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ZUSAMMENFASSUNG 
 

Die Entwicklung von multizellulären Organismen hängt von der Integration zwischen 

Musterbildung und der Regulation der Zellenanzahl ab. Das sekretierte Signalprotein Sonic 

Hedgehog (Shh) ist in die Regulation beider Prozesse einbezogen worden, was darauf 

hindeutet, dass es am Erreichen dieser Integration teilnehmen könnte. Die Rolle von Shh beim 

Regeln der Musterbildung in vertebraten Modellsystemen, einschliesslich dem Zebrafisch, ist 

während der letzten Jahrzehnten gut beschrieben worden. Unter den Organen, in denen die 

Musterbildungsfunktion von Shh am besten untersucht worden ist, sind die Gliedanlagen, die 

Retina, und die Neuraltube. Daher habe ich gewählt die Rolle von Shh in der Regulation von 

Zellteilung und Zelltod in diesen Organen von Zebrafisch zu untersuchen. Zudem habe ich die 

Interaktion zwischen Shh und einigen anderen Faktoren untersucht, die Zellteilung und Zelltod 

regeln, einschliesslich des sekretierten Signalproteins Fgf und des Transkriptionsfaktors p53. 

Im Kontext der gepaarten Brustflossenanlagen des Zebrafisches habe ich den Akzent 

auf das Zusammenspiel zwischen Shh und Fgf gesetzt. Shh gestaltet die Musterbildung entlang 

der vorder/hinteren Achse vom vertebraten Glied, während mehrere Fgfs die Musterbildung 

entlang der proximal/distalen Gliedachse gestalten. Zudem sind Shh und Fgf Signalwege in der 

Gliedanlage aufeinander angewiesen. Daher war ich bestrebt den relativen Einfluss eines jeden 

Signalwegs auf die Zellproliferation in diesem Organ zu bestimmen. In shh Mutanten sind 

Zellproliferation sowie der Fgf-signalweg in den Brustflossenanlagen anfangs normal, später 

aber verringern sie sich stark. Darüber hinaus hat eine kurzfristige pharmakologische 

Inhibition des Hedgehogsignalweges wenig Wirkung, weder auf den Fgf Signalweg, noch auf 

die Expression von Genen die am Zellzyklus beteiligt sind, während längere Inhibition zur 

Verminderung von beiden Prozessen führt. Im Gegensatz dazu führt eine kurzfristige 

pharmakologische Inhibition des Fgfsignalweges zür Störung der zellzyklischen 

Genexpression und der Zellproliferation in den Brustflossenanlagen, ohne den Shhsignalweg 

zu beeinflussen. Aktivierung des Fgfsignalwegs durch Implantation von FGF4-getränkten 

Heparinkügelchen in die Brustflossenanlagen der shh Mutanten führt zur Wiederherstellung 

der zellzyklischen Genexpression und Zellproliferation in diesen Organanlagen. Diese 

Ergebnisse zeigen, dass die Rolle von Shh in diesem Prozessen nicht direkt ist, und durch den 
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Effekt auf den Fgfsignalweg vermittelt wird. Im Kontrast dazu wirkt der Fgfsignalweg auf die 

Zellteilung direkt und unabhängig von seinem Effekt auf Shh. 

 In den aus der Neuralplatte entstehenden Geweben wie die Retina und die Neuraltube 

ist Shh erforderlich für das Überleben von Zellen während der Entwicklung. In diesem Projekt  

fand ich heraus, dass p53 ein erforderlicher Vermittler vom Zelltod in der Zebrafisch shh 

Mutante ist, da p53 Zielgene in der Abwesenheit von Shh Aktivität aktiviert werden, und der 

Verlust von p53 zur Unterdrückung der Apoptose in den shh Mutanten führt. p53 induziert 

Apoptose in der Abwesenheit von Shh durch Aktivierung der Expression von proapoptotischen 

Genen, zum Beispiel puma und bax1, die den intrinsischen Weg der Apoptose induzieren und 

deren Expressionsniveaus mit dem Schweregrad von apoptotischen Phenotypen korrelieren. 

Die Hypothese, dass p53 Aktivierung aus dem Verlust von Shh Signaling resultiert, wird des 

weiteren dadurch unterstützt, dass p53 Zielgenexpression und die Apoptose durch 

Überexpression von dominant-negativer PKA in den shh Mutanten unterdrückt wird. Um die 

Aktivierung von p53 in lebenden Zebrafischembryonen zu beobachten habe ich eine transgene 

Linie konstruiert, die das fluoreszierende Protein GFP unter Kontrolle vom p53-getriebenen 

Promoter exprimiert. In der Tat korreliert die Expression von diesem p53 Reporter sehr gut mit 

dem Apoptoseniveua in Zebrafischembryonen, außer in der frühen Retina. Darüber hinaus 

kann die Expression vom p53 Reporter durch genotoxische Drogen induziert werden und 

kolokalisiert mit der aktiven Caspase3. Zudem waren p53 Reporter-positive Zellen defektiv in 

ihrem Zellzyklus, und dem Verlauf durch die G2/M-Phase. Die Untersuchungen von 

Zellteilung in Doppelmutanten von shh und p53 zeigen, dass der Verlust des p53 Gens in der 

shh Mutante den normalen Zellzyklusausstieg wieder herstellt, und die mitotische Frequenz 

während der Neurogenese in der Retina anhebt. Zudem wird Differenzierung von 

Amakrinzellen und Photorezeptoren in der shh p53 doppelmutanten Retina wiederherstellt. 

Diese Ergebnisse zeigen, dass p53 in der Abwesenheit von Shh im Zebrafisch für die 

Induzierung von Apoptose erforderlich ist, und des weiteren Zellproliferation, 

Zellzyklusausstieg und Differenzierung in der Retina reguliert. 

Insgesamt zeigen meine Ergebnisse, dass Shh eine wichtige Rolle in der Regulation 

von Zellteilung und Zelltod während der Wirbeltierentwicklung spielt, und es beeinflusst diese 

Prozesse unterschiedlich in verschiedenen Geweben. Im Kontext der gepaarten 

Brustflossenanlagen reguliert Shh die Musterbildung und fördert die Zellproliferation durch 
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Aktivierung des Fgfsignalweges. In den Geweben die aus der Neuralplatte entstehen spielt Shh 

nicht nur eine Musterbildende Rolle, sondern fördert auch Zellüberleben und Zellteilung 

dadurch, dass es der Aktivierung des p53Transkriptionsfaktors entgegenwirkt. 
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SUMMARY 
 

The development of multicellular organisms depends on the integration between 

pattern formation and the regulation of cell number. The secreted signaling protein Sonic 

Hedgehog (Shh) has been implicated in directing both of these processes, suggesting it may 

participate in achieving this integration. The role of Shh in directing pattern formation in 

vertebrate model systems, including the zebrafish, has been well characterized during the last 

decades.  Among the organs in which the patterning function of Shh has been best studied are 

the limb buds, the retina, and the neural tube.  I therefore chose to study the role of Shh in 

regulating cell proliferation, cell death, and cell survival in these organs of the zebrafish. In 

addition, I also examined the interaction between Shh and several other factors directing cell 

proliferation and cell death, including the secreted signaling protein Fgf, and the transcription 

factor p53. 

In the context of the zebrafish paired fin buds, I focused on the interplay between Shh 

and the Fgf signaling pathways. Shh directs pattern formation along the anterior/posterior axis 

of the vertebrate limb, whereas several Fgfs in combination direct pattern formation along the 

proximal/distal axis of the limb. In addition, Shh and Fgf signaling pathways in the limb bud 

are mutually interdependent. Therefore, I aimed to determine the relative importance of each 

pathway for proliferation in this organ. In zebrafish shh mutants, both proliferation and Fgf 

signaling in the pectoral fin buds are initially normal, but later are strongly reduced. 

Furthermore, pharmacological inhibition of Hh signaling for short periods has little effect on 

either Fgf signaling, or on cell-cycle gene expression, whereas long periods of inhibition lead 

to the downregulation of both. By contrast, even short periods of pharmacological inhibition of 

Fgf signaling lead to strong disruption of proliferation in the fin buds, without affecting Shh 

signaling. Activation of Fgf signaling by implantation of FGF4-soaked beads into shh mutant 

pectoral fin buds leads to the rescue of cell-cycle gene expression and proliferation in these 

organs. These results show that the role of Shh in this process is indirect, and is mediated by its 

effect on Fgf signaling. By contrast, the activity of the Fgf pathway affects proliferation 

directly and independently of its effect on Shh. 
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In neural-plate derived tissues such as the retina and the neural tube, Shh is essential for 

survival of cells during development. Here I identify p53 as the mediator of cell death in shh 

mutant since in the absence of Shh activity, p53 target genes are induced, and p53 loss leads to 

suppression of apoptosis in shh mutants. p53 induces apoptosis in the absence of Shh signaling 

by activating expression of the pro-apoptotic target genes puma and bax1, which induce the 

intrinsic pathway of apoptosis and whose level of expression correlates with the severity of 

apoptotic phenotypes. In support of the hypothesis that p53 activation results from loss of Shh 

signaling, p53 target gene expression and apoptosis are both suppressed by over-expression of 

dominant-negative PKA in shh mutants. To monitor p53 activation in living zebrafish 

embryos, I constructed a transgenic line expressing fluorescent protein under the control of the 

p53-driven promoter. Indeed, p53 reporter expression correlates very well with apoptosis 

levels in vivo, except in the early retina. Furthermore, p53 reporter can be induced by 

genotoxic drugs and colocalises with active-Caspase3. p53 reporter-positive cells were also 

found defective in their cell cycle progression at 48 hpf. Consistent with this result, 

proliferation assays on the double shh p53 mutant revealed that loss of p53 rescues normal 

cell-cycle exit and increases the rate of mitosis in the shh mutant retina. Moreover, 

differentiation of amacrine cells and photoreceptors was rescued in the double shh p53 mutant 

retina. These results show that in the absence of shh, p53 is required for the induction of 

apoptosis, and also regulates proliferation, cell-cycle exit and differentiation in the retina. 

Taken together, my results show that Shh plays an important role in regulating both 

proliferation and cell survival during vertebrate development, and that it affects these processes 

distinctly in different tissues. In the context of the paired fin buds Shh directs pattern formation 

and in addition promotes cell proliferation, via activation of the Fgf signaling pathway. In 

neural-plate derived tissues Shh not only plays a patterning role, but also promotes cell 

survival and proliferation by antagonizing activation of the transcription factor p53. 
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1.1 Signaling pathways in regulation of proliferation and cell death 

 During development, organ growth is tightly regulated by controlling cell numbers. 

While cell number regulation remains one of the most complex problems in developmental and 

cell biology, work from many labs has shown that this is achieved by balancing proliferation 

and cell death within tissues. Localised regulation of cell numbers also contributes to organ 

shapes. Division and survival decisions inside the cell often require specific external signals. 

Several families of diffusible signaling molecules have been shown to affect both proliferation 

and cell death. In this thesis, I will focus on the Hedgehog signalling pathway and in particular 

on its role in regulating proliferation and cell death. In recent years, it has become clear that a 

true picture of signalling pathway function can be obtained from considering them a part of a 

network. This way of thinking influenced my work on Shh functions in proliferation and cell 

survival regulation by leading me to focus on interactions of Fgf signalling and p53 pathways 

with Shh signalling.  

1.2 Hedgehog signaling 

1.2.1 Hedgehog family of proteins 

The curious name “Hedgehog” for this class of signaling molecules comes from the 

spiky phenotype of the Hedgehog (Hh) mutant Drosophila larvae identified in the forward 

genetic screen finished in 1980 (Nüsslein-Volhard and Wieschaus, 1980). Subsequently, similar 

genes were found in many other animals and in recent years our understanding of this class of 

signaling molecules has progressed dramatically. Undoubtedly, the Hh family of proteins is a 

key regulator of animal development, as it is involved in patterning and differentiation, 

regulation of proliferation and survival, may act as chemotactic cues and regulate 

morphogenesis via a combination of these functions.  

Structural phylogenetics studies  show that Hedgehog proteins contain two domains: 

Hedge and Hog domains, which have signaling function and protein splicing functions, 

respectively, and can be found independently in other proteins (Bürglin, 2008). Hh proteins 

appeared in early metazoan evolution, since sponges have some proteins containing the Hedge 

domain, and Cnidaria such as Nematostella vectensis have full Hh proteins. Most other 

Eumetazoa carry Hh genes except for some nematode species that lost these genes secondarily. 
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Regarding the main model systems, Drosophila carries a single Hh gene and vertebrates have 

three Hh genes: Sonic Hedgehog (Shh), Indian Hedgehog (Ihh) and Desert Hedgehog (Dhh). 

In zebrafish (Danio rerio), which underwent additional genome duplication, there are two Shh 

homologs (Shha and tiggy-winkle hedgehog), two Ihh homologs (Ihha and Echidna Hedgehog) 

and one Dhh homolog (Varjosalo and Taipale, 2008). 

1.2.2 Hedgehog biosynthesis, secretion and spreading in tissues 

Hedgehog is initially produced as a 45 kDa precursor protein, which is then processed 

to a 19 kDa active signaling peptide HhNp (Fig. 1). First, the signal peptide is cleaved during 

precursor transport into the endoplasmic reticulum, then the C-terminal domain catalyzes 

intramolecular protein cleavage of N-terminal domain via a thioester intermediate. This 

intermediate then reacts with cholesterol through the hydroxyl group to form HhN molecule. 

The final HhNp molecule is formed when Skinny Hedgehog enzyme (or HHAT in vertebrates) 

attaches palmitate to HhN (Chamoun et al., 2001; Lee et al. 2001; Buglino and Resh, 2008) 

(Fig. 1). This lipid-modified form of Hedgehog can tightly attach to cell membranes of the 

producing cells. In both Drosophila and vertebrates, the secretion of Hh depends on 

Dispatched, a 12-span transmembrane protein homologous to Hh receptor Patched (Burke et 

al., 1999; Ma et al., 2002; Kawakami et al., 2002). Loss of Dispatched in all cases produces a 

phenotype similar to a complete loss of Hh signaling and results in accumulation of Hh 

proteins inside the secreting cells (Burke et al., 1999; Ma et al., 2002; Kawakami et al., 2002). 
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Figure 1. Hedgehog protein cleavage and lipid modification pathway.   
After its synthesis, the signal sequence of Hedgehog precursor protein is removed by the signal 
peptidase in the endoplasmic reticulum (1). The C-terminal part of Hedgehog then catalyzes 
coordinated intramolecular proteolytic cleavage and cholesterol moiety addition (2). The next 
step is addition of palmitic acid by Skinny Hedgehog (Ski) acyl-transferase (3). N-terminal 
part of Hedgehog (HhN) (24-197 aa) modified with cholesteroyl- and palmitate moieties 
(HhNp) is highly lipophilic and is the final active signaling molecule. The figure was redrawn 
with modifications from Varjosalo and Taipale, 2008. 
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Whereas Hh processing and secretion are well understood, it is not clear, how Hh 

proteins spread in gradients across 50-300 µm depending on the organism and tissue (Zhu and 

Scott, 2004). Several studies propose that Hh spreads over long distances in the form of 

multimere complexes containing lipids (Zeng et al., 2001) or lipoproteins (Panakova et al., 

2005; Calejo et al., 2006). However, a recent study in Drosophila (Katanaev et al., 2008) 

proposed two secretion pathways for Hh protein: a short range and a long-range pathway, 

whose function depends on a membrane microdomain protein Reggie-1, which suggests that 

additional mechanisms may be involved in Hh spreading. Since Hh spreads in tissues in 

lipoprotein complexes, what is the role of Hh lipid modifications in this process? Indeed, lipid 

modifications are required for Hh protein distribution in vivo (Guerrero and Chiang, 2007; 

Varjosalo and Taipale, 2008). Palmitoylation is necessary for Hh activity and long-range 

signaling in both Drosophila and vertebrates (Chamoun et al., 2001; Chen et al., 2004), and the 

effect of palmitoylation loss on long-range Hh signaling in vertebrates is due to defects in Hh 

lipoprotein complex formation. It is unclear whether cholesterol enhances or hinders Hh 

transport in vivo since different studies produced conflicting results, and the associated caveats 

include unequal protein expression, Dispatched-independent secretion and potential lack of 

palmitoylation (Varjosalo and Taipale, 2008). 

Hh tissue spreading is controlled not only by lipid modifications but also by cell-

surface Hh-binding molecules and proteoglycans in the extracellular space. Genetic studies on 

exostosin (EXT)/tout velu family of heparan sulfate proteoglycan (HSPG)-synthesizing 

enzymes in Drosophila have first suggested that HSPGs are involved in Hh spreading (Lin, 

2004) by synthesizing Dally and Dally-like (Dlp) glypicans, glycosylphosphatidylinositol 

(GPI) – linked heparan sulfate proteoglycans, which are attached to the cell surface and whose 

polysaccharide chains protrude into the extracellular space.  Overall, glypicans have two main 

functions in Drosophila: contributing to Hh spreading and cell-autonomously enhancing 

signaling pathway activation (Jiang and Hui, 2008). Loss of these proteins inhibits Hh 

signaling in Drosophila similarly to the loss of HSPG-synthesizing enzymes. In particular, in 

wing discs Hh fails to move into cell clones mutant for HSPG synthesizing enzymes leading to 

abnormal accumulation of the protein in more posterior regions. This requirement of HSPGs 

for Hh spreading is limited to lipidated HhNp, present in lipoprotein particles. By contrast, the 

non-lipidated form of Hh can move farther than HhNp and does not require HSPGs for its 
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movement. In addition, it has been shown, that HSPGs are involved in maintaining Hh protein 

stability. How Hh interacts with glypicans is not completely understood, but there is evidence 

in Drosophila that Shifted is crucial for this interaction (Glise et al., 2005; Gorfinkiel et al., 

2005). Shifted is a secreted protein necessary for Hh spreading and signaling activation in 

developing wing blade, notum and eye tissues in the fly. In these tissues Shifted can bind both 

Hh and glypicans thus mediating their interactions. However, Shifted-mediated binding is not 

the only mechanism of Hh interaction with proteoglycans, which may also be direct. 

Moreover, Hh-glypican interaction may not even depend completely on polysaccharide chains 

of glypicans (Filmus et al., 2008). In contrast to Drosophila, where glypicans activate Hh 

signaling, mouse Glypican3 (GPC3) is a negative regulator of the Hh pathway (Capurro et al., 

2008). Mice and humans lacking GPC3 exhibit an overgrowth phenotype. Mechanistically, 

GPC3 binds Hh proteins and the resulting complex becomes endocytosed and degraded, 

thereby reducing Hedgehog level in the tissues. Consistently, in the absence of GPC3, the level 

of Shh protein and expression of Hh target genes are significantly higher. Similarly to GPC3, 

Drosophila glypicans also induce endocytosis of Hh in a complex with Ptc releasing inhibition 

of Smo thus activating Hh signaling (Beckett et al., 2008).   

There are two additional ways to regulate the Hh gradient (Varjosalo and Taipale, 

2008). On the one hand, high levels of Hh signaling can induce secondary production of Hh 

proteins in cells responding to it (Tabata et al., 1992; Roelink et al., 1995). On the other hand, 

Hh signaling leads to its own down-regulation by inducing expression of Patched (Ptc), Hh 

receptor, and the complex is degraded in the lysosomes (Chen and Struhl, 1996; Incardona et 

al. 2000). Similarly, in vertebrates Hh induces expression of Hip1 binding Hh to the cell 

surface and thus preventing its spreading (Chuang and McMahon, 1999).  

 

1.2.3 Hedgehog signaling pathway 

Hedgehog signalling is a signal transduction pathway regulating proteolytic processing 

of its downstream effector transcription factors Cubitus interruptus (Ci) in Drosophila and Gli 

in vertebrates (Fig. 2; Lum and Beachy, 2004; Jiang and Hui, 2008; Varjosalo and Taipale, 

2008). In the absence of Hh signals, proteolysis leads to formation of repressive forms of Ci 
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and Gli factors, whereas when Hh ligands are present this proteolysis is inhibited and the full-

length Ci and Gli can activate their target genes.  

The most upstream signal transducer Smoothened (Smo) is inhibited by Hh receptor 

Ptc in the absence of Hh signal via a catalytic mechanism possibly involving oxysterols or 

vitamin D3 metabolites. Hh ligand binding to Ptc relieves Smo inhibition that Ptc mediates 

thus activating the signal transduction pathway. Hh ligands are aided in their binding to Ptc by 

proteoglycans, as well as membrane-spanning co-receptors Ihog and Boi (Cdo and Boc in 

vertebrates, respectively), stimulating Hh signaling (Allen et al., 2007; Tenzen et al., 2006; 

Yao et al., 2006; Zhang et al., 2006). Negative regulation of expression of these co-receptors 

by Hh signaling, transcriptional activation of negative Hh signaling regulators patched, hip1 

and Gli degradation-promoting HIB/SPOP genes, negative regulators of Hh signaling, ensures 

robust negative feedback regulation of Hh signaling (Varjosalo and Taipale, 2008). 

Upon Hh stimulation, Drosophila Smo (dSmo) accumulates at the membrane, is 

phosphorylated by Protein Kinase A (PKA), Casein Kinase I (CKI) and changes its 

conformation (Zhao et al., 2007). In vertebrates, GRK2 induces similar activatory 

phosphorylation of Smo thereby activating downstream signaling (Chen et al., 2004b; Meloni 

et al., 2006). The C-terminus of dSmo is a binding platform for multiple factors: Costal2 

(Cos2), Ci, Fused kinase (Fu), PKA and several other kinases. Cos2 belongs to the kinesin 

superfamily and serves as a molecular scaffold protein for Ci phosphorylation by PKA, CKI 

and GSK3β. Without Hh, Cos2-mediated phosphorylation of Ci leads to Slimb-dependent 

ubiquitination and proteolytic processing of Ci into a repressive form CiR, while upon Hh 

stimulation, Cos2 is recruited by dSmo and cannot promote degradation of Ci. Inhibition of Ci 

degradation leads to accumulation of full-length activatory form CiA, for whose complete 

activation Suppressor-of-Fused (Sufu) must be removed from CiA by Fu-mediated 

phosphorylation. This phosphorylation occurs upon Cos2 binding to dSmo since Cos2 brings 

Fu close to Sufu bound to Ci. The Fu requirement for Sufu inactivation was confirmed by 

dispensability of Fu for Hh signaling upon Sufu loss (Ohlmeyer and Kalderon, 1998; Lefers et 

al., 2001). 
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Figure 2. The Hedgehog signaling pathway in Drosophila and vertebrates. 
Hh reception is enhanced by its binding to coreceptors Ihog/Boi in Drosophila and Cdo/Boc/Gas1 in 
mammals. Drosophila Dally and Dlp1 HSPGs bind and concentrate Hh molecules on the surface of the 
cell. Patched controls Hh signaling by inhibition of Smo. Lack of Smo activity allows phosphorylation 
of Ci/Gli (Gli2 and Gli3) by PKA, CKI, GSK3 and possibly other kinases, which leads to ubiquitination 
by Slimb/β-TrCP SCF subunits and proteasome-mediated proteolysis. This proteolysis generates 
truncated repressor forms CiR/GliR of full-length Ci/Gli. In Drosophila, Cos2 promotes 
phosphorylation of Ci acting as a molecular scaffold to bring Ci and its kinases in close proximity. Hh 
binding to Ptc blocks its inhibition of Smo. dSmo is then phosphorylated on the C-terminal domain by 
PKA and CKI, which leads to its activation and cell surface accumulation. In vertebrates, GRK2 can 
activate Smo by phosphorylation. Recruitment of Cos2-Fu by Smo leads to dissociation of Cos2-Ci 
complexes and reduction in Ci phosphorylation and abundance of repressor form of Ci. Hedgehog 
signaling also stimulates CiA activity by promoting Fu-mediated inhibition of Sufu. Hh-promoted 
expression of HIB targeting CiA for degradation is another negative-feedback loop in Hh signaling. In 
vertebrates, Sufu is the main Gli inhibitor and is inhibited by Cdc2l1 kinase. DYRK2 kinase targets 
Gli2 for degradation, while MAP3K10 activates Gli2 by inhibiting DYRK2. Additionally there is 
evidence for Gαi (Gai) function in signaling downstream of Smo in both Drosophila and vertebrates. In 
brown are indicated Drosophila proteins playing both positive and negative roles in Hedgehog 
signaling regulation, negative regulators are in red and positive regulators are in green. The figure was 
modified from Jiang and Hui (2007). 
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The mechanism of Hh signaling in vertebrates differs from the one in Drosophila (Fig. 

