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Abstract

The aim of this thesis is the development of a new discretization method for solving
partial differential equations on complex shaped domains. Many biological, physical,
and chemical applications involve processes on such domains and the numerical treat-
ment of such processes is a challenging task.

The proposed method offers a higher-order discretization where the mesh is not
required to resolve the complex shaped boundary. The method combines the Unfitted
Finite Element method with a Discontinuous Galerkin discretization. Trial and test
functions are defined on a structured grid and their support is restricted according
to the domain boundary. Essential boundary conditions are imposed weakly via the
Discontinuous Galerkin formulation. Thus, the mesh is not required to resolve the
domain boundary but higher-order ansatz functions can still be used. Hence it is
possible to vary the size of the ansatz space independently of the geometry.

For an elliptic test problem, stability and convergence properties of the method are
analyzed numerically. Even though some assumptions of the underlying Discontinuous
Galerkin method regarding the finite element mesh cannot be guaranteed, the method
is stable in all tests and converges optimally.

The control over the size of the approximation space is especially attractive for
applications like numerical upscaling and multi-scale simulations. In this thesis the
method is successfully applied to numerical upscaling of a stationary flow problem and
to a time-dependent transport problem, where the complex domains used are artificially
generated as well as experimentally measured structures, obtained from micro X-ray
CT scans.





Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung eines Diskretisierungsverfahrens zur Lö-
sung partieller Differentialgleichungen auf Gebieten mit komplizierten Rändern. In
vielen biologischen, physikalischen und chemischen Anwendungen treten Prozesse auf
solchen Gebieten auf, deren numerische Behandlung eine Herausforderung darstellt.

Das entwickelte Verfahren erlaubt eine Diskretisierung mit Ansatzfunktionen höhe-
rer Ordnung, wobei das Gitter den komplexen Rand nicht auflösen muss. Das Ver-
fahren stellt eine Kombination aus der „Unfitted Finite Element”-Methode und ei-
nem Discontinuous-Galerkin-Verfahren dar. Ansatz- und Testfunktionen sind auf ei-
nem strukturierten Gitter definiert und ihr Träger wird entsprechend des Gebietsrandes
eingeschränkt. Essentielle Randbedingungen werden durch die Discontinuous-Galerkin-
Formulierung schwach erzwungen. Dies führt dazu, dass das Gitter den Gebietsrand
nicht auflösen muss, aber trotzdem Ansatzfunktionen höherer Ordnung verwendet wer-
den können. Dadurch ist es möglich die Größe des Ansatzraumes unabhängig von der
geometrischen Struktur zu variieren.

Anhand eines elliptischen Testproblems werden Stabilitäts- und Konvergenzeigen-
schaften des Verfahrens numerisch untersucht. Auch wenn verschiedene Voraussetzun-
gen des zugrunde liegenden Discontinous-Galerkin-Verfahrens bezüglich des Finite-
Elemente-Gitters nicht garantiert werden können, zeigt sich das Verfahren in allen
Tests stabil und konvergiert optimal.

Die Eigenschaft, die Größe des Ansatzraumes frei wählen zu können, macht das
Verfahren besonders attraktiv für Anwendungen im Bereich des numerischen Ups-
calings oder für Mehrskalenverfahren. In dieser Arbeit wird die Methode erfolgreich
zum numerischen Upscaling eines stationären Flußproblems sowie zur Lösung eines
zeitabhängigen Transportproblems angewandt, teils auf künstlich generierte, teils auf
experimentell gemessene Strukturen, welche aus Mikro-CT-Aufnahmen gewonnen sind.
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Chapter 1

Introduction

There exists today a universal language that is spoken and understood almost
everywhere: it is Broken English. I am not referring to Pidgin English [. . . ],

but to the much more general language that is used by waiters in Hawaii,
prostitutes in Paris and ambassadors in Washington, by businessmen from
Buenos Aires, by scientists at international meetings and by dirty-postcard

peddlers in Greece, in short by honourable people like myself all over the
world.

— Hendrik Casimir

1.1 Motivation

For nearly 400 years science has been based on the fruitful symbiosis of theory and
experiment. Experiments are carried out to verify a theory or to observe new facts
and thus to spark ideas for new or better theories.

As the focus of science moves to smaller and smaller systems and the complexity of
the processes increases, these processes elude experiments.

Numerical simulations can give insights into these difficult processes. They have
been established as a third fundamental way of gaining knowledge besides theory and
experiment. Especially in biology, the term ‘in silico experiment’ is used synonymously
to computer simulations [81].

Processes in natural sciences are often observed on different scales. On the small scale
processes can be described by fundamental physical laws, but the scientific interest
often lies in large scale results. These large scale processes are described by empiric
laws, which require the knowledge of parameters, usually obtained by experiments.
As experiments are expensive or sometimes not feasible at all, numerical simulations
become more and more popular to support parameter estimation.

Such kind of applications can be found in many subjects, e. g. in soil science or cell
biology. Examples are solute transport on the pore scale of porous media or reaction
diffusion processes on cell membranes. In these contexts parameter estimation using
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Introduction

numerical upscaling can be applied. Macroscopic parameters are obtained using small
scale simulations and some form of averaging.

Micro-scale simulations, as they are needed during the upscaling process, require
a good approximation of the geometrical shape of the microscopic domain to obtain
reliable numerical results. Although the numerical software and the methods improve
constantly, high resolution simulation of small scale structures are still a challenging
task.

Often the geometrical shape is not even stationary. Evolving domains and sometimes
even topological changes increase the complexity further.

Such kind of problems arise in many different applications. To give an idea we briefly
sketch three different examples from different subjects.

1.1.1 Soil Sciences – Pore-scale processes

9.9mm

6
.3

9
m

m

1
0
m

m

(a) xy–slice (b) yz–slice

Figure 1.1: Pore structure of a coarse sand, obtained from micro X-ray computer to-
mography (H.-J. Vogel, UFZ Halle).

Large scale numerical simulations of fluid flow and transport in porous media are an
important tool in geosciences and industry, first and foremost petroleum engineering
[22]. These simulations at the continuum scale require the knowledge of effective
parameters. Hydraulic parameters (e. g. capillary pressure/saturation curve, relative
permeability function) for the macroscopic models are often hard to measure [22, 102].

Nowadays detailed measurements of the pore-scale structure are possible [105, 80],
e. g. X-ray tomography (Figure 1.1). As the governing equations on the micro-scale
are well known, macroscopic parameters can be obtained directly from the pore-scale
geometry by numerical upscaling.
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1.1 Motivation

Handling the pore structure in a numerical simulation is not easy. The solid phase
forms a complex shaped geometry and a good approximation of this geometrical shape
is crucial in order to obtain reliable numerical results. Corners in the approximation
of the geometry lead to singularities in the solution. Depending on the equation these
will disturb the solution as a whole.

Obtaining a good approximation of the resulting domain usually requires simulations
on a very fine grid, while the interest on the other hand lies only in macroscopic
parameters, which could be calculated with sufficient precision from a solution on a
much coarser mesh.

1.1.2 Bio Mechanics – Elasticity of bones

Mechanical behavior of and load on bones is of interest for medical topics [39] like
healing processes, stability of bone implants and osteoporosis.

The mechanical properties of bones are largely determined by their micro-structure
[96]. This micro-structure forms a complex three-dimensional network, called spongy
or cancellous bone. The local structure differs largely between different bones and
even different areas of the same bone [64] as shown in Figure 1.2. These differences in
structure strongly influence the isotropy or anisotropy of the elastic modulus, as well
as the stiffness and the stability of the bone.

Figure 1.2: Mirco-CT images of cancellous bone of different human bones [64].

Simulation of elasticity on the microscopic network structure can give parameters
for the computation of strain and stress in whole bones.

In living bone tissue the pore structure is fluid-saturated. The so-called poroelas-
ticity additionally considers the interaction of the fluid with the elastic structure [39].
Simulations involve the computation of elasticity on the structure coupled with incom-
pressible flow in the pores.

1.1.3 Cell Biology – Endoplasmic Reticulum

The endoplasmic reticulum [2] is part of the cell surrounding the cell nucleus. It forms
a complex network of tubules, vesicles, and cisternae, enclosed by a highly folded

3
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Figure 1.3: The endoplasmic reticulum. Left: microscopy image of nucleus and en-
doplasmic reticulum (Rippel electron microscope facility, Dartmouth Col-
lege). Right: sketch of endoplasmic reticulum [62].

membrane. This structure plays an essential role in many cell processes, e. g. during
mitosis and DNA replication.

The membrane does change in time. It’s temporal behavior does influence the chem-
ical and biological processes. Obversely reaction–diffusion processes on the membrane
and in the endoplasmic reticulum are important for its functional behavior [92].

1.2 Objective

We presented different applications where it is necessary to handle complex shaped,
possibly time-dependent domains. The goal is to find a numerical method that helps
coping with that kind of problems. Applications related to the first example, originat-
ing from soil science, must act as a test case for this method. The second and third
example will not be treated but should be considered when designing the new method.
Extracting the common ground of all these processes we can state the objective as
follows.

A complicated geometry gives a partition into sub-domains. On one or more of these
sub-domains a partial differential equation (PDE) must be solved. On the interface
between these sub-domains boundary conditions or transmission conditions apply. In
some applications the partition might even be a manifold. It must be considered that
the sub-domains can change in time.

Computation power is a precious source and especially in three-dimensional setups
the computational costs quickly rise to a point where even super-computers cannot
help anymore. Therefore it is desired to have a discretization that can accurately
represent the complicated geometry while keeping the size of the approximation space
as low as possible. In particular, this requires the ability to carry out simulations on
a relatively coarse mesh.

Classical numerical methods require a grid resolving the geometry. Creating such

4



1.3 Outline

grids is a very sophisticated process, especially when it comes to time-dependent ge-
ometries. Therefore methods without this requirement are of high interest. Obtaining
a good approximation of the resulting domain usually requires simulations on a very
fine grid, in order to resolve the complex shape. This is undesired, especially in cases
where focuses is on macroscopic parameters, which could be calculated with a sufficient
precision from a solution on a coarser mesh. Evolving domains increase the difficult
further. Moving mesh methods, as they are often used [42, 33], cannot guarantee shape
regularity of the grid throughout time. Remeshing is required. Topological changes
cannot be handled at all.

This thesis presents a new approach to the solution of partial differential equations
on complex shaped domains. It combines the idea of Unfitted Finite Element [10] with
a Discontinuous Galerkin (DG) Finite Element discretization. This Unfitted Discontin-
uous Galerkin method allows the discretization of processes on domains of complicated
shape without the need of a geometry resolving grid. It successfully uncouples the con-
struction of the finite element mesh from the geometrical properties. Although it is not
used in this work, a combination of this method with adaptive mesh refinement and
error estimators would allow to refine the grid where accuracy of the discretization
is not sufficient and not where the geometry is of small scale. In contrast to other
methods, this method does not require a modification of the formulated problem in
order to incorporate the geometrical constraints. The Unfitted Discontinuous Galerkin
method incorporates DG methods in their primal formulation.

1.3 Outline

This thesis consists of eight chapters. After this introduction, in Chapter 2, we intro-
duce the concepts of the Discontinuous Galerkin Finite Element method. This method
forms the basis of the presented work. We will give a short historical overview and
describe the central concepts of the method. Then we discuss different properties of
the method and their attraction for simulations in natural sciences. We put emphasis
on those aspects that are important for our later work.

Chapter 3 is central to this work. It describes the concepts of the Unfitted Discon-
tinuous Galerkin method. It is a new approach to the solution of partial differential
equations on complex shaped domains. We will discuss both mathematical and practi-
cal aspects of the method. We compare the new approach to the standard Conforming
Finite Element approach and to other methods targeting similar goals.

After discussing implementation issues and the integration into the DUNE framework
[19, 20] in Chapter 4, Chapter 5 will get back to the different DG properties discussed
in Chapter 2. Simulations will show numerically that the changes introduced in the
Unfitted Discontinuous Galerkin approach do not harm the stability, convergence and
other properties of the underlying Discontinuous Galerkin method.

In the following two chapters numerical simulations of static and time-dependent
problems are presented. These emphasize the flexibility of the new method.
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A summary and discussion follows in Chapter 8. An appendix provides a list of
abbreviations, notations and additional data required for the implementation of the
algorithms described in Chapter 3.
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Chapter 2

Discontinuous Galerkin

Finite Element Method

Diviser pour régner.

— Louis XI, roi de France.

Discontinuous Galerkin (DG) Finite Element Methods name a class of Finite Ele-
ment Methods (FEM), which are of special attraction for the simulation of physical
problems. Many of them preserve continuous conservation laws in the discrete formula-
tion, e. g. local mass conservation in fluid transport problems. Discontinuous Galerkin
methods date back to the early 1970s, although they weren’t called like this initially.
Their name derives from the fact that trial and test functions are discontinuous across
element boundaries.

Discontinuous Galerkin methods show a lot of similarities to Finite Volume (FV) [70]
methods in their construction as well as in the discrete representation of conservation
laws using a flux formulation. In fact, the simplest DG discretization for hyperbolic
problems using piecewise constant basis functions is equivalent to a cell-centered FV
discretization. Unlike DG methods, FV methods generally do not exhibit Galerkin
orthogonality. Sometimes the FV schemes are also referred to as Integrated Finite
Differences.

2.1 Overview

In 1973 Reed and Hill [87] published a method for the solution of hyperbolic equations.
It marks the beginning of the development of a wide range of Discontinuous Galerkin
Methods for hyperbolic problems.

In the same decade several authors independently proposed DG methods for elliptic
and parabolic equations and different variants of the method were developed. These
methods were usually called Interior Penalty (IP) Methods ; see e. g. Douglas Jr and
Dupont [46], Baker [9], Wheeler [109], Arnold [3, 4]. They adopt a method of enforcing
Dirichlet boundary conditions through penalties, proposed 1971 by Nitsche [78], and

7
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apply these concepts to inter-element boundaries. More recently the development of
Discontinuous Galerkin methods for elliptic equations increased again with publications
by Bassi and Rebay [12], Oden et al. [79] and Cockburn and Shu [37] (1997 and 1998).

With the work of Hansbo and Hansbo [59], the concepts known from Discontinu-
ous Galerkin Methods started to find application in domain decomposition for non-
matching grids.

Finally, in 2002, a unified analysis of Discontinuous Galerkin Methods for elliptic
equations was published in [5]. This paper allows to describe and analyze the different
DG methods using a unified framework. This enabled recent general work on DG, e. g.
general a-posteriori error estimates [73].

2.2 Elliptic Model Problem

In this work we follow the nomenclature introduced in [5].
Let Ω ⊆ Rd be a domain of size

L = diam(Ω) (2.1)

Definition 2.1 (Model Problem/Strong formulation): We consider the elliptic model
problem in its strong formulation

−∆u = f in Ω, (2.2a)

u = 0 on ∂Ω, (2.2b)

with the unknown u ∈ C2(Ω) ∩ C0(Ω̄) and f being a source term.

Definition 2.2 (Triangulation T ): Given a non-overlapping partition

T = {E0, . . . , EM−1} with (2.3a)

En ⊆ Ω ∀ 0 ≤ n < M, En open, (2.3b)

En ∩ Em = ∅ ∀ 0 ≤ n < m < M, (2.3c)

Ω̄ =
M−1⋃

n=0

Ēn, (2.3d)

and a finite set of references elements {Ê}. Assuming further that for each En there
exists a smooth one-to-one mapping TEn from a reference element Ê

En = TEn(Ê), (2.4)

we call T a triangulation of Ω with mesh size

h = max {diam(E) | E ∈ T } . (2.5)
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2.2 Elliptic Model Problem

Definition 2.3 (Internal Skeleton): The internal skeleton Γint of the partitioning is given
by

Γint = {γe,f = ∂Ee ∩ ∂Ef | Ee, Ef ∈ T and Ee 6= Ef and |γe,f | > 0} , (2.6)

where |γ| denotes the codimension one volume of γ.

Definition 2.4 (External Skeleton): Correspondingly, the external skeleton is denoted
by

Γext = {γe = ∂Ee ∩ ∂Ω | Ee ∈ T and |γe| > 0} . (2.7)

Definition 2.5 (Skeleton): The skeleton Γ of the partitioning is defined as the union

Γ = Γint ∪ Γext. (2.8)

2.2.1 Enforcing Dirichlet Boundary Conditions through a Penalty Term

In 1971 Nitsche [78] proposed a new method of enforcing Dirichlet boundary conditions
for elliptic partial differential equations through penalties. This method forms the
foundation for the later development of Discontinuous Galerkin methods. Therefore
we want to outline this approach.

Nitsches approach is inspired by [6]. Babuška replaced (2.2b) by an approximate
boundary condition

u+
1

µ
∇u · n = 0 with µ > 0, (2.9)

where n is the outward normal unit vector of ∂Ω. The resulting weak formulation is
not consistent with the strong problem, i. e. solutions of the strong problem are not a
solution of the weak formulation. A proper definition of consistency follows later.

Variational view

To obtain a consistent and symmetric method Nitsche proposes the following varia-
tional formulation:

Find uh ∈ Vh ⊂ H1(Ω) such that

a(uh, v) = l(v) ∀v ∈ Vh ⊂ H1. (2.10a)

with the bilinear form a and the linear form l given as

a(uh, v) =

∫

Ω

∇uh · ∇v dx−
∫

∂Ω

∇uh · n v ds−
∫

∂Ω

∇v · nuh ds+ µ

∫

∂Ω

uhv ds (2.10b)

and

l(v) =

∫

Ω

f v dx. (2.10c)

9
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This formulation can be motivated as follows. Equation (2.2a) is tested with v ∈ H1

and (2.2b) with v − 1
µ∇v · n. Combining these equations and scaling the second with

µ yields (2.10a).
The term

∫
∂Ω v∇u · n ds arises from integration by parts of the left hand side of

(2.2a) and thus it is important to ensure consistency of the problem. The weak form
of (2.2b) leads to two additional terms in bilinear form

S = −
∫

∂Ω

uh ∇v · n ds (2.11)

and

J = µ

∫

∂Ω

uhv ds. (2.12)

Term (2.11) makes the problem symmetric, where as (2.12) is necessary to guarantee
coercivity of the problem.

Nitsche proved that for µ = η
h , η > 0 and sufficiently large, uh converges optimally

in the H1- and L2-norm.

Minimization view

The Nitsche Method can also be seen in a minimization context. Equation (2.10a)
then reads: Find u ∈ V such that

J(u) = min(F (v) : v ∈ V ) with

J(v) =
1

2
a(v, v) − l(v).

(2.13)

The method is stable if a(v, v) is a symmetric and coercive functional. Formally
written this stability condition reads as

a(v, v) ≥ cs‖v‖2
1,Ω ∀v ∈ Vk , (2.14)

with a constant cs > 0 [57].

Theorem 2.1: If a discrete function space fulfills the property

|v|1,∂Ω ≤ ch−
1
2 |v|1,Ω (2.15)

with a constant c > 0 the bilinear form (2.10b) is stable for µ ≥ 2 c2

h .

Proof: Follows directly from the estimate (2.15) and the following inequalities:

• the Cauchy-Schwarz inequality (|(a, b)| ≤ ‖a‖ · ‖b‖)
∣∣∣∣∣∣

∫

∂Ω

v∇v · n ds

∣∣∣∣∣∣
≤ ‖v‖0,∂Ω · ‖∇v‖0,∂Ω = ‖v‖0,∂Ω · |v|1,∂Ω (2.16)
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• and Young’s inequality (2ab ≤ ǫa2 + b2/ǫ with ǫ > 0)

2 ‖v‖0,∂Ω · |v|1,∂Ω ≤ 2 ‖v‖0,∂Ωch
− 1

2 · |v|1,Ω

≤ 2 ‖v‖2
0,∂Ωc

2h−1 +
1

2
|v|21,Ω

(2.17)

Using Equations (2.15), (2.16) and (2.17) the bilinear form a(v, v) can be estimated
from below.

a(v, v) =

∫

Ω

(∇v)2 dx− 2

∫

∂Ω

∇v · n v ds+ µ

∫

∂Ω

v2 ds

≥
(2.16)

|v|21,Ω − 2 ‖v‖0,∂Ω · |v|1,∂Ω + µ‖v‖2
0,∂Ω

≥
(2.17)

1

2
|v|21,Ω + (µ− 2c2h−1)‖v‖2

0,∂Ω

(2.18)

Remark 2.1 (Interpretation of 2.15): The required estimate 2.15 can be obtained using
the Poincaré-Friedrich inequality, an inverse estimate and the trace theorem. For a
norm ‖v‖1,∂Ω, an inverse estimate gives an estimate with lower order and the trace
theorem allows to estimate using a norm on Ω.

