
Simulation-Aided Performance
Evaluation of Input/Output

Optimizations for Distributed
Systems

— Masterarbeit —

Parallele und Verteilte Systeme

Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

Bearbeiter: Michael Kuhn

E-Mail-Adresse: michael.kuhn@stud.uni-heidelberg.de

Matrikelnummer: 2405219

Aufgabensteller: Prof. Dr. Thomas Ludwig

Betreuer: Julian Kunkel

Abgabedatum: 30. September 2009

mailto:michael.kuhn@stud.uni-heidelberg.de

Ich versichere, dass ich diese Masterarbeit selbstständig verfasst, nur die angegebe-
nen Quellen und Hilfsmittel verwendet und die Grundsätze und Empfehlungen
„Verantwortung in der Wissenschaft“ der Universität Heidelberg beachtet habe.

30. September 2009, ..

Abstract

The performance of parallel cluster file systems suffers from many clients executing
a large number of operations in parallel, because the I/O subsystem can be easily
overwhelmed by the sheer amount of incoming I/O operations. This, in turn, can
slow down the whole distributed system.

Many optimizations exist that try to alleviate this problem. Client-side optimizations
do preprocessing to minimize the amount of work the file servers have to do.
Server-side optimizations use server-internal knowledge to improve performance.

The PIOsimHD framework contains components to simulate, trace and visualize
applications. It is used as a testbed to implement optimizations that could later be
implemented in real-life projects.

The main focus of this thesis lies on comparing existing client-side optimizations
and newly implemented server-side optimizations like Server-Directed I/O, which
provides server-side optimizations for both read and write operations. It chooses
the order of I/O operations and tries to aggregate as many operations as possible
to decrease the load on the I/O subsystem and improve overall performance. The
Interleaved Two-Phase protocol is a modification of ROMIO’s Two-Phase protocol,
which only accesses contiguous file regions.

HDSunshot is used to visualize and analyze some of the results. It is also used to
evaluate different optimization techniques by analyzing the resulting traces.

The results show that client-side optimizations do not necessarily beat server-side
optimizations in terms of performance, but suggest that even simple server-side
optimizations are good enough for many use cases. Integrating such optimizations
into parallel cluster file systems could alleviate the need for sophisticated client-
side optimizations. Due to their additional knowledge of internal workflows server-
side optimizations may be better suited to provide high performance in general.

Acknowledgements

I thank Thomas Ludwig for his guidance and support on many occasions. Special
thanks go to Julian Kunkel for providing me with reference material, promptly
fixing bugs in PIOsimHD and — most importantly — proofreading the thesis. I
also want to thank Manuela Ernst and Michael Neumann for some last-minute
corrections.

Contents

1 Introduction 8
1.1 Parallel Cluster File Systems . 8
1.2 Storage Devices . 10

1.2.1 Hard Disk Drives . 10
1.2.2 Solid State Drives . 10

1.3 Non-Contiguous I/O . 11
1.4 PIOsimHD . 12
1.5 Goals of the Thesis . 12
1.6 Outlook . 12

2 Related Work and State of the Art 14
2.1 Related Work . 14
2.2 State of the Art . 16

2.2.1 Data Sieving . 16
2.2.2 Collective I/O . 16
2.2.3 Two-Phase . 17

2.3 Storage Devices . 19
2.3.1 Hard Disk Drives . 19
2.3.2 Solid State Drives . 20

3 Software Environment 21
3.1 PIOsimHD . 21

3.1.1 Architecture . 22
3.2 PIOsimHD-Model . 23
3.3 PIOsimHD-Simulator . 23

3.3.1 Network Packet Transport . 23
3.3.2 I/O Request Processing . 25
3.3.3 Cache Layers . 26

3.4 HDSunshot . 27
3.5 PVFS . 29
3.6 MPICH2 . 29

4 Design 30
4.1 Aggregation Cache . 30
4.2 Server-Directed I/O . 30

– 5 –

Contents

4.2.1 Read . 31
4.2.2 Write . 32

4.3 Collective I/O . 35
4.3.1 Interleaved Two-Phase . 35

5 Implementation 37
5.1 Internals . 37

5.1.1 Component Implementations . 37
5.1.2 Command Implementations . 40

5.2 Server-Directed I/O . 43
5.2.1 Delayed Writes . 48
5.2.2 Performance Considerations . 50

5.3 Collective I/O . 51
5.3.1 Two-Phase . 55
5.3.2 Interleaved Two-Phase . 59

6 Evaluation 61
6.1 Environment . 61

6.1.1 Cluster Configuration . 61
6.1.2 File Layout . 62

6.2 Performance Considerations . 63
6.3 Random I/O Test . 63
6.4 Individual I/O Test . 66

6.4.1 1 Data Block per Iteration . 66
6.4.2 100 Data Blocks per Iteration 68
6.4.3 All Data Blocks per Iteration . 70

6.5 Collective I/O Test . 72
6.5.1 Two-Phase . 72
6.5.2 Interleaved Two-Phase . 75

6.6 Individual and Collective I/O Comparison 77
6.7 Database I/O Test . 80
6.8 Parallel Partial Differential Equation Solver 83

6.8.1 No Cache . 83
6.8.2 Simple Write-Behind Cache . 84
6.8.3 Aggregation Cache . 84
6.8.4 Server-Directed I/O . 85
6.8.5 Cache Layer Comparison . 86

7 Visualization 88
7.1 Parallel Partial Differential Equation Solver 88

7.1.1 Real Application Run . 88
7.1.2 Simulated Application Run . 89

– 6 –

Contents

7.2 Interleaved Two-Phase . 92

8 Summary, Conclusion and Future Work 95
8.1 Summary and Conclusion . 95
8.2 Future Work . 96

Bibliography 98

Appendices 101

A Used Tools 102

B Usage Instructions 103
B.1 Source Code Repository . 103

B.1.1 Setup . 103
B.1.2 Committing and Updating . 103

B.2 PIOsimHD-Simulator . 104
B.3 HDTrace . 104

B.3.1 Setup . 104
B.3.2 Compiling and Executing . 105

C Evaluation Results 106
C.1 Random I/O Test . 106
C.2 Individual I/O Test . 107

C.2.1 Contiguous Access — 1 Operation 107
C.2.2 Non-Contiguous Access — 100 Operations 109
C.2.3 Non-Contiguous Access — All Operations 110

C.3 Collective I/O Test . 111
C.3.1 Two-Phase . 111
C.3.2 Interleaved Two-Phase . 113

C.4 Database I/O Test . 114
C.4.1 Contiguous Access — 1 Operation 114
C.4.2 Non-Contiguous Access — 10 Operations 115
C.4.3 Non-Contiguous Access — All Operations 116

List of Acronyms 117

List of Figures 119

List of Tables 122

List of Listings 123

– 7 –

Chapter 1

Introduction

In this chapter definitions of parallel cluster file systems and non-contiguous I/O1

are given. A special focus lies on the problems these file systems are facing when
accessed by large numbers of clients, because the goal of this thesis is to examine
possible solutions for these problems. Additionally, storage devices providing the
underlying storage for parallel cluster file systems and the simulator software
PIOsimHD are introduced.

1.1 Parallel Cluster File Systems

Cluster file systems are built in such a way that several machines connected by
some network make up one file system. Usually every machine is either a data
server or a metadata server, that is, it only stores objects of the respective type.
It is also possible but unusual that each machine acts as a combined data and
metadata server.

Every machine has only direct access to its own storage, so no machine has a
total overview of the complete file system. Consequently, either the servers have
to communicate with each other or clients must contact multiple servers. In any
event data has to be sent across the network, thus introducing an additional delay
between the request and response. For Ethernet networks this latency usually lies
between 50 µs and 500 µs.

If a client wants to read a file, it first has to figure out on which metadata servers
the metadata about this file can be found. Then it must request the data from each
data server that holds data of this particular file. In addition to the disk access
times of the servers the client has to connect via the network to all those servers.
This is expensive — especially for small requests — due to network latency and
bandwidth restrictions.

Cluster file systems can be accessed by multiple remote clients simultaneously.
Parallel cluster file systems additionally allow clients to access the same file

1Input/Output

– 8 –

CHAPTER 1. INTRODUCTION

concurrently. To do this, some form of concurrency control must be in place. This,
however, must not be confused with ordinary locking, because it is done above the
file system layer. Locking can be used to protect a file against concurrent access,
but not the file system itself. Therefore, a mechanism must be implemented at the
file system level to keep the clients from corrupting the file system by modifying
the same part of it at the same time.

Parallel cluster file systems are designed to handle a large number of clients and
deliver high performance. However, due to their distributed design most operations
are expensive to perform, which in turn can seriously impact overall performance.
For this reason new algorithms to efficiently perform I/O on these file system have
emerged and a multitude of optimizations are available to improve performance
even further.

Figure 1.1 shows four clients accessing different blocks of data in a file. All 12
blocks of the file are read, each client reading three blocks of data. However, one
client’s blocks are spread across the file. Depending on the order of the clients’
requests, the file server may need to perform a lot of seeks within the file. This
overhead increases with a growing number of clients, to the point where the file
server may be busy doing more seeks than actual I/O. This is one of the main
problems found in large-scale systems with a lot of clients accessing small portions
of a file.

1 2 3 4 5 6 7 8 9 10 11 12

Client
1

Client
2

Client
3

Client
4

File contents

Figure 1.1: Multiple Clients Accessing the Same File

For a more in-depth analysis of problems in parallel cluster file systems and possible
solutions, see [Kuh07].

– 9 –

CHAPTER 1. INTRODUCTION

1.2 Storage Devices

Storage devices relevant for parallel cluster file systems can be roughly separated
into two categories — mechanical ones and non-mechanical ones. Other differences
like connection interfaces (SCSI2, ATA3, SATA4, etc.) and built-in optimizations
(Caches, NCQ5, etc.) are not important in this regard. HDDs6 represent the
mechanical storage devices, while SSDs7 represent the non-mechanical ones.

Some file system also use SANs8 as the underlying storage. However, these SANs
also use HDDs or SSDs to actually store data.

The influence of their unique characteristics on the optimizations examined in this
thesis are described in more detail in section 2.2 (page 16).

1.2.1 Hard Disk Drives

HDDs consist of multiple rotating platters with magnetic surfaces and read-write
heads. To access data on the disk the read-write heads have to move and wait
for the platters to rotate to the appropriate position. Since moving the read-write
heads is a mechanical operation it is relatively slow to perform. In addition, the
platters rotate at a constant speed — usually 7.200 or 10.000 RPM9 —, limiting
the minimum latency and maximum throughput. Access times for drive accesses
usually lie between 5 ms and 15 ms, depending on the area of the disk that should
be accessed. This can cause performance to degrade significantly for random
accesses.

Modern HDDs include a random access cache, and operating systems usually have
dedicated file system caches to speed up disk operations. Without these caches
HDDs would be unusably slow. However, this does not solve the problem where
many random read accesses are performed for the first time, that is, where the
data is not cached already.

1.2.2 Solid State Drives

In contrast to HDDs, SSDs contain no mechanical parts, but use solid state memory
— usually flash memory — in order to store the data. Access times for drive accesses
usually lie between 20 µs and 200 µs, depending on the type of operation. This

2Small Computer System Interface
3Advanced Technology Attachment
4Serial Advanced Technology Attachment
5Native Command Queuing
6Hard Disk Drives
7Solid State Drives
8Storage Area Networks
9Revolutions Per Minute

– 10 –

CHAPTER 1. INTRODUCTION

makes them orders of magnitude faster than HDDs, especially when many random
accesses are involved.

SSDs can only write blocks in the form of so-called erase blocks, that is, the old
data has to be read, modified in memory, erased and then written back to the
solid state memory. Modern SSDs use erase blocks of 512 KiB10 and more, which
can severely impact performance when performing many small write operations.
Newer SSDs and OSs11 support the TRIM12 command to mitigate this problem,
but this is not supported everywhere. In contrast, reads can be performed with a
granularity of 4 KiB. This causes the read and write performances to differ greatly
most of the time. For example, current Intel SSDs can read up to 250 MiB13/s, but
only write 75 MiB/s.

Due to their very recent appearance in the mass market SSDs are still signifi-
cantly more expensive and offer less capacity when compared to traditional HDDs.
Therefore, SSDs are usually not yet considered when storing large amounts of
data, except for workloads involving large amounts of random I/O operations. For
example, this includes large database applications.

1.3 Non-Contiguous I/O

Traditionally, data is accessed in contiguous regions, identified by an offset and a
size. Non-contiguous I/O enables applications to read several contiguous regions
that may be separated by holes of arbitrary size without actually requesting each
of the regions separately. This significantly reduces the complexity needed to
handle complex data types in a program. For example, the user can construct a
data type for a matrix diagonal and use it like any other data type for I/O. Using
non-contiguous I/O to perform such operations may give the underlying file system
— or another layer between the application and the file system — the opportunity
to optimize these kinds of operations by exploiting the fact that several seemingly
independent operations are in fact part of one non-contiguous operation. On the
other hand, this can increase the complexity needed to do I/O and may require
additional optimizations to handle such I/O efficiently. Some simple optimizations
are presented in section 2.2 (page 16).

Figure 1.2 (page 12) shows a file consisting of 12 blocks and one client accessing
the file. The client uses one non-contiguous I/O operation to read eight blocks in
three contiguous regions (1–3, 6–7 and 10–12).

10Kibi Byte
11Operating Systems
12For more information see http://en.wikipedia.org/wiki/TRIM_(SSD_command).
13Mebi Byte

– 11 –

http://en.wikipedia.org/wiki/TRIM_(SSD_command)

CHAPTER 1. INTRODUCTION

1 2 3 4 5 6 7 8 9 10 11 12

Data requested by client Contiguously accessed data

Figure 1.2: Non-Contiguous I/O

1.4 PIOsimHD

PIOsimHD14 is a framework containing all components necessary to simulate, trace
and visualize applications. One of its goals is to allow easy and fast prototyping
of new algorithms for I/O optimization. Therefore, all optimizations presented in
this thesis are implemented in PIOsimHD-Simulator to evaluate their theoretical
benefits.

These optimizations are not dependent on any specific project environment and
can serve as a starting point for adoption of promising optimizations into real-
life projects. This helps avoiding the overhead of implementing several complex
optimization variants in even more complex real-life projects when only the most
promising one is really needed.

A more detailed description of PIOsimHD can be found in section 3.1 (page 21).

1.5 Goals of the Thesis

The main goal of this thesis is to determine whether server-side optimizations are
sufficient to provide acceptable I/O performance for common workloads. Tradition-
ally, client-side I/O libraries provide very sophisticated optimizations to improve
performance in distributed systems. However, it is not clear whether this com-
plexity is really needed or if simpler server-side optimizations can provide similar
results for many cases.

1.6 Outlook

Chapter 2 (page 14) introduces related work and basic concepts that form the basis
of the optimizations done in this thesis. Chapter 3 (page 21) presents the software
used to implement and evaluate these optimizations. This chapter also gives
an overview of the internal structure of the simulator software PIOsimHD. The

14Parallel I/O Simulator

– 12 –

CHAPTER 1. INTRODUCTION

basic design of the optimizations is elaborated in chapter 4 (page 30). Chapter 5
(page 37) focuses on the actual implementation of these optimizations. Finally, the
benefits of these changes are examined in detail. In chapter 6 (page 61) the actual
impact on performance in terms of throughput is evaluated. Chapter 7 (page 88)
focuses on the visualization of these results. Chapter 8 (page 95) summarizes and
concludes the thesis. Additionally, ideas for future work are proposed.

Summary

The performance of parallel cluster file systems suffers from many clients executing
a large number of operations in parallel. Many optimizations exist that try to
alleviate this problem. These optimizations should be suitable for both HDDs and
SSDs, because HDDs are still used for large-scale data storage, but SSDs play
an increasingly important role. Non-contiguous I/O can be used as a basis for a
multitude of optimizations by providing the file system with additional information.
PIOsimHD is used as a testbed to implement optimizations that could later be
implemented in real-life projects. The main focus lies on comparing existing
client-side optimizations and newly implemented server-side optimizations.

– 13 –

Chapter 2

Related Work and State of the Art

In this chapter related optimization techniques are presented and the difference
between client-side and server-side optimizations is explained. Additionally, sim-
pler optimizations like data sieving, collective I/O and the Two-Phase protocol
are explained in more detail. Lastly, the unique characteristics of the storage
devices already mentioned in chapter 1 (page 8) are considered with regard to the
presented optimizations.

2.1 Related Work

A multitude of approaches exist to optimize I/O in distributed systems. They can
be basically classified into two categories. Some approaches focus heavily on the
client, trying to minimize the work the servers have to do. For example, the clients’
RAM1 can be used to cache and batch I/O operations to reduce the load on the
servers. Other approaches do not do preprocessing on the clients and let the
servers handle all the work themselves. The servers can then employ their own
optimizations.

Simpler client-side optimizations like data sieving and collective I/O are presented
in [TGL99], which focuses on their implementation in ROMIO. These optimizations
are described in more detail in section 2.2 (page 16).

In [SIC+07, SIPC09] a refined and extended version of the Two-Phase protocol
called Multiple-Phase Collective I/O is presented. The communication phase is
split up in several steps, in which pairs of clients communicate with each other in
parallel. These multiple steps are used to progressively increase the locality of the
data. This increases the performance of the subsequent I/O phase and therefore of
the whole application.

File accesses in distributed applications are often non-contiguous. In [KRVP07] a
method to optimize non-contiguous write operations using log-based storage2 is

1Random Access Memory
2See http://en.wikipedia.org/wiki/Log-structured_file_system.

– 14 –

http://en.wikipedia.org/wiki/Log-structured_file_system

CHAPTER 2. RELATED WORK AND STATE OF THE ART

presented. This log-based storage always appends new data at the end of the log
and thus converts non-contiguous write operations into contiguous ones. Special
care must be taken when reading the file, because the log has to be replayed to
create a traditional file for reading. Therefore, this optimization is especially useful
for write-once or write-mostly cases like log files and snapshots.

Another popular client-side optimization is to use a distributed file cache as pre-
sented in [PTH+01, LCCW05, LCC+07, TLC+99]. While [TLC+99] uses a dedicated
cache that is accessed via a so-called Distributed-Parallel Storage System master,
[LCCW05, LCC+07] describes a cache built into the MPI-IO3 library which uses
the main memory of all participating clients as a large two-staged write-behind
cache. The method in [PTH+01] is geared towards the IBM’s GPFS4 and also uses
a cache managed by the participating clients. To avoid concurrent access, each
GPFS file block is managed by exactly one client and all access to this block is done
via this client. Double buffering is used to improve performance by overlapping
communication and I/O.

Parallel cluster file systems usually only offer one consistency policy. In [VNS05]
a new file system is presented that allows users to specify their applications’
consistency needs. For example, temporary files can be stored locally or locking
can be disabled when parallel access is ruled out. This allows users to tune the file
system itself to deliver maximum performance for their specific workloads.

A technique called super-scalar compression is presented in [Zuk05]. The main
idea is that the CPU5 only uses part of its processing power when waiting for I/O
to complete. Spare CPU power can be used to compress and decompress the file
data on demand. When using ultra lightweight compression, this can result in a
significant speedup.

In [Kot97] an alternative to client-side optimizations — in particular, the Two-Phase
protocol — is presented. Disk-directed I/O is used to optimize the data flow on
the file server itself, that is, optimizations are no longer done by the clients. This
technique has the benefit that the file servers can use information about their
physical disk layout to optimize accesses and also avoids the communication and
computation overhead of the clients caused by the Two-Phase protocol.

The above optimizations only focus on the file data itself. However, metadata
performance also plays an important role in parallel cluster file systems. In
[DW07, WPBM04, BMLX03, KKL08, KKL09] approaches to speed up metadata-
heavy operations or for efficient management of file metadata are presented. Even
though the focus of this thesis is pure data performance, this aspect of overall
performance should be noted for completeness.

3Message Passing Interface Input/Output
4General Parallel File System
5Central Processing Unit

– 15 –

CHAPTER 2. RELATED WORK AND STATE OF THE ART

In [BDK97] the authors present several components of a simulator framework that
is capable of parallel simulation of MPI-IO applications and a parallel file system. In
contrast to this design, PIOsimHD does not support parallel simulation, but allows
modeling and simulation of all involved components of the distributed system.

2.2 State of the Art

Some optimizations are of special interest and are therefore presented in detail.

2.2.1 Data Sieving

Data sieving is used to optimize non-contiguous I/O. Instead of reading multiple
small blocks of data, several such blocks are grouped together and then read as a
larger block. On the one hand this avoids unnecessary seeking and can improve
performance, while on the other hand this may cause unneeded data to be read
and subsequently discarded. Obviously, this is only beneficial if the amount of
unneeded data is relatively small.

Figure 2.1 shows one client accessing three contiguous blocks of data (1–3, 6–7
and 10–12) in a file. The data sieving algorithm may now read just one contiguous
block of data (1–12), discard the unnecessary parts (4–5 and 8–9) and return the
requested blocks to the application.

1 2 3 4 5 6 7 8 9 10 11 12

Data requested by client Accessed data

Figure 2.1: Data Sieving

This optimization also relies heavily on the fact that contiguous regions of a file are
stored contiguously on disk. If the file is fragmented, this may cause performance
degradation. It is also possible to use this technique for write operations. However,
this may require read-modify-write operations to be performed, which further
reduces the potential benefits. For example, this can happen when the clients do
not write the whole contiguous region covered by the data sieving algorithm.

2.2.2 Collective I/O

Collective I/O can be used to explicitly relate I/O operations performed by multiple
clients with each other. For example, when using individual I/O the operations

– 16 –

CHAPTER 2. RELATED WORK AND STATE OF THE ART

performed by one client may have already started or even finished by the time the
second client’s operations are received by the file system. When using collective
I/O all operations are available at the same time, allowing the file system to perform
optimizations that are impossible to do with individual I/O.

