TY - GEN N2 - Modern High Energy Physics experiments (HEP) explore the fundamental nature of matter in more depth than ever before and thereby benefit greatly from the advances in the field of communication technology. The huge data volumes generated by the increasingly precise detector setups pose severe problems for the Data Acquisition Systems (DAQ), which are used to process and store this information. In addition, detector setups and their read-out electronics need to be synchronized precisely to allow a later correlation of experiment events accurately in time. Moreover, the substantial presence of charged particles from accelerator-generated beams results in strong ionizing radiation levels, which has a severe impact on the electronic systems. This thesis recommends an architecture for unified network protocol IP cores with custom developed physical interfaces for the use of reliable data acquisition systems in strong radiation environments. Special configured serial bidirectional point-to-point interconnects are proposed to realize high speed data transmission, slow control access, synchronization and global clock distribution on unified links to reduce costs and to gain compact and efficient read-out setups. Special features are the developed radiation hardened functional units against single and multiple bit upsets, and the common interface for statistical error and diagnosis information, which integrates well into the protocol capabilities and eases the error handling in large experiment setups. Many innovative designs for several custom FPGA and ASIC platforms have been implemented and are described in detail. Special focus is placed on the physical layers and network interface elements from high-speed serial LVDS interconnects up to 20 Gb/s SSTL links in state-of-the-art process technology. The developed IP cores are fully tested by an adapted verification environment for electronic design automation tools and also by live application. They are available in a global repository allowing a broad usage within further HEP experiments. AV - public UR - https://archiv.ub.uni-heidelberg.de/volltextserver/24533/ A1 - Schatral, Sven Andreas Chris Markus Y1 - 2018/// TI - Design of Multi-Gigabit Network Interconnect Elements and Protocols for a Data Acquisition System in Radiation Environments ID - heidok24533 ER -