2; Varjosalo and Taipale, 2008). For its signal transduction the vertebrate Hh pathway unlike 

the one in Drosophila requires the primary cilium, a small microtubule-based structure with a 

sensory function in most vertebrate cells (Wong and Reiter, 2008). Mutations in intra-flagellar 

transport (IFT) components affecting primary cilium structure and function lead to Hh 

signaling inhibition in the neural tube, but to its apparent activation in the limbs. Consistent 

with the role of IFT in Hh signaling, Smo, Ptc, Sufu and Gli factors localize to the primary 

cilium, and there is evidence that the main role of the primary cilia is to promote processing of 

Gli proteins to both activatory and repressive forms. Hh signal transduction prior to Gli 

processing also occurs in the primary cilia, where Hh signaling is initiated when Smo is 

released from its Ptc-mediated inhibition. Ptc inhibition of Smo ciliary localization is removed 

by Shh stimulation leading to Smo recruitment to the primary cilium, where it co-localises 

with other Hh signaling components (Rohatgi and Scott, 2007). In contrast to Smo, Ptc leaves 

the primary cilium after binding Shh and cannot inhibit ciliary recruitment of Smo.  

Functions of vertebrate homologs of Hh signaling mediators downstream of Smo are 

still unclear. The zebrafish Cos2 homolog has been suggested to negatively regulate Hh 

signaling and interact with Gli1 (Tay et al., 2004). However, mouse Cos2 homologs, Kif7 and 

Kif27, cannot bind either Smo or Gli factors and are functional kinesin motors in contrast to 

Cos2 (Varjosalo et al., 2006). Like in the case of Cos2, the zebrafish Fused homolog has been 

implicated in Hh signaling in the context of muscle pioneer generation (Wolff et al., 2003), 

whereas mouse Fused homologue is highly divergent and non-essential for Hh signaling (Jiang 

and Hui, 2008). Another difference of Hh signaling in vertebrates and in Drosophila is signal 

transduction downstream of Smo, and only recently kinases involved in this process were 

identified. Evangelista and colleagues (2008) identified Cdc2l1 kinase as necessary and 

sufficient for Hh signaling activation. Mechanistically, Cdc2l1 binds and inactivates Sufu, a 

potent Gli inhibitor. Another systematic kinase screen identified DYRK2 and MAP3K10 

kinases involved in Hh signal transduction (Varjosalo et al., 2008). DYRK2 negatively 

regulates Hh signaling by phosphorylating and promoting degradation of Gli2, whereas 

MAP3K10 is a positive regulator of Hh signaling inhibiting DYRK2 and possibly other 

kinases. Identification of these kinases is important for understanding Hh signaling, because, 

like Ci, GLI2 and GLI3 can be phosphorylated and targeted to degradation in the absence of 
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Hh signals. When Hh signal is present, both proteins remain full-length and can activate target 

genes. Several kinases and protein degradation machinery are crucial for controlling Gli 

activity. PKA phosphorylation of Gli3 primes it for further phosphorylation by CKI, GSK3β 

and other kinases and subsequent ubiquitination by SCF ubiquitin ligase complex (Wang et al., 

2000; Jiang, 2006). Moreover, Gli2 processing is also regulated by PKA, and Gli2 without 

PKA sites is much more active (Pan et al., 2009). How the newly identified kinases fit into the 

current models of Gli regulation is currently unclear.  

1.3 The role of Sonic Hedgehog in regulating proliferation in development 

and tumourigenesis 

There is now abundant evidence that Hh signaling is involved in regulation of proliferation. 

In most instances, Hh ligands stimulate proliferation by direct regulation of cell-cycle 

promoting genes, through activation of secondary signaling pathways inducing cell cycle 

progression or via other mechanisms that are still unknown. Several early studies found clear 

evidence that Hh signaling regulates proliferation. Fan and Khavari (1999) artificially 

expressed Shh in the mouse skin and showed that it can increase cell numbers and override p21 

CDK inhibitor-mediated cell cycle arrest. This result suggested a potent proliferative activity 

of Shh and could potentially explain the origin of basal cell carcinoma. Similarly, Shh 

produced by Purkinje cells has been shown to promote granular cell precursor (GCP) 

proliferation in the developing cerebellum (Wechsler-Reya and Scott, 1999; Dahmane and 

Ruiz i Altaba, 1999). Increase in GCP proliferation by Shh was abolished by Hh signaling 

inhibition, and this effect could be observed both in cultured cell lines and in vivo. Tectum and 

neocortex are two other dorsal brain parts which require Shh for cell proliferation (Dahmane et 

al., 2001). These observations provided important clues to why Hh signaling is activated in 

tumours of the neural origin. Later studies also showed that Hh signaling is required for cell 

proliferation in several stem cell niches in the postnatal and adult brain (Machold et al., 2003; 

Palma et al., 2005). Cayuso and colleagues (2006) showed that Shh requirement for 

proliferation in the developing spinal cord is mediated by Gli factors. Subsequent studies on 

the mechanisms of Hh signaling-mediated proliferation found that Hh signaling is required for 

expression of cell cycle regulators. Direct effects of Hh signaling on expression of cell cycle 

regulators were identified in both Drosophila and vertebrates in several different tissues. 
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During Drosophila eye development Hh signaling is required for normal expression of cyclins 

and proliferation, and its activation suppresses the phenotype due to negative cell cycle 

regulator RBF (Retinoblastoma) overexpression. In this case, Hh signaling promoted cell cycle 

progression by transcriptional upregulation of D-type and E-type cyclins in target cells 

(Duman-Scheel et al., 2002). This transcriptional up-regulation of cell-cycle genes has been 

shown to occur as a direct response to promoter binding of Gli factors (Duman-Scheel et al., 

2002; Yoon et al., 2002). In the mouse cerebellum, Kenney and Rowitch (2000) found that Shh 

signaling maintains GCP proliferation by regulating cyclinD gene expression. Expression 

profiling of genes in the GCP cells showed that Shh regulates cell cycle progression by 

inducing N-Myc, which activates its downstream transcription program (Oliver et al., 2003).  

 Also during retinal development, Shh plays a major role in regulating proliferation.  

 Early studies showed that Shh stimulates proliferation of retinal progenitors in tissue culture 

(Jensen and Wallace, 1997; Levine et al., 1997) and in the ciliary marginal zone (CMZ) of 

newly born mice and chickens (Moshiri and Reh, 2004; Moshiri et al., 2005). During mouse 

retina development, Shh positively regulates cell cycle progression probably by regulating 

cyclinD1 expression, and without Shh cells cannot continue proliferating and exit the cell cycle 

becoming retinal ganglion cells (Wang et al., 2005). Consistently, in the zebrafish shh mutant 

retina, proliferation was reduced during neurogenesis (Stenkamp et al., 2002). Explaining 

positive effects of Shh on retinal proliferation, Locker and co-workers (2007) found that in 

Xenopus Shh signaling promotes retinal progenitor proliferation by shortening G1- and G2-

phases of the cell cycle. This effect may be caused by Shh-mediated positive regulation of 

cyclinD1, cyclinA2, cyclinB1 and cdc25C gene expression, which would lead retinal cells to 

faster cell cycle progression towards the final mitosis and cell-cycle exit. 

Despite its widespread role in promoting proliferation, Shh does not function as the 

classical mitogen since it cannot make terminally differentiated cells enter the cell cycle from a 

quiescent phase and does not induce mitogen-activated protein kinase (MAPK) pathway (Roy 

and Ingham, 2002).  

On the other hand, Hh signaling has also been shown to have a negative role on cell 

cycle progression. In the mouse gut, Ihh is required for cell cycle exit and differentiation of 

colonocytes both in vivo and in a colonocyte cell line through activation of p21 CDK inhibitor 

expression (van den Brink et al., 2004). Although there is strong evidence for a positive role of 
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Shh in retinal proliferation, studies in the zebrafish retina show that this signaling pathway is 

required for retinal cell-cycle exit. In zebrafish shh mutant retina and under conditions of Hh 

signaling inhibition by forskolin, most retinal cells fail to express p57Kip2 CDK inhibitor and 

do not exit the cell cycle (Shkumatava and Neumann, 2005; Masai et al., 2005). Consistent 

with these studies in vertebrates, in Drosophila retina development, Hh signaling is involved in 

promoting cell-cycle exit but only in a strict combination with Dpp signaling (Firth and Baker, 

2005). 

Regulation of other signaling pathways which in turn promote cell cycle progression 

may be another strategy for Hh signaling to regulate proliferation during development. One 

clear case of such a mechanism is regulation of proliferation during Drosophila wing disc 

development. In this context, Hh promotes proliferation by regulating Dpp expression, a 

morphogen of the TGF-β family. Wing disc cells lacking receptors for Dpp have proliferation 

defects suggesting a cell-autonomous role for Dpp signaling in regulating proliferation (Burke 

and Basler, 1996). Furthermore, Martín-Castellanos and Edgar (2002) provided 

complementary evidence showing that activated Dpp receptor activates cell cycle progression 

in wing disc cells. 

Consistent with its role in regulating proliferation, Hh signaling activation was 

implicated in brain cancers such as glioma and medulloblastoma, skin cancer basal cell 

carcinoma (BCC), adenosarcomas of oesophagus, stomach, liver, colon and pancreas, 

rhabdomyosarcoma in the muscle, small-cell lung carcinoma, some cancers of breast, prostate 

(Rubin and Sauvage, 2006; Beachy et al., 2004). In addition to mentioned solid tumours, 

stroma-derived Hh ligands facilitate growth of B-cell lymphomas by providing survival signals 

(Lindemann, 2008). Inactivation of PATCHED and SUFU releases negative regulation of Hh 

signaling and is a frequent way to initiate tumour formation. Alternatively overexpression of 

Gli factors and activating mutations in SMO gene represent Hh signaling activation 

mechanisms leading to tumour formation. Therefore, cancers resulting from Hh signaling 

activation do not depend on Hh ligand stimulation but can be inhibited with Smo antagonists 

such as cyclopamine (Jiang and Hui, 2008). Hh signaling alterations and some signaling inputs 

ultimately result in a certain activity level of Gli factors, a Gli code. Gli codes change during 

tumourigenesis progression translating into different cancer cell behaviours, such as enhanced 

proliferation and eventually metastasis (Ruiz i Altaba et al., 2007). There are several potential 
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mechanisms by which Hh signaling can promote tumourigenesis: activation of proliferation, 

suppression of apoptosis, induction of epithelial-to-mesenchymal transition and promoting 

angiogenesis. These possibilities should be important considerations guiding the search for 

cancer therapies (Rubin and Sauvage, 2006). 

  

1.4 Sonic Hedgehog and Fibroblast Growth Factors in vertebrate limb 

bud patterning and as potential limb bud mitogens  

Limb development is highly amenable to experimental and genetic manipulation in several 

model organisms, and the main signaling pathways that direct limb development are well 

characterized (Fig. 3; reviewed in Capdevila and Izpisúa Belmonte, 2001; Niswander 2002; 

Tickle 2002). The zone of polarizing activity (ZPA), a small group of cells in the posterior 

mesenchyme, controls polarity along the anterior/posterior axis (Saunders and Gasseling, 

1963). The secreted signaling protein Shh is expressed in the ZPA, and has been shown to 

mediate the effect of the ZPA during limb development (Fig. 3; Riddle et al., 1993; Chang et 

al., 1994; López-Martínez et al., 1995; Neumann et al., 1999). The apical ectodermal ridge 

(AER) is another major signaling center of the limb bud. It runs along the distal margin of the 

limb bud, and is the site of expression of several Fgf genes (Fig. 3; reviewed in Martin 1998). 

The AER is required for outgrowth and patterning of the limb along its proximal/distal axis, 

and can be functionally replaced by FGF-soaked beads in chicken embryos, indicating that Fgf 

signaling can mediate AER function (Fallon et al., 1994; Niswander et al., 1993). Furthermore, 

conditional inactivation of both Fgf4 and Fgf8 in the mouse AER leads to failure of 

proximal/distal outgrowth (Sun et al., 2002). Factors from the AER and ZPA form a mutual 

feedback loop that allows growth and patterning of the different axes to be coordinated. Thus 

fgf-4, which is expressed in the posterior AER, can be induced in the anterior AER of the 

chicken limb bud by ectopic Shh protein (Niswander et al., 1994; Laufer et al., 1994). 

Furthermore, removal of Shh activity from the zebrafish fin buds leads to loss of fgf4 and fgf8 

expression in the AER (Neumann et al., 1999), and, conversely, removal of Fgf4 and Fgf8 

activity from the mouse AER leads to loss of shh expression in the ZPA (Sun et al., 2002), 

indicating that each signaling pathway is required for the maintenance of the other pathway. 
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Figure 3. Shh and Fgf signaling pathways in limb patterning and outgrowth. 
Shh and Fgf signaling pathways are interdependent due to mutual regulation of expression and 
both pathways affect limb bud mesenchyme. Shh signaling can affect both anterior-posterior 
patterning and limb bud outgrowth. Fgf is mainly required for outgrowth and proximo-distal 
patterning. 
  

Despite all the advances in defining how limb patterning occurs, our understanding of how 

proliferation during limb development is regulated is still fragmentary. More specifically, since 

cells in many different contexts proliferate in response to mitogens, it has been important to 

define the proliferation-stimulating molecules in the context of the vertebrate limb bud. The 

two best mitogen candidates in limb buds are Shh and Fgf proteins. Similar to Hh signaling, 

Fgf signaling positively regulates proliferation in a number of contexts. Indeed, Fgf1 and Fgf2 

were initially identified as mitogenic factors in fibroblast tissue culture, and subsequently, 

other members of the FGF protein family were found to have a similar activity (Powers et al., 

2000).  Furthermore, Fgf signaling has also been shown to have a mitogenic activity in vivo 

during embryonic development. Thus FGF-4 is necessary for proliferation of the inner cell 

mass during early post-implantation development in the mouse (Feldman et al., 1995), and 

FGF-8 and FGF-17 are required for  proliferation in the mouse dorsal midbrain (Partanen, 
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2007). In addition, Fgf signaling promotes proliferation of osteoblasts (Ohbayashi et al., 2002), 

of lens cells (Robinson, 2006), and during hematopoiesis (Moroni et al., 2006). 

 In zebrafish there is genetic evidence that Shh is required for fin bud outgrowth and cell 

proliferation (Neumann et al., 1999) and defects in digit formation in mice lacking shh  gene 

may be due to the role of Shh in proliferation (Towers et al., 2008; Zhu et al., 2008). As the 

manuscript containing some of the data in this thesis was under review (Prykhozhij and 

Neumann, 2008), a paper was published proposing a direct role of Shh in regulating 

proliferation in developing chick limb buds (Towers et al., 2008). Following observations that 

inhibition of Hh signaling for long periods leads to loss of posterior digits, the authors 

investigated whether this result is due to the morphogen or proliferation-promoting property of 

Shh. Although cyclopamine inhibition only led to a reduction of cyclinD2 without affecting 

cyclinD1 and N-Myc, implantation of Shh-soaked beads led to an increase of cyclinD1 and N-

Myc expression. This induction of G1- and S-phase genes by Shh-soaked bead implantation 

was apparently independent of the AER region. Moreover, derepression of Hh signaling by 

loss of Gli3 led to a strong induction of cyclinD1, cyclinD2 and N-Myc. 

 In contrast to direct proliferation regulation by Shh during limb bud development, 

several studies suggest that Fgf signaling may be fulfilling this function. Dudley et al. (2002) 

surgically removed AER on the chick limb buds and analysed proliferation several hours after 

the cut. They found a clear decrease in proliferation in the underlying mesenchyme suggesting 

that proliferation during limb bud development is regulated by Fgf molecules released by 

AER. However, another interpretation of such experiments is that loss of AER also leads to 

defects of Shh signaling. In contrast to the AER removal studies, genetic inactivation Fgf4 and 

Fgf8 genes in the mouse limb buds leads to reductions in limb bud size most likely due to an 

increase in cell death since the proliferation rate is normal (Sun et al., 2002). Still, there may be 

other Fgf ligands besides Fgf4 and Fgf8, which may be sufficient to maintain proliferation 

(Niswander 2003). Thus, to date the relative contributions of Shh and Fgf signaling pathways 

in maintaining limb bud proliferation remain uncleal.  

 1.5 Sonic Hedgehog in zebrafish retinal development 

From a developmental and functional point of view, the retina is a part of the nervous 

system. Its function is to perceive light and transduce the resulting information to the brain. 
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The retina has a highly ordered structure consisting of three cell layers interconnected by 

synapses localized in two layers (Fig. 4B; Bilotta and Saszik, 2001). There are seven main cell 

types in the retina: retinal ganglion cells (RGCs), amacrine cells, bipolar cells, horizontal cells, 

cone photorecetors, rod photoreceptors and Müller glia (Fig. 4A). A recent study of Xenopus 

retina found that retinal cell types are born in the following order: RGCs, horizontal cells, cone 

photoreceptors, rod photoreceptors, amacrine cells, bipolar cells and Müller glia (Wong and 

Rapaport, 2009). RGCs are all located in a single layer and their axons transmit visual 

information to the optic tectum. Inner plexiform layer (IPL) is located between the RGC layer 

and the inner nuclear layer (INL) and contains synapses of RGCs with amacrine and bipolar 

cells. The INL follows the RGC layer and contains amacrine, bipolar, horizontal and Müller 

glia cells. Finally, the outer-most part of the retina is outer nuclear layer (ONL) containing 

cone and rod photoreceptors. Synaptic connections between INL and ONL are located in the 

outer plexiform layer, where bipolar and horizontal cells make synapses with photoreceptors. 

Outside of the neural retina lies retinal pigmented epithelium absorbing stray light and thereby 

protecting retinal cells from light-induced damage.  

 Conversion of multipotent retinal progenitors to differentiated retinal cell types occurs 

during the complex process of differentiation, which is influenced both by intrinsic and 

extrinsic factors with unclear relative contributions. In particular, the competence model 

suggests that retinal progenitors go through a number of intrinsically defined states and have 

different propensities to become specific cell types (Livesey and Cepko, 2001). Intrinsic 

factors are mainly transcription factors belonging to basic helix-loop-helix or homeobox 

families (Stenkamp, 2007), which alone or in combinations determine the fates of the 

progenitor cells. According to the competence model, extrinsic factors can influence the ratios 

of different cell types, but they cannot induce cell types of a different progenitor competence 

state. Despite some progress, it is still unclear to what extent the extrinsic factors control 

retinal cell fates. 

The role of Shh during retina development is especially well-inderstood in zebrafish. 

Shh influences zebrafish retina throughout its development and its known functions consist of 

early proximo-distal patterning of the optic vesicle,  promoting retinal neurogenesis and cell 

type differentiation and retinotectal projection of RGC axons (Stadler et al., 2004). After optic 

vesicle formation, Shh and Twhh are required for patterning this structure into optic stalk and 
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neural retina. In this context, Hh signaling is promoting optic stalk cell fate by activating Pax2 

(Ekker et al., 1995; Macdonald et al., 1995) and Vax1 and Vax2 homeobox genes (Stadler et 

al., 2004). Indeed, the activation of Hh signaling leads to expansion of optic stalk tissue at the 

expense of neural retina (Macdonald et al., 1995; Masai et al., 2000), as in the neural retina, Hh 

signaling leads to inhibition of Pax6 expression and activation of Pax2 thereby converting the 

neural retina into the optic stalk. By contrast, inhibition of Hh signaling leads to expansion of 

the neural retina and reduction of the optic stalk. 

During retinal neurogenesis, progenitors undergo final mitoses and differentiate into 

retinal cell types. Initiation of zebrafish retinal neurogenesis is induced by Fgf signaling from 

the optic stalk (Martinez-Morales et al., 2005). Neurogenesis is first induced in the ventro-

nasal patch of the zebrafish eye at 28 hpf, and after RGCs are born, neurons are born in the 

INL and ONL in distinct waves (Hu and Easter, 1999). Shh expression in the retina is first 

initiated in newly-born RGCs and then spreads in a wave as new RGCs are born (Neumann 

and Nüsslein-Volhard, 2000). The requirement of Hh signaling for RGC development is 

mediated through positive regulation of the ath5 gene (Stenkamp and Frey, 2003; Neumann 

and Nüsslein-Volhard, 2000). Subsequent spreading of Shh expression in amacrine cells also 

occurs in a wave independent of Shh expression in RGCs (Shkumatava et al., 2004). In that 

study it has also been shown that Shh is required for differentiation of all retinal cell types 

except for some RGCs. Although it was previously proposed that Shh expressed by pigmented 

retinal epithelium is required for photoreceptor differentiation (Stenkamp et al., 2000), 

Shkumatava and colleagues (2004) conclusively show that short-range Shh signaling from 

neural retina is necessary and sufficient to induce photoreceptor and Müller glia differentiation. 

Another possibility suggested by Stenkamp (2007) is that Shh is required for amacrine and 

photoreceptor survival rather than differentiation. The role of Shh in Müller glia differentiation 

seems to be conserved since in the mouse retina Müller glia express Hh signaling target genes 

and require Shh for their normal organization (Wang et al., 2002).  In the context of retinal 

differentiation, Shh also promotes cell-cycle exit of differentiating cells (Masai et al., 2005; 

Shkumatava and Neumann, 2005). Indeed, shh mutant embryos had a pronounced delay in 

p57kip2 expression and blocking p57kip2 function with morpholino oligonucleotides leads to a 

shh mutant phenocopy, that is lack of differentiation in the retina, cell-cycle exit defects and a 

high level of apoptosis in the retina.  
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Up to date, it is unclear how to reconcile the results concerning the functions of Shh in 

the retina. Since Shh signaling in the retina regulates neurogenesis, proliferation, cell-cycle exit 

and cell survival, an obvious question is how a single signaling pathway can control these 

distinct cell behaviors. 
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Figure4. Retinal cell types and layer structure. 
A. Illustration of the spatial relationships between different cell types in the neural retina. 
B. Retinal layers and main cell types. Red – ganglion cell, green – amacrine cell, light-blue – 
Müller glia, yellow – bipolar cell, blue- horizontal cell, pink – rod photoreceptor and orange – 
cone photoreceptor. 
Reproduced with modifications from http://webvision.med.utah.edu/  
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1.6 The survival function of Sonic Hedgehog signaling 

Hh signaling pathway regulates cell survival during development in addition to its 

pattern formation, proliferation and differentiation functions in a variety of contexts (reviewed 

in Ingham and McMahon, 2001; Ulloa and Briscoe, 2007; Ruiz i Altaba et al., 2003). There are 

several examples for the survival role of Shh. In the mouse shh–/– mutant, neural tube and 

ventral sclerotome showed high level of apoptotic cells (Borycki et al., 1999; Litingtung and 

Chiang, 2000). Similarly, surgical manipulations to prevent formation of the notochord in 

chick embryos lead to extensive apoptosis in the neural tube implicating Shh as a survival 

factor in the neural tube (Charrier et al., 2001). These findings are confirmed by the fact that 

restoration of Hh signaling by provision of Shh sources  or de-repression of Hh signaling by 

deletion of gli3 gene, repressor of Hedgehog target genes,could suppress apoptosis (Charrier et 

al., 2001; Litingtung and Chiang, 2000). However, it is possible that cell survival depends on 

the patterning role of Shh in the neural tube (Briscoe and Ericson, 1999; Patten and Placzek, 

2000). This seems not to be the case, as, for example, Cayuso and colleagues (2006) showed 

that the effect of Hh signaling on cell survival occurs much earlier than patterning or 

differentiation. Also, lack of Shh in chick embryos leads to striking apoptosis in the neural 

crest (Ahlgren and Bronner-Fraser, 1999), which is similar to the phenotype the mouse Smo 

gene knockout embryos with decreased proliferation and increased apoptosis in the branchial 

arches (Jeong et al., 2004). By contrast, studies of Shh in neural crest development in zebrafish 

confirmed an important role of Shh in cartilage differentiation, but did not identify the cell 

survival function of Shh signaling likely due to using cyclopamine treatments and a 

hypomorphic shh mutant (Wada et al., 2005; Eberhart et al., 2006). These results also suggest 

that the levels of Hh signaling required for cell survival may be lower than those required for 

differentiation. Zebrafish retina is another tissue requiring Shh for survival of most cell types 

as shown by shh–/– mutant analysis (Shkumatava and Neumann, 2005).  