‖v‖1,∂Ω ≤
(inv. e.)

c1h
− 1

2 ‖v‖ 1
2
,∂Ω ≤

(tr.th.)

c2h
− 1

2 ‖v‖1,Ω . (2.19)

The Poincaré-Friedrich inequality gives estimates using semi norms

|v|1,∂Ω ≤ ch−
1
2 |v|1,Ω . (2.20)

Remark 2.2: In the minimization problem the term originating from (2.12) guarantees
the coercivity of the problem. It penalizes solutions with large uh at the boundary
and thus leads to a solution with u = 0 in the continuous limit. This explains the
name penalty term for (2.12).

Remark 2.3: Note that Theorem 2.1 gives the same relation µ ∝ 1
h that was required

for the error estimates in the variational formulation, choosing the constant η ≥ 2c2.

Equivalence of Strong and Weak Formulation

Definition 2.6 (Consistency): Given the solution u ∈ C2 of the model problem (2.2), a
weak formulation with the bilinear form a(u, v) is consistent if u fulfills

a(u, v) =

∫

Ω

f v dx ∀v ∈ Vh. (2.21)

Theorem 2.2: The weak formulation (2.10a), as proposed by Nitsche, is consistent
with the strong formulation of the model problem (2.2).
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Proof: Given a solution u ∈ C2(Ω) of the model problem (2.2). As u = 0 on ∂Ω the
weak formulation (2.10a) reduces to

∫

Ω

∇u · ∇v dx−
∫

∂Ω

∇u · n v ds =

∫

Ω

f v dx. (2.22)

Reverting the integration by parts gives
∫

Ω

−∆uv dx =

∫

Ω

f v dx. (2.23)

As −∆u = f Equation (2.23) is true and u is also a solution of the weak formulation.

Theorem 2.3: Let u be a unique solution u of the weak formulation (2.10a). Assuming
that u has sufficient regularity, i. e. u ∈ H1(Ω)∩C2(Ω), u is also a solution of (2.2).

Proof: As u fulfills (2.10a) for any v ∈ H1, it is also true for any v ∈ C∞
0 . Choosing v

from C∞
0 all boundary integrals vanish and we obtain

∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx ∀v ∈ C∞
0 (Ω). (2.24)

As u and f are continuous on Ω the Fundamental Lemma of Calculus of Variations
yields

−∆u = f. (2.25)

Thus (2.2a) is fulfilled. Reverting integrations by part in (2.10a) and using −∆u = f
the weak formulation simplifies to

−
∫

∂Ω

u∇v · n ds+ µ

∫

∂Ω

u v ds = 0 ∀v ∈ H1(Ω). (2.26)

As 2.26 holds for any v ∈ H1 it also holds for any v ∈ H2
0 and we obtain

−
∫

∂Ω

u∇v · n ds = 0 ∀v ∈ H2
0 (Ω). (2.27)

In [1], Theorem 7.53, it is stated that the normal trace maps surjectively from H2
0 (Ω)

to H
1
2 (∂Ω) so that (2.27) becomes

−
∫

∂Ω

u ṽ ds = 0 ∀ṽ ∈ H
1
2 (∂Ω). (2.28)

Using again the Fundamental Lemma of Calculus of Variations we obtain u = 0 on ∂Ω
and (2.2b) is also fulfilled.
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2.2.2 A Unified Framework

In [5] Arnold et al. introduced a unified framework to handle all different DG methods.
We start again with the model problem in its strong formulation (2.2), which is a
second-order partial differential equation.

Definition 2.7 (Model Problem/Mixed Formulation): We rewrite the problem (2.2) from
its higher-order partial differential equation representation to a system of first-order
PDEs with the unknowns u and σ. This first-order system is also called the mixed
formulation:

σ = ∇u in Ω, (2.29a)

−∇ · σ = f in Ω, (2.29b)

u = 0 on ∂Ω. (2.29c)

On the triangulation T (Definition 2.2) we define two function spaces of discontinuous
polynomial functions

Vh =
{
v ∈ L2(Ω) : v|E ∈ Pk(E)

}
and (2.30a)

Σh =
{
τ ∈ [L2(Ω)]d : τ |E ∈ [Pk(E)]d

}
, (2.30b)

where Pk denotes the space of polynomial functions of degree k.

Definition 2.8: The space of polynomial functions of degree k is given as

Pk =




ψ : Rd → R

∣∣∣∣∣∣
ψ(x) =

∑

|α|≤k

cαx
α




 (2.31)

where α denotes a multi-index.

Remark 2.4: According to [45] the local basis functions can be chosen independently of
the shape of the element and the shape of the elements En can be quite arbitrary.
In [45] Dolejsí et al. show that star shaped elements (see [85, p. 18]) are sufficient
but not necessary for the convergence rate to be independent of the shape of the
elements.

Definition 2.9 (Model Problem/Weak Formulation): Continuing with the problem in its
mixed formulation on a sub-domain K ⊆ Ω, we multiply (2.29a) and (2.29b) with
test functions τ ∈ Σh and v ∈ Vh and apply integration by parts. We obtain the
problem in its weak formulation

∫

K

σ · τ dx = −
∫

K

u∇ · τ dx+

∫

∂K

un · τ ds,

∫

K

σ · ∇v dx = −
∫

K

fv dx+

∫

∂K

σ · n v ds,
(2.32)
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where n is the outward pointing normal unit vector of ∂K.

We choose K = En ∈ T , τ ∈ Σh and v ∈ Vh. On each element we introduce
numerical fluxes σ̂En and ûEn forming approximations to σ and u on the boundary.
The operator ·̂ En maps

ûEn : H1(En) → L2(∂En) and

σ̂En : H2(En) × [H1(En)]d → [L2(∂En)]d.
(2.33)

and is constructed such that
∫

∂En

ûEn ds =

∫

∂En

u ds and
∫

∂En

σ̂En ds =

∫

∂En

∇u ds.

Globally numerical fluxes û and σ̂ are given as the combination of the local operators
û = (ûEn)En∈T , σ̂ = (σ̂En)En∈T . The global operator ·̂ maps

û : H1(T ) → T (Γ) and

σ̂ : H2(T ) × [H1(T )]d → [T (Γ)]d.
(2.34)

with T (Γ) = ΠEn∈T L2(∂En). Note that functions in T (Γ) are double-valued on Γint

and Γext.

Definition 2.10 (Model Problem/Flux Formulation): Together with the numerical fluxes
σ̂En and ûEn the problem reads: Find uh ∈ Vh and σh ∈ Σh such that

∫

En

σh · τ dx = −
∫

En

uh∇ · τ dx+

∫

∂En

ûEnnEn · τ ds,

∫

En

σh · ∇v dx = −
∫

En

fv dx+

∫

∂En

σ̂En · nEn · v ds
(2.35)

for all En ∈ T .

Depending on the choice of the numerical fluxes it is possible to construct all different
kinds of Discontinuous Galerkin methods. This choice has a strong influence on the
stability and accuracy of the scheme as well as on the sparcity and the structure of the
resulting stiffness matrix.

Definition 2.11 (Jump): Following Arnold et al. the jump of a piecewise continuous
function x on the interface between two adjacent elements En and Em is denoted by
the linear operator

Jx K = x|∂En
nEn + x|∂Em

nEm . (2.36)

On the boundary ∂Ω we define Jx K to be Jx K = xnEn . Note that the jump J p K of
a scalar function p is a vector parallel to its normal vector and that the jump Jv K
of a vector valued function v is a scalar.
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Definition 2.12 (Average): The average of a piecewise continuous function x on the
interface is given by the arithmetic mean

{x } =
1

2
(x|∂En

+ x|∂Ej
) . (2.37)

On ∂Ω the average is defined as {x } = x.

Remark 2.5: The jump and average operators fulfill the relation

Jxy K = Jx K{ y } + J y K{x } . (2.38)

Using definition 2.11 and 2.12 and summing over all elements, (2.35) can be rewritten
as ∫

Ω

σh · τ dx = −
∫

Ω

uh∇ · τ dx+

∫

Γ

J ûEnτ K ds,

∫

Ω

σh · ∇v dx = −
∫

Ω

fv dx+

∫

Γ

J σ̂Env K ds .

(2.39)

In order to express σh in terms of uh, the operators Ju K and {u } are extended into
the whole domain using suitable lifting operators.

Definition 2.13 (Lifting operators): Lifting operators r and l are defined such that

∫

Ω

r(ψ) · τ dx = −
∫

Γ

ψ · { τ } ds and

∫

Ω

l(q) · τ dx = −
∫

Γint

qJ τ K ds . (2.40)

Using the lifting operators and applying integration by parts formula, σh can be
written as

σh = ∇uh − r(J û− uh K) − l({ û− uh }) . (2.41)

Substitution of σh leads to the problem in its primal formulation.

Definition 2.14 (Model Problem/Primal Formulation): The discretization of the elliptic
model problem (2.2) in the primal formulation reads:

Find uh ∈ Vh such that

a(uh, v) =

∫

Ω

fv dx ∀v ∈ Vh (2.42)
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with the bilinear form

a(uh, v) =

∫

Ω

∇uh · ∇v dx+

∫

Γ

J û− uh K · {∇v } − J v K · { σ̂ } ds

+

∫

Γint

{ û− uh }J∇v K− { v }J σ̂ K ds

=
∑

En∈T

∫

En

∇uh · ∇v dx

+
∑

γe,f∈Γ

∫

γe,f

J û− uh K · {∇v } − J v K · { σ̂ } ds

+
∑

γe,f∈Γint

∫

γe,f

{ û− uh }J∇v K− { v }J σ̂ K ds .

(2.43)

2.2.3 Selected Schemes

Within this work we want to concentrate on three DG schemes, for numerical compu-
tations: the Symetric Interior Penalty Galerkin Method (SIPG, see [109]), the Non-
Symetric Interior Penalty Galerkin Method (NIPG, see [89]) and the Oden-Babuška-
Baumann Scheme (OBB, see [79]). We will investigate the properties of these specific
schemes in detail. All three schemes can be described in the previously introduced
framework. Table 2.1 shows the choice of the numerical fluxes for each of these schemes.
For an extensive list of DG schemes and their numerical fluxes, see [5].

Method û σ̂

SIPG {uh } {∇uh } − ηh−1Juh K

NIPG {uh } + nEn · Juh K {∇uh } − ηh−1Juh K

OBB {uh } + nEn · Juh K {∇uh }

Table 2.1: Selected DG methods and their numerical fluxes.

For most of our simulations, the OBB scheme will be used because it does not
depend on any additional parameters. The correct choice of additional parameters,
e. g. the η in the NIPG and SIPG scheme, can become rather intricate in the case of
heterogeneous problems.

Remark 2.6 (Local h): For non-uniform grids h will often be chosen locally for each
γ ∈ Γ:

hγ ∝ diam(γ) . (2.44)
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In two dimensions hγ = |γ| is given by the length of the edge γ. In three dimensions

γ is a face and hγ = |γ| 12 is defined using the area of the face.

A Generalized Bilinear Form

In [17] these three schemes are written as a single scheme with numerical fluxes

û = {uh } +
1 − ǫ

2
nEn · Juh K and σ̂ = {∇uh } − ηh−1Juh K, (2.45)

the resulting bilinear form reads

aǫ(uh, v) =

∫

Ω

∇uh · ∇v dx +

∫

Γ

ǫ {∇v } · Juh K− {∇uh } · J v K ds

+ ηh−1

∫

Γ

Juh K · J v Kds.
(2.46)

The new parameter ǫ = ±1 allows to switch between a symmetric and a non-
symmetric bilinear form. Choosing ǫ = −1 yields the classic SIPG method. For
ǫ = 1 the NIPG method is obtained and ǫ = 1, η = 0 shows the OBB scheme.

Definition 2.15: Using the locally defined hγ the penalty term ηh−1
∫

Γ

Juh K · J v Kds
differs for each edge γ ∈ Γ and we introduce the following abbreviated form

η

∫

Γ

h−1
γ Juh K · J v Kds =

∑

γ∈Γ

ηh−1
γ

∫

γ

Juh K · J v Kds (2.47)

2.3 Analysis

Consistency, adjoint consistency and conservativity are important properties of Dis-
continuous Galerkin methods. In the following we will analyze these properties for the
three considered schemes.

2.3.1 Consistency

Using Definition 2.6 we want to check the consistency of the primal formulations of
three selected schemes.

Lemma 2.1: All three considered schemes, SIPG, NIPG, and OBB, are consistent.

Proof: We consider the generalized notation of Equation (2.46). For a solution u of
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(2.2) the jump Ju K vanishes and the bilinear form reduces to

aǫ(u, v) =

∫

Ω

∇u · ∇v dx +

∫

Γ

ǫ {∇v } · Ju K︸ ︷︷ ︸
=0

−{∇u } · J v K ds

+ ηh−1

∫

Γ

Ju KJ v Kds

︸ ︷︷ ︸
=0

=

∫

Ω

∇u · ∇v dx −
∫

Γ

{∇u } · J v K ds

= −
∫

Ω

∆u v dx

Together with (2.2) consistency of all three methods is found.

Remark 2.7 (Galerkin orthogonality): Consistency of the method implies the Galerkin
orthogonality

a(u− uh, v) = 0 ∀v ∈ Vh. (2.48)

2.3.2 Adjoint Consistency

On the analogy of Definition 2.6 (consistency) the property of adjoint consistency is
defined.

Definition 2.16 (Adjoint Consistency): Given the solution u ∈ C2 of the underlying
problem (2.2), the primal formulation is adjoint consistent if u fulfills

a(v, u) =

∫

Ω

f v dx ∀v ∈ Vh. (2.49)

Lemma 2.2: The SIPG scheme is adjoint consistent.

Proof: Analyzing adjoint consistency of the bilinear form (2.46) yields

aǫ(v, u) =

∫

Ω

∇v · ∇u dx +

∫

Γ

ǫ{∇u } · J v K ds

For ǫ = −1 we obtain

aǫ(v, u) = −
∫

Ω

∆v u dx,

thus the symmetric SIPG scheme is adjoint consistent.

Remark 2.8: Only the symmetric SIPG scheme (ǫ = −1) is adjoint consist, the NIPG
as well as the OBB scheme (ǫ = 1) do not fulfill (2.49).
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2.3.3 Conservation Laws

First we want to discuss conservation of mass. It is a fundamental concept of physics
along with the conservation of energy and the conservation of momentum. For mass
conserving problems it is desired that this property is also guaranteed by the discretiza-
tion.

For the elliptic test problem, mass conservation is related to the vector field σ (Gauss
theorem): ∫

Ω

∇σ dx =

∫

∂Ω

σ · nds (2.50)

Lemma 2.3: A scheme in the form of Definition 2.14 guarantees a conservative dis-
cretization of σ if the numerical fluxes σ̂ are conservative.

Proof: Testing with v = 1 (i. e. v = 1, J v K = 0) Equation (2.43) becomes

a(uh, 1) =

∫

Ω

∇uh · 0 dx+

∫

Γint

J û− uh K · 0 − 0 · { σ̂ } ds

+

∫

Γext

J û− uh K · 0 − 1 · { σ̂ } ds

+

∫

Γint

{ û− uh }J 0 K− 1J σ̂ K ds

(2.51)

Assuming J σ̂ K = 0, i. e. a conservative flux, yields

a(uh, 1) =

∫

Γext

−1 · { σ̂ } ds =

∫

Ω

f dx. (2.52)

Substitution of
∫
Γext

σ̂ =
∫
Γext

σh und f = −∇σh gives

∫

∂Ω

σh · n ds =

∫

Ω

∇σh dx. (2.53)

Thus the scheme is conservative in σ if the flux σ̂ is conservative, i. e. J σ̂ K = 0.

Remark 2.9: The same relation can be varified for u. The scheme is conservative in u if
J û K = 0. For all three selected schemes σ̂ is conservative, but û is only conservative
for ǫ = 1, i. e. for the symmetric SIPG scheme.

Remark 2.10 (Adjoint Consistency and Conservation): A scheme is adjoint consistent if
the fluxes σ̂ and û are conservative.
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Proof: The numerical flux operators applied to the test function are denoted by v̂ and
τ̂ . Inserting v into the bilinear form testing with u yields

a(v, u) =

∫

Ω

∇v · ∇u dx+

∫

Γ

J v̂ − v K︸ ︷︷ ︸
=J bv K

·{∇u } − Ju K︸︷︷︸
=0

·{ τ̂ } ds

+

∫

Γint

{ v̂ − v } J∇u K︸ ︷︷ ︸
=0

−{u }J τ̂ K ds

=

∫

Ω

∇v · ∇u dx+

∫

Γ

J v̂ K · {∇u } ds+

∫

Γint

−{u }J τ̂ K ds .

(2.54)

Conservation of fluxes gives

a(v, u) =

∫

Ω

∇v · ∇u dx+

∫

Γext

v̂ n · ∇u ds

=

∫

Ω

∇u · ∇v dx+

∫

Γext

v n · ∇u ds .
(2.55)

Thus the scheme is adjoint consistent.
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Chapter 3

Unfitted Discontinuous Galerkin

Method

un·fit·ted /2n"fItId/ adj. ~for sth | ~to do sth (formal) not suitable for
something: She felt herself unfitted for marriage

— Oxford Dictionary

Using conforming finite element methods, Barrett and Elliott [10] presented a dis-
cretization method on an unfitted mesh, i. e. the finite element mesh does not resolve
the geometry and boundary conditions along the geometry are enforced weakly using
Nitsche’s method [78]. This method is known as the Unfitted Finite Element Method.
However the method itself does only allow first order trial and test functions.

Recently, new interest arose in this method due to it’s ability to handle interfaces
or discontinuities internal to an element. The method is attractive for time-dependent
problems with evolving domains, e. g. moving interfaces. It does not require remesh-
ing. In [59], Hansbo and Hansbo propose an improved method and prove optimal
convergence rates. An application to crack propagation in solid mechanics is presented
in [60].

In our new Unfitted Discontinuous Galerkin (UDG) approach we extend the idea
of Unfitted Finite Elements by using Discontinuous Galerkin methods (Chapter 2)
instead of Nietzsche’s method (Section 2.2.1) for the handling of essential boundary
conditions. This allows the use of higher-order trial and test functions.

Remark 3.1: For problems described by a conservation equation DG methods are espe-
cially attractive. As shown in Section 2.3.3, certain DG formulations are element-
wise mass conservative and therefore able to accurately describe fluxes over element
boundaries.
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Unfitted Discontinuous Galerkin Method

3.1 Finite Element Space and Mesh

3.1.1 The Computational Domains

In the following, the computational domains are sub-domains of a given domain Ω.

Definition 3.1 (Sub-domains): Let Ω ⊆ Rd be a domain and G a disjoint partition of Ω
into sub-domains

G(Ω) =
{

Ω(0), . . . ,Ω(N−1)
}

(3.1)

with

Ω(i) ⊆ Ω ∀ 0 ≤ i < N,

Ω(i) ∩ Ω(j) = ∅ ∀ 0 ≤ i < j < N,

∂Ω(i) ∩ ∂Ω(j) = Γ(i,j) ∀ 0 ≤ i < j < N,

Ω̄ =
N−1⋃

i=0

Ω̄(i).

(3.2)

On each Ω(i) we consider an elliptic partial differential equation

Li(ui) = fi (3.3)

with a linear differential operator Li together with suitable boundary conditions on
∂Ω and transmission conditions on the interfaces Γ(i,j).

Remark 3.2 (Geometric Interpretation): The partition G is usually based on geometric
properties obtained from experiments or previous simulations. The boundaries ∂Ω(i)

may have a complex shape.

3.1.2 The Mesh

In addition to the partitioning G we consider a triangulation T of the domain Ω,
see Definition 2.2. T can be chosen independently of G. Reaping benefit from the
Discontinuous Galerkin method, the trial and test functions are defined on T and their
support is restricted to G. This approach allows to choose the size of the approximation
space independent of the geometric properties.

Definition 3.2 (Fundamental Mesh): We call T (Ω) the fundamental mesh, its elements
are denoted by T (Ω) = {E0, . . . , EM−1}.

