eprintid: 29011 rev_number: 17 eprint_status: archive userid: 5504 dir: disk0/00/02/90/11 datestamp: 2020-11-03 13:04:57 lastmod: 2020-11-05 13:19:50 status_changed: 2020-11-03 13:04:57 type: doctoralThesis metadata_visibility: show creators_name: Pais, Matteo title: Magneto-hydrodynamical simulation with cosmic ray acceleration at supernova remnants. subjects: ddc-530 divisions: i-130200 divisions: i-999906 adv_faculty: af-13 abstract: Supernova remnants shocks are considered the best sites for the production of Galactic cosmic rays. The interactions of cosmic rays produced at supernova shocks with photon fields and the interstellar medium generate a multi-wavelength spectrum from radio to gamma rays. In particular, TeV gamma-ray emission may originate from both hadronic and leptonic interactions. Recent results from kinetic simulations suggest that the acceleration of cosmic ray ions strongly depends on the relative angle between the shock normal and the local magnetic field orientation. This means that the underlying topology of the interstellar magnetic field in which the supernova remnant expands determines the emission morphology. Using 3D magneto-hydrodynamical simulation with the code \AREPO, we study the effect of the obliquity dependent shock acceleration on the emission morphology of bright supernova remnants. We apply the results of idealized cases to well-known bright supernova remnants assuming a hadronic model to reproduce different emission morphologies. From the TeV gamma-ray morphology we predict the local composition of the interstellar medium and the coherence scale of the interstellar magnetic field. Furthermore we study the impact of different interstellar environments, such as the case of a clumpy medium for core-collapse supernova remnants. We show that the hadronic model provides a good match for both the observed morphologies and the spectra. date: 2020 id_scheme: DOI id_number: 10.11588/heidok.00029011 ppn_swb: 1737971011 own_urn: urn:nbn:de:bsz:16-heidok-290110 date_accepted: 2020-10-19 advisor: HASH(0x55d997ba8288) language: eng bibsort: PAISMATTEOMAGNETOHYD2020 full_text_status: public place_of_pub: Heidelberg citation: Pais, Matteo (2020) Magneto-hydrodynamical simulation with cosmic ray acceleration at supernova remnants. [Dissertation] document_url: https://archiv.ub.uni-heidelberg.de/volltextserver/29011/7/Pais_Matteo_19102020.pdf