we present a summary of the related work.

The details of the proposed model are explained in Sec-

tion 3, while Section 4 details the simulation scenarios and

the results obtained. In the last Section, we conclude and

provide a brief overview of the future work.

2. Related Work

HyperTransport is an interconnection technology which

enables connecting the processors among each other and

with the I/O devices. It provides an extremely low latency,

high bandwidth and excellent scalability. Moreover, the

definition of the HTX connector allows co–processing and

acceleration based on ASIC or FPGA technologies. In par-

ticular, it is receiving a highlighted interest of the commu-

nity because it makes easy to reduce execution time by the

use of accelerators.

Partitioned Global Address Space languages combine

a Single Program Multiple Data (SPMD) programming

model with a global address space, which is logically par-

titioned to give each thread a portion of shared memory

to which it has affinity [19]. In the SPMD model, a fixed

number of threads are created at program startup, and every

thread runs the same program. Each thread has both a space

for private local memory and some partition of the shared

space to which it has affinity. A private object may only be

accessed by its corresponding thread, whereas all threads

can read or write any object in the shared address space.

The partitioning of the shared space into regions with logi-

cal affinity to threads allows programmers to explicitly con-

trol data layout, which is then used by the runtime system

to map threads and their associated data to processors: on a

distributed memory machine, the local memory of a proces-

sor holds both the thread’s private data and the shared data

with affinity to that thread.

The HTC Advanced Technology Group (ATG) [1] is

working on developing proposals for HyperTransport to de-

fine an address space globally and dynamic partitioning

(PGAS) for using in scalable clusters. The idea is not new,

but it comes from the existing PGAS models [3]. In the bib-

liography several PGAS applications can be found, for ex-

ample, Unified Parallel C [4] to define models of program-

ming languages. In addition, developers of these languages

have tools like GASnet [2] which is a communication inter-

face for programming languages such as Unified Parallel C.

GASnet is a language independent of the network that al-

lows the definition of libraries providing global addressing.

GASnet is inspiring the work of HTC Advanced Technol-

ogy Group for the implementation of PGAS [18] in a native

way.

The ATG is proposing the mechanisms and abstractions

that will allow the construction of clusters using Opteron

processors. The motherboard containing Opteron proces-

sors will support the HTX connector. By plugging exten-

sion cards on the HTX connector will allow the formation

of a cluster of motherboards. The memory controller of

each Opteron will divide the whole range of physical ad-

dresses in regions and distribute them among the memory

of other Opterons. Subsequently, the memory controllers

will be able to access remote regions of memory transpar-

ently. Following this approach, the Opteron processors can

avoid the use of a device for the lack of memory, since ac-

cess to remote memory controller will be lower than access

to a local secondary storage device, and hence system per-

formance will be enhanced.

In such systems, the physically addressable memory in

all nodes is part of a global address space with non–uniform

access time from any specific node. From the perspective

of a node, the global address space is composed of local

partitions and remote partitions where the former can be ac-

cessed with the lowest latency and the latter can be accessed

with larger and possibly non–uniform latencies (across dis-

tinct partitions). In this model, a local partition refers to

DRAM accessed through a tightly integrated memory con-

troller. The latency of remote memory accesses will be non–

uniform because it will depend on interconnection perfor-

mance and the load and contention of the network.

Specific details of the implementation of the PGAS

model cannot be provided in this paper because they are

still confidential, and some aspects of it are still under de-

liberation of the ATG group.

The Computer Architecture Group at the University of

Heidelberg in Germany has the expertise to design com-

plex hardware/software systems. The HTX–Board [7], a

contribution of this group, provides a convenient and ef-

ficient way to evaluate user specific devices connected to

the Hypertransport connector standardised under the name

of HTX–Connector. In [16] they published the architec-

ture and mechanisms of the HTX–board. Subsequently,

in [9] they have introduced a novel communication engine

in combination with the HyperTransport interface. They

provide an excellent prototype to get real–world measure-

ments connecting two Opteron through two HTX–boards.

Moreover, they also show the initial latencies of sending

a HyperTransport packet on a HyperTransport link and pro-

pose some optimisations that can minimise that latency (e.g.

doubling the HyperTransport clock frequency or migrating

FPGA to ASIC technology).

- 40 -

Target

Processor

INTERCONNECTION

NETWORK

Target

M a i n M e m o r y

Regions of

remote

motherboard

accesses

Regions of

local accesses

Regions of

motherboard

accesses

.

.

.

.

.

.

.

.

.

Simulated Cluster System Target System of Simics

HTX HTX

HTX HTX

Simulated processor running the benchmark

Figure 1. Diagram of the simulated cluster.

3. Model

Because of the fact that the ATG has not completed the

specification of its model PGAS yet, it is impossible to carry

out an evaluation using a hardware system. However, it is

feasible to carry out an approximate evaluation of the PGAS

model by simulation.

In order to simulate the cluster, Simics 2.1 and

GEMS 2.2.19 simulators were used. In the Simics context,

two fundamentals terms are always used:

• The computer on which we are running Simics is re-

ferred to “host system”.

• The computer simulated by Simics is referred to “tar-

get system”. Specifically, it simulates the cluster with

PGAS support.

Our approach consists in simulating the execution of one

sequential application as if it would be running on a cluster

with PGAS support just using the execution–driven Simics

simulator. In that hypothetical cluster, any processor might

issue requests of the global address space. The global ad-

dress space will consist of the joint of every memory in the

cluster. From the processors point of view, most of the phys-

ical memory in the cluster can be accessed, except some

private areas that will not be allowed to access. The Fig-

ure 1 explains how a cluster can be simulated starting from

a simulated processor in Simics.

Without lossing generality, we run one sequential appli-

cation in the target system and we process every message

going inside the system. The messages are deliverated by

the simulator as they are in a usual execution, but the de-

lay of every message is customised depending on the type,

source and destination of the message.

In the AMD’s whitepaper [14] a suite of benchmarks

is examined to illustrate their performance and scalabil-

ity in single, multi–processor, and cluster configurations.

Its results clearly show the exceptionally responsiveness of

an Opteron–based NUMA support system. Specifically, it

shows the cost for one processor for accessing to the shared

memory in a four AMD Opteron motherboard. The laten-

cies are given depending on the distance between the trans-

mitter and receiver processors.

Regarding the application, it must be a benchmark that

makes an intense use of memory. Also, a sequential appli-

cation is preferred in order to avoid any dependency pro-

duced by a parallel execution. Stream [12] is a well–known

benchmark that measures bandwidth sustainable by ordi-

nary user programs, and not the theoretical peak bandwidth

that vendors advertise [13]. Moreover, it is used by AMD

to measure the performance of the memory of their proces-

sors [15].

- 41 -

The benchmark performs functions with matrices that

are stored in memory. The functions are executed several

times. When the benchmark concludes, it returns the rate of

traffic data of memory in MB/second and execution time

(average, minimum and maximum) in seconds, for each

function. Both performance indexes are the most relevant

in this kind of benchmarking. The execution time gives the

global performance measure and the traffic rate offers the

real load of the memory system.

4. Evaluation

In this section, we start describing the simulation model

we have used to carry out our experiment. Then, we present

the results we have obtained and some comments about

them.

4.1. Simulation Model

In all the simulations, our customized GEMS module is

loaded. It is responsible for managing all the messages sent

by the memory system. We assume that the target proces-

sors utilised in this work are used to build systems with a

coherent shared memory, similar to the Opteron processors.

Therefore, the GEMS module has to manage the messages

caused by the memory coherence protocols. The study of

memory coherence protocols is out of the scope of this pa-

per. Thus the simulations have been carried out with a single

processor in order to reduce the influence of these protocols.

The host system is a SUN W2100Z workstation that has

two Opteron processors at 2.4 GHz and a DDR–400 mem-

ory of 4 GB. SuSe 10.2 is used as operating system. The tar-

get system is the sarek preinstalled system of Simics which

is a UltraSPARC processor at 75 MHz. Solaris is used as

operating system and an amount of 512 MB of memory is

configured.

The assumption that the whole memory of the cluster is

512 MB seems initially nonsense. However, the aim of this

work has never been to propose a detailed PGAS simulation

model because the ATG has not finished its PGAS model

yet. Considering an increase of the target memory size, that

is the memory size of the cluster, requires to increase the

Stream benchmark size and then it causes an exponential

simulation time growth that would be unaffordable. Even

though the results remain representative because the bench-

mark spreads the accesses out the memory address space.

Additionally, the parameters of the Stream benchmark

have been set to achieve the following behavior:

1. The target host is running a unique process of Stream

benchmark in absence of processes that interfere with

Stream. Meanwhile, the memory accesses are con-

trolled by the customized GEMS module.

2. Stream runs two series of functions (copy, scale, add

and triad). Previous tests had proved that increasing

the number of series does not alter the final outcome in

the absence of processes that interfere with Stream.

3. The size of Stream is 460 Mbytes. This size was cho-

sen because it represents 90% of the available simu-

lated memory (512 MB).

4. The GEMS simulator requires to set the latencies in

the target processor cycles, so a 2.4 GHz processor was

considered for the translation from real nanoseconds to

simulated cycles.

It must be noticed that the latencies in our simulations are

considered as an approximation. However, we have selected

values that reflect real systems:

• When an access is destined for memory allocated in the

same motherboard, a latency of 115 ns for each access

has been considered [14]. In that case, this value is the

mean time for both read and write accesses.

• When an access is destined for memory allocated in

a remote motherboard, the latency has been deduced

from the proposed delays in [9, 16]. We assume all the

improvements suggested by [9, 16] like ASIC technol-

ogy instead of using FPGA technology, doubling the

HyperTransport link frequency, and a 16–bit Hyper-

Transport link width. In this case, the calculation of

the latencies is:

– Due to all the technology improvements, [9]

claims a total latency of 130 ns for the transmis-

sion and it expects a fixed latency (for local CPU

and remote memory controller) of about 300 ns.

The functionality of [9] is exactly the behavior

of a remote write operation (transmision of data

from source node to destination node). Hence we

assume a latency of 430 ns for a write operation

of 64 bytes payload.

– The read is much more costly. The Opteron used

in [16] only issues 32 bit read operations. The

read operation consists of transmiting the read re-

quest to the destination node, and then transmit-

ing the result back to the source node. Because

of the access granularity of 8 bytes (it is a limi-

tation of the Opteron K10 architecture) a simple

8 bytes read operation costs 610 ns. Therefore,

a series of 8 consecutive operations have to be

issued to retrieve the total amount of 64 bytes.

This is the reason for assuming the read opera-

tion takes 4880 ns.

• When an access is destined for memory mapped in

a swap device, we assume a latency of 45,600 ns as

- 42 -

it is suggested in [6] for enterprise class harddisks.

In that case, this value is the mean seek time for a

variable 512 bytes sector size. We assume this time

as a representative, so we do not consider neither the

sector size effect nor cache implications.

Regarding to simulation scenarios, we have considered

the following scenarios:

• Local scenario (1P): It represents a desktop system

with just one processor and one motherboard.

• Shared scenario (4P): It represents a server system,

commonly known as a shared memory multiprocessor.

There are four processors assembled in one mother-

board.

• Remote scenario (16P): It represents a enterprise sys-

tem or a cluster. A total of sixteen processors are dis-

tributed between four motherboards of four processors

per motherboard that are interconnected using HTX

connectors.