For example, the additional information provided by collective I/O can be used to
optimize non-contiguous I/O very well. Multiple non-contiguous accesses can be
combined to improve performance, as demonstrated below.

Figure 2.2 shows two clients each accessing three contiguous blocks (1, 3–4, and 7–
9 and 2, 5–6, and 10–12 respectively) of data in a file. When performing individual
I/O the file system may now first serve client 1, followed by client 2. This may cause
inefficient execution of both requests — for example, by unnecessarily seeking
within the file or by accessing the same set of data twice when using data sieving.
When using collective I/O the file system can recognize that both clients’ requests
access the whole file and use that knowledge to optimize the operation by merging
all requests into one larger request.

1

2

3 4

5 6

7 8 9

10 11 12

Data requested by client 1 Data requested by client 2 Accessed data

2 5 6 10 11 12

1 3 4 7 8 9

Figure 2.2: Collective I/O

2.2.3 Two-Phase

The Two-Phase protocol is an optimization for collective I/O implemented in ROMIO.
It uses separate communication and I/O phases to optimize I/O accesses of multiple
clients, but introduces additional communication overhead. The basic idea is to let
the clients do the actual work of optimizing the accesses to ease the load on the
file system. While the communication phase is used to share information necessary
for meaningful optimizations among the clients, the I/O phase is used to perform
the actual I/O as determined in the communication phase. The Two-Phase protocol
implemented in ROMIO mainly focuses on making the accesses contiguous.

Figures 2.3a (page 18), 2.3b (page 18) and 2.3c (page 18) show a typical execution
of the Two-Phase protocol. Each client wants to access two data blocks spread

– 17 –

CHAPTER 2. RELATED WORK AND STATE OF THE ART

across the file. The color of the data blocks corresponds to the color of the
accessing client. For example, client 1 wants to access data blocks 1 and 3, client
2 wants to access data blocks 2 and 5, and client 3 wants to access data blocks 3
and 6.

It is important to note that each client communicates with all other clients. For
simplicity, these implicit arrows are omitted in the figures.

1 2 3 4 5 6

File contents

Client
1

Client
2

Client
3

(a) Phase 1

1 2 3 4 5 6

File contents

Client
1

Client
2

Client
3

(b) Phase 2 — Iteration 1

1 2 3 4 5 6

File contents

Client
1

Client
2

Client
3

(c) Phase 2 — Iteration 2

Figure 2.3: Two-Phase

Figure 2.3a shows the communication phase of the Two-Phase protocol. All clients
negotiate with each other which file areas have to be accessed. According to

– 18 –

CHAPTER 2. RELATED WORK AND STATE OF THE ART

this information the clients decide whether they should continue to perform the
Two-Phase protocol or simply access their respective data blocks individually. For
example, ROMIO only uses the Two-Phase protocol when the clients’ accesses are
overlapping. When performing the Two-Phase protocol they split up the file equally
into so-called file domains. Each client is then responsible for one file domain. For
example, client 1 is responsible for the file domain consisting of the data blocks 1
and 2, client 2 is responsible for the one consisting of the data blocks 3 and 4, and
so on.

Figure 2.3b (page 18) and 2.3c (page 18) show the I/O phase of the Two-Phase
protocol. All clients only access data blocks within their respective file domains.
When reading, the clients forward the read data to the clients which requested the
data in the communication phase. When writing, the clients receive the data from
the clients which requested to write the data in the communication phase and write
it to the file system. As each client only uses a relatively small amount of main
memory as a buffer for the Two-Phase protocol these two steps — communicating
with the other clients and accessing the file — can be performed multiple times
when needed. For example, figure 2.3b (page 18) shows the first iteration of the
I/O phase, while figure 2.3c (page 18) shows the second iteration.

It is easy to see that splitting the file into file domains and distributing these file
domains among the clients leads to non-contiguous accesses in each iteration
of the I/O phase. For example, figures 2.3b (page 18) and 2.3c (page 18) show
that the Two-Phase protocol causes the data blocks 1, 3 and 5 to be accessed in
iteration 1, while the data blocks 2, 4 and 6 are accessed in iteration 2. This may
have a negative effect on performance, depending on the size of the accesses used
internally by the Two-Phase protocol. This problem should be negligible with the
Two-Phase protocol’s default settings. However, due to striping schemes commonly
used in parallel cluster file systems this optimization may be ineffective on these
file systems, because accesses must be split up according to the stripe size anyway.

2.3 Storage Devices

All of these optimizations were developed with HDDs as storage devices in mind.
Therefore, they may or may not be suited for SSDs. The following tries to evaluate
their usefulness for both HDDs and SSDs.

2.3.1 Hard Disk Drives

Due to the relatively slow random access times of HDDs, it may be highly beneficial
to merge multiple non-contiguous operations into contiguous ones, even if this
involves reading or writing more data than needed. This is due to the fact that the

– 19 –

CHAPTER 2. RELATED WORK AND STATE OF THE ART

rotating platters are better suited for accessing large contiguous regions of data.
Obviously, this applies to both read and write operations.

However, clients can only use the file’s logical layout to perform optimizations
and logically contiguous accesses are not necessarily contiguous anymore when
they are mapped to the file’s physical layout on disk. This is due to the fact that
most file systems do not — and usually can not — store files as one contiguous
region on disk, because free space fragments over time. This may even cause
performance degradation, depending on the file system’s fragmentation rate.
Server-side optimizations do not suffer from this problem, because they have
access to the file’s physical layout and can use it to make more appropriate
decisions.

2.3.2 Solid State Drives

SSDs do not suffer from the problem of slow random accesses. Therefore, it
is usually not needed to combine non-contiguous operations when this involves
reading or writing additional data.

However, it can be beneficial to combine several operations to use the block sizes
used internally by the SSD. For example, performing write operations with the
erase block size may save unnecessary read-modify-write overhead. Again, this is
more useful when performed on the server, because the file’s logical layout usually
differs from its physical one and the erase block size may not be available on the
clients.

Summary

Many I/O optimizations for distributed systems exist. Client-side optimizations do
preprocessing to minimize the amount of work the file servers have to do. Server-
side optimizations use the servers’ internal knowledge to improve performance.
Data sieving can be used to turn non-contiguous I/O into contiguous I/O, while
collective I/O provides the file servers with additional information to enable better
optimizations. The Two-Phase protocol is an example of a client-side optimization
implemented in ROMIO. I/O optimizations should work with both HDDs and SSDs.

– 20 –

Chapter 3

Software Environment

In this chapter an overview of PIOsimHD is given and its components are explained
in detail. Its internal architecture is explained with a simple example of a simulated
cluster environment. The features of the currently implemented cache layers
are explained, because they play an important role in this thesis. Additionally,
third-party software used by PIOsimHD is presented briefly.

3.1 PIOsimHD

PIOsimHD is a framework containing all components necessary to simulate, trace
and visualize applications. The PIOsimHD-Model and PIOsimHD-Simulator parts
allow simulating arbitrary network topologies, servers and client applications.
Simple applications can be implemented directly within PIOsimHD-Simulator for
fast testing of new algorithms. PIOsimHD also contains modified versions of
MPICH2 and PVFS1 to allow tracing of real MPI programs, which can then also be
simulated. HDSunshot can display the resulting traces, allowing a detailed visual
performance analysis.

Some of its stated goals are:

• Fast and easy prototyping of new algorithms for I/O and MPI2 optimization

• Reveal bottlenecks in applications

• Allow better understanding of observed system behavior

• Test applications on different cluster hardware — for example, on grids

• Simple yet extensible models which can be selected on demand

• Explicit abstraction from real world complexity

• Usage of common tools to analyze simulation results

1Parallel Virtual File System
2Message Passing Interface

– 21 –

CHAPTER 3. SOFTWARE ENVIRONMENT

3.1.1 Architecture

PIOsimHD-Model and PIOsimHD-Simulator provide the possibility to define ar-
bitrary models. For example, they can be used to model and simulate computer
clusters, networks between computers and applications running on them.

Figure 3.13 shows the components supported by PIOsimHD-Model and PIOsimHD-
Simulator in the form of an exemplary cluster model. The model contains two
switches, connecting a total of three nodes. Each switch contains ports which
establish connections with the NIC4 within the nodes. Additionally, switch #1 is
connected to switch #2 via an upstream port. Node #1 acts as a server, which in
turn contains a cache layer and an I/O subsystem. The cache layer can be used to
simulate caches of the operating system and storage devices. The I/O subsystem
on the other hand can be used to simulate the actual storage devices. For example,
the I/O subsystem could be a HDD or a SSD. Nodes #2 and #3 act as clients,
which can host multiple client processes. For example, two client processes of the
Jacobi application run on nodes #2 and #3. These two client processes are part of

Node #3

Switch #1

Node #2NIC

Client Process
Rank: 1
Application: Jacobi

NIC

Client Process
Rank: 0
Application: Jacobi

Client Process
Rank: 0
Application: Matrix

Port
Port

Connection Connection

Node #1

Server

I/O SubsystemCache Layer

NIC

Switch #2
Port

Port
Port

Figure 3.1: Simulator Components

3The figure is taken from [Kun] and modified with the author’s permission.
4Network Interface Card

– 22 –

CHAPTER 3. SOFTWARE ENVIRONMENT

the same MPI application and can easily communicate with each other. All clients
processes can use node #1’s server to store and retrieve data.

The model also allows more complex setups. For example, nodes can be configured
to host both client processes and servers. In addition to that, each component can
be configured individually. For example, some servers can be configured to use
hard disk drives without caches while other servers use solid state drives with
elaborate caching mechanisms. Obviously, the same is also true for nodes with
client processes.

3.2 PIOsimHD-Model

PIOsimHD-Model allows modelling of arbitrary components involved in the simula-
tion. For example, PIOsimHD-Model contains models for hardware components
— like HDDs and NICs — and software components — like individual MPI com-
mands.

Each command and component model can have multiple implementations, which
are actually contained in PIOsimHD-Simulator. For example, an MPI command can
be implemented in a non-optimized and in an optimized way. This allows users to
easily measure the benefits of certain optimizations.

3.3 PIOsimHD-Simulator

PIOsimHD-Simulator is the framework’s core component, which performs the
actual simulation. It also contains implementations for the models defined in
PIOsimHD-Model.

The following three important aspects of PIOsimHD-Simulator are elaborated: The
cache layers, how network packets are transported within the network and the
internal processing of I/O requests. Most of this information can also be found in
[Kun].

3.3.1 Network Packet Transport

The network packet transport uses the following design criteria:

• Efficiency: It is mandatory that network components can be fully utilized if
there are packets to transport.

• Realism: The data flow must be somehow realistic. If there is a bottleneck
it is not acceptable that all packets queue on this component. In reality,

– 23 –

CHAPTER 3. SOFTWARE ENVIRONMENT

switched networks use buffers to allow limited queueing of packets. Re-
transmits occur on packet loss and timeouts force retransmission of lost
packets.

• Simplicity: Observed behavior should be understandable to some extent.

• Performance: The implementation should not heavily impact simulation
performance, because usually a large number of events are simulated.

The current design models flow control as follows:

• A network component transmits a number of packets to another one un-
til enough data is sent to compensate the connection latency. Then the
component stalls submission and queues further packets to this particular
destination.

• Processing of a packet sends a receipt confirmation to the sender and allows
transferring packets worth the connection latency of this packet. Therefore,
processing of a packet might wake up a cascade of blocked components
upstream.

• Once a component finishes processing a packet it is ready to accept new
packets. Pending packets should be delivered immediately to avoid starvation
of downstream components.

• Each component queues packets using per-target queues, that is, packets
for different destinations are managed in different queues. Whenever one
destination is stalled another destination might still be ready to receive
packets. For example, assuming a complex network topology with network
components interconnected at varying speeds, a slow target might get stalled
in the intermediate switches. However, other network components with fast
interconnects might still be able to receive data. Therefore, the switches
must relay their packets to these faster network components.

• NICs must be allowed to block receiving further packets. For example, this
is necessary when dealing with I/O operations. Writing data to a file system
involves transferring data to servers. If the servers’ I/O subsystems are slower
than their NICs, data could queue up infinitely. Since this is not realistic the
NICs must block transmission when there is not enough RAM available.

• Packet size is limited by a so-called network granularity5 to ensure interleaved
processing of packets. Messages are partitioned into the network granularity
on the fly. There are two aspects concerning the network granularity’s size.

5The default network granularity is 100 KiB.

– 24 –

CHAPTER 3. SOFTWARE ENVIRONMENT

Firstly, smaller packets result in more events in the simulation and conse-
quently increase simulation time, but allow better interleaving of packets
from multiple sources on one network component. Bigger packets decrease
the simulation effort, but reduce interleaving.

3.3.2 I/O Request Processing

From the clients’ point of view an I/O request is issued with a list of offset-size
pairs — this is called ListIO internally. These lists of non-contiguous operations
can be generated automatically by file views.

Each I/O operation issued by a client consists of several discrete steps, which
are processed sequentially. In addition to the client an I/O operation may involve
multiple servers, including their cache layers, I/O subsystems, NICs and the
network. Data flow through the network is detailed above and consequently spared
here. The actual processing of an I/O request depends on the request’s type, that
is, whether a read or write operation is requested.

Read Request

1. The client submits a read request to the NIC.

2. The network transmits requests to all servers involved in the I/O operation.

3. Each server accepts the request and announces the whole request to its cache
layer.

4. The cache layer selects an I/O operation to perform next and forwards it to
the I/O subsystem. It is important to note that the size of a single contiguous
I/O operation is limited by the so-called I/O granularity6.

5. Once the I/O subsystem finishes an operation the cache layer is notified
and can then issue new operations. Data received from the cache layer is
immediately added to the network flow, which might result in new network
packets.

6. The client’s read operation is implicitly finished once all data is received.

Write Request

1. The client submits a write request to the NIC.

2. The network transmits requests to all servers involved in the I/O operation.

6The default I/O granularity is 10 MiB.

– 25 –

CHAPTER 3. SOFTWARE ENVIRONMENT

3. Each server accepts the request and responds with an acknowledgement.

4. The client waits for all acknowledgements and starts sending the actual I/O
data to all servers as soon as they are received.

5. Once the data is received by the server it notifies its cache layer about
the request immediately. The cache layer puts the received data into the
server’s I/O cache and can then submit it to the I/O subsystem. If there is not
enough free cache memory remaining the server will block further receives
of data. Once the I/O subsystem finishes the job the cache is freed, allowing
further requests to get queued. The cache layer can also choose which write
operation to perform next, analogous to the read case.

6. Once a request is completed the server sends a write completion message to
the client.

7. The client’s write operation is finished once all write completion messages
are received.

3.3.3 Cache Layers

The following cache layers are currently implemented in PIOsimHD-Simulator.

It is important to note that even though the I/O granularity defaults to 10 MiB,
I/O operations sent across the network are split up into smaller operations to
accommodate the network granularity, which defaults to 100 KiB.

NoCache

The NoCache cache layer does no caching at all. All incoming I/O operations are
forwarded directly to the I/O subsystem. Among other things, this means that write
operations take as long as the I/O subsystem needs to actually write out the data
to the underlying storage devices. Additionally, read operations are preferred by
the NoCache cache layer — and, in fact, by all other cache layers — when possible.

Since the NoCache cache layer does not combine I/O operations the maximum
operation size is 100 KiB due to the network granularity.

SimpleWriteBehindCache

The SimpleWriteBehindCache cache layer does rudimentary caching. Incoming
write operations are queued in the server’s RAM to be written out in a background
thread. This technique is called write-behind. As opposed to the NoCache cache
layer this means that write operations do not block the calling client and return

– 26 –

CHAPTER 3. SOFTWARE ENVIRONMENT

immediately once the data is received by the servers. The actual operation then
finishes in the background.

Since the SimpleWriteBehindCache cache layer does not combine I/O operations
the maximum operation size is 100 KiB due to the network granularity.

AggregationCache

The AggregationCache cache layer performs simple write optimizations as well as
write-behind. It tries to combine the next I/O operation with as many other queued
I/O operations as possible. This is done by performing forward and backward
combination by respectively appending and prepending other I/O operations to
the current I/O operation. Two I/O operations can be combined when they cover
a contiguous region when merged — that is, offset1 + size1 = offset2 or vice
versa. However, this can — and should — be changed to also combine overlapping
accesses in the future. This minor detail is irrelevant for the benchmarks used in
this thesis, because they do not perform any overlapping accesses.7

Since the AggregationCache cache layer combines I/O operations the operation
size is only limited by the I/O granularity, that is, the maximum operation size is
10 MiB.

3.4 HDSunshot

Figure 3.2 (page 28) shows HDSunshot, PIOsimHD’s trace visualization tool. It
is based on Jumpshot8, but adapted to support the HDTraceFormat and featuring
many UI9 enhancements. It supports post-mortem performance analysis of traced
applications.

HDSunshot consists of the main timeline window and the legend on the left side.
The legend allows the user to specify exactly which traced operations should be
displayed in the timeline window. The timeline window displays a trace hierarchy
on the left side. Applications can be found on the first level, nodes on the second
level, ranks on the third level and threads on the fourth level. To the right of
the trace hierarchy, the lower part contains a timeline with the traced operations
themselves above it. Each traced operation is drawn in a different color to allow
for easy differentiation. The bar at the top — below the icons — contains detailed
information about the currently selected operation. For example, for read and write
operations the amount of accessed data is displayed. Additionally, each operation’s
duration is displayed there.

7The random benchmarks can perform overlapping accesses, but this is very unlikely.
8See http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm.
9User Interface

– 27 –

http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm

CHAPTER 3. SOFTWARE ENVIRONMENT

F
ig

u
re

3
.2

:
H

D
S

u
n

sh
o
t

– 28 –

CHAPTER 3. SOFTWARE ENVIRONMENT

The traces can be generated either by real MPI applications or by simulated ones.
This is useful for comparing simulated applications with their real counterparts,
which allows easy verification of the simulated results.

3.5 PVFS

PVFS10 is a parallel cluster file system, which supports multiple data and metadata
servers. To distribute the load, file data is striped across all available data servers
with a default stripe size of 64 KiB. The first data server is chosen randomly, then
a round-robin scheme is used. However, file metadata is not distributed. The
metadata for any file is managed by exactly one metadata server. Which metadata
server is responsible is determined by a hashing algorithm.

PVFS offers several features that make it attractive for research:

• Free software, released under the GPL11/LGPL12

• The code base has a manageable size of about 250 000 SLOC13

• Supports MPICH2

• Easy to install and configure

3.6 MPICH2

MPICH214 is a high-performance and widely portable implementation of the MPI
standard. It also includes ROMIO to support the MPI-IO part of the MPI-2 standard.
ROMIO supports various I/O optimizations, such as data sieving and the Two-Phase
protocol.

Summary

The PIOsimHD framework contains components to simulate, trace and visualize
applications. PIOsimHD-Model and PIOsimHD-Simulator allow simulating arbitrary
network topologies, servers and client applications. PIOsimHD-Simulator contains
several different cache layers which employ varying degrees of caching. MPICH2
and PVFS can be used to trace real MPI applications including MPI-IO. HDSunshot
is used to visualize the resulting traces.

10PVFS is available at http://www.pvfs.org/.
11GNU General Public License
12GNU Lesser General Public License
13Source Lines of Code
14MPICH2 is available at http://www.mcs.anl.gov/mpi/mpich/.

– 29 –

http://www.pvfs.org/
http://www.mcs.anl.gov/mpi/mpich/

Chapter 4

Design

In this chapter the design of the optimizations implemented in this thesis — that
is, Server-Directed I/O and the Two-Phase protocol — is elaborated. Additionally,
an alternative version of the Two-Phase protocol called Interleaved Two-Phase is
presented.

4.1 Aggregation Cache

The AggregationCache cache layer currently only performs very basic optimiza-
tions for write operations. When the next operation is processed, all pending
operations are examined to find out whether a pending operation can be appended
or prepended to the next operation. Apart from this, the AggregationCache always
processes operations in the order in which they are received from the clients.

These optimizations are extended to also work for read operations. This is done by
simply performing the same examination and merging of operations in the read
case.

4.2 Server-Directed I/O

Libraries for distributed I/O such as ROMIO often use client-side optimizations
— such as the Two-Phase protocol — to improve the overall I/O performance. In
contrast to this, Server-Directed I/O describes optimization techniques employed
on the file server itself. One of the main goals of this thesis is to determine whether
server-side optimizations are sufficient to provide acceptable I/O performance.
These server-side optimizations are implemented as the Server-Directed I/O cache
layer in PIOsimHD.

As mentioned in section 2.3 (page 19), the main problem with client-side optimiza-
tions is the fact that these optimizations usually do not have enough information to
efficiently optimize operations. When using server-side optimizations like Server-
Directed I/O the servers themselves decide which operations they should perform

– 30 –

CHAPTER 4. DESIGN

next and in which order they should be performed. Since the servers obviously have
all information about the underlying storage devices more intelligent decisions can
be made.

The main point of Server-Directed I/O is the fact that the servers determine when
and how to perform I/O operations, as opposed to the usual approach of servers
being simple data stores and the clients handling all I/O decisions. The advantage
of this approach is the fact that the servers have access to all pending I/O requests
and can use this knowledge, as opposed to the clients which only have access to
their current I/O requests. Collective I/O can be used to alleviate this problem to
some extent by granting the clients access to the I/O requests of all participating
clients. However, this is also different from other server-side optimizations like the
existing AggregationCache, because they simply process requests in FIFO1 order
and do not perform any reordering.

The actual optimizations are presented below with examples of the read and write
optimizations.