Remark 3.3 (Mesh Size): The triangulation T is a partition of Ω, where the mesh size h
(see Equation 2.5) is not directly determined by the shape of G. Nevertheless, error
control on the solution of the partial differential equations (3.3) might require mesh
refinement dependent to the shape of G.
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3.1 Finite Element Space and Mesh

T (Ω)
E0

Ω(0)

Ω(1) G(Ω)

T (Ω(0))E
(0)
0

and

T (Ω(1))

E
(1)
0

Figure 3.1: Construction of the partitions T (Ω(i)) of a sub-domain Ω(i) given the par-
titions G and T of the domain Ω.

Definition 3.3 (Sub-domain Mesh): For each Ω(i) ∈ G a mesh based on equation (2.3a)
is defined (see Figure 3.1):

T (Ω(i)) =
{
E(i)

n = Ω(i) ∩ En

∣∣∣ E(i)
n 6= ∅

}
. (3.4)

Note that E
(i)
n is always a subset of En, therefore we will call En the fundamental

element of E
(i)
n .

Remark 3.4: For practical reasons, we require that E(i)
n is path-wise connected, i. e. any

two points in E
(i)
n can be connected by a curve lying completely within E

(i)
n (see

[108]).
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Figure 3.2: Situations with non-connected parts of one E(i)
n can occur. Often these

cases vanish for h < hmin small enough (a), but there are situations where
they never vanish (b).
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Unfitted Discontinuous Galerkin Method

Not for every pair of G(Ω) and T (Ω) this requirement can be guaranteed. As the
partition G and T are defined independently of each other, situations may occur
where E(i)

n = Ω(i) ∩ Ωn consists of two or more unconnected parts. Often these
cases vanish choosing h small enough (see Figure 3.2 (a)), such that for small h the
common estimate for the convergence error applies. An example where a decrease
in h cannot resolve the problematic situation of two unconnected parts is shown in
Figure 3.2 (b): A sub-domain Ω(i) has a point of contact with an edge of the grid
and the point’s offset a along the edge fulfills that a

h is irrational.

Analogous to Definition 2.3 and 2.4, we introduce the following definitions for the
sub-domain Ω(i):

Definition 3.4 (Internal Skeleton of Sub-domain Mesh): The internal skeleton Γ
(i)
int of the

sub-domain mesh is given by

Γ
(i)
int =

{
γe,f = ∂E(i)

e ∩ ∂E(i)
f

∣∣∣ E(i)
e , E

(i)
f ∈ T (Ω(i)), E(i)

e 6= E
(i)
f

and |γe,f | > 0} .
(3.5)

Definition 3.5 (External Skeleton of Sub-domain Mesh): The external skeleton Γ
(i)
ext is

denoted by

Γ
(i)
ext =

{
γe = ∂E(i)

e ∩ ∂Ω(i)
∣∣∣ E(i)

e ∈ T (Ω(i)) and |γe,f | > 0
}
. (3.6)

3.1.3 The Basis Functions

Following the common Discontinuous Galerkin approach as described in Chapter 2 we
use piecewise polynomial basis functions.

Remark 3.5: Since each element E(i)
n in the outlined finite element mesh T (Ω(i)) can

be shaped arbitrarily, Discontinuous Galerkin methods are particularly attractive
(Remark 2.4). For such complicated grids it is hard to use conforming trial and test
functions. Since conforming basis functions depend on the shape of the elements, it
would be necessary to construct a suitable local basis for each E(i)

n in accordance to
local boundary conditions.

We use a DG formulation with a discontinuous, piecewise polynomial approximation.
Recalling Definition 2.8, the space of polynomial functions of degree k is given as

Pk =




u : Rd → R

∣∣∣∣∣∣
u(x) =

∑

|α|≤k

cαx
α




 , (3.7)

with a multi-index α.
The finite element space for the discretization of Liui = fi on Ω(i) is defined by

V
(i)
h =

{
v ∈ L2(Ω

(i))
∣∣∣ v|

E
(i)
n

∈ Pk

}
, (3.8)
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3.2 Integration using a Local Triangulation

and consists of piecewise polynomials with discontinuities on the internal skeleton Γ
(i)
int.

Definition 3.6 (UDG Local Basis Functions): The local basis functions ϕ(i)
n,j are given

by polynomials ϕj ∈ Pk with their support restricted to E
(i)
n :

ϕ
(i)
n,j =

{
ϕj inside of E

(i)
n

0 outside of E
(i)
n

. (3.9)

Remark 3.6: Since the assembling of the stiffness matrix requires integration over the
volume of E(i)

n and over the surface ∂E(i)
n , for elements E(i)

n significantly smaller than
the fundamental element En only a very small part of ϕn,j is integrated. This means
that their matrix entries become very small. Such small matrix entries increase the
condition of the matrix and pose numerical problems especially for the linear solver.
In order to avoid this difficulty the local basis functions are scaled linearly according
to the bounding box of the element E(i)

n . This scaling ensures that min(ϕn,j) = 0

and max(ϕn,j) = 1 on the bounding box of the element E(i)
n .

3.2 Integration using a Local Triangulation

Assembling the local stiffness matrix in a DG approach requires integration over the
volume of each element E(i)

n and its surface ∂E(i)
n . As stated in Remark 3.5, the mesh

elements obtained by the UDG method might exhibit very complicated shapes, thus
evaluation of these volume and surface integrals is a very involved process.

For the integration of a function on irregular shaped domains quadrature rules based
on interpolation functions are not directly applicable. A common approach is to use
Monte-Carlo integration. For Monte-Carlo integration the integration error converges
with Err ∝ 1/

√
N [107], where N is the number of sampling points. Thus, the costs

for the integration of a polynomial function on a single element using this kind of
integration are rather high compared to methods based on interpolation functions,
e. g. Gauss quadrature.

As the number of elements with complicated shapes can be very high in UDG meshes,
a different approach is chosen here. Integration is based on a local triangulation of
E

(i)
n (see Figure 3.3). To do so, E(i)

n is subdivided into a disjoint set {E(i)
n,k} of simple

geometric objects, i. e. simplices and hypercubes, with

E
(i)
n,k ⊆ E(i)

n

E
(i)
n,k ∩ E(i)

n,l = ∅ ∀ k 6= l,

Ē(i)
n =

⋃

k

Ē
(i)
n,k.

(3.10)

For each of these simple geometric objects efficient Gaussian type quadrature rules
can be applied. For a comprehensive overview of numerical integration methods, see
e. g. [41].
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Figure 3.3: Construction of E(i) from its fundamental element En and the sub-domain

Ω(i). On the right: the local triangulation of E(i)
n and ∂E(i)

n .

This construction implies that the integration of an element E(i)
n with a complex

shape requires many integration parts E(i)
n,k. On the analogy of Equation (2.4), we

have a smooth one-to-one mapping T
E

(i)
n,k

from a reference element Ê to E(i)
n,k:

E
(i)
n,k = T

E
(i)
n,k

(Ê). (3.11)

Remark 3.7: For a good boundary approximation either very fine local triangulations
or isoparametric elements [57] must be used. Iso-parametric elements are used in
the implementation described in 3.2.2. This technique is used for the simulations
and the stability analysis presented in Sections 5.3.2 and 5.4, where boundaries
are approximated using quadratic mapping (higher-order mappings have not been
implemented yet, but should also be feasible).

Using standard quadrature formulae, Q = {(qi, wi)} denotes a set of pairs of inte-
gration points and scalar weights on the reference elements Ê. The integral over a
globally defined function f can be approximated on E(i)

n as
∫

E
(i)
n

fdV ≈
∑

k

∑

j

f(T
E

(i)
n,k

(qj)) wj |det(JT
E

(i)
n,k

(qj)) |, (3.12)

with JT
E

(i)
n,k

denoting the Jacobian matrix of the mapping T
E

(i)
n,k

.

Since basis functions are defined in local coordinates (ξ, η) on Ê, the integral over a
local basis function ϕ ∈ Pk is given by (see Figure 3.4)

∫

E
(i)
n

ϕ ◦ T−1
En
dV ≈

∑

k

∑

j

ϕ((T−1
En

◦ T
E

(i)
n,k

)(qi)) wj |det(JT
E

(i)
n,k

(qj)) |. (3.13)
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E(i)
n

E
(i)
n,k

x

y

ζ

ν

ξ

η

T
E

(i)
n,k

qj

Ω̂t

Ω̂s

T−1
En

T−1
En

◦ T
E

(i)
n,k

Figure 3.4: Transformations from the reference triangle Êt to the reference square Ês

are realized by concatenating the transformation T
E

(i)
n,k

from the reference

triangle to global coordinates and T−1
En

onto the reference square.

Remark 3.8: On a structured grid TEn consists only of a scaling and a translation, hence
it is easy to compute the inverse T−1

En
. The costs for evaluation of the composite

mapping T−1
En

◦ T
E

(i)
n,k

are dominated by that of T
E

(i)
n,k

.

3.2.1 Construction of Local Triangulations

Since the local triangulation is used for integration only, its construction is much
simpler than the construction of a conforming Finite Element mesh. For finite element
meshes different criteria concerning the size of angles in and the aspect ratio of the
elements must be met [7, 68].

Remark 3.9 (Constraint-free Shapes): The local triangulation does not pose any con-

straints on the angles within or the aspect ratio of the integration parts E(i)
n,k as

long as J−1
T

E
(i)
n,k

, the inverse of the Jacobian matrix, exists at all quadrature points

(qi, wi) ∈ Q.

Remark 3.10 (Locality): The construction of the local triangulation is an operation which
is completely local. No information about neighboring elements is required.

The local triangulation algorithm consists of two parts. First the elements En are
repeatedly bisected to create a set of sub-elements {Rn,k}. In order to keep the im-
plementation simple cuboid shaped sub-elements Rn,k are preferred. Then each Rn,k

is classified according to the way Rn,k intersects with the interfaces Γ(i,j). Choosing
suitable rules to control the bisection the set of classes can be kept small. For each of
these classes a predefined triangulation is chosen.
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Unfitted Discontinuous Galerkin Method

For the UDG method no particular local triangulation is required. Many different
approaches for the local triangulation are possible. In the reference implementation
two different algorithms are implemented and were used in the numerical experiments
in Chapter 5, 6, and 7.

3.2.2 Local Triangulation of Analytically Described Geometries

For analytically described geometries a local triangulation is implemented for domains
in two space dimensions. The geometries are given as a list of primitives, e. g. circles
and splines, as used in Computer Aided Design (CAD). These are approximated by
second-order iso-parametric elements.

Currently the implementation supports only a very limited set of CAD primitives.
Every new primitive, as well as the extension to R3, would require additional bisection
rules. We do not regard this approach practical for three space dimensions, as the
complexity of the local triangulation code would be nearly as high as the complexity
of unstructured mesh generators.

Bisection Rules

Recursive bisection creates a set of sub-rectangles {Rn,k}. This process is controlled by
two rules. First, for the shape of each interface Γ(i,j) a set of bisection points is selected
where the rectangles are split along one or more Cartesian axis (see Figure 3.5). At
the end of this Section we give an overview of the requirements which are taken into
account for the choice of these bisection points. Which points are chosen does not
affect the algorithm itself, but it does affect the number of classes how Γ(i,j) intersects
with Rn,k.
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Figure 3.5: Bisection at “special” points, which are determined by the shape of the
interface Γ(i,j).

The second criterion for bisection is the number of sub-domains intersecting with the
sub-rectangles (see Figure 3.6). We continue the bisection until we have only one sub-
domain intersecting with each sub-rectangle. In practice, one might get cases where
the second criterion forces a very deep subdivision of the element. In such cases one
could stop the bisection at a minimal diameter hmin of the sub-rectangle. This would
require to handle additional special cases or to constrain the shape of Ω(i).

One can find different strategies to fulfill this second criterion. We have chosen
to bisect at the intersection points between the edges of the sub-rectangle and the
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Figure 3.6: Recursive bisection until each rectangle intersects with not more than one
interface Γ(i,j).

interface Γ(i,j).
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(c) three corners missing: nothing to be
done at all.

Figure 3.7: Basic intersection-cases for R2: Choosing suitable rules to control the bi-
section one obtains three classes how Γ(i,j) can intersect with Rn,k.

Using the outlined rules to control the bisection, we obtain three classes how Γ(i,j)

can intersect with Rn,k. For each of these classes we define a triangulation rule that
directly implies certain rules to create the triangles (see Figure 3.7). In the case of
three-dimensional domains one obtains a lot more classes. For the case of linear sub-
elements one may refer to [84].

Choosing Bisection Points

To obtain a small number of classes, certain cases should be avoided. This is achieved
during the first part of the recursive bisection. We explicitly choose points to bisect so
that we avoid:
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m
needs special
treatment

handled by
basic classes

Figure 3.8: Forcing a bisection along the normal vector n̂ at points p ∈ Γ(i,j) where n̂ is
parallel or anti-parallel to êx or êy makes the second case coincide with the
same class as the first one. Otherwise one would need a separate treatment
to avoid an intersection between the cutting edge and the curvilinear edge.

• Discontinuities in the First Derivative: As it is not possible to find a smooth map-
ping for an integration part with an edge exhibiting a discontinuity in the first
derivative, we require bisection at all points where Γ

(i,j)
n is not differentiable.

• Multiple Intersections: E
(i)
n is not necessarily convex so that a line between two

corners of E(i)
n might intersect with the surface ∂E(i)

n . This can be avoided by
forcing a bisection along the normal vector n̂ at points p ∈ Γ(i,j) where n̂ is parallel
or anti-parallel to êx or êy. This makes the second case coincide with the same
class as the first one. Otherwise one would need a separate treatment to avoid an
intersection between the cutting edge and the curvilinear edge (see Figure 3.8).

3.2.3 Local Triangulation of Implicitly Described Geometries

In applications dealing with biological or environmental systems, detailed measure-
ments of complex geometries, e. g. pore scale structures, are most often obtained using
imaging technology. These measurements, e. g. X-ray tomography, yield data on a
structured grid. Image processing techniques lead to a data set where the sub-domain
boundary ∂Ω(0) is given by a threshold value.

In order to simplify both the preparation of the data as well as the computations on
the domain, an alternative method for the local triangulation is proposed. Instead of
reconstructing CAD primitives from the image data this alternative local triangulation
algorithm can directly use this experimentally obtained data. An implementation is
available for two and three dimensions. For simplicity we describe the algorithm for
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3.2 Integration using a Local Triangulation

two space dimensions. The domain Ω(0) is described by a scalar function φ:

φ(x) =

{
> 0 if x ∈ Ω(i)

≤ 0 else
. (3.14)

This scalar function can usually be obtained through post processing of image data,
e. g. from CT images. The sub-domain boundary ∂Ω(0) is given as an iso-surface of
the scalar function – see Figure 3.9.

Figure 3.9: A scalar function (left) defines the geometry G. The sub-domain boundary
Γ(i,j) is given as the iso-surface of value 0.0 (right).

Remark 3.11 (Level set methods – moving geometries): For free-boundary problems and
computations on evolving surfaces, level set methods are becoming very popular
[47, 52, 93, 95, 100]. In level set methods, a level set function φ(x(t), t) is computed
and the iso-surface φ = 0 represent the position of the domain boundary at time
t. Often φ is constructed as a signed distance function in order to speed up certain
computations, e. g. curvature of the boundary.

Again the sub-domain boundary ∂Ω(0) is given as an iso-surface of the scalar
function. Thus, the UDG method can be very well combined with free-boundary
simulations and moving geometries.

Definition 3.7 (Image Grid): The scalar function φ describing the domain boundary is
discretized as a piecewise linear function on a fine grid with mesh width hg. As this
data is most often obtained from image data, this grid is called Image Grid.

Remark 3.12: Often the image data is given on a much finer grid than the one used for
computations. In this case it is required that the image grid is a hierarchic refinement
of the computation grid.

The local triangulation is based on the Marching Cubes algorithm which was devel-
oped to give a reconstruction of an iso-surface of a scalar function.
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The Marching Cubes Algorithm

The Marching Cubes (MC) algorithm was presented in 1987 by Lorensen and Cline
in [72]. It has its origin in computer graphics and generates a set of triangles for the
visualization of an iso-surface of a scalar function φ.

◦ : Φ < 0

• : Φ > 0

0000 0001 0101 1001 0111 1111

Figure 3.10: The Marching Cube algorithm in R2 distinguishes six basic cases depend-
ing on the value of a scalar function φ in the corners. The figures show
these six different cases together with their keys in the lookup table.

The algorithm is based on a piecewise linear representation of φ on a cubical struc-
tured grid and operates locally on the reference cube of each cell. Each vertex of an
element in the image grid can have a value below or above the threshold value of the
iso-surface, i. e. inside or outside the sub-domain. For a cube element in R2 this results
in 16 different cases. Each of these cases corresponds to one of six basic cases and can
be transformed using simple geometric operations, shown in Figure 3.10. To obtain a
fast reconstruction algorithm a Triangle Lookup Table is used, where the information
about the triangles that form the iso-surface is stored for each of the 16 cases. The
index for the lookup table is computed by treating the scalar values of each of the
vertices as a bit in an integer number. The bit value is chosen as 0 or 1, depending
on whether the vertex value is below or above the value of the iso-surface (see the key
values in Figure 3.10).

◦ : Φ < 0

• : Φ > 0

0000 0001 0101 1001 0111 1111

Figure 3.11: Extended Marching Cube algorithm adds a volume reconstruction to all
six basic cases of the original MC algorithm.

The original algorithm provides a surface reconstruction of Γij but still a volume
reconstruction is needed. In order to obtain this, the original algorithm is extended
with a Volume Lookup Table, providing a list of simple sub-volumes for each case. The
reconstructions for the six basic cases are shown in Figure 3.11. In order to keep the
list of sub-volumes small the code is not restricted to simplices, but allows different
simple geometric objects.

The classic Marching Cubes algorithm cannot guarantee a topologically correct re-
construction. Situations are possible where two topologically different setups lead to
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-

-

1001

1001

-

-

 

1001

1001

Figure 3.12: The classic Marching Cubes algorithm cannot guarantee a topologically
correct reconstruction. Different functions give the same key into the
lookup table but only in the first case the reconstruction is correct.

the same key into the lookup table. In Figure 3.10 and Figure 3.11 the case 1001
is ambiguous. This problem is illustrated in Figure 3.12. The sign of the values in
the vertices do not yield enough information about the function inside the volume.
The two vertices inside the domain can either be connected or not, leading to a com-
pletely different surface. The Marching Cubes algorithm arbitrarily chooses one of
the two possible reconstructions. Only in one of the two cases the reconstruction is
topologically correct.

Topologically Correct Marching Cubes Algorithm

In 1995 Chernyaev [35] proposed a modification of the original marching cubes algo-
rithm that allows a topologically correct surface reconstruction. It is called Marching
Cubes 33. The idea is to evaluate the value at the weighted cell center, or in 3D
at the weighted cell and face centers, of the multi-linear function φ. This allows to
disambiguate the reconstruction (see Figure 3.2.3).

For an efficient implementation, further lookup tables are used with an index based
on the evaluation of the additional node values. An exhaustive description of the
algorithm and of the additional lookup tables is provided in [71].

For the local triangulation of implicitly given domains, Volume Lookup Tables for all
different cases of the MC33 algorithm are provided. The list of volume triangulations
can be found in Appendix B.

The Local Triangulation Algorithm

Using the Marching Cubes algorithm a local triangulation for elements in the compu-
tational mesh is constructed.

If an element E(i)
n intersects with the domain boundary, a set of sub-rectangles {Rn,k}
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-

-

1001 + 0

1001 + 1

-

-

1001 + 0

1001 + 1

Figure 3.13: To resolve the topological ambiguities of the classic Marching Cube al-
gorithm, the Marching Cubes 33 algorithm tests the function value at
additional points. This allows a topologically correct reconstruction of
the iso-surface.

Figure 3.14: A scalar function defines the geometry G. A piecewise linear representa-
tion (left) is obtained from some imaging process. The local triangulation
(right) is constructed using the extended Marching Cubes algorithm.
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is formed by all those elements of the image grid which are a descendant of E(i)
n . Note

that this is possible as we require that the image grid is a hierarchic refinement of the
fundamental grid.

On each rectangle Rn,k, the scalar function φ is multi-linear and the Marching Cubes
algorithm gives a reconstruction of the domain boundary, i.e. an iso-surface of φ. Using
the Marching Cubes 33 algorithm, topologically correct reconstruction also for compli-
cated geometries is possible. Using an extended lookup table a volume reconstruction
is obtained as well.