A group of extra three scenarios have been selected to

evaluate the loss of performance due to the utilisation of

swapping. Figure 2 shows the distribution of the target

memory into regions and the access type that is associated

with each region. Each region corresponds to a contiguous

physical memory partition controlled by a single node. In

our test, we assumed all regions are of the same size. These

extra scenarios are based on the previous scenarios and they

consist in distributing the regions of memory between swap-

ping devices, as if they were accesses to secondary devices

and therefore such accesses suffer an extra delay. All the

extra scenarios assume a partitioning of the memory in 16

regions. Specifically, these three extra scenarios are:

• 1P–SW: It is basically the 1P scenario, but the accesses

from the second to the last regions are accesses to a

swap device (see Figure 2(a)).

• 4P–SW–U: It is similar to the 4P scenario. The swap

regions are assigned uniformly (see Figure 2(b)).

• 4P–SW–D: Similar to the 4P–SW–U scenario, but the

swap regions are interleaved on the memory (see Fig-

ure 2(c)).

The previous partitioning of the memory is quite extreme

because it assigns up to 90% of the target memory to swap.

However, that partitioning represents a suitable configura-

tion for checking the influence of the target operating sys-

tem and how its target virtual memory manager allocates

the target memory (e.g. how the target memory is allocated

to the applications).

Target

Processor

RAM

Memory

CPU swap

1 1514131211109872 3 4 5 6 16

(a) 1P–SWAP

1 1514131211109872 3 4 5 6 16

motherboard swap
CPU

(b) 4P–SWAP–U

1 1514131211109872 3 4 5 6 16

swap

motherboard
CPU

motherboard motherboard

swap swap swap

(c) 4P–SWAP–D

Figure 2. Distribution of target memory into

regions and their access type.

4.2. Simulation Results

The aim of this work has never been focused on the per-

formance of the application, but the behavior of a cluster

with native PGAS support (scenario 16P) to run applica-

tions. Note that it will be impossible to run these applica-

tions in a single processor (scenario 1P) or multi–processor

(scenario 4P) due to the memory requirements of these ap-

plications. Note also that the only alternative in these cases

is the use of swapping devices, which is considered in the

1P–SW and 4P–SW scenarios.

Mainly, it is interesting to know how the execution

time evolves. Figure 3 depicts that the execution time in-

creases for 4P and 16P on average 0.54 seconds (2.68%)

and 40.76 seconds (202.68%) with regard to the 1P sce-

nario. Because of it is a memory benchmark, it is also inter-

esting to know how the traffic memory evolves, so Figure 3

depicts that the performance of the memory for 4P and 16P

decreases 0.53 MB/s (2.63%) and 13.46 MB/s (66.93%),

regarding the performance achieved by scenario 1P. When

extra scenarios are studied, the results are even worse, as

it is expected. Both, the execution time and the memory

traffic, fall dramatically for all scenarios.

In Figure 4 we show the same results, but only for the

1P, 4P and 16P scenarios in order to improve the readability

of the Figure 3.

- 43 -

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1P 4P 16P
1P−SW

4P−SW
−U

4P−SW
−D

In
cr

ea
se

 i
n
 E

x
ec

u
ti

o
n
 T

im
e

(%
)

Simulation Scenarios

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1P 4P 16P
1P−SW

4P−SW
−U

4P−SW
−D

In
cr

ea
se

 i
n
 E

x
ec

u
ti

o
n
 T

im
e

(%
)

Simulation Scenarios

(a) Increase in execution time with regard to scenario 1P (numerical and logarithmic scale).

 0

 20

 40

 60

 80

 100

1P 4P 16P
1P−SW

4P−SW
−U

4P−SW
−D

D
ec

re
as

e
in

 M
ea

n
 T

ra
ff

ic
 (

%
)

Simulation Scenarios

 0.1

 1

 10

 100

1P 4P 16P
1P−SW

4P−SW
−U

4P−SW
−D

D
ec

re
as

e
in

 M
ea

n
 T

ra
ff

ic
 (

%
)

Simulation Scenarios

(b) Decrease in mean traffic with regard to scenario 1P (numerical and logarithmic scale).

Figure 3. Performance results of the Stream application in each scenario.

 0

 50

 100

 150

 200

 250

 300

 350

1P 4P 16P

In
cr

ea
se

 i
n
 E

x
ec

u
ti

o
n
 T

im
e

(%
)

Simulation Scenarios

(a) Increase in execution time with regard to scenario 1P.

 0

 20

 40

 60

 80

 100

1P 4P 16P

D
ec

re
as

e
in

 M
ea

n
 T

ra
ff

ic
 (

%
)

Simulation Scenarios

(b) Decrease in mean traffic with regard to scenario 1P.

Figure 4. Detailed performance results of the Stream application in 1P, 4P and 16P scenarios.

- 44 -

The results have shown that scenario 16P using the

PGAS model is always a better choice than extra scenarios

that implement swapping. Of course, the performance of

the unfeasible scenarios 1P and 4P is much better than the

performance of the 16P scenario, but this one is the best op-

tion for those applications with high memory requirements.

5. Conclusions and Future Work

This paper presents the results of the preliminary assess-

ment of the work in progress that is made by the ATG. Be-

cause the ATG has not completed the specification of its

PGAS model yet, it is not possible to carry out a hardware

evaluation. However, we have performance a simulation–

driven study.

Firstly, we have developed a module of the GEMS sim-

ulator for tracking the memory requests and customizing

their latency. By this module, we could simulate approxi-

mately the behavior of an application running in a cluster

with PGAS support. This cluster would run any applica-

tion with high memory requirements if they do not exceed

the whole physical memory of the cluster, because the ap-

plication will be spread out into the DRAM memory of the

processors in the cluster.

As it was explained, swapping can solve the lack of

memory, but the application performace falls dramatically

as the lack of memory increases. This paper has introduced

the PGAS model as one alternative to swapping. Results

have showed that the PGAS model would never be a bet-

ter option than having enough memory in the processor that

runs the applications, because a lot of time would be spent

in accesses to remote memories. However, it will be al-

ways better than using swapping, because the latencies of

the inter–memory communications will be lower than ac-

cesses to swapping.

As future work it is interesting to keep updated of all the

work that is done by the ATG, for example, the real imple-

mentation of the PGAS support, the future improvements of

the HTX–board, and the specification of the HTX connec-

tor.

Acknowledgements

The authors want to give special thanks to Dr. Holger

Fröning of the University of Heidelberg for his helpful com-

ments and assistance for the development of this work.

References

[1] HyperTransport Consortium Advanced Technology Group.

http://www.hypertransport.org.
[2] D. Bonachea. Gasnet Specification, version 1.1, Report No.

UCB/CSD–02–1207, October 2002.

[3] P. Charles, C. Grothoff, V. Saraswat, and et. al. X10: An

object–oriented approach to nonuniform cluster computing

(OOPSLA’05). In Proceedings of the 20th annual ACM SIG-

PLANConference on object oriented programming, systems,

languages, and applications, 2005.
[4] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC:

Distributed Shared Memory Programming. John Wiley and

Sons–May, 2005.
[5] D. Emberson and D. O’Flaherty. HTX Specification for

HyperTransport 3.0 Daughtercards and ATX/EATX Mother-

boards. Technical report, HyperTransport Consortium, June

2008.
[6] Enterprise–class versus Desktop class Hard Drives, Revision

1.0, April 2008.
[7] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, and U. Brüning.

The HTX–Board: A Rapid Prototyping Station. In Proceed-

ing of 3rd Annual FPGAWorld Conference, Stockholm, Swe-

den, November 2006.
[8] HyperTransport Consortium. Hypertransport Specification,

Revision 3.0, April 2007.
[9] H. Litz, H. Froening, M. Nuessle, and U. Bruening. VELO:

A Novel Communication Engine for Ultra–Low Latency

Message Transfers. In Proceedings of 37th International

Conference on Parallel Processing (ICPP–08), Portland,

Oregon, USA, September 2008.
[10] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-

gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and

B. Werner. Simics: A Full System Simulation Platform

Computer. Computer, 35(2), February 2002.
[11] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,

M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and

D. A. Wood. Multifacet’s General Execution–driven Multi-

processor Simulator (GEMS) Toolset. Computer Architec-

ture News (CAN), September 2005.
[12] J. D. McCalpin. STREAM: Sustainable Memory Band-

width in High Performance Computers. Technical report,

University of Virginia (USA), 2007. http://www.cs.

virginia.edu/stream.
[13] S. A. McKee. Reflections on the Memory Wall. In Confer-

ence Computing Frontiers, 2004.
[14] D. O’flaherty and M. Goddard. AMD Opteron Processor

Benchmarking for Clustered Systems. Technical report, Ad-

vanced Micro Devices, July 2003.
[15] Second–Generation AMD Opteron Processor Industry Stan-

dard Server Benchmarks. http://www.amd.com.
[16] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open–

source HyperTransport core. ACM Trans. Reconfigurable

Technol. Syst., 1(3):1–21, September 2008.
[17] W. Stallings. Operating Systems: Internals and Design

Principles (6th Edition). Prentice Hall, April 2008.
[18] S. Yalamanchili, J. Young, J. Duato, and F. Silla. A Dy-

namic, Partitioned Global Address Space Model for High

Performance Clusters. Document GIT–CERCS–08–S01,

School of Electrical and Computer Engineering (Georgia In-

stitute of Technology (USA); Universidad Politecnica de Va-

lencia (Spain), 2008.
[19] K. Yelick and et. al. Productivity and Performance Using

Partitioned Global Address Space Languages. In Proceed-

ing of International Workshop on Parallel Symbolic Compu-

tation (PASCO’07), July 2007.

- 45 -

Extending HyperTransport Protocol for Improved Scalability∗

J. Duato∗, F. Silla
Technical University of Valencia, ∗Simula Labs

B. Holden, P. Miranda, J. Underhill, M. Cavalli
HyperTransport Consortium

S. Yalamanchili
Georgia Institute of Technology

U. Brüning
University of Heidelberg

Abstract

HyperTransport 3.10 is the best open standard communi-
cation technology for chip-to-chip interconnects. However,
its extraordinary features are of little help when building
mid- and large-scale systems because it is unable to na-
tively scale beyond 8 computing nodes. Therefore, it must
be complemented by other interconnect technologies.
The HyperTransport Consortium has intensively stimu-

lated discussions among its high-level members in order to
overcome those shortcomings. The result is the High Node
Count HyperTransport Specification, which defines proto-
col extensions to the HyperTransport I/O Link Specification
Rev. 3.10 that enable HyperTransport to natively support
high numbers of computing nodes, typical of large scale
server clustering and High Performance Computing (HPC)
applications. This extension has been carefully designed
in such a way that it extends the maximum number of con-
nected devices to a number large enough to support current
and future scalability requirements, while preserving the ex-
cellent features that made HyperTransport successful and
keeping full backward compatibility with it.

1. Introduction

HyperTransport 3.10 [5] (hereafter referred to as HT3.10
or simply as HT) is currently the lowest latency, highest
bandwidth openly licensed standard communication tech-
nology for chip-to-chip and board-to-board interconnects.
This performance leadership was achieved by:

• Minimizing packet protocol overhead
• Adopting a clock-forwarding scheme that eliminates
clock recovery overhead

∗This work was supported by the Spanish program CONSOLIDER-
INGENIO 2010 under Grant CSD2006-00046, by the Spanish CICYT un-
der Grant TIN2006-15516-C04-01, and by program PROMETEO under
Grant PROMETEO/2008/060 from Generalitat Valenciana.