4.2.1 Read

A large number of clients performing many small read operations can easily
saturate the I/O system. The optimizations implemented in the Server-Directed I/O
cache layer try to satisfy as many clients requests with as little actual I/O requests
as possible and to determine the best way of handling these I/O requests.

The main method to do this is to merge multiple client requests into larger contigu-
ous read operations. To be able to perform the merge operations as efficiently as
possible all client requests are stored in per-file queues and sorted by the request’s
offset within the file. The Server-Directed I/O cache layer has access to all pending
read requests and can change their order to improve performance.

Figure 4.1 (page 32) provides an example of the read optimizations performing
three client requests as one larger read operation. For example, these three
requests could be part of one collective non-contiguous I/O operation or originate
from separate clients. The following steps can be seen:

(a) A new read request (#1) is inserted at offset 128 with size 64.
The request is inserted at position 0, because the queue is empty.

(b) A new read request (#2) is inserted at offset 64 with size 64.
The request is inserted at position 0, because its offset is smaller than the
offset of request #1.

1First In, First Out

– 31 –

CHAPTER 4. DESIGN

(c) A new read request (#3) is inserted at offset 128 with size 128.
The request is inserted at position 2, because its offset is not smaller than
the offset of request #2.

(d) The read requests #1, #2 and #3 are merged together.
All three requests can be satisfied by reading the contiguous file region at
offset 64 with size 192.

The actual implementation can also merge read requests which are separated by
holes of a given size. For simplicity, this case is omitted in this example.

Since there is only one read requests remaining, it is clear which one needs to be
processed next.

0 1 2
0

64

128

192

256

Queue Position

F
ile

 O
ffs

et

(a) Insert

0 1 2
0

64

128

192

256

Queue Position

F
ile

 O
ffs

et

(b) Insert

0 1 2
0

64

128

192

256

Queue Position

F
ile

 O
ffs

et

(c) Insert

0 1 2
0

64

128

192

256

Queue Position

F
ile

 O
ffs

et

(d) Merge

Figure 4.1: Server-Directed I/O — Read Optimizations

4.2.2 Write

The write optimizations implemented in the Server-Directed I/O cache layer also
try to satisfy as many clients requests with as little actual I/O requests as possible
and to determine the best way of handling these I/O requests.

The main method to do this is to discard unnecessary write requests early and
merge multiple client requests into larger contiguous write operations. The client

– 32 –

CHAPTER 4. DESIGN

requests are stored in the same way as in the read case to allow efficient merge op-
erations. The Server-Directed I/O cache layer can also change the order of pending
write requests and delay the actual writing of the data to improve performance.

Figure 4.2 (page 34) provides an example of the write optimizations performing
six client requests as two larger write operations. For example, these six requests
could be part of one collective non-contiguous I/O operation or originate from
separate clients. The following steps can be seen:

(a) A new write request (#1) is inserted at offset 128 with size 64.
The request is inserted at position 0, because the queue is empty.

(b) A new write request (#2) is inserted at offset 64 with size 64.
The request is inserted at position 0, because its offset is smaller than the
offset of request #1.

(c) A new write request (#3) is inserted at offset 128 with size 128. The request
is inserted at position 2, because its offset is not smaller than the offset of
request #2.

(d) The write request #3 overwrites the write request #1.
The request would overwrite all the data, therefore the old request can be
discarded.

(e) A new write request (#4) is inserted at offset 256 with size 64. The request
is inserted at position 2, because its offset is not smaller than the offset of
request #3.

(f) A new write request (#5) is inserted at offset 384 with size 64. The request
is inserted at position 2, because its offset is not smaller than the offset of
request #4.

(g) A new write request (#6) is inserted at offset 448 with size 64. The request
is inserted at position 2, because its offset is not smaller than the offset of
request #5.

(h) The write requests #2, #3 and #4 are merged together. The write requests
#5 and #6 are merged together.
All remaining five requests can be satisfied by writing two contiguous file
regions at offset 64 with size 256 and offset 384 with size 128.

The situation presented in step (d) is a special case of a new write request over-
writing data of an older write request. In the general case, the old request needs to
be truncated or split up if the new request only overwrites part of the old request’s
data.

– 33 –

CHAPTER 4. DESIGN

Since there are now two write requests remaining, the server can decide which
one to process next. Selecting the best request to process can depend on a number
of factors, including the offset and size of the request.

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(a) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(b) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(c) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(d) Overwrite

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(e) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(f) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(g) Insert

0 1 2 3 4
0

128

256

384

512

Queue Position

F
ile

 O
ffs

et

(h) Merge

Figure 4.2: Server-Directed I/O — Write Optimizations

– 34 –

CHAPTER 4. DESIGN

For a more detailed explanation and more information on additional optimizations,
see section 5.2 (page 43).

4.3 Collective I/O

Collective I/O provides the basis for many client-side optimizations. One of these
optimizations is the Two-Phase protocol used by ROMIO.

The simulator does not provide collective read and write operations, therefore they
have to be implemented first. This is needed to be able to compare client-side
optimizations — such as the Two-Phase protocol — with server-side optimizations
like Server-Directed I/O.

4.3.1 Interleaved Two-Phase

The internal workings of the Two-Phase protocol are detailed in subsection 2.2.3
(page 17). It is easy to see that splitting the file into file domains and distributing
these file domains among the clients leads to non-contiguous accesses in each
iteration of the I/O phase. This can cause performance degradation, because these
access patterns can not be optimized easily by the underlying cache layer.

Figure 4.3a and 4.3b show the I/O phase of the Interleaved Two-Phase protocol. As
can be seen, the clients access a contiguous region of data in each iteration. This
grants the I/O subsystem more room for optimizations.

1 2 3 4 5 6

File contents

Client
1

Client
2

Client
3

(a) Phase 2 — Iteration 1

1 2 3 4 5 6

File contents

Client
1

Client
2

Client
3

(b) Phase 2 — Iteration 2

Figure 4.3: Interleaved Two-Phase

– 35 –

CHAPTER 4. DESIGN

This modification works exactly like the original Two-Phase protocol, except that
accesses are performed in a contiguous fashion to minimize seek operations. This
is achieved by not distributing file domains among the clients, but rather dividing
the file into chunks of the size of the Two-Phase buffer. The first chunk is then
accessed by the first client, the second chunk by the second client, and so on.
Consequently, each client accesses one such chunk per iteration. This process
is then repeated as necessary until all data is read or written. Since the clients’
accesses are interleaved this modification is called the Interleaved Two-Phase
protocol.

Summary

Server-Directed I/O provides optimizations for both read and write operations. It
tries to aggregate as many operations as possible to decrease the load on the I/O
subsystem and improve overall performance. Additionally, it has a full overview of
all pending operations and can use this information to select the next operation
based on several factors to maximize performance. The Interleaved Two-Phase
protocol is a modification of ROMIO’s Two-Phase protocol, which only accesses
contiguous file regions.

– 36 –

Chapter 5

Implementation

In this chapter an overview of the internal structure of PIOsimHD-Model and
PIOsimHD-Simulator is given. This includes the implementation of some example
components and commands. Additionally, the actual implementations of the opti-
mizations already presented in chapter 4 (page 30) — that is, the Server-Directed
I/O component and the Two-Phase commands — are explained in detail.

5.1 Internals

PIOsimHD supports arbitrary component and command models and implemen-
tations. Example for both are given to explain the workflow needed to extend
PIOsimHD with new components and commands, which is needed to integrate
Server-Directed I/O and collective I/O into PIOsimHD.

5.1.1 Component Implementations

The simulator supports implementation of arbitrary components for simulating
hardware and software. For example, it is possible to model abstract concepts like
servers and physical components like cache layers within the servers.

The following server component model possesses a size attribute. For example,
this size could represent the size of the server’s main memory or the size of a
cache.

Listing 5.1 shows the Example server component model. This model should be
put into the file PIOsimHD-Model/src/de/hd/pvs/piosim/model/components/Ex-
ample/Example.java. The component model is used to store attributes for this
specific component and provides the basis for derived server component models
for this server component.

Listing 5.1: Server Component Model Example

1 abstract public class Example
2 extends BasicComponent<Server> {

– 37 –

CHAPTER 5. IMPLEMENTATION

3 @Attribute
4 @NotNegativeOrZero
5 long size = 0;
6
7 final public void setSize(long size) {
8 this.size = size;
9 }

10
11 final public int getSize() {
12 return size;
13 }
14
15 @Override
16 final public String getComponentType() {
17 return Example.class.getSimpleName();
18 }
19 }

Listing 5.2 shows the SimpleExample server component model. This model should
be put into the file PIOsimHD-Model/src/de/hd/pvs/piosim/model/components/-
Example/SimpleExample.java. This server component model simply inherits all
attributes of the server component model shown in listing 5.1 (page 37).

Listing 5.2: Simple Server Component Model Example

1 public class SimpleExample
2 extends Example {
3 }

Listing 5.3 shows the interface used for this server component. This interface
should be put into the file PIOsimHD-Simulator/src/de/hd/pvs/piosim/simula-
tor/components/Example/IGExample.java. Interfaces can be used to force all
server component implementations to provide a common interface. This makes it
possible to provide multiple models for a single component.

Listing 5.3: Server Component Interface Example

1 public interface IGExample<Type extends SPassiveComponent>
2 extends IGComponent<Type>
3 {
4 public void example();
5 }

– 38 –

CHAPTER 5. IMPLEMENTATION

Listing 5.4 (page 39) shows the SimpleExample server component implementation.
This implementation should be put into the file PIOsimHD-Simulator/src/de/hd/-
pvs/piosim/simulator/components/Example/GSimpleExample.java. This pro-
vides the server component implementation for the server component model shown
in listing 5.2.

Listing 5.4: Simple Server Component Implementation Example

1 public class GSimpleExample
2 extends SPassiveComponent<SimpleExample>
3 implements IGExample<SPassiveComponent<SimpleExample>>
4 {
5 @Override
6 public void example() {
7 ...
8 }
9 }

The simulator only uses component implementations specified in the file Model-
ToSimulatorMapper.txt. This file can be used to specify multiple component
implementations for a single component. For more details on this, see subsec-
tion 5.1.2 (page 40).

Listing 5.5 shows the file ModelToSimulationMapper.txt. Components themselves
are prefixed with +, followed by their respective component implementations. In
this case the Example component is implemented by GSimpleExample.

Listing 5.5: Component Mapping

1 # This file describes the existing model component of a given type i
↪→ .e. "Node" the available Model implementations and mapping to
↪→ the simulation implementation.

2 +ClientProcess
3 de.hd.pvs.piosim.model.components.ClientProcess.ClientProcess = de.

↪→ hd.pvs.piosim.simulator.components.ClientProcess.
↪→ GClientProcess

4
5 ...
6
7 +Example
8 de.hd.pvs.piosim.model.components.Example.SimpleExample = de.hd.pvs.

↪→ piosim.simulator.components.Example.GSimpleExample

– 39 –

CHAPTER 5. IMPLEMENTATION

5.1.2 Command Implementations

The simulator supports implementation of arbitrary commands for simulating
applications. For example, it is possible to implement simple commands like the
POSIX1 read() and write() functions, and more complex commands like the
MPI-IO functions.

Listing 5.6 shows the Example command model. This model should be put into
the file PIOsimHD-Model/src/de/hd/pvs/piosim/model/program/commands/Ex-
ample.java. The command model provides a basis for the command implementa-
tions, that is, all command implementations get passed an instance of the command
model. Models can also have so-called attributes. These attributes can be anno-
tated, which allows them to be automatically populated with values from traces and
checked for validity. For example, the Example command model has one attribute
called communicator. The NotNull annotation specifies that this attribute must
be set, while the Attribute annotation specifies the attribute’s name to be cid in
traces.

Listing 5.6: Command Model Example

1 public class Example
2 extends Command {
3 @NotNull
4 @Attribute(xmlName="cid")
5 protected Communicator communicator;
6
7 public Example() {
8 ...
9 }

10
11 public helloWorld() {
12 ...
13 }
14 }

Listing 5.7 (page 41) shows the SimpleExample command implementation. This
implementation should be put into the file PIOsimHD-Simulator/src/de/hd/pvs/-
piosim/simulator/program/Example/SimpleExample.java. The simulator calls
the command’s process() method, which can be separated into so-called steps.
The first step is always CommandProcessing.STEP_START, while CommandProcess-
ing.STEP_COMPLETED signifies that the command is finished. Additional steps can
be defined at will, for more details see listing 5.8 (page 41).

1Portable Operating System Interface (for Unix)

– 40 –

CHAPTER 5. IMPLEMENTATION

Listing 5.7: Simple Command Example

1 public class SimpleExample
2 extends CommandImplementation<Example> {
3 @Override
4 public void process(Example cmd,
5 CommandProcessing OUTresults,
6 GClientProcess client,
7 int step,
8 NetworkJobs compNetJobs) {
9 switch (step) {

10 case (CommandProcessing.STEP_START): {
11 // Do some work ...
12 cmd.helloWorld();
13 ...
14
15 OUTresults.setNextStep(CommandProcessing.STEP_COMPLETED);
16
17 return;
18 }
19 }
20
21 return;
22 }
23 }

The SimpleExample implementation starts with CommandProcessing.STEP_START,
calls the helloWorld() method of the command model cmd and then sets the next
step to CommandProcessing.STEP_COMPLETED with OUTresults.setNextStep(),
ending the command’s processing.

Listing 5.8 shows the SophisticatedExample command implementation. This
implementation should be put into the file PIOsimHD-Simulator/src/de/hd/pvs/-
piosim/simulator/program/Example/SophisticatedExample.java.

Listing 5.8: Sophisticated Command Example

1 public class SophisticatedExample
2 extends CommandImplementation<Example> {
3 @Override
4 public void process(Example cmd,
5 CommandProcessing OUTresults,
6 GClientProcess client,
7 int step,

– 41 –

CHAPTER 5. IMPLEMENTATION

8 NetworkJobs compNetJobs) {
9

10 final int ANOTHER_STEP = 2;
11
12 switch (step) {
13 case (CommandProcessing.STEP_START): {
14 int rank = client.getModelComponent().getRank();
15
16 // Do some more work ...
17 ...
18
19 OUTresults.setNextStep(ANOTHER_STEP);
20
21 return;
22 }
23 case (ANOTHER_STEP): {
24 // Do even more work ...
25 ...
26
27 // Call the SimpleExample implementation
28 OUTresults.invokeChildOperation(cmd, CommandProcessing.

↪→ STEP_START, de.hd.pvs.piosim.simulator.program.Example.
↪→ SimpleExample.class);

29
30 OUTresults.setNextStep(CommandProcessing.STEP_COMPLETED);
31
32 return;
33 }
34 }
35
36 return;
37 }
38 }

The SophisticatedExample implementation starts with CommandProcessing.-
STEP_START, performs some additional work and then sets the next step to AN-
OTHER_STEP, which is a step specific to the SophisticatedExample command im-
plementation. In the ANOTHER_STEP step, the implementation then uses OUTre-
sults.invokeChildOperation() to start a nested operation of the SimpleExample
command implementation. This in turn executes the SimpleExample’s process()
method with CommandProcessing.STEP_START and returns when the processing

– 42 –

CHAPTER 5. IMPLEMENTATION

would normally end — that is, when CommandProcessing.STEP_COMPLETED is set.
Afterwards, it sets the next step to CommandProcessing.STEP_COMPLETED, ending
the command’s processing.

The simulator only uses command implementations specified in the file Command-
ToSimulationMapper.txt. This file can be used to specify multiple command
implementations for a single command. For example, the SimpleExample and
SophisticatedExample command implementations can be used to provide two
different command implementations for the Example command.

Listing 5.9 shows the file CommandToSimulationMapper.txt. Commands them-
selves are prefixed with +, followed by their respective command implementations.
In this case the Example command is implemented by Global.NoOperation, Ex-
ample.SimpleExample and Example.SophisticatedExample. The last specified
command implementation is used by default, but this can be changed at will.

Listing 5.9: Command Mapping

1 # define the command groups and the contained implementations and
↪→ the simulator implementations

2 # each row is either a set of commands which are implemented or the
↪→ actual set of implementation classes for these commands.

3
4 # All undefined operations are mapped to NoOperation:
5 +NoOperation
6 de.hd.pvs.piosim.simulator.program.Global.NoOperation
7
8 # Automatically generated within the simulator.
9 +Compute

10 de.hd.pvs.piosim.simulator.program.Global.NoOperation
11 de.hd.pvs.piosim.simulator.program.Compute.Time
12
13 ...
14
15 +de.hd.pvs.piosim.model.program.commands.Example
16 de.hd.pvs.piosim.simulator.program.Global.NoOperation
17 de.hd.pvs.piosim.simulator.program.Example.SimpleExample
18 de.hd.pvs.piosim.simulator.program.Example.SophisticatedExample

5.2 Server-Directed I/O

As described in subsection 5.1.1 (page 37), Server-Directed I/O is implemented
as a new server component, namely a new cache layer called ServerDirecte-

– 43 –

CHAPTER 5. IMPLEMENTATION

dIO. To integrate the Server-Directed I/O cache layer into the existing frame-
work a new model and implementation have to be added. The model is
put into the file PIOsimHD-Model/src/de/hd/pvs/piosim/model/components/-
ServerCacheLayer/ServerDirectedIO.java and is omitted here, because it is
a trivial extension of the existing AggregationCache model. This implementation
is put into the file PIOsimHD-Simulator/src/de/hd/pvs/piosim/simulator/com-
ponents/ServerCacheLayer/GServerDirectedIO.java and is now presented in
detail. Lastly, the new implementation needs to be added to the file ModelToSimu-
lationMapper.txt, allowing it to be used as a cache layer.

Listing 5.10 shows the Server-Directed I/O class. It is based on the aggregation
cache layer, which is basically a simpler version of the Server-Directed I/O cache
layer. The aggregation cache layer also tries to combine multiple operations into
larger ones, but is less efficient and can not cope as well with multiple files. It
also does not perform any optimizations regarding the order in which pending I/O
operations are performed.

Listing 5.10: GServerDirectedIO.java — Main Class

1 public class GServerDirectedIO extends GAggregationCache {
2 ...
3 }

Listing 5.11 shows the data structures used by the Server-Directed I/O implemen-
tation. lastFile and lastOffset are used to store the last accessed file and offset
respectively. This information is used to minimize costly seek operations. queue-
dReadJobs and queuedWriteJobs are used to store per-file queues of outstanding
I/O operations in the form of IOJobs. The other cache layers use global queues
for all operations. However, per-file queues allow easier and faster merging of I/O
operations. Additionally, these queues are sorted by the IOJobs’ file offsets.

Listing 5.11: GServerDirectedIO.java — Data Structures

1 MPIFile lastFile = null;
2 long lastOffset = -1;
3
4 HashMap<MPIFile, LinkedList<IOJob>> queuedReadJobs = new HashMap<

↪→ MPIFile, LinkedList<IOJob>>();
5 HashMap<MPIFile, LinkedList<IOJob>> queuedWriteJobs = new HashMap<

↪→ MPIFile, LinkedList<IOJob>>();

Listing 5.12 (page 45) shows the IOJob interface. An IOJob represents a single I/O
operation operating on file at offset with sizeBytes of data. IOJobs can either
be READ or WRITE operations.

– 44 –

CHAPTER 5. IMPLEMENTATION

Listing 5.12: GServerDirectedIO.java — IOJob Interface

1 public class IOJob implements EventData {
2 static public enum IOOperation {
3 READ,
4 WRITE
5 }
6
7 final private MPIFile file;
8 final private long size;
9 final private long offset;

10
11 final private IOOperation type;
12
13 public IOJob(MPIFile file, long size, long offset, IOOperation

↪→ operation);
14 public IOJob(IOJob oldJob);
15
16 public long getOffset();
17 public long getSize();
18 public IOOperation getType();
19 public MPIFile getFile();
20 }

Listing 5.13 shows the getNextSchedulableJob method. As the name suggests,
this method returns the next IOJob that should be performed by the I/O subsystem.
Currently, read operations are preferred. File systems like ZFS2 also prioritize
read operations to keep the system responsive, but make sure that no starvation of
write operations occurs. This functionality is still lacking in the Server-Directed I/O
implementation — and in fact all other cache layers —, because there is currently
no priority or way to determine how long operations have been waiting in the
queue.

Listing 5.13: GServerDirectedIO.java — getNextSchedulableJob

1 @Override
2 protected IOJob getNextSchedulableJob() {
3 IOJob io;
4
5 io = getJob(IOOperation.READ);
6
7 if (io == null) {

2Zettabyte File System

– 45 –

CHAPTER 5. IMPLEMENTATION

8 io = getJob(IOOperation.WRITE);
9 }

10
11 return io;
12 }

Listing 5.14 shows the getJob method. This method does the actual work of
selecting an IOJob that should be performed next. It uses different strategies to
decide which IOJob is best suited for execution.

Listing 5.14: GServerDirectedIO.java — getJob

1 private IOJob getJob(IOOperation type) {
2 ...
3
4 LinkedList<IOJob> list = null;
5 LinkedList<IOJob> lastFileList = null;
6
7 IOJob io = null;
8 IOJob ioClose = null;
9 IOJob ioLarge = null;

10
11 Iterator<IOJob> it = null;
12
13 ...
14
15 for (LinkedList<IOJob> l : queue.values()) {
16 long size = 0;
17 long tmp = 0;
18
19 it = l.iterator();
20
21 /* Determine the size of the job queue. */
22 while (it.hasNext()) {
23 tmp += it.next().getSize();
24 }
25
26 /* Prefer operating on the last file. */
27 if (l == lastFileList) {
28 tmp *= 10;
29 }
30

– 46 –

CHAPTER 5. IMPLEMENTATION

31 /* Use the largest job queue. */
32 if (tmp > size) {
33 size = tmp;
34 list = l;
35 }
36 }
37
38 ...
39
40 if (type == IOOperation.READ) {
41 list = mergeReadJobs(list);
42 } else if (type == IOOperation.WRITE) {
43 list = mergeWriteJobs(list);
44 }
45
46 ...
47
48 while (it.hasNext()) {
49 IOJob cur = it.next();
50
51 if (ioClose == null || (lastOffset >= 0 && Math.abs(cur.

