TY - JOUR SP - 1 N2 - Background: Functionalized nanoparticles (NPs) are one promising tool for detecting specific molecular targets and combine molecular biology and nanotechnology aiming at modern imaging. We aimed at ligand-directed delivery with a suitable target-biomarker to detect early pancreatic ductal adenocarcinoma (PDAC). Promising targets are galectins (Gal), due to their strong expression in and on PDAC-cells and occurrence at early stages in cancer precursor lesions, but not in adjacent normal tissues. Results: Molecular probes (10-29 AA long peptides) derived from human tissue plasminogen activator (t-PA) were selected as binding partners to galectins. Affinity constants between the synthesized t-PA peptides and Gal were determined by microscale thermophoresis. The 29 AA-long t-PA-peptide-1 with a lactose-functionalized serine revealed the strongest binding properties to Gal-1 which was 25-fold higher in comparison with the native t-PA protein and showed additional strong binding to Gal-3 and Gal-4, both also over-expressed in PDAC. t-PA-peptide-1 was selected as vector moiety and linked covalently onto the surface of biodegradable iron oxide nanoparticles (NPs). In particular, CAN-doped maghemite NPs (CAN-Mag), promising as contrast agent for magnetic resonance imaging (MRI), were selected as magnetic core and coated with different biocompatible polymers, such as chitosan (CAN-Mag-Chitosan NPs) or polylactic co glycolic acid (PLGA) obtaining polymeric nanoparticles (CAN-Mag@PNPs), already approved for drug delivery applications. The binding efficacy of t-PA-vectorized NPs determined by exposure to different pancreatic cell lines was up to 90%, as assessed by flow cytometry. The in vivo targeting and imaging efficacy of the vectorized NPs were evaluated by applying murine pancreatic tumor models and assessed by 1.5 T magnetic resonance imaging (MRI). The t-PA-vectorized NPs as well as the protease-activated NPs with outer shell decoration (CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac) showed clearly detectable drop of subcutaneous and orthotopic tumor staining-intensity indicating a considerable uptake of the injected NPs. Post mortem NP deposition in tumors and organs was confirmed by Fe staining of histopathology tissue sections. Conclusions: The targeted NPs indicate a fast and enhanced deposition of NPs in the murine tumor models. The CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac interlocking steps strategy of NPs delivery and deposition in pancreatic tumor is promising. SN - 1477-3155 AV - public Y1 - 2016/// TI - Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer ID - heidok22366 JF - Journal of Nanobiotechnology VL - 14 CY - London IS - 81 A1 - Dobiasch, Sophie A1 - Szanyi, Szilard A1 - Kjaev, Aleko A1 - Werner, Jens A1 - Strauß, Albert A1 - Weis, Christian A1 - Grenacher, Lars A1 - Kapilov-Buchman, Katya A1 - Israel, Liron-Limor A1 - Lellouche, Jean-Paul A1 - Locatelli, Erica A1 - Franchini, Mauro Comes A1 - Vandooren, Jennifer A1 - Opdenakker, Ghislain A1 - Felix, Klaus UR - https://archiv.ub.uni-heidelberg.de/volltextserver/22366/ EP - 18 PB - BioMed Central ER -