TY - GEN A1 - Friedmann, Simon N2 - This thesis presents a novel, highly flexible approach to plasticity and learning in brain-inspired computing systems. A classical digital processor was combined with local analog processing to achieve flexibility and efficiency. In particular, this allows for the implementation of modulated spike-timing dependent plasticity. The approach was formalized into an abstract hybrid hardware model. This model was used to simulate a reward-based learning task to estimate the effect of hardware constraints. To investigate the feasibility of the proposed architecture, a synthesizeable plasticity processor was designed and tested using the CoreMark general purpose benchmark (best score: 1.89 per MHz). The processor was also produced as part of a 65 nm proto- type chip, requiring 0.14 mm2 of die-area, and reaching a maximum clock frequency of 769 MHz. In a preparatory step a non-programmable plasticity implementation was developed, that is now part of the operational BrainScaleS wafer-scale system. This design was later extended with the plasticity processor to implement the proposed hybrid architecture. Simulations show a speed improvement of 42 % over the non- programmable variant. By preparation for production, the area requirement for the digital part is estimated to be 6.2 % of total area. AV - public UR - https://archiv.ub.uni-heidelberg.de/volltextserver/15359/ Y1 - 2013/// TI - A New Approach to Learning in Neuromorphic Hardware KW - Neuromorphic engineering KW - Belohnungslernen KW - STDP ID - heidok15359 ER -