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Kurzzusammenfassung 
 
 
In allen fluoreszenz-mikroskopischen Methoden, die unterhalb des Abbeschen 
Beugungslimits arbeiten, ist das theoretisch unbegrenzte Auflösungsvermögen durch 
Photobleichen der Farbstoffe limitiert. Wiederholtes Abrastern der Probe, wie beispielsweise 
bei drei-dimensionalen Aufnahmen nötig, erhöht das Photobleichen, die Bevölkerung von 
Dunkelzuständen, oder, bei lebenden Zellen, die Phototoxizität. Speziell für solche 
Anwendungen müssen alle Möglichkeiten zur Bleichreduzierung ausgeschöpft werden. In 
dieser Arbeit werden verschiedene chemische und physikalische Ansätze zur 
Bleichreduzierung exemplarisch an stimulated emission depletion (STED) Mikroskopie, dem 
ersten und prominentesten Verfahren zur Bildgebung unterhalb der Beugungsgrenze, erörtert. 
Das hierfür konzipierte STED Mikroskop kann aufgrund eines neuartigen, einstellbaren 
Spektral- und Phasenfiltersystems schnell an neue Fluoreszenzfarbstoffe mit verbesserten 
chemischen und photophysikalischen Eigenschaften angepasst werden und konventionelle 
Filter mit festgeschriebenen Eigenschaften ersetzen. Ferner erlaubt der optische Aufbau eine 
schonende Beleuchtungsstrategie. Die erhöhte Auflösung ermöglicht eine viel genauere, lokal 
angepasste Beleuchtung der Probe. Hiermit werden drei-dimensionale STED Aufnahmen 
möglich und die Farbstoffpalette um die bislang ungenutzte, bleichanfällige Farbstoffklasse 
der Cumarine bis in den blaugrünen Bereich erweitert. Der Farbstoff selbst bietet einen 
weiteren Ansatzpunkt, um bleichbezogene Probleme zu vermeiden. Die Fluoreszenz von Mn 
dotierten ZnSe Quantum Nanokristallen wird hier erstmals durch Licht via excited-state 
absorption (ESA) moduliert. Dies ermöglicht eine neue Art der 
Fernfeldfluoreszenzmikroskopie mit beugungs-unbegrenzter Auflösung basierend auf 
Quantum Dots, die sich generell durch eine hohe Photostabilität auszeichnen. Die 
Probeneinbettung ist ebenfalls von entscheidender Bedeutung, um sphärische Abberationen 
und Streulicht zu vermeiden, und das Signal-zu-Rausch Verhältnis zu maximieren. Hierfür 
wird ein vollständig wasserlösliches Einbettmedium, 2,2´-Thiodiethanol (TDE) beschrieben, 
das die Brechzahl bis hin zu Immersionsöl anpassen kann und hochaufgelöste Aufnahmen tief 
in fixierten Proben ermöglicht.  
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Abstract 
 
 
In all subdiffraction fluorescence microscopy techniques, the theoretically infinite attainable 
resolution is, in practice, limited by the photobleaching of fluorophores. Repetitive scans of 
the sample required for e.g. three-dimensional recordings, increase photobleaching, dark state 
transitions and, in case of living cells, phototoxicity. To advance such experiments all 
possibilities to reduce the photobleaching must be explored. In this thesis, various chemical 
and physical approaches to tackle photobleaching are studied within the context of stimulated 
emission depletion (STED) microscopy, which is the first and most prominent method for 
subdiffraction imaging. The STED setup constructed for this purpose allows for the fast 
adaptation to new fluorescent dyes, and relies on a novel adaptive spectral and phase filter 
technique. Furthermore, the optical setup facilitates a gentle exposure strategy, in which the 
time that the dye is irradiated is significantly reduced. Three-dimensional images can 
therefore be recorded, and the palette of applicable dyes can be expanded to the blue-green 
regime by the so far unemployed coumarin derivatives, which are known to be prone to 
photobleaching. The label itself is another vantage point from which photobleaching 
limitations in subdiffraction microscopy can be circumvented. For the first time, light-driven 
modulation of the fluorescence from Mn-doped ZnSe quantum nanocrystals has been 
established through excited-state absorption (ESA). This enables a new type of far-field 
fluorescence microscopy with diffraction-unlimited resolution based on quantum dots, which 
are well known for their superior photostability. The correct sample embedding in the 
refractive index matching is also of high importance, if spherical aberrations and light 
scattering are to be minimized to optimize the fluorescence collection. For this purpose, an 
embedding medium, 2,2´-thiodiethanol (TDE) is introduced, which, by being miscible with 
water at any ratio, allows for refractive index matching up to that of immersion oil and 
making high resolution recordings deep within the sample feasible.  
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Zusammenfassung 
 

Die Fluoreszenzmikroskopie vereinigt Spezifität und Empfindlichkeit auf eine einzigartige 

Art und Weise, um sowohl dynamische Prozesse, als auch statische Verteilungen von 

Objekten zu untersuchen. Dies macht die Fluoreszenzmikroskopie zu einer 

Schlüsseltechnologie bei der Beantwortung biologischer Fragestellungen. Es gibt jedoch eine 

entscheidende Einschränkung in der Fernfeldmikroskopie: aufgrund der Beugung ist es nicht 

möglich, Licht auf einen beliebig kleinen Punkt zu fokussieren. Zwei Objekte, die weniger als 

die Hälfte der Wellenlänge des verwendeten Lichts voneinander entfernt sind, können nicht 

voneinander getrennt werden und erscheinen im Bild als ein einziger verwaschener Fleck. 

Ernst Abbe erkannte diese Beugungsgrenze vor über einem Jahrhundert und deren Gültigkeit 

wurde bis in die 90er Jahre nicht in Frage gestellt. Da alle Fluoreszenzmoleküle innerhalb des 

beugungsbegrenzten Fokus gleichzeitig angeregt werden, fluoreszieren sie auch ungefähr zur 

selben Zeit, was eine Unterscheidung der einzelnen Marker unmöglich macht.  

Das zeitlich getrennte, der Reihe nach erfolgende Auslesen der Fluoreszenz der einzelnen 

Objekte ist die grundlegende Idee, welche die Auflösung unterhalb der Beugungsgrenze 

ermöglicht. Hierfür werden die Marker eines Objekts in einen „signalgebenden“ Zustand 

überführt, während die anderen Marker in einem „dunklen“ Zustand verbleiben oder gebracht 

werden. Wenn die Marker in zwei konkreten Zuständen vorliegen können, beispielsweise in 

einem fluoreszenten und einem nicht-fluoreszenten Zustand, dann ist eine Auflösung 

unterhalb des Beugungslimits durch sukzessives Abfragen der hellen Marker möglich. 

Das prominenteste Verfahren zur Hochauflösung ist die stimulated emission depletion 

(STED) Mikroskopie, bei der dem Anregungslaserstrahl ein zweiter Laserstrahl genau 

überlagert wird. Der Strahl des zweiten Lasers weist in der Mitte eine Nullstelle auf und 

verhindert die Fluoreszenz am Randbereich des Anregungslasers durch stimulierte Emission. 

Mit beiden Lasern wird die Probe gezielt abgerastert wobei die Entstehung der Fluoreszenz 

auf die Nullstelle eingeschränkt, und somit die Information sequenziell ausgelesen wird. Die 

Koordinaten der Farbstoffmoleküle können auch durch einfache Schwerpunktsbestimmung 

der einzelnen mehr als das Beugungslimit voneinander entfernten, zufällig angeschalteten 

Fluoreszenz-Flecke festgelegt werden (photo-activated localization microscopy (PALM), 

stochastic optical reconstruction microscopy (STORM)). Die Nanoskopie eröffnet ungeahnte 

Details und neue Einblicke in zelluläre Systeme und Mechanismen. 
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Für das gezielte Auslesen von Ensembles (STED) werden hohe Intensitäten zur 

Signalunterdrückung am Rand des beugungsbegrenzten Flecks und Trennung der Signale 

benötigt. Je höher die Intensitäten zur Signalunterdrückung sind, desto besser lassen sich die 

einzelnen Objekte innerhalb des beugungsbegrenzten Fokus auflösen. Die Hochauflösung 

basierend auf stochastischem Auslesen von Einzelfarbstoffmolekülen (STORM, PALM) 

benötigt dagegen hohe Signalintensitäten, um die Objekte möglichst exakt lokalisieren zu 

können. Je mehr Photonen von einem Objekt durch lange Integrationszeiten oder hohe 

Anregungsintensitäten gesammelt werden, desto genauer kann das Objekt lokalisiert werden. 

In beiden Fällen sind die erhöhten Intensitäten oder langen Integrationszeiten mit erhöhten 

Lichtdosen und somit mit erhöhtem Photobleichen verbunden. Im Allgemeinen erfordert die 

hochauflösende Bildgebung kleinere Pixelgrößen im Vergleich zur konfokalen Mikroskopie, 

um die gesamte Information zu erfassen. Ein feineres Abrastern der Probe ist bei 

gleichbleibender Integrationszeit (abhängig von der Probe) jedoch mit höheren 

Beleuchtungsdosen und verstärktem Photobleichen, Aufbau von Dunkelzuständen und 

erhöhter Phototoxizität verbunden. Photobleichen wird durch irreversible chemische 

Reaktionen der Fluoreszenzfarbstoffe im angeregten Zustand mit umgebenden reaktiven 

Spezies (Radikale, Oxidationsmittel) verursacht. Zu starkes Photobleichen verhindert immer 

die Hochauflösung, da es die maximal detektierbare Photonenanzahl beziehungsweise die 

maximale Intensität zur Signalunterdrückung bei nullstellenbasierten 

Hochauflösungsmethoden limitiert. Die Verringerung des Photobleichens, der Phototoxizität 

und des Aufbaus von Dunkelzuständen ist deshalb eine der wichtigsten Aufgaben vor allem 

im Streben nach immer besserer Auflösung, der Hochauflösung von zellulären Prozessen oder 

der Hochauflösung in drei Dimensionen.  

Im Rahmen dieser Arbeit werden grundlegende chemische und physikalische Strategien zur 

Reduzierung des Photobleichens, der Phototoxizität und des Aufbaus von Dunkelzuständen in 

der hochauflösenden optischen Mikroskopie entwickelt und diskutiert. 

 

Erstens, die bestmögliche Ausnutzung des Emissionsspektrums eines Fluoreszenzfarbstoffs 

garantiert eine ausreichende Signalstärke bei idealer Anregungsintensität und minimiert daher 

das Photobleichen. In dieser Arbeit wird ein Aufbau zur STED-Mikroskopie vorgestellt, der 

sich durch hohe Flexibilität auszeichnet, und eine schnelle und verlässliche Anpassung an neu 

entwickelte Farbstoffe mit verbesserten Eigenschaften erlaubt. Um neue Farbstoffe und 

alternative Laser einsetzen zu können, ist es von Vorteil, wenn verschiedene Bauteile eines 

optischen Aufbaus über einen breiten Wellenlängenbereich anpassbar sind. In dieser Arbeit 
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wird ein einstellbarer Spektral- und Phasenfilter vorgestellt. Als Spektralfilter werden 

typischerweise Interferenzfilter eingesetzt, die unveränderbare Eigenschaften besitzen. Solche 

Interferenzfilter können durch das hier vorgestellte, einstellbare Filtersystem ersetzt werden. 

In den nullstellenbasierten Hochauflösungsmethoden sind die Ansprüche an die Filtersets sehr 

hoch. Im Falle der STED-Mikroskopie wird ein zweiter Laserstrahl zur Signalunterdrückung 

verwendet, dessen Wellenlänge notwendigerweise innerhalb des Fluoreszenzspektrums liegt. 

Ein einstellbarer, Notch- oder Bandpassfilter ist daher sehr wünschenswert, um das sehr 

intensive STED-Licht zu entfernen ohne gleichzeitig zu viel Fluoreszenzlicht zu opfern.  

Der hier vorgestellte Phasenfilter zur Erzeugung der Nullstelle bietet neben der Anpassbarkeit 

an verschiedenste Laserlinien zusätzlich die Möglichkeit einer deutlichen Vereinfachung des 

optischen Aufbaus. Sowohl der Anregungs-, als auch der STED-Strahl können aus einer 

Laser- oder Faserquelle stammen und sind somit per se genau überlagert. Der Phasenfilter 

wird von beiden Strahlen durchlaufen und erzeugt aufgrund der Dispersion eine Nullstelle für 

den STED-Strahl, und lässt den blauverschobenen Anregungs-Strahl unverändert.  

 

Zweitens, adaptive Probenbeleuchtung mit Hilfe der nullstellenbasierten 

Hochauflösungsinformation. Die verbesserte Auflösung ermöglicht eine gezielte Beleuchtung 

der Probe im Falle der nullstellenbasierten Hochauflösungsmethoden (STED, excited-state 

absorption (ESA)). Im Rahmen dieser Arbeit wird eine effektive Methode beschrieben, um 

die Gesamtzahl an Anregungs- und Signalunterdrückungszyklen eines Fluoreszenzmoleküls 

zu reduzieren (reduction of excitation and signal suppression cycles (RESCue)) und somit das 

Photobleichen zu minimieren. Die Bleichverringerung ist anwendbar auf nullstellenbasierte 

Hochauflösungsmethoden, bei denen ein metastabiler „Dunkel“-Zustand genutzt wird (STED, 

ESA), und wird in dieser Arbeit exemplarisch an STED-Mikroskopie gezeigt. Sie erfolgt ohne 

Einbußen bei Auflösung oder Aufnahmegeschwindigkeit. Die Probe wird nur dann ausgiebig 

beleuchtet, wenn das Signal nicht durch einen bestimmten Prozess wie beispielsweise 

stimulierte Emission oder ESA unterdrückt wird beziehungsweise überhaupt vorhanden ist. 

Die Entscheidung über eine länger andauernde Beleuchtung wird in Abhängigkeit des 

Photonenflusses während eines Bruchteils der Integrationszeit auf einem Pixel getroffen. 

Wenn von einem Objekt eine bestimmte Anzahl von Fluoreszenzphotonen während des ersten 

Teils der Integrationszeit detektiert werden, bleiben die Laser für die verbleibende Zeit der 

Integrationsdauer angeschaltet. Die augenblickliche Kenntnis der genauen Position des 

fluoreszierenden Objekts innerhalb der Probe hilft bei der Verringerung der Anzahl der 

Schaltzyklen und deshalb bei der Verringerung des Photobleichens, der Phototoxizität, des 
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Aufbaus von Dunkelzuständen und der Ermüdung von Schaltprozessen, wichtige Hürden in 

allen Nanoskopiemethoden. Die STED-Mikroskopie und ihre verbesserte Auflösung kann 

somit die Fluoreszenz sogar stärker erhalten als die Konfokalmikroskopie, wie an 

fluoreszenten Partikeln eindrucksvoll gezeigt wird. Die Effizienz dieser Methode wird 

ebenfalls durch eine Reihe biologischer Anwendungen untermauert. Eine Bleichreduktion um 

den Faktor vier wird in Atto565 markierten Glialzellen erzielt. Ganz allgemein ermöglicht der 

RESCue-Modus hochaufgelöste Aufnahmen, die mit hohen Beleuchtungsdosen verbunden 

sind, wie beispielsweise Aufnahmen in drei Dimensionen. Mit Hilfe der adaptiven 

Beleuchtungsstrategie kann nun die bislang unerschlossene, bleichanfällige Farbstoffklasse 

der Cumarine in der STED-Mikroskopie eingesetzt werden.  

 

Drittens, Optimierungen der Marker selbst bezüglich Photostabilität, hoher Emissionsraten, 

Schaltbarkeit und zusätzlicher photo-physikalischer Eigenschaften ebnen den Weg zu 

Ultrahochauflösung und Hochauflösung von lebenden Zellen. Neue, kontrollierbare 

Realisierungen von „signalgebenden“ und „dunklen“ Zuständen könnten im Falle der 

nullstellenbasierten Hochauflösungsmethoden mit geringeren Intensitäten zur 

Signalunterdrückung auskommen. Dies kann in verringertem Photobleichen, Phototoxizität 

und Aufbau von Dunkelzuständen resultieren. Darüber hinaus tolerieren Marker mit 

verbesserter Photostabilität höhere Intensitäten zur Signalunterdrückung, was direkt zu 

höherer Auflösung führt im Falle der nullstellenbasierten Hochauflösungsmethoden 

beziehungsweise zu einer exakteren Bestimmung der Koordinaten der Fluoreszenzfarbstoffe 

bei den stochastischen Ausleseverfahren. Quantum Dots als Fluoreszenzfarbstoffe sind 

bekannt für ihre hervorragende Photostabilität. In dieser Arbeit wurde die Modulation der 

Fluoreszenz von Mn dotierten ZnSe Quantum Nanokristallen durch Licht erreicht. Hierbei 

konkurriert ein Absorptionsprozess der Kristalle im angeregten Zustand (excited-state 

absorption (ESA)) direkt mit der spontanen Emission. Diese Kontrolle über elektronische 

Übergänge auf optischem Wege ermöglicht eine neue Art der 

Fernfeldfluoreszenzmikroskopie mit beugungs-unbegrenzter Auflösung basierend auf 

Quantum Dots. 

 

Viertens, Optimierung der optischen Bedingungen der „letzten Linse“ durch Einbettung der 

Probe in ein Medium, das den Brechungsindex genau anpasst, führt zu einem verbesserten 

Signal-zu-Rausch Verhältnis und einem schärferen fokalen Lichtfleck, was wiederum 

verringerte Beleuchtungsdosen nach sich zieht. Andererseits verhindert Streulicht, das durch 
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eine Fehlanpassung des Brechungsindex verursacht wird, hochauflösende Bildgebung tief in 

der Probe. Das Einbettmedium selbst besitzt die Eigenschaft eines Antioxidanz und kann 

somit das Photobleichen der Fluoreszenzfarbstoffe verhindern, da es in sehr hohen 

Konzentrationen zur Verfügung steht. Höhere Beleuchtungsdosen können so besser toleriert 

werden. 

Der Gebrauch von Objektiven mit hoher numerischer Apertur wird von sphärischen 

Abberationen beeinträchtigt, die durch sprunghafte Änderung der Brechungsindices zwischen 

der Immersion und der Probeneinbettung hervorgerufen werden. Besonders wenn mehr als 

10 µm tief in die Probe fokusiert wird, führen Fehlanpassungen der Brechungsindices zu 

einem deutlichen Verlust an Signalintensität und Auflösung. Der genaue Abgleich der 

Brechungsindices von Probeneinbettung und Immersion löst diese Probleme. Es gibt nur 

wenige Substanzen, die sowohl einen einstellbaren Brechungsindex aufweisen, als auch mit 

der Fluoreszenzmikroskopie verträglich sind. In der vorliegenden Arbeit wird ein nicht 

toxisches, vollständig wasserlösliches Einbettmedium, 2,2´-Thiodiethanol (TDE), vorgestellt, 

mit dessen Hilfe sich der durchschnittliche Brechungsindex der Probe von 1.333 (Wasser) bis 

hin zu 1.518 (Immersionsöl, nD bei 23°C) genau einstellen lässt. Somit können nach 

Einbettung in TDE tief in fixierten Proben hochaufgelöste Aufnahmen mit Hilfe von 

Objektiven, die höchste Aperturwinkel aufweisen, gemacht werden. Generell hat die 

Einbettung in TDE das Potenzial, die Glyceroleinbettung überflüssig zu machen. Die 

Änderungen der Brechungsindices innerhalb der Probe aufgrund dichter, zellulärer 

Substrukturen wie zum Beispiel am Kern werden weitestgehend aufgehoben. Zusätzlich 

erhält TDE aufgrund seiner Eigenschaft als Antioxidanz die Quantenausbeuten der meisten 

gängigen Fluoreszenzfarbstoffe. Die optischen und chemischen Eigenschaften dieses neuen 

Einbettmediums werden hier diskutiert und Anwendungen auf verschiedenartig gefärbte 

Zellen und zelluläre Substrukturen aufgezeigt. Der Einfluss des Einbettungsmediums auf 

verschiedene Bildgebungsverfahren (Konfokalmikroskopie, 4Pi-Mikroskopie, STED-

Mikroskopie) wird gezeigt.  

 

 

Alle hier dargestellten Strategien können miteinander kombiniert werden, um bleichbezogene 

Probleme zu lösen. Die Grundvoraussetzung für die Bleichreduzierung durch RESCue ist eine 

hervorragende Auflösung. Eine gute Anpassung der Brechungsindices, photostabile 

Farbstoffe und eine effiziente Detektion sind Grundvoraussetzungen für die hochauflösende 

Mikroskopie. Die verbesserten Bleicheigenschaften können in noch höhere Auflösung 
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investiert werden. Es ist auch denkbar, dass die Hochauflösung von dynamischen Prozessen 

durch Bleichreduzierung erst ermöglicht wird, da dabei wiederholt abgerastert werden muss. 

In dieser Arbeit wird gezeigt, wie die Verringerung des Photobleichens die Bildgebung 

hochaufgelöster Details in drei Dimensionen und den Einsatz bleichanfälliger Farbstoffe in 

der STED-Mikroskopie erlaubt. 

 

Verglichen mit den stochastischen Hochauflösungsmethoden (STORM, PALM) bietet die 

STED-Mikroskopie eine deutlich überlegenere Zeitauflösung. Bei 30 Bildern in der Sekunde 

lassen sich beispielsweise synaptische Vesikel in lebenden Zellen mit hoher lateraler 

Auflösung untersuchen. Gezieltes Auslesen von Farbstoffensembles ist nicht nur zeitlich 

schneller als stochastisches Auslesen von Einzelmolekülen; es bietet zusätzlich die 

Möglichkeit, die Beleuchtung analog zu RESCue lokal zu dosieren und somit Photobleichen, 

Aufbau von Dunkelzuständen und Phototoxizität zu reduzieren ohne Auflösung einzubüßen. 

Ultimative Ergebnisse lassen sich in Zukunft durch spezielle Konstruktion der 

Beleuchtungsfunktion in Kombination mit der Manipulation der „Dunkel-“Zustände 

erreichen.  

Um zelluläre Vorgänge besser verstehen zu können, ist es das Ziel, dynamische Prozesse und 

Wechselwirkungen zellulärer Faktoren in lebenden Systemen dreidimensional mit höchster 

räumlicher und zeitlicher Auflösung zu untersuchen. Die Verringerung des Bleichens und der 

Phototoxizität wird hierbei eine entscheidende Rolle spielen. 
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Summary 
 

The unique features of fluorescence microscopy to analyze dynamical processes and static 

distributions in an extraordinary sensitive and specific way make fluorescence microscopy to 

the key technology for answering biological questions. However, there is one crucial 

drawback of light microscopy, namely their resolution imposed by diffraction. Details that are 

closer than half the wavelength of light can not be discerned. More than one century ago 

Ernst Abbe discovered the diffraction barrier which has become a paradigm ever since. As all 

fluorescence markers within a diffraction limited focal spot are excited simultaneously, they 

all emit at about the same time, rendering their separation virtually impossible.  

The key concept to overcome this problem is to read-out the fluorescent signals sequentially. 

To achieve that, some markers of a feature are transferred to a signal generating, “bright” 

state, while keeping the other markers in a “dark” state. The realization of a fluorescent and a 

non-fluorescent state of a dye molecule makes subdiffraction resolution possible by 

successively reading out the bright markers.  

The most prominent high resolution method is stimulated emission depletion (STED) 

microscopy. Here, the excitation laser is superimposed by a second laser. The beam of the 

second laser displays a zero in the center and prevents the fluorescence in the outer rim of the 

excitation spot due to stimulated emission. The sample is scanned by both beams in a targeted 

manner whereas the emergence of fluorescence is confined to the zero and read out 

sequentially. The coordinates of the fluorescent features can also be determined by the 

centroids of the fluorescence spots switched on randomly (photo-activated localization 

microscopy (PALM), stochastic optical reconstruction microscopy (STORM)). These 

nanoscopic techniques disclose unexpected details and new insights into cellular systems. 

 

For targeted readout of ensembles (STED), high signal suppression intensities are needed to 

separate the signals. The higher the signal suppression intensities, the better the possibility to 

resolve objects. The high resolution techniques based on stochastical read-out of single dye 

molecules (STORM, PALM) lack high photon counts to locate the features of interest 

accurately. The more information is gathered from an object due to higher dwell times or 

excitation intensities, the better it can be located. In either case, the increased intensities or 

longer pixel dwell times mean higher light doses and therefore pronounced photobleaching. 

Generally speaking, imaging with a high spatial resolution calls for smaller pixel sizes 

compared to confocal imaging in order to collect all the information. However, if the pixel 
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dwell time is kept constant (depends on the sample), a more precise dissection of the sample 

is accompanied by higher light doses affecting the sample, and therefore pronounced 

photobleaching, higher dark state transition rates and more severe phototoxicity. 

Photobleaching is caused by irreversible chemical reactions of the dye molecules in the 

excited state with surrounding reactive species (radicals, oxidative agents). Intense 

photobleaching always hinders subdiffraction imaging because it limits the maximal count 

rate or the maximal signal suppression intensities in zero based high resolution techniques. 

This renders the reduction of photobleaching, dark state transition rates and phototoxicity a 

bottle neck especially in the aim to achieve super high resolution images, high resolution live 

cell imaging and three-dimensional recordings.  

In the framework of this thesis, several physical and chemical strategies are exploited to 

reduce photobleaching, dark state transition rates and phototoxicity in subdiffraction 

fluorescence microscopy techniques.  

 

First, maximal exploitation of the emission spectrum of a fluorescent dye ensures a sufficient 

signal-to-noise ratio at ideal excitation intensities and therefore minimizes photobleaching. In 

this thesis, a STED setup is described, which is optimized for flexibility to adapt to new dyes 

with improved properties. To employ new dyes and alternative laser lines it would be 

advantageous, if the components of the optical setup are tunable with regard to the 

wavelength. A tunable phase and spectral filter is described here. Interference filters with 

fixed properties are typically used as spectral filters in conventional microscopes. The 

adaptive spectral filter reported here has the potential to replace standard thin film 

interference filters. The requirements on the filter sets are stringent, if intense signal 

suppression beams are applied to increase the resolution. In the case of STED microscopy, the 

beam is spectrally located within the emission spectrum of the dye. An adaptive notch- or 

bandpass filter that stops the intense STED light without wasting to much fluorescence light is 

highly desirable. 

In addition to the adaptive spectral filter, a tunable phase filter to generate an intensity zero is 

described here. The new phase filter approach allows one to match every laser line and offers 

simultaneously a way to simplify a STED setup. The excitation beam as well as the STED 

beam can be provided by one laser or fiber source and are therefore inherently aligned. Both 

beams are passing through the phase plate and due to dispersion, a zero is generated for the 

STED beam whereas the excitation beam stays unaltered. 
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Second, adaptation of the light exposure affecting the sample due to the zero based high 

resolution information. A better resolution enables a more accurate exposure of the sample in 

case of zero based high resolution modalities (STED, excited-state absorption (ESA)). Here, 

an effective method is demonstrated to reduce the overall number of excitation and emission 

suppression cycles that a fluorescent molecule undergoes in all zero based high resolution 

modalities if the non-fluorescent state is metastable (reduction of excitation and signal 

suppression cycles (RESCue)). The effectiveness of this method is shown exemplarily on 

STED microscopy without suffering in loss in resolution or imaging speed. It relies on 

exposing the sample in extenso only if the fluorescence signal is not inhibited by any process 

(stimulated emission, ESA). The exposure decision is made depending on the photon flux 

during a fraction of the pixel dwell time. If a certain number of fluorescence photons from an 

object is detected within a first part of the pixel dwell time, the lasers remain on for the 

residual dwell time. The instantaneous knowledge of the accurate position of the fluorescent 

entities within the sample can be adapted to reduce the number of switching cycles and 

therefore to reduce photobleaching, dark state population, phototoxicity and switching fatigue 

significantly, all of which are important obstacles in every nanoscopic imaging mode. As 

shown with fluorescent beads, the STED mode and its improved resolution is able to preserve 

fluorescence even better than the confocal mode. The efficiency of this method is also 

demonstrated in varying biological samples. An up to four fold decrease in photobleaching is 

observed while imaging Atto565 labelled glial cells. In general, the RESCue mode enables 

subdiffraction imaging connected to high light doses such as three-dimensional imaging. Due 

to the adaptive light exposure strategy, the so far unexploited dye class of coumarin 

derivatives which is known to be prone to photobleaching, can now be employed for STED 

microscopy. 

 

Third, optimization of labels themselves regarding photostability, fluorescence turnover, 

switchability and other photophysical properties paves the way for ultra high resolution 

imaging and high resolution live cell imaging. New realizations of “signal-giving” and “dark” 

states may work with lower signal suppression intensities in the case of zero based high 

resolution methods, leading to a lower light dose and reduced photobleaching, dark state 

transition rates and phototoxicity. Moreover, labels with improved photostability tolerate 

higher signal suppression intensities leading to higher resolution in the case of zero based 

techniques and to a more accurate centroid determination of the fluorescence spot for 

stochastic read-out methods. Quantum dots are fluorescent entities known for their superior 
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photostability. In this thesis, light-driven modulation of the fluorescence from Mn-doped 

ZnSe quantum nanocrystals has been established through ESA and its direct competition with 

spontaneous emission. Such optical control over electronic transitions enables a new type of 

far-field fluorescence microscopy with diffraction-unlimited resolution based on quantum 

dots. 

 

Fourth, optimization of the optical conditions of the “last lens”, the sample, with the help of a 

refractive index matched embedding media leads to an improved signal-to-noise ratio and 

reduced blurring of the focal spot which in turn makes lower light doses possible. On the 

other hand, stray light caused by refractive index mismatch hinders high resolution imaging 

deeply inside the sample. Additionally the embedding media itself exhibits good antioxidant 

properties. So the antioxidant is inserted as an antifade in high concentrations enabling higher 

light doses without disturbing the optical properties.  

The use of high numerical aperture immersion lenses in optical microscopy is compromised 

by spherical aberrations induced by refractive index mismatch between the immersion system 

and the embedding medium of the sample. Especially when imaging more than 10 µm deep 

inside the specimen, the refractive index mismatch results in a noticeable loss of image 

brightness and resolution. A solution to this problem is to match the index of the embedding 

medium to that of the immersion system. Unfortunately, not many mounting media are known 

that are both index tunable as well as compatible with fluorescence imaging. A non-toxic 

embedding medium, 2,2´-thiodiethanol (TDE) is introduced, which, by being miscible with 

water at any ratio, allows for fine adjustment of the average refractive index of the sample 

ranging from that of water (1.333) to that of immersion oil (nD = 1.518 at 23°C). TDE thus 

enables high resolution imaging deep inside fixed specimens with objective lenses of the 

highest available aperture angles and has the potential to make glycerol embedding redundant. 

The refractive index changes due to larger cellular structures, such as nuclei, are largely 

compensated. Additionally, as an antioxidant, TDE preserves the fluorescence quantum yield 

of most of the fluorophores. The optical and chemical properties of this new medium as well 

as its application to a variety of differently stained cells and cellular sub-structures are 

described. The impact of the embedding media was tested for different imaging modes 

(confocal, 4Pi and STED microscopy).  
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All the strategies presented here can be combined to tackle photobleaching related problems. 

The basic requirement for RESCue is a superior resolution. Refractive index matching, 

photostable dyes and an efficient detection are basic requirements for high resolution 

imaging. The improved bleaching properties can be reinvested in even higher resolution, 

allowing high resolution imaging of dynamical processes that require repeated scans, or 

enables imaging in three dimensions. 

 

STED microscopy offers an excellent time resolution compared to stochastically based high 

resolution methods (STORM, PALM). A frame rate of 30 images per second for example 

allows to analyze synaptic vesicles in living cells with a superior lateral resolution. Targeted 

read-out of fluorescence ensembles is not only faster compared to the stochastic read-out of 

single molecules, but also implies the possibility to adapt the sample exposure analogous to 

RESCue locally and therefore, to avoid photobleaching, dark state transitions and 

phototoxicity without sacrificing resolution enhancement. In the future, extraordinary results 

will be gained by combining “point spread function engineering” and “dark state 

engineering”. To understand the mechanisms behind life it is essential to quantitatively 

analyze dynamic processes and interactions of cellular factors in living systems three-

dimensionally with the highest temporal and spatial resolution. For that, the reduction of 

photobleaching and phototoxicity plays a crucial role. 
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Chapter 1 
 

Introduction 
 
 
In natural sciences, processes and conditions are observed, described, interpreted in a bigger 

context and discussed with people from other special fields. Nature spans a wide range of 

dimensions: from the size of protons and neutrons to the dimensions of the planetary systems 

or galaxies. Only a small part is visible to the naked eye. The bulk is hidden in the micro- or 

macrocosm. Early in history devices such as the microscope were introduced for observing 

processes and structures in small dimensions. Cell biology essentially started with light 

microscopy, which still is an essential tool. In recent years, microscopic techniques became 

ever more important, mostly owing to new developments in the field of specific labelling 

techniques and imaging of individual cellular elements and the reconstruction of their three-

dimensional architecture. A big advantage of light microscopy is that movements and 

structures of distinct cellular compartments can be observed in living cells or organisms. One 

important property of a light microscope is its resolution which is defined as the distance of 

two similar objects that are only just imaged separately. The resolution sets the limit for 

conventional microscopy hindering the unraveling of a multitude of biological phenomenon. 