The volume reconstruction is used for the evaluation of volume integrals on E
(i)
n .

Evaluation of boundary integrals is based on the surface reconstruction of the iso-
surface. Volume triangulations of the face are necessary when computing the intersec-
tions to neighboring cells of the computational mesh.

To sketch an example the scalar function in Figure 3.9 is considered. Figure 3.14
shows the piecewise linear interpolation on a mesh with hi = 1/8, the corresponding
reconstruction of the implicitly given domain and the resulting local triangulation for
a computational mesh with h = 1/4.

3.3 Comparison with other Methods

The problem of disentangling the construction of the finite element space from the
geometric properties has been approached in a number of different methods. We will
compare the UDG approach to the classic conforming Finite Element method as well
as to other methods featuring geometry independent grids.

3.3.1 Conforming Finite Elements

The main difference between Discontinuous Galerkin methods and Conforming Finite
Element methods must be seen in the continuity requirement. Conforming Finite
Elements require basis functions which are continuous across element boundaries.

The term “conforming” is used in two contexts. First it is used for the requirement
of conforming, i. e. continuous, trial and test functions [30].

Definition 3.8 (Conforming Finite Elements): A conforming Finite Element method is
one in which the discrete space Vh is a subspace of the Sobolev space V of the
continuous problem.

Second it is used to name a certain class of grids.

Definition 3.9 (Conforming mesh): A triangulation T is called conforming if it fulfills
the following requirements.

1. T is a non-overlapping partition of Ω in the sense of Definition 2.2.

2. If the intersection Inm = Ēn ∩ Ēm, n 6= m, is non-empty, then Inm is a sub-entity,
e. g. point, edge, face and so forth of En and Em.
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Following the standard finite element paradigm, one would create a finite element
mesh of the whole domain Ω or a sub-domain Ω(i) so that the elements resolve the
boundaries ∂Ω(i). Most finite element methods require a conforming triangulation, at
least within each Ω(i). A non-conforming treatment of interfaces Γ(i,j) is possible with
Mortar Finite Elements [26]. However, constructing a triangulation of good quality
is very difficult, especially in three space dimensions. High quality tetrahedral mesh
generation has been worked on for many years and still is a non-trivial problem [101].
Moreover, approximation errors of finite element schemes and the convergence behavior
of iterative linear solvers depend on the mesh quality. Resolving the shape of ∂Ω(i)

might require very fine grids, resulting in a large number of degrees of freedom. Recent
developments concentrate on mesh generation for curved elements [74] which would
reduce the number of elements, but these algorithms are still not generally applicable.
In Section 5.6 we will present a comparison of the size of the function space necessary
to obtain a certain approximation quality using standard finite element methods and
using the UDG approach.

3.3.2 Geometry Independent Methods

Generally, one can distinguish two approaches to obtain geometry independent dis-
cretization. One idea is to embed Ω(i) in a larger domain Ω and to find a suitable
extension of the PDE outside the domain Ω(i), so that a solution of the PDE on Ω
gives also a solution for the PDE on Ω(i). The boundary and transmission conditions
pose some kind of constraint on the solution. The different methods vary in the way
the constraints are imposed. The other idea is to modify the basis functions such that
they comply with the boundary conditions.

Embedding Domain Techniques

The techniques of using an embedding domain date back to the work on Embedding
Domain methods of Buzbee et al. [32]. Nowadays they are more commonly known
as Fictitious Domain methods, which were extensively studied, e. g. by [56]. These
methods are based on an arbitrary grid irrespective of the boundaries ∂Ω(i); usually
this will be a structured grid. A conforming Finite Element discretization is applied
on the whole domain Ω, neglecting the internal boundaries. The internal boundary
conditions on the interfaces Γ(i,j) are imposed as constraints on the involved partial
differential equations. The resulting problem is solved using the technique of Lagrange
multipliers. This method successfully decouples the number of unknowns from the
shape of interfaces Γ(i,j), but it needs additional degrees of freedom to formulate the
constraints. Solving the modified problem is quite expensive, because the Lagrange
multiplier technique results in a saddle point problem.

The Immersed Boundary Method [83] and Immersed Interface Method [69] are based
on the same idea as the Fictitious Domain method, but the constraints are introduced
using virtual forces, contributing to the right hand side, i. e. the source–sink term.
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The techniques developed for Fictitious Domain and Immersed Interface methods
are also very popular in combination with level set methods [51, 54].

In contrast to these two methods the Finite Cell method [82] does not introduce
any additional constraints or forces. The PDE is defined on a larger domain and the
material parameters are adjusted to guarantee existence of the solution on the whole
domain. The methods work well for elasticity problems, but must be modified for each
new equations. It is not clear whether this approach is generally applicable.

Modified Basis Functions

The second class of methods modify the basis functions according to the geometry. A
wide range of different methods are available.

In 1987 Barrett and Elliott proposed the idea of Unfitted Finite Elements. The basis
functions are given on a grid that not only covers, but overlaps Ω(i). Outside Ω(i) the
function is defined to be 0. These ansatz functions are not elements of H1

0 , essential
boundary conditions are imposed using the technique of Nitsche (see Section 2.2.1).
Our Unfitted Discontinuous Galerkin method (UDG) extends this idea and allows to
use higher-order ansatz functions.

Composite Finite Element methods, as introduced in [58], were developed to im-
prove geometric multigrid methods on domains with complicated structures and micro
structures. They are based on hierarchic grid constructions, where the finest grid must
resolve the geometric structure. Conforming trial and test functions are used on the
finest grid. Basis functions for coarser meshes are constructed as linear combinations
of the basis functions of the conforming grid. This approach was primarily intended
as a fast iterative solver, not a discretization scheme. Furthermore the construction of
the coarse grid basis functions can become very expensive, especially for higher-order
trial functions. In recent work the method is also used for the construction of a coarse
discretizations [86].

In the 1990s Babuška and others started with what is called the Partition of Unity
method [8] or Generalized Finite Element method [99]. This approach does not only
weaken the constraints on the Finite Element mesh, it doesn’t even use a mesh in the
classical sense any more. A finite set of patches is constructed which overlap each
other and cover the whole domain. Ansatz functions are defined patch-wise and are 0
outside, similar to DG methods. On each patch a weighting function wj(x) is given
such that they form a partition of unity

∑
wj(x) = 1. The basis of the global function

space is constructed by multiplying the local basis functions φi with wj . The method
allows great freedom in the choice of the local basis functions. A priori knowledge of the
solution (e. g. discontinuities at interfaces or singularities at re-entrant corners) can be
taken into account when choosing the shape functions. Essential boundary conditions
are either imposed using Nitsches method, or using Lagrange multipliers. Difficulties
are the numerical integration on arbitrarily shaped intersections of the supports of the
different ansatz functions and the integration of non-polynomial functions.

The idea of the so-called Extended Finite Element method (XFEM) [44, 24] is to
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start from classical FEM and enrich the function space by additional basis functions
to incorporate discontinuities and other boundary effects. Again the meshes are inde-
pendent from the geometry, but the enrichment does introduce additional unknowns.
XFEM is very popular in the simulation of crack growth [76, 43] where it helps to
avoid repeated remeshing which is necessary in classical approaches.
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Chapter 4

Implementation

People think that computer science is the art of geniuses but the actual reality
is the opposite, just many people doing things that build on each other, like a

wall of mini stones.

— Donald E. Knuth

The implementation of the presented work is based on the DUNE framework. In this
chapter we will shortly describe the concepts of DUNE, as well as the design of the
UDG code. For further details on DUNE we refer to [18, 19, 20] (The DUNE website1

provides all the documentation, implementation and development details on-line).

4.1 The DUNE Framework

DUNE is an acronym standing for Distributed and Unified Numerics Environment. It
provides a framework for solving partial differential equations using grid based meth-
ods.

The software is designed as a modular system. DUNE provides a set of core modules
on which further modules and applications are based. Core modules are modules with
a sufficiently stable interface and a certain maturity of the code. The implementation
of DUNE follows three main principals:

Flexibility: Users should be able to write generic components, which can be reused in
many different applications.

Efficiency: Scientific computing has an unlimited demand for computing power. The
implementation must avoid big performance losses as the price for a clean inter-
face.

External libraries: Users must be able to incorporate existing code and libraries into
their new applications. It must be possible to reuse large functionality of existing
finite element packages.

1http://www.dune-project.org/index.html
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The central idea in the DUNE software design is the separation of data structures
and algorithms by abstract interfaces. Often numerical codes are designed with a
particular application in mind, leading to a tailored data model, which is later hard to
extend when implementing new algorithms and applications. The separation of data
structures and algorithms offers high flexibility and reduces the code size. Thus it
increases maintainability and extendibility of the framework.

High-level interfaces allow the implementation of applications without knowledge of
the underlying structures. Such layers of abstraction usually add an overhead, leading
to a performance penalty. An efficient implementation of the interface is provided
using generic programming techniques, such as static polymorphism and traits [103].

The use of generic programming techniques for the efficient separation of data struc-
tures and algorithms is well known from the Standard Template Library (STL) [77],
which is part of the C++ standard library. The most important aspect of generic pro-
gramming with respect to performance is that dynamic polymorphism, realized with
virtual functions in C++, is replaced by static (or compile-time) polymorphism. This
allows the compiler to inline interface implementation methods and to apply its full
range of optimization techniques. As a consequence the abstract interface is effectively
eliminated at compile time and small methods (consisting of only a few machine in-
structions) do not impose a performance penalty. Thus interfaces can be defined at
any level of program design, e. g., even for the access to individual elements of a vector.

4.2 Design of the dune-udg Module

In Chapter 3 the Unfitted Discontinuous Galerkin Method was introduced. The
method is implemented in a separate DUNE Module. It is designed for easy incorpora-
tion into new DUNE applications and easy implementation of new DG discretizations.

The dune-udg module is build ontop (see Figure 4.1) the three dune-core modules
dune-common, dune-grid and dune-istl. For the discretization many components are
used from the dune-disc module, including extensions especially designed for UDG.

The dune-grid module is used to handle the fundamental mesh T (Ω). For the
solution of the linear equation system a range of solvers is available in the dune-istl

module.

4.2.1 UDGAssembler

Member Description

void assemble() assemble the global matrix

Table 4.1: Public interface of the Dune::UDGAssembler class.

The central component of dune-udg is the assembler class Dune::UDGAssembler. It
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dune-udg

LocalTriangulation

<<interface>>

VirtualSubTriangulation

LocalStiffness

<<interface>>

UDGLocalStiffness

UDGAssembler

UDGFunction

dune-common

dune-grid

dune-istl

dune-disc

Figure 4.1: Design of the dune-udg module.

assembles the global stiffness matrix into a matrix object of type Dune::BCRSMatrix.
The triangulation of the fundamental mesh is given as an instance of Dune::GridView.
For fundamental element En the assembler obtains a local triangulation of the element
E

(i)
n and of the surface ∂E(i)

n . The local triangulation is provided by one of the imple-
mentations of the Dune::VirtualSubTriangulation interface (Figure 4.3).

The assembler computes the local stiffness matrix for a single element using local
triangulation. For a single sub-element the bilinear form and the right-hand side are
provided by an implementation of the Dune::UDGLocalStiffness interface.

The assembled matrix is stored block wise in a compressed row storage format [11]
with dense blocks of size n2

dof, where ndof is the number of degrees of freedom associated
with one element. In case of a scalar problem this is identical to the number of local
basis functions. In case of a vector valued problem, this is the sum of all local scalar
basis functions.

Using such a layout allows a memory efficient storage of the matrix, because it
reduces the size of the structures storing the data layout. In combination with a
block structured iterative linear solver [27], available in dune-istl, the data structure
improves the cache efficiency and as well as the convergence rates of the iterative
solver [104, 14]. The dense blocks are rather small and thus they can easily be inverted
directly. Thus the iterative solver only operates on the sparse structure. Especially for
Saddle point problems, as we would find them for the incompressible Navier–Stokes
equations, the linear solver benefits greatly from a block structure in conjunction with a
block-pre-conditioner in contrast to an approaches like the Schur-Complement methods
[66, 94].
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A

Figure 4.2: Block structure of an assembled matrix. The gray squares represent

dense blocks in the matrix. Each hollow square represents one block
with only zero entries. This example is for a domain partitioned into 3× 3
elements. Each diagonal block corresponds to a grid cell and stores the
coupling between the local basis functions. The off-diagonal blocks store
the coupling between two adjacent elements.

4.2.2 VirtualSubTriangulation

The Dune::VirtualSubTriangulation interface represents the functionality of the
local triangulation for a single sub-domain.

The LocalTriangulation component (Figure 4.3) offers three different implemen-
tations of the Dune::VirtualSubTriangulation interface:

Dune::SubTriangulation2D Implementation of a two-dimensional sub-domain. The
domain boundary is given by a list of primitives, see Section 3.2.2.

Dune::MarchingCubeSubTriangulation A sub-domain in two or three dimensions is
given by a scalar function. This class implements the local triangulation of im-
plicitly described geometries described in Section 3.2.3.

Dune::NoSubTriangulation This implementation assumes Ω(0) = Ω and does not
perform any local triangulation. It is used for debugging.

All implementations are parameterized by a fundamental mesh and a geometry de-
scription. The fundamental mesh is given as a Dune::GridView object. Description of
the geometry does vary between the different implementations.

The evaluation of volume and surface integrals is implemented using the methods
create_geometries, create_edges and create_boundaries, which generate sets of
sub-elements.
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<<interface>>

VirtualSubTriangulation

create_geometries(...)
create_edges(...)
create_boundaries(...)
BBox(...)

LocalTriangulation

<<interface>>

VirtualSubTriangulation

create_geometries(...)
create_edges(...)
create_boundaries(...)
BBox(...)

GridView
2DSubTriangulation

GridView

MarchingCubeSubTriangulation
GridView

NoSubTriangulation
GridView

Figure 4.3: The LocalTriangulation component.

Member Description

EntityPointer type of the codimension 0 EntityPointer
on the fundamental mesh

SubEntity type for a codimension 0 sub-element E(i)
n,k

SubIntersection type for a codimension 1 sub-element

GridCuboid type for the bounding box of E(i)
n

create_geometries(EntityPointer,

std::list<SubEntity>)

calculate the list of codimension 0
sub-elements of E(i)

n

create_edges(EntityPointer,

std::list<SubIntersection>)

calculate the list of codimension 1
sub-elements of E(i)

n , interfacing to an
other cell E(i)

m

create_boundaries(EntityPointer,

std::list<SubIntersection>)

calculate the list of codimension 1
sub-elements of E(i)

n , lying on the
boundary

GridCuboid BBox(EntityPointer) calculate bounding box for a given entity;
required for the scaling of local basis
functions

Table 4.2: Methods of the Dune::VirtualSubTriangulation interface.
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Additionally Dune::VirtualSubTriangulation exposes a method BBox to compute
the bounding box of an element. During evaluation of the local basis functions the
bounding box is necessary for a scaling, see Remark 3.6.

4.2.3 LocalStiffness

The LocalStiffness component provides implementations of different Discontinuous
Galerkin discretizations.
Dune::UDGLocalStiffness is the interface encapsulating the bilinear form and the

right-hand side. The terms in the discretization are sorted into volume, intersection
and boundary integrals:

a(u, v) =
∑

E
(0)
e ∈T (0)

∫

E
(0)
e

avol(u, v) dx

+
∑

γef∈Γ
(0)
int

∫

γef

aint(u, v) ds+
∑

γe∈Γext

∫

γe

aext(u, v) ds

(4.1a)

b(v) =
∑

E
(0)
e ∈T (0)

∫

E
(0)
e

bvol(v) dx

+
∑

γef∈Γ
(0)
int

∫

γef

bint(v) ds+
∑

γe∈Γext

∫

γe

bext(v) ds

(4.1b)

An implementation of Dune::UDGLocalStiffness must provide the methods
assembleVolumeTerm, assembleFaceTerm and assembleBoundaryTerm to evaluate
these integrals on a sub-element obtained from Dune::VirtualSubTriangulation.
The types BoundaryParameters and ElementParameters are implementation specific
classes to transport additional information, like boundary conditions, to the assembling
stage.

The LocalStiffness component implements Discontinuous Galerkin discretizations
of several different partial differential equations. Discretizations for four different prob-
lems are available, parts of them were implemented within other projects:

Dune::DGLaplace Discretization of the stationary heat equation

−∇(K∇u) = f

in arbitrary space dimensions. The discretization uses the formulation of [17], see
Section 5.1.

Dune::DGNavierStokes Discretization of the incompressible stationary Navier–Stokes
equations

−µ∆v − ρv · ∇v + ∇p = f ,

∇·v = 0 ,
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4.2 Design of the dune-udg Module

Member Description

BoundaryParameters class providing boundary specific
information, e. g. boundary conditions or
flux j for Neumann boundaries

ElementParameters class providing element specific
information, e. g. source terms

assembleVolumeTerm

(ElementParameters,

EntityPointer,

int, Geometry,

LocalGeometry,

LocalMatrixBlock,

LocalVectorBlock)

evaluate volume integrals on
LocalGeometry and assemble into
LocalMatrixBlock and LocalVectorBlock
of the element

assembleFaceTerm

(BoundaryParameters,

int, Geometry,

int, Geometry,

SubIntersection, ctype,

LocalMatrixBlock,

LocalMatrixBlock,

LocalMatrixBlock,

LocalVectorBlock)

evaluate intersection integral on
SubIntersection and assemble into
LocalMatrixBlock and LocalVectorBlock
of the adjacent elements

assembleBoundaryTerm

(BoundaryParameters,

int, Geometry,

SubIntersection, ctype,

LocalMatrixBlock,

LocalVectorBlock)

evaluate boundary integral on
SubIntersection and assemble into
LocalMatrixBlock and LocalVectorBlock
of the element

ElementParameters*

createElementParameters

(EntityPointer)

retrieve BoundaryParameters for a given
entity of the fundamental mesh

BoundaryParameters*

createBoundaryParameters

(SubIntersection)

retrieve BoundaryParameters for a given
SubIntersection

Table 4.3: Methods of the Dune::UDGLocalStiffness interface.
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Implementation

<<interface>>

UDGLocalStiffness

assembleVolumeTerm(...)
assembleFaceTerm(...)
assembleBoundaryTerm(...)
createElementParameters(...)
createBoundaryParameters(...)

LocalStiffness

<<interface>>

UDGLocalStiffness

assembleVolumeTerm(...)
assembleFaceTerm(...)
assembleBoundaryTerm(...)
createElementParameters(...)
createBoundaryParameters(...)

GridView

DGLaplace
GridView

DGNavierStokes
GridView

DGTransport
GridView

DGTwoPhase
GridView

Figure 4.4: The LocalStiffness component.

as described in [88]. See [67] and Section 6.1.1.

Dune::DGTransport Discretization of the transport equation

R∂tc+ ∇ · uc−∇D(u)∇c = q(c) .

The DG formulation of [13] is used, see Section 7.1 and [50].

Dune::TwoPhase Discretization of two immiscible fluids. Interface evolves in time,
fluids dynamics are covered by Navier-Stokes equations, surface forces arise from
mean curvature. The DG formulation of [88] is used. For details see [61].

Implementations for other DG schemes can easily be added in their primal formula-
tion.
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Chapter 5

Stability and Convergence

It is common sense to take a method and try it. If it fails, admit it frankly
and try another. But above all, try something.

— Franklin D. Roosevelt

For the Unfitted Discontinuous Galerkin method some assumptions with respect to
mesh properties of the normal Discontinuous Galerkin method are not guaranteed. In
this chapter we want to investigate stability and convergence of the scheme. Even
though the UDG method lacks certain guarantees the properties of the classic Discon-
tinuous Galerkin method will be observed.

The test problem for the numerical experiments presented in this section will be the
stationary heat equation, a generic elliptic model problem, similar to that defined in
Equation (2.2).

We only consider a single complex shaped sub-domain Ω(0) ⊆ Ω ⊂ Rd with Ω being
cuboidal. For all computations in this section the heat conductivity is chosen to be
const = 1.