However, there is still some controversy about the underlying mechanism of the 

survival role of Shh. Activation of pro-survival genes by Shh signaling represents the simplest 

scenario, and indeed, Gli1 can activate BCL2 gene in human cell lines by binding to several 

near-consensus sites in the BCL2 promoter, one of which plays a crucial role in Gli1-mediated 

induction. Likewise, Gli1 over-expression in the mouse keratinocytes (Bigelow et al., 2004) 
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and over-expression of the Gli3 dominant-active form in developing chick embryos leads to 

induction of Bcl2 (Cayuso et al., 2006). In contrast to this transcriptional mechanism, another 

study proposed that in the absence of Shh Patched1 mediates neural tube apoptosis, in a way 

that is independent of the canonical Shh signaling pathway and to function through more direct 

caspase activation (Thibert et al., 2003). Patched1 could function in this context as a 

dependency receptor, i.e. a receptor inducing cell death in the absence of cognate ligand 

binding (Chao, 2003; Guerrero and Ruiz i Altaba, 2003). However, another study (Cayuso et 

al., 2006) concluded that Hh survival function is mediated entirely by Gli transcription factors. 

Consistent with and complementary to the results in this thesis, Abe et al (2008) showed that 

activation of Hh signaling can suppress p53 pathway in tissue culture systems. To activate Hh 

signaling, the authors employed dominant-active Smo mutants and Gli transcription factor 

overexpression. They found that Hh signaling activation leads to phosphorylation of Hdm2 

(human Mdm2) on serines 166 and 186. The phosphorylated Hdm2 becomes activated and 

catalyses ubiquitination of p53, which leads to suppression of p53-mediated tumour 

suppression in conditions of DNA damage and oncogenic stress. The authors concluded that 

Hh signaling induces expression of an unknown factor activating Mdm2. The results by Abe et 

al. (2008) raise the question whether p53 induces apoptosis in vivo in the absence of Shh 

signaling. Taken together, the studies suggest that we still know very little about the role of 

Shh in cell survival and the signal transduction mechanisms activating cell death machinery in 

the absence of Shh. Another important topic is the fate of surviving cells when apoptosis due 

to shh loss is suppressed.  

1.7 p53 pathway in apoptosis induction and cell cycle regulation 

Because of its tumour-suppressive role, p53 is one of the best-investigated proteins. 

The most fundamental function of p53 is to allow cells to respond to a variety of stresses as 

DNA damage, hypoxia, nucleotide depletion, and aberrant growth signals by oncogenes. 

Activation of p53 by DNA damage and oncogenes are considered of highest relevance for 

tumour suppression. The signal transduction from DNA damage to p53 is accomplished by 

ATM/ATR, Chk1 and Chk2 kinases (Fig. 5). Oncogenic signaling in mammalian systems 

leads to elevation of p14ARF (ARF) gene expression, which activates p53 through Mdm2 

inhibition (Fig. 5; Efeyan and Serrano, 2007). Both oncogenic signaling to ARF (Efeyan and 
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Serrano, 2007) and DNA damage response signaling (Vousden and Lane, 2007) may play 

important roles in p53-mediated tumour suppression.  The best investigated functions of p53 

are apoptosis induction, cell cycle arrest and senescence. However, recent studies (reviewed in 

Vousden and Lane, 2007) show that p53 regulates glycolysis and oxidative stress regulation, 

cell death by autophagy, repair of genotoxic damage and cell differentiation. p53 activation by 

AMP kinase due to a low glucose level helps cell survive starvation conditions (Jones et al., 

2005). p53 also regulates  metabolism under normal conditions by activating expression of 

SCO2, cytochrome c oxidase assembly factor, and thus promotes oxidative phosphorylation in 

mitochondria (Matoba et al., 2006) and this could be the reason why p53 mutant mice have 

low endurance. Additionally, p53 regulates expression of many proteins with anti-oxidant 

functions such as sestrins, ALDH4 and TIGAR (Vousden and Lane, 2007; Bensaad et al., 

2007). Another novel function of p53 is to induce autophagy, digestion of cellular contents by 

vesicular organelles autophagosomes, by DRAM gene activation (Crighton et al., 2006). 

Regulation of p53 activity and abundance depends on two factors: Mdm2 and Mdm4. 

While Mdm2 is required for degradation of p53, Mdm4 inhibits its activity (Marine and 

Jochemsen, 2004). For p53 to become activated and more abundant, the negative regulation by 

Mdm2 must be prevented. The precise mechanism is still unknown, however, the currently 

favored model is that in unstressed cells, Mdm2 controls p53 stability by ubiquitination, which 

targets p53 to proteasomal degradation, and Mdm4 blocks the transcription activation domain 

of p53 (Toledo and Wahl, 2006). Upon DNA damage and other stresses, Mdm2 becomes 

modified and promotes degradation of itself and Mdm4 (Stommel and Wahl, 2004). This 

eventually leads to higher p53 activity, resulting in an increase in Mdm2 expression further 

increasing p53 activity. Upon stress relief, Mdm2 starts targeting p53 and stops promoting 

Mdm4 degradation, which brings the system back to the unstressed condition. Due to 

importance of Mdm2 and Mdm4, factors regulating these proteins may be involved in p53 

activation. 

 Cell cycle regulation is another important function of p53. Cell cycle consists of several 

phases dividing the time from one cell division to the next. G1-phase is the period when cells 

growth and preparation to DNA replication occur. During S-phase DNA is replicated and in 

the second growth G2-phase, cells prepare to divide through mitosis (M-phase). To prevent 

inappropriate cell cycle progression upon damage, cells employ cell-cycle checkpoints, in 
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which p53 plays a key role. One of the p53-mediated cell responses is cell-cycle arrest, a 

transient block of cells in G1 or G2/M phase (reviewed Brown et al., 2007). Induction of 

CDKN1A gene encoding p21 cyclin-dependent kinase (CDK) inhibitor by p53 leads to cell 

cycle arrest before G1/S transition. p21 inhibits Cdk4/6-mediated phosphorylation and 

inactivation of Retinoblastoma (Rb) protein. Indeed, loss of CDKN1A strongly impairs p53-

mediated cell cycle arrest in fibroblasts after irradiation (Brugarolas et al., 1995). 

Unphosphorylated Rb represses E2F-regulated cell cycle genes involved in S-phase 

progression. Expression of p21 leads to accumulation of unphosphorylated Rb and 

maintenance of S-phase cell cycle gene repression. Thus, a model emerged that p53 regulates 

cell cycle directly through p21-mediated CDK inhibition and indirectly, through Rb, inhibits 

expression of S-phase cell cycle genes (Liebermann et al., 2007). More recently, several 

studies established that members of the miR-34 family are p53 targets with important roles in 

p53-mediated G1/S transition regulation (reviewed in He et al., 2007). More specifically, miR-

34 can inhibit translation of CDK4, CDK6, cyclinE2 and E2F3 thereby blocking G1- to S-

phase cell cycle progression. Another mechanism of cell cycle regulation by p53 is repression 

of C-MYC, a gene involved in G1/S cell cycle progression. Induction of G2/M arrest was 

found to be a much more complex process with many potential effectors induced by p53 

(Brown et al., 2007). p53 regulates CyclinB-Cdk1 complex expression by inhibiting NF-Y 

transcription factor which regulates expression of CyclinB and Cdk1. Moreover, expression of 

p53 targets p21 and GADD45α inhibits Cdk1 kinase activity. Cdc25C is required for 

activatory dephosphorylation of Cdk1, and p53 prevents this Cdk1 dephosphorylation by 

repressing expression of Cdc25C gene. p53 also influences localisation of CyclinB-Cdk1 

complexes by activating 14-3-3σ gene. 14-3-3σ prevents nuclear localization of CyclinB-Cdk1 

complex and Cdc25C. GADD45α is another p53 target involved in G2/M cell-cycle arrest, 

which disrupts CyclinB-Cdk1 complex. The list of other p53-regulated genes with less well-

characterized functions in G2/M cell-cycle arrest includes Reprimo, MCG10 and Gtse-1. 

The essential tumour-suppressive role of p53 is induction of apoptosis. Most studies 

suggest that p53 mediates apoptosis via the intrinsic mitochondrial apoptotic pathway. 

Transcriptional and transcription-independent activities (TIA) of p53 were proposed to be 

involved in the process. As mutations in p53 affect both its transcription activity and its 

localization and activity in mitochondria, it has not been possible to unambiguously separate 
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the two activities (Schuler and Green, 2005). It has been shown that p53 rapidly localizes to 

mitochondria after stress induction. Interestingly, proline-rich domain of p53 is not required 

for p53-mediated transactivation but is necessary for induction of apoptosis. P72R mutation in 

this domain enhanced p53 apoptotic activity through more efficient mitochondrial localization 

due to enhanced nuclear export. In addition, p53 physically interacts with Bcl-2 and Bcl-xL 

anti-apoptotic proteins suggesting a functional similarity of p53 to BH3-only pro-apoptotic 

Bcl-2 proteins (Yee and Vousden, 2003). In vitro models of p53 TIA showed that purified p53 

from DNA-damaged cells combined with Bax could permeabilise mitochondrial and liposomal 

membranes. 

The transactivation function of p53 is clearly required for apoptosis induction by p53. 

Some of p53 targets regulate generation of reactive oxygen species (ROS) with a strong 

damaging potential for DNA, membrane lipids and proteins. ROS excess may lead to apoptosis 

probably through disruption of mitochondrial membranes. Importantly, ROS generation can be 

both suppressed and induced by p53 (Michalak et al., 2005). Suppression of ROS generation 

can be achieved by p53-responsive sestrin genes PA26 and Hi95. Sestrin proteins PA26 and 

Hi95 are enzymes producing peroxiredoxins maintaining cellular redox balance. p53 also 

induces expression of ALDH4 proline degradation enzyme protecting cells from increased 

levels of ROS. TIGAR is a p53 target which negatively regulates glycolisis by enzymatically 

reducing the level of Fructose-2,6-bisphosphate (Bensaad et al., 2007). Thus, glucose becomes 

diverted into the pentose pathway generating NADPH, a potent anti-oxidant, which neutralizes 

reactive oxygene species (ROS) and contributes to cell survival. By contrast, induction of ROS 

may also be induced by p53. For instance, PIG8 and PIG3 p53 target genes were implicated 

into generation of ROS and induction of apoptosis. 

Intrinsic pathway of apoptosis is activated by disruption of the outer mitochondrial 

membrane and subsequent release of cytochrome C. Cytochrome C binds Apaf1 to form the 

apoptosome complex which serves to activate Caspase9 and downstream effector caspases 

(Fig. 6). Apaf-1, the integral component of the apoptosome (Fig. 6), was shown to be a 

transcriptional p53 target (Fortin et al., 2001). However, loss of APAF-1 does not completely 

protect cells from death and in p53-deficient mice its expression is not affected. Intrinsic 

apoptotic pathway is activated by BH3-only Bcl2 family proteins, which interact with 

downstream pro-apoptotic Bcl2 family proteins Bax and Bak. Pro-apoptotic Bcl2 family 
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proteins are antagonized by anti-apoptotic Bcl2 family members. There is now abundant 

evidence that p53-mediated apoptosis can be inhibited by Bcl2 overexpression, removal of 

BAX and BAK genes and by loss of BH3-only Bcl2 family member PUMA (Michalak et al., 

2005). Consistent with these findings, p53 regulates expression of Bcl2 family genes. BAX 

was the first identified p53 target involved in intrinsic pathway of apoptosis (Selvakumaran et 

al., 1994). Although an increased Bax level is not sufficient for cell death, it enhances 

induction of apoptosis. Another p53 target is BID is a BH3-only Bcl2 family member (Sax et 

al., 2003), whose uncleaved form has a low pro-apoptotic activity but can be cleaved by 

Caspase-8 and other caspases generating tBid form capable of disrupting mitochondrial 

membrane (Fig. 6). This cleavage reaction serves as a connection of intrinsic and extrinsic 

pathways. However, bid mutant mice had normal apoptosis after γ-irradiation suggesting a 

contributory role for Bid in p53-mediated apoptosis. NOXA is another BH3-only Bcl-2 family 

p53 target involved in apoptosis and tumour suppression. NOXA is induced by p53 after γ-

irradiation and under conditions of oncogenic stress, and it loss leads to a significant reduction 

of apoptotic levels after genotoxic stress (Oda et al., 2000). The most essential BH3-only Bcl-2 

family gene for p53-dependent apoptosis is PUMA, which is induced by p53 under a variety of 

stress conditions (Nakano and Vousden, 2001). Apoptosis induction by Puma requires both 

Bax and Bak, suggesting that Puma acts upstream of these factors, by neutralizing anti-

apoptotic Bcl-2 proteins, and thus helps Bax and Bak multimerise and permeabilize the outer 

mitochondrial membrane leading to activation of apoptosis (Fig. 6; Chipuk and Green, 2008). 

Furthermore, loss of PUMA protects cells from p53-mediated apoptosis in mouse and 

zebrafish (Kratz et al., 2006; Nakano and Vousden, 2001). 

 

Figure 5. An overview of the p53 pathway inputs, signal transduction and outputs. 
DNA damage, oncogenes, hypoxia, nutrient depletion and other factors are the stresses 
activating p53 response. Signal transducers such as ATM, ATR, Chk2 and p14ARF are 
involved in control of p53 activity by phosphorylation or direct binding. Activity of both p53 
and Mdm2 can be regulated by ATM and perhaps other kinases. Regulation of p53-Mdm2 
negative feedback loop and of Mdm4, p53 inhibitor, leads to p53 activation. Additional post-
translational modifications, histone acetyl transferases (HAT) and cofactor binding regulate the 
specificity of p53 promoter binding. Subsequent expression of p53 target genes involved in 
DNA repair (DDB2, DDIT4, GADD45a, TRIM22), cell-cycle arrest (CDKN1A, SFN. TP53I3, 
CDC25) or apoptosis (PUMA, NOXA, BAX, BID, PIG3) leads to depicted outcomes. The 
figure was adopted with modifications from Riley et al. (2008). 
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Cells with active p53 typically face a choice between p53-mediated apoptosis and cell 

cycle arrest. However, the choices of cells with active p53 are often much more complex than 

this simple binary choice. In different tissues, p53 induction in response to irradiation may 

occur or not, and even when p53 protein level increases no apoptosis may be induced. The 

mechanism(s) for these differences is still unknown, although special post-translational 

modifications of p53 and its co-factor interactions may play a role (Murray-Zmijewski et al., 

2008). Several post-translational modifications influence the choice between p53-mediated 

apoptosis and cell cycle arrest (Das et al., 2008). Ser46-phosphorylated p53 has a higher 

propensity to activate pro-apoptotic genes than p21. After severe DNA damage, p53 becomes 

acetylated at Lys120 and preferentially activates Bax and Puma. By contrast, ubiquitination of 

Lys320 of p53 leads to preferential activation of cell-cycle inhibitory genes by p53. Other 

known mechanisms for regulating the outcomes of p53 activation are gene-specific chromatin 

modification and protein cofactor binding to p53. 
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Figure 6. Intrinsic and extrinsic pathways of apoptosis and p53-mediated apoptosis. 
Intrinsic pathway of apoptosis is initiated at the outer mitochondrial membrane by Puma, 
Noxa, Bax, tBid and p53 which induce pore formation in this membrane. These pores allow 
release of cytochrome C from mitochondria, which can complex with Apaf-1 protein and 
Caspase9 to form the apoptosome complex. Caspase9 in the apoptosome complex 
proteolytically activates Caspase3, which in turn activates Caspases6 and 7. Active caspases 
cleave many proteins to eventually induce apoptosis. p53 regulates the intrinsic pathway of 
apoptosis by either itself affecting outer mitochondrial membrane permeability or inducing 
expression of genes which do this (shown in mars red color in this figure). Extrinsic pathway 
of apoptosis is activated by ligands (such as TRAIL or FASL) binding to their receptors, death 
receptors. Ligand-bound death receptors become activated, complexes of adaptor molecules 
assembled on them activate Caspase8, an initiator caspase activating Caspase3. Caspase 8 also 
cleaves Bid protein transforming it into a highly active BH3-only mitochondria-permebilizing 
factor. For clarity only the best-investigated factors are shown and their interactions among 
each other and with anti-apoptotic Bcl-2 proteins are not depicted.     
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1.8 Evidence for interaction of Hedgehog and p53 pathways 

Activation of Hh signaling has oncogenic properties in a number of contexts. To 

understand how Hh signaling is linked to tumorigenesis, it is necessary to discover the 

connections between the Hh pathway and other oncogenes and tumour suppressors. p53 is 

considered the most important tumour suppressor and interacts with many proteins and 

pathways. Interestingly, Hh signaling is one of p53-interacting signaling pathways. Wetmore 

and colleagues (2001) have provided the first evidence for a genetic interaction of p53 and Shh 

signaling pathway in the context of medulloblastoma development. Mice or humans 

heterozygous for patched mutation   (patched+/ –) show a strongly increased incidence of 

medulloblastoma most likely due to an increased level of Hh signaling. The authors also found 

that p53 loss in patched+/ – background leads 95 % of mice to develop medulloblastoma 

compared to only 14 % of patched+/ –p53+/ – mice. p53 also interacts genetically with Sufu, a 

negative regulator of Shh signaling (Lee et al., 2007). While Sufu+/ – heterozygote mice did not 

develop medulloblastoma with higher frequency, Sufu+/– p53+/– heterozygotes had 

medulloblastoma incidence of 58 %, suggesting that activated Hh signaling can cause 

medulloblastoma development if not controlled by p53. In basal cell carcinoma (BCC) 

mutations in patched and p53 are found with a higher incidence (Kim et al., 2002; 

Reifenberger et al., 2005). Moreover, in gliomas requiring Hh signaling for development and 

maintenance (Clement et al., 2007) p53 mutations are the most frequent genetic alterations 

(Ohgaki and Kleihues, 2007). Cancer stem cells in glioma tumours present activated Hh 

signaling due to higher expression of Gli1, which is required for cancer stem cell self-renewal 

and overall tumour proliferation and survival. Studies of genetic interactions give important 

clues for further research but do not provide mechanistic explanations of the observed 

phenomena. A recent study by Stecca and Ruiz i Altaba (2009) described a negative feedback 

loop between p53 and Gli1 in the mouse, which helps explain the genetic interaction of p53 

and Shh signaling. The authors observed that p53 can inhibit Gli1-mediated proliferation, 

neurosphere formation and positive transcriptional regulation in luciferase assays. p53 also 

promoted cytoplasmic localization of Gli1, which interferes with its normal nuclear 

localization and may direct Gli1 to proteosomal degradation. Closing the loop, Gli1 

overexpression led to a striking increase of Mdm2 expression and down-regulation of p53 in 

the mouse brain and several cell lines (Stecca and Ruiz iAltaba, 2009). These results are 
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consistent with the previously reported finding that Hh signaling can negatively regulate p53 

pathway (Abe et al., 2008).  

1.9 Zebrafish as a model system 

Different organisms have been used as model systems for understanding fundamental 

biological problems and pathologies. More precisely, a model system can be defined as an 

organism with useful features together with information resources and powerful experimental 

tools, which enable convenient and productive research. The zebrafish (Danio rerio) as a 

model system was established in early 1980s by George Streisinger and co-workers. In the last 

20-30 years zebrafish has become very popular due to the fact that it is a vertebrate of small 

size with relatively short life cycle and rapid external development, high number of progeny 

and can be easily maintained in the lab. Moreover, the embryo is transparent, a property 

important for in vivo microscopy, and transgenic technologies enable imaging of a variety of 

cells and processes in the zebrafish embryos. Finally, forward and reverse genetic approaches 

are available to uncover and characterize gene functions.  

1.10   Aims of this thesis 

The work presented here aimed to investigate the role of Shh in controlling proliferation 

and cell survival. Shh and Fgf signalling pathways are good candidate mechanisms how to 

control proliferation during limb development, since they are both known to directly regulate 

proliferation in other contexts. However, it has been an open question whether and how they 

work together to regulate proliferation of limb bud cells. I set out to investigate this question 

using shh–/– mutant analysis, pharmacological inhibition of Hh and Fgf signaling and activation 

of Fgf signaling using recombinant FGF protein. 

Shh is known to provide survival signals in a way that is yet unknown. My aim was to 

investigate the existence of a common mechanism underlying the survival function of Shh in 

different tissues. I have identified p53 pathway as the apoptosis-inducing mechanism in shh–/– 

mutant and created a reporter to study p53 activation. Another aim was to confirm that normal 

Hh signaling pathway is required to control p53 activaty. Since p53 also affects cell cycle 

progression, I aimed to understand how p53 affects proliferation and differentiation of retinal 

progenitor cells in the absence of Shh.  
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2.1 Shh and Fgf signaling pathways in regulating fin bud cell proliferation 

2.1.1 Loss of Shh signaling leads to reduction of cell cycle gene expression 

correlating with Fgf signaling status 

In order to investigate the role of Shh in regulating cell-cycle progression in the 

pectoral fin buds, I analyzed the expression of G1- and S-phase cell-cycle genes in the pectoral 

fin buds of zebrafish shh–/– mutants. Analysis was focused on cyclinD1, pcna and mcm5, which 

are generally used as markers of proliferating cells in zebrafish (Shepard et al., 2004; Ryu et 

al., 2006). Expression of cyclinD1 is necessary for G1-progression and S-phase entry, while 

pcna and mcm5 are necessary for DNA replication during S-phase (Ohtani, 1999). As a 

control, I analyzed expression of replication protein A1 gene (ra1), which is expressed 

constitutively in all cells of the fin bud. At 32 hpf, cyclinD1, pcna, mcm5 and ra1 are 

expressed at very similar levels in wild-type and in shh–/– mutant fin buds (Fig. 7C-F, I-L). 