The development of new microscopy techniques is therefore a very active field of research. 

 

A milestone in the development of light microscopy was the derivation of the wave theory of 

optical imaging in 1873 by Ernst Abbe (Abbe, 1873; Abbe, 1884). Abbe demonstrated how 

the diffraction of light by the specimen and the objective lens determines the resolution. This 

fact became a fundamental law of physics. The diffraction limit declares that it is not possible 

to focus light to an infinitesimal small spot by means of far-field optics. The lateral size of the 

focused spot is limited to ∆x = 0.5λ / NA, with λ denoting the wavelength of the focused 

light, and the numerical aperture NA = n*sinα describing the light collecting ability of the 

applied objective lens. The half cone angle α of light included by the objective lens and the 

refractive index n are technical obstacles. In the visible range (400 to 700 nm), the lateral 

resolution is limited to approximately 200 nm. Various constituents in cells like the ribosomes 

(macromolecular machines responsible for translation) with a size of 20 nm are much smaller 

than the resolution limit (Alberts, 2002). These structures would be imaged as a blurred spot 

without revealing any structural information. A strategy to resolve such dimensions is the 

application of light with a shorter wavelength according to Abbe´s law. The X-ray microscope 
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discerns details in the range of 20 to 30 nm, the electron microscope (EM) is even capable of 

resolving 0.1 nm being suitable to discern molecular structures with a de Broglie wavelength 

of 0.004 nm. Aberrations of an electron lens are harder to correct, leading to discrepancy 

between theory (Abbe) and experiment (Alberts, 2002). The major drawback however is the 

high-energy radiation prohibiting the observation of living cells. Furthermore, the samples for 

EM have to be cut into thin slices because of the limited penetration depth of the radiation, 

thereby disturbing three-dimensional information. Often the contrast of structures with 

different densities has to be enhanced. Techniques for increasing the resolution in light 

microscopy are therefore highly exciting for biology, medicine and related research fields. 

 

Another milestone was the introduction of fluorescence in light microscopy as a contrast due 

to its unchallenged sensitivity (Coons et al., 1942). With the aid of antibody specificity, 

immuno-fluorescent techniques became widespread in many branches of biology and 

medicine, and immunocytochemistry became established as an important subdiscipline of 

immunology and cytochemistry. The application of the green fluorescent protein (GFP) as a 

marker paved the way for fluorescence microscopy of living cells (Chalfie et al., 1994) and 

visualisation of dynamical processes because the cell itself produces the fluorescent label and 

links it directly to the desired protein. The importance of such observations in living cells was 

particularly demonstrated by the award of the Nobel prize for fluorescent proteins in 2008. 

Like no other contrast fluorescence offers an enormous variety of additional, detectable 

variables depending on the chemical surrounding. The intensity, fluorescence lifetime, 

emission spectra and the polarization of the emitted light sense the local environment in the 

vicinity of the fluorescence dye and allow discrimination from undesired signals such as 

autofluorescence. Together with coincidence analysis, the number of emitters within the focal 

spot can be determined and correlated to the number of proteins located in a distinct part of 

the cell (Weston et al., 2002). The possibility to manipulate fluorescence parameters 

permitted the development of high resolution techniques (STED, STORM, PALM) which are 

described in detail in the chapter 2.  

Not only imaging was strongly influenced by fluorescence, but also spectroscopic approaches. 

A mechanism called resonance energy transfer (RET) provides a powerful tool to probe 

distances in the range of 1 to 10 nm well below the diffraction limit. RET is an 

electrodynamic phenomenon and occurs between a donor molecule in the excited state and an 

acceptor molecule in the ground state. The donor typically emits at shorter wavelengths 

overlapping with the absorption spectrum of the acceptor. A long ranged dipole-dipole 
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interaction between the donor and the acceptor causes radiation-less energy transfer which 

leads to fluorescence of the acceptor, indicating a certain transfer efficiency (Jares-Erijman 

and Jovin, 2003). The rate of energy transfer depends on the extent of spectral overlap, the 

relative orientation of donor and acceptor transition dipoles and the distance between donor 

and acceptor. The transfer efficiency varies with the 6th power of the distance between 

acceptor and donor. RET senses conformational changes and interactions of cellular factors 

and has been successfully applied to biomedical diagnostics (Lakowicz, 2006; Hink et al., 

2002).  

Another spectroscopic approach takes advantage of photoinduced electron transfer (PET), 

which is very short-ranged and even capable to diagnose distances in the picometer range. In 

PET, a complex between the electron donor and the electron acceptor is formed after 

excitation and the transfer of an electron from donor to acceptor. This charge transfer 

complex can return to the ground state without the emission of a photon (Lakowicz, 2006).  

Obviously, the spectroscopic approaches do not provide the exact coordinates of the involved 

partners. With the aid of fluorescence correlation spectroscopy (FCS), diffusion of molecules, 

ligand-macromolecule binding, molecule clustering, rotational diffusion, internal 

macromolecule dynamics, intersystem crossing and excited-state reactions can be investigated 

in solution as well as in living cells (Schwille et al., 1999).  

 

The confocal microscope as described by Minsky in the year 1957 was another milestone 

enabling for the first time optical sectioning and therefore three-dimensional reconstruction of 

whole cells (Minsky, 1957). In contrast to wide field techniques, where the specimen is 

illuminated homogeneously, the specimen is scanned point by point by a laser, and the 

fluorescence light which is not originating from the focus is removed by a pinhole. The 

resolution in the axial direction is around 500 nm and by a factor of three smaller than the 

lateral resolution. Featuring single molecule sensitivity, the confocal microscope has become 

the gold standard for biological imaging and spectroscopic and analytical applications, (Nie et 

al., 1994).  

Another strategy to overcome the limited sensitivity and spatial resolution of conventional 

fluorescence microscopy due to out of focus and scattered fluorescence is the application of 

multi-photon microscopy (MPM). MPM is based on molecular excitation by multi-photon 

absorption and is usually combined with laser-scanning microscopy (LSM) (Denk et al., 

1990). The excitation is almost entirely confined to the high intensity region near the focal 

point because of the superlinear character of the multi-photon excitation of the fluorophores. 
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The background is therefore significantly decreased. No confocal spatial filter is required 

because excitation of fluorescence outside the focus is highly improbable. The probability of 

excitation scales with the n-th power of intensity, where n denotes the number of photons 

involved. Advantages compared to confocal microscopy are reduced photodamage and 

photobleaching in out-of-focus regions and the superior penetration depths provided by the 

infrared light employed here. MPM was successfully applied to vital imaging of biological 

systems, especially to high resolution imaging inside highly scattering brain tissue in vivo 

(Denk et al., 1994). However, in terms of resolution, the MPM cannot surpass the 

conventional one-photon excitation, since the doubled or tripled excitation wavelength in 

MPM cancels out the effect of smaller effective focal volumes due to quadratic or cubic 

excitation probability (Kastrup et al., 2005).  

 

In the recent years, every endeavour has been made to increase the resolution in the axial 

direction. The most prominent candidates which arose from these efforts were the I5M and the 

4Pi techniques (Gustafsson et al., 1999; Egner and Hell, 2005). The I5M superimposes 

counter-propagating, planar waves to generate an interference pattern, the aperture 

enhancement is only implemented for the detection. If a sufficiently small fluorescent object 

is scanned through the standing wave, it is detected as a narrow main maximum with axially 

shifted side maxima. The side maxima are then mathematically removed by a deconvolution 

algorithm. However, the reconstruction of three-dimensional I5M data is challenged by very 

prominent side maxima. In 4Pi microscopy, two objectives with a high numerical aperture are 

used to coherently superimpose the excitation and the fluorescent light. Compared to the I5M 

technique, the excitation is performed by focused light. Two spherical wave caps are 

superimposed rendering the side lobs significantly smaller. According to Abbe, the 

application of two objectives leads to a doubled cone angle and therefore pushes diffraction to 

its limit. For reliable deconvolution, the side maxima are decreased further by two-photon 

excitation. The applicability of 4Pi to living cells was demonstrated with an axial resolution 

of 80 nm (Gugel et al., 2004). 

 

Likewise motivated by insufficient resolution for a multitude of biological problems, optical 

near field methods were developed and successfully applied. In total internal reflection 

(TIRF) microscopy, the evanescent field generated directly above the glass surface excites 

fluorescent molecules up to an axial depth of approximately 100 nm creating one, very thin 

optical section. A light beam, incident on an interface separating two regions of different 
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refractive indices, is reflected totally if the incident angle exceeds the critical angle. Quantum 

mechanics calls for a portion of light which penetrates into the distal phase. This is called the 

evanescent wave; its strength decays exponentially (Pawley, 2006). Another method which is 

not based on probing the sample with focused light and therefore not subjected to the 

diffraction limit is scanning near field optical microscopy (SNOM). The trick here is to use a 

nano-sized tip featuring a light-emitting aperture much smaller than the wavelength of the 

light coupled into the tip. Light passing through the aperture illuminates the sample which is 

placed in its near field at a distance much closer than the wavelength. The resolution is then 

directly determined by the dimension of the point-like source, and is typically around 50 to 

100 nm (Lewis, 1984; Pohl, 1984). All methods based on optical near fields are however 

restricted to surfaces limiting their applicability. Similar arguments apply to the more recent 

and intriguing concept of imaging with a material of negative refractive index (Pendry, 2000). 

The need to collect non-propagating waves requires the sample to be placed on top of the 

material (Podolskiy and Narimanov, 2005). 

 

All of the so far mentioned methods have addressed specialized problems, but none of them 

tackled the fundamental problem itself, namely the diffraction limit. A genuine breakthrough 

was accomplished in the year 1994. The idea to establish and control two states of a 

fluorescent molecule, namely a fluorescent and a non-fluorescent state, during image 

formation led to a new formulation of Abbe´s law which had been a paradigm ever since (Hell 

and Wichmann, 1994). The resolution in all spatial directions is thus no longer limited by 

diffraction. The general concept behind subdiffraction resolution is called reversible saturable 

optical fluorescence transition RESOLFT (Hell, 2003). The most prominent representative of 

RESOLFT is stimulated emission depletion (STED) microscopy. In STED microscopy, the 

fluorophores are excited by a Gaussian beam and the fluorescence is quenched by a second, 

doughnut-shaped beam featuring a zero in the center. Only those fluorophores located right at 

the zero are not influenced by the signal suppression beam and remain therefore in the 

fluorescent state. In theory, the zero can theoretically be confined to an infinitely small point 

by increasing the power of the STED beam. A recent example demonstrating the power of 

STED microscopy in terms of live cell compatibility was the dissecting of synaptic vesicle 

movement at video rate by Westphal et al., 2008. 

Instead of the targeted read-out used in STED microscopy, it is also possible to read out the 

image information stochastically and determine the centroid of the isolated fluorescence spot. 

This is realized in photo-activated localization microscopy (PALM) or stochastic optical 
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reconstruction microscopy (STORM) (Betzig et al., 2006; Rust et al., 2006). However, the 

common denominator of all these nanoscopic techniques is to read out the fluorescent signals 

sequentially within a volume defined by diffraction. The combination of both, “point spread 

function engineering” as applied in 4Pi or STED microscopy on the one hand and “dark state 

engineering” (applied in STORM- or PALM-related techniques) on the other hand, will result 

in a highly promising tool for ultra resolution. The ultimate goal is to provide a tool for cell 

biology allowing to create a quantitative map of different cellular compartments and factors in 

living systems with unprecedented resolution to establish new, empirical based models of life.  

 

 

The limited number of emitted photons actually collected by a microscope is a general 

problem, no matter whether it is restricted by dye properties, photobleaching, detectors and/or 

optics. If the photon count is below the noise level, an image can not be recorded. In the mid 

of the 90´s, it was by far not obvious to what extent principles like STED were applicable, 

since nanoscopy places high demands on fluorescent labels and sample embedding. The dyes 

have to exhibit two states, a bright “signal-giving” and a “dark” state, and the switching 

between these two states should be manipulable and robust. STED microscopy for example 

takes advantage of the non-linear process of fluorescence quenching by stimulated emission 

to confine the origin of fluorescence to a subdiffraction area. The higher the intensity of the 

signal suppression (STED) beam, the stronger the confinement. On the other hand, those 

subdiffraction techniques based on stochastical readout of single molecules rely on a high 

number of detected photons from each single molecule in order to determine the coordinates 

of the fluorescent molecule with high accuracy. To gather high photon counts in a reasonable 

time, it is necessary to apply high excitation light intensities. The subdiffraction microscopy 

approaches are highlighted in chapter 2. In either case, high excitation light or high signal 

suppression intensities are connected to higher photobleaching, limiting the number of 

detected photons, as described in chapter 2. Photostability and the switchability between two 

states has to be maintained during the data acquisition, otherwise subdiffraction imaging is 

hindered. The dyes available till the 90´s were not optimized or screened for photostability, 

switching or fluorescence depletion processes necessary for subdiffraction imaging. Today, 

subdiffraction images can be recorded due to a consequent improvement of dye properties 

over the last years. But there still is plenty of room for improvements, especially if very high 

resolutions are desired, fast image series are to be recorded to capture dynamical processes, 

three dimensional information should be gathered, or for further simplification. A lot of 
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improvements are connected to photobleaching or more generally to the overall number of 

collected photons. To increase the number of collected photons with a subdiffraction 

microscope, all possibilities have to be exploited. Solutions can be provided by biology, 

physics and chemistry. Biological approaches include for example enzyme systems to remove 

oxygen which can be responsible for photobleaching, or advancements in the field of 

fluorescent proteins. The approaches offered by chemistry are besides developments in the 

field of fluorescent dyes itself, special embedding media, substances to prevent 

photobleaching and “dark state engineering”. Physical approaches can provide new detectors, 

flexible setups and adaptive filters to better match dyes with improved properties and to 

exploit the entire emission spectrum. Furthermore, applications of new molecular processes 

for subdiffraction imaging and adaptive light exposure help to decrease photobleaching. The 

aim of this thesis is the evaluation and development of chemical and physical approaches for 

minimizing photobleaching, phototoxicity and dark state transitions in subdiffraction 

microscopy. The results and discussions are therefore divided into four parts, resembling 

different physical and chemical approaches to tackle photobleaching: 

 

1) In Chapter 3, an optical setup is described, which is characterized by high flexibility. It 

allows one to easily adapt to new fluorophores with enhanced properties and alternative 

laser lines for RESOLFT experiments. A flexible system requires a tunable dichroic 

mirror, an adaptive emission and excitation filter system and a tunable phase filter to 

generate a zero in the STED beam. Solutions to all these points are addressed in Chapter 3. 

As a result, the whole emission spectrum of a dye can be exploited leading to an increased 

signal-to-noise ratio (SN) and the chance to reduce the excitation intensity and thus 

photobleaching. The requirements for the spectral filter sets are heavy, when intense signal 

suppression beams are applied to enhance the resolution. In STED microscopy, the 

wavelength of the signal suppression beam inevitably is part of the fluorescence spectrum. 

An adaptive notch or bandpass filter to remove intense signal suppression light is described 

in Chapter 3, replacing thin film interference filters with fixed spectral properties. 

Additionally, a new phase plate approach significantly simplifies the alignment procedure. 

The spectral adaptive filter system consists of a quadruple AOTF arrangement and a prism 

based spectrometer.  

 

 

 



Introduction 

8 

2) The quadruple AOTF arrangement allows for the complete control of the sample exposure 

which is a basic requirement for a method introduced in chapter 4. This approach reduces 

the number of excitation and signal suppression cycles in zero based high resolution 

methods using metastable off-states (RESCue) and therefore prevents photobleaching and 

dark state transitions by adaptively controlling the light dose on the fluorescent sample 

without sacrificing localization information. The efficiency is exemplarily demonstrated on 

STED microscopy which is the first and most prominent candidate among all 

subdiffraction microscopy techniques. RESCue takes the high resolution information itself 

as a basis to locally adapt the sample exposure and therefore significantly reduces the 

photobleaching even compared to the standard confocal imaging mode. The common 

opinion, that high resolution microscopy is always connected to higher bleaching, now has 

to be reconsidered. 

 

3) The development of new fluorophores is a highly active field. The high requirements 

placed by nanoscopic techniques is challenging the fluorophore development, as 

mentioned above. The screening for new, photostable and bright dyes suitable for high 

resolution techniques led to the discovery of a new mechanism for signal suppression. 

Direct light-driven modulation of fluorescence from quantum dots (QD) is described in 

chapter 5. The mechanism for fluorescence modulation relies only on internal electronic 

transitions within Mn-doped ZnSe quantum dots (Mn-QDs). It is demonstrated that the QD 

fluorescence can be reversibly depleted with efficiencies of more than 90%, using 

continuous-wave (cw) optical intensities of ~1.9 MW cm-2. Time-domain measurement 

during modulation indicates that the number of fluorescent on-off cycles exceeds 103 

before significant loss of fluorescence quantum efficiency occurs. Such robust nanometric 

probes having remotely controllable optical transitions are useful in many areas of 

research, and in particular, in far-field nanoscopy based on RESOLFT. Consequently, it 

can be shown that implementation of Mn-QDs for imaging leads to an increase in 

resolution over standard confocal microscopy by a factor of 4.4. 

 

4) Matching the refractive index of the sample to that of the immersion system is a crucial 

step to avoid a blurred focal spot. A refractive index mismatch reduces the signal-to-noise 

ratio (SN) and calls for compensation by higher excitation intensities resulting in higher 

photobleaching. On the other hand, subdiffraction imaging deeply inside the specimen is 

hindered due to spherical aberrations and stray light caused by refractive index mismatch. 
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In chapter 6, a novel mounting medium whose refractive index can be continuously tuned 

between that of water and that of immersion oil is described. This medium is not only cost-

effective but also enables a flexible use of all available immersion lenses, including the 

novel oil immersion lenses with an ultrahigh aperture angle α = 75° and thus renders 

subdiffraction imaging deeply in biological samples feasible. Of vital importance is the 

water solubility of the new high refractive index embedding medium, simplifying the 

embedding process. Additionally, the embedding media itself exhibits good anti-oxidant 

properties and can therefore act as an antifade in high concentrations.  
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Chapter 2 
 

Theory 
 
 
2.1 Fluorescence 
 

All subdiffraction microscopy approaches to date rely (although not mandatory) on the 

manipulation of fluorescence processes and the detection of fluorescence photons. The 

photophysical principles underlying fluorescence emission are therefore summarized here.  
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Fig. 2.1: The Jablonski diagram describes the most important processes taking place in a 

fluorescent dye. ABS denotes the absorption of a photon and instantaneous transition from 

the groundstate (S0) to higher excited singlet states (S1, S2). IC describes internal 

conversion (radiationless transitions between states of the same spin multiplicity), VR is the 

vibrational relaxation of higher vibrational states within an electronic state into the lowest 

vibrational state, ISC denotes intersystem crossing i.e. radiationless transitions between 

states of different multiplicities (spin-forbidden) (from S1 to the triplet state T1, for 

example). The transitions involving photon emissions (luminescence) are called 

fluorescence (Fluor., states with the same multiplicity involved) and phosphorescence 

(Phos., states with different multiplicities are involved). Phosphorescence is a spin-

forbidden process, therefore the triplet state T1 features a 1000 times longer lifetime 

compared to the S1 state. The channels responsible for photobleaching are described later 

(Fig. 2.6). Modified from Lakowicz, 2006. 

 

A fluorescent molecule can be excited from the electronic ground state to higher electronic 

states by electromagnetic radiation, if the electric dipole moment of the dye is not 

perpendicular to the electric field of the radiation. The Franck-Condon principle states that 
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the nuclei framework of the dye is not affected by the excitation which takes place on 

femtosecond time scales. The higher the overlap of the two wave functions describing the dye 

before and after the excitation, the more probable is the transition (Franck-Condon factors). A 

fluorophore is usually excited to some higher vibrational level of either S1 or S2 by light 

featuring a wavelength according to λ = hc / ∆Ε. ∆E denotes the energy spacing between the 

involved states. Molecules in the higher excited state (S2) relax radiationless (internal 

conversion, IC) to the lowest vibrational level of S1 within picoseconds which is according to 

Kasha´s rule the origin of a radiation transit called fluorescence. Fluorescence is a transition 

between states with same spin multiplicity and therefore allowed. The radiation decays 

exponentially in the nanosecond time scale. The fluorescence photon has a longer wavelength 

compared to the excitation photon, a phenomenon called Stokes shift. Molecules in the S1 

state can alternatively undergo a rather infrequent spin conversion to the first triplet state T1. 

Emission from T1 is termed phosphorescence and is generally shifted to longer wavelengths 

relative to the fluorescence. Conversion of S1 to T1 is called intersystem crossing (ISC). 

Transitions from T1 to S0 are spin-forbidden, the lifetime of triplet states is therefore in the 

range of microseconds up to hours. All the radiation and radiationless processes can be 

summarized in the Jablonski diagram (Fig. 2.1).  
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2.2 Microscopy at and beyond Abbe´s diffraction limit 
 

The STED microscope featuring enhanced spatial resolution is typically based on a confocal 

microscope to discriminate the desired signal from Rayleigh and Raman scattered light as 

well as from fluorescence which is generated out of focus. The key principle to suppress the 

background is to reduce the detection volume. Since many of the experiments described in 

this thesis are preformed in the STED mode, the confocal microscope and its underlying 

principle is briefly reviewed here. For more in-depth information see Wilson, 1990; and 

Pawley, 2006. 

 

In the year 1873, Ernst Abbe recognized that the resolution of an optical microscope can not 

be arbitrarily improved but is, in contrast, fundamentally limited. Besides the so-called 

diffraction limit, he also identified the conditions needed to design an objective lens which is 

only limited by diffraction rather than limited by chromatic and spherical aberrations (Abbe, 

1873; Abbe, 1884). That time, the influence of the objective´s numerical aperture (NA) on the 

image resolution was found to be of crucial importance. The image of a point-like source in 

the focus is itself not infinitesimal small, but rather a circular Airy diffraction image with a 

central bright disk surrounded by progressively weaker concentric dark and bright rings. The 

intensity distribution of the focused light in the focal plane h( rr ) is called the point spread 

function (PSF). The PSF is given by the squared field amplitude E( rr ) which is according to 

the scalar diffraction theory given by (Born and Wolf, 1999): 

 

θθθθθ
α

d)cosikzexp()sinyxk(JsincosE)r(E)r(h
0

22
00

2

∫ +==
rr    (2.1) 

 

where rr  = (x, y, z) describes the spatial coordinates in object space, E0 is a constant which 

scales with the incident optical power, α denotes the half-cone angle of the lens, θ  is the 

integration variable, J0() is the zero order Bessel function of the first kind, n is the medium´s 

refractive index and 0/n2k λπ=  and λ0 are, respectively, the wave number and the vacuum 

wavelength of the focused light.  

 

The resolution of a microscope is defined by half the diameter of the Airy disk according to 

the Rayleigh criterion. The Airy disk itself is given by the diameter of the first minimum of 
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the PSF (h( rr )) enclosing the main maximum as a dark ring. For the epifluorescence 

microscope, the diameter of the Airy disk is given by : 

 

.
NA

22.1x 0λ∆ =           (2.2) 

 

where NA = n*sinα denotes the numerical aperture of the lens. The Airy disk in axial 

direction exhibits a separation of the minima on both sides of the maximum by (Wilson, 

1990):  

 

.
NA
n00.4z 2

0λ∆ =           (2.3) 

 

Alternatively, the full-width at half-maximum (FWHM) of the PSF is often determined to 

characterize the optical resolution of a microscope. In the frequency domain, the counterpart 

of the PSF is the optical transfer function (OTF), which is related to the PSF via a simple 

Fourier transform. Here, the optical resolution is described as the transmittance of the 

instrument as a function of spatial frequency. If small features are imaged, high spatial 

frequencies are required. A circular aperture for example reduces the amplitude of the OTF 

with increasing spatial frequency. Therefore, the most limiting aperture in the system, which 

is usually the NA of the objective lens, determines the resolution. Enhancing the resolution is 

thus equivalent to widening up the support of the OTF (Born and Wolf, 1999; Gu, 1999). 

 

 

2.2.1 Confocal microscopy 

 

The confocal microscope allows to section the sample optically and reconstruct 

three-dimensional (3D) images. This is the main advantage of a confocal microscope 

compared to an epifluorescence microscope. The principle of the discrimination along the 

optical axis (z) can be explained from the schematic drawing of a confocal microscope as 

depicted in Fig. 2.2.  
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Fig. 2.2: Operating principle and main components of a confocal microscope. 

 

A point-like source, e.g. a laser focused through a micrometer-sized pinhole or emitted from 

the end of a single-mode optical fibre, is collimated by a lens, reflected by a dichroic mirror 

and focused into the sample via an objective lens. The fluorescence signal emitted by the 

sample is usually collected by the same objective lens, passes the dichroic mirror to be 

separated from the excitation light and is focused through a pinhole onto the detector. The 

focused, cone-like excitation beam exhibits non-vanishing intensities above and below the 

focal plane. A signal which is generated outside the focal plane will not be focused through 

the pinhole and is therefore not detected, but suppressed due to beam divergence or 

convergence as shown by the dotted beam path in the drawing. As described by the alternative 

beam path of light originating outside the focal plane, the detection pinhole is responsible for 

the discrimination in the optical axis (z). 

 

Because beam paths are reversible, the detection pinhole can theoretically be imaged into 

sample space and then further towards the point-like light source. The two pinholes have 

corresponding foci within the sample (confocal). Hence, the effective PSF of the confocal 

microscope is given by the product of the excitation PSF hexc( rr ) and the detection PSF 

hdet( rr ). In reality, the detection pinhole is not point-like but has a finite diameter. The 

detection PSF therefore has to be convolved with a pinhole function 
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describing the detection pinhole with a given diameter d projected into the focal space. M 

denotes the magnification of the microscope. The effective confocal PSF is then given by: 

 

[ ])r(o)r(h)r(h)r(h detexcconf
rrrr

⊗= .        (2.5) 

 

The product of both similar PSFs results approximately in a quadratic suppression of out-of-

focus light. This ensures an axial resolution determined by the confocal spot size of about the 

wavelength.  

 

 

2.2.2 Subdiffraction fluorescence microscopy  

Basic idea 

 

The methods to discern subdiffraction features discussed in this thesis are STED and 

RESOLFT microscopy. As STED is part of the more general RESOLFT concept, the 

fundamental ideas behind RESOLFT should be discussed first (Hell, 2007). 

 

In the mid 90´s the first concrete and feasible concepts emerged showing that the diffraction 

limit can be broken even in the far field with propagating light by regular lenses (Hell and 

Wichmann, 1994; Hell and Kroug, 1995). The fundamental idea behind these concepts is the 

application of the fluorescent dye´s different molecular states not only for fluorescence 

generation but also for overcoming the limit dictated by diffraction. The diffraction limit per 

se has not been eliminated (Hell, 1994). 

 

The separation of fluorescence signals which differ in absorption or emission spectra, 

polarization, or fluorescence lifetime is not challenged by diffraction and hence the different 

signals can be read out one after the other (Betzig, 1995; van Oijen et al., 1999). The 

coordinates of the fluorescence molecules can be determined with arbitrary precision down to 

1 nm depending on the number of detected photons by identifying the centroid of the 

separated signals (Kural et al., 2005). The scheme depicted here is not governed by Abbe´s 

barrier, as long as there is no other molecule of the same type within the diffraction-limited 

focal volume, but it gives a first glance on how to break it. Breaking Abbe´s limit means 

discerning features which are labelled by the same type of fluorescence markers within the 

diffraction-limited volume. For that, the signals have to be recorded sequentially e.g. by 
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successively transferring (one of) the markers of each feature to a signal giving bright “on” 

state while keeping the other markers in the dark “off” state (Hell, 2003; Hell et al., 2003). By 

reading out the bright fluorescent molecules together with the knowledge of their coordinates, 

the subdiffraction image can be assembled (Fig. 2.3). The most direct way to determine the 

coordinates of the bright markers is to define their location ri. 

 

 
 

Fig. 2.3: Difference of targeted and stochastic read-out of the fluorescence labels of a 

nanostructure within the diffraction zone with a diameter of λ/2n. In the targeted read-out 

one of the two states (here A) is established within the subdiffraction-sized region at the 

zero. The image is assembled by scanning the zero across the structure and reading out the 

bright markers. The zero can also be a groove or a multiple set of zeros can be used for 

parallelization. In the stochastical read-out approaches, a single switchable fluorophore at a 

random position within the diffraction zone is switched to a bright state A by low intensity 

activation light, while the other molecules remain in B. The coordinate is determined by the 

centroid of the diffraction-limited spot on a pixelated detector. After switching of the bright 

fluorophore (A B), another fluorophore is randomly switched on and read out. After a 

certain time, a sufficient number of fluorophores have revealed their position and are 

summed up to form an image (from Hell, 2007). 

 

This can be realized by forcing an optical transition A B everywhere except at ri, to ensure 

that all molecules are converted to the dark state except those present at ri. The optical 

transition can be implemented by a light intensity distribution I(r) featuring an intensity zero 

at position ri. Driving A B, this intensity I(r) must produce a rate kAB(r) = σI(r) that 

outperforms competing spontaneous rates basically everywhere except at ri. The spontaneous 

rates are given by the inverse of the lifetimes τA,B of the involved states A and B, and σ 
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denotes the optical cross section of the transition. The possible occurrence of the on state A is 

therefore confined to 2/rri ∆±  with ∆r being significantly smaller than the diffraction limit 

when an intensity of I(r) >> (στ)-1 = Isat is applied (Fig. 2.5c). The region ri gets even more 

confined with increasing intensity I(r). The saturation intensity Isat is a measure of the 

intensity needed to even outperform the spontaneous rates. By probing the diffraction-limited 

volume with the confined ∆r, the signal of all markers is inhibited except those which are 

present at 2/rri ∆±  leading to a sequentially read-out of neighbored features with a 

resolution of ∆r (Hell, 2003; Hell 2004). This can be parallelized by scanning multiple zeros 

across the sample and detecting the fluorescence with a camera (Hell, 2003).  

In contrast to the above-mentioned scheme, which consists of applying markers of different 

spectroscopic properties simultaneously for subdiffraction imaging, the ground breaking idea 

here is to read out the information sequentially by successive manipulation of the markers, 

rendering them distinguishable. The markers do not have to feature different spectroscopic 

properties per se.  

 

 

RESOLFT 

 

STED and ground state depletion (GSD) (Hell and Kroug, 1995) microscopy are 

representatives of the zero-based time-sequential read-out methods which have been 

generalized under the acronym RESOLFT (Hofmann et al., 2005). Another concept exploiting 

reversible saturable or photoswitchable transitions is saturated pattern excitation microscopy 

(SPEM) (Heintzmann et al., 2002; Gustafsson et al., 2005). Their resolution can be described 

by: 

 

satmax I/I1sinn2
r

+
≈

α
λ∆          (2.6) 

 

with Imax denoting the intensity of the zero featuring signal suppression beam. The striking 

difference to Abbe´s equation is the introduction of the term Imax/Isat, which can become 

infinite resulting in a resolution only dependent on the fluorophore´s molecular size (1 nm). 

The square root factor originates from the parabolic approximation of ordinary intensity zeros 

in space. Although the RESOLFT concept is capable of resolving single molecules (Westphal 

et al., 2005), it is conventionally applied to molecular ensembles. The size of ∆r and, 
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connected to that, the average number of simultaneously recorded fluorescent molecules can 

be tuned by the ratio I/Isat. The resolution is ultimately dependent on the quality of the zero, 

photobleaching, the available laser intensity and the choice of the states A and B influencing 

Isat. A and B can include electronic states like S0, S1 (Singlet), T (Triplet) and dark states, or 

conformational states directly affecting the fluorophore and states with different separations 

of FRET partners or quenchers, or binding and temporarily immobilized states. Besides “PSF 

engineering” providing zero patterns or confined PSFs in z direction, “dark state engineering” 

became a crucial discipline for subdiffraction microscopy (Steinhauer et al., 2008). 
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Fig. 2.4: Bright (A) and dark (B) molecular states used to break the diffraction barrier. A 

classification can be made depending on whether photophysical transitions (STED, GSD, 

SPEM, GSDIM, ESA) or photochemical transitions are involved, where atoms are 

relocated or molecules isomerised (RESOLFT, PALM, STORM, dSTORM). PALM, 

STORM dSTORM and GSDIM are based on single molecule detection, whereas the other 

concepts (although compatible to single molecule imaging), principally read out ensembles. 

Ensemble techniques require reversible transitions between A and B, as indicated by the 

rates k. The probability pA of being in state A depends nonlinearly on the light intensity 

applied, as indicated by the equations, ensuring that either A or B is confined to a 

subdiffration area at a targeted coordinate in space. The e-γl and the (1+ γl)-1 dependence 

entail nonlinearities of infinite order (γl)m; m ∞. The higher the lifetime of the chosen 

state, the more the nonlinear dependence of pA is strengthened by γ. Huge nonlinearities at 

low intensities I are enabled in that way (in contrast to m-photon processes, which are 

practically limited to Im; m<4). Because PALM, STORM, dSTORM and GSDIM are 

dealing with single molecules in a known state, the probability concept is not suitable. The 

resolution is dependent on the number N of collected photons per molecule (from Hell, 

2007).  

 

 



Theory 

20 

STED microscopy 

 

 
 

Fig. 2.5: Main components and operating principle of a STED microscope (a). PSFs probed 

by detecting light scattered from gold beads by the excitation (green) and the STED (red) 

beam respectively, if a vortex-type phase plate is used (b). The resulting effective PSF is 

significantly reduced in size (scale bar: 500 nm). The PSF can also be measured with 

quantum dots (QD705), fluorescent at 705 nm. The blinking which is typical for quantum 

dots can be seen (arrow). Absorption (green) and emission (black) spectrum of a 

fluorescent dye (c). The STED wavelength (514 nm, spike) is located within the red end of 

the fluorescence spectrum. Applying high STED intensities leads to fluorescence emission 

depletion demonstrated by the significantly reduced fluorescence intensity (red). A 

measurement of depletion efficiency with regard to the STED intensity can be seen on the 

right side. 
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STED microscopy, which is the first concept of the RESOLFT family, uses the S0 and the S1 

state as B and A respectively (Fig. 2.4). The fluorescence molecules are excited by a focused 

beam and the fluorescence signal is quenched by a second, red-shifted, doughnut-shaped 

beam due to stimulated emission S1 S0 (Fig. 2.5c). The STED beam is exactly aligned with 

the excitation beam (Fig. 2.5a). Generally, pulsed laser sources are used to perform STED 

experiments. The excitation pulse (100ps) excites the molecules which are subsequently 

relaxing vibrationally within a few picoseconds (Fig 2.4). After the transition of the molecules 

to the vibrational ground state of the excited singlet state, the synchronized STED pulse 

(several 100 ps) quenches the fluorescence by stimulated emission. However, the excitation 

and STED process can also be carried out in cw mode, making an elaborate pulse 

synchronization redundant (Willig et al., 2007). The few stimulated photons have the same 

properties as the photons in the STED beam and are removed by the filter system. To confine 

the fluorescence to the zero of the doughnut-shaped PSF, fluorescence quenching must 

outperform the spontaneous decay of the S1 given by the inverse fluorescence lifetime 

τfl = 1ns. Isat = 1/(στ) typically amounts to 3*1025/cm2s, i.e. 10MW/cm2 with σ = 10-16/cm2. 

Increasing the intensity above Isat leads to a confined fluorescence-emitting volume which is 

scanned across the sample to map out subdiffraction features.  

Mathematically, the four level system consisting of S0, S1, and the vibrational excited states 

Svib0 and Svib1 can be modeled by a set of four differential equations (for a detailed description 

see (Dyba et al., 2005)). The population of the excited state level S1 immediately after the 

STED pulse can be approximated by: 

 

)I(N)Iexp(NN STED0STEDSTED01S ησ =−≈        (2.7) 

 

η is called the STED suppression coefficient, since it describes the amount of fluorescence 

inhibition. Such experimental depleting curves can be directly measured (Fig. 2.5c) and 

determine the performance of the fluorescent dye under STED conditions, hence the 

performance of the STED microscope. The most important aspect of Eq. (2.7) is the strong 

nonlinear dependence of the remaining fluorescence on the STED intensity ISTED, hence 

creating the saturation behavior (Fig. 2.5c). 

 

To generate a zero-containing focus, several techniques are conceivable. A technically simple 

implementation is to position a properly designed phase retardation filter into the expanded 

STED beam in a conjugated back focal plane of the objective lens (Fig. 2.5a). The phase filter 
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spatially modifies the phase front of the STED beam. As an example, by placing a vortex-type 

phase filter into the beam and thereby introducing a continuous phase shift from 0 to 2π 

clockwise within the area of the back aperture of the objective lens, the intensity distribution 

shown in Fig. 2.5b is obtained after focusing, which features a ring- or doughnut-like 

maximum enclosing the central minimum or zero. Here, the fluorescence is only confined in 

the focal plane and not in the optical axis. The calculation of the intensities in the focus 

requires the consideration of the vectorial properties of light for high NAs. Applying the 

Debye integral for linearly polarized illumination with a polarization angle φ0 in respect to the 

x axis, the intensity distribution in the focal region (PSF) of an aplanatic lens can be 

calculated as follows (Klar et al., 2001): 
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The superscript κ = exc or STED stands for the excitation or STED beam, respectively. κE
r

 

denotes the electric-field amplitude, c the speed of light, ε0 the permittivity of free space, f the 

focal length of the lens, φ the azimuth angle, and θ the polar angle of the aperture, with 

0 ≤ θ ≤ α. The angle α is the half-aperture angle and E0
κ(θ,t) is the wave front amplitude at 

the entrance pupil of the lens. The phase Ψ κ(θ,φ) denotes any arbitrarily induced phase 

change across the wave front; it equals zero if the wave front is planar (in the back focal 

plane), as it is the case here for excitation. s is the path traveled by the light from the point on 

the converging spherical wave front with the coordinates [f,θ,φ], to the position r in the focal 

region. The focal point is located at rr  = [0,0,0]. λ is the vacuum wavelength and k = 2πn/λ 

the wave number with n being the refractive index. For any given Ψ κ(θ,φ), Eq. 2.8 can be 

evaluated numerically. 
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Recent achievements in STED microscopy 
 

The zero does not have to be formed by a doughnut, but can also be established by one or 

more grooves which are part of an interference pattern (Westphal et al., 2005; Schwentker et 

al., 2007). The point-like detector is then replaced by a CCD camera. Furthermore, there are 

not only phase plates providing a zero in the focal plane but also along the optical axis with 

high peak intensities above and below the focal plane. With the help of such a phase plate it 

was possible to confine the fluorescence to 100 nm in z direction with a single lens (Klar et 

al., 2000). In combination with a 4Pi system the steepest zero is possible, allowing for a z 

resolution of 33 to 60 nm (Dyba et al., 2002). Moreover, the application of two lenses in 

STED-conditioned experiments creates an isotropically confined fluorescence volume of 40 

to 45 nm in all dimensions, dissecting sub-λ-sized organelles of cells in two colors and 

offering co-localization on the nanoscale (Schmidt et al., 2008, Donnert et al., 2007). So far, 

the highest resolution achieved with a STED microscope of 16 nm has been obtained by 

imaging single dye molecules as test objects (Westphal et al., 2005). A crucial step to further 

improve the performance of the STED microscope was the addressing of the more 

pronounced photobleaching in STED-conditioned measurements. Allowing fluorophore dark 

states to relax (triplet state relaxation (T-REX)) enabled ∆r to be in the range of 20 to 30 nm 

in fixed biological samples (Donnert et al., 2006). The impact of STED microscopy on 

cell-biological problems was even more boosted by introducing a fast scanning STED system 

suitable for subdiffraction life cell imaging. This way, the movement of synaptic vesicles was 

discerned with a high temporal resolution of 28 frames per second (Westphal et al., 2008). 

The problem of channeling organic dyes into living cells was circumvented by screening a 

variety of fluorescence proteins suitable for STED microscopy. Citrine turned out to perform 

well under STED conditions, shown by nanoscopic (∆r < 50 nm) recordings of the 

endoplasmatic reticulum in living cells (Hein et al., 2008). In order to facilitate the 

widespread adaptation of far field nanoscopy, a versatile, low cost system based on a super 

continuum source was developed. Using the same source both for excitation and STED, this 

implementation of STED microscopy avoids elaborate preparations of laser pulses and 

conveniently provides multicolor imaging. Operating at pulse repetition rates around 1 MHz, 

it also affords reduced photobleaching rates by allowing the fluorophore to relax from 

excitable metastable dark states (T-REX) involved in photodegradation (Wildanger et al., 

2008).  
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Alternative subdiffraction microscopy techniques 

 

S0 and S1 is not the only set of states which can be exploited in the way described in Fig. 2.4. 

Ground state depletion (GSD) for example requires a 100 times smaller Imax for similar 

performance, because it employs the metastable triplet state T with a lifetime τ of 1000 ns to 

1000000 ns as B and the singlet system (S0 and S1) as A. Probing A is performed at the same 

wavelength as its pumping to B (Bretschneider et al., 2007).  

 

The ultimate saturable transition is a photoswitch, as the thermodynamically and kinetically 

stable states and the absence of spontaneous interstate rates result in a very small Isat and 

hence a huge Imax/Isat at low Imax. Photoswitching between different isomers, where only A 

yields fluorescence, is found in reversibly photoactivatable relatives of GFP, such as asFP595 

and dronpa, and in photochromic synthetic compounds (Lukyanov et al., 2000; Ando et al., 

2004; Bossi et al., 2006).  

A very important parameter for achieving subdiffraction resolution is the finite number of 

cycles between A and B. However, cycling is essential if molecular ensembles are to be read 

out at targeted coordinates with diffraction limited beams. Reading out A at a given 

coordinate requires nearby molecules to be switched to B (Fig. 2.3). In other words, for 

targeted read-out, one has to accept a higher number of switching cycles. If the molecule´s 

switching behavior is lost or the dye gets destroyed too quickly during the read-out of nearby 

molecules, subdiffraction imaging is hindered. In STED microscopy, the state B is metastable 

and has to be maintained. During each switching cycle, there is a certain probability (related 

to kisc) that the molecule is transferred to the triplet state. This state is a prominent bleaching 

precursor because of the high lifetime (µs) and the deposited energy. In chapter 4, a method 

will be discussed, which uses the high resolution information to instantaneously adapt the 

local light dose and to reduce the number of switching cycles in STED microscopy. 

 

 

Stochastic read-out 

 

The problem of excessive switching cycle numbers is avoided in PALM, STORM and related 

techniques (Betzig et al., 2006; Rust et al., 2006). Here, single molecules are read out at 

random coordinates. A single dye is switched on or activated (B A) in a wide field setup, so 

that the next molecule that is on is farther apart than λ/2n. It is then repeatedly excited and 
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fluoresces (A A*) to collect N photons forming a diffraction-limited spot on a camera. 

Switching off neighbored molecules is not needed, because they are off (state B) already. 

With the assumption, that only one molecule per diffraction zone is in state A, which is 

ensured by adjusting the intensity of the activation light, its coordinate can be calculated from 

the centroid of the spot with a precision of )N)sin(n2/( αλ≈ . The last step is to switch the 

molecule into state B´, which is non-fluorescent. Here, the switching does not necessarily 

have to be reversible. Another molecule is then switched on, read out, and switched off. Thus, 

the image is assembled molecule by molecule underlying a single switching cycle 

(B A B´). PALM switches off by bleaching (B≠B`), greatly expanding the number of 

applicable compounds, whereas STORM relies on a true, reversible switch (B=B`). In both 

approaches, it is necessary to adapt the intensity to the dye concentrations.  

PALM images of thin cryosections of lysosomal transmembrane protein in a mammalian cell 

displayed a resolution of <20 nm. STORM is based on dye pairs containing a reporter and an 

activator dye. Due to combinatorial pairing, a broad palette of different labels is available for 

multicolor applications (Bates et al., 2007). The implementation of a cylindrical lens in front 

of the objective allows 3D imaging due to the ellipticity of the PSFs dependent on the z 

position of the dye (Huang et al., 2008). The stochastical approaches also allow investigations 

of dynamical processes in living cells. Nanoscale dynamics within individual adhesion 

complexes in living cells under physiological conditions were recorded for as long as 25 min 

with a spatial resolution of 60 nm and a frame time of 25 s (Shroff et al., 2008). A major 

drawback of stochastical read-out approaches is the poor temporal resolution. The faster the 

photons are emitted, the shorter the data acquisition. The cameras should therefore run at a 

fast frame rate (500 Hz) and the excitation intensity should be chosen to match the desired 

number of collected photons within the timespan of a camera frame. The camera can be 

conveniently operated asynchronous to the B A B´ cycles, as stated in the variant PALM 

with independently running acquisition (PALMIRA) (Egner et al., 2007).  

 

A generalization can be made regarding suitable dyes for the stochastical read-out. As a 

sufficient condition, the dyes have to feature a stable or metastable optically or chemically 

manipulable dark state. This has the potential to make the vulnerable switchable or 

photoactivatable fluorophores or fluorophore assemblies such as double-labelled antibodies 

with a reporter and an activator dye (needed for STORM) redundant. A simplified version of 

STORM is direct STORM (dSTORM), which uses commercially available antibody (FAB 

fragment)-cyanine dye conjugates for subdiffraction imaging instead of a special dye for 
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activation (Heilemann et al., 2008). In ground state depletion followed by individual molecule 

return (GSDIM) the molecules are switched off by depleting the molecular ground state and 

shelving the dye molecules into their triplet state. The read-out is stochastical with an 

independent running acquisition like PALMIRA. The dye molecules are not optically 

activated but are automatically switched on after their spontaneous return from the dark state 

to their singlet state (Fölling et al., 2008). The dark state (B) can also be the absence of a label 

if freely diffusing probes are used which are binding reversibly to the target structure. In 

points accumulation for imaging in nanoscale topography (PAINT), the probes are hitting the 

object of interest, get immobilized (entering state A) and are read out. After a certain time, the 

probes are leaving the structure (B) or are photobleached (B´) (Sharonov and Hochstrasser, 

2006). The freely diffusing probes induce an overall background which is however well 

below the defined signals generated by the immobilized probes.  
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2.3 Photobleaching 
 

The performance of a fluorophore strictly determines the ability of a fluorescence microscope 

to detect specific molecules at very low concentrations. Fluorescent dyes featuring high 

excitation coefficients, high quantum yields, and large Stokes shifts are now widely available. 

However, the photostability of the dye used is another crucial attribute. In laser scanning 

microscopy (LSM), the laser beam has to be intense enough to provide an adequate signal-to-

noise ratio within a reasonable scan time. Under these conditions, the fluorescence emitted is 

often decreasing in intensity with exposure time, a phenomenon referred to as photobleaching. 

In general, photobleaching reduces the signal-to-noise ratio and the precision of most 

techniques relying on fluorescence (Pawley, 2006). Endeavors to understand the mechanisms 

underlying photobleaching and to tackle them will become more and more important 

especially in the nanoscopic field. Unfortunately, the mechanism of photobleaching is by far 

not fully understood, even in the case of very common dyes like fluorescein in solution (Song 

et al., 1996).  

 

Photobleaching renders a molecule irreversibly non-fluorescent. This can be caused by a 

photochemical modification, either photolysis, i.e. light induced cleavage of chemical bonds, 

or other modifications like the addition of radicals to double bonds the chromophore is based 

on. A generalization of the exact photobleaching mechanisms fails, since many parameters 

like the dye used, the molecular environment and the intensity of excitation light may affect 

the mechanism and the rates of photobleaching (Bernas et al., 2004). 

 

 

2.3.1 Photobleaching mechanisms 

 

Several theories have been proposed to explain the photobleaching processes. The interaction 

of molecular oxygen in its triplet ground state with excited fluorophores is a probable step of 

the mechanism leading to photobleaching. If a dye molecule exhibits a high intersystem 

crossing rate (kISC), a significant number of molecules cross from the excited singlet state (S1) 

to the long lived excited triplet state (T1) (Fig. 2.1). Rhodamine derivatives usually exhibit 

intersystem crossing rates kISC in the range of 5 to 6.5*105s-1 (Menzel and Thiel, 1998). With 

a nanosecond fluorescence lifetime, the measured rate constant kISC corresponds to a quantum 

yield for the triplet population in the range of 10-3. 
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Fig. 2.6: A multitude of different bleaching precursors and bleaching pathways are 

conceivable. All higher excited states (Sn, Tn) can be precursors for photoionization 

reactions yielding reactive radicals (F°+/F°-). The crucial state is the triplet state T1, 

which is the origin of many chemical processes leading to photobleaching (“bleached”). 

Because of the long lifetime and the higher energy containment of the triplet state, further 

interactions yielding radical ions (F°+/F°-) (photoionization) are probable. Alternatively, 

photooxidation, in which highly reactive singlet oxygen (1O2) is formed by sensitization of 

ground state triplet oxygen (3O2) by triplet state dyes (T*), can take place.  

 

Dye molecules in the excited triplet state feature a 1000 to 100000 times longer time frame 

for reactions compared to the fast-relaxing molecules in the excited singlet state and 

additionally provide the necessary energy. Interactions of a dye in T1 with triplet oxygen 3O2 

generates singlet oxygen 1O2. At the same time, the dye returns to the singlet ground state 

(Fig. 2.6). Singlet oxygen has a similar lifetime in water as dye molecules in T1 (20µs) and is 

responsible for damaging effects due to the production of many different highly reactive 

radical oxygen species (photooxidation) (Merkel and Kearns, 1972). A fluorophore in T1 is 

also highly reactive and can undergo irreversible chemical reactions with surrounding 

molecules, leading to a direct destruction of the chromophore system. Pathways via 

photoinduced ionizations involving radical cations and anions (F°+/F°-) are also proposed 

(Widengren et al., 2007; Vogelsang et al., 2008). All these reaction pathways depend on the 

concentration of molecular oxygen, the dye properties, and the availability of other suitable 

reaction partners such as lipids, proteins, oxidative and reductive agents. The pathways can 

therefore be different for binding to different compartments of the cell (Benson et al., 1985). 

If a dye is protected from reacting with environmental molecular oxygen, the observed rate of 

photobleaching is lower (Bernas et al., 2004). This occurs naturally in GFP, where the 

intrinsic chromophore is positioned in the core of a β-barrel structure (Ormö et al., 1996). 
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Reactive oxygen species (ROS) in living cells generated by the reaction of triplet oxygen with 

dyes (also intrinsically fluorescent proteins such as the phycobiliproteins) in the triplet state 

via singlet oxygen (Fig. 2.6) are responsible for cell damaging or phototoxicity (Pawley, 

2006).  

 

 

Two-step photolysis 

 

Alternatively, the absorption of an additional photon by an already excited molecule 

depositing even more energy in the dye system may also be involved in bleaching processes 

of some dyes. Molecules in the first excited singlet and triplet states, S1 and T1, may be 

subject to so-called two-step excitation, where the molecules are excited to higher electronic 

states, Sn and Tn, by absorption of a second photon (Eggeling et al., 1998). In polar solvents 

like water, these states couple efficiently with ionic states due to the high solvation energy. 

Once excited to the state Xn (either Sn or Tn), a molecule can either directly relax to X1 with a 

quantum yield of (1-φion), or form a radical cation electron pair (M.+e-) with a quantum yield 

of φion (photoionization) (Fig. 2.7b).  

 

 
 

Fig. 2.7: Electronic energy diagram of a fluorophore with five electronic states depicting 

photobleaching (kbSn, kbTn, kbS, kbT) from each higher excited electronic state (S1, Sn, T1, 

Tn)(a). Basic mechanism of the photobleaching reaction from a higher excited state Xn 

(X=S or T) including the formation of an ion pair (F°+e-)(b). Modified from Eggeling et al., 

1998.  
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This radical ion pair can undergo two depopulation reactions described by the rate constant 

kion: either fast geminal charge recombination to the first excited state, S1 or T1, respectively; 

or an escape reaction, characterized by the quantum yield of solvation, φsolv, to form a free 

radical cation and a solvated electron. Because organic radical cations are chemically unstable 

in polar solvents, two-step and multi-step absorption processes open up additional channels 

for photobleaching (Anbar and Hart, 1964; Reuther et al., 1996; Khoroshilova and 

Nikogosyan, 1990). The quantum yields, φion and φsolv, increase with increasing electronic 

excitation, n. This two-step photolysis is readily obtained by the use of pulsed lasers, as 

shown previously in the case of coumarins and Rhodamine 6G (Eggeling et al., 1997, Aristov, 

1994). Photobleaching following pulsed excitation depends on the peak irradiance as well as 

on the repetition rate. 

 

The photobleaching of a dye solution can be characterized by the quantum yield of 

photobleaching, φb, or the photobleaching probability, pb. Usually, photophysical and 

photochemical reactions are characterized by a quantum yield. The quantum yield of a 

photobleaching reaction is equal to the number of molecules that have been photobleached, 

divided by the total number of photons absorbed during the same time interval 

 

φb=(number of photobleached molecules)/(total number of absorbed photons).  (2.9) 

 

It is important to note that the total number of absorbed photons also includes those absorbed 

in a second step, leading to higher excited electronic states, which opens up new bleaching 

channels. However, since fluorescence emission is usually related to the first excited singlet 

state, S1, it is crucial for the accuracy of experiments such as single-molecule fluorescence 

detection to know the probability of photobleaching, pb, at a certain excitation irradiance. The 

probability is equal to the number of photobleached molecules divided by the mean number of 

molecules in the S1 state for a given time interval 

 

pb=(number of photobleached molecules)/(number of molecules in S1).             (2.10) 

 

Unfortunately, the total number of absorbed photons as well as the mean number of molecules 

in the S1 state cannot be measured precisely, which makes it impossible to determine φb and 

pb directly. However, it is possible to measure the number of irreversibly photobleached 

molecules as a decrease in the dye concentration, c(t), with time, t. The photobleaching 
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reaction can be regarded as a quasi-unimolecular reaction. This assumption results in an 

exponential decrease of the dye concentration (Hirschfeld, 1976; Eggeling et al., 1997) 

 

)tkexp(c)t(c Z0 −= .                    (2.11) 

 

c0 is the initial concentration at time t = 0 and kz is the effective pseudo-first-order bleaching 

rate constant. Fig. 2.7a shows the electronic energy diagram of a dye molecule with five 

electronic levels: ground singlet state, S0, first excited singlet state, S1, lowest excited triplet 

state, T1, and higher excited singlet and triplet states, Sn and Tn. Photobleaching reactions are 

assumed to be possible from all excited states with the microscopic rate constants kbS, kbT, 

kbSn, and kbTn, respectively.  

 

As long as the fluorescence flux depends linearly on the excitation irradiance (low excitation 

irradiance range), which is the case in cell-bleaching experiments, the probability of a 

molecule to be in a first excited electronic state, S1 or T1, is very low. Hence, the absorption 

of a second photon by S1 and T1 can be neglected, and the electronic five-level system 

described above simplifies to a three-level system with the states S0, S1, and T1. Then 

bleaching occurs only from S1 and T1, where φb(I) is independent from I and equivalent to 

pb(I) (the subscript eq denotes the steady-state population probability)  
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At excitation irradiances necessary for effective single molecule application (high excitation 

irradiance range) and in STED microscopy, the population of Sn and Tn due to n-step (n≥2) 

excitation becomes important. Therefore, a five-level system (Fig. 2.7a) has to be considered 

including the higher excited singlet and triplet states Sn and Tn. Sn and Tn open up new 

channels for photobleaching. The effective bleaching rate constant kz is then a sum of the 

composite microscopic bleaching rate constants kb of the first excited electronic states S1 and 

T1 and kbnI of the higher excited electronic states Sn and Tn with kbn = (kbSn / kSn1)σ1nγ + 

(kISC / kT)(kbTn / kTn1)σT1nγ. The probability of photobleaching pb(I) for a five-level system is 

then dependent on the irradiance intensity and given by 
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3
bp  and 

3
bφ  can be determined for the three level system. The theoretical model is confirmed 

by experimental data using coumarin and rhodamine derivatives in air saturated aqueous 

solutions. For a detailed theoretical description see (Eggeling et al., 1998). 

Deschenes and vanden Bout propose a four-level system to describe the photobleaching rate 

of Rhodamine 6G in poly(methylacrylate) PMA under vacuum (Deschenes and vanden Bout, 

2002) (Fig. 2.8).  

 

 
 

Fig. 2.8: Jablonski diagram of the relevant states for photobleaching of Rhodamine 6G. 

Absorption (k01) from S0 to S1 may lead to radiationless internal conversion (kIC), 

fluorescence (kf), or intersystem crossing (kISC) to T1. From T1, the molecule may relax to 

S0 (kT), or absorb a second 532 nm photon (kT1n) and go to Tn. From there, the molecule 

may either relax back to T1 (kTn1) or react (kreact), leading to irreversible photobleaching. 

Modified from Deschennes and van den Bout, 2002. 

 

Photobleaching is modeled as a two-photon process where the first photon excites the 

molecule to S1, from which it undergoes intersystem crossing to T1 where the second 

absorption takes place, producing a T1 Tn transition where Tn is the reactive state for the 

photobleaching reaction. The short-lived higher excited singlet states are not considered 

(Fig. 2.8). The study reveals that low excitation rates yield long photochemical survival times 

and unprecedented amounts of emitted photons. A higher triplet excited state Tn is found to 

be the predominant reactive state for photobleaching. Based on the model of the fluorophore 
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as a three-level system, the kinetics governing the steady state populations of the ground 

singlet state S0, singlet excited state S1, triplet excited state T1, can be written as 
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S0, S1, and T1 denote fractional populations in each state, where all three must sum up to 

unity. The rate ks is used to denote all depopulation routes from S1 to S0 (intersystem crossing 

IC and fluorescence f ). From Eq. (2.14), the intensity-dependent population in the triplet state 

is given by 
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It can be seen that the triplet population is a function of excitation intensity (I), absorption 

cross section (σ), singlet excited state lifetime(τs), intersystem crossing rate (kISC), and triplet 

state lifetime (τT). The bleaching rate, shown in Fig. 2.9, is strongly intensity-dependent. 

 

 
 

Fig. 2.9: The overall rate of photobleaching kbleach for a single molecule. Single molecule 

points (▲) are given by the inverse of the average survival time, while ensemble points (◊) 

are calculated from the total photons detected per molecule scaled by the intensity-

dependent emission rate. The fitted line yields the calculated photobleaching rate, kbleach 

(Eq. (2.16)). Modified from Deschennes and van den Bout, 2002. 
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This strong intensity dependence implicates that the absorption of a second photon from the 

triplet state is responsible for creating the active state from which photobleaching occurs. The 

bleaching rate can be written as 

 

reactTbleach I)I(1Tk Φσ= .                   (2.16) 

 

with T1(I) as the population of the excited state (Eq. 2.15), I as the excitation intensity, σT as 

the cross-section for triplet–triplet absorption, and Φreact as the probability of a reaction once 

the molecule is in Tn: Φreact=kreact / (kreact+kTn1). Even at the lowest excitation intensities, the 

results show an intensity dependence stronger than triplet saturation, thus suggesting that two-

photon photobleaching is the dominant mechanism even at low irradiation intensities. This is 

in contrast to the result from Eggeling et al. above discussed, but might be explained by 

different chemical environments. Furthermore, the presence of dissolved oxygen in the 

aqueous solvent can drastically change the intersystem crossing and triplet relaxation rates, 

altering the energy landscape and relevant lifetimes of the excited states.  

 

Because of the very short lifetime of S1, it is unlikely that photobleaching occurs from a 

higher excited singlet state Sn. Since the cross-section for triplet–triplet absorption is fairly 

large, it is reasonable to assume that photobleaching occurs from Tn. The conventional view 

that although high excitation rates lead to shorter survival times, the photon yield is fixed, 

must be dismissed. 

 

 

2.3.2 Reducing photobleaching 

 

The mean number of excitation cycles survived by a molecule spans across a wide range from 

for example 1000 (coumarin derivatives)  to 3000000 (Tetramethylrhodamine). The number 

of photons emitted before a dye molecule is destroyed depends on the nature of the dye 

molecule itself, on its environment, and on the irradiance and can be strongly influenced 

(Eggeling et al., 1998). First of all, the detection efficiency must be optimized to decrease the 

required excitation intensity if photobleaching is to be avoided. Using fluorescence 

correlation spectroscopy (FCS), several chemicals were found to be effective anti-bleaching 

agents (Dittrich and Schwille, 2001). All the relevant steps involved in photobleaching 

processes can be attacked by additives. Triplet quenchers such as 2-mercaptoethylamin 
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(MEA) can reduce the triplet lifetimes of the dye, singlet oxygen scavengers like 1,4-

diazabicyclo[2,2,2]octane (DABCO) lower the concentration of the highly damaging oxygen 

form. Radical scavengers and anti-oxidants quench the occurrence of secondary radicals, 

reducing or oxidizing agents recover radical ions (Song et al., 1996; Schwille et al., 2001, 

Pawley, 2006, Widengren et al., 2007). One has to keep in mind, that fluorescence quenching 

is often accompanied by reduced photobleaching. The concentration of anti-fading agents 

should be kept sufficiently low in order to avoid a collision rate with fluorophores in the 

singlet system that would lead to either fluorescence quenching or bleaching due to 

modification, i.e. reduction or oxidization (Widengren et al., 2007). As molecular oxygen is 

one of the main players in photobleaching, deoxygenating by degassing or the application of 

an oxygen-scavenging system based on catalase and glucose oxidase and subsequent 

substitution of the oxygen’s triplet relaxation capability by an alternative triplet quencher can 

strongly prolong the survival times (Harada et al., 1990; Heilemann et al., 2005). However, 

most stabilizers are not compatible with live cell experiments (one exception is N-propyl 

gallate). 

 

A new approach for minimizing photobleaching and blinking by recovering reactive 

intermediates was recently introduced by Vogelsang et al., 2008. The method is based on the 

removal of oxygen owing to its dye-dependent influence on photostability and oxidizing 

properties and quenching of triplet as well as charge-separated states by electron transfer 

reactions. To accomplish this, a structure that contains reducing as well as oxidizing agents, 

namely a reducing and oxidizing system (ROXS), is used. The success of this approach is 

demonstrated by single-molecule fluorescence spectroscopy of oligonucleotides labelled with 

different fluorophores: cyanines, (carbo-)rhodamines, and oxazines, in aqueous solvents; 

individual fluorophores can be observed for minutes under moderate excitation with increased 

fluorescence brightness.  
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Fig. 2.10: Photoinduced processes of an organic fluorophore that lead to photobleaching 

(“bleached”). The steps k01, kf , kT, kISC are described in Figs. 2.1, 2.6, 2.7, 2.9. With ROXS, 

the T1 is rapidly relaxed via electron transfer reactions. The oxidizing agent can either lead 

to the formation of a radical cation F°+ with the rate constant kox, or the reducing agent 

forms a radical anion F°- (kred). The two possible radical ions are then recovered to the 

singlet ground state by another set of electron transfer reactions (kred´ and kox´). The rapid 

recovery by ROXS prevents further photobleaching steps (kox
b, kred

b). Higher excited states 

are also involved in photobleaching, as discussed above, but not addressed here. Modified 

from Vogelsang et al., 2008. 

 

As an alternative triplet-quenching mechanism, electron transfer reactions are suggested. 

Triplet quenching by electron transfer, however, yields a radical anionic or cationic dye 

molecule (with respect to an assumed neutral ground state). Such ionized dyes can also be 

formed by other pathways such as photoionization, and they represent additional potentially 

reactive intermediates in photobleaching pathways (Widengren et al., 2007; Hoogenboom et 

al., 2005). Depending on the predominant photobleaching pathway, that is, whether for a 

certain fluorophore the triplet, the reduced, or the oxidized form is the more reactive 

intermediate towards photobleaching, redox-active agents might reduce or even increase the 

photobleaching rate. The ROXS provides a universal method to improve the photostability 

and reduce blinking of fluorescent dyes using both a reducing and an oxidizing agent to 

quickly recover all triplet states and ionized states. The working principle of the developed 

reducing and oxidizing system (ROXS) is shown schematically in Fig. 2.10. After intersystem 

crossing to T1, the fluorophore can be reduced by the reducing agent (ascorbic acid, trolox, or 

cysteamine (1 mM) for example) yielding the radical anion F°-. The radical anion is then 

quickly reoxidized by the oxidizing agent (one electron acceptor methylviologen (1 mM) for 

example) to repopulate the singlet ground state. Alternatively, the fluorophore is oxidized 
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from T1 by the oxidant to form F°+ and subsequently returns to the ground state by the 

reductant. The fast recovery of the singlet ground state is essential to successfully compete 

with side reactions leading to photobleached products (“bleached”). Other conceivable 

pathways can also yield radical ions as indicated in gray in Fig. 2.10, but they are not 

explicitly discussed in this context. The oxidizing and reducing agents are chosen out of 

thermodynamic considerations and not empirically. 

 

 

2.3.3 Photobleaching in subdiffraction fluorescence microscopy 

 

Especially nanoscopic microscopy techniques call for high photostability, because higher 

spatial resolution requires a more precise scanning of the object i.e. a higher number of pixels, 

since the probe is smaller in size. A higher number of pixels is connected to a higher light 

dose affecting the sample if the dwell time is kept constant (depending on the sample, the 

dwell time does not necessarily have to be constant; if the signals are well separated, the 

dwell time can be decreased). Therefore pronounced photobleaching, higher dark state 

transition rates and more severe phototoxicity occur. Furthermore, the more photons a dye 

emits, the better it can be located if stochastical read-out methods are applied. The time a 

molecule spends in its dark states is a crucial parameter, because data acquisition times should 

be kept short for dynamical assays. In targeted read-out schemes a photostable dye allows for 

increasing the intensity of the signal suppression beam, thus confining the volume allowed to 

fluoresce. Intense photobleaching always hinders high resolution imaging because it either 

limits the maximal count rate or the maximal signal suppression intensities in zero based high 

resolution techniques.  

 

In zero-based high resolution methods the dye molecules that are not present in the zero at a 

certain time are forced into the non-fluorescent state. If the non-fluorescent state has to be 

maintained during read-out, the dye molecules undergo a high and finite number of excitation 

and/or signal suppression cycles which is the major drawback of using metastable non-

fluorescent states. After each cycle, the dye molecule makes a transition into a dark or triplet 

state with a finite probability. The higher the cycle count, the higher the probability to end up 

in the states which are well-known precursors for bleaching pathways. If the cycle number is 

too high, the acquisition of high resolution images is hampered. Therefore the reduction of the 
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number of switching cycles addresses a fundamental problem in zero-based high resolution 

microscopy using metastable off-states. 

In STED microscopy, photobleaching is significantly increased because dye molecules in the 

triplet state, populated by the high cycle count, can be further excited by the intense red-

shifted STED laser beam leading to higher excited triplet states (Tn) and two-step photolysis 

even at low excitation intensities. Rhodamine 6G for example exhibits a broad triplet-triplet 

absorption in the visible and a high triplet absorption cross-section which is roughly an order 

of magnitude smaller than the S0 S1 cross-section (Deschenes and vanden Bout, 2002; 

Korobov and Chibisov, 1978; Pavlopoulos et al., 1988). This renders T T absorption by a 

STED beam, which is a 10000 times more intense than the excitation beam, highly probable. 

Higher excited singlet states might also be involved in STED-conditioned bleaching 

pathways. In cw-STED mode, a dye can theoretically perform a higher number of S0-S1 

cycles because the dye gets de-excited after vibrational relaxation (ps) and is immediately re-

excited by the persistent excitation light. Each cycle gives rise to a certain probability that the 

molecule transits to the triplet state. High cycle numbers mean high population of the triplet 

state. In either case, the T1 state is the fundamental precursor for bleaching pathways. 

Motivated by the role of triplet states in bleaching pathways and signal intensification, a new 

imaging modality was addressed, namely dark state or triplet state relaxation (D-REX or T-

REX) (Donnert et al., 2006). By ensuring that the transient molecular dark states, such as the 

triplet state, relax between two molecular absorption events, the bleaching is reduced and the 

signal intensity increased. Since triplet lifetimes are quite long (microseconds), the pulsed 

laser source in case of the D-REX mode had a repetition rate of about 1 MHz leading to long 

data acquisition times rendering it not suitable for live cell acquisition. Moreover, T-REX 

does not reduce bleaching effects associated with higher states within the singlet system of the 

dye itself.  
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Chapter 3 
 

Adaptive filtering and simple STED 
 
 

The ability to employ a variety of new dyes with enhanced properties regarding quantum 

yield, photostability, lifetime, depletion efficiency etc. and new lasers in a fluorescence 

microscope is of particular importance. More photostable or less toxic organic dyes or 

fluorescent proteins may allow experiments which are not possible otherwise. Sometimes, a 

certain chemical environment or embedding is needed which in turn can strongly influence 

spectral properties (Fig. 6.8). Flexibility calls for tunable elements to match the wavelength of 

light replacing elements with fixed properties in a microscope. Fig. 3.1 sketches the most 

important elements of a STED microscope.  
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Fig. 3.1: Sketch of a STED setup already introduced in Fig. 2.5. The parts that should be 

tunable to offer flexibility regarding alternative dyes and lasers are written in red. The 

phase plate depicted here provides a zero line in one dimension after focusing. 

 

Some parts such as achromatic lenses are wavelength independent over a wide range of the 

spectrum. However, a lot of parts have to be adapted to accommodate changed excitation or 

signal suppression sources, fluorescent dyes or whole setup rearrangements.  
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These parts are: 

 

 excitation and signal suppression beam filters (clean up filters) 

 phase filter to generate a signal suppression beam featuring a zero intensity 

dichroic mirrors for separation of the fluorescence 

 spatial filter (pinhole) 

detection filter 

 

In a typical microscope, thin film interference filters, dichroic mirrors and phase filters with 

fixed wavelength characteristics are used and have to be changed if new lasers, new dyes or 

new setup arrangements are implemented. Exchanging filtersets is accompanied by a time 

consuming system realignment. Wavelength tunable elements are therefore highly desirable.  

 

On the following pages, tunable elements to replace clean up filters, phase filters, dichroic 

mirrors and detection filters with fixed characteristics are described. A quadruple acousto-

optic tunable filter (AOTF) arrangement serves as a freely programmable dichroic mirror and 

clean up filter. The combination with a prism-based spectrometer yields an adaptive detection 

filter, which can be used as a notch or band pass filter having the potential to make thin film 

interference filters redundant. STED measurements with polystyrene beads and SupT1 cells 

prove that the adaptive filter system shows comparable performance to thin film interference 

filters, with the additional advantage of flexibility.  

The tunable phase filter consists of two adjacent optical flats which are slightly tilted with 

respect to each other and imprint a phase shift of π on one half of the beam. Any wavelength 

can be matched to feature a phase shift of π just by rotating the two optical flats. Hence, 

another simplification results from the new phase filter in combination with STED in cw 

mode. The excitation as well as the signal suppression beam can be provided by one laser 

without the need for separation by a dichroic mirror. Both beams pass the new phase filter and 

are inherently aligned. Dependent on the wavelength, a phase shift is generated for the signal 

suppression beam, whereas the excitation beam stays unaltered due to dispersion. The 

principle was shown with polystyrene beads at a resolution of 40 nm. 
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3.1 Optical setup  
 

Ar-Kr

PP

Spectrometer

Diode

AOTF Sample

ML

 
 

Fig. 3.2: The optical setup used for the majority of experiments. The confocal setup 

consists of an actively mode-locked (ML, modelocker) Ar-Kr-laser for pulsed and cw mode 

applications (red beam path) and of a variety of high repetition rate (amplified and 

frequency converted) diode lasers for excitation (green and blue beam paths). The phase of 

the signal suppression beam is manipulated by a phase plate (PP) in such a way that an 

intensity zero is generated after focusing. The lasers are coupled into a stage-scanning 

microscope via a quadruple AOTF arrangement serving as a freely programmable dichroic 

mirror. Fluorescence light (yellow beam path) passes the AOTFs unaltered, is confocalized 

by a pinhole, enters the spectrometer and is detected with an APD (Fig. 3.3). 

 

The optical setup was built from scratch and used for the majority of the experiments 

described in this thesis is depicted in Fig. 3.2. The system is based on a confocal microscope 

equipped with an Ar-Kr-laser (Spectra Physics-Division of Newport Corporation, Irvine, CA) 

which provides a variety of laser lines with high intensities mandatory for STED microscopy 

(Tab. 3.1) and, therefore, offers high flexibility regarding measurements of different dyes 

(647 nm pulsed and cw for Atto565, NK51, Dy485XL, Nile red; 676 nm cw for Mn-QD, 

514 nm pulsed and cw for coumarin derivatives, DAPI, and SYTOX blue).  
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Wavelength/nm Power/W (cw) 

350.7 0.8 

356.4 0.4 

406.7 0.72 

413.1 1.4 

415.4 0.24 

468.0 0.4 

476.2 0.3 

482.5 0.3 

488.0 2 

514.5 2.5 

530.9 1.2 

568.2 0.5 

631.2 0.16 

647.1 2.5 

676.4 0.72 

752.5 0.95 

 
Tab. 3.1: A compilation of all laser lines with the corresponding powers provided by the 

Ar-Kr-laser. The mainly used laser lines are written in bold letters.  

 

Each laser line can be used in cw mode or can be actively mode-locked (APE, Berlin, 

Germany) for pulsed excitation and/or pulsed STED experiments. The mode-locked laser 

lines typically have 20 to 30% of the average power provided in cw mode. Besides the Ar-Kr-

laser lines the setup also contains pulsed high-repetition rate laser diodes (PicoQuant, Berlin, 

Germany) and cw laser diodes for excitation of the fluorescent dyes (405 nm (coumarins 

Atto390, C6H, C522), 440 nm (Mn-QD, Atto425), 470 nm (Dy485XL)). For excitation at 

532 nm (Nile red beads, NK51, Atto565) a pulsed amplified diode laser is applicable 

(PicoTA, PicoQuant, Berlin, Germany). In the case of pulsed STED experiments the laser 

diodes are synchronized with the STED-laser via a photodiode (Alphalas, Göttingen, 

Germany) and a home built programmable delay unit (MPI Göttingen, Germany). 

 

The excitation and signal suppression beams are combined using acousto-optic tunable filters 

(Crystal Technology, Palo Alto, CA) and coupled into a microscope stand (DMI 4000B, Leica 

Microsystems GmbH, Mannheim, Germany) equipped with a three axis piezo stage-scanner 

(PI, Karlsruhe, Germany) and an ACS APO, 63x/1.30NA oil immersion lens (Leica 

Microsystems GmbH, Mannheim, Germany). The acousto-optic tunable filters (AOTF) allow 

the power of each laser beam to be controlled independently and also separate counter-
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propagating fluorescence returning from the confocal microscope. The power and the radio 

frequency of the AOTF are controlled with a home built software (LabVIEW, National 

Instruments, Austin, USA), either in digital (RS232) or in analog mode for high speed 

blanking purposes (see RESCue experiments) (NI-DAQ, National Instruments, Austin, USA). 

They are also part of a new adaptive filter system which will be described later in this chapter. 

The 405 nm diode is reflected into the microscope via a dichroic mirror because of the limited 

radio frequency range of the AOTFs employed. Collected fluorescence passes through an 

additional band-pass filter (AHF Analysentechnik, Tübingen, Germany) or the prism based 

spectrometer (Fig. 3.3a, c) described below and is detected using a photon-counting module 

(SPCM-AQR-13-FC, PerkinElmer, Canada). The generated signal is recorded with a 

multichannel analyzer (MCA)(FAST ComTec Communication Technology GmbH, 

Oberhaching, Germany) which is controlled by the data acquisition software Imspector (MPI 

Göttingen, Germany). 

 

a)

b)

c)

APD

APD

AOTF

 
 

Fig. 3.3: (a) and (c) depicts the spectrometer in detailed view. Having passed the confocal 

pinhole (black rectangle), the beam is parallelized by a lens (blue semi-oval; a lens with a 

focal length of 500 mm was quartered to ensure the same optical properties for all lenses 

within the spectrometer) and is spectrally dispersed by a prism (blue triangle, SF10). A 

mirror reflects the fluorescence spectrum towards a second lens (f = 500) that focuses the 

fluorescence spectrum to a sharp line shown in (b). After yet another mirror, the sharp line 

spectrum can be manipulated with plates and a strip. After that, the filtered beam passes a 

second set of components recombining the manipulated spectrum to a single beam and 

which is launched into a multi-mode fibre for detection using an APD.  
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For RESOLFT experiments, one has to introduce a phase-plate in a plane that is conjugated to 

the entrance pupil of the objective lens. RESOLFT nanoscopy requires the modulating beam 

to have a zero or null which is used to confine the region in which fluorescence is allowed. A 

simple way of producing such a phase distribution is to introduce a 180º phase-step midway 

through the modulation beam before it is focused. To accomplish this, two identical adjacent 

optical flats are placed in the modulation beam, and one is tilted slightly to adjust the path 

length in one half of the beam. When focused, the resulting point-spread function (PSF) 

exhibits a line of zero intensity through its center and can be used to selectively inhibit 

fluorescence of dyes. With the aid of this phase plate based on two adjacent optical flats, the 

desired phase shift can be generated for any λ. Additionally, it allows to simultaneously 

manipulate the excitation and signal suppression PSFs of cw laser lines provided by one 

single laser or fiber source. Time-consuming PSF alignment procedures are redundant as 

described in section 3.2.2. Alternatively, a vortex phase plate (RPC Photonics, NY, USA) was 

used in the modulation beam path to generate a doughnut-shaped point spread function in the 

focus. The diffraction-limited PSFs of the excitation and modulation beams are characterized 

by scanning nanometric gold particles (80 nm suspended in Canada-Balsam) through the 

focused beam while detecting the back-scattered laser light. Special requirements and changes 

of the setup are described in the corresponding chapters. 

 

The major advantage of the setup introduced here is its superior flexibility. The Ar-Kr-laser 

provides a variety of different laser lines. With the aid of the AOTFs as a freely 

programmable dichroic mirror, every laser line in the visible range from 420 to 700 nm can be 

cleaned up and coupled into the microscope without any alignment. In combination with a 

prism-based spectrometer, the result is an adaptive filter system (described in the following). 

A tunable phase filter further supports the flexibility and allows for easy adaptation to 

different dyes and experiments. 
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3.2 STED microscopy applying an adaptive spectral and phase filter system 
3.2.1. An adaptive spectral filter system consisting of a quadruple AOTF arrangement and a 

prism based spectrometer 

Quadruple AOTF arrangement serving as a tunable dichroic mirror 

 

 

A standard confocal microscope contains many thin film interference filters. Clean-up filters 

may be required to get rid of the spectrally broad sockets of laser sources overlapping with the 

desired emission of the fluorescence dyes, especially if laser diodes are used. To separate the 

excitation light from the fluorescence signal, dichroic mirrors are employed. Before the 

detection, a bandpass filter selects the desired fluorescence photons. A STED setup requires 

even more filters with stringent specificities because the intense STED wavelength is 

necessarily located within the fluorescence spectrum. All standard filters have fixed spectral 

properties. When new lasers are coupled into a microscope, new dyes are used, or the whole 

system is rearranged, these filters have to be changed. One has to have different sets of filter 

combinations ready at hand to be flexible enough to adapt to differently labelled samples or 

changed setup conditions. The exchange of filters is often accompanied by the need for time-

consuming system realignment because of unavoidable beam displacement. Especially the 

field of fluorescence dyes is growing rapidly. New dyes exhibiting different photophysical, 

chemical and biological properties do not necessarily match exactly the available or integrated 

laser lines. Photostability is one of the most important properties when it comes to high 

resolution microscopy. In this case, a photostable dye is preferred instead of a dye which 

matches existing filter sets. To avoid bleaching is therefore also a question of flexibility and 

the ability to adapt the system to new, more photostable dyes. Other disadvantages are the 

limited range of designed optical densities (ODs) (especially dichroic mirrors), imperfect 

transmissions, and limited edge steepness (5 to 15 nm). The filters are susceptible to damage 

and attrition caused by exposure to mechanical load, heat, humidity and high light intensities, 

changing their spectral characteristics over time. The growing importance of white light lasers 

with their tunable excitation and STED capability also strongly demands for adaptive filter 

systems (Wildanger and others, 2008). 

 

Because of the fixed spectral characteristics of standard dielectric filters, a tunable filter 

would be highly desirable. To date, there are adjustable filters such as tunable LC filters. 

These filters are based on rotating the incoming, linear polarized, polychromatic light 
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dispersively. Then, the direction of the polarization becomes wavelength-dependent and the 

desired wavelength can be selected by rotating an analyzer. Other wavelengths are partially 

blocked because of their non-parallel orientation with respect to the analyzer. Repeating these 

steps leads to increased filter efficiency. With the help of liquid crystal variable retarders, the 

bandpass can be shifted without any mechanical motion of the optics by adjusting the voltage. 

However, the major drawback of these devices is the poorly polarized peak transmission of 40 

to 60% depending on the wavelength. The band width is typically in the order of a few 

nanometer, the switching speed below 100 ms (Meadowlark optics, Frederick, USA). 

 

Another way to tune filter properties is the application of acousto-optic which was also 

chosen for the setup described here. AOTFs for microscopy are typically made of a birefrigent 

material like quartz or tellurium oxide which is coupled to a piezoelectric transducer (Fig. 

3.4a). By feeding an oscillating radio frequency electric signal to the transducer, an acoustic 

wave is generated propagating through the crystal. 

 

1st

0

1st

TeO2

b)

a)

 
 

Fig. 3.4: An ultrasonic wave originating from the transducer penetrates the dispersive 

Tellurium oxide crystal, and periodically modulates the crystal´s refractive index (a). This 

diffraction grating deviates the beam into a first order beam depending on the original 

polarization. The AOTF changes the polarization of the diffracted beam by 90° relative to 

the incident beam. (b) shows the dependence of the diffracted wavelength from the radio 

frequency.  
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This acoustic wave induces a periodic variation of the refractive index in the crystal that acts 

as diffraction grating. The diffraction grating deviates a certain wavelength into a first order 

beam which is fed into the microscope. By changing the radio frequency of the transducer 

signal, the period of the refractive index variation is altered as well as the wavelength of the 

diffracted light. Fig. 3.4b shows the relationship between the diffracted wavelength and the 

radio frequency of the electric signal fed into the transducer for the AOTF used in the setup. 

The AOTF frequency (ν) can be calculated using the following empirically gained formula:  

 

DBA C +⋅= − λν                    (3.1) 

 

λ denotes the wavelength of the light to be diffracted, A, B, C and D are constants determined 

as: 1003.40, 1.00435, 1.265, 61.15, respectively. The intensity of the first order beam depends 

on the amplitude or power of the signal coupled into the crystal. Another prominent attribute 

of the acousto-optic tunable filter is the possibility to change the intensity or the diffracted 

wavelength very rapidly which is important for the RESCue modality discussed in chapter 4. 

The here employed AOTFs allow for changes well below 10 µs only limited by the acoustic 

waves´s transit time through the crystal. 

 

The optical setup introduced here features four AOTFs for dispersive and birefringent 

compensation (Fig. 3.5a). The prism-like layout of the AOTF leads to dispersion. Compared 

to tunable liquid crystal filters, the AOTFs exhibit a high diffraction efficiency of 96% 

measured on narrow Ar-Kr lines (this corresponds to the transmission of the tunable liquid 

crystal filter) and a three times higher optical density (OD6). One disadvantage of the high 

spectral resolution of about 2 nm (Fig 3.5b, FWHM of the dips) lies in the incomplete spectral 

coupling of diode lasers into the microscope since these lasers exhibit broad lines in the range 

of 2 to 8 nm for wavelengths under 900 nm. Applying more than one frequency for diffraction 

to the AOTF leads to a diffraction efficiency of 50% for diode lasers. If the frequencies are 

too close, they disturb each other resulting in decreased diffraction efficiencies. The usage of 

clean up filters in the excitation and signal suppression beam path to remove potentially 

background generating light is redundant due to the high spectral resolution of the AOTFs.  
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Fig. 3.5: The quadruple AOTF arrangement acts as an acousto-optic beam splitter or freely 

programmable dichroic (a). Multiple laser lines can be coupled into the microscope via the 

diffracted beam path without the need for realignment. The dispersion as well as the 

birefringence are fully compensated for the arrangement. (b) shows a fluorescence 

spectrum of the Atto565-NHS dye in DMSO measured after its passage through the AOTF 

arrangement. The arrow marks the unfiltered excitation line at 532 nm. The first AOTF is 

programmed to a radio frequency of 95MHz corresponding to a diffracted wavelength of 

around 625 nm and 618 nm. The fluorescence is usually unpolarized resulting in two 

diffracted wavelengths 7 nm apart in combination with the birefringence of the crystal. The 

FWHM of the two dips reveal a spectral resolution of the AOTF of about 2 nm. The 

quadruple AOTF arrangement is the first part of the adaptive filter system. 

 

The fluorescence loss caused by the whole quadruple arrangement is around 8 %. The AOTF 

ensemble represents a tunable dichroic mirror for multiple laser feeding with linear 

polarization and narrow line width. The suppression of the remaining laser light in the 

fluorescence path is better than 1*105. In the case of laser light (514 nm) reflected on a mirror 

installed in place of the sample, the suppression is even in the range of 1*106 to 1*107. Fig. 

3.5b shows the fluorescence of Atto565-NHS in dimethyl sulfoxide (DMSO), the two dips 

around 622 nm correspond to the wavelengths which are filtered out by one AOTF operating 

at the frequency 95MHz. There are two dips in the spectrum, because of the birefringent 

properties of the crystal. The two different polarizations propagate in slightly different 
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directions therefore facing slightly different lattice constants. The excitation wavelength at 

532 nm is not filtered out in this case.  

 

 

Prism based spectrometer 

 

The AOTF quadruple arrangement is not sufficient to provide a satisfying suppression of the 

intense STED laser beam. Therefore, the fluorescence light is further filtered by a prism based 

spectrometer (PBS). Fig. 3.6a outlines the spectrometer setup.  

 

 
 

Fig. 3.6: The spectrometer shown in (a) is the second part of the adaptive filter system. 

After passing the quadruple AOTF arrangement the fluorescence is spectrally dispersed by 

a prism (SF10, triangle) and focused by a lens (oval) to a sharp line spectrum. The focus of 

the lens is an image of the fluorescence within the confocal pinhole. The line spectrum 

visualized in Fig. 3.2b can be filtered with movable plates and a narrow stop (200 µm). The 

STED beam, which is approximately 10000 times more intense compared to the excitation 

beam, is focused onto the stop (shown) or plates to remove it by blocking. Applying the 

strip is equivalent to using a notch filter. In this case the fluorescence on the red side of the 
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STED line can also be detected. (c) shows the spectrum of Atto565 (confocal) after passing 

the adaptive spectrometer filter. A sharp line at 609 nm with a FWHM of 2.5 nm is filtered 

out of the spectrum. The plates are equivalent to a bandpass filter. (b) shows the Atto565 

spectrum (non-confocal) confined by sequentially moving in a plate starting from the red 

side of the spectrum. The yellow band corresponds to the band passing the normally used 

filter (580/40). The integral is significantly smaller than the integral of the band produced 

with the adaptive spectrometer filter. The adaptive filter allows one to exactly remove a 

signal suppression line located at 647 nm without preventing too much fluorescence from 

reaching the detector. (d) shows the Atto565 spectrum (non-confocal) with the whole 

adaptive filter system applied. The band around 647 nm is completely filtered out. (e) 

switching on the STED beam (647 nm) leads to a decreased fluorescence intensity, the 

STED line gets visible as a tiny signal within the filtered narrow band marked by the arrow. 

 

While passing the prism (SF10), the fluorescence spectrum of a dye is dispersed. After 

focusing with a lens (f = 500mm), the spectrum can be seen as a 10 to 20 mm wide, sharp line 

(Fig. 3.2b) which can be manipulated via apertures or stops. The sharp line corresponds to the 

spectrum of the fluorescence within the confocal pinhole. For letting only a certain 

fluorescence band pass, two plates are introduced from the sides. Fig. 3.6b depicts the 

situation of a plate brought in from the red side of the fluorescence of Atto565-NHS in 

dissolved DMSO (non-confocal). The spectral resolution is in the range of 80 µm per nm, so 

it is easy to adaptively manipulate the cut-off of the spectral band with nm resolution. The 

spectral resolution is strongly dependent on the refractive index of the prism´s glass. Using 

BK7 glass instead of SF10 would lead to a spectral resolution which is only 30% percent of 

the resolution achieved with the SF10 prism. In return, a larger spectral width would be 

accessible, allowing multicolour analysis (described below). In the following, only the SF10 

Prism was applied, which provides a 120 nm band (Fig. 3.6d) which is sufficient for standard 

fluorescent dyes and limited by apertures and edges of lenses and mirrors. 

 

Another possible filtertype which can be realized with the spectrometer is the notch filter. The 

notch filter attenuates a very sharp wavelength band and lets other wavelengths pass 

unaltered. It is the opposite of a bandpass filter. To notch a certain, 2.5 nm narrow band in the 

fluorescence spectrum for filtering out a very intense STED wavelength for example, a 

200 µm wide, and 20 mm long slit with a 200 µm broad strip in the middle was produced with 

an Nd-YAG laser cutting process (Metaq GmbH, Wuppertal, Germany). Fig. 3.6c shows the 

spectrum of Atto565-NHS in DMSO (confocal), where the strip filters out a narrow band 

around 609 nm by blocking these wavelengths. In a STED or RESOLFT experiment, the 
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signal suppression beam is focused directly onto the strip. This leads to an attenuation of the 

intensity by a factor of 770 measured with the 514 nm laser line of the Ar-Kr-laser reflected 

from a mirror. Light diffracted by apertures, lens edges, the strip and mirror edges is the main 

source of bleed through. To combat this diffracted light, the fluorescence is coupled into a 

62 µm fiber (Thorlabs, Cambridgeshire, UK) which is directly connected to an APD to sort 

out unfocused, diffusely scattered or diffracted light. The introduction of an additional pinhole 

(a multimode fiber) into the detection system leads to a further attenuation of the signal 

suppression beam by a factor of 530. The overall attenuation of the laser beam due to the 

spectrometer setup is then 4*105. Combined with the quadruple AOTF arrangement an 

attenuation of 4*1011 to 4*1012 was obtained. For comparison, a standard thin film 

interference filter exhibits an OD of 6. Fig. 3.6d shows the Atto565-NHS spectrum with the 

whole filter system (spectrometer and tunable dichroic) enabled. A clear deep spike is 

distinguishable at 647 nm, the STED wavelength for the Atto565 dye. If the 647 nm laser line 

is switched on additionally, the fluorescence is depleted, which is manifested by a decreased 

fluorescence intensity (Fig. 3.6e). A tiny signal is visible in the notch, which is due to break 

through of the intense STED line. The overall reflection loss within the spectrometer is 

around 30% measured at 647 nm with the phase plate installed. The fluorescence spot is 

significantly smaller than the doughnut-shaped beam and therefore apertures do not block that 

much intensity. The reflection loss is estimated to be 25%. The SF10 prisms are coated with 

an anti-reflex coating (ARB2) to minimize the reflection loss to 2.7 to 3% for unpolarized 

light at an angle of incidence of 60° (Linos Photonics GmbH & Co. KG, Göttingen, 

Germany). The anti-reflex coating spans across a range from 500 to 750 nm. In combination 

with the tunable dichroic, which exhibits a reflection loss of 8% (2% for each AOTF) the 

overall reflection loss of the filter system is on the order of 30 to 35%.  

If the number of fluorescence photons collected by applying the adaptive filter system is 

greater than the number using the fixed thin film interference filters, the light dose for 

excitation of the dyes can be reduced compared to the fixed filter system. Thereby, 

photobleaching can be minimized. With other words, perfect filtering, which is only 

achievable by an adaptive filtering helps to reach a sufficient SN with a lower excitation dose 

and therefore helps to prevent photobleaching. Especially for STED microscopy, intense light 

has to be removed which is spectrally located within the red end of the emission. Usually, all 

the fluorescence light ranging from the STED line to the red end of the dye´s spectrum is 

filtered out. With the aid of an adaptive notch filter, the fluorescence to the red side relative to 

the STED line can also be collected. Depending on the dye, this fraction can account for up to 
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40% of the fluorescence intensity. Interestingly, by applying the adaptive notch filter to STED 

measurements of Nile red beads (the sample was produced following the protocol described in 

the appendix A.1.1) the background was significantly raised by a factor of 20 to 50 (Fig. 3.7).  
 

a) b)

c) d)

 
 

Fig. 3.7: A comparison of confocal ((a), (c)) and STED ((b), (d)) images of Nile red beads 

embedded in Mowiol and excited at 532 nm. The STED wavelength was 647 nm. The 

images (a) and (b) were recorded applying a thin film interference filter (580/40). The 

background is 1kHz. The images are slightly shifted with respect to each other because the 

scanner´s fly back creates the confocal image. The images (c) and (d) were taken using the 

adaptive filter system based on the strip. A significantly increased background of 25kHz is 

apparent. Spectrally opening up the detection window may sensitize the system to Raman 

scattering originating from the embedding media. 

 

The additional background may originate from STED-beam induced, Raman scattered light in 

the embedding media spectrally located on the red side of the fluorescence spectrum and will 

be investigated in more detail in the future. 

 

Fig. 3.8 shows a STED experiment on Nile red beads measured with the adaptive filter system 

(Fig. 3.8c, d), and with a disabled filter system but with an implemented thin film interference 

filter (580/40) (Fig. 3.8a, b). For the adaptive filter recordings a band was applied (see Fig. 

3.6b).  
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a) b)

c) d)

 
 

Fig. 3.8: The same experimental series as in Fig. 3.7 has been carried out here. This time, 

instead of the bar, the adaptive filter system based on the plate was applied to simulate a 

bandpass filter. The background levels of all measurements are comparable. 

 

The fluorescence intensities of the images recorded with the adaptive filter are comparable to 

that recorded with the fixed bandpass filter. The background levels are also comparable. 

These findings are also appropriate for Atto565-phalloidin labelled actin filaments in SupT1 

cells (Fig. 3.9) (for preparation see appendix A.1.2). 

 

a) b)

c) d)

 
 

Fig. 3.9: A comparison of Atto565-phaloidin labelled actin filaments in SupT1 cells 

recorded in confocal mode ((a) and (c)), and STED mode ((b) and (d)). To record the 

images (a) and (b) a bandpass filter was applied (580/40). The images (c) and (d) were 

taken using the adaptive filter system based on the plates. The background levels of all 

images were comparable. All images were processed by subtracting a background of 10%.  
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In conclusion, the application of the notch-like adaptive filter results in extra background, 

presumably generated by converted STED light and spectrally located within the red end of 

the dye´s fluorescence spectrum. Replacing the notch-like adaptive filter with the adaptive 

band pass filter removes all the background light. The measurements of the polystyrene (Nile 

red) beads and SupT1 cells prove the applicability of the adaptive filter system. A drawback 

of this system is the time-consuming alignment procedure of the spectrometer part. The whole 

adaptive filter system can however be automated. For the determination of the optimal AOTF 

frequencies an iterative algorithm can be applied to optimize the diffraction and filtering of 

the signal suppression wavelength. Within the spectrometer part, the apertures and the strip 

can be motorized. 

 

For the experiments in the following chapters thin film interference filters were used. 

 

 

3.2.2 Tunable phase filter and Simple STED 

 

Conventional phase plates are not tunable and different phase plates for different wavelengths 

are required. The phase plates are produced by vapor deposition of MgF2 on a glass substrate 

or a laser-writing process. The thickness of the coating has to be adapted to the desired 

wavelength. For the Ar-Kr-laser a whole set of phase plates must be provided to take 

advantage of all laser lines and to fully exploit the above mentioned flexibility. A tunable 

phase filter is therefore highly desirable.  

In the following, a new approach to create a 180° phase step midway through the signal 

suppression beam with the aid of two identical adjacent optical flats is described (Fig. 3.10a, 

b). The signal suppression beam passes the optical flats, which are slightly tilted with respect 

to each other. Due to dispersion, a difference in the optical path lengths between the two 

halves of the beam is introduced. If the difference of the optical path lengths equals λ/2, a 

zero line is generated in the focus. The phase plate can be tuned to match every laser line 

(every λ) by simply tilting the whole arrangement.  

During the investigation of the new phase plate approach, a way to significantly simplify a 

RESOLFT setup was found (simple STED). The excitation and the signal suppression beams 

can be provided by the same laser or fibre source without the need for separating the laser 

beams with dichroic mirrors to place a phase plate in the beam path of the signal suppression 

laser. The tilting of the two optical flats has to be adjusted in such a way, that a phase step of 
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180° is created for the signal suppression beam, and a phase step of 0° is created for the 

excitation beam (Fig. 3.10).  
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Fig. 3.10: A linear polarized beam (red or green) passing the two adjacent optical flats 

which are slightly tilted with respect to each other is modified by a freely adjustable phase 

step midway through the signal suppression beam. (a) and (b) shows the situation for each 

individual flat. The differences in the optical path lengths (d to d`or d``) through each flat 

are tunable by turning the whole arrangement. For a zero line in the focus, a phase step of 

180° is necessary (c). Because of dispersion there is a certain tilt angle causing a 180° 

phase step for the signal suppression beam (c) and a phase step of zero for the excitation 

beam (d) simultaneously. 

 

The time-consuming alignment procedure to overlay two foci in the sample would be 

redundant, because both laser beams are inherently aligned due to the fact that they are 

originating from a single laser or fibre source. The dispersion of the optical flats used allows 

the adjustment of the phase of one half of the beam relative to the other and relative to a 

second beam. Fig. 3.11 shows a typical PSF in the xy and xz plane (Fig. 3.11b, a) of the signal 

suppression beam (red) with a wavelength of 647 nm and the excitation beam with a 

wavelength of 514 nm (green) shaped simultaneously by the two optical flats. This enables 

for one-dimensional high resolution imaging. The xz section reveals that the foci are shifted 

relative to each other by 120 nm because of residual chromatic aberrations of the objective in 

z direction. The applied objective lens has to provide a superior foci correction like the one 
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described above in the setup section. Alternatively, a custom designed lens has to be placed in 

the beam path to compensate for the chromatic dependence of the focal length. The line 

profile through the xy section (Fig. 3.11c) proofs that the zero intensity is below 0.5%.  

 

 
 

Fig 3.11: z (a) and xy (b) section showing the excitation (514 nm) PSF colored in green and 

the STED PSF (647 nm) colored in red. Both lasers operate in cw mode. The PSFs were 

recorded by scanning a 80 nm gold particle. (c) The line profile through the XY PSFs 

proves a good zero (<0.5%). 

 

The method to generate a zero introduced here is particularly suitable for setups using 

different wavelengths for signal suppression. The adaptation to different laser lines is 

accomplished simply by rotating the two optical flats and is fast and reliable. The possibility 

to exactly match every desired wavelength compared to other phase plates suitable for only 

one wavelength is an advantage when improving the overall performance.  

The new phase plate was applied to resolve Nile red beads (Fig. 3.12), which were excited by 

the 514 nm laser line. Stimulated emission was performed by the 647 nm laser line. The 

FWHM of some Nile red beads which are not clustered are around 40 nm. Both laser lines 

originate from the same Ar-Kr-laser, making beam alignment redundant. Images were taken 
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with lasers in cw mode which is mandatory because adjustment for the timing between 

excitation and STED laser pulses is not possible when using the same laser as excitation and 

de-excitation source.  

 

a) b)

 
 

Fig. 3.12: Comparison of Nile red beads imaged under confocal mode (a) and STED mode 

(b). Features in the range of 40 nm are discernable. 

 

For two-dimensional high resolution imaging, a second set of two adjacent optical flats is 

necessary. The beam would be split into two beams with crossed polarizations passing two 

phase plates thereby generating a zero in x and y direction when focused. Next, the two beams 

would be merged again by a polarizing beam splitter and fed into the microscope. 

 

The tunable phase filter introduced here covers the whole visible range and simplifies the 

STED setup in combination with the application of cw laser beams due to redundant PSF and 

timing alignment procedures. 
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Chapter 4 
 

Reduction of excitation and signal suppression cycles 
(RESCue) in zero based high resolution optical microscopy 

 
 
Most of the destructive processes are dependent on the light dose. When an object is scanned 

by the laser beams in a RESOLFT type of microscope, many parts of the object are exposed 

to and therefore affected by the light, even though they are momentarily not contributing to 

the signal. This leads to the consideration, that the sample has to be exposed if and only if the 

desired object is present in the effective focal spot. Accordingly, it is possible to reduce the 

overall dose affecting the sample with the aid of an algorithm which switches off the lasers 

whenever possible. To accomplish this, each pixel is initially exposed for a short time-period 

in order to determine whether a certain number of fluorescence photons are emitted and 

whether further exposition of this particular spot is worthwhile.  

In zero based high resolution methods the dye molecules not present in the zero are forced 

into the non-fluorescent state. If the non-fluorescent state has to be maintained during the 

readout of the signal, the dye molecules undergo a high and finite number of excitation and/or 

signal suppression cycles, which is the major drawback of using a metastable non-fluorescent 

states. After each cycle the dye molecule makes a transition into a dark or triplet state with a 

probability unequal zero. The higher the cycle number, the higher the probability to end up in 

these states, which are well known precursors for bleaching pathways. If the cycle number is 

too high, the acquisition of a high resolution image is hindered. Therefore the reduction of the 

number of switching cycles addresses a fundamental problem in zero based high resolution 

microscopy using metastable off-states. 

In this chapter, a strategy is described for reducing photobleaching in zero based high 

resolution optical microscopy by instantaneous coupling of the sample exposure to the high 

resolution information. 
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4.1 Principles of RESCue 
 

Developing an appropriate scan algorithm to reduce the overall dose inside a 3D specimen is a 

straight consequence of the primary attribute of the zero based RESOLFT techniques to excite 

and quench the fluorescence in a much larger volume than the volume emitting fluorescence. 

It is obvious that the excitation as well as the fluorescence-depleting beam stress a much 

greater diffraction-limited volume than the small volume actually emitting fluorescence. The 

modality introduced in this chapter significantly decreases the amount of light hitting the 

sample and therefore reduces bleaching of fluorescent dyes and phototoxicity in case of living 

cells.  
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Fig. 4.1: Setup for the RESCue-STED experiments (see also Fig 3.2). The excitation and 

the STED laser beams pass an AOTF to switch the laser light on and off during the 

RESCue experiments depending on the RESCue control, are then coupled into the 

microscope using two beam splitters (BS) and are focused into the sample (S) via an 

objective lens (O). A vortex phase plate (PP) is placed in the beam path of the STED laser 

to create a doughnut-shaped beam profile. The fluorescence is collected by an APD 

measuring the photon flux, which is interpreted by the RESCue control driving the AOTFs. 

Two situations have to be considered (right side): Situation 1: the lower threshold (lTh) is 

not reached during the cycle time (cT) (a dye is not present OR the fluorescence of the dye 

is depleted). The lasers are switched off during the dwell time (dT). Situation 2: the lower 

threshold is reached during the cycle time of the first dwell time (a dye molecule is present 

in the effective fluorescence region). The lasers are switched on. 

 

 



RESCue 

60 

The number of photons originating from the fluorescence volume is determined for the cycle 

time (cT) which is a small fraction of the pixel dwell time (dT) (Fig. 4.1). In case that this 

number is below a certain lower threshold (lTh), the binary decision is made that no dye-

labelled object is present in the shrunken effective fluorescence volume. Any further exposure 

would not increase the signal-to-noise ratio (SN) of the image but only stress the dye 

molecules present in the whole diffraction-limited illumination volume as well as the 

fluorescent molecules above and below the focal plane. Therefore, both the excitation and the 

quenching beam are shut off for the residual dwell time (dye-depending, blanking of only the 

excitation beam may be sufficient) (Fig. 4.1). Alternatively, one could proceed the scan 

immediately to the next detection volume reducing data acquisition time. The reduction of the 

number of switching cycles due to the lower threshold depends mainly on the dT/cT ratio, the 

fluorescence distribution and the volume ratio of the conventional PSF to effective PSF. As 

the resolution of the system increases, the size of the effective PSF decreases, which results in 

the possibility to detect the fluorescence distribution more accurately and to simultaneously 

increase the ratio between the illumination-stressed volume and the effective fluorescence 

volume (Fig. 4.2). If the resolution of the system is higher than the diffraction limit, it is 

possible to switch off the lasers between adjacent fluorescent objects with a distance smaller 

than the diffraction limit (Fig. 4.2). Only if an object is present with a certain accuracy 

defined by the resolution of the system the lasers remain switched on. A better resolution also 

gives the possibility to accurately control the sample exposure and the local dose and thus to 

decrease photobleaching compared to the confocal mode. The principle of STED allows for 

adaptive bleaching control depending on the photon flux of only a fraction of the illuminated 

volume. Including a similar illumination decision and detection feedback as presented by 

Hoebe et al. (controlled light exposure microscopy, CLEM), one obtains a simple rule to 

control the illumination of the specimen. Hoebe et al. presented a method where phototoxicity 

and photobleaching are reduced in the focal plane of a conventional confocal microscope by 

collecting the photons point by point up to a certain threshold, which is still high enough for a 

sufficient signal-to-noise ratio. By using a lower threshold photobleaching is reduced in the 

out of focal planes (Hoebe et al., 2007). The combination of the illumination strategy based 

on the lower threshold with zero-based subdiffraction microscopy makes a reduction of 

photobleaching within the focal plane feasible. The lasers are shut off at regions where the 

signal gets quenched.  
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Fig. 4.2: A high-resolution beam featuring an intensity zero (red) scans across two 

subdiffraction-sized objects (grey circles) which are separated by half the diffraction limit. 

The lasers remain switched on for the whole dwell time only if an object is present in a 

subdiffraction-sized area. The two fluorescent objects are not resolvable by a conventional 

confocal microscope (limit: λ/(2n), the grid marks the pixels, the beam is scanned from left 

to right). If the read-out of the fluorescence is confined to the zero of the lasers beam 

profile inhibiting fluorescence (red, any zero pattern, for example multiple doughnuts or 

grooves), the objects are resolvable and the lasers can be blanked in regions where no 

fluorescence is emerging because of the fluorescence inhibition (between the two objects) 

(middle) or the absence of fluorescent molecules. A narrower effective PSF yields the 

possibility to expose the sample more accurately. The number of cycles a fluorescent 

molecule undergoes in the RESCue-STED modality is strongly reduced compared to the 

cycle number in the conventional STED mode (red line) related to cT/dT, the systems 

resolution and the distribution of the fluorescent molecules.  

 

The lower threshold is implemented by a stand-alone circuit board (Fig. 4.3). The pixel clock 

(J1) provided by the multichannel analyzer (MCA) board (FAST ComTec Communication 

Technology GmbH, Oberhaching, Germany) switches on the laser (J8) via a mono flop 

(U1A). At the same time, the RS flip flop (U2) and the binary counter (U5) are cleared. If the 

collected photon (J5) count during an adjustable time span is below a certain threshold which 

can be adjusted to a value 2n by the binary counter (U5), the laser will be blanked (J8) by the 

AOTFs (see also chapter 3) after the operation of the mono flop. The duration the mono flop 

stays in the high level can be adjusted by a potentiometer (J9). In case that enough photons 

have been counted, the RS flip flop keeps the lasers switched on also after the mono flops has 

switched to low. The MCA board collects the pulses from the APD caused by detected 
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photons and is controlled by the data acquisition software Imspector (MPI Göttingen, 

Germany). The scanner´s fly back signal J7 is provided by the software Imspector and blanks 

the laser via a NAND gate (U4). 

 

Alternatively a field programmable gate array (FPGA, National Instruments, Austin, USA) is 

used to implement the lower threshold and additionally takes over the scan control instead of 

Imspector (Staudt et al., in preparation). 

 

 
 

Fig. 4.3: The lower threshold is implemented by a stand-alone circuit board, which utilizes 

a binary counter (U5) to track the photons measured during the cycle time by a detector 

device synchronized with the pixel clock. This information is then used to decide on the 

operation of both illumination beams. 
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4.2 Materials and methods 
4.2.1 Optical setup used for the Nile red, Atto565 and coumarin experiments 

 

Pulsed excitation of the antibodies labelled with Atto565 (Atto-Tec, Siegen, Germany) or Nile 

red beads (Molecular Probes, Carlsbad, USA) was achieved using a high-repetition rate 

pulsed amplified laser diode source (PicoTA, Picoquant, Berlin, Germany) at a wavelength of 

λexc = 532 nm. Dy-485XL (Dyomics GmbH, Jena, Germany) was excited by the 470 nm line 

from a pulsed high-repetition rate laser diode source (PicoTA, Picoquant, Berlin, Germany). 

The coumarin derivatives Atto390 (Atto-Tec, Siegen, Germany), C6H and C522 (Lambda 

Physik AG, Göttingen, Germany) were excited by the 405 nm line, and Atto425 (Atto-Tec, 

Siegen, Germany) and Dy-415 (Dyomics GmbH, Jena, Germany) by the 440 nm line from 

pulsed high-repetition rate laser diode sources (PicoTA, Picoquant, Berlin, Germany). 

Fluorescence depletion was carried out at λSTED = 647 nm for Atto565, Dy-485XL and Nile 

red, and λSTED = 514 nm for the coumarin derivatives. The AOTFs enabled blanking of the 

lasers and allowed the power of each laser beam to be controlled independently. The collected 

fluorescence passed through an additional bandpass filter (580/40 for Atto565, Dy-485XL and 

Nile red, and 480/40 for the coumarin derivatives, AHF Analysentechnik, Tübingen, 

Germany) and was detected confocally with a photon counting module (SPCM-AQR-13-FC, 

PerkinElmer, Canada). A vortex phase plate (RPC Photonics, NY, USA) is used in the STED 

beam path to generate a doughnut-shaped point spread function in the focal plane (Fig. 4.1). 

 

 

4.2.2 Optical setup used for the Atto647N related 3D experiments 

 

The setup used is very similar to that in recent publications (Harke et al., 2008). The 

excitation beam wavelength was set to λexc = 635 nm, the detection was performed at 670 nm 

± 20 nm. The STED wavelength was set to λSTED = 750 nm. A phase plate retarding an inner 

part of the beam by λ/2 was used to generate the depletion pattern for pronounced resolution 

enhancement in the axial direction and a slight enhancement in the lateral directions. For 

detection, four photon-counting avalanche photodiodes (APD) (PerkinElmer, Canada) with 

multimode fibers were used in parallel to reduce saturation effects occurring with a single 

APD. In order to blank the lasers according to the RESCue modality described above, an 

electro-optic modulator (EOM) (LM002 P5W, Linos, Germany) was used to switch off the 

STED beam and an AOTF (PEGASUS OPTIK GMBH, Wallenhorst, Germany) was used to 
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blank the excitation beam. Both devices were also controlled by the above-mentioned circuit 

board getting the pixel clock from a multichannel analyzer (MCA) board (Fast ComTec 

GmbH, Oberhaching, Germany). 

 

 

4.3 RESCue-STED measurements 
4.3.1 Resolution enhancement 

 

A more intense STED beam leads to a higher resolution, but also to more severe 

photobleaching.  

RESCue-STED in turn makes it possible to reduce photobleaching associated with increased 

intensities due to a more accurate sample exposure. To this end, photobleaching in this 

modality can be reduced compared to confocal imaging. The size of the effective PSF is an 

important parameter when photobleaching should be avoided. On the one hand, high STED 

intensities lead to a higher resolution (Harke et al., 2007) but also to more pronounced 

photobleaching. On the other hand, higher resolution and better localization makes a more 

accurate exposure possible and therefore offers a way to reduce the light dose on the sample. 

One of the ideas behind RESCue-STED is to reinvest the improved bleaching behaviour at 

higher STED intensities to push the resolution further. The resolution of the system was 

determined by imaging Nile red beads with a size of 21 nm (for preparation see appendix 

A.2.2)(Fig. 4.4a) which are well-characterized and offer stable and robust conditions for the 

measurement. The images were recorded with a pixel size of 12 nm in x- and y-directions and 

a pixel dwell time of 300 µs. It is obvious that the confocal image (Fig. 4.4a right side) 

provides no structural information of the bead distribution in the sample and does not display 

the real physical dimension of the fluorescent beads. However, the STED mode is clearly 

capable of resolving structures (Figure 4.4a left side) down to 30 nm and it can therefore be 

assumed that the resolution of the system is around 25 nm as the bead size of 21 nm 

convoluted with the PSF of the system would lead to sizes of around 30 nm. Compared to the 

confocal image, the STED image provides a 60-fold reduction of the spot size in the xy-plane.  
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Fig. 4.4: The lower threshold and the cycle time influence the image appearance and 

photobleaching. In (a), a comparison of Nile red beads is shown in the STED mode (left) 

and the confocal mode (right). The apparent resolution enhancement is of vital importance 

for the effectiveness of the locally adapted sample exposure. (b) Increasing the cycle time 

(from left to right, cT = 90, 110, 200, 300, 500 µs , implemented by the circuit board; 

dT = 500 µs) leads to higher photobleaching (c) (area within the blue frame), the light dose 

affecting the sample gets higher according to cT/dT. Simultaneously, the number of pixels 

around the bead´s centroid reaching the kept constant lower threshold gets higher (b). At 

cT = 90 only one pixel reaches the lower threshold and is exposed for the full dwell time.  

 

Two main parameters (lower threshold and cycle time) can be freely chosen to influence the 

image quality and to reduce photobleaching. To show the relations between the image 

appearance and the cycle time, Nile red beads were imaged with different settings for the 

cycle time (Fig. 4.4b from left to right: cT = 90, 110, 200, 300, 500 µs; dT = 500 µs). 

Decreasing the cycle time leads to a pronounced fluorescence conservation because the 

sample is exposed to a lower dose according to cT/dT (Fig. 4.4c) as discussed below. 

Simultaneously, the number of pixels around the bead´s center reaching the constant lower 

threshold during the cycle time gets smaller until no pixel at all reaches the lower threshold 

(Fig. 4.4b). The background in the images corresponds to pixels not reaching the lower 

threshold of 8 photons but representing the bead´s real size. A constant cycle time and an 

increasing lower threshold would lead to similar situation but better statistics because the time 

span for deciding the laser´s blanking can be chosen sufficiently long. As in every imaging 

modality the sample has to display a sufficiently high contrast allowing a reliable decision 

between the sub-diffraction localized object and no object at all. In the case of RESCue-
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STED, the necessary cycle time is only a fraction of the dwell time and limits the SN and 

therefore complicates the decision whether an object is present or not.  

 

The user or an automatic algorithm has to provide a reasonable lTh - cT combination which 

would include all objects of interest in the sample. The influence of the lower threshold 

parameter according to photobleaching during an image sequence of the same region of 

interest (ROI) turned out to be a fundamental point. As bleaching also occurs in the RESCue 

mode, later images exhibit reduced brightness. Ultimately, it is possible that the fluorescence 

could sink below the lower threshold. One has to decide whether this effect is desired. It 

would result in an adaptive RESCue effect to prevent the fluorophores from bleaching more 

and more and therefore sustain the fluorescence to more scans. However, it can be as 

important to track each and every object in every image even if it bleaches earlier. In this case 

the lTh - cT combination has to be adjusted for every scan according to the lower threshold of 

the last scan and the bleaching behavior of the specimen or the lower threshold is simply 

chosen in a way to include the objects even in the last scan. This can be achieved manually or 

by an adaptive algorithm. The cT must be long enough to allow a reliable decision whether 

the object of interest is present or not.  

Different technical and biological specimen were measured to demonstrate the reduction of 

photobleaching due to the application of RESCue-STED compared to conventional STED. 

Therefore, a confocal overview of the sample was recorded. Within this overview two ROIs 

were scanned repeatedly. Each ROI represents different settings: conventional STED (no 

RESCue) and lower threshold enabled RESCue-STED (lTh). Afterwards a second confocal 

overview including these two ROIs was recorded displaying the bleaching behaviours 

according to the different (RESCue-)STED settings. In the case of the Nile red beads 

measurement an additional confocal series is recorded to proof the photobleaching caused by 

the excitation only.  
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4.3.2 RESCue-STED of fluorescent beads 

 

A confocal overview of a Nile red bead sample (Fig. 4.5a) was taken. Each of the three ROIs 

was scanned 10 times in the corresponding STED, RESCue-STED or confocal mode (Fig. 

4.5b). The ROIs were 4 x 4 µm in size, scanned with a pixel size of 15 x 15 nm and a pixel 

dwell time of 400 µs. The lower threshold was 5 photons and the cycle time 50 µs. After all 

ROIs were scanned, the second confocal overview scan was performed (Fig. 4.5c). 

 

 
 

Fig. 4.5: Reduced bleaching in the RESCue mode by a factor of 4 exemplified by recording 

fluorescent Nile red nano-particles compared to the standard STED mode (normal), and a 

factor of 1.2 compared to the standard confocal mode (d). The confocal overview (c) 

presents the fluorescence of three ROIs, after a series of ten scans were performed in either 

STED or confocal mode (b). Each ROI is recorded with the same scan parameters but 

differs in its imaging mode. In the first ROI (normal) RESCue is disabled. The second ROI 

(lTh) is imaged with a lower threshold (FPGA implemented) of 5 photons and a cycle time 

of 50 µs. In the last row (d, normal) a series is shown to demonstrate the photobleaching 

caused by pure confocal imaging. The dwell time was set to 400 µs for all scans. The 

images of the first and the last STED (or confocal respectively) scan are shown for each 

parameter setting to demonstrate the preservation of the fluorescence due to RESCue. 

 

The STED mode recognizes sharp dots of 30 nm FWHM while imaging the 21 nm beads. 

Compared to the confocal image, the STED image provides a 45-fold reduction of the spot 
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size in the xy-plane. Photobleaching in the conventional STED mode is apparent by a 6-fold 

reduced fluorescent signal after ten scans (Fig. 4.5b normal). The high number of excitation 

and de-excitation cycles a dye molecule undergoes under STED conditions is associated with 

pronounced bleaching. Reduction of the excitation and STED beam dose by applying 

RESCue cuts back cycle numbers significantly. By introducing the lower threshold, an 

improvement of a factor of four was achieved (Fig. 4.5b lTh) regarding photobleaching. The 

deviations from the theoretical limit of the photobleaching reduction of dT/cT = 8-fold is 

mainly due to the limited resolution of the system and the dense dye distribution. A 4-fold 

reduction of photobleaching by applying RESCue in densely labelled samples was achieved. 

Comparing the photobleaching in the confocal mode (Fig.4.5d normal) to that of the RESCue 

mode taking advantage of the lower threshold, shows impressively the potential of 

instantaneously adapting the sample exposure to the high resolution information: 20% more 

fluorescence is saved in the RESCue mode compared to the confocal mode. 

 

 

4.3.3 RESCue-STED of Atto565-labelled APP: sparse dye distributions benefit the most 

from the lower threshold 

 

In the following, these promising results were transferred to biological questions. The 

amyloid precursor protein (APP) in primary mouse neurons (DIV8) was immunostained with 

Atto565 following a protocol which is described in the appendix A.2.1. APP is located in the 

dendritic and axonal compartment of neurons and essential for normal synaptic function and 

processing, which strongly depends on its intraneuronal localization (Back et al., 2007). APP 

plays a major role in the etiopathology of Alzheimer´s Disease (AD). AD is the most common 

type of dementia in elderly people. Fig. 4.6 (first row) shows a confocal and a STED image of 

labelled APP located in the plasma membrane. The STED image displays well-separated APP 

spots in contrast to the confocal image. The resolution in the STED mode was around 45 nm 

and limited only by the available intensity of the STED laser.  

Given the resolution of the microscope and the sparse structures of the immunostaining, a 

major impact of RESCue with a well-adjusted lower threshold is predictable (Fig.4.6, lTh). 

Six photons within 40 µs as lower threshold and cycle time respectively were chosen to be the 

best parameters. As before, a confocal overview was recorded with 50 nm pixel size and a 

dwell time of 500 µs. The two (RESCue-) STED ROIs were recorded with a dwell time of 

300 µs and otherwise with identical settings to Fig. 4.5. As shown in the images, a 4-fold 
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improvement regarding photobleaching between the RESCue measurement and the 

conventional STED measurement is obvious (Fig. 4.6d). It could be shown that APP is 

sparsely distributed over the specimen.  

 

 

 
 

Fig. 4.6: Imaging in RESCue mode reduces the photobleaching of Atto565-labelled APP in 

fixed, permeabilized primary mouse neurons by a factor of 4. Confocal image (a, left side) 

of the APP distribution and STED data (raw) (a, middle). The line profile through the APP 

spot reveals a resolution of 50 nm (a, right side). The confocal images (b) represent the 

situation before all the STED scans were carried out. Without the RESCue mode enabled 

(c, normal), strong bleaching inhibits the data acquisition. Imaging under RESCue 

conditions leads to a convincing fluorescence preservation of fluorescence (b, lTh). The 

RESCue parameters were set to: lTh of 6 photons, cT of 40 µs implemented with the FPGA 

board. After all STED scans were performed, a final confocal overview scan was recorded 

(d) to show the remaining fluorescence within the corresponding ROIs. All images in the 

second and third row were deconvolved using a Richardson-Lucy algorithm. 

 

Fig. 4.7 shows the results of a two-colour RECSue-STED experiment. The RESCue 

parameters were chosen as 50 µs for the cycle time and 4 photons for the lower threshold. The 

dwell time was 400 µs, the image size 5 x 5 µm and the pixel size 25 nm. APP in primary 

mouse neurons was immunostained with Atto565 (Fig. 4.7b, d) and excited with 532 nm, the 

synaptic vesicle marker synaptophysin was labelled with Dy485XL (Fig. 4.7c) and excited 

with 470 nm. Fig. 4.7e and 4.7f are the corresponding linear deconvolved images, Fig. 4.7a 
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depicts an overview, Fig. 4.7b is the confocal APP image for comparison. Dy485XL exhibits 

a large stokes shift. The emission spectra of both dyes are similar, so the same STED line can 

be used. To distinguish between the two dyes, the different absorption spectra are utilized. 

The distribution discerned in the STED mode is completely different (Fig 4.7g). Compared to 

Atto565, Dy485XL bleached faster and profited more from the RESCue mode. Since there is 

always a given probability to excite Dy485XL by the 532 nm line and Atto565 by the 470 nm 

line, RESCue reduces the photobleaching of not only the dye currently delivering 

fluorescence photons, but also of the second label. One can imagine that if there is a third dye, 

for example GFP, which is efficiently excited by 470 nm and discernable from Dy485XL by 

the fluorescence emission spectra, the effect of preserving this label while scanning the 

Dy485XL label is even bigger. The effect of reducing the bleaching is extraordinary if one 

dye gets excited by the STED line suitable for the other dye. In this case, the dye absorbs the 

strong signal suppression intensity in the standard STED mode, whereas in the RESCue-

STED mode, if the dyes are not co-localized, the second label is only exposed during the 

significantly reduced cycle time.  
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a) b) c)

d) e)

g)

f)

 
 

Fig. 4.7: Two-colour STED experiments benefit strongly from RESCue. In (a) an confocal 

overview of Atto565-immunostained APP is shown. (b) depicts a confocal image of the 

Atto565-APP distribution within the ROI (white box) investigated further in the 

RESCue-STED mode (c) and (d) implemented by the circuit board. Synaptophysin was 

also labelled by another dye (Dy485XL) (c) to co-localize APP (d) and synaptic vesicles. 

(e) and (f) are the linear deconvolved images of the corresponding STED images of APP 

and Synaptophysin. The overlay (g) demonstrates no significant co-localisation of APP 

(green) and Synaptophysin (red) which can not be concluded by the confocal image 

because of the insufficient resolution. To measure multicolour samples, more scans are 

necessary to gather all information. If dye A is affected by the wavelengths used for the dye 

B, a different distribution in combination with RESCue should significantly reduce 

photobleaching of dye A when measuring dye B if the dyes are sequentially read out. A 

background of 5% was subtracted in all images. 
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4.3.4 RESCue-STED of Atto565-labelled GFAP 

 

To prove that also dense distributions of fluorescent spots exhibit a reasonable reduction of 

photobleaching with the aid of the lower threshold, the glial fibrillary protein (see appendix 

A.2.2 for preparation) (GFAP) immunostained with Atto565 was imaged. GFAP is an 

intermediary filament in the cytoplasm of glial cells. Here, the dye molecules are densely 

packed on a filament, as can be seen in the confocal image (Fig. 4.8a). All settings were 

identical to the settings used to gain the APP data (Fig. 4.6). In this case too, a positive 

influence on the bleaching behavior is apparent when applying RESCue, resulting in a 4-fold 

reduction of photobleaching.  

 

 
 

Fig. 4.8: The lower threshold leads to a bleaching reduction in Atto565 immunostained 

glial fibrillary proteins (GFAP) in glioblastoma cells (u373) by a factor of 4. Analogous to 

Fig. 4.5, the confocal image (a) represents the sample before the STED scans. Without the 

RESCue mode enabled, only one scan can be performed (b, normal). After the third scan, 

almost all the fluorescence was bleached. With a lower threshold of 6 photons and cycle 

time of 40 µs (FPGA implemented) the fluorescence of the densely labelled filaments can 

be preserved for significantly more scans (b, lTh). After a series of STED scans a confocal 

overview was recorded to demonstrate the affect of the RESCue mode in preserving the 

fluorescence (c). 

 

The fluorescence of densely distributed dye molecules, as shown in Fig. 4.8, can be preserved 

even more by using an additional parameter. In all cases a certain SN is sufficient to obtain an 

interpretable image. For this purpose an upper threshold (uTh) can be specified as was already 

introduced in controlled light exposure microscopy (CLEM) measurements (Hoebe et al., 
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2006). In case the uTh is reached in a time shorter than the dwell time, the illumination can 

also be stopped or the scanner can move to the next volume immediately. This will conserve 

bright objects and not use up their complete fluorescence in one single read-out event thus 

further reducing the switching cycles in the diffraction neighborhood (Staudt et al., in 

preparation).  

 

 

4.3.5 RESCue-STED of Atto647N-labelled lamina: enabling measurements in three 

dimensions 

 

RESCue can not only be used to profit from a better bleaching behavior and thereby improve 

the image quality of a certain specimen compared to the normal STED mode. Some problems 

can be exclusively addressed by RESCue-STED. One example is shown in Fig 4.9 illustrating 

the RESCue-STED adoption to 3D measurements by imaging Atto647N-labelled lamina in 

3D. The dwell time was 100 µs, cycle time was 30 µs, the lower threshold was 426 photons. 

The dye was excited with a 635 nm pulsed laser diode and for the STED pulses a Ti:Sapphire 

laser was employed. The Fig. 4.9 shows a 3D surface-rendered view of the nuclear lamina. On 

the left hand side the measurement in standard STED mode is presented. The 3D data stack 

was generated by sequential xz scans. After a few xz-sections the fluorescence was lost due to 

photobleaching. On the right hand side a measurement performed in the RESCue-STED mode 

taken with the same STED settings as in the previous measurement is shown. RESCue 

enables 3D data stacks, which could not be achieved otherwise. Especially in 3D applications, 

the fluorescence must be conserved in the close neighbourhood of the focus by blanking the 

lasers whenever possible. 
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Fig. 4.9: RESCue makes it possible to measure A647N-immunostained nuclear lamina in 

neuroblastoma cells in 3D. The left image (STED) shows the attempt to image the lamina 

without RESCue enabled which fails because of pronounced bleaching. The image on the 

right side (RESCue-STED, implemented with the circuit board) demonstrates the 

possibility to record images with the aid of RESCue. 
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4.3.6 Coumarins in STED microscopy 

 

All STED experiments carried out so far relied on dye molecules which are fluorescing above 

550 nm. The spectral range from 400 to 550 nm has not been made accessible for STED 

microscopy yet. For multicolour experiments, it would be advantageous to expand the range 

of usable dyes to the blue-green spectral range. Furthermore, a STED beam with a shorter 

wavelength provides per se a smaller zero expecting a higher resolution. For these reasons, 

different coumarin derivatives were investigated. Coumarin derivatives are applied for a long 

time in dye lasers, therefore it is obvious to use them for STED microscopy since both 

applications rely on stimulated emission. For imaging, they have been the blue emitting dye 

used alongside fluorescein (green emission, around 520 nm) and rhodamine (orange emission, 

around 580 nm) derivatives in conventional multicolour applications. Each dye-class has 

some significant disadvantages. Coumarins have lower extinction coefficients compared to 

fluorescein and rhodamine derivatives. The number of survived excitation cycles before the 

photobleaching event is by a factor of 100 to 4000 smaller compared to rhodamine derivatives 

(Eggeling et al., 1998). As a rough rule of thumb one can conclude that the lower the 

wavelength for excitation and STED, the more must be done to prevent photobleaching. 

Another drawback of coumarins is associated with ultraviolet and blue excitation and signal 

suppression wavelengths in the blue to green range of the spectrum, namely phototoxicity. 

Therefore, the reduction of photobleaching and phototoxicity is a necessary premise to apply 

coumarins in STED microscopy.  

 

Different coumarin derivatives were used for the following STED experiments, all of them 

are based on the structure shown in Fig. 4.10.  
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Fig. 4.10: Basic structure of the coumarin derivatives used for STED experiments. 

 

The fluorescence of the coumarin derivatives C6H, C522, and Atto390 can be excited by a 

405 nm diode and depleted by 514 nm in the cw as well as in the pulsed mode. The 
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fluorescence depletion efficiency of the dyes dissolved in ethanol ranges from 83% to 91% in 

both modes. The dyes Atto425, Atto390 and Dy415 turned out to be most promising for 

STED experiments, because they are photostable enough and two-colour applications 

(Atto425 and Atto390) are predictable. The spectral characteristics of Atto425 are shown in 

Fig. 4.11. The fluorescence of the dye dissolved in N,N-dimethylformamide (DMF) can be 

excited by 440 nm (Fig 4.11, green line) and suppressed to 7% (Fig 4.11, red line) of the 

initial fluorescence intensity (Fig 4.11, black line) by the 514 nm Ar-Kr-laser line. By 

changing the solvent to water, the fluorescence is shifted towards longer wavelengths (from 

475 nm to 485 nm, blue line). The efficiency to deplete the fluorescence follows the emission 

and can therefore be tuned to a certain extent by changing the solvent.  

 
 

Fig. 4.11: Absorption (green line) and emission (black line) spectrum of the coumarin 

derivative Atto425 dissolved in DMF. Excitation was achieved by a pulsed 440 nm diode 

(spike in the black spectrum) and the fluorescence signal was depleted by a pulsed 514 nm 

Ar-Kr line (red spectrum, the spike marks the 514 nm line). The fluorescence can be 

depleted to 7%. The fluorescence spectrum in water is shifted by 10 nm to longer 

wavelengths (blue line) predicting a higher depletion efficiency. 

 

Anti-fades suitable for coumarins in STED microscopy 

 

To figure out strategies to prevent the pronounced photobleaching of coumarin derivatives 

exemplarily on Atto425, the dye was immobilized on amino-functionalized coverslips by 

reaction with Atto425-NHS ester. The covalently linked dye was embedded in different 

solutions of anti-fades for subsequent STED experiments. The STED-beam was not modified 
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by a phase plate. Fig. 4.12 shows the results of the STED experiments on an Atto425 surface 

embedded in pure water (Fig. 4.12c, d), and embedded in water containing 20mM MEA. A 

field of 7 x 3 µm was scanned by the excitation beam (440 nm). The STED beam was 

switched on for the second half of the ROI (Fig. 4.12a, b). The fluorescence level was 15% 

higher in the case of the MEA containing embedding compared to the pure water embedding. 

(Fig 4.12a Exc. and b Exc.). In both cases, the fluorescence depletion efficiencies were 

around 90 % directly visualized in the Fig. 4.12a and c. After the STED experiment, the ROIs 

were scanned for a second time by the excitation beam only to determine the extent of 

photobleaching (Fig. 4.12 b, d).  
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Fig. 4.12: The triplet quencher MEA reduces the photobleaching of the coumarin  

derivative Atto425 by a factor of four. The dye molecules immobilized on a glass surface 

were embedded in water (c) and (d) and in water containing 20mM MEA (a) and (b). A 

region of 3 x 7 µm on each of the two glass surfaces was scanned. The excitation (440 nm) 

was enabled for the whole region and the STED beam (514 nm, no phase plate installed) 

was switched on during the second half of the ROI. The fluorescence depletion efficiency 

can be seen by the decreased intensity ((a) and (c), marked with STED). After the first 

scans, second scans of the same ROIs were performed to determine the photobleaching 

relative to the first scans. It is obvious, that MEA preserves the fluorescence in the case of 

only the excitation, as well as in the STED case (a), (b). The dye molecules embedded in 

the MEA solution (b) exhibit a 15% higher fluorescence intensity and a four fold reduced 

photobleaching in the STED case due to faster triplet recovery compared to the dye 

molecules embedded in water (d). The graph (e) was derived by integrating the whole areas 

shown in (b) and (d). The red line corresponds to the fluorescence intensity of the dyes 

embedded in the MEA solution.  
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The embedding in the MEA solution led to a significant reduction of photobleaching in the 

STED case and in the pure excitation case compared to the water embedding (Fig 4.12b, d 

STED). Under comparable conditions, MEA reduces the photobleaching by a factor of four 

from 60% to 15% (Fig. 4.12e). If molecular oxygen is removed by an enzyme system based 

on glucoseoxidase and catalase (Harada et al., 1990) in addition, photobleaching can be 

further reduced by a factor of two resulting in an overall reduction of photobleaching by a 

factor of eight in water based embeddings. p-Phenylenediamine (PPD) is also among highly 

effective additives for the reduction of photobleaching, but it quenches also the fluorescence 

by a factor of three.  

MEA is a well-known triplet quencher and very effective in reducing photobleaching. This 

fact underscores, that photobleaching occurs mainly from molecules in the triplet state. MEA 

rapidly recovers the singlet groundstate due to collisions with the fluorescent dyes preventing 

further bleaching pathways. After removal of oxygen, the dyes are even more prone to 

photobleaching, because oxygen also acts as an effective triplet quencher. Removing oxygen 

and recovering triplet quencher properties by a non-oxidizing triplet quencher is an effective 

strategy to prevent photobleaching of coumarins in STED related experiments. The signal 

intensity can be increased by 15% because the triplet state gets faster relaxed and the 

molecules are therefore more often available for excitation events.  

 

The embedding of coumarin derivatives in DABCO containing Mowiol is also advantageous 

to avoid photobleaching. Fig. 4.13 shows the microtubuli network in glioblastoma cells 

immunostained with Atto390 and embedded in Mowiol containing DABCO (see appendix 

A.2.1 for preparation). Features in the range of 70 to 80 nm can be discerned.  
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a)

b)

 
 

Fig. 4.13: Confocal (a) and STED measurement (b) of microtubuli in glioblastoma cells 

immunostained with Atto390 and embedded in Mowiol containing the singlet oxygen 

quencher DABCO. Features in the range of 70 to 80 nm can be discerned with the aid of 

the coumarin derivative Atto390. The resolution is limited by photobleaching. 

 

RESCue-STED of coumarins: exploitation of the blue spectral range  

 

The application of anti-fades for coumarin based STED microscopy is mandatory, but the 

resolution is still clearly limited by photobleaching. For this reason, additional strategies to 

tackle photobleaching have to be pursued. Recently, T-REX was applied on Atto425-filled 

silica beads embedded in Mowiol containing DABCO. In this approach, the STED 

measurements were performed with a passively Q-switched 532 nm microchip laser with a 

repetition rate of 60 kHz to relax triplet states (Rankin et al., 2008). However, the low 

repetition rate calls for long pixel dwell times (typically in the range of 15 to 30 ms). The 

RESCue mode in contrast provides a more general method to further reduce photobleaching 

without sacrificing data acquisition speed. 

 

A comparison of self-made Atto425-filled silica beads (25 nm diameter) on a poly-L-lysine 

(PLL) coated coverslip (see appendix A.2.2 for more information about the bead preparation) 

recorded in the RESCue-STED mode (RESCue, first half of the images) and in the 

conventional STED mode (normal, second half of the images) is shown in Fig. 4.14. After a 

confocal scan (Fig. 4.14a), two STED scans were performed (Fig. 4.14b, c). In the RESCue 

mode, the background is significantly suppressed by a factor of 6 because of the lower 

threshold. The RESCue parameters were chosen to one photon for the lower threshold and 

36 µs for the cycle time. The dwell time was set to 300 µs. During the first scan in the 
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conventional STED mode, the dyes were already bleached to a high extent (Fig. 4.14b) 

compared to the recording under RESCue-STED conditions. The fluorescence spots in the 

white circles are comparable regarding the fluorescence intensity. After the second STED 

scan without RESCue enabled, the fluorescent bead is completely photobleached. However, 

the RESCue-STED mode preserves the fluorescence for repetitive scans. Each fluorescent 

bead can be localized even in the second scan (Fig 4.14c).  
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Fig. 4.14: The RESCue-STED mode in combination with a chemical anti-fade (DABCO) 

enables high resolution images of Atto425-filled silica beads with a diameter of 25 nm. In 

(a), a confocal image of the 30 nm silica beads is shown. During the first part of the 

following STED recordings (b) and (c), the RESCue mode was enabled (implemented by 

the circuit board). The white circles mark two beads of approximately the same 

fluorescence intensity. In the conventional STED mode, the photobleaching is distinct, and 

decreases the intensity and the resolution significantly. In the second STED scan (c), almost 

no fluorescence is left in the conventional mode, whereas the fluorescence is well preserved 

in the RESCue mode. Still, every bead present in the ROI can be localized.  

 

If the fluorescent molecules within the silica beads are bleaching even before they reach the 

zero of the STED beam, the achievable resolution decreases, as can be seen in Fig. 4.14b. Fig. 

4.14 clearly demonstrates the suitability of coumarins in STED microscopy due to the 

presence of singlet oxygen scavengers (DABCO) or triplet quenchers (MEA) in combination 

with RESCue.  

The coumarin derivatives, especially Atto425, Atto390 and Dy415 can now be considered as 

alternatives in multicolour STED applications owing to chemical anti-fades and the RESCue 

approach. A descent resolution enhancement can be predicted (Fig. 4.15). It is even possible, 

to discriminate between Atto425 and Atto390 by excitation multiplexing (440 nm and 

405 nm) for multicolour experiments. 
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a) b)
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Fig. 4.15: Due to the consequent exploiting of anti-bleaching strategies, the coumarin 

derivatives can be considered as alternatives expanding the range of useful dyes for STED 

experiments to the blue-green region. The comparison of a confocal (a) and a STED image 

(b) of 25 nm A425-labelled silica beads is shown. The intensity profile (c) along the doted 

line in c) indicates a FWHM of 40 nm.  

 

 

The RESCue-STED modality takes advantage of the high resolution information itself to 

locally adapt the sample exposure. This strategy results in a reduction of photobleaching even 

compared to the standard confocal imaging mode, if the pixelsizes are comparable. Higher 

resolution is no longer necessarily connected to higher photobleaching. The RESCue-STED 

mode enables experiments which are connected to high light doses such as 3D measurements, 

multicolour imaging, and time series. Furthermore, the so far unexploited dye class of 

coumarin derivatives in the blue to green emission range can now be considered as an 

alternative in STED experiments due to the RESCue-STED modality 
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Chapter 5 
 

Direct light-driven modulation of luminescence from Mn-
doped ZnSe quantum dots: a new contrast 

 
 
5.1 Introduction 
 

The fluorescence label and its susceptibility for manipulation is one of the most important 

parts in fluorescence microscopy. The optimization of the labels regarding photostability, 

brightness, robustness of switchability and other photophysical properties are critical in high 

resolution imaging. Quantum dots as fluorescent entities are known for their superior 

photostability. They are zero-dimensional systems in which the electronic structure can be 

precisely tuned by varying the size of the nanocrystal (Michalet et al., 2001). These attributes, 

along with recent advances in synthetic chemistry, have placed QDs at the forefront of 

fluorescence microscopy with the advantages of enhanced photostability, high quantum yield, 

wavelength tunability, and macromolecular size (Sukhanova et al., 2004; Reiss and Bleuse, 

2002; Michalet et al., 2005). These benefits are particularly useful for single-molecule 

detection and tracking as well as time-domain imaging, and have even unlocked new concepts 

such as multimodal imaging and optical bar-coding (Dahan et al., 2003; Dahan et al., 2001; 

Santra et al., 2005; Huh et al. 2005; Han et al., 2001). The range of applications extends well 

beyond the realm of imaging, as QDs also play a major role in developing novel photonic 

devices including lasers, light emitting diodes, and displays (Klimov et al., 2007; Mattoussi et 

al., 1998; Song and Lee, 2007). Despite significant advancements in nanocrystal research, the 

continued failure to directly modulate fluorescence from QDs has precluded their 

implementation in several areas. In particular, emerging far-field diffraction-unlimited 

microscopy techniques (Hell, 2007) uniquely benefit from the capability to reversibly 

modulate/switch fluorescent ensembles from a bright “on” state to a dark “off” state. 

Moreover, this activation must occur as a response to optical stimuli, i.e. laser radiation, 

which does not contain spectral components within the excitation kernel of the fluorescent 

markers. Realizing the desperate need for optical control over QD fluorescence, indirect 

schemes have been conceived using QD hybrid structures that incorporate a photochromic 

activator/quencher (Zhu et al., 2005; Jares-Erijman et al., 2005; Medintz et al., 2004). 

Although the concept has been clearly established, QD hybrid structures suffer from inherent 

drawbacks such as inadequate photostability, limited fluorescence quenching, necessity of 
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energetic UV photons for activation, and sensitivity to local environment/solvent. The direct 

manipulation of the fluorescence from conventional QDs via STED would be a straight 

consequence of the high photostability and superior brightness. However, the possibility to 

excite the QDs over a wide range even within the fluorescence band of the QDs prevented the 

application of QDs in STED microscopy so far (Fig. 5.1), because the intense signal 

suppression beam would efficiently excite the QDs.  

 

 
 

Fig. 5.1: Excitation and fluorescence spectrum of QDs (Qdot 525 streptavidin conjugated, 

Invitrogen). The excitation spectrum spans across a wide range and hinders their 

application in STED microscopy due to excitation by the intense STED beam. 

 

The manganese-doped ZnSe quantum dots exhibit a fluorescence spectrum which is shifted 

towards higher wavelengths and would therefore be suitable for STED experiments (Fig 5.3). 

During investigations of the modulation behaviour depending on the modulation wavelength 

it was found, that it is possible to suppress the fluorescence by a wavelength located beyond 

the fluorescence spectrum. Therefore, since STED can not be responsible for the modulation, 

a new mechanism must be considered. 

In the following, a new realization of a “dark” state by excited-state absorption (ESA) is 

introduced working with low signal suppression intensities in the case of zero based high 

resolution methods applying manganese-doped ZnSe quantum dots.  
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5.2 Emission switching in manganese doped ZnSe quantum dots 
 

A schematic diagram of the electronic transitions involved in light-modulated fluorescence 

from Mn-QDs is shown in Fig. 5.2.  
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Fig. 5.2: Schematic diagram of the electronic transitions involved in modulating 

fluorescence from Mn-QDs. Initially electrons are pumped (kexc) from the valence band 

(VB) to the conduction band (CB) of the ZnSe host, and are subsequently transferred to the 
4T1 level of the Mn2+ dopant. Here, the electrons can relax radiatively (kfluo) to the 6A1 level; 

however, they can also be pumped (kmod) to higher levels via excited-state absorption (ESA) 

from 4T1.  

 

Initially, electrons are photoexcited from the valence band to the conduction band of the ZnSe 

semiconductor host. Within a short time in the picosecond timescale (Hefetz et al., 1986; 

Bhargava et al., 1994; Kuroda et al., 1997), the excited electrons are transferred to the 4T1 

upper florescent state of the Mn2+ ion and decay radiatively to the 6A1 state within a measured 

fluorescence lifetime of τfluo ~ 90 µs (see below). Generally speaking, direct fluorescence 

modulation requires active control over a process that competes with spontaneous emission. 

For doped semiconductors and glasses, excited-state absorption (ESA) can occur from the 

upper fluorescent level of the impurity ion to higher lying states either within the dopant or 

the conduction band of the host material. Depending on the specific density of states above 
4T1, red-shifted light (with respect to excitation) can be used to invoke the ESA mechanism to 

selectively pump electrons out of 4T1 and inhibit spontaneous fluorescence emission, while 

avoiding further excitation from the ZnSe host. 



Modulation of luminescence from Mn-QDs 

85 

Room temperature absorption and photoluminescent spectra of the Mn-QDs are shown in Fig. 

5.3. Absorption due to the ZnSe host is clearly observed, with the first exciton peak occurring 

at a wavelength of ~400 nm. Fluorescent emission is centred at a wavelength of 580 nm with 

a full-width at half-maximum of ~50 nm and is a hallmark of the 4T1→6A1 transition of the 

Mn2+ dopant (Pradhan et al., 2007). 

 
 

Fig 5.3: Absorption (blue line), emission (yellow line) and ESA spectra (red line and 

squares, right vertical scale) of the Mn-QDs. The spectral locations of the excitation and 

modulation wavelengths are also indicated with a blue and a red vertical line. 

 

Measurement of the ESA spectrum of the Mn-doped quantum dots (NN-Labs, Fayetteville, 

AR) was carried using a two beam “pump-probe” arrangement (Rittweger et al., 2007). 

Excitation radiation at a wavelength of 405 nm was provided by a laser diode (PicoQuant, 

Berlin, Germany) while associated ESA losses were determined from a co-propagating white-

light continuum probe (Fianium, Southampton, United Kingdom). Lock-in discrimination 

(Signal Recovery, Wokingham, United Kingdom) was used to detect small losses in the 

white-light probe beam that resulted directly from the chopped excitation beam. The spectral 

variation of the ESA was determined by placing 10 nm band-pass filters (AHF 

Analysentechnik, Tübingen, Germany) before the sample to select a small portion of the 

continuum. In this case, the sample consisted of a concentrated solution of the Mn-doped 

quantum dots (20 µM in toluene) to ensure adequate signal level. Losses in the white-light 

continuum probe are converted to units of ESA cross-section, ESAσ , using the following 

formula: 
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( )NLexpPP ESAintrans σ−= ,                   (5.1) 

 

where Ptrans is the power transmitted through the sample, Pin is the input power, N is the 

concentration of excited quantum dots, and L is the effective path length. This formula is 

rearranged to solve for ESAσ : 
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The difference between input power and transmitted power can be expressed as an 

infinitesimal quantity, PPP intrans ∆−= , which allows Eq 5.2 to be simplified according to a 

Taylor series expansion of the natural logarithm function: 
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The density of excited quantum dots, N, within the focal volume of the excitation beam is 

estimated from the intensity of the excitation radiation, the absorption cross-section of the 

quantum dots, and their fluorescence lifetime, while the interaction length, L, is taken to be 

the Rayleigh range of the excitation beam. 

The spectral dependence of the fluorescence depletion was also measured using the 

arrangement described above. In this case, however, the white-light probe beam was chopped 

and changes in the fluorescent level (collected at 90º from excitation) were measured by lock-

in detection. Again, interchangeable filters (20 nm band-pass, AHF Analysentechnik) were 

used to gauge the spectral dependence. The fluorescence signal was additionally filtered 

before detection (60 nm band-pass centered at 575 nm, AHF Analysentechnik) to eliminate 

large amounts of scattered light, which also limited the spectral measurement range to 630-

800 nm. Below ~545 nm, a large fluorescence signal overwhelmed the ESA signal, which is 

believed to stem from transient population of the 6A1 level. The results of this are shown in 

Fig. 5.4 along with the results of the ESA measurement and indicate that fluorescence 

depletion follows the ESA. This provides strong evidence that the fluorescence depletion 

results from ESA transitions originating from the 4T1 upper fluorescent state. 
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Fig. 5.4: Excited-state absorption (colored in red) and fluorescence quenching (colored in 

black) measurements of the luminescence from Mn-QDs. 

 

Results of this measurement are shown also in Fig. 5.3, where it is observed that the ESA 

spectrum spans a large portion of the visible window. Similar results have also been obtained 

for bulk Mn-doped ZnSe (Dreyhsig et al., 1990) and Co-doped ZnSe. (Ehlert et al. 1994). 

Other rare-earth doped glasses (Lawson et al., 1993). also show broadband impurity-host 

transitions that exhibit a large dependence on the particular host material. In any case, an 

intensity-dependent loss channel that competes directly with the fluorescent emission can be 

introduced to efficiently modulate the luminescence originating from the 4T1→6A1 transition. 

Experimentally, the spectral criteria for fluorescence imaging of the Mn-QDs are fulfilled 

using collinear laser sources at λexc = 440 nm and λmod =676 nm for excitation and 

modulation, respectively. Radiation from the two sources is coupled into a scanning confocal 

microscope, and their corresponding intensities, Iexc and Imod, are controlled using acousto-

optic tunable filters. The extended lifetime (~90 µs) of the Mn2+ 4T1→6A1 transition limits the 

number of excitation-emission sequences a single Mn-QD can perform within a given time 

frame. Thus, the fluorescent photon emission rate is lifetime-limited, challenging optical 

imaging of single isolated Mn-QDs. As a favourable alternative, multi-QD ensembles were 

prepared on a glass coverslip to reach adequate fluorescence intensity levels, Ifluo (for the 

preparation of the QD ensembles see appendix A.3.1). Atomic force microscopy of the Mn-

QD ensembles indicate a large distribution of sizes ranging from 20 to 300 nm.  
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Fig. 5.5: (a) Confocal images of Mn-QD ensembles. Dark lines along the y-direction 

demonstrate the capability to actively and reversibly control fluorescence emitted from 

solid-state nanocrystals. Intensities of Iexc = 50 W cm-2 and Imod = 9 MW cm-2 are utilized. A 

line section through the confocal image shows the fluorescence response and the high 

efficiency of modulation (red) overlaid with a similar line cut (black) through the 

corresponding image having Imod = 0 (not shown). (b) Depletion curve indicating the 

normalized residual fluorescence, ε as a function of modulation intensity, Imod. At 

Imod = 1.9 M cm-2, the fluorescence level is reduced to 10% of its original value. 

Logarithmic representation (inset) indicates a multi-exponential fluorescence depletion 

process. A triple exponential has been fit to the data and has characteristic decay constants 

of 0.043, 0.52, and 3.22 MW cm-2, each of which have been illustrated by solid lines. 
 

Confocal images of the ensembles are shown in Fig. 5.5a for Iexc = 50 W cm-2 and 

Imod = 9 MW cm-2. Here, Imod was toggled with every 10th scan step along the x-axis, resulting 

in dark lines along the vertical direction where the fluorescence was selectively inhibited. 

This emphasizes the degree of optical control over the QD luminescence as well as its 

reversible nature. Measurement of the degree of fluorescence inhibition was carried out 

through acquisition of several of confocal images of Mn-QDs for various values of Imod. As 

Imod is incremented, interleaved confocal images with Imod = 0 were also acquired to gauge 

bleaching effects. Results of this experiment are illustrated in Fig. 5.5b in terms of the 

residual fluorescence )0(I/)I(I fluomodfluo=ε as a function of Imod. The effectiveness of the 

fluorescence inhibition process is clear as ε < 10% can be achieved for Imod = 1.9 MW cm-2. 

Over the course of the measurement, the fraction of bleached Mn-QDs was <17%. The inset 

of Fig. 5.5b contains a logarithmic plot of the fluorescence depletion and reveals the existence 
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of multiple depletion channels, which is consistent with the large density of state above 4T1 

provided by the ZnSe conduction band as well as the upper manifold of the Mn2+ impurity 

(Clausen et al., 1988; Petermann et al., 1989). 

 

Depending on the non-radiative decay across the ZnSe bandgap, it is possible that electrons 

which are momentarily shelved above 4T1 by the modulation radiation are allowed to cycle 

between the conduction band of the host and the 4T1 fluorescent state of the Mn2+ dopant. The 

degree of cycling can be readily ascertained by comparing the ESA cross-section, σESA, 

determined directly from transient absorption measurements (Fig. 5.3) with the net ESA 

cross-section calculated via the fluorescence depletion curve (Fig. 5.5b). The net cross-section 

for ESA, ζESA, for raising electrons from 4T1 to the conduction band of the ZnSe host can be 

determined from the competition between the fluorescence decay rate, kfluo, and ESA-induced 

pump rate, kmod. Given kmod = ζESAImod and kfluo = 1/τfluo, ζESA can be calculated from the fact 

that at ε = 50% the condition kmod = kfluo is satisfied. Thus, a value of ζESA = 2.1×10-20 cm2 is 

estimated and compares well with the value of σESA = 6.1×10-20 cm2 (at 676 nm) shown in Fig. 

5.3 and those determined previously for other Mn2+ ion-host systems (Clausen et al., 1988). 

The fact that ζESA and σESA have the same order of magnitude indicates that a significant 

amount of electronic cycling does not occur. Furthermore, no up-converted emission from the 

terminal states of the ESA transition could be detected in the spectral region between 420-

1100 nm. Based on this evidence, it is concluded that non-radiative transitions dominate 

electron relaxation to the valence band during fluorescence depletion.  

 

To ascertain the modulation photostability of Mn-QDs, the excitation and modulation beams 

are focused on an isolated ensemble, without scanning, and the modulation beam is 

interrupted at frequency of ~25 Hz. The resultant time-domain fluorescence signal is shown in 

Fig. 5.6, which provides clear evidence of the robustness of the ESA-mediated fluorescence 

inhibition process.  
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Fig. 5.6: Temporal fluorescent response from an Mn-QD ensemble under conditions of 

steady-state excitation at 100 W cm-2 and transient depletion at Imod = 1.9 MW cm-2, in 

which Imod is interrupted at a frequency of 25 Hz. Fluorescent modulation persists for nearly 

40 seconds (~103 cycles) before the cluster photobleaches significantly. Several smaller 

panels illustrate the digital-like switching over timescales comparable to the modulation 

period. 

 

Continuous excitation and depletion of the fluorescence persists for nearly 40 seconds before 

the quantum efficiency degrades substantially as a result of photobleaching. Within this 

measurement time frame, the single Mn-QD cluster has undergone on average 103 

fluorescence modulation cycles. 
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5.3 Application of manganese doped ZnSe quantum dots in RESOLFT 

experiments 
 

Efficient switching and stable on-off modulation are highly desirable attributes for advanced 

microscopy techniques. A primary example for which the Mn-QDs are ideally suited is 

RESOLFT imaging, which relies on reversibly photoswitchable luminescent compounds to 

achieve optical resolutions below the diffraction limit (Westphal et al., 2005). This is realized 

in a two-beam scanning confocal arrangement: one laser source is used to excite the 

photomarkers, while another spatially overlapped beam featuring an intensity null selectively 

inhibits fluorescence everywhere except regions near the null. Such a zero region is 

engineered through the introduction of a suitable phase-mask in the back focal plane of the 

objective (Keller et al., 2007). In this particular case, the resulting intensity distribution 

features a zero line in the focal plane, where the fluorescence is effectively “squeezed” along 

one axis that is perpendicular to the zero line. 
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Fig. 5.7: Image acquired using the RESOLFT technique is shown in (a), which has a clear 

improvement in resolution along the y-direction in comparison to the purely confocal 

counterpart shown in (b). Richardson-Lucy deconvolution is applied to (a) and the result is 

shown (c). For comparison, a one-dimensional line section (indicated by a yellow dashed 

line) through a representative RESOLFT PSF (a) and its diffraction-limited counterpart (b) 

are plotted separately in panel d). The enhanced resolution is obvious as the 200 nm 

diffraction-limited PSF is effectively reduced to 45 nm. A similar section from (c) and its 

corresponding deconvoluted confocal counterpart (not shown) are illustrated in (e), 

revealing that structures separated by 85 nm can be distinguished using RESOLFT, which 

otherwise appear as a single peak in the confocal reference. 

 

A reference confocal image of clusters of Mn-QDs is shown in Fig. 5.7b. Several isolated 

clusters are present and exhibit diffraction limited full-width at half-maxima of 200 nm. 

Larger features are also present, indicated by their relative brightness, though no information 

can be obtained regarding the sub-structure. RESOLFT images of the same region are shown 

in Fig 5.7a. Whereas single isolated clusters appear as nearly spherically symmetric intensity 

distributions in the confocal image, the corresponding PSF in the RESOLFT image have been 

substantially reduced along the y-axis by the spatially structured modulation beam. 
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A cross-section through a representative PSF is shown in Fig. 5.7d, which has a full-width at 

half-maximum of 45 nm; a factor of 4.4 improvement over the corresponding confocal PSF 

and nearly a factor of 10 smaller than λexc. The size of the PSF can be compared to the 

theoretical resolution as determined from (Hell, 2007), 

 

sIIn
r

max1)sin(2 +α
λ

≈∆                   (5.4) 

            

where n is the index, α is the aperture angle of the objective, and λ and Imax are the wavelength 

and maximum intensity of the modulation beam, respectively. Here Is is defined to be the 

depletion intensity required to reduce the fluorescence to one half of original value, which is 

determined from Figure 5.5b to Is = 0.1 MW cm-2. Given a local intensity of 

Imax = 2.5 MW cm-2, in addition to n = 1.5 and α = 60º, ∆r = 51 nm is calculated and compares 

well with the measured value of 45 nm. Non-linear deconvolution of the RESOLFT image 

results in the data shown in Fig. 5.7c, where clear sub-diffraction structure becomes apparent. 

Resolving such features was only possible after significantly expanding the microscope’s 

optical transfer function via the optical modulation. Clear evidence of this is shown also in 

Fig. 5.7e. Two clusters separated by 85 nm can be clearly distinguished in the RESOLFT 

image, but appear as a single peak within the corresponding confocal scan.  

 

For the resolution enhancement in two dimensions a vortex phase plate was applied instead of 

the two optical flats (described in chapter 3). The vortex phase plate generates a doughnut-

shaped point spread function in the focus. A confocal image of the Mn-QD clusters is shown 

in Fig. 5.8a featuring a high size dispersion and some diffraction limited spots. The 

corresponding RESOLFT image of the same region (Fig. 5.8b) clearly discerns accumulations 

of the clusters. A linear deconvolution (Fig. 5.8c, d) enhances the image quality further.  
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c) d)

 
 

Fig. 5.8: The RESOLFT technique applied to Mn-QD clusters clearly proves the 

practicability of quantum dots and the ESA mechanism for high resolution imaging. In the 

upper row (a) and (b) the raw data is shown after a back ground subtraction of 10%. The 

RESOLFT image (b) suggests a resolution of 50 to 60 nm compared to the confocal image 

(a). The lower row (c) and (d) shows the linear deconvoluted counterparts.  

 

For biological and medical applications these quantum dots can easily be coupled to 

antibodies, streptavidin or other relevant molecules taking advantage of the high affinity of 

the quantum dots to mercapto groups. 

 

 

The introduction of standard quantum dots, which are not for example doped with manganese 

atoms in high resolution microscopy was hindered for a long time by their broad excitability. 

The laser beam for signal suppression excites also the labels prohibiting the application in 

STED experiments. The realization and maintenance of the “off” state has to be done far red 

relative to the excitation of the quantum dots. The implementation of a new mechanism to 

suppress the fluorescence (ESA) and the manganese doped quantum dots with additional 

electronic states lead to applications in RESOLFT experiments. The signal suppression via 

ESA can be performed far red relative to the excitability and therefore preventing excitation 

with the signal suppression beam. Another important consequence of the spectral separation 

between the signal suppression wavelength and the emission spectrum lies in filtering issues. 
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A larger fluorescence band can be collected leading to a sufficient SN at lower light doses 

reducing photobleaching. 

 

The 4T1→6A1 transition is multiplicity forbidden and therefore the lifetime of the upper 

electronic state is long (90 µs) and the absorption of an additional photon probable. Because 

of the long lifetime of the upper state of the fluorescence system (4T1→6A1) the intensities for 

signal suppression are low. Compared to STED microscopy, the intensities are 10 to 100 

times lower. A lower photodamage can therefore be predicted. Another advantage is the 

possibility to shift the signal suppression into the red and infrared (IR) region because of the 

independence on stimulated emission, minimizing also photoinduced damaging. The 

manganese-doped ZnSe quantum dots exhibit similar properties as labels with stable “off 

states” (switchable proteins or switchable organic dyes) regarding the low switching 

intensities, but instantaneous switching kinetics, because a molecular rearrangement is not 

necessary. An essential disadvantage of the high fluorescence lifetime is the need for long 

integration times to collect enough photons, which in turn increases the light dose.  

 

The results show that Mn doped ZnSe QDs can be applied in RESOLFT experiments in the 

same way as any other organic photoswitcher suggesting a more than fourfold resolution 

enhancement compared to confocal microscopy. The fluorescence from Mn doped ZnSe QDs 

can be reversibly inhibited with over 90% efficiency using a cw laser by an excited state 

absorption process. The modulation is achieved directly by light and does not need an external 

photochromic activator or quencher. It relies only on internal electronic transitions. 
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5.4 Experimental section  
5.4.1 Setup 

 

Quasi-continuous excitation of the Mn-doped quantum dots (NN-Labs) was achieved using a 

laser diode source at a wavelength of λexe = 440 nm, which had an inter-pulse dwell time 

(200 ns) much shorter than the lifetime of the Mn-doped quantum dots (~90 µs). Fluorescence 

depletion at λmod = 676 nm was accomplished using cw Ar-Kr-laser. Collected fluorescence 

passed through an additional band-pass filter (40 nm band-pass centred at 580 nm, AHF 

Analysentechnik, Tübingen, Germany). As a phase plate two identical adjacent optical flats 

are a placed in the modulation beam, and one is tilted slightly to adjust the path length in one 

half of the beam. When focused, the resulting point-spread function (PSF) contains a line 

through its center that can be used to selectively inhibit Mn-QD fluorescence. Alternatively, a 

vortex phase plate (RPC Photonics, NY, USA) was used in the modulation beam path to 

generate a donut shaped point spread function in the focus. The diffraction-limited PSFs of 

the excitation and modulation beams are characterized by scanning nanometric gold particles 

(80 nm suspended in Canada-Balsam) through their foci while detecting the back-scattered 

laser light. Results of this measurement are shown in Fig. 5.9. 

 

a) b) c)

y

x

d)

 
 

Fig. 5.9: Point-spread functions of the (a) excitation and (b) modulation beam. Panel (c) 

illustrates the spatial overlap of the two beams in the x-y directions. A line cut through the 

vertical center of (c) is shown in panel (d). The scale bar in (a) corresponds to 400 nm. 
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5.4.2 Lifetime measurement 

 

Pulsed laser radiation (PicoQuant) at 405 nm was used to excite Mn-QDs in solution (20 µM 

dissolved in toluene) and the resultant time-domain fluorescence signal was processed with a 

time-correlated single-photon counting module (Picoquant). Data from this experiment is 

shown in Fig. 5.10 where it is observed that the fluorescent decay is multi-exponential in 

nature. A triple exponential fit to the data and indicates three decay regimes of 2 µs, 21 µs, 

and 90 µs. For the calculation of the net ESA cross-section, ESAζ , τfl = 90 µs was used for the 

fluorescence lifetime as it is the longest observed component. 

 

 
 

Fig. 5.10: Fluorescence decay curve for Mn-doped quantum dots. 
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Chapter 6 
 

2,2´-Thiodiethanol (TDE) as an embedding medium 
 
 
6.1 Introduction 

 
In this chapter, another chemical based strategy to establish best optical conditions by 

matching the sample´s refractive index to that of the immersion system using a novel 

embedding media is described. This is mandatory to prevent spherical aberrations and to 

render the probe scanning the sample as small as possible according to diffraction theory. The 

signal-to-noise ratio (SN) can therefore be enhanced and furthermore, the excitation intensity 

and the photobleaching can be minimized. Matching the refractive index is of vitally 

importance in all optical high resolution modalities, especially when imaging deeply in the 

sample (Fig. 6.7). The here introduced embedding media features antioxidant properties and 

can be effective due to its high concentration.  

 

Diffraction theory dictates that the lateral width of the main maximum of the PSF of a lens 

decreases linearly in size with its numerical aperture (NA); along the optic axis (z) the 

decrease is even quadratic (Eq. 2.3, 2.4). Since the NA is given by n*sinα, optical microscopy 

has struggled to accommodate semi-aperture angles α and refractive indices n to be as large 

as possible. Due to the relatively large n that is close to that of glass coverslips (1.515), 

optical–grade oil has become the standard immersion liquid for high aperture lenses and, by 

the same token, oil immersion lenses have become the gold standard for high resolution 

optical microscopy. The glass-oil immersion system offers a well-matched, optically 

homogenous system that yields a focal spot that is ideally only limited by diffraction. 

Unfortunately, the situation deteriorates if the converging spherical wave fronts are focused 

into a sample with a different index of refraction, such as a sample that is mounted in a 

glycerol-based medium (n = 1.43-1.47) or into a sample that is kept in an aqueous buffer. In 

this case, the focal spot is blurred due to the spherical aberrations resulting from the mismatch 

in n (Hell et al., 1993) (Fig. 6.1). 
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optical axis

 
 

Fig 6.1: Spherical aberration describes the effect that rays close to the optical axis exhibit a 

different focal length as peripheral rays. The focal spot becomes blurred due to a 

mismatched refractive index.  

 

The problems arising from mismatched n are prevalent both in conventional and confocal 

microscopy (Pawley, 1995), but in the latter, they are clearly manifested as a loss of image 

brightness and poorer optical sectioning (Egner et al., 1998; Hell et al., 1993). Therefore, 

during the last decade, most microscope manufacturers have developed high aperture water 

immersion lenses of NA = 1.2, i.e. α = 64°, that are essential for 3D high resolution imaging 

of live cells.  

 

In order to account for the fact that most fixed cells are mounted in glycerol-based media, 

coverslip-corrected glycerol immersion lenses have also been developed. Featuring an angle 

of α = 68.5°, the most sophisticated version of these lenses (NA = 1.35) enable the nearly 

aberration-free high resolution imaging of glycerol mounted samples (Martini et al., 2002), in 

the conventional, confocal, as well as in the 4Pi mode (Gugel et al., 2004). However, besides 

being expensive, a limitation of the NA = 1.35 glycerol lenses is that they require the use of 

fused silica coverslips of non-standard thickness and glycerol as an immersion medium.  

 

A common way to increase the refractive index in an aqueous mounting medium is to add 

proteins such as bovine serum albumine or glucose (Müller, 1956). However, the adjustable 

range of the refractive index is here limited from 1.33 to about 1.43. 

 

Increasing the NA by increasing the aperture angle as well as the refractive index of the 

mounting medium pays off in many regards. For example, water immersion lenses with 

NA = 1.2, i.e. α = 64°, have a 40% poorer axial resolution as compared to the 1.46 oil 
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immersion lenses featuring α = 75° (Fig. 6.2). The larger α of the latter also leads to about a 

30% larger fluorescence collection. However, a simple consideration based on geometrical 

optics shows that if the n of the mounting medium varies by 0.001, the marginal rays at 

α = 75° already miss the focal point by about the wavelength of light, at a sample depth of 

30 µm. This departure is 4 times smaller at α = 59° of a 1.3 NA oil immersion objective. This 

simple example illustrates the importance of refractive index matching when high angle 

lenses are to be employed.  

 

 
 

Fig. 6.2: Surface plots of an axial section (xz) of the main maximum of the PSF of a 

confocal microscope for a water immersion lens with NA = 1.2 (left) and an oil immersion 

lens with NA = 1.46 (right); excitation: 488 nm, emission: 525 nm. The PSF of the oil 

immersion lens is narrower by 30% along the z-axis. Additionally, the 30% larger 

collection and excitation efficiency results in an almost doubled peak intensity. 

 

The use of high angle lenses therefore calls for an embedding medium whose refractive index 

can be precisely controlled. Ideally, it is miscible with water at any concentration, non-toxic 

and easily applicable to biological samples. It should quickly immerse all the structures 

without destroying or deforming them and must not quench the fluorescence notably. 

 

Recently, ultramicroscopy was combined with a special procedure to clear tissue for the 

investigations of whole mouse brains (Dodt et al., 2007). In this kind of microscopy, the 

specimen is illuminated from the side with a thin light sheet. The parts of the specimen which 

are located above and below the light sheet are not illuminated. Therefore no out-of-focus 

light is generated, and no light has to be excluded to reach the detector as it is the case in 

confocal microscopy. Large objects can be investigated by ultramicroscopy, but they have to 

be optically transparent. To ensure transparency, the refractive index has to be matched over 
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the whole tissue. This was achieved by embedding in a benzylalcohol/benzylbenzoat (BABB) 

(1:2) mixture. However, the BABB mixture is not water-soluble and the tissue has to be 

dehydrated in an elaborate and time-consuming procedure, which may disturb the 3D 

structure. A water-soluble embedding medium would simplify the procedure. 

 

 

6.2 Application of TDE in confocal microscopy 
 

In order to identify mounting media with the proper refractive index, the properties of 12000 

substances were screened in Weast, 1974, with regard to refractive index, solubility in water, 

pH value, toxicity and stability. TDE (2,2’-thiodiethanol), a glycol derivative, was identified 

as a very promising candidate (Fig. 6.3). Used as an antioxidant for the chromatography of 

amino acids (Moore and Stein, 1951), it should display similar antioxidant properties in 

fluorescent microscopy. Highly reactive radical species generated by light are often 

responsible for the fading of fluorescence because they react with the fluorescent dyes. TDE 

is an inexpensive and almost odorless chemical. It is classified as being irritating but non-

toxic. Further mounting media candidates are also to be found among the organic iodides, 

sulfides (thioles), and aromatic compounds featuring strongly polarizable groups. Derivatives 

of TDE with higher chain lengths, bearing a certain number of ethylene glycol, mercapto 

ethanol or dimercapto ethane groups, are also among highly promising substances for the 

sample embedding. However, toxicity, reactivity and low solubility in water may limit the 

number of useful ones. Therefore, this study was limited to TDE. 

 

S
OHHO

 
 

Fig. 6.3: TDE (2,2’-thiodiethanol) is a non-toxic glycol derivative which, owing to the 

sulfur atom, exhibits a large polarizability and hence a high refractive index. It is soluble in 

water at any concentration. 

 

The data in Fig. 6.4 shows that adjusting the amount of water in TDE allows a precise control 

of the refractive index of the medium (for measurements of the refractive indices, see 

appendix A.4.10). Therefore, it is possible to tune the refractive index of the sample to that of 

the immersion oil (nD = 1.518 at 23°C). 
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Fig. 6.4: TDE (2,2’-thiodiethanol) is miscible with water in any proportion. The refractive 

index (nD) of the solution can be precisely tuned to any value between 1.333 (water) and 

1.521. The latter is even slightly larger than that of immersion oil (nD = 1.518 at 23°C). 

 

The precision of the refractive index tuning is further evidenced in Fig. 6.5 showing the range 

around 1.51 in detail. A 97% TDE volume yields a refractive index which perfectly matches 

that of immersion oil at room temperature. By the same token, it is possible to match the 

refractive index for different ambient temperatures.  

 

 
 

Fig. 6.5: TDE allows a precise setting of the refractive index by adjusting the water content. 

For use with an oil immersion lens, a TDE concentration of 97% in water was employed. 
 

As expected, embedding cells in a 97% TDE solution significantly reduces the phase contrast 

which demonstrates the improvement of the optical properties of fixed samples for high 

resolution imaging (Fig.6.6). 
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a) b)

 
 

Fig. 6.6: Phase contrast images of PtK2 cells. a) Cells mounted in buffer solution. b) Cells 

mounted in 97% TDE solution. As expected, the contrast generated by local refractive 

index changes is greatly reduced in TDE. 

 

The effect of spherical aberrations caused by refractive index mismatch in the mounting 

medium is easily measured by evaluating an xz-scan of a homogeneous dye solution in a 

confocal microscope. We recorded such an xz-scan using a 100x NA1.46 oil immersion lens 

featuring α = 75°. The fluorophore Rhodamine 6G was dissolved in PBS buffer containing 

different amounts of TDE to set certain refractive indices in the mounting medium. Fig. 6.7 

shows the measured intensity along the optical axis. The intensity drops quickly after a few 

µm in depth if the refractive index does not match that of the immersion system. The loss of 

resolution and intensity is most dramatic at n = 1.33 (water) and n = 1.45 corresponding to 

20/80 Water/Glycerol solution. But there is still a significant effect at n = 1.50 which is closer 

to glass than polymer-mounted samples such as PMA or Mowiol (n = 1.49). Evidently, only 

the correct setting of the refractive index at n = 1.515 at 97% TDE avoids aberrations in the 

sample and optimizes the fluorescence collection. 
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Fig. 6.7: Confocal axial (z-) scans at the interface of a dye solution with the glass coverslip 

using an oil immersion lens of 1.46 NA, α = 75°. The coverslip is located at z = 4.0 µm. At 

positions z < 4 µm is glass and dye solution at z > 4 µm. The curves correspond to 4 

different refractive indices set by using different TDE concentrations, as indicated. The 

deeper the beam is focused into the sample, the fewer photons are collected due to spherical 

aberrations introduced by refractive index mismatch. In case of matching refractive index 

the signal is constant along the optic axis. 

 

One has to point out, that TDE is hygroscopic. This must be taken into account during 

preparation and for handling the stock solutions.  

To provide an overview about the general applicability and behavior of popular classes of 

dyes, the fluorescence efficiencies of dyes have been measured in phosphate buffered saline 

(PBS) and TDE using a fluorescence spectrometer. The results are summarized in Tab. 6.1 

showing the relative absorption (Abs), emission (Em) and quantum yields (QYrel) of the dyes 

as defined by  

 

TDE

PBS

PBS

TDE
rel Abs

Abs
Em
EmQY ⋅= .                   (6.1) 

 

Tab 6.1 allows a quick and practical comparison of the fluorescence yields of the dyes 

mounted in TDE or PBS. We selected representative derivatives of coumarins, rhodamines, 

carbopyronines, cyanines, and boradiazaindacenes. In addition, we also investigated the 

behavior of fluorescent proteins and quantum dots. 
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Tab. 6.1: Absorption (Abs.) and fluorescence intensities (Em.) of dye solutions in PBS 

buffer and TDE (97%) were measured as well as the wavelengths λ of the absorption and 

emission maxima. To compare the effective fluorescence behavior of the dyes in TDE with 

PBS buffer, the relative quantum yields (QYrel) according to Eq. 6.1 are shown in the last 

column. Values >1 indicate stronger fluorescence in TDE. For further information see 

appendix A.4.8. (1* Bodipy is quenched in buffer due to dimerisation; 2* in 80% TDE) 

 

The data shows that in some cases the fluorescence brightness is slightly lower in TDE as 

compared to PBS. However, in practical microscopy, this minor effect is usually compensated 

by the larger collection efficiency of the high NA lens. Nevertheless, also the opposite effect, 

i.e. stronger fluorescence is observed in a number of cases.  

Absorption and emission spectra (see appendix A.4.9 for further information) were found to 

be slightly altered by the mounting medium, which is a quite common phenomenon when dye 

molecules are embedded into media with different polarizability. The absorption spectra also 

appear slightly red-shifted in accordance with Kundt’s rule and other related effects (LeRosen 

and Reid, 1952). Fig. 6.8 gives an example with the commonly used fluorescent marker 

Oregon Green. The excitation and emission filters of the microscopes may therefore require 

slight adaptations. On the other hand, no significant differences have been observed when 

  

PBS 
(Ref.)    TDE      

  Abs. λAbs[nm] 

Em.  

[a. u.] λEm[nm] Abs. λAbs[nm] 

Em.  

[a. u.] λEm[nm] rel. QY  

Coumarins Coumarin 

120 0.092 342 580 444 0.119 342 315 438 0.42  

  Coumarin 

153 0.029 434 75 550 0.055 434 348 539 2.45  

Rhodamines FITC Isomer 

I 0.135 495 812 518 0.154 505 560 532 0.60  

  Oregon 

Green 488 0.047 493 800 518 0.057 506 595 530 0.61  

  Texas Red 

mixed Iso. 0.025 586 820 605 0.027 590 830 607 0.94  

 Atto565 0.031 567 210 586 0.049 567 460 589 1.39  

 A532 0.027 532 317 550 0.034 542 240 559 0.60  

Oxazines Atto655-

NHS 0.039 661 590 676 0.051 666 720 686 0.93  

Cyanines Cy3 0.037 551 135 563 0.036 563 595 576 4.53  

Boradiazaindacenes 

Bodipy 

650/665-x - - - - 0.072 662 900 677 - 1* 

  Bodipy FL-

SE 0.016 502 536 510 0.030 510 488 518 0,49  

Fluor. Proteins EGFP 0.008 489 277 520 0.014 490 343 510 0.71 2* 

 mRFP 0.081 586 505 606 0.088 587 467 608 0.85  
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using different buffers such as PBS, HEPES, TRIS, or HBS-buffer for index adjustment of the 

TDE-based medium. 

 

a) b)

 
 

Fig. 6.8: Comparison of the absorption (a) and emission (b) spectra of Oregon Green 

measured in water and in 97% TDE. The spectra are red shifted by 12 nm.  

 

Cell membranes are permeable for TDE; hence, permeabilization with detergents such as 

Triton X-100 is not required. Virtually all standard procedures of labelling with exogenous 

fluorophores, such as immunostaining or chromatine labelling with DAPI worked flawlessly. 

As the only exceptions, phalloidin-conjugated fluorophores used to stain the actin 

cytoskeleton and bungarotoxin-conjugated dyes used to stain the acetylcholin receptors have 

been destabilized in TDE. A remedy may be a strong post-fixation after phalloidin incubation. 

Even after the exchange of the TDE with water and renewed addition of the bungarotoxin-dye 

conjugate, a specific labelling was not achieved.  

 

Interestingly, the brightness of fluorescent proteins (FP) increases with increasing fraction of 

TDE in the medium up to a certain TDE concentration. Mammalian cells (PtK2 cell line) 

were prepared in which a matrix-resident mitochondrial protein was fused with the enhanced 

green fluorescent protein (EGFP). We found that EGFP was quenched if the TDE fraction 

was > 80-85%. In contrast, the fluorescence of the monomeric red fluorescent protein (mRFP) 

is not affected by high TDE concentrations. At a 97% TDE concentration (n = 1.515), mRFP 

performs virtually as in PBS. Hence, while it seems to be difficult to match EGFP mounted 

fixed samples to a refractive index n > 1.48, it possible to embed mRFP labelled samples in a 

strongly concentrated TDE based medium with large refractive index. Semiconductor 

quantum dots and fluorescent beads performed well in the TDE based solution at all TDE 

concentrations.  
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It was also observed that some dyes, e.g. Cy3, Coumarin153 and Atto565 displayed increased 

brightness while other dyes became dimmer in TDE compared to PBS. Interestingly, Cy3 

emitted over 4 times more intensely in TDE, which may be attributed to the stabilizing of this 

photoisomerizable molecule in the fluorescent trans-state of the cis-trans system (Heilemann 

et al., 2005), (Widengren and Schwille, 2000). It is quite probable, that radical reactions with 

the double bonds creating a single bond are involved in the isomerization of cyanin dyes 

because of the free rotability of the single bonds. TDE might quench this radical reaction 

predominately reacting with radicals. 

The general applicability of TDE as a mounting medium for fluorescence imaging is 

exemplified in Figs. 6.9-6.13. Here, different cellular structures in PtK2 cells are stained 

following the protocols described in appendix A.4.3 and A.4.4. 

 

 

6.2.1 Preparation 

 

At first, the staining and fixation of cells was performed as in conventional or confocal 

fluorescence microscopy (see appendix A.4.3 - A.4.7). When using TDE in biological 

samples, one must consider that 1) by adding an adequate buffer (for example, pH 8), the pH 

is set to the value required for optimum performance of the used dye. 2). The exchange of 

water with TDE (97% for oil immersion) must be slow enough to prevent cell shrinkage due 

to osmotic shock (TDE enters the cell or nucleus slower than water leaves it due to their 

different permeabilities). 

 

 

6.2.2 Mounting procedure 

 

After fixation of the cells and depending on the sample, various dilutions with increasing 

TDE content were used to exchange the water with TDE in a continuous or stepwise manner. 

Good results have been obtained with the following steps:  

 

10% TDE (100µl TDE, 50 µl PBS5x, 850µl water),  

25% TDE (250µl TDE, 50µl PBS5x, 700µl water),  

50% TDE (500µl TDE, 50µl PBS5x, 450µl water),  

three times 97% TDE (970µl TDE, 30µl PBS1x).  
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The pH value of all stock solutions was controlled by a pH meter (see appendix A.4.13). 

Because of the viscosity of TDE, it is important to wait for an hour for the settling to the final 

measurement value of the pH. 

The samples were successively immersed in the above solutions with increasing TDE 

concentrations for about 5 to 10 minutes each. Then the coverslips of the samples were sealed 

with pink nail polish. It was ascertained that the silicon-based glue Twinsil (Picodent, 

Wipperfürth, Germany) is not polymerizing with TDE. The refractive index of the solution 

was examined with a refractometer (see appendix A.4.10). At the microscope, the correction 

collar of the objective lens was adjusted to maximum fluorescence brightness. This corrects 

for residual spherical aberrations due to temperature or coverslip thickness mismatches. To 

observe potential quenching effects of TDE, micromolar dye solutions in TDE were examined 

in a Varian fluorescence spectrometer (see Tab. 6.1). 

 

a) b)

 
 

Fig. 6.9: PtK2 cells with immunolabelled microtubules mounted in PBS (a) and in 97% 

TDE (b) demonstrate the viability of TDE as an embedding medium. Immunolabelling with 

the fluorophore Dy-485XL. No structural difference or substantial difference in image 

brightness is observed. 

 

a) b)

 
 

Fig. 6.10: PtK2 cells as in Fig. 6.9; confocal xz-sections show the conservation of the 3D-

structure in 97% TDE. 
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Fig. 6.11: PtK2 cells in 97% TDE. ATP-Synthase immunostained with ALEXA546. 

 

 

a) b)

 
 

Fig. 6.12: (a) PtK2 cell in 97% TDE. Mitochondrial matrix stained with DsRed. (b) PtK2 

cell in 85% TDE: Mitochondrial matrix stained with EGFP.  

 



TDE 

110 

a) b)

 
 

Fig. 6.13: PtK2 cells embedded in 97% TDE. (a) DAPI staining of nuclei. (b) 

Mitochondria stained with DIOC6. 

 

Unless the exchange process is too fast, the replacement of water by TDE does not disturb the 

3D structure of the cell. Water can obviously penetrate cellular or nuclear membranes much 

faster than TDE, but this can be easily accounted for by a stepwise or continuous solution 

exchange as described. The usefulness of TDE is further supported by the fact that 

immunostaining and DNA staining using DAPI is possible, as well as the imaging with 

quantum dots and fluorescent proteins. If nuclear stains are used showing an increased 

quantum yield upon binding on DNA, it is recommended to supply the TDE used for the last 

water exchange step with the nuclear stain to compensate for the loss due to the exchange 

steps. The only exceptions with regard to applicability is that, unlike the fluorescence of 

mRFP, that of EGFP is quenched for TDE concentrations larger than 80%, that is for 

refractive indices >1.48 This observation might give further hints to the fluorescence 

properties of EGFP and will be investigated in the future. Two toxins have been tested in 

TDE, phalloidin- and bungarotoxin, but both are not working. Toxins are highly specific and 

their binding is dependent on the conformation of the epitope-bearing protein. The binding 

properties of most of the used antibodies are not strictly depending on the conformation but 

also detect the denatured epitope (e.g. in Western Blotting). Changes of the protein 

conformations after TDE embedding are highly probable because of dehydration or 

interactions with the hydroxy groups and the sulfur of the TDE itself. This might explain the 

different performances of the toxins compared to the antibodies in TDE. A hint for 

conformational changes after TDE embedding is the fluorescence quenching of GFP in higher 
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TDE concentrations. Maybe there are additional restrictions regarding toxins or conformation-

dependent applications in TDE. 

 

The observed spectral shifts by a few nanometers are in accordance with the fact that the 

change in fluorophore-solvent interactions influences the electronic transitions of the 

fluorophore. For the same reason, the fluorescence quantum yield of a number of dyes is 

slightly modulated. However, in most cases, these changes are surprisingly subtle and do not 

compromise the usefulness of TDE as a mounting medium. Last but not least, the reducing 

property of TDE helps to reduce photobleaching. A positive effect was found on light-induced 

strand breaks of YOYO-1 labelled Lambda DNA, which was combed on a vinylated glass 

surface (Akerman et al., 1996), but was not further quantified. The highly reactive radicals 

and oxygen species generated by the dye molecules in the excited state are maybe quenched 

by TDE and therefore not able to attack the DNA. A similar result was found applying 

moderate concentrations of β-mercaptoethanole or ascorbic acid on preventing strand breaks 

of combed lambda DNA and reconstituted DNA (Akerman et al., 1996, Yoshikawa et al., 

2006). 

 

Another interesting application is the use of TDE as an immersion fluid. The unavoidable 

change of the refractive index in the immersion oil can be compensated in TDE by adjusting 

the proper concentration. Of course it must be ensured that the last optical element of the 

objective lens is not harmed by the TDE based medium.  
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6.3 Physical properties of TDE  
 

Fortunately, other physical properties of TDE are advantageous for microscopy proved by the 

following measurements. The dispersion of TDE (97% + 3% PBS buffer) is similar to that of 

the regular immersion medium. Hence, TDE does not induce chromatic aberrations in 

multicolor imaging or when imaging fluorophores with a large Stokes shift (see Fig. 6.14). 

The temperature dependence of the refractive index is displayed in Fig. 6.15 showing that 

TDE features a more moderate temperature dependence compared to that of immersion oil. 

This is an advantage if TDE is also used as an immersion fluid, because temperature 

differences within the immersion-sample system are better tolerated and not leading to 

stronger refractive index inhomogeneities. 

 
 

Fig. 6.14: The dispersion of TDE (dot) is close to the dispersion of standard immersion oil 

(Leica Microsystems) (cross). This avoids the chromatic aberrations otherwise introduced 

by the mounting medium. 
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Fig. 6.15: The temperature dependence of the refractive index of TDE (3*10-4/°C) is 

slightly less than that of the immersion oil (3.8*10-4/°C). 

 

The investigation of TDE in the bulk measured with a fluorescence spectrometer shows weak 

autofluorescence around 430 nm and 570 nm for excitation at 350 nm and 510 nm, 

respectively. However, the autofluorescence is so low that it is hardly noticeable in 

conventional fluorescence microscopy applications and can be regard as irrelevant in confocal 

recordings. 

 

The optical absorption of TDE in the visible range is low and can be neglected for all 

microscopy applications. This is evidenced in Fig. 6.16, showing the optical transmission 

through a 10 mm thick layer of TDE.  
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Fig. 6.16: The transmission spectrum of TDE (10 mm thickness) shows minimal absorption 

over the entire visible and near infrared range. For a microscope sample of 100 µm 

thickness, the transmission in the 360-1100 nm spectral range is >99%. 
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6.4 TDE in 4Pi microscopy 
 

In every microscopy mode using high NA objective lenses matching the refractive index is a 

crucial step. A difference between the refractive indices of the immersion system and the 

sample embedding, or within the sample embedding itself leads to a spherical aberrated PSF 

featuring a degraded and displaced peak amplitude, increased lobes, a blurred maximum, a 

change in phase at the maximum and a shifted focus. The intensity of the aberrations 

ultimately depend on the amount of the refractive index mismatch, the penetration depth and 

the aperture angle of the used objective (Egner et al., 1998). These effects become 

exacerbated for confocal and multi-photon microscopes (Hell et al., 1993; Jacobsen et al., 

1994), since the imaging properties of these systems are governed by a squared or higher 

order intensity PSF. The same holds for 4Pi-imaging, a method for improving far-field 

resolution through combining the aperture of two objective lenses. The effective PSF for 4Pi 

of type C is given by: 

 

)r(p)rM̂(EM̂)r(E)rM̂(EM̂)r(E)r(h)r(h)r(h
2
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excE
r

 and detE
r

denote the focal fields describing the illumination and the detection by a single 

lens at the excitation (λexc)  and fluorescence wavelength (λfl) respectively; rr  is a spatial 

coordinate originating at the focal point; hexc( rr ) and hdet( rr ) are referred to as the excitation 

and detection PSF respectively. The transformation matrix M̂  considers the orientation of the 

counter propagating light fields. The function p( rr ) describes the opening of the detector that 

is conjugate to the focal plane, e.g. the area of a confocal pinhole. If no pinhole is used, 

p( rr ) = 1. The parameter m = 1, 2,… gives the number of photons involved in the excitation 

process, e.g. m = 2 for two-photon excitation. 

 

The maximum semi-aperture angle provided by standard high angle lenses of 68° is 

significantly smaller than the 90° which are needed to form a half sphere. Hence, the focal 

spot features high order lobes above and below the focal plane in axial direction. For lenses 

with α = 68° the first order lobes are occurring with 50% of the intensity of the main peak and 

are therefore to prominent to be neglected. The decrease of these side lobes is the primary 

concern in the 4Pi microscopy because side lobes lead to periodic artefacts in the image 

formation. To remove the side lobes the images gained in the 4Pi mode have to be processed 
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mathematically applying a so called linear deconvolution with the whole effective PSF 

(Tikhonov et al., 1977). Deconvolution is always challenged by noise, so the generation of a 

nearly spherical spot by pure physics to probe the sample is preferable also in terms of the 

system´s alignement and recognizing constructive interference (Lang et al., 2008). A sharp 

spot with negligible lobes can be realized by two-photon excitation 4Pi microscopy of type C 

with novel oil-immersion lenses featuring an enlarged semi-aperture angle of α = 74° (Lang 

et al., 2007a, Lang et al. 2007b). But as mentioned above, in two-photon excitation 4Pi 

microscopy using high NA lenses, the importance of refractive index matching is 

exponentiated to ensure low spherical aberrations and a sharp spot. The embedding in TDE is 

mandatory to generate such a sharp spot with insignificant side lobes. This is confirmed in a 

xz-imaging experiment on microtubules in PtK2 cells stained with Alexa 488 (Fig. 6.17) 

following a protocol described in the appendix A.4.3. The side lobe effects in the raw data are 

already in the range of the background (10%). A profile through an inherently line-shaped 

microtubule shows that a single sharp central spot with an axial FWHM of about 120 nm is 

formed (Fig. 6.17c), indicating an axial resolution increase by a factor of 4.2 compared with 

the confocal measurement. The confocal data were recorded by blocking one of the arms of 

the 4Pi microscope at λexc = 488 nm. The low side lobes indicate the good match between the 

average refractive indices of the sample and the embedding medium TDE. Another indication 

of the match is the negligible variation in phase difference when scanning the focal spot 

through the sample. The imaged microtubules in PtK2 cells are located close to the nucleus 

(Fig. 6.17a, b). The line profile through the nucleus (indicated in blue) shows that the phase 

shift due to refractive index mismatch is negligible (Fig. 6.17c). Both the microtubules above 

and below the nucleus indicate constructive (c/c) interference between both 

counterpropagating wavefront pairs. The results confirm that no deconvolution is necessary to 

interpret the data obtained by two-photon 4Pi microscopy of type C using these high NA 

lenses. Another 4Pi mode is enabled by the TDE embedding and the application of high 

numerical aperture lenses, namely the one-photon excitation 4Pi of type C. Here the side 

lobes are low enough to make the two photon excitation redundant (Lang et al., 2007b). 
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Fig. 6.17: 4Pi imaging of the microtubular network in a mammalian cell (PtK2) stained 

with Alexa 488. An xz-section ((a) 4Pi, (b) confocal) through the nucleus (indicated in 

blue) of an Alexa 488-stained microtubular network demonstrates that the embedding 

medium TDE allows precise matching of the refractive index to that of the immersion 

system: no significant phase shift due to the focusing through the cell nucleus was found 

(c). The deconvolution is not necessary, since the lobe-induced effects in the 4Pi raw data 

are weak, as confirmed by the z-profile (c) derived by integrating in the boxed area in (a). 
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6.5 TDE in STED microscopy 
 

The requirements on dye molecules for high resolution microscopy are high compared to 

standard confocal microscopy in terms of the realization of a non-fluorescent state and the 

more important photostability. In RESOLFT modes using stable, long lived “off” states, the 

embedding ideally should not increase the switching fatigue, fluorescence intensities of the 

molecules in the “off” state or the times to switch on or off the dye molecules. Apparently, 

one has to count on interactions of the dye molecules with the embedding media, making the 

problem rather complex. Suitable dyes for high resolution experiments have to be tested 

individually. In STED microscopy, which is based on metastable “off” states, the sample 

embedding has to ensure good antifade properties to tolerate the higher light doses and must 

not decrease the efficiency for suppressing the fluorescence signal. To demonstrate the 

performance of different fluorescent dyes in combination with the embedding media TDE 

under STED conditions, the following images are shown.  

Fig. 6.18 shows NK51-labelled SC35 splicing factors within the nucleus of MCF7 cells 

embedded in TDE to provide ideal optical properties. The nucleus of a cell is highly 

compartmentalized (Spector et al., 2001; Misteli et al. 2001). Speckles are one of these 

distinct subnuclear, dynamical structures located in the interchromatin regions of the 

nucleoplasm of mammalian cells, and are enriched in pre-messenger RNA splicing factors 

(Lamond et al., 2003). SC35 is a non snRNP and involved in the splicing process. Splicing is 

a fundamental step within the data flux from DNA to protein. After the transcription of the 

DNA, pre-mRNA is formed which is spliced, capped and tailed to form mRNA. Translation 

of mRNA leads to proteins (Alberts et al., 2002). The splicing factor SC35 is found to co-

localize with snRNP aggregates in a speckled distribution (Sahlas et al., 1993). This factor 

plays a role in spliceosome assembly and initiates the splicing process (Fu and Maniatis, 

1990; Spector et al., 1991). Its distribution can be described as an extensive, 3D network 

corresponding to interchromatin granules (ICGs) as assessed by electron microscopy (Spector 

et al., 1991). In the confocal microscope they appear as irregular punctuate structures varying 

in size and shape (Fig. 6.18a, b). The ICGs seen in electron microscopy range in size from one 

to several micrometers in diameter and are composed of 20 to 25 nm granules that are 

connected in places by a thin fibril, resulting in a beaded chain appearance (Thiry, 1995). The 

nuclear architecture of the MCF7 cells is additionally challenged by macromolecular 

crowding caused by a hypertonic treatment of the living cells with sucrose before fixation. 

Molecular crowding provokes structural re-organizations such as chromatin compactions and 
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invasions or regeneration of nuclear components into newly emerged peripheral space 

between nuclear lamina and detached chromatin (Richter et al., 2007). The molecular 

crowding effect is not further discussed in the following. Fig. 6.18 directly compares the 

confocal image (a raw data, b linear deconvolved data) with the image recorded under STED 

conditions (Fig 6.18c, d). The STED mode clearly discerns features in the range of 50 nm in 

size, almost revealing the size of the granules assembling the speckles proofed by electron 

microscopy. The confocal image does not disclose any substructure within the speckles. This 

experiment proofs that the fluorescent dye NK51 is suitable for STED microscopy of TDE 

embedded samples. The refractive index mismatches near or within the nucleus are well 

compensated yielding a decent resolution. The resolution is mostly limited by the STED 

laser´s maximum power and the extensive dye distribution in the optical axis. An unmatched 

refractive index would lead to increased light scattering and spherical aberrations resulting in 

high intensities in the zero of the depletion beam, a worse resolution and a lower signal. 

Photobleaching is not of any concern in this case. 
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a) b)

d)c)

 
 

Fig. 6.18: STED measurement of NK51 labelled SC35 splicing factor in MCF7 cells which 

were crowded in 320 mM sucrose and embedded in TDE reveals substructures within 

nuclear speckles. In the first row the raw data of the STED image (b) and the confocal 

image (a) is shown. The second row (c) and (d) depicts the corresponding images after a 

linear deconvolution. 

 

 

Another application of TDE embedding in STED microscopy is demonstrated in Fig. 6.19. 