The model problem reads

−∆u = f on Ω(0) (5.1a)

with Dirichlet boundary conditions

u = g on ΓD ⊆ ∂Ω(0) (5.1b)

and Neumann boundary conditions

j · n = F on ΓN = ∂Ω(0) \ ΓD, (5.1c)

where K denotes the heat conductivity, j denotes the flux ∇u, and n is the normal
vector. The right-hand side f is a given function, the boundary conditions are given
by the functions g and F .
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Stability and Convergence

The discretization of the model problem is based on the generalized bilinear form
outlined in Section 2.2.3.

Let T (Ω(0)) = {E(0)
1 , . . . , E

(0)
n } be a non-degenerate quasi-uniform subdivision of

Ω(0), as defined in (2.3a) and (3.4). The numerical fluxes are defined as in Section
2.2.3 Equation (2.45).

The problem to be solved reads: Find u ∈ V
(0)
k such that

aǫ(u, v) = lǫη(v) ∀v ∈ V
(0)
k . (5.2)

The bilinear form is the one given in Equation (2.46). It is parameterized by ǫ and
η. Depending on the parameters we can choose between the non-symmetric Oden-
Babuška-Baumann scheme, the NIPG and the symmetric SIPG scheme.

The right hand side of (5.2) is given as the linear form

lǫη(v) =

∫

Ω

f v dV +

∫

ΓN

F v ds

+

∫

ΓD

ǫ∇v · n g ds+ η

∫

ΓD

h−1
γ v g ds.

(5.3)

5.1 Interpolation Error

Given a domain Ω, a function u ∈ Hk+1(Ω), and an interpolation operator

I : Hk+1 → Pk , (5.4)

which maps u onto the space of piecewise polynomials Pk of order k. The Hm norm
of the approximation error u − Iu of the interpolated function should be estimated.
The approximation error ‖u − Iu‖Hm on a single element is transformed onto the
reference element and bound from above using the Bramble–Hilbert lemma [31]. The
transformation back into the global space yields the desired estimate. In the optimal
case this error measured in L2 or H1 shows the order of convergence

‖u− Iu‖L2 ≤ chk+1 |u|Hk+1 (5.5)

‖u− Iu‖H1 ≤ chk |u|Hk+1 (5.6)

(5.7)

These estimates require that the domain satisfies the strong cone property, as defined
in [31] and [110, p. 45].

In general the elements E(i)
n might not fulfill this cone property. E.g. consider the

sub-domain
Ω(i) = (0, 2)2 ∩

{
(x, y) | y < x2

}
. (5.8)
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5.2 Condition Number of the Matrix

Figure 5.1: Refinement of cusp elements results in anisotropic elements, which do not
fulfill the cone property.

In point (0, 0) the edges meet so that the tangents of both edges in this point are
equal (see Figure 5.1). Such a point is called a cusp and poses particular problems.
Not only the cone condition is violated, the element also becomes anisotropic when
refining the grid. To our knowledge there exist no estimates of the interpolation error
in such a case. Note that this problem can occur only when using quadratic or higher-
order transformations. For multi-linear transformations the tangents cannot become
parallel.

Estimates for anisotropic linear triangles have been obtained by Babuška and Aziz
[7] and they have shown that anisotropy does not pose further problems as long as the
largest angle in every element is bounded away from π. In [45], it is shown that full
convergence can be obtained for star shaped elements. However, none of these papers
applies in this case of anisotropic elements with quadratic transformation.

As an analytic study was not feasible, we took another approach and studied the
interpolation error measured in L2- and H1-norms for a single cusp element in R2 and
computed the experimental order of convergence.

Definition 5.1 (Experimental Order of Convergence): Given a function u and an approx-
imation uh, depending on the mesh size h. For a given norm ‖ · ‖, the Experimental
Order of Convergence (EOC) is given as

EOCh =
log(‖u− uh‖/‖u− uh

2
‖)

log(2)
. (5.9)

To reduce numerical inaccuracies these calculations are done using MAPLE [75],
using an accuracy of 30 digits. The function u = e−(x2+y2) was chosen as function with
full regularity. Using Lagrange interpolation the error measured in both L2- and in
H1-norm shows optimal convergence rate (see Figure 5.2). When using L2 projection
values close to the cusp have only little influence on the projection. If the error is
measured in L2-norm this is not visible, as errors close to the cusp also give only a
small contribution to the total error. In the H1-norm this fact is visible and we loose
one order in the error convergence.

In Section 5.3.2 we will present numerical results supporting the claim that the order
of convergence for the DG scheme is independent of the shape of the elements E(i)

n .
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Figure 5.2: H1-error and its convergence for L2-projection and Lagrange interpolation
on cusp elements.

5.2 Condition Number of the Matrix

The condition of a matrix A gives a measure for the computational error depending
on the input error.

When solving Ax = b, an error e in b, leads to the error A−1e in the solution
x = A−1b. The ratio of the relative error ‖A−1e‖/‖x‖ = ‖A−1e‖/‖A−1b‖ of the
solution to the relative error ‖e‖/‖b‖ of b can be bound from above using Cauchy–
Schwarz inequality

‖A−1e‖/‖A−1b‖
‖e‖/‖b‖ ≤ ‖A−1‖ · ‖A‖, (5.10)

where matrix norm ‖A‖ must be the one associated with the vector norm ‖b‖.

Definition 5.2 (Condition number): The condition number κ of a non-singular matrix
A is an upper bound for the error propagation [36] with respect to inversion. It is
defined by

κ(A) = ‖A−1‖ · ‖A‖. (5.11)

Common choices for the norm are the L∞ vector norm with the maximum row sum
matrix norm or the L2 norm with the spectral norm, when the matrix is symmetric
and positive definite.

The condition number is also an important property for numerical applications, as
the convergence of many iterative linear solvers strongly depends on the condition
number. For matrices with high condition number the number of iterations will in-
crease.

As stated in Remark 3.6, the shape functions are defined on the reference element
En of the fundamental mesh but are scaled according to the bounding box of E(i)

n .
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5.2 Condition Number of the Matrix

In the triangulation T (Ω(i)), the ratio H/h between two adjacent elements is not

bound, H and h are proportional to the size diam(E
(i)
n ) of a small and a big element.

H

H

h

h

h

Figure 5.3: Domain Ω consisting of two elements. Intersecting the domain with a plane
creates a small and a big element. In 2D the small element has the shape
of a triangle, in 3D that of a tetrahedron.

For a domain with two elements, the condition number associated with the maximum
row sum norm was computed using MAPLE. The domain consists of two squares in
2D, respectively two cubes in 3D. It is cut by a plane, or line in two space dimensions,
so that the small element is a simplex. For two dimensions Figure 5.3 illustrates the
construction. The ratio H/h can be changed by changing the size of h, which means
moving the cutting plane in normal direction.
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Figure 5.4: Condition number of the stiffness matrix for a domain with two elements
and edge length H and h. The local basis functions are not scaled. Results
for 2D (left), 3D (right).
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Figure 5.5: Condition number of the stiffness matrix for a domain Ω0 ⊂ R3, with two
elements and edge length H and h. The local basis functions are scaled
according to the bounding box. Results for 2D (left), 3D (right).

Computations were carried out in two and three space dimensions, both with scaled
local basis functions and with local basis functions not scaled according to the bounding
box. The stiffness matrix is assembled for the OBB (ǫ = 1, η = 0) discretization of
the model problem (2.2), with Neumann boundary conditions on the internal face and
Dirichlet boundary everywhere else. The local basis functions are (scaled) monomial
functions.

For uniform grids, the condition number is constant in two dimensions and it scales
with 1/h in three dimensions. In this example, the grids are strongly not uniform and
the ratio H/h goes up to 32768. If the local basis functions are not scaled, the log-log
plots in Figure 5.4 show that the condition number is not bound and is growing with
(H/h)2k in 2D and (H/h)2k+1 in 3D.

Figure 5.5 shows the condition number for a discretization with local basis functions
which are scaled according to the bounding box. In the 2D example the condition
number is growing a at the beginning but quickly reaches its limit and becomes con-
stant. In three space dimensions the condition number is growing linearly regardless
of the polynomial degree of the ansatz functions.

The condition number doesn’t pose any problems for the two-dimensional case. In
three space dimensions the condition number increases with h−1. In practice this will
usually pose no problems. When using some Krylov method to solve the linear system
and the matrix has only few very small eigenvalues, the convergence is still fast. This
is the case if there are only a small number of elements where χ is large. If there is a
significant number of very small eigenvalues local refinement can help to limit χ. The
current implementation does not feature local refinement.
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5.3 Discretization Error in L2 and H1 Norm

5.3 Discretization Error in L2 and H1 Norm

Error analysis on all three considered methods (OBB, NIPG and SIPG, see 2.2.3) exists.
A priori error estimates for the SIPG method are presented in [109]. In [89, 90] the two
non-symmetric schemes, OBB and NIPG, are analyzed. The SIPG scheme converges
optimally in L2 and H1 norm, read ‖u − uh‖L2 ∝ hk+1 and ‖u − uh‖H1 ∝ hk, where
k denotes the polynomial degree of the ansatz functions. The NIPG and OBB scheme
show optimal convergence in the H1-norm, but in the L2-norm one order is lost for k
even, for k odd you obtain optimal convergence.

Remark 5.1: Using over-penalization the NIPG scheme can be modified to show optimal
convergence rates also in the L2-norm. This requires the penalty term to be scaled
with h−2k−1 instead of h−1 (see [5]). As this over-penalization increases the condition
of the matrix significantly we use scaling with h−1.

It is not possible to directly transfer these proofs to the UDG method because the
mesh does not guarantee certain assumptions of the standard Discontinuous Galerkin
method, in particular shape regularity and quasi uniformity. In this section we will
numerically verify the convergence of the elliptic model problem on an UDG mesh.

Definition 5.1 of Experimental Order of Convergence requires the knowledge of the
exact solution u, but in general u is not accessible. For some of the following examples
no exact solution can be given. For these cases Definition 5.1 must be extended

Definition 5.3 (Experimental Order of Convergence (cont.)): Given a setup where the
exact solution u is not accessible.

Using the saturation assumption

‖u− uh
2
‖ < ‖u− uh‖ (5.12)

the exact solution u is approximated by uh̃, a solution computed on a fine mesh with

mesh width h̃. The Experimental Order of Convergence now reads

EOCh,h̃ =
log(‖uh̃ − uh‖/‖uh̃ − uh

2
‖)

log(2)
, (5.13)

with h̃≪ h.

5.3.1 Behavior on Non Quasi Uniform Grids

We consider two adjacent elements in a finite element mesh. As in Section 5.2 we
consider a triangulation where the size of two adjacent elements in the worst case is
diam(E

(i)
small) = h and diam(E

(i)
big) = H.

On a normal finite element mesh the ratio χ = H/h of two adjacent elements is
bound. This is one of the constraints for the mesh generator and is usually bound to
be χ ≤ 2.
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(0, 0) (1, 0)

Φ

Figure 5.6: Domain with re-entrant corner.

In the UDG triangulation T (Ω(i)), the ratio χ is not bound any more.
We consider the model problem stated in Equation (5.1) on a domain with a re-

entrant corner, Figure 5.6. Boundary conditions are given in polar coordinates with
the relation

x = r · cos θ, y = r · sin θ .

Only Dirichlet boundary conditions are considered. The boundary values are given by

u = sin
( π

Θ
θ(x, y)

)
on Γ1 = Γ ∩ (−1, 1)2 ,

u = 0 on Γ \ Γ1 .

Θ denotes the angle of the re-entrant corner, in this example it is Θ = 3
2π.

u = rk sin(kθ(x, y)) (5.14)

is a general solution, choosing k = π/Θ = 2/3 fulfills the boundary values.
Computations are carried out for coarse grids with different levels of hanging nodes.

The upper left quadrant is locally refined towards the singularity, while all other quad-
rants are not refined (see Figure 5.7). The resulting values for χ range from 1 to 64.
The singularity is not in the ansatz space, thus the error is high close to (0.5, 0.5).
These coarse grids are globally refined and the error is measured in the L2-norm, the
refinement does not change χ. In Figure 5.8 results are shown for k = 2 and k = 5
using the OBB scheme.

The error on the coarse mesh is dominated by the two big refined elements (lower
left, upper right). It is independent of the minimal h but depends on h · χ and stays
more or less the same, without respect to the local refinement of the upper left element.
The error on the refined grids converges with the expected order of h

4
3 , Table 5.1 shows

the EOC after five refinement steps for all values of χ.
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χ = 4 :

χ = 32 :

Figure 5.7: Strongly non-uniform grids. Starting from a grid with different levels of
hanging nodes (left), simulations are done on globally refined grids (mid-
dle). Errors for the coarse grid with ansatz functions k = 2 are shown
(right).

χ k = 2 k = 5

1 1.30 1.37
2 1.27 1.37
4 1.26 1.37
8 1.25 1.37

16 1.24 1.37
32 1.24 1.37
64 1.21 1.37

Table 5.1: Convergence rates of the L2-
error for different ratios χ after
5 levels of refinement.
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Due to the low regularity of the problem, the computations do not benefit from the
high order basis functions with k = 5, see Figure 5.8. The convergence rates do not
show any considerable difference related to growing χ. The discretization does not
benefit from local refinement if χ is big but it does not harm the computations.

0.001

0.01

0.1

1 10 100 1000 10000

L
2

E
rr

or
N

or
m

(k
=

2)

h0/h

x
4
3

χ = 1
χ = 2
χ = 4
χ = 8
χ = 16
χ = 32
χ = 64

0.0001

0.001

0.01

1 10 100 1000 10000
L

2
E

rr
or

N
or

m
(k

=
5)

h0/h

x
4
3

χ = 1
χ = 2
χ = 4
χ = 8
χ = 16
χ = 32
χ = 64

Figure 5.8: Convergence rates of the L2-error for setups with different ratios χ

5.3.2 Convergence with Degenerated Elements

As described in Section 5.1, the usual estimates for the convergence rates do not hold for
cusp elements due to violation of the cone condition. This section will show numerical
results which support our claim that within this scheme that kind of degenerated
elements have no negative impact on the convergence rate of the discretization error.

This example treats a test problem with full regularity. Equation (5.1) is solved
on the unit square with a parabola shaped sub-domain cut out (see Figure 5.9). The
domain Ω(0) doesn’t pose any problems, still the construction of the UDG finite element
mesh leads degenerated elements as they were considered in Section 5.1.

The exact solution is

uexact(x) = e(−‖x−x0‖2) with x0 = (0.5, 0.5). (5.15)

f , g and F are chosen in accordance to the exact solution:

f = 2 e−‖x−x0‖2 · (2 − ‖x− x0‖2),

g = e(−‖x−x0‖2), and

F = −2 e(−‖x−x0‖2) · (x− x0).

Two different sets of boundary conditions are considered:

1. Pure Dirichlet boundary conditions

ΓD = ∂Ω(0) = Γ0 + Γl + Γr + Γb + Γt, (5.16)
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y = 1 + x2
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0

y = 0

x = 1

Figure 5.9: Sub-domain Ω(0) with a parabola-shaped cut out on the unit square.

2. Neumann boundary conditions on the curved and on the left boundary and Dirich-
let boundary conditions on the right boundary

ΓN = Γ0 + Γl and ΓD = Γr + Γb + Γt. (5.17)
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Figure 5.10: Discretization error measured in L2- and H1-norm (left) and their conver-
gence for h→ 0 (right) for the UDG discretization of the model problem
on a domain with a cusp. The plots show the errors for a discretization
of −∇(K∇p) = f with the exact solution e−(x−x0)2 and Dirichlet bound-
ary conditions using the OBB scheme. Similar results are obtained for
Neumann boundary conditions and for the NIPG and SIPG scheme.

The local triangulation of the elements E(0)
n is obtained using the algorithm described

in [49]. Iso-parametric elements with second order transformations allow the shape of
Ω(0) to be resolved exactly.

Figure 5.10 shows the L2- and H1-error and their convergence for h→ 0 for Dirichlet
boundary conditions. The graph on the right shows the experimental order of conver-
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gence (EOC). The calculations are done for trial functions of polynomial degrees 2–5,
with the scheme introduced by Oden, Babuška and Baumann in [79] (ǫ = 1, η = 0).
Although the cone condition is not fulfilled in the sub-domain Ω(0) (Figure 5.9), an
optimal h-convergence rate in the H1-norm is obtained. The h-convergence in the
L2-norm also exhibits the predicted behavior O(hp+1) for p odd and O(hp) for p even.

As visible in Tables 5.2 and 5.3 the symmetric (ǫ = −1, σ > 0) and the non-
symmetric (ǫ = 1, σ > 0) Interior Penalty method also show optimal convergence
rates. As the schemes are all stable and give comparable results, we will use the OBB
scheme in all following computations.

5.3.3 Convergence for a Problem with No Analytic Solution

The next example investigates a setup where no analytic solution can be given. We
consider the stationary heat equation on the unit square. Dirichlet boundary conditions
are imposed on the left and right hand boundary and Neumann boundary conditions
on the top and bottom boundary. f and g are chosen as

f = 0 and g = 1 − x.

The result is the stationary temperature distribution in a plate which is heated on
the left and cooled on the right boundary. Given a hole in the plate (Figure 5.11),
∇u · n on the boundary of the hole, we are not aware of an analytic solution.

u = 1 u = 0

∇u · n = 0

∇u · n = 0

0

y=1

x=1

Figure 5.11: Domain with a circular hole. Dirichlet boundary conditions on the left
and the right boundary, Neumann boundary conditions on the circle. We
are not aware of an analytic solution.

As in the previous simulation, the local triangulation described in Section 3.2.2 is
used. Again computations are carried out for trial and test functions of polynomial
degrees 2–5 and for a discretization uses the OBB scheme (ǫ = 1, η = 0).

