TY - GEN N2 - Sodium (23Na) ions play an essential role in the physiology of living tissue and can be observed non-invasively due to a nuclear spin of 3/2 via magnetic resonance imaging (MRI). The interaction of the electrical quadrupole moment of the nucleus and the external field gradient causes a rapid biexponential signal relaxation, which represents a direct probe into the microscopic environment. The aim of this thesis was to develop a time-efficient in vivo measurement of the apparent transverse relaxation times (T2,s*,T2,l*). This was realized for brain parenchyma by optimization of the temporal sampling and a novel radio frequency coil leading to an increase in signal-to-noise ratio of up to 145 %. With the optimized pattern relaxation times were determined in healthy human white matter to be T2,s*,T2,l* = 4.2 ± 0.4 ms / 34.4 ± 1.5 ms. Compared to linear sampling, up to 29 % reduction in mean uncertainty was achieved. Monte-Carlo simulations further demonstrated a 73 % decrease in bias. Based on the T2 values, the average correlation time of the interaction could be estimated at 39.3 ± 2.5 ns. AV - public TI - Probing the microscopic environment of physiological sodium ions through observation of the T2* relaxation Y1 - 2017/// A1 - Lommen, Jonathan Manuel ID - heidok23885 UR - https://archiv.ub.uni-heidelberg.de/volltextserver/23885/ ER -