Since expression of the Shh target patched1 (ptc1) (Concordet et al., 1996) is absent from   

shh–/– mutant fin buds at all stages (Fig. 7A, M), these results indicate that expression of G1- 

and S-phase cell-cycle genes is independent of Shh at 32hpf. Examination of these cell-cycle 

genes at 38hpf, however, reveals that cyclinD1, pcna, and mcm5 expression are lost in shh–/– 

mutant fin buds, while ra1 remains unaltered (Fig. 7O-R, V-X), suggesting that cell-cycle 

progression becomes dependent on Shh signaling at later stages. Since the expression of Fgf 

ligands in the AER depends on Shh activity (Capdevila and Izpisúa Belmonte, 2001; Neumann 

et al., 1999), I also tested whether the activity of the Fgf signaling pathway in shh–/– mutant fin 

buds correlates with the observed reduction in cell-cycle gene expression. Using the Fgf-target 

pea3 as a marker for Fgf signaling (Roehl and Nüsslein-Volhard, 2001), I find that pea3 

expression in shh–/– mutant pectoral fin buds is identical to wild-type fin buds at 32hpf, but is 

strongly reduced at 38hpf (Fig. 7B, H, N, U). This result is consistent with the observation that 

Shh is necessary for maintenance of Fgf expression in the AER, and suggests a correlation 

between the activity of Fgf signaling and the expression of cell-cycle genes in shh–/– mutant fin 

buds. Taken together, these results show that expression of G1- and S-phase cell-cycle genes is 

initially normal in shh–/– mutant pectoral fin buds, but is later lost, and that this shift correlates 

with a similar loss of Fgf signaling activity at later stages. 
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Figure 7. G1- and S-phase cell-cycle gene expression in fin buds of shh–/– mutant correlates 
with the Fgf signaling status.  
Wild-type embryos and shh–/– mutant embryos at 32 hpf (A-L) and 38 hpf (M-Y) were 
analysed for expression of the Shh target patched1(ptc1) (A, G, M; T), the Fgf target pea3 (B, 
H, N, U), the cell-cycle genes cyclinD1, pcna, and mcm5 (C-E, I-K, O-R, V-X), and 
replication protein A1(ra1) (F, L, S, Y). The Shh target ptc1 was expressed in the posterior 
part of wild-type fin buds at 32 and 38 hpf stages (A, M), but its expresssion was absent in 
shh–/– mutant fin buds (G, T). The Fgf signaling target pea3 was expressed at comparable 
levels in wild-type and shh–/– mutant fin buds at 32 hpf stage (B, H). At 38 hpf pea3 was still 
strongly expressed in the wild-type fin buds (N), but almost completely absent in the shh–/– 
mutant fin buds (U). cyclinD1, pcna and mcm5 were expressed strongly in both wild-type and 
shh–/– mutant fin buds at 32 hpf stage (C-E, I-K). At 38 hpf these genes were still strongly 
expressed in the wild-type fin buds (O-R), but downregulated in the shh–/– mutant fin buds (V-
X). Expression of ra1 was similar in both wild-type and shh–/– mutant fin buds at 32 and 38 hpf 
stages. 
 
 

Since the loss of G1- and S-phase cell-cycle genes in shh–/– mutant fin buds occurs 

relatively late, and only after Fgf signaling is lost, selective inhibition of Hh signaling using 

the plant alcaloid cyclopamine (Incardona et al., 1998) was employed to determine the time 

period of inhibition necessary to affect cell-cycle progression. Cyclopamine inhibits the action 

of Smoothened protein, which transduces the Hh signal after it becomes released from 
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Patched1-mediated inhibition (Chen et al., 2002). The use of cyclopamine allows inhibition of 

Hh signaling for varying periods of time, and thereby temporal control over the signaling 

inhibition. My aim was to find duration of cyclopamine treatment sufficient to inhibit Hh 

signaling, but leaving Fgf signaling largely unaffected, thereby uncoupling the two pathways 

from each other. I find that a 6-hour treatment from 34 to 40 hpf with 100 μM cyclopamine is 

sufficient to inhibit ptc1 expression almost completely (Fig. 8A, D), but has little effect on 

expression of the Fgf-target pea3 (Fig. 8B, E). Likewise, this treatment has little or no effect 

on cyclinD1, pcna, mcm5 and ra1 expression (Fig. 8C, G-I, F, J-L). By contrast, however, a 

13-hour cyclopopamine treatment from 34 to 47 hpf leads to loss of both ptc1 and pea3 

expression (Fig. 9A, B, D, E), and also leads to strong reduction of cyclinD1, pcna, and mcm5 

expression, but without affecting ra1 (Fig. 9C, G-I, F, J-L). These results show that loss of Shh 

signaling leads to loss of cell-cycle gene expression only after a 13-hour delay, indicating that 

this is likely to be an indirect effect. Since after this delay period cell-cycle gene expression 

loss correlates closely with reduction of Fgf signaling in response to Shh inhibition, Fgfs are 

very good candidates for mediating the effect of Shh on cell-cycle progression in the fin bud. 
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Figure 8. Cyclopamine inhibition for 6 hours does not strongly affect Fgf signaling and cell-
cycle gene expression. 
Wild-type embryos were treated with 100 μM cyclopamine (cyA) (D-F, J-L) or with the carrier 
0,5 % ethanol (EtOH) (A-C, G-I) for 6 hours from 34 to 40 hpf (A-L) and analysed for the 
expression of ptc1, pea3, cyclinD1, pcna, mcm5 and ra1. Expression of ptc1 was nearly 
completely lost after the treatment (A, D). Hh signaling inhibition for 6 hours led to a small 
change in pea3 expression in fin buds (B, E). Comparably small changes in expression after 
the treatment were observed for cyclinD1, pcna, mcm5 and ra1 (C,F; G, J; H, K; I, L). 
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Figure 9. Cyclopamine inhibition for 13 hours is sufficient to inhibit Fgf signaling and cell 
cycle gene expression.  
Wild-type embryos were treated with 100 μM cyclopamine (cyA) (D-F, J-L) or with the carrier 
0,5 % ethanol (EtOH) for 13 hours from 34 to 47 hpf (A-C, G-I) and analysed for the 
expression of ptc1, pea3, cyclinD1, pcna, mcm5 and ra1.  Expression of ptc1 was lost after the 
13-hour (A, D) inhibition period. After 13-hour Hh signaling inhibition, fin bud pea3 
expression was strongly decreased (B, E). Likewise, expression of cyclinD1, pcna and mcm5 
in fin buds was strongly downregulated (C, F; G, J; H, K). Expression of ra1gene was only 
mildly affected by 13-hour cyclopamine treatment (I, L). 
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2.1.2 Fgf signaling inhibition leads to rapid loss of cell-cycle gene expression 

and proliferation decrease in the fin buds 

Following the observation that Hh signaling inhibition strongly affects expression of 

cell-cycle genes after a 13-hour cyclopamine treatment, I decided to investigate how rapid the 

response of the same genes is to inhibition of Fgf signaling. For this purpose, I used the 

chemical inhibitor SU5402, which inhibits signaling by Fgf receptor  in mouse cell culture 

lines (Mohammadi et al., 1997) and in zebrafish embryos (Roehl and Nüsslein-Volhard, 2001). 

I find that treatment with 10 μM SU5402 for 3 hours between 36 and 39 hpf leads to nearly 

complete loss of the Fgf-target pea3 (Fig. 10A, D), while expression of the Shh target ptc1 is 

hardly affected (Fig. 10B, E), indicating that, under these conditions, Fgf signaling is blocked 

whereas Shh signaling is still intact . This 3-hour inhibition of Fgf signaling is sufficient to 

cause a nearly complete loss of expression of cyclinD1 (Fig. 10C, F), pcna (Fig. 10G, J) and 

mcm5 (Fig. 10H, K) in fin buds, while ra1 (Fig. 10I, L) is unaffected. Interestingly, cyclinD1, 

pcna, and mcm5 expression are also lost from the branchial arch primordia following this 

treatment (Fig. 10C, F, G, J, H, K). Consistent with the loss of expression of G1- and S-phase 

genes after 3 hours of SU5402 treatment, the number of cells labelled with 5-

bromodeoxyuridine (BrdU) is also strongly reduced in the fin buds under these conditions (Fig. 

11A, B). These results show that the effect of Fgf signaling on cell-cycle progression in the fin 

buds is much more rapid than the effect of Shh signaling, since there is a severe down-

regulation of cell-cycle genes already after 3 hours of Fgf signaling inhibition. 
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Figure 10. Fgf signaling inhibition leads to loss of G1- and S-phase cell cycle gene expression. 
Wild-type embryos were treated with 10 μM SU5402 (A-C, G-I) or the carrier 0,125 % DMSO 
(D-F, J-L) for 3 hours from 36 to 39 hpf. SU5402 treatment strongly downregulated the 
expression of pea3 FGF signaling target (A, D), but had only a small effect on ptc1 expression 
in fin buds (B, E).  SU5402 treatment also caused strong down-regulation of cyclinD1 (C, F), 
pcna (G, J) and mcm5 (H, K). Expression of ra1 was not affected by SU5402 treatment (I, L).  
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Figure 11. Fgf signaling inhibition reduces proliferation in zebrafish fin buds. 
Wild-type embryos were treated with 10 μM SU5402 (A) or 0,125 % DMSO (B) for 3 hours 
from 36 to 39 hpf. After 3-hour treatment with either SU5402 or DMSO, embryos were 
injected with 10 mM BrdU solution into the yolk and incubated for 1 hour in the same 
solutions before fixation. S-phase progression, as revealed by BrdU labeling, was strongly 
inhibited after SU5402 treatment, in comparison to control embryos (n = 10, at least 2 fin 
sections per embryo were analysed) (A, B). 
 

Since blockage of Fgf signaling with SU5402 leads to rapid loss of G1- and S-phase 

gene expression both in the pectoral fin buds and in the branchial arches, I also checked 

whether Fgf signaling is required for proliferation in other tissues.  Therefore, an inhibitor 

treatment at 20 hpf was performed, at a stage at which many embryonic cells are still 

proliferative. After 3 hours of treatment with 10 μM of SU5402, expression of pea3 is almost 

completely lost in these embryos, but cyclinD1, pcna, mcm5 and ra1 expression is unaltered 

(Fig. 12A-C, G, H; D-F, I, J). Furthermore, while SU5402 treatment at 36 hpf leads to loss of 

cell-cycle genes from both the pectoral fin buds and the branchial arches, it has no effect on the 

same genes expressed in the retina and the optic tectum. These results indicate that Fgf 

signaling is not generally required for proliferation in the whole embryo, but that it instead 

directs expression of cell-cycle genes specifically in the pectoral fin buds and in the branchial 

arches.     
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Figure 12. Fgf signaling inhibition at 20 hpf does not lead to global reduction of cell-cycle 
gene expression. 
Wild-type embryos were treated with 10 μM SU5402 (A-C, G,H) or 0,125 % DMSO (D-F, I, 
J) for 3 hours from 20 to 23 hpf. SU5402 treatment caused a strong downregulation of pea3 
gene expression (A, D), but expression of cyclinD1, pcna, mcm5 and ra1 genes was not 
changed in SU5402-treated embryos compared to control ones (B, E; C, F; G, I; H, J).  
 
2.1.1 Activation of Fgf signaling in shh–/– mutant induces cell-cycle gene 

expression and proliferation 
The results presented so far strongly suggest that Fgf signaling is directly required for 

cell-cycle progression in zebrafish fin buds, while Shh plays an indirect role via its regulation 

of Fgf expression. However, since the Shh and Fgf signaling pathways in the limb bud are 

coupled by a feedback loop mechanism, it is difficult to change the activity of one pathway 

without affecting the other. Therefore, I decided to use a gain-of-function experiment to 

uncouple the Fgf pathway completely from the Shh pathway, by providing an ectopic source of 

Fgf protein in shh–/– mutant fin buds, and asking if this ectopic source of Fgf signaling is able 
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to rescue cell-cycle progression in the absence of Shh. For this purpose, heparin gel beads were 

soaked with recombinant human FGF4 protein and implanted into fin buds on the right hand 

side of shh–/– mutant embryos at 29-32 hpf. The fin buds on the left hand side were not 

implanted and served as an internal control in these experiments. Implanted embryos were then 

grown to 50 hpf and gene expression was analysed by in situ hybridisation. I find that FGF4-

soaked beads induce pea3 expression in shh–/– mutant fin buds (Fig. 13A). Furthermore, 

cyclinD1 (Fig. 13B), pcna (Fig. 13C) and mcm5 (Fig. 13D, D’, D’’) transcripts are also 

induced in the fin buds implanted with FGF4-soaked beads. Consistent with these results, I 

also detect increased incorporation of BrdU in bead-implanted shh–/– mutant fin buds, 

compared to unimplanted fin buds (Fig. 14A, B). Finally, there is increased growth of shh–/– 

mutant fin buds with implanted FGF4-soaked beads (Fig. 13D’, D’’, 14C, D), further 

supporting the conclusion that Fgf signaling is able to restore outgrowth in the absence of Shh. 

This increase in fin size after bead-implantation is somewhat variable and depends on bead 

position relative to the fin bud, with the largest outgrowth observed when beads are located 

right inside the bud (Fig 14C, D). Taken together, these results indicate that Fgf signaling is 

sufficient to direct proliferation in zebrafish fin buds in the absence of Shh. 
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Figure 13. Human FGF4 bead implantation leads to induction of Fgf signaling and cell cycle 
gene expression in shh–/– mutant. 
Fin buds on the right hand side of shh–/– mutant embryos were implanted with FGF4-soaked 
heparin beads at 29-32 hpf, grown until 50 hpf and fixed (A-D). shh–/– mutant embryos show 
upregulation of pea3 (A), cyclinD1 (B), pcna (C) and mcm5 (D) expression in response to the 
FGF4-soaked beads on the implanted side. Fin buds are outlined by dotted lines in panels A to 
D. A non-implanted fin bud on the left hand side shows no mcm5 expression (D’), while an 
implanted fin bud on the right-hand side of the same embryo (D’’) shows restored mcm5 
expression. Fin buds implanted with FGF4 beads show increased outgrowth (D’’), compared to 
non-implanted control fin buds (D’). 
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Figure 14. Human FGF4 bead implantation induces fin bud proliferation and outgrowth in 
shh–/– mutant embryos. 
Fin buds on the right hand side of shh–/– mutant embryos were implanted with FGF4-soaked 
heparin beads at 29-32 hpf, grown until 50 hpf and fixed (A-D). For anti-BrdU staining, 
embryos were first implanted and then injected with 10 mM BrdU solution at 38 hpf before 
fixation at 50 hpf. The non-implanted fin bud shows few BrdU-labeled nuclei (C), while an 
FGF4 bead-implanted fin bud (D) has extensive BrdU labeling (sections of both sides of 10 
bead-implanted embryos were analysed). Fin buds implanted with FGF4 beads show increased 
outgrowth (D), compared to non-implanted control fin buds (C).    
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2.2. The mechanism of the survival function of Shh    

2.2.1 Apoptotic phenotype of zebrafish shh-/- mutant 

Previous work on the survival function of Shh leads to the question whether different 

instances of apoptosis due to loss of Shh signaling share the same mechanism or may have 

different mechanisms or be secondary consequences of the lack of differentiation signals 

provided by Shh. To approach this question systematically, I analysed shh–/– mutant and wild-

type embryos at several stages for apoptosis patterns and levels using whole-mount ApopTag 

staining, and using fluorescent TdT-mediated dUTP-TMRRed nick end labeling (TUNEL) 

staining on retinal sections. Representing most of the early zebrafish development, embryos 

were analysed at 24, 30, 36, 48 and 60 hpf. Mutants in shh gene cannot be clearly recognized 

until around 24 hpf, so 24 hpf was the earliest stage analysed. Apoptosis levels in shh–/– mutant 

were much higher than in wild-type at all stages. Wild-type embryos showed a low-level 

stereotypic pattern of apoptosis (Fig. 15D-F, I, J) previously described in zebrafish (Cole and 

Ross, 2001). At 24 hpf, most of the neural tube of shh–/– mutant except for its anterior part 

contained high numbers of apoptotic cells (Fig. 15A). At 30 and 36 hpf, neural tube apoptosis 

persisted, but apoptotic cells became localized more dorsally (Fig. 15B, C). Since neural crest 

cells also undergo apoptosis in the absence of Shh, dorsal apoptotic cells in zebrafish shh–/– 

mutant at 24 and 30 hpf are very likely neural crest cells (Fig. 16A, B). At 48 and 60 hpf, 

neural tube apoptosis became even more dorsally restricted, its level decreased, and apoptotic 

cells appeared ín the retina (Fig. 15G, H). 
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Figure 15. Apoptosis levels in shh–/– mutant and wild-type embryos by whole-mount ApopTag 
staining. 
Wild-type (D-F, I, J) and shh–/– mutant (A-C, G, H) embryos were stained for apoptotic cells 
using the ApopTag protocol. At all five stages analysed (24 hpf (A, D), 30 hpf (B, E), 36 hpf 
(C, F), 48 hpf (G, I), 60 hpf (H, J)) shh–/– mutant embryos had dramatically increased levels of 
apoptosis in the neural tube decreasing over the course of development compared to wild-type. 
At 48 and 60 hpf stages, high level of retinal apoptosis was also observed in shh–/– mutant 
embryos.    
  

Retinal apoptosis was analysed in shh–/– mutant and wild-type embryos at 24, 36, 48 

and 60 hpf using TUNEL staining. At 24 hpf, both wild-type and shh–/– mutant retinas 

typically contained very few TUNEL-positive cells (Fig. 16A, E). By contrast, midbrain region 

of 24 hpf shh–/– mutants contained a high number of apoptotic cells (Figure 16A) showing a 

different timing of apoptosis in the shh–/– mutant retina and midbrain. Wild-type and shh–/– 

mutant retinas at 36 hpf were very similar in their low numbers of apoptotic cells and had 

significant apoptosis in their lenses (Fig. 16B, F). At 48 hpf, apoptosis level in shh–/– mutant 

retinas increased in comparison to that in the wild-type retinas (Fig. 16C, G). Finally, at 60 hpf 

there is a dramatic difference in apoptotic levels in wild-type and shh–/– mutant retinas, with 
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the mutant retina containing many apoptotic cells (Fig. 16D, H). These results are consistent 

with the result reported by Neumann and Nüsslein-Volhard (2000) that apoptosis in the shh–/– 

mutant retina is not increased before 48 hpf. The distinct timing of apoptosis in different 

regions of shh–/– mutant embryos may suggest different apoptotic mechanisms or reflect 

differences in Shh expression requirements for cell survival in different tissues, but the same 

mechanism of apoptosis induction. 

 
Figure 16. Retinal apoptosis in zebrafish shh–/– mutant and wild-type embryos during 
development. 
Wild-type (A-D) and shh–/– mutant (E-H) retinal sections were TUNEL stained. The following 
stages were analysed: 24 hpf (A, E), 36 hpf (B, F), 48 hpf (C, G) and 60 hpf (D, H). There is 
an increase in retinal apoptosis level in shh–/– mutant over the course of development, whereas 
in wild-type there is no such increase. 
 

2.2.2 Anti-apoptotic factor expression in shh–/– mutant 

Apoptosis is generally induced when pro-apoptotic factors outweigh anti-apoptotic 

factors in a cell. One model to understand apoptosis induction is that of the death threshold, 

which suggests that cumulative influence of both pro- and anti-apoptotic factors matters and 

the final outcome may not be attributed to a single factor (Lowe et al., 2004). Bcl2 family 

consists of both pro- and anti-apoptotic factors, and their balance is essential for cell survival. 

Zebrafish contains 12 pro-apoptotic and 5 anti-apoptotic bcl-2 family genes, which were 

functionally characterized by Kratz and colleagues (2006). Bcl2, Bcl2l, Mcl1a and Mcl1b were 
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confirmed as pro-survival factors, and Mcl1 proteins were found to be essential for cell 

survival during early embryonic development. As a first step toward understanding apoptosis 

in shh–/– mutant, I analysed expression of these anti-apoptotic Bcl2 family genes in wild-type 

and shh–/– mutant embryos. Bcl2, bcl2l, mcl1a and mcl1b all have a broad expression pattern in 

both wild-type and shh–/– mutant embryos consistent with their basic function in regulating 

apoptosis at the level of mitochondria (Fig. 17). All of these genes are also expressed at very 

similar levels in wild-type and shh–/– mutant embryos suggesting that there is no dramatic 

change in anti-apoptotic Bcl2 family gene expression in the absence of Shh (Fig. 17). 

However, it is not possible to exclude some tissue-specific differences in expression of these 

genes. 

   
Figure 17. Expression of anti-apoptotic Bcl2 family genes in shh–/– mutant versus wild-type 
zebrafish embryos at 24 hpf. 
In situ whole-mount analysis of bcl2, bcl2l, mcl1a and mcl1b expression in shh–/– mutant and 
wild-type embryos at 24 hpf 
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2.2.3 The involvement of p53 pathway in apoptosis in shh–/– mutant 

Given the lack of clear differences in anti-apoptotic factor expression between shh–/– 

mutant and wild-type embryos, I asked if induction of pro-apoptotic factors may explain 

increased apoptosis in the developing shh–/– mutant embryos. Therefore, I checked if p53 

pathway mediates apoptosis in shh–/– mutant embryos. Analysis of p53 target gene expression 

showed that p53, cyclinG1, bax1, puma and p21 are specifically induced in shh–/– mutant 

embryos at 24 hpf (Fig. 18A, D; B, E; C, F; G, I; H, K ). Similarly, at 56 hpf, p53 was up-

regulated in the shh–/– mutants in the brain, retina and branchial arches (18L, M) relative to 

wild-type embryos (18N, O). To confirm the results of in situ hybridizations, I performed 

quantitative PCR (qPCR) analyses of p53 target genes on shh–/– mutant versus wild-type 

embryos at 24 hpf and 56 hpf. qPCR clearly showed the induction of p53, mdm2, cyclinG1, 

bax1 and puma at both stages (Fig. 19). CDK inhibitor gene p21 had the highest fold induction 

of expression. Of the pro-apoptotic genes, bax1 and puma, but not noxa, were clearly induced 

in shh–/– mutants at both 24 hpf (Fig. 19A) and 56 hpf (Fig. 19B). Puma is one of the most 

potent inducers of mitochondrial apoptotic pathway and the main pro-apoptotic p53 target in 

zebrafish and mammals (Kratz et al., 2006; Nakano and Vousden, 2001). Induction of puma 

relative to bax1 was higher in shh–/– mutant embryos at 24 hpf (Fig. 19A) than at 56 hpf (Fig. 

19B) correlating with a higher level of apoptosis at 24 hpf than at later stages (Fig. 15). Higher 

in situ and qPCR signals for p53 may indicate a higher level of p53 thereby creating a positive 

feedback loop. However, it was reported that p53 activates an internal promoter of its own 

gene leading to production of a short p53 isoform Δ113p53 (Robu et al., 2007). Strongly 

elevated expression of Δ113p53 could indeed be detected in shh–/– mutant, whereas the level of 

full-length p53 cDNA was very similar in both wild-type and shh–/– mutant (Fig. 19C). This 

result rules out the positive feedback loop of full-length p53 expression and suggests that 

expression of Δ113p53 occurs similarly in different cases of p53 activation.  
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Figure 18. Expression of p53 target genes in 24 and 56 hpf shh–/– mutant versus wild-type. 
24 hpf wild-type and shh–/– mutant embryos were in situ hybridised with probes against p53 
(A, D), cyclinG1 (B, E), bax1 (C, F), puma (G, I) and p21 (H, K). These p53 target genes are 
expressed at a higher level in shh–/– mutant, and higher expression occurs in neural tube, retina 
and somites. 56 hpf wild-type and shh–/– mutant embryos were also hybridized with the probe 
against p53 gene (L, M, N, O). The hybridizations show increased expression of p53 in shh–/– 
mutant embryos (L, M) compared to wild-type ones in some brain regions, retina and branchial 
arches. 
 