Once the grid is sufficiently fine to give a good approximation of the geometry, the
predicted h-convergence rate in the L2- and the H1-norm is observed, see Figure 5.12.
For very coarse grids the convergence rate is lower, but extrapolating the error on fine
grids back to h = L, one would still expect an error which is bigger than the one
obtained in these computations.
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L/h
SIPG NIPG OBB

ErrL2 EOCL2 ErrL2 EOCL2 ErrL2 EOCL2

k = 2
1 1.540 × 10−1 — 2.013 × 10−1 — 3.564 × 10−1 —
2 4.626 × 10−2 1.73 7.476 × 10−2 1.43 1.410 × 10−1 1.34
4 1.006 × 10−2 2.20 1.786 × 10−2 2.07 5.634 × 10−2 1.32
8 1.027 × 10−3 3.29 4.333 × 10−3 2.04 1.768 × 10−2 1.67

16 1.069 × 10−4 3.26 1.064 × 10−3 2.03 4.856 × 10−3 1.86
32 1.100 × 10−5 3.28 2.644 × 10−4 2.01 1.259 × 10−3 1.95
64 1.270 × 10−6 3.11 6.598 × 10−5 2.00 3.195 × 10−4 1.98

128 1.536 × 10−7 3.05 1.648 × 10−5 2.00 8.032 × 10−5 1.99
256 1.893 × 10−8 3.02 4.119 × 10−6 2.00 2.013 × 10−5 2.00
512 2.380 × 10−9 2.99 1.029 × 10−6 2.00 5.038 × 10−6 2.00

k = 3
1 1.302 × 10−1 — 1.799 × 10−1 — 3.099 × 10−1 —
2 9.933 × 10−3 3.71 1.044 × 10−2 4.11 2.061 × 10−2 3.91
4 7.151 × 10−4 3.80 1.164 × 10−3 3.17 2.791 × 10−3 2.88
8 4.011 × 10−5 4.16 6.720 × 10−5 4.11 1.769 × 10−4 3.98

16 2.306 × 10−6 4.12 4.105 × 10−6 4.03 1.135 × 10−5 3.96
32 1.387 × 10−7 4.06 2.542 × 10−7 4.01 7.148 × 10−7 3.99
64 8.539 × 10−9 4.02 1.579 × 10−8 4.01 4.473 × 10−8 4.00

128 5.307 × 10−10 4.01 9.850 × 10−10 4.00 2.796 × 10−9 4.00
256 3.310 × 10−11 4.00 6.149 × 10−11 4.00 1.747 × 10−10 4.00
512 2.125 × 10−12 3.96 3.848 × 10−12 4.00 1.092 × 10−11 4.00

k = 4
1 2.042 × 10−2 — 2.333 × 10−2 — 3.568 × 10−2 —
2 1.702 × 10−3 3.58 1.985 × 10−3 3.56 2.239 × 10−3 3.99
4 6.494 × 10−5 4.71 9.819 × 10−5 4.34 1.398 × 10−4 4.00
8 2.053 × 10−6 4.98 6.011 × 10−6 4.03 9.350 × 10−6 3.90

16 6.374 × 10−8 5.01 3.924 × 10−7 3.94 6.365 × 10−7 3.88
32 1.984 × 10−9 5.01 2.500 × 10−8 3.97 4.105 × 10−8 3.95
64 6.270 × 10−11 4.98 1.576 × 10−9 3.99 2.597 × 10−9 3.98

k = 5
1 1.883 × 10−2 — 2.065 × 10−2 — 2.764 × 10−2 —
2 3.807 × 10−4 5.63 4.521 × 10−4 5.51 5.541 × 10−4 5.64
4 6.707 × 10−6 5.83 9.297 × 10−6 5.60 1.324 × 10−5 5.39
8 1.060 × 10−7 5.98 1.452 × 10−7 6.00 2.119 × 10−7 5.97

16 1.684 × 10−9 5.98 2.289 × 10−9 5.99 3.430 × 10−9 5.95
32 2.652 × 10−11 5.99 3.608 × 10−11 5.99 5.448 × 10−11 5.98

Table 5.2: Comparison of different schemes for simulations on a cusp domain. L2-error
and EOC for SIPG, NIPG and OBB scheme.
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L/h
SIPG NIPG OBB

ErrH1 EOCH1 ErrH1 EOCH1 ErrH1 EOCH1

k = 2
1 5.502 × 10−1 — 5.776 × 10−1 — 8.122 × 10−1 —
2 3.040 × 10−1 0.86 3.103 × 10−1 0.90 4.166 × 10−1 0.96
4 9.236 × 10−2 1.72 7.649 × 10−2 2.02 1.294 × 10−1 1.69
8 2.221 × 10−2 2.06 1.957 × 10−2 1.97 3.732 × 10−2 1.79

16 6.524 × 10−3 1.77 4.917 × 10−3 1.99 9.922 × 10−3 1.91
32 1.200 × 10−3 2.44 1.232 × 10−3 2.00 2.542 × 10−3 1.96
64 2.910 × 10−4 2.04 3.083 × 10−4 2.00 6.412 × 10−4 1.99

128 7.193 × 10−5 2.02 7.712 × 10−5 2.00 1.609 × 10−4 2.00
256 1.790 × 10−5 2.01 1.929 × 10−5 2.00 4.027 × 10−5 2.00
512 4.466 × 10−6 2.00 4.822 × 10−6 2.00 1.007 × 10−5 2.00

k = 3
1 4.952 × 10−1 — 5.289 × 10−1 — 7.757 × 10−1 —
2 7.952 × 10−2 2.64 7.807 × 10−2 2.76 1.042 × 10−1 2.90
4 1.218 × 10−2 2.71 1.107 × 10−2 2.82 1.677 × 10−2 2.63
8 1.432 × 10−3 3.09 1.382 × 10−3 3.00 2.174 × 10−3 2.95

16 1.708 × 10−4 3.07 1.716 × 10−4 3.01 2.784 × 10−4 2.97
32 2.083 × 10−5 3.04 2.137 × 10−5 3.01 3.509 × 10−5 2.99
64 2.578 × 10−6 3.01 2.667 × 10−6 3.00 4.397 × 10−6 3.00

128 3.210 × 10−7 3.01 3.331 × 10−7 3.00 5.501 × 10−7 3.00
256 4.006 × 10−8 3.00 4.162 × 10−8 3.00 6.878 × 10−8 3.00
512 5.005 × 10−9 3.00 5.201 × 10−9 3.00 8.598 × 10−9 3.00

k = 4
1 1.177 × 10−1 — 1.315 × 10−1 — 1.704 × 10−1 —
2 2.612 × 10−2 2.17 1.739 × 10−2 2.92 1.856 × 10−2 3.20
4 1.356 × 10−3 4.27 1.351 × 10−3 3.69 1.674 × 10−3 3.47
8 8.741 × 10−5 3.96 8.897 × 10−5 3.92 1.054 × 10−4 3.99

16 5.434 × 10−6 4.01 5.621 × 10−6 3.98 6.598 × 10−6 4.00
32 3.391 × 10−7 4.00 3.527 × 10−7 3.99 4.128 × 10−7 4.00
64 2.123 × 10−8 4.00 2.208 × 10−8 4.00 2.580 × 10−8 4.00

k = 5
1 1.026 × 10−1 — 1.045 × 10−1 — 1.224 × 10−1 —
2 4.912 × 10−3 4.38 4.884 × 10−3 4.42 5.236 × 10−3 4.55
4 2.264 × 10−4 4.44 1.568 × 10−4 4.96 1.776 × 10−4 4.88
8 5.336 × 10−6 5.41 4.921 × 10−6 4.99 5.441 × 10−6 5.03

16 1.566 × 10−7 5.09 1.531 × 10−7 5.01 1.692 × 10−7 5.01
32 4.922 × 10−9 4.99 4.772 × 10−9 5.00 5.275 × 10−9 5.00

Table 5.3: Comparison of different schemes for simulations on a cusp domain. H1-error
and EOC for SIPG, NIPG and OBB scheme.
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Figure 5.12: Discretization error measured in L2- and H1-norm (left) and their conver-
gence for h→ 0 (right) for the UDG discretization of the model problem
on the domain shown in Figure 5.11. The reference solution is computed
for h = L/256 and order 5. The plots show the expected convergence
rates for a discretization using the OBB scheme.

Remark 5.2: Note that the coarse grid simulations wouldn’t be possible using standard
finite elements.

5.3.4 Convergence on a Domain with Holes

At last, the convergence on a domain with many holes is investigated. The setup is
similar to those used in the following chapter for three-dimensional computations. For
the local triangulation, a different algorithm than in the previous computations is used,
outlined in Section 3.2.3.

The domain Ω(0) is implicitly given by a scalar function, as it would be obtained
through post processing of image data. Instead of experimental data, an artificial
structure is generated, using a sphere-packing algorithm [97]. Figure 5.13 shows the
scalar function, the described domain, and a closeup of the resulting local triangulation.
Notably the image grid in this example is very fine, such that an appropriate reference
solution can be computed.

The boundary conditions are chosen similar to the setup in Section 5.3.3: Dirich-
let boundary conditions on the left and on the right boundary, Neumann boundary
conditions else.

Figure 5.14 shows the results for different polynomial degrees k and different mesh
sizes h.

In order to compare the results, the flux through the inflow boundary

jinflow =

∫

Γleft

∇p ds (5.18)
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Figure 5.13: A scalar function (upper left) defines a complex geometry of random
spheres. The sub-domain boundary Γ(i,j) is given as the iso-surface of
value 0.0. The fundamental mesh T intersected with G gives the finite
element mesh (upper right). The local triangulation is constructed by a
Marching Cubes based algorithm (lower, closeup in the right).
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h = L/2 h = L/16 h = L/128

k = 2

k = 5

k = 7

−1.00 −0.75 −0.50 −0.25 0.00

Figure 5.14: Solution and iso-lines. Computations for different polynomial degrees k
and different mesh sizes h.
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was evaluated. Figure 5.15 shows the flux through the system along a vertical line,
the approximation error and the order of convergence for different polynomial degrees.
The error is always computed with respect to a reference solution on a grid with h
being half the size of the finest computation grid. The domain is given on a grid with
h = L/256. Since this problem does not show sufficient regularity, the convergence
rate is limited, as can be seen in the graphs (Figure 5.15).
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Figure 5.15: Flux through the inflow boundary (left), the approximative error (middle)
and the order of convergence (right). Insufficient regularity limits the
convergence rate.

5.4 Super-Convergence of the Discontinuities

It is in the nature of Discontinuous Galerkin methods that the solutions in general
are not continuous over element boundaries. These jumps Ju K (Definition 2.11) in the
solution must vanish for h→ 0.

Theoretical estimates of the convergence rate of jump in the solution along an internal
edge are shown in [16]. Furthermore, it is stated that for problems with sufficient
regularity super-convergence of the jumps can be observed; numerical examples are
given.

We define the L2-norm along an edge as

‖f‖L2,e =

(∫

γe

f2ds

) 1
2

. (5.19)

and examine the jump in the solution

Errjump = sup
e

‖Ju K‖L2,e. (5.20)

For the elliptic test problem on a domain with degenerated elements, the convergence
of the jump is investigated. The domain and the boundary conditions are the same
as for the computations in Section 5.3.2. Even for this example we can observe super-
convergence in the jump.
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Figure 5.16: Super convergence of supe ‖Ju K‖L2,e is observed for a problem with suffi-
cient regularity.

5.5 Conservation of mass

Conservation of mass is a fundamental physical concept. It is strongly related to Gauss
theorem and basically states that mass cannot vanish. Considering a control volume,
the sum over all sink and source terms within the volume must be equal to the sum
over all fluxes through the boundary of the volume.

Section 2.3.3 describes the property of mass conservation (2.50) and how it is related
to a Discontinuous Galerkin discretization.

In this test we evaluate the global mass error

Errmass =

∫

∂Ω(0)

j · n ds−
∫

Ω(0)

f dx (5.21)

where the flux j evaluates to

j = F · n on ΓN and j = ∇u on ΓD . (5.22)

The mass conservation is analyzed for three setups from Section 5.3, Dirichlet bound-
ary conditions for the re-entrant corner and the channel flow. All simulations are done
using second order ansatz functions. The results (Table 5.4) show that global mass
conservation is fulfilled within the error bounds given by the finite accuracy of floating
point numbers.

5.6 Efficiency Comparison

Chapter 3 states that the Unfitted Discontinuous Galerkin method has the favorable
property that it allows discretizations on very coarse function spaces and still normal
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Mesh Size Re-entrant Corner Single Sphere Random Spheres
H/h = 1 7, 88 × 10−15 8, 93 × 10−17 1, 92 × 10−16

H/h = 2 2, 47 × 10−15 1, 45 × 10−16 4, 26 × 10−16

H/h = 4 8, 70 × 10−16 2, 05 × 10−16 2, 30 × 10−16

H/h = 8 4, 03 × 10−16 2, 87 × 10−16 3, 56 × 10−16

H/h = 16 1, 30 × 10−15 1, 21 × 10−16 8, 56 × 10−17

H/h = 32 3, 22 × 10−16 2, 36 × 10−16 1, 93 × 10−16

H/h = 64 7, 12 × 10−16 9, 37 × 10−16 9, 60 × 10−16

Table 5.4: Verifying the discrete mass conservation. Global mass error Errmass is com-
puted for different setups.

convergence behavior can be observed.
Section 5.3.4 shows computations on a domain with holes. For this domain and a

problem with known solution, the UDG method is compared with conforming finite
elements with first order Lagrange ansatz functions. Figure 5.18 plots the discretiza-
tion error in the L2-norm over the number of degrees of freedom (#DOF). For the
conforming discretization as well as for the second order OBB scheme the L2-error
converges with h2. As the size of the function space is proportional to h−2 we expect
a linear behavior in the plot.

Figure 5.17: Conforming meshes, generated with the Gmsh mesh generator. For coarse
meshes the mesh quality is very poor (left), it is not possible to create a
mesh with less than 822 nodes. A mesh with 1615 nodes already shows
good element quality (right).

For the construction of a conforming finite mesh the Gmsh mesh generator [53] was
used (Figure 5.17). It was not possible to create a mesh with less than 822 nodes.
For coarse grids, the mesh quality is extremely poor and hence the discretization error
diverges. For a mesh with more degrees of freedom the expected linear behavior is
obtained. It was to be expected that the conforming discretization is not suitable for
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very coarse grids.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000 100000 1e+06

E
rr

or
in
L

2
n
or

m

# DOF

x−1

x−2x−3

Lagr. (GMsh)
OBB (k=2)
OBB (k=3)
OBB (k=5)

Figure 5.18: Efficiency of the UDG method compared with conforming finite elements.
The UDG method allows discretizations with any number of degrees of
freedom (DOF). For the same number of DOFs the discretization of the
UDG method (k = 2) is at least one order of magnitude smaller than
using conforming finite elements, the order of convergence is the same.
The minimal number of unknown for conforming finite elements is limited
by the geometry and close to that limit the discretization error diverges.

For the UDG simulations, the same local triangulation as in Section 5.3.4 is used.
The OBB scheme with k = 2, 3, 5 is applied. Even for very coarse grids with only
one element, the error shows the expected behavior. For second order ansatz, the
OBB scheme is only second order accurate. Still it should be noted that also for larger
function spaces, the discretization error of the Unfitted Discontinuous Galerkin method
is at least one order of magnitude smaller than that of the conforming method for the
same number of degrees of freedom.

All simulations with less than 822 degrees of freedom form a kind of numerical
upscaling process. The discretization doesn’t resolve the microscopic scale anymore, it
only yields a macroscopic solution. The accuracy of the upscaled solution can be chosen
as needed. Comparing with other multi-scale approaches we are able to quantify the
error induced by the upscaling process, provided a suitable a-posteriori error estimator
is available.

5.7 Discussion

For an elliptic model problem different the stability and convergence behavior of the
Unfitted Discontinuous Galerkin method is investigated numerically.

For setups with different domains, different schemes and different boundary con-
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ditions optimal convergence rates in L2- and H1-norm are obtained for the UDG
approach. For a problem with full regularity the predicted super-convergence of the
discontinuities supe ‖Ju K‖L2,e is observed.

In contrast to normal mesh generation algorithms the ratio χ of the size of two
adjacent elements is not bound. It is verified numerically that even big ratios χ do not
harm the convergence of the global solution. Also global mass conservation is verified
for different setups.

Comparing with a conforming first order Lagrange discretization shows that the UDG
method is able to give results on very coarse grids with the appropriate convergence
rate. It is also notable that the discretization error of the UDG method is at least one
order of magnitude smaller than that of the conforming discretization, compensating
the bigger stencil of Discontinuous Galerkin methods.
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Chapter 6

Stationary Applications

There are no such things as applied sciences, only applications of science.

— Louis Pasteur

6.1 Numerical Upscaling – Permeability

On the pore scale, groundwater flow is modeled by the incompressible Navier–Stokes
equations on a domain with a complex shape. Fluid velocity in groundwater processes
is usually slow, therefore the flow can be assumed to be laminar and the non-linear
transport term can be neglected. Thus the Navier–Stokes equations reduce to the
Stokes equations

−µ∆v + ∇p = f in Ω ⊂ Rd (6.1a)

∇·v = 0 in Ω (6.1b)

v = 0 on Γ0 ⊆ ∂Ω (6.1c)

∂nv + (p0 − p)n = 0 on ΓP = ∂Ω \ Γ0 , (6.1d)

with viscosity µ , velocity v and pressure p. On the internal boundaries, i. e. on the
surface of the grains, no-slip boundary conditions are appropriate. On the boundaries
of the macroscopic domain, we consider Dirichlet and natural Neumann boundary
conditions for velocity.

On the macroscopic scale, groundwater flow is described by conservation of mass
and Darcy’s Law, which was introduced as an empirical flux law in [40], but can be
rigorously derived from Stokes equations using homogenization [25]. The groundwater
equations are given by

∇ · u = 0 in Ω ⊂ Rd (6.2a)

u = − 1
µκ∇p in Ω (6.2b)

p = p0 on ΓD ⊆ ∂Ω , (6.2c)
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where u denotes the Darcy velocity, n is the outward pointing normal vector, p the
pressure, µ the viscosity and κ the permeability tensor. In experiments, as well as
numerical simulations, κ is often assumed to be a diagonal tensor.

The mean pore velocity v̄ is given by the macroscopic velocity u and the porosity Φ

v̄ =
u

Φ
. (6.3)

6.1.1 Discretization of Stokes Equations

For the discretization of the Stokes equations we use the Discontinuous Galerkin formu-
lation described in [88], it was implemented in the thesis of S. Kuttanikkad [67]. This
discretization guarantees local mass conservation as well as conservation of momentum.
Pressure boundary conditions are imposed as described in [63]. The Discontinuous
Galerkin discretization of the Stokes equations reads:

Find v ∈ [V
(i)
k ]d, p ∈ V

(i)
k−1 such that

µa(v, z) + J(v, z) + b(z, p) = l(z) ∀ z ∈ [V
(i)
k ]d ,

b(v, q) = 0 ∀ q ∈ V
(i)
k−1 .

(6.4)

where

a(u,v) =

∫

Ω

∇u : ∇v −
∫

Γ

{∇ · u }Jv K+ ǫ

∫

Γ

{∇ · v }Ju K (6.5)

b(u, q) = −
∫

Ω

q ∇ · u +

∫

Γ

{ q }Ju K (6.6)

l(z) = −
∫

ΓD

p0 v · nds (6.7)

and where J · K and { · } denote the component-wise jump and average defined in
Equation (2.11) and (2.12).
J(v, z) is an interior penalty term [109], which is of non-physical origin. Dirichlet

type boundary conditions (e. g. no-slip and no-flux) are enforced weakly. The penalty
term vanishes for h → 0 and penalizes jumps in the solution, in order to enforce a
certain continuity of the solution.

J(v, z) =
∑

γ∈Γ

ηh−1
γ

∫

γ

Jv KJ z K ds , (6.8)

where hγ is defined as in (2.44), proportional to the size of γ.
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6.1.2 Homogenization

Darcy’s law was first derived as an empiric law. However, in 1978 Bensoussan et al.
presented a rigorous derivation of Darcy’s law from Stokes equations [25].

In the following we briefly derive Darcy’s law, introducing all concepts and terms
necessary to understand the application of numerical upscaling. Together with the
homogenized counterpart of the Stokes equations, effective parameters for Darcy’s law
on a macroscopic domain Ω are obtained. For a detailed description and rigorous proof
we refer to [65].

G

U (0)

U (1)

ǫ

Figure 6.1: A periodic micro-structure with characteristic length ǫ. Each unit cell
has sub-domains U (0) (fluid part) and U (1) (solid part), separated by the
boundary G.

The pore scale geometry is modeled as a periodic structure with characteristic
length ǫ (Figure 6.1). The macroscopic domain Ω now depends on ǫ and hence is
denoted by Ωǫ. It consists of N(ǫ) ∝ (1

ǫ )
d cells U ǫ

j of size ǫd. Each U ǫ
j maps to the

unit cell U using a scaling by 1
ǫ and a translation. The unit cell U has the microscopic

(local) coordinates y ∈ (0, 1)d and consists of two sub-domains U (0) (the fluid part) and
U (1) (the solid part), separated by the boundary G. Using this microscopic partition
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of U , a partition of the macroscopic domain Ω is induced as

Gǫ(Ωǫ) =
{

Ωǫ(0),Ωǫ(1)
}
, (6.9)

Ω̄ǫ(i) =

N(ǫ)⋃

j=0

Ū ǫ(i)
j , (6.10)

Γǫ =

N(ǫ)⋃

j=0

Gǫ(i)
j . (6.11)

The central idea of homogenization is to consider a family of functions vǫ and pǫ

which depend on the characteristic length ǫ. The upscaling process consists of deter-
mining the limit v = lim

ǫ→0
vǫ which yields the macroscopic equations.

On the macroscopic scale the Stokes problem with f = 0 and no-slip boundary
conditions on Γǫ are considered:

−ǫ2µ∆vǫ + ∇pǫ = 0 in Ωǫ(0) (6.12a)

∇ · vǫ = 0 in Ωǫ(0) (6.12b)

vǫ = 0 on Γǫ, (6.12c)

where vǫ and pǫ are written with a superscript ǫ as they depend on the micro-structure.
The velocity vǫ is scaled with ǫ2. This scaling is needed later in the limiting process
for ǫ→ 0 (for details see [65]).

To determine the limit ǫ → 0 a two scale approach is followed. It is assumed that
there is an asymptotic expansion of the unknown variable in the form

pǫ(x, y) = p0(x, y) + ǫp1(x, y) + ǫ2p2(x, y) + . . .

vǫ(x, y) = v0(x, y) + ǫv1(x, y) + ǫ2v2(x, y) + . . . ,

where all vi and pi are functions in Ω×U (0), periodic in y. Note that the variable x is
now defined on whole Ω and it doesn’t know about the microscopic structure as this
information is only visible on U (0). The gradient and the Laplace operator on Ω×U (0)

are given as

∇ = ∇x +
1

ǫ
∇y and ∆ = ∆x +

1

ǫ2
∆y +

1

ǫ
∇x∇y +

1

ǫ
∇y∇x.

