%0 Generic %A Harion, Tobias %C Heidelberg %D 2015 %F heidok:19194 %R 10.11588/heidok.00019194 %T The STiC ASIC High Precision Timing with Silicon Photomultipliers %U https://archiv.ub.uni-heidelberg.de/volltextserver/19194/ %X In recent years, Silicon Photomultipliers are being increasingly used for Time of Flight measurements in particle detectors. To utilize the high intrinsic time resolution of these sensors in detector systems, the development of specialized, highly integrated readout electronics is required. In this thesis, a mixed-signal application specific integrated circuit, named STiC, has been developed, characterized and integrated in a detector system. STiC has been specifically designed for high precision timing measurements with SiPMs, and is in particular dedicated to the EndoTOFPET-US project, which aims to achieve a coincidence time resolution of 200 ps FWHM and an energy resolution of less than 20% in an endoscopic positron emission tomography system. The chip integrates 64 high precision readout channels for SiPMs together with a digital core logic to process, store and transfer the recorded events to a data acquisition system. The performance of the chip has been validated in coincidence measurements using detector modules consisting of 3.1×3.1×15 mm³ LYSO crystals coupled to Silicon Photomultipliers from Hamamatsu. The measurements show an energy resolution of 15% FWHM for the detection of 511keV photons. A coincidence time resolution of 213ps FWHM has been measured, which is among the best resolution values achieved to date with this detector topology. STiC has been integrated in the EndoTOFPET-US detector system and has been chosen as the baseline design for the readout of SiPM sensors in the Mu3e experiment.