Timing of ectopic apoptosis due to genetic defects can help understand the reasons for 

its induction. High level of apoptosis in the shh–/– mutant occurs at 24 hpf, when 

morphological defects of the mutant are striking. In order to understand apoptosis and p53 

activation timing better, I performed in situ hybridisation against p53 and ApopTag staining on 

embryo clutches from heterozygous shh+/– parents at 1 somite, 6 somite, 8 somite, 10 somite, 

12 and 14 somite stages (Fig. 20). Increased apoptosis and induced p53 expression could be 

first identified in shh–/– mutant embryos at the 10 somite stage (Fig. 20M-P) and then 

progressed as development proceeded. Consistent with the requirement of Shh for survival in 

many different tissues, p53 expression and apoptosis occurred in a broad pattern (Fig. 20). 

Another notable observation is that the onset of p53 activation and apoptosis in shh–/– mutant 

occur rapidly and at a defined developmental time point since 8 somite (Fig. 20I-L) and 10 

somite (Fig. 20M-P) stages are separated by only around 1 hour. These results show that 
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control of p53 activity by Shh signaling starts early in development before most cells exited 

the cell cycle and differentiated. 

 

 
Figure 19. Quantitative PCR analysis of p53 target activation and p53 isoform expression in 
shh–/– mutant embryos.   
qPCR analyses were performed at 24 and 56 hpf (A, B). qPCR assays for p53, p21, mdm2, 
cyclinG1, bax1, puma, noxa and gapdh were performed on both wild-type and shh–/– mutant 
embryos, and expression of p53 targets was normalized using gapdh expression as a reference 
gene. The panels show p53 target gene expression in mutant embryos relative to that in wild-
type siblings (A, B). All p53 targets except noxa show up-regulation. qPCR assays were 
performed on three different clutches of embryos and standard deviations are shown.  
C. Semiquantitative PCR for full length p53, Δ113p53 and β-actin expression in wild-type and 
shh–/– mutant at 24 hpf and 56 hpf. p53 is expressed at similar levels in both wild-type and  
shh–/– mutant, whereas Δ113p53 is expressed at a much higher level in shh–/– mutants. PCR 
was normalized using β-actin expression. 
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Figure 20. Onset of increased p53 expression and apoptosis in shh–/– mutant occurs during 
somitogenesis. 
p53 in situ was used to identify time points with activated  p53 protein (A, B, E, F, I, J, M, N, 
R, S, V, W). ApopTag staining was used as an assay for apoptosis (C, D, G, H, K, L, P, Q, T, 
U, X, Y). The following stages were analysed 1so (A-D), 6so (E-H), 8so (I-L), 10so (M-P), 
12so (Q-T), 14so (U-X). At early stages it was not possible to identify the genotype of the 
embryos. From 10somite stage on, shh–/– mutant embryos could be identified based on higher 
p53 expression and ApopTag staining because they made one quarter of the batch. The 
stainings were repeated two times and 40 embryos were analysed for each staining. 
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 Expression analysis clearly showed activation of p53 pathway in shh–/– mutant. To 

confirm p53 pathway’s importance for apoptosis in shh–/– mutant, I performed p53 morpholino 

oligonucleotide (MO) knock-down (Nasevicius and Ekker, 2000). MO against p53 gene were 

used previously to knock down p53 expression during early zebrafish development 

(Langheinrich et al., 2002). Injection of p53 morpholino but not of control morpholino could 

indeed suppress elevated apoptosis in shh–/– mutant at 24 hpf without affecting levels of normal 

developmental apoptosis (Fig. 21A). At 56 hpf in shh–/– mutant exhibits an increased level of 

apoptosis in the retina, which could be suppressed by MO knock-down of p53 but not by 

control MO (Fig. 21B). p53 generally activates intrinsic apoptotic pathway, which is inhibited 

by Bcl2 family proteins. To confirm the importance of the intrinsic apoptotic pathway, I 

expressed EGFP-bcl2 or EGFP mRNA in shh–/– mutant and wild-type embryos. Indeed, EGFP-

bcl2 successfully suppressed elevated apoptosis in shh–/– mutant at 24 hpf, whereas EGFP did 

not have any effect (Fig. 21C). This result suggests that p53-mediated apoptosis in shh–/– 

mutant occurs via the intrinsic pathway. However, a number of studies in tissue-culture 

systems showed that Bcl2 overexpression may lead to inhibition of p53 transcriptional activity 

(Froesch et al., 1999; Beham et al., 1997; Ryan et al., 1994). Such a situation would obscure 

our results by suppressing p53 pathway upstream of its effects on mitochondria. Therefore, I 

also analysed expression of p53 targets p53 and cyclinG1 after injection of EGFP-bcl2 or 

EGFP mRNA and failed to find any differences in expression of the p53 targets in these 

experimental conditions (Fig. 21D). Therefore, it is unlikely that in this system overexpression 

of EGFP-bcl2 can block p53 transcriptional activity. 
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Figure 21. p53 mediates apoptosis in shh–/– mutant by intrinsic apoptosis pathway.  
A. Elevated apoptosis observed in in shh–/– mutant at 24 hpf could be suppressed by injection 
of p53 morpholino but not of control morpholino.      
B.  Retinal apoptosis observed in in shh–/– mutant at 56 hpf could be suppressed by injection of 
p53 morpholino but not by injection of control morpholino (n = 10 and 40 sections for shh–/– 
mutant injected with p53 morpholino; n = 10 and 34 sections for in shh–/– mutant injected with 
control morpholino). 
C. Apoptosis in in shh–/– mutant could be suppressed by injection of EGFP-bcl2 mRNA but not 
by injection of EGFP RNA. Injection of EGFP-bcl2 also reduces the level of normal 
developmental apoptosis. 
D. The level of expression of p53 and cyclinG1 in both in shh–/– mutant and wild-type embryos 
was not affected by injection of EGFP-bcl2 mRNA relative to the control injection of EGFP 
mRNA. 
 

2.2.4 shh–/– p53–/– double mutant phenotypes 
p53 requirement for apoptosis occurring due to shh loss could be shown using 

morpholino knock-down. However, MO have limited perdurance and mostly exert their effects 

during the first 2 days of development. Thus, it is difficult to study late effects of gene loss 
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using morpholino knock-downs. Furthermore, genetic null mutations are generally perceived 

superior to morpholino knock-down for loss-of-function experiments. Therefore, to confirm 

the role of p53 in apoptosis in shh–/– mutant and to study the late effects of p53 loss on the 

phenotype of shh–/– mutant, p53zdf1 mutation (Berghmanns et al., 2005), a null mutation of p53, 

was genetically combined with shht4 null mutation. The double mutant shh–/–p53–/– was 

protected from ectopic apoptosis in shh–/– mutant at 24 hpf, but normal apoptosis was not 

affected (Fig. 22A). I also checked the levels of apoptosis in the retina of wt, shh–/– and shh–/–

p53–/– embryos at 72 hpf and found that the high level of apoptosis observed in shh–/– mutant at 

72 hpf was successfully suppressed by p53 loss (Fig. 22B).  

Figure 22. Rescue of apoptosis in shh–/– mutant by loss of p53.  
Apoptosis staining at 24 hpf and at 72 hpf in wt, shh–/– and shh–/–p53–/– is shown in this figure. 
Apoptosis was assayed in whole-mount in 24 hpf embryos using ApopTag staining (A) and on 
retinal sections in 72 hpf embryos using TUNEL staining (B). A. Elevated apoptosis in shh–/– 
relative to wild-type is rescued by p53 loss in shh–/–p53–/– B. Highly elevated retinal apoptosis 
in   shh–/– relative to wild-type is likewise rescued by p53 loss in shh–/–p53–/–. The figure shows 
representative pictures. All stainings were performed on at least 6 embryos for each genotype. 
 

When cells survive due to suppression of apoptosis, the most interesting question is 

what fate they acquire. Acquisition of particular fates during development is tightly linked to 
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the cell-cycle exit of differentiating cell precursors. Therefore, another interesting question is 

whether p53 affects failure of cell-cycle exit in the retina of shh–/– mutants.  In zebrafish retina, 

Shh signaling was proposed to serve as a differentiation and cell-cycle exit signal in addition to 

being a survival factor (Masai et al., 2005; Shkumatava et al., 2004; Shkumatava and 

Neumann, 2005). Therefore, I wanted to suppress retinal apoptosis and examine whether p53 

contributes to the differentiation phenotype of shh–/– mutant zebrafish embryos. Another 

important goal is to identify p53-independent effects of Shh on retinal differentiation and 

retinal progenitor cell-cycle exit. To achieve these goals, retinal sections of wt, shh–/– and   

shh–/–p53–/– mutant embryos were stained with antibodies against retinal differentiation 

markers. Retinal ganglion cells (RGCs) identified by anti-zn5 staining were present in retinas 

of embryos of all three genotypes, but they appeared more abundant in shh–/–p53–/– retinas 

(Fig. 23A-C). A subset of amacrine cells identified by anti-parvalbumin antibodies were found 

in large numbers in the inner plexiform layer of the wild-type retina (Fig. 23D), whereas shh–/– 

mutant retina has none of these cells (Fig. 23E). Strikingly, shh–/–p53–/– embryos show a partial 

rescue of amacrine cell differentiation (Fig. 23F). Another more widely expressed marker of 

differentiated amacrine cells is GAD67, whose staining revealed a high number of amacrine 

cell in the wild-type retina (Fig. 23M) and their virtual absence in the shh–/– retina (Fig. 23N). 

In the shh–/–p53–/– retina the number of GAD67-positive amacrine cells strongly increased 

compared to the shh–/– retina (Fig. 23O). Differentiation of red-green cone and rod 

photoreceptors is normal in wild-type embryos (Fig. 23G, J), whereas in shh–/– cells of these 

types are almost completely absent (Fig. 23H, K). As in the case of amacrine cells, 

differentiation of photoreceptors is rescued in shh–/–p53–/–  mutant (Fig. 23I, L). These results 

imply that p53 prevents differentiation of all cell types in the shh–/– mutant retina. However, 

differentiation of two other cell types was not rescued in the shh–/–p53–/– mutant retina. Müller 

glia is an abundant late-differentiating cell type which is required to maintain the environment 

inside the retina. A high number of these cells were present in the wild-type retina at 72 hpf 

(Fig. 24A) in contrast to the shh–/– mutant retina where Müller glia were absent (Fig. 24B). 

This differentiation defect could not be rescued by p53 loss (Fig. 24C). Bipolar cells are a 

retinal cell type involved in signal transduction during light perception, which was identified 

by antibodies against PKCα in the wild-type retina at 72 hpf (Fig. 24D). The shh–/– mutant 

retina lacked bipolar cells (Fig. 24E) and this bipolar cell differentiation defect could not be 
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rescued in shh–/–p53–/– mutant retina (Fig. 24F). Taken together, these data suggest that 

previously described retinal differentiation defects of shh–/– mutants (Shkumatava et al., 2004) 

in the cases of amacrine cells and photoreceptors are mediated by p53.  

   

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Rescue of photoreceptor and amacrine cell differentiation in shh-/- mutant by p53 
loss. 
The figure shows photos of stained retinal sections from 72 hpf wild-type (wt) (A, D, G, J, M), 
shh–/– (B, E, H, K, N) and shh–/–p53–/– mutants (C, F, I, L, O). The sections are oriented with 
their anterior side to the top. All sections are stained with phalloidin-Alexa568 to visualize the 
overall lamination of the retina. Antibody against zn5 antigen (zn5) labels retinal ganglion 
cells in the retina. Wild-type embryos (A) have both ganglion cell layer and the optical nerve 
labeled. Ganglion cell layer is also relatively normal in shh–/– mutant (B), and loss of p53 in 
shh–/–p53–/– mutant leads to a significant increase in the intensity of zn5 staining (C). Amacrine 
cells are successfully labeled in wild-type retina with an antibody against parvalbumine (D), 
but are normally absent in shh–/– mutant (E). In shh–/–p53–/– mutant a significant number of 
them appears (F) due to rescue of differentiation. Antibody staining against Zpr1 protein 
expressed in red-green double cones identifies the photoreceptors in wild-type embryos (G), 
their lack in shh–/– mutant (H) and rescue of their differentiation in shh–/–p53–/– mutant (I). 
Antibody staining against Zpr3 protein expressed in rod photoreceptors identifies them in wild-
type embryos (J), their lack in shh–/– mutant (K) and rescue of their differentiation in   shh–/–

p53–/– mutant (L). 
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Figure 24. Loss of p53 does not rescue differentiation of Müller glia cells and bipolar cells in 
the retina of shh–/– mutants. 
Staining against glutamine synthetase, a marker for Müller glia, reveals a high number of these 
cells in wild-type embryos (A). In both shh–/– and shh–/–p53–/– mutants (B, C) there are very 
few of Müller glia. Staining against PKCα, a marker of bipolar cells in the retina, identifies 
these cells in the wild-type embryos (D), but no bipolar cells are present in appropriate retina 
regions in either shh–/– and shh–/–p53–/– mutants (E, F). All stainings were performed on at least 
6 embryos for each condition and representative pictures are shown. 
 
 

Since loss of p53 rescued differentiation in the shh–/– mutant retina, a question arises 

whether p53 affects cell-cycle exit in the retina. A likely possibility is that p53 loss induced 

cell-cycle exit of the precursor cells which later differentiated. According to this view, p53 

would be responsible for failure of cell-cycle exit in the shh–/– mutant retina. An alternative 

view that failure of cell-cycle exit can induce p53 activation in the shh–/– mutant retina is 

attractive but is not consistent with the available data since p53 activation is a much earlier 

event than cell-cycle exit in the retina. To confirm the first possibility, I decided to directly 

analyze S-phase progression using the BrdU incorporation assay in the wt, shh–/– and shh–/–
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p53–/– mutant retinas. BrdU incorporation assays were performed at 48 and 56 hpf, since at 

these stages cell-cycle exit in the retina is being completed. Indeed, at 48 hpf wild-type retina 

contains BrdU-positive cells not only at the retinal margin but also at the basal surface of the 

retina (Fig. 26A) and by 56 hpf all cells except cells in the marginal zone exit the cell cycle 

(Fig. 26B). In the shh–/– mutant retina, high numbers of cells remained in S-phase at both 

stages (Fig. 26A, B). Interestingly, in the shh–/–p53–/– mutant retina the pattern and extent of 

cell-cycle exit are very similar to the wild-type situation (Fig. 26A, B). Since cell-cycle exit in 

the zebrafish retina is induced by p57kip2 expression, I checked if this gene is expressed in 

shh–/– mutant upon loss of p53. In fact, at 38 hpf, strong p57kip2 expression was present in 

large areas of wild-type and shh–/–p53–/– mutant retinas, but was absent from the shh–/– mutant 

retina (Fig. 25C). By contrast, p53 was highly expressed only in the shh–/– mutant retina and 

was nearly absent in wild-type and shh–/–p53–/– mutant retinas (Fig. 25C). These striking results 

suggest that the cell-cycle exit defect in the shh–/– mutant retina is clearly dependent on the p53 

function. Since p53 is well known to inhibit cell cycle progression, it is possible to predict that 

the cell-cycle exit defect in the shh–/– mutant retina may not be a case of ectopic uncontrolled 

proliferation but rather a cell cycle block in S-phase. Supporting this prediction requires a way 

to label cells with activated p53 to better understand their cell cycle properties and eventual 

progression to apoptosis.  

 
 
 
 
Figure 25. Loss of p53 rescues cell cycle exit defect in shh–/– mutant. 
S-phase progression in wild-type, shh–/– and shh–/–p53–/– mutants at 48 and 56 hpf was studied 
by BrdU labeling. Confocal sections are shown with the anterior side to the top.  
A. At 48 hpf most cells in the wild-type retina have already exited the cell cycle. In the shh–/– 

mutant retina, however, cell cycle exit is almost completely absent. By contrast, cell-cycle exit 
in the shh–/–p53–/– mutant retina is much more advanced and quite similar to the situation in the 
wild-type retina. 
B. At 56 hpf in the wild-type retina BrdU-positive cells are found only in the ciliary marginal 
zone (CMZ) and in the shh–/– mutant retina cells still failed to exit the cell cycle. Like in the 
wild-type retina, cells of shh–/–p53–/– mutant have mostly exited the cell cycle and proliferative 
cells are located only in the CMZ. 
C. In situ hybridizations against p57kip2 and p53 in wild-type, shh–/– mutant and shh–/–p53–/– 

mutant retinas.  
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2.2.5 Hedgehog pathway activation rescues apoptosis in shh–/– mutants 

The results so far demonstrate that p53 is essential for elevated apoptosis in the shh–/– 

mutant. However, it is not yet clear how the absence of Shh signaling activates p53 pathway. 

Abe et al. (2008) suggested the existence of an unknown factor inhibiting p53 pathway, which 

can be induced by Gli-mediated Hh signaling activation. Since their work was performed on 

human and mouse cell lines, I wanted to confirm if this conclusion would also apply to the 

situation of shh genetic loss in zebrafish. Protein kinase A (PKA) is a negative regulator of Hh 

signal transduction from Smo to Gli transcription factors in vertebrates. To better understand 

the connection between shh loss and p53 activation in vivo, I activated canonical Hh/Gli 

signaling pathway by injection of dominant-negative PKA GFP fusion (dnPKA-GFP) mRNA 

(Hammerschmidt et al., 1996; Ungar and Moon, 1996) into progeny of fish heterozygous for 

shh deletion. Given the limited stability of this mRNA, I chose to analyse the phenotypes due 

to dnPKA-GFP over-expression at 12 somites stage, when shh–/– mutant embryos already show 

elevated expression of p53 target genes and a high level of apoptosis. Indeed, overexpression 

of dnPKA-GFP led to a high level of ptc1 expression in 52 out of 61 (85 %) embryos (Fig. 

26A, N), whereas 9 out of 61 (15 %) which probably received little mRNA showed normal 

uninduced expression of ptc1 for wild-type and shh–/– mutant, respectively (Fig. 26B, C, N). 

All of EGFP-injected embryos showed an uninduced level of expression, of which 16 out of 61 

(26 %) embryos showed shh–/– mutant level of patched1 expression (Fig. 26E) and 45 out of 61 

(74 %) had wild-type level of expression (Fig. 26D, N). p53 pathway activity after either 

dnPKA-GFP or EGFP over-expression was assessed by an in situ staining for cyclinG1, a well-

characterized p53 target gene. Only 5 out of 45 (11 %) dnPKA-GFP injected embryos 

expressed cyclinG1 at a perceptibly higher level than the rest 40 embryos (Fig. 26F, G, N), and 

the difference between these two categories of embryos was slight. By contrast, injection of 

EGFP mRNA didn’t lead to a decrease in proportion of shh–/– mutant embryos with high 

expression of cyclinG1 (15 out of 57 (26 %)) (Fig. 26I, N). In the case of EGFP-injected 

embryos, the difference of cyclinG1 expression between wild-type and shh–/– mutant embryos 

was very pronounced (Fig. 26H, I). Consistent with its effect on cyclinG1 expression, dnPKA-

GFP also led to a reduction in the number of embryos with elevated apoptosis levels (5 out of 

65 (7,7 %)) (Fig. 26K, N) compared to 17 out of 66 (26 %) in the EGFP-injected sample (Fig. 

26M, N) and the number of apoptotic cells in dnPKA-GFP-injected embryos was smaller than 
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in EGFP-injected ones. The number of embryos with a low level of apoptosis correspondingly 

increased to 60 out of 65 (92 %) in the dnPKA-GFP injected sample (Fig. 26J, N) compared to 

49 out of 66 (74 %) in the EGFP-injected sample (Fig. 26L, N).  
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Figure 26. Hh signaling activation by dnPKA-GFP decreases p53 target cyclinG1 expression 
and suppresses apoptosis in shh–/– mutant embryos.  
Embryos at the 12 somite stage from shh+/– parent fish were injected with either dnPKA-GFP 
(A-C, F, G, J, K, N) or EGFP mRNA ( D, E, H, I, L, M, N) and in situ stained for patched1  
(A-E), target gene of Hh signaling, and for cyclinG1 (F-I), p53 target gene, and ApopTag 
staining was performed to characterize the level of apoptosis (J-M). Injection of dnPKA-GFP 
mRNA led to expression of patched1 at a high level in most embryos (A) compared to a few 
embryos which received little dnPKA-GFP mRNA (B, C) and EGFP-injected embryos (D, E). 
Few of the embryos injected with dnPKA-GFP showed a higher level of cyclinG1 expression 
(G) and this level was not very different from that of the majority of embryos (F). The 
difference of cyclinG1 expression after EGFP mRNA injection in higher-expressing (I) and 
lower-expressing (H) embryos was very large. ApopTag staining of EGFP-injected shows that 
around one quarter of embryos have a much higher level of apoptosis (M) than most of the 
embryos with a low level of apoptosis (L). Injection of dnPKA-GFP mRNA leads to a strong 
decrease in the number of embryos with increased apoptosis and its level (K) and a decrease in 
low-apoptosis proportion of embryos (J). Summary of the results of this experiment (N) shows 
two categories for each staining: high and low, which in the case of patched1 staining indicate 
ectopic activation of Hh signaling or lack thereof and in the cases of cyclinG1 and ApopTag 
indicate relative levels of gene expression and apoptotic cell numbers, respectively. 
Proportions of embryos with the presented phenotypes are shown in the lower right corner of 
each image. The results presented are representative of three independent experiments. 
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2.2.6 Creating and characterizing zebrafish p53 reporter line 

Our ability to study gene expression using in situ hybridization (ISH) is important to 

study gene transcripts in developing embryos. However, ISH does not allow real-time analysis 

of cells expressing particular transcripts and is difficult to combine with many antibody 

stainings and other histochemical methods. Advent of fluorescent proteins has overcome this 

problem by enabling researchers to create reporter systems based on particular promoters 

driving expression of genes encoding fluorescent proteins. My aim was to develop a transgenic 

p53 reporter to study the behavior and characteristics of cells with active p53. I implemented a 

strategy similar to the one previously employed by Zhang et al. (2001). Human 2.4 kb 

CDKN1A promoter encoding p21 was used as the basis for the p53 reporter, 13 copies of the 

optimal p53 binding sites (PG13) (Kern et al., 1992) were inserted in front of this promoter as 

an enhancer. Tol2kit transgenic system (Kwan et al., 2007) was then used to assemble the final 

construct. In short, PG13p21 promoter, nlsEGFP and polyA DNA parts were assembled by 

recombination inside the destination vector used for transposon-based transgenesis (Fig. 27). 

The destination vector additionally provided EGFP transgene specifically expressed in the 

heart, which facilitates transgenic embryo screening and identification of carrier fish.  
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Figure 27. The Tol2kit-based strategy to make PG13::nlsEGFP-polyA p53 reporter. 
5’ entry vector containing human p21 promoter with PG13 enhancer, middle entry vector 
encoding nlsEGFP and 3’ entry vector containing polyA signal were LR recombined with 
pDestCG2 vector (not shown), which serves as a carrier of the construct for transgenesis. LR 
recombination resulted in PG13p21::nlsEGFP-polyA construct inside the pDestCG2, which 
provides attachment sites for the transposase and a transgenic marker for positive embryo 
screening.  
 

