%0 Generic %A Großhauser, Michael %C Heidelberg %D 2015 %F heidok:19047 %R 10.11588/heidok.00019047 %T Molekularer Magnetismus von homo- und heterooligonuklearen phenolatverbrückten 3d-4f-Verbindungen %U https://archiv.ub.uni-heidelberg.de/volltextserver/19047/ %X Ziel dieser Arbeit war die Synthese mehrkerniger Metallkomplexe in denen 4f-Elemen-te koordiniert sind. Hierzu wurden Liganden synthetisiert die, durch Ausnutzung der Oxophilie, gezielt 4f-Elemente koordinieren. Zudem wurden Liganden dargestellt, die zusätzlich präorganisierte Bindungstaschen für 3d-Elemente aufweisen. Der erste Teil dieser Arbeit befasst sich mit homodinuklearen Verbindungen der dreiwertigen 4f-Elemente (Kapitel 3.2). Eine Serie der zweikernigen Ln(III)2 (Ln = Y, Nd, Gd, Tb, Dy, Ho, Er, Lu) konnte synthetisiert und charakterisiert werden. Mit Ausnahme des Nd(III)-Derivats wurden Kristalle erhalten und Strukturen gelöst, die unterschiedliche Koordinationszahlen an beiden Zentren aufzeigen. Die magnetischen Messungen sind in guter Übereinstimmung mit den erwarteten Werten und zeigen einen antiferromagnetischen Kurvenverlauf auf. In den dynamischen ac-SQUID-Messungen zeigen sich für Dy(III)2 ein schwaches SMM-Verhalten. Unter Verwendung von CASSCF(9,7)-Rechnungen konnten die magnetischen Daten eindeutig interpretiert werden. Anhand von MCD-Spektroskopie konnte das unterschiedliche Ligandenfeld beider Zentren nachgewiesen werden. Unter Verwendung von high-field-ESR-Spektroskopie wurde eine intramolekulare dipolare Wechselwirkung gefunden und quantifiziert. Im zweiten Teil (Kapitel 3.3) wird die Synthese und Analyse heterodinuklearer Verbindungen besprochen. Es war möglich zwei Derivate Ni(II)-Dy(III) und Co(II)-Dy(III) zu synthetisieren und zu charakterisieren. Die magnetischen Messungen zeigen eine ferromagnetische Wechselwirkung für Ni(II)-Dy(III) und eine antiferromagnetische für Co(II)-Dy(III). Ac-SQUID-Messungen zeigten ein SMM Verhalten für Ni(II)-Dy(III) und keines für Co(II)-Dy(III). Durch Berechnung der Anisotropieachsen der Dy(III)-Zentren beider Moleküle wurde eine Ausrichtung der Achse in Ni(II)-Dy(III) entlang der Kernverbindungsachse und in Co(II)-Dy(III) senkrecht dazu gefunden. In Ni(II)-Dy(III) kann daher von einer additiven Wechselwirkung beider Einzelionenanisotropien ausgegangen werden. Als Ursache konnten die Co-Liganden an Dy(III) (Pivalat) ausgemacht werden, da diese, wie in den Kristallstrukturen beider Moleküle ersichtlich, unterschiedlich und entlang der Dy(III)-Anisotropieachse orientiert sind. In Kapitel 4.2 wird die Synthese von homotrinuklearen Ln(III)3-Verbindungen (Ln(III) = Y, Gd, Tb, Dy) beschrieben und auf ihre magnetischen Eigenschaften analysiert. In den Kristallstrukturen ist eine gewinkelte symmetrische Anordnung der drei Zentren zu sehen. Zudem wurden für das zentrale und die äußeren Ionen unterschiedliche Koordinationszahlen gefunden. Die magnetischen Messungen zeigen eine gute Übereinstimmung mit den erwarteten Werten und folgen antiferromagnetischen Kurvenverläufen. In den ac-SQUID-Messungen ergab nur Dy(III)3 Signale und diese sind nicht quantifizierbar. Durch eine diamagnetische Verdünnung von Dy(III)3 in Y(III)3 wurden bessere Signale erhalten, die allerdings auch nicht auswertbar waren. Dies veranschaulicht, dass durch die Entfernung der Ionen voneinander die Relaxation der Magnetisierung teilweise unterdrückt werden kann. Durch die Berechnung der Orientierung der Anisotropieachsen wurde deutlich, dass keine der lokalen Achsen der drei magnetischen Zentren in Dy(III)3 gleichgerichtet sind. Für Gd(III)3 wurde anhand der magnetischen Messungen eine sehr kleine Wechselwirkung zwischen den Zentren bestimmt. Eine Serie von Ni(II)2Ln(III) Komplexen (Ln(III) = Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu) wurde synthetisiert und charakterisiert (Kapitel 4.3.1). Bei den Kristallstrukturen der Moleküle waren, außer bei Ni(II)2Sm(III), Ni(II)2Eu(III) und Ni(II)2Tb(III), eine lineare Anordnung der drei Zentren und eine pseudo-C3-Achse entlang der Metallverbindungsachse feststellbar. In Ni(II)2Sm(III), Ni(II)2Eu(III) und Ni(II)2Tb(III) sind zusätzlich Aqua-Liganden am Lanthanid koordiniert, wodurch eine gewinkelte Struktur erreicht wird. Die magnetischen Messungen zeigen wie erwartet einen antiferromagnetischen Kurvenverlauf. Die dreikernige Ni(II)2Ln(III)-Verbin-dungen, Ni(II)2Y(III), Ni(II)2La(III) und Ni(II)2Lu(III), konnten als dinukleare Ni(II)-Verbindungen analysiert werden und ergaben elektronische Parameter für die Ni(II)-Ionen. Durch Subtraktion der Suszeptibilitäten dieser Verbindungen wurden schwache ferromagnetische Kurvenverläufe bei den Sm(III)-, Eu(III)-, Ho(III)-, Er(III)- und Dy(III)-Derivaten aufgezeigt. Paramagnetische NMR-Messungen von Ni(II)2Dy(III), Ni(II)2Tb(III), Ni(II)2Er(III) und Ni(II)2Y(III) stimmen mit CASSCF-Rechnungen dahingehend überein, dass eine lineare Anordnung der Einzelionenanisotropien der drei Zentren vorliegt. Trotzdem wurde in den ac-SQUID-Messungen kein SMM-Verhalten detektiert. Die CASSCF-Rechnungen identifizierten das Ligandenfeld am Lanthanid als Ursache hierfür. Abschließend (Kapitel 4.3.2) wird eine Serie von Co(III)2Ln(III)-Komplexen (Ln(III) = Y, Gd, Dy) vorgestellt. In der Kristallstruktur von Co(III)2Gd(III) waren an das Gd(III) drei zusätzliche Aqua-Liganden koordiniert. UV-Vis-NIR-Spektroskopie bestätigte die Oxi-dationsstufe von Kobalt als +3. Die magnetischen Messungen zeigten einen ferromagnetischen Kurvenverlauf. Der untypische Kurvenverlauf lässt auf ein mögliches Vorhandensein von Radikalen schließen. Die Verbindung Co(III)2Dy(III) wurde durch ac-SQUID-Messungen als SMM charakterisiert.