• Eliminating control and command signals required by
other communication standards

• Reducing crosstalk and electromagnetic interference
HyperTransport was devised as an efficient replacement

of the traditional system bus and it has become the intercon-
nect of choice for on-board communications. Furthermore,
HT Rev. 3.x specifications (HT3) significantly extended the
scope of HT Rev. 2.0 by providing support for chassis-to-
chassis – i.e. short-haul system-to-system interconnects for
rack-mounted server clusters – and backplane implementa-
tions. This is achieved through the AC mode and the link-
splitting features. The former supporting links up to 1m (3
feet) in length at full speed and the latter by increasing the
number of HyperTransport links in and out of a device with-
out having to increase the number of pins. Hot-plugging –
also introduced with HT3 – helps to enhance HyperTrans-
port’s dynamic expansion capabilities and to improve sys-
tem availability in HT-based servers and storage systems.
At link level, HT uses a lean packet protocol that car-

ries significantly less overhead than other interconnect tech-
nologies. PCI Express, for instance, requires 2 bytes for
framing and 20 percent 8b10b encoding overhead for the
physical layer, 8 additional bytes for the data link layer and
12 or 16 extra bytes for the transaction layer. By contrast,
HT requires no overhead for the physical layer and only 8
to 16 header bytes for the transaction/data link layer.
The characteristic that most uniquely distinguishes Hy-

perTransport from other interconnection technologies in the
market, however, is its being processor-native – i.e. inte-
grated in the processor chip, as in the case of various AMD
CPUs, as well as a number of specialty processors and SoCs
from Bay Microsystems, Broadcom, NetLogic Microsys-
tems, PMC-Sierra, Raza Microelectronics, and Tarari.
Traditionally, CPU-to-peripheral communication has

been accomplished by going through a north bridge con-
troller (competing with main memory accesses) and reach-
ing the destination peripheral device via one of various com-
munication standards, like PCI or PCI Express. The periph-
eral device would then communicate with the CPU by fol-
lowing the same path in reverse. By virtue of its processor-

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 46 -

Figure 1. 4-way Opteron system. Processors
are natively interconnected by HT

Figure 2. 8-way Opteron system. All-to-all
connections are allowed by HT’s link-splitting

native support, HT processor-to-peripheral communication
is speeded up because it takes place on a daisy-chained, di-
rect point-to-point link in which intermediate control func-
tions such as north bridge controllers – with their intrinsic
overhead penalties – are eliminated. Additionally, no proto-
col translation is required. The result of such architectural
innovation is that HyperTransport collectively combines in-
terconnect integration with high bandwidth, low latency,
and low implementation cost.
HyperTransport’s processor-native feature has been

demonstrated to be so successful in reducing communica-
tion latency that other microprocessor manufacturers, like
Intel Corporation, have modified the way their processors
communicate by including this feature in their own proces-
sors. To do so, Intel developed a new proprietary intercon-
nect technology, called Quick Path Interconnect (QPI). The
first Intel processors featuring this new interconnect tech-
nology were recently introduced to market.
Thanks to its powerful features, HyperTransport has

the potential to weave off-the-shelf CPU subsystems and
servers into highly scalable system fabrics and clusters. Ex-
amples are the 4-way and 8-way CPU architectures pro-
posed by AMD and shown in Figures 1 and 2. Opteron
chips in Figure 1 are natively interconnected via 3 coher-
ent HT links per processor (chips may use an additional
HT link for connecting to I/O, if required). By consider-

ing that more sockets could be directly connected via HT3’s
link-splitting feature, and that they could be populated with
8-core Opteron processors per AMD’s product roadmap,
these systems may straightforwardly become 64-way sys-
tems with today’s HT specifications (Figure 2).
Looking into the future, the necessity for higher perfor-

mance and higher scalability solutions should make us –
high-tech purveyors – alert that future High Performance
Computing (HPC) platforms will have to support signifi-
cantly greater scalability. This is to say that, if systems with
tens of thousand of processing nodes continue to represent
the elite play – i.e. limited volume opportunity with not
necessarily limited profits – mid-scale systems with several
hundreds of processors should progressively become com-
mon place. A growing market sector that HyperTransport
Rev. 3.10 – by itself and with its present capabilities – will
be increasingly unable to compete for and capitalize on.
The HyperTransport Consortium, aware of these limi-

tations, has stimulated an extension to HT3.10 in order to
overcome those shortcomings. As a result, the High Node
Count HyperTransport Specification – born from the con-
tribution of HyperTransport Consortium’s high-level com-
mercial and academic members – was recently released by
the Consortium as an extension to the HyperTransport 3.10
Link specification and providing the means for HyperTrans-
port to support large systems. This paper presents such an
extension to HT. To do so, Section 2 presents the market
trends that motivated such an extension. Section 3 intro-
duces the context for the extension by defining the system
model to use. In Section 4 the need for a HT protocol ex-
tension is discussed. Next, Section 5 presents some consid-
erations taken into account inside the HyperTransport Con-
sortium during the development of the new specification.
Section 6 briefly presents the new High Node Count Hyper-
Transport Specification at the same time that it explains why
some of their features have been devised that way. Next,
Section 7 provides some insights on how to implement these
extensions in the current technology arena. Finally, Section
8 draws some conclusions.

2. HyperTransport limitations

As described above, HyperTransport offers some de-
gree of scalability latitude by virtue of its link-splitting,
AC-mode, and hot-plugging capability, which could enable
the implementation of efficient network topologies like 3D
meshes or tori. However, such network topologies, when
scaling to large sizes, require routing capabilities beyond
current HyperTransport ones. Specifically, HT lacks sup-
port for the following:

• Global device addressability beyond 32 HT devices,
required for medium and large size clusters of process-
ing nodes

- 47 -

Figure 3. Cray XT4 scalable architecture. Hy-
perTransport is used to connect Opteron
chips to the proprietary interconnects

• Efficient routing in scalable network topologies
• Scalable congestion management mechanisms
• Dynamic reconfiguration of routing information after
hot plug/swap/removal of components – i.e. no au-
tomatic finding of better routing paths after changing
system topology

As a direct result of HT’s scalability shortcomings, HPC
vendors have no choice but to complement HyperTransport
with other interconnect technologies. Examples are Sun
Microsystems, the extinct Newisys, and Cray.
In the first case, Opteron boxes are interconnected via

Gigabit Ethernet or InfiniBand, providing a non-shared
memory system composed of several independent comput-
ers that communicate via some kind of message-passing
protocols. Thus, the system cannot be viewed as a sin-
gle large-scale system, but as an aggregation of small
systems, between which communication takes place ex-
plicitly. This configuration is similar to the one tradi-
tionally used in clusters and PC farms based on Ethernet
intra-system interconnect backbones, which can be further
performance-accelerated by means of HT-enabled network
interface Cards (NICs). However, such kind of communica-
tion model is burdened by the latency penalty introduced by
the process of creating by software the messages that enable
inter-processor communications. This latency penalty usu-
ally includes one or more system calls at the source and des-
tination ends of the communication links, noticeably lower-
ing performance. Additionally, peripheral devices cannot
be easily shared among processors.
In the case of Cray’s XT4 and XT5 supercomputers [4],

HyperTransport provides a 6.4 GB/s direct connection be-
tween the Opteron processors and Cray’s SeaStar intercon-

nect backbone. The SeaStar interconnect is based on Cray’s
SeaStar2 chips and implements a proprietary protocol to di-
rectly connect up to 30,000 processing nodes in a 3D torus
topology. With this approach, the cost and complexity of
external switches is entirely removed and systems can be
easily scaled in field. Figure 3 shows the profile of Cray’s
interconnect, with the AMD Opteron processors connected
to the SeaStar chips via HT links (green pipes) and the
SeaStar chip linking each processing node to all others via
proprietary links and protocol (orange pipes). It is impor-
tant to note that in addition to being able to differentiate
from competitors, the main reason that compels companies
like Cray to use proprietary interconnects is not necessar-
ily to attain higher bandwidth – i.e. HT3.10’s 25.6 GB/s
(16-bit) bandwidth is much greater than the 9.6 GB/s re-
quired by Cray – but highly likely to compensate for Hy-
perTransport’s inability to scale up to such large system re-
quirements.

With its proprietary Horus chip [7], Newisys proposed a
different approach, which extends HT’s basic functionality
and enables Symmetric Multi-Processing topologies of up
to 32 AMD Opteron chips (32-way) with full cache coher-
ence support. Horus chips appeared to AMDCPUs as CPUs
themselves and provided special routing for data and com-
mand packets, as well as local cache and hidden directory
scheme to significantly enhance the performance of cache
coherence protocols. The resulting system was a single,
coherent shared-memory machine that supported implicit
communicationwithout the use of system calls, thereby sig-
nificantly accelerating communication among processors.
Unfortunately, scalability of Horus-based systems was lim-
ited to only 32 host nodes likely due to the unsolved inabil-
ity of cache coherent node clusters to scale efficiently and,
in addition, to the intrinsic inability of effective scaling of
AMD’s proprietary cache coherence protocol.

In summary, HyperTransport is an excellent intercon-
nection technology that provides the highest bandwidth and
lowest latency. However, HyperTransport’s benefits are pri-
marily confined to host-to-host and host-to-I/O subsystems
within the realm of a single motherboard. Even with the in-
troduction of the AC mode in HT3, the extraordinary fea-
tures of HyperTransport are of little help when building
large systems because HT is unable to natively scale as re-
quired by mid- and large-scale HPC applications and, there-
fore, must be complemented by other interconnect tech-
nologies. Note that this inability is not due to insufficient
bandwidth or connectivity. In fact, as Figure 2 shows,
Opteron processors may have up to 8 HyperTransport links
(by using the link splitting feature), and therefore, efficient
network topologies, like 3-D meshes or tori can be imple-
mented. However, these topologies would require extend-
ing current HyperTransport scalability characteristics. This
was even stated by AMD several years ago [1].