 
Figure 28. Activation of PG13p21::nlsEGFP p53 reporter by treatment with roscovitine. 
Wild-type embryos carrying PG13p21::nlsEGFP transgene were incubated for 6 hours at 24 
hpf with either 50 µM roscovitine or 0.4 % DMSO in E3 medium. DMSO-treated embryos did 
not show any significant expression of the reporter (the upper panel), but Roscovitine was 
quite effective in inducing p53 reporter expression (the lower panel). All embryos show green-
heart transgenesis marker. The experiment was repeated two times and 20 embryos were used 
for each treatment.   
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The p53 reporter zebrafish transgenic line represents a potentially general tool to study 

p53 activation and regulation. Studies of p53 in zebrafish employed camptothecin, a genotoxic 

drug, or roscovitine, an Mdm2 inhibitor, to activate p53 (Langheinrich et al., 2005; Lee et al., 

2007). I chose treatment with roscovitin to verify activation of the p53 reporter. Treatment 

with roscovitine for 6 hours at 24 hpf could efficiently induce p53-mediated apoptosis, which 

was prevented by p53 knockdown (Langheinrich et al., 2005). Wild-type embryos carrying the 

p53 reporter transgene were incubated either with 50 µM roscovitine or 0.4 % DMSO as a 

control for 6 hours starting at 24 hpf. As a result, p53 reporter expression was strongly up-

regulated in the brain and retina of the roscovitine-treated but not of control DMSO-treated 

embryos (Fig. 28). This result confirms the utility of the p53 reporter transgenic line in the 

context of drug-induced p53 activation and suggests that this line is a valuable tool for other 

investigations of p53 function.   

2.2.7 p53 reporter activation in shh–/–  mutant 

The next step to characterize the utility of the newly-generated p53 reporter was to 

introduce it into shh–/– mutant. After obtaining PG13p21::nlsEGFP shh+/– fish, expression of 

the p53 reporter was photographed in shh–/– mutant and wild-type embryos at 24, 30, 36 and 48 

hpf (Fig. 29). At all stages analysed wild-type embryos had a low background level of the p53 

reporter expression consistent with previous observations that p53 activation is normally under 

tight control. By contrast, at all analysed stages the level of the p53 reporter expression in   

shh–/– mutants was high. At 24 hpf, shh–/– mutants had a very broad expression of the p53 

reporter in the retina, neural tube and somites. Over the next 24 hours of development, 

expression of the p53 reporter in shh–/– mutants becomes restricted to midbrain and retina 

regions (Fig. 29). These changes in p53 reporter expression are most certainly caused by the 

clearance of cells by p53-mediated apoptosis. To confirm the specificity of the p53 reporter 

induction in shh–/– mutant embryos, I knocked down p53 expression using morpholino 

oligonucleotides. High level of p53 reporter expression in shh–/– mutant at 24 hpf was readily 

inhibited by p53 MO but not by control MO injection (Fig. 30). This result confirms that p53 is 

essential to mediate the expression of its transcriptional activity reporter transgene. 
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Figure 29. p53 reporter PG13p21::nlsEGFP expression in wild-type and shh–/– mutant 
embryos during development. 
Wild-type and shh–/– mutant embryos carrying PG13p21::nlsEGFP p53 reporter were 
photographed at 24, 30, 36 and 48 hpf. Expression of the p53 reporter is highly elevated in 
mutant embryos in the retina, nervous system and somites in comparison to the p53 reporter 
expression in wild-type at all stages.    

 
Figure 30. p53 knock-down inhibits PG13p21::nlsEGFP reporter expression in shh–/– mutant 
embryos at 24 hpf.   
Progeny of heterozygous shh–/– embryos carrying PG13p21::nlsEGFP was injected with either 
p53 morpholino or control morpholino and the reporter was imaged at 24 hpf. 
 
 

Shh exerts its effects on cell survival in specific regions of the developing embryo, 

whereas expression of the p53 reporter seems ubiquitous. To verify whether different cells 
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express p53 reporter at different levels, I injected H2BmRFP1 mRNA into oocytes carrying 

p53 reporter and analysed hindbrain and midbrain regions of wild-type and shh–/– at 24 hpf. 

Wild-type embryos expressed almost no p53 reporter in either hindbrain or midbrain (Fig. 31). 

By contrast, many cells expressed p53 reporter in shh–/– mutants in hindbrain and midbrain 

regions (Fig. 31A, B). p53 reporter nlsEGFP is expressed at very different levels in different 

cells in shh–/– mutant embryos as is clearly seen in a hindbrain section by very different relative 

levels of nlsEGFP and H2BmRFP1 (Fig. 31A). To understand whether p53 reporter expression 

was consistent with the embryo regions requiring Shh for cell survival, I analysed p53 reporter 

expression and apoptosis by TUNEL staining in different embryo regions at 24 hpf on embryo 

cryosections (Fig. 32). Especially striking was expression of the p53 reporter in the neural 

tube. Midbrain, hindbrain and spinal cord expressed nlsEGFP in shh–/– mutant p53 reporter fish 

and had a high number of TUNEL-positive cells (Fig. 33B, C, D). By contrast, in the shh–/– 

retina despite the pronounced expression of p53 reporter there was no elevated apoptosis at 24 

hpf. This result is interesting and unexpected, because the spread of shh expression in the 

retina starts at 28 hpf (Neumann and Nüsslein-Volhard, 2000). Activation of p53 in shh–/– 

mutant retinal cells before 28 hpf indicates a requirement of Shh perception at an earlier stage 

to control p53 activity. In the absence of Shh, neural crest cells undergo apoptosis (Ahlgren 

and Bronner-Fraser, 1999). Consistently, some p53 reporter-positive cells in the midbrain 

section (Fig. 32B) are located in the lateral regions characteristic of neural crest cells. In the 

spinal cord section (Fig. 32D) p53 reporter labels somite cells, which may be sclerotome or 

muscle cells requiring Shh for their survival (Borycki et al., 1999). I then analysed apoptosis 

wild-type and shh–/– mutant carrying p53 reporter at 56 hpf by staining with TUNEL. Sections 

of wild-type embryos contained very little signal for p53 reporter and TUNEL staining and 

most signal was due to auto-fluorescence (Fig. 33). By contrast, all the sections from shh–/– 

mutant had a strongly increased level of apoptosis and p53 reporter expression. Especially 

strong apoptosis and p53 reporter expression were detected in the shh–/– mutant retina (Fig. 

33A). This observation is different from the result at 24 hpf, when shh–/– mutant retina had 

very little apoptosis, and suggests that accumulation of pro-apoptotic factors eventually 

induces cell death in the shh–/– mutant retina. Midbrain and hindbrain regions of shh–/– mutants 

at 56 hpf also contained many apoptotic and p53 reporter-positive cells, which is similar to the 

situation in the shh–/– mutant at 24 hpf (Fig. 33B, C). Taken together, the results at 24 and 56 
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hpf in shh–/– mutant suggest that p53 reporter- positive cells persist during development and 

gradually become cleared by apoptosis rather than die simultaneously at a defined time point.  

 
 
Figure 31. Cell-specific levels of PG13p21::nlsEGFP reporter expression in brain regions of 
wild-type and shh–/– mutant embryos at 24 hpf. 
A. Hindbrain regions of the wild-type and shh–/– embryos containing PG13p21::nlsEGFP p53 
reporter and injected H2BmRFP1. For the shh–/– mutant embryo, both image stack projection 
and single section images are shown. 
B. Midbrain regions of the wild-type and shh–/– embryos containing PG13p21::nlsEGFP p53 
reporter and injected H2BmRFP1. 
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Figure 32. p53 reporter expression and apoptosis in shh–/– mutant and wild-type at 24 hpf. 
24 hpf wild-type and shh–/– embryos carrying p53 reporter transgene (PG13p21::nlsEGFP) 
were transversally sectioned and stained with TUNEL and DAPI, nlsEGFP signal is 
endogeneous (A-D). A. Sections of shh–/– and wild-type retinas show that p53 reporter is 
expressed at a high level in shh–/– retina, but there is no increase in apoptosis.  B. Transverse 
sections of midbrain regions of shh–/– and wt. C. Transverse sections of hindbrain regions of 
shh–/– and wt. D. Transverse sections of hindbrain regions of shh–/– and wt.  In midbrain (B), 
hindbrain (C) and spinal cord (D) p53 reporter expression highly correlates with increased 
apoptosis and a proportion of p53 reporter positive cells are also TUNEL-positive.  
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Figure 33. p53 reporter expression and apoptosis in shh–/– mutant and wild-type at 56 hpf. 
56 hpf wild-type and shh–/– embryos carrying p53 reporter transgene (PG13p21::nlsEGFP) 
were transversally sectioned and stained with TUNEL and DAPI, nlsEGFP signal is 
endogeneous (A-C). A. Retinal section. B. Hindbrain section. C. Midbrain section. 
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2.2.8 p53 reporter-positive cells in shh–/– mutant are positive for apoptotic 

markers 

 Since p53 is known to induce apoptosis, it is very important to characterize apoptotic 

phenotype in p53 reporter-positive cells. p53 reporter is usually expressed in the embryo 

regions with elevated levels of apoptosis as revealed by TUNEL staining (Figs 32, 33). 

However, since TUNEL is quite a late marker of apoptosis many TUNEL-positive cells in  

shh–/– mutants lack detectable p53 reporter expression. This is most likely due to protein 

degradation in the dying cells and longer persistence of apoptotic cell death. An alternative 

possibility of p53-independent apoptotic cell death can be excluded because p53 loss 

efficiently suppresses apoptosis in the shh–/– mutant. To characterize the apoptotic phenotype 

of p53 reporter-positive cells, I stained 24 hpf shh–/– mutant embryos with TUNEL or anti-

activeCaspase3. Wild-type embryos were not used for these stainings because they contain 

extremely few p53 reporter positive cells. Although in the shh–/– mutant there were many 

TUNEL-positive cells, few of them were also positive for p53 reporter nlsEGFP (Fig. 34A). In 

double-positive cells, TUNEL signal occupied the center of the cell and p53 reporter nlsEGFP 

was located at the cell periphery. This result contrasts with the normally nuclear localization of 

nlsEGFP, but the cytoplasmic localization of p53 reporter nlsEGFP is consistent with nuclear 

breakdown in the apoptotic cells (Kramer et al., 2008). Next I wanted to see whether p53 

reporter co-localizes with activeCaspase3. The number of activeCaspase3-positive cells in the 

hindbrain of shh–/– mutants was much lower than that of TUNEL-positive cells (Fig. 34B) 

suggesting a much shorter persistence of Caspase3 activity in apoptotic cells. Strikingly, in 

most examined cells cytoplasmic activeCaspase3 was clearly co-localised with p53 reporter 

nlsEGFP (Fig. 34B). This result confirms that cell death program is activated in cells with 

active p53. 
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Figure 34. Co-localisation of apoptotic markers with p53 reporter expression. 
A. Labeling p53 reporter nlsEGFP-positive cells with TUNEL. In some cells, TUNEL and 
nlsEGFP are present. These cells are labeled with arrows. 
B. Anti-activeCaspase3 labeling of p53 reporter nlsEGFP-positive cells. Cells undergoing 
apoptosis but not small apoptotic corpses have both nlsEGFP and activeCaspase3 in the 
cytoplasm (labeled with arrows). DAPI staining shows that activeCaspase3-positive cells have 
condensed nuclei. 
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2.2.9 Cell cycle behavior of p53 reporter-positive cells in shh–/– mutant 

Development of the PG13p21::nlsEGFP p53 reporter zebrafish transgenic line allows a 

better understanding of how cells with activated p53 behave in vivo. In particular, this line 

enabled a better, easier and more versatile visualization of cells with active p53 as described in 

previous sections. Additionally, cell-cycle behavior of p53 reporter-positive cells can be 

studied (Zhang et al., 2001). Observations of cell-cycle exit rescue in shh–/– retina by p53 loss 

raise a question how cell cycle is regulated by p53 in the absence of Shh. Since p53 can induce 

cell-cycle arrest, one can explain the cell-cycle exit experiments (Fig. 26) by proposing that 

p53 inhibits cell cycle progression of retinal progenitors in the absence of Shh. To address this 

hypothesis, I used Fluorescence-activated cell sorting (FACS) method to analyse cell cycle 

properties of p53 reporter-positive cells. For FACS analysis, cell cycle distribution was 

determined using Propidium Iodide (PI) DNA staining since cells have different DNA contents 

in different cell cycle stages. Natural EGFP fluorescence was used to sort p53 reporter-positive 

cells. Thus, it is possible to compare cell cycle distributions of different cell populations 

directly. I applied the PI/EGFP-based FACS analysis to wild-type and shh–/– mutant embryos 

at 48 and 56 hpf, the stages used for the cell cycle exit experiment, expecting this analysis to 

help me understand the influence of p53 on retinal progenitor cell cycle progression. For this 

experiment the best samples would be dissected eyes. However, since it is technically 

challenging to obtain sufficient numbers of dissected eyes from zebrafish embryos, I used 

embryo heads for FACS-based experiments. In the case of shh–/– mutants, eyes contain a high 

proportion of all p53 reporter-positive cells in the head, which makes FACS likely to provide 

information on p53 reporter activation in the retina. FACS data show light scattering properties 

of the cells allowing correct cell populations to be selected for analysis as shown in Fig. 35A 

for 48 hps shh–/– mutants. PI and EGFP staining signals enable determination of cell cycle 

distributions of all cells (All cells), GFP-positive (GFP+) and GFP-negative (GFP-) cells for 

both wild-type and shh–/– mutant heads (Fig. 36). At 48 hpf in shh–/– mutant p53 reporter-

positive cells have a very low G2/M cell percentage at 3 %, whereas 21.7 % of shh–/– mutant 

GFP– cells, 13.5 % of all shh–/– mutant cells and 11.5 % of wild-type cells were mitotic (Fig. 

36B). This very low G2/M cell percentage in shh–/– mutant heads was accompanied by a higher 

S-phase proportion and a slightly higher G1-phase percentage relative to other samples (Fig. 

36B). At 56 hpf, cell cycle distribution of p53 reporter-positive shh–/– mutant cell remained 
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similar to that at 48 hpf with G2/M proportion of 4.5 %. However, at 56 hpf there was a 

dramatic reduction in G2/M proportions most probably due to cell-cycle exit in wild-type and 

shh–/– p53 reporter-negative cell populations, making all populations similar in their mitotic 

indices. Moreover, the S-phase percentages of p53 reporter-positive and negative cells in shh–/– 

mutants at 56 hpf became similar. Nevertheless, the FACS data clearly indicate that p53 

reporter-positive cells in shh–/– mutants are defective in cell-cycle progression and completing 

mitoses required for birth of differentiated cells at 48 hpf.  

 

 

 

 

 

 

 

 

 

Figure 35. FACS analysis of cell cycle distribution of cells with active p53 reporter in wild-
type and shh–/– mutant heads.  
Heads of wild-type and shh–/– embryos carrying PG13p21::nlsEGFP reporter were dissociated 
to single cells to analysed using flow cytometry. DNA was stained using propidium iodide and 
EGFP fluorescence was detected directly. 
A. Example of FACS data for 48 hpf shh–/– PG13p21::nlsEGFP. In the upper row, the left-most 
panel shows the distribution of cells according to their scatter properties. The middle panel 
shows the PI staining distribution (FL3A vs FL3W). The right panel shows the distribution of 
EGFP signal (FL1H) relative to the DNA PI staining signal (FL3W). The lower row of panels 
shows cell cycle distributions of cells with different levels of p53 reporter expression. The left 
panel shows cell cycle distribution of all cells in the sample, where peaks in different shadings 
correspond to cells with different DNA content. The middle panel shows cell cycle distribution 
of p53 reporter-positive cells, where notable shortage of G2-phase/mitotic cells is evident. The 
left panel shows the cell cycle distribution of p53 reporter-negative cells.   
B. Cell cycle phase quantification of wild-type and shh-/- head samples at 48 and 56 hpf. 
Mutant samples are classified into All cells, GFP+ and GFP-, and the data for wild-type 
samples is presented as All Cells. G1, S and G2/M cell cycle phases and sub-G1 are the 
categories distinguished on the basis of PI DNA staining. Left panel shows samples at 48 hpf 
and the right panel shows 56 hpf samples. FACS experiments were repeated 3 times at both 48 
and 56 hpf and representative data are shown. 
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2.2.10  p53 regulates proliferation in the shh–/– mutant retina 

Information about cell cycle behaviour of p53 reporter-positive cells in shh–/– mutant 

obtained using FACS is important, but it doesnt’t provide direct information on how these cells 

behave in the retina. Therefore, a direct analysis of the cell cycle progression of retinal cells 

had to be done. As a first step, BrdU labeling of S-phase cells was performed on wild-type and 

shh–/– mutant retinas at 48 hpf. In the wild-type retina, there are very few p53 reporter-positive 

cells and they are BrdU-negative (Fig. 36). By contrast, shh–/– mutant retina contains many p53 

reporter-positive cells and nearly all of them are BrdU-positive, whereas some p53 reporter-

positive cells present in the brain are BrdU-negative (Fig. 36). This result contrasts with the 

FACS data in whole-head cell populations since in the retina p53 reporter-positive cells have a 

low G1-phase proportion. It also suggests that in other head regions of shh–/– mutants, p53 

reporter-positive cells may be predominantly in G1-phase. Therefore, cell-cycle regulation by 

p53 in the absence of Shh may be tissue-specific.   

 
Figure 36. BrdU labeling of 48 hpf wild-type and shh–/– mutant retinas carrying p53 reporter. 
Retinal cryosections of wild-type and shh–/– mutant embryos labeled with 1-hour BrdU pulse 
were stained with anti-BrdU and anti-GFP antibodies. Image stacks were obtained using 
confocal microscopy and projected. 
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Since FACS-based experiments showed that p53 reporter-positive cells have defects in 

their progression into G2-phase and mitosis, I next analysed this aspect of cell cycle 

progression in the shh–/– mutant retina. Staining cells for Ser10-phosphorylated form Histone3 

(pH3) enables studies of mitotic cell populations, since pH3 is a reliable marker for cells in late 

G2-phase and mitosis (Hendzel et al., 1997). pH3 also lends itself well to quantification of 

proliferation due to relatively low numbers of positive cells. In addition pH3 can be co-

localised with the EGFP signal from the p53 reporter transgene. Using these tools, I analysed 

cell cycle progression of retinal cells during neurogenesis at 34 and 48 hpf. At 34 hpf, in the 

wild-type retina there is ongoing neurogenesis and the level of proliferation is still high, 

whereas in shh–/– mutants neurogenesis is defective and the rate of retinal mitosis is lower than 

in their wild-type siblings (Stenkamp et al., 2002). Wild-type retina at 48 hpf is completing 

neurogenesis, and a high number of cells are going through their final mitoses. To investigate 

the influence of p53 on retinal proliferation in the shh–/– mutant, I first studied co-localisation 

of pH3 with p53 reporter nlsEGFP in wild-type and shh–/– mutant retinas at 34 and 48 hpf (Fig. 

37A). At both stages, wild-type embryos had very few cells expressing p53 reporter. By 

contrast, in the shh–/– mutant retina at both 34 and 48 hpf most cells were p53 reporter-positive 

(Fig. 37A). The number of pH3-positive retinal cells was clearly smaller in the shh–/– mutant 

than in the wild-type at both 34 and 48 hpf (Fig. 37A). Moreover, some mitotic cells in the 

shh–/– mutant retina were p53 reporter-negative suggesting that not all mitotic cells experienced 

p53 influence (Fig. 37A). However, these co-localisation data are not very useful to quantify 

the influence of p53 on cell cycle progression in the shh–/– mutant retina because p53 reporter 

nlsEGFP nuclear signal becomes cytoplasmic in mitosis and may not co-localise with pH3 

chromatin signal. In addition, wild-type and shh–/– mutant p53 reporter-negative cell 

populations are different and there is some variation in p53 reporter expression in different 

cells and embryos. Therefore, as a more direct approach I used genetic inactivation of p53 to 

understand its role in cell cycle regulation in the shh–/– mutant retina. At 34 and 48 hpf stages, I 

obtained samples of wild-type, the shh–/– mutant and the shh–/– p53–/– embryos and stained 

retinal sections with anti-pH3 antibody to identify mitotic cells and with DAPI to visualize cell 

DNA. At both 34 and 48 hpf there were fewer mitotic cells in the shh–/– mutant than in the 

wild-type retina with the difference less striking at 48 hpf than at 34 hpf (Fig. 37B). Strikingly, 

in the double    shh–/– p53–/– mutant there was a clear increase in mitotic cell numbers and 
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retina size at both 34 and 48 hpf (Fig. 37B). To normalize mitotic cell numbers with respect to 

the total cells in the retina, mitotic and total cells were counted for each retinal section image 

and mitotic cell percentages were calculated. In the first experiment at 34 hpf, wild-type retina 

contained 13,9 % (Standard Devation(SD) = 1,53 %) pH3-positive cells, shh–/– mutant retina 

had 7,13 % (SD=1,48%), which is almost 2 times fewer (Fig. 37C). By contrast, 34 hpf shh–/– 

p53–/– retinas had 11,5 % (SD=1,79%) pH3-positive cells, which is statistically different from 

the shh–/– mutant retinal mitotic rate (t-test P<0,001) and almost reached the wild-type mitotic 

rate (Fig. 37C). This result suggests that in the absence of Shh decreased proliferation in the 

retina is due to p53 activity. Another possibility is that p53 loss by itself is sufficient to 

increase retinal proliferation. Most evidence in the literature suggests that p53 regulates 

proliferation only under conditions of stress or upon its ectopic activation. However, to address 

this possibility, I repeated analysis of mitotic rates at 34 hpf in wild-type, p53–/–, shh–/– and the 

shh–/– p53–/– retinas (Fig. 37D). Clearly, p53 loss on its own is not sufficient to increase the 

mitotic rate, since mitotic rates of the wild-type retina (11,8 %, SD=1,73 %) and p53–/– mutant 

retina (12,02 %, SD=1,46 %) are not statistically different (t-test, P=0,67). In the second 

experiment at 34 hpf, the mitotic rate in the shh–/– mutant retina (7 %, SD=1,38 %) was also 

significantly lower than in the wild-type retina (t-test, P<0,001). Showing the rescue of retinal 

proliferation, the mitotic rate of the shh–/– p53–/– retina (12,1 %, SD=1,9 %) was even slightly 

higher than the wild-type retinal mitotic rate, but the difference was not significant (t-test, 

P=0,55). I then checked proliferation at 48 hpf in wild-type, shh–/– and the shh–/– p53–/– retinas 

(Fig. 37E). Mitotic rates in wild-type and shh–/– mutant retinas were 11,1 % (SD – 2 %) and 

7,16 % (SD – 1,25 %), respectively, and significantly different from each other (t-test, 

P<0,001) (Fig. 37E). Similar to the results at 34 hpf, loss of p53 in the shh–/– mutant (shh–/– 

p53–/–) retina led to a striking increase in the mitotic rate to 11,6 % (SD – 1,54 %), which is a 

complete rescue of mitosis since the difference between wild-type and shh–/– p53–/– mitotic 

rates is not significant (t-test, P= 0,34). The results at both 34 and 48 hpf conclusively 

demonstrate that p53 is responsible for decreased mitotic rates in the shh–/– mutant retina 

during neurogenesis.  
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Figure 37. p53 regulates mitotic rate in shh–/– mutant during neurogenesis. 
A. pH3 staining of PG13p21::nlsEGFP p53 reporter retinas. Wild-type and shh–/– mutant at 34 
and 48 hpf were analysed. At both stages, wild-type retinas had a high level of mitotic cells 
and no expression of p53 reporter. By contrast, at the same stages mutant retinas had a lower 
number of mitotic cells and most retinal cells were p53 reporter-positive. Not all mitotic cells 
in the shh–/– mutant retinas were clearly p53 reporter-positive.  
B. pH3 / DAPI staining of wild-type, shh–/– and shh–/– p53–/– retinas at 34 and 48 hpf. At both 
stages, mitotic rate in the shh–/– retina was lower that in the wild-type retina. In the shh–/– p53–/– 
retina the mitotic rate almost reached that of wild-type retina. 
C. Statistical analysis of pH3/DAPI stainings in wild-type, shh–/– and shh–/– p53–/– retinas at 34 
hpf, which are shown in B. 10 embryos and 20 retinal sections were analysed for each 
genotype. 
D. Statistical analysis of the second pH3/DAPI staining experiment in wild-type, p53–/–, shh–/– 
and shh–/– p53–/– retinas at 34 hpf. 10 embryos and 20 retinal sections were analysed for each 
genotype. 
E. Statistical analysis of pH3/DAPI stainings in wild-type, shh–/– and shh–/– p53–/– retinas at 48 
hpf, which are shown in B. 10 embryos and 20 retinal sections were analysed for each 
genotype. 
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3.1 Direct and indirect regulation of proliferation by Shh in different 

contexts 

The cell-cell signaling events that direct vertebrate limb development have been the 

subject of intense research for more than a hundred years. This provides an excellent 

foundation for investigating the mechanisms whereby pattern formation is integrated with 

proliferation. This integration means that signaling pathways involved in patterning also exert 

their effects on proliferation. In this project, I have focused on two of the main signals 

important for patterning and growth of the vertebrate limb: the Shh and Fgf signaling 

pathways. While both signals are crucial for outgrowth of the limb bud, it has been very 

challenging to uncouple these signals from each other, since expression of Shh depends on Fgf 

signaling, and vice versa. For example, while AER ablation experiments have been interpreted 

as causing failure of limb outgrowth because they lead to loss of Fgf gene expression in the 

limb bud (Fallon et al., 1994; Niswander et al., 1993; Dudley et al., 2002), AER ablation 

simultaneously leads to loss of Shh expression from the ZPA (Niswander et al., 1994; Laufer 

et al., 1994), and so cannot be used to separate the effect of Fgf signaling on proliferation from 

the effect of Shh signaling. In order to overcome this situation, I have used a combination of 

loss-of-function and gain-of-function experiments in the zebrafish model system to uncouple 

Shh from Fgf signaling in the pectoral fin bud, and have assessed the effect of each signal on 

fin bud cell cycle gene expression and proliferation independently of the other signal.  

