TY - GEN ID - heidok22242 UR - https://archiv.ub.uni-heidelberg.de/volltextserver/22242/ N2 - Effective image-based correction of motion and other acquisition artifacts became an essential step in diffusion-weighted Magnetic Resonance Imaging (MRI) analysis as the micro-structural tissue analysis advances towards higher-order models. These come with increasing demands on the number of acquired images and the diffusion strength (b-value) yielding lower signal-to-noise ratios (SNR) and a higher susceptibility to artifacts. These conditions, however, render the current image-based correction schemes, which act retrospectively on the acquired images through pairwise registration, more and more ineffective. Following the hypothesis, that a more consequent exploitation of the different intensity relationships between the volumes would reduce registration outliers, a novel correction scheme based on memetic search is proposed. This scheme allows for incorporating all single image metrics into a multi-objective optimization approach. To allow a quantitative evaluation of registration precision, realistic synthetic data are constructed by extending a diffusion MRI simulation framework by motion and eddy-currents-caused artifacts. The increased robustness and efficacy of the multi-objective registration method is demonstrated on the synthetic as well as in-vivo datasets at different levels of motion and other acquisition artifacts. In contrast to the state-of-the-art methods, the average target registration error (TRE) remained below the single voxel size also at high b-values (3000 s.mm-2) and low signal-to-noise ratio in the moderately artifacted datasets. In the more severely artifacted data, the multi-objective method was able to eliminate most of the registration outliers of the state-of-the-art methods, yielding an average TRE below the double voxel size. In the in-vivo data, the increased precision manifested itself in the scalar measures as well as the fiber orientation derived from the higher-order Neurite Orientation Dispersion and Density Imaging (NODDI) model. For the neuronal fiber tracts reconstructed on the data after correction, the proposed method most closely resembled the ground-truth. The proposed multi-objective method has not only impact on the evaluation of higher-order diffusion models as well as fiber tractography and connectomics, but could also find application to challenging image registration problems in general. Y1 - 2016/// TI - Robust Motion and Distortion Correction of Diffusion-Weighted MR Images A1 - Hering, Jan AV - public ER -