- 48 -

3. System model and definitions

Enhancing HT to natively support a large number of pro-
cessors brings the opportunity to define a new system ar-
chitecture that is scalable, flexible, and simplifies applica-
tion development, all of this with minimal additional cost.
As HyperTransport is a shared-memory oriented protocol,
its enhancement would naturally provide a shared-memory
system. However, it is well known that large-scale cache-
coherent shared-memory systems have never been feasible.
Large systems are message-passing flavored, instead.
Devising a message-passing HT for high node count sys-

tems would deliver little improvement over current large
installations, which are already message-passing oriented.
Moreover, message-passing application programmers inter-
faces (APIs), like MPI, may not be enough in the multi-
core era [3]. Additionally, other programming models, like
PGAS [8] are starting to play an important role. On one
hand, their performance can equal that of MPI codes and,
for most humans, they are much easier to learn [2]. Also,
PGAS is not less scalable than MPI and permits sharing,
whereas MPI rules it out [9]. On the other hand, PGAS
implements a one-sided communication model (faster than
two-sided), where caching is not required and the program-
mer makes local copies and manages their consistency. Be-
cause of this, no cache coherence protocol is needed, except
between the network interface and the processes in a node.
Additionally, a one-sided put/get message can be handled
directly by a network interface with RDMA support, avoid-
ing interrupting the CPU or storing data from it.
Because of all the benefits that a global address space

delivers, the Consortium decided to allow the enhanced Hy-
perTransport to naturally provide what it provided before:
a shared-memory system. Note that now this system model
may be efficiently supported because cache coherence is not
maintained by hardware, and is not enforced for everymem-
ory access. And it is more efficient than other PGAS imple-
mentations because HT interfaces are directly attached to
the processors.
Thus, the system model in mind was based on a large

number of HyperTransport devices that use the HT protocol
to perform memory transactions. This will be referred to as
High Node Count Network. We may think of this network as
a network of processors, each of themwith its local memory
and I/O, as depicted in Figure 4. The way such processors
are physically interconnected is not relevant at this point of
the discusion.
Moreover, in order to devise a general and architecturally

independent system model, we should define the concept
of Nest. A nest is defined as each of the components of
the High Node Count Network. A nest may be something
as simple as a single CPU or something much more com-
plex, as a motherboard containing four CPU devices, each
of them containing four processor cores. Basically, the term

Figure 4. System model assumed in the High
Node Count HyperTransport Specification

Nest refers to a network-addressable entity. In Figure 4,
each of the processors depicted would be a nest. Hereafter,
we will use the term Nest instead of CPU, processor, or
motherboard.
As one of the goals is providingHyperTransport with the

capability of addressing a large number of devices, in the
system model described above each nest will be assigned a
NestID that unambiguously identifies it in the High Node
Count Network. Note that a NestID is a network-style ad-
dress and not a memory-style address. Moreover, a protocol
that sets up the identifier of each nest during system initial-
ization is required. Such a protocol, or a variant of it, may
also be required after hot-plugging of components. The def-
inition of these protocols is outside the scope of this discu-
sion as far as a unique system-wide NestID is provided for
each nest in the system.
In the system model proposed in Figure 4 – a physically

distributed logically shared-memory system – each nest has
access to its local memory via conventional memory buses
and has access to memory belonging to other nests via HT
packet exchanges. In these exchanges, the nest that sources
the request must include its NestID in the packet as well
as the NestID of the destination of the request, i.e., re-
quests will carry a SrcNest and aDestNest. Once the request
reaches its destination, that nest will use the SrcNest as the
destination identifier for the response packet.

4. The need for a protocol extension

At first glance, it may seem that the considered dis-
tributed shared-memory model is completely compatible
with current HT3 specification, as current HT requests that
specify an address use 40-bit addresses with an optional
24-bit address extension and therefore, the upper part of
the 64-bit global memory addresses could be used as the

- 49 -

destination identifier. However, despite providing support
for 64-bit addresses, the HT3 protocol does not provide the
functionality required for a number of reasons:

1. Requests targeted to another nest may use the cur-
rent address extension to identify the destination nest.
However, the address extension can only be used for
commands that include an address. Therefore, re-
sponses back to the source nest – which would also re-
quire a destination identifier to be appropriately routed
inside the interconnect – cannot use an address exten-
sion as currently defined because current packet re-
sponses do not include an address field. Thus, re-
sponses could not be returned to the source nest. Simi-
larly, some HT commands, like Flush, may be directed
to remote nests. These commands do not include a
40-bit address in their packet and, therefore, they are
not eligible to be extended by an address extension ac-
cording to current HT specifications. However, when
targeting these commands to a remote nest, a DestNest
identifier is required in order to forward the packet to
the right destination. Therefore, the address extension,
as defined in the HT specification, does not provide the
required support.

2. Once the target nest has accessed its local memory as
the result of a remote request, it needs to know where
to return the corresponding response. To accomplish
this, it is necessary to include a SrcNest identifier in
the requests, so that target nests use it as the destination
identifier in the response. However, the source identi-
fier extension as currently defined in the HT specifi-
cations does not allow this feature because it only in-
cludes a 16-bit address in bus-device-function format.

For the reasons mentioned above, current address and
source identifier extensions, as defined in HT3, do not sup-
port the proposed system model.
On the other hand, HyperTransport’s scalability limita-

tions may not only be analyzed from the NestID point of
view, but also from the interconnect topology perspective.
As described in Section 4.1 of the HT3 specification, and
using HT3 terminology, HT I/O fabrics are implemented as
one or more daisy chains of HT devices, with a bridge to
the host system at one end. Multiple daisy chains can be
interconnected using bridge devices, forming a tree topol-
ogy. Additionally, the host can contain multiple bridges,
each supporting either a single HT I/O chain or a tree of HT
I/O chains.
These topologies were conceived to attach a set of pe-

ripheral devices or controllers to a single host. The only
exception are double-hosted chains, but even in this case,
either one host acts as a slave and routes all of its transac-
tions through the master host, or the chain appears logically
as two distinct daisy chains – each attached to only one host

bridge. Nevertheless, none of these topologies fit the re-
quirements of large scale systems.
As can be seen, the HT3 specification does not pro-

vide suitable support for interconnecting a large number
of hosts and for routing messages between them. Also, it
does not provide support for identifying nests in the sys-
tem, as discussed above. Consequently, either the entire
specs should be modified to provide the required support,
or a clever way to extend the specs while maintaining back-
ward compatibility should be found. Modifying the specs
should be ruled out as it would compromise the extensive
investments already made by Consortium members in cur-
rent and previous generations of HT technology. Thus, de-
vising backward compatible HT extensions should be the
recommended path to follow. After almost two years of dis-
cussions and deliberations among high-level members of
the Consortium, the HT extensions have been formalized
and released in the form of the High Node Count Hyper-
Transport Specification.

5. What to include in the extension

If HT was to natively support a large number of hosts
(or nests), some extensions to the protocol were required.
These extensions had to be implemented in such a way that
the resulting protocol was as efficient and fast as the current
HT3 version. Additionally, the following goals have been
considered when extending HT:

1. Analyze the ideal characteristics of extended HT while
monitoring HT backward compatibility, so that exist-
ing designs could be reused in extended devices as
much as possible.

2. Minimize the extensions’ overhead – i.e. use of extra
bandwidth, additional latency and cost. This should be
done without crippling the design.

3. Optimize the extensions by taking into account that the
majority of the system platforms will be rather small-
scale.

4. Allow for easy addition of new features that could be
deemed necessary in the future.

Moreover, the extensions of the HyperTransport proto-
col had to be done in such a way that support for future fea-
tures commonly found in large scale systems was straight-
forward.
As discussed above, interconnecting a large number of

hosts requires an interconnect that supports topologies other
than current chains and trees, which may not be efficient for
interconnecting many hosts. It also requires a global enu-
meration scheme across multiple hosts, so that each host
knows the unique identifier of every other host in the sys-
tem. Moreover, some efficient routing strategies are needed,

- 50 -

especially in those cases where multiple physical paths exist
among pairs of hosts. Therefore, in order to build a system
with a large number of hosts, the following areas were iden-
tified by the Consortium as the minimum extension set to be
considered:

• Addressing scheme: ability to address a much larger
number of devices. This mainly affects packet formats.

• Network topology: support for topologies with much
higher connectivity that will enable many more con-
current transmissions in large platforms, provide
shorter paths, and provide alternative paths in case of
failure.

• Routing mechanisms: a routing algorithm that sup-
ports routing messages in the above topologies. The
implementation of the routing logic should be efficient
both for small and large systems.

The three issues above are closely related to each other,
and design decisions for one of them may significantly im-
pact the others. Additionally, in order to develop an efficient
extension of the protocol, the packet format used in the ex-
tended HT should be optimized by taking into account – at
least – the addressing scheme.
At this point, the HyperTransport Consortium had to

make a decision about which features to include in the
future extension and how those features would look like.
Note that not all such characteristics required to be phased
into the new HT specification, as some of them may
be implementation-dependent. For example, conveniently
defining the packet format (which would necessarily im-
ply defining the addressing scheme) may allow leaving both
the network topology and the routingmechanism undefined.
These two topics would be addressed/defined by manufac-
turers when designing their products, or could be consid-
ered at a later time for inclusion in subsequent HT speci-
fications. Additionally, this would open up market oppor-
tunities for the companies member of the HyperTransport
Consortium at the same time that allow these characteristics
to mature before developing more advanced specifications.
For these reasons, the High Node Count HyperTransport
Specification recently released focused on defining the min-
imum set of extensions to the HT protocol that allow Hy-
perTransport to efficiently support large system sizes. Net-
work topologies and routing mechanisms were classified as
implementation-dependent. However, the use of distributed
routing is assumed in the interconnect. In this way, pack-
ets exchanged between nests will be kept small. Addition-
ally, the amount of routing information contained in them is
constant and therefore independent of the path between the
source and the destination nests. This simplifies decoding
the packets. Moreover, adaptive routing may be used in the
future. Finally, other issues, like the required protocols that
set up the identifier of each nest during system initialization
were also defined as implementation-dependent.

6. The high node count specification

This section describes and explains the extensions to
HT3 intended to allow HyperTransport to natively provide
support for high node count environments 1.
One of the topics addressed by the HyperTransport Con-

sortium while defining these extensions was the maximum
number of nests to be supported. The addressing scheme
and the new packet format depended on this. On one hand,
the maximum allowed number of nests should be large
enough to support current and future HPC needs. Actually,
it should be large enough so that the new specification under
development would not require to be modified in the near
term. This system size is probably larger than the market
may require (at least for quite a while), thus smaller systems
would be paying a performance penalty for HT being able to
scale up to those large sizes. On the other hand, defining rel-
atively small NestIDs, optimized for smaller, more popular
systems, would likely impose the need for further specifica-
tion extensions in just a few years to satisfy market-driven
scalability requirements.
Ultimately, the decision made by the Consortium was to

support multiple system sizes. This would keep complexity
low for small system configurations while enabling HT to
scale up as needed. Or course, it was taken into account the
space availability in the format of the extended packets as
well as cost and performance constraints.
With the NestID length defined, the format of the new

specification extensions was also defined. These extensions
are based on a new control doubleword: the NestID ex-
tension, which allows nests in the system to identify them-
selves and also to univocally address other nests, and there-
fore, it is one of the key elements of the specification exten-
sions.
The format of the new control doubleword allows an easy

decoding of the extensions, aligning the new specification
with the second goal in Section 5 that established that ex-
tensions should keep overhead as low as possible. Addition-
ally, the presence of NestID extensions in a request packet is
fully compatible with other extensions such as source iden-
tifier or address extensions – remember that the first goal
mentioned in Section 5 established the need for full back-
wards compatibility.
Response packets may also be extended by NestID ex-

tensions. In fact, when a request reaches a nest, it will prob-
ably have to generate a response packet intended for the
nest that initially created the request. Therefore, in order
to properly forward the response to the right source nest, a
NestID extension must be used. Obviously, the DestNest

1It should be noticed that the HT Consortium has decided not to make
the new extensions available to the general public, so that they will only be
usable by HT Consortium Promoter and Contributor members. Therefore,
because of confidentiality constraints, the description in this section will
not provide the complete details of the new extensions.