My results show that the effect of Shh on proliferation during limb development is 

indirect, and is mediated by its effect on Fgf expression in the AER. Inhibition of Shh 

signaling leads to loss of cell cycle progression only after a relatively long delay period of 

around 13 hours, which correlates with a concomitant loss of Fgf signaling. Inhibition of Fgf 

signaling, on the other hand, leads to disruption of cell cycle progression very rapidly, after 

only 3 hours of inhibitor treatment, and this occurs even though activity of the Shh pathway is 

still present. This rapid effect of Fgf on cell-cycle progression suggests a direct transcriptional 

response of cell-cycle genes to the Fgf pathway in the limb bud, which is consistent with the 

direct mitogenic effect of Fgf signaling shown for several cell types in tissue culture. 

Since Hh signaling has also been shown to have a direct mitogenic effect on some cell 

types, it is perhaps surprising that Shh directs proliferation indirectly in the vertebrate limb 
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bud. However, there is at least one previous example of such an indirect effect of Hh signaling 

on proliferation. During Drosophila wing development, Hh is necessary for growth of the wing 

imaginal disc, but this effect is mediated via the Hh-dependent expression of Decapentaplegic 

(Dpp), a member of the Tgf-β family of secreted signaling proteins (Roy and Ingham, 2002; 

Burke and Basler, 1996; Martín-Castellanos and Edgar, 2002). Furthermore, the proliferative 

response of different cell types to Hh is clearly context-dependent, and Hh signaling can even 

function as a negative regulator of the cell-cycle in some cell types (Neumann, 2005). 

Interestingly, this negative effect of Hh signaling on proliferation also appears to be indirect in 

some cases. In the rodent colonic epithelium, for example, Hh signaling stimulates cell-cycle 

exit by antagonizing the Wnt pathway (van den Brink et al., 2004). In the Drosophila retina, on 

the other hand, Hh signaling has both positive and negative effects on cell-cycle progression 

(Firth and Baker, 2005). Cell-cycle arrest of cells in front of the retinal differentiation wave 

depends on Hh signaling in combination with Dpp, while cell-cycle re-entry behind the wave 

front also depends on Hh signaling, but in this case mediated by the Notch signaling pathway 

(Firth and Baker, 2005; Baonza and Freeman, 2005). 

My results also show a context-dependent effect of Fgf signaling on cell-cycle 

progression. Thus Fgf signaling is clearly essential for cell-cycle progression in the pectoral fin 

buds and in the branchial arches, since expression of G1- and S-phase cell-cycle genes in these 

tissues is lost after only 3 hours of inhibition of the Fgf pathway. Inhibition of Fgf signaling 

fails to affect cell cycle progression in other organs, however, such as the retina and the optic 

tectum, or at earlier stages of development. The Fgf signaling pathway is therefore not a global 

mitogenic signal in the zebrafish embryo, but instead directs proliferation in a highly tissue-

specific manner. Altogether, the evidence thus indicates that both the Hh and Fgf pathway 

affect cell cycle progression in some cell types but not in others, and that this effect can be 

either direct or indirect. The control of cell-proliferation in multicellular organisms can 

therefore only be understood in a context-dependent manner, and my results help to shed light 

on this question in the context of the vertebrate limb bud. The molecular mechanisms by which 

different cell types respond distinctly to the same signal are still poorly understood, but will 

undoubtedly be unravelled by future research.  
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3.2 Interaction of p53 and Shh in regulation of cell survival, cell cycle exit, 

and differentiation 

3.2.1 p53 mediates apoptosis in the absence of Shh in zebrafish 

During development cell number is controlled not only by the rate of proliferation, but 

also by the rate of cell death. Since Shh has been implicated in the regulation of apoptotic cell 

death, I examined the role played by zebrafish Shh in directing apotosis during organogenesis. 

In this project I focused on the elevated apoptosis in the neural tube and retina of the shh–/– 

mutant. I asked if lower Bcl2 family gene expression in the shh–/– mutant can be the reason for 

cell death. However, no striking differences in expression of Bcl2 family genes bcl2, bcl2l, 

mcl1a and mcl1b were found between wild-type and shh–/– mutant embryos (Fig. 17). 

Although I cannot exclude some tissue-specific expression differences between wild-type and 

shh–/– mutants, these results suggest that Shh signaling does not regulate expression of anti-

apoptotic Bcl2 family genes globally. Another possibility is that Shh regulates survival through 

a different mechanism. However, activation of Hh signaling can induce expression of Bcl2 

gene in mouse keratinocytes (Bigelow et al., 2004), chick spinal cord (Cayuso et al., 2006) and 

mouse lymphoma cells, where Hh signaling is required for survival through maintenance of 

Bcl2 expression (Dierks et al., 2007).  

Further expression analyses showed that p53 target genes such as p53 itself, p21, 

mdm2, cyclinG1, bax1, puma were up-regulated in the shh–/– mutant relative to wild-type 

through most of development as confirmed by in situ hybridization and qPCR assays (Figs. 18, 

19). Up-regulation of p53 gene expression occurred by p53-mediated transcription from an 

internal promoter generating a short p53 transcript encoding an inactive p53 isoform (Chen et 

al., 2005; Robu et al., 2007). p53 is indeed required for elevated apoptosis in the absence of 

Shh, since morpholino knockdown of p53 rescued apoptosis in the neural tube and in the retina 

of the shh–/– mutant (Fig. 21). Over-expression of EGFP-bcl2 (Langenau et al., 2005) also 

rescued elevated apoptosis in the shh–/– mutant showing that intrinsic apoptotic pathway is 

activated. In contrast to the studies showing that Bcl2 can inhibit p53 activity (Froesch et al., 

1999; Beham et al., 1997; Ryan et al., 1994), p53 target gene expression remained normal after 

EGFP-bcl2 over-expression (Fig. 21), which suggests that effects of Bcl2 on p53 activity may 

be species- or tissue-specific. This result is also consistent with my observation that Bcl2 
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family gene transcription is unaffected by loss of Shh. These results suggest that Shh is 

necessary to inhibit the activity of p53 but it is unclear how direct this inhibition is. To address 

this question, I then studied the onset of p53 pathway activation and elevated apoptosis in the 

shh–/– mutant, which turned out to happen at the 10somite stage (Fig. 20). The broad pattern of 

p53 target gene expression and apoptosis in the shh–/– mutant at the 10somite stage argues 

against the idea that cells die due to differentiation failure, since few cells in the wild-type 

express neuronal differentiation marker HuC at this stage (Kok et al., 2007). Early requirement 

of Shh for cell survival during development is consistent with the suggestion that Hh signaling 

affects cell survival independently from and earlier than affecting cell fate (Cayuso et al., 

2006).  

The results above raise a question whether p53 activity can be suppressed by Hh 

signaling activation. Indeed, activation of Hh signaling using dnPKA-GFP can effectively 

suppress p53 target gene expression and apoptosis in the shh–/– mutant at the 12somite stage 

(Fig. 26). As this thesis project was in progress, Abe et al. (2008) provided evidence that Hh 

signaling regulates stability of p53 by activating Mdm2 in human cell lines probably through 

induction of an unknown Mdm2-activating factor. Stecca and Altaba (2009) characterized the 

interaction between p53 and Gli1, a downstream Hh signaling mediator, in wild-type chick 

neural stem cells. These authors found that Gli1 can suppress p53 activity by up-regulating 

Mdm2 level. They also showed that p53 can interfere with Gli1 functions, which creates a 

negative feedback loop. These studies are consistent with and support my observations that 

p53 mediates apoptosis in the absence of Shh, and that Shh is required to control p53 activity 

in vivo. Due to lack of antibodies against zebrafish Mdm2, I could not determine if Hh 

signaling up-regulates Mdm2 level in zebrafish. Nevertheless, since p53 activity can be 

inhibited by Hh signaling activation in human cell lines, chick neural stem cells and zebrafish 

embryos, the same mechanism is likely involved.  

Concerning p53 regulation, the question is whether Hh signaling is required for 

establishment or maintenance of p53 activity control. Due to the localized nature of Shh 

expression, it is unlikely that cells would require persistent Shh signaling to maintain p53 

activity control. Another possibility is that Shh is required to maintain control of p53 activity 

only during a certain period of development. Shh is not involved in the earliest stages of p53 

control since p53 can already be activated in late gastrulation (Kratz et al., 2006), which is 
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much earlier that 10somite stage. However, p53 activity control appears to become dependent 

on Shh signaling after the onset of Shh expression. 

3.2.2 p53 regulates proliferation and differentiation in the shh–/– mutant 

retina 

The insight that p53 is essential for apoptosis due to shh loss allows investigating how 

apoptosis suppression affects proliferation and differentiation. The retina was chosen as a 

system to examine these aspects of apoptosis suppression. To suppress apoptosis throughout 

development of shh–/– mutants, double shh–/– p53–/– mutants were generated. Elevated 

apoptosis was suppressed in these double mutants both in the neural tube at 24 hpf and in the 

retina at 72 hpf (Figs. 21, 22). I then studied how suppression of apoptosis affects 

differentiation in the shh–/– mutant retina. In fact, in the shh–/– p53–/– mutant retina, RGC 

staining is strongly increased, many amacrine cells, which are absent in the shh–/– mutant 

retina, appear and both cone and rod photoreceptors are nearly completely rescued (Fig. 23). 

However, differentiation of bipolar and Müller glia cells was not rescued in the shh–/– p53–/– 

mutant (Fig. 24). These results show that Shh is required not for differentiation of most retinal 

cell types, but simply to promote survival of retinal progenitor cells. In contrast, no rescue 

Müller glia differentiation in the shh–/– p53–/– mutant retina supports previous work in the 

mouse showing that Shh is required for Müller glia development (Wang et al., 2002). Several 

previous studies in zebrafish have addressed how suppression of p53-mediated apoptosis 

affects retinal differentiation. In zebrafish mutants of DNA polymerase delta 1 subunit (pold1) 

many cells die of apoptosis, and suppression of apoptosis in the retina by p53 knockdown 

rescues eye size and morphology (Plaster et al., 2006). Yamaguchi and colleagues (2008) 

found that in the case of the zebrafish primase1 mutant p53 knockdown led to the rescue of 

amacrine cell and photoreceptor differentiation. By contrast, p53 knockdown in chromatin 

assembly factor 1b (caf1b) mutant did not lead to rescue of retinal differentiation (Fischer et 

al., 2007). Differentiation rescue by loss of p53 activity in the shh–/– mutant retina is similar to 

the p53 knockdown results in pold1 and primase1 mutants. However, Shh likely affects 

differentiation by regulating p53 activity and through other mechanisms, whereas mutations of 

pold1 or primase1 were proposed to induce genotoxic damage. By contrast, caf1b is required 

for both cell survival and differentiation of most cell types. Although p53 inhibits retinal 
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differentiation in the shh–/– mutant, it promotes differentiation in mouse embryonic stem cells 

after DNA damage by decreasing Nanog expression (Lin et al., 2005), and reduces 

spontaneous differentiation of human stem cells (Qin et al., 2007). Thus, the effect of p53 on 

differentiation is strongly context-dependent. 

p53 loss in the shh–/– mutant rescues two aspects of retinal proliferation: cell-cycle exit 

of retinal cell progenitors (Fig. 25) and mitoses during neurogenesis (Fig. 37). Moreover, 

cyclin-dependent kinase inhibitor p57kip2 expression is rescued in the shh–/– p53–/– mutant 

retina (Fig. 25C), which correlates with normal cell-cycle exit. These findings may represent 

two sides of the same phenomenon, since active cell-cycle exit must result in more mitoses of 

differentiating cells. Therefore, rescue of cell-cycle exit may be necessary and sufficient to 

rescue the mitotic rate in the shh–/– mutant retina. However, rescue of the mitotic rate in the 

shh–/– p53–/– mutant retina may also result from lack of p53-activated cell cycle inhibitory gene 

expression. p57kip2 loss in the shh–/– p53–/– mutant is required to understand the relative 

contributions of the two mechanisms. However, since p57kip2 knockdown results in 

phenotypes too variable to make clear conclusions, this experiment was not performed. 

Previous studies of cell-cycle exit in the zebrafish retina (Masai et al., 2005; Shkumatava and 

Neumann, 2005) showed that p57kip2 expression is regulated by Hh signaling. My results 

support this conclusion and uncover that in the shh–/– mutant p53 mediates lack of p57kip2 

expression. Thus, a model can be proposed that Hh signaling is required for p57kip2 retinal 

expression by controlling activity of p53. Concerning the mechanism of p57kip2 regulation by 

p53, there are several studies suggesting that p53-mediated Notch1 expression may be 

responsible for lack of p57kip2 retinal expression. Notch1 is a p53 target in human 

keratinocytes (Lefort et al., 2005) and myeloid and lymphoid cells (Secchiero et al., 2009). 

Moreover, Katoh and Katoh (2008) found that in human and mouse embryonic stem cells Gli2 

prevents p53 from activating Notch1 gene expression, which establishes a connection between 

p53, Hh and Notch pathways. In zebrafish, Notch1 homologs are also likely to be p53 targets 

since they contain optimal p53 binding sites (personal observation). Notch signaling inhibits 

p57kip2 expression during zebrafish neural tube development (Park et al., 2005), in pancreas 

development (Georgia et al., 2006), in the adult intestinal crypts (Riccio et al., 2008) and 

during eye lense development (Jia et al., 2007). It will be important to check if p53 blocks cell-

cycle exit by activating Notch signaling. 
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3.2.3 p53 reporter expression in tissues requiring Shh for survival 

Another important aim in this project was development of a p53 reporter line in 

zebrafish to study p53 activation.  In the shh–/– mutant p53 reporter-positive cells were detected 

in the retina as early as 24 hpf leading to the conclusion that extraretinal Shh signaling is 

required for control of p53 activity during retinal development, since no Shh is produced in the 

retina at 24 hpf (Fig. 32). In addition, p53 reporter activation and apoptosis were detected in 

the midbrain, hindbrain and spinal cord regions of the neural tube (Fig. 32, 33), consistent with 

the previous studies on the Shh survival function in these tissues (Charrier et al., 2001; Britto 

et al., 2002). p53 reporter expression but no elevated apoptosis were detected in somites of the 

shh–/– mutant (Fig. 29, 32). However, p53 may mediate apoptosis in the somites of the shh–/– 

mutant at earlier stages, which would make the elevated p53 reporter expression fully 

consistent with the role of Shh in sclerotome cell survival and myogenic differentiation 

(Borycki et al., 1999). Locations of p53 reporter-positive cells in the lateral midbrain and of 

apoptotic cells in streams from the neural tube in whole-mount stainings at 24 hpf suggest their 

neural crest origin (Figs. 32, 15). These observations agree with the fact that Shh ensures 

survival of these cells (Ahlgren and Bronner-Fraser, 1999). Taken together, these results show 

that p53 reporter is detected in most regions, in which Shh plays the cell survival role. p53 

reporter-positive cells could also be visualized in terms of their progression through S-phase, 

mitosis and apoptotic phenotypes (Figs. 34, 36,37). Moreover, FACS sorting of p53 reporter-

positive cells enabled studying their cell cycle distribution and helped understand how p53 

affects cell cycle progression in the  shh–/–  mutant retina (Fig. 35). Finally, p53 reporter 

activation could also be induced by p53 activating drugs such as roscovitine (Fig. 28). These 

results clearly show that the transgenic p53 reporter line is more advantageous than in situ 

hybridizations for detecting expression of p53 target genes, or even than antibodies against p53 

(Lee et al., 2008), which are used for visualizing cells with active p53. The current form of the 

p53 reporter is based on nlsEGFP, but it is certainly possible to replace nlsEGFP with 

fluorescent proteins of other colours or with degradable fluorescent proteins to obtain a 

dynamic picture of p53 activity. 
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3.3 Conclusions and Outlook 

Previous studies have shown that both Shh and Fgf signaling are crucial for outgrowth 

of the vertebrate limb. The results presented here show that the role of Shh in this process is 

indirect, and is mediated by its effect on Fgf signaling. By contrast, the activity of the Fgf 

pathway affects proliferation directly and independently of its effect on Shh. These results 

show that Fgf signaling is of primary importance in directing outgrowth of the limb bud, and 

clarify the role of the Shh-Fgf feedback loop in regulating proliferation. 

The work presented here has also clarified several aspects of the role played by p53 in 

mediating Shh-directed control of cell survival, cell-cycle exit and differentiation. In the 

absence of Shh p53 mediates apoptosis in the neural tube and the retina. In the context of the 

retina, p53 is the mechanism downstream of Shh regulating proliferation, differentiation and 

survival. It is fascinating that a single mechanism can regulate such different biological 

processes, and previously Shh would be envisioned to control these processes through distinct 

mechanisms. On the other hand, there are several different mechanisms downstream of p53 as 

well, which means that the findings in this thesis point us in the promising direction to search 

for additional important mechanisms.  

 The role of Shh-regulated Bcl2 expression versus p53 pathway control in different 

cases of Shh-controlled cell survival should be uncovered by future studies. Another 

interesting question is how p53 pathway activation is controlled temporally and spatially 

during development in the absence of Shh. Moreover, future research will be necessary to 

unravel p53-mediated Hh signaling functions in the context of proliferation and differentiation 

in different model systems and tissues.  
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4 MATERIALS AND METHODS 
 

4.1 Fish stocks, maintenance and identification 
Wild-type Tupfel Long Fin (TLF), sonic-yout4 (shh null mutation, Schauerte et al., 1996) and 

p53zdc1 (Berghmanns et al. (2005); obtained from Schulte-Merker laboratory) heterozygous 

fish were used. Fish were maintained according to standard protocols. Embryos were grown in 

E3 embryo medium at   28 oC with or without the addition of 0.003% 1-phenyl-2-thiourea 

(PTU) (Sigma, cat# P7629) to inhibit pigmentation. Staging was performed according to hours 

post-fertilization (hpf) (Westerfield, 1995). Identification of shh-/-p53-/- was performed by first 

selecting acridine orange-negative embryos and then performing PCR on embryo tails with 

pairs of the following primers to check the embryos for either wild-type or mutant alleles as 

described in Berghmanns et al. (2005): p53ID_for: GATAGCCTAGTGCGAGCACACTCTT, 

p53wtID_rev: AGCTGCATGGGGGGAT and p53mutID_rev: AGCTGCATGGGGGGAA.  

Alternatively, only PCR genotyping was performed. The p53 genotype of adult fish was 

identified using the same PCR assay on fin clips. Fin clips were obtained by anesthesizing 

adult fish in 0.02 % Tricaine and then cutting small pieces of the caudal fin. All DNA samples 

for identification were prepared by boiling in 20-50 µl of 50 mM NaOH at 95 oC for 10 

minutes and then neutralizing the resulting lysate with 1M Tris-HCl pH 8.2 as described 

previously (Meeker et al., 2007). 

 
4.2 Chemicals and solutions 
 
60x stock solution E3 saline: 

34,8g NaCl 
1,6g KCl 
5,8g CaCl2 x 2H2O 
9,78g MgSO4 x 6H2O 
H2O ad 2l 
pH 7.2 with NaOH 
autoclave 
for 1x use 16ml/l + 100μl methylene blue solution 
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10x loading buffer:  
50% glycerol 
1x TE 
0.25% bromophenol blue 
0.25% xylene cyanol 

 
TE:  

10 mM Tris/HCl pH 7.4 
1mM EDTA pH 8.0 

 
50xTAE: 

242 g Tris base 
57.1 ml glacial acetic acid 
100ml 0.5M EDTA 
Add ddH2O to 1 liter and adjust pH to 8.5. 

 
10xPBS:  

70g NaCl;  
62.4g Na2HPO4 x2H2O;  
3.4g KH2PO4 
pH7.4 

 
DEPC H2O: 

Di-ethyl pyrocarbonate (DEPC) was dissolved in H2O at 0.1 %. The solution was 
incubated overnight at 37 oC and then autoclaved.    

  
Acridine Orange  

Acridine Orange (Molecular Probes, Invitrogen,cat# A1301) was dissolved at 10 mg/ml 
in water and used at 1:5000 dilution for live apoptosis staining 

 
4.3 Microinjection of mRNA and morpholino 
p53 morpholino (GCGCCATTGCTTTGCAAGAATTG; Langheinrich et al., 2005) was 

purchased from Gene Tools and was injected into 1-cell stage at 0.5 mM. Five-mismatch 

control morpholino against her4 gene (GTACGACTCATTGGTGTCTGTGTTG) was used as 

a control morpholino. To make RNA for over-expression experiments, required pCS2+ vectors 

were linearised and transcribed using mMessage mMachine SP6 (Ambion, cat # AM1340).  

The following plasmids were used to prepare RNA for microinjections: 

pCS2+dnPKA-GFP (Moon lab) 

pCS2+EGFP 

pCS2+EGFP-bcl2 (Look lab) 
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pCS2+H2BmRFP1 (provided by Gilmour lab) 

pCS2+FA Transposase (Tol2kit) 

 
4.4 p53 reporter fish generation 

4.4.1p53 reporter construction  
Human CDKN1A/p21 2.4 kb promoter was amplified from RPCI-11 Human BAC 

clone (Imagenes, RPCIB753F15397Q) using the following primers: 

HindIII_p21prom_for : AAGCTTGGGCACTCTTGTCCCCCAGG 

BamHI_p21prom_rev: GGATCCCTGACTTCGGCAGCTGCTCA 

The resulting PCR product was TOPO-cloned into pCR2.1 (Invitrogen) and then subcloned 

into p5E-MCS vector using HindIII and BamHI restriction sites. The resulting plasmid was 

named p5E-p21.  PG13 enhancer (13 copies of an optimal p53 binding site 

CCTGCCTGGACTTGCCTGG) was synthesised by GeneArt (custom product). The synthetic 

PG13 fragment contained KpnI and HindIII restriction sites for directional cloning into p5E-

p21. Insertion of PG13 into p5E-p21 resulted into the final 5’-entry vector p5E-PG13p21.  