↪→ getOffset() - lastOffset) < 5 * 1024 * 1024 && cur.
↪→ getOffset() < ioClose.getOffset())) {

52 /* Determine the IOJob closest to the last position. */
53 ioClose = cur;
54 } else if (ioLarge == null || cur.getSize() > ioLarge.getSize())

↪→ {
55 /* Determine the largest IOJob. */
56 ioLarge = cur;
57 }
58
59 }
60
61 ...
62 }

The first step is to determine which per-file queue to use. Firstly, queue is set to
either queuedReadJobs or queuedWriteJobs, depending on type. Then it computes
the total size of all operations in each per-file queue — that is, how much data
should be read or written — and uses the largest one. However, the queue of the
file that was last accessed is preferred by multiplying its size with a factor of 10.

– 47 –

CHAPTER 5. IMPLEMENTATION

In the next step the mergeReadJobs or mergeWriteJobs method is used to merge
as many IOJobs in the selected queue as possible. These methods try to combine
multiple contiguous operations into larger operations. Additionally, the mergeRead-
Jobs method supports data sieving, that is, reading more data than is necessary
to combine even operations that are non-contiguous. However, data sieving is
disabled by default, because it can cause performance degradation in some cases.
Therefore, a cost-benefit analysis needs to be done in the future to determine in
which cases the data sieving algorithm should be used. The algorithm then needs
to be adapted accordingly.

In the last step the actual IOJob is selected. Currently, the closest — in relation to
the last access — and the largest IOJobs are considered. In the special case that
an IOJob continues the last access — that is, starts at the last accessed offset —
it can be used immediately, because in this case the underlying storage device
does not have to perform any seek operation. This is of course only true for HDDs,
which are the default storage devices used in PIOsimHD-Simulator for now. Code
for this functionality exists, but is disabled at the moment, because tests suggest
that this can decrease performance in some cases. Therefore, this special case
must be analyzed further.

5.2.1 Delayed Writes

Listing 5.15 shows the explicit write-behind caching in the getJob() method.
Obviously, this only applies to write operations. In the first step the size of all
operations in all per-file queues is determined. Then it is checked whether this size
exceeds the cacheSize and when the last flush happened.

Listing 5.15: GServerDirectedIO.java — Delayed Writes

1 ...
2
3 if (type == IOOperation.WRITE) {
4 long tmp = 0;
5 Epoch time = getSimulator().getVirtualTime();
6
7 for (List<IOJob> l : queue.values()) {
8 it = l.iterator();
9

10 while (it.hasNext()) {
11 tmp += it.next().getSize();
12 }
13 }
14

– 48 –

CHAPTER 5. IMPLEMENTATION

15 if (tmp < cacheSize && lastFlush != null && (lastFlush.add(0.33).
↪→ compareTo(time) > 0)) {

16 return null;
17 }
18 }
19
20 ...

Pending operations are only executed whenever the pre-defined cache size is
exceeded or the last flush happened more than 1/3 s ago. Otherwise, operations
are cached and scheduled for later execution. This can significantly reduce the
number of total I/O operations, because it allows more efficient merging.

However, to be able to fully utilize this explicit write-behind caching a new flush
command must be introduced, because I/O operations can be lost otherwise. For
example, I/O operations could still be cached when all clients finish, which causes
the simulator to terminate. Pending I/O operations are then lost.

Listing 5.16 shows the addFlush() method, which is called whenever clients
request a flush by sending a RequestFlush. This method first tries to merge all
remaining pending I/O operations for this particular file. Afterwards, all merged
I/O operations are executed. Flush requests are announced to all cache layers, but
currently only the ServerDirectedIO one makes use of it.

Listing 5.16: GServerDirectedIO.java — Flushing

1 @Override
2 protected void addFlush(RequestFlush req) {
3 if (queuedWriteJobs.get(req.getFile()) == null) {
4 return;
5 }
6
7 List<IOJob> list;
8 Iterator<IOJob> it;
9

10 list = mergeWriteJobs(queuedWriteJobs.get(req.getFile()));
11 it = list.iterator();
12
13 while (it.hasNext()) {
14 IOJob io = it.next();
15
16 ioSubsystem.startNewIO(io);
17 numberOfScheduledIOOperations++;

– 49 –

CHAPTER 5. IMPLEMENTATION

18 }
19
20 queuedWriteJobs.get(req.getFile()).clear();
21 }

When this method finishes no more pending write operations for the given file
exist. File flushing is currently only triggered by closing a file with the Fileclose
command.

5.2.2 Performance Considerations

Both the AggregationCache and ServerDirectedIO cache layers use special data
structures and algorithms to enable merging of I/O operations. When implementing
these optimizations in real-life file systems, the performance of these algorithms
is very important, because the merging is performed each time an I/O operation
is forwarded to the I/O subsystem. Therefore, an overview of their algorithmic
complexity is given below.

Aggregation Cache

The aggregation cache uses a simple data structure to store all pending I/O
operations. This queue is unsorted.

Insertion of a new operation is of order O(1), because the new operation can be
simply appended to the queue.

However, because the queue is unsorted merging of I/O operations is of order O(n2)

where n is the total number of pending I/O operations.

Server-Directed I/O

The Server-Directed I/O cache layer uses per-file data structures to store pending
I/O operations for each file individually. Each of the queues is sorted by the
operations’ offsets.

Insertion of a new operation is of order O(m) where m is the number of pending I/O
operations for the current file. This is achieved by using a linked list and walking
the whole queue on each insertion.

Due to the sorted per-file queues merging of I/O operations is of order O(m) where
m is the number of pending I/O operations for the current file. This is achieved by
walking the queue once and merging operations on the fly.

– 50 –

CHAPTER 5. IMPLEMENTATION

5.3 Collective I/O

As described in subsection 5.1.2 (page 40), collective I/O operations for reading
and writing are implemented as new commands, namely the Filereadall and
Filewriteall commands. To integrate the collective I/O commands into the exist-
ing framework new models and implementations have to be added. The models are
put into the files PIOsimHD-Model/src/de/hd/pvs/piosim/model/program/com-
mands/Filereadall.java and PIOsimHD-Model/src/de/hd/pvs/piosim/model/-
program/commands/Filewriteall.java respectively. The models are again omit-
ted. These implementations are put into the directories PIOsimHD-Simulator/-
src/de/hd/pvs/piosim/simulator/program/Filereadall/ and PIOsimHD-Simu-
lator/src/de/hd/pvs/piosim/simulator/program/Filewriteall/ respectively.
Both directories contain implementations using individual I/O (Direct.java), the
Two-Phase protocol (TwoPhase.java) and the Interleaved Two-Phase protocol
(InterleavedTwoPhase.java). Lastly, the new implementations need to be added
to the file CommandToSimulationMapper.txt, allowing them to be used as com-
mands.

In order to properly implement collective operations it is necessary to be able to
store some kind of meta information about the collective operation. For example, it
is necessary to know which clients take part in this particular collective operation.
It may also be necessary to store some kind of state information. Since no general
solution is readily available, it has to be implemented for the collective operations
considered here — that is, Filereadall and Filewriteall. The Filewriteall
implementation in TwoPhase.java is used as an example.

Listing 5.17 shows the data structures used to hold the necessary meta information.
sync_blocked_clients is used to synchronize all participating clients for the
collective operation. meta_info is used to share meta information among all
clients.

Listing 5.17: Filewriteall/TwoPhase.java — Data Structures

1 private static HashMap<FilewriteallWrapper, List<
↪→ FilewriteallContainer>> sync_blocked_clients;

2 private static HashMap<Filewriteall, List<FilewriteallContainer>>
↪→ meta_info;

Listing 5.18 (page 52) shows the FilewriteallWrapper class used to synchronize
all participating clients of a collective operation. It is constructed in such a way that
a FilewriteallWrapper instance created for a Filewriteall command is equal
to another FilewriteallWrapper instance if and only if both used Filewriteall
commands belong to the same collective operation. This is accomplished by
overwriting the equals() and hashCode() methods.

– 51 –

CHAPTER 5. IMPLEMENTATION

Listing 5.18: Filewriteall/TwoPhase.java — FilewriteallWrapper

1 final class FilewriteallWrapper {
2 private Filewriteall command;
3
4 public FilewriteallWrapper(Filewriteall cmd) {
5 command = cmd;
6 }
7
8 @Override
9 public boolean equals(Object obj) {

10 if (obj.getClass() != getClass()) {
11 return false;
12 }
13
14 FilewriteallWrapper compare = (FilewriteallWrapper) obj;
15
16 return (compare.command.getCommunicator() == this.command.

↪→ getCommunicator())
17 && (compare.command.getProgram().getApplication() == this.

↪→ command.getProgram().getApplication())
18 && (compare.command.getClass() == this.command.getClass());
19 }
20
21 @Override
22 public int hashCode() {
23 return command.getCommunicator().hashCode() + command.getClass()

↪→ .hashCode();
24 }
25 }

By putting all matching commands into the sync_blocked_clients structure this
class is used to find and collect all participating clients.

Listing 5.19 shows the FilewriteallContainer class used to provide meta infor-
mation to the clients during the runtime of the collective operation.

Listing 5.19: Filewriteall/TwoPhase.java — FilewriteallContainer

1 final class FilewriteallContainer {
2 private Filewriteall command;
3 private GClientProcess clientProcess;
4 private CommandProcessing commandProcessing;
5

– 52 –

CHAPTER 5. IMPLEMENTATION

6 ...
7
8 public FilewriteallContainer(Filewriteall command, GClientProcess

↪→ clientProcess, CommandProcessing commandProcessing) {
9 this.command = command;

10 this.clientProcess = clientProcess;
11 this.commandProcessing = commandProcessing;
12
13 ...
14 }
15
16 public Filewriteall getCommand() {
17 return command;
18 }
19
20 public GClientProcess getClientProcess() {
21 return clientProcess;
22 }
23
24 public CommandProcessing getCommandProcessing() {
25 return commandProcessing;
26 }
27
28 public Integer getRank() {
29 return clientProcess.getModelComponent().getRank();
30 }
31
32 ...
33 }

By putting the meta information of all participating clients into the meta_info
structure, all clients have access to this meta information during the collective
operation. It is also possible to access other clients’ meta information when
necessary.

Additional meta information can be added easily. For example, the Two-Phase
operations use it to store the current iteration of the I/O phase.

Listing 5.20 (page 54) shows the STEP_START step used to fill the provided data
structures. As can be seen, all clients first create FilewriteallWrapper and
FilewriteallContainer instances based on the current command. All matching
commands are added to the sync_blocked_clients structure. Completion is
checked by comparing the size of the communicator — that is, the number of

– 53 –

CHAPTER 5. IMPLEMENTATION

participating clients — and the number of collected commands. Afterwards, meta
information is stored in the meta_info structure for each client. Finally, the sync_-
blocked_clients structure is cleaned up. The meta_info structure is cleaned up
when the clients finish the operation — that is, in the last step of the process()
method.

Listing 5.20: Filewriteall/TwoPhase.java — STEP_START

1 @Override
2 public void process(Filereadall cmd, CommandProcessing OUTresults,

↪→ GClientProcess client, int step, NetworkJobs compNetJobs) {
3 ...
4
5 switch (step) {
6 case (CommandProcessing.STEP_START): {
7 FilereadallWrapper wrapper = new FilereadallWrapper(cmd);
8 List<FilereadallContainer> waitingClients = sync_blocked_clients

↪→ .get(wrapper);
9 FilereadallContainer container = new FilereadallContainer(cmd,

↪→ client, OUTresults);
10
11 ...
12
13 waitingClients.add(container);
14
15 if (waitingClients.size() < cmd.getCommunicator().getSize()) {
16 ...
17 } else {
18 List<FilereadallContainer> cmds = new ArrayList<

↪→ FilereadallContainer>();
19
20 for (FilereadallContainer c : waitingClients) {
21 cmds.add(c);
22 }
23
24 ...
25
26 for (FilereadallContainer c : waitingClients) {
27 meta_info.put(c.getCommand(), cmds);
28 }
29
30 ...
31

– 54 –

CHAPTER 5. IMPLEMENTATION

32 sync_blocked_clients.remove(wrapper);
33 }
34
35 ...
36 }
37
38 ...
39 }

5.3.1 Two-Phase

The implementation of the Two-Phase protocol described here follows the imple-
mentation in ROMIO as closely as possible. However, some differences exist. For
example, when using the Two-Phase protocol to perform a collective write oper-
ation ROMIO’s implementation uses a read-modify-write operation to keep write
accesses contiguous. This does not matter for the benchmarks used in chapter 6
(page 61), because their access patterns are designed in such a way as to result in
contiguous accesses when aggregated by the Two-Phase protocol. However, it may
degrade performance for non-optimizing cache layers.

The discrete steps in the process() method can be seen as states of a simple
state machine3. This can be used to illustrate the inner workings of the Two-Phase
implementations of the Filereadall and Filewriteall commands. The state
machine would then starts in its start state called STEP_START and would end when
it reaches its end state STEP_COMPLETED.

This is illustrated by state machine figures, which are structured as follows: Arrows
show possible transitions between the individual states. The arrow without a
previous state signifies the start state, which is called STEP_START. The end state
is called STEP_COMPLETED and illustrated with a darker background color. The
separated area called Direct signifies a nested state machine, that is, the existing
Direct state machine is executed in the context of the Two-Phase state machine.
This can be used to avoid duplicating existing functionality.

Read

Figure 5.1 (page 56) shows the corresponding state machine for the Two-Phase
implementation of the Filereadall command, followed by a description of the
state machine’s individual states.

3For more information about state machines, see http://en.wikipedia.org/wiki/
Finite-state_machine.

– 55 –

http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Finite-state_machine

CHAPTER 5. IMPLEMENTATION

Direct

STEP_START

STEP_COMPLETED

SEND_REQUEST

TWO_PHASE_RECV

TWO_PHASE

CHECK_TWO_PHASE

Figure 5.1: Two-Phase Read State Machine

STEP_START The purpose of this state is to synchronize all participating clients
and set up all required data structures. For more information, see section 5.3
(page 51).

CHECK_TWO_PHASE This state is used to check whether the Two-Phase protocol
should be used at all. The current way of doing this is to check whether the ac-
cesses of the participating clients overlap. Obviously, this requires communication
between the clients to exchange their accesses. If they do not, the Two-Phase
protocol is not used and a transition to SEND_REQUEST of the Direct state machine
is performed, which simply uses individual I/O operations. Otherwise a transition
to TWO_PHASE is done.

TWO_PHASE This state is used to determine the file region to read. This is done
by using the minimum and maximum offsets and reading everything in between.
The resulting file region is then distributed evenly across all clients — each client
is then responsible for a so-called file domain. Each client then reads as much
data as possible — this is limited by an internal Two-Phase buffer size. All clients
also tell other clients which data they need from their respective file domains. If
there is data remaining to be read a transition to TWO_PHASE_RECV is performed.
Otherwise a transition to STEP_COMPLETED is done and the meta information for
this operation is cleaned up.

TWO_PHASE_RECV In this state clients have received the data from their respec-
tive file domains. Requested data is then distributed to all other clients, which

– 56 –

CHAPTER 5. IMPLEMENTATION

requested it in the previous state. A transition to TWO_PHASE is performed.

STEP_COMPLETED This state signals the end of the state machine. All data is read
and the Filereadall command is completed.

In the Direct implementation of the Filereadall command each client internally
uses individual I/O calls to read their requested data. This implementation is used
when the CHECK_TWO_PHASE state determines that the Two-Phase protocol should
not be used.

The states of the Direct state machine are as follows:

SEND_REQUEST In this state each client requests the needed data directly from the
involved servers. A transition to STEP_COMPLETED is performed.

Write

Figure 5.2 shows the corresponding state machine for the Two-Phase implemen-
tation of the Filewriteall command, followed by a description of the state ma-
chine’s individual states.

Direct

STEP_START

STEP_COMPLETED

SEND_REQUEST

RECV_ACK

UPDATE_SIZE

TWO_PHASE_SEND

TWO_PHASE_WRITETWO_PHASE

CHECK_TWO_PHASE

TWO_PHASE_UPDATE

Figure 5.2: Two-Phase Write State Machine

– 57 –

CHAPTER 5. IMPLEMENTATION

STEP_START The purpose of this state is to synchronize all participating clients
and set up all required data structures. For more information, see section 5.3
(page 51).

CHECK_TWO_PHASE This state is used to check whether the Two-Phase protocol
should be used at all. The current way of doing this is to check whether the ac-
cesses of the participating clients overlap. Obviously, this requires communication
between the clients to exchange their accesses. If they do not, the Two-Phase
protocol is not used and a transition to SEND_REQUEST of the Direct state machine
is performed, which simply uses individual I/O operations. Otherwise a transition
to TWO_PHASE is done.

TWO_PHASE This state is used to determine the file region to write. This is done
by using the minimum and maximum offsets. The resulting file region is then
distributed evenly across all clients — each client is then responsible for a so-called
file domain. Each client then sends as much of their data as possible to the owners
of the respective file domains — this is limited by an internal Two-Phase buffer
size. If there is data remaining to be written a transition to TWO_PHASE_SEND is
performed. Otherwise a transition to TWO_PHASE_UPDATE is done.

TWO_PHASE_SEND In this state all file domain owners have received the data to
write from the other clients and start write operations on the involved servers. If
there is no data to be written a transition to TWO_PHASE is performed. Otherwise a
transition to TWO_PHASE_WRITE is done.

TWO_PHASE_WRITE In this state the servers are ready to receive the file data.
Therefore, the actual file data is transferred to them. A transition to TWO_PHASE is
performed.

TWO_PHASE_UPDATE This state is used to update the file size. Additionally, the
meta information for this operation is cleaned up. A transition to STEP_COMPLETED
is performed.

STEP_COMPLETED This state signals the end of the state machine. All data is
written and the Filewriteall command is completed.

In the Direct implementation of the Filewriteall command each client internally
uses individual I/O calls to write their data. This implementation is used when
the CHECK_TWO_PHASE state determines that the Two-Phase protocol should not be
used.

The states of the Direct state machine are as follows:

– 58 –

CHAPTER 5. IMPLEMENTATION

SEND_REQUEST In this state each client starts a write operation directly on the
involved servers. A transition to RECV_ACK is performed.

RECV_ACK In this state the servers are ready to receive the file data. Each client
transfers the file data directly to them. A transition to UPDATE_SIZE is performed.

UPDATE_SIZE This state is used to update the file size. A transition to STEP_-
COMPLETED is performed.

5.3.2 Interleaved Two-Phase

The implementation of the Interleaved Two-Phase protocol is a slight modification of
the original Two-Phase protocol’s implementation as described in subsection 4.3.1
(page 35). In fact, the steps performed in the process() method are the same and
therefore figures 5.1 (page 56) and 5.2 (page 57) also apply for the Interleaved
Two-Phase protocol. For simplicity’s sake only the differences between the two
implementations are described here.

Read

TWO_PHASE This state is used to determine the file region to read. This is done
by using the minimum and maximum offsets and reading everything in between.
The resulting file region is then partitioned into equally sized chunks — the size
of the chunks is determined by the Two-Phase buffer size. Each client is then
responsible for exactly one chunk and reads it. All clients also tell other clients
which data they need from their respective chunks. If there are chunks remaining
to be read a transition to TWO_PHASE_RECV is performed. Otherwise a transition to
STEP_COMPLETED is done and the meta information for this operation is cleaned up.

TWO_PHASE_RECV In this state clients have received the data from their respective
chunks. Requested data is then distributed to all other clients, which requested it
in the previous state. A transition to TWO_PHASE is performed.

Write

TWO_PHASE This state is used to determine the file region to write. This is done
by using the minimum and maximum offsets. The resulting file region is then
partitioned into equally sized chunks — the size of the chunks is determined by the
Two-Phase buffer size. Each client then sends as much of their data as possible
to the owners of the respective chunks. If there are chunks remaining to be
written a transition to TWO_PHASE_SEND is performed. Otherwise a transition to
TWO_PHASE_UPDATE is done.

– 59 –

CHAPTER 5. IMPLEMENTATION

TWO_PHASE_SEND In this state all chunk owners have received the data to write
from the other clients and start write operations on the involved servers. If there
is no data to be written a transition to TWO_PHASE is performed. Otherwise a
transition to TWO_PHASE_WRITE is done.

Summary

PIOsimHD-Model and PIOsimHD-Simulator allow the implementation of arbitrary
components and commands. Components are used to model real-life hardware
components, while commands are used to model MPI commands. It is possible
to provide multiple variant implementations for both components and commands.
Server-Directed I/O is implemented as a cache layer in PIOsimHD-Model and
PIOsimHD-Simulator. It supports delayed writes to allow more extensive opti-
mization of outstanding I/O operations. The Two-Phase protocol as well as the
Interleaved Two-Phase protocol are implemented as commands in PIOsimHD-Model
and PIOsimHD-Simulator. They contain a framework to manage meta information
for collective I/O.

– 60 –

Chapter 6

Evaluation

This chapter gives an overview of the used benchmarks — both synthetic and real-
life — and presents the results obtained with them. The main goal is to determine
how client-side and server-side optimizations compare and interact with each other.
The synthetic benchmarks consist of tests using random I/O, individual I/O and
collective I/O. Additionally, a test designed to simulate database access patterns is
used. A parallel partial differential equation solver called partdiff-par is used as
a real-life benchmark.

6.1 Environment

It is important to note that all results mentioned in this chapter are measured
in a simulated cluster environment within PIOsimHD-Simulator. The following
describes how this cluster environment is configured.