The resulting Stokes problem reads

−ǫ2µ 1

ǫ2
∆yv0(x, y) +

1

ǫ
∇yp0(x, y)

+∇yp1(x, y) + ∇xp0(x, y) +O(ǫ) = 0 in Ω × U (0)
(6.13a)

∇x · v0(x, y) +
1

ǫ
∇y · v0(x, y)

+∇y · v1(x, y) +O(ǫ) = 0 in Ω × U (0)
(6.13b)

v0(x, y) +O(ǫ) = 0 on Ω ×G. (6.13c)
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Comparing coefficients of different order of ǫ yields

∇x · v0(x, y) + ∇y · v1(x, y) = 0 (6.14)

and
∇yp0(x, y) = 0 , (6.15)

which is equivalent to p0(x, y) = p0(x), i. e. p0 does not depend on the microscopic
variable y. We only consider the terms of zero’th order in ǫ of Equation (6.13a) and
use the component wise representation of ∇xp0 =

∑
j ej∂jp0, where ej denotes the

j’th cartesian basis vector. Using linearity of the problem the following cell problem
is formulated using new U -periodic variables w and π with

v0j =
ej∇xp0

µ
wj and p1 = ej∇xp0 π .

The final cell problem reads: Find a U -periodic vector field wj that solves

∆wj = ∇πj − ej in U (0)

∇ · wj = 0 in U (0)

wj = 0 on G.

(6.16)

Averaging the vector field over the unit cell yields Darcy’s law

u =

∫

U0

v0(x, y)dy = − 1

µ
κ∇p0,

with the permeability tensor given by

κij =

∫

U(0)

wjidy. (6.17)

In general it is not possible to compute κ analytically. In these cases numerical
simulations of (6.16) are used to determine κ.

6.1.3 Analytical Test Problems

For simple periodic porous media an analytic computation of the permeability κ is
possible using homogenization techniques.

We consider the case of flow through a simple porous medium, i. e. a periodic simple
cubic (SC) array of spheres of equal radii as shown in Figure 6.2. Sangani and Acrivos
derived semi-analytic results [91] for periodic arrays of spheres with equal radii. The
spheres are arranged in crystal lattice structures as shown in Figure 6.2. They could
give the permeability as an expansion series, the coefficients are computed numerically
with high accuracy. Three different setups are possible, we will always consider the
case of touching spheres:
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Figure 6.2: Crystal lattice structures. left: Simple Cubic (SC), middle: Body Centered
Cubic (BCC), right: Face Centered Cubic (FCC)

Simple cubic array (SC):
eight spheres situated in the corners of a cube,

Body centered cubic array (BCC):
nine spheres situated in the corners and the center of a cube,

Face centered cubic array (FCC):
14 spheres situated in the corners and the face centers of a cube.

In [34] Chapman and Higdon analytically computed permeabilities for all three setups
and a wide range of radii are given. These results will be compared with numerical
computations for the permeability. In all three examples the problem is isotropic. Thus
the permeability tensor κ will also become isotropic and is represented by a scalar. To
compute the scalar permeability coefficient κ we choose an arbitrary direction i and
compute wii following the formulation in (6.16), without loss of generality we choose
the x-direction. As in the homogenized formulation the computations are carried out
on a periodic domain, on the grain surface no-slip boundary conditions are applied.
Figure 6.3 shows the periodic unit cell and the velocity magnitude of the computed
solution.

Type r Φana Φh Errrel.Φ κana κh Errrel.κ

SC 1
2 0.4764 0.478 0.5% 2.527e− 3 2.53e− 3 0.03%

BCC 1
4

√
3 0.3198 0.321 0.7% 4.350e− 4 4.52e− 4 3.8%

FCC 1
4

√
2 0.2595 0.264 1.5% 8.68e− 5 9.06e− 5 4%

Table 6.1: Porosity Φ and permeability κ for SC, BCC, and FCC sphere arrangement.
Comparison between numerical and analytic [34] results.

The analytic values are taken from [34], where high precision results for all three
setups are presented. Table 6.1 shows the relative error on the porosity Φ which is
due to the linear approximation of the spherical shape, and the relative error in the
computed permeability κ. The geometry is given on an image grid with hg = 1/32.
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SC BCC FCC

Figure 6.3: Unit cells for SC, BCC and FCC layout (from left to right) on an image
grid with h = 1/32 and the computed velocity magnitude.
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(a) Computed permeability κh (SC setup).
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(b) Computed permeability κh (FCC setup).
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(c) Computed permeability κh (BCC setup).

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

2 4 8 16 32

E
R

R
O

R
κ

1/h

x−3

SC hg = h
SC hg = 1/32
FCC hg = h

FCC hg = 1/32
BCC hg = h

BCC hg = 1/32

(d) Error |κh − κana|.

Figure 6.4: Computed permeability for a periodic domain with known analytic solu-
tion. Comparing results for different mesh size h of the fundamental grid
and different hg of the image grid.
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For the SC setup, Figure 6.4(a) shows convergence of the computed permeability for
different mesh sizes h of the fundamental grid and compares these with the analytic
solution. First the solution is computed with a setup where the image grid and the
fundamental grid are identical, i. e. h = hg. In the second run the geometry is always
defined on an image grid with hg = 1/32 and the fundamental mesh is coarse. The
error of the solution of the second run is always smaller than that of the more classic
approach with h = hg.

6.2 Random Media

In the case of random media the assumption of periodicity required for classical homog-
enization approaches does not hold any more. Sometimes the technique of stochastic
homogenization [55] can be an alternative but it is also not generally applicable. Thus
a different approach to determine the permeability must be chosen.

Representative Elementary Volume

An alternative approach for the transition from the microscopic scale to the macro-
scopic scale is given by an averaging approach, known as the concept of the Represen-
tative Elementary Volume (REV); see [22]. An REV is the smallest volume which is
representative for the homogeneous medium. Quantities on the microscopic scale are
replaced by averaged quantities on the macroscopic scale.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Φ

l L
d

Figure 6.5: Porosity Φ for different diameters d of the averaging volume.

We consider a small sub-domain of a macroscopically homogeneous porous medium,
measure a property in a non-destructive way and then enlarge the sub-domain and
measure again. The idea of an averaging volume assumes that repeated measurements
will (after initial fluctuations) converge to a value which is representative for this porous
medium. When we enlarge the sub-domain further the measurements might diverge
again due to macroscopic inhomogeneities (Figure 6.5). Let us illustrate this concept
for the property of porosity.
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On the microscopic scale of a porous medium, a point x is either part of the void space
or of the solid matrix. The averaging volume U(x, d) is a sub-domain of the porous
medium, centered around the point x with a diameter d. In contrary to homogenization
the size of the inhomogeneities is fixed and does not scale with the diameter of U .

Classically, an indicator function

χ(x) =

{
1 if x is in a pore,

0 if x is in the solid phase
(6.18)

is defined. For our computations however we will distinguish between two sub-domains
U (0)(x, d) and U (1)(x, d). As in Section 6.1.2 we denote the pore space as U (0) and the
solid phase as U (1). The porosity of the porous medium with respect to the averaging
volume is then given as

Φ(x, d) =
1

|U(x, d)|

∫

U(x,d)

χ(y) dy

=
1

|U(x, d)|

∫

U(0)(x,d)

1 dy

(6.19)

A typical graph for the porosity Φ(x, d) is shown in Figure 6.5. For small d the
discontinuities of χ produce large variations in Φ. At a diameter l these variations
decrease and the value for Φ stabilizes. For large d large scale inhomogeneities change
Φ again.

Definition 6.1 (REV): Given a range [l, L] with l ≪ L. If the measured property (e. g.
the porosity) does not depend on the diameter d of the averaging volume Ωavg(x, d)
for d ∈ [l, L] this averaging volume is called a Representative Elementary Volume.
The diameter d can be chosen anywhere in the range [l, L].

This averaging approach offers access to macroscopic quantities where periodic ho-
mogenization is not applicable. It doesn’t require periodicity of the microscopic struc-
ture. Still it can be difficult or even impossible to determine the REV for a given
medium, and the size of the REV can vary considerably.

6.2.1 Artificially generated Pore Structure

In this example the domain partition G is given by an artificially generated pore struc-
ture. We choose a cubic averaging volume U , filled with 100 randomly packed spheres
of uniform radius r = 0.106, see Figure 6.6. The sphere distribution was computed
using the packing algorithm from [98]. Again the domain is given implicitly as a scalar
function with mesh size hg = 1/64.

For this setup we computed a macroscopic porosity Φ = 0.554. Keeping the sphere
positions, but varying the radius r changes Φ. In Table 6.2 different values of r and
the resulting porosities Φ are shown.
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Figure 6.6: An artificially generated pore structure is given as a scalar function on a
mesh with mesh size hg = 1/64.

r 0.053 0.063 0.074 0.079 0.084 0.095 0.100 0.106 0.111 0.116

Φ 0.943 0.901 0.844 0.809 0.769 0.674 0.618 0.554 0.486 0.417

Table 6.2: Change of the macroscopic porosity Φ with the radius r of the spheres.
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Figure 6.7: A macroscopic pressure gradient is imposed along the x-axis using pressure
boundary conditions and no-slip boundary condition otherwise. Direct sim-
ulation yields an effective κ.

Effective parameters for Darcy’s law can be computed by solving Stokes equations
on the pore space domain U (0). If U has the size of an REV the computed value is
valid also for other samples and larger scales. Finding the correct size for an REV is
a complex question it self, which we do not want to approach now. It is not verified
that the domain is an REV, still it is sensible to compute the effective permeability
for this particular setup.

As in homogenization the pressure is separated into a global pressure p0, with ∇p0 =
const. on U , and local fluctuations p1. The local fluctuations p1 are computed for
different global pressures gradients ∇p0 = ei for the different unit vectors ex, ey, and
ez. Equation (6.17) yields the dimensionless entries of the permeability tensor κ for the
cell problem. The global pressure gradient ∇p0 is statically evaluated and contributes
to the right hand side. The microscopic pressure vanishes on the inflow and outflow
boundary, p1 = 0 is imposed using pressure boundary condition for (6.1). On all inner
boundaries ∂U (0) \ ∂U no-slip boundary condition is imposed (Figure 6.7).

Following the REV approach, the mean velocity

v̄ =

∫

U(0)

v dx · |U (0)|−1 (6.20)

and the macroscopic porosity Φ = |U(0)|
|U | are computed, where |U | denotes the size of

U . Averaging yields the permeability coefficient

κij = −µ v̄ Φ

ej
. (6.21)
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The size of the averaging volume is |U | = 1 mm3 and the viscosity of water is
µwater = 1 · 10−3 Pa s.
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(a) Grid Convergence: κ for different mesh size
h of the fundamental grid.
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(b) Effective Permeability: κ computed for dif-
ferent porosities.

Figure 6.8: Computed permeability for an artificial random porous media.

Figure 6.8 shows the ability of this method to give reliable numerical results for the
macroscopic parameter already for a relatively coarse grid. For three different porosities
the permeability κ was computed on different mesh sizes h of the fundamental mesh.

We observe convergence for h → hg, reasonable results can already be obtained for
meshes with h > hg. Figure 6.8(a) shows that computations on a grid with h = 1/32
already yield comparable results as with h = 1/64. Already the size of the image grid
is coarser than that of a conforming triangulation. But the discretization can use even
coarser meshes and it can still yield reliable results.

For a mesh size of h = 1/32, respectively h = 1/16, a sensitivity analysis was carried
out. κ was computed for a range of different Φ (see Table 6.2). Although the geometry
is defined on a grid with hg = 1/64, computations are carried out on a coarser grid.
This reduces the time for the computation significantly without reducing the accuracy.
The resulting permeability component κxx is plotted in Figure 6.8(b). Even on the
very coarse grid with h = 1/16 the results show qualitatively the same behaviour as
on the fine grid, with a systematic error.

6.2.2 Experimentally obtained Pore Structures

Micro X-ray computer tomography (micro-CT ) provides non-destructive measurement
of small three-dimensional structure down to a resolution of about 1 µm. The sample
sizes range from a few millimeters to hundred millimeters. The first micro-CT system
was developed by Jim Elliott in the early 1980s [48]. He presented reconstructed slices
of a small tropical snail, with a pixel size about 50 µm.
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Nowadays micro-CT systems are used in many different fields. They are used to
obtain detailed measurements of the pore-scale structure [105, 80] and more recently
even to obtain time-dependent measurements [21].

Figure 6.9: Pore structure of a
coarse sand (H.-J.
Vogel, UFZ Halle).
Micro-CT scan of a
sample with diameter
10 mm and height
6 mm.

By courtesy of H.-J. Vogel we are able to perform computations on real structures
(see Figure 6.9). The micro-CT measurements were done at Department Bodenphysik,
Helmholtz Zentrum für Umweltforschung (UFZ Halle). The sample is a cylinder filled
with coarse sand. It has a diameter of 10 mm and a height of 6 mm. The data is given
as 16bit gray scale values on a 800 × 828 × 426 grid. The current implementation of
the UDG method features sequential computations only, hence computations on the
whole domain with full resolution were not yet feasible.

Porosity

On a range from d = 0.015 mm to 6 mm the porosity of a cube with edge length d was
computed. The center of the cube is always at the center of the sample.

Figure 6.10 shows that the limit is not yet reached and that the sample is too small
to be an REV. As the size of sample is smaller than that of an REV an effective per-
meability computed from the microscopic flow field on this domain cannot be directly
compared with the macroscopic permeability of the coarse sand. The grain diameter is
between approximately 5–10 mm. An REV might have a size which 100 times bigger
than the grain size.

Microscopic Flow

The permeability of coarse sand is, according to literature, 10−11 − 10−9 m2 [22].
Solving the microscopic Stokes problem we were able to compute the macroscopic
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Porosity Φ Figure 6.10: Porosity of the micro-CT
data. For cubes with dif-
ferent edge length d the
porosity is computed. On
the whole range no REV
can be found.

permeability of this sample.
Stokes equations are solved for different averaging volumes. Figure 6.11 shows the

velocity field for a domain of size with edge length L = 3.84 mm. The discretization
is on a 163 fundamental mesh with an image grid of size 643 and a resolution of
0.06 mm, this means the original data was coarsened by factor of 4. Second order
ansatz functions for the velocity and first order for the pressure are used. The domain
and the computed solution are visualized in Figure 6.11.

L = diam(Ω) Permeability κ
0.48 mm 1.1 · 10−10 m2

0.96 mm 5.6 · 10−10 m2

1.92 mm 1.0 · 10−9 m2

3.84 mm 4.3 · 10−10 m2

Table 6.3: permeability of a coarse sand, measured for different averaging volumes.

For different sizes L of the averaging volume the effective permeability κ is com-
puted. these values range between 10−10 and 10−9 m2 which is in accordance with the
predicted values.

6.3 Discussion

The results show the ability of the UDG method to do reliable simulations on very
coarse grids. For different analytic test problems, the UDG method did show hk+1

convergence for the macroscopic quantity.
The local triangulation algorithm for implicitly given domains makes it very easy to

do computations on measured structures, e. g. micro-CT scans.
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Pore scale domain
(coarse sand). Selection
of size 3.63 mm with a
resolution of 643 voxel.

Original data had a
resolution of 2563 voxel.

Velocity field through
coarse sand. Pressure
drop from left to right
and natural boundary
conditions on the other
faces. Computations
are done on a 323 mesh
with second order
ansatz functions for the
velocity and first order
for the pressure.

Figure 6.11: Microscopic velocity field through porous media. (Visualization using
VTK [106] and Blender [28])
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6.3 Discussion

When dealing with experimentally obtained data the uncertainty in the measurement
is very big. In those situations the accuracy of the discretization should not be too high
compared to the uncertainty of the measurement. Otherwise only the computational
costs increase, but no additional information can be obtained. Thus, the ability to do
simulations on coarse function spaces, as it is featured by the UDG method, is of great
interest.
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Chapter 7

Time-dependent Applications

p�nta `rheñ

— Heraklit

The simulations presented in this chapter are joint work with J. Fahlke as part of his
diploma thesis [50]. The aim is to apply the Unfitted Discontinuous Galerkin method
to a time-dependent problem.

7.1 Convection–Diffusion–Reaction Equation

We consider the convection-diffusion-reaction equation as a model problem for para-
bolic partial differential equations. We will refer to it as the “transport equation”

∂Rtc+ ∇ · j = q(c) in Ω (7.1a)

j = uc−D(u)∇c , in Ω (7.1b)

and we consider Dirichlet, Neumann and outflow boundary conditions

c = c0 on ΓD ⊆ ∂Ω (Dirichlet BC) (7.1c)

j · n = F on ΓN ⊆ ∂Ω \ ΓD (Neumann BC) (7.1d)

j · n = (uc−D(u)∇c) · n on ΓO = ∂Ω \ ΓD (Outflow BC), (7.1e)

where c denotes the concentration of a solute. Its transport is described via the flux j,
whereas reactions are modeled using the source-sink term q, n denotes the outer normal
to Ω. The flux j is composed of two parts. The first one is diffusion or dispersion,
proportional to the gradient ∇c and parametrized by the diffusion-dispersion tensor
D(u). The second part is convection which is proportional to a given velocity u.
It is assumed that the system is convection dominated. R is the retardation factor,
which describes the deferment of the transport compared to the velocity u caused by
processes like adsorption.
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Dirichlet boundary conditions specify a concentration c0 on the boundary, for Neu-
mann boundaries a flux F is prescribed. The special case F = 0 of the Neumann
boundary condition is known as the “noflux condition.” The outflow boundary condi-
tion is applied where the velocity is pointing outwards. It is essentially a “do-nothing”
boundary condition and allows the solute to leave the domain freely.

7.1.1 Discretization of the Time-dependent Problem

We will now discuss the discretization of the transport equation (7.1); it can be written
as

∂tRc︸︷︷︸
Term a

+∇ · uc︸ ︷︷ ︸
Term b

−∇ ·D(u)∇c︸ ︷︷ ︸
Term c

= q(c)︸︷︷︸
Term d

. (7.2)

Method of lines is applied to handle time and space derivatives. Space discretization
is done using the Unfitted Discontinuous Galerkin method. The DG discretization fol-
lows the formulation in [13]. For the elliptic part (7.2c) the NIPG scheme chosen, which
allows higher-order discretization and fulfills the discrete local mass conservation. This
scheme uses a penalty term for stabilization. The hyperbolic part (7.2b) is discretized
using a flux based Upwind scheme and does not need additional stabilization. For the
time derivative the implicit θ scheme is used.

Velocity Field

The velocity u is in general obtained from previous computations. We compute the
velocity using an Unfitted Discontinuous Galerkin Discretization of the Stokes equa-
tions, see Section 6.1.1. Second order polynomial test functions are used, the velocity
is extended onto the skeleton Γ (see Definition 2.5) using the average operator

u|γ = {u }, γ ∈ Γ. (7.3)

Upwinding

The concentration c is given element-wise. On the skeleton a suitable definition of the
solution must be chosen.

It is desired that for a smooth velocity field u the monotonicity of the continuous
problem should be preserved by the discrete solution. According to Godunov’s theorem
monotonicity can only be guaranteed if the time discretization is first order accurate.
When using higher order schemes non-physical oscillations should be kept small. This
can be achieved using using upwinding. Historically, the origin of upwind methods can
be traced back to the work of Courant, Isaacson, and Reeves who proposed the CIR
method [38].

Definition 7.1 (Upwind solution): The solution c|γ on γ ∈ Γ is given following the
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streamlines. For γef ∈ Γint the upwind solution c∗ is given as

c|γef
= c∗(x) =

{
c|e(x) if u|γef

· ne > 0

c|f (x) else,
(7.4)

where e and f denote the two elements sharing γef . For γ ∈ ΓD the upwind solution
is

c|γ = c∗ =

{
c if u|γ · n > 0

c0(x) else.
(7.5)

Space Discretization

The space discretized Problem reads: Find c such that

∂tm(c, v) + a(c, v) + J(c, v) = l(v) ∀v ∈ V, (7.6a)

with the bilinear forms a and m, the penalty term J , and the linear form l. Contri-
butions to a(c, v) and to l(v) origin in the elliptic (ai, b1) as well as the hyperbolic
part (a2, b2). The time derivative term (7.2a) is denoted by m(·, ·).

