title: Investigations of Trace Amines and Fatty Acids as Essential Endogenous Signaling Factors for β-Cell Activity and Insulin Secretion creator: Hauke, Sebastian subject: 500 subject: 500 Natural sciences and mathematics subject: 540 subject: 540 Chemistry and allied sciences subject: 570 subject: 570 Life sciences description: Secretion of insulin in response to extracellular stimuli, such as elevated glucose levels and small molecules that act on G-protein coupled receptors (GPCRs), is the hallmark of β-cell physiology. Sufficiently high blood insulin levels are ensured by the coupling of the secretory activity within pancreatic islets. Intercellular and inter-islet coordination are partly mediated by small diffusible ligands of GPCRs within the extracellular space of pancreatic islets. Therefore, insulin release is considered a synchronized multi-cellular process. We show herein that β-cell activity and insulin secretion essentially rely on the presence of extracellular endogenous (autocrine) signaling factors, exemplified by two classes of small cellular metabolites. Trace amines (TAs) are small aromatic metabolites that were identified as low-abundant ligands of the trace amine-associated receptor 1 (TAAR1) in the central nervous system (CNS). In the presented work, we identify TAs as essential autocrine signaling factors that maintain and regulate oscillations of the intracellular Ca2+ concentration ([Ca2+]i oscillations) along with insulin secretion from β-cells via TAAR1. We found that the modulation of endogenous TA levels by the selective inhibition of TA biosynthetic pathways directly translated into changes of [Ca2+]i oscillations and insulin secretion. Application of aromatic amine-withdrawing β-cyclodextrin temporarily reduced [Ca2+]i oscillations. This demonstrates the essential role of TAs for β-cell activity as well as their high metabolic turnover rates. Notably, herein applied inhibitors and synthetic TAAR1 (ant-)agonists are partly approved for the therapeutic modulation of biogenic amine levels within the CNS, and hence for the treatment of common neurological disorders. According to our findings, these drugs even affect β-cell activity and insulin secretion through pancreatic TAAR1. With the discovery of the free fatty acid (FA) receptor GPR40 in β-cells, FAs have come into focus as exogenous insulin secretagogues. However, the role of FAs as endogenous (local) signaling factors of β-cells has not been considered so far. We show herein that lowering endogenous FAlevels in the presence of FA-free bovine serum albumin (FAF-BSA) immediately reduced [Ca2+]i oscillations and insulin secretion. [Ca2+]i oscillations resumed upon exchange of FAF-BSA by buffer or upon restoration of extracellular FA pools. The latter was accomplished by the photolysis of caged FAs on plasma membranes, by the addition of a recombinant lipase or of FA-loaded BSA. Our approach to subordinate β-cell activity and insulin secretion to the presence of autocrine signaling factors of the yet underestimated receptors TAAR1 and GPR40 in the pancreas contributes to a more detailed and complete understanding of the fundamental regulation of β-cell activity and insulin secretion. date: 2019 type: Dissertation type: info:eu-repo/semantics/doctoralThesis type: NonPeerReviewed format: application/pdf identifier: https://archiv.ub.uni-heidelberg.de/volltextserverhttps://archiv.ub.uni-heidelberg.de/volltextserver/26060/1/Dissertation%20S_Hauke.pdf identifier: DOI:10.11588/heidok.00026060 identifier: urn:nbn:de:bsz:16-heidok-260602 identifier: Hauke, Sebastian (2019) Investigations of Trace Amines and Fatty Acids as Essential Endogenous Signaling Factors for β-Cell Activity and Insulin Secretion. [Dissertation] relation: https://archiv.ub.uni-heidelberg.de/volltextserver/26060/ rights: info:eu-repo/semantics/openAccess rights: http://archiv.ub.uni-heidelberg.de/volltextserver/help/license_urhg.html language: eng