6.1.1 Cluster Configuration

All synthetic benchmarks — that is, the random I/O test, the individual I/O tests
and the collective I/O tests — used in this evaluation use a standardized cluster
configuration to be able to compare the different tests. For an overview of the
components below refer to subsection 3.1.1 (page 22).

The cluster is made up of twenty Nodes. Ten of these Nodes are used as clients,
while the other ten are used as servers. Each Node has one CPU, 1 000 MiB of
RAM and a 1 GBits/s Ethernet NIC. The CPUs can calculate 1 000 000 IPS1 and
have an internal data transfer speed of 1 000 MiB/s. The NICs can transfer up to
100 MiB/s and have a latency of 200 µs. All Nodes are connected to one Switch with
a maximum bandwidth of 1 000 MiB/s. Additionally, each Node’s I/O Subsystem
consists of one HDD with a transfer rate of 50 MiB/s and 7 200 RPM. The HDDs have
an average seek time of 10 ms and a track-to-track seek time of 1 ms. Whenever

1Instructions per Second

– 61 –

CHAPTER 6. EVALUATION

two subsequent accesses are not more than 5 MiB apart the HDD has to perform a
track-to-track seek. Otherwise an average seek has to be performed.

The clients’ data is striped across the servers with a simple round-robin scheme
that works like RAID2-0. The striping size is set to 64 KiB, which corresponds to
PVFS’s default striping size.

The Cache Layer is varied to compare the NoCache, SimpleWriteBehindCache, Ag-
gregationCache and ServerDirectedIO cache layers. No Cache Layer performs
any read-ahead or data sieving optimizations.

6.1.2 File Layout

All evaluated synthetic benchmarks — that is, the random I/O test, the individual
I/O tests and the collective I/O tests — use a standardized file layout to be able to
compare the different tests.

Figure 6.1 shows the file layout used for this evaluation. The file itself has a size of
1 000 MiB and is read or written by ten clients in iterations, advancing through the
file with each iteration. Each iteration consists of ten data blocks of the same size.
The size of the data blocks can be varied — the tests use data blocks of size 5 KiB,
50 KiB and 512 KiB. A data block size of 512 Bytes causes the simulation to take
too long and is therefore omitted. Each data block of an iteration is read or written
by a different client, as denoted by the client number within the data block. For
example, in each iteration block 1 is written by client 1, block 2 is written by client
2, and so on. The number of iterations is determined by the data block size. Each
client reads or writes one data block per iteration.

1 2 3 4 5 6 7 8 9 10Iteration 1

1 2 3 4 5 6 7 8 9 10Iteration 2

1 2 3 4 5 6 7 8 9 10Iteration 3

 ⁝ ⁝ ⁝

1 2 3 4 5 6 7 8 9 10Iteration n-2

1 2 3 4 5 6 7 8 9 10Iteration n-1

1 2 3 4 5 6 7 8 9 10Iteration n

Figure 6.1: File Layout

2Redundant Array of Inexpensive Disks or Redundant Array of Independent Disks

– 62 –

CHAPTER 6. EVALUATION

6.2 Performance Considerations

The cluster consists of ten clients and ten servers, each capable of transferring
100 MiB/s. Since the switch has a throughput of 1 000 MiB/s the clients can
communicate with the servers at full speed. However, the HDDs have a maximum
speed of 50 MiB/s, which limits the I/O performance. Therefore, the clients can
read or write at most 500 MiB/s from or to the file system served by the ten servers.
The clients do not perform any computation, therefore this amount of throughput
should be achievable. Additionally, all clients and servers have empty caches at the
beginning of each test, that is, all data must be read from the underlying storage
device. This means that read throughput can not exceed the above number.

The maximum throughput is lower when using the Two-Phase protocol, because it
introduces additional communication overhead between the clients. This problem
could be alleviated by using overlapping communication and I/O phases, but this is
currently not implemented.

PIOsimHD-Simulator splits up write operations into blocks of 100 KiB, which can
cause write performance to be worse than the read performance. This is due
to the fact that this splitting up causes more — and smaller — operations to be
performed when a non-optimizing cache layer is used. However, due to the fact
that write operations can be cached for an arbitrary time and then processed in
the background there is more room for optimization. Read operations need to
be processed as fast as possible, because the clients need the requested data to
continue operation. Therefore, when only performing a relatively small number
of read operations in parallel read performance is usually much lower than write
performance. When many read operations are batched together this gap between
read and write performance should shrink.

For a more in-depth analysis of performance factors in distributed systems see
[Kun07].

6.3 Random I/O Test

The random I/O test uses randomized individual I/O operations. Each client per-
forms a sequence of contiguous read or write operations in a randomized order. To
make the different runs of the tests comparable, the randomization is done with a
pre-defined random seed — that is, each run yields the same result. The read and
writes cases use the same random seeds.

To obtain meaningful results ten runs with different random seeds are performed
and the average values over these runs are used for comparison. The standard
deviation is not shown in the figures, because it is too small.

– 63 –

CHAPTER 6. EVALUATION

Each figure shows per-client throughput, that is, the maximum throughput is
50 MiB/s.

Figure 6.2a shows the results of the random I/O test when run with a data block
size of 5 KiB. In the read case, the NoCache and SimpleWriteBehindCache cache
layers have the same performance, because they do not perform any read opti-
mizations. The same is true for all the following tests. The AggregationCache
cache layer also delivers the same performance, even though it performs read
optimizations. The ServerDirectedIO cache layer is slightly faster. In the write
case, the SimpleWriteBehindCache cache layer increases the throughput slightly.
The AggregationCache and ServerDirectedIO cache layers increase throughput
by factors of 11 and 14 respectively.

Figure 6.2b (page 65) shows the results of the random I/O test when run with a
data block size of 50 KiB. In the read case, the ServerDirectedIO cache layer
again increases performance slightly. In the write case, the SimpleWriteBehind-
Cache cache layer increases throughput slightly when compared to the NoCache
cache layer. The AggregationCache and ServerDirectedIO cache layers increase
throughput by factors of 8 and 9 respectively.

Figure 6.2c (page 65) shows the results of the random I/O test when run with a data
block size of 512 KiB. In the read case, the ServerDirectedIO cache layer again
increases performance slightly. In the write case, the SimpleWriteBehindCache
cache layer does not improve performance at all when compared to the NoCache
cache layer. The AggregationCache cache layer increases throughput by a factor
of 6 while the ServerDirectedIO cache layer increases it by a factor of 7.

Read Write
0

1

2

3

4

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Figure 6.2: Random I/O Test

– 64 –

CHAPTER 6. EVALUATION

Read Write
0

5

10

15

20

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Read Write
0

5

10

15

20

25

30

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.2: Random I/O Test

Summary

Overall, the benefits provided by the read optimizations performed by the Aggre-
gationCache and ServerDirectedIO cache layers are limited. This is due to the
fact that at most ten operations can be combined per iteration. This happens very
rarely, because the accesses are spread randomly across the file. However, the
ServerDirectedIO cache layer provides slight performance improvements for all
block sizes. Improving and enabling the cache layer’s data sieving algorithm could
provide significant improvements for random read operations.

In the write case, the SimpleWriteBehindCache cache layer provides a slight
performance boost except for the largest data block size where it performs the same
as the NoCache cache layer. Both the AggregationCache and ServerDirectedIO
cache layers provide substantial performance improvements, regardless of the
data block size. However, a better speedup is achieved for small block sizes. The

– 65 –

CHAPTER 6. EVALUATION

ServerDirectedIO cache layer’s performance is always slightly better than the
AggregationCache cache layer’s performance.

The results look very much alike, regardless of the data block size. This is due to the
randomness of the test, which allows almost no optimizations of read operations.
Even though the write operations can be optimized better no test reaches the
maximum throughput of 50 MiB/s.

6.4 Individual I/O Test

The individual I/O test uses individual I/O operations, that is, each client reads
or writes its data blocks in an ascending order. A varying number of data blocks
are written with one operation. The contiguous test reads or writes only one data
block at a time, while the non-contiguous ones read or write multiple data blocks
per operation.

6.4.1 1 Data Block per Iteration

This test uses contiguous I/O, that is, only one data block is read or written per
iteration.

Figure 6.3a (page 67) shows the results of the individual I/O test when run with
a data block size of 5 KiB. In the read case, the AggregationCache cache layer
decreases performance slightly, while the ServerDirectedIO cache layer delivers
the same performance as the NoCache and SimpleWriteBehindCache cache layers.
This is due to the fact that — because of the striping size — only one server is
processing requests at any time. Additionally, the small data block size causes
some operations to be finished before the other clients’ operations arrive, which
makes merging operations impossible. In the write case, the SimpleWriteBehind-
Cache cache layer increases the throughput slightly. The AggregationCache and
ServerDirectedIO cache layers increase throughput by a factor of 7.

Figure 6.3b (page 67) shows the results of the individual I/O test when run with
a data block size of 50 KiB. In the read case, both the AggregationCache and
ServerDirectedIO cache layers increase performance slightly. This is due to the
fact that only one operation is performed on each server, which can not be opti-
mized significantly. In the write case, the SimpleWriteBehindCache cache layer
increases throughput only slightly, while the AggregationCache and ServerDi-
rectedIO cache layers increase it by a factor of 6.

Figure 6.3c (page 68) shows the results of the individual I/O test when run with a
data block size of 512 KiB. In the read case, the AggregationCache and ServerDi-
rectedIO cache layers increase performance tremendously. The Aggregation-

– 66 –

CHAPTER 6. EVALUATION

Cache cache layer increases throughput by factor of 2, while the ServerDirecte-
dIO cache layer increases it by a factor of 5. This is due to the fact that the larger
data block size causes more operations to be performed on each server, which can
then be optimized. In the write case, the SimpleWriteBehindCache cache layer
offers less improvement than in the previous tests. Both the AggregationCache
and ServerDirectedIO cache layers increases throughput by a factor of 5.

Read Write
0

1

2

3

4

5

6

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Read Write
0

5

10

15

20

25

30

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Figure 6.3: Individual I/O Test — 1 Data Block per Iteration

– 67 –

CHAPTER 6. EVALUATION

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.3: Individual I/O Test — 1 Data Block per Iteration

Summary

Overall, the benefits provided by the read optimizations performed by the Aggre-
gationCache and ServerDirectedIO cache layers are very dependent on the data
block size. There are almost no gains for the smaller data block sizes of 5 and
50 KiB, while a data block size of 512 KiB makes possible tremendous speedups.
Preliminary results show that more speedup is also possible for smaller data block
sizes when using 100 clients. This is due to the fact that this also increases
the amount of concurrent operations, which allows better optimizations to be
performed.

In the write case, the SimpleWriteBehindCache cache layer provides only a slight
performance boost. Both the AggregationCache and ServerDirectedIO cache
layers provide substantial performance improvements, regardless of the data block
size.

The ServerDirectedIO cache layer almost reaches the maximum throughput of
50 MiB/s for both read and write operations when using a data block size of 512 KiB.

6.4.2 100 Data Blocks per Iteration

This test uses non-contiguous I/O, that is, 100 data blocks are read or written per
iteration. This gives more I/O-related information to the cache layers than in the
previous test and allows them to optimize accesses better.

Figure 6.4a (page 69) shows the results of the individual I/O test when run with
a data block size of 5 KiB. In the read case, the AggregationCache cache layer
improves performance by a factor of 12, while the ServerDirectedIO cache layer

– 68 –

CHAPTER 6. EVALUATION

improves it by a factor of 18. In the write case, both the AggregationCache and
ServerDirectedIO cache layers increase throughput by a factor of 58.

Figure 6.4b shows the results of the individual I/O test when run with a data block
size of 50 KiB. In the read case, the AggregationCache cache layer increases
performance by a factor of 7, while the ServerDirectedIO cache layer performs
slightly worse. In the write case, the AggregationCache and ServerDirectedIO
cache layers increase throughput by a factor of 11.

Figure 6.4c (page 70) shows the results of the individual I/O test when run with
a data block size of 512 KiB. In the read case, the AggregationCache cache
layer increases performance by a factor of 5, while the ServerDirectedIO cache
layer performs slightly worse. In the write case, the AggregationCache and
ServerDirectedIO cache layers increase throughput by a factor of 7.5.

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Figure 6.4: Individual I/O Test — 100 Data Blocks per Iteration

– 69 –

CHAPTER 6. EVALUATION

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.4: Individual I/O Test — 100 Data Blocks per Iteration

Summary

Overall, the benefits provided by the read optimizations performed by the Aggre-
gationCache and ServerDirectedIO cache layers are very dependent on the data
block size. However, due to the batching of 100 operations the results are 5 to 15
times better than in the contiguous case. The only exception is the test with a data
block size of 512 KiB/s.

In the write case, the SimpleWriteBehindCache cache layer provides no perfor-
mance boost at all. Both the AggregationCache and ServerDirectedIO cache
layers provide substantial performance improvements, regardless of the data block
size.

Both the AggregationCache and ServerDirectedIO cache layers reach the max-
imum throughput of 50 MiB/s for write operations regardless of the data block
size.

6.4.3 All Data Blocks per Iteration

This test uses non-contiguous I/O, that is, all data blocks are read or written in one
iteration. This gives all I/O-related information to the cache layers and allows them
to optimize accesses better.

Figure 6.5a (page 71) shows the results of the individual I/O test when run with
a data block size of 5 KiB. In the read case, both the AggregationCache and
ServerDirectedIO cache layers improve performance by a factor of 55. The
ServerDirectedIO cache layer performs slightly worse than the Aggregation-
Cache one. In the write case, both the AggregationCache and ServerDirectedIO
cache layers increase throughput by a factor of 60.

– 70 –

CHAPTER 6. EVALUATION

Figure 6.5b (page 71) shows the results of the individual I/O test when run with
a data block size of 50 KiB. In the read case, both the AggregationCache and
ServerDirectedIO cache layers improve performance by a factor of 10.5. The
ServerDirectedIO cache layer performs slightly worse than the Aggregation-
Cache one. In the write case, both the AggregationCache and ServerDirectedIO
cache layers increase throughput by a factor of 13.

Figure 6.5c (page 72) shows the results of the individual I/O test when run with a
data block size of 512 KiB. In the read case, both the AggregationCache and
ServerDirectedIO cache layers improve performance by a factor of 5. The
ServerDirectedIO cache layer performs slightly worse than the Aggregation-
Cache one. In the write case, both the AggregationCache and ServerDirectedIO
cache layers increase throughput by a factor of 7.5.

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Figure 6.5: Individual I/O Test — All Data Blocks per Iteration

– 71 –

CHAPTER 6. EVALUATION

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.5: Individual I/O Test — All Data Blocks per Iteration

Summary

In the read case, both the AggregationCache and ServerDirectedIO cache layers
provide substantial performance improvements, regardless of the data block size.

In the write case, the SimpleWriteBehindCache cache layer provides no perfor-
mance boost at all. Both the AggregationCache and ServerDirectedIO cache
layers provide substantial performance improvements, regardless of the data block
size.

Both the AggregationCache and ServerDirectedIO cache layers reach the maxi-
mum throughput of 50 MiB/s for write operations regardless of the data block size.
For read operations the throughput is slightly worse, but still unaffected by the
data block size.

6.5 Collective I/O Test

The collective I/O test uses collective I/O operations. Each clients performs only
one collective read or write operation, accessing all data blocks at once. It is done
this way to ensure that the Two-Phase algorithm needs to do actual work.

6.5.1 Two-Phase

Due to each client performing only one collective read or write operation, each
client is responsible for a contiguous region of data blocks. In the read case each
clients reads its data blocks from disk — or rather as many data blocks as fit
into the Two-Phase buffer — and then sends the data blocks to the corresponding

– 72 –

CHAPTER 6. EVALUATION

clients. In the write case all clients send their data blocks to the corresponding
client which in turn writes them to disk.

The main question is which throughput the collective I/O operations can deliver with
optimizing cache layers — that is, the AggregationCache and ServerDirectedIO
cache layers.

Figure 6.6a shows the results of the collective I/O test when run with a data block
size of 5 KiB using the original Two-Phase protocol. In the read case, all cache
layers deliver the same performance, except for the ServerDirectedIO cache layer,
which performs slightly worse. They reach a throughput of about 17 MiB/s. In the
write case, both the AggregationCache and ServerDirectedIO cache layers do
not reach the maximum throughput of 50 MiB/s. This is due to the fact that the Two-
Phase protocol introduces additional network overhead. The ServerDirectedIO
cache layer performs slightly worse than the AggregationCache one. Both reach a
throughput of about 36 MiB/s.

Figure 6.6b (page 74) shows the results of the collective I/O test when run with a
data block size of 50 KiB using the original Two-Phase protocol. The figure basically
looks like the previous one, with the exception of increased write performance for
the non-optimizing cache layers. This is due to the larger data block size. However,
the ServerDirectedIO cache layer performs worse than in figure 6.6a.

Figure 6.6c (page 74) shows the results of the collective I/O test when run with
a data block size of 512 KiB using the original Two-Phase protocol. The figure
basically looks like the previous one, with the exception of increased write perfor-
mance for the non-optimizing cache layers. This is due to the larger data block size.
However, the ServerDirectedIO cache layer performs worse than in figure 6.6b
(page 74).

Read Write
0

10

20

30

40

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Figure 6.6: Two-Phase I/O Test

– 73 –

CHAPTER 6. EVALUATION

Read Write
0

10

20

30

40

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Read Write
0

10

20

30

40

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.6: Two-Phase I/O Test

Summary

In the read case, all cache layers provide the same performance. The throughput
is about 16.5 MiB/s, which is significantly worse and not even half the performance
delivered in the individual I/O test.

In the write case, the performance of the non-optimizing cache layers — that is,
the NoCache and SimpleWriteBehindCache cache layers — is not as good as it
could be, because the current Two-Phase implementation issues too many sep-
arate I/O requests instead of combining them. Both the AggregationCache and
SimpleWriteBehindCache cache layers provide a throughput of about 35 MiB/s.
This is higher than the throughput in the read case, because the servers perform
write-behind. This allows overlapping the Two-Phase communication with actual
I/O on the servers. However, the maximum throughput of 50 MiB/s is still not
reached.

– 74 –

CHAPTER 6. EVALUATION

6.5.2 Interleaved Two-Phase

This test uses the Interleaved Two-Phase protocol. In the read case each clients
reads as many data blocks as fit into the Two-Phase buffer and then sends the data
blocks to the corresponding clients. In the write case all clients send their data
blocks to the corresponding client which in turn writes them to disk.

The main question is how the Interleaved Two-Phase protocol compares to the
original Two-Phase protocol and whether any performance gains are possible.

Figure 6.7a (page 76) shows the results of the collective I/O test when run with
a data block size of 5 KiB using the Interleaved Two-Phase protocol. In the read
case, both the AggregationCache and ServerDirectedIO cache layers improve
performance slightly. This is due to the fact that the Interleaved Two-Phase
protocol uses a contiguous access pattern which can be optimized better. They
reach throughputs of about 21.5 MiB/s and 24 MiB/s respectively. In the write
case, both the AggregationCache and ServerDirectedIO cache layers do not
reach the maximum throughput of 50 MiB/s, if even by a small amount. This
is due to the fact that the Two-Phase protocol introduces additional network
overhead. The ServerDirectedIO cache layer performs slightly better than the
AggregationCache one. Both reach a throughput of about 45 MiB/s.

Figure 6.7b (page 76) shows the results of the collective I/O test when run with
a data block size of 50 KiB using the Interleaved Two-Phase protocol. The figure
basically looks like the previous one, with the exception of increased write perfor-
mance for the non-optimizing cache layers. This is due to the larger data block size.
However, in the read case, the ServerDirectedIO cache layer performs slightly
worse than the AggregationCache this time.

Figure 6.7c (page 76) shows the results of the collective I/O test when run with
a data block size of 512 KiB using the Interleaved Two-Phase protocol. The fig-
ure basically looks like the previous one, with the exception of increased write
performance for the non-optimizing cache layers. This is due to the larger data
block size. Additionally, both the AggregationCache and ServerDirectedIO cache
layers’ read performance is worse than in the previous cases.

– 75 –

CHAPTER 6. EVALUATION

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 5 KiB Data Blocks

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 50 KiB Data Blocks

Read Write
0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) 512 KiB Data Blocks

Figure 6.7: Interleaved Two-Phase I/O Test

– 76 –

CHAPTER 6. EVALUATION

Summary

In the read case, slight performance improvements are possible with both the
AggregationCache and ServerDirectedIO cache layers. The throughput is about
24 MiB/s, which is significantly worse and about half the performance delivered in
the individual I/O test. This results is better than the one obtained with the original
Two-Phase protocol.

In the write case, the Interleaved Two-Phase protocol suffers from the same
problem as the original one when using non-optimizing cache layers. Both the
AggregationCache and SimpleWriteBehindCache cache layers provide a through-
put of about 45 MiB/s. This is higher than the throughput in the read case, because
the servers perform write-behind. This allows overlapping the Two-Phase commu-
nication with actual I/O on the servers. Even though the maximum throughput of
50 MiB/s is still not reached this result is better than the one obtained with the
original Two-Phase protocol.

The Interleaved Two-Phase protocol delivers a better performance than the original
one in all cases. This is due to the changes done to the access pattern used
internally. Since the Interleaved Two-Phase protocol keeps accesses contiguous
the cache layers can optimize the accesses better. For a visualization of the inner
workings of the Interleaved Two-Phase protocol refer to section 7.2 (page 92).

6.6 Individual and Collective I/O Comparison

The following figures give an overview of the results obtained so far. The results
are summarizes and compared with each other.

