TY - GEN Y1 - 2021/// ID - heidok30183 UR - https://archiv.ub.uni-heidelberg.de/volltextserver/30183/ AV - public A1 - Corell, Lukas CY - Heidelberg N2 - In this work, a framework for the computation of the time evolution of correlation functions is developed. For that purpose, techniques from the functional renormalisation group (fRG) are used, with the unique feature of a temporal regulator. This specific choice of regulator suppresses quantum fluctuations based on a time scale and yields causal properties for correlation functions. As a consequence, flow equations can always be integrated analytically, which in turn allows for the derivation of a one-loop exact functional relation for the inverse propagator. In addition to this formal result, the method is applied to the phi^3-theory, where the dynamics of the propagator is investigated. In this setup, the system is prepared far-from-equilibrium and the time evolution of the propagator is computed. Even in the simple truncation that is employed, there are already hints at a self-similar time evolution. In a separate part, three-dimensional Yang-Mills theory is examined in equilibrium. Due to the simpler computation as opposed to non-equilibrium scenarios, it is possible to investigate this theory in view of different truncations. This study reveals that truncations have to be chosen carefully in order to achieve apparent convergence. TI - Quantum Dynamics from the Functional Renormalisation Group with a Temporal Regulator ER -