- 51 -

identifier used in a response packet is copied from the Src-
Nest identifier of the corresponding request packet.
The exact location of the NestID extension in a request

packet is not accidental, but designed so to improve sys-
tem performance because when a nest sends a request to
another nest, the DestNest identifier needs to be decoded in
order to forward that packet to the target nest. Therefore,
properly locating the required information in the request
packet reduces routing time. Additionally, the location of
the DestNest identifier in response packets has been care-
fully designed so that not only routing time is minimized
but also routing of both request and response packets in the
fabric is kept efficient.
Moreover, packet overhead is minimized for small sys-

tems. The NestID extension has been meticulously de-
signed for small-scale systems, where the new format is
heavily optimized. Actually, this was the third goal to keep
in mind mentioned in Section 5. In small systems, packet
length optimization translates in request packets being 20%
shorter than non-optimized packets. Additionally, they are
42% shorter if compared with packets for large systems.
Note that some extra configuration information is needed

in a nest so that it properly interprets the new extensions.
The required configuration information is located in the
High Node Count Capability Block, the other master piece
of the specification. Unfortunately, because of confidential-
ity constraints, the format and usage of this capability block
cannot be disclosed.

7. Protocol extension implementation

The High Node Count HyperTransport Specification can
be implemented in two different ways, each of them having
a different impact on cost, benefits, and market opportuni-
ties. The following discussion is independent of the maxi-
mum global memory size and thus it is equally valid for any
of the choices mentioned above.

7.1. Native implementation

The implementation option yielding the best system
performance would be modifying the HT logic within
the Opteron processors, in order to enable them to inter-
communicate directly using the proposed extension and to
avoid the use of any external logic, thereby minimizing la-
tency and maximizing bandwidth. Additionally, the embed-
ding of such HT extensions into Opteron processors inter-
connected by large inter-processor networks would require
embedding in the Opteron architecture some kind of routing
logic also, so that HT packets are forwarded from the given
source to the proper destination. This approach would be
similar to the Alpha 21364 processor [6], which integrated a
router function and allowed processors to be interconnected
by a 2D torus with a maximum of 128 processors. Figure 5

Figure 5. 16-way 2D-mesh system. Proces-
sors have embedded protocol extension and
routing logic

shows a similar scenario of a 2D mesh with 16 processors.
In this case, processors would require only four HT links for
complete interconnection. If more links are available – e.g.
by means of HT3 link-splitting capability – more efficient
topologies like 3D meshes or tori could be deployed. These
topologies require 6 links per processor. This implementa-
tion option is certainly the most effective long-term for best
performance and lowest implementation cost. However, it
is not the most ideal time-to-market wise and cost wise, as
modifying the processor’s logic would be quite time and re-
source laden.

7.2. Bridged implementation

Actually, embedding these new HT extensions does not
necessarily impose changes to the processor design. In fact,
an alternative, more flexible and time-to-market friendly
choice would be the implementation of the extended HT
functionality in external logic – i.e. in a bridge chip – whose
main purpose would be translating requests and responses
from one version of the protocol to the other – i.e. a chip
that implements standard HT3 on one side and extended HT
on the other. The logic inside this chip could be designed in
such a way that it detects a current HT chain on one side and
a large HT network on the other. The chip should also in-
corporate some routing capabilities in order to forwardmes-
sages to their intended destination. Figure 6 shows such a
system, composed of 16 processors that communicate with
each other through such bridge chips.
The technical and commercial advantages of such exter-

nal logic solution greatly outweigh its disadvantages com-
pared to the first option. The bridge implementation would
allow HT extensions’ functionality to mature before full

- 52 -

Figure 6. 16-way 2D-mesh system. Protocol
extension and routing logic integrated in the
bridge chip

integration into the CPU. It would also open up interest-
ing market opportunities for HyperTransport Consortium
member companies and the HT technology ecosystem. The
trade-off will be a slightly higher latency and higher system
cost (1 bridge chip per nest).
The implementation of the bridge chip requires includ-

ing a matching unit that associates returning responses to
previously sent requests. In the case for the bridge chip
at the source end, it must first extend the original request
by using the NestID extensions. Once the extended packet
arrives at the destination bridge chip, it must aggregate re-
quests from several sources by translating them into local
requests which are uniquely defined by the combination of
UnitID and SrcTag. Thus, the destination bridge must store
the value of the UnitID, SrcTag, and SrcNest fields in the
incoming packet along with the new local values for UnitID
and SrcTag, so that when the response comes from the lo-
cal chain, the bridge can associate it to the initially received
request and translate back those fields to the initial ones be-
fore sending back the response to the source end. Once the
response is received at the source end, the source bridge will
remove the NestID extensions to deliver a final response to
the initial source of the request.

8. Conclusions

Large computing systems are interesting because of their
aggregate computing power and overall memory capacity.
These large systems require high bandwidth, low latency in-
terconnect technologies for inter-processor communication.
HT3 has the capability and latitude required by these sys-
tems, except for its inability to scale appropriately. Fortu-
nately, it is feasible and cost-effective to infuse such needed

scalability into HyperTransport, as described by the High
Node Count HyperTransport Specification.
The bridged implementation of such specification may

be quick-to-market, not requiring changes to current pro-
cessor architectures, but will not provide the best latency
performance. On the contrary, the integration of the newHT
extensions in the processor architecture would allow future
Opteron chips to be powerful building blocks for systems of
any viable size and scale.
The proposed protocol extensions are fully compatible

with the HT3 specification. Packet ordering is preserved
by processing packets in compliance with current ordering
rules. On the other hand, flow control is also complied with
because extended packets will use current buffers and there-
fore no change is required in the NOP flow control packets.
Nevertheless, buffer size should be enlarged in order to store
the extended packets.
Regarding protocol overhead, the proposed extensions

add a few bytes to current HT packets, but only in the case
of packets targeted to remote processors. Instead, packets
traveling through the local HT chain and intended for local
I/O do not require to be extended and, therefore, no over-
head is added. Moreover, for those cases where overhead
is a primary concern, the new protocol extension has been
optimized for smaller system sizes.

References

[1] A. Ahmed, P. Conway, B. Hughes, and F. Weber. Hammer
Shared Memory Multi Processor Systems. HotCHips 14, Au-
gust 2002.

[2] W. Camp. Computer architecture: Opportunities and chal-
lenges for scalable applications. Sandia CSRI Workshop on
Next-generation scalable applications: When MPI-only is not
enough, June 2008.

[3] E. Chow. Non-MPI Apps: Why we don’t use MPI-only.
Sandia CSRI Workshop on Next-generation scalable applica-
tions: When MPI-only is not enough, June 2008.

[4] Cray Inc. Cray XT5 Specifications.
http://www.cray.com/Products/XT/Product/Specifications.aspx,
2008.

[5] HyperTransport Technology Consortium. HyperTrans-
port I/O Link Specification Revision 3.10. available at
http://www.hypertransport.org, 2008.

[6] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb.
The alpha 21364 network architecture. IEEE Micro, 22:26–
35, January 2002.

[7] R. Oehler and R. Kota. HORUS - Enabling large scale, 32-
way Opteron Enterprise Servers. HotCHips 16, August 2004.

[8] S. Yalamanchili, J. Young, J. Duato, and F. Silla. A dynamic,
partitioned global address space model for high performance
clusters. Available at http://www.cercs.gatech.edu/tech-
reports/tr2008/git-cercs-08-01.pdf, 2008.

[9] K. Yelick. Programming models: Opportunities and chal-
lenges for scalable applications. Sandia CSRI Workshop on
Next-generation scalable applications: When MPI-only is not
enough, June 2008.

- 53 -

Run-Time Reconfiguration for HyperTransport coupled FPGAs using ACCFS

Jochen Strunk∗, Andreas Heinig∗, Toni Volkmer∗, Wolfgang Rehm∗ and Heiko Schick†
∗Chemnitz University of Technology

Computer Architecture Group
Email: {sjoc,heandr,tovo,rehm}@cs.tu-chemnitz.de
†IBM Deutschland Research & Development GmbH

Email: schickhj@de.ibm.com

Abstract

In this paper we present a solution where only one
FPGA is needed in a host coupled system, in which
the FPGA can be reconfigured by a user application
during run-time without loosing the host link connec-
tion. A hardware infrastructure on the FPGA and the
software framework ACCFS (ACCelerator File System)
on the host system is provided to the user which allow
easy handling of reconfiguration and communication
between the host and the FPGA. Such a system can
be used for offloading compute kernels on the FPGA
in high performance computing or exchanging func-
tionality in highly available systems during run-time
without loosing the host link during reconfiguration.

The implementation was done for a HyperTransport
coupled FPGA. The design of a HyperTransport cave
was extended in such a way that it provides an infra-
structure for run-time reconfigurable (RTR) modules.

1. Introduction

With the emergence of dynamically and partially
reconfigurable (DPR) FPGAs, the possibility to re-
configure partially reconfigurable regions (PRR) with
run-time reconfigurable modules has appeared. This
feature enables FPGA customers to change the design
of a certain region of the FPGA during run-time while
maintaining the full functionality of the remaining part.
This new degree of freedom also facilitates system
designers to develop single FPGA chip solutions where
additionally required hardware, e.g. a peripheral inter-
connect, is also located inside the FPGA.

For host coupled FPGA systems, solutions are con-
ceivable where a static part of the FPGA covers the
host interface core and the remainder of the device
can be reconfigured during run-time with one or more
user specific application modules.

Such a FPGA system would offer continuous host
link connectivity during the time of partial reconfig-
uration and would not depend on exclusive hot plug
solutions, where the board, the BIOS and the operating
system must support hot plug functionality, which is
currently not the case for standard motherboards with
operating systems like Linux and Windows.

Two distinct options for connecting FPGA acceler-
ators to a host system do exist, either via a peripheral
bus (e.g. PCI Express) or processor bus. Well suited
for direct processor bus coupled FPGA systems are
the AMD CPUs because of the open standard and low
latency HyperTransport (HT) protocol.

Sharing the resources of a single FPGA between
users is also imaginable. In a multi user or multi
process environment several modules could be run
simultaneously on the same FPGA if resources are
sufficient.

Partial reconfiguration offers the chance of reducing
implementation time of FPGA designs (rapid prototyp-
ing) if supported by the FPGA synthesis tools. Already
functional parts could be left on the FPGA and only
functionality under test is exchanged. It should be
noted that this requires a strict modular overall design.

For highly available and real-time processing sys-
tems with host connection, run-time reconfiguration
enables to exchange or to add functionality during
system operation.

In the field of high performance computing nodes
with FPGAs used as accelerators, run-time reconfigura-
tion can be utilized to change offload compute kernels
and to share FPGA device capacity.

Using FPGAs for acceleration, due to the creation
of specialized processing engines utilizing the highly
parallel nature of FPGAs, can lead to a significant
reduction of compute time. A speedup of more than 50
compared to a CPU was achieved by Woods et al. [1]
accelerating a Quasi-Monte Carlo financial simulation.

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany

- 54 -

Zhang et al. [2] gained a speedup of 25 for another
Monte-Carlo simulation.

To run such compute kernels on a single chip FPGA
solution making use of the run-time reconfigurability,
three main components have to be provided to the
user. The first one is the operational infrastructure for
running run-time reconfigurable modules (RTRM) on
a host interface on the same FPGA. The second part
consists of a framework which allows the user to build
its own RTRMs. Last but not least, an generic interface
must be provided to a user which offers functions for
reconfiguration and communication between the host
and the RTRM located inside the FPGA.
The rest of the paper is organized as follows:

Section 2 is devoted to related work. In section 3
capabilities of run-time reconfigurable FPGAs and the
principles of creating partial configuration bit stream
files are shown.

Section 4 describes the run-time reconfiguration
support for a FPGA directly connected to AMD’s
processor bus. The enhancement for a HyperTransport
cave implemented as host interconnect is shown. The
infrastructure needed on the FPGA for the support of
run-time reconfigurable modules and their creation is
presented.