Figure 6.8a (page 78) shows all results obtained for read operations with a data
block size of 5 KiB. As can be seen, performance suffers when using non-optimizing
cache layers or too few operations per iteration. Batching operations results in
performance gains. However, the maximum performance is only obtained when
batching all operations. This is due to the fact that read operations must be
processed when the clients request them and can not be postponed. Individual I/O
operations with the AggregationCache and ServerDirectedIO cache layers beat
both Two-Phase implementations.

Figure 6.8b (page 78) shows all results obtained for write operations with a data
block size of 5 KiB. As can be seen, performance suffers when using non-optimizing
cache layers or too few operations per iteration. In contrast to read operations less
batching is required to obtain the maximum performance. This is due to the fact
that write operations can be postponed and processed in the background. The Two-
Phase implementations do not perform well when used with non-optimizing cache
layers, because write operations are not performed in large contiguous regions

– 77 –

CHAPTER 6. EVALUATION

internally — in contrast to the read case. However, this is a minor implementation
detail and even using the optimizing cache layers delivers worse performance than
the test with individual I/O operations.

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) Read Tests

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) Write Tests

Figure 6.8: Summary — 5 KiB Data Blocks

Figure 6.9a (page 79) shows all results obtained for read operations with a data
block size of 50 KiB. The results look like the ones in figure 6.8a except for the fact
that better performance is achieved when using non-optimizing cache layers. This
is due to the larger data block size.

Figure 6.9b (page 79) shows all results obtained for write operations with a data
block size of 50 KiB. The results look like the ones in figure 6.8b except for the fact
that better performance is achieved when using non-optimizing cache layers. This
is due to the larger data block size.

– 78 –

CHAPTER 6. EVALUATION

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) Read Tests

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) Write Tests

Figure 6.9: Summary — 50 KiB Data Blocks

Figure 6.10a (page 80) shows all results obtained for read operations with a data
block size of 512 KiB. The results look like the ones in figure 6.9a except for the
higher performance with non-optimizing cache layers, which is due to the larger
data block size. The ServerDirectedIO cache layer almost delivers the maximum
performance in all tests using individual I/O operations.

Figure 6.10b (page 80) shows all results obtained for write operations with a
data block size of 512 KiB. The results look like the ones in figure 6.9b except
for the higher performance with non-optimizing cache layers, which is due to the
larger data block size. The ServerDirectedIO cache layer delivers the maximum
performance in all tests using individual I/O operations.

– 79 –

CHAPTER 6. EVALUATION

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) Read Tests

Individual
Individual (100)

Individual (All)
Two-Phase

Interleaved Two-Phase

0

10

20

30

40

50

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) Write Tests

Figure 6.10: Summary — 512 KiB Data Blocks

In conclusion, it is easy to see that the server-side optimizations deliver better
performance than the client-side optimizations in all cases. Apart from that, the
Interleaved Two-Phase protocol clearly outperforms its unmodified version, if even
by a relatively small amount. However, to obtain satisfactory performance it is
necessary to batch operations or use large operations. Batching operations is
only necessary when using small operations, while large operations deliver good
performance even when performed individually.

6.7 Database I/O Test

The database I/O tests simulates the load concurrent clients put on a database.
It does not use the file layout specified in 6.1.2 (page 62). The test uses ten files
that are each 1 250 000 KiB in size. Each client performs ten iterations and uses a
data block size of 512 Bytes. In each iteration 1 250 KiB of data are accessed. In

– 80 –

CHAPTER 6. EVALUATION

total, the clients access 125 000 KiB of data, that is, 1% of the total amount of data.
Accesses are performed in blocks. Each block starts at a random offset and has a
random size of at most 50 KiB. To make the different runs of the tests comparable,
the randomization is done with a pre-defined random seed. All cases use the same
random seeds. The database I/O test consists of cases for read-only, write-only and
read-write accesses.

To obtain meaningful results ten runs with different random seeds are performed
and the average values over these runs are used for comparison. The standard
deviation is not shown in the figures, because it is too small.

Figure 6.11a (page 82) shows the results of the database I/O test when run with a
data block size of 512 Bytes using contiguous I/O operations. The Aggregation-
Cache cache layer also delivers the same performance, even though it performs
read optimizations. The ServerDirectedIO cache layer is slightly slower. In the
write and read-write cases, the SimpleWriteBehindCache and AggregationCache
cache layers increase the throughput slightly. The ServerDirectedIO cache layer
increases throughput further, if even by a small amount in the read-write case.

Figure 6.11b (page 82) shows the results of the random I/O test when run with
a data block size of 512 Bytes using non-contiguous I/O operations to batch ten
operations. In the read case, the ServerDirectedIO cache layer again decreases
performance slightly. In the write and read-write cases, the SimpleWriteBe-
hindCache and AggregationCache cache layers increase throughput slightly. The
ServerDirectedIO cache layer increases throughput further.

Figure 6.11c (page 82) shows the results of the database I/O test when run with
a data block size of 512 Bytes using non-contiguous I/O operations to batch all
operations. In the read case, only the ServerDirectedIO cache layer again in-
creases performance slightly. In the write case, the SimpleWriteBehindCache
cache layer does not improve performance at all when compared to the NoCache
cache layer. The AggregationCache and ServerDirectedIO cache layers both
increase throughput slightly with the ServerDirectedIO cache layer being some-
what faster.

– 81 –

CHAPTER 6. EVALUATION

Read Write Read-Write
0

0,5

1

1,5

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(a) 1 Data Block per Iteration

Read Write Read-Write
0

2

4

6

8

10

12

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(b) 10 Data Blocks per Iteration

Read Write Read-Write
0

2

4

6

8

10

12

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

(c) All Data Blocks per Iteration

Figure 6.11: Database I/O Test

– 82 –

CHAPTER 6. EVALUATION

Summary

Overall, the benefits provided by the read optimizations performed by the Aggrega-
tionCache and ServerDirectedIO cache layers are limited. Batching operations
does not significantly change this. This is due to the fact that the read operations
are spread randomly across the file.

In the write and read-write cases, the SimpleWriteBehindCache cache layer pro-
vides a slight performance boost except when all operations are performed as a sin-
gle non-contiguous I/O operation. Both the AggregationCache and ServerDirecte-
dIO cache layers provide substantial performance improvements. The ServerDi-
rectedIO cache layer’s performance is always slightly better than the Aggrega-
tionCache cache layer’s performance.

6.8 Parallel Partial Differential Equation Solver

partdiff-par is a parallel partial differential equation solver using the Jacobi
method. It uses MPI to parallelize the computation. Additionally, MPI-IO is used to
write periodic checkpoints, which allow resuming the computation. A visualization
file can be used to observe the convergence behavior during the application’s
runtime. Consequently, this application only performs write operations.

The partdiff-par application is used as a real-life benchmark to evaluate the
different cache layers. For this purpose it was traced using the PIOsimHD frame-
work using the included versions of MPICH2 and PVFS. The evaluation is done
with five application processes and five file servers. The real application has a
runtime of about 3.99 s. However, this runtime can not be directly compared to the
simulated results, because of differences between the real and simulated hardware
environment.

The results below show the application’s runtime with varying cache layers. Ad-
ditionally, internal statistics of the cache layers are presented. For example, the
total number of I/O operations (Accesses) is shown. These operations are split up
into operations that do not require any seeks at all (No Seek), operations that only
require fast seeks — that is, track-to-track seeks — (Fast) and operations that do
require slow seeks — that is, average seeks — (Slow). The total amount of data
accessed per server is also shown.

6.8.1 No Cache

Table 6.1 (page 84) shows the results obtained when using no cache layer. Apart
from the application’s runtime one of the most interesting statistics is the number
of I/O operations. Since this test uses no cache layer at all, no merging of operations

– 83 –

CHAPTER 6. EVALUATION

can occur. Therefore, the number of operations in this test are suited perfectly to
be used as a basis for comparison with the other cache layers.

Server Accesses No Seek Fast Slow Amount of Data

Server 1 615 14 539 62 52 494 376 Bytes
Server 2 612 11 540 61 52 494 380 Bytes
Server 3 611 23 527 61 52 494 376 Bytes
Server 4 612 29 522 61 49 217 576 Bytes
Server 5 658 63 535 60 55 415 736 Bytes

Time 8.04 s

Table 6.1: partdiff-par — No Cache

6.8.2 Simple Write-Behind Cache

Table 6.2 shows the results obtained when using the simple write-behind cache
layer. This cache layer already decreases the application’s runtime significantly.
However, the total number of I/O operations basically stays the same, because this
cache layer does not perform explicit merging of operations.

Server Accesses No Seek Fast Slow Amount of Data

Server 1 599 1 536 62 52 494 376 Bytes
Server 2 592 0 544 61 52 494 380 Bytes
Server 3 588 0 524 61 52 494 376 Bytes
Server 4 601 0 540 61 49 217 576 Bytes
Server 5 622 0 564 60 55 415 736 Bytes

Time 4.92 s

Table 6.2: partdiff-par — Simple Write-Behind Cache

6.8.3 Aggregation Cache

Table 6.3 (page 85) shows the results obtained when using the aggregation cache
layer. This cache layers decreases the application’s runtime again, but not as
drastically as the simple write-behind cache layer. However, the number of total
I/O operations decreases significantly. This is due to the fact that this cache layer
performs explicit merging of operations.

– 84 –

CHAPTER 6. EVALUATION

Server Accesses No Seek Fast Slow Amount of Data

Server 1 146 21 63 62 52 494 376 Bytes
Server 2 135 38 36 61 52 494 380 Bytes
Server 3 121 50 10 61 52 494 376 Bytes
Server 4 123 50 11 61 49 217 576 Bytes
Server 5 129 41 28 60 55 415 736 Bytes

Time 3.00 s

Table 6.3: partdiff-par — Aggregation Cache

6.8.4 Server-Directed I/O

The Server-Directed I/O cache layer is the only cache layer with a differing total
amount of data access per server. This is due to the fact that this cache layer
does not keep duplicate data in its internal queue for write operations. Whenever
a newly arrived operation overwrites old data, this old data is purged from the
queue. The partdiff-par application overwrites part of its visualization file in
each iteration. This is the reason for the decreased amount of data.

Without Delayed Writes

Table 6.4 shows the results obtained when using the Server-Directed I/O cache
layer without delayed writes. This cache layer does not decrease the application’s
runtime. The reason for this is the fact that application runtime is dominated by
its computation in this case. This is analyzed in detail in section 7.1 (page 88).
However, the total number of operations is decreased slightly.

Server Accesses No Seek Fast Slow Amount of Data

Server 1 142 51 29 62 52 494 336 Bytes
Server 2 118 50 7 61 52 494 336 Bytes
Server 3 111 50 0 61 52 494 336 Bytes
Server 4 112 50 1 61 49 217 536 Bytes
Server 5 121 50 11 60 55 415 700 Bytes

Time 3.00 s

Table 6.4: partdiff-par — Server-Directed I/O (Without Delayed Writes)

– 85 –

CHAPTER 6. EVALUATION

With Delayed Writes

Table 6.5 (page 86) shows the results obtained when using the Server-Directed
I/O cache layer with delayed writes. As can be seen, delayed writes significantly
decrease the number of total operations. This is due to the fact that the write
operations are held in memory for a longer time period, which makes it possible to
merge more of these operations. Even though delayed writes do not decrease the
execution time of the partdiff-par application the reduction of write operations
can have advantageous effects in larger systems. For example, NCQ provides an
operation queue which is used to speed up disk accesses3. However, this queue is
limited to 32 entries. Therefore, reducing the number of operations can increase
performance by allowing the underlying storage device to perform additional
optimizations.

Server Accesses No Seek Fast Slow Amount of Data

Server 1 61 7 2 52 52 494 336 Bytes
Server 2 63 6 4 53 52 494 336 Bytes
Server 3 59 6 0 53 52 494 336 Bytes
Server 4 60 7 1 52 49 217 536 Bytes
Server 5 64 7 4 53 55 415 700 Bytes

Time 3.00 s

Table 6.5: partdiff-par — Server-Directed I/O (With Delayed Writes)

6.8.5 Cache Layer Comparison

Figure 6.12 (page 87) gives an overview of the results obtained with the partdiff-
par application when simulated with the various cache layers. As can be seen,
the SimpleWriteBehindCache improves performance by a factor of 1.6. Both the
AggregationCache and ServerDirectedIO cache layers improve performance by
a factor of 2.7. No further improvements are possible, because the partdiff-par
application’s runtime is already dominated by computation when using these cache
layers. Due to the additional computation and communication overhead the overall
throughput is lower than in the previous tests. For a visualization of these results
see section 7.2 (page 92).

3For more information see http://en.wikipedia.org/wiki/Native_Command_Queuing.

– 86 –

http://en.wikipedia.org/wiki/Native_Command_Queuing

CHAPTER 6. EVALUATION

Write
0

5

10

15

20

No Cache Simple Write-
Behind Cache

Aggregation
Cache

Server-Directed
I/O

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Figure 6.12: partdiff-par — Cache Layer Comparison

Summary

Random I/O operations are hard to optimize, because it is rarely possible to merge
those operations. The results obtained in this chapter show that the server-side
optimizations deliver better performance than the client-side optimizations in
all tested cases. The Interleaved Two-Phase protocol outperforms the original
Two-Phase protocol, if even by a relatively small amount. Obtaining satisfactory
performance is possible by either batching smaller operations or using larger
operations. Delayed writes can be used to reduce the number of I/O operations the
I/O subsystem has to perform.

– 87 –

Chapter 7

Visualization

This chapter presents the possibility to visualize application traces with HDSun-
shot. Traces generated by the partdiff-par benchmark and collective I/O test
from chapter 6 (page 61) are used as examples. Traces of a real partdiff-par
application run and its simulated counterpart are compared. The simulated ap-
plication run uses different cache layers to show their effects on the underlying
I/O subsystem. Additionally, the traces of the collective I/O test are shown to
demonstrate the Interleaved Two-Phase protocol.

7.1 Parallel Partial Differential Equation Solver

The partdiff-par application from section 6.8 (page 83) is used to demonstrate
PIOsimHD’s ability to compare traces of real-life applications with those of sim-
ulated applications. Additionally, the simulated partdiff-par application is run
with varying cache layers to visualize their effects on the application’s behavior
and runtime.

7.1.1 Real Application Run

Figure 7.1 (page 89) shows the traces of the real partdiff-par application visual-
ized with HDSunshot. The figure contains a screenshot of just the timeline window,
all other parts of HDSunshot are excluded to save space. The five timelines rep-
resent the five clients executing the partdiff-par application. The PVFS servers
are not traced and are therefore not available in this figure. Each timeline contains
a multitude of blocks that represent the different operations the clients perform
internally. The colors on the client timelines have the following meanings:

• Yellow: The clients communicate with each other.

• Orange: The clients perform an I/O operation.

– 88 –

CHAPTER 7. VISUALIZATION

Figure 7.1: Real Application Run

7.1.2 Simulated Application Run

The following figures show the visualized traces of a simulated run of the partdiff-
par application. The figures themselves are structured as follows: The first five
timelines show the clients’ activities, while the last five timelines show the servers’
activities. The colors on the client timelines have the following meanings:

• Turquoise: The clients communicate with each other.

• Blue: The clients perform an I/O operation.

The colors on the server timelines have the following meanings:

• Green: The I/O subsystem performed an I/O operation without seeking.

• Yellow: The I/O subsystem performed an I/O operation with a fast seek.

• Red: The I/O subsystem performed an I/O operation with a slow seek.

More information about the different operation types can be found in subsec-
tion 6.1.1 (page 61).

No Cache

Figure 7.2 (page 90) shows the visualized traces of the simulated partdiff-par
application as simulated with the NoCache cache layer. Since no caching is used the
clients have to wait for each write operation to finish before continuing. Therefore,
the client timelines contain many long write operations. The server timelines
contain many write operations with relatively large gaps between them. This is
due to the fact that there are no cached operations that could be executed while
the clients are computing.

– 89 –

CHAPTER 7. VISUALIZATION

Figure 7.2: Simulated Application Run — No Cache

Simple Write-Behind Cache

Figure 7.3 shows the visualized traces of the simulated partdiff-par application
as simulated with the SimpleWriteBehindCache cache layer. The clients do not
have to wait for the actual write operations to finish before continuing and can
compute without interruption. This also means that the servers can perform the
write operations without waiting for new operations from the clients. As can be
seen, the clients finish long before the servers. This means that the servers can
not execute the write operations fast enough and therefore slow down the whole
application.

Figure 7.3: Simulated Application Run — Simple Write-Behind Cache

In this case the application user would not realize this inefficiency, because it is
hidden by the cache layer performing write-behind. Once the cache is full the
application’s performance degrades, because old operations need to be finished
before it is possible to accept new ones.

– 90 –

CHAPTER 7. VISUALIZATION

Aggregation Cache

Figure 7.4 (page 91) shows the visualized traces of the simulated partdiff-par
application as simulated with the AggregationCache cache layer. As can be seen,
the servers do not cause a longer runtime as opposed to the SimpleWriteBehind-
Cache cache layer. Additionally, there are gaps between the write operations on the
server timelines. This suggests that the clients’ computation takes longer than the
servers’ I/O operations, that is, the application’s total runtime can not be improved
further by speeding up the I/O operations.

Figure 7.4: Simulated Application Run — Aggregation Cache

Server-Directed I/O

Figures 7.5a (page 92) and 7.5b (page 92) show the visualized traces of the sim-
ulated partdiff-par application as simulated with the ServerDirectedIO cache
layer.

The ServerDirectedIO cache layer in figure 7.5a (page 92) is configured to not
use delayed writes. Overall, the figure basically looks like figure 7.4. No further
improvements are possible without the use of more advanced techniques.

The ServerDirectedIO cache layer in figure 7.5a (page 92) is configured to use
delayed writes. Using delayed writes leads to less and larger write operations.
This can be seen in the form of larger continuous write operations and gaps in the
server timelines. However, this does not reduce the application’s runtime, because
it is already at its minimum, dictated by the clients’ computation time.

– 91 –

CHAPTER 7. VISUALIZATION

(a) Without Delayed Writes

(b) With Delayed Writes

Figure 7.5: Simulated Application Run — Server-Directed I/O

7.2 Interleaved Two-Phase

The following figures show the visualized traces of the Interleaved Two-Phase pro-
tocol. The used application is equal to the one used in subsection 6.5.2 (page 75),
except for the fact that only five clients and server are used. It uses the ServerDi-
rectedIO cache layer, a data block size of 512 KiB and a file size of 1 000 MiB.

The figures are structured as follows: Each of the ten timelines is split into three
subtimelines. The first one shows the operations on the respective node. For the
clients this only shows the collective I/O operations, because they do not perform
any other operations. The server subtimeline shows the actual I/O operations
performed by the I/O subsystem. The colors on the server subtimeline mean the
same as in subsection 7.1.2 (page 89). The second subtimeline shows received
data and the third one shows sent data. The server timelines are actually split into
four subtimelines, but the first one is always empty and ignored here. The first five

– 92 –

CHAPTER 7. VISUALIZATION

timelines show the clients’ activities, while the last five timelines show the servers’
activities. Additionally, the first three iterations are pointed out by dashed lines
with the appropriate iteration number. For example, #1 signifies the end of the
first iteration, and so on.

Figure 7.6a shows the Interleaved Two-Phase protocol used for read operations.
The 25 iterations can be seen clearly by looking at the server timelines. Since the
Two-Phase buffer is set to 8 MiB, each server reads 25 · 8 = 200 MiB, resulting in
the 1 000 MiB being read completely by the five servers. Overall, there are a lot of
gaps where both the clients and servers are idle, because the clients have to wait
for the servers to read and send back the requested data and the servers can not
do any work while waiting for the clients. Due to this the whole application takes
about 8 s to complete.

(a) Read

Figure 7.6: Interleaved Two-Phase

Figure 7.6b (page 94) shows the Interleaved Two-Phase protocol used for write
operations. This time, the 25 iterations are not as clearly visible when looking at
the servers’ I/O activity, because the servers continually write out data. Looking
at the servers’ receive subtimelines is useful here. As can be seen, the clients
finish before the servers, because the clients finish as soon as the last iteration is
sent to the servers. Overall, there are almost no gaps, because the clients do not
have to wait for the servers and the servers can simply write out the data in the
background. Due to this the application runtime is almost halved.

– 93 –

CHAPTER 7. VISUALIZATION

(b) Write

Figure 7.6: Interleaved Two-Phase Visualization

Summary

HDSunshot can be used to visualize traces produced by PIOsimHD and to compare
traces of real-life applications with their simulated counterparts. It is also possible
to evaluate different optimization techniques by analyzing the resulting traces with
HDSunshot. Additionally, PIOsimHD allows users to obtain traces of the data flow
within the network, as opposed to existing tracing mechanisms.

– 94 –

Chapter 8

Summary, Conclusion and Future
Work

This chapter summarizes and concludes the thesis. Additionally, work that may
prove useful to be done in the future is presented. This mainly includes missing
functionality in PIOsimHD and the optimizations implemented in this thesis.

8.1 Summary and Conclusion

The main focus of this thesis is to compare existing client-side optimizations and the
newly implemented server-side optimizations like Server-Directed I/O. Additionally,
a modification of the Two-Phase protocol called Interleaved Two-Phase is proposed.

The results from section 6.6 (page 77) show that client-side optimizations like the
Two-Phase protocol do not necessarily beat server-side optimizations in terms of
performance. In fact, the server-side optimizations found in the AggregationCache
and ServerDirectedIO cache layers deliver better performance in all comparable
tests.

The results also suggest that even simple server-side optimizations like those in
the AggregationCache cache layer are good enough for many use cases.

Integrating such optimizations into parallel cluster file systems could alleviate
the need for sophisticated client-side optimizations. Additionally, due to their
additional knowledge of internal workflows server-side optimizations may be better
suited to provide high performance in general.

