%0 Generic %A Gronow, Sabrina %C Heidelberg %D 2021 %F heidok:30113 %R 10.11588/heidok.00030113 %T Contribution of Type Ia supernovae to the chemical enrichment of the Milky Way: explosions of sub-Chandrasekhar mass white dwarfs %U https://archiv.ub.uni-heidelberg.de/volltextserver/30113/ %X Type Ia supernovae (SNe Ia) are important for galactic chemical evolution (GCE) because they produce heavy elements. Sub-Chandrasekhar mass carbon-oxygen white dwarfs with helium shells are favored progenitors for SNe Ia. This thesis investigates the double detonation explosion scenario. A focus lies on an accurate calculation of the detonation propagation in the white dwarf shell and the assumption of core-shell mixing. Parameter studies were conducted to analyse whether variations found in observables of SNe Ia can be reproduced and to provide (metallicity-dependent) nucleosynthetic yields for subsequent radiative transfer calculations and GCE models. Three-dimensional simulations were carried out using the Arepo code. A previously neglected carbon detonation ignition mechanism was found showing that the helium detonation wave convergence is sufficient to ignite carbon in a core-shell transition region. The study shows that various luminosities coinciding with SNe Ia can be reproduced. Metallicity-dependent yields illustrate that a high stellar metallicity shifts the production to stable isotopes while supporting the manganese production. GCE models suggest that the inclusion of this explosion type allows to account for about 80% of the solar manganese abundance. The correlation of [Mn/Fe] with metallicity in the solar neighborhood is supported by the inclusion of metallicity-dependent SNe Ia yields.