The software framework provided to the user is
based on ACCFS (Accelerator File System) which is
explained in section 5.

As proof of concept we have implemented two
distinct compute kernel offload functions as run-time
reconfigurable modules in section 6. The first RTR
module acts as an offload function which finds patterns
in a bit stream (pattern matcher) and the second module
a Mersenne Twister generates pseudo random numbers
at high output frequency.

Section 7 concludes the results of this paper.

2. Related Work

Utilizing RTR capabilities of FPGAs and building
CPU coupled systems have been proposed under var-
ious aspects. Some are dealing with internal commu-
nication structures while others concentrate more on
system integration.

A tool-flow for homogeneous communication infra-
structure for RTR capable FPGAs was presented by
Hagemeyer et al. [3] built upon the Xilinx design flow.
In contrast Koch et al. [4] designed a framework named
ReCoBus-builder without applying Xilinx’s partial re-
configuration flow. Only Virtex-II and Spartan-3 FPGA
are supported by the builder so far. Switch architec-
tures with routers between RTR modules have been
examined also in [5] [6].

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
��

�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
����
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
��
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�

IO

IO

IO IO

IO IO

IO IO

IO IO

IO IO

IO IO

IO IO

IO IO

BUFG

DCM

DSP

BRAM

REGION

CLOCK

PPC

PPC

Figure 1. Schematic view of Xilinx XC4VFX60
FPGA

On the matter of integration of FPGA modules or
threads for embedded systems different models have
been proposed. ReconOS [7], a real time operating sys-
tem implemented with static FPGA threads, is based
on memory mapping and is used in embedded systems.
Another model, BORPH [8], is based on the UNIX
IPC mechanism and utilizes the integrated PowerPC
as host.

For the integration of host coupled accelerators we
proposed and implemented the Accelerator File System
(ACCFS) [9]. This framework is based on the concept
of a virtual file system. We have already shown the
integration of the Cell/B.E. processor. In this paper we
will show that ACCFS is best suited for the integration
of FPGAs, even RTR capable FPGAs, into a host
system.

3. Run-Time Reconfiguration on FPGAs

This section addresses the conditions which must be
fulfilled, when using the feature of run-time reconfig-
uration on Xilinx FPGAs. These are important for the
implementation of a HT cave which supports run-time
reconfigurable modules.

3.1. Dynamic Partial Reconfiguration for
FPGAs

This subsection is devoted to the dynamic par-
tial reconfiguration (DPR) of Virtex-4 and Virtex-5

- 55 -

Internal

Routing

Unit

RTRM

Controller

Reconfig

Unit

HT

Packet

Engine

N

R

P

N

R

P

N

R

P

N

R

P

HT

Cave

Core

host interface independenthost interface specific

RTRM

connection

HTX

host

Figure 2. Infrastructure of HT cave with RTR support

FPGAs [10] from Xilinx which is one of the few
manufacturers which offer DPR. The granularity of a
partially reconfigurable region (PRR) is directly related
to the configuration frames [11], which describe the
function or contents of the slice containing LUTs or
block RAM for example. The granularity in the height
of a PRR matches the height of a clock region for
Virtex-4 (16 CLBs) and Virtex-5 (20 CLBs). In the hor-
izontal direction a PRR must begin with an even and
end with a odd slice number. Figure 1 is a schematic
view of the Virtex-4 XC4VFX60 FPGA used for the
implementation of a HyperTransport cave supporting
RTRMs described in the next sections. Note that we
have a total of 16 clock regions available. For run-time
reconfiguration three different interfaces are available,
which are able to read the configuration bit stream of
a RTRM. One of these is the JTAG port, which is
a bidirectional serial host-clocked link. It is generally
used for prototyping and debugging, working up to the
speed of 24 MHz with available JTAG programmers.
Another mode is SelectMAP, which works on a parallel
interface connected to the physical IO pins of the
FPGA achieving high throughputs. The third variant
is the internal configuration access port (ICAP). It is
an internal version of the external SelectMap working
at a clock speed of up to 100 MHz at 32 bits width.
For host coupled systems it is best suited, because it
does not depend on external IOs and allows the shortest
reconfiguration time.

3.2. RTR Modules and Design Flow

In this subsection the design flow is introduced for
the creation of run-time reconfigurable modules. It
also covers challenges and limitations of dealing with
RTRMs. The design flow is based on ”Module based
Partial Reconfiguration” [12] for Xilinx FPGAs. As
a first step the HDL sources must be assigned either
to the static part, which is constantly available during

run-time, or the dynamical part. All communication
between the two distinct parts has to go through hard
macros, also known as bus macros. Clock resources
and the hard macros must be instantiated in the HDL
source and need to be assigned to a fixed location
inside the FPGA. The run-time reconfigurable mod-
ule itself is only instantiated as a black box, whose
interface (entity) can not be changed during run-time.
This means that a common interface must be created
if other modules should be loaded in the partially
reconfigurable region (PRR). The location and size of a
PRR must be specified for the place and route process
using the ”AREA GROUP” constraint. It should be
noted that for standard static design, neither PRR nor
bus macros need to be specified. The same applies
for the definition of the location of clock resources.
To conduct the partial reconfiguration flow a patch
is provided by Xilinx which must be applied to the
standard synthesis tools.

4. Run-Time Reconfiguration Support for
a HyperTransport Cave

For a single FPGA chip solution connected to a
host utilizing HyperTransport as interconnect, it is
essential not to loose the link during the time of
the reconfiguration of a RTRM. This implies that the
HyperTransport IP-core implementing a HT cave must
be kept inside the FPGA as static part. Hot plugging is
not supported so far by off the shelf systems. Even if
the hardware is capable of handling such requests, most
operating systems do not support this. Other RTRMs
inside the FPGA would suffer also from the link loss.
For that reason the HyperTransport cave is kept in
the static region. In this section the enhancement of
a HT cave is shown which provides an infrastructure
for dealing with RTRMs.

- 56 -

e n t i t y r t r m i s
p o r t (
c rq c2m addr : i n STD LOGIC VECTOR(31 downto 0) ;
c rq c2m da ta : i n STD LOGIC VECTOR(31 downto 0) ;
c r q c 2 m r q v a l i d : i n STD LOGIC ;
c rq c2m s top : i n STD LOGIC ;
c rq m2c da ta : o u t STD LOGIC VECTOR(31 downto 0) ;
c r q m 2 c r p v a l i d : o u t STD LOGIC ;
c rq m2c s top : o u t STD LOGIC ;
crq c2m wr rd : i n STD LOGIC ;

mrq m2c addr : o u t STD LOGIC VECTOR(31 downto 0) ;
mrq c2m data : i n STD LOGIC VECTOR(31 downto 0) ;
mrq c2m rp va l id : i n STD LOGIC ;
mrq c2m stop : i n STD LOGIC ;
mrq m2c data : o u t STD LOGIC VECTOR(31 downto 0) ;
mrq m2c rq va l id : o u t STD LOGIC ;
mrq m2c stop : o u t STD LOGIC ;
mrq m2c wr rd : i n STD LOGIC ;

c2m clk : i n STD LOGIC ;
c2m res n : i n STD LOGIC ;
m 2 c i n t r : o u t STD LOGIC
)
end r t r m ;

Figure 3. Entity of RTRM

4.1. RTR Infrastructure

A run-time reconfigurable infrastructure for a
HyperTransport cave has to provide a communication
mechanism between the host and the RTRM and
perhaps between RTRMs themselves. It also has to
comply to the rules of partial reconfiguration and the
partial design flow. To ease porting the infrastructure to
other interconnects, e.g. PCI Express, the functionality
which must be implemented for a RTR infrastructure
should be divided into two parts. One covers the host
interconnect specific functions and the other the host
interconnect independent portions.

The infrastructure designed for a HyperTransport
cave supporting RTRMs consists of two host interface
specific, i.e. HT Cave Core and HT Packet Engine, and
four host independent parts, an Internal Routing Unit,
a RTRM Controller, a Reconfig Unit and one or more
RTRMs. The design of this infrastructure of a HT cave
with RTR support is depicted in Figure 2. The HT cave
design for the HyperTransport interconnect originates
from [13]. The task of the HT Package Engine is
to decode the HT packets coming from the host and
to convert these into appropriate actions targeting the
units inside the FPGA. This includes the creation of
responses to requests from the host by injecting valid
packets to the HT Cave Core. The Internal Routing
Unit routes requests to and from internal units, e.g.
RTRM Controller and Reconfig Unit. For fast run-
time reconfiguration of RTRMs it is recommended to
make use of an internal reconfiguration port. This is
done by the Reconfig Unit which controls the internal

configuration access port (ICAP) for Xilinx FPGAs.
The Reconfig Unit itself is controlled by the vendor
specific driver on the host, which validates if requests
concerning the creation of new RTRMs can be served.
The allocation of RTRMs to available RTR regions is
also decided by the host system.

4.2. RTRM

Each RTRM has its virtual address space which is
implemented 32 bits wide. This means that a global
address space is not divided between the RTRMs using
fixed addresses. It would be very difficult to resolve
a request when two RTRMs demand the same fixed
physical address for their memory regions which are
exported to the user application using an entry in the
virtual file system implemented on the host system.

The interface (entity) of a RTRM serves as an
interconnect to the RTRM controller. Communication
in both directions, i.e. controller requests (crq) and
module requests (mrq), are possible using a stop and
valid protocol. The entity of a RTRM in VHDL is
shown in Figure 3.

4.3. RTRM-Controller

The RTRM controller handles requests coming from
the HT Core originated by the user application or from
the RTRM itself. It converts physical addresses for
directly accessing the RTRM, e.g. through direct load
and store operations from the host to virtual RTRM
addresses. The controller can also be used for RTRM
to RTRM communication if desired.

4.4. Framework for a HT Cave supporting
RTR

For generating the static part, i.e. the HT cave with
RTR support, and the dynamical RTR modules, scripts
are provided. The intention is to ease the creation
of RTRMs for an application developer who is not
so familiar with FPGA IP-core designs and run-time
reconfiguration.

The top VHDL module is synthesized with the
instantiated HT core, the HT packet engine, the internal
routing unit, the RTRM controller and the Reconfig
Unit by the build_static script. The RTRM mod-
ule is only instantiated as a black box module. Then the
static part is implemented with the partial flow option.
While the user constraints file (ucf) normally contains
location (LOC) constraints for external IO pins, this
file must also contain additional LOC constraints for
the PR flow covering all clock resources, in particular

- 57 -

Bus Drivers

HT Host Bridge PCIe Host Bridge

a
c
9
7
 d

ri
v
e
r

..
.

F
P

G
A

 c
d
e
v

A
M

D
−

A
ti
 f
b
d
e
v

N
v
id

ia
 n

v
d
e
v

Process Management Virtual File System Virtual Memory Socket

Applications

C
le

a
rS

p
e
e
d
 C

S
X

Syscall−API

Hardware

Block Devices

Character Devices
ext2 ... vfat

logical: virtual:

proc sysfs spufs

Disk Controller Drivers

S
P

U
 l
o
w

 l
e
v
e
l

ext3

HT Cave PCIe Endpoint

(a) Without ACCFS

⇒

a
c
9
7
 d

ri
v
e
r

Process Management Virtual File System Virtual Memory Socket

Applications

Syscall−API

Bus Drivers

HT Host Bridge PCIe Host Bridge

Hardware

Block Devices

ext2 ... vfat

logical: virtual:

proc sysfsext3

D
e
v
ic

e
 H

a
n
d
le

r

S
P

U

D
e
v
ic

e
 H

a
n
d
le

r

D
e
v
ic

e
 H

a
n
d
le

r

D
e
v
ic

e
 H

a
n
d
le

r

N
v
id

ia

A
M

D
−

A
ti

F
P

G
A

C
le

a
rS

p
e
e
d

D
e
v
ic

e
 H

a
n
d
le

r

..
.

