TY - GEN TI - Modellentwicklung zur numerischen Simulation eines Flugstromvergasers für Biomasse Y1 - 2010/// UR - https://archiv.ub.uni-heidelberg.de/volltextserver/11309/ ID - heidok11309 N2 - Mit schwindenden Erdöl, Erdgas- und Kohleressourcen wird Biomasse als einzige erneuerbare Kohlenstoffquelle zukünftig wieder eine größere Rolle bei der Energieversorgung bzw. der Herstellung von organischen Chemikalien und Kraftstoffen spielen. Für die Optimierung bestehender Technologien und die Entwicklung neuer Technologien zur effizienten energetischen und stofflichen Nutzung von Biomasse werden immer häufiger Computersimulationen eingesetzt. Diese reduzieren die Zahl der zeit- und kostenintensiven Experimente für die Verfahrensoptimierung. Durch die zeitliche und/oder örtliche Auflösung aller chemischen und physikalischen Prozesse des Gesamtsystems wird zudem die Charakterisierung von Prozessgrößen ermöglicht, die mit experimentellen Methoden nicht oder nur unter erheblichem Aufwand zu bestimmen sind. Die vorliegende Arbeit mit dem Ziel der numerischen Simulation eines Flugstromvergasers für biomassestämmige Öl-Koks-Gemische ist Teil eines Verbundvorhabens des Bundesministeriums für Bildung und Forschung (BMBF) mit der Fördernummer 03SF0320D. In diesem soll der Vergasungsprozess des am Karlsruher Institut für Technologie (KIT) entwickelten bioliq-Verfahrens untersucht werden. Für die mathematische Abbildung des Vergasungsprozesses wird dieser als reaktive Strömung mit komplexen mehrdimensionalen und zeitabhängigen Wechselwirkungen zwischen einer großen Zahl von chemischen Reaktionen, diversen Transportvorgängen und Phasengrenzeffekten behandelt. Der Schwerpunkt der vorliegenden Arbeit liegt auf der Entwicklung detaillierter Modelle zur Beschreibung der Gasphasenkinetik, des Kokspartikelabbrandes und der Ablagerungsbildung im Vergasersystem. Der entwicklete Reaktionsmechanismus zur Beschreibung der Gasphasenreaktionen basiert auf Elementarreaktionen und umfasst 80 Spezies und 1243 Reaktionen. Simulationsergebnisse mit diesem Mechanismus werden mit experimentell bestimmten Flammengeschwindigkeiten, Zündverzugszeiten und Konzentrationsprofilen verglichen. Durch diese umfassende Validierung kann der Mechanismus für die Verbrennungs-/Vergasungssimulation unterschiedlicher, im Mechanismus enthaltener Brennstoffe wie Ethylenglykol, Ethanol, Ethan, Acetaldehyd oder Methan verwendet werden. Das Abbrandmodell der Kokspartikel berücksichtigt neben den chemischen Reaktionsgeschwindigkeiten für die heterogenen Reaktionen mit O2, H2O und CO2 den Einfluss von Diffusionsprozessen, die Überlagerung der heterogenen Reaktionen untereinander und die Kopplung mit Gasphasenreaktionen. Für das Modell wurde im Rahmen der vorliegenden Arbeit ein MATLAB- und ein C-Programm-Code zur Einzelkornbetrachtung von Kokspartikeln entwickelt, mit denen Sensitivitätsanalysen und Parameterstudien durchgeführt werden. Das Ablagerungsmodell beschreibt im Wesentlichen den Transport und die Anlagerung von Aschebestandteilen an Reaktorwände und ermöglicht die Berücksichtigung geänderter Wandparameter durch eine sich bildende Ablagerungsschicht. Die entwickelten Modelle für den Partikelabbrand und die Anlagerung von Aschebestandteilen werden zudem in einem Programmpaket zusammengefasst, das an die kommerzielle Strömungssimulationssoftware ANSYS FLUENT 12.0 gekoppelt werden kann. Dies ermöglicht die Durchführung von Parameterstudien und Sensitivitätsanalysen in turbulenten Strömungen. Mit den in dieser Arbeit entwickelten Programmpaketen werden somit die bereits etablierten Anwendungsmöglichkeiten der numerischen Strömungssimulation für die Verfahrensoptimerung von komplexen Vergasungsprozessen entscheidend verbessert. A1 - Hafner, Simon KW - CFD KW - Ethylene Glycol KW - Mechansim Validation KW - Char Burnout KW - Ash Deposition AV - public ER -