The elliptic part is discretized using the NIPG scheme. The discretization of the
elliptic part (7.2c) yields

a1(c, v) =

∫

Ω

D∇c · ∇v dx−
∫

Γ\ΓN

J c K · {D∇v } ds

+

∫

Γ\ΓN

J v K · {D∇c } ds−
∫

ΓD

vD∇c · n ds
(7.7)

with the penalty terms

J(c, v) = η

∫

Γ\ΓN

h−1
γ J c KJ v K ds− η

∫

ΓD

h−1
γ c0 v ds . (7.8)

The contribution of the elliptic part to the right hand side is

l1(v) =

∫

Ω

qv dx+

∫

ΓD

c0D∇v · n ds . (7.9)

The discretization of the hyperbolic part is obtained straight forward. In Equation
(7.2b) partial integration and Gauss theorem is applied, the c|γ and u|γ are substituted
according to (7.4), (7.5), and (7.3):

a2(c, v) = −
∫

Ω

u c∇v dx+

∫

Γ\ΓN

J v K · {u } c∗ds. (7.10)
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The Neumann boundary condition contributes to the right hand side

l2(v) = −
∫

ΓN

Fv ds . (7.11)

Remark 7.1: In the discrete problem the outflow boundary ΓO is not handled explicitly.
On Γ \ ΓN the upwind decision does automatically switch to the outflow boundary
condition where u · n > 0.

Time Discretization

The space discretization allows higher-order ansatz functions. We use a second or-
der approximation in space, hence the time discretization should be second order as
well. Further we are using the one-step-θ-scheme which can be first and second order
accurate, see [15].

Definition 7.2 (one-step-θ-scheme): Given a linear ordinary differential equation

d

dt
x = L(t, x), (7.12)

and an initial value x(0) = x0, the solution x on the time interval [0, T ] is requested.
The interval is subdivided into 0 = t0 < t1 < · · · < tM = T with ∆tn = tn+1 − tn.
The approximation of xn+1 by the one-step-θ-scheme is given as

xn+1 − ∆tn (1 − θ)L(tn+1, xn+1) = xn + ∆tn θL(tn, xn) . (7.13)

The one-step-θ-scheme is parametrized by the coefficient θ ∈ [0, 1]. For θ = 0 the
explicit Euler scheme is obtained, for θ = 1 the scheme is identical to implicit Euler.
The scheme with θ = 1/2 is known as Crank-Nicolson and is second order accurate.

Definition 7.3 (Courant number): The courant number

C =
u∆t

h
(7.14)

measures the traveling distance in a single time step compared with mesh width.

The explicit Euler scheme is only stable if the Courant–Friedrichs–Lewy (CFL) con-
dition C < 1 is fulfilled. For the UDG scheme the size of a single element is not bound
from below. The size h of most elements will be equal to the mesh width of the funda-
mental mesh, but the size of some elements can be several orders of magnitude smaller.
To fulfill the CFL condition the time step ∆t becomes very small. This renders the
explicit Euler scheme impractical for our simulations.

The implicit Euler and the Crank-Nicolson method are unconditionally stable, the
Courant number is not bound.
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7.2 Microscopic Solute Transport

7.2 Microscopic Solute Transport

In this example microscopic transport of an inert solute is computed. Hence the re-
tardation factor R is 1 and the dispersion tensor D reduces to the scalar molecular
diffusion coefficient. Although the implementation is dimension-independent, the pre-
sented results confine to the two-dimensional case.

Γ
p

(p
=

p
0
)

Γ0 (no-slip)

Γ
p

(p
=

p
0
)

Γ0 (no-slip)

Γ0

Figure 7.1: Velocity field obtained by solving Stokes equations. Boundary conditions
and velocity magnitude.
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Figure 7.2: Setup for the inital value problem. Boundary conditions and initial con-
centration.

The concentration of the solvent does strongly depend on the local geometry. The
setup is a channel going from left to right with spherical obstacles inside the channel
(see Figure 7.2). The velocity field for the convection is given by the solution of the
Stokes equation (6.1) on the pore scale. The Stokes equation is discretized using for-
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t = 0.0, step 0 t = 0.5, step 32

t = 1.5, step 96 t = 2.5, step 160

t = 5.0, step 320 t = 8.0, step 512

t = 12.0, step 768 t = 16.0, step 1024

concentration c

0.001 0.010 0.100 1.000

Figure 7.3: Solute transport on a domain with holes, 1024 time steps with
∆t = 0.015625. Computations on a 64 × 96 mesh, the geometry given
implicitly on a twice refined grid (256 × 384).
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mulation (6.4) from the previous chapter. The non-symmetric version without penalty
is used. Boundary conditions are no-slip boundary conditions on the upper and lower
boundary of the channel and on the surface of the obstacles. On the left and right
boundary Neumann boundary conditions with a prescribed pressure are applied. The
magnitude of the resulting velocity field is shown in Figure 7.1.

The boundary conditions for the transport equation are no-flux conditions on the
upper and lower edge and on all obstacles, outflow boundary condition on the right
and Dirichlet boundary condition on the left. These are chosen consistently to the
boundary conditions of the velocity field.

The time discretization uses θ = 0.5, i. e. Crank-Nicolson. Although the method
is unconditionally stable it must be noted that it is not reasonable to take very large
time steps as the approximation error increases. The errors arising from spatial and
temporal discretization are balanced for a Courant number of about 1. We decided to
choose a time step so that the CFL condition u∆t < h is fulfilled on the fundamental
mesh.

The temporal evolution of the plume is visualized in Figure 7.3. The computations
are carried out on a 64 × 96 mesh, while the geometry given as a scalar function on
a twice refined grid with 256 × 384 cells. The maximum concentration in the domain
varies across several orders of magnitude throughout the time period.

7.3 Macroscopic Dispersion – Breaktrough curves

A common approach to measure the macroscopic dispersion experimentally are break-
through curves [22]. The breakthrough curve measures the temporal evolution of the
relative flux of the solute.

Definition 7.4 (Relative Flux): The relative flux of a solute through a plane A is given
as

f =

∫

A

j da

∫

A

u da
. (7.15)

Evaluating the flux f for every time step t on the outflow boundary A = Γout
D yields

the breakthrough curve. For the setup of Section 7.2 the breakthrough curve was
computed, see Figure 7.4.

For different time steps (t = 640, 768, 896, 1152, 1408) the flux through the outflow
boundary is computed for different resolutions of the fundamental mesh. The coarsest
mesh has a resolution of 2 × 3. At this resolution it isn’t even possible to resolve the
initial conditions and hence the results are not usable. A resolution of 16 × 24 cells is
necessary to obtain reasonable results. Comparing the results for different time steps
we observe grid convergence.

Figure 7.4 shows the breakthrough curves, the flux relative to the best solution
(fh/fhmin

) at different time steps, and the relative error (‖fhmin
−fh‖/fhmin

) at different
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Figure 7.4: Breakthrough curve (left) computed with different fundamental meshes.
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dle: flux relative to the best solution (fh/fhmin

). Right: relative error of
flux (‖fhmin

− fh‖/fhmin
)

time steps.

7.4 Discussion

We have shown the application of the UDG method to the convection–diffusion–
reaction equation. Detailed simulations on the pore scale as well as measurements
of macroscopic quantities like breakthrough curves are possible. The size h of the
smallest element in a UDG mesh is not bounded from below, thus explicit time step-
ping schemes are not suitable as the maximum time step is determined by the CFL
condition u∆t < h. The relative solute flux through the outflow boundary was com-
puted and grid convergence for this macroscopic property is observed.

An other class of time-dependent problems are evolving domain problems. In the
diploma thesis of Heimann [61] the UDG method is successfully used for the simulation
of incompressible viscous two-phase flow with surface tension. The discontinuous for-
mulation allows both an accurate representation of the surface tension induced discon-
tinuities in the pressure field and an explicit reconstruction of the interface. The fluid’s
interface is tracked numerically with the Level Set method and local integration is done
using the algorithm for implicitly described domains (Section 3.2.3). Computational
results for two known test problems, oscillating bubble and rising bubble (see Fig-
ure 7.5), are compared to experimental and theoretical predictions. The measured
oscillation frequency and the velocity of the rising bubble are in good agreement with
the predicted values [61].
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(a) Velocity magnitude |v|

0.0 m
s

0.42
m
s

(b) Pressure p

0.0 Pa 55.0 Pa

Figure 7.5: Evolving domain problem: rising bubble. For a given setup the velocity
and pressure for a rising bubble are computed [61]. The rate of ascent of
the bubble is compared to a reference solution.
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Chapter 8

Summary and Discussion

Bei wissenschaftlichen Streitigkeiten nehme man sich in Acht, die Probleme
nicht zu vermehren.

— Johann Wolfgang von Goethe

In this work a new approach to simulations on domains with complicated shapes
has been developed. The combination of Discontinuous Galerkin methods with an
Unfitted Finite Element technique offers a discretization that can accurately represent
the complicated geometry, while the dimension of the approximation space remains as
low as desired.

The Unfitted Discontinuous Galerkin (UDG) method can easily be applied to Discon-
tinuous Galerkin discretizations of other partial differential equations without changing
their primal formulations. The shape of the domain is incorporated during the assem-
bly of the matrix, using appropriate numerical integration techniques. Hence only a
modified assembler is required to apply UDG Methods.

In this work the method has been implemented for 2D and 3D, it is based on the
DUNE framework [19, 20]. Local triangulation algorithms analytically given domains
in 2D and for implicitly given domains in two and three dimensions as been developed.
This latter is based on an extension of the well known Marching Cubes algorithm. It
offers an efficient way to handle structures obtained from imaging processes as well
as time-dependent domains using a level set approach. Furthermore, the algorithm is
applicable for the evaluation of integral expressions over implicitly given domains and
is not restricted to the UDG method.

The construction of the UDG finite element mesh can lead to degenerated elements.
Numerical experiments show stability of the method even for cases with pathological

elements. For an elliptic test problem optimal convergence rates in H1- and L2-norm
are obtained. Furthermore, super-convergence of the discontinuities was observed.
For a locally mass-conservative DG scheme it has been verified numerically that the
use of unfitted meshes does not degrade the mass conservation. The application to
numerical upscaling has been successfully demonstrated for the example of an effective
permeability of a porous medium, using Stokes equations on the pore scale and Darcy’s
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law on the macroscopic scale. Further work using the UDG method are applications
of convection–diffusion problems [50] and two-phase Navier–Stokes flow [61].

Mesh generation for conforming finite elements is improving constantly, still handling
complicated domains with small scale structures is an involved process. The construc-
tion of a local triangulation has less constraints than the generation of a conforming
finite element mesh for the same domain. Hence local triangulation algorithm can be
implemented more efficiently. For domains with a simpler boundary mesh generation
algorithm work reliable. In these situations the UDG method requires extra effort
without much benefit.

Comparison with standard finite elements shows the ability of the method to give
reasonable results already on very coarse grids. For the elliptic model problem the
discretization error of the DG discretization was always lower than the error of a
standard finite element discretization with the same order of convergence and number
of unknowns. The computational cost of the matrix assembly is similar to those of
an unstructured mesh. However as the fundamental mesh can be rather coarse, the
resulting matrix is small.

The local triangulation algorithm for implicitly is fast, but could be optimized fur-
ther. In particular using, a locally refined image grid for the representation of the
level set function describing the domain, as the cost of the assembly is proportional
to the size of the image grid. Especially simulations with for a partition G given by
high-resolution image data will benefit from local refinement, as most cells are either
completely inside or outside the domain.

In order to take full benefit from this flexibility, it will be necessary to also incorpo-
rate local adaptive refinement of the fundamental mesh. On locally refined Cartesian
grids with hanging nodes, both local triangulation algorithms can be used without
modification and without losing efficiency. Adaptive mesh refinement requires the em-
ployment of error estimators. For the computation of macroscopic parameters, the
norm of the error of the solution is not of much importance. The interest often lies in
an integrated physical quantity; this means that the error estimator should assess the
local contributions to the error of the objective functional. Dual weighted a-posteriori
error estimators [23] are a promising approach as they allow the optimization of the
finite element mesh with respect to an arbitrary error functional. The resolution of the
image grid has also a direct influence on the computation time. A coarse image grid
increases the model error, while a fine grid increases the computational cost. Braack
and Ern [29] worked on the simultaneous estimation of model and discretization error.
A similar approach could be followed to simultaneously estimate the discretization-
and the geometry-induced error.

A future parallelization of the implementation will the beneficial, especially for time-
dependent and three-dimensional problems which have a high demand on computation
power. The local triangulation is completely element-local and does not need any
information from neighboring processes. Hence the effort for a parallelization is the
same as for any other DG method and known parallelization techniques can be used,
e. g. domain decomposition methods.

98



Appendix A

Notation and Symbols

We provide a list of the most important abbreviations technical terms and math-
ematical symbols. The list contains a short description and a reference to the first
appearance, respectively to a detailed explanation.

Abbreviations and Notations

Notation Description

BCC Body Centered Cubic array (lattice structure) 73

CAD Computer Aided Design 28

CFL cond. Courant–Friedrichs–Lewy condition 90

DG Discontinuous Galerkin Finite Element Method 7

DUNE Distributed and Unified Numerics Environment 39

EOC Experimental Order of Convergence 49

FCC Face Centered Cubic array (lattice structure) 73

FEM Finite Element Method 7

FV Finite Volume Method 7

IP Interior Panelty Finite Element Method 7

Level set Scalar function φ(x, t), describing the temporal evo-
lution of an interface.

30

MC Marching Cubes algorithm 31

MC33 Marching Cubes 33, topologically correct MC algo-
rithm

33

Micro-CT Micro X-ray computer tomography 81

NIPG Non-Symetric Interior Penalty Galerkin Method 16

OBB Oden-Babuška-Baumann Scheme 16
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Notation Description

PDE partial differential equation 4

REV Representative Elementary Volume 78

SC Simple Cubic array (lattice structure) 73

SIPG Symetric Interior Penalty Galerkin Method 16

UDG Unfitted Discontinuous Galerkin Method 21

Mathematical Symbols

Symbol Description

{ · } Average of a function, defined on inter-element
boundaries.

14

J · K Jump of a function, defined on inter-element bound-
aries.

14

| · | Euclidic norm. 10

‖ · ‖ Operator norm, or sobolev norm. 10

∂Ω Surface of a domain Ω. 8

Ê Reference element. 8

Ei Element in a mesh. 8

η Penalty factor for IP or the Nitsche method. 9

G Boundary of the unit cell U . 71

G Partition of a domain into sub-domains according to
geometric properties.

22

Γ Skeleton of a partition. 9

γ Edge/Face in the skeleton of a partition. 8

Γext External skeleton of a partition. 9

Γint Internal skeleton of a partition. 8

h Mesh width. 8

hg Mesh width of the image grid. 31

κ Condition number of a matrix. 50

κ Permeability of a porous medium. 69

L Diameter of a domain Ω. 8

µ Fluid viscosity. 69

n Outward pointing normal unit vector. 9
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Symbol Description

Ω Domain Ω ⊆ Rd. 8

Ω(i) Sub-domains, element of a Partition G. 22

Φ Porosity of a porous medium. 70

φ Scalar function, describing a domain. 30

Pk Space of polynomial functions of degree k. 13

T Triangulation (mesh) of a domain. 8

TEi
Transformation from a reference element to Ei. 8

U Unit cell for the upscaling process. 71

u Scalar function. 8

v Vector valued function. 69
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Extended Marching Cubes

The extended Marching Cubes algorithm adds lookup tables for volume triangulation
to the classic Marching Cubes lookup tables (see Section 3.2.3).

The MC33 algorithm offers topologically correct reconstruction of the interface. The
lookup tables for the surface reconstruction and disambiguation rules are described in
[71]. Our implementation uses a different numbering in the unit cube, therefore we
show the reference unit cube and the reference simplex (Figure B.1).

Figures B.2 and B.3 show the volume triangulation for the basic cases for simplices
and cubes. For the cubes we also note the corresponding disambiguated case number
as it is used in [71].
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Figure B.1: Reference cube and simplex: Numbering of vertices, edges and faces.
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case: 0,0,0,0 case: 1,0,0,0 case: 1,1,0,0 case: 1,1,1,0 case: 1,1,1,1

Figure B.2: Basic cases for the triangulation of the 3d simplex.

case: 0,0,0,0,0,0,0,0 (MC33 Case 0) case: 1,1,1,1,1,1,1,1 (MC33 Case 0)

case: 1,0,0,0,0,0,0,0 (MC33 Case 1) case: 1,1,1,1,1,1,1,0 (MC33 Case 1 (inverse))

case: 1,1,0,0,0,0,0,0 (MC33 Case 2) case: 1,1,1,1,1,1,0,0 (MC33 Case 2 (inverse))

case: 0,1,1,0,0,0,0,0 (MC33 Case 3.1) case: 1,1,1,1,0,1,1,0 (MC33 Case 3.1 (inverse))

case: 0,1,1,0,0,0,0,0 (MC33 Case 3.2) case: 1,1,1,1,0,1,1,0 (MC33 Case 3.2 (inverse))

Figure B.3: Basic cases for the triangulation of the 3d cube.
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case: 0,0,0,1,1,0,0,0 (MC33 Case 4.1) case: 0,1,1,1,1,1,1,0 (MC33 Case 4.1 (inverse))

case: 0,0,0,1,1,0,0,0 (MC33 Case 4.2) case: 0,1,1,1,1,1,1,0 (MC33 Case 4.2 (inverse))

case: 1,1,1,0,0,0,0,0 (MC33 Case 5) case: 1,1,1,1,1,0,0,0 (MC33 Case 5 (inverse))

case: 1,0,0,1,1,0,0,0 (MC33 Case 6.1) case: 1,0,1,1,1,1,0,0 (MC33 Case 6.1 (inverse))

case: 1,0,0,1,1,0,0,0 (MC33 Case 6.1.2) case: 1,0,1,1,1,1,0,0 (MC33 Case 6.1.2 (inverse))

case: 1,0,0,1,1,0,0,0 (MC33 Case 6.2) case: 1,0,1,1,1,1,0,0 (MC33 Case 6.2 (inverse))

case: 0,1,1,0,1,0,0,0 (MC33 Case 7.1) case: 1,1,0,1,0,1,1,0 (MC33 Case 7.1 (inverse))

Figure B.3 (continued)
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case: 0,1,1,0,1,0,0,0 (MC33 Case 7.2) case: 1,1,0,1,0,1,1,0 (MC33 Case 7.2 (inverse))

case: 0,1,1,0,1,0,0,0 (MC33 Case 7.3) case: 1,1,0,1,0,1,1,0 (MC33 Case 7.3 (inverse))

case: 0,1,1,0,1,0,0,0 (MC33 Case 7.4.1) case: 1,1,0,1,0,1,1,0 (MC33 Case 7.4.1 (inverse))

case: 0,1,1,0,1,0,0,0 (MC33 Case 7.4.2) case: 1,1,0,1,0,1,1,0 (MC33 Case 7.4.2 (inverse))

case: 1,1,1,1,0,0,0,0 (MC33 Case 8) case: 1,1,1,0,1,0,0,0 (MC33 Case 9)

case: 0,0,1,1,1,1,0,0 (MC33 Case 10.1) case: 0,0,1,1,1,1,0,0 (MC33 Case 10.1.2)

case: 0,0,1,1,1,1,0,0 (MC33 Case 10.2) case: 1,1,0,1,1,0,0,0 (MC33 Case 11)

Figure B.3 (continued)
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case: 0,1,1,1,1,0,0,0 (MC33 Case 12.1) case: 0,1,1,1,1,0,0,0 (MC33 Case 12.1.2)

case: 0,1,1,1,1,0,0,0 (MC33 Case 12.1.2) case: 0,1,1,1,1,0,0,0 (MC33 Case 12.2)

case: 1,0,0,1,0,1,1,0 (MC33 Case 13.1) case: 1,0,0,1,0,1,1,0 (MC33 Case 13.1 (inverse))

case: 1,0,0,1,0,1,1,0 (MC33 Case 13.2) case: 1,0,0,1,0,1,1,0 (MC33 Case 13.2 (inverse))

case: 1,0,0,1,0,1,1,0 (MC33 Case 13.3) case: 1,0,0,1,0,1,1,0 (MC33 Case 13.3 (inverse))

case: 1,0,0,1,0,1,1,0 (MC33 Case 13.4) case: 1,0,0,1,0,1,1,0 (MC33 Case 13.5.1)

case: 1,0,0,1,0,1,1,0 (MC33 Case 13.5.2)

Figure B.3 (continued)
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