Char

Devaccfs

ACCFS

Disk Controller Drivers

HT Cave PCIe Endpoint

(b) ACCFS: Common Generalized Interface

Figure 4. ACCFS - Layered Structure

clock buffers and digital clock managers (DCMs). The
resulting placed and routed design represents the basis
for creating the dynamic configuration bit stream.

For the dynamic part, the user must supply an
interface-compliant RTR module with the top entity
name ”rtrm” and a description of the file entries
which should be exported by ACCFS. This description
consists of the type, the size and the virtual address
which are essential to export the functionality to the
user application. This additional information is added
later to the final ACCFS configuration bit stream as a
part of the header.

Using the build_dynamic script the user-
supplied RTRM module is implemented with the par-
tial flow option. Next, the Xilinx tools PR_verify
and PR_assemble are used to build the partial bit
stream file. Then the ACCFS RTRM bit stream file is
created by adding header information containing the
HT cave version, the FPGA board version and the
user-supplied module description. Due to this header
information, it is possible to transfer ACCFS RTRM
bit stream files to other hosts which contain the same
FPGA accelerator board and use the identical HT cave
version.

5. ACCFS for Host System Integration

Different solutions exist for operating system in-
tegration of a FPGA. For example, BORPH [8] or
ReconOS [7] provide a hardware process/thread ab-
straction which coexist beside ”normal” software pro-
cesses. However, deep modifications of the Linux
kernel are necessary to implement them. Furthermore,

it is required to run Linux on the processing unit of
the FPGA.

Due to the mentioned disadvantages we pro-
posed and implemented the Accelerator File System
(ACCFS) [9]. In this section we describe the major
aspects of ACCFS for the integration of FPGAs into
a host system. We start with a brief overview in
subsection 5.1. Subsection 5.2 depicts the concepts of
ACCFS. Thereafter, we present the integration steps
for the HT-coupled Virtex-4 card in subsection 5.3.

5.1. Overview

ACCFS is an open generic system interface for
the integration of different accelerator types into the
Linux operating system. It is based on SPUFS (Syn-
ergistic Processing Unit File System) [14] which is
used to access the Synergistic Processing Units of the
Cell/B.E. processor. The goal of ACCFS is to replace
the different character device based interfaces (cf.
Figure 4a) with a generic file system based interface
(cf. Figure 4b).

In the case of character devices the hardware func-
tionalities are usually exported through the ioctl
system call. However, this system call has the dis-
advantage of a non-standardized interface. Hence, the
usage differs from one vendor to another.

In contrast, ACCFS defines a well structured
ioctl-free interface based on a Virtual File System
(VFS) approach. In Figure 4b the parts of ACCFS
are shown as gray boxes. To be customizable when
integrating new hardware ACCFS was split into two
parts. Part one (”accfs”), provides the user interface,

- 58 -

and the other parts (”device handlers”) integrate the
hardware.

Device vendors as well as library programmers ben-
efit from ACCFS. Only the lowest abstraction levels
have to be implemented inside the device handlers. The
whole user interface is already provided by accfs. Thus
integrating a new accelerator requires less device driver
programming costs. The library programmer benefits
from basic design concepts introduced in the next
subsection.

5.2. Basic Concepts

In the previous subsection we already described the
concept of functionality separation which eases the
integration of new hardware. Another concept was the
usage of a VFS which maps the accelerator to normal
files. This enables us to implement a ioctl free
and hence a nearly standard conform approach. All
supported file I/O operations are POSIX conform with
some exceptions. For example, it is not possible to
write beyond the end of a file or to change the position
of the current file pointer on some files.

ACCFS is designed to support the virtualization
of the accelerators. We abstract the physical accel-
erator with an accelerator context. The context is
the operational data set of the accelerator. It includes
all information which are necessary to describe the
current hardware state in such a way that the operation
can be interrupted and resumed later without data
loss. During the interruption another context is able to
utilize the physical hardware. Virtualization optimizes
the resource usage of the accelerators. Contexts which
do not make use of the hardware at a given time are
not scheduled on the physical accelerator.

Each context is bounded on a directory inside the
VFS under the ACCFS mount point. The files inside
this directory represent the functionalities of the ac-
celerator. To support reconfigurable hardware the file
set is dynamically exported and can change during
runtime. For example, an additional memory can be
exported due to reconfiguration of the FPGA with a
new RTR module.

To interact with the accelerator several methods are
feasible. One is the simple memory mapped IO with
standard load/store machine instructions. In this direct
memory access (DMA) method the host is the active
part who issues a read/write for every memory access.
Another method is DMA-bulk transfer. Here the ac-
celerator needs a DMA unit capable of moving the
data asynchronously to the host processor execution.
In cases where the accelerator is able to initiate these
transfers by itself, the DMA unit has to handle virtual

s t r u c t a c c f s v e n d o r
{

i n t v e n d o r i d ;
i n t (∗ c r e a t e) (. . .) ;
i n t (∗ d e s t r o y) (. . .) ;
i n t (∗ run) (. . .) ;

. . .

s s i z e t (∗memory sdma) (. . .) ;
s s i z e t (∗ c o n f i g r e a d) (. . .) ;
s s i z e t (∗ c o n f i g w r i t e) (. . .) ;

} ;

Figure 5. struct accfs vendor

memory managing issues, too. However, not every
accelerator supports virtual memory. For this reason
we restrict our solution to host initiated DMA, where
the host setups the memory management unit and
initializes the data transfer. The actual data movement
is done asynchronously by the accelerator.

Finally, ACCFS supports asynchronous context ex-
ecution based on an explicit synchronization primitive.
This concept eases the software development because
multi-threading is not required when using multiple
accelerator units. Every context runs asynchronously to
the host system. The finish status can be read through
a ”status” file.

5.3. FPGA Support

To support HyperTransport coupled FPGA boards
within ACCFS a new device handler has to be writ-
ten. This device handler has to provide the structure
accfs vendor (cf. Figure 5). The first four entries has
to be set and the others are optional. For example, if the
callback function for the DMA-bulk transfer is not set
(memory_sdma), accfs will use the internal routines
to copy the data from/to the FPGA.

Further details of the device handler implementation
are described in the reset of this subsection with
the help of the typical FPGA usage model shown in
Figure 6. An example code fragment using this model
is shown in Figure 7 of section 6, where the case study
is conducted.

5.3.1. Create Context. ACCFS enforces an accelera-
tor based programming model. The main program is
running on the host system and executes the compute
kernel on the accelerator. To outsource such a kernel
the application has to create a context by invoking the
acc_create system call.

Currently our device handler does not support vir-
tualization hence we can only exclusively provide the
FPGA to one application.

- 59 -

Establish Context

Validate Request

Configure FPGA

Execute Design

Data Exchange

State Transition

Wait for Finish

Wait for ’STOP’

Destroy Context

...

Wait for ’STOP’

Create Context

Configure Context

− FPGA available?
− First initialization
− Returns: context descriptor

− Validate bit stream

− Programm device
− Space available?

Application Device Handler

state goes into running

sys_acc_create

sys_acc_run

read (ctx/status)

close (ctx)

read / write (ctx/*)

write (ctx/config)

Figure 6. FPGA usage

5.3.2. Configuration. Loading the design is triggered
by a write system call on the ”config” file. The data
has to be a valid ACCFS bit stream. To ensure that
the RTRM matches the RTR infrastructure we provide
a tool chain which generates such a bit stream file by
writing a special header before the bit stream data. The
header contains all necessary information describing
the bit stream such as the RTR capable core and FPGA
board version. If the validation is successful, the FPGA
is programmed with the configuration bit stream file
using the internal reconfiguration port ICAP for Xilinx
FPGAs or through an external JTAG programming
device, e.g. Xilinx USB platform cable. After a suc-
cessfully configuration the exported memories of the
FPGA design are visible in the context directory.

5.3.3. Data Exchange. The access of FPGA memory
is possible with the read and write system calls.
In a later development stage these calls start a host
initiated DMA-bulk transfer. If the memory is exported
as memory mapped IO, the mmap system call will map
the memory into the address space of the application.

The ”data exchange” operation is always possible
after the configuration no matter whether the context
is in execution or not.

5.3.4. Execute Design. To start the RTR module the
application has to invoke the acc_run system call.
The execution happens asynchronously, meaning that
acc_run returns immediately. This enables the ap-
plication to execute more than one context in parallel
without using threads.

When the application needs to check the execution
status, e.g. if the FPGA has finished its work, the
”status” file can be read. Unless this file was opened
with O NONBLOCK the read system call will block
until the RTRM inside the FPGA has finished its task.

5.3.5. Destroy Context. When the application closes
the file handle returned by acc_create the context
gets destroyed.

6. Case Study of RTRMs for a HT Cave
supporting RTR

6.1. Overview

As proof of concept we designed two different com-
pute kernels as RTRMs for a HyperTransport coupled
Xilinx Virtex-4 FPGA plug-in card [15]. The user
program using the virtual file system ACCFS is able
to configure and access the two RTRMs consecutively
during the run-time of the user program at the time
when they are needed. The first RTRM acts as an
offload function which finds patterns in a byte stream
(pattern matcher) and the second module, a Mersenne
Twister, generates pseudo random numbers at high
output frequency. For generating the appropriate partial
bit stream files of the RTRMs the framework presented
in subsection 4.4 is applied.

As hardware for the host system an Iwill DK8-HTX
motherboard with two Opteron processors is utilized.
The pre-installed BIOS is replaced by a customized
LinuxBios version to get the HTX-card enumerated
by the host system. The FPGA on the HTX card is a
Xilinx Virtex-4 XC4VFX60.

6.2. RTRMs - Pattern Matcher and Mersenne
Twister

Two RTRMs have been implemented, which are
described in this subsection, a pattern matcher and
a Mersenne twister based on the MT19937 algorithm
[16].