To generate the construct for injection into embryos, p5E-PG13p21 was recombined 

with pME-nlsEGFP, p3E-polyA and pDestCG2 vectors (Tol2kit, Kwan et al., 2007).  

 
4.4.2 p53 reporter injection and carrier fish identification  
pDestCG2-PG13p21::nlsEGFP-polyA plasmid was mixed with FA Transposase RNA 

to final concentrations 15 ng/μl  and 20 ng/μl in DEPC H2O, respectively. The mix was 

injected into wild-type oocytes, and injected embryos were grown to adulthood. Subsequently, 

F0 founder fish were outcrossed into wild-type and sonic-you backgrounds to generate F1 

transgenic animals, which were used for the experiments and outcrossed once more to generate 

F2 generation.  
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4.5 General cloning procedures  
4.5.1 RNA purification 
For cloning: 

To collect total embryo RNA, 30-50 embryos at the required stage were frozen in 

liquid nitrogen. RNA was then purified using RNeasy Mini kit (Qiagen, cat# 74104) according 

to the manufacturers’ protocol and eluted in DEPC H2O. 

 
For quantitative and semi-quantitative PCR: 

• Transfer embryos (up to 100) to Eppendorf tube. Remove water with glass 

Pasteur pipette.  

• Add 400 μl TRIzol Reagent and directly grind until embryos are dissolved. 

• Then add 600 μl TRIzol reagent and mix. 

• At this point leave 5 min at room temperature and continue, or freeze the lysate 

at –20°C. 

• Add 200 μl chloroform for each ml reagent and shake the tube vigorously for 15 

seconds. 

• Leave 5-10 min at room temperature. 

• Centrifuge at 12000g for 5 min 

• From now on one should work RNase free! 

• Transfer upper aqueous phase to new tube and precipitate with 0.5 ml 

isopropanol (for each ml reagent that was initially used) 

• Leave 15 min or longer at room temperature. 

• Centrifuge at 12000g for 10 min at 4°C. 

• Remove supernatant, centrifuge short to collect and remove remaining 

supernatant.  

• Add 1 ml 75% ethanol, vortex, and centrifuge 5 min. 

• Remove 75% ethanol. Centrifuge short to collect and remove remaining 

ethanol. Dry pellet for 5 min at room temperature. 

•  Dissolve pellet in the desired amount of RNase free water (50μl). 
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• Measure RNA concentration and run on a gel for short time to verify that 

degradation has not occurred (The upper 28S band should have twice the 

intensity of the lower 18S band). 

 
  
4.5.2 cDNA synthesis  
cDNA first-strand synthesis for cloning was performed using SuperScript III Reverse 

Transcriptase system (Invitrogen, cat# 18080-051) and to prepare cDNA for quantitative PCR 

Quantitect Reverse Transcription Kit (Qiagen, cat# 205311) was used according to 

manufacturers’ instructions.   

 

4.5.3 Cloning probe template plasmids  
 

Table 1. Primers used to amplify cDNA fragments 
Gene Primer name Sequence  Template 

pcna pcna_for 
pcna_rev 

cctactccaaactaagaaagcagca 
atcgggaatccattgaactgg 

cDNA 

mcm5 mcm5_for 
mcm5_rev 

tggtggaggagaaagcgtcg 
ggcctcatggattgcgactc 

cDNA 

ra1 ra1_for 
t7_ra1_rev 

ccattggaggaaacaggaga 
taatacgactcactatagggcagcgtgtacctggtaagca 

cDNA 

mcl1a 
 

mcl1a_for 
mcl1a_rev 

tatggctttgagtttggattttagg 
tgcattgatagccattggc 

cDNA 

mcl1b mcl1b_for 
mcl1b_rev 

gagaagaagaaaaaatgtagagttg 
agcacttcgaaaaggaaaa 

cDNA 

bcl2l bcl2l_for 
t3_bcl2l_rev 

tggataaccgtattaccgcc 
cgcgcaattaaccctcactaaagcactagtcataccaggatc 

pDNR-LIB-bcl2l  
(ZFIN) 

bcl2 bcl2_for 
bcl2_rev 

gcgcgtttctatcgtgattt 
agcatgtgtgcacgtgtttt 

cDNA 

bax1 
 

bax1_for 
t3_bax1_rev 

tgtacggaagtgttacttctgctc 
ggatccattaaccctcactaaagggaaggccgcgacctgcagctc

pME18S-FL3-bax1 
(ZFIN) 

p53 p53_for 
p53_rev 

gaatccccaaaactccacgc 
ccaaaaagagcaaaactccc 

cDNA 

mdm2 pME_for: 
t7_pME_rev:  
 

attaaccctcactaaaggctgctcctcagtggatgttgcctttac 
taatacgactcactataggcaggttcagggggaggtgtgg 

pME18S-FL3-
mdm2 (Imagenes) 

puma  puma_for 
puma_rev 

aacaccgctttatatcccct 
tgtgttcatctgaggccgtg 

cDNA 

p21 p21_for 
p21_rev 

tcaggtgttcctcagctcct 
cggaataaacggtgtcgtct 

cDNA 
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4.6 Quantitative Real-time PCR and semiquantitative PCR 

cDNA samples prepared using Quantitect cDNA synthesis kit from whole embryos or embryo 

heads were used for quantitative real-time PCR after a10-fold dilution. SYBR® Green PCR 

Master Mix (Applied Biosystems, cat# 4309155) was used to prepare qPCR reactions, which 

were run on the ABI7500 qPCR machine. 

Table 2. Primers for PCR assays 
 
Primer name Sequence  Source 
mdm2q_for 
mdm2q_rev 

gatgcaggtgcagataaagatg 
ccttgctcatgatatatttccctaa 

This study 
This study 

p53q_for 
p53q_rev 

cccatcctcacaatcatcact 
cacgcacctcaaaagacctc 

Kratz et al., 2006 
Kratz et al., 2006 

pumaq_for 
puma-q_rev 

gaacacacgggttacaaaagac 
gaaaattcccagagtctgtaagtg 

This study 
This study 

noxaq_for 
noxaq_rev 

cgaacctgtgacagaaacttg 
ctgcgcgcactctactaca 

Kratz et al., 2006 
Kratz et al., 2006 

cycG1-qfor 
cycG1-qrev 

catctctaaaagaggctctagatgg 
cacacaaaccaggtctccag 

This study 
This study 

bax1_qfor 
bax1_qrev 

gcaagttcaactggggaaga 
gtcaggaaccctggttgaaa 

This study 
This study 

gapdh-q_for 
gapdh-q_rev 

tgcgttcgtctctgtagatgt 
gcctgtggagtgacactga 

Kratz et al., 2006 
Kratz et al., 2006 

 
4.7 Sequencing 
DNA Sequencing was performed by either EMBL Genomics Core Facility or by GATC 

Biotech. 
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4.8 Probe synthesis 
4.8.1 Linearising DNA for in vitro transcription reactions 

•  Take 10 μg of a plasmid of interest and set up a digest reaction in 100 μl. 

•  Incubate for several hours or overnight at 37 C and run 5 μl on gel to check for 

linearity. 

•  Add 1 μl of Proteinase K (20 mg/mll) and 5 μl of 10 % SDS and incubate at 50 C for 

1h. Add 100 μl water. 

•  Add an equal amount of 25:24:1 (v/v) phenol-chloroform-isoamyl alcohol and vortex. 

•  Separate the aqueous phase which contains the DNA from the organic phase by 

centrifugation at 8000 rpm for 1 min. 

•  In order to precipitate the DNA, add a 0.1 volume of 3 M sodium acetate, pH 5.5, to 

the aqueous phase and then 2 volumes of absolute ethanol. Incubate at –20 °C overnight 

or for shorter periods at –80 °C (20–30 min). 

•  Recover the precipitated DNA by centrifugation in the microfuge at 10 000 rpm for 15 

min. Remove the ethanol with care and dry the pellet in a desiccator or 50 °C oven for 5 

minutes. 

•  Wash with 1 ml of 70% (v/v) ethanol/DEPC. Remove the ethanol solution with care 

and dry the pellet in a desiccator or 50 °C oven for 5 minutes. 

•  Resuspend dried DNA in 20 μl of DEPC-treated water and store at –20 °C.  

 

4.8.2 In vitro transcription reactions 
 In vitro transcription reactions for mMessage mMachine SP6 (Ambion, cat# AM1340) 

and DIG RNA Labeling Kit (Cat # 11175025910)) were performed according to 

manufacturers’ instructions.   

 
4.8.3 Purification of RNA from in vitro reactions 

 
After transcription, the DNA template is digested by the addition of 2 µl RNAse free DNAse 

(Roche 776785) for 15 min at 37°C.  

• Add 30 µl DEPC H2O and 30 µl LiCl precipitation solution (7.5 M) 

• Chill for 2 hours at -20 oC 
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• Centrifuge at 4°C for 30 min at 10,000 g 

• Add 1 ml of 70% Ethanol/DEPC H2O to the pellet 

•  Centrifuge at 4 °C for 5 minutes 

• Remove the supernatant, shortly air dry and resuspend in 30 µl DEPC H2O 

 
 4.9 Histochemical methods 
 4.9.1 In situ RNA hybridisation 
RNA in situ hybridisations were performed according to Jowett (2001). Probes were made 

using Roche DIG RNA Labeling Kit (Cat # 11175025910). Antisense probes were made to 

detect expression of the following genes: ptc1, pea3 (Norton et al., 2005), cyclin D1 

(Shkumatava and Neumann, 2005), pcna, mcm5, ra1, bcl2, bcl2l, mcl1a, mcl1b, p53, mdm2, 

bax1, puma. cyclinG1 probe was prepared from pCMV-SPORT6.1-cyclinG1 (RZPD Clone ID 

IMAGp998A0314862Q1) plasmid, which was digested with EcoRI and transcribed with T7 

polymerase.Cloning of plasmids for making probes is described in the section on cloning. 

Templates for making anti-sense probes were prepared either by linearizing plasmids with 

restriction enzyme digests or by PCR with primers containing phage promoters. 

 

 

 4.9.2 Cryosectioning procedure 
• Fix dechorionated embryos in 4% PFA/PBS for 1h at RT or O/N at 4°C 

• Wash with PBS 

• Incubate 2 hours at RT (O/N – a few days at 4°C) in 20% sucrose/PBS 

• Remove embryos from sucrose and place in plastic moulds (Polysciences) 

• Take off sucrose as well as possible 

• Cover embryos with Tissue-Tek (Plano, cat# 4383) 

• Align embryos in required position (ventral to the mold bottom) under the 

microscope 

• Place molds on dry ice or into -80 °C freezer so that Tissue-tek hardens (about 

20min) 

• Detach blocks by pressing hard with the thumb against the mold bottom 
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• place blocks on holders 

• place a holder in the cryostat and start to cut 

• try to find the plane containing embryos by trimming 30-50μm sections 

• cut embryos in 12μm sections 

• transfer sections in a line to slide (super frost slides, Roth), 5-7 sections per line 

are optimal 

• leave to dry at RT at least 1h 

  
4.9.3 Antibody staining on cryosections 

4.9.3.1 Standard antibody staining protocol 
• Rehydrate cryosections in PBS with 0.1 % Tween-20 (PBST) for 1 hour 

• Block for 1 hour with blocking solution (4 % normal goat serum in 

PBST).  

• Incubate with desired primary antibody for several hours at RT or 

overnight at 4 oC  

• Wash slides 3 times for 10 min in PBST  

• Incubate for 2 hours with a fluorescently-labeled secondary antibody in 

blocking solution (1:400) 

• Wash slides 3 times for 10 min in PBST  

• Embed the slides in moviol and let dry before microscopy 

The following antibodies were used in this thesis: 

Anti- zpr1 - Developmental Studies Hybridoma Bank, 1:100 

Anti-zpr3 - Developmental Studies Hybridoma Bank, 1:100 

Anti-zn5 - Developmental Studies Hybridoma Bank, 1:50 

Anti-parvalbumine – Chemicon (MAB1572), 1:200 

Anti-GAD67 – Chemicon (AB5862P), 1:100 

Anti-glutamine synthetase – BD Biosciences (cat# 610517), 1:500 

Anti-PKCα – Santa Cruz Biotechnology (sc-208), 1:100 

Anti-GFP (mouse) – Molecular Probes, Invitrogen (A11120), 1:200  

Anti-GFP (rabbit) – Molecular Probes, Invitrogen (A11122), 1:200  

Anti-BrdU (mouse) – Roche (cat# 1-299-964), 1:100 
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Anti-pH3-S10 (rabbit) – Abcam (ab5176-100), 1:400 

  Anti-Digoxigenin-Alkaline Phosphatase – Roche (cat# 11093274910), 1:2000 

  Anti-activeCaspase3 – BD Pharmingen (cat# 557035), 1:200 

 

4.9.3.2 BrdU staining protocol 
• Rehydrate cryosections in PBST for 1 hour 

• Treat with 4N HCl for 20 min 

• Wash slides 3 times for 5 min in PBST  

• Block for 1 hour with blocking solution  

• Incubate with the mouse anti-BrdU antibody diluted in blocking solution 

(1:100) (Roche, cat# 1 170 376) overnight  

• Wash slides 3 times for 10 min in PBST  

• Incubate for 2 hours with the anti-mouse Alexa Fluor 488 antibody 

(Invitrogen, cat# A11001) diluted in blocking solution (1:400) 

• Wash slides 3 times for 10 min in PBST  

• Embed the slides in moviol and let dry before microscopy 

 
4.9.4 Apoptosis stainings 

4.9.4.1 TUNEL assay on whole-mount embryos 
Whole-mount TUNEL staining was performed as described in Berghmanns et al., 

(2005). 

• Fix embryos overnight in 4% paraformaldehyde and dehydrated in 

PBS/methanol series; 50%, 70%, 95%, and 100% (5 minutes each at room 

temperature (RT)) 

• Embryos were incubated in 100% acetone at –20ºC (10 min) and rinsed three 

times in PBS containing 0.1% Tween-20 (PBST) (5 minutes each)  

• Embryos were permeabilized by incubation in fresh 0.1% sodium citrate in 

PBST (15 minutes, RT), followed by three rinses in PBST (5 minutes each) 

• Embryos were assayed by TUNEL by using the In Situ Cell Death Detection 

Kit, TMR Red (Roche). 
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4.9.4.2 TUNEL assay on cryosections  
• Wash cryosections with PBST for 30 min 

• Permeabilise by incubating slides for 2 min in ice-cold 0.1 % Sodium Citrate 

with 0.1 % Triton X-100 

• Wash cryosections with PBST 2 times for 5 min 

• Incubate with TUNEL reaction mix diluted twice with TUNEL dilution buffer 

(cat # 1966006001) for 1 hour 

• Wash cryosections with PBST 2 times for 5 min 

 
 

4.9.4.3 ApopTag In Situ Apoptosis Detection Kit 
The protocol uses the ApopTag kit from Chemicon (cat# S7100).  

• Fix embryos for 2 h at RT or overnight at 4 oC in 4 % PFA/PBST 

• Wash in PBST and transfer to methanol for 30 min at -20 oC 

• Rehydrate embryos in a graded methanol:PBST series (75 % MeOH, 50 % 

MeOH, 25 % MeOH) for 5 min each 

• Wash once for 5 min in PBST (Washing volume is 0.5 ml) 

• Digest embryos in proteinase K solution in PBST (10 /ul) at RT. 24 hpf 

embryos should be digested 2 minutes, embryos of all other stages should get 

10 minutes for each additional day of development 

• Rinse 2 times in PBST 

• Postfix in PFA/PBST for 20 min at RT 

• Wash 5 times for 5 min in PBST 

• Postfix for 10 min at -20 oC with pre-chilled EtOH : acetic acid in ratio 2 : 1 

• Wash 3 times for 5 min in PBST 

• Remove very carefully all the liquid from embryos (use vacuum pump with 10 

ul tip attached), add 37 ul of Equilibration buffer and incubate for 1 h at room 

temperature 

• Remove very carefully the previous buffer. Add 25 ul of Reaction buffer and 8 

ul of the TdT enzyme 
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• Incubate overnight at 37 oC  

• Wash with 250 ul of Stop/Wash Buffer for 3 hours at 37 oC 

• Wash 3 times for 5 min with PBST 

•  Block with  2 mg/ml BSA, 5 % goat serum in PBST for 1 h at RT 

• Remove the liquid as before and add 500 ul of anti-Dig-AP Fab 1:2000 in 

blocking solution (Roche) 

• Wash 4 times for 30 min in PBST 

• Wash 3 times for 5 min with 50 % Staining Buffer and develop staining with 

NBT-BCIP solution (1:100) in 50 % Staining Buffer 

• Wash with PBST and store in 4 % PFA/PBST at 4 oC 

 
4.9.4.3 Acridine Orange apoptosis staining 

Dechorionated embryos were incubated with 2 µg/ml of Acridine Orage (AO) 

in E3 embryo medium for 30 minutes. The traces of AO were removed by 5 changes of 

the embryo medium.  Embryos were then imaged using a fluorescent microscope. 

4.10 Chemical inhibitors and treatment procedures 

FGF signaling inhibitor SU5402 (Calbiochem, cat # 572630) was dissolved in DMSO 

at 8 mM. Treatment was performed with a 10 μM solution of SU5402 or a corresponding 

control DMSO solution in E3 embryo medium. Cyclopamine (Toronto Research Chemicals, 

cat# C988400) was dissolved in ethanol at 20 mM. Treatment was performed with 100 μM 

solution of cyclopamine or control ethanol solution in E3 embryo medium. Roscovitine was 

purchased from Sigma (cat # R7772), resuspended in DMSO at 12.5 mM and used for 

treatments at 1:250 dilution in E3 medium. 

 
4.11 Bead implantation 

Bead implantation was performed as described before (Norton et al., 2005). 

Recombinant human Fgf4 protein (R&D Systems, cat# 235-F4-025) was dissolved at a 

concentration 250 ng/μl in PBS with 0.1% bovine serum albumin and mixed in proportion 1:1 

with the mix of heparin-acrylamide beads (cat# H5263) filtered through a 70 μm Cell strainer 

(BD Falcon, cat# 352350). 
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4.12 Fluorescence Activated Cell Sorting methods methods  
 4.10.1 EGFP/Propidium Iodide cell cycle analysis protocol 

The following protocol is suitable for quantifying cell cycle distribution of EGFP-

positive cells. It was provided by Marcel Souren and modified on the basis of a published flow 

cytometry protocol (Schmid and Sakamoto, 2001), which allows imaging of both Propidium 

Iodide and EGFP.  

• Decapitate 40-50 embryos for each condition 

• Transfer to a very small petri dish and remove as much liquid as possible 

• Add 3 ml of Trypsin solution (Sigma, cat# T3924)  

• Either triturate using an extended Pasteur pipette or 1 ml tip (for the latter it is 

important to press the tip down to the bottom of the dish) 

• Check for complete dissociation visually or under a microscope 

• Add 4 ml of TM-1% PEG with 10 % goat serum 

• Transfer the solution to a 15 ml Falcon tube 

• Centrifuge for 5 min at 1200 g at 4 oC 

• Remove supernatant with the vacuum pump and add 4 ml of TM-1% PEG with 10 % 

goat serum and centrifuge for 5 min at 1200 g at RT 

• Remove supernatant and resuspend cells in 2 ml of cold PBS 

• Put a cell strainer on a FACS tube and pipet cell suspension through it 

• Add 2 ml μl of 2 % Paraformaldehyde in PBS and incubate for 1 hour at 4 oC  

• Centrifuge for 5 min at 1200 g at 4 oC and wash once in 5 ml of PBS 

• Add 1 ml of 70 % ethanol at -20 oC drop-wise while mixing the cell suspension on 

slow vortex regime and incubate overnight 

• Centrifuge for 5 min at 1200 g at 4 oC and wash twice in 3 ml of PBS 

• Resuspend in 1 ml of PI buffer  

Materials 

- TM-1% PEG: 100 mM NaCl, 5 mM KCl, 5 mM Hepes, 1 % (w/v) PEG 20000 pH 7.0 

- PBS 

- Normal goat serum 
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- PI buffer: 980 µl PBS + 10 μl propidium iodide + 10 μl RNAse A ) 

 

4.13 Confocal microscopy, image processing and analysis 
Microscopy was performed using Leica SP2 confocal microscope, images were processed 

using ImageJ software. Additional image adjustments were made using Adobe Photoshop CS2 

and panels of images assembled using Adobe illustrator CS2. For counting nuclei, Cell 

Counter plugin of ImageJ was employed.    
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7 Appendix 

7.1  Abbreviations 
 
AER   apical ectodermal ridge 
AP   Alkaline phosphatase 
BAC   bacterial artificial chromosome 
bHLH  basic helix-loop-helix 
bp     base pairs 
BSA   bovine serum albumin 
BrdU  5-bromodeoxyuridine 
°C    degree Celsius 
CDK   Cyclin-dependent kinase 
cDNA  complementary DNA 
Ci   Cubitus interruptus 
CiA   Cubitus interruptus activator form 
CiR   Cubitus interruptus repressive form 
CKI   Casein kinase I 
CNS  Central nervous system 
C-terminus   Carboxy-terminus of a peptide 
Da    Dalton 
DAPI  4',6-Diamidin-2'-phenylindol-dihydrochlorid 
DMSO  Dimethylsulfoxide 
DNA   Deoxyribonucleic acid 
dNTP  deoxy-A/C/G/T-trisphosphate 
Dpp   Decapentaplegic 
EGFP  Enhanced green fluorescent protein 
EtOH   Ethanol 
FACS  Fluorescence-activated cell sorting 
Fgf (FgfR)  Fibroblast growth factor (receptor) 
GCP  Granular cell precursor 
GPC3  Glypican3 
GS   Glutamine synthetase 
h    hour(s) 
H2BmRFP1 Histone2B red fluorescent protein 1 
Hh   Hedgehog 
hpf    hours post fertilization 
IFT   Intraflagellar transport 
IPL    Inner plexiform layer 
ISH   In situ hybridisation 
kB    kilo bases 
M    mol/l 
MO   Morpholino oligonucleotide 
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mRNA  messenger RNA 
nls   nuclear localisation signal 
N-terminus  Amino-terminus (of a peptide) 
O/N   Overnight 
ONL   Puter nuclear layer 
PBS  Phosphate-buffered saline 
PCR   Polymerase chain reaction 
PFA   Paraformaldehyde 
pH3   phospho-serine10 Histone3 
PG13  13 copies of an optimal p53 binding site 
PI   Propidium Iodide 
PKA   Protein kinase A 
PKC  Protein kinase C 
Ptc   Patched 
PTU   1-phenyl-2-thiourea 
qPCR  quantitative PCR 
RBF  Drosophila retinoblastoma 
Rb   Retinoblastoma 
RGC   Retinal ganglion cells 
RNA   Ribonucleic acid 
RPE   Retinal pigmented epithelium 
RT    Room temperature 
Shh   Sonic hedgehog 
Smo  Smoothened 
TE    Tris/EDTA 
TGFβ  Transforming growth factor β 
TLF  Tupfel long fin 
TUNEL TdT-mediated dUTP-biotin nick end labeling 
ISH   In situ hybridization 
ZPA   Zone of polarising activity 
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