%0 Generic %A Lindner, Aaron %D 2009 %F heidok:10415 %K mitotic spindle , force measurement , force sensor, biophysics, cell mechanics %R 10.11588/heidok.00010415 %T Kraftsensoren im Nanonewton-Bereich : Biofunktionalisierte Mikrosäulen aus Poly-Ethylenglykol zur Untersuchung fusionierender Mitosespindeln %U https://archiv.ub.uni-heidelberg.de/volltextserver/10415/ %X Die biophysikalische Erforschung von Zellskelettkomponenten verlangt nach speziellen Techniken zur Messung von Kräften im Bereich von Pikonewton bis Milinewton. Bislang fehlte eine zufriedenstellende Methode zur parallelen Messung einer großen Anzahl solcher Kräfte im Sub-Nanonewton-Bereich. Die Verwendung von Feldern aus flexiblen Mikrosäulen (Pillars) würde sich in vielen Experimenten anbieten, scheidet aber meist wegen der limitierten Kraftsensitivität der herstellbaren Polymerpillars aus. In dieser Arbeit wird eine innovative Methode zur Herstellung von Pillarfeldern aus dem Hydrogel Poly-Ethylenglykol (PEG) vorgestellt. Das Elastizitätsmodul des Hydrogels kann durch Variation der Maschenweite in einem vier Größenordnungen umfassenden Bereich eingestellt werden. Dadurch können bei Bedarf sehr flexible Pillars zur Messung von Kräften im Sub-Nanonewtonbereich hergestellt werden. Die Methode erlaubt außerdem eine effektive Biofunktionalisierung der Pillarköpfe bereits im Herstellungsprozess. Ein spezieller Kalibrationsaufbau ermöglicht die Kreuzkalibration der Pillars gegen einen Atomkraftmikroskop-Cantilever mit bekannter Federkonstanten. Dadurch können Pillars mit Federkonstanten von minimal 0,3 nN/μm kalibriert werden, was bei Standardmikroskopen einer Kraftauflösung von 30 pN entspricht. Die Möglichkeiten der PEG-Pillar- echnologie werden durch in-vitro-Assemblierung von Mitosespindeln an den Pillarköpfen demonstriert. Bei geeigneten Versuchsbedingungen fusionieren diese Mitosespindeln und üben Kräfte aufeinander aus. Die wirkenden Kräfte führen zu einer Pillarverbiegung und lassen sich dadurch quantifizieren.