The latter uses the MT32 [17] implementation,
which is able to provide a new 32 bits pseudo random
number each clock cycle. When the host performs a

- 60 -

i n t m a t c h e r r u n (vo id ∗ s e a r c h d b i n , i n t d b s i z e
vo id ∗ p a t t e r n s i n , i n t p a t t e r n c o u n t ,
vo id ∗ r e s u l t s o u t , i n t r e s u l t s s i z e) {

i n t r e t ;
c h a r b u f s t a t u s [1 2] ;
/ / c r e a t e c o n t e x t o f our s t a t i c FPGA d e s i g n
i n t f d c t x = (i n t) a c c c r e a t e (” example ” , V ID ,

D ID , 0750 , NULL) ;

/ / c o n f i g u r e t h e d e s i g n
i n t f d c f g = o p e n a t (f d c t x , ” c o n f i g ” , O WRONLY) ;
c o n f i g u r e f p g a (fd c fg , MATCHER RTRM BITSTREAM) ;

/ / open memory and s t a t u s
i n t fd mem = o p e n a t (f d c t x , ”memory / FPGA MEM1” ,

O RDWR) ;
i n t f d s t a t u s = o p e n a t (f d c t x , ” s t a t u s ” ,

O RDONLY) ;

/ / f i l l memory wi th d a t a (DMA bu lk t r a n s f e r)
p w r i t e (fd mem , s e a r c h d b i n , d b s i z e , DB OFFSET) ;
p w r i t e (fd mem , p a t t e r n s i n , 4 ∗ p a t t e r n c o u n t ,

PATTERN OFFSET) ;

/ / s t a r t t h e ma tche r
a c c r u n (f d c t x , 0) ;

/ / check s t a t u s
/ / (w a i t u n t i l c o n t e x t e x e c u t i o n f i n i s h e d)
r e a d (f d s t a t u s , b u f s t a t u s , 1 2) ;

/ / r e a d r e s u l t s o f o p e r a t i o n (DMA bulk t r a n s f e r)
r e t = p r e a d (fd mem , r e s u l t s o u t ,

r e s u l t s s i z e , RESULTS OFFSET) ;

/ / c l o s e f i l e s
c l o s e (fd mem) ; c l o s e (f d s t a t u s) ; c l o s e (f d c f g) ;

r e t u r n r e t ;
}

Figure 7. Pattern matcher user program

read request on an arbitrary RTRM address, a new 32
bits number is provided.

The RTRM pattern matcher simultaneously com-
pares several 32 bits patterns against a search database.
The module consists of a finite state machine (FSM),
four 32 bits comparators for each pattern, one control
register, one status register as well as dual-port block
RAMs for the search database, the search patterns
and the results. Additionally, a 56 bits window is
superimposed over the search database.

The registers and memories are mapped into the
lower 27 bits addresses of the RTRM’s address space
and can be accessed by the host.

After the host has set the start bit in the control
register, the FSM reads the search patterns from the
pattern memory, the window is set to the beginning of
the search database and the comparators are enabled.

Then, the first comparator of each search pattern
tests the first 32 bits of the window, the second one 32
bits shifted by one byte, the third one 32 bits shifted by
two bytes and the fourth the last 32 bits of the window
against the search pattern. Hereby, the window can be

i n t r u n c o m p u t e k e r n e l (dou b l e ∗ r e s u l t s o u t ,
i n t r e s u l t s c o u n t) {

/ / c r e a t e c o n t e x t o f our FPGA d e s i g n
i n t f d c t x = (i n t) a c c c r e a t e (” example ” , V ID ,

D ID , 0750 , NULL) ;

/ / c o n f i g u r e t h e d e s i g n
i n t f d c f g = o p e n a t (f d c t x , ” c o n f i g ” , O WRONLY) ;
c o n f i g u r e f p g a (fd c fg , MERSENNE RTRM BITSTREAM) ;

/ / open memory
i n t fd mem = o p e n a t (f d c t x , ”memory / FPGA MEM1” ,

O RDWR) ;

/ / a l l o c a t i n g b u f f e r
i n t 3 2 t ∗ b u f f e r = (i n t 3 2 t ∗) mmap(NULL,

MEM SIZE , PROT READ | PROT WRITE ,
MAP SHARED, fd mem , 0) ;

i n t 3 2 t ∗ mt32 numbers = b u f f e r + NUMBERS OFFSET;

/ / s t a r t t h e Mersenne t w i s t e r MT32
a c c r u n (f d c t x , 0) ;

/ / Example C f u n c t i o n t h a t u s e s random numbers
c k e r n e l f u n c t i o n (r e s u l t s o u t , r e s u l t s c o u n t ,

mt32 numbers) ;

/ / unmap b u f f e r
munmap ((vo id ∗) b u f f e r , MEM SIZE) ;
/ / c l o s e f i l e s
c l o s e (fd mem) ; c l o s e (f d c f g) ;
r e t u r n 0 ;

}

Figure 8. Example that uses MT32 pseudo ran-
dom numbers

shifted by 32 bits each clock cycle.
When the end of the search database has been

reached, the results are written to the results memory.
Afterwards, the ’finished’ bit is set in the status reg-
ister. Next, the host can read the matcher results from
the results memory.

6.3. User Application accessing RTRMs

The user function matcher_run (cf. Figure 7)
demonstrates the usage of the RTRM pattern matcher.
First, this function creates a new context and
partially reconfigures the FPGA by the function
configure_fpga. Then, the search database and
search patterns are written to the RTRM’s database
and patterns memory using the pwrite system call.
Next, the matcher is started using acc_run and the
user function waits until the execution has finished.
After that, the results are read from the FPGA into the
buffer results_out by the pread system call.

The user function run_compute_kernel (cf.
Figure 8) uses the pseudo random numbers generated
by the RTRM Mersenne twister for the computation
kernel c_kernel_function. This RTRM is ini-
tialized using the same functions like in the previous

- 61 -

Figure 9. Placed and routed design of the HT cave
with RTR support and the pattern matcher RTRM

example. In contrast to the previous one, the random
numbers are not read using file handles, but can be
accessed by the computation kernel via the memory-
mapped buffer mt32_numbers.

6.4. Results of Case Study

The infrastructure for RTR modules based on the
HT cave with RTR support was successfully im-
plemented and verified. Furthermore, the virtual file
system ACCFS was utilized for the integration and
management of RTR modules on a HyperTransport
plug-in card with a Xilinx Virtex-4 FPGA by using
two example RTR modules which can be loaded onto
the FPGA during run-time. For the implementation of
the HT cave with RTR support at least 4 clock regions
have to be reserved as static part.

The first RTR module acting as a offload function
which finds patterns in a byte stream (pattern matcher)
consists of 290 pattern matcher units resulting in a total
of up to 116 billion 32 bits comparisons per second.

This module nearly occupies all slices available within
the clock regions designated for the RTRM. The place-
ment is shown in Figure 9.

The second module implemented is a Mersenne
Twister which generates pseudo random numbers at
high output frequency.

For generating the partial bit stream file the frame-
work presented in subsection 4.4 was applied.

7. Conclusion

By using the ability of run-time reconfiguration of
FPGAs it is possible to build a single FPGA chip solu-
tion as a host coupled accelerator without loosing the
host link connection during the reconfiguration of RTR
modules. The design of a RTR infrastructure inside the
FPGA was shown which allows to manage RTR mod-
ules during run-time. The implementation was done
for FPGAs coupled directly to the HyperTransport
processor bus of the host system. The concepts pro-
vided are applicable to other processor and peripheral
bus coupled FPGAs. The software framework ACCFS,
based on a virtual file system, provides a generic
interface to user applications which is able to satisfy
the demands of run-time reconfigurable computing.

8. Future Work

To speed up communication with high throughput
between the host and a RTRM a memory transfer con-
troller supporting bulk transfer between the different
address spaces of the host and the RTRM should be
implemented.

9. Acknowledgment

The project is performed in collaboration with the
Center of Advanced Study Böblingen, IBM Research
& Development GmbH, Germany.

References

[1] N. A. Woods and T. VanCourt, “FPGA Acceleration
of Quasi-Monte Carlo in Finance,” in Proceedings
of the 2008 IEEE International Conference onField-
Programmable Logic, FPL 2008, 8-10 September, Hei-
delberg. IEEE, 2008, pp. 335–340.

[2] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi,
C. C. C. Cheung, D.-U. Lee, R. C. C. Cheung, and
W. Luk, “Reconfigurable Acceleration for Monte Carlo
Based Financial Simulation,” in FPT, G. J. Brebner,
S. Chakraborty, and W.-F. Wong, Eds. IEEE, 2005,
pp. 215–222.

- 62 -

[3] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Por-
rmann, in Design of Homogeneous Communication
Infrastructures for Partially Reconfigurable FPGAs
(ERSA). CSREA Press, 2007.

[4] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder
a Novel Tool and Technique to Build Statically and
Dynamically Reconfigurable Systems for FPGAs,” in
Proceedings of the 2008 IEEE International Conference
onField-Programmable Logic, FPL 2008, 8-10 Septem-
ber, Heidelberg. IEEE, 2008.

[5] J. Surisi, C. Patterson, and P. Athanas, “An efficient
run-time router for connecting modules in FPGAs,” in
Proceedings of the 2008 IEEE International Conference
onField-Programmable Logic, FPL 2008, 8-10 Septem-
ber, Heidelberg. IEEE, 2008.

[6] T. Pionteck, C. Albrecht, K. Maehle, E., Hübner, M.,
and Becker, J., “Commuication Architectures for Dy-
namically Reconfigurable FPGA Designs,” in Proceed-
ings of IEEE International Parallel and Distributed
Processing Symposium, IPDPS USA, 2007.

[7] E. Lübbers and M. Planner, “ReconOS: An RTOS Sup-
porting Hard-and Software Threads,” in Proceedings
of the 2007 IEEE International Conference on Field-
Programmable Logic and Applications. Amsterdam:
IEEE, 27-29 August 2007, pp. 441–446.

[8] H. K.-H. So and R. Bordersen, “File System Access
From Reconfigurable FPGA Hardware Processes In
BORPH,” in Proceedings of the 2008 IEEE Interna-
tional Conference onField-Programmable Logic, FPL
2008, 8-10 September, Heidelberg. IEEE, 2008.

[9] A. Heinig, R. Oertel, J. Strunk, W. Rehm, and
H. Schick, “Generalizing the SPUFS concept - a case

study towards a common accelerator interface,” in Pro-
ceedings of the Many-core and Reconfigurable Super-
computing Conference, Belfast, 1-3 April 2008.

[10] “Xilinx Virtex family,” Website, 2008. [Online].
Available: http://www.xilinx.com/products/

[11] Xilinx, “Configuration Memory Frames,” in Virtex-4
FPGA Configuration User Guide (UG071), 2008.

[12] Xilinx, “Two Flows for Partial Reconfiguration: Mod-
ule Based or Difference Based,” in Application
Note: Virtex, Virtex-E, Virtex-II, Virtex-II Pro Families
(XAPP290), 2004.

[13] D. Slogsnat, A. Giese, and U. Bruening, “A ver-
satile, low latency HyperTransport core,” in Fif-
teenth ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2007.

[14] A. Bergmann, “The Cell Processor Programming
Model,” IBM Corporation, Tech. Rep., June 2005.

[15] M. Nuessle, H. Fröning, A. Giese, H. Litz, D. Slogsnat,
and U. Brning, “A Hypertransport based low-latency
reconfigurable testbed for message-passing develop-
ments,” in KiCC’07, 2007.

[16] M. Matsumoto and T. Nishimura, “Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generator,” ACM Trans. Model. Com-
put. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[17] “Mersenne Twister, MT32. Pseudo Random
Number Generator for Xilinx FPGA,” Web-
site, 2007. [Online]. Available: http://www.ht-
lab.com/freecores/mt32/mersenne.html

- 63 -

	cover-03
	foreword-01
	whtra09-paper10_updated-08.2009
	whtra09-paper12
	HyperTransport 3 Core: A Next Generation Host Interface with Extremely High Bandwidth
	1. Introduction
	2. Background
	3. Complexity analysis
	4. Proposed architecture
	5. Evaluation
	6. Conclusion and outlook
	7. References

	whtra09-paper13
	whtra09-paper14
	whtra09-paper15
	whtra09-paper16
	whtra09-paper17