Modifications of the Two-Phase protocol also promise better performance. An
example of a straightforward modification of the original Two-Phase protocol is
the so-called Interleaved Two-Phase protocol. The Interleaved Two-Phase protocol
beats its unmodified counterpart in all tests, but still performs worse than the
server-side optimizations.

Visualizing the application traces is useful to comprehend the inner workings of
distributed systems and the influence of I/O optimizations.

– 95 –

CHAPTER 8. SUMMARY, CONCLUSION AND FUTURE WORK

8.2 Future Work

Even though the implementation of Server-Directed I/O is promising a lot of work
remains to be done, both for the Server-Directed I/O cache layer and PIOsimHD
itself. The following is a list of features that would be interesting to implement.

At the moment the Server-Directed I/O cache layer does not influence the order
in which the clients send their data. Clients first announce their write operations
and then send their data when this announcement is acknowledged. This could be
used to further increase performance, because data could be received in the order
in which it is needed, avoiding needless buffering. For completeness this should be
implemented.

Server-Directed I/O should make better use of the read optimization’s data sieving
support. For example, the maximum hole size could be dynamically determined by
either using the respective sizes of the involved read requests, or by estimating
the number of potential merge operations that can be performed with a given hole
size. A static hole size often delivers greatly varying performance, depending on
the use case. For this reason this particular optimization is disabled for now.

The cache layers do not cope well with memory exhaustion at the moment. For
example, too many write operations could fill up the whole main memory, causing
read operations to be deferred. This can also be potentially used to starve read
operations by sending many large write operations. This situation gets worse when
the I/O subsystem is slower than the network and large files are processed.

The Aggregation and Server-Directed I/O cache layers are currently too slow to be
used with massive amounts of operations. For example, using a data block size of
512 Bytes and reading or writing a 1 000 MiB file takes too long. This is mostly due
to their inefficient handling of their internal operation queues. However, several
starting points exist to improve their performance. This should be done to allow
simulation of larger long-running applications with huge numbers of simulation
events.

PIOsimHD-Simulator should support priorities for read and write operations. The
cache layers could use this information to make sure that no operation waits in
the queue for too long. For example, this could be solved by raising the priority
based on the time an operation has been waiting. This should be a relatively easy
to achieve by extending the IOJob interface.

The implementation of the Two-Phase protocol could be optimized to use double
buffering. Currently the Two-Phase buffer is first filled with data and then this
data is distributed to the other clients or written to disk. This could be optimized
by using two Two-Phase buffers in an alternating fashion, that is, the second
buffer could already be filled while the data of the first buffer is still being sent.

– 96 –

CHAPTER 8. SUMMARY, CONCLUSION AND FUTURE WORK

Depending on the workload and hardware characteristics this could potentially
double the performance.

Additionally, it may prove useful to improve the logic used to decide whether to
make use of the Two-Phase protocol when performing collective I/O. For example,
this new logic could also use information about the underlying I/O subsystem. This
could be integrated into the new Interleaved Two-Phase protocol.

A component simulating the RAM of the nodes is missing in PIOsimHD. For
example, the latency caused by RAM accesses is currently not simulated at all.
Additionally, this would make it possible to implement a real read cache in the
cache layers themselves.

PIOsimHD currently only includes a component for simulating a simple abstraction
of SSDs. However, current SSDs are very complex. For example, read and write
operations use different block sizes and write operations need to consider the
erase block size, because this can have a significant impact on performance.

Additional benchmarks using SSDs as the underlying I/O subsystem would be
interesting to perform. It would be especially interesting to see a comparison of
how the different optimizations behave when using HDDs and SSDs respectively.

– 97 –

Bibliography

[BDK97] Rajive Bagrodia, Stephen Docy, and Andy Kahn. Parallel simulation
of parallel file systems and I/O programs. In Supercomputing ’97:
Proceedings of the 1997 ACM/IEEE conference on Supercomputing
(CDROM), pages 1–17, New York, NY, USA, 1997. ACM.

[BMLX03] Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Lan Xue.
Efficient Metadata Management in Large Distributed Storage Systems.
In MSS ’03: Proceedings of the 20 th IEEE/11 th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSS’03),
page 290, Washington, DC, USA, 2003. IEEE Computer Society.

[DW07] Ananth Devulapalli and Pete Wyckoff. File Creation Strategies in a
Distributed Metadata File System. In Proceedings of IPDPS ’07, Long
Beach, CA, March 2007.

[KKL08] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Directory-Based
Metadata Optimizations for Small Files in PVFS. In Euro-Par ’08:
Proceedings of the 14th international Euro-Par conference on Parallel
Processing, pages 90–99, Berlin, Heidelberg, 2008. Springer-Verlag.

[KKL09] Michael Kuhn, Julian Martin Kunkel, and Thomas Ludwig. Dynamic file
system semantics to enable metadata optimizations in PVFS. Concur-
rency and Computation: Practice and Experience, 2009.

[Kot97] David Kotz. Disk-directed I/O for MIMD multiprocessors. ACM Trans-
actions on Computer Systems, 15(1):41–74, 1997.

[KRVP07] Dries Kimpe, Rob Ross, Stefan Vandewalle, and Stefaan Poedts. Trans-
parent Log-Based Data Storage in MPI-IO Applications. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
volume 4757 of Lecture Notes in Computer Science, pages 233–241.
Springer Berlin / Heidelberg, 2007.

[Kuh07] Michael Kuhn. Directory-Based Metadata Optimizations for Small Files
in PVFS. Bachelor’s Thesis, Ruprecht-Karls-Universität Heidelberg,
September 2007.

– 98 –

Bibliography

[Kun] Julian Kunkel. Simulation of Parallel I/O and MPI Communication with
a Discrete Event Simulator. Technical Report (Unpublished).

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel
File System with Subfile Based Migration. Master’s Thesis, Ruprecht-
Karls-Universität Heidelberg, July 2007.

[LCC+07] Wei-keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choud-
hary, Jacqueline Chen, Ramanan Sankaran, and Scott Klasky. Using
MPI file caching to improve parallel write performance for large-scale
scientific applications. In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–11, New York, NY, USA, 2007.
ACM.

[LCCW05] Wei-keng Liao, Kenin Coloma, Alok N. Choudhary, and Lee Ward. Co-
operative Write-Behind Data Buffering for MPI I/O. In Beniamino Di
Martino, Dieter Kranzlmüller, and Jack Dongarra, editors, PVM/MPI,
volume 3666 of Lecture Notes in Computer Science, pages 102–109.
Springer, 2005.

[PTH+01] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and
Alice Koniges. MPI-IO/GPFS, an optimized implementation of MPI-IO
on top of GPFS. In Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROM), pages 17–17,
New York, NY, USA, 2001. ACM.

[SIC+07] David E. Singh, Florin Isaila, Alejandro Calderon, Felix Garcia, and
Jesus Carretero. Multiple-Phase Collective I/O Technique for Improving
Data Access Locality. In PDP ’07: Proceedings of the 15th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, pages 534–542, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[SIPC09] David E. Singh, Florin Isaila, Juan C. Pichel, and Jesús Carretero. A
collective I/O implementation based on inspector–executor paradigm.
The Journal of Supercomputing, 47(1):53–75, 2009.

[TGL99] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and
Collective I/O in ROMIO. In FRONTIERS ’99: Proceedings of the The
7th Symposium on the Frontiers of Massively Parallel Computation,
page 182, Washington, DC, USA, 1999. IEEE Computer Society.

[TLC+99] Brian L. Tierney, Jason Lee, Brian Crowley, Mason Holding, Jeremy Hyl-
ton, and Fred L. Drake Jr. A Network-Aware Distributed Storage Cache
for Data Intensive Environments. In HPDC ’99: Proceedings of the

– 99 –

Bibliography

8th IEEE International Symposium on High Performance Distributed
Computing, page 33, Washington, DC, USA, 1999. IEEE Computer
Society.

[VNS05] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. Pro-
viding tunable consistency for a parallel file store. In FAST’05: Pro-
ceedings of the 4th conference on USENIX Conference on File and
Storage Technologies, pages 2–2, Berkeley, CA, USA, 2005. USENIX
Association.

[WPBM04] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller.
Dynamic Metadata Management for Petabyte-Scale File Systems. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 4, Washington, DC, USA, 2004. IEEE Computer Society.

[Zuk05] Marcin Zukowski. Improving I/O Bandwidth for Data-Intensive Applica-
tions. In Proceedings of the British National Conference on Databases
(BNCOD), July 2005.

– 100 –

Appendices

– 101 –

Appendix A

Used Tools

• TeX Live1

– TEX distribution used to compile the LATEX sources.

• BibTeX2

– Reference management software used to organize the bibliography.

• Vim3

– Advanced text editor used to write the LATEX sources.

• VIM-LATEX4

– Vim addon providing LATEX support.

• OpenOffice.org5 Draw

– Drawing application used to produce the figures.

• unoconv6

– Conversion application used to automatically convert OpenOffice.org
drawings to PDF7.

• Graphviz8

– Graph visualization software used to produce state machine figures.

• Git9

– Distributed version control system used to manage the LATEX sources.

1TeX Live is available at http://www.tug.org/texlive/.
2BibTeX is part of TeX Live.
3Vim is available at http://www.vim.org/.
4VIM-LATEX is available at http://vim-latex.sourceforge.net/.
5OpenOffice.org is available at http://www.openoffice.org/.
6unoconv is available at http://dag.wieers.com/home-made/unoconv/.
7Portable Document Format
8Graphviz is available at http://www.graphviz.org/.
9Git is available at http://git-scm.com/.

– 102 –

http://www.tug.org/texlive/
http://www.vim.org/
http://vim-latex.sourceforge.net/
http://www.openoffice.org/
http://dag.wieers.com/home-made/unoconv/
http://www.graphviz.org/
http://git-scm.com/

Appendix B

Usage Instructions

B.1 Source Code Repository

B.1.1 Setup

Cloning The git svn clone command clones the given SVN1 repository and
converts it into a Git2 repository.

$ git svn clone \
svn+ssh://user@pvs-cluster.informatik.uni-heidelberg.de\
/home/sighpio/PIOsimHD

.gitignore The .gitignore file causes Git to ignore certain files.

Listing B.1 shows the .gitignore file for the PIOsimHD repository. It causes Git
to ignore all trace files produced by PIOsimHD-Simulator.

Listing B.1: PIOsimHD-Simulator/.gitignore

1 run-trace*

B.1.2 Committing and Updating

Committing Locally The git add -i command is used to add changes to Git’s
index. The git commit command creates a commit containing these changes.

$ git add -i
$ git commit

1Subversion
2Git is available at http://git-scm.com/.

– 103 –

http://git-scm.com/

APPENDIX B. USAGE INSTRUCTIONS

Committing Remotely The git svn dcommit command puts the local Git com-
mit into the SVN repository. The git stash commands are needed, because git
svn dcommit needs a clean working tree.

$ git stash
$ git svn dcommit
$ git stash pop

Updating The git svn rebase command updates the repository to the current
SVN revision. The git stash commands are needed, because git svn rebase
needs a clean working tree.

$ git stash
$ git svn rebase
$ git stash pop

B.2 PIOsimHD-Simulator

partdiff-par

Executing CommandLineInterface.java with the following arguments runs the
partdiff-par benchmark from section 6.8 (page 83).

Listing B.2 shows CommandLineInterface arguments used to simulate a run of the
partdiff-par application.

Listing B.2: CommandLineInterface Arguments

1 -i ../HDTraceFormat/Example/partdiff-mpi-io-synced/pvs-cluster-model
↪→ .xml --load-program-on-demand

B.3 HDTrace

B.3.1 Setup

MPD

MPD3 is a daemon that allows MPI applications to be distributed and executed on
several machines — a so-called MPD ring.

3Multi-Purpose Daemon

– 104 –

APPENDIX B. USAGE INSTRUCTIONS

Configuration The .mpd.conf file contains the MPD password.

$ touch .mpd.conf
$ chmod 600 .mpd.conf
$ echo ’MPD_SECRETWORD=42’ > .mpd.conf

Participating Machines The mpd.hosts file contains the hostnames of all ma-
chines participating in the MPD ring.

$ echo ’node01’ > mpd.hosts
$ echo ’node02’ >> mpd.hosts
$ echo ’node03’ >> mpd.hosts

HDTrace

The module command loads all configuration settings — like environment vari-
ables — to use the PIOsimHD framework for tracing.

$ module load hdtrace/1.0

B.3.2 Compiling and Executing

Compiling The following commands compile the b_eff_io benchmark applica-
tion using the mpicc compiler.

$ tar xf b_eff_io_v2.1.tar.gz
$ cd b_eff_io
$ mpicc -lm -o b_eff_io b_eff_io.c

Executing The mpdboot command starts a MPD ring. The mpirun command
starts the b_eff_io application on the MPD ring.

$ mpdboot -n 3 -f mpd.hosts
$ mpirun -n 3 ./b_eff_io

Cleanup The mpdallexit command shuts down the MPD ring.

$ mpdallexit

– 105 –

Appendix C

Evaluation Results

It is important to note that these results represent the aggregated throughput. The
figures in chapter 6 (page 61) use per-client throughput. Therefore, the results
below must be divided by 10 when comparing them with the figures.

C.1 Random I/O Test

NoCache
5120 READ 1048576000 B, 480.43993272859996 s (0.40954037050021325 s)
5120 READ 2.0814256515286353 MB/s
5120 WRITE 1048576000 B, 379.74895692810003 s (0.5796268021213603 s)
5120 WRITE 2.6333186220952163 MB/s
51200 READ 1048576000 B, 70.3209508305 s (0.2461663978933605 s)
51200 READ 14.22051306459688 MB/s
51200 WRITE 1048576000 B, 62.064023903499994 s (0.33664790269020894 s)
51200 WRITE 16.112393897547573 MB/s
524288 READ 1048576000 B, 23.3586019284 s (0.05966495834943108 s)
524288 READ 42.81078135862977 MB/s
524288 WRITE 1048576000 B, 23.391223519500002 s (0.04309578760319361 s)
524288 WRITE 42.75107709378066 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 480.43993272859996 s (0.40954037050021325 s)
5120 READ 2.0814256515286353 MB/s
5120 WRITE 1048576000 B, 300.2951743493 s (0.26085124337011006 s)
5120 WRITE 3.330056842128309 MB/s
51200 READ 1048576000 B, 70.3209508305 s (0.2461663978933605 s)
51200 READ 14.22051306459688 MB/s
51200 WRITE 1048576000 B, 53.18417199830001 s (0.23894914448050142 s)
51200 WRITE 18.802586604750832 MB/s
524288 READ 1048576000 B, 23.3586019284 s (0.05966495834943108 s)
524288 READ 42.81078135862977 MB/s
524288 WRITE 1048576000 B, 23.372220795599997 s (0.09325321500748063 s)

– 106 –

APPENDIX C. EVALUATION RESULTS

524288 WRITE 42.785835746864834 MB/s
AggregationCache

5120 READ 1048576000 B, 480.2652491281 s (0.5114650114861422 s)
5120 READ 2.0821827142718634 MB/s
5120 WRITE 1048576000 B, 35.0486731206 s (0.0809730654070207 s)
5120 WRITE 28.531750590359607 MB/s
51200 READ 1048576000 B, 70.14761168519999 s (0.2261228904126729 s)
51200 READ 14.2556528437159 MB/s
51200 WRITE 1048576000 B, 7.8072400707 s (0.04723829342018465 s)
51200 WRITE 128.08623674234468 MB/s
524288 READ 1048576000 B, 23.2630255663 s (0.09417641088986031 s)
524288 READ 42.98666986157857 MB/s
524288 WRITE 1048576000 B, 4.0203020197 s (0.03879319908671092 s)
524288 WRITE 248.73753143417352 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 470.54163953590006 s (1.0166849689938773 s)
5120 READ 2.125210429806616 MB/s
5120 WRITE 1048576000 B, 28.2049480228 s (0.15768397860774702 s)
5120 WRITE 35.45477194964625 MB/s
51200 READ 1048576000 B, 69.24346647129998 s (0.1613120203687557 s)
51200 READ 14.441795752881317 MB/s
51200 WRITE 1048576000 B, 6.839998547799999 s (0.05849529045609294 s)
51200 WRITE 146.19886144882847 MB/s
524288 READ 1048576000 B, 23.068002521300002 s (0.17455843410094402 s)
524288 READ 43.35009063210579 MB/s
524288 WRITE 1048576000 B, 3.5731329932 s (0.02568778555751315 s)
524288 WRITE 279.86643707443625 MB/s

C.2 Individual I/O Test

C.2.1 Contiguous Access — 1 Operation

NoCache
5120 READ 1048576000 B, 146.027949339 s
5120 READ 6.848004128843353 MB/s
5120 WRITE 1048576000 B, 119.094858293 s
5120 WRITE 8.39666812096771 MB/s
51200 READ 1048576000 B, 21.773296 s
51200 READ 45.92781910465003 MB/s
51200 WRITE 1048576000 B, 21.45670225 s
51200 WRITE 46.60548430735669 MB/s

– 107 –

APPENDIX C. EVALUATION RESULTS

524288 READ 1048576000 B, 10.278591798 s
524288 READ 97.28959177020525 MB/s
524288 WRITE 1048576000 B, 10.280323109 s
524288 WRITE 97.27320721316056 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 146.027949339 s
5120 READ 6.848004128843353 MB/s
5120 WRITE 1048576000 B, 92.950948768 s
5120 WRITE 10.758362483162383 MB/s
51200 READ 1048576000 B, 21.773296 s
51200 READ 45.92781910465003 MB/s
51200 WRITE 1048576000 B, 14.580759687 s
51200 WRITE 68.5835320975481 MB/s
524288 READ 1048576000 B, 10.278591798 s
524288 READ 97.28959177020525 MB/s
524288 WRITE 1048576000 B, 9.931221594 s
524288 WRITE 100.69254728986768 MB/s

AggregationCache
5120 READ 1048576000 B, 154.06681688 s
5120 READ 6.490690339756178 MB/s
5120 WRITE 1048576000 B, 18.541083015 s
5120 WRITE 53.93428200450781 MB/s
51200 READ 1048576000 B, 20.305640744 s
51200 READ 49.24739941020991 MB/s
51200 WRITE 1048576000 B, 3.505185092 s
51200 WRITE 285.29163902994253 MB/s
524288 READ 1048576000 B, 4.885013716 s
524288 READ 204.7077159117643 MB/s
524288 WRITE 1048576000 B, 2.027372673 s
524288 WRITE 493.24922512655377 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 146.10821002 s
5120 READ 6.844242358886713 MB/s
5120 WRITE 1048576000 B, 18.546249682 s
5120 WRITE 53.9192568387854 MB/s
51200 READ 1048576000 B, 19.433986418 s
51200 READ 51.45624672629119 MB/s
51200 WRITE 1048576000 B, 3.508523379 s
51200 WRITE 285.02018997092165 MB/s
524288 READ 1048576000 B, 2.043356537 s
524288 READ 489.3908536726402 MB/s

– 108 –

APPENDIX C. EVALUATION RESULTS

524288 WRITE 1048576000 B, 2.027372673 s
524288 WRITE 493.24922512655377 MB/s

C.2.2 Non-Contiguous Access — 100 Operations

NoCache
5120 READ 1048576000 B, 117.746240842 s
5120 READ 8.492840135269105 MB/s
5120 WRITE 1048576000 B, 117.887454933 s
5120 WRITE 8.482666799180105 MB/s
51200 READ 1048576000 B, 21.85244504 s
51200 READ 45.761469628205965 MB/s
51200 WRITE 1048576000 B, 26.261753244 s
51200 WRITE 38.078188866863606 MB/s
524288 READ 1048576000 B, 10.414065977 s
524288 READ 96.02397394145105 MB/s
524288 WRITE 1048576000 B, 15.241344531 s
524288 WRITE 65.61100944644737 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 117.746240842 s
5120 READ 8.492840135269105 MB/s
5120 WRITE 1048576000 B, 117.861254075 s
5120 WRITE 8.484552517688794 MB/s
51200 READ 1048576000 B, 21.85244504 s
51200 READ 45.761469628205965 MB/s
51200 WRITE 1048576000 B, 27.254636535 s
51200 WRITE 36.69100480264394 MB/s
524288 READ 1048576000 B, 10.414065977 s
524288 READ 96.02397394145105 MB/s
524288 WRITE 1048576000 B, 15.241344531 s
524288 WRITE 65.61100944644737 MB/s

AggregationCache
5120 READ 1048576000 B, 9.751169836 s
5120 READ 102.5517980733076 MB/s
5120 WRITE 1048576000 B, 2.030927439 s
5120 WRITE 492.3858828222764 MB/s
51200 READ 1048576000 B, 3.120902 s
51200 READ 320.4201862153954 MB/s
51200 WRITE 1048576000 B, 2.082627976 s
51200 WRITE 480.16256937095903 MB/s
524288 READ 1048576000 B, 2.231920598 s
524288 READ 448.04461274119217 MB/s

– 109 –

APPENDIX C. EVALUATION RESULTS

524288 WRITE 1048576000 B, 2.043116687 s
524288 WRITE 489.448305308663 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 6.476519658 s
5120 READ 154.4039164252005 MB/s
5120 WRITE 1048576000 B, 2.030927439 s
5120 WRITE 492.3858828222764 MB/s
51200 READ 1048576000 B, 3.402955863 s
51200 READ 293.8621716704881 MB/s
51200 WRITE 1048576000 B, 2.082627976 s
51200 WRITE 480.16256937095903 MB/s
524288 READ 1048576000 B, 2.255097161 s
524288 READ 443.4398735868924 MB/s
524288 WRITE 1048576000 B, 2.030179569 s
524288 WRITE 492.5672661027553 MB/s

