%0 Generic %A Shukirgaliyev, Bekdaulet %D 2018 %F heidok:25699 %R 10.11588/heidok.00025699 %T THE LIFE OF STAR CLUSTERS, FROM BIRTH TO DISSOLUTION: A NEW APPROACH %U https://archiv.ub.uni-heidelberg.de/volltextserver/25699/ %X We study the evolution of star clusters, starting from their birth in molecular gas clumps until their complete dissolution in the Galactic tidal field. We have combined the “local-density-driven cluster formation” model of Parmentier and Pfalzner (2013) with direct N-body simulations of star clusters following instantaneous expulsion of their residual star-forming gas. Our model clusters are formed with a centrally peaked star-formation efficiency (SFE) profile, that is, the residual gas has a shallower density profile than stars. We build a large grid of simulations covering the parameter space of global SFEs, cluster masses, sizes and galactocentric distances. We study the survivability of our model clusters in the solar neighborhood after instantaneous gas expulsion and find that a minimum global SFE of 15 percent is sufficient to produce a bound cluster. Then studying their long-term evolution we find that our simulations are able to reproduce the cluster dissolution time observed for the solar neighborhood, provided that the cluster population is dominated by those formed with a low global SFE (about 15%). Finally, we find that the cluster survivability after instantaneous gas expulsion, as measured by cluster bound mass fraction at the end of violent relaxation, is independent of the Galactic tidal field impact.