Here, synaptophysin was labelled with Atto565 and NK51 to localize synaptic vesicles in the 

neuromuscular junction (MJ) within a fixed tringularis sterni muscle prepared out of a five 

days old mouse (for preparation see appendix A.4.5). The signal for muscle contraction is 

conducted from the axon terminal of a motor neuron to the muscle via the MJ. The muscle has 

a thickness of around 100 µm and was embedded in TDE. In order to analyze the density of 

synaptic vesicles dependent on the knockouts of APP and the related family members, STED 

recordings (10 x 10 µm) were taken from the preparations (Fig. 6.19 and 6.20). APP plays a 

major role in the etiopathology of Alzheimer´s disease (AD). The possible knockout-

dependent vesicle density will not be further highlighted here. For imaging the MJs, it was 

necessary to focus approximately 20 µm into the tissue. Because of the high penetration depth 

it was very important to match the refractive index. Applying oil immersion lenses, the 

embedding in Mowiol did not match the refractive index satisfactorily to prevent a significant 

loss in resolution (Fig. 6.19a, b) in depth. This is on one hand caused by stray light filling up 
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the zero of the depletion beam and on the other hand caused by spherical aberrations. Of 

course, the STED PSF is also limited by diffraction, and spherical aberrations smear out the 

PSF resulting in less steep edges of the zero and decreased resolution. Even a refractive index 

mismatch of 0.025 can lead to a remarkable decline of the resolution directly compared to the 

resolution gained in the TDE embedded sample (Fig. 6.19c, d). Parts of the improvement may 

also originate from better dye properties in TDE, but the performance of the dye directly on 

the coverslip is similar in both embedding media. Fig. 6.20 shows additional images of the MJ 

of different knockout mice. The distinct vesicular structures within the MJ are clearly 

resolved in the STED mode compared to the confocal images. The resolution is only limited 

by the samples extension in the optical direction and the laser power.  

 

a) b)

d)c)

 
 

Fig. 6.19: The sample embedding in TDE ensures suitable optical properties for STED 

microscopy focusing deeply (20 µm) into tissue. The second row shows a confocal (c) and 

the corresponding STED image (d) of the synaptic vesicles in the MJ embedded in TDE 

and labelled with NK51. Features of 70 nm can be resolved. The first row (a) and (b) 

depicts the MJ of the muscle embedded in Mowiol. The STED image (b) appears more 

blurred out compared to the STED image of the TDE embedded sample (d). Both images 

are recorded in approximately the same depth of 20 µm.  
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a) b)

d)c)

e) f)

 
 

Fig. 6.20: Vesicular structures labelled with Atto565 can be resolved in MJs of 100 µm 

thick muscle preparations embedded in TDE. Left side confocal images ((a), (c), (d)), right 

side STED images ((b), (d), (f)). Row 2 and 3 are linear deconvolved. The first and the 

second row show vesicles in MJs prepared out of APP single knock out mice, the third row 

(e) and (f) depicts vesicles of double knockout mice.  

 

The experiments are demonstrating that Atto565 and NK51 are both performing well in 

STED measurements of samples embedded in TDE for advanced optical properties. 

According to Tab. 6.1, Atto565 even shows a 40% higher fluorescence intensity in TDE 

compared to PBS. In combination with the dye Dy485XL high resolution two colour 

measurements are possible in TDE. This was shown impressively in measurements combining 

4Pi and stimulated emission depletion to form a isotropic 3D focal spot (Schmidt et al., 2008). 

The dyes Atto647, Atto633, Atto590 and Dy480XL are also performing satisfactorily in TDE. 

Also Atto590 fluoresces brighter if embedded in TDE.  
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It could be shown, that matching the refractive index is crucial in confocal, and especially in 

4Pi microscopy using high NA objective lenses or zero based optical high resolution 

microscopy deeply inside the sample. A refractive index mismatch causes spherical 

aberrations which counteracts the recording of high resolution information.  
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Chapter 7 
 

Conclusion and outlook 
 
 
This thesis addressed important obstacles in high resolution optical techniques, namely 

photobleaching, dark state transitions, and phototoxicity. A higher resolution calls for a more 

precise scanning of the object i.e. a larger pixel number, since the PSF as a probe decreases in 

size. A higher pixel number is connected to a higher light dose affecting the sample if the 

dwell time is kept constant. The high resolution approaches based on stochastical read-out 

(STORM, PALM, GSDIM, dSTORM, PAINT) require high photon counts to gather the 

coordinates of the single molecules accurately. If the molecule bleaches to fast, the 

localization accuracy is poor (~ N ). For targeted read-out (STED, GSD, ESA), high signal 

suppression intensities have to be applied to separate the signals. However, high signal 

suppression intensities enable additional photobleaching pathways. In either case, 

photobleaching hinders high resolution imaging because it limits the maximal count rate or 

the maximal signal suppression intensities in zero based high resolution techniques. All 

possibilities have to be exploited to tackle photobleaching or to increase the number of 

detected photons, especially for experiments relying on image series such as 3D imaging, 

multicolour imaging, or recordings of dynamical processes. Biology, chemistry and physics 

are providing approaches to reduce the photobleaching. In this thesis, different strategies to 

prevent photobleaching, dark state transitions, and phototoxicity have been introduced. 

 

The application of different fluorophores and laser lines calls for a setup, which is 

characterized by a high flexibility. The development of new fluorescent dyes is a highly 

active field and the ability to adopt fluorophores featuring advanced photostability (Mn-QD) 

as well as conditions helping to prevent photobleaching (RESCue) are basic requirements for 

a reliable and efficient optical setup. To apply a variety of different fluorophores or laser 

lines, many parts of the zero based subdiffraction microscope should ideally be tunable 

regarding the wavelength: clean up filters, the phase filter, the dichroic mirrors and the 

emission filter. A tunable solution to all these parts with their fixed properties is described in 

this thesis. 

The multitude of laser lines provided by the Ar-Kr-laser can be perfectly exploited by the 

quadruple AOTF arrangement serving as a tunable beam splitter. Additionally, it is part of an 

adaptive filter system in combination with a prism based spectrometer. The adaptive filter 
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system can be set as a notch or bandpass filter and can be adapted for every dye to maximally 

exploit the emission spectrum of a fluorophore. This can make thin film interference filters 

with their fixed properties redundant and may help to reduce the excitation intensity and 

therefore the photobleaching. Especially if an intense signal suppression beam is used for 

subdiffraction imaging with a wavelength located within the emission spectrum (STED), the 

filtering premises become severe. The signal and the background-levels of the adaptive and 

the thin film interference filters are comparable. One drawback of the adaptive filter system is 

the elaborate alignment procedure. To circumvent this, important parts like the plates, strip 

and mirrors can be motorized, and the whole procedure including the AOTF adjustment can 

be automated. The adaptive filter system will be applied to multicolour measurements without 

the usage of thin film interference filters in the future. 

 

A new tunable phase plate principle was characterized, which is based on two identical 

adjacent optical flats, which are slightly tilted in respect to each other. By turning the whole 

optical flat arrangement every wavelength can be matched to feature a λ/2 phase step in one 

half of the beam relative to the other due to dispersion. This leads to a zero line PSF after 

focusing. Concomitant with that results an interesting simplification. Both, the excitation and 

the signal suppression beam can be provided by the same laser without the need for alignment 

of the two laser beam foci. By turning the two flats, the PSFs can be tuned to match different 

sets of excitation and signal suppression beam wavelengths provided by the Ar-Kr-laser in the 

cw mode. This approach was applied to resolve Nile red beads in one dimension. The next 

step is to provide a resolution enhancement in x and y direction by installing a second set of 

optical flats passed by the crossed polarization. This offers a very convenient way of 

subdiffraction imaging without the need for alignment of the foci or time delays between the 

excitation and signal suppression beam.  

 

The quadruple AOTF arrangement enables the complete control of sample exposure, which is 

a basic requirement for the reduction of excitation and signal suppression cycles (RESCue) in 

zero based high resolution methods using metastable “off” states. The photobleaching in zero 

based high resolution techniques was decreased by a factor of about four applying the lower 

threshold (lTh). A better resolution opens up the possibility for a more accurate exposure of 

the sample minimizing the dyes excitation and signal suppression cycle numbers. If the 

resolution enhancement is based on long-lived or stable “off” states, phototoxicity can be 

reduced due to the diminishment of the light dose on cells. The measurements of a Nile red 
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beads sample demonstrate impressively that the RESCue mode preserves the fluorescence by 

20% more than the confocal mode with the aid of the high resolution information. The impact 

on relevant fixed biological samples is analyzed concerning the APP labelled neurons and 

GFAP labelled glial cells. RESCue opens up new options. It enables the 3D measurement of 

lamina labelled neuroblastoma cells. It reduces the light dose without giving up localization 

capability or imaging speed and therefore the number of switching cycles which leads to 

photobleaching and dark state population in all zero based high resolution ensemble methods. 

Anti-bleaching agents, which are interfering with life cell imaging can be avoided. 

The crucial point of RESCue is to locate the presence of an object by a feedback with the 

detection. Coincident photons on two detectors would allow a fast decision on the presence of 

an object not being prone to a higher background. An object of interest is labelled with 

several dyes making coincidence on the detector probable.  

The major impact of RESCue lies in enabling zero based high resolution measurements that 

are connected to higher photobleaching such as 3D STED measurements, application of 

coumarin derivatives in biological samples, STED measurements in the cw mode, multicolour 

STED measurements and fluorescent proteins in high resolution microscopy. In the STED 

case the reduced bleaching in standard applications can be reinvested in higher intensities and 

therefore higher resolution. The RESOLFT techniques should gain a reduction of 

phototoxicity. 

But most importantly, the high resolution live cell microscopy based on targeted read-out 

should benefit from the RESCue modality because the examination of dynamical processes 

within the cells calls for repeated scans. Here the impact of photobleaching of the fluorescent 

dyes is most crucial as well as the phototoxicity caused by high light doses eventually leading 

to artefacts and cell death. However, this can be minimized by applying RESCue. 

 

Another strategy to circumvent photobleaching related problems is the screening for new 

photostable fluorophores or alternative “on” and “off” states which can be controlled under 

milder conditions. Quantum dots feature an outstanding photostability. Reversible and 

wavelength selective optical modulation of fluorescence from Mn2+-doped ZnSe quantum 

dots was demonstrated. This process relies on excited-state absorption (ESA) and its direct 

control of quantum dot fluorescence by light. Experiments demonstrate that all-optical 

switching efficiencies above 90% can be achieved using continuous-wave lasers source 

operating near 1 mW, a hundred times less intense compared to STED intensities. The ability 

to invoke the fluorescence modulation using a continuous-wave radiation, as well the 
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advanced on-off photostability afforded by quantum nanocrystals, opens new avenues of 

research and application of optically activated quantum dots. As a primary example, Mn-QDs 

can be implemented for nanoscale imaging. This underscores the relevance of these 

photoswitchable QDs to contemporary nanoscopy as well as to other future applications, such 

as biological assays that necessitate the stability afforded by quantum dots and the direct 

control of their fluorescence capability by light. One major drawback of the Mn doped QDs is 

their long luminescence lifetime (90 µs) resulting in long data acquisition times.  

The ruthenium complex [Ru(bPy)2(dcsubpy)][PF6]2 exhibit fluorescence lifetimes dependent 

on the chemical surrounding around 250 ns to 500 ns and is characterized as a fluorophore to 

measure rotational motions of proteins via the anisotropy of the emitted light when the 

sample is excited with polarized light (Terpetschnik et al., 1995). This metal-ligand complex 

display emission from charge-transfer states in fluid solutions with a reasonable quantum 

yield (Demas et al., 1977). The coupling of these complexes to a system including a (valence 

and) conduction band may enable ESA RESOLFT experiments with these complexes 

opening up the lifetime range of few 100 ns to high resolution microscopy. This would be 

desirable since Isat is inversely proportional to both the fluorescence lifetime of the 

fluorophore and its cross-section for excited state absorption. 

 

The optical properties of the “last lens”, namely the sample embedding and the immersion 

system are crucial in the aim to provide an optimal focused PSF. A PSF, which is blurred out 

due to refractive index mismatches decreases the signal-to-noise ratio significantly. To 

compensate for that, higher excitation intensities have to be applied leading to pronounced 

photobleaching. The new mounting medium TDE is suitable for high resolution imaging of 

fixed specimens using objective lenses with the highest angles available. The refractive index 

in the sample can be adjusted from 1.333 (water) to 1.521 (beyond that of immersion oil) by 

adjusting the concentration of TDE to the required value. Unlike glycerol based mounting 

media, TDE allows to employ high angle oil immersion lenses of > 68° semiaperture angle 

without compromising image formation by refractive index induced spherical aberration. The 

benefits are deeper sample penetration, an increase in the image brightness, and better 

resolution. TDE may also be used to clear tissue prior to light sheet microscopical 

measurements making the clearance with hydrophobic BABB redundant.  

A further important benefit is the improved spatial invariance of the effective PSF of the 

conventional or confocal microscope which is particularly important for increasing the 

resolution by image deconvolution (Holmes et al., 1995). Since the coherent use of opposing 
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high angle spherical wavefronts is the essential physical ingredient in 4Pi and I5M 

microscopy, index matching by TDE to substantially advance the optical performance of 

these axially superresolving techniques is recommended. In STED microscopy, the zero gets 

filled up by scattered light when focusing deep into unmatched tissue. The concomitant 

broadening of the PSF due to spherical aberrations counteracts subdiffraction imaging. 

Refractive index matching of thick samples is therefore mandatory for high resolution 

imaging. A major drawback is the destabilisation of GFP in TDE concentrations above 80%. 

Since the amount of water is crucial, a solution to this problem can be provided by an 

alternative mounting medium with a significantly higher refractive index compared to TDE. 

The concentration of water needed to match the desired refractive index of 1.518 would be 

higher, therefore enabling GFP embeddings with matched refractive index. Derivatives of 

TDE are among highly promising water soluble alternatives for the sample embedding.  

In the past, TDE was applied as an antioxidant in amino acid analytics. Embedding the 

sample in TDE introduces a reductive agent in a high concentration and may recover the dye 

from reactive radical cations or quench reactive oxygen species.  

 

 

In the future, further strategies to attack problems caused by photobleaching will be 

investigated because of their growing importance in high resolution imaging. One possibility 

to deal with photobleaching in high resolution optical microscopy is to ensure a huge label 

density on the structure of interest. The amino- or thiol-groups of fixed cellular structures can 

be marked directly with fluorophore-NHS-esters or maleimides respectively. This labelling 

procedure is not specific, but the desired structure can be marked additionally by a subsequent 

specific immuno-labelling process (already tested). The advantage besides a high label 

density is the fact, that the structures are not “blown up” by primary/secondary-antibody 

conjugates, which becomes a resolution limiting factor in far field nanoscopy (Heilemann et 

al., 2008). Information about structures in the proximity of the desired, additionally labelled 

structure are also gained, similar to EM studies. If the labelling is to dense and background 

from out of focus regions is hindering a sufficient signal-to-noise ratio, sections can be made.  

A specific “direct” labelling may be achieved by blocking the amino- or thiol-groups of the 

desired structure with antibodies. All the other groups, which are not blocked by antibodies 

and therefore accessible are afterwards labelled by a non fluorescent molecule via reaction 

with the corresponding NHS-ester and maleimide. After removing of the bound antibody by 
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lowering the pH value for example, the remaining and now accessible amino- and thiol-

groups can be labelled directly with fluorophores.  

 

To achieve highest resolutions possible, or if a third (or even fourth) dimension have to be 

considered in terms of time, z-axis, colour, so that repetitive scans and higher light doses are 

necessary, photobleaching, phototoxicity and dark state transitions have to be prevented. The 

combination of photostable dyes, RESCue, T-REX and chemical anti-fades can be the 

enabling factor to accomplish such measurements. The chemical and physical anti-bleaching 

methods presented here are therefore of vital importance.  
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Appendix 
 
 
A.1 Adaptive filtering and Simple STED 

A.1.1 Fluorescent bead sample preparation 
 

Nile red filled polystyrene micro spheres (specified diameter, 21 nm; 2% solids in distilled 

water; Molecular Probes) were sowed on poly-L-lysine (PLL) (Sigma, Germany) coated 

coverslips and mounted in DABCO containing Mowiol (Sigma, Germany) to avoid molecular 

diffusion.  

 

 

A.1.2 SupT1 cell preparation 
 

A total of 5*10-5 SupT1 cells were plated on a coverslip precoated with 0.1% polyethylene 

imine (PEI) in water. After 60 min of incubation at 37°C and 5% CO2, cells were fixed with 

4% paraformaldehyde (PFA) in PBS. The cells were washed with PBS and subsequently 

stained with Atto565-phalloidin conjugates at the appropriate dilution for 40 minutes at room 

temperature. After washing the cells with PBS, they were mounted in Mowiol containing 

DABCO. 
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A.2 Reduction of excitation and signal suppression cycles (RESCue) in zero 

based high resolution optical microscopy 
A.2.1 Cell culture and immunocytochemistry 
 

Glioblastoma: GFAP; microtubuli 

 

For immunocytochemistry, the U373 glioblastoma cells were seeded on standard glass 

coverslips to a confluency of 50-80% and permeabilized with cold methanol (-20ºC) for 4-

6 min. The cells were subsequently washed in PBS with 1% bovine serum albumin (BSA) 

(blocking buffer) and incubated with primary antibodies (anti GFAP mouse IgG, Sigma, 

Germany; anti α-Tubulin rabbit IgG, 1 µg/ml, Abcam, Cambridge, UK;). After 1 h of 

incubation, the cells were washed with blocking buffer for 10 min and incubated with 

secondary antibodies (Atto565 goat anti-mouse IgG; Atto390 goat anti-mouse IgG) for 1 h 

after the protocol from Molecular Probes, Carlsbad. For imaging, the cells were mounted in 

Mowiol (Sigma, Germany) containing DABCO (Sigma, Germany) as an antioxidant. 

 

 

APP: primary mouse neurons (DIV8) 

 

Embryos (E14) from wt (C57BL/6NCrl; Charles River) mice were separated and dissociated 

mixed cortical neuron cultures were prepared as described previously (Dotti et al., 1990). 

Neurons were grown on poly-L-lysine-coated 15 mm coverslips (Marienfeld, Germany) in 

serum-free Neurobasal Media (Gibco, Germany) with B-27 supplement (Gibco, Germany), 

25 µM glutamate (Sigma, Germany), and 0.5 mM glutamine (Sigma, Germany). For 

immunocytochemical analysis, primary neurons were fixed with 4% PFA (Sigma, Germany) 

and permeabilized 10 min with 0.1% NP-40/Nonidet (Fluka, Germany) in PBS. Cells were 

incubated with primary antibodies (monoclonal anti-APP-antibody 4G8 (Chemicon, CA) 

diluted in 5% goat serum in PBS and anti-synaptophysin-antibody) at 4°C overnight, washed 

with PBS, incubated with secondary antibodies (Atto565 goat anti-mouse IgG, 10 µg/ml, 

Dy485XL goat anti-rabbit IgG), and embedded in Mowiol (Sigma, Germany) on glass 

coverslips. 

 

 

 



Appendix 

141 

Neuroblastoma: Lamin 

 

The SH-SY5Y neuroblastoma cell line was grown as described previously (Encinas et al., 

2005). Cells were seeded on standard glass coverslips to a confluency of about 80%. For 

immunostaining of the nuclear lamina, the cells were fixed with 3.7% PFA for 15 min 

followed by a 5 min-treatment with Triton X-100. Before the incubation with the primary 

antibody, the cells were blocked in 1% BSA in PBS for 5 min. Anti-lamin B1 rabbit IgG 

(Abcam, Cambridge, UK) was used as primary antibody, anti-rabbit conjugated Atto647N 

IgG as secondary antibody respectively. Both antibodies were diluted in blocking buffer. 

Postfixation was carried out with 3.7% PFA for 10 min. Cells were mounted in Mowiol. 

 

 

A.2.2 Fluorescent bead sample preparation 
 

Nile red filled polystyrene micro spheres (specified diameter, 21 nm; 2% solids in distilled 

water; Molecular Probes) or self made silica nanoparticles with a mean diameter of 

approximately 25 nm were sowed on poly-L-lysine (PLL) (Sigma, Germany) coated 

coverslips and mounted in DABCO containing Mowiol (Sigma, Germany) to avoid molecular 

diffusion and photobleaching.  

Silica nanoparticles doped with the fluorescent dye Atto425 were prepared according to a 

modification of the Stöber method (Stöber et al., 1968). 0.5 mg of Atto425-NHS and 3 µl 

(about 9 equivalents) of (3-aminopropyl)triethoxysilane were dissolved in 300 µl ethanol at 

room temperature. After 10 hours of stirring, the mixture was diluted with ethanol, and 

ammonium hydroxide (28% in water) was added to a final concentration of 0.45 M. Then 

110 µl tetraethyl orthosilicate (TEOS) were added, yielding a molar ratio TOES/dye of 

approximately 500. The sample was then stirred overnight at room temperature. The reaction 

was quenched by diluting the mixture with two parts of solvent, and purified by three 

centrifugation/resuspension cycles.  
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A.3 Direct light-driven modulation of luminescence from Mn-doped ZnSe 

quantum dots: a new contrast 
A.3.1 Sample preparation 

 

Fixed cluster samples of the Mn-QDs were prepared from aqueous solution (~15 µM) 

obtained directly from NN-Labs (Fayetteville, AR). Approximately 25 µL of undiluted 

solution was placed on a cover slip which was sealed against a microscope slide. After ~24 hr, 

small (20-300 nm) clusters formed on the cover slip, which were visible in a standard epi-

fluorescence microscope. The most probable explanation for clustering lies in the nature of 

the stabilization of the quantum dots in polar solvents. Due to weak covalent bonding between 

the Mn-QDs and the mercaptopropionic acid stabilization agent, a significant fraction of the 

nanocrystals can lose their ligands. In the absence of the electrostatic repulsion provided by 

the ligands, nanocrystal solubility is lost and results in aggregation and immobilization on the 

cover slip surface. 
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A.4 2,2´-Thiodiethanol (TDE) as an embedding medium 

A.4.1 Medium 

 

For preparation, TDE (2,2’-Thiodiethanol) (CAS 111-48-8, highest purity, #88559 Sigma-

Aldrich) is adjusted to a pH of 7.5 with 1.2 M hydrochloric acid. 970 µl TDE mixed with 

30 µl PBS1x (or other aqueous buffer solution) give 1 ml mounting medium with a refractive 

index of 1.515 and a pH value of 7.5±1. 

 

 

A.4.2 Buffers 

 

The water amount in the final solution contains PBS buffer which consists of 137 mM NaCl, 

2.68 mM KCl, 8 mM Na2HPO4, and 1.47 mM KH2PO4; pH=7.5. 

 

 

A.4.3 PtK2 cell culture and immunocytochemistry 

 

PtK2 cells were grown as described previously (Osborn et al., 1977). For 

immunocytochemistry, the cells were seeded on standard glass coverslips to a confluency of 

50-80% and permeabilised with cold methanol (-20ºC) for 4-6 min. The cells were 

subsequently washed in PBS with 1% BSA (blocking buffer) and incubated with primary 

antibodies (anti α-Tubulin rabbit IgG, 1 µg/ml, Abcam, Cambridge, UK; anti β-tubulin mouse 

IgG, 1 µg/ml, Sigma-Aldrich; anti β-actin mouse IgG, 1 µg/ml, Sigma-Aldrich; anti-α-subunit 

of F1F0-ATP-synthase mouse IgG, 1 µg/ml, Molecular Probes, Carlsbad, CA). After 1 h of 

incubation, the cells were washed with blocking buffer for 10 min and incubated with 

secondary antibodies (Alexa 488 goat anti-rabbit IgG, 10 µg/ml, Molecular Probes, Carlsbad, 

CA; Alexa 546 goat anti-mouse IgG, 10 µg/ml, Molecular Probes, Carlsbad, CA; Cy5-

conjugated sheep anti-mouse IgG, 15 µg/ml, Dianova, Hamburg, Germany; Cy3-conjugated 

sheep anti-mouse IgG, 15 µg/ml, Dianova, Hamburg, Germany; DY-485XL-conjugated sheep 

anti-mouse IgG, 15 µg/ml, Dyomics GmbH, Jena, Germany) for 1 h. Nucleus staining was 

performed by incubating cells 15-30 min in the presence of DAPI (dissolved in ethanol 

2 µg/ml, Sigma). For imaging, the cells were mounted in 97%. TDE containing 0.02 M 

phosphate buffer pH 7.5. 
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A.4.4 Cell transfection 

 

For staining, the matrix cells were transiently transfected with GFP and DsRed, respectively, 

fused to a mitochondrial targeting sequence. Cells were grown to a confluency of about 80%, 

trypsinized, washed, and resuspended in transfection buffer (120 mM KCl, 10 mM KH2PO4, 

10 mM K2HPO4, 2 mM EGTA, 5 mM MgCl2, 25 mM HEPES, 0,15 mM CaCl2, 5 mM GSH, 

2 mM ATP) containing 10 µg of DNA (pcDNA3.1(+)-preSu9 (1-69)-GFP and pDsRed1-

Mito, Clontech). A double-pulse protocol was used for electroporation (GenePulser, 

d = 2 mm, U = 800 V, R = 200 Ω, C = 25 µF, BioRad, USA) and cells were seeded on glass 

coverslips. 12-16 h after transfection they were fixed in 3.7% formaldehyde and mounted in 

97% TDE. 

 

 

A.4.5 Preparation of the triangularis sterni muscle of P5 mice 

 

Mice from postnatal day 5 (P5) were decapitated using large medical scissors and transected 

below the ribs to isolate the thorax. The skin, muscles and extremities were carefully 

dissected away, as well as remnants of the stomach and liver. The cleaned ribcage was placed 

into 4% PFA/PBS at 4 °C overnight to ensure proper fixation. For dissection of the muscle, 

the ribcage was tranferred to PBS/0.02% NaN3 and placed into a Sylgard coated 10 cm dish 

under a binocular dissection miscroscope. In order to open the ribcage, the ribs were 

transected close to the vertebral column on both sides and the diaphragm was dissected off the 

ribs around the entire circumference of the thorax. The thoracic vicera were removed from the 

ribcage. The two halves of the ribcage were cut away from the sternum and the ribcage was 

pinned into a 10 cm dish coated with Sylgard polymer (Momentive performance materials), 

with the inside of the ribs facing upward, and placed under a binocular dissection microscope. 

Using small scissors the two halves of the ribcage were separated from the sternum by a cut 

between the bony part of the sternum and the blood vessels running parallel to it. The ribs 

were then trimmed to near the cartilage-bone transition to obtain a piece of tissue 

corresponding to the triangularis sterni muscle (Fig. A.1). The tissue was then pinned to the 

dish with fine hypodermic needles placed at an angle in order to avoid piercing the thin 

triangularis sterni muscle on top. Starting caudally, the muscle was carefully detached from 

the ribs and the intercostals muscles by holding on to one side of it and using a fine 

hypodermic needle to cut away the connective tissue until the muscle could be lifted off the 
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ribs. Finally, the muscle was carefully cleaned from remaining fat and connective tissue and 

placed into a 24-well plate in PBS/0.02% NaN3 at 4 °C and stored until IHC staining. 

 

 
 

Fig. A.1: Outline of the triangularis sterni muscle between the sternum and the bony part of 

the ribcage (from Kerschensteiner et al., 2008) 

 

In order to analyze NMJ morphology, triangularis sterni muscles were stained with anti- 

synaptophysin antibodies to visualize the nerve terminals. Dissected muscles were transferred 

to 48- (adult muscles) or 96-well plates (P5 muscles) and blocked in antibody buffer (PBS, 

0.02% NaN3, 2% (w/v) BSA, 5% (v/v) goat serum, 0.5% (v/v) Triton X-100) for at least 1 h 

at RT on a horizontal shaker. Afterwards, Atto565 conjugated anti-synaptophysin antibodies 

were diluted in antibody buffer and incubated with the muscle over night at RT on a 

horizontal shaker. Subsequently, the tissue was washed again 3x in PBS and 1x in antibody 

buffer over a period of 6 h. For imaging, the muscle was mounted in 2,2'-thiodiethanol (TDE) 

according to Staudt et al., 2007 or Mowiol. In the case of TDE, the muscle was dehydrated in 

a series of increasing TDE concentrations (10, 25, 50, and 3x 97 %) for 10 min each. Then, 

the muscle was mounted in TDE and pressed between two metal plates under a 5 L beaker 

filled with water overnight at 4°C to flatten the tissue. 

 

 

A.4.6 MCF7 cell culture and immunocytochemistry 

 

MCF7 cells were grown on glass coverslips to semi-confluence in DMEM supplemented with 

penicillin, streptomycin, glutamine (100 g/ml each) and 10% heat-denatured FCS. This 

medium will be referred to as normal growth medium. Its total osmolarity was measured as 

307 mOsm. To apply water stress, cell cultures were incubated with different loads of 

sucrose, sorbitol or sodium chloride, added to the normal growth medium. Media were 
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prewarmed to 37°C before application; incubation of cells took place in controlled 

environments (5% CO2 and 37°C) for about 20 minutes. The osmotic pressure of media was 

measured by the principle of freezing-point depression (Knauer osmometer, Germany). The 

crowding agent dextran (10 and 41 kDa, Sigma, Germany) was used at a concentration of 

10% w/v, which is equivalent to 320 mM sucrose). Even though cells reacted quickly upon 

osmotic changes, adaptation of the fixative to the osmotic conditions of the respective 

experiment did not prove to be necessary. After fixation, the specimens were washed three 

times in PBS and cells were permeabilized by incubation with 0.05% Triton X-100 (Sigma) 

and 0.05% Tween 20 (Sigma) in PBS for 10 minutes at room temperature. Then, a protein 

block was applied by incubation with 1% goat serum in PBS for 10 minutes. Antibodies (anti-

SC35 mouse IgG; NK51 goat anti-mouse IgG), diluted in PBS containing 0.1% goat serum, 

were incubated for 1 hour at room temperature. Each antibody incubation was followed by 

three short washes with 0.1% goat serum in PBS. Finally, the coverslips were mounted on 

glass slides with Mowiol or embedded in TDE. 

 

 

A.4.7 Imaging 

 

For imaging we used a confocal microscope TCS SP2 (Leica Microsystems, Mannheim, 

Germany) equipped with immersion micro-objectives 63x1.2NA W for the reference samples 

in buffer and 63x1.4NA Oil or 100x1.4NA Oil for imaging of the samples in TDE 

respectively. Phase contrast images were taken with a DMRE microscope (Leica 

Microsystems, Mannheim, Germany) equipped with digital camera D10 (Canon, Japan) and 

objective N PLAN L 40x0,55NA Corr PH2. 

 

 

A.4.8 Fluorescent dyes 

 

The following dyes were used for the spectroscopic measurements: coumarin 120 (Lambda 

Physik, Göttingen, Germany), coumarin 153 (Lambda Physik, Göttingen, Germany), 

fluorescein isothiocyanate (Isomer I) (FITC) (#F1906, Molecular Probes, Carlsbad, USA), 

Oregon Green® 488 (#Q6142, Molecular Probes, Carlsbad, USA), Texas Red® (#T1905, 

Molecular Probes, Carlsbad, USA), BODIPY® FL, SE (#D2184, Molecular Probes, Carlsbad, 

USA), BODIPY® 650/665-X, SE (#D-10001, Molecular Probes, Carlsbad, USA), Cy3 NHS 
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(#PA13101, Amersham Biosciences, Buckinghamshire, UK), Atto532 NHS (#AD 532-3, 

Atto-Tec, Siegen, Germany), Atto565 NHS (#AD 565-3, Atto-Tec, Siegen, Germany), 

Atto655 NHS (#AD 655-3, Atto-Tec, Siegen, Germany), EGFP, mRFP.  

 

 

A.4.9 Spectra 

 

The transmission spectrum was measured with a Cary 500 Scan Spectrometer (Varian, 

Darmstadt, Germany) in a semi micro cell (Hellma, Müllheim, Germany). Fluorescence 

spectra were recorded with a Cary Eclipse Fluorescence Spectrophotometer (Varian, 

Darmstadt, Germany). Absorption spectra were measured with a Cary 4000 UV-VIS 

Spectrophotometer (Varian, Darmstadt, Germany).  

 

 

A.4.10 Refractive index 

 

The refractive index of the mounting medium was measured with an AR200 Digital Hand-

Held Refractometer (Reichert, New York, USA) as a nD
23 value (refractive index at 589 nm 

and 23°C). The refractive index of a standard immersion oil is typically specified as 

ne = 1,518 (refractive index at 546 nm). 

 

 

A.4.11 Dispersion measurements 

 

The beam of an Innova 70 Ar-Kr-Laser (Coherent, Santa Clara, USA) was separated 

spectrally using a prism and coupled into a model 197 Abbe Refractometer (Carl Zeiss, Jena, 

Germany). The refractive index was measured at 466, 476, 483, 488, 514, 521, 531, 568, and 

647 nm to determine the dispersion of TDE. 

 

 

A.4.12 Temperature dependence 

 

The Abbe refractometer was connected to a thermostat to measure the refractive index 

dependence on the temperature of TDE. 
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A.4.13 pH-Measurement 

 

The pH of the mounting medium was controlled by a PT-10 pH-Meter (Sartorius, Göttingen, 

Germany) equipped with a PY-P22 electrode (Sartorius, Göttingen, Germany). 
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