C.2.3 Non-Contiguous Access — All Operations

NoCache
5120 READ 1048576000 B, 117.828092033 s
5120 READ 8.48694044642538 MB/s
5120 WRITE 1048576000 B, 122.735387396 s
5120 WRITE 8.147609432099209 MB/s
51200 READ 1048576000 B, 21.934033634 s
51200 READ 45.59124950232125 MB/s
51200 WRITE 1048576000 B, 26.504183134 s
51200 WRITE 37.72989323776531 MB/s
524288 READ 1048576000 B, 10.351081997 s
524288 READ 96.60825798595981 MB/s
524288 WRITE 1048576000 B, 15.240600495 s
524288 WRITE 65.6142125323783 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 117.828092033 s
5120 READ 8.48694044642538 MB/s
5120 WRITE 1048576000 B, 122.908887398 s
5120 WRITE 8.136108146206132 MB/s
51200 READ 1048576000 B, 21.934033634 s
51200 READ 45.59124950232125 MB/s
51200 WRITE 1048576000 B, 26.504183135 s
51200 WRITE 37.729893236341766 MB/s
524288 READ 1048576000 B, 10.351081997 s
524288 READ 96.60825798595981 MB/s

– 110 –

APPENDIX C. EVALUATION RESULTS

524288 WRITE 1048576000 B, 15.240600495 s
524288 WRITE 65.6142125323783 MB/s

AggregationCache
5120 READ 1048576000 B, 2.125372651 s
5120 READ 470.505724974627 MB/s
5120 WRITE 1048576000 B, 2.036433315 s
5120 WRITE 491.05462606321584 MB/s
51200 READ 1048576000 B, 2.123721621 s
51200 READ 470.87150693937394 MB/s
51200 WRITE 1048576000 B, 2.031638057 s
51200 WRITE 492.2136581142022 MB/s
524288 READ 1048576000 B, 2.134629005 s
524288 READ 468.4654793210777 MB/s
524288 WRITE 1048576000 B, 2.043177719 s
524288 WRITE 489.4336849412364 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 2.1351463649999998 s
5120 READ 468.3519670558979 MB/s
5120 WRITE 1048576000 B, 2.036433315 s
5120 WRITE 491.05462606321584 MB/s
51200 READ 1048576000 B, 2.132903426 s
51200 READ 468.84448110028967 MB/s
51200 WRITE 1048576000 B, 2.031638059 s
51200 WRITE 492.2136576296536 MB/s
524288 READ 1048576000 B, 2.1398960750000002 s
524288 READ 467.3124137582242 MB/s
524288 WRITE 1048576000 B, 2.029435533 s
524288 WRITE 492.7478521684088 MB/s

C.3 Collective I/O Test

C.3.1 Two-Phase

NoCache
5120 READ 1048576000 B, 5.867568858 s
5120 READ 170.4283365395147 MB/s
5120 WRITE 1048576000 B, 135.350505283 s
5120 WRITE 7.388225096826439 MB/s
51200 READ 1048576000 B, 5.839443908 s
51200 READ 171.24918327068895 MB/s
51200 WRITE 1048576000 B, 38.019368463 s

– 111 –

APPENDIX C. EVALUATION RESULTS

51200 WRITE 26.302383243771875 MB/s
524288 READ 1048576000 B, 5.474242602 s
524288 READ 182.67367245190277 MB/s
524288 WRITE 1048576000 B, 25.231989084 s
524288 WRITE 39.63223020868045 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 5.867568858 s
5120 READ 170.4283365395147 MB/s
5120 WRITE 1048576000 B, 132.031460822 s
5120 WRITE 7.573952403269728 MB/s
51200 READ 1048576000 B, 5.839443908 s
51200 READ 171.24918327068895 MB/s
51200 WRITE 1048576000 B, 36.212464892 s
51200 WRITE 27.61480067657362 MB/s
524288 READ 1048576000 B, 5.474242602 s
524288 READ 182.67367245190277 MB/s
524288 WRITE 1048576000 B, 23.777266643 s
524288 WRITE 42.05697883673264 MB/s

AggregationCache
5120 READ 1048576000 B, 5.867568858 s
5120 READ 170.4283365395147 MB/s
5120 WRITE 1048576000 B, 2.775984705 s
5120 WRITE 360.2325323330627 MB/s
51200 READ 1048576000 B, 5.839443908 s
51200 READ 171.24918327068895 MB/s
51200 WRITE 1048576000 B, 2.769466451 s
51200 WRITE 361.08038053283497 MB/s
524288 READ 1048576000 B, 5.474242602 s
524288 READ 182.67367245190277 MB/s
524288 WRITE 1048576000 B, 2.8463754249999997 s
524288 WRITE 351.32400006580303 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 5.88493782 s
5120 READ 169.9253298142749 MB/s
5120 WRITE 1048576000 B, 2.789814135 s
5120 WRITE 358.44681817844474 MB/s
51200 READ 1048576000 B, 5.851306495 s
51200 READ 170.90200297224388 MB/s
51200 WRITE 1048576000 B, 2.8092997889999998 s
51200 WRITE 355.9605863053728 MB/s
524288 READ 1048576000 B, 5.596070551 s

– 112 –

APPENDIX C. EVALUATION RESULTS

524288 READ 178.69681786290258 MB/s
524288 WRITE 1048576000 B, 2.918934791 s
524288 WRITE 342.59072970157354 MB/s

C.3.2 Interleaved Two-Phase

NoCache
5120 READ 1048576000 B, 4.782318441 s
5120 READ 209.10359950662266 MB/s
5120 WRITE 1048576000 B, 124.214700582 s
5120 WRITE 8.050576906876273 MB/s
51200 READ 1048576000 B, 4.842799575 s
51200 READ 206.49213012289488 MB/s
51200 WRITE 1048576000 B, 29.233955314 s
51200 WRITE 34.206797857459435 MB/s
524288 READ 1048576000 B, 4.566702312 s
524288 READ 218.97639295915639 MB/s
524288 WRITE 1048576000 B, 17.016398263 s
524288 WRITE 58.76684269751568 MB/s

SimpleWriteBehindCache
5120 READ 1048576000 B, 4.782318441 s
5120 READ 209.10359950662266 MB/s
5120 WRITE 1048576000 B, 123.464284581 s
5120 WRITE 8.099508318488168 MB/s
51200 READ 1048576000 B, 4.842799575 s
51200 READ 206.49213012289488 MB/s
51200 WRITE 1048576000 B, 27.969692393 s
51200 WRITE 35.752985265231985 MB/s
524288 READ 1048576000 B, 4.566702312 s
524288 READ 218.97639295915639 MB/s
524288 WRITE 1048576000 B, 15.838040735 s
524288 WRITE 63.13912287080628 MB/s

AggregationCache
5120 READ 1048576000 B, 4.665140413 s
5120 READ 214.35582029071932 MB/s
5120 WRITE 1048576000 B, 2.251897167 s
5120 WRITE 444.0700111240914 MB/s
51200 READ 1048576000 B, 4.180562118 s
51200 READ 239.20228231853292 MB/s
51200 WRITE 1048576000 B, 2.248735177 s
51200 WRITE 444.6944265505213 MB/s
524288 READ 1048576000 B, 4.331482415 s

– 113 –

APPENDIX C. EVALUATION RESULTS

524288 READ 230.8678425051392 MB/s
524288 WRITE 1048576000 B, 2.207208941 s
524288 WRITE 453.0608686040113 MB/s

ServerDirectedIO
5120 READ 1048576000 B, 4.148568066 s
5120 READ 241.04702733350308 MB/s
5120 WRITE 1048576000 B, 2.195084736 s
5120 WRITE 455.56327899316227 MB/s
51200 READ 1048576000 B, 4.21927462 s
51200 READ 237.00756411062903 MB/s
51200 WRITE 1048576000 B, 2.186729407 s
51200 WRITE 457.30395210256575 MB/s
524288 READ 1048576000 B, 4.497086945 s
524288 READ 222.36616997406082 MB/s
524288 WRITE 1048576000 B, 2.164988756 s
524288 WRITE 461.8961633073719 MB/s

C.4 Database I/O Test

C.4.1 Contiguous Access — 1 Operation

NoCache
512 READ 128000000 B, 15.248816146100001 s (0.20380218337377867 s)
512 READ 8.005232100015869 MB/s
512 WRITE 128000000 B, 12.7023798924 s (0.14625509091076325 s)
512 WRITE 9.610034775690835 MB/s
512 RW 128000000 B, 13.2885156322 s (0.15308890506887798 s)
512 RW 9.186151100594406 MB/s

SimpleWriteBehindCache
512 READ 128000000 B, 15.248816146100001 s (0.20380218337377867 s)
512 READ 8.005232100015869 MB/s
512 WRITE 128000000 B, 10.6350764841 s (0.26458582784259627 s)
512 WRITE 11.478085059613962 MB/s
512 RW 128000000 B, 10.5406452184 s (0.16086971773060044 s)
512 RW 11.580914637645822 MB/s

AggregationCache
512 READ 128000000 B, 15.248816146100001 s (0.20380218337377867 s)
512 READ 8.005232100015869 MB/s
512 WRITE 128000000 B, 10.615109818500002 s (0.26506907738117447 s)
512 WRITE 11.49967495270336 MB/s
512 RW 128000000 B, 10.5381344951 s (0.1632812950770421 s)

– 114 –

APPENDIX C. EVALUATION RESULTS

512 RW 11.583673804577082 MB/s
ServerDirectedIO
512 READ 128000000 B, 15.3814292401 s (0.15593419792632227 s)
512 READ 7.936213897584876 MB/s
512 WRITE 128000000 B, 8.783565597 s (0.3087759709139298 s)
512 WRITE 13.897580789024076 MB/s
512 RW 128000000 B, 10.185301735499998 s (0.14414745586564162 s)
512 RW 11.984948082051842 MB/s

C.4.2 Non-Contiguous Access — 10 Operations

NoCache
512 READ 128000000 B, 1.1791882332999999 s (0.04768848491539928 s)
512 READ 103.52063313791889 MB/s
512 WRITE 128000000 B, 1.1786016051999997 s (0.04364732414330116 s)
512 WRITE 103.57215870182495 MB/s
512 RW 128000000 B, 1.1935244082 s (0.04876219865044266 s)
512 RW 102.27718148144027 MB/s

SimpleWriteBehindCache
512 READ 128000000 B, 1.1791882332999999 s (0.04768848491539928 s)
512 READ 103.52063313791889 MB/s
512 WRITE 128000000 B, 1.1790767756 s (0.04043855024574582 s)
512 WRITE 103.53041890582719 MB/s
512 RW 128000000 B, 1.1769992763 s (0.04505433253442518 s)
512 RW 103.71315850230486 MB/s

AggregationCache
512 READ 128000000 B, 1.1791882332999999 s (0.04768848491539928 s)
512 READ 103.52063313791889 MB/s
512 WRITE 128000000 B, 1.1755616720000002 s (0.04262144657833614 s)
512 WRITE 103.83999020002072 MB/s
512 RW 128000000 B, 1.1769992763 s (0.04505433253442518 s)
512 RW 103.71315850230486 MB/s

ServerDirectedIO
512 READ 128000000 B, 1.2360401953 s (0.05519337068379282 s)
512 READ 98.75917705926403 MB/s
512 WRITE 128000000 B, 1.1049812159 s (0.040050454423372725 s)
512 WRITE 110.47274898747895 MB/s
512 RW 128000000 B, 1.1411116579000002 s (0.03621351549579512 s)
512 RW 106.97490614077792 MB/s

– 115 –

APPENDIX C. EVALUATION RESULTS

C.4.3 Non-Contiguous Access — All Operations

NoCache
512 READ 128000000 B, 1.1543980794000002 s (0.0394784391535595 s)
512 READ 105.74368987468014 MB/s
512 WRITE 128000000 B, 1.2848065985 s (0.04108401400612664 s)
512 WRITE 95.01065190863433 MB/s
512 RW 128000000 B, 1.2361368582 s (0.06623419477593881 s)
512 RW 98.75145433148285 MB/s

SimpleWriteBehindCache
512 READ 128000000 B, 1.1543980794000002 s (0.0394784391535595 s)
512 READ 105.74368987468014 MB/s
512 WRITE 128000000 B, 1.2828997951 s (0.04004674110205048 s)
512 WRITE 95.15186842046757 MB/s
512 RW 128000000 B, 1.2378648553 s (0.0662451082669207 s)
512 RW 98.61360226631196 MB/s

AggregationCache
512 READ 128000000 B, 1.1543980794000002 s (0.0394784391535595 s)
512 READ 105.74368987468014 MB/s
512 WRITE 128000000 B, 1.1627331322 s (0.04246794069729553 s)
512 WRITE 104.9856662027266 MB/s
512 RW 128000000 B, 1.1596055462000003 s (0.05061499832368804 s)
512 RW 105.26882429979875 MB/s

ServerDirectedIO
512 READ 128000000 B, 1.1086887981 s (0.03897905988644655 s)
512 READ 110.10331547427583 MB/s
512 WRITE 128000000 B, 1.1100156154999998 s (0.036601560409424215 s)
512 WRITE 109.97170742054305 MB/s
512 RW 128000000 B, 1.1253318360000002 s (0.051472910533868585 s)
512 RW 108.47494809522121 MB/s

– 116 –

List of Acronyms

ATA Advanced Technology Attachment

CPU Central Processing Unit

FIFO First In, First Out

GPFS General Parallel File System

GPL GNU General Public License

HDD Hard Disk Drive

I/O Input/Output

IPS Instructions per Second

KB Kilo Byte (1 000 Bytes)

KiB Kibi Byte (1 024 Bytes)

LGPL GNU Lesser General Public License

MB Mega Byte (1 000 000 Bytes)

MiB Mebi Byte (1 048 576 Bytes)

MPD Multi-Purpose Daemon

MPI Message Passing Interface

MPI-IO Message Passing Interface Input/Output

NIC Network Interface Card

NCQ Native Command Queuing

OS Operating System

PDF Portable Document Format

PIOsimHD Parallel I/O Simulator

– 117 –

APPENDIX C. EVALUATION RESULTS

POSIX Portable Operating System Interface (for Unix)

PVFS Parallel Virtual File System

RAID Redundant Array of Inexpensive Disks or Redundant Array of
Independent Disks

RAM Random Access Memory

RPM Revolutions Per Minute

SAN Storage Area Network

SATA Serial Advanced Technology Attachment

SCSI Small Computer System Interface

SLOC Source Lines of Code

SSD Solid State Drive

SVN Subversion

UI User Interface

ZFS Zettabyte File System

– 118 –

List of Figures

1.1 Multiple Clients Accessing the Same File 9
1.2 Non-Contiguous I/O . 12

2.1 Data Sieving . 16
2.2 Collective I/O . 17
2.3 Two-Phase . 18

(a) Phase 1 . 18
(b) Phase 2 — Iteration 1 . 18
(c) Phase 2 — Iteration 2 . 18

3.1 Simulator Components . 22
3.2 HDSunshot . 28

4.1 Server-Directed I/O — Read Optimizations 32
(a) Insert . 32
(b) Insert . 32
(c) Insert . 32
(d) Merge . 32

4.2 Server-Directed I/O — Write Optimizations 34
(a) Insert . 34
(b) Insert . 34
(c) Insert . 34
(d) Overwrite . 34
(e) Insert . 34
(f) Insert . 34
(g) Insert . 34
(h) Merge . 34

4.3 Interleaved Two-Phase . 35
(a) Phase 2 — Iteration 1 . 35
(b) Phase 2 — Iteration 2 . 35

5.1 Two-Phase Read State Machine . 56
5.2 Two-Phase Write State Machine . 57

6.1 File Layout . 62
6.2 Random I/O Test . 64

– 119 –

List of Figures

(a) 5 KiB Data Blocks . 64
(b) 50 KiB Data Blocks . 65
(c) 512 KiB Data Blocks . 65

6.3 Individual I/O Test — 1 Data Block per Iteration 67
(a) 5 KiB Data Blocks . 67
(b) 50 KiB Data Blocks . 67
(c) 512 KiB Data Blocks . 68

6.4 Individual I/O Test — 100 Data Blocks per Iteration 69
(a) 5 KiB Data Blocks . 69
(b) 50 KiB Data Blocks . 69
(c) 512 KiB Data Blocks . 70

6.5 Individual I/O Test — All Data Blocks per Iteration 71
(a) 5 KiB Data Blocks . 71
(b) 50 KiB Data Blocks . 71
(c) 512 KiB Data Blocks . 72

6.6 Two-Phase I/O Test . 73
(a) 5 KiB Data Blocks . 73
(b) 50 KiB Data Blocks . 74
(c) 512 KiB Data Blocks . 74

6.7 Interleaved Two-Phase I/O Test . 76
(a) 5 KiB Data Blocks . 76
(b) 50 KiB Data Blocks . 76
(c) 512 KiB Data Blocks . 76

6.8 Summary — 5 KiB Data Blocks . 78
(a) Read Tests . 78
(b) Write Tests . 78

6.9 Summary — 50 KiB Data Blocks . 79
(a) Read Tests . 79
(b) Write Tests . 79

6.10 Summary — 512 KiB Data Blocks . 80
(a) Read Tests . 80
(b) Write Tests . 80

6.11 Database I/O Test . 82
(a) 1 Data Block per Iteration . 82
(b) 10 Data Blocks per Iteration . 82
(c) All Data Blocks per Iteration . 82

6.12 partdiff-par — Cache Layer Comparison 87

7.1 Real Application Run . 89
7.2 Simulated Application Run — No Cache 90
7.3 Simulated Application Run — Simple Write-Behind Cache 90
7.4 Simulated Application Run — Aggregation Cache 91

– 120 –

List of Figures

7.5 Simulated Application Run — Server-Directed I/O 92
(a) Without Delayed Writes . 92
(b) With Delayed Writes . 92

7.6 Interleaved Two-Phase . 93
(a) Read . 93
(b) Write . 94

– 121 –

List of Tables

6.1 partdiff-par — No Cache . 84
6.2 partdiff-par — Simple Write-Behind Cache 84
6.3 partdiff-par — Aggregation Cache 85
6.4 partdiff-par — Server-Directed I/O (Without Delayed Writes) . . . 85
6.5 partdiff-par — Server-Directed I/O (With Delayed Writes) 86

– 122 –

List of Listings

5.1 Server Component Model Example 37
5.2 Simple Server Component Model Example 38
5.3 Server Component Interface Example 38
5.4 Simple Server Component Implementation Example 39
5.5 Component Mapping . 39
5.6 Command Model Example . 40
5.7 Simple Command Example . 41
5.8 Sophisticated Command Example . 41
5.9 Command Mapping . 43
5.10 GServerDirectedIO.java — Main Class 44
5.11 GServerDirectedIO.java — Data Structures 44
5.12 GServerDirectedIO.java — IOJob Interface 45
5.13 GServerDirectedIO.java — getNextSchedulableJob 45
5.14 GServerDirectedIO.java — getJob 46
5.15 GServerDirectedIO.java — Delayed Writes 48
5.16 GServerDirectedIO.java — Flushing 49
5.17 Filewriteall/TwoPhase.java — Data Structures 51
5.18 Filewriteall/TwoPhase.java — FilewriteallWrapper 52
5.19 Filewriteall/TwoPhase.java — FilewriteallContainer 52
5.20 Filewriteall/TwoPhase.java — STEP_START 54

B.1 PIOsimHD-Simulator/.gitignore 103
B.2 CommandLineInterface Arguments 104

– 123 –

	Introduction
	Parallel Cluster File Systems
	Storage Devices
	Hard Disk Drives
	Solid State Drives

	Non-Contiguous I/O
	PIOsimHD
	Goals of the Thesis
	Outlook

	Related Work and State of the Art
	Related Work
	State of the Art
	Data Sieving
	Collective I/O
	Two-Phase

	Storage Devices
	Hard Disk Drives
	Solid State Drives

	Software Environment
	PIOsimHD
	Architecture

	PIOsimHD-Model
	PIOsimHD-Simulator
	Network Packet Transport
	I/O Request Processing
	Cache Layers

	HDSunshot
	PVFS
	MPICH2

	Design
	Aggregation Cache
	Server-Directed I/O
	Read
	Write

	Collective I/O
	Interleaved Two-Phase

	Implementation
	Internals
	Component Implementations
	Command Implementations

	Server-Directed I/O
	Delayed Writes
	Performance Considerations

	Collective I/O
	Two-Phase
	Interleaved Two-Phase

	Evaluation
	Environment
	Cluster Configuration
	File Layout

	Performance Considerations
	Random I/O Test
	Individual I/O Test
	1 Data Block per Iteration
	100 Data Blocks per Iteration
	All Data Blocks per Iteration

	Collective I/O Test
	Two-Phase
	Interleaved Two-Phase

	Individual and Collective I/O Comparison
	Database I/O Test
	Parallel Partial Differential Equation Solver
	No Cache
	Simple Write-Behind Cache
	Aggregation Cache
	Server-Directed I/O
	Cache Layer Comparison

	Visualization
	Parallel Partial Differential Equation Solver
	Real Application Run
	Simulated Application Run

	Interleaved Two-Phase

	Summary, Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Bibliography
	Appendices
	Used Tools
	Usage Instructions
	Source Code Repository
	Setup
	Committing and Updating

	PIOsimHD-Simulator
	HDTrace
	Setup
	Compiling and Executing

	Evaluation Results
	Random I/O Test
	Individual I/O Test
	Contiguous Access --- 1 Operation
	Non-Contiguous Access --- 100 Operations
	Non-Contiguous Access --- All Operations

	Collective I/O Test
	Two-Phase
	Interleaved Two-Phase

	Database I/O Test
	Contiguous Access --- 1 Operation
	Non-Contiguous Access --- 10 Operations
	Non-Contiguous Access --- All Operations

	List of Acronyms
	List of Figures
	